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SUMMARY  

Motivated by the interests to understand bio-structure deformation and exploit 

their advantages to create bio-inspired systems for engineering applications, this thesis 

presents a curvature-based model for analyzing compliant mechanisms capable of large 

deformation in a three dimensional (3-D) space.  

This thesis formulates the large deformation of a 3-D compliant beam as a 

boundary value problem (BVP). Unlike other methods, such as finite element (FE) 

method, that formulate problems based on displacements and/or rotational angles, the 

BVP formulation has been derived using curvatures that are more fundamental in 

presenting nonlinear geometries. Since in the case of finite rotation, superposition holds 

for curvatures but not for rotational angles, the model is much simpler and the resulting 

computational process is more efficient. The above advantages have been employed in 

this research to analyze compliant mechanism designs using curvature-based beam 

models. Along with the method of deriving the compliant members in the same global 

reference frame, a generalized constraint acting on a compliant mechanism is presented 

to replace traditional boundary constraints (such as fixed, pinned or sliding constraint) 

where none or only one degree of freedom (DOF) is allowed.  Inspired by the dexterity of 

a natural biological joint that offers efficient multi-axis rotation, this research extends to 

the modeling method of a generalized constraint (or referred to here as a bio-joint 

constraint) to develop designs emulating commonly observed human motions of multi-

DOFs . Using a multiple shooting method (MSM), the BVP is treated as an initial value 

problem and higher order accuracy can be achieved than finite element (FE) methods. 



 

xvii 
 

 

The attractive features of the method, which greatly simplifies the models and 

improves the computation efficiency of multi-body system deformation where compliant 

beams play an important role, have been experimentally validated. To demonstrate the 

applicability of this proposed method to a broad spectrum of applications, the analytical 

models have been employed (with experimental validation) to investigate the effects of 

different joint constraints on the mechanism deformations in two practical applications. 

The first analyzes deformable bio-structures for automated poultry meat processing.  The 

second has led to a compliant mechanism (known as flexonic mobile node) for health 

monitoring of a ferromagnetic structure. It is expected that the proposed method will find 

a broad range of applications involving compliant mechanisms. 
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1  

CHAPTER I 

 

INTRODUCTION AND BACKGROUND 

 

1.1 Background and Motivation 

A compliant mechanism is a mechanical system composed of flexible links, 

which are designed to transfer force/moments to strain energy by large deformations, and 

have been widely used for many engineering applications such as snap-fits [1], micro 

grippers [2] and flexure hinges [3]. In recent years, compliant mechanisms have attracted 

more and more attention for biology related applications, such as food processing 

industry and bio inspired robotics, because compliant mechanisms exhibit many 

advantages in dealing with highly deformable biological materials over rigid engineering 

tools in terms of simple structures and light weight. While multi-body compliant 

mechanisms can achieve a larger range of motion and are energy efficient because of 

being free from contact friction, their designs are difficult to analyze and often based on 

assumptions (such as small deformation and fixed rotation center) in order to reduce the 

three dimensional (3-D) nonlinear problem to a more tractable two dimensional (2-D) 

formulation for solving using a lumped-parameter approach. Such simplified analyses 
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generally yield only first-order approximation, and are unable to capture 3D behaviors 

such as the coupled effects among bending, twisting, and contact with joint clearances.   

This thesis research has been motivated by two practical applications. The first is 

an immediate application in poultry industry, where boneless breast meat is removed 

from chicken carcasses for subsequent meat processing [4].  The job requires pulling and 

then twisting a wing to sever the ligaments/tendons for deboning the meat typically at a 

rate of 1 bird/second.  This repetitive job is a potential cause of cumulative trauma 

disorder, and thus a candidate for automation. A critical part of this process is the need to 

manipulate both wings to tension the ligaments and tendon before severing them as 

illustrated in Figure 1.1, which leads the following questions to be answered: 1) where 

are the ligaments and tendon located? 2) How much force and torque are required to 

manipulate the wings? 3) In what directions should the force and torque be applied?  

Most of the early research effort focused on developing a method (based primarily on 

vision sensing feedback) to position the cutting blade for the initial insertion. A good 

understanding of the important factors (such as the structural compliance due to joint 

clearance and connecting soft tissues) contributing to the whole carcass deformation is 

essential to the precision deboning. In this thesis, a mulsculoskeletal structure of a 

chicken shoulder is modeled as a multi-body compliant mechanism with bio joints to 

predict the locations of ligaments/tendon and required manipulating forces under large 

deformation of a carcass.  This mechanism differs from others in the sense that rigid 

bodies (bones) and compliant links (tiny bones / soft tissues) are not connected in series 

but in a 3-D topology. The deformation of this compliant bio-structure, together with 
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mechanism, it is called flexure-based-mechatronic (Flexonic) Mobile Node (FMN). As 

shown in Figure 1.2, the interest here is the design and control of the flexible link 

between the front and rear axles of an FMN. Besides, various terrains with limited 

turning spaces also exert certain motion constraints on the car, which could be regarded 

as a generalized contact similar to that encountered in a bio joint.  

1.2 Problem Description and Objectives 

With the emerging applications in mind, there is a need to develop a modeling 

method for designing and analyzing compliant mechanisms capable of 3-D large 

deformation. Although many methods are available in modeling flexible structures, 

challenges still exist in the following aspects: 

1) Formulations based on local nodal coordinates are not numerically efficient in 
capturing large deformation, especially for 3-D cases. 

2) Most existing modeling methods are based on small deformation analysis, such as 
finite element (FE) methods, which require incremental loadings to achieve large 
deformation and their performances are not optimal. 

 

 

(a) FMN Prototype. (b) CAD Model. 

Figure 1.2 Magnetic wheeled flexonic mobile node (FMN). 
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3) Nonlinearity in material properties and geometries in biological applications 
brings in new problems to traditional engineering applications. 

As a result, the objectives of this thesis include the following: 

1) Formulate a compliant beam model that is capable of capturing large deformation 
in 3D space. 

2) Develop an approach to quantify the nonlinear geometry confronted in biology 
related applications. 

3) Given the geometry nonlinearity, design and analyze compliant mechanisms for 
engineering application. 

1.3 Review of Prior Work 

Compliant mechanisms have a long history and can be found in our daily life in 

numerous applications (such as catapults, bows, binder clips, diving boards and clocks). 

A comprehensive review of compliant mechanisms is beyond the scope for this thesis.  

The reviews conducted for this thesis research focus on practical issues related to two 

practical applications that have motivated this research; namely, natural bio-product 

processing and design of bio-inspired mechanisms. In relation to these applications, 

several problems arise for designing compliant mechanisms.  For example, 2-D models of 

engineering mechanisms are not suitable for characterizing 3-D natural objects. 

Assumptions such as small deformation are no longer adequate for design analysis of 

compliant structures involving large deformation and nonlinear dynamic behaviors. 

Moreover, typical engineering designs based on fixed rotation centers or standard 

cylindrical/sphere geometries could not capture the natural properties of contact in bio 

joints. Typical biological joints can attain limited translational motions in addition to the 

three rotational freedoms due to the deformability of the connective tissues. Given the 
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complex assembly with clearances, a biological joint is often compliant and has more 

degrees of freedom (DOF) than an engineering joint [6, 7]. Existing ball-socket 

approximations are often inadequate to characterize biological joints and their associated 

bio-skeleton kinematics. Thus, the contact point between these extraordinary shapes, in 

general, is difficult to locate.   

Given the dimension of the above difficulties, the remaining review begins with 

related works on the two applications of processing natural objects and bio-inspired 

mechanisms for field robots. Next, formulations of a compliant beam and contact analysis 

are addressed. Finally, a review on the MSM for solving boundary value problem (BVP) 

of a compliant beam large deformation is provided. 

1.3.1 Beam theory and its applications 

Flexible beams are used as a fundamental component in many compliant 

mechanisms, and have been modeled using different formulations. The pseudo-rigid-

body approach [8] is among the most commonly used approximation, which extends the 

rigid body analysis by modeling the beam as a torsional spring connecting two rigid 

links. One of the difficulties in the pseudo-rigid-body approach is to find the beam 

equivalent stiffness and its location for modeling it as a torsional spring. Although errors 

of the tip deflection are within 0.5% of exact solutions, it is not accurate about the 

displacement along the path length.  

Distributed beam models for small deformations fall into two main categories: 

Euler-Bernoulli beam theory [9] and Timoshenko beam theory [10]. Euler-Bernoulli 

beam theory is also called the classical beam theory, which has been widely used to solve 
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engineering problems. It assumes material linear elasticity, small deformation, no shear 

distortions, and plane section normal to the undeformed beam referenced axis remains 

planar and normal to the deformed axis. Timoshenko beam theory takes shear 

deformation and rotational inertia effects into account, which is suitable for studying 

short beams or beams subject to high frequency excitation.  

For formulating the large deflection of a two-dimensional beam under various 

load conditions, Frisch-Fay [11] presented closed form solutions; as the solutions 

incorporate elliptic integrals, the calculation procedure is cumbersome.  Although Frisch-

Fay also presented some results for analyzing 3-D beams, closed form solutions are still 

not available. Numerical methods are generally required to solve for 3-D beam 

deformation. This thesis research formulates the equations of motion for a 3-D beam 

based on the model by Pai and Nayfeh [12] for solving using a MSM [13]. 

In analyzing flexible body dynamics, four groups of formulations have been 

developed to capture the large displacements and rotations of structural components:  

1) The floating frame of reference method [14] defines each body deformation with 
respect to their local body-fixed coordinate systems using modal representation or 
the FE method. 

2) The incremental FE method uses infinitesimal rotations as nodal coordinate, 
which may not be correct to solve large rotation problems [15].  

3) The large rotation vector method employs large rotation coordinates in the inertial 
frame, which leads to a simple expression for the kinetic energy but results in 
redundant representation of derivatives of displacement coordinates besides the 
rotation coordinate [16, 17]. 

4) More recently, the absolute nodal coordinate formulation which does not require 
interpolation of finite rotations has been widely used for FE analysis, [18].   
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1.3.2 Contact analysis  

For compliant mechanisms involving contacts, several questions must be 

answered: 1) Whether there is contact? 2) Where is the contact? 3) What is happening 

during contact? Numerical methods for determining contact between rigid bodies fall into 

two formulations. The first is the penalty formulation utilizing the no-interpenetration 

condition, which avoids the solution existence questions and avoids impulses. The second 

is the time-stepping formulation that employs complementarity (or optimization) 

conditions to determine contact or not. Some reviews and recent developments on both 

formulations can be found from the works of Stewart [19, 20], Song [21], and Adly and 

Goeleven [22].  

For contact problems involving flexible bodies, the two main formulations are the 

methods of variational inequality (VI) [23] and the variational equality (VE) [24], which 

have been investigated for frictionless and frictional contact problems respectively. When 

considering biological joints, contact kinematic problems arise because of the non-

uniform shapes of joints.  Kelkar et al. [25] quantitatively studied the translational motion 

of humeral head during the rotation of shoulder joints. Similar results of tibia 

translational motion in human knee joints are observed in experiments by Iwaki et al. 

[26]. Yang and Meng [27] used a 3D friction contact model for planar contact and 

developed analytical criteria to determine the transitions among stick, slip and separation 

of contact. Montana [28] studied the velocity of a rolling sphere between two grasping 

fingers of arbitrary shapes.  

At Georgia Tech, Lee [29] introduced an analytical model of a compliant grasping 

mechanism for automated transferring of live objects [30], where multiple rubber fingers 
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are employed to emulate a pair of human hands. For such a grasping problem, the contact 

location (between the flexible finger and object) and its corresponding force are not 

known a priori. To accommodate size and shape variations encountered in grasping live 

objects, several methods [31, 32] have been proposed to improve the prediction of the 

contact location and force due to a 2D flexible beam. More recently, Li and Lee [33] 

developed an adaptive meshless method (MLM) for analyzing stresses due to large 

deformable contacts on the products being handled. The adaptive MLM, which is similar 

to FE methods but requires no meshes, increases the nodal density in regions of high 

mechanical stresses. This thesis research extends the studies to analyze contacts within a 

bio joint, where both rolling and sliding occurs during contact between two non-

engineering geometries.  

1.3.3 Numerical Methods  

The shooting method (SM) was first proposed by Keller [34] to solve the 

boundary value problem (BVP) of ordinary differential equations. It transforms the BVP 

into an initial value problem (IVP) by guessing the unknown initial values first, and then 

utilizes Newton’s methods to iteratively re-evaluate the initial guesses to “shoot” at the 

terminal values. Like most iterative methods for nonlinear problems, the convergence of 

SM is also sensitive to the initial guesses. To reduce the solution sensitivity to the initial 

guesses and thus improve the convergence property, Keller[34], Stoer and Bulirsch [35] 

developed the multiple SM by dividing the integration region into smaller sections and 

performing SM within each section. The continuity of the pieced solutions is guaranteed 
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by adding new constraints on the boundaries of each section, so it greatly increases the 

scale of the problem size.  

Some improved SMs are proposed in recent years. Holsapple et al. [36] used 

modified SM to “shoot” at intermediate values until the solution matches its terminal 

value. A generalized SM (GSM) developed by Lan and Lee [32] includes unknown 

parameters into the formulation in order to solve compliant mechanisms of flexible links 

in series. Liu [37] used Lie-Group SM to solve BVP with multiple solutions. Most of the 

SM applications have been devoted to the design analysis of flexible beams and frames 

[13, 31, 38-40], in which SM is used to study the deflection of the compliant beam rather 

than the dynamics in time domain. Although Lan et al. [40] formulated the PDE for 

dynamic analysis, GSM is still limited to solve deformed shape along the path length. SM 

has been designed to solve ODEs, and little efforts have been made to extend it to solving 

PDEs until recent years. Chang [41] solved a heat conduction problem with SM; and Liu 

[42] identified the damping and stiffness by transforming an ODE to PDE.    

1.3.4 Processing of meat products 

Processing of natural products (such as poultry and meat) requires presentation of 

the target area for subsequent handling (such as cutting). Bone structures deform as a 

result of manipulation through bio joints. A good application example is the deboning of 

chicken breast meat [4], where the shoulder joint must be accurately located for severing 

the ligaments and tendons. Although marketed deboning machines are available, these 

“hard automation” systems, in general, are not as dexterous as human labors in handling 

with highly deformable natural objects. Given the high size/shape variations in natural 
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products, Sandlin [43] explored a method to correlate the bone locations relative to the 

external surface features using a combination of X-ray and machine vision images.  He 

[44] investigated the feasibility to emulate human deboning chicken breast meat using a 

spherical wrist motor [45] by experimentally measuring their arm motion and wrist 

torque profiles. More recently, Claffee [46] experimentally studied the effect of pulling 

the wing of a chicken carcass (on a commercial fixture) on the shoulder height suggesting 

that bio-structural deformation cannot be neglected for precision deboning of chicken 

breast meat.  

Precision deboning requires a good understanding of compliant joints and their 

effects on fixture designs and manipulation of the biological structure. Unlike an 

engineering joint where assembled parts are usually concentric cylinders or spheres, 

biological joints are often a complex assembly of two or more different shaped 

components as shown in Table 1.1 [47]. Bio joint geometries have also been 

mathematically described for bio-medical and surgery; see for examples, [26, 48, 49]. 

With the development of non-contacting scanning technologies (such as MRI and laser 

beams), relatively accurate 2D and 3D bone geometries can be obtained. However, most 

real biological joints are approximated by simple geometries (circles and spheres) [26, 

49] in order to reduce their highly nonlinear kinematics to a more tractable form. The 

oversimplified ball-socket approximation generally neglects the joint clearance, and 

cannot account for deformable effects needed for applications such as breast-meat 

deboning where percent yields (hence highly precise cutting) are of particular concerned. 

To provide an essential basis for optimizing the design of a manipulating 

trajectory for effective cutting, this research develops a more realistic and yet general 
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adherence and ultrasonic motors for mobility to crawl on a 2D surface. Other attaching 

methods include aerodynamic attraction [54] and biomimetic approach [55]. However, 

robots designed based on rigid components often have limited range of motion thus are 

not adaptable to complicated working environment.  

Flexible structures can also be found in compliant robots; see for examples [56-

59] where focuses have been on modeling and control. At Georgia Tech [5], the design of 

a flexure-based mechatronic (flexonic) car for SHM has led to the development of an 

FMN. The FMN consists of a compliant beam between the front and rear axles carrying 

magnetic-wheels. The FMN that has more DOF but no relative moving parts is more 

adaptive to complicated working conditions. As analyzed in [60], the FMN has the 

potentials to negotiate various obstacles and attach/detach a sensor on the iron surface on 

which it moves. These attractive features found in the FMN designed at Georgia Tech 

provide the motivation for further studies in this thesis research, which will be illustrated 

as an example of a multi-body compliant mechanism. 

 

1.4  Thesis Outline 

The remainder of this thesis is organized as follows: Chapter II starts with the 

formulation of the boundary value problem (BVP) for the large deformation of a 3-D 

compliant beam, including the derivation of constitutive equations, curvature description 

and boundary conditions.  

Chapter III employs numerical examples to illustrate the procedure in solving the 

BVP for flexible beam large deformation, which has been formulated in Chapter II. Each 
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of the examples may focus on one topic, but some of the conclusions are helpful for 

subsequent discussion. 

Chapter IV presents a dimension-based method to characterize bone and soft 

tissue deformation by accounting for the large size variation of natural products. Both 

simulation and experimental data are provided to validate the musculo-skeletal model for 

the compliant chicken carcass under wing manipulation for intelligent cutting. 

In Chapter V, a magnetic flexonic mobile node (FMN) incorporating a compliant 

mechanism has been designed to negotiate corners and carry a sensor for placing on a 

ferromagnetic structure. Two functions of sensor attachment and corner negotiation are 

presented for different constraints for the same mechanical design of FMN. Simulation, 

analysis and experiment are provided for detailed discussion. 

Finally, the conclusions of the thesis and recommendations for future work are 

presented in Chapter VI. Several issues on extending the current work are addressed to 

increase potential applications of the modeling and analysis method presented in this 

thesis. 
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2  

CHAPTER II 

 

CURVATURE-BASED BEAM MODEL 

This chapter formulates the large deformation of a 3-D compliant beam as a 

boundary value problem (BVP) along with the derivation of related beam constitutive 

equations. The formulation of the boundary conditions, which are application specific, 

will be covered in the next chapter.  

Unlike methods (such as FE methods) that formulate problems based on 

displacements and/or rotational angles, the formulation in this thesis has been derived 

using curvature as a fundamental concept in presenting nonlinear geometries. Although 

curvature has three components (as in the case of displacement and rotational angle) in 

3D space, it is independent of coordinate frames while displacement and rotational angle 

would change with coordinate systems.  It is worth noting that in the case of finite 

rotation, superposition holds for curvatures but not for rotational angles. This is the 

reason why FEA methods employ incremental approach to solve problems of large 

deformations. Hence, formulation based on curvature is much simpler; and the resulting 

computational process is much more efficient  the above advantages motivate the use of 

Curvature-based Beam Model (CBM) to analyze and design compliant mechanisms. 
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The organization of this chapter is illustrated in Figure 2.1, which begins with the 

coordinate systems for describing the beam variables (the nodal coordinates x, the nodal 

rotation R and φ, and the external force F and moment M). In Figure 2.1, the superscript 

(0) and (e) denote the beam initial configuration and elastic deformation respectively. It 
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Figure 2.1 Flow chart of the beam formulation. 
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will be shown that the initial curvature K(0) can be determined from the initial beam 

shape 
T(0) (0) (0) (0)

1 2 3x x x   x  ; and that the deformed shape x = [x1 x2 x3]
T can be 

obtained from K. These forward and inverse processes will be detailed in Sections 2.2 

and 2.3. Then the elastic curvature K(e) will be determined from the beam constitutive 

relations in Section 2.4. Illustrative numerical examples on curved beam geometry 

reconstruction and large deformation analysis of 3D curved beams will be used to 

validate the presented CBM. It is noted that only cantilever constraint will be used in this 

chapter before any generalized type of boundary condition is discussed in later chapters. 

2.1 Coordinates  

Figure 2.2 schematically illustrates a multi-body compliant mechanism consisting 

of Nr rigid bodies and Nc mass-less compliant beams, where i = 1, 2, …, Nr and j = 1, 2, 

…, Nc.  The rigid bodies, each of which has multi-DOF with respect to the global 

(reference) coordinate system XYZ, are constrained by (rotational and/or sliding) joints 

or contact (between two rigid bodies i and i+1) while the compliant beams (capable of 

deforming in the 3D space) may be fixed or pinned on the rigid bodies. External forces 

and moments (denoted as fi and i and Fj and Mj in Figure 2.2 respectively) may be 

applied to the ith rigid body and/or the jth compliant beam. The problem can be formulated 

in two opposing ways, which are referred to here as forward and inverse problems. The 

former solves for deformation of the system given the external loadings while the latter 

determines the required forces/moments for a specified deformation configuration. 
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Specifically, this thesis research investigates the effects of joint constraints on the 

deformation of a compliant mechanism. 

In Figure 2.3, OXYZ is a global reference frame; the local coordinate frames, 

“xyz” and “ξηζ” (each with a subscript indicating its location along the beam path-

length), are defined in the un-deformed and deformed configurations respectively. For 

examples, x0y0z0 and x1y1z1 are the local coordinate frames at P0 and P1 in the undeformed 

configuration, respectively.  Similarly, Ps(xs, ys, zs) and Qs (ξs, ηs, ζs), represent the same 

material point to describe the beam shapes before and after deformation respectively, 

where the subscript s denotes the path-length. All the coordinates follow the right-hand 

rule with xs and ξs assigned along the neutral axis of the beam, and ys, zs, ηs and ζs are the 

principal axes on the corresponding cross-sections. To simplify the formulation, it is 

assumed that P0x0y0z0 differs from OXYZ only in translation (meaning that their base 

axes are well aligned without relative rotation); otherwise, there is a rigid body rotation to 

transform the results into the coordinate system OXYZ. 

 

 

Figure 2.2 Multi-body compliant mechanism. 
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Figure 2.3 Coordinates for a 3-D compliant beam. 

To facilitate the discussion, the unit vectors along the coordinate axes are denoted 

as follows: 

E1, E2 and E3 are unit vectors along X, Y and Z axes, respectively. 

 are unit vectors along principal axes of xs, ys and zs, respectively. 

 are unit vectors along principal axes of ξs, ηs and ζs, respectively. 

The initial and deformed curves of the beam axis,    (0)  and i ie e (i = 1, 2, 3), can be 

obtained by the following relations:  

(0) (0)
i ij jRe E  (2.1a)

i ij jRe E
 (2.1b)

In (2.1), (0)  and ij ijR R  (i and j = 1, 2, 3) or the components of rotational matrixes [R](0) and 

[R] respectively are functions of the path length s. It is noted that bases    (0)  and i ie e

only describe the beam axial curve. To account for the 3-D geometry of a beam, one 

more variable φ or φ(0) is needed to quantify the twisting of its cross-section relative to 

the beam axis. 

(0) (0) (0)
1 2 3,   and e e e

1 2 3,   and e e e
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Since the initial or deformed beam geometry is readily determined by [R](0) and 

φ(0) (or [R] and φ), the task is to find the rotational matrix and twisting angle. Because 

only three components among the rotational matrix elements and twisting angle are 

independent, it is better to reduce the order of the problem by using three independent 

components; namely, the curvature. So the formulation is based on vector superposition 

of curvatures as given in (2.2) implying that the deformed curvature K = [k1 k2 k3]
T is the 

summation of the initial curvature 
T(0) (0) (0) (0)

1 2 3k k k   K and the elastic curvature 

T( ) ( ) ( ) ( )
1 2 3

e e e ek k k   K due to an external loading (of force F and moment M): 

(0) ( )e K K K
 

(2.2)

 In summary, thirteen variables are involved in formulating the beam deformation 

problem; namely, the nodal coordinates x = [x1 x2 x3]
T, the orientations including first row 

of [R]1 = [R11 R12 R13] and twisting angle φ, the force F = [F1 F2 F3]
T and moment M = 

[M1 M2 M3]
T.  The 13 state variables are organized as X = [x1 x2 x3; R11 R12 R13 φ; F1 F2 

F3 M1 M2 M3]
T with one constraint relation 2 2 2

11 12 13 1R R R   . 

2.2 Curvature of a 3D Beam 

As shown in Figure 2.4, the longitudinal axis of a curved beam in the 3-D space is 

described in a parametric form: 

(0) (0) ( )i ix tx E  (2.3) 

where t is not necessary to be the path length but any parameter ranging from t0 to tf.  

In Figure 2.4, [eT, eN, eB] is the Frenet-Serret frame where eT, eN and eB are the 

tangent, normal and binormal unit vectors given in [61] as 
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(0) (0) (0)

2(0) (0)

( )  




x x x

x x

  

   
(2.8b) 

It is noted that (0)
1e  and eT are the same unit tangent vector, while (0)

2e  and eN, (0)
3e  

and eB are not necessarily the same. Because based on definition, (0)
2e  and (0)

3e  are defined 

by the shape of the beam cross section while eN and eB are defined by the axial curve 

shape as indicated in (2.4). These two frames are related by a pure rotation 

(0)
1

(0) (0) (0) (0) (0)
2
(0) (0) (0)
3

1 0 0

        where 0 cos sin

0 sin cos

T

N

B

   
 

    
                

         

e e

e R e R

e e

 (2.9) 

Assume φ(0) is constant and (0)
ie  coincide with Ei (i = 1, 2 and 3) at the base (s = 0), then 

(0) (0)
2 0 3 0cos ,         sinN s N s     E e E e  (2.10) 

Differentiating (2.9) and combining with (2.5), one can arrive at 

(0) (0)
1 1

T T(0) (0) (0) (0) (0)
2 2
(0) (0)
3 3

0 0

0

0 0

T

N

B

d d

ds ds  


 



      
                        
            

e e e

e R e R R e

e e e

  

Derived in Appendix A, 

(0) (0)
1 1
(0) (0) (0)
2 2
(0) (0)
3 3

( )
d

skew
ds

   
      
   
   

e e

e K e

e e
 

where                            

(0) (0)
3 2

(0) (0) (0)
3 1

(0) (0)
2 1

0

( ) 0

0

k k

skew k k

k k

 
   
  

K  

Comparing the above relations, the components of the initial curvature K(0) are given as: 

(0) (0) (0) (0) (0)
1 2 3,         sin ,         cosk k k        (2.11) 
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Here, φ(0)  is a constant while κ and τ are functions of s, which can be interpolated using 

polynomials.  

2.3 Kinematics of a 3D Beam 

Previous section presented the forward procedure to obtain initial curvature K(0) 

from the initial curved beam shape, and this section will focus on the inverse process to 

obtain the nodal coordinate along beam axis from the calculated deformed curvature K.  

The deformed curve beam axis is given by 

i ixx E  (2.12) 

where xi (i = 1, 2 and 3) are the nodal coordinates. It is noted that differentiation of (2.12) 

will give the tangential direction 

1 1(1 ) (1 )i i i
i i i

dx dxd
R

ds ds ds
      

Ex
E e E   

hence 1(1 )i
i

dx
R

ds
 

 
(2.13) 

where ε is the longitudinal strain to be discussed in Section 2.4. Recall that only the first 

row of R is involved in the nodal coordinates along the beam axis; and angle φ 

determines the relative twisting of the beam cross section with respect to the axis. In 

other words, they completely determine the deformed beam shape, so it is the next task to 

find [R11 R12 R13] and φ from K.  

As derived in Appendix A, the moving frame along the beam axis satisfies 

( )i ij j

d
skew

ds
e K e  (2.14) 
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where ( ) Tik
ij kj

dR
skew R

ds
K

 
(2.15) 

As discussed in Section 2.1, the deformed beam shape can be obtained once the rotational 

matrix [R] is determined. Referring to [13], R can be completely determined by its first 

row of [R]1 = [R11 R12 R13] and twisting angle φ, 

11 12 13

21 22 23

31 32 33

11 12 13
2

12 12 11 12 13 11
2

13 12 13 11 13 11

1 0 0

    = 0 cos sin 1 / (1 ) / (1 )

0 sin cos / (1 ) 1 / (1 )

R R R

R R R

R R R

R R R

R R R R R R

R R R R R R

 
 

 
   
  
   
          
           

R

 (2.16)

then the task becomes to determine φ and [R11 R12 R13] from K.  

From (2.14), k1 can be expressed as following: 

2
1 3

d
k

ds
 

e
e   

Substituting (2.1b), (2.14), (2.15) and (2.16), and also considering 2 2 2
11 12 13 1R R R   , the 

above equation can be rewritten as  

12 13 13 12
2 3

1 1
1

1 1

cos sin cos sin

1 1

d
k

ds

R R R R
k k

R R

     


 
   (2.17)

From (A.4) in Appendix A, the first row of R is readily expressed as 

1
1( )j

k kj

dR
skew R

ds
 K  (2.18)

Grouping (2.13), (2.17) and (2.18), the kinematics of a 3D beam is governed by 

 
11 3 21 2 31R k R k R    (2.19a)

 
12 3 22 2 32R k R k R    (2.19b)
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13 3 23 2 33R k R k R    (2.19c)

 13 32 12 33 12 23 13 22
2 3

11 11
1 1 1

R R R R R R R R
k k

R
k

R
  

 


   
(2.19d)

 
1 11(1 )x R    

(2.19e)

 
2 12(1 )x R    

(2.19f)

 
3 13(1 )x R    

(2.19g)

where ′ denotes derivative with respect to path length s.  

Now that the formulation is partially complete, it is best illustrated with numerical 

examples loading free conditions to verify the kinematic analysis. So, the curvature 

should not change and the longitudinal strain is zero, or 

(0 )K K  and 0   

The following procedure will be adopted. 

1) Given a parametric relation (2.3) of a beam axial curve, determine the 

curvature (2.11) as a function of the path length. 

2) Reconstruct the original beam shape x(0) by numerically solving the IVP of 

(2.19) with initial conditions at s = 0: 

11 12 13 1 2 31,  0;  0;   0R R R x x x        

3) Compare the calculated curve shape x with the original shape x(0). 

Three examples are chosen to illustrate the curvature description of a beam 

geometry. The first example is a planar curved beam with non-constant curvature κ and 

zero torsion τ. The next example illustrates the case of constant κ and τ using a helix 

curved beam, where the principal axes are not aligned with the global reference frame at 
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the base.  The final example shows the case of non-constant κ and τ with a general 3-D 

curved beam. 

Example 2.3.1 Planar Curved Beam: 

Consider a curved beam on the XY plane with the axial curve described as 

(0) (0) (0)
1 2 310sin ,   5 5cos ,   0x t x t x      

For  0 2t  , the overall curve length given by (2.7) is L = 48.44.  

As shown in Figure 2.5(a), for a planar curve, there is only one non-zero 

component of curvature, κ. Given the highly nonlinear relation between κ and path length 

s, a polynomial is used for approximation. Percentage errors for the approximated 

curvature and the reconstructed beam shape x are calculated as 

.max
100%

approx
e

 




    

(0)

100%s L
beame

L



 

x x

 
 

Because the calculation error accumulates through the integration, it is expected that the 

reconstructed beam shape has maximum error at the end s = L. In this example, eκ = 

8.38% and ebeam = 0.025%. Even though there is obvious deviation between the 

polynomial approximation and the actual value of κ, the elliptic shape can still be 

reconstructed as shown in Figure 2.5(b). 

Example 2.3.2 A Helix Curved Beam: 

For a helix curve with radius of r and pitch of 2πp, its parametric expression can 

be written as 

sin ,   cos ,   x r t y r r t z pt      
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(a) Curvatures. 

 

(b) Comparison of the original and calculated curves. 

Figure 2.5 Verification with a planar curve (non-constant curvature). 

In order to orient the global reference frame to the Frenet-Serret frame at the helix base, it 

requires a rigid body rotation 
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Employing (2.8), it can be obtained that 

2 2 2 2
    and   

r p

r p r p
  

 
  

When r = 7.239mm and p = 5.715mm, the curvatures are calculated as κ = 0.0851mm-1 

and τ = 0.0672 mm-1. Figure 2.6 shows the simulated result of the helix curve with 10 

pitches (  0 20t  ) and the percentage error ebeam = 2.83%. 

 

Figure 2.6 Verification with a helix curve (constant curvature). 

Example 2.3.3 A 3-D Curved Beam: 

The last example is given by  

(0) (0) (0)
1 2 325sin ,   10 10cos 2 ,   20 20cos3x t x t x t       

For  0 / 2t  , the overall curve length given by (2.7) is L = 71.973.  

For illustration, the beam cross-section aspect ratio is set to be 5:2 and its snap 

shots are shown along the longitudinal axis. As shown in Figure 2.7(a), both κ and τ are 

nonlinear functions of s. Although the error eκ in the curvature approximation is as large 

as 23.22%, the error in the calculated beam shape is obtained as ebeam = 0.71%. In Figure 

2.7(b), the Frenet-Serret frame is also shown at the base and tip of the curved beam, with 

-10
0

10
20 -5 0 5 10 15

0

20

40

60
 

YX

 

Z

Calculated
Original



 

 

 

29

red denoting the tangent Te , green denoting the normal Ne  and blue denoting the 

binormal Be . From (2.4), Ne  and Be  can be obtained as following: 

 

(a) Curvatures. 

 

(b) Comparison of the original and calculated curves. 

Figure 2.7 Verification with a 3-D curve with non-constant curvatures. 
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 0 0.2169 0.9762
T

N e ,   0 0.9762 0.2169B  e   

So they do not necessarily coincide with the cross section principal axes (0) (0)
2 3 and e e .  

The components of the elastic curvature 
T( ) ( ) ( ) ( )

1 2 3
e e e ek k k   K due to external 

loadings can be calculated as 

( )

( ) ( ) ( )
k k ij j j ije i

i

M R M R
k

EI EI EI


  

E EM e
 (2.20) 

where ( )
1

ek  is the twisting curvature; and ( ) ( )
2 3and e ek k are the bending curvatures; (EI) = 

GI1 for i = 1, (EI) = EIi for i = 2 and 3; E is the Young’s modulus; G is the shear modulus; 

and Ii (i = 1, 2 and 3) is the moment of inertia. Then, the longitudinal strain ε is given by 

(2.21) with A denoting the cross section area 

1 11 i i j j i i
F R F R

EA EA EA



  

E EF e
 (2.21) 

Based on the static analysis of the beam segment, the equations for the force and 

moment equilibrium are given by  

( ) 0
s s

Fs
d


     F F F q

 

1 1

( )

[ (1 ) ] ( ) [ ( )] 0

s s

Ms

s s

Fs

d

e s s d



 





    

        




M M M q

e F F e q
 

where ∆R = skew(K)∆s. In the above moment equilibrium equations, all the moment 

terms are written out with respect to point Qs in Figure 2.8.  
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For an infinitesimally small s and neglecting the higher order terms, the above 

can be rewritten as 

F

d

ds
 

F
q   (2.22)

1[(1 ) ]M

d

ds
    

M
q e F

  
(2.23)

Grouping (2.19), (2.22) and (2.23), the governing equations of a 3-D beam are 

 
11 3 21 2 31R k R k R    (2.24a)

 
12 3 22 2 32R k R k R    (2.24b)

 
13 3 23 2 33R k R k R    (2. 24c)

 13 32 12 33 12 23 13 22
2 3

11 11
1 1 1

R R R R R R R R
k k

R
k

R
  

 


 
 (2. 24d)

 
1 11(1 )x R    (2. 24e)

 
2 12(1 )x R    (2. 24f)

 
3 13(1 )x R    (2. 24g)

 
1 1FF q   (2. 24h)

 
2 2FF q    (2. 24i)

 

Figure 2.8 Equilibrium of a beam segment. 
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3 3FF q    (2. 24j)

 
1 1 12 3 13 2(1 )( )MM q R F R F       (2. 24k)

 
2 2 13 1 11 3(1 )( )MM q R F R F       (2. 24l)

 
3 3 11 2 12 1(1 )( )MM q R F R F       (2. 24m)

where ε and K = [k1 k2 k3]
T are given by  

 
1 11 2 12 3 13

1
( )F R F R F R

EA
     (2.25a)

 (0)
1 1 1 11 2 12 3 13

1

1
( )k k M R M R M R

GI
     (2.25b)

 (0)
2 2 1 21 2 22 3 23

2

1
( )k k M R M R M R

EI
     (2.25c)

 (0)
3 3 1 31 2 32 3 33

3

1
( )k k M R M R M R

GI
     (2.25d)

The boundary value problem (BVP) of the compliant beam can be written 

compactly in the following form:  

( , ),     ( (0), ( ))s L  X f X g X X 0  (2.26)

where X is a vector of the 13 variables [x1 x2 x3 R11 R12 R13 φ F1 F2 F3 M1 M2 M3]
T; 0 ≤ s 

≤ L; and  g() is the boundary conditions specifying the geometrical and/or loading 

constraints at both ends. The BVP (2.26) can be solved using an MSM [34, 35] given in 

Appendix B, which recasts the BVP into an IVP. In the following, two illustrative 

examples of a compressive spring and a twisted ring are presented under boundary 

conditions of cantilever constraint. The first considers a forward problem in which a 

compressive axial force is applied on the spring to obtain its deformed shape.  The second 
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illustrates an inverse problem, where the input rotational angle is specified on an elliptical 

ring to solve for the output torque. 

 
Example 2.4.1 A Compressive Spring: 

In this example, the compressive spring is modeled as a helix curved beam with 

circular cross-section. Its initial curvature has been studied in Example 2.3.2 but the case 

is now considered under axial compression. Table 2.1 lists the spring specifications in 

terms of its dimensions and material properties. The boundary conditions show that one 

end of the spring is completely fixed while the other end is completely free and subjected 

to axial compression. As shown in Figure 2.9, instability can occur for spring under axial 

compression, and the CBM produces close result (ebeam = 3.96%) with FE method. 

 
 

Table 2.1 Spring specification and boundary conditions. 

Dimension Material properties 

Radius (mm) 7.239 Elastic modulus (GPa) 193

Pitch (mm) 5.715 Shear modulus (GPa) 80.8

Cross section radius  (mm) 0.6985 Poisson ratio 0.25

Boundary conditions   

s = 0 x1 = 0, x2 = 0,  x3 = 0, R11 = 1, R12 = 0, R13 = 0, φ = 0; 

s = L F1 = 0, F2 = 0, F3 = F, M1 = 0, M2 = 0, M3 = 0. 
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Example 2.4.2 A Twsted Ring: 

The half-circle twisting-ring has been chosen for illustration because it has a 

number of applications in mechatronics. Table 2.2 shows a compliant half-ring 

mechanism with both ends pinned and twisted by an angle θ. Numerical values of the 

characteristic parameters for the four materials are compared in Table 2.2. For design 

purposes, the results are presented in non-dimensional forms; the following normalization 

rules are applied to the beam equations (2.24): 

2
2i i

EI
F F

r
  , 2

i i

EI
M M

r
  , 2

3Fi Fi

EI
q q

r
  ,  2

2Mi Mi

EI
q q

r
  , 

(0) (0) 1
i ik k

r
  , 

1
i i r

   , and i ix x r   

 

Figure 2.9 Lateral deflection under axial compression. 
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where r is radius of the ring. 

The deformed shape of the compliant ring (b/h =2) subject to a pure twisting of 

=/4 at both ends is shown in Figure 2.10. The effects of aspect ratios (b/h =2, 3, 6), and 

four different materials (steel, titanium, aluminum and delrin) on the (normalized) 

twisting moment M2 in direction along Y axis at the ends are compared in Figure 2.11. As 

shown in Figure 2.11, the effect of different materials is relatively insensitive on the 

normalized twisting moment M2 at the ends. However, different normalized M2 curves 

are needed for different aspect ratios (b/h). 

Table 2.2 Ring specification and boundary conditions. 

Parameters Steel Titanium Aluminum Delrin 

E (GPa) 193 116 70 3.1 

Poisson ratio 0.25 0.34 0.3 0.35 

Density(103kg/m3) 7.85 4.54 2.7 1.42 

 

/ 0,s r   

11 12 13=cos ,  =sin ,  =0R R R   

1 2 3=  = 0 x x x    

/ ,s r   

12 13sin ,  0R R   

1 0x  , 3 0x  , 0   
b/h =2; =/4 
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2.4 Summary 

A Curvature-based Beam Model (CBM) has been formulated for the large 

deformation problem of a 3-D compliant beam. Relation between the curvature and 

absolute nodal coordinate of a curved beam is derived. It has shown that curvature is a 

 

Figure 2.10 Normalized deformed shape of the twisted ring. 
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Figure 2.11 Effect of aspect ratios and materials. 
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key characteristic of curved beam geometry. This CBM has fully explored the advantages 

of curvature description by formulating all state variables of a curved 3-D beam in the 

global reference frame. The CBM is verified by the FEM through the large deformation 

analysis of 3-D curved beams under cantilever constraints. Generalized boundary 

constraints will be formulated in Chapter III, and two specific applications will be 

presented to illustrate how the CBM (with general constraints) is implemented for 

engineering purposes in Chapter IV and V. 
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3  

CHAPTER III 

 

GENERALIZED CONSTRAINT 

This chapter presents a generalized constraint by relaxing common assumptions in 

traditional boundary constraints such as fixed, pinned or sliding constraint on compliant 

mechanisms, where none or only one DOF is allowed. Motivated by the multi-axis 

rotation within a natural biological joint, this chapter defines a generalized constraint 

referred to here as bio-joint constraint (BJC) on compliant mechanism for emulating 

motions of multi-DOF. 

In a multi-body system, a compliant beam can be regarded to move with a rigid 

body as shown in Figure 2.2. The BJC can then be formulated as a contact constraint 

between two rigid bodies; without loss of generality, they are approximated locally as 

two ellipsoids in the following discussions. This constraint can be used for kinematic or 

dynamic analysis based on the curvature description presented in Chapter II.  

The remainder of this chapter begins with the kinematic formulation of the BJC 

and related algorithm in Section 3.1, and the method is validated with published 

experiment data on human knee joint. Then, the dynamic analysis is provided in Section 

3.2 to illustrate that how a multi-body system compliance is designed. Finally, Section 

3.3 shows how this BJC is incorporated as boundary conditions into the BVP of 

compliant mechanisms.  
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3.1 Formulation of Kinematics 

Consider two bodies, A and B, bound by boundaries A and B respectively.  

As shown in Figure 3.1, A rolls on B; and C is an instantaneous contact point 

satisfying (3.1a,b): 

A B( ) ( )c cP x P x  and A B( ) ( )c c P x P x  (3.1a,b)

where PA(x) and PB(x) describe the contact points on A and B in terms of a position 

vector x in the world frame; and A ( )P x and B ( )P x  are their derivatives with respect to x; 

and the subscript “c” denotes the contact point C.  It is worth noting that common 

engineering joints and mechanical cams are special cases of the biological joint illustrated 

in Figure 3.1. 

 
Given C on A, there always exists a tangential plane with a normal vector Ne  

such that the angular velocity  describes the motion of A at C: 

 

Figure 3.1 Bio-joint constraint. 
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N N T T  ω e e  (3.2)

where Te  is a unit vector on the tangential plane. We define an osculating plane 

(indicated in blue in Figure 3.1) perpendicular to T  at C.  The contact point on A and 

B moves incrementally from CA and CB to C along the respective osculating circles as 

shown in Figure 3.1, where (OA, A) and (OB, B) are the centers and radii of the 

osculating circles intersecting at A and B respectively; and  and  are the angles 

describing the corresponding displacements of the contact points on A and B 

respectively. The 3-D motion of a biological joint can be characterized in the 

instantaneous osculating plane that depends on the location of the contact point (and 

hence is a function of time). 

The contact point displacement of A is 

2 2 2( ) ( ) 1 ( )N T T N Tds ds ds ds dt ds      (3.3)

where T A Tds dt  and N T Nds ds dt  are in the Te  and Ne  directions, when neglecting 

the higher order infinitesimal time interval dt2.  Without loss of generality, the effect of 

N  (that may be nonzero) on the contact point displacement s is neglected; T   is 

assumed for simplicity of analyzing the biological kinematics in the following 

discussions. The 3D kinematics of a biological joint is reduced to finding the contact 

location in the osculating circular motion and the position and orientation of A. In 

addition, the boundaries (A and B) are assumed known with respect to their own local 

coordinate frames. In polar coordinates, a smooth 2D curve on the boundary is denoted as  

    1 2( ) ( ), ( ) ( ) ( )x y x y      P x P E E  (3.4)
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where ψ is an angle with respect to a reference body axis. The tangential and normal 

directions at x on the curve are 

1 2T

dx dy

d d 
  e P E E ; and 1 2N

dy dx

d d 
  e E E  (3.5a,b)

We can always find an osculating circle with a radius [61]: 

3

r



 
P

P P
 (3.6)

For a sliding contact, there is a relative velocity vr between A and B,  

 /A B rr r d dt v    where /T d dt  .  (3.7)

The lengths of CCA and CCB, in polar coordinates, are respectively given by (3.8a) and 

(3.8b), where “~” refers to the value of the dummy variable in the curve equation: 

 
0

A A0 0
( ), ( )

c c ct t

r Ts v dt r dt x y d



        P



  (3.8a)

 
0

B B0
( ), ( )

c ct
s r dt x y d




      P




  (3.8b)

It is worth noting that for the case of a non-slip rolling, vr =0; thus, from (3.8) the 

curve lengths, CCA and CCB, along their respective osculating circles are equal. Unlike a 

cylindrical or spherical (engineering) joint which is free to spin about its own axis, bio 

joints generally have very limited spinning freedom about its own axis as the contact pair 

of a bio joint is typically connected by ligaments and tendons.  In the following 

discussions, we focus on the orientation of two degrees-of-freedom inclination.  
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3.1.1 Algorithm 

The contact point and the position/orientation of A can be found using the steps 

summarized in Table 3.1: 

Table 3.1 Algorithm for bio-joint kinematics. 

1) Determine the initial contact position between A and B, i.e. 0 and 0 in their 

own local frame 

2) Calculate the increment of s from  rA(ψ)ω∆t (∆t is the time step, for the first step

0   ). 

3) Find the contact point C on A by solving 

0
A /

c

s d d d



   P



   (3.9)

4) To find C at t = n∆t on A, repeat step 2 and 3 by updating rA(ψ). 

5) Determine C on B by solving (3.8b) for c . 

6) Use (3.8) to determine the position/orientation of A. 

 

There are three examples, on-sliding and sliding contacts between two ellipses, 

provide intuitive insights into the contact kinematics of a typical biological joint. The 

dimensions used in these examples are summarized in Table 3.2, where ai and bi are the 

major and minor radii of the ellipses.  Although we employ ellipses for illustration, this 

model can be used to analyze contact kinematics of non-uniform shapes because the 
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formulation, (3.1) to (3.8), requires only local geometric properties rather than the whole 

geometry.  

 

Example 3.1.1 Contact between Ellipses 

Figure 3.2 shows three snapshots of the ellipse A rolling on the (fixed) circle B, 

where the solid black ellipse and circle are the contact pair at the initial position ( 0 =0).  

The two consecutive snapshots are graphed in red and blue colors respectively. In Fig. 3, 

the green circles mark the initial contact point on A; the blue asterisks indicate the 

current point C; and the dashed circles are the osculating circles at the two respective 

instants.  As shown in Figure 3.2, the normal vector Ne  (and thus T  and its direction) of 

the ellipse A changes with the contact point. 

The computation procedure given in Table 3.1 can be illustrated as follows: 

1) As derived in (3.6), the osculating circle is a function of geometry. The effect of 

A shape on the radius A is graphed as a function of ψ (or the local angle 

measured from the major axis characterizing the point on  A) in Figure 3.2. 

Unlike a circle (b/a=1), different points on the ellipse A have different sizes of 

osculating circles.  

 

Table 3.2 Simulation parameter values. 

/12   

rad/s 

A B 

b1/a1 a1 (cm) b2/a2 a2 (cm) 

Dimensions 0.5 2 1 1 
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Figure 3.2 Snapshots illusrating the formulation. 

2) At t = ∆t (=1 second), A (red) rotates by ωΔt with rA(0), and thus the distance 

increment ∆s= rA(0)ω∆t. Then, the contact point on A can be found by 

calculating ψ(=∆ψ) from (3.9): 

A
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d
s d
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
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  
P
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3) Similarly, at t = 2∆t (=2 seconds), A (blue) rotates an additional ωΔt from 

previous contact point with A(Δψ), and thus the next ∆s= A(Δψ)ω∆t and ψ can 

be obtained again from (3.9) with the lower bound of the integration being Δψ.  

4) The computed distance s is given in Figure 3.4 for different b/a ratios of A.  In 

Figure 3.4, ψ = 0 corresponds to the orientation when the major axis of A is 

horizontal as shown in Figure 3.2. For circle, s increases linearly because rA is a 

constant, while for the elliptic, s increases nonlinearly with rA.  
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Because of no slippage, the contact point moves at the same distance on A and 

B. From (3.8b), c  can be solved. Note that c  and c are in different local coordinate 

frames, which must be represented in the same world frame using (3.1) to obtain the 

position and orientation of A. 

 

Figure 3.3 Effect of shapes on the osculating circle. 

 

Figure 3.4 Ellipse – cylinder contact. 
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Example 3.1.2 Effect of Sliding on Contact Kinematics 

The effect of sliding can be explained using (3.8a).  Note that when vr = ωrA, s =0; 

the contact becomes pure sliding. As shown in Figure 3.3, min(rA) occurs at ψ = 90.   

For simplicity, we choose for this illustrative example vr = ωmin(rA) = 0.1309mm/s so 

that the contact becomes pure sliding at the contact points that have the minimal rotation 

radius. The results simulating the effect of sliding on the same contact pair in Figure 3.2 

(thick solid black ellipse and circle) are given in Figure 3.5 and Figure 3.6.  

Figure 3.5 compares the two consecutive snapshots with sliding contact (thin-line 

ellipses) against those obtained without slippage (dash-line ellipses). In Figure 3.5, 

ellipses of the same color appear at the same instance: black (t = 0), red (t = Δt = 1 s) and 

blue (t = 2Δt = 2 s). As compared in Figure 3.5, rolling without slippage moves more than 

sliding contact as expected. 

 

Figure 3.5 Effect of sliding on contact kinematics. 
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Figure 3.6 compares the angular displacement  and the orientation  of the 

elliptical A rolling on the circular B with and without slippage.  The non-slip rolling 

has a larger   and . In Figure 3.6, the angle ψ is only a geometrical function of ΩA, and 

is independent of the contact conditions. The φ and ψ curves intersect at φ = ψ = 90 for 

rolling with vr = ωmin(rA). In other words, this instantaneous contact point does not move 

(and stay at the same position on ΩB no matter how fast ΩA rotates). This result can be 

explained with the aid of (3.8a) and Figure 3.3 showing s = 0 when vr = ωrA and min(rA) 

at ψ = 90 respectively. 

Example 3.1.3 Contact between Convex / Concave Ellipses 

As an illustration, the orientation (or the rotation angle of the minor axis) of A 

and the distance between the two centroids for the four cases are computed and the 

results are compared in Figure 3.7 and Figure 3.8.  The values used in the simulation are 

  

Figure 3.6 Effect of sliding on orientation. 
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summarized in Table 3.3, where ai and bi are the major and minor radii of the ellipses. 

Some observations highlighting the differences between the commonly seen engineering 

joints, Cases 2(a) and 2(b), and the more general bio joints, Cases 1(a) and 1(b), can be 

summarized as follows: 

1) The orientation of A changes nonlinearly for the cases of elliptical contact and 

linearly for those of circular contact. In addition, the inclination range of a bio 

joint depends on the aspect ratio bi/ai.  

2) Unlike a concentric (cylindrical or ball-socket) joint that has negligible clearance 

between the contacting elements, an elliptical convex-concave contact of a bio 

joint could have a limited range of orientation movement. 

3) As compared in Figure 3.8(a), the orientation of an elliptical convex-convex joint 

may be approximated by a circular convex-convex joint within a limited range.  

The validity of the orientation approximation depends on the specific aspect ratios 

bi/ai of the contact pair; see for example, Fig. 10 where the circular convex-

convex approximation does not work. 

4) Unlike the circular convex-convex joint where the center of ΩA remains a 

constant distance from that of ΩB as shown in Case 2(a) and 2(b) in Figure 3.7 

and Figure 3.8(b), the center of A changes nonlinearly for the cases of an 

elliptical joint.   
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Table 3.3 Dimension of ΩA and ΩB. 

Case 
A (convex) B 

b1/a1 a1 (cm) b2/a2 a2 (cm) 

1(a) and 1(b) 0.5 2 0.4 2.5 

2(a) and 2(b) 1 1 1 1 

Case (a): B is convex; and Cases (b): B is concave. ( / 6   rad/s). 

 

  

Case 1(a): B  is convex. Case 2(a) : B  is convex. 

  

Case 1(b): B  is concave Case 2(b): concentric cylinders 

Figure 3.7 Snapshots illustrating the effect of shape. 
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(a) Orientation. (b) Distance. 

Figure 3.8 Effect of ΩB on ΩA position / orientation. 

3.1.2 Human Knee Kinematics 

With MRI data, a model can be built to provide a good understanding of the 

kinematics and kinetics of a bio-joint (consisting of non-uniform shaped contact parts), 

and estimate its contact locations, rolling/sliding velocities and forces/torques involved.  
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Figure 3.9 MRI of a cadaver knee. 
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Figure 3.9 shows a lateral sagittal MRI of an unloaded cadaver knee [26], where 

the two white circles are approximated geometries for the femoral articular surfaces. Data 

are presented as positions of the extension facet center (EFC) and flexion facet center 

(FFC) in Figure 3.9, where the contact is modeled as a point between a circle and a plane. 

To provide a continuous differentiable function, a more general bio-joint representation 

based on elliptical geometries is proposed in Figure 3.1 to characterize the observed data 

for analyzing the contact kinematics and kinetics, where A and B are two bodies with 

surfaces A and B respectively; and the angular velocity  describes the motion of A 

rolling on B at the instantaneous contact point C. 

In [26], two circles, each of which rolls on a different flat facet, were used for the 

sagittal section of the medial tibiofemoral compartment but for the lateral tibiofemoral 

compartment, two circles roll on the same flat facet. In this paper, the simulations focus 

on the lateral part as it has a larger displacement than the medial part.  The following 

three models are compared:  

Model 1: Two sequential circles roll a flat plane [26].  

Model 2: One ellipse rolls on a flat plane.  

Model 3: One ellipse rolls on another ellipse.  

The dimensions of the approximated circles and ellipses (Figure 3.1) are listed in 

Table 3.4. With the contact location defined as a horizontal distance of C measured from 

the IPTC in Figure 3.9, results are given as a function of the flexion angle  in Figure 

3.10 for comparing three models against published data. Figure 3.11 simulates (on the 

basis of Model 3) the snap-shot trajectory of the lower leg as it rotates from its initially 
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full extension, and its corresponding (rolling/sliding) displacements, velocities as well as 

the sroll/sslide ratio.  

Table 3.4 Geometry approximation. 

Circles [26] Ellipse (green dash) 

r1 = 21mm r2= 32mm rmaj=25.3mm rmin=21.1mm 

Ellipse (blue) Ellipse (red) 

rmaj=33.6mm rmin=23mm rmaj=28.8mm rmin=18.8mm 

Initial contact position = 31mm 

Angular velocity ω = 1.57 rad/s 

 

Observations in Figure 3.10 and Figure 3.11 are discussed as follows: 

1) For Model 1, the sroll/sslide ratio is given as 1.7. As the sliding velocity of each 

rolling circle is assumed constant, the contact point is a linear function of . The 

overall result, however, is not a smooth curve (Figure 3.10) due to the transition 

from circles 2r  to 1r .  

The difference between the 2-circle model and experimental results can be 

observed when  > 90. This is because the rotational axis of the circle is tilted by 

a small angle; when projected on the camera plane, the tilted circle is essentially 

as an ellipse. 

2) Based on the above observation, we model bio-joints using elliptical surfaces as 

they offer a more realistic characterization than a multi-circle model, and are 

mathematically differentiable.  
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Figure 3.10 compares Models 2 and 3 against published data. With only rolling, 

Model 2 (that simplifies the tibial condyle as a planar surface) results in some 

negative contact positions; this is intuitively incorrect as the knee joint does not 

lose contact. Given the close match between Model 3 (when considering both 

sliding and rolling in the joint kinematics) and the experiment data, Model 3 with 

sliding is used for the subsequent analysis. 

3) The displacements, sroll() and sslide(), normalized to the major radius of the 

femoral condyle, are given by (3.10a) and (3.10b) respectively, and their ratio is 

plotted in Figure 3.11(b): 

5 4 3 2( ) / 0.093 -0.409 +0.57 -0.448 +0.926roll majs r       (3.10a)

5 4 3 2( ) / 0.334 -1.518 +2.12 -0.996 +0.513slide majs r       (3.10b)

 

Figure 3.10 Comparison of current contact point C.  
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The sroll/sslide ratio is not a constant, but its average value of 1.69 closely agrees 

with the experimental observation [26] of 1.7. Figure 3.11(c) graphs vslide by 

differentiating (3.10); negative vslide means sliding forward instead of backward. 

 

(a) Snapshots of knee rotation. 

  

(b) Rolling and sliding displacements. (c)  Rolling and sliding velocities. 

Figure 3.11 Rolling and sliding velocities of the current contact point (Model 3). 

0 20 40 60 80 100 120
-120

-100

-80

-60

-40

-20

0

IPTC
Femur

Tibia

0 50 100
0

0.5

1

1.5

Flexion angle (degree)

D
is

pl
ac

em
en

t 
/ 

r m
aj

0 50 100

0
1
2
3

ra
ti

o 
of

 r
ol

li
ng

 t
o 

sl
id

in
g

ratio

sliding

rolling

0 20 40 60 80 100 120

0

0.5

1

Flexion angle (degree)

V
el

oc
it

y 
/ 

( 
*r

m
aj

) rolling

sliding



 

 

 

55

3.2 Formulation of Dynamics 

The calf dynamics (relative to the upper leg) are given by (3.11): 

g r em    a f f f f
 

(3.11a)

( 2 ) g a eJ mrr    k τ τ τ   where  r  k e e  (3.11b)

In (3.11a), m is the calf mass; fg is the gravity force; and fr and fθ are the resultant forces 

exerted by the surrounding bones and tissues (muscle and ligament) in re  and e  

directions respectively. Within a bio-joint, bones primarily support compressive forces; 

and soft tissues can only exert tensile forces. For example, fr represents the force from the 

tissues if tensile force dominates, or otherwise from the bones. With rehabilitation 

applications in mind, we include fe to account for the force exerted by an external device 

(such as an exoskeleton) and reaction from the ground. On the left hand side of (3.11b), 

the first term accounts for the moment-of-inertia J (about the initial contact point Ci) due 

to the leg rotation while the second term describes the interaction betweenand r due to 

 
 

(a) Tibia rotation. (b) Schematics illustration. 

Figure 3.12 Coordinates illustrating the knee joint rotation. 
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the variation in r. In (3.11b), all the torques are computed about Ci: τg and τe denote the 

torques due to the gravity and external device respectively; and τa is a net torque 

accounting for fr, fθ, and tissue contraction within the knee. 

The vector equations (3.11) can be recast into three scalar equations (3.12) from 

which fr, f and a can be solved: 

 2 sin ( )g r erm r r f f f       (3.12a)

(2 ) cos ( )g em r r f f f          (3.12b)

2 ( )g a eJ mrr           (3.12c)

Due to the kinematic constraint imposed by the contact, the human knee joint 

embodies two DOFs, rotation and translation for its planar motion. To investigate the 

effects of a planar exoskeleton on human knee joints, we compare two different models 

in predicting the forces and moments acting on the knee; namely,  

− pin joint engineering approximation, and  

− bio joint knee (Model 3). 

The exoskeleton consists of a revolute (pin) joint between two rigid links attached to the 

lower and upper legs with pin joints. This design has three-DOF from its three pin-joints 

and thus has one redundancy. For a nonzero flexion angle, there are two possible 

solutions. However, only one solution is physically feasible. 

For clarity and ease of illustration, the following assumptions are made; 1) the 

human subject sits with the upper leg held static and horizontal and the lower link rotates 

with the tibia from its initial state (full extension); and 2) the lower link is attached at O 

with the revolute joint centered at the initial contact point Ci (Figure 3.12).  Numerical 
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values used in this study are given in Table 3.5 [62] and from Figure 3.12(b) and Figure 

3.11 (a), 

4 3 2( ) 1.078 -11.184 +26.542 0.825 263.59r         (3.13)

(3.13) and its derivatives are graphed in Figure 3.13. Figure 3.14 shows the link 

kinematics (solid lines) as the tibia rotates, where dash lines simulate the knee as a pin 

joint (commonly assumed in exoskeleton designs) for comparison.  

Table 3.5 Physical parameters of human’s lower leg. 

 Human Exoskeleton 

 Length (m) Mass (kg) Length (m) 

Upper leg 0.40 7.02 0.40 

Lower leg/foot  0.37/0.27 2.44/1.18 0.37 

r0 (m) 0.2453  

 

 

Figure 3.13 Kinematics of the tibia mass-center. 
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Figure 3.14 Comparing snapshots of an exoskeleton between two knee joint models. 

To account for the exoskeleton mass in the kinetic study, the two links are 

assumed to have the same mass-to-length ratio  of 0.5. Unlike the condition with no 

exoskeleton where the human leg is an open-chain mechanism, the leg and exoskeleton 

form a closed kinematic chain that has a significant effect on the internal joint forces and 

torque of the knee. Figure 3.15(a, b, c) are calculated results from (3.12) showing the 

internal forces and torque in the knee as the tibia accelerates from the initial static state 

(=−5) to =20 for 0.5second, then maintains at an angular velocity for 1 second to 

=95, and finally decelerates to the final static state =115 in another 0.5second. 

Throughout the trajectory, the foot is off the ground and thus, there is no ground reaction. 

In Figure 3.15 where the thick and thin lines are results of the bio joint and pin joint 

models respectively, the internal forces and torque for a condition with no exoskeleton 

are plotted as a basis for comparison.  

Several observations can be made from Figure 3.13 to Figure 3.15: 

1) The sign of the force fr in Figure 3.15(a) can be explained as follows. During the 

initial flexion ( < 0), fr is positive since the force is primarily supported by the 
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femur, but becomes negative as the retraction force from the soft tissues gradually 

plays a more dominant role as the knee rotates downward.  

2) The distance r increases as much as 30mm (Figure 3.13). For the same work done, 

this increase in r tends to reduce fr in the knee. As the pin joint approximation 

assumes a constant r and neglects the joint geometry, the effect of the r() 

variation on the attaching point (Figure 3.14) and on the forces/torque (Figure 

3.15) cannot be accounted for. As compared to the bio joint model in Figure 

3.15(a), the pin joint approximation overestimates rf  in the range (0 <  < 90) 

and underestimates as  approaches its rotation limit. 

3) Near =0, the exoskeleton loses one DOF along the er direction causing a finite 

change in fr as well as f and a as shown in Figure 3.15. Human knee (that can 

roll and slide) is more tolerant than a pin-joint to a singularity along er as 

illustrated in Figure 3.15(a). However, these internal forces and torque increase 

with the mass-to-length ratio η of the exoskeleton. An increase in η from 0.5kg/m 

to 1kg/m implies that fr (at =0−, =0+) would increase from (39N, −24N) to 

(73N, −51N). The pin joint approximation, which neglects the r() variation, 

cannot capture the finite change in fr and also grossly underestimates the 

singularity effect on f and a.  

4) The trapezoidal-velocity  trajectory (commonly used in robotics) has an effect on 

the tangential force f and moment a. As seen in Figure 3.15 (b) and Figure 3.15 

(c), the two sudden changes at =20 and =95 (on the simulated f and a) are 

reactions from the soft tissues in order to meet the acceleration changes specified 

in the  trajectory. 
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(a) Pin-joint knee approximation overestimates fr in the range -5 <  < 90 and 
underestimated in  > 90 as compared to the bio-joint knee model. 

 

 

(b) Tangential force f. (c) Moment a. 

Figure 3.15 Force and torque comparison between two knee joint models 

(with/without exoskeleton). 
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3.3 Summary 

In this chapter, a general method for mathematical modeling a bio-joint has been 

introduced, which provides a better understanding on the interaction between natural 

joints and artificial mechanisms for design and control of rehabilitation exoskeletons. 

With the aid of published MRI data, the ellipsoid-based bio-joint model has been shown 

to offer a physically more accurate account of both rolling and sliding motion within bio-

joint than a geometrically simple pin-joint approximation or methods based on multiple 

circles and lines. The bio-joint model shows that the sliding-rolling displacement ratio is 

not a constant but has an average value consistent with published measurements and its 

mathematically differentiable property facilitates the analysis of rolling/sliding velocity. 

Finally, the effects of a planar exoskeleton on a human knee joint have been numerically 

illustrated by comparing results of two different knee models (pin-joint approximation 

and bio-joint model derived from published MRI data). A single-DOF pin-joint 

approximation (that oversimplifies the knee joint geometry) cannot account for the effect 

of the translational variation on the attaching point of the exoskeleton, and on the internal 

forces and torque in the knee. While a detailed exoskeleton design to accommodate joint 

flexibility of a knee is beyond the scope of this chapter, some intuitive insights presented 

here are potentially useful considerations for future design of rehabilitation exoskeletons. 
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4  

CHAPTER IV 

 

MODEL AND ANALYSIS OF A BIO STRUCTURE 

This chapter employs the CBM subject to a BJC to investigate the carcass 

musculoskeletal deformation under wing manipulation to facilitate the deboning of 

chicken breast meat. As briefly discussed in Section 1.1, the breast-meat removal 

operation consists of two major cuts as illustrated in Figure 1.1(b). The first cut, notably 

the most difficult to automate, is a cut through the shoulder joint severing the two main 

ligaments (A and C). Once the two ligaments have been cut, the second cut continues the 

incision from the back of the shoulder down through the third ligament B, and along the 

scapula bone. After the knife exits at the base of the scapula the breast-meat can be 

removed. This is accomplished by a robot which pulls and twists on both wings before 

removing the wings and breast meat from the carcass.  

Figure 4.1 shows the automated wing manipulation (AWM) system developed at 

Georgia Tech [46] for tensioning the ligaments/tendon of a chicken front-half for 

subsequent harvesting of the chicken breast meat, where the AWM with a 6 DOF 

force/torque sensor is mounted on an ABB robot arm. As the AWM system pulls or 

twists the chicken wing, significant deformations on the shoulder were observed. This 

gives rise to significant errors in locating the shoulder joint (and thus the blade) resulting 

in low yield/quality of deboned breast meat. In order to predict the chicken carcass 
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In summary, this chapter offers the followings: 

1) A framework of a musculoskeletal model is provided by a compliant beam model 

for bones and an exponential model for tendon/ligaments.  

2) Numerical verification is presented for the compliant beam model. The soft-tissue 

model is validated by experiments and values of its coefficients are determined. 

This musculoskeletal model has been used to investigate the effects of natural 

product size variation on the bio-structural deformation. This analysis will contribute to 

the future wing manipulator design and related controller implementation. 

 

Figure 4.2 Flow chart of bio structure modeling. 
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4.1 Formulation of Bio Structure Model 

Figure 1.1(a) illustrates the bio-structure consisting of the shoulder bones and 

three ligaments (indicated as A, B, C) connecting the humerus to the three shoulder 

bones; coracoid, clavicle and scapula. The shoulder joint has three rotational DOFs and 

due to the deformability of the connective tissues; it is possible to attain limited 

translational motion of the humerus relative to the fixed carcass.   

 In this section, the following assumptions are made: 

A1) The carcass is properly loaded on the cone such that the symmetric plane of the 

carcass coincides with that of the cone.  Additionally, the rib cage does not rotate 

on the cone.  Thus, the rib cage and keel bones are treated as rigid bodies with 

respect to the cone. 

A2) The coracoid-keel and shoulder joints can be characterized as contacts between 

two ellipsoids, thus can be modeled as BJC on the flexible clavicle. Material 

property of the clavicle is isotropic and linear elastically. 

A3) All the ligaments/tendons within a bird carcass are of the same material and 

structure so that their deformation behavior can be described by one general 

characteristic exponential relation [63]. The soft tissue material is anisotropic and 

incompressible; this assumption is based on the knowledge of the high percentage 

of water content within the soft tissue and its longitudinal fiber bundle structure. 
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4.1.1 Coordinates 

To describe the pull   and twist θ motions of the humerus, the kinematics is 

defined in Figure 4.3. The reference coordinate system O is set on the keel bone where 

the prong plugs in. The X and Z axes (of frame O) are on the symmetric plane of the 

carcass; the Z axis points upwards while the X axis is the direction that the cone moves 

toward. The frames, Oc and Os, are the local coordinate systems at the coracoid-keel and 

the shoulder joints, respectively. The Zc axis is the longitudinal axis of the coracoid; Xc is 

the normal to the plane defined by the two intersecting axes of the coracoids. As shown 

in Figure 4.3, OcOs is in the direction of the Zc axis, and defines the length of the 

 

(A. Coracohumeral,  B. Scapulohumeral,  C. Interfibrous ligaments) 

Figure 4.3 Ligament-skeletal structure of a chicken carcass. 
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coracoid. The XsYsZs and XYZ are parallel and related only by a transitional 

transformation. A local coordinate manipulating frame Om is attached at the other end of 

the humerus with its zm-axis pointing toward and along the humerus longitudinal axis. In 

Figure 4.3, the attachment points of the ligaments on the coracoid and scapula are 

denoted as points A, B and C, correspondingly; and the lengths and directions are 

characterized by the vectors LA, LB and LC in the referenced frame O. 

It is of particular interest here how the tripod-like structure of the shoulder 

(coracoid, clavicle and scapula) deforms with the two joints; namely, the joint between 

the coracoid and keel bone, and the shoulder joint. Because of the flexibility in the 

clavicle and joints, manipulating the wing for cutting could result in a significant 

displacement of the shoulder. Since the bases of the clavicle is attached to the shoulders, 

which displace and rotate with the coracoid-keel joint and are subjected to the tendon 

forces,  results of the BJC serves as boundary conditions for the CBM in analyzing the 

deformation of the tripod-like structure to predict shoulder displacement under wing 

manipulation. 

4.1.2 Bio Joint Constraint on Clavicle 

In the bio joint model, Oc is defined as the geometric center of the ellipse that 

models the portion of the coracoid as shown in Figure 4.3. The coordinate transformation 

from O to Oc involves two rotations (about Y by θy followed by about Xc by θx) and a 

transition (O to Os), and is given by: 

 
cO O co x R x p  (4.1) 

where R is a rotational matrix, pco is the position vector from Oc to O.   
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Figure 4.3 shows the ellipses approximating the contact parts within the coracoid-

keel joint. Dimensions of the joints and bones are listed in Table 4.1. We illustrate 

numerically the effect of the coracoid-keel joint rotation (characterized by the rotational 

variables θx and θy) on the position changes of the tripod-like structure. The simulations 

are based on typical dimensions experimentally measured from commercial broilers 

(meat chickens). As shown in Figure 4.4 and Figure 4.5, the contact pair making up part 

of the tripod-like shoulder structure of the chicken can be modeled as either ellipsoids or 

an elliptical cylinder. Specific values of the 3D ellipsoid principal axis lengths used in the 

simulations are given in Table 4.1.   

When tensioning the ligaments and tendon for the first cut in deboning the 

chicken breast meat, the humerus is pulled downward, the position/orientation of the 

tripod-like structure changes as a result of the joint rotations (θx and θy), the nominal 

Table 4.1 Dimensions of coracoid-keel joint and bones. 

Coracoid-keel joint (mm)  Shoulder joint (mm) 

Coracoid 9.2, 3.1, 2.3 Coracoid 2.6, 6.6, ∞ 

Keel 10.2, 4.1, 1.9 Humerus 9.3, 7.0, 5.6 

Bone Length (mm) Position Value 

Coracoid 38.3 Oc (mm)* (15.0 10 20.4) 

Humerus 80.7 θx /12 

Scapula 75.0 θy /4 

Sliding velocity between the two parts in bio joint =1mm/s 

* Oc’s coordinates are presented in the world frame O. 
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values of which are given in Table 4.1.  To offer intuitive insights to the effect of θx and 

θy (deviations from the nominal values) on the predictions of shoulder positions (with 

respect to the reference coordinate system O), we compare in Figure 4.4 and Figure 4.5 

the results calculated using both the bio joint model and the ball joint approximation.  To 

quantify the difference, we define the following percentage error: 

 % 100% /e bioError d d     

where Δdbio is the position deviation from its nominal value  as predicted by the bio joint 

model; and Δde is the difference between the results predicted by the two models. In 

Figure 4.4 and Figure 4.5, the percentage errors near the nominal position (θx = θy = 0) 

are not calculated to avoid the undefined problem of dividing zero with zero.  

Some observations can be made from Figure 4.4 and Figure 4.5: 

1) In Figure 4.4, the error decreases as the rotation angle becomes larger.  This is 

because of the error definition and the nonlinear effect of the bio joint model; in 

other words, Δdbio increases at a faster rate than Δde.  

2) In general, the shoulder deforms nonlinearly from its nominal position even in 

small angle rotation. 

3) The shoulder joint is possible to attain limited translational motion of the humerus 

relative to the fixed carcass (in addition to the three rotational freedoms) due to 

the deformability of the connective tissues. The ball joint approximation, which 

assumes a fixed center at Oc, does not account the transitional motion as can be 

visualized in Case 2(b) in Figure 3.8. Hence, the ball-socket approximation 

predicts a linear relation in small angle rotation about the nominal position. The 

significantly large Δde error (over 40%) implies that the ball joint approximation 
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is inadequate to characterize the CK joint and its associated bio-skeleton 

kinematics.  The bio joint model with two 3D ellipsoids provides a means to 

account for the transitional motion of Oc within the clearance in the joint.  

 

Figure 4.4 Change of shoulder height due to θy. 

 

Figure 4.5 Change of shoulder position due to θx. 
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4.1.3 Clavicle Model 

Section 4.1.2 provides the relationship between the coracoid rotation (θx, θy) 

and the shoulder displacement. This in turn provides a means to relate the rotational 

matrix R to absolute position x0 of the shoulder (where the clavicle is attached). Hence, 

the boundary conditions for (2.26) are given by  

s = 0 R11 = 1, R12 = 0, R13 = 0, φ= 0, (0) (0) (0)
1 1 2 2 3 3, ,x x x x x x    

s = 1 F1, F2, F3, M1, M2, M3 

Because of the V-shape geometry of the clavicle, Figure 4.6(a) shows one half of 

the clavicle which is separated by the symmetric plane S (OXZ in Figure 4.3). Then this 

tiny clavicle bone is modeled as a cantilever beam mounted at point Oc (with axis Xc 

pointing along the bone axis and Zc being the same as Z). The clavicle is subjected to 

force Fc and moment Mc from the shoulder as well as the distributed force from the 

surrounding breast meat. In Figure 4.6(a), two meat elements along the fiber direction are 

presented on both sides of the clavicle. As the end of the clavicle is pulled/twisted by Fc 

and Mc, one element is in tension fmt and the other is in compression fmc, resulting in an 

effective distributed force qc (= f' + f") along the bone, where f' ≈ φmfmt and f" ≈ φmfmc.  

The angle φm is defined as the slope angle change per fiber length, which is very small for 

smooth breast meat surfaces. Certain assumptions are made in the following formulation: 

A4) The bone material is assumed to be isotropic and linear elastic, because of its 

small dimension and limited deflection during the wing manipulation. 

A5) The bone deformation in the Xc and Zc directions is negligible compared to 

deflection in Yc, because the bone is relatively rigid in the longitudinal axis and 
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0 0 0
( )

x

cEIy M F x x q d        (4.2a)

where the  double primes refer to the second derivative with respect to x, the force F0 and 

moment M0 at x = 0 can be obtained at equilibrium: 

0 0

cL

c cF q d F    

0 0

cL

c c c cM q d F L M      

Then (4.2a) can be rewritten as 

( ) ( )
c

x

c c c cL
EIy x q d F L x M        (4.2b)

and the third and fourth order derivatives are obtained as  

c

x

c cL
EIy q d F    (4.2c)

cEIy q   (4.2d)

If denoting Y=[y y' y" y'"]T, the above equations can be combined into a compact form: 

 Y F  (4.3)

with 
3 3

/ T
cq EI

 
  
 

0 I
F

0
  

The boundary conditions are determined from the cantilever constraint and (4.12b,c): 

(0) 0, (0) 0y y   (4.4a,b)

( ) , ( )c c c cEIy L M EIy L F     (4.4c,d)

This boundary value problem (BVP) can be readily solved by SMs. 
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Closed form solution 

The boundary value problem is first recast into an IVP (4.12d) with initial 

conditions given in (4.14a,b) and (4.14e,f): 

0
(0)

cL

c c c cEIy q d F L M      (4.4e)

0
(0)

cL

c cEIy q d F     (4.4f)

Based on assumption A6) of an elastic foundation, the functional form of qc is taken as 

c mq k y  (4.5)

where km is an effective elastic constant. Substituting (4.15) into (4.12d), the general 

solution for EIy"" = kmy is 

1 2 3 4cos sinx xy A e A e A x A x        (4.6)

where 1/4( / )mk EI  and Ai’s (i = 1, 2, 3 and 4) are coefficients to be determined by the 

initial conditions at x=0. By substituting (4.15) and (4.16) into (4.4a,b,e,f), four algebraic 

equations of A=[A1 A2 A3 A4]
T can be obtained and written in a matrix form of 

A AM A b  (4.7)

where bA and MA are given as 

 0 0
T

A c c c cF F L M  b  

3 3 3

2 2 2

1 1 1 0

0

0

0

T

T

A m T

T

k
EI EI EI

EI EI EI

  
  
  

  
      
   
     

0

0
M

α

β

 

with 1 e e sin
1

1 1 cosc cL L
c c

T
L L   


    α  
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 2

1 e ( 1 )

1 e (1 )

1 cos sin

cos s n

1

i

c

c

L
c

L
c

c c c

c c c

L

L

L L L

L L L








   
  



  
 
 
 
 
  


 

  
 

β  

Then the closed form solution can be obtained by solving Ai’s from (4.7) and substituting 

them into (4.6). On the other hand, if the functional form of qc is taken as (4.5'), 

c mq k x  (4.5')

The closed form solution is given as follows:   

2 3
5 3 22 3 3

120 12 6
m m c c c c c m ck k L F M f L k L

y x x x
EI EI EI

  
        (4.6')

It will be shown that as the loadings increase, the solution (4.5) can be approximated by 

(4.6') which is much easier for further investigation on dimension effects.  

The elastic foundation assumption for modeling the breast meat in this work is 

employed as a lumped parameter approach. But the numerical value of km can be 

estimated based on theoretical derivation and experiment data. This starts with the stress-

strain relation of meat: 

m m mE   (4.8)

where Em is the elastic modulus of meat, σm and εm are longitudinal stress and strain along 

the fiber direction. Denoting the minor axis length of the clavicle cross section as 2b, one 

half of the shoulder width as l0, and the Poisson ratio as υ = 0.5, the distributed load on 

the clavicle qc and strain in the lateral direction ε'm can be expressed as 

2c m mq b    (4.9)

0
m m

y

l
     (4.10)
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Based on assumption A3), the characteristic relation is given by 

1
2

kk e    (4.12)

where σ is the stress; ε is the longitudinal strain of the ligament under uni-axial extension; 

and k1 and k2 are constants to be determined experimentally. Equation (4.12) can be 

transformed into the following linear logarithmic form for determining k1 and k2 using the 

linear regression method: 

1 2log logk k    (4.13)

Because of the incompressible assumption, the volume will not change before and 

after loading. Denoting the initial cross section area as A0, the current cross section area 

can be obtained by 

0 / (1 )A A    (4.14)

Since σ = f / A, ε = ∆ / L0, where ∆ is the stretch and L0 is the initial length, the 

relation between the stretch ∆ and the tensile force f acting on the ligament is given by 

2 0/0
1

01 /
k LA

f k e
L


 

 (4.15) 

It is noted that the elastic modulus E of the clavicle and the two parameters, k1 and k2, for 

soft tissues in (4.6) and (4.15) are unknown to be determined experimentally. 

4.2 Experimental Investigation 

Since the material properties of the clavicle bone and the ligament are not 

available, the clavicle elastic modulus in (4.6) and the parameters in the characteristic 

equation (4.15) for ligaments were determined from two sets of experiments. Although 

only one or two parameters are determined by the simple pulling tests, the resulting 
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models are valid for nonlinear deformation analysis of the bio structure. Specifically, the 

nonlinear deformation of the clavicle results from its nonlinear curved geometry even 

though linear elastic property is assumed when only the elastic modulus E is measured. 

On the other hand, the nonlinear deformation of the ligament comes from its nonlinear 

material property, where two parameters k1 and k2 are to be determined. 

4.2.1 Elastic modulus of clavicle 

This section presents experimental determination of the elastic modulus of 

clavicle. Figure 4.8 shows an experimental setup up based on a commercial linear motor 

driven stage, where a clavicle bone is mounted on the linear slider while its tip is rigidly 

tied to a fixed screw by a metal string. The height can be adjusted by means of the screw 

for different specimens to maintain the string horizontally. As the linear slider pulls in the 

right direction, the clavicle will deflect as a cantilever beam. Since the metal string is 

much stiffer than the flexible clavicle, the elongation in the string is negligible compared 

to the bone deflection. So the displacement recoded from the slider can be regarded as the 

clavicle tip deflection. Based on the previous analysis, the vertical displacement of the 

clavicle is less than 7.9 mm, and the metal string length is 60 mm, so the rotation of the 

string is within tan-17.9/60 ≈ 7.5°, leading to the assumption that the applying force on the 

clavicle tip is horizontal. At equilibrium, this applying force can be measured from the 

input voltage to the linear motor, which will be covered later in this section.  

The pulling force of the linear motor is calibrated by an electric spring with one 

end fixed and the other end mounted on the slider as shown in Figure 4.9. The calibration 

curve of the electric spring is given by (4.16): 
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Figure 4.10 shows the pulling deflection displacement and force profiles for two 

groups of samples. Due to the handling of the carcasses, some of the samples were 

broken before/during preparation. So two groups of samples are presented: samples 1 ~ 4 

are intact clavicles; while sample 5~8 are half clavicles. As can be seen in Figure 4.10(a), 

all samples (1~4) deforms within the strength; while the horizontal parts in Figure 4.10(b) 

indicate the clavicles are broken and the breaking strength is estimated as about 6N.   

Figure 4.11 and Figure 4.12 compare relations between the pulling force and the 

tip deflection from simulation and experiment. The elastic modulus for all eight samples 

can be obtained with average value of 2.7816 ± 1.1803 GPa. Errors can be introduced by 

defects occur in the sample preparation. Figure 4.12 also shows that the clavicles broke 

progressively so that the elastic modulus changed nonlinearly with increasing pulling 

force.  
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(b) Half clavicles. 

Figure 4.10 Relation between pulling force and deflection on clavicles. 
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Figure 4.11 Tests on samples of full clavicles. 
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Figure 4.12 Tests on samples of half clavicles. 
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velocity of 0.5mm/s on eight samples [46]: the cross section area is regarded as an ellipse 

and the dimensions (Table 4.2) are measured by a caliper; the ABB robot pulls the 

humerus at a very low constant speed of 0.5mm/s, so the tested sample can be regarded as 

qusi-static; the stretch is obtained from the multiplication of the pulling speed and the 

time, and the applying tensile force is measured by the force sensor. Figure 4.14(a) shows 

the experiment results of stretch and tensile force. Since the data of Sample A do not fall 

in the 95% confidence interval, this data is rejected and the average values together with 

±95% variation are calculated based on the other seven samples. It is clear that data from 

biological objects have a very large variation (up to 50%) and the calculated results based 

on seven samples are 

1 29.9246 1.9776,  0.0027 0.0019k k     

Table 4.2 Force sensor and sample dimensions. 

ATI Mini 40 – US-5-10 

Maximum (N, N·m) Fx,y = 22.24 Fz = 44.48 Tx,y,z = 112.98 

Resolution (N, N·m) Fx,y = 0.0014 Fz = 0.0028 Tx,y,z= 0.0035 

Sample A B C D 

A0 (mm2) 73.22 83.99 60.30 80.49 

L0 (mm) 20.60 22.06 18.69 21.59 

Sample E F G H 

A0 (mm2) 104.5 73.80 81.02 70.15 

L0 (mm) 24.60 20.70 21.67 20.16 

*Average A0 = 69.04 mm2, L0 = 20mm. 
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Figure 4.14(a) compares the force and stretch relations obtained from experiment 

and the proposed model (4.15) with nominal values k1 = 9.4377 and k2 = 0.0025. Given 

the large variations in Table 4.2 and Figure 4.13 among samples, the proposed ligament 

model agrees well with experimental data over a relatively large range of strain (about 

0.5). The outlier of the first sample could be due to some unknown causes in the original 

data as indicated in Figure 4.13. One explanation would be that the bird was injured on 

the shoulder and the ligament become stiffer; similar things could have happened to 

samples E and F. Deviations in the sample B and C are due to the local damages of the 

fiber bundles during the extension. It is valuable to point out that models formulated with 

scalable variables, such as length or cross section area, can be accurately developed for a 

specific natural product by relating these scalable variables to its overall size or weight 

proportionally. Figure 4.14(b) compares the root mean square error in the applying force, 

with average value for the Sample B~H being about 1.6 N. 

4.3 Illustrative Application to Wing Manipulation 

Applications of the proposed musculoskeletal model are illustrated using two 

wing manipulation examples: 

Pulling δ = 10mm along the direction of 0.5Y-0.866Z defined in the reference 

frame OXYZ as shown in Figure 4.3. 

Twisting θ = 90° around the humerus longitudinal axis zm. 
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(a) Comparison between experiment and analysis results. 

 

(b) Comparison of root mean square error. 

Figure 4.14 Ligament / tendon charateristic relation. 
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Table 4.3 lists the positions of all three ligaments and tendon, which are measured 

from a scanned geometry of a real chicken front-half. Since the ligaments/tendon are 

along different directions, the manipulator displacement is projected along Li (i = A, B 

and C) for estimating their individual elongations. The ligament forces fi can then be 

calculated from (4.15); and their resulting force Fc and moment Mc can be applied to (4.6) 

to determine the shoulder displacements in the reference frame. As indicated from the 

simulation results, the pulling manipulation significantly tensions the ligaments A and C 

affecting the shoulder position in all directions, while the twisting motion mainly tensions 

ligament B and displaces the shoulder on the XY plane. 

 

Table 4.3 Measured data and simulation results. 

Ligaments Attachment point Vector Li (mm) 
Cross-section 
area A (mm2) 

A -58.85, 19.72, 31.03 -7.23, 12.46, -19.02 69.04 

B -58.36, 14.81, 22.97 -7.8, 18.09, -5.46 50.68 

C -60.56, 16.14, -0.42 -3.59, 13.05, -0.77 22.29 

Pulling  

δ =10mm 

Ligament forces (N) fA = 5.3  fB = 2.1 fC = 1.6 

loadings on shoulder Fc = 6.2N Mc = -0.011N·mm 

Shoulder disp. (mm) uX = 0.9 uY = 2.6 uZ = 8.7 

Twisting  

θ = 90° 

Ligament force (N) fA = 0  fB = 3.44 fC = 0 

loadings on shoulder Fc = 1.2N Mc = -0.017N·mm 

Shoulder disp. (mm) uX = 0.5 uY = 1.4 uZ = 0 
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The wing manipulation tensions the ligaments and tendon to facilitate the cutting 

process. Once the stress within the soft tissues reaches a critical value, it is anticipated to 

be easily severed. Correspondingly there exists a critical strain from (4.12). Under 

assumption A3) in Section 4.1, this critical stress or strain would be the same for different 

birds because it is the mechanical property of soft tissues. However, (4.15) indicates that 

the applying force would be dependent on the cross-section area of soft tissues, A0, which 

is assumed to be proportional to the square of the overall bird feature dimension, such as 

the half shoulder width l0. As a result, if a bird size is 10% larger than the reference 

model size, the required force will become 21% larger. 

On the other hand, the shoulder will displace and imprecise cut will occur due to 

error of blade insertion location as the wing is manipulated. Given the desired 

manipulating force, (4.6') can be used to predict the shoulder displacement. It is noted 

that x is proportional to l0, area moment of inertia I is on the order of 4
0l , By analyzing 

each of the coefficients of Fc, Mc and km, it is found that they are proportional to 1/ l0, 2
01/ l  

and 1(l0), respectively, indicating that: effects of the meat deformation is independent on 

the bird dimension. However, the effects of the external loadings are dependent on the 

dimension variation: if the bird is 10% larger than the reference model size, the same 

pulling force will give rise to 11% reduction in shoulder displacement, while the same 

twisting moment will cause 23% reduction in displacement. 

4.4 Summary 

This chapter has discussed a dimension-based method to characterize bone and 

soft tissue deformation by accounting for the large size variation of natural products. A 
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compliant beam model is formulated for the clavicle bone deformation and a closed-form 

solution is obtained by assuming elastic foundation of breast meat. The solution is 

verified by the numerical MSM and an approximated polynomial solution is adopted for 

estimation of size variation effects on bone deformation. Analysis justifies this approach 

by showing that the approximation error vanishes as the external loadings increase. An 

exponential characteristic relation is used to capture highly nonlinear elastic property of 

soft tissues. Given the large variation of force profiles among specimens, the proposed 

model agrees well with experiment results. Finally, the musculoskeletal model is applied 

in wing manipulation to analyze the effects of size variation on required manipulating 

force and shoulder deformation. This musculoskeletal model can be potentially used to 

develop design criteria to automate the process of de-boning chicken breast-meat. While 

this chapter is written in the context of poultry meat de-boning, the method can be used in 

other bio-tissues, joints, and systems. 
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5  

CHAPTER V 

 

DESIGN OF COMPLIANT MECHANISM FOR A 

FLEXONIC MOBILE NODE 

 The 3-D deformation of a flexible beam subjected to generalized constraints was 

formulated in Chapters II and III, and extended to the analysis of a bio structure presented 

in Chapter IV. This chapter will apply the modeling method leading to the development 

of a bio-inspired compliant mechanism for a flexonic mobile node (FMN). In operation, 

the FMN utilizes large deflection and buckling of a compliant beam enabling it to 

flexibly negotiate different kinds of obstacles (such as abrupt angle changes) commonly 

encountered in complex civil structures.  

In this chapter, the design concept, modeling analysis and experimental validation 

of an FMN for maneuvering on ferromagnetic surfaces are presented.  The remainder of 

this chapter starts with the design concept of a novel magnet-wheeled FMN to achieve 

two important functions (sensor attachment and corner negotiation) with a simple 

mechanism. Then, a normalized 2D quasi-static compliant beam model is formulated 

from the 3-D beam model to reduce the design criteria. Illustrative examples will be 

given to exploit beam buckling for SHM applications, the work starts from a 

conventional viewpoint of the load-displacement relation, and then evolves to the 

displacement-displacement relations. As will be shown, these forward and inverse models 
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provide the essential basis for the design and control of a FMN. Experimental validation 

will be performed on a prototype FMN developed at Georgia Tech [5]. Finally, functions 

requiring 3-D beam deformation will be simulated and discussed.  

5.1 Design Concept 

Figure 5.1 illustrates the design concept of an FMN consisting of four 

independently driven magnetic wheels housed in two assemblies (front and rear) 

connected by a compliant beam.  Unlike a rigid car frame with a fixed distance between 

the front and rear axles, the front axle of an FMN can be bent relatively to its rear axle by 

deforming the compliant beam (with both of its ends fixed on the two rigid bodies at P0 

and P1).  This enables the FMN not only to function as an agile locomotion but also a 

sensor loader. It can be easily noticed that definitions of coordinate frames here are the 

same as in Figure 2.3. It is recalled that the local coordinate frames, “xyz” and “ξηζ” 

(each with a subscript indicating its location along the beam path-length), are defined in 

the un-deformed and deformed configurations respectively. The nodal displacements us, 

vs and ws are along xs, ys and zs axis directions respectively. When the beam cross section 

is rectangular, all the coordinates follow the right-hand rule with xs and ξs assigned along 

the neutral axis of the beam, and zs and ζs normal to the beam surface. 
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With the specific SHM application in mind, this FMN is designed for field tests 

on the steel bridge on Georgia Tech campus as shown in Figure 5.2.  Since the width of 

the bridge columns is about 140 mm, this dimension limits the overall FMN width and 

the compliant beam width. Besides, the motor output torque must be large enough to 

deform the compliant for different functions.  

The first function is to attach/detach an accelerometer (mounted on a platform in 

the middle of the flexible beam) on/from the surface to be measured as shown in Figure 

5.3. During the car-moving operation, the compliant beam is normally straight as shown 

in Figure 5.3(a). When a measurement is to be made, the two axles are driven towards 

each other to buckle the compliant beam as shown in Figure 5.3(b) allowing the 

accelerometer to be pressed against the surface to be measured.   

 

 

Figure 5.1 Design concept of an FMN. 
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5.2 Compliant Beam Design 

Following the formulation presented in Chapter II, appropriate boundary 

conditions must be specified to solve (2.24) for the thirteen unknowns in X that are 

physically relevant. Table 5.1 summarizes four typical boundary conditions, which are 

also commonly specified for analyzing columns. For a cantilever (Type 1) where the 

slope and displacements are zeros at the fixed end, the forces and moments at the free end 

must be specified.  For a beam with both ends constrained with pin-joints (Type 2), the 

displacement constraints cannot sustain any moment; M = 0 but F must be specified.  As 

will be illustrated, Types 3 and 4 are specified for sensor attachment and for negotiating a 

convex corner, respectively. Type 3 is similar to Type 2 but can resist nonzero moments 

while maintaining zero slopes at both ends.  In Type 4, a nonzero moment can be exerted 

against an offset pinned end.  Unlike buckling analyses where the critical load causing a 

column to buckle is of particular concern, the models developed here relax several 

commonly made ideal-beam assumptions (such as mass-less and small deflection) for 

practical FMN applications.  

The two basic functions of FMN have been simulated for design purposes:  

1) The first function attaches/detaches an accelerometer on/from the surface to be 

measured. The compliant beam is normally straight. When preparing a 

measurement, the front axle is driven towards the rear axle buckling the compliant 

beam to press the accelerometer against the surface to be measured.  

2) The second function provides a means to overcome obstacles when moving on a 

structure. Among the challenges is the ability to negotiate sharp corners. Magnetic 

forces at the corner greatly decrease when negotiating a convex corner, but 
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increase (because of multiple contacts) when moving up or down a concave 

corner.  

Table 5.1 Boundary conditions for generalized constraints. 

Type s = 0 s = 1 

1. Cantilever 

R11 = 1, R12 = 0, R13 = 0, 

φ= 0, 

(0) (0) (0)
1 1 2 2 3 3, ,x x x x x x    

F1, F2, F3, 

M1, M2, M3 

2. Both ends pinned 

(0) (0) (0)
1 1 2 2 3 3, ,x x x x x x    

M1 = M2 = M3 = 0 

(0)
3 3x x ; 

F1, F2, F3;   

M1 = M2 = M3 = 0 

3. Slide against a fixed end 

R11=1,  R12 = R13 = φ= 0; 

(0) (0) (0)
1 1 2 2 3 3, ,x x x x x x    

R11=1, R12 = R13 = 0;

(0) (0)
2 2 3 3,x x x x  ;

 

 F1 

4. Slide against an offset pinned 

end 

R11=1, R12 = R13 = φ= 0; 

(0) (0)
2 2 3 3,x x x x  ; 

 F1 

x1, x2, x3; 

 M1, M2, M3 
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For design purposes, the following normalized variables are applied to the beam 

equations (2.24): 

2
2i i

EI
F F

L
  , 2

i i

EI
M M

L
  , 2

3Fi Fi

EI
q q

L
  ,  2

2Mi Mi

EI
q q

L
  , 

(0) (0) 1
i ik k

L
  , 

1
i i L

    and i ix x L   

where L is the beam length. Then (2.24) is recast and the differentiation is carried out 

with respect to the normalized path length, /s s L . 

1 1FF q    (5.1a)

2 2FF q     (5.1b)

3 3FF q     (5.1c)

1 1 12 3 13 2(1 )( )MM q R F R F         (5.1d)

2 2 13 1 11 3(1 )( )MM q R F R F         (5.1e)

3 3 11 2 12 1(1 )( )MM q R F R F         (5.1f)

11 3 21 2 31R R R      (5.1g)

12 3 22 2 32R R R      (5.1h)

13 3 23 2 33R R R      (5.1i)

13 32 12 33 12 23 13 22
2 3

11 1
1

11 1

R R R R R R R R

R R
    


  


   (5.1j)

1 11(1 )x R    (5.1k)

2 12(1 )x R    (5.1l)

3 13(1 )x R    (5.1m)

where the longitudinal strain ε and curvatures K(e) are calculated as follows 
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2
1 11 2 12 3 132

( )
I

F R F R F R
AL

       (5.2)

(0) 2
1 1 1 11 2 12 3 13

1

( )
EI

k M R M R M R
GI

       
 

(5.3a)

(0)
2 2 1 21 2 22 3 33k M R M R M R       

 
(5.3b)

(0) 2
3 3 1 31 2 32 3 33

3

( )
I

k M R M R M R
I

       
 

(5.3c)

Numerical simulations using MSM (Appendix B) were performed, where 

computation time (especially when there is buckling) depends on the number of segments, 

N, and initial values for the iterative process. The MSM computation involves a 

13(N+1)13(N+1) matrix inverse. To reduce computation time, the beam is equally 

divided into three segments (N = 3, m = 4 in Figure B.1) with the beam cross-sectional 

area presented as a piecewise linear function of path length. As given in Table 5.1, some 

of the initial values are zeros. The remaining nonzero initial values are determined by 

physics. Consider a cantilever as an illustration, the values of F1 and F3 at s = 0 can be 

obtained from equilibrium; and M2 can be chosen as the multiplication of the forces by a 

characteristic length (such as one half of the beam length). 

5.2.1 Sensor attachment 

 In modeling the sensor attachment on a plane, the rear axle is treated as a fixed 

end, and the front axle acts as a slider subjected to a uni-axial loading F1 as shown in 

Figure 5.7. In addition, it is assumed that the compliant beam is constrained to bend only 

in the –z direction. For a given wheel radius, the uni-axial loading F1 required to move 

the sensor to its desired displacement ws (at s = 1/2) depends on whether the direction of 
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the sensor displacement is in the same or opposite to that of the gravitational force as 

compared in Figure 5.7.  Unlike Case 1 where the weights of the sensor and beam 

facilitate the sensor attaching, the beam must compensate for these weights in Case 2. To 

explain the effect of the gravity, we normalize a force F to the critical buckling force for 

a beam subjected to both ends fixed [9] as follows: 

0 0.2 0.4 0.6 0.8 1

-0.4

-0.3

-0.2

-0.1

0

x / L

z 
/ L

n = 0
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 (a) Case 1, α = 0. 
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(b) Case 2, α = 0. 

Figure 5.7 Effect of gravity. 
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2

2
2

4L
n F

EI
 

  
 

 (5.4)

In the following simulation, the normalized gravity of the sensor which can be obtained 

by replacing F = mg in (5.4) is 0.8. With Type 3 boundary conditions, the deformed 

shape (or w as a function of path length s) and (0)
1 1 1u x x   can be computed by solving 

the BVP (2.26) by specifying F1.  The results for the two cases (with α = 0) are compared 

in Figure 5.7 and Figure 5.8 where the input force n varies from 0 to 25. 

Some observations are discussed as follows: 

Figure 5.7(a) and Figure 5.8(a) show that the beam deforms continuously as the 

normalized force increases in Case 1. 

Although the carrying mass (normalized gravitation force 0.8) is relatively light 

causing negligible deformation under its own weight (red curves in Figure 5.7, F1=0), 

this little weight however has a significant buckling effect on the beam in Case 2. As 

illustrated in Figure 5.7(b) and Figure 5.8(a), both the displacements (u1 and ws) in Case 2 

do not change until the normalized force exceeds a critical value nc at which the beam 

buckles drastically to a new shape (black dash curve in Figure 5.8b) without any 

intermediate shapes.  The values of u1 and ws (corresponding to nc for α = 0, 45, 90) 

are summarized in Table 5.2 which also shows the effects of sensor weights on these 

values. These critical values that cause buckling to set off in Case 2 decreases (requiring 

less compensation against gravity) as α increases. For the same reason, a heavier weight 

tends to give rise to a larger critical value for α < 45. On other hand, a smaller critical 

value for a lighter weight for α > 45 is observed as gravity facilitates buckling. 
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For α = 90, the theoretical value of 16 given in [9] for a weightless beam is 

somewhat larger than nc of 15.5.  The beam model given in (5.1) accounts for the gravity 

along –x, which contributes to the onset of buckling.  

The values of ws for different α values converge to the case α = 90 for large F1 

when the gravity becomes negligible. This is also true for u1 because of the monotonous 

relation between ws and u1 as shown in Figure 5.8(b). The maximum normalized force 

required is n = 25, from which the required motor torque can be estimated by multiplying 

F1 computed from (5.4) by the wheel radius rw. 

The inverse model that computes u1 for a specified ws for attaching the sensor is 

given by curve-fitting the data in Figure 5.8(b) for different α’s  in both cases:  

3 21 18( ) 5.3( ) 0.85s s sw w wu

L L L L
    (5.5)

This result is due to the light weight of the combined beam and sensor.  For detaching a 

sensor, the command becomes −u1 for a reversed process.  

Table 5.2 Slope angle and critical values. 

Sensor gravity (normalized) α (degree) nc u1 / L ws / L 

0.8 

0 17.5 -0.0624 0.1559 

45 16.9 -0.0612 0.1543 

90 15.5 -0.0002 0.0094 

1.6 

0 18.3 -0.0999 0.1948 

45 17.3 -0.1069 0.2009 

90 15.1 -0.00005 0.0001 
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(a) Relation between force n and displacement ws / L. 
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(b) Relation between u1 and ws. 

Figure 5.8 Relationship between normalized force and displacements. 
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The input displacement u1 is a preferable manipulating variable for controlling the 

compliant beam of the FMN but not the input force F1. This can be explained by Figure 

5.8 showing plots of the two manipulating variables (F1 and u1) and the sensor 

displacement ws. As illustrated in Figure 5.8(a), the relationship between F1 and ws is not 

only highly nonlinear but also depends on α. On the other hand, the relationship between 

ws and u1 is monotonically smooth and independent of α as shown in Figure 5.8(b). 

Besides, for the feedback control purpose, displacements can be measured by simple 

encoders while forces are hard to obtain without expensive force sensors. 

5.2.2 Convex corner negotiation 

Figure 5.9 shows the free body diagram of the front assembly (mass m1 at mass 

center C1 and wheel radius rw) at an instant crossing a convex corner A. The reference 

OXYZ is defined such that X is on the plane where the FMN initially locates and points 

 

Figure 5.9 Convex corner negotiation. 
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in the moving direction before crossing the corner; and Z is normal to the plane. In Figure 

5.9, α is the angle between Z and the gravity; N is the reaction force; and f (=N) is the 

friction;  is the coefficient of friction between the wheel and surface; and τm is the 

torque provided by the motors.  

The following assumptions are made in this discussion:  

1)  The wheels are designed with magnets such that they attach on the steel surfaces 
as the FMN moves. 

2)  The motor torque satisfies the non-slip condition: ( )m w wf r N r     

3)  The moment due to the magnets is small as compared to that due to gravity, and 
thus neglected in the analysis.  

The following discussion considers the worst scenario where the wheel has a 

point contact at the corner.  The strategy for an FMN to negotiate a convex corner 

comprises three steps:  

Step 1: The rear axle exerts the forces/torque (F, M) through the compliant beam to rotate 
the front axle about A.  

Step 2: As soon as the front axle crosses over the corner ( =  where  is the corner 
angle), the two assemblies move together.   

Step 3: Once the rear axle arrives at the corner, the front axle pulls it over via the 
compliant beam.  

The following details Step 1 as this initiation dictates the success of the corner 

negotiation. Figure 5.10 shows the beam deformations as the front assembly crosses the 

corner. As will be shown, the other steps follow similar principles.  

To rotate the front assembly over the corner, the following condition with respect 

to A must be satisfied: 

12 1 0r CM m  E r g  (5.6)

where Mr is the required moment in E2 to compensate for the torque due to gravity. 
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(a) Beam deformations. (b) Coordinates. 

Figure 5.10 Simulation of corner negotiation. 

The required moment can be calculated from the following equation with computed 

values shown in Figure 5.11 for different α values: 

12 1 2 3 2( )r P x y z yM F F F M    E r E E E E
 

For negative α, Mr can be obtained from the mirror images of Figure 5.11.  Since the 

compliant beam attaches the front assembly at P1,  

T T
,   x y z x y zF F F M M M         F M  (5.7a,b)

The boundary conditions (M2, u and w) for negotiating a convex corner, which 

take the form of Type 4 in Table 5.1, can be obtained from (5.8) and (5.9): 

12 2 1 1 2 2 3 3( )P rM F F F M      E r E E E  (5.8)
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     
1

(0) (0) (0)
1 2 3 1 2 3 1 2 30 0

cos 0 sin

0 1 0

sin 0 cos
Ps s

x x x x x x

 

 
 

 
      
  

E E E r
 

(5.9)

Solving (5.1) with (5.8) and (5.9) as constraints using MSM, the simulation results are 

given in Figure 5.12 showing the highly nonlinear relationship between θ and the applied 

force (for α equal to 0, /4, /2). The larger the α, the larger force required for a 

desired rotation angle and the maximum normalized force is about 4.5 (smaller than the 

maximum force of 25 for sensor attachment). 
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Figure 5.11 Relation between rotation angle θ and required moment Mr. 
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Specifications of the spring steel laminate are given in Figure 5.13(c) and Table 5.3. The 

beam has non-uniform cross-sections; thus A and I are functions of s.   

Table 5.3 Mechanical properties and thickness of the spring steel laminate. 

Elastic modulus E (GPa) 207 Density ρ (g / cm3) 7.63 

Shear modulus G (GPa) 79.3 Thickness h (mm) 0.254 

Poisson ratio υ 0.3   

 

In the following, four examples are provided: 

1) The first example is to validate the compliant beam model adopting the Euler 

beam assumption, where shears in cross sections are neglected. However, as can 

be noticed in Figure 5.13, a non-uniform beam shape has been designed for the 

application of sensor attachment with multiple screw holes in the sensor holder. 

The changes in cross sectional areas could potentially introduce shear 

deformation. So the simulation results will be compared against an cantilever 

experiment and FEM.  

2) The second and third examples validate the analysis results of the compliant beam 

in sensor attachment and convex corner negotiation presented in Section 5.2. 

Simulation results are compared with experiment data collected from video 

images processing. 
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3) The last example of modal analysis shows the advantage of this FMN design over 

the previous MSN designed with rigid configuration in data collection for SHM. 

Vibration data of a laboratory steel frame are collected by both mobile sensors 

and their results from fast Fourier transform are compared against those predicted 

by FEM. 

5.3.1 Validation of the beam model 

Figure 5.14(a) shows the experimental setup to examine the validity of the beam 

model, where the spring-steel laminate on one of two housing structures (Figure 5.13(b)) 

was clamped as a cantilever, and thus has Type 1 constraints (Table 5.1).  The remaining 

U-shaped portion (non-shaded in Figure 5.13(c)) in the spring-steel laminate serves as a 

load at the end of the compliant beam (that has a non-uniform shape and thus non-

uniform distributed weight). As the mass center of this U-shaped portion is located at 

10.1mm from the free end of the beam (Figure 5.13(c)), the weight of this U-shaped 

portion also contributes to a lateral force FU and a moment MU in addition to the external 

payload mp at the free end of the beam. As a result, the values of F and M in the 

boundary conditions are given by  

1 2 3 1 2 30,  0,  ,  0,  ,  0U p UF F F F m g M M M M        (5.10)

In this experiment, a strain gauge (with negligible weight as compared to the 

beam) was attached on the upper surface at the middle of the beam. To provide an 

alternative basis for comparisons, a numerical model was built in Abaqus using 6319 

shell elements (S4R type).  In FE analysis, only one-half of the beam is simulated 

because of symmetry, and the external load is applied at one coupling element so that FU 
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The results are discussed as follows: 

1) Figure 5.15(a) shows that the FEM computed beam-shapes and the uniform/non-

uniform beam models closely agree with each other for two different loadings; 

external payload mp= 0 and 50 gram exerted at the beam tip.  It is noted that the 

ten-hole area takes up to 8% of that of the sensor holder, which was compensated 

for by a function characterizing the change in beam widths; thus the results from 

two beam models, uniform and non-uniform shapes, do not differ significantly in 

this specific application. 

2) Figure 5.15 (b) shows that the strain ε11 increases monotonically with payload. 

The beam model agrees well with the experimental measurements. Some 

discrepancies at large payloads are observed in FEM possibly due to the following 

local effects: 

a. Because of FE meshes, the node at which strain information is extracted 

does not locate exactly at the middle of the beam.  

b. Besides, the FEM model can capture the local stress concentration while the 

strain gauge is actually measuring the average strain over its area, and the 

stress concentration is not accounted in this beam model. When comparing 

this local information, the beam model matches with experiments but some 

discrepancy exists in the FEM. 
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(a) Comparison of deformed shapes. 

 

(b) Comparison of upper-surface strains at the middle of the beam. 

Figure 5.15 Model validation with FEM and experiment. 

0 50 100 150

-80

-60

-40

-20

0

X (mm)

Z
 (

m
m

)

 

 

FEM

Uniform shape

Non-uniform shape

m
p
 = 0

m
p
 = 50 gram

0 10 20 30 40 50
1

2

3

4

5

6

x 10
-4

m
p
 (gram)

 1
1

 

 

Experiment

Non-uniform shape

Uniform shape

FEM



 

 

 

116

5.3.2 Effect of gravity on sensor attachment 

In this experiment, the sensor was attached on the plane by moving both axles 

towards each other to prevent slippage as shown in Figure 5.16(a-c). For comparing 

against analytical simulations where sensor attachments were modeled as a process of 

moving the front axle towards the fixed rear axle, the net displacement u1 was obtained 

by measuring the distance change between the front and rear wheel centers from captured 

images. Figure 5.16(d) is a zoom-in comparison of Figure 5.8(b) showing good 

agreements between analyses and experiment results for α = 0, 45 and 90.  

The results are discussed as follows: 

1) It is worth noting that the deviation in Case 2 for α = 0 was a result due to the 

onset of buckling. Once the critical force is overcome, ws / L jumps from zero to 

−0.1559. This non-linear dynamic is essentially unstable. Thus, in Case 2, the 

required input displacement u1 for ws /L > −0.1559 is of the same value (u1/L = 

−0.06) as that when buckling starts.   

2) However, all the intermediate experiment data follows the continuous curve given 

by (5.5) which is independent of slope angle α, so the relation between u1 and ws 

obtained from static analysis is also valid for the dynamic process of Case 2.  

3) This also justifies for the conclusion obtained from Figure 5.8 to control the 

compliant beam deformation by manipulating the input displacement u1 rather 

than the input force F1. 
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(a) Case 1:  α = 0. 

 

(b) Case 2:  α = 0. (c)  α = 90. 
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(d) Displacement comparison between simulation and experiment. 

Figure 5.16 Validation of sensor attachment. 
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5.3.3 Validation of the corner negotiation 

Figure 5.17(a-c) shows the three steps in negotiating a convex right corner, 

specifically pushing the front axle, both axles moving together and finally pulling the rear 

axle. Following the analysis before, the rotation angle α of the front axle is obtained by 

the orientation of the line connecting the front wheel center and the corner point, while 

the displacement u0 of the rear axle is determined by the rear wheel center.  

Observations are discussed as follows: 

1) Although the relation between the applied force F1 and the desired rotation angle 

α is nonlinear depending on the gravity direction, a highly linear relation u0 / L = 

0.0051α exists between u0 and θ regardless of the gravity direction in simulation 

as shown in Figure 5.17(d). Experiment results also confirm with this linear 

relation.  

a. It is noted that errors may come from the required torque that is calculated 

from the assembly mass and the distance from the corner to the mass center.  

b. Another source of error can be the image processing of the video frames 

when detecting the front and rear axle locations by wheel centers, and 

determining the corner point by manually picking one pixel. Since the steel 

structure and the camcorder are fixed throughout the experiment, this corner 

point A is fixed in all the images while small vibration can exist in the steel 

structure because of the FMN dynamics.  

2) It can also be seen that both the pushing and pulling process follows the same 

curve in experiment, implying the above analysis for the pushing process (Step 1) 

can be applied throughout the corner negotiation. 
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(b) Move together. 

 

(a) Push the front axle. (c) Pull the rear axle. 

 

  

(d) Relation between rotation angle θ and displacement u0/L. 

Figure 5.17 Convex right corner negotiation. 
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Some observations can be made from the results: 

1) The dynamics of both magnetic cars has little influence on the vibration 

measurements in the lower-frequency range (<50Hz), and thus the results are 

closely matched with FEM results. 

2) For this experiment configuration, the first vibration mode (horizontal) is not 

excited, so the lowest modal frequency is not identified. Also, since only one 

measuring point is considered in the experiment, some of the modal frequencies 

obtained from the FEM are not detected. Clearly, if this measuring point is at the 

zero vibration positions of certain modal shapes, the corresponding frequencies 

for these modal shapes cannot be captured at this point suggesting that multiple 

measuring points are necessary in practice. 

Table 5.5 Comparison of frequencies. 

FEM (Hz) Compliant (Hz) Single axle (Hz) 
1.009  
4.626 4.5 4.7 

10.757  
11.642 11.2 11.2 
17.573 19.9 20.1 
30.970 30.8 31.3 
39.946  
40.679

43.8 44.3 
42.247
48.816 48.3 49.5 
57.758 61.8  
79.232  
87.724 90.5  
94.619

95.1 98.2 
97.680

122.150
123.3 124.2 

123.130
146.640  
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3) For frequencies larger than 50Hz, relatively sharp peaks can still be identified by 

the FMN because the accelerometer is firmly pressed against the steel frame 

structure eliminating the car dynamic effects on the measurements. 

5.4 Applications with 3-D Deformation 

Previous sections have designed the compliant mechanism and validated the beam 

model in experiment 2-D analysis. In the section, applications of FMN requiring 3-D 

deformation will be investigated in two illustrative examples, namely corner negotiation 

within limited space and environment monitoring. To facilitate the 3-D deformation, a 

modified FMN prototype equipped with a camera on the front axle is shown in Figure 

5.21(a). The camera can capture terrain changes by monitoring distortion of the projected 

laser pattern. With this vision navigation system, the FMN is capable of detecting corner 

edges. Within each hollow wheel, a neodymium 90o arc magnet is fixed to the car body, 

hence does not rotate with the wheel (Figure 5.21b). Compared with design in Figure 

 

Figure 5.20 FFT of vertical vibration in the steel frame. 
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5.4.1 Corner Negotiation within limited space 

Figure 5.23 shows an FMN at an instant crossing a convex corner A from Plane I 

to Plane II.  Because of limited turning space, the FMN changes its initially aligned front 

and rear assemblies by turning the front assembly (mass m1 at mass center C1 and wheel 

radius rw) and deforming the compliant beam. The reference XYZ is defined such that X 

is on the Plane I where the FMN initially locates and points in the moving direction 

before crossing the corner; and Z is normal to the plane. Similarly, XʹYʹZʹ is defined such 

that Xʹ is along the final moving direction after crossing the corner; and Zʹ is normal to 

Plane II.  

The strategy for the FMN to negotiate a convex corner with limited turning space 

comprises three steps:  

Step 1: The rear axle turns by ψ so that the front axle can approach the edge 
perpendicularly, where ψ is the angle between X and x0. Next the rear axle 
exerts forces/torque through the compliant beam to rotate the front axle about 
the corner A.  

Step 2: The two assemblies move together as soon as the front axle crosses over the 

-F1, -M1
z1

X

Y
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x1

y1
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y0
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Mm
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Figure 5.23 Turning within limited space. 
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corner.   

Step 3: Finally, the front axle pulls it over via the compliant beam once the rear axle 
arrives at the corner. 

As pointed out earlier, the mathematics illustrating Step 1 which dictates the success of 

the corner negotiation is further explained to gain intuitive insights.  

For clarity, the following assumptions are made in this discussion:  

1)  The wheels are designed with magnets such that they attach on the steel surfaces 
as the FMN moves. 

2)  The motor torque Mm satisfies the non-slip condition: 

( )m w wM f r N r   . 

 In Figure 5.23, N is the normal force; f (=N) is the friction;  is the coefficient of 
friction between the wheel and surface; and Mm is the torque provided by the 
motors. 

3)  The moment due to the magnets is small as compared to that due to gravity and 
thus neglected in the analysis.  

To rotate the front assembly over the corner, the inequality (5.11) with respect to 

the corner A must be satisfied: 

11 1 0r CM m  E r g  (5.11)

where Mr is the required moment to compensate for the torque due to gravitational force 

and it is given by 

1' 1 1r Y PM    i r F M  

The boundary conditions for negotiating a convex corner, which take the form of Type 4 

in Table 1, can be obtained from (5.12) and (5.13): 

1 11 1 1C Pm   M r g r F  (5.12)
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 

1

TT (0) (0) (0)
1 2 3 1 2 31 1

cos sin 0 0 0 0

                         sin cos 0 0 1 cos sin

0 0 1 0 sin 1 cos

s s

P

x x x x x x

 
   

 

 
   

   
        
       

r
 (5.13)

Solving (5.1) with (5.12) and (5.13) as constraints using MSM, the results are given in 

Figure 5.24 and Figure 5.25 showing the deformed beam shapes and the highly nonlinear 

relationship between  and the applied force/displacement:  

Figure 5.24 shows the snapshots of the deformed beam at different rotation angle 

θ, suggesting that large deformations of both bending and twisting occur on the beam. In 

simulating the corner negotiation, the rear axle pushes the front axle along the x0 

direction while maintaining ψ at a constant value of 30° so that the input force or 

displacement of the rear axle is along x0. 

 

 

Figure 5.24 Snapshots of the deformed beam. 
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Figure 5.25 Normalized displacement and force. 

In Figure 5.25, the normalized input force and displacement appear to be linear 

when θ  45°. When θ > 45°, the inputs start to grow nonlinearly, implying certain 

geometry constraints may prevent the front axle to rotate further without extremely large 

forces. The displacement u0 is given by: 

0
2

0.0036    if   45    
     

0.0016 0.1431 3.3292 if   45

u

L

 
  

 
     

 (5.14)

In this way, the constant ψ strategy is invalid, or in other words, the rear axle 

should adaptively increase ψ as it approaches the edge in the perpendicular direction. 

This control strategy with variable ψ is worthy of investigation in the future. 

Finally, the input-output relationship for corner negotiation within the limited 

space can be implemented as open-loop control in real time using (5.14). For closed-loop 

control, the displacement/orientation feedback can be achieved but requires additional 

sensors (such as rotary encoders or gyroscope) and will be left for future investigation.  
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5.4.2 Environment monitoring 

As the FMN navigates on civil structures, it is necessary to monitor its 

surrounding environment to decide where the corners are and the location  for placing the 

sensor for measurement. With implementing a camera on the front axle, it is desired to 

control the front axle yawing ψ and pitching θ as described with its rigid body attached 

frame  1f 2f 3f,  ,  e e e in Figure 5.26. The front axle yawing can be controlled by the 

difference between the rotational speeds of its left and right wheels when releasing the 

pin joint on the front axle. On the other hand, as indicated in previous analysis the front 

axle yawing can be controlled by manipulating the compliant beam via the rear axle 

displacement u0. So this section will investigate the relation between u0 and θ with 

different ψ.  

 

Figure 5.26 Front axle yawing and pitching. 
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Relation between the rigid body attached frame  1f 2f 3f,  ,  e e e  and the global 

reference frame is given by 

1f 1

2f 2

3f 3

 

   
      
   
   

e E

e R R E

e E

 (5.15)

where 

cos sin 0

sin cos 0

0 0 1


 
 

 
   
  

R  
and

 

cos 0 sin

0 1 0

sin 0 cos


 

 

 
   
  

R  

Then the position of the beam attaching point on the front axle is given by 

T
1 1f 1 1( )P i i w Px r L     x E e r R R I E  

where the first term is the front axle forward motion because of pure rolling, the second 

term is due to the rigid body rotation with  T

1 1 30P d dr being the beam attaching 

position on the front axle expressed in the frame  1f 2f 3f,  ,  e e e , and the third term is the 

initial straight beam length. Then the components of 1Px  in the global referenced frame 

can be expressed as  

 31 1cos [ ( 1 cos ) sin ]cosL r d dx           

(5.16) 12 3sin [ ( 1 cos ) sin ]sinr dx d       
 

 33 1( 1 cos ) sinx d d   
 

Different from previous analysis on corner negotiation, the front axle here is on a plane 

where the magnetic torque becomes dominant over the gravitational torque. Based on the 

equilibrium of the front axle in the 2fe direction 

 2f 3 1( )m w Pr    e E r F M  (5.17)
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where τm = kθ θ is the magnetic torque with equivalent rotational spring constant kθ; F (= 

F1E1) and M (= M1E1 + M2E2 + M3E3)are respectively the force and moment exerted by 

the beam. From (5.15) and (5.17), the moment from the beam can be obtained as 

 1 sinM k   

(5.18) 2 1( ) cosw zM F r d k   
 

 3 0M 
 

In the above, the pitching angle θ should be determined from the orientation of the beam 

attachment on the front axle. It is noted that [R]1 = [R11 R12 R13] in (2.16) is the tangential 

vector along the beam axis, and it lies in the plane of formed by 1fe  and 2fe . Then 3fe  

can be written as  3f 2f1
 e R e . Considering (5.15), θ can be determined as follows 

13 11 12sin ,    cos cos sinR R R        (5.19)

By specifying the yawing angle ψ and the pushing force F1, the pitching angle θ 

and the rear axle position / displacement (assuming it starts from the origin of the global 

referenced frame, 0 1 0s
u x


 ) can be obtained by solving the BVP (2.26) with the 

boundary conditions determined as  

s = 0: R11 = 1, R12 = R13 = φ = 0; x2 = x3 = 0; F1  

s = L: x1, x2, x3, M1, M2, M3 given by (5.16) and (5.18) 

Numerical values used in the simulation can be found in Figure 5.22(c), Table 5.3 and 

Table 5.6. 

Table 5.6 Numerical values for simulation. 

kθ d1 d3 

0.69 N.m/radian -21.79mm 7.11mm 
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Figure 5.27 shows the deformed beam shapes for several  combinations of ψ and 

θ. The beam deformation is 2-D for ψ = 0 and 3-D for ψ ≠ 0. It is noted that the beam 

deformation is symmetric for ψ > 0 and ψ < 0, so only the case of ψ > 0 is presented here. 

Besides, for θ < 0 it requires the rear axle to push forwards (u0 > 0) while for θ > 0 the 

rear axle has to pull backwards (u0 < 0).  

Figure 5.28 shows the required input (force F1 or displacement u0) of the rear axle 

to tilt the front axle for different ψ and θ. The black circles denote the simulated results 

and the interpolated surfaces of F1 (ψ, θ) and u0 (ψ, θ) can be quantified as follows: 

2
2 2 3

1 2
2

4
( ) 0.15 54.54 147.32 27.28 182.01 2.50

L
F

EI
      


        (5.20a)

2 2 30 0.0067 0.61 0.17 0.07 1.34 0.015
u

L
              (5.20b)
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Figure 5.27 Deformed beam shapes for a piching camera. 
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Results are discussed as follows: 

1) The input force F1 is a nonlinear function of ψ and θ. Given an electric motor, the 

maximum output torque τm can be found from its specification sheet. Then the 

limits on the front axle tilting motion can be determined from m
1

w

2
F

r


 . 

2) For ψ = 0, u0 is a linear function of θ which is similar to the case of corner 

negotiation in Section 5.3.3. As ψ increases, u0 becomes nonlinear with θ because 

the beam deformation becomes 3-D and twisting along the beam is nonzero. 

However, u0 is still the preferred control variable because displacement control is 

much simpler than force control. 

3) The surface functions in (5.20) are obtained by multiple variable regression, 

where the functional form is determined such that it is an even function of ψ ( 

because of symmetry) but odd function of θ because when θ > 0, F1 > 0, u0 > 0 

and when θ < 0, F1 < 0, u0 < 0. 

5.5 Summary 

This chapter presents the design concept of a novel magnetic FMN incorporating 

a compliant beam and permanent magnets, and a 3-D model for simulating the deformed 

shape of the compliant beam. Simulation results show that there exist consistent relations 

between the input/output displacements and rotation angle for open-loop control 

implementation in sensor attachment and corner negotiation regardless of gravity 

direction or the critical force for buckling. The theoretical models for sensor attachment 

and corner negotiation are also experimentally validated  . 
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Along with an analytical model for simulating the large deformation of a 

compliant beam in 2D space, a magnetic flexonic mobile node (FMN) incorporating a 

compliant mechanism has been designed to negotiate corners and carry a sensor for 

placing on a ferromagnetic structure. Two illustrative examples of sensor attachment and 

corner negotiation are presented for different constraints for the same mechanical design 

of FMN. Simulation results show that there exist consistent relations between 

input/output displacements and rotation angle for control implementation in sensor 

attachment and corner negotiation regardless of gravity direction. In sensor attachment, a 

nonlinear relation between the front assembly displacement and the sensor displacement 

is valid for different critical forces for buckling which is affected by the working surface 

slope. In corner negotiation, a linear relation can be obtained between the displacement of 

the rear assembly and the rotation angle of the front assembly within the highly nonlinear 

load-displacement behaviors of a compliant beam. However, the gravity affects the 

loading and displacement/rotation angle relation. To set off the beam buckling for the 

sensor attachment, the smaller the surface slope angle, the larger the critical force needed; 

a heavier sensor weight tends to give rise to a larger critical force for slope angle φ45 

while smaller critical force for φ>45. For a desired rotation angle in corner negotiation, a 

larger pushing force is required with a larger angle  between the gravity and the norm of 

the initial plane. The analytical model is validated by an experiment on a cantilever beam 

and the corresponding FE model. Finally, the experimental results of two functionalities 

of sensor attachment and corner negotiation are provided to validate the simulation 

analysis. 
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6  

CHAPTER VI 

 

CONCLUSIONS AND FUTURE WORKS 

6.1 Conclusions 

A Curvature-based Beam Model (CBM) has been rigorously formulated and 

validated for solving 3-D large deformation problems in which a compliant beam plays 

an important role. The following summarizes contributions made in this thesis: 

1) CBM using global coordinates 

The 3-D large deformation formulation based on curvature distinguishes itself 

from other methods, such as FEM, based on displacements and/or rotational angles in 

that the principle of superposition holds even for large rotation; hence, the formulation 

based on curvature is much simpler; and the results can be efficiently computed. 

The advantage of curvature description by formulating all state variables of a 

curved 3-D beam in the global reference frame has been fully explored. The relation 

between the curvature and absolute nodal coordinates of a curved beam is derived. It has 

shown that the curvature characterizes curved beam geometry via three differential 

equations. The CBM is verified by the FEM through the large deformation analysis of 3-

D curved beams under cantilever constraints. 
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2) The generalized bio-joint constraint 

The bio-joint constraint (BJC) has been described as a generalized boundary 

condition for the CBM, which relaxes common assumptions in traditional boundary 

constraints such as fixed, pinned or sliding constraint where none or only one DOF is 

allowed. This generalized constraint is capable to emulate multi-DOF motions of a 

natural biological joint. The BJC is formulated as a contact constraint between two rigid 

bodies approximated locally as two ellipsoids for ease of illustration. Applications to the 

knee joint kinematic and dynamic analysis are discussed in details. 

3) Bio structure modeling 

For the first time, an overall bio structure accounting for both soft tissues and 

bones has been modeled as a multi-body compliant mechanism. By formulating the 

boundary conditions for the CBM as bio-joint constraints, a musculoskeletal model 

characterizes the bone and soft tissue deformation by accounting for the large size 

variation of natural products. Given the large variation of force profiles among 

specimens, the proposed model agrees well with experiment results.  

An application of the musculoskeletal model to wing manipulation is illustrated 

by analyzing the effects of size variations on the required manipulating force and the 

shoulder deformation. This musculoskeletal model can be potentially used to develop 

design criteria to automate the process of de-boning chicken breast-meat. While it is 

written in the context of poultry meat de-boning, the method can be used in other bio-

tissues, joints, and systems. 
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4) Bio inspired robot design 

With the analysis of a bio structure in mind, the modeling method of a CBM can 

be used to design a flexible structure for field robots to emulate the dexterities of bio-

joints. The design concept of incorporating a compliant beam is presented to replace 

traditional pin joint configuration of a two-axle autonomous robot. Possible situations in 

deforming the compliant beam for specific applications in structure health monitoring 

(SHM) are numerically analyzed and experimentally validated. Based on the analysis 

with normalized form of CBM, a compliant beam has been designed for a prototype 

flexonic mobile node (FMN).  

6.2 Future Works 

The analysis of a multi-body system formulated using the CBM with the BJC 

provides a foundation for other research in the area of bioengineering. Future works are 

summarized as followed: 

1) In this thesis, the CBM with the BJC is formulated only for quasi-static cases, 

where the deformation is assumed to accumulate in a very slow speed. In order to 

better understand the dynamic response of bio structures, such as flapping of bird 

wings or fish tails, a complete formulation of the dynamic model is necessary. In 

order to do this, two recommendations are listed: 

a. The BJC has been formulated to facilitate for differentiation in the time 

domain, so it is readily used for kinematic and dynamic analysis. It just 

requires proper expression of the boundary constraints on the beam dynamic 

equations. 
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b. The dynamic form of CBM requires additional inertia terms consisting of 

masses and time derivatives, which transforms the current ODE into a PDE. 

For example, (2.22) would becomes  

2 Fm
t s

 
  

 
x F

q  

where m is the mass per length along the beam axis.  

2) In the view of applications, the CBM can be extended to account for coupling 

effects among multiple physical fields, such as magnetic field or thermal 

dynamics. This is achievable via explicitly determining the distributed force Fq  

and distributed moment Mq  as the quantities in corresponding fields. For 

example, in considering the magnetic effects on structural deformation, Fq  and 

Mq  are the corresponding magnetic force and moment. 

3) The BJC considered in this thesis employs ellipsoids in the modeling, which 

captures the non-uniform shapes of bio joints in general. For specific applications, 

more accurate geometry description rather than the elliptic approximation would 

be required. In this case, the curvature description will be valid for such purposes. 
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A A 

APPENDIX A 

 

DERIVATION OF CURVATURE  

In Chapter 2, both rotational matrix and curvature are used to describe the curved 

shape of a beam axis. Since only three components in a rotational matrix are independent, 

a rotational matrix is mutually interchangeable with a three-component vector of 

curvature. This appendix shows how they are correlated and a theorem will be proved.  

Given any curve in a 3D space, the moving frame along its axis has been given in 

(2.1). Without losing generality, the compact tensor form of (2.1) can be expand into the 

following matrix form: 

 
1 1

2 2

3 3

   
      
   
   

e E

e R E

e E

 (A.1)

Then, taking the derivative with respect to the path length s 

     
1 1 1

T

2 2 2

3 3 3

d dd

ds ds ds

     
           
     
     

e E e
R R

e E R e

e E e

 (A.2)

Then, the curvature K = [k1 k2 k3]
T is defined as  

   
3 2

T

3 1

2 1

0

( ) 0

0

k k
d

skew k k
ds

k k

 
    
  

R
K R  (A.3)

Ordinary differential equations governing R can be expressed in terms of K: 
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   T( )
d

skew
ds


R

K R  (A.4)

Theorem A.1: Given R as any rotational matrix,      Td

ds


R
A R is a skew matrix. 

Proof: For a rotational matrix R, it satisfies the following condition 

        T T
 R R R R I  

where [I] is an identity matrix. 

           

    

T
T T

T

                 

                 0

d d

ds ds

d d

ds ds

  

 



R R
A A R R

R R I  

Hence,    T
 A A is a skew matrix.  □ 

So the curvature K has been introduced in the form of a skew matrix for the 

derivative of the moving frame along the path length s, 

1 1

2 2

3 3

( )
d

skew
ds

   
      
   
   

e e

e K e

e e

 (A.5)

It is clear that K is independent of what referenced frame  iE  (i = 1, 2 and 3) is chosen 

and determined by the geometry of curve via the rotational matrix in (A.3).  
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B  B 

APPENDIX B 

 

MULTIPLE SHOOTING METHOD (MSM)  

The boundary condition problem (BVP) of a 3D compliant beam can be written in 

the following form:  

( , ),     ( (0), (1))s  X f X g X X 0 (B.1)

where X is a vector of the 13 variables; 0 ≤ s ≤ 1; and  g() is the boundary conditions 

specifying the geometrical loading constraints at both ends. The BVP (B.1) is recast as an 

IVP and solved using a MSM [34, 35].  For this, the region [0, 1] is divided into m-1 

sections by m nodes as shown in Figure B.1, where si is the arc length from the root of the 

beam to the ith node; xi
(n) is the initial guesses for the ith section, and the superscript (n) 

denotes the nth guess. 

 

Figure B.1 Multiple shooting method. 

The BVP can then be posed as a set of m first-order non-linear equations (B.2) 

subject to a set of m constraints (B.3) as functions of the initial guesses: 
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( )( , ),     ( ) n
i is s  X f X X x  (B.2)

( ) ( ) ( ) ( )
1 1 2 2 1 1 2

( )

( ) ( ) ( ) ( )
1 1 1 1

( ) ( ) ( ) ( )
1 1

( ) ( ; , )

( ) : :
( ) ( ; , )

( ) ( , )
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Using Newton method, the initial guesses are updated using (A.4): 

1( 1) ( ) ( ) ( )( ) ( ),       0,1,...n n n nD n
     x x C x C x  (B.4)

where DC = ∂C/∂x(n) is a matrix, α is a coefficient for the iteration step size. The iteration 

process of (A.4) stops until C(x(n)) 0 ( or a small tolerance error Errtol) implying that 

the solution is continuous and satisfies the boundary conditions.  The MSM can be 

implemented using the following steps: 

1) Set the initial guess (0) (0) (0) (0)
1 2[ ]mx x x x . 

2) Solve the IVP with X(0) = x(0). 

3) Calculate the residual ||C(x(0))|| and corresponding DC = ∂C/∂x(0). 

4) Update the initial guess by (B.4). 

5) Repeat steps 2~4 (replacing x(0) with x(n)) until ||C(x(n))|| < tolerance error 

Errtol. 
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