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SUMMARY

Terrestrial organisms and robots are tasked with traversing complex environ-

ments in ways that conventional wheeled vehicles are unable to accomplish, and do

so by effectively deforming the appendages of their bodies. Jumping is a common

mode of locomotion for various animals. It is used as a primary mode of locomotion,

to reach higher places, for predation, and also as a survival mechanism. With the

advent of robots designed with inspiration from nature’s excellent jumpers, it is im-

portant to understand the fundamental factors and mechanics that optimize jumping

performance. Animals often amplify their jumping power with effective use of com-

pliant structures by performing catapult jumps, squat jumps and countermovements.

Certain animals utilize a variant of countermovement known as the stutter jump,

where the jump is preceded by a small initial hop. Biologically inspired robots have

taken a cue from nature to produce hopping gaits, catapults and squat jumps, yet

systematic studies of the movement trajectories that maximize jumping performance

are relatively scarce.

This thesis presents a systematic study with a robotic jumping template based

on a 1D variant of the spring-loaded inverted pendulum (SLIP) model of jumping

to uncover the movement strategies for maximum height jumping when a catapult

mechanism is unavailable. While more complex models exist that more closely de-

scribe animal movement, we chose the simple SLIP model, which as of yet has only

been used to describes gaits such as bouncing and running, because it allows us to di-

rectly correlate aspects of jumping performance to underlying characteristics of such

a system such as system resonance. The robot was a mass-spring arrangement with

an actuated mass, which we oscillated sinusoidally. In concert with simulation, we
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systematically varied sinusoidal parameters of the command trajectory for robotic

mass actuation to uncover which values provided the best jump performance. Our

findings agree with a previous model of maximum height jumping which predicted

that the countermovement was better than the squat jump. Specifically, a counter-

movement produced a stutter jump that is optimal at a frequency lower than the

natural frequency, f0, and a squat jump produced a single jump that is comparably

optimal but a faster frequency, which requires more internal power. An analysis of

the dynamical model revealed how optimal lift-off results from non-resonant transient

dynamics.

The following introductory chapter presents an overview of previous work on jump-

ing animals, robots and theoretical models. Chapter II discusses our experimental

approach, including an overview of the mathematical jumping model, methods and

materials as well as an introduction to the two experiments performed. Chapters III

and IV provide a detailed account of the procedure and results of the two experi-

ments examining minimum forcing amplitude and jump height. Chapter V presents

a theoretical analysis of these results, and lastly, Chapter VI presents the conclusions

and future work.
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CHAPTER I

INTRODUCTION

1.1 Motive and Overview

Terrestrial organisms [10][38] as well as robots [72][94][93] run, climb, and jump over

diverse terrain to traverse complex environments in ways that conventional wheeled

vehicles are unable to accomplish [13], and do so by effectively bending their multi-

jointed appendages and bodies. In particular, jumping is a common mode of locomo-

tion for various animals [46][17][99][73][119][1][28] as well as for robots [13][104][98][45].

Jumping is used as a primary mode of locomotion, to reach higher places, and as sur-

vival and predatory behavior [77]. And with the advent of robots taking inspiration

from nature’s excellent jumpers, there is an imperative to understand the fundamental

factors and mechanics that optimize jumping performance.

In animals, size and relative morphological scale of jumping appendages greatly

affect jumping performance [123][33]. Yet power output from jumps is much greater

than the power output animal muscles produce [17][40][19]. This power amplification

comes from elastic energy storage [61], and animals leverage this elasticity through a

variety of jumping strategies such as catapults [46], squat jumps [119] and counter-

movements [74]. Certain animals even utilize a variant of countermovement known

as the stutter jump [80][48], in which the jump is preceded by a small preparatory

hop.

Biologically inspired robots have taken advantage of these different jumping modes

such as catapult jumpers [84][13], hoppers [76][111], and bipedal robots that can

perform squat jumps [86][85]. Instead of making simple robotic templates to un-

cover jumping mechanics, researchers have generally taken an engineering approach
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to tackle the inherent challenges of building jumping and hopping robots [104] and

optimize predefined modes of movement.

This thesis presents a systematic study with a robotic jumping template based

on a simple mathematical model of jumping to uncover the movement strategies for

maximum height jumping when a catapult mechanism is unavailable. There have

been a few mathematical models proposed for maximum height jumping [5][89], both

of which predicted that countermovements perform better than squat jumps in general

[5] which has been specifically shown in humans [89]. Hopping has generally bee n

characterized by the spring loaded inverted pendulum (SLIP) model [97], which is the

basis for most hopping robot designs and is a simpler model than those of maximal

height jumping. The basis for our robot is a 1D variant of the SLIP model, which has

a mass-spring arrangement with an actuated mass, which we actuate sinusoidally.

This model allows the linking of performance metrics to underlying parameters of

such a system such as resonance by exploring a relatively small sine wave parameter

space.

Within this framework, Chapter II presents the experimental approach, Chapters

III and IV provide the procedure and results for two experiments conducted examining

minimum forcing amplitude and jump height, and Chapters V and VI present the

analyses and conclusion. The following three sections of this Chapter provide an

overview of the previous work on jumping animals, jumping robots and theoretical

jumping models.

1.2 Jumping Performance in Biology

1.2.1 Introduction

Jumping is an important behavior in biology. Humans use various jumping styles

in sports. Other animals jump to escape predators and conversely as a predatory

behavior [61][77], to reach higher ground, and even as a primary means of locomotion.
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As such, many animals have become specialized in jumping. Cats, bushbabies, frogs,

kangaroos and a variety of insects are considered to be among the best jumpers.

There has been considerable interest over the years in understanding the mecha-

nisms of jumping that maximize jumping performance in these various animals. What

are the factors that play into the excellent jumping performance [50] in animals? At

the most basic level, jumping involves a transient burst of motion in which the mus-

cles of an animal’s grounded appendages shorten and lengthen, interacting with the

bone and connective tissue to generate a force that propels the body away from the

ground, generating lift. It has been found that an increase in size, relative muscle mass

used for jumping, and relative limb length can all contribute to increased jumping

performance [123][33]. Yet, even with these advantages, it has been found in various

animals that the overall power output produced in a jump is many times greater than

the maximum amount of power that the muscles involved in producing the jump are

capable of providing [17][40][19]. The following sections provide an overview of the

research found in various animals where various scaling factors contribute to jump

performance as well as the universal method contributing to power amplification in

jumping.

We note that there are many metrics used in literature to quantify jumping per-

formance. For example, Wilson et. al. considered take-off velocity, jump distance,

maximum power, average acceleration, and contact time in studying how jumping per-

formance changed with body mass amongst striped marsh frogs [116]. These metrics

scaled differently among different species and groups, and indeed, the jump perfor-

mance metrics vary amongst different studies. In our research, we only considered 1D

vertical jumping. We used jump height as the performance metric, which is directly

related to take-off velocity. In many biological studies, the notion of jump ”ability”

was used, in which, jump height or distance was compared against the animal’s body

size, [123],[99]. A similar nondimensionalization is made later in our analysis in which
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jump height is scaled with forcing amplitude (for one cycle sinusoidal forcing), which

may be analogous to leg length.

Figure 1: Various jumping animals: Felis catus, Galago senegalensis, Craugastor

fitzingeri, Homo sapiens, Petrogale xanthopus, and Pulex irritans. Michael Jordan

photo courtesy of NBA, other images courtesy of Wikipedia.

1.2.2 Effects of Size and Morphology

Organisms that are adept at jumping exist over a large range of sizes, from fleas

to kangaroos. However, when considering what factors affect jumping performance,

body scaling seems to be a natural point to examine. See Figure 2(a) for a plot of

jump heights for animals of different sizes. Animals with overall larger body sizes typ-

ically have large muscle mass and longer length to increase lift off acceleration leading
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to higher jump height. There have been numerous studies in which this scaling effect

has been examined directly within specific animal species. Zug [123], for example,

studied the jumping performance of 84 different species of frogs. The amphibians were

tested in rectangular arenas in the laboratory and their jump distances were recorded.

Within a species, jumping distances increased with body size, characterized by snout-

vent length (head to tail). Similar results were found in Wilson’s study of striped

marsh frogs when comparing differences in mass to various performance metrics, all

of which correlated positively with increases in mass [116]. In a study comparing the

jump performance of 15 species of Anolis lizards, jump distance increased with an

increase in snout-vent length. Demes compared the kinematics of 4 species of Mala-

gasy lemurs of varying body mass [36]. Since the animals were observed jumping in

their natural habitat, jump height or distance was not a systematic measure that was

reported. However, it was observed that acceleration times increased with increases

in body mass.
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Figure 2: Comparing the jump performance of different sized animals. (a) Effective

jump height vs. size. (b) Jumping ability vs. size.

Yet, when considering jumping ability, or jump height relative to body size, the

relationship is inverse to body size (Figure 2(b)). Among six species of Anurans
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(frogs), size was inversely correlated to relative jumping distance [99]. Similarly, Zug

also found that, while absolute jumping distance increased with snout-vent length,

relative jumping ability decreased with snout-vent length [122][123], which suggests

that, to truly increase jumping ability with increase in size, it is not sufficient to

proportionally scale the gross size of an animal. Interestingly, the values related to

this inverse relationship varied widely among different species. Particularly, amongst

different species, there were acute performance differences depending on the species’

natural habitat; arboreal frogs were the best jumpers, and terrestrial ones were the

worst. This perhaps was due to arboreal frogs possibly being morphologically adapted

to jump longer distances between trees. Rand’s findings support this since it found

that there was positive correlation between relative hind limb length and jumping

ability; arboreal frogs had moderately long legs relative to body size and high jumping

ability, whereas the terrestrial frogs had the shortest legs and poorest jumping ability

[99]. Further evidence supporting the effects of morphology on jumping performance

in frogs was found in a set of take-off experiments with 7 Anuran species in which both

relative leg muscle mass and relative hind leg length, which together characterized

contractile potential, correlated positively with take-off velocity [34]; though some

studies found no correlation between hind limb length and jump performance [39][62].

Additionally, amongst the arboreal species, high tree jumpers were found to be worse

jumpers than those that jump on grass reeds. For primates, branch compliance may

be too large to be advantageous in locomotion, and instead increases energy cost of

arboreal locomotion [9]. Similar principals may apply with grass reed dwelling frogs,

requiring them to compensate with increased muscle mass.

The effect of morphology on jump performance has been found in other animals

as well. Both hind limb length and lean extensor muscle mass relative to body

mass have strong positive correlations with take-off velocities in cats [51]. In Anolis

lizards, hind limb length, forelimb length, and tail length all correlated with jumping
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distances in 15 different species [73]. Yet, since there were also strong correlations

in these morphological traits with body size for these species, a phylogenetic and

statistical analysis was performed which found that the evolution of hind limb length

was associated with evolution of jumping ability regardless of the effect of body size.

Yet, even with relatively large appendages and increases in muscle mass, the

power produced by these propulsive muscles do not explain the overall power output

produced by animals during a jump [40]. In fleas, for example, jumps are created

through impulsive forces that have a duration of only 0.75 ms, while the latency in

the muscle is on the order of 3 ms, making it impossible to generate sufficient power

and propel the jump through means of conventional muscle forcing [17]. Similarly,

in locusts, maximum power output of each extensor tibiae muscle is 36 mW, while

the max power output of the jump is about 0.75 W, or a tenfold power amplification

[16]. The Galago senegalensis (bush baby) has an excellent jump capability of 2.25

m or six body lengths. Assuming constant acceleration during push off, Bennett-

Clarke [16] estimated a power output of 2350 W kg−1 for the bush baby. He inferred

that, due to the fact that this value was far higher than typical values for theoretical

maximum powers in muscles (such as 371 W kg−1 in frog hind limb muscles [75]),

power amplification occurred in bush babies [18]. This was later confirmed through

experimental measurements [47]. Thus, many animals must use power amplification

mechanisms to propel their jumps.

1.2.3 Elastic Energy Storage

Power amplification in jumps results from energy storage in elastic elements in the

appendages responsible for jumping. In vertebrates, this elasticity is largely found in

the tendons, which tend to have uniform properties among many mammalian species,

with a nearly constant tangent modulus of elasticity of 1.5 GPa for stresses greater

than 30 MPa [20]. The tangent modulus of elasticity is an estimate of Young’s
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modulus where the stiffness used in the modulus calculation was approximated from

force vs. displacement curves of tensile loading tests on tendons. Tendons have low

energy dissipation. When tendons recoil, they dissipate only 7% of the work done

when stretched as heat [8]. The energy that can be stored from tendons has been well

documented in other animals [82] and was found to be up to 52 J in humans while

jogging [57].

Tendons can have high elasticity. In humans, for example, the main extensor in

the foot has a compliant muscle-tendon complex [57]. Hof’s study used strain gages,

a potentiometer, and a piezo-electric accelerometer to measure moments and angular

displacements on 12 humans that bent their ankles in an ergometer. A muscle-

tendon complex model was considered that identified two elastic components, one in

series (SEC) with the contractile element and one in parallel (PEC). The SEC was

identified as the Achilles tendon. Using this model, the measurements were converted

to stiffness values with respect to moment. The effective stiffness in the complex was

calculated to have an average of 306 Nm rad−1 at a muscle moment of 100 Nm, which

agreed surprisingly well with Hooke’s law estimates using data on Young’s modulus

and cross sectional areas of the Achilles tendon.

The role of elastic energy storage in improving jump performance is one of power

amplification [8]. Muscles are restricted in the amount of power that they can produce,

which is determined by the product of muscle force and shortening speed. As the

shortening speed increases, the force available decreases [55], with the shortening

speed being optimal at around 0.3vmax [117], and since tendons can recoil at a faster

rate than muscles shorten, they can act to amplify power.

This power amplification is evident in dramatic fashion in insects like the flea,

which has a catapult mechanism that slowly coils and tenses elastic material known

as resilin, while a catch mechanism keeps the legs locked in a flexed position until

maximally tensed and then releases all the stored energy at once [17]. This is a
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similar concept to flicking your fingers. Bennett-Clarke found the jump height of a

rabbit flea to be 4.9 cm, or over 30 body lengths, and a human flea (Pulex irritans) of

comparable mass was recorded jumping to a height of 13 cm and considered capable

of up to 20 cm jumps [17], making fleas among the best jumpers in the world in terms

of jumping ability. Similar catapult mechanisms have been found in other insects

such as click beetles, flea beetles, and locusts [42][29][54]. And while frogs do not

have a catch mechanism similar to insects, their own weight is considered to be a

catch mechanism [102]. A frog’s hind limb muscles are uncoupled from whole body

movement, and as such are able to shorten their muscles and pre-stretch their tendons

and store elastic energy before any movement occurs, doing so at a slower rate than

if whole body movement and muscle shortening were coupled [102]. This effective

catapult mechanism in the frog makes its jumping strategy more similar to insects

than to other squat jumping vertebrates.

Other vertebrates, however, have not evolved such catch mechanisms to be able

to release stored elastic energy as a catapult, and must instead rely on specific iner-

tial movement strategies to fully leverage power amplification through elastic energy

storage. A study in 2003 that examined a theoretical model that consisted of a mus-

cle, compliant element and inertial load in series demonstrated how such as a system

could experience power amplification with tendon recoil and is primarily influenced

by the amount of inertial loading [44].

The two most common and considered methods for jumping are countermove-

ments and squat jumps. A countermovement is characterized by starting upright,

and then quickly squatting and pushing upward. A squat jump is characterized by

starting from rest in a squatting position. Alexander developed a theoretical bipedal

model of jumping that predicted that animals that produce insect-like ground forces

(characterized by high simulation ground forces relative to body weight, 58mg, m

for mass and g for gravity) would benefit exclusively from catapult jumping, which
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has been found to be a common method of jumping in insects [5]. In animals that

produce bushbaby (12mg) or human-type ground forces (2.3mg), countermovements

and catapults would both achieve greater jump heights than squat jumps, catapults

more so in bush baby type forces. The countermovement causes elastic energy stor-

age to occur through passive inertial loading during the preparatory phase, which

pre-stretches the muscles and tendons that then recoil and amplify power during the

push-off phase.

Indeed, the performance of countermovements and squat jumps have been com-

pared in humans in a number of studies [69][114][67]. The countermovement always

performs better than the squat jump. In fact, more than twice as much energy is

stored in the tendons during a countermovement than a squat jump [114]. A similar

result was found in a study of jumping in Anolis lizards, in which the species that per-

formed the countermovement produced a greater muscle mass specific power output

than the species that performed a regular squat jump [113]. Many prosimian pri-

mates have also been observed performing countermovements [48][37][36][1] among

which includes the Galago senegalensis (bushbaby). In bushbabies, elastic energy

storage does not only occur during the preparatory phase of the jump, but also dur-

ing the early push-off phase. The energy is then suddenly released at take-off. Thus,

it is suspected that the bush baby performs some combination of a countermovement,

squat jump and catapult [1]. The countermovement is so pervasive among prosimian

primates that it is performed without discrimination of substrate. It was observed

in vertical jumps in both natural environments on compliant branches [36] as well

as in a laboratory setting on rigid force plates [48], and even by clingers that jump

horizontally off of tree trunks to other trunks [37].
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Figure 3: Illustration of the jump sequence of a flying squirrel [63].

Similar principals of elastic energy storage have been used to explain the efficient

hopping gait of various marsupials [22][64][7][23]. A particularly interesting version

of the countermovement that has been observed in some species is a preparatory

hop preceding the countermovement. In our study, we call this movement a stutter

jump. Demes’ study reported this behavior for all four species of lemurs observed

[36]. In Gunther’s study, this was observed in the Galago moholis ’ jumps [48]. The

stutter jump was also observed in flying squirrels, chipmunks and red squirrels prior

to take-off from the edge of a pine board [41][63](see Figure 3). The stutter jump in

the animals was so consistent that it was referred to as a “stereotyped preliminary

hop”. Bush babies may on occasion produce a movement similar to the stutter in
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which a jump occurs “out of previous forward motion”, which, though not clear, likely

suggests a running start, similarly introducing additional momentum to the start of

the countermovement [109]. In comparison of jumping versus steady state hopping in

wallabies, a “moving jump” was utilized by the animal in which a short-lived hopping

gait to the force plate preceded the jump to an elevated platform [80]. The forward

velocity of the hopping gait did not differ between steady hopping and jumping.

Table 1: Various animals and their observed jumping strategies
Animal Jump Types Stutter?

Insects (fleas, click
beetles, locusts, flee

beetles)
[46][17][42][54][29]

Catapult No

Frogs
[99][100][123][33][34][102]

Squat / Catapult No

Anolis Lizards [73][113] Countermovement, Squat No
Cats [119][51] Squat No

Lemurs (Avahi laniger,
Indri indri, Propithecus
diadema, Propithecus
verreauxi) [48][37][36]

Countermovement Yes

Senegal Bushbabies
[109][1]

Countermovement /
Squat / Catapult

Yes

Mohol Bushbabies [48] Countermovement Yes
Humans [56][67][35]
[28][48][114][69][58]

Countermovement, Squat Yes (Volleyball)

Rodents (Chipmunk, Red
Squirrel, Flying Squirrel)

[63][41]

Countermovement Yes

Yellow footed rock
wallabies [80]

Hop Yes

In humans, drop jumps, which have similar qualities to the stutter jump, have

been compared with the performance of regular countermovements. The drop jump

is a countermovement preceded by a drop from a slightly higher platform. In general,

the performance of a drop jump is comparable to the countermovement [28], and is

better than the squat jump [67]. But whether the drop is actually any better than
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regular countermovements is still under debate and seems to vary among men and

women as well as males of varying athletic ability[67]. In volleyball, two different

jumping techniques are used: a “hop jump”, which is a quicker stutter jump while

using both feet at the same time, and a step close approach, which is more of a skip,

with one foot after the other. Both jumping techniques produced comparable jump

heights, though the hop jump, which is the quicker and more impulsive approach,

required greater muscle effort [35]. Another drop jump study uncovered how a proper

prelanding angular velocity of the knee joint in which a larger knee flexion just before

landing would produce a bouncing type drop with greater take-off velocity [58] (see

Figure 4). These findings seem to suggest that the movements involved in the stutter

jump must be precisely timed to achieve a mechanical and energetic advantage over

a regular countermovement.

Figure 4: Illustration of two type of drop jumps [58].
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1.3 Jumping Robots

1.3.1 Biological Inspiration

In robotics, biologically inspired designs have resulted in machines that are better

able to traverse diverse terrain than wheeled vehicles. Animals are regularly tasked

with maneuvering in highly complex environments, and it can be argued that they

have evolved to become adapted to these challenging environments in ways that con-

ventional technologies cannot rival. Particularly, wheeled vehicles are the accepted

standard of terrestrial locomotion using conventional technology. It is a method that

is effective at traversing smooth terrain that is not characterized by jagged changes

in altitude, but can fail when confronted with large obstacles. Armour et al [13]

and Sayyad et al [104] provide extensive reviews of robots that researchers created

which utilize hopping and jumping strategies. Sayyad et al highlight the advantages

as well as the challenges with using hopping gates versus wheeled solutions in robotic

locomotion. They argue that legged locomotion can be superior in that it can allow

for active body suspension, isolated footholds, and generally deal less damage and

obstruction to the environment when compared with wheeled vehicles [104]. Most

importantly, however, legged robots are capable of more complex maneuvers and

thus have increased adaptability to uneven and complex terrain.
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(a) (b) (c)

(d)(d) (e)

Figure 5: Biologically inspired robots. (a) Uniroo [120]. (b) Jollbot and (c) Glumper

[13]. (d)(e) Arm swinging robot [88].

Researchers have developed interesting robotic interpretations of animal jumping

and hopping mechanisms. The Uniroo was a 3-leg-link hopping robot based on kanga-

roo locomotion, with a soleus spring arrangement [120] (Figure 5(a)). Using hydraulic

actuators, the hopper was able to achieve over 40 hops in a given trial. Armour and

researchers developed two jumping robots that utilized the catapult jumping mecha-

nism: Glumper and Jollbot [13] (Figure 5(b) and (c)). As the name would suggest,

the Jollbot, inspired not only by the catapult jumping mechanisms seen in various

insects and frogs, but also the rolling ability of certain organisms like the web-toed
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salamander and tumbleweed, used a combination of jumping and rolling for locomo-

tion, in which the rolling mechanism also worked to orient the direction and angle of

jumping. The Glumper, inspired by the gliding capabilities of flying squirrels, used

four legs surrounding the top and bottom of its exterior body with two leg links each

to jump using a catapult mechanism and subsequently glides using the air resistance

caused but the sails attached to the legs. Glumper performed better than the Jollbot,

jumping nearly 2 m high. One interesting adaptation to hopping robots was the ad-

dition of two rotating symmetric arms with masses attached, similar to how humans

use arm swing to improve jump height [88] (Figure 5(d)). The robot was able to

perform high jumps while hopping in place.

1.3.2 An Engineer’s Perspective

Legged robots that can adapt to complex environments also have more complex dy-

namics than wheeled vehicles, with distinct phases and gaits creating nonlinear be-

havior. This can pose a challenge to engineers in controlling these robots. Also,

wheeled vehicles can carry larger payloads relative to their weight, and in legged

robots, greater carrying loads requires larger actuators which in turn increases the

carrying load. However, while there may generally be increases in the complexity in

legged robots versus wheeled vehicles, the hopper construct by NASA’s Jet Propulsion

Laboratory (JPL) was developed with the premise that wheeled vehicles for celestial

exploration can already have a large number of actuators and linkages, increasing

complexity of control and chance of failure [49]. The resulting robot was able to

reduce the number of actuators and jump via a catapult mechanism using a six bar

linkage, and even had self-righting capabilities after landing.
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(a) (b)

Figure 6: Hopping robots of varying complexity. (a) Kenken [60]. (b) Sandia Hopper

[45]

However, posed with these challenges intrinsic to legged locomotion, the focus in

hopping robotics has typically been from a roboticist engineering perspective. The

intent has not only been to apply a biologically observed physical principal of jumping

or hopping, but also of improving designs by tackling these challenges. For example,

one of the initial improvements to the design of hopping robots was to change actu-

ation technologies from pneumatic [98] and hydraulic [120] to electric actuators such

as small DC electric motors [2] chosen as the cleaner, safer and less expensive alter-

native while still having high torque-weight ratio [104]. Various researchers have also

explored the complexity with which to realize hopping behavior. Such an increase in

complexity can be seen in Kenken [60], which was a hopping robot based an articu-

lated 3-link leg, seen in nature (see Figure 6(a)). Hyon and researchers argued that

there are practical advantages to an articulated leg such as large clearance between

foot and ground, and while there is added complexity compared to a telescopic leg,

the structure is simple to build, since it connects two link ends with a rotary joint.

Hoppers such as Kenken as well as Uniroo [120], Zhang’s Uniped [121], and Berke-

meier and Desai’s robot had more leg links than most other hoppers [21]. However,
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complexity, does not necessarily correlate to performance, as evidenced by Sandias

simple telescopic hopper, which was capable of hopping 20 feet in height and about

100 hops on one tank of fuel [45](Figure 6(b)).

Figure 7: Self-righting sequence of the JPL Hopper V2 [49].

Researchers have strived to make robots that are functional and autonomous.

These robots are not particularly made as experimental platforms to learn the fun-

damental physics behind animal jumping. Thus, relatively few robot jumpers are

treated as simple experiments constrained to only move in the vertical direction

[88][83][111][95]. Jumping robots typically are allowed to move in 3D [13][105][86],

or 2D with a planarizer [91][121][76][21][30]. Even the simplest one-legged, one-link,

hoppers have balancing strategies both active [98] and passive [101]. And some robots

even have self-righting or orienting capabilities [13][49](See Figure 7).
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1.3.3 Robotic Jumping Strategies

(a) (b) (c)

Figure 8: Robots with various jumping methods. (a) Hopping in ARL Monopod II

[2]. (b) Catapult in the miniature 7g robot [68]. (c) Squat jump in Niiyama’s bipedal

robot [85].

Figure 9: Jump height versus size of various catapulting robots compared with ani-

mals [13]
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The jumping strategies employed in robots are generally classified as hopping, cat-

apult or squat jump, the last two of which are forms of maximum height jumping

(Figure 8). There are many designs that use the catapult mechanisms often seen

in insects [107][110][13][105][49][12][84][68]. The jump heights of many of these cat-

apulting robots have been compared with animals (see Figure 9) and have a similar

positive correlation with body size as in Figure 1. The large majority of the jump-

ing robots that exist are hoppers (see Table 2). Hopping is a qualitatively different

mode of locomotion than maximum height jumping, since maximum height jumping

produces much higher power output than in hopping gaits [80]. While the work of

this thesis focuses on maximal height jumping, it is important to highlight hopping

robots, since the hopping gait stores tendon elastic energy through body movements

like the squat jump and countermovement. Additionally, hopping robots tend to have

simpler and smaller designs than the squat jumping robots, which can be bipedal and

have as many as 4 leg links, based on animals such as humans and dogs [85][86][14].

These simple designs can be beneficial to consider for an experimental study on the

fundamentals of jumping.

1.4 Theoretical jumping models

1.4.1 Introduction

Researchers have proposed a variety of theoretical models used to describe and un-

derstand different kinds of jumping such as hops and vertical jumps. Mathematical

models have been used to express the fundamental locomotive and structural features

of jumping. These models range in complexity. Simple models can often explain

the underlying properties of jumping in specific manners using fundamental physical

principals with a reduced number of parameters. These models make numerous as-

sumptions of the leg structure and physics involved, and as such constrain the models
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Table 2: Various robots and their jumping strategies

Jumper

Number
of Leg
Links

Actuator Type Jump Type

Balancing Robot [78] 1 Electric Solenoid Hopping
Raibert Hopper [98] 1 Hydraulic Hopping
Prosser and Kam [95] 1 Electric Hopping

Mehrandezh [83] 1 Electric Hopping
Okubo [88] 1 Electric Hop in Place

Ringrose Monopod
[101]

1 Electric Hopping

Bow-Leg [30] 1 Electric Hopping
ARL Monopod II [2] 1 Electric Hopping
Wei Monopod [115] 1 Electric Hopping

Sandia [45] 1 Internal Combustion Hopping
Peck [92] 1 Electric Hopping

Pendulum [53] 1 Electric Momentum Based (arm
swing)

Takeuchi [108] 1 Pneumatic Hopping
Uno [111] 1 Electric Hopping
Scout [107] 1 Electric Catapult
Akinfiev [3] 1 Electric Hopping
Dashpod [32] 1 Pneumatic Hopping

Slip Hopper [103] 1 Electric Hopping
Rescue Bot [110] 1 Pneumatic and

Solenoid
Catapult

Jollbot [13] 1 Electric Catapult

Grillo [105] 1 Electric Catapult
Lee Monopod [71] 2 Hydraulic Hopping
Papantoniou [91] 2 Electric Hopping

Olie [76] 2 Electric Hopping
JPL Hopper V2 [49] 2 Electric Catapult

Luxo [4] 2 Electric Hopping
Allison Monopod [12] 2 Electric Catapult

Mini Whegs [84] 2 Electric Catapult
Airhopper [65] 2 Pneumatic Hopping

Acrobat-Like [70] 2 Pneumatic Hopping
Ohashi [87] 2 Electric Hopping
Glumper [13] 2 Electric Catapult

Miniature Hopper [68] 2 Electric Catapult
Uniroo [120] 3 Hydraulic Hopping

Zhang Uniped [121] 3 Electric Hopping
Berkemeier [21] 3 Electric Hopping
KenKen [60] 3 Hydraulic Hopping
Niiyama [85] 3 Pneumatic Squat Jump

Mowgli [86] 4 Electro-pneumatic Squat Jump
Biarticular Bot [14] 4 Electric Squat Jump
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to describe a particular type of jumping. Such models are not only useful in describ-

ing locomotion in animals, but also serve to simplify control of biologically inspired

robots [26]. For example, the spring-mass model used to describe running and hop-

ping in animals can be utilized in robotics such that the running gate stabilizes in the

presence of disturbances without having to actually sense and actively adjust for such

disturbances [26]. Simple models are often called templates (Figure 10) and can be

used in more elaborate fashion by treating them as individual features of a body such

as legs and leg links to improve modeling accuracy [43]. More complex models have

also been studied to solve problems that cannot be considered with a single telescopic

leg or 2-link articulation [6] and have also been used to understand the role of specific

muscle groups [89][112].

Figure 10: Illustration of template models [43]

Physical models can also be useful in not only verifying mathematical models,

but also in performing experiments that are not feasible in animals [6]. For example,

McGeer verified the predictions of his mathematical model of bipedal walking by

constructing a physical passive walker, which showed that, when put on a slope
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the model would enter a stable un-actuated walking gait [79]. Most models used in

jumping are math models, though the mass-spring model has been used extensively in

robotics to develop hopping robots as shown in the previous chapter [104]. However,

the robots are not generally treated as physical or robotic models, rather more as

functional robots.

1.4.2 Hopping

To describe hopping in animals, the model most commonly used is the planar spring-

mass model, or the spring-loaded inverted pendulum (SLIP). This model is comprised

of a point mass connected to a massless spring in series (Figure 11). Raibert was

among the first researchers to consider the SLIP model for hopping and developed

theoretical models and prototype hopping robots [97] that inspired a plethora of

future one-legged robots [104] as well as further research into the SLIP model. To

analytically study Raibert’s SLIP hopper, Koditschek and Bühler [66] constrained the

planar SLIP model to the vertical dimension and considered the task of maintaining

a stable and recurring hopping height through actuation. They analyzed the model

using both a linear and a nonlinear spring. Both models clearly demonstrated unique

solutions for a stable state in which the domain of attraction is nearly every state.

Interestingly, the nonlinear spring model also produced a period-two “limping” gate.

Figure 11: Illustration of the SLIP model [25]
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Blickhan used a similar model to study dynamics of both hopping in place as

well as hopping with forward motion [24]. He was able to characterize hopping and

running based on how measures such as step frequency, contact time, ground reaction

forces, and specific power of such gates changed with forward speed. In hopping, the

stride frequency remained constant and within a narrow band regardless of forward

speed, whereas running gaits have increased stride frequency with speed. Addition-

ally, ground forces were greater during hopping than in running, and there is a positive

trend of ground force with velocity. The model showed that even with active forces,

bouncing and running systems behave in a similar manner to a simple mass-spring

arrangement.

(a)

(b)

(c)

Figure 12: Theoretical hopping models. (a) SLIP as interpreted by McMahon and

Cheng [81]. (b) Running biped [79]

McMahon and Cheng also presented a simple spring mass model of running and

hopping in animals and made predictions of how stiffness coupled with speed, com-

paring their predictions with animal data [81]. In previous studies, Cavagna et al

argued that, during running, elastic energy was stored during mid-step in stretched

tendons [31]. With this principle in mind, a model consisting of a mass with a spring

leg was presented (see Figure 12(a)) that bounced on the ground according the initial
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conditions of the system and stiffness of the leg. Two versions of the model were con-

sidered, one in which the model hopped in place, and another in which the model had

a forward velocity. From these two models, two effective stiffnesses were calculated,

the actual leg or spring stiffness, kleg, and the vertical stiffness, kvert, where kvert was

a fraction of the vertical component of the change in ground reaction force and the

change vertical displacement. When hopping in place, both values were the same,

while when hopping or running forward, the leg lands at an angle, θ0, and kvert > kleg

for any finite θ0 not equal to 0. The model was iteratively integrated to find the

required kleg to have a stable hopping gate. Given the parameters for initial forward

and vertical velocity and θ0, kleg needed to create a gait in which final velocities and

θ exiting the ground phase were identical to initial conditions. The parameter space

was swept within values reasonable for animal comparison. When compared with

animal data of dogs, a rhea and a human, assuming constant leg stiffness, the model

accurately described how stride length and step length increased with speed in bipeds

and quadrupeds.

A number of researchers have used and elaborated on the SLIP model to compare

the 1-legged SLIP model with multi-legged organisms. McGeer elaborated on the

simple mass spring system for bipedal running by adapting the model with two legs

(Figure 12(b)), each with a mass and spring in series and a curved foot connected to

the bottom end of the springs [79]. These legs were connected at a hip joint with a

point mass and a torsional spring. Running was a passive mode in this model. Blick-

han and Full compared the planar spring-mass monopode model to the dynamics

of the hop, trot and running gates in a diverse cross-section of animals with varying

numbers of legs [25], and found that the simple model provided a good approximation

of those dynamics. Increasing pairs of legs acting simultaneously increased the whole

body stiffness in the virtual monopode, increasing natural frequency and stride fre-

quency. Raibert considered the control algorithms for the one-legged SLIP model for
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generalizing to multi-legged systems [96]. Four-legged gaits that step with one foot

at a time could use the single-leg SLIP algorithms for each leg. Gaits that use two

feet simultaneously such as trots, paces, and bounds were represented with a virtual

leg.

1.4.3 Maximal Jumping

This section discusses all non-hopping jumping models in which the goal of the jump

is maximal height or distance. Many of the models focus on various types of athletic

jumps performed by humans, and are all generally more complex than the SLIP model

used for hopping. For example, Yeadon’s model of the human body was considerably

more complex than the telescoping SLIP model [118]. This model was used to explain

the twisting and somersault moves in divers and trampolinist athletes. It comprised

of 11 segments and 10 joints, requiring 66 equations of motion. Hatze presented

another complex 2D human model to study long jumping composed of 17 segments

controlled by 46 major muscle groups [52]. The control scheme for long-jumping was

optimized in this study. A high jumping model [59] was also developed which, in this

case, was actually fairly simple. The goal was to find the minimum kinetic energy

requirement to clear a given height in which every point on the body clears the height.

The model was a long rectangular rod (Figure 13(a)), mimicking the general length

characteristics of a human body. The result of this study was an expression that

described the height cleared by an object based on its initial conditions as well as its

shape size and inertial parameters. They found that, for a given initial amount of

energy, the maximum height cleared would be less for objects with larger moments

of inertia.
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(a) (b)

Figure 13: Theoretical high jumping models. (a) Hubbard and Trinkle [59]. (b)

Alexander [11]

Alexander introduced a model of jumping that was used to study both long jumps

and high jumps [11]. The model consisted of a rigid trunk connected to a two-segment

leg that bends at the knee (Figure 13(b)). He used Hill-type muscles [55] for actuation

of extensor muscles that were in series with compliant tendons. With this model, he

was able make predictions for the optimal movement methods for take-off to achieve

both high jumps and long jumps. High jumpers must approach the jump with mod-

erate speed and land the take-off foot at 45◦ to the horizontal, while long jumpers

should approach their jump at the highest speed possible at a steeper angle. Seyfarth

et al expanded upon Alexander’s model by incorporating a more realistic version of

the muscle-tendon complex for the knee extensor muscle [106]. The muscle had in-

series tendon compliance as well as compliance in parallel to the muscle actuation.

And the muscle itself had the Hill-type force-velocity relationship in addition to ec-

centric forces, or forces due lengthening contraction that work to decelerate a moving

joint. The performance of the jumping benefited from the enhancement of eccentric

forcing and was in agreement with experimental jumping performances.
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(a) (b) (c) (d) (e)

Figure 14: Theoretical model of standing bipedal jumps [5]. (a) Two-link model.

(b) Three-link model. Comparison of different jump strategies with (c) human-like,

(d) bushbaby-like and (e) insect-like isometric forces.

Alexander also developed a model to study the performance of various types of

standing jumps [5]. In this relatively simple model, a main body mass was connected

to two symmetric legs at the hips (Figure 14(a),(b)). Alexander considered both two-

link and three-link legs. As in the high jumping model, Hill-type muscles were used

with series compliant springs. The parameters chosen resembled values in animals

ranging in size from locusts, to bush babies to humans. Parameters such as relative leg

masses also needed to be considered. Alexander varied parameters such as compliance

and muscle-shortening speed as well as legs with 2 and 3 links. Chief among the

results of this study was the comparison of the jumping performance using different

jump strategies in animals that produce insect-like forces, bushbaby-like forces and

human-like forces (Figure 14(c)-(e)). Amongst all animals, the squat jump was the

worst jump regardless of compliance value. For animals that produce insect-like

forces, the catapult was the best overall jump. For human-like forces, catapult and

countermovement performed comparably. Animals that produce bushbaby like forces

benefit the most from catapults, then countermovements. It has been suspected that

the Senegal bushbaby performs a combination of catapult, countermovement and

squat to produce its jump [1].
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(a) (b)

Figure 15: Maximum height jumping model [89]. (a) Schematic of 4-link jumping

model. (b) Schematic of muscle-tendon complex model.

Pandy’s model [89] for maximum height jumping is more realistic than Alexander’s

model. The model is planar, consisting of 4 articulated segments driven by 8 skeletal

muscles modeled by Hill-type force laws with series and parallel elasticity and elastic

tendons (Figure 15). The purpose of this study was to use numerical methods to find

an optimal control method for maximum height jumping. The movement strategy

was found to be a countermovement, although the countermovement was minimal and

was nearly a squat jump, unlike in experimental human jumping results in which the

countermovement was more pronounced [90]. Pandy and researchers hypothesized

that this incongruence was because the model could not produce strong enough hip

moments. A similar model was used by Soest et al [112] to understand the role of

the biarticularity of the gastrocnemius muscle (GAS) in maximum height jumping.

Bobbert used this model to understand how the elasticity of series elastic elements

(SEEs) in the triceps surae affected the performance of maximum height jumping

[27]. He found that longer more compliant tendons allowed for greater power output

and thus greater jump height.
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CHAPTER II

EXPERIMENTAL APPROACH

2.1 Philosophy of Approach

We performed a detailed study of a robotic template based on a simple jumping model

to examine the effects of movement strategy on jumping performance. This model is

a 1D mass-spring system (Figure 16(a)) with an actuated mass, similar to the SLIP

template used in modeling hopping and running. The system was actuated through

the control of the position of the center of mass of the main body, xa, relative to the

position of the bottom of the thrust rod, xp. We did not assume that the thrust rod

was massless. We derived equations for the balance of forces in the actuated mass and

leg from their respective free body diagrams (Figure 16(b,c)) as F−mag = (ẍa+ẍp)ma

and −F −mpg+α(−kxp−cẋp) = ẍpmp, where k, c, g, mp and ma are spring stiffness,

spring damping, gravity, rod mass and actuator mass, respectively. The constant, α, is

a piece-wise constraint that determines whether or not to consider spring and damper

forces according to the aerial and ground phases such that, α = 1 when xp < 0, and

α = 0 when xp ≥ 0. Combining these force balance equations and simplifying, the

equation of motion for this system can be written as:

ẍp = −ẍa
ma

m
− α

(
k

m
xp +

c

m
ẋp

)
− g, (1)

where m is the total mass. The origin position of the thrust rod, xp = 0, signifies

when the spring is at its free length. Since there is no mass on the bottom of the

spring foot, the spring can only compress and will be uncompressed when airborne.
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Figure 16: Diagram of the theoretical model. (a) Overall model. Free body diagrams

of the (b) actuated mass and (c) leg.

This simple model, which as of yet has only been used to examine steady state

gaits such as hopping, allows us to directly correlate aspects of jumping performance

to characteristics of such a system, such as overall system resonance. Elastic energy

storage allows animals to amplify output power of their jumps. This principle of

elastic power amplification has been leveraged in robotics to engineering hopping and

squat jumping robots. Thus, the potential benefits of the results of our study are

threefold. First, while a more detailed model of jumping in animals would provide

a more accurate description, we can use a simple model to form hypotheses of the
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factors that determine jumping strategies in different size animals. Second, hopping

robots are generally designed according to the SLIP model, and can thus directly

apply the findings of our work to perform maximal height jumps. Lastly, the control

schemes for more sophisticated bipedal robots may find guidance from our results.

2.2 Apparatus

The robot consisted of a linear motor actuator (Dunkermotoren ServoTube STA11)

(see Figure 17(c)) with a series spring rigidly attached to the bottom end of the

actuator’s lightweight thrust rod (Figure 17). The ServoTube STA11 was a linear

actuator that provided a linear force proportional to the current delivered and the

magnetic field. Similar to rotational electric motors, the linear motor had a stator and

a rotor, except in the linear motor configuration, the stator and rotor were unrolled

to produce a linear force instead of a torque. In the STA11, the thrust rod acted as

the stator, encasing rare-earth magnets, and the exterior case constituted the rotor

that received current to produce electromagnetic fields. The motor included encoders

to allow for feedback control of the rotor’s position relative to the thrust rod.

The actuator was mounted to an air bearing that allowed for one-dimensional and

nearly frictionless motion. However, attaching the carriage of the air bearing added

a significant load to the weight of the robot, such that moving the actuator along

the thrust rod, and maintaining its position required more power and would heat the

motor and amplifier in a matter of seconds when the robot was oriented vertically.

To mitigate these effects, the gravitational load was reduced to 0.276g by inclining

the bearing at θ = 75◦ relative to the vertical axis.
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Figure 17: The robot apparatus. (a) Diagram of robotic apparatus, robot was

declined to θ = 75◦ to reduce motor strain from force of gravity. (b) Picture of robot

setup. (c) Close up of the Dunkermotoren ServoTube STA11 motor, image courtesy

of Dunkermotoren.

To detect lift-off, we attached a continuity sensor to the bottom end of the spring.

The sensor consisted of wire coiled around the bottom of the spring and wire connected

the metal base that the robot jumped on. These wires were connected to a USB DAQ
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board (National Instruments NI-USB-6009) that supplied a 2.5 V load and measured

the voltage of the circuit. When the spring left the ground and disconnected from

the metal base, an open circuit was created, causing a change in voltage. The sensor

operated at 1000 Hz, allowing the detection of metrics such as time to lift-off from

the onset of motor activation and time of flight to 1 msec.

Time of flight was used to measure jump height, derived from the equations of

projectile trajectory. The vertical position trajectory in time, x(t), of an airborne

object is x(t) = x0 + ẋ0t + 0.5at2, where the initial position is x0 = 0, and the

acceleration, a, is gravity, −g. The velocity of the object at maximum height occurring

at time, th, is ẋ(th) = ẋ0 − gth = 0. Thus, the initial velocity, ẋ0 = gth, can

be substituted into the position equation, which is at maximum height at time, th,

x(th) = h = gt2h − 0.5gt2h. Since the time at maximum height, th, is half of the

total flight time, tf , the equation of jump height can be simplified and expressed as

h = 1
8
gt2f .

The lift-off sensor, motor control as well as video tracking of a white ball were

coordinated through computer with various LabView programs (Figure 18(a)). The

motor had feedback control through an Accelnet amplifier (Figure 18(b)). A user-

defined position could be commanded with a trajectory method supplied by Copley

Controls such as a profile trajectory or a smooth trajectory. We were also able to

directly control the trajectory by supplying the amplifier with a list of time step dura-

tions, positions and velocities. We used this method to generate sine wave trajectories

of the form xa = A sin(2πft+ φ).
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Figure 18: Motor Control and Data Acquisition. (a) Schematic of data communica-

tion to and from computer. Labview logo courtesy of National Instruments (b) High

level block diagram of feedback motor control loop

We controlled the motor position with proportional feedback and feed forward

gains for position and velocity that determined the command current sent to the

motor. Most of the gain values supplied were sufficient to control the motor trajectory

with the exception of the position proportional gain, which was tuned. Figure 19(a)

illustrates the commanded versus actual positions as collected from the amplifier for

a relevant range of forcing frequencies. Reducing the value of the position feedback

gain to 6% of the value for optimal control damped the entire system, which allowed

for much faster automation of experiments by instantly eliminating spring vibrations

after a run of a particular jumping experiment.
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Figure 19: Controllability and data collection. (a) Commanded vs. actual relative

actuator position xa as measured from encoders. The motor was controllable for a

wide range of forcing frequencies. (b) Actuator position xa and video tracked position

of the thrust rod xp, and the lift-off sensor voltage with a sinusoidal forcing amplitude

of A = 0.30 mm in which the robot lifts off.

The camera used for video tracking was an Allied Vision Technologies Pike camera

with a 1394b firewire connection to the computer, capable of 200 FPS video for real-

time tracking. To track the 15 mm diameter white plastic ball attached to the thrust

rod, the initial search window was established before an experiment by selecting a

rectangle around the ball in an initial test image (Figure 20). A routine programmed
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in Labview would then determine the centroid location of the ball in a black and white

threshold image. For each successive frame of tracking, the software uses the previous

frames centroid location to determine the center of the search window. Oscillations

smaller than 30 microns were detected.

(a) (b)

Figure 20: Sample video tracking image. (a) Raw image taken for calibration. (b)

Sample threshold image. Green rectangle indicates initial tracking window; green

circle indicates white space centroid location.
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An example of the coordination of video-tracking, lift-off sensing, and motor con-

trol is illustrated in Figure 19(b). Lift-off is detected when there is a drop in the

voltage of the continuity sensor. Video tracking was also used to characterize the

damping of the spring (Figure 21(b)). From rest, with the relative motor position

remaining constant, the robot was lightly excited by a slight tap while on the ground,

and the high-speed camera (Allied Vision Technologies) captured the resulting free

spring vibrations by tracking a white ball at the top of the thrust rod with software

generated in LabView. Camera tracking was also used to determine the coefficient of

restitution (0.8 ± 0.06) from ground collisions.
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Figure 21: Measuring spring stiffness and damping. (a) Force vs. position data

of spring compression. Stiffness was found to be k = 5760.6 N/m. (b) Thrust rod

position, xp, during free spring oscillations vs. time. Position re-centered about zero

to determine decay equation of oscillation peaks, where ω0 =
√
k/m, and damping

ratio ζ = 0.0083.

We found the damping ratio to be ζ = 0.0083 by determining the exponential

decay of the oscillation peaks. The natural frequency, ω0 =
√
k/m or f0 =

√
k/m

2π
, was

determined by the overall mass, m = 1.178 kg, and the spring stiffness, k = 5760.6

N/m, which was determined from force vs. displacement measurements taken by

compressing the spring with 6-axis robot arm fitted with a force sensor (Figure 21(a)).
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Table 3: Robot Properties
Property Units Value
Total Mass, m kg 1.178
Motor Mass, ma kg 1.003
Rod Mass, mp kg 0.175
Stiffness, k N/m 5760.6
Damping Ratio, ζ - 0.0083
Damping Coefficient, c Ns/m 1.368
Natural Frequency, f0 Hz 11.130
Resonant Frequency, fr Hz 11.129

Since the damping ratio is so low, the damping coefficient, c = 2ζ
√
mk, was also low,

making the resonant frequency [15] of the mass-spring system, fr = f0

√
1− c2

2mk
,

nearly identical to the natural frequency (Table 3).

2.3 Overview of Experiments

In investigating maximum height jumping performance, we performed two experi-

ments. In both experiments, we commanded the motor to start from rest and then

move with a sine wave position trajectory, xp = A sin(2πft + φ), for a specific num-

ber of forcing cycles, N . The first experiment was to find the minimum pumping

amplitude, Amin, required to achieve lift-off for an array of sinusoidal parameters.

For a selection of different phase offsets, φ, and values of N , as well as a fine sweep

of forcing frequency, f , we found the minimum amplitude, Amin, required to detect

lift-off. The second experiment was to measure jump height for a sweep of f and φ

at A = 4 mm and N = 1 cycle.

The following two chapters examine each of these two experiments in detail. Each

chapter gives a more in-depth description of the experimental procedure and presents

the results.
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CHAPTER III

MINIMUM FORCING AMPLITUDE

3.1 Procedure

This first experiment was executed during the beginning exploratory phase of the

jumping robot project in which we were examining how to quantify jumping perfor-

mance in relation to different sine wave parameters. This experiment examined the

performance of a jump up to the point of lift-off. For a given frequency, f , phase

offset, φ, and number of forcing cycles, N , we determined the minimum amplitude,

Amin, required to achieve lift-off. The robot started from rest at an initial relative

position, xa = A sin(φ), and the motor was commanded with a sine wave trajectory

with set parameters, A, f and φ, for a total of N cycles. After N cycles, with ẋa = 0,

we used the lift-off sensor to determine if lift-off occurred at any point. If no lift-off

was detected, we selected a higher A for the next run, and vice-versa for when lift-off

was detected. We iteratively repeated this procedure in the form of a binary search

algorithm that determined Amin to within 0.00625 mm, the resolution of the actuator

encoders. We determined Amin for a range of values of f from 3 to 16 Hz in steps of

0.125 Hz, such that Amin vs. f could be plotted and an optimal f could be deter-

mined based on the frequency that produced the smallest Amin. A total of 8 plots of

Amin(f) were generated for N = 1 and 5 cycles, at φ = 0, π/2, 3π/4, and π radians

(Figure 23).
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px

Time to lift-off

Figure 22: Time to lift-off illustration.

We used a different approach for the experiment in which the time to lift-off was

measured. For a given set of sine wave parameters, the motor oscillated for 100 cycles,

or until lift-off of was detected, and the time to lift-off was recorded in cycles (Figure

22). At φ = π and 3π/2, we determined cycles to lift-off for over 30,000 combinations

of (A,f) (Figure 24).
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3.2 Results

4 8 120

2

4 8 12 16

0

2

0

2

0

2

4

frequency, f (Hz)

am
pl

itu
de

, A
 (m

m
)

N = 1 N = 5

2π/=φ

0=φ

4π/3=φ

π=φ

) :t(ax

rf

no lift-off

lift-off

Figure 23: Minimum forcing amplitude. Left and middle columns are plots in the

A− f plane that indicate regions lift-off (light blue) and no lift-off (black) when the

robot is forced for N = 1 cycle (left column) and N = 5 cycles (middle column) at

varying phase offsets, φ, indicated by row in the right column. Vertical dashed lines

indicate resonant frequency, fr.

Figure 23 displays the results of the minimum forcing amplitude experiment. If

we force the motor for 5 cycles, the optimal f to achieve lift-off was effectively fr.
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However, if the motor was only allowed to oscillate for 1 cycle, then the optimal

frequency to achieve lift-off was generally not the resonant frequency and varied with

initial phase offset.

 

 

4 6 8 10 12 14 16

1

2

3

4

5

6

 

 

4 6 8 10 12 14 16

1

2

3

4

5

frequency,  f  (Hz)

am
pl

itu
de

,  
A 

(m
m

) lift-off tim
e (cycles)

rf

π=φ 2π/= 3φ

Figure 24: Time to lift-off. Colormap in A− f plane indicates the number of forcing

cycles required to achieve lift-off when forced with a starting phase offset, φ, of π (left

figure) and 3π/2, right figure.

Similarly, measuring lift-off time at different amplitudes and frequencies showed

that optimal frequency for lift-off quickly became dependant on φ for lift-off times

lower than 2 cycles (Figure 24). It should be noted that, for the time to lift-off data

presented in Figure 24, we applied a top threshold of 5 cycles to show good color

contrast, since the lift-off times quickly reached 100 cycles at amplitudes below the 5

cycle contour.

Interestingly, the dependence of optimal frequency on φ became even more pro-

nounced for lift-off times less than 1 cycle. If the robot waited for multiple cycles of

forcing to achieve lift-off, any φ could be used and resonance was fully leveraged by

oscillating the motor at fr at a very low amplitude. However, it is arguable that the

purpose of a jump is not simply to achieve lift-off, but to achieve lift-off quickly or

45



with a fast take-off velocity to achieve high jump height. Since achieving high jump

heights likely requires amplitudes and frequencies that produce transient time-scale

lift-off times (tlift−off ≤ 1 cycle), we hypothesize from the results of this experiment

that the optimal frequency for jump height is not necessarily fr and is dependant on

φ.
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CHAPTER IV

JUMP HEIGHT

4.1 Procedure

To test the hypothesis of the previous experiment, we systematically examined the

optimal conditions for maximal jump height for N = 1. We fixed A = 4 mm, which

was above Amin for f > 3.5 Hz, and studied how jump height h depended on f and φ.

Starting from rest at an initial relative motor position, xa = A sin(φ), we oscillated

the motor for 1 cycle, past which ẋa = 0. We then measured jump height (Figure

25) according to flight time, h = 1
8
gt2f . A total of 6720 combinations of (f, φ) for

0.1 ≤ f ≤ 16.8 Hz and 0 ≤ φ ≤ 1.95π radians were tested, with 3 trials averaged for

each set of parameters for a total of 20160 experiments.

px

Jump height, h

Figure 25: Jump height illustration.

To verify the theoretical model, we recreated the experiment in simulation with

a MATLAB Simulink model that integrated Equation 1. MATLAB integrated the

model with a 1000 x 1000 data point resolution, which had good agreement with ex-

periment. We then used the model to generate other measures in the experiment such

as number of jumps to execute the final jump, lift-off time, and internal deformation

power, Pdef , which is defined as the power generated by internal forces required to
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control xa excluding external forces such as gravity and spring forces. In general,

the power output of a body can be expressed as the product of its velocity and force

exerted P = ẋF . In the case of the robot, power contributions of both the thrust rod

and actuator must be considered individually, P = ẋpFp + ẋAFa, where the absolute

motor velocity is defined as ẋA = ẋa + ẋp. The internal deformation power is then

expressed as Pdef = ẋp

(
Fp − mp

m
Fext

)
+ ẋA

(
Fa − ma

m
Fext

)
, where the external force

is comprised of gravity and spring forces, Fext = −mg − α
(
xpk + ẋpc

)
. The forces

can be expressed in terms of mass and acceleration as Fp = mpẍp, Fa = maẍA, and

Fext = mAext. The deformation power can then be simplified and expressed in terms

of accelerations as

Pdef = mpẋp(ẍp − Aext) +maẋA(ẍA − Aext) (2)

where the absolute motor acceleration is defined as ẍA = ẍa + ẍp.
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4.2 Results
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h, as a function of f and φ with illustrated actuator trajectories (top) at different φ

with A = 4 mm. White lines (derived from model, see Figure 27) separate different

jumping modes, with ST indicating stutter jump, S for single jump, and MJ for

multi-jump. (b) Model simulation with the same parameters.
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The model integration (Figure 26(b)) and experiment (Figure 26(a)) had excellent

agreement. The data in each pixel of the experiment represents a jump height aver-

aged over three trials. The variation from jump to jump was small, with the standard

deviation being less than 0.5 mm, or approximately 1% of mean h, for frequencies

higher than approximately 4 Hz. In a few phases, certain fractions of fr below this 4

Hz exhibited significant variance due to small multi-jumps that occurred as a result

of sub-resonant harmonics. This occurred in a fairly complex region in the φ − f

plane labeled “MJ” for multi-jumps in Figure 26(a). These regions, delineated by

white lines, were extracted from simulation (Figure 27). While this complex region

is labeled multi-jumps, the model shows how this region periodically produced up

to 5 small jumps while the motor is still oscillating, which is also evident in the

experiment.
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For a fixed φ, above a critical frequency, f , the robot was able to lift off. Two

broad maxima in h were observed, neither occurring at fr, verifying our hypothesis

derived from the minimum forcing amplitude experiment. The two local maxima

correspond to two distinct modes of jumping: a “single jump” and a “stutter jump”

(Figure 28). in the single jump mode, the robot compressed the spring and was

propelled into the air. In the stutter jump mode, the robot performed a small initial

jump followed by a larger second jump. For large φ, single jumps predominate, while

stutter jumps occurred at lower f and φ.

Single(b)
Jump

xp

xA

Stutter Jump(a)

Figure 28: Jumping modes illustration. (a) Stutter jump. (b) Single jump. Robot

is airborne (white robots) when the rod position, xp > 0. Global actuator position,

xA, not to scale with rod length.

We also examined other characteristics associated with the maximum jump height

for a given phase offset. At the optimal f of each phase, φ, the maximum h was

determined and plotted versus phase which were insensitive to f and were nearly

10x larger than A (Figure 29(a)). The maximum h displayed two broad maxima

which correspond to the two jumping modes previously mentioned, characterized by

the optimal frequency and phase (Figure 29(b)). The stutter jump was optimal at

φ = π/2 radians, which is analogous to a countermovement, at f < fr. And The

single was optimal at φ = 3π/2 radians, which is analogous to a squat jump, at

f > fr.
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responding optimal frequency for each phase, (c) time to lift-off, and (d) deformation

power at optimal frequency; initial transients are omitted in this calculation.

As will be shown in analysis, the peak power expended in deforming the system,

Pdef , scaled like f 3 and thus increased dramatically for single jumps (Figure 29(d)).

So while the single jumps lift off faster than stutter jumps (Figure 29(c)), the single

jumps also cost nearly an order of magnitude greater power than stutter jumps.
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CHAPTER V

ANALYSIS

5.1 Theory of Transient Mixing

5.1.1 Minimum Pumping Amplitude

To understand why the optimal frequency to achieve lift-off is not f0 during transient

time-scale forcing (N ≤ 1), we studied the equation for the thrust rod’s trajectory,

xp(t), by solving Equation 1 while on the ground (α = 1). For our robot, the thrust

rod’s mass, mp, is relatively small compared to the motor mass, ma; thus, we made

the assumption that ma = m. Additionally, damping was also small, so we assumed

no damping. Substituting −Aω2 sin(ωt + φ) for ẍa into Equation 1 and making the

aforementioned assumptions, the equation of motion while on the ground becomes

ẍp = Aω2 sin(ωt+ φ)− ω2
0xp − g (3)

where the natural frequency, ω0 =
√

k/m. To simplify equations, the units of

frequency in the following derivations are radians/second, ω = 2πf , and ω0 = 2πf0.

Solving the differential equation, Equation 3, the rod’s trajectory equation is

xp(t) =
Aω2

ω2
0 − ω2

sin(ωt+ φ) + C1 cos(ω0t) + C2 sin(ω0t)− g

ω2
0

(4)

Deriving Equation 4, the rod’s velocity is

ẋp(t) =
Aω3

ω2
0 − ω2

cos(ωt+ φ)− ω0C1 sin(ω0t) + ω0C2 cos(ω0t) (5)

Starting from rest at the equilibrium position, the initial conditions are xp(0) =

− g
ω2
0
and ẋp(0) = 0. Using these initial conditions, we then solve for C1 and C2.

C1 = − sin(φ)
Aω2

ω2
0 − ω2

(6)
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C2 = − cos(φ)
Aω2

ω2
0 − ω2

ω

ω0

(7)

Substituting Equations 6 and 7 into Equation 4, the trajectory equation becomes

xp(t) =
Aω2

ω2
0 − ω2

(
sin(ωt+ φ)− sin(φ) cos(ω0t)− ω

ω0
cos(φ) sin(ω0t)

)
− g

ω2
0

(8)

Considering a phase offset of π/2, Equation 8 simplifies to

xp(t) =
Aω2

ω2
0 − ω2

(
cos(ωt)− cos(ω0t)

)− g

ω2
0

(9)

The robot’s position is thus a prefactor times the sum of two competing sinusoids

(one at the natural frequency, ω0, and the other at the forcing frequency, ω). While

the prefactor increases the magnitude of the oscillatory response for ω near ω0, the

competing sinusoids introduce destructive interference that suppresses the amplifica-

tion of the oscillation magnitude when ω is too close to ω0. Moving off resonance,

the prefactor favors higher ω over lower. A local minimum also occurs in the mini-

mum forcing amplitude vs. frequency data for φ = π/2 (Figure 23) due to the local

maximization of total mechanical energy (potential elastic energy and kinetic energy)

at the end of one cycle of motor forcing, (t = 2π/ω). Thus, during transient time

scales, the oscillation of the rod was not given sufficient time to amplify in magnitude,

making resonant amplification less of a factor in determining optimal frequency than

the combination of resonant amplification and destructive interference from transient

sinusoidal mixing.

5.1.2 Maximum Jump Height

While at first glance, Equation 1 looks completely tractable, it was only because the

robot was always on the ground before the first lift-off that we were able to analytically

derive the trajectory equation for our discussion on minimum pumping amplitude.

The discontinuity associated with the factor α renders the equation piecewise linear,

or nonlinear. However, an analytical argument similar to the argument made for
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minimum pumping amplitude can be made to explain why the optimal frequency for

jump height during single jumps is greater than the natural frequency, since, during

single jumps, α = 1 until final take-off.

Consider first the peak labeled S in Figure 26(a), representing the highest single

jumps. This peak occurred at actuator phases near φ = 3π/2. For a relatively slow

thrust rod mass, jump height was proportional to the square of the absolute motor

velocity, ẋA(t) = ẋp + ẋa, at take-off, where ẋa(t) = Aω cos(ωt+ φ). Using the same

assumptions made for minimum forcing amplitude the absolute motor velocity can

be solved by adding ẋa(t) and ẋp(t) from Equation 5 for φ = 3π/2.

ẋp(t) =
Aω2

ω2
0 − ω2

ω0

(
ω0

ω
sin(ωt)− sin(ω0t)

)
(10)

Like in Equation 9, ẋA(t) is also a prefactor times the sum of two opposing si-

nusoids. The same arguments of transient mixing can thus be made to describe the

take-off velocity of the robot, which will be optimized at a frequency, ω > ω0, or

f > f0. Additionally, while the prefactor favors a higher f over frequencies lower

than f0, the optimal frequency is also upper-bounded, since a higher f produces a

faster time to take-off, which limits the time available to amplify power.

5.2 The Stutter Jump

5.2.1 A Conceptual Understanding

Understanding the presence and optimality of the stutter jump is more complicated

than the single jump, since the existence of two jumps introduces nonlinearities due

to the piece-wise nature of Equation 1, making it difficult to dissect analytically.

However the unexpected emergence of the stutter jump can be understood through

a conceptual analysis. Consider, for example, the case of φ = π/2, so that the

initial actuator acceleration is negative. This causes the less massive thrust rod to be

accelerated upward before moving down to compress the spring and the lift off again.
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Interestingly, the stutter jump was observed for phases somewhat larger than

π (Figure 26(a)), in which the initial actuator acceleration is expected to progress

positively from 0. This phenomenon can be explained by the actuator’s physical con-

straint. Regardless of phase offset, the actuator must start from rest. Any phase

offset corresponding to a non-zero initial actuator velocity causes an initial impulse

acceleration to the intended initial velocity. This results in an initial actuator trajec-

tory that is not an ideal sine wave. For a phase such as φ = π, the initial relative

actuator acceleration is large and negative (Figure 30), which briefly causes a large

upward acceleration in the rod, causing an intermediate hop.
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Figure 30: Simulation of an initial actuator impulse. φ = π.

5.2.2 Optimization

The key to understanding the optimization of the stutter jump is to consider the

system energetics and the conditions that maximize the total work done during the
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forcing cycle. The instantaneous power input is P = Fextvm, where the Fext is the total

external force, which includes gravity and spring forces, and vm is the velocity of the

center of mass of the robot, which can be approximated as ẋA, since mp << ma. The

total work done be external forces is maximized when ẋA both is large in magnitude

and has the same sign as Fext.
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Figure 31 illustrates this situation for φ = π/2, which is when the stutter jump

is optimal. At f = f0 (lower panel), the actuation is too fast and the actuator turns

off well before lift-off. At a low f (top panel), the actuation is too slow, causing the
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actuator to stop well after lift-off. This results in much of the power stroke being

wasted in the air. The optimal driving frequency (middle panel) lies somewhere in

between the previous two frequencies, in which the motor is forced until lift-off occurs,

maximizing the proportion of the stroke that benefits from elastic power amplification

while on the ground.
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Figure 32: Simulated trajectory of the optimal stutter jump. φ = π/2, f = 7.98 Hz.

Grey areas indicated the grounded state; white areas indicate the aerial state.

Figure 32 illustrates the trajectory of this optimal frequency. The motor starts at

the top and moves down then back up relative to the rod (countermovement). Just

milliseconds before making contact with the ground, the motor begins to move upward

along the rod, pushing the rod down into the ground. Interestingly, the subtlety of pre-

landing motor movement has been observed to benefit human jumping during drop

jumps [58]. Once on the ground, the spring is eventually compressed maximally due to

a combination of momentum from falling and motor forcing. When the spring reaches

maximum compression, both ẋa and ẍA are at maximal values. The combination of
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these two maximizations causes optimal power amplification of the motor stroke and

an explosive acceleration during push-off, maximizing ẋA at lift-off.

Thus the optimality of the stutter jump not only depends on the phasing of

competing sinusoids while on the ground, but also on the proper timing of aerial and

ground states. The later does not generally occur at f0. The frequency bandwidth

in which stutter jumps are optimal is more narrow than for single jumps, which can

be explain by the additional sensitivity to proper timing. Another consequence is a

strong dependence of optimal f with respect to the forcing amplitude, A. A larger A

produces lower optimal f , and a smaller A results in a higher optimal f . This strong

amplitude dependence is in direct contrast to the single jump mode, which does not

show a strong dependence to A.

5.2.3 Deformation Power Comparison

The stutter jump uses downward momentum to assist in spring compression, which

allows an optimal stutter jump to achieve comparable jump height to an optimal

single jump while the motor oscillates at a lower f . Consequently, the stutter jump

also uses nearly an order of magnitude less deformation power than the single jump,

which can be linked directly to the forcing frequency, f . The rod acceleration, ẍp,

and the absolute motor acceleration, ẍA, can be expressed as the following equations:

ẍp = Aω2ma

m
sin(ωt+ φ) + Aext (11)

ẍA = −Aω2mp

m
sin(ωt+ φ) + Aext (12)

where Aext is the sum the external force accelerations as defined in Section 4.1.

Substituting Equations 11 and 12 into Equation 2, the deformation power becomes

Pdef = mpẋp

(
Aω2ma

m
sin(ωt+φ)

)
+ma

(
ẋp+Aω cos(ωt+φ)

)(−Aω2mp

m
sin(ωt+φ)

)

(13)
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which simplifies to

Pdef = −A2f 3mamp

m
cos(ωt+ φ) sin(ωt+ φ) (14)

such that the maximum deformation power is expressed as Pdef,max = mamp

2m
A2f 3.

Thus, internal deformation power is proportional to the cube of the forcing frequency.

While the simple jump is quicker, which is beneficial when a fast escape is essential,

the stutter jump is optimal at a lower frequency and thus requires less internal power

to produce.
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CHAPTER VI

CONCLUSION

6.1 Accomplishments

In this thesis, we combined experiment and simulation to analyze a simple jumping

robot based on the 1D SLIP model to uncover fundamental principles of maximal

height jumping. We found the performance of the robot to be quite rich and highly

sensitive to the starting phase offset, largely a result of the transient dynamics of

the system. Oscillating the motor for more than 1 cycle while on the ground allowed

the use of small amplitudes at f0 to achieve lift-off. However, since the objective of

jumping was not lift-off alone but also jump height, the time spent on the ground

was less than 1 cycle, resulting in the transient dynamics of the robot to produce

non-resonant optimal frequencies for jump height.

For certain sinusoidal parameters, the robot becomes a hybrid piecewise linear

system as a stutter jump emerges. Analysis of a simplified model revealed that

impulse accelerations and discontinuous transitions to the aerial state were essential

ingredients in understanding the emergence and dynamics of the stutter jump. The

mode achieved comparable jump height to single jumps but required less power. This

result has powerful implications with respect to the energetic benefits of performing

such a jump, since hopping robots based on the SLIP model can directly benefit from

this result in performing maximal height jumps, and more sophisticated multi-link

robots may also find guidance from these results.

Biologically, our model is in accord with a previous model of maximal height

bipedal jumping which predicted that a countermovement could achieve a greater

jump height than a squat jump [5]. In our study, the single jump, which is produced
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with a squat jump maneuver, must be performed faster to achieve the jump height

of the slower stutter jump, which is produced with a countermovement. Prepara-

tory hops have been observed in various primates [47][109][36] and rodents [63][41].

Humans regularly perform stutter jumps during certain volleyball techniques [35].

Based on the power arguments made in this thesis, we hypothesize that this mode is

advantageous for various animals.

6.2 Future directions

The emergence of interesting answers lead to more interesting questions. Below are

some possible directions that our work may take, most being natural extensions of

this research, and one being a completely different paradigm with which to approach

this research.

6.2.1 Model comparison

A systematic comparison of this model with biological hoppers would be beneficial.

While the results of the experiments presented in this thesis are specific to the param-

eters of the robot used, jump height results are consistent for given value of mg/kA.

In other words, if mg/kA, or xp,equilibrium/A, remains the same, jump height relative

to amplitude, h/A, remains the same when plotted as a color map in the f − φ plane

as in Figure 33.
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It would be interesting to experimentally measure k for different animals and de-

termine the jumping modes that are theoretically advantageous according to mg/kA.

In concert with theoretical predictions, experimental observations of the preferred

jumping modes for maximal height jumping can also be performed. Humans can be

our first test species, as we can compare the performance of different jumping modes.

A potential intermediary step in comparing with biology would be to recreate the

jump height experiment presented in this thesis using a simulation of Alexander’s

model [5], which is a more anatomically accurate model of biological bipedal jumping

than a one dimensional SLIP model.

6.2.2 Non-sinusoidal forcing

In our research, we used a sine wave to model common forcing strategies for jump-

ing, such as the squat jump and countermovement. Such a function also allowed us

to sweep different parameters and quantitatively characterize movement strategies.

However, real animals do not move in perfect sine waves to produce jumps. It would

be interesting to see how jump performance is affected by using different shaped

trajectories. For example, the final push-off phase of a stutter jump might benefit

from a forcing frequency that is faster than the frequency necessary up to maximal

compression.

6.2.3 Traversing an obstacle course

We have uncovered the requirements for φ and f to achieve maximum jump height

at a given A when jumping from rest. Yet, we have not considered the sinusoidal

parameter requirements for specific height control or control of lift-off time given a

non-zero initial velocity. Such requirements would be essential to know for a hopping

robot to traverse diverse terrain with varying obstacle sizes. We can consider mapping

an input velocity to an output velocity and lift-off time given a particular set of

(A, f, φ).
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6.2.4 Introducing environmental complexity

The results presented in this thesis describe the optimal movements of a simple robot

interacting with a simple environment, namely, 1D motion over hard ground. At

what point are added complexities to our model beneficial, necessary or possibly

detrimental? What types of model complexities complement given environmental

complexities? As described in the introduction, many researchers have addressed

the complexities necessary for hopping and jumping robots to achieve balance in 2D

and 3D environments. But little work has been done on the complexities required

to achieve optimal jumping on deformable surfaces. For compliant surfaces such as

branches or trampolines, it may be as simple as changing the movement strategy.

However, jumping on granular media such as sand can result in much more complex

interactions, requiring more complex solutions for increased jumping performance.

For example, choosing the right movement strategy in addition to a foot may pro-

vide increased performance. A foot can vary in surface area, shape, compliance and

actuation.

6.2.5 An interactive “crowd-sourcing” approach

One fascinating aspect of biological locomotion is that, whether by instinct or learn-

ing, the movement strategies that are optimal for a given task are chosen naturally.

In humans, this innate familiarity with one’s body translates to typing, texting and

playing video games. As such, an interactive simulation of our robot may provide

some striking insight into optimal modes of movement for different jumping tasks

without having to perform brute force sweeps of a parameter space. This approach

would complement a study in non-sinusoidal movements for jumping and traversing

an obstacle course. The model is sufficiently simple to simulate in real-time as a web

based game or a mobile phone game. Given a specific challenge, players that get
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the highest scores would upload time domain simulation data such as forces, veloci-

ties and positions to our servers for analysis. Given accepted force law models, such

a crowd-sourcing approach could also complement a study on jumping in granular

media.
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senegalensis),” Journal of Comparative Physiology A: Neuroethology, Sensory,
Neural, and Behavioral Physiology, vol. 132, 1970.

[110] Tsukagoshi, H. and Sasaki, M., “Design of a higher jumping rescue robot
with the optimized pneumatic drive,” in Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on, no. April,
pp. 1276–1283, 2005.

[111] Uno, K., Ohmori, M., and Kondo, R., “A hopping robot with impulsive
actuator,” in SICE 2002. Proceedings of the 41st SICE Annual Conference,
2002.

[112] van Soest, A., Schwab, A., Bobbert, M., and van Ingen Schenau, G.,
“The influence of the biarticularity of the gastrocnemius muscle on vertical-
jumping achievement,” Journal of biomechanics, vol. 26, no. 1, pp. 1–8, 1993.

[113] Vanhooydonck, B. and Aerts, P., “Power generation during locomotion in
Anolis lizards: an ecomorphological approach,” Ecology and Biomechanics: A
Mechanical Approach to the Ecology of Animals and Plants, pp. 253–269, 2006.

[114] Voigt, M., Simonsen, E., Dyhre-Poulsen, P., and Klausen, K., “Me-
chanical and muscular factors influencing the performance in maximal vertical
jumping after different prestretch loads,” Journal of biomechanics, vol. 28, no. 3,
1995.

[115] Wei, T., Nelson, G., and Quinn, R., “Design of a 5-cm monopod hop-
ping robot,” in Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE
International Conference on, 2000.

[116] Wilson, R., Franklin, C., and James, R., “Allometric scaling relation-
ships of jumping performance in the striped marsh frog Limnodynastes peronii,”
Journal of Experimental Biology, vol. 1946, pp. 1937–1946, 2000.

[117] Woledge, R., Curtin, N., and Homsher, E., “Energetic aspects of muscle
contraction.,” Monographs of the Physiological society, vol. 41, p. 1, 1985.

[118] Yeadon, M., “The simulation of aerial movement II. A mathematical inertia
model of the human body,” Journal of Biomechanics, 1990.

76



[119] Zajac, F., Zomlefer, M., and Levine, W., “Hindlimb muscular activity,
kinetics and kinematics of cats jumping to their maximum achievable heights,”
Journal of Experimental Biology, vol. 94304, no. 153, pp. 73–86, 1981.

[120] Zeglin, G., Uniroo–a one legged dynamic hopping robot. Dissertation, Mas-
sachusetts Institute of Technology, 1991.

[121] Zhang, W. and Wang, G., “Toward a folding-legged uniped that can learn
to jump,” in Systems, Man, and Cybernetics, 1997. Computational Cybernetics
and Simulation., 1997 IEEE International Conference on, 1997.

[122] Zug, G., “Anuran locomotion: structure and function. I. Preliminary observa-
tions on relation between jumping and osteometrics of appendicular and postax-
ial skeleton,” Copeia, 1972.

[123] Zug, G., “Anuran locomotion-structure and function, II: Jumping performance
of semiaquatic, terrestrial, and arboreal frogs.,” Smithsonian Contributions to
Zoology, no. 276, 1978.

77


