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SUMMARY

Motivated by the interests to understand bio-structure deformation and exploit
their advantages to create bio-inspired systems for engineering applications, this thesis
presents a curvature-based model for analyzing compliant mechanisms capable of large
deformation in a three dimensional (3-D) space.

This thesis formulates the large deformation of a 3-D compliant beam as a
boundary value problem (BVP). Unlike other methods, such as finite element (FE)
method, that formulate problems based on displacements and/or rotational angles, the
BVP formulation has been derived using curvatures that are more fundamental in
presenting nonlinear geometries. Since in the case of finite rotation, superposition holds
for curvatures but not for rotational angles, the model is much simpler and the resulting
computational process is more efficient. The above advantages have been employed in
this research to analyze compliant mechanism designs using curvature-based beam
models. Along with the method of deriving the compliant members in the same global
reference frame, a generalized constraint acting on a compliant mechanism is presented
to replace traditional boundary constraints (such as fixed, pinned or sliding constraint)
where none or only one degree of freedom (DOF) is allowed. Inspired by the dexterity of
a natural biological joint that offers efficient multi-axis rotation, this research extends to
the modeling method of a generalized constraint (or referred to here as a bio-joint
constraint) to develop designs emulating commonly observed human motions of multi-
DOFs . Using a multiple shooting method (MSM), the BVP is treated as an initial value

problem and higher order accuracy can be achieved than finite element (FE) methods.

Xvi



The attractive features of the method, which greatly simplifies the models and
improves the computation efficiency of multi-body system deformation where compliant
beams play an important role, have been experimentally validated. To demonstrate the
applicability of this proposed method to a broad spectrum of applications, the analytical
models have been employed (with experimental validation) to investigate the effects of
different joint constraints on the mechanism deformations in two practical applications.
The first analyzes deformable bio-structures for automated poultry meat processing. The
second has led to a compliant mechanism (known as flexonic mobile node) for health
monitoring of a ferromagnetic structure. It is expected that the proposed method will find

a broad range of applications involving compliant mechanisms.
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CHAPTER I

INTRODUCTION AND BACKGROUND

1.1 Background and Motivation

A compliant mechanism is a mechanical system composed of flexible links,
which are designed to transfer force/moments to strain energy by large deformations, and
have been widely used for many engineering applications such as snap-fits [1], micro
grippers [2] and flexure hinges [3]. In recent years, compliant mechanisms have attracted
more and more attention for biology related applications, such as food processing
industry and bio inspired robotics, because compliant mechanisms exhibit many
advantages in dealing with highly deformable biological materials over rigid engineering
tools in terms of simple structures and light weight. While multi-body compliant
mechanisms can achieve a larger range of motion and are energy efficient because of
being free from contact friction, their designs are difficult to analyze and often based on
assumptions (such as small deformation and fixed rotation center) in order to reduce the
three dimensional (3-D) nonlinear problem to a more tractable two dimensional (2-D)

formulation for solving using a lumped-parameter approach. Such simplified analyses



generally yield only first-order approximation, and are unable to capture 3D behaviors
such as the coupled effects among bending, twisting, and contact with joint clearances.
This thesis research has been motivated by two practical applications. The first is
an immediate application in poultry industry, where boneless breast meat is removed
from chicken carcasses for subsequent meat processing [4]. The job requires pulling and
then twisting a wing to sever the ligaments/tendons for deboning the meat typically at a
rate of 1 bird/second. This repetitive job is a potential cause of cumulative trauma
disorder, and thus a candidate for automation. A critical part of this process is the need to
manipulate both wings to tension the ligaments and tendon before severing them as
illustrated in Figure 1.1, which leads the following questions to be answered: 1) where
are the ligaments and tendon located? 2) How much force and torque are required to
manipulate the wings? 3) In what directions should the force and torque be applied?
Most of the early research effort focused on developing a method (based primarily on
vision sensing feedback) to position the cutting blade for the initial insertion. A good
understanding of the important factors (such as the structural compliance due to joint
clearance and connecting soft tissues) contributing to the whole carcass deformation is
essential to the precision deboning. In this thesis, a mulsculoskeletal structure of a
chicken shoulder is modeled as a multi-body compliant mechanism with bio joints to
predict the locations of ligaments/tendon and required manipulating forces under large
deformation of a carcass. This mechanism differs from others in the sense that rigid
bodies (bones) and compliant links (tiny bones / soft tissues) are not connected in series

but in a 3-D topology. The deformation of this compliant bio-structure, together with
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Figure 1.1 Ligament-skeletal structure of a chicken-shoulder joint.

non-uniform joint constraints, will be analyzed using the model for multi-body compliant
mechanisms.

The second application is to design a miniature robotic car to serve as a mobile
sensor node (MSN) for structure health monitoring (SHM) and dynamic testing of large
civil structures (such as ferromagnetic bridges) [5]. Current bridge inspections (relying on
visual identification of damages on structure surfaces) are laborious and costly, and
limited to once every two years; damages located below the surface often remain elusive
to the inspectors. In order to reduce these costs, the MSN should be able to perform two
functions; negotiating obstacles within limited space on structures being inspected and
attaching/detaching an accelerometer to collect data for vibration analysis. Thus, the
mechanical structure of a MSN has to be flexible enough to successfully perform all these
functions. Unlike other field robots designed solely on rigid links, compliant links offer
more flexibility in maneuvering various poses for the robot, thus it is more adaptive to
complex terrains. Moreover, by replacing revolute joints with flexible beams, it also

reduces friction between components. When a MSN is incorporated with a compliant
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Figure 1.2 Magnetic wheeled flexonic mobile node (FMN).
mechanism, it is called flexure-based-mechatronic (Flexonic) Mobile Node (FMN). As
shown in Figure 1.2, the interest here is the design and control of the flexible link
between the front and rear axles of an FMN. Besides, various terrains with limited

turning spaces also exert certain motion constraints on the car, which could be regarded

as a generalized contact similar to that encountered in a bio joint.

1.2 Problem Description and Objectives

With the emerging applications in mind, there is a need to develop a modeling
method for designing and analyzing compliant mechanisms capable of 3-D large
deformation. Although many methods are available in modeling flexible structures,
challenges still exist in the following aspects:

1) Formulations based on local nodal coordinates are not numerically efficient in
capturing large deformation, especially for 3-D cases.

2) Most existing modeling methods are based on small deformation analysis, such as
finite element (FE) methods, which require incremental loadings to achieve large
deformation and their performances are not optimal.



3) Nonlinearity in material properties and geometries in biological applications
brings in new problems to traditional engineering applications.

As a result, the objectives of this thesis include the following:

1) Formulate a compliant beam model that is capable of capturing large deformation
in 3D space.
2) Develop an approach to quantify the nonlinear geometry confronted in biology

related applications.

3) Given the geometry nonlinearity, design and analyze compliant mechanisms for
engineering application.

1.3 Review of Prior Work

Compliant mechanisms have a long history and can be found in our daily life in
numerous applications (such as catapults, bows, binder clips, diving boards and clocks).
A comprehensive review of compliant mechanisms is beyond the scope for this thesis.
The reviews conducted for this thesis research focus on practical issues related to two
practical applications that have motivated this research; namely, natural bio-product
processing and design of bio-inspired mechanisms. In relation to these applications,
several problems arise for designing compliant mechanisms. For example, 2-D models of
engineering mechanisms are not suitable for characterizing 3-D natural objects.
Assumptions such as small deformation are no longer adequate for design analysis of
compliant structures involving large deformation and nonlinear dynamic behaviors.
Moreover, typical engineering designs based on fixed rotation centers or standard
cylindrical/sphere geometries could not capture the natural properties of contact in bio
joints. Typical biological joints can attain limited translational motions in addition to the

three rotational freedoms due to the deformability of the connective tissues. Given the



complex assembly with clearances, a biological joint is often compliant and has more
degrees of freedom (DOF) than an engineering joint [6, 7]. Existing ball-socket
approximations are often inadequate to characterize biological joints and their associated
bio-skeleton kinematics. Thus, the contact point between these extraordinary shapes, in
general, is difficult to locate.

Given the dimension of the above difficulties, the remaining review begins with
related works on the two applications of processing natural objects and bio-inspired
mechanisms for field robots. Next, formulations of a compliant beam and contact analysis
are addressed. Finally, a review on the MSM for solving boundary value problem (BVP)

of a compliant beam large deformation is provided.

1.3.1 Beam theory and its applications

Flexible beams are used as a fundamental component in many compliant
mechanisms, and have been modeled using different formulations. The pseudo-rigid-
body approach [8] is among the most commonly used approximation, which extends the
rigid body analysis by modeling the beam as a torsional spring connecting two rigid
links. One of the difficulties in the pseudo-rigid-body approach is to find the beam
equivalent stiffness and its location for modeling it as a torsional spring. Although errors
of the tip deflection are within 0.5% of exact solutions, it is not accurate about the
displacement along the path length.

Distributed beam models for small deformations fall into two main categories:
Euler-Bernoulli beam theory [9] and Timoshenko beam theory [10]. Euler-Bernoulli

beam theory is also called the classical beam theory, which has been widely used to solve



engineering problems. It assumes material linear elasticity, small deformation, no shear
distortions, and plane section normal to the undeformed beam referenced axis remains
planar and normal to the deformed axis. Timoshenko beam theory takes shear
deformation and rotational inertia effects into account, which is suitable for studying
short beams or beams subject to high frequency excitation.

For formulating the large deflection of a two-dimensional beam under various
load conditions, Frisch-Fay [11] presented closed form solutions; as the solutions
incorporate elliptic integrals, the calculation procedure is cumbersome. Although Frisch-
Fay also presented some results for analyzing 3-D beams, closed form solutions are still
not available. Numerical methods are generally required to solve for 3-D beam
deformation. This thesis research formulates the equations of motion for a 3-D beam
based on the model by Pai and Nayfeh [12] for solving using a MSM [13].

In analyzing flexible body dynamics, four groups of formulations have been

developed to capture the large displacements and rotations of structural components:

1) The floating frame of reference method [14] defines each body deformation with
respect to their local body-fixed coordinate systems using modal representation or
the FE method.

2) The incremental FE method uses infinitesimal rotations as nodal coordinate,

which may not be correct to solve large rotation problems [15].

3) The large rotation vector method employs large rotation coordinates in the inertial
frame, which leads to a simple expression for the kinetic energy but results in
redundant representation of derivatives of displacement coordinates besides the
rotation coordinate [16, 17].

4) More recently, the absolute nodal coordinate formulation which does not require
interpolation of finite rotations has been widely used for FE analysis, [18].



1.3.2 Contact analysis

For compliant mechanisms involving contacts, several questions must be
answered: 1) Whether there is contact? 2) Where is the contact? 3) What is happening
during contact? Numerical methods for determining contact between rigid bodies fall into
two formulations. The first is the penalty formulation utilizing the no-interpenetration
condition, which avoids the solution existence questions and avoids impulses. The second
is the time-stepping formulation that employs complementarity (or optimization)
conditions to determine contact or not. Some reviews and recent developments on both
formulations can be found from the works of Stewart [19, 20], Song [21], and Adly and
Goeleven [22].

For contact problems involving flexible bodies, the two main formulations are the
methods of variational inequality (VI) [23] and the variational equality (VE) [24], which
have been investigated for frictionless and frictional contact problems respectively. When
considering biological joints, contact kinematic problems arise because of the non-
uniform shapes of joints. Kelkar et al. [25] quantitatively studied the translational motion
of humeral head during the rotation of shoulder joints. Similar results of tibia
translational motion in human knee joints are observed in experiments by Iwaki et al.
[26]. Yang and Meng [27] used a 3D friction contact model for planar contact and
developed analytical criteria to determine the transitions among stick, slip and separation
of contact. Montana [28] studied the velocity of a rolling sphere between two grasping
fingers of arbitrary shapes.

At Georgia Tech, Lee [29] introduced an analytical model of a compliant grasping

mechanism for automated transferring of live objects [30], where multiple rubber fingers



are employed to emulate a pair of human hands. For such a grasping problem, the contact
location (between the flexible finger and object) and its corresponding force are not
known a priori. To accommodate size and shape variations encountered in grasping live
objects, several methods [31, 32] have been proposed to improve the prediction of the
contact location and force due to a 2D flexible beam. More recently, Li and Lee [33]
developed an adaptive meshless method (MLM) for analyzing stresses due to large
deformable contacts on the products being handled. The adaptive MLM, which is similar
to FE methods but requires no meshes, increases the nodal density in regions of high
mechanical stresses. This thesis research extends the studies to analyze contacts within a
bio joint, where both rolling and sliding occurs during contact between two non-

engineering geometries.

1.3.3 Numerical Methods

The shooting method (SM) was first proposed by Keller [34] to solve the
boundary value problem (BVP) of ordinary differential equations. It transforms the BVP
into an initial value problem (IVP) by guessing the unknown initial values first, and then
utilizes Newton’s methods to iteratively re-evaluate the initial guesses to “shoot” at the
terminal values. Like most iterative methods for nonlinear problems, the convergence of
SM is also sensitive to the initial guesses. To reduce the solution sensitivity to the initial
guesses and thus improve the convergence property, Keller[34], Stoer and Bulirsch [35]
developed the multiple SM by dividing the integration region into smaller sections and

performing SM within each section. The continuity of the pieced solutions is guaranteed



by adding new constraints on the boundaries of each section, so it greatly increases the
scale of the problem size.

Some improved SMs are proposed in recent years. Holsapple et al. [36] used
modified SM to “shoot” at intermediate values until the solution matches its terminal
value. A generalized SM (GSM) developed by Lan and Lee [32] includes unknown
parameters into the formulation in order to solve compliant mechanisms of flexible links
in series. Liu [37] used Lie-Group SM to solve BVP with multiple solutions. Most of the
SM applications have been devoted to the design analysis of flexible beams and frames
[13, 31, 38-40], in which SM is used to study the deflection of the compliant beam rather
than the dynamics in time domain. Although Lan et al. [40] formulated the PDE for
dynamic analysis, GSM is still limited to solve deformed shape along the path length. SM
has been designed to solve ODEs, and little efforts have been made to extend it to solving
PDEs until recent years. Chang [41] solved a heat conduction problem with SM; and Liu

[42] identified the damping and stiffness by transforming an ODE to PDE.

1.3.4 Processing of meat products

Processing of natural products (such as poultry and meat) requires presentation of
the target area for subsequent handling (such as cutting). Bone structures deform as a
result of manipulation through bio joints. A good application example is the deboning of
chicken breast meat [4], where the shoulder joint must be accurately located for severing
the ligaments and tendons. Although marketed deboning machines are available, these
“hard automation” systems, in general, are not as dexterous as human labors in handling

with highly deformable natural objects. Given the high size/shape variations in natural
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products, Sandlin [43] explored a method to correlate the bone locations relative to the
external surface features using a combination of X-ray and machine vision images. He
[44] investigated the feasibility to emulate human deboning chicken breast meat using a
spherical wrist motor [45] by experimentally measuring their arm motion and wrist
torque profiles. More recently, Claffee [46] experimentally studied the effect of pulling
the wing of a chicken carcass (on a commercial fixture) on the shoulder height suggesting
that bio-structural deformation cannot be neglected for precision deboning of chicken
breast meat.

Precision deboning requires a good understanding of compliant joints and their
effects on fixture designs and manipulation of the biological structure. Unlike an
engineering joint where assembled parts are usually concentric cylinders or spheres,
biological joints are often a complex assembly of two or more different shaped
components as shown in Table 1.1 [47]. Bio joint geometries have also been
mathematically described for bio-medical and surgery; see for examples, [26, 48, 49].
With the development of non-contacting scanning technologies (such as MRI and laser
beams), relatively accurate 2D and 3D bone geometries can be obtained. However, most
real biological joints are approximated by simple geometries (circles and spheres) [26,
49] in order to reduce their highly nonlinear kinematics to a more tractable form. The
oversimplified ball-socket approximation generally neglects the joint clearance, and
cannot account for deformable effects needed for applications such as breast-meat
deboning where percent yields (hence highly precise cutting) are of particular concerned.

To provide an essential basis for optimizing the design of a manipulating

trajectory for effective cutting, this research develops a more realistic and yet general
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Table 1.1 Joints and corresponding models.
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model to characterize the bio joint kinematics. The analysis method is presented in the
context of poultry processing but also helps analyze the motion of cam mechanisms or
engineering joints where wears and tears could result in clearances in the joint and/or

non-circular elements.

1.3.5 Bio-inspired mechanisms (compliant beam in a flexonic car)

As field robots have been attracting increasing interests in replacing human labor
working in a hazardous or high-risk environment, two issues are of most concerned in the
design; attachment and mobility. Using magnetic devices and vacuum suction cups are
two major methods to attach a robot on a working surface. Based upon magnetic on-off
robotic attachment devices, a magnetic walker has been developed for maneuvering on a
2D surface [50]. In order to inspect carbon steel pipe, a magnetic wheeled robot has been
developed to move automatically along the outside [51] and inside [52] of piping. Backes

et al. [53] designed a robot for visually inspecting aircraft exterior using suction cups for
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adherence and ultrasonic motors for mobility to crawl on a 2D surface. Other attaching
methods include aerodynamic attraction [54] and biomimetic approach [55]. However,
robots designed based on rigid components often have limited range of motion thus are
not adaptable to complicated working environment.

Flexible structures can also be found in compliant robots; see for examples [56-
59] where focuses have been on modeling and control. At Georgia Tech [5], the design of
a flexure-based mechatronic (flexonic) car for SHM has led to the development of an
FMN. The FMN consists of a compliant beam between the front and rear axles carrying
magnetic-wheels. The FMN that has more DOF but no relative moving parts is more
adaptive to complicated working conditions. As analyzed in [60], the FMN has the
potentials to negotiate various obstacles and attach/detach a sensor on the iron surface on
which it moves. These attractive features found in the FMN designed at Georgia Tech
provide the motivation for further studies in this thesis research, which will be illustrated

as an example of a multi-body compliant mechanism.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: Chapter II starts with the
formulation of the boundary value problem (BVP) for the large deformation of a 3-D
compliant beam, including the derivation of constitutive equations, curvature description
and boundary conditions.

Chapter III employs numerical examples to illustrate the procedure in solving the

BVP for flexible beam large deformation, which has been formulated in Chapter II. Each
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of the examples may focus on one topic, but some of the conclusions are helpful for
subsequent discussion.

Chapter IV presents a dimension-based method to characterize bone and soft
tissue deformation by accounting for the large size variation of natural products. Both
simulation and experimental data are provided to validate the musculo-skeletal model for
the compliant chicken carcass under wing manipulation for intelligent cutting.

In Chapter V, a magnetic flexonic mobile node (FMN) incorporating a compliant
mechanism has been designed to negotiate corners and carry a sensor for placing on a
ferromagnetic structure. Two functions of sensor attachment and corner negotiation are
presented for different constraints for the same mechanical design of FMN. Simulation,
analysis and experiment are provided for detailed discussion.

Finally, the conclusions of the thesis and recommendations for future work are
presented in Chapter VI. Several issues on extending the current work are addressed to
increase potential applications of the modeling and analysis method presented in this

thesis.
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CHAPTER 11

CURVATURE-BASED BEAM MODEL

This chapter formulates the large deformation of a 3-D compliant beam as a
boundary value problem (BVP) along with the derivation of related beam constitutive
equations. The formulation of the boundary conditions, which are application specific,
will be covered in the next chapter.

Unlike methods (such as FE methods) that formulate problems based on
displacements and/or rotational angles, the formulation in this thesis has been derived
using curvature as a fundamental concept in presenting nonlinear geometries. Although
curvature has three components (as in the case of displacement and rotational angle) in
3D space, it is independent of coordinate frames while displacement and rotational angle
would change with coordinate systems. It is worth noting that in the case of finite
rotation, superposition holds for curvatures but not for rotational angles. This is the
reason why FEA methods employ incremental approach to solve problems of large
deformations. Hence, formulation based on curvature is much simpler; and the resulting
computational process is much more efficient — the above advantages motivate the use of

Curvature-based Beam Model (CBM) to analyze and design compliant mechanisms.
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The organization of this chapter is illustrated in Figure 2.1, which begins with the
coordinate systems for describing the beam variables (the nodal coordinates x, the nodal
rotation R and ¢, and the external force F and moment M). In Figure 2.1, the superscript

© and © denote the beam initial configuration and elastic deformation respectively. It

[ Coordinate Systems ]
Section 2.1
(Section22 _\| |'s_ectE 24
| Initial Beam Shape | f Force F |
x© | Moment M |
1 y
5 { | |
z | I |
2 | r
_S* | Rotational Matrix [R]” | Constitutive |
S Twisting angle ¢ | | Equation
| ‘ |
Initial Curvature Elastic Curvature
| { KO K© |
- _— _ _ R —— J
Deformed Curvature
K
( + )

Rotational Matrix [R]
Twisting angle ¢

| |
| |
| |
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N J)
| ; |
| |
| |

e R
Deformed Beam Shape

X
. J

Figure 2.1 Flow chart of the beam formulation.
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will be shown that the initial curvature K® can be determined from the initial beam

T
shape x© :[xfo) xéo) xgo)} ; and that the deformed shape x = [x; x; x3]T can be

obtained from K. These forward and inverse processes will be detailed in Sections 2.2
and 2.3. Then the elastic curvature K will be determined from the beam constitutive
relations in Section 2.4. Illustrative numerical examples on curved beam geometry
reconstruction and large deformation analysis of 3D curved beams will be used to
validate the presented CBM. It is noted that only cantilever constraint will be used in this

chapter before any generalized type of boundary condition is discussed in later chapters.

2.1 Coordinates

Figure 2.2 schematically illustrates a multi-body compliant mechanism consisting
of N, rigid bodies and N, mass-less compliant beams, where i = 1,2, ..., Nyand j =1, 2,
..., N.. The rigid bodies, each of which has multi-DOF with respect to the global
(reference) coordinate system XYZ, are constrained by (rotational and/or sliding) joints
or contact (between two rigid bodies i and i+1) while the compliant beams (capable of
deforming in the 3D space) may be fixed or pinned on the rigid bodies. External forces
and moments (denoted as f; and t; and F; and M; in Figure 2.2 respectively) may be
applied to the i rigid body and/or the /™ compliant beam. The problem can be formulated
in two opposing ways, which are referred to here as forward and inverse problems. The
former solves for deformation of the system given the external loadings while the latter

determines the required forces/moments for a specified deformation configuration.
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Figure 2.2 Multi-body compliant mechanism.

Specifically, this thesis research investigates the effects of joint constraints on the
deformation of a compliant mechanism.

In Figure 2.3, OXYZ is a global reference frame; the local coordinate frames,
“xyz” and “¢n{’ (each with a subscript indicating its location along the beam path-
length), are defined in the un-deformed and deformed configurations respectively. For
examples, xg)0zo and x;yz; are the local coordinate frames at Py and P; in the undeformed
configuration, respectively. Similarly, Py(xs, vs, z5) and Qs (&, #s, {5), represent the same
material point to describe the beam shapes before and after deformation respectively,
where the subscript s denotes the path-length. All the coordinates follow the right-hand
rule with xyand & assigned along the neutral axis of the beam, and ys, z;, #s and {; are the
principal axes on the corresponding cross-sections. To simplify the formulation, it is
assumed that Pyxgyozo differs from OXYZ only in translation (meaning that their base
axes are well aligned without relative rotation); otherwise, there is a rigid body rotation to

transform the results into the coordinate system OXYZ.

18



yi X1
Z %
Y X : Undeformed

77
L)
-/

Deformed

Figure 2.3 Coordinates for a 3-D compliant beam.

To facilitate the discussion, the unit vectors along the coordinate axes are denoted
as follows:
E,, E; and E; are unit vectors along X, Y and Z axes, respectively.

el”, e!” and e{” are unit vectors along principal axes of x;, ys and z;, respectively.

e,, e, and e, are unit vectors along principal axes of &, 7, and (;, respectively.
The initial and deformed curves of the beam axis, {eﬁo)} and {e,} (i = 1, 2, 3), can be
obtained by the following relations:
e” =R"E, (2.1a)
¢, =RE, (2.1b)
In(2.1), R” and R, (i andj =1, 2, 3) or the components of rotational matrixes [R]? and

[R] respectively are functions of the path length s. It is noted that bases {eﬁo)} and {e,}

only describe the beam axial curve. To account for the 3-D geometry of a beam, one
more variable ¢ or ¢© is needed to quantify the twisting of its cross-section relative to

the beam axis.
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© and

Since the initial or deformed beam geometry is readily determined by [R]
(p(O) (or [R] and ¢), the task is to find the rotational matrix and twisting angle. Because
only three components among the rotational matrix elements and twisting angle are
independent, it is better to reduce the order of the problem by using three independent

components; namely, the curvature. So the formulation is based on vector superposition

of curvatures as given in (2.2) implying that the deformed curvature K = [k; k> k3]" is the

T
summation of the initial curvature K :[kl(o) K kéo)} and the elastic curvature

T
K¢ = [kl(e) K k;e)} due to an external loading (of force F and moment M):

K=K©®4+K® (2.2)

In summary, thirteen variables are involved in formulating the beam deformation
problem; namely, the nodal coordinates x = [x; x x3]T, the orientations including first row
of [R]; = [Ri1 Ri2 R3] and twisting angle ¢, the force F = [F F» F3]T and moment M =
(M, M, M3]T. The 13 state variables are organized as X = [x; x2 x3; R11 Ri2 Ri3 ¢; Fy >

F3 My M M5]" with one constraint relation R} + R + R =1

2.2 Curvature of a 3D Beam

As shown in Figure 2.4, the longitudinal axis of a curved beam in the 3-D space is
described in a parametric form:
x? =xY(E, (2.3)
where ¢ is not necessary to be the path length but any parameter ranging from ¢, to .

In Figure 2.4, [er, ey, ez] is the Frenet-Serret frame where er, ey and ep are the

tangent, normal and binormal unit vectors given in [61] as
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Figure 2.4 A 3-D curve.

The Frenet-Serret formula is provided as:

e 0 e

T T
d e K e
— =| - T

N N
ds

e, 0 -7 0f|e

where the path length s can be calculated as a function of ¢

t
5= J. \/xl(o)2 +x30% + X2 dt
lo

So the overall length of the curve can be obtained as

tr
L=st)) =[5 + %7 + £ dt
lo

And the curvature x and torsion 7 are given by

‘X(O) % i“’"

©
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(2.7)
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x©. (X(O) x X(O))

r= (2.8b)

- 2
‘Xm) % x“’)‘

It is noted that e!” and er are the same unit tangent vector, while e\ and ey, e”

and eg are not necessarily the same. Because based on definition, e{” and e” are defined

by the shape of the beam cross section while ey and ez are defined by the axial curve

shape as indicated in (2.4). These two frames are related by a pure rotation

e, e’ 1 0 0
e, = [Rﬁpo)] e’ where [Rf;)] =10 cosep” sing® (2.9)
e, e 0 —sing” cosp®

Assume ¢ is constant and e/® coincide with E; (i = 1, 2 and 3) at the base (s = 0), then

cos " = E,-ey| 0, sing'” = E;-ey

o0 (2.10)

Differentiating (2.9) and combining with (2.5), one can arrive at

el” e, 0 « O el”
d | o o7 d 07" ONIRO)
—<e —[R]—e I[R:I—KOTI:R:'e
ds | 2 o1 ge | Y ? 7 2
e e 0 -z 0 e?
3 B 3
Derived in Appendix A,
d eiO) e{O)
— e b = skew(K”){e”
d 2 2
S e e
3 3
0 kKO -k
where skew(K)=| -k 0 kL
k;o) _k](O) 0

Comparing the above relations, the components of the initial curvature K are given as:

K =1, k" =xsing®, k" = Kk cos g (2.11)
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Here, ¢* is a constant while x and 7 are functions of s, which can be interpolated using

polynomials.

2.3 Kinematics of a 3D Beam

Previous section presented the forward procedure to obtain initial curvature K
from the initial curved beam shape, and this section will focus on the inverse process to
obtain the nodal coordinate along beam axis from the calculated deformed curvature K.

The deformed curve beam axis is given by

x =x,E, (2.12)
where x; (i = 1, 2 and 3) are the nodal coordinates. It is noted that differentiation of (2.12)

will give the tangential direction

dax _dxE,; zﬁEi =(1+¢&)e, =(1+&)RE,
ds ds ds

dx,
hence L (1+&)R, (2.13)
ds

where ¢ is the longitudinal strain to be discussed in Section 2.4. Recall that only the first
row of R is involved in the nodal coordinates along the beam axis; and angle ¢
determines the relative twisting of the beam cross section with respect to the axis. In
other words, they completely determine the deformed beam shape, so it is the next task to
find [R11 R12 Ri3] and ¢ from K.

As derived in Appendix A, the moving frame along the beam axis satisfies

iei = skew(K) e . (2.14)
ds

[/
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dR,
R (2.15)

where skew(K), =

As discussed in Section 2.1, the deformed beam shape can be obtained once the rotational
matrix [R] is determined. Referring to [13], R can be completely determined by its first

row of [R]; = [Ri1 Ri2 R3] and twisting angle ¢,

_Rll R12 R13
R=/R, R, Ry
:R31 R32 R33 (2_16)
1 0 0 R, R, R,
=0 cosp sing|[-R, 1-R,/(1+R,) -R,R,/(1+R))
10 —sing cosg||-R, —R,R;/(1+R,) 1-R3/(1+R))

then the task becomes to determine ¢ and [R;; R;» R;3] from K.
From (2.14), k; can be expressed as following:

de
k =e,-—2
1 3 dS
Substituting (2.1b), (2.14), (2.15) and (2.16), and also considering R/, + R, + R, =1, the

above equation can be rewritten as

d—¢=k1—k2 R, cosp+R,;, Sin(ﬂ_k R,cosp—R,,sing

ds 1+R, } 1+R, .17
From (A.4) in Appendix A, the first row of R is readily expressed as
dR, .
d” = skew(K), R,, (2.18)
2 A

Grouping (2.13), (2.17) and (2.18), the kinematics of a 3D beam is governed by
R, =kR, - kR, (2.19a)

R, =k,R,, —k,R,, (2.19b)
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R, =k,R,,—k,R, (2.19¢)

o=k, R13R132 “RoRu |y RoRy=RiRy (2.19d)
+R, 1+ R,

x =(1+&)R, (2.1%¢)

X, =(1+&)R, (2.19f)

x; =(1+&)R, (2.19g)

where ' denotes derivative with respect to path length s.

Now that the formulation is partially complete, it is best illustrated with numerical
examples loading free conditions to verify the kinematic analysis. So, the curvature
should not change and the longitudinal strain is zero, or

K=K and ¢=0
The following procedure will be adopted.

1) Given a parametric relation (2.3) of a beam axial curve, determine the

curvature (2.11) as a function of the path length.

2) Reconstruct the original beam shape x by numerically solving the IVP of

(2.19) with initial conditions at s = 0:
R,=1 R,=R;=0; 9=0; x,=x,=x;,=0

3) Compare the calculated curve shape x with the original shape x?.

Three examples are chosen to illustrate the curvature description of a beam
geometry. The first example is a planar curved beam with non-constant curvature x and

zero torsion 7. The next example illustrates the case of constant x and 7 using a helix

curved beam, where the principal axes are not aligned with the global reference frame at
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the base. The final example shows the case of non-constant x and 7 with a general 3-D
curved beam.

Example 2.3.1 Planar Curved Beam:

Consider a curved beam on the XY plane with the axial curve described as

x” =10sin¢, x{” =5-5cost, x” =0
For t e [0 27[] , the overall curve length given by (2.7) is L = 48.44.

As shown in Figure 2.5(a), for a planar curve, there is only one non-zero
component of curvature, x. Given the highly nonlinear relation between x and path length
s, a polynomial is used for approximation. Percentage errors for the approximated

curvature and the reconstructed beam shape x are calculated as

l’naX‘K'—K'
eK — approx. XlOO%
K
‘X—X(O) ,
— §= o
Cuean = x100%

Because the calculation error accumulates through the integration, it is expected that the
reconstructed beam shape has maximum error at the end s = L. In this example, e, =
8.38% and epeam = 0.025%. Even though there is obvious deviation between the
polynomial approximation and the actual value of «, the elliptic shape can still be
reconstructed as shown in Figure 2.5(b).

Example 2.3.2 A Helix Curved Beam.:

For a helix curve with radius of 7 and pitch of 2zp, its parametric expression can
be written as

x=rsint, y=r—rcost, z=pt
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Figure 2.5 Verification with a planar curve (non-constant curvature).

In order to orient the global reference frame to the Frenet-Serret frame at the helix base, it

requires a rigid body rotation

x” cosff 0 sinf||x

K=l 0 1 0 |{y! wheref=tan"'Z
,

x” —sinff 0 cosf||z
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Employing (2.8), it can be obtained that

_ p
5 andz'—2 5

K=2
r+p r+p

When » = 7.239mm and p = 5.715mm, the curvatures are calculated as x = 0.0851mm™"

and 7 = 0.0672 mm™. Figure 2.6 shows the simulated result of the helix curve with 10

pitches (7 € [O 207[]) and the percentage error epe,m = 2.83%.

m—— (Calculated
60 EEEEN] Or1g1na1

40
N
20
0.
-10
0
10 s 10 B
20 5 0
X Y

Figure 2.6 Verification with a helix curve (constant curvature).

Example 2.3.3 A 3-D Curved Beam.:

The last example is given by

x” =25sint, x{” =10—10cos2¢, x\” =20-20cos3¢
For t [O w/ 2] , the overall curve length given by (2.7) is L = 71.973.

For illustration, the beam cross-section aspect ratio is set to be 5:2 and its snap
shots are shown along the longitudinal axis. As shown in Figure 2.7(a), both x and 7 are
nonlinear functions of s. Although the error e, in the curvature approximation is as large
as 23.22%, the error in the calculated beam shape is obtained as epeam = 0.71%. In Figure

2.7(b), the Frenet-Serret frame is also shown at the base and tip of the curved beam, with
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red denoting the tangent e, , green denoting the normal e, and blue denoting the

binormal e, . From (2.4), e, and e, can be obtained as following:

30
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(b) Comparison of the original and calculated curves.

Figure 2.7 Verification with a 3-D curve with non-constant curvatures.
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e, =[0 02169 09762], e,=[0 —-0.9762 0.2169]

So they do not necessarily coincide with the cross section principal axese!” and e{” .

T
The components of the elastic curvature K = [kfe) K k;e)} due to external

loadings can be calculated as

0 _Me MFE RE,_MR, (2.20)
(ET) (ET) (ET)

where k(¢ is the twisting curvature; and £\ and k{” are the bending curvatures; (EI) =

GI, fori =1, (EI) = EI; for i = 2 and 3; E is the Young’s modulus; G is the shear modulus;
and /; (i = 1, 2 and 3) is the moment of inertia. Then, the longitudinal strain ¢ is given by

(2.21) with 4 denoting the cross section area

_Foe

hECRE, _ER, (2.21)
EA B4 EA

&

Based on the static analysis of the beam segment, the equations for the force and

moment equilibrium are given by

S+As
—F+(F+AF)+L q,dp=0

M +(M+AM) + LHASqup

e, (1+¢)As]x (F+AF) + jA le,(p—s)]xq,dp=0

where AR = skew(K)As. In the above moment equilibrium equations, all the moment

terms are written out with respect to point Qs in Figure 2.8.
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M+AM §S+AS

Figure 2.8 Equilibrium of a beam segment.

For an infinitesimally small As and neglecting the higher order terms, the above

can be rewritten as

== 2.22
7 4 (2.22)

%‘ = —q,, ~[(1+&)e,]xF (2.23)

Grouping (2.19), (2.22) and (2.23), the governing equations of a 3-D beam are

R, =kR, —k,R;, (2.24a)
R, =kR, kR, (2.24b)
R, =k,R;,—k,R, (2. 24¢)
o = Ra ety Rt R (2. 240)
x =(1+&)R, (2. 24¢)
x,=(1+¢&)R, (2. 241)
x;=(1+8)R, (2. 24¢)
H=—qp, (2. 24h)
F)=-q,, (2. 241)
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F =g, (2. 24))

M1, =—q\n _(1 +‘9)(R12F3 _R13F2) (2 24k)
M; =9y _(1+5)(R]3E _RIIF;) (2 241)
M;=-q,,,—-(1+&)R,F,—R,F) (2. 24m)

where ¢ and K = [k; k» k3]" are given by

&= é(FIRH +FE,R,+FER;) (2.25a)
k =k +GLII(MIR11 +M,R, +M,R,) (2.25b)
k, = k" +EL[2(M1R21 +M,R,, + M,R,;) (2.25¢)
k, =k +é(M1R31 +M,R, + M,R,;) (2.254d)

3
The boundary value problem (BVP) of the compliant beam can be written
compactly in the following form:

X =f(s,X), g(X(0),X(L))=0 (2.26)
where X is a vector of the 13 variables [x; x2 x3 R11 Ri2 Ri3 ¢ Fy Fy, F3 My M, M3]T; 0<s
< L; and g(e) is the boundary conditions specifying the geometrical and/or loading
constraints at both ends. The BVP (2.26) can be solved using an MSM [34, 35] given in
Appendix B, which recasts the BVP into an IVP. In the following, two illustrative
examples of a compressive spring and a twisted ring are presented under boundary
conditions of cantilever constraint. The first considers a forward problem in which a

compressive axial force is applied on the spring to obtain its deformed shape. The second
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illustrates an inverse problem, where the input rotational angle is specified on an elliptical

ring to solve for the output torque.

Example 2.4.1 A Compressive Spring:

In this example, the compressive spring is modeled as a helix curved beam with
circular cross-section. Its initial curvature has been studied in Example 2.3.2 but the case
is now considered under axial compression. Table 2.1 lists the spring specifications in
terms of its dimensions and material properties. The boundary conditions show that one
end of the spring is completely fixed while the other end is completely free and subjected
to axial compression. As shown in Figure 2.9, instability can occur for spring under axial

compression, and the CBM produces close result (epeam = 3.96%) with FE method.

Table 2.1 Spring specification and boundary conditions.

Dimension Material properties

Radius (mm) 7.239 Elastic modulus (GPa) 193
Pitch (mm) 5.715 Shear modulus (GPa) 80.8
Cross section radius (mm)  0.6985 Poisson ratio 0.25

Boundary conditions
SZO X1:O,XQ:0, X3:O,R11:1,R12:0,R13:0,§0=0,'

s=1L Fl=0,F2=0,F3=F,M1=0,M2=0,M3=0.
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Figure 2.9 Lateral deflection under axial compression.

Example 2.4.2 A Twsted Ring:

The half-circle twisting-ring has been chosen for illustration because it has a
number of applications in mechatronics. Table 2.2 shows a compliant half-ring
mechanism with both ends pinned and twisted by an angle 6. Numerical values of the
characteristic parameters for the four materials are compared in Table 2.2. For design
purposes, the results are presented in non-dimensional forms; the following normalization

rules are applied to the beam equations (2.24):

~ FI ~ EI . EI . EI
F=F— M =M,—2%, 4,=4;,—"> 9=9u 5>
r r r r
k" =l€l.(°)l, K, = inl, and x, =X r
r r
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where 7 is radius of the ring.

The deformed shape of the compliant ring (b/h =2) subject to a pure twisting of
6=r/4 at both ends is shown in Figure 2.10. The effects of aspect ratios (b/h =2, 3, 6), and
four different materials (steel, titanium, aluminum and delrin) on the (normalized)
twisting moment M in direction along Y axis at the ends are compared in Figure 2.11. As
shown in Figure 2.11, the effect of different materials is relatively insensitive on the
normalized twisting moment M, at the ends. However, different normalized M, curves

are needed for different aspect ratios (b/h).

Table 2.2 Ring specification and boundary conditions.

Parameters Steel Titanium Aluminum Delrin
E (GPa) 193 116 70 3.1
Poisson ratio 0.25 0.34 0.3 0.35
Density(10°kg/m’) 7.85 4.54 27 142
s/r=0,
R, =cos@, R,=sinf, R,=0
x=x, =x,=¢=0
s/r=r,

R,=sin6, R, =0

x =0, x,=0, =0

b/h =2; O=m/4
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Figure 2.10 Normalized deformed shape of the twisted ring.
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Figure 2.11 Effect of aspect ratios and materials.

2.4 Summary

A Curvature-based Beam Model (CBM) has been formulated for the large
deformation problem of a 3-D compliant beam. Relation between the curvature and

absolute nodal coordinate of a curved beam is derived. It has shown that curvature is a
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key characteristic of curved beam geometry. This CBM has fully explored the advantages
of curvature description by formulating all state variables of a curved 3-D beam in the
global reference frame. The CBM is verified by the FEM through the large deformation
analysis of 3-D curved beams under cantilever constraints. Generalized boundary
constraints will be formulated in Chapter III, and two specific applications will be
presented to illustrate how the CBM (with general constraints) is implemented for

engineering purposes in Chapter IV and V.
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CHAPTER III

GENERALIZED CONSTRAINT

This chapter presents a generalized constraint by relaxing common assumptions in
traditional boundary constraints such as fixed, pinned or sliding constraint on compliant
mechanisms, where none or only one DOF is allowed. Motivated by the multi-axis
rotation within a natural biological joint, this chapter defines a generalized constraint
referred to here as bio-joint constraint (BJC) on compliant mechanism for emulating
motions of multi-DOF.

In a multi-body system, a compliant beam can be regarded to move with a rigid
body as shown in Figure 2.2. The BJC can then be formulated as a contact constraint
between two rigid bodies; without loss of generality, they are approximated locally as
two ellipsoids in the following discussions. This constraint can be used for kinematic or
dynamic analysis based on the curvature description presented in Chapter I1.

The remainder of this chapter begins with the kinematic formulation of the BJC
and related algorithm in Section 3.1, and the method is validated with published
experiment data on human knee joint. Then, the dynamic analysis is provided in Section
3.2 to illustrate that how a multi-body system compliance is designed. Finally, Section
3.3 shows how this BJC is incorporated as boundary conditions into the BVP of

compliant mechanisms.
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3.1 Formulation of Kinematics

Consider two bodies, Q4 and Qg, bound by boundaries I's and I'p respectively.
As shown in Figure 3.1, Qa rolls on Qgp; and C is an instantaneous contact point
satisfying (3.1a,b):

P, (x,)=Py(x,) and Py (x,)=Pi(x,) (3.1a,b)
where P4(x) and Pg(x) describe the contact points on Q4 and Qg in terms of a position
vector x in the world frame; and P, (x)and P;(x) are their derivatives with respect to x;
and the subscript “c” denotes the contact point C. It is worth noting that common

engineering joints and mechanical cams are special cases of the biological joint illustrated

in Figure 3.1.

Figure 3.1 Bio-joint constraint.

Given C on I's there always exists a tangential plane with a normal vector e,

such that the angular velocity @ describes the motion of Q25 at C:
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0=0e, +ae, (3.2)
where e, is a unit vector on the tangential plane. We define an osculating plane
(indicated in blue in Figure 3.1) perpendicular to @, at C. The contact point on I'y and

I's moves incrementally from C, and Cg to C along the respective osculating circles as
shown in Figure 3.1, where (Oa, pa) and (Op, pp) are the centers and radii of the
osculating circles intersecting at I'a and I's respectively; and € and ¢ are the angles
describing the corresponding displacements of the contact points on Qa and Qp
respectively. The 3-D motion of a biological joint can be characterized in the
instantaneous osculating plane that depends on the location of the contact point (and
hence is a function of time).

The contact point displacement of Q4 is

ds =+[(ds\) +(ds,)’ =ds; 1 +(w,dt)’ ~ds, (3.3)

where ds, = p,w,dtand ds, = ds,w,dt are in the e, and e, directions, when neglecting
the higher order infinitesimal time interval . Without loss of generality, the effect of
o, (that may be nonzero) on the contact point displacement s is neglected; @, = ® is
assumed for simplicity of analyzing the biological kinematics in the following
discussions. The 3D kinematics of a biological joint is reduced to finding the contact
location in the osculating circular motion and the position and orientation of Q4. In
addition, the boundaries (I's and ['g) are assumed known with respect to their own local

coordinate frames. In polar coordinates, a smooth 2D curve on the boundary is denoted as

P[x(y)]=P[x(W), y ()] = x(W)E, + y(w)E, (3.4)
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where y is an angle with respect to a reference body axis. The tangential and normal

directions at x on the curve are

= d dy E W 2 (3.5a,b)

We can always find an osculating circle with a radius [61]:

V= —|P’|3 (36)
|Pr % Prr|
For a sliding contact, there is a relative velocity v, between Q2 and Qg,
r. =r,(do/dt)+v, where w, =d6/dt . (3.7)

The lengths of CC, and CCg, in polar coordinates, are respectively given by (3.8a) and

(3.8b), where “~” refers to the value of the dummy variable in the curve equation:

s+ vt =" ryodi = I: |PL [xw). y)] dw (3.82)

s= [ gt = [ [Py [x), y )| dw (3.8b)

It is worth noting that for the case of a non-slip rolling, v, =0; thus, from (3.8) the
curve lengths, CC, and CCg, along their respective osculating circles are equal. Unlike a
cylindrical or spherical (engineering) joint which is free to spin about its own axis, bio
joints generally have very limited spinning freedom about its own axis as the contact pair
of a bio joint is typically connected by ligaments and tendons. In the following

discussions, we focus on the orientation of two degrees-of-freedom inclination.
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3.1.1 Algorithm

The contact point and the position/orientation of Q4 can be found using the steps

summarized in Table 3.1:

Table 3.1 Algorithm for bio-joint kinematics.

)

2)

3)

4)
5)

6)

Determine the initial contact position between Q4 and Qg, i.e. §,and @,in their

own local frame

Calculate the increment of s from r4(w)wAt (At is the time step, for the first step
v = éo )

Find the contact point C on Q24 by solving
éC
5= Lz) |dP, / dy|dy (3.9)

To find C at ¢t = nAt on Q4, repeat step 2 and 3 by updating 74(y).

Determine C on Qg by solving (3.8b) for ¢, .

Use (3.8) to determine the position/orientation of Q4.

There are three examples, on-sliding and sliding contacts between two ellipses,

provide intuitive insights into the contact kinematics of a typical biological joint. The

dimensions used in these examples are summarized in Table 3.2, where a; and b; are the

major and minor radii of the ellipses. Although we employ ellipses for illustration, this

model can be used to analyze contact kinematics of non-uniform shapes because the
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formulation, (3.1) to (3.8), requires only local geometric properties rather than the whole

geometry.

Table 3.2 Simulation parameter values.

o=r/12

Qs

Qg

rad/s bi/a;

a; (cm)

bz/az ar (Cl’l’l)

Dimensions 0.5

2

1 1

Example 3.1.1 Contact between Ellipses

Figure 3.2 shows three snapshots of the ellipse Q4 rolling on the (fixed) circle Qp,

where the solid black ellipse and circle are the contact pair at the initial position (4,=0).

The two consecutive snapshots are graphed in red and blue colors respectively. In Fig. 3,

the green circles mark the initial contact point on Q,; the blue asterisks indicate the

current point C; and the dashed circles are the osculating circles at the two respective

instants. As shown in Figure 3.2, the normal vector e, (and thus @, and its direction) of

the ellipse (24 changes with the contact point.

The computation procedure given in Table 3.1 can be illustrated as follows:

1) As derived in (3.6), the osculating circle is a function of geometry. The effect of

Q shape on the radius pa is graphed as a function of y (or the local angle

measured from the major axis characterizing the point on € ) in Figure 3.2.

Unlike a circle (b/a=1), different points on the ellipse Q4 have different sizes of

osculating circles.
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2)

3)

4)

Figure 3.2 Snapshots illusrating the formulation.

At t = At (=1 second), Q25 (red) rotates by wAt with r4(0), and thus the distance
increment As= r4(0)wAt. Then, the contact point on Qa can be found by

calculating y(=Ay) from (3.9):

AS=IA

0

dy
Similarly, at ¢ = 2At (=2 seconds), Qo (blue) rotates an additional wA¢ from
previous contact point with p4(Ay), and thus the next As= p, (Ay)wAt and y can
be obtained again from (3.9) with the lower bound of the integration being Ay.

The computed distance s is given in Figure 3.4 for different b/a ratios of Q4. In
Figure 3.4, v = 0 corresponds to the orientation when the major axis of Q4 is
horizontal as shown in Figure 3.2. For circle, s increases linearly because r4is a

constant, while for the elliptic, s increases nonlinearly with 7.
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Figure 3.4 Ellipse — cylinder contact.

Because of no slippage, the contact point moves at the same distance on Q4 and

Qg. From (3.8b), & can be solved. Note that 4 and @ are in different local coordinate

frames, which must be represented in the same world frame using (3.1) to obtain the

position and orientation of Q4.
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Example 3.1.2 Effect of Sliding on Contact Kinematics

The effect of sliding can be explained using (3.8a). Note that when v, = wra, s =0;
the contact becomes pure sliding. As shown in Figure 3.3, min(ra) occurs at y = 90°.
For simplicity, we choose for this illustrative example v, = @ min(ra) = 0.1309mm/s so
that the contact becomes pure sliding at the contact points that have the minimal rotation
radius. The results simulating the effect of sliding on the same contact pair in Figure 3.2

(thick solid black ellipse and circle) are given in Figure 3.5 and Figure 3.6.

-6 -4 -2 0 2

Figure 3.5 Effect of sliding on contact kinematics.

Figure 3.5 compares the two consecutive snapshots with sliding contact (thin-line
ellipses) against those obtained without slippage (dash-line ellipses). In Figure 3.5,
ellipses of the same color appear at the same instance: black (z = 0), red (= Az=1 s) and
blue (t = 2At =2 s). As compared in Figure 3.5, rolling without slippage moves more than

sliding contact as expected.
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Figure 3.6 Effect of sliding on orientation.

Figure 3.6 compares the angular displacement ¢ and the orientation o of the
elliptical Q4 rolling on the circular Qp with and without slippage. The non-slip rolling
has a larger ¢ and «. In Figure 3.6, the angle y is only a geometrical function of Q,, and
is independent of the contact conditions. The ¢ and w curves intersect at ¢ = y = 90° for
rolling with v,= cwmin(r,). In other words, this instantaneous contact point does not move
(and stay at the same position on Qp no matter how fast Q4 rotates). This result can be
explained with the aid of (3.8a) and Figure 3.3 showing s = 0 when v,= wra and min(r,)
at = 90° respectively.

Example 3.1.3 Contact between Convex / Concave Ellipses

As an illustration, the orientation (or the rotation angle of the minor axis) of Qx
and the distance between the two centroids for the four cases are computed and the

results are compared in Figure 3.7 and Figure 3.8. The values used in the simulation are
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summarized in Table 3.3, where a; and b; are the major and minor radii of the ellipses.

Some observations highlighting the differences between the commonly seen engineering

joints, Cases 2(a) and 2(b), and the more general bio joints, Cases 1(a) and 1(b), can be

summarized as follows:

1)

2)

3)

4)

The orientation of Q4 changes nonlinearly for the cases of elliptical contact and
linearly for those of circular contact. In addition, the inclination range of a bio
joint depends on the aspect ratio b/a;.

Unlike a concentric (cylindrical or ball-socket) joint that has negligible clearance
between the contacting elements, an elliptical convex-concave contact of a bio
joint could have a limited range of orientation movement.

As compared in Figure 3.8(a), the orientation of an elliptical convex-convex joint
may be approximated by a circular convex-convex joint within a limited range.
The validity of the orientation approximation depends on the specific aspect ratios
bi/a; of the contact pair; see for example, Fig. 10 where the circular convex-
convex approximation does not work.

Unlike the circular convex-convex joint where the center of Qa remains a
constant distance from that of Qp as shown in Case 2(a) and 2(b) in Figure 3.7
and Figure 3.8(b), the center of Q4 changes nonlinearly for the cases of an

elliptical joint.
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Table 3.3 Dimension of Q4 and Qg.

Q4 (convex) Qp
Case
b1/31 ap (cm) bz/ag ar (cm)
1(a) and 1(b) 0.5 2 0.4 2.5
2(a) and 2(b) 1 1 1 1

Case (a): (2 1s convex; and Cases (b): Qg is concave. (@ = 7 / 6 rad/s).

4,
3,
2,
1t
O,
-1t
2F
-3t
Case 1(a): Qp is convex. Case 2(a) : Qp is convex.
2.5 1 ‘ ‘ ‘ ‘
0.5 |
o : 1
|
l
05| l 1
l
l
5 1 0 1 5 g 0.5 0 0.5 1
Case 1(b): Qg is concave Case 2(b): concentric cylinders

Figure 3.7 Snapshots illustrating the effect of shape.
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Figure 3.8 Effect of Qg on 4 position / orientation.

3.1.2 Human Knee Kinematics

With MRI data, a model can be built to provide a good understanding of the
kinematics and kinetics of a bio-joint (consisting of non-uniform shaped contact parts),

and estimate its contact locations, rolling/sliding velocities and forces/torques involved.

IPTC (reference)

Lateral - Full extension

Figure 3.9 MRI of a cadaver knee.
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Figure 3.9 shows a lateral sagittal MRI of an unloaded cadaver knee [26], where
the two white circles are approximated geometries for the femoral articular surfaces. Data
are presented as positions of the extension facet center (EFC) and flexion facet center
(FFC) in Figure 3.9, where the contact is modeled as a point between a circle and a plane.
To provide a continuous differentiable function, a more general bio-joint representation
based on elliptical geometries is proposed in Figure 3.1 to characterize the observed data
for analyzing the contact kinematics and kinetics, where (24 and Qg are two bodies with
surfaces Q5 and Qg respectively; and the angular velocity @ describes the motion of Q4
rolling on Qg at the instantaneous contact point C.

In [26], two circles, each of which rolls on a different flat facet, were used for the
sagittal section of the medial tibiofemoral compartment but for the lateral tibiofemoral
compartment, two circles roll on the same flat facet. In this paper, the simulations focus
on the lateral part as it has a larger displacement than the medial part. The following
three models are compared:

Model 1: Two sequential circles roll a flat plane [26].

Model 2: One ellipse rolls on a flat plane.

Model 3: One ellipse rolls on another ellipse.

The dimensions of the approximated circles and ellipses (Figure 3.1) are listed in
Table 3.4. With the contact location defined as a horizontal distance of C measured from
the IPTC in Figure 3.9, results are given as a function of the flexion angle & in Figure
3.10 for comparing three models against published data. Figure 3.11 simulates (on the

basis of Model 3) the snap-shot trajectory of the lower leg as it rotates from its initially
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full extension, and its corresponding (rolling/sliding) displacements, velocities as well as

the $,01/Sglige Tatio.

D)

2)

Table 3.4 Geometry approximation.

Circles [26] Ellipse (green dash)
r;=21mm 7= 32mm Tmg=25.3mm Pmin=21.1mm
Ellipse (blue) Ellipse (red)
Fmgi=33.6mm Fmin=23mm Fmgi=28.8mm Fmin=18.8mm

Initial contact position = 31mm

Angular velocity w = 1.57 rad/s

Observations in Figure 3.10 and Figure 3.11 are discussed as follows:

For Model 1, the sqi/sside ratio is given as 1.7. As the sliding velocity of each
rolling circle is assumed constant, the contact point is a linear function of €. The
overall result, however, is not a smooth curve (Figure 3.10) due to the transition

from circles 7, to 7.

The difference between the 2-circle model and experimental results can be
observed when 8> 90°. This is because the rotational axis of the circle is tilted by
a small angle; when projected on the camera plane, the tilted circle is essentially
as an ellipse.

Based on the above observation, we model bio-joints using elliptical surfaces as
they offer a more realistic characterization than a multi-circle model, and are

mathematically differentiable.

52



3)

35

O  Experiment

30 = Model 1 i
mm = Model 2
o mmmm Model 2 slide
S 25} === Model 3
'z = Model 3 slide
& 20+ \ ]
g A YN
o \
e 15+ N
g \
8 T r \
§ 10 <
~
51 Circle \\ \\\~ 7
transition \ \\*~
0 L | | | Q@ | | N\;
0 20 40 60 80 100 120

Flexion (degree)

Figure 3.10 Comparison of current contact point C.

Figure 3.10 compares Models 2 and 3 against published data. With only rolling,
Model 2 (that simplifies the tibial condyle as a planar surface) results in some
negative contact positions; this is intuitively incorrect as the knee joint does not
lose contact. Given the close match between Model 3 (when considering both

sliding and rolling in the joint kinematics) and the experiment data, Model 3 with

sliding is used for the subsequent analysis.

The displacements, syon(6) and sgige( &), normalized to the major radius of the

femoral condyle, are given by (3.10a) and (3.10b) respectively, and their ratio is

plotted in Figure 3.11(b):

$,00(0) /1,y = 0.0936°-0.4090° +0.576°-0.448 6> +0.926 0

S (0) /7,y = 0.3346°-1.5186"+2.126°-0.9966°+0.5130
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The son/ssiide Tatio is not a constant, but its average value of 1.69 closely agrees

with the experimental observation [26] of 1.7. Figure 3.11(c) graphs vgige by

differentiating (3.10); negative vgi¢e means sliding forward instead of backward.
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1.5~ : ‘
g rolling
g
[0}
g ~—mmN
5 03 P sliding ="
A P 4
PR
-
0\ L L
0 50 100

Flexion angle (degree)

O =W

ratio of rolling to sliding

(b) Rolling and sliding displacements.

e
Y

[e)

Velocity / (o)*rmaj)

0 20 40 60 80 100 120
Flexion angle (degree)

(c) Rolling and sliding velocities.

Figure 3.11 Rolling and sliding velocities of the current contact point (Model 3).
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3.2 Formulation of Dynamics

The calf dynamics (relative to the upper leg) are given by (3.11):

ma=f, +f, +1 +f, (3.11a)

(Jé+2mrf9)k=rg+ra+re where k=¢€, xe, (3.11b)

In (3.11a), m is the calf mass; f, is the gravity force; and f; and fy are the resultant forces
exerted by the surrounding bones and tissues (muscle and ligament) in e and e,
directions respectively. Within a bio-joint, bones primarily support compressive forces;
and soft tissues can only exert tensile forces. For example, f; represents the force from the
tissues if tensile force dominates, or otherwise from the bones. With rehabilitation
applications in mind, we include f, to account for the force exerted by an external device

(such as an exoskeleton) and reaction from the ground. On the left hand side of (3.11b),

the first term accounts for the moment-of-inertia J (about the initial contact point C;) due

to the leg rotation while the second term describes the interaction between @and 7 due to

c
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=
)
o
o
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Q
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(a) Tibia rotation. (b) Schematics illustration.

Figure 3.12 Coordinates illustrating the knee joint rotation.

55



the variation in 7. In (3.11b), all the torques are computed about Ci: T, and 1. denote the
torques due to the gravity and external device respectively; and T, is a net torque
accounting for f;, fo, and tissue contraction within the knee.

The vector equations (3.11) can be recast into three scalar equations (3.12) from

which f,, fgpand 7, can be solved:

m(ii=r6) = f,sin0+ f, + £,.(0) (3.12a)
m(2r0 +rf) = f,cosO+ f,+ f,,(6) (3.12b)
JO+2mrr0=1,+7,+7,(0) (3.12¢)

Due to the kinematic constraint imposed by the contact, the human knee joint
embodies two DOFs, rotation and translation for its planar motion. To investigate the
effects of a planar exoskeleton on human knee joints, we compare two different models
in predicting the forces and moments acting on the knee; namely,

— pin joint engineering approximation, and

— bio joint knee (Model 3).
The exoskeleton consists of a revolute (pin) joint between two rigid links attached to the
lower and upper legs with pin joints. This design has three-DOF from its three pin-joints
and thus has one redundancy. For a nonzero flexion angle, there are two possible
solutions. However, only one solution is physically feasible.

For clarity and ease of illustration, the following assumptions are made; 1) the
human subject sits with the upper leg held static and horizontal and the lower link rotates
with the tibia from its initial state (full extension); and 2) the lower link is attached at O

with the revolute joint centered at the initial contact point C; (Figure 3.12). Numerical
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values used in this study are given in Table 3.5 [62] and from Figure 3.12(b) and Figure
3.11 (a),

r(0)=1.0786"-11.1840°+26.5426° —0.8250 + 263.59 (3.13)
(3.13) and its derivatives are graphed in Figure 3.13. Figure 3.14 shows the link

kinematics (solid lines) as the tibia rotates, where dash lines simulate the knee as a pin

joint (commonly assumed in exoskeleton designs) for comparison.

Table 3.5 Physical parameters of human’s lower leg.

Human Exoskeleton
Length (m)  Mass (kg) Length (m)
Upper leg 0.40 7.02 0.40
Lower leg/foot 0.37/0.27 2.44/1.18 0.37
o (m) 0.2453
0.3 N ‘ 0.15
“ — T
¢ mm—=dr/dt 01 o
smEmm dzr/dtz : é
005 2
E 028 T sl o
— in Py
3 O W
E
°
-0.05 5
'.... o
0.26 —~ ‘ ‘ ‘ ‘ ‘ -0.1
0 20 40 60 80 100 120

Flexion angle (degree)

Figure 3.13 Kinematics of the tibia mass-center.
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Figure 3.14 Comparing snapshots of an exoskeleton between two knee joint models.

To account for the exoskeleton mass in the kinetic study, the two links are
assumed to have the same mass-to-length ratio 7 of 0.5. Unlike the condition with no
exoskeleton where the human leg is an open-chain mechanism, the leg and exoskeleton
form a closed kinematic chain that has a significant effect on the internal joint forces and
torque of the knee. Figure 3.15(a, b, ¢) are calculated results from (3.12) showing the
internal forces and torque in the knee as the tibia accelerates from the initial static state
(6=-5°) to 6=20° for 0.5second, then maintains at an angular velocity for 1 second to
6=95°, and finally decelerates to the final static state #=115° in another 0.5second.
Throughout the trajectory, the foot is off the ground and thus, there is no ground reaction.
In Figure 3.15 where the thick and thin lines are results of the bio joint and pin joint
models respectively, the internal forces and torque for a condition with no exoskeleton
are plotted as a basis for comparison.

Several observations can be made from Figure 3.13 to Figure 3.15:

1) The sign of the force f, in Figure 3.15(a) can be explained as follows. During the

initial flexion (@ < 0), f, is positive since the force is primarily supported by the
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2)

3)

4)

femur, but becomes negative as the retraction force from the soft tissues gradually
plays a more dominant role as the knee rotates downward.

The distance 7 increases as much as 30mm (Figure 3.13). For the same work done,
this increase in » tends to reduce f, in the knee. As the pin joint approximation
assumes a constant » and neglects the joint geometry, the effect of the »(6)
variation on the attaching point (Figure 3.14) and on the forces/torque (Figure
3.15) cannot be accounted for. As compared to the bio joint model in Figure

3.15(a), the pin joint approximation overestimates | f. | in the range (0° < < 90°)

and underestimates as & approaches its rotation limit.

Near 6=0°, the exoskeleton loses one DOF along the e, direction causing a finite
change in f, as well as fy and 7, as shown in Figure 3.15. Human knee (that can
roll and slide) is more tolerant than a pin-joint to a singularity along e, as
illustrated in Figure 3.15(a). However, these internal forces and torque increase
with the mass-to-length ratio # of the exoskeleton. An increase in # from 0.5kg/m
to 1kg/m implies that £, (at =0, 6=0") would increase from (39N, —24N) to
(73N, —=51N). The pin joint approximation, which neglects the r(6) variation,
cannot capture the finite change in f, and also grossly underestimates the
singularity effect on fyand z,.

The trapezoidal-velocity @trajectory (commonly used in robotics) has an effect on
the tangential force fyp and moment z,. As seen in Figure 3.15 (b) and Figure 3.15
(c), the two sudden changes at #=20° and #=95° (on the simulated fy and z,) are
reactions from the soft tissues in order to meet the acceleration changes specified

in the @ trajectory.
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3.3 Summary

In this chapter, a general method for mathematical modeling a bio-joint has been
introduced, which provides a better understanding on the interaction between natural
joints and artificial mechanisms for design and control of rehabilitation exoskeletons.
With the aid of published MRI data, the ellipsoid-based bio-joint model has been shown
to offer a physically more accurate account of both rolling and sliding motion within bio-
joint than a geometrically simple pin-joint approximation or methods based on multiple
circles and lines. The bio-joint model shows that the sliding-rolling displacement ratio is
not a constant but has an average value consistent with published measurements and its
mathematically differentiable property facilitates the analysis of rolling/sliding velocity.
Finally, the effects of a planar exoskeleton on a human knee joint have been numerically
illustrated by comparing results of two different knee models (pin-joint approximation
and bio-joint model derived from published MRI data). A single-DOF pin-joint
approximation (that oversimplifies the knee joint geometry) cannot account for the effect
of the translational variation on the attaching point of the exoskeleton, and on the internal
forces and torque in the knee. While a detailed exoskeleton design to accommodate joint
flexibility of a knee is beyond the scope of this chapter, some intuitive insights presented

here are potentially useful considerations for future design of rehabilitation exoskeletons.
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CHAPTER IV

MODEL AND ANALYSIS OF A BIO STRUCTURE

This chapter employs the CBM subject to a BJC to investigate the carcass
musculoskeletal deformation under wing manipulation to facilitate the deboning of
chicken breast meat. As briefly discussed in Section 1.1, the breast-meat removal
operation consists of two major cuts as illustrated in Figure 1.1(b). The first cut, notably
the most difficult to automate, is a cut through the shoulder joint severing the two main
ligaments (A and C). Once the two ligaments have been cut, the second cut continues the
incision from the back of the shoulder down through the third ligament B, and along the
scapula bone. After the knife exits at the base of the scapula the breast-meat can be
removed. This is accomplished by a robot which pulls and twists on both wings before
removing the wings and breast meat from the carcass.

Figure 4.1 shows the automated wing manipulation (AWM) system developed at
Georgia Tech [46] for tensioning the ligaments/tendon of a chicken front-half for
subsequent harvesting of the chicken breast meat, where the AWM with a 6 DOF
force/torque sensor is mounted on an ABB robot arm. As the AWM system pulls or
twists the chicken wing, significant deformations on the shoulder were observed. This
gives rise to significant errors in locating the shoulder joint (and thus the blade) resulting

in low yield/quality of deboned breast meat. In order to predict the chicken carcass
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Figure 4.1 The effect of wing manipulation on shoulder location.

deformation under wing manipulation, a musculoskeletal model that can be implemented
on the mechanical meat harvester to guide the cutting blade is needed.

Figure 4.2 illustrates the problem to be solved in this chapter: predict the carcass
shoulder position for the given wing manipulation motions which include both pulling
displacement and twisting angle. The clavicle, which is modeled as a 3-D compliant
beam, plays as a key role in affecting the shoulder position. The pulling displacement and
twisting angle, which result in joint motions and ligament deformation provide boundary
constraints on the clavicle. After the coordinate systems are introduced for the carcass in
Section 4.1.1, the joint motions are captured as BJC in Section 4.1.2 and the beam model
is formulated for the clavicle in Section 4.1.3. Then, the constitutive relation for the
ligaments will be formulated in Section 4.1.4. Due to lack of available material
properties, experiments on clavicles and ligaments will be presented in Section 4.2.

Finally, the illustrative example of wing manipulation will be given in Section 4.3.

2
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Figure 4.2 Flow chart of bio structure modeling.

In summary, this chapter offers the followings:

1) A framework of a musculoskeletal model is provided by a compliant beam model

for bones and an exponential model for tendon/ligaments.

2) Numerical verification is presented for the compliant beam model. The soft-tissue
model is validated by experiments and values of its coefficients are determined.
This musculoskeletal model has been used to investigate the effects of natural

product size variation on the bio-structural deformation. This analysis will contribute to

the future wing manipulator design and related controller implementation.
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4.1 Formulation of Bio Structure Model

Figure 1.1(a) illustrates the bio-structure consisting of the shoulder bones and

three ligaments (indicated as A, B, C) connecting the humerus to the three shoulder

bones; coracoid, clavicle and scapula. The shoulder joint has three rotational DOFs and

due to the deformability of the connective tissues; it is possible to attain limited

translational motion of the humerus relative to the fixed carcass.

Al)

A2)

A3)

In this section, the following assumptions are made:

The carcass is properly loaded on the cone such that the symmetric plane of the
carcass coincides with that of the cone. Additionally, the rib cage does not rotate
on the cone. Thus, the rib cage and keel bones are treated as rigid bodies with

respect to the cone.

The coracoid-keel and shoulder joints can be characterized as contacts between
two ellipsoids, thus can be modeled as BJC on the flexible clavicle. Material

property of the clavicle is isotropic and linear elastically.

All the ligaments/tendons within a bird carcass are of the same material and
structure so that their deformation behavior can be described by one general
characteristic exponential relation [63]. The soft tissue material is anisotropic and
incompressible; this assumption is based on the knowledge of the high percentage

of water content within the soft tissue and its longitudinal fiber bundle structure.
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4.1.1 Coordinates

To describe the pull & and twist § motions of the humerus, the kinematics is
defined in Figure 4.3. The reference coordinate system O is set on the keel bone where
the prong plugs in. The X and Z axes (of frame O) are on the symmetric plane of the
carcass; the Z axis points upwards while the X axis is the direction that the cone moves
toward. The frames, O, and O, are the local coordinate systems at the coracoid-keel and
the shoulder joints, respectively. The Z, axis is the longitudinal axis of the coracoid; X, is
the normal to the plane defined by the two intersecting axes of the coracoids. As shown

in Figure 4.3, O.Os is in the direction of the Z. axis, and defines the length of the

Clavicle

Coracoid

- Humerus

Scapula

Keel bone part

(A. Coracohumeral, B. Scapulohumeral, C. Interfibrous ligaments)

Figure 4.3 Ligament-skeletal structure of a chicken carcass.
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coracoid. The X YZ; and XYZ are parallel and related only by a transitional
transformation. A local coordinate manipulating frame O,, is attached at the other end of
the humerus with its z,-axis pointing toward and along the humerus longitudinal axis. In
Figure 4.3, the attachment points of the ligaments on the coracoid and scapula are
denoted as points A, B and C, correspondingly; and the lengths and directions are
characterized by the vectors L, Lp and L¢ in the referenced frame O.

It is of particular interest here how the tripod-like structure of the shoulder
(coracoid, clavicle and scapula) deforms with the two joints; namely, the joint between
the coracoid and keel bone, and the shoulder joint. Because of the flexibility in the
clavicle and joints, manipulating the wing for cutting could result in a significant
displacement of the shoulder. Since the bases of the clavicle is attached to the shoulders,
which displace and rotate with the coracoid-keel joint and are subjected to the tendon
forces, results of the BJC serves as boundary conditions for the CBM in analyzing the
deformation of the tripod-like structure to predict shoulder displacement under wing

manipulation.

4.1.2 Bio Joint Constraint on Clavicle

In the bio joint model, O, is defined as the geometric center of the ellipse that
models the portion of the coracoid as shown in Figure 4.3. The coordinate transformation
from O to O, involves two rotations (about Y by 6, followed by about X, by 6,) and a
transition (O to Os), and is given by:

%o, =[R]%, +p,, (4.1)

where R is a rotational matrix, pc, is the position vector from O, to O.
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Figure 4.3 shows the ellipses approximating the contact parts within the coracoid-
keel joint. Dimensions of the joints and bones are listed in Table 4.1. We illustrate
numerically the effect of the coracoid-keel joint rotation (characterized by the rotational
variables 6, and 6,) on the position changes of the tripod-like structure. The simulations
are based on typical dimensions experimentally measured from commercial broilers
(meat chickens). As shown in Figure 4.4 and Figure 4.5, the contact pair making up part
of the tripod-like shoulder structure of the chicken can be modeled as either ellipsoids or
an elliptical cylinder. Specific values of the 3D ellipsoid principal axis lengths used in the
simulations are given in Table 4.1.

When tensioning the ligaments and tendon for the first cut in deboning the
chicken breast meat, the humerus is pulled downward, the position/orientation of the

tripod-like structure changes as a result of the joint rotations (6, and 6,), the nominal

Table 4.1 Dimensions of coracoid-keel joint and bones.

Coracoid-keel joint (mm) Shoulder joint (mm)

Coracoid 9.2,3.1,2.3 Coracoid 2.6, 6.6, 0

Keel 10.2,4.1,1.9 Humerus 9.3,7.0,5.6

Bone Length (mm) Position Value
Coracoid 38.3 O. (mm)’ (-15.0 =10 20.4)
Humerus 80.7 Ox /12
Scapula 75.0 0y /4

Sliding velocity between the two parts in bio joint =1mm/s

* O.’s coordinates are presented in the world frame O.
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values of which are given in Table 4.1. To offer intuitive insights to the effect of A, and
A6, (deviations from the nominal values) on the predictions of shoulder positions (with
respect to the reference coordinate system O), we compare in Figure 4.4 and Figure 4.5
the results calculated using both the bio joint model and the ball joint approximation. To
quantify the difference, we define the following percentage error:

%Error =100%x(Ad, / Ady;, )

where 4d;, is the position deviation from its nominal value as predicted by the bio joint

model; and 4d, is the difference between the results predicted by the two models. In

Figure 4.4 and Figure 4.5, the percentage errors near the nominal position (A0, = A6, = 0)

are not calculated to avoid the undefined problem of dividing zero with zero.
Some observations can be made from Figure 4.4 and Figure 4.5:

1) In Figure 4.4, the error decreases as the rotation angle becomes larger. This is
because of the error definition and the nonlinear effect of the bio joint model; in
other words, 4dp;, increases at a faster rate than Ad..

2) In general, the shoulder deforms nonlinearly from its nominal position even in
small angle rotation.

3) The shoulder joint is possible to attain limited translational motion of the humerus
relative to the fixed carcass (in addition to the three rotational freedoms) due to
the deformability of the connective tissues. The ball joint approximation, which
assumes a fixed center at O, does not account the transitional motion as can be
visualized in Case 2(b) in Figure 3.8. Hence, the ball-socket approximation
predicts a linear relation in small angle rotation about the nominal position. The

significantly large Ad. error (over 40%) implies that the ball joint approximation
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is inadequate to characterize the CK joint and its associated bio-skeleton
kinematics. The bio joint model with two 3D ellipsoids provides a means to

account for the transitional motion of O, within the clearance in the joint.
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4.1.3 Clavicle Model

Section 4.1.2 provides the relationship between the coracoid rotation (A6, Af))
and the shoulder displacement. This in turn provides a means to relate the rotational
matrix R to absolute position X, of the shoulder (where the clavicle is attached). Hence,

the boundary conditions for (2.26) are given by

— — — — 0 0 0
s=0 Rii=1,R2=0,Ri5=0,0=0, x, = x",x, =x3", x, = x}"

s=1 Fy, Fa, F5, My, M, Ms

Because of the V-shape geometry of the clavicle, Figure 4.6(a) shows one half of
the clavicle which is separated by the symmetric plane S (OXZ in Figure 4.3). Then this
tiny clavicle bone is modeled as a cantilever beam mounted at point O, (with axis X,
pointing along the bone axis and Z being the same as Z). The clavicle is subjected to
force F. and moment M, from the shoulder as well as the distributed force from the
surrounding breast meat. In Figure 4.6(a), two meat elements along the fiber direction are
presented on both sides of the clavicle. As the end of the clavicle is pulled/twisted by F.
and M., one element is in tension f,, and the other is in compression f,, resulting in an
effective distributed force g. (= f + /") along the bone, where f' = ¢,/ and "' = @, e
The angle ¢,, is defined as the slope angle change per fiber length, which is very small for
smooth breast meat surfaces. Certain assumptions are made in the following formulation:
A4) The bone material is assumed to be isotropic and linear elastic, because of its

small dimension and limited deflection during the wing manipulation.
AS5) The bone deformation in the X, and Z. directions is negligible compared to

deflection in Y., because the bone is relatively rigid in the longitudinal axis and
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(b) Compliant beam formulation.

Figure 4.6 Clavicle deformation.

the clavicle tip (point O.) can move in plane S to compromise possible vertical
deflections due to the shoulder deformation.

A6) The outer surface of breast meat is stress free initially, and will deform under
wing manipulation as much as an elastic foundation of linear springs.
Specifically, the distributed force is proportional to the deformation displacement.
The value of ¢,, is assumed to be 0.005.

Figure 4.6(b) shows the free body diagram of the clavicle, where the initial length
is L.. For simplicity, the subscript “c” in the coordinates X, and Y. is neglected, and the

governing equation of the compliant beam model is given by
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El"=—M,+Fyx+ | (x-&)q,d& (4.22)

where the double primes refer to the second derivative with respect to x, the force £ and

moment M, at x = 0 can be obtained at equilibrium:
F=—(“gdé-F
0= _Io q.dé—F,
LL‘
M,=~["&qdé~FL M,
Then (4.2a) can be rewritten as
Ely"=[ (x=&)qdé+F (L -x)+M, (4.2b)
and the third and fourth order derivatives are obtained as
Eb"=[ qdé-F, (4.20)

El™=gq, (4.2d)

If denoting Y=[y y' y" y""]", the above equations can be combined into a compact form:

Y =F (4.3)

. 0 I
with F= {qo B O }
The boundary conditions are determined from the cantilever constraint and (4.12b,c):
¥(0)=0,'(0)=0 (4.4a,b)
El'(L)=M.,,El"(L,)=-F, (4.4c,d)

This boundary value problem (BVP) can be readily solved by SMs.
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Closed form solution

The boundary value problem is first recast into an IVP (4.12d) with initial

conditions given in (4.14a,b) and (4.14e,f):

Ely'(0) =" &q.dé+F.L + M, (4.4¢)

L,
El"(0)=—[ “q.d¢-F, (4.40)
Based on assumption A6) of an elastic foundation, the functional form of ¢. is taken as
q.=k,y (4.5)

where £k, is an effective elastic constant. Substituting (4.15) into (4.12d), the general
solution for Ely"" = k,y is
y=Ae” + Ae ™ + 4, cos Ax+ A, sin Ax (4.6)

where 1=(k,/El)*and 4s (i = 1, 2, 3 and 4) are coefficients to be determined by the
initial conditions at x=0. By substituting (4.15) and (4.16) into (4.4a,b,e,f), four algebraic
equations of A=[4; 4, A3 A4]" can be obtained and written in a matrix form of

M,A=b, 4.7)

where ba and M, are given as

b,=[0 0 -F, EL+M,]

1 1 1 0 0’
N A A 0 A ik 0’
*VEIAY -EIZ 0 —EIA| "|d
EIA*  EIA* —EIA? 0 p’
. 1 AL —AL . r
th a=—|-1+e"™ 1-e " sinAL 1-cosAL
Wl ﬂ, I: c C:I
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1+e*(=1+ AL)
1 l-e ™ (1+AL))
" 27| ~1+cos AL, +AL sin AL,
—AL, cos AL +sin AL,

p

Then the closed form solution can be obtained by solving 4;’s from (4.7) and substituting
them into (4.6). On the other hand, if the functional form of ¢. is taken as (4.5"),

q. =k,x (4.5)
The closed form solution is given as follows:

2 _ 3
ke s K LA2E o 3M 43fL kL “46)
120E7 12E1 6EI

y:

It will be shown that as the loadings increase, the solution (4.5) can be approximated by
(4.6") which is much easier for further investigation on dimension effects.

The elastic foundation assumption for modeling the breast meat in this work is
employed as a lumped parameter approach. But the numerical value of k, can be
estimated based on theoretical derivation and experiment data. This starts with the stress-
strain relation of meat:

o,=E,.¢ (4.8)
where E,, is the elastic modulus of meat, o,, and ¢, are longitudinal stress and strain along
the fiber direction. Denoting the minor axis length of the clavicle cross section as 2b, one
half of the shoulder width as /j, and the Poisson ratio as v = 0.5, the distributed load on

the clavicle ¢. and strain in the lateral direction ¢, can be expressed as

q. =90, -2b (4.9)
&, = zl = Vg, (4.10)
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Based on (4.5), (4.7), (4.8) and (4.9), the equivalent elastic constant can be estimated as

_2¢,bE,

k o=Zmm
S (4.11)

4.1.4 Soft Tissue Mechanics

Figure 4.7 shows the schematic structure of the ligament or tendon, where the soft
tissue is divided into fiber bundles on hierarchy levels [64]. Since the concepts of stress
and strain are based on local deformation, the force-extension relations of ligaments and
tendons with various sizes are readily obtained through integration if the characteristic
relation of each collagen is available. This general characteristic relation is very helpful
in modeling different ligaments/tendons within one bird as well as in a large sample of

birds by accounting for the variable size.

collagen 354 staining
sites

Reticular-
. Waveform or . membrane
Fibroblasts crimp structure Fascicular-
membrane
1 | 1 1 | 1
15A 35 100-200A  500-5000A  50-300u 100-500p
Size scale

Figure 4.7 Structural hierachy of ligament or tendon.
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Based on assumption A3), the characteristic relation is given by
o =k,e"” (4.12)
where o is the stress; ¢ is the longitudinal strain of the ligament under uni-axial extension;
and k; and k, are constants to be determined experimentally. Equation (4.12) can be
transformed into the following linear logarithmic form for determining k; and 4 using the

linear regression method:

logo = ke +logk, (4.13)
Because of the incompressible assumption, the volume will not change before and

after loading. Denoting the initial cross section area as Ay, the current cross section area

can be obtained by
A=4,/(1+¢) (4.14)
Since 0 = f/ A, e = A/ Ly, where A is the stretch and L is the initial length, the
relation between the stretch A and the tensile force facting on the ligament is given by

f AO k esz/LO

NI @.15)

It is noted that the elastic modulus E of the clavicle and the two parameters, k; and k,, for

soft tissues in (4.6) and (4.15) are unknown to be determined experimentally.

4.2 Experimental Investigation

Since the material properties of the clavicle bone and the ligament are not
available, the clavicle elastic modulus in (4.6) and the parameters in the characteristic
equation (4.15) for ligaments were determined from two sets of experiments. Although

only one or two parameters are determined by the simple pulling tests, the resulting
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models are valid for nonlinear deformation analysis of the bio structure. Specifically, the
nonlinear deformation of the clavicle results from its nonlinear curved geometry even
though linear elastic property is assumed when only the elastic modulus £ is measured.
On the other hand, the nonlinear deformation of the ligament comes from its nonlinear

material property, where two parameters k; and k; are to be determined.

4.2.1 Elastic modulus of clavicle

This section presents experimental determination of the elastic modulus of
clavicle. Figure 4.8 shows an experimental setup up based on a commercial linear motor
driven stage, where a clavicle bone is mounted on the linear slider while its tip is rigidly
tied to a fixed screw by a metal string. The height can be adjusted by means of the screw
for different specimens to maintain the string horizontally. As the linear slider pulls in the
right direction, the clavicle will deflect as a cantilever beam. Since the metal string is
much stiffer than the flexible clavicle, the elongation in the string is negligible compared
to the bone deflection. So the displacement recoded from the slider can be regarded as the
clavicle tip deflection. Based on the previous analysis, the vertical displacement of the
clavicle is less than 7.9 mm, and the metal string length is 60 mm, so the rotation of the
string is within tan™7.9/60 ~ 7.5°, leading to the assumption that the applying force on the
clavicle tip is horizontal. At equilibrium, this applying force can be measured from the
input voltage to the linear motor, which will be covered later in this section.

The pulling force of the linear motor is calibrated by an electric spring with one
end fixed and the other end mounted on the slider as shown in Figure 4.9. The calibration

curve of the electric spring is given by (4.16):
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1.82V2—-0.27V +0.09 if V<1
F= (4.16)

3.37V -1.73 ifV>1

The curve exhibits a linear force-voltage relationship when V' is larger than 1 volt.
Because of the static friction which is estimated as 1.73N, the nonlinear relation
noticeably dominates for the voltage less than 1 volt. In the experiment, the linear motor
pulls the clavicle with a ramping current input. The force can be calculated from the input
current using (4.16) while the clavicle tip deflection is measured by the encoder on the

motor.

Clavicle

Metal
string g

| = )6
_F:f;“,':l_ |

Linear shder

30 1

25 ¢

20 ¢

Force (N)
9

10+
Read data

Calibration -

Voltage (V)

Figure 4.9 Calibration of the linear motor on the force-voltage relation.
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Figure 4.10 shows the pulling deflection displacement and force profiles for two
groups of samples. Due to the handling of the carcasses, some of the samples were
broken before/during preparation. So two groups of samples are presented: samples 1 ~ 4
are intact clavicles; while sample 5~8 are half clavicles. As can be seen in Figure 4.10(a),
all samples (1~4) deforms within the strength; while the horizontal parts in Figure 4.10(b)
indicate the clavicles are broken and the breaking strength is estimated as about 6N.

Figure 4.11 and Figure 4.12 compare relations between the pulling force and the
tip deflection from simulation and experiment. The elastic modulus for all eight samples
can be obtained with average value of 2.7816 + 1.1803 GPa. Errors can be introduced by
defects occur in the sample preparation. Figure 4.12 also shows that the clavicles broke
progressively so that the elastic modulus changed nonlinearly with increasing pulling

force.
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Figure 4.10 Relation between pulling force and deflection on clavicles.
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Figure 4.11 Tests on samples of full clavicles.
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4.2.2 Ligament mechanics

To determine the manipulating trajectory and appropriate forces for presenting the
ligaments to the cut, the ligament mechanics are modeled as a non-linear spring in the
form suggested by (4.15) and validated against published data [46]. As shown in Figure
4.14(a), the coracohumeralis ligament was chosen as the test sample due to its size,
location, and ease of singulation. The other major ligaments are in locations difficult to
remove without damaging the ligament itself. In an effort not to alter the ligament
characteristics, the ligament was not separated from either the humerus or the coracoid.
By retaining the bone connection on both sides of the ligament, it is possible to apply a
tension load to the sample without the problems that arise due to clamping of free ends of
the ligament. Experimental data are obtained from uniaxial extension at constant pulling

. A
Avg. +95% ll

Avg. - 95%)1
— Avg.

15}

10 ¢

Force (N)

_____
#

ra ey

Stretch (mm)

Figure 4.13 Uniaxial extension of ligaments [46].
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velocity of 0.5mm/s on eight samples [46]: the cross section area is regarded as an ellipse
and the dimensions (Table 4.2) are measured by a caliper; the ABB robot pulls the
humerus at a very low constant speed of 0.5mm/s, so the tested sample can be regarded as
qusi-static; the stretch is obtained from the multiplication of the pulling speed and the
time, and the applying tensile force is measured by the force sensor. Figure 4.14(a) shows
the experiment results of stretch and tensile force. Since the data of Sample A do not fall
in the 95% confidence interval, this data is rejected and the average values together with
+95% variation are calculated based on the other seven samples. It is clear that data from
biological objects have a very large variation (up to 50%) and the calculated results based
on seven samples are

k, =9.9246+£1.9776, k, =0.0027+£0.0019

Table 4.2 Force sensor and sample dimensions.

ATI Mini 40 — US-5-10

Maximum (N, N-m) Fyy=22.24 F,=44.48 Tyy.=112.98
Resolution (N, N-m) Fyy=10.0014 F,=0.0028 Tyy=0.0035
Sample A B C D

Ao (mm?) 73.22 83.99 60.30 80.49

Ly (mm) 20.60 22.06 18.69 21.59
Sample E F G H

Ao (mm?) 104.5 73.80 81.02 70.15

Lo (mm) 24.60 20.70 21.67 20.16

* Average Ao = 69.04 mmz, Lo =20mm.
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Figure 4.14(a) compares the force and stretch relations obtained from experiment
and the proposed model (4.15) with nominal values k; = 9.4377 and k, = 0.0025. Given
the large variations in Table 4.2 and Figure 4.13 among samples, the proposed ligament
model agrees well with experimental data over a relatively large range of strain (about
0.5). The outlier of the first sample could be due to some unknown causes in the original
data as indicated in Figure 4.13. One explanation would be that the bird was injured on
the shoulder and the ligament become stiffer; similar things could have happened to
samples E and F. Deviations in the sample B and C are due to the local damages of the
fiber bundles during the extension. It is valuable to point out that models formulated with
scalable variables, such as length or cross section area, can be accurately developed for a
specific natural product by relating these scalable variables to its overall size or weight
proportionally. Figure 4.14(b) compares the root mean square error in the applying force,

with average value for the Sample B~H being about 1.6 N.

4.3 Illustrative Application to Wing Manipulation

Applications of the proposed musculoskeletal model are illustrated using two
wing manipulation examples:
Pulling 6 = 10mm along the direction of 0.5Y-0.866Z defined in the reference
frame OXYZ as shown in Figure 4.3.

Twisting € = 90° around the humerus longitudinal axis zy,.
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Figure 4.14 Ligament / tendon charateristic relation.
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Table 4.3 lists the positions of all three ligaments and tendon, which are measured
from a scanned geometry of a real chicken front-half. Since the ligaments/tendon are
along different directions, the manipulator displacement is projected along L; (i = A, B
and C) for estimating their individual elongations. The ligament forces f; can then be
calculated from (4.15); and their resulting force F. and moment M, can be applied to (4.6)
to determine the shoulder displacements in the reference frame. As indicated from the
simulation results, the pulling manipulation significantly tensions the ligaments A and C
affecting the shoulder position in all directions, while the twisting motion mainly tensions

ligament B and displaces the shoulder on the XY plane.

Table 4.3 Measured data and simulation results.

Cross-section

Ligaments Attachment point Vector L; (mm) area A (mm’)
A -58.85,19.72,31.03 -7.23, 12.46, -19.02 69.04
-58.36, 14.81,22.97 -7.8,18.09, -5.46 50.68
C -60.56, 16.14, -0.42 -3.59, 13.05, -0.77 22.29
Ligament forces (N) fa=53 fz=2.1 fc=1.6
Pulling loadings on shoulder F.=6.2N M.=-0.011N-mm
0 =10mm
Shoulder disp. (mm) uy=0.9 uy=2.6 uz;=28.7
Ligament force (N) f1=0 fs=3.44 fc=0
%g loadings on shoulder F.=12N M,.=-0.017N-mm
Shoulder disp. (mm) uy=20.5 uy=14 uz=20
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The wing manipulation tensions the ligaments and tendon to facilitate the cutting
process. Once the stress within the soft tissues reaches a critical value, it is anticipated to
be easily severed. Correspondingly there exists a critical strain from (4.12). Under
assumption A3) in Section 4.1, this critical stress or strain would be the same for different
birds because it is the mechanical property of soft tissues. However, (4.15) indicates that
the applying force would be dependent on the cross-section area of soft tissues, 4y, which
is assumed to be proportional to the square of the overall bird feature dimension, such as
the half shoulder width /y. As a result, if a bird size is 10% larger than the reference
model size, the required force will become 21% larger.

On the other hand, the shoulder will displace and imprecise cut will occur due to
error of blade insertion location as the wing is manipulated. Given the desired
manipulating force, (4.6") can be used to predict the shoulder displacement. It is noted

that x is proportional to /y, area moment of inertia / is on the order of/;, By analyzing
each of the coefficients of F., M, and k,,, it is found that they are proportional to 1/ Iy, 1/1;

and 1(/p), respectively, indicating that: effects of the meat deformation is independent on
the bird dimension. However, the effects of the external loadings are dependent on the
dimension variation: if the bird is 10% larger than the reference model size, the same
pulling force will give rise to 11% reduction in shoulder displacement, while the same

twisting moment will cause 23% reduction in displacement.

4.4 Summary

This chapter has discussed a dimension-based method to characterize bone and

soft tissue deformation by accounting for the large size variation of natural products. A
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compliant beam model is formulated for the clavicle bone deformation and a closed-form
solution is obtained by assuming elastic foundation of breast meat. The solution is
verified by the numerical MSM and an approximated polynomial solution is adopted for
estimation of size variation effects on bone deformation. Analysis justifies this approach
by showing that the approximation error vanishes as the external loadings increase. An
exponential characteristic relation is used to capture highly nonlinear elastic property of
soft tissues. Given the large variation of force profiles among specimens, the proposed
model agrees well with experiment results. Finally, the musculoskeletal model is applied
in wing manipulation to analyze the effects of size variation on required manipulating
force and shoulder deformation. This musculoskeletal model can be potentially used to
develop design criteria to automate the process of de-boning chicken breast-meat. While
this chapter is written in the context of poultry meat de-boning, the method can be used in

other bio-tissues, joints, and systems.
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CHAPTER YV

DESIGN OF COMPLIANT MECHANISM FOR A

FLEXONIC MOBILE NODE

The 3-D deformation of a flexible beam subjected to generalized constraints was
formulated in Chapters II and III, and extended to the analysis of a bio structure presented
in Chapter IV. This chapter will apply the modeling method leading to the development
of a bio-inspired compliant mechanism for a flexonic mobile node (FMN). In operation,
the FMN utilizes large deflection and buckling of a compliant beam enabling it to
flexibly negotiate different kinds of obstacles (such as abrupt angle changes) commonly
encountered in complex civil structures.

In this chapter, the design concept, modeling analysis and experimental validation
of an FMN for maneuvering on ferromagnetic surfaces are presented. The remainder of
this chapter starts with the design concept of a novel magnet-wheeled FMN to achieve
two important functions (sensor attachment and corner negotiation) with a simple
mechanism. Then, a normalized 2D quasi-static compliant beam model is formulated
from the 3-D beam model to reduce the design criteria. Illustrative examples will be
given to exploit beam buckling for SHM applications, the work starts from a
conventional viewpoint of the load-displacement relation, and then evolves to the

displacement-displacement relations. As will be shown, these forward and inverse models

91



provide the essential basis for the design and control of a FMN. Experimental validation
will be performed on a prototype FMN developed at Georgia Tech [5]. Finally, functions

requiring 3-D beam deformation will be simulated and discussed.

5.1 Design Concept

Figure 5.1 illustrates the design concept of an FMN consisting of four
independently driven magnetic wheels housed in two assemblies (front and rear)
connected by a compliant beam. Unlike a rigid car frame with a fixed distance between
the front and rear axles, the front axle of an FMN can be bent relatively to its rear axle by
deforming the compliant beam (with both of its ends fixed on the two rigid bodies at Py
and P;). This enables the FMN not only to function as an agile locomotion but also a
sensor loader. It can be easily noticed that definitions of coordinate frames here are the
same as in Figure 2.3. It is recalled that the local coordinate frames, “xyz” and “&n(”
(each with a subscript indicating its location along the beam path-length), are defined in
the un-deformed and deformed configurations respectively. The nodal displacements us,
vs and wy are along xs, ys and zg axis directions respectively. When the beam cross section
is rectangular, all the coordinates follow the right-hand rule with x;and ¢ assigned along

the neutral axis of the beam, and z, and ; normal to the beam surface.
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Figure 5.1 Design concept of an FMN.

With the specific SHM application in mind, this FMN is designed for field tests
on the steel bridge on Georgia Tech campus as shown in Figure 5.2. Since the width of
the bridge columns is about 140 mm, this dimension limits the overall FMN width and
the compliant beam width. Besides, the motor output torque must be large enough to
deform the compliant for different functions.

The first function is to attach/detach an accelerometer (mounted on a platform in
the middle of the flexible beam) on/from the surface to be measured as shown in Figure
5.3. During the car-moving operation, the compliant beam is normally straight as shown
in Figure 5.3(a). When a measurement is to be made, the two axles are driven towards
each other to buckle the compliant beam as shown in Figure 5.3(b) allowing the

accelerometer to be pressed against the surface to be measured.
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(a) Not buckled. (b) Buckled.

Figure 5.3 The compliant beam buckling.

The second function is to provide a means to overcome obstacles when navigating
on a structure. Among the challenging obstacles is the crossing of a reinforcing ridge of
small dimensions. As illustrated in Figure 5.4, the magnetic wheel must negotiate sharp
corners. Magnetic forces at the corner greatly decrease when negotiating a concave
corner, but increase (because of multiple contacts) when moving up or down a convex

corner. Unlike a traditional design with a fixed distance between the front and rear
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wheels, the compliant beam of the FMN can be shortened by buckling and thus can be
designed to offer additional contact forces as needed by bending the connecting beam.
Other challenges include a change in direction onto different surfaces as shown in Figure
5.5 and Figure 5.6, which require the compliant beam to twist in addition to bending. The
ability to combine twist and bend enables the car to change directions across multiple
orthogonal planes. Figure 5.5 shows an example where the car moves from the first plane
by bending to the second plane, and immediately to the third plane by twisting since the

second plane is too narrow to accommodate the whole car.

(b) Crossing a ridge.

(c) Concave corner. (d) Convex corner.

Figure 5.4 Compliant beam bending.
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Figure 5.5 Twisting for a 90° direction change.

Figure 5.6 Twist / bend for direction change on different surfaces.

The functions illustrated in Figure 5.3 to Figure 5.6 require an appropriate loading
specification to realize the bending and/or twisting in addition to the boundary conditions
in formulating a compliant beam model to be discussed in the next section. It has been
shown in Chapter II that the beam dimensions (cross section and beam length) explicitly
appear in the constitutive equations, which characterize the beam load-deformation
relations. So the next section will analyze the beam deformation when performing the
two functions, sensor attachment and corner negotiation. Based on the analysis results,

the beam dimension will be determined.
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5.2 Compliant Beam Design

Following the formulation presented in Chapter II, appropriate boundary
conditions must be specified to solve (2.24) for the thirteen unknowns in X that are
physically relevant. Table 5.1 summarizes four typical boundary conditions, which are
also commonly specified for analyzing columns. For a cantilever (Type 1) where the
slope and displacements are zeros at the fixed end, the forces and moments at the free end
must be specified. For a beam with both ends constrained with pin-joints (Type 2), the
displacement constraints cannot sustain any moment; M = 0 but F must be specified. As
will be illustrated, Types 3 and 4 are specified for sensor attachment and for negotiating a
convex corner, respectively. Type 3 is similar to Type 2 but can resist nonzero moments
while maintaining zero slopes at both ends. In Type 4, a nonzero moment can be exerted
against an offset pinned end. Unlike buckling analyses where the critical load causing a
column to buckle is of particular concern, the models developed here relax several
commonly made ideal-beam assumptions (such as mass-less and small deflection) for
practical FMN applications.

The two basic functions of FMN have been simulated for design purposes:

1) The first function attaches/detaches an accelerometer on/from the surface to be
measured. The compliant beam 1is normally straight. When preparing a
measurement, the front axle is driven towards the rear axle buckling the compliant
beam to press the accelerometer against the surface to be measured.

2) The second function provides a means to overcome obstacles when moving on a
structure. Among the challenges is the ability to negotiate sharp corners. Magnetic

forces at the corner greatly decrease when negotiating a convex corner, but
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increase (because of multiple contacts) when moving up or down a concave

corner.

Table 5.1 Boundary conditions for generalized constraints.

Type s=0 s=1

Ri1=1,R2=0,R;3=0,

M F\, F, F3,
, F =0,

My, M, M

x, =x",x, =x", x, =2

1. Cantilever

_ 0.
0) 0) 0) HEL

x =x",x, =x", x, = x{
Fy, Iy, F3;

M1=M2=M3=0
M1=M2=M3=0

Rii=1,Ri» =Ri3=0;
Rii=1, Ri» = Ri3 = ¢=0;

_ +(0) —_ (0.
Xy =Xy X3 = X3,

7 x, =x",x, =x", x, = x”
F
Riu=1,Ri2 = Ri3=¢=0;
Fi,u X1, X2, X3}
X = x;m’x3 = x§0) )
/ ’ M, Ma, M;
4. Slide against an offset pinned F,

end
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For design purposes, the following normalized variables are applied to the beam

equations (2.24):

.3§é&, Ali::AZ;zzéi,
L
k0 =f0 L 2L and x
i 2 i lL i

. EI,
qri :qu?’ 9vi =4

x.L

1

where L is the beam length. Then (2.24) is recast and the differentiation is carried out

with respect to the normalized path length, §=s/L.

where the longitudinal strain ¢ and curvatures K are calculated as follows

E': _QFl
Fz’ = _‘7F2
Fa' = _q~F3

Ml, ==y, —(1+ 5)(R12ﬁ13 _R13F2)

Mz' =G>
Mé = _(’iMS
R1’1 =R,
R1’2 =GR,
Rl,3 = KRy,
@ =K +K,

-1+ 5)(R13F1 - R“F;)
—(1+&)R,F, - R,F)

— KR,

RI3R32 _ R12R33 + i R12R23 _ R13R22

3

1+ R,

X =>1+&)R,
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(5.1b)
(5.1c)
(5.1d)
(5.1e)
(5.19)

(5.1g)

(5.1h)

(5.1i)

(5.13)

(5.1k)
(5.11)

(5.1m)



I ~ ~ ~
&= A_zz (FiR, +FR, + F3R13) (5.2)

. EI, -~ ~ ~
K= kl(O) +G_IZ(M1R11 +M,R, + M,R;) (5.3a)
1
R, =k + MR, +M,R,, + M,R,, (5.3b)
.7 L -~ ~ ~
Ky = k3(0) +[_2(M1R31 +M,Ry, + M3R;;) (5.3¢)

3

Numerical simulations using MSM (Appendix B) were performed, where
computation time (especially when there is buckling) depends on the number of segments,
N, and initial values for the iterative process. The MSM computation involves a
13(N+1)x13(N+1) matrix inverse. To reduce computation time, the beam is equally
divided into three segments (N = 3, m = 4 in Figure B.1) with the beam cross-sectional
area presented as a piecewise linear function of path length. As given in Table 5.1, some
of the initial values are zeros. The remaining nonzero initial values are determined by
physics. Consider a cantilever as an illustration, the values of F and F5 at s = 0 can be
obtained from equilibrium; and M, can be chosen as the multiplication of the forces by a

characteristic length (such as one half of the beam length).

5.2.1 Sensor attachment

In modeling the sensor attachment on a plane, the rear axle is treated as a fixed
end, and the front axle acts as a slider subjected to a uni-axial loading F as shown in
Figure 5.7. In addition, it is assumed that the compliant beam is constrained to bend only
in the —z direction. For a given wheel radius, the uni-axial loading F; required to move

the sensor to its desired displacement wy (at s = 1/2) depends on whether the direction of
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(b) Case 2, a = 0.
Figure 5.7 Effect of gravity.
the sensor displacement is in the same or opposite to that of the gravitational force as
compared in Figure 5.7. Unlike Case 1 where the weights of the sensor and beam
facilitate the sensor attaching, the beam must compensate for these weights in Case 2. To
explain the effect of the gravity, we normalize a force F to the critical buckling force for

a beam subjected to both ends fixed [9] as follows:
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In the following simulation, the normalized gravity of the sensor which can be obtained
by replacing ¥ = mg in (5.4) is 0.8. With Type 3 boundary conditions, the deformed

shape (or w as a function of path length s) and u, = x, — x*’ can be computed by solving

the BVP (2.26) by specifying F;. The results for the two cases (with o = 0) are compared

in Figure 5.7 and Figure 5.8 where the input force # varies from 0 to 25.

Some observations are discussed as follows:

Figure 5.7(a) and Figure 5.8(a) show that the beam deforms continuously as the
normalized force increases in Case 1.

Although the carrying mass (normalized gravitation force 0.8) is relatively light
causing negligible deformation under its own weight (red curves in Figure 5.7, F1=0),
this little weight however has a significant buckling effect on the beam in Case 2. As
illustrated in Figure 5.7(b) and Figure 5.8(a), both the displacements (#; and wy) in Case 2
do not change until the normalized force exceeds a critical value n. at which the beam
buckles drastically to a new shape (black dash curve in Figure 5.8b) without any
intermediate shapes. The values of u; and ws (corresponding to 7. for o = 0°, 45°, 90°)
are summarized in Table 5.2 which also shows the effects of sensor weights on these
values. These critical values that cause buckling to set off in Case 2 decreases (requiring
less compensation against gravity) as a increases. For the same reason, a heavier weight

tends to give rise to a larger critical value for a < 45°. On other hand, a smaller critical

value for a lighter weight for a > 45° is observed as gravity facilitates buckling.
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Table 5.2 Slope angle and critical values.

Sensor gravity (normalized) o (degree) e u /L ws/ L
0 17.5 -0.0624 0.1559

0.8 45 16.9 -0.0612 0.1543

90 15.5 -0.0002 0.0094

0 18.3 -0.0999 0.1948

1.6 45 17.3 -0.1069 0.2009

90 15.1 -0.00005 0.0001

For a = 90°, the theoretical value of 16 given in [9] for a weightless beam is
somewhat larger than n. of 15.5. The beam model given in (5.1) accounts for the gravity
along —x, which contributes to the onset of buckling.

The values of wy for different a values converge to the case a = 90° for large F)
when the gravity becomes negligible. This is also true for u; because of the monotonous
relation between ws and u; as shown in Figure 5.8(b). The maximum normalized force
required is n = 25, from which the required motor torque can be estimated by multiplying
F computed from (5.4) by the wheel radius ry,.

The inverse model that computes u; for a specified wy for attaching the sensor is

given by curve-fitting the data in Figure 5.8(b) for different a’s in both cases:
u, W, 3 W, 5 w,
—=18(—*) +53(—)" -0.85— 5.5
7 1) 3 7 (5.5)

This result is due to the light weight of the combined beam and sensor. For detaching a

sensor, the command becomes —u; for a reversed process.
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Figure 5.8 Relationship between normalized force and displacements.
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The input displacement u; is a preferable manipulating variable for controlling the
compliant beam of the FMN but not the input force F;. This can be explained by Figure
5.8 showing plots of the two manipulating variables (F; and u;) and the sensor
displacement w;. As illustrated in Figure 5.8(a), the relationship between £ and wy is not
only highly nonlinear but also depends on a. On the other hand, the relationship between
ws and u; is monotonically smooth and independent of a as shown in Figure 5.8(b).
Besides, for the feedback control purpose, displacements can be measured by simple

encoders while forces are hard to obtain without expensive force sensors.

5.2.2 Convex corner negotiation

Figure 5.9 shows the free body diagram of the front assembly (mass m; at mass
center C; and wheel radius ry,) at an instant crossing a convex corner A. The reference

OXYZ is defined such that X is on the plane where the FMN initially locates and points

Figure 5.9 Convex corner negotiation.
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in the moving direction before crossing the corner; and Z is normal to the plane. In Figure
5.9, a is the angle between Z and the gravity; N is the reaction force; and f'(=uN) is the
friction; u is the coefficient of friction between the wheel and surface; and 7, is the
torque provided by the motors.

The following assumptions are made in this discussion:

1) The wheels are designed with magnets such that they attach on the steel surfaces
as the FMN moves.

2) The motor torque satisfies the non-slip condition: 7, = fr, < uN(0)r,

3) The moment due to the magnets is small as compared to that due to gravity, and
thus neglected in the analysis.

The following discussion considers the worst scenario where the wheel has a
point contact at the corner. The strategy for an FMN to negotiate a convex corner
comprises three steps:

Step 1: The rear axle exerts the forces/torque (F, M) through the compliant beam to rotate
the front axle about A.

Step 2: As soon as the front axle crosses over the corner (€ = f where £ is the corner
angle), the two assemblies move together.

Step 3: Once the rear axle arrives at the corner, the front axle pulls it over via the
compliant beam.

The following details Step 1 as this initiation dictates the success of the corner
negotiation. Figure 5.10 shows the beam deformations as the front assembly crosses the
corner. As will be shown, the other steps follow similar principles.

To rotate the front assembly over the corner, the following condition with respect
to A must be satisfied:

ME, +r, xmg=0 (5.6)

where M, is the required moment in E; to compensate for the torque due to gravity.
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Figure 5.10 Simulation of corner negotiation.

The required moment can be calculated from the following equation with computed
values shown in Figure 5.11 for different o values:

ME, =r, x(FE +FE,+FE,)+ME,
For negative a, M, can be obtained from the mirror images of Figure 5.11. Since the
compliant beam attaches the front assembly at Py,

T
s

F=-[F, F, E|.,M=-[M, M, M] (5.7a,0)

The boundary conditions (M>, u and w) for negotiating a convex corner, which
take the form of Type 4 in Table 5.1, can be obtained from (5.8) and (5.9):

Mz:_Ez'rplx(F;El"'FzEz_"F;EQ_Mr (5.8)

107



—| +O (0) (0)
= I:xl X0 X }

[)Cl X, X3]S=0

+[E, E, E] 0 1 0 |r

s=0

cosd 0 -—sind
5.9

sin@ 0 cos@

Solving (5.1) with (5.8) and (5.9) as constraints using MSM, the simulation results are

given in Figure 5.12 showing the highly nonlinear relationship between 6 and the applied

force (for a equal to 0, +m/4, £n/2). The larger the a, the larger force required for a

desired rotation angle and the maximum normalized force is about 4.5 (smaller than the

maximum force of 25 for sensor attachment).
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Figure 5.11 Relation between rotation angle # and required moment M,.
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Figure 5.12 Relation between rotation angle ¢ and normalized force n.

5.3 Experiments and Model Validation

Based on the previous analysis, the geometry of a compliant beam is designed and
a prototype FMN has been fabricated as shown in Figure 5.13(a). It has two (front and
rear) wheel-assemblies, each of which has a pair of magnetic wheels (independently
driven by electric motors), a microprocessor-based pulse width modulation controller,
and wireless communication circuits. The overall weight of the FMN is lkg contributed
primarily by the magnets, motors and batteries.

As illustrated in Figure 5.13(b), the main body of FMN consists two U-shaped
structural frames on which the motors and electronics are housed and a spring steel
(0.254mm thick) laminate including a compliant beam (shaded in gray). The non-shaded
portions are fastened by screws onto the U-shaped frames. The accelerometer (50 grams)

is pinned in the middle of the beam by screws (at locations shaded in black).
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Specifications of the spring steel laminate are given in Figure 5.13(c) and Table 5.3. The

beam has non-uniform cross-sections; thus 4 and / are functions of s.

Table 5.3 Mechanical properties and thickness of the spring steel laminate.

Elastic modulus £ (GPa) 207 Density p (g / cm’) 7.63
Shear modulus G (GPa) 79.3 Thickness /4 (mm) 0.254
Poisson ratio v 0.3

In the following, four examples are provided:

1) The first example is to validate the compliant beam model adopting the Euler
beam assumption, where shears in cross sections are neglected. However, as can
be noticed in Figure 5.13, a non-uniform beam shape has been designed for the
application of sensor attachment with multiple screw holes in the sensor holder.
The changes in cross sectional areas could potentially introduce shear
deformation. So the simulation results will be compared against an cantilever
experiment and FEM.

2) The second and third examples validate the analysis results of the compliant beam
in sensor attachment and convex corner negotiation presented in Section 5.2.
Simulation results are compared with experiment data collected from video

images processing.
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Figure 5.13 Prototype FMN.
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3) The last example of modal analysis shows the advantage of this FMN design over
the previous MSN designed with rigid configuration in data collection for SHM.
Vibration data of a laboratory steel frame are collected by both mobile sensors
and their results from fast Fourier transform are compared against those predicted

by FEM.

5.3.1 Validation of the beam model

Figure 5.14(a) shows the experimental setup to examine the validity of the beam
model, where the spring-steel laminate on one of two housing structures (Figure 5.13(b))
was clamped as a cantilever, and thus has Type 1 constraints (Table 5.1). The remaining
U-shaped portion (non-shaded in Figure 5.13(c)) in the spring-steel laminate serves as a
load at the end of the compliant beam (that has a non-uniform shape and thus non-
uniform distributed weight). As the mass center of this U-shaped portion is located at
10.1mm from the free end of the beam (Figure 5.13(c)), the weight of this U-shaped
portion also contributes to a lateral force Fy and a moment My in addition to the external
payload m, at the free end of the beam. As a result, the values of F and M in the

boundary conditions are given by
F=0,F=0,F=F+mg M =0, M,=M,, M;=0 (5.10)

In this experiment, a strain gauge (with negligible weight as compared to the
beam) was attached on the upper surface at the middle of the beam. To provide an
alternative basis for comparisons, a numerical model was built in Abaqus using 6319
shell elements (S4R type). In FE analysis, only one-half of the beam is simulated

because of symmetry, and the external load is applied at one coupling element so that Fy

112



is uniformly distributed over the cross section at the beam tip. All computations were
performed on a computer with a 2.99 GHz CPU and 4.00GB memory; the FEM took
about 365 seconds while the beam model (3-segment MSM) requires only 95 seconds.
The analytical results are compared against those of FEM and experiments in Figure 5.15
and described as follows. The two beam models are uniform width of 20.32mm and non-

uniform shape (that accounts for the geometry of the sensor holder).

(a) Experiment setup.

(b) Finite element analysis.

Figure 5.14 Validation of the beam model.
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1))

2)

The results are discussed as follows:

Figure 5.15(a) shows that the FEM computed beam-shapes and the uniform/non-
uniform beam models closely agree with each other for two different loadings;
external payload m,= 0 and 50 gram exerted at the beam tip. It is noted that the
ten-hole area takes up to 8% of that of the sensor holder, which was compensated
for by a function characterizing the change in beam widths; thus the results from
two beam models, uniform and non-uniform shapes, do not differ significantly in

this specific application.

Figure 5.15 (b) shows that the strain &;; increases monotonically with payload.
The beam model agrees well with the experimental measurements. Some
discrepancies at large payloads are observed in FEM possibly due to the following

local effects:

a. Because of FE meshes, the node at which strain information is extracted

does not locate exactly at the middle of the beam.

b.  Besides, the FEM model can capture the local stress concentration while the
strain gauge is actually measuring the average strain over its area, and the
stress concentration is not accounted in this beam model. When comparing
this local information, the beam model matches with experiments but some

discrepancy exists in the FEM.
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Figure 5.15 Model validation with FEM and experiment.
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5.3.2 Effect of gravity on sensor attachment

In this experiment, the sensor was attached on the plane by moving both axles
towards each other to prevent slippage as shown in Figure 5.16(a-c). For comparing
against analytical simulations where sensor attachments were modeled as a process of
moving the front axle towards the fixed rear axle, the net displacement u; was obtained
by measuring the distance change between the front and rear wheel centers from captured
images. Figure 5.16(d) is a zoom-in comparison of Figure 5.8(b) showing good
agreements between analyses and experiment results for a = 0, 45° and 90°.

The results are discussed as follows:

1) It is worth noting that the deviation in Case 2 for a = 0 was a result due to the
onset of buckling. Once the critical force is overcome, ws / L jumps from zero to
—0.1559. This non-linear dynamic is essentially unstable. Thus, in Case 2, the
required input displacement u; for ws /L > —0.1559 is of the same value (u1/L =
—0.06) as that when buckling starts.

2) However, all the intermediate experiment data follows the continuous curve given
by (5.5) which is independent of slope angle a, so the relation between u; and wy
obtained from static analysis is also valid for the dynamic process of Case 2.

3) This also justifies for the conclusion obtained from Figure 5.8 to control the
compliant beam deformation by manipulating the input displacement u; rather

than the input force F;.
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(a) Case 1: a=0.

(b) Case 2: a=0. (c) a=90°.
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(d) Displacement comparison between simulation and experiment.

Figure 5.16 Validation of sensor attachment.
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5.3.3 Validation of the corner negotiation

Figure 5.17(a-c) shows the three steps in negotiating a convex right corner,
specifically pushing the front axle, both axles moving together and finally pulling the rear
axle. Following the analysis before, the rotation angle a of the front axle is obtained by
the orientation of the line connecting the front wheel center and the corner point, while
the displacement u, of the rear axle is determined by the rear wheel center.

Observations are discussed as follows:

1) Although the relation between the applied force F; and the desired rotation angle
a is nonlinear depending on the gravity direction, a highly linear relation ug / L =
0.0051a exists between u and 6 regardless of the gravity direction in simulation
as shown in Figure 5.17(d). Experiment results also confirm with this linear
relation.

a. It is noted that errors may come from the required torque that is calculated

from the assembly mass and the distance from the corner to the mass center.

b.  Another source of error can be the image processing of the video frames

when detecting the front and rear axle locations by wheel centers, and
determining the corner point by manually picking one pixel. Since the steel
structure and the camcorder are fixed throughout the experiment, this corner
point A is fixed in all the images while small vibration can exist in the steel
structure because of the FMN dynamics.

2) It can also be seen that both the pushing and pulling process follows the same
curve in experiment, implying the above analysis for the pushing process (Step 1)

can be applied throughout the corner negotiation.
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(d) Relation between rotation angle 8 and displacement u/L.

Figure 5.17 Convex right corner negotiation.
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5.3.4 Modal Analysis

In [65], a modal analysis of a frame structure (similar to Figure 5.18) was
conducted with data collected from four mobile sensing nodes, where sensors were not in
contact with the measuring surface. The modal analysis in [65] was limited to S0Hz due
to the car dynamics of the mobile sensing node which essentially behaves as a low-pass
filter. The interest here is to investigate the effect of sensor attachment on the modal
analysis using impulse response studies. For this, vertical vibration data were obtained
from both the 4-wheel magnetically driven FMN with a compliant beam, and the 3-wheel
magnetic car of rigid configuration design [65] where the accelerometer (underneath the
car) is not in contact with the surface. The accelerometer of the FMN is firmly pressed
against the measured surface by the compliant beam and magnets as compared in Figure
5.19. As a basis for comparison, the fast Fourier transform results obtained from both

measurements are compared against those predicted by FEM.
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1 Impact Ar— - |é> 1 B/\
Y y N { ¥
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Figure 5.18 Steel frame structure.
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(a) FMN. (b) Single axle [65].

Figure 5.19 Comparison of FMN with rigid configuration design.

Table 5.4 Steel frame material properties and robot dimensions.

Material properties Steel Robot dimensions

Elastic Modulus (GPa) 210 Length (cm) 20

Shear Modulus (GPa) 82 Width (cm) 14.7
Poisson ratio 0.28 Height (cm) 7.6
Density (kg/m’) 7700 | Weight (kg) 1

Sampling frequency = 500 Hz

Figure 5.18 shows a 2D laboratory steel portal frame structure (consisting of a
beam and two column members) constructed for structural modal analyses. The beam is
connected to the columns by bolted angle plates, and by hinge-connections at the column
bases. Material properties for the frame structure are listed in Table 5.4 along with the
dimensions in Figure 5.18. The two mobile cars are placed at the same position on the
beam where vertical vibration data were collected after a hammer impact at a specified
position. A sampling frequency of 500Hz is used for the data collection. The results
comparing the vertical vibration data (in frequency domain) collected from the two cars

are given in Figure 5.20 and Table 5.5.
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1)

2)

Table 5.5 Comparison of frequencies.

FEM (Hz) Compliant (Hz) Single axle (Hz)

1.009
4.626 4.5 4.7
10.757
11.642 11.2 11.2
17.573 19.9 20.1
30.970 30.8 31.3
39.946
40.679
42 247 43.8 443
48.816 48.3 49.5
57.758 61.8
79.232
87.724 90.5
94.619
97 680 95.1 98.2
122.150
123.130 123.3 124.2
146.640

Some observations can be made from the results:

The dynamics of both magnetic cars has little influence on the vibration
measurements in the lower-frequency range (<50Hz), and thus the results are
closely matched with FEM results.

For this experiment configuration, the first vibration mode (horizontal) is not
excited, so the lowest modal frequency is not identified. Also, since only one
measuring point is considered in the experiment, some of the modal frequencies
obtained from the FEM are not detected. Clearly, if this measuring point is at the
zero vibration positions of certain modal shapes, the corresponding frequencies
for these modal shapes cannot be captured at this point suggesting that multiple

measuring points are necessary in practice.
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Figure 5.20 FFT of vertical vibration in the steel frame.

3) For frequencies larger than 50Hz, relatively sharp peaks can still be identified by
the FMN because the accelerometer is firmly pressed against the steel frame

structure eliminating the car dynamic effects on the measurements.

5.4 Applications with 3-D Deformation

Previous sections have designed the compliant mechanism and validated the beam
model in experiment 2-D analysis. In the section, applications of FMN requiring 3-D
deformation will be investigated in two illustrative examples, namely corner negotiation
within limited space and environment monitoring. To facilitate the 3-D deformation, a
modified FMN prototype equipped with a camera on the front axle is shown in Figure
5.21(a). The camera can capture terrain changes by monitoring distortion of the projected
laser pattern. With this vision navigation system, the FMN is capable of detecting corner
edges. Within each hollow wheel, a neodymium 90° arc magnet is fixed to the car body,

hence does not rotate with the wheel (Figure 5.21b). Compared with design in Figure
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Figure 5.21 Prototype of FMN with a camera.

5.13(a) that 18 magnets are attached around each wheel, this configuration is featured
with only one fixed magnet in each wheel and the light weight of 0.55 kg.

Besides, this modified FMN prototype is also featured with the front axle yawing
as shown in Figure 5.22(a) and (b). To enable this DOF, the compliant beam is attached

with the front axle via an on-off pin-joint. As shown in Figure 5.22(c), this pin joint is
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coupled with a linear slot, such that different boundary conditions are achievable based
on the location of the pin axis (out of the paper) along the linear slot and the environment
constraints. When the pin is located at the free location (blue), there is a gap between the
front edge of the beam and back of the front assembly allowing free rotation between
them like a regular pin joint. As the pin axis is at the clamped location (red), the front
edge of the beam is pushed against the back of the front axle, rendering a locking state
that is equivalent to fixed end boundary condition. Besides, an accelerometer is fixed on
the beam at two holes marked as black, and the effective flexible portion of the beam is

shaded.

(a) Turn on the same plane. (b) Turn on another plane.
4 = =187 Unit: mm
o o0 o
y D3.2 8.6 3.8 * =
! : ® T
12.7 [O O O Clamped .:.JF['ee
!
- [
18 1o 0 ©
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I~ 44.5 F—or— 25,4 —r= 44.5 -

(c) Spring steel laminate.

Figure 5.22 Design of the compliant beam.
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5.4.1 Corner Negotiation within limited space

Figure 5.23 shows an FMN at an instant crossing a convex corner A from Plane I
to Plane II. Because of limited turning space, the FMN changes its initially aligned front
and rear assemblies by turning the front assembly (mass m; at mass center C; and wheel
radius ry) and deforming the compliant beam. The reference XYZ is defined such that X
is on the Plane I where the FMN initially locates and points in the moving direction
before crossing the corner; and Z is normal to the plane. Similarly, X"Y'Z' is defined such
that X' is along the final moving direction after crossing the corner; and Z' is normal to

Plane 11.

. Plane II

4

L Plane 1

Figure 5.23 Turning within limited space.

The strategy for the FMN to negotiate a convex corner with limited turning space
comprises three steps:

Step 1: The rear axle turns by y so that the front axle can approach the edge

perpendicularly, where y is the angle between X and x,. Next the rear axle

exerts forces/torque through the compliant beam to rotate the front axle about
the corner A.

Step 2: The two assemblies move together as soon as the front axle crosses over the
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corner.

Step 3: Finally, the front axle pulls it over via the compliant beam once the rear axle
arrives at the corner.

As pointed out earlier, the mathematics illustrating Step 1 which dictates the success of
the corner negotiation is further explained to gain intuitive insights.
For clarity, the following assumptions are made in this discussion:

1) The wheels are designed with magnets such that they attach on the steel surfaces
as the FMN moves.

2) The motor torque M,, satisfies the non-slip condition:
M,=fr,<uN@O)r,.
In Figure 5.23, N is the normal force; ' (=uN) is the friction; u is the coefficient of

friction between the wheel and surface; and M, is the torque provided by the
motors.

3) The moment due to the magnets is small as compared to that due to gravity and
thus neglected in the analysis.

To rotate the front assembly over the corner, the inequality (5.11) with respect to
the corner A must be satisfied:

ME, +r. xmg/ 20 (5.11)
where M, is the required moment to compensate for the torque due to gravitational force
and it is given by

M i, = -1, xF, -M,
The boundary conditions for negotiating a convex corner, which take the form of Type 4
in Table 1, can be obtained from (5.12) and (5.13):

M, =r, xmg-r, xF, (5.12)
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Solving (5.1) with (5.12) and (5.13) as constraints using MSM, the results are given in
Figure 5.24 and Figure 5.25 showing the deformed beam shapes and the highly nonlinear
relationship between a and the applied force/displacement:

Figure 5.24 shows the snapshots of the deformed beam at different rotation angle
6, suggesting that large deformations of both bending and twisting occur on the beam. In
simulating the corner negotiation, the rear axle pushes the front axle along the xo
direction while maintaining y at a constant value of 30° so that the input force or

displacement of the rear axle is along xy.
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Figure 5.24 Snapshots of the deformed beam.
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Figure 5.25 Normalized displacement and force.

In Figure 5.25, the normalized input force and displacement appear to be linear
when 6 < 45°. When 6 > 45°, the inputs start to grow nonlinearly, implying certain
geometry constraints may prevent the front axle to rotate further without extremely large
forces. The displacement u is given by:

u 0.00366 if 6<45°

L :{0.001692—0.14319+3.3292 if 0>45° (5.14)

In this way, the constant y strategy is invalid, or in other words, the rear axle
should adaptively increase y as it approaches the edge in the perpendicular direction.
This control strategy with variable y is worthy of investigation in the future.

Finally, the input-output relationship for corner negotiation within the limited
space can be implemented as open-loop control in real time using (5.14). For closed-loop
control, the displacement/orientation feedback can be achieved but requires additional

sensors (such as rotary encoders or gyroscope) and will be left for future investigation.
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5.4.2 Environment monitoring

As the FMN navigates on civil structures, it is necessary to monitor its
surrounding environment to decide where the corners are and the location for placing the
sensor for measurement. With implementing a camera on the front axle, it is desired to
control the front axle yawing y and pitching § as described with its rigid body attached

frame {e,, e, e, }in Figure 5.26. The front axle yawing can be controlled by the

difference between the rotational speeds of its left and right wheels when releasing the
pin joint on the front axle. On the other hand, as indicated in previous analysis the front
axle yawing can be controlled by manipulating the compliant beam via the rear axle
displacement uy. So this section will investigate the relation between uy and 6 with

different y.

Figure 5.26 Front axle yawing and pitching.
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Relation between the rigid body attached frame {e, e, e, } and the global

reference frame is given by

elf E1
e =R,R, 1 E, (5.15)
e3f E3
cosy siny 0 cos@ 0 —sind
where R, =|-siny cosy O|andR,=| 0 1 0
0 0 1 sind 0 cosé@

Then the position of the beam attaching point on the front axle is given by
X, =xE, =r0e,+r,(R,R, —)+LE,

where the first term is the front axle forward motion because of pure rolling, the second
term is due to the rigid body rotation with r, =[d, 0 d, ]T being the beam attaching
position on the front axle expressed in the frame {elf, e, eSf}, and the third term is the
initial straight beam length. Then the components of x,, in the global referenced frame
can be expressed as

x,=L+rOcosy +[d,(-1+cosf)+d, sin@]cosy

x, =r@siny +[d,(-1+cos @) +d, sinf]siny (5.16)

x; =d;(~1+cosd)—d,sin0
Different from previous analysis on corner negotiation, the front axle here is on a plane

where the magnetic torque becomes dominant over the gravitational torque. Based on the

equilibrium of the front axle in the e, direction

7,8y = (nE;+1, )xF+M (5.17)
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where 7, = —kp 6 is the magnetic torque with equivalent rotational spring constant kg; F (=
FiE)) and M (= M|E; + M,E, + M;Es)are respectively the force and moment exerted by

the beam. From (5.15) and (5.17), the moment from the beam can be obtained as

M, =k,0siny
M,=F(r,+d,)—k,0cosy (5.18)
M,=0

In the above, the pitching angle € should be determined from the orientation of the beam
attachment on the front axle. It is noted that [R]; = [Ry; Rz R3] in (2.16) is the tangential

vector along the beam axis, and it lies in the plane of formed by e and e, . Then e;;
can be written as e,; =[R] %€, . Considering (5.15), 6 can be determined as follows

sinf=-R,;, cos@=R cosy+R,siny (5.19)

By specifying the yawing angle y and the pushing force F, the pitching angle 6
and the rear axle position / displacement (assuming it starts from the origin of the global

referenced frame, u, =xl| ,) can be obtained by solving the BVP (2.26) with the

boundary conditions determined as
SZOZ R11:1,R12:R13:(|):O;XZ:X3:0;F1
s=1L: X1, X2, X3, Ml, Mz, M3 given by (516) and (518)

Numerical values used in the simulation can be found in Figure 5.22(c), Table 5.3 and

Table 5.6.
Table 5.6 Numerical values for simulation.
ko d d;
0.69 N.m/radian -21.79mm 7.11mm
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Figure 5.27 shows the deformed beam shapes for several combinations of y and
0. The beam deformation is 2-D for v = 0 and 3-D for y # 0. It is noted that the beam
deformation is symmetric for > 0 and w < 0, so only the case of y > 0 is presented here.
Besides, for € < 0 it requires the rear axle to push forwards (uy > 0) while for 6 > 0 the

rear axle has to pull backwards (u < 0).

Undeformed W 0

Z/L

0.05
Y/L

Figure 5.27 Deformed beam shapes for a piching camera.
Figure 5.28 shows the required input (force F) or displacement u) of the rear axle
to tilt the front axle for different y and 6. The black circles denote the simulated results

and the interpolated surfaces of F; (v, 6) and uo (y, 0) can be quantified as follows:

2
Fl(%) =—0.156 +54.54|y|+147.320|y |+ 27.28y* +182.010y> +2.500°  (5.20a)
2
”TO =-0.00676 +0.61|y|-0.170|y|+0.07y* +1.340y > +0.0156° (5.20b)
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(a) Normalized force from the rear axle.
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(b) Normalized displacement of the rear axle.

Figure 5.28 Required input of the rear axle for different of ¥ and 6.

134



1))

2)

3)

Results are discussed as follows:
The input force F is a nonlinear function of  and 6. Given an electric motor, the

maximum output torque 7z, can be found from its specification sheet. Then the

limits on the front axle tilting motion can be determined from |F| < 20

r

w

For v = 0, uo is a linear function of & which is similar to the case of corner
negotiation in Section 5.3.3. As y increases, 1y becomes nonlinear with 6 because
the beam deformation becomes 3-D and twisting along the beam is nonzero.
However, uy is still the preferred control variable because displacement control is
much simpler than force control.

The surface functions in (5.20) are obtained by multiple variable regression,
where the functional form is determined such that it is an even function of w (
because of symmetry) but odd function of 8 because when 6 > 0, F'; > 0, uyp > 0

and when 8 <0, F; <0, ug <0.

5.5 Summary

This chapter presents the design concept of a novel magnetic FMN incorporating

a compliant beam and permanent magnets, and a 3-D model for simulating the deformed

shape of the compliant beam. Simulation results show that there exist consistent relations

between the input/output displacements and rotation angle for open-loop control

implementation in sensor attachment and corner negotiation regardless of gravity

direction or the critical force for buckling. The theoretical models for sensor attachment

and corner negotiation are also experimentally validated .
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Along with an analytical model for simulating the large deformation of a
compliant beam in 2D space, a magnetic flexonic mobile node (FMN) incorporating a
compliant mechanism has been designed to negotiate corners and carry a sensor for
placing on a ferromagnetic structure. Two illustrative examples of sensor attachment and
corner negotiation are presented for different constraints for the same mechanical design
of FMN. Simulation results show that there exist consistent relations between
input/output displacements and rotation angle for control implementation in sensor
attachment and corner negotiation regardless of gravity direction. In sensor attachment, a
nonlinear relation between the front assembly displacement and the sensor displacement
is valid for different critical forces for buckling which is affected by the working surface
slope. In corner negotiation, a linear relation can be obtained between the displacement of
the rear assembly and the rotation angle of the front assembly within the highly nonlinear
load-displacement behaviors of a compliant beam. However, the gravity affects the
loading and displacement/rotation angle relation. To set off the beam buckling for the
sensor attachment, the smaller the surface slope angle, the larger the critical force needed;
a heavier sensor weight tends to give rise to a larger critical force for slope angle p<45°
while smaller critical force for 9>45°. For a desired rotation angle in corner negotiation, a
larger pushing force is required with a larger angle w between the gravity and the norm of
the initial plane. The analytical model is validated by an experiment on a cantilever beam
and the corresponding FE model. Finally, the experimental results of two functionalities
of sensor attachment and corner negotiation are provided to validate the simulation

analysis.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

A Curvature-based Beam Model (CBM) has been rigorously formulated and
validated for solving 3-D large deformation problems in which a compliant beam plays
an important role. The following summarizes contributions made in this thesis:

1) CBM using global coordinates

The 3-D large deformation formulation based on curvature distinguishes itself
from other methods, such as FEM, based on displacements and/or rotational angles in
that the principle of superposition holds even for large rotation; hence, the formulation
based on curvature is much simpler; and the results can be efficiently computed.

The advantage of curvature description by formulating all state variables of a
curved 3-D beam in the global reference frame has been fully explored. The relation
between the curvature and absolute nodal coordinates of a curved beam is derived. It has
shown that the curvature characterizes curved beam geometry via three differential
equations. The CBM is verified by the FEM through the large deformation analysis of 3-

D curved beams under cantilever constraints.
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2) The generalized bio-joint constraint

The bio-joint constraint (BJC) has been described as a generalized boundary
condition for the CBM, which relaxes common assumptions in traditional boundary
constraints such as fixed, pinned or sliding constraint where none or only one DOF is
allowed. This generalized constraint is capable to emulate multi-DOF motions of a
natural biological joint. The BJC is formulated as a contact constraint between two rigid
bodies approximated locally as two ellipsoids for ease of illustration. Applications to the
knee joint kinematic and dynamic analysis are discussed in details.

3) Bio structure modeling

For the first time, an overall bio structure accounting for both soft tissues and
bones has been modeled as a multi-body compliant mechanism. By formulating the
boundary conditions for the CBM as bio-joint constraints, a musculoskeletal model
characterizes the bone and soft tissue deformation by accounting for the large size
variation of natural products. Given the large variation of force profiles among
specimens, the proposed model agrees well with experiment results.

An application of the musculoskeletal model to wing manipulation is illustrated
by analyzing the effects of size variations on the required manipulating force and the
shoulder deformation. This musculoskeletal model can be potentially used to develop
design criteria to automate the process of de-boning chicken breast-meat. While it is
written in the context of poultry meat de-boning, the method can be used in other bio-

tissues, joints, and systems.
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4) Bio inspired robot design

With the analysis of a bio structure in mind, the modeling method of a CBM can
be used to design a flexible structure for field robots to emulate the dexterities of bio-
joints. The design concept of incorporating a compliant beam is presented to replace
traditional pin joint configuration of a two-axle autonomous robot. Possible situations in
deforming the compliant beam for specific applications in structure health monitoring
(SHM) are numerically analyzed and experimentally validated. Based on the analysis
with normalized form of CBM, a compliant beam has been designed for a prototype

flexonic mobile node (FMN).

6.2 Future Works

The analysis of a multi-body system formulated using the CBM with the BJC
provides a foundation for other research in the area of bioengineering. Future works are
summarized as followed:

1) In this thesis, the CBM with the BJC is formulated only for quasi-static cases,
where the deformation is assumed to accumulate in a very slow speed. In order to
better understand the dynamic response of bio structures, such as flapping of bird
wings or fish tails, a complete formulation of the dynamic model is necessary. In
order to do this, two recommendations are listed:

a. The BJC has been formulated to facilitate for differentiation in the time

domain, so it is readily used for kinematic and dynamic analysis. It just
requires proper expression of the boundary constraints on the beam dynamic

equations.
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2)

3)

b.  The dynamic form of CBM requires additional inertia terms consisting of

masses and time derivatives, which transforms the current ODE into a PDE.
For example, (2.22) would becomes

ox OF

Mt —=—
o as Jr

where m is the mass per length along the beam axis.
In the view of applications, the CBM can be extended to account for coupling
effects among multiple physical fields, such as magnetic field or thermal

dynamics. This is achievable via explicitly determining the distributed force q,.
and distributed moment q,, as the quantities in corresponding fields. For
example, in considering the magnetic effects on structural deformation, q, and
q,, are the corresponding magnetic force and moment.

The BJC considered in this thesis employs ellipsoids in the modeling, which
captures the non-uniform shapes of bio joints in general. For specific applications,
more accurate geometry description rather than the elliptic approximation would

be required. In this case, the curvature description will be valid for such purposes.
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APPENDIX A

DERIVATION OF CURVATURE

In Chapter 2, both rotational matrix and curvature are used to describe the curved

shape of a beam axis. Since only three components in a rotational matrix are independent,

a rotational matrix is mutually interchangeable with a three-component vector of

curvature. This appendix shows how they are correlated and a theorem will be proved.

Given any curve in a 3D space, the moving frame along its axis has been given in

(2.1). Without losing generality, the compact tensor form of (2.1) can be expand into the

following matrix form:

e1 El
e, r= [R] E,
e3 E3

E e
d| | d[R]]."| d[R] ;]
— =——=<E, ;= R
ds € ds : ds [ ] €
e3 E3 e3
Then, the curvature K = [k k, k3]T is defined as
0 k., -k
3 2 d [R] T
skew(K)=|-k;, 0 k |= y [R]
Kk, —k 0 g

Ordinary differential equations governing R can be expressed in terms of K:
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d|R T
c[z’s ] = skew(K)[R] (A4)

[R]

Theorem A.1: Given R as any rotational matrix, [A] = J
s

[R]T is a skew matrix.

Proof: For a rotational matrix R, it satisfies the following condition

[RI[R]" =[R] [R]=[1]

where [I] is an identity matrix.

AT AT =Dy gy /IR
_dIR]RY [
ds ds
=0

Hence, [A]= —[A]T is a skew matrix. O

So the curvature K has been introduced in the form of a skew matrix for the

derivative of the moving frame along the path length s,

d el el
a e, r = skew(K)qe, (A.5)
e3 e3

It is clear that K is independent of what referenced frame {E,} (i =1, 2 and 3) is chosen

and determined by the geometry of curve via the rotational matrix in (A.3).
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APPENDIX B

MULTIPLE SHOOTING METHOD (MSM)

The boundary condition problem (BVP) of a 3D compliant beam can be written in

the following form:
=1(5,X), g(X(0),X(1)=0 (B.1)
where X is a vector of the 13 variables; 0 <s < /; and g(e) is the boundary conditions
specifying the geometrical loading constraints at both ends. The BVP (B.1) is recast as an
IVP and solved using a MSM [34, 35]. For this, the region [0, /] is divided into m-1
sections by m nodes as shown in Figure B.1, where s; is the arc length from the root of the
beam to the i node; x;” is the initial guesses for the i section, and the superscript (n)

denotes the n” guess.

X

A (SmyXm
(Sz,sz)

@)) (Sm 1,Xm- 1

Figure B.1 Multiple shooting method.

(1)) o

;S

The BVP can then be posed as a set of m first-order non-linear equations (B.2)

subject to a set of m constraints (B.3) as functions of the initial guesses:
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X' =f(s,X), X(s,)=x" (B.2)

) | [ Xssisa)-x
C(x") = C 5,1 - = X(Sm;sm_l,:xx_)l) o (B.3)
C,(x",x,") g(x;".x,")
Using Newton method, the initial guesses are updated using (A.4):
X" =x" ¢ [DC(X(”))II cx"), n=0,1,.. (B.4)

where DC = 8C/0x" is a matrix, a is a coefficient for the iteration step size. The iteration
process of (A.4) stops until C(x™)— 0 ( or a small tolerance error Err,;) implying that
the solution is continuous and satisfies the boundary conditions. The MSM can be
implemented using the following steps:

1) Set the initial guessx'” =[x{” x{” - xV'].

2) Solve the IVP with X(0) = x©.

3) Calculate the residual |C(x”)|| and corresponding DC = 6C/ox"”.

4) Update the initial guess by (B.4).

5) Repeat steps 2~4 (replacing x© with x™) until ||C(x™)|| < tolerance error

Erry,.
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