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SUMMARY 

Noise generated by fluid power applications can be treated using bladder-style 

suppressors, and an optimal operating condition for these devices is sought in this thesis. 

Bladder-style suppressors employ a compliant nitrogen-charged bladder to create an 

impedance change within the system, reflecting the noise back to the source and 

preventing it from propagating downstream. The noise in a hydraulic system is created by 

a pump, the flow source in a hydraulic system, and can be separated into three categories: 

fluid-borne noise, structure-borne noise and airborne noise. Fluid-borne noise places 

addition stress on sealing surfaces, potentially causing leaks. Airborne noise can be 

uncomfortable, even hazardous depending on the level. Bladder-style suppressors 

primarily treat fluid-borne noise; however, it is seen in the literature that fluid-borne 

noise is the cause of structure-borne and airborne noise.  

This thesis presents an optimization method for finding the optimal charge 

pressure for implementation with a given system operating over a broad range of system 

pressures. The optimization weights suppressor performance by the spectral content of 

the fluid-borne noise as well as the duty cycle of the system. A single charge pressure 

works well over a small range of system pressures, though many fluid power applications 

operate over a larger range of system pressure than the usable range of a suppressor. For 

systems operating over an extremely broad pressure range, two suppressors charged to 

different pressures are used to treat the noise in the entire system pressure range. 

To determine suppressor performance experimental measurements were 

performed, and models developed, of the transmission loss of this type of device. A 

multi-microphone method using transfer function relationships between six sensors 
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determines the transmission loss of the suppressor under test. An equivalent fluid model 

modeling the wave behavior both upstream and downstream, as well as within the 

suppressor, was created to predict suppressor transmission loss.  

Optimal configurations are found for a set of system pressures, charge pressures 

and duty cycles. Analysis of the results shows the time weighting has a more significant 

impact on the optimum charge pressure than the frequency weighting, as shown by duty 

cycles considered in this thesis. In addition, all charge pressures selected as optimal for 

either single suppressor optimizations or double suppressor optimizations, exhibit the 

highest transmission loss for a single system pressure in the pressure duty cycle for a 

simulated machine. 
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CHAPTER 1 

INTRODUCTION 

A common method to treat the noise produced by fluid power applications is 

implementing bladder-style suppressors into a system; however, little is currently known 

about the optimal configuration of bladder-style suppressors. Bladder-style suppressors 

use a complaint bladder to create an impedance change, reflecting noise and preventing it 

from propagating downstream. Internal features within the suppressor may also introduce 

damping. The compliance of the bladder is controlled by charging the bladder with 

nitrogen to a given pressure, known as the charge pressure. Nitrogen is selected for use 

because of it is inert and noncombustible. Bladder-style suppressors , as seen in Figure 1, 

are constructed from two end caps, an outer shell, a perforate layer, the bladder, and an 

annulus as seen in Figure 1 [1-3]. The suppressor must be charged prior to use, and the 

perforate layer and annulus are used to ensure the pressurized bladder does not extrude 

into the flow path before the system is pressurized, as well as adding damping to the 

device [1]. The goals of the work presented in this thesis are to find the optimal charge 

pressure condition for a single bladder-style suppressor operating in a single-system 

pressure fluid power system, and as well as find the optimal charge pressure condition for 

either a single bladder-style suppressor or a pair of bladder-style suppressors operating 

over a broad range of system pressures.  

Performance of all noise control devices, including bladder-style suppressors, is 

measured by transmission loss (TL), the ratio of incident power to transmitted power. 

Higher TL is indicative of better performance. TL varies by frequency similar to any 

noise source, including a pump in a hydraulic system. The spectral content of pump noise 
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is broadband, and a favorable characteristic of bladder style suppressors, compared to 

other common noise control devices, is their broadband TL. Outside of a paper published 

by Marek, et al. [4] no other work has been found on the performance of bladder-style 

suppressors.  

 

Figure 1: Bladder style suppressor [1] 

The noise produced by fluid power systems can be damaging to equipment, as 

well as uncomfortable, even hazardous, to work around. The main source of noise energy 

in a hydraulic system is the pump, which is required for producing flow through the 

system. The flow rate will fluctuate slightly during operation, because of non-constant 

flow from the pump and fluid compressibility, causing a flow ripple. The flow ripple 

couples with the hydraulic fluid and system components to create a dynamic pressure 

ripple, which is superimposed onto the mean system, or static, pressure. The dynamic 

pressure ripple is the damaging element to system elements, potentially exposing sealing 
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surfaces to strong pressure pulses causing leaks. In addition, system components are 

subject to stress cycles causing material fatigue and potential failure. 

Noise generated from the pressure ripple can be separated into three general 

categories: fluid-borne noise (FBN) i.e. the pressure waves within the fluid, structure-

borne noise (SBN) i.e. the vibrations of pipes and other system components, and air-

borne noise (ABN) i.e. breakout noise. The exact frequency-domain transfer-function 

relationships between the three noise types are complicated and difficult to model, but 

Johnson and Edge [5] have shown that FBN is the cause of both SBN and ABN. A 

reduction of FBN causes a reduction of both SBN and ABN, lessening the stress on 

sealing surfaces as well as noise within a worksite. 

The noise control solution needs to be robust for a system operating over a broad 

range of system pressures and adequately treat broadband FBN to control ABN and SBN. 

This goal was brought forward by an industry collaborator, Eaton Hydraulics, who is 

developing a new valving technology for use in a hydraulic system operating over a 

broad system pressure range. Observations of this technology showed significant 

broadband FBN, a potential for extreme amounts of ABN and a noise treatment solution 

was needed. 

While bladder-style suppressors have not been extensively studied in the 

literature, a similar device used in airborne noise control, mufflers, have been studied. A 

basic type of airborne muffler is an expansion chamber, a section of inline rigid pipe with 

a larger radius than the pipes connecting immediately upstream and downstream of the 

device, seen in Figure 2. The change of cross sectional area creates a change in specific 

acoustic impedance causing some acoustic energy to be reflected, reducing the amount of 
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transmitted energy [6]. An expansion chamber works as a periodic band stop filter in the 

frequency domain, analogous to a capacitor connected in series to an electrical circuit [6]. 

Some expansion chambers have inlet/outlet extensions, Figure 2b, to change the behavior 

of the chamber. The extensions have been studied by Selamet and Li [7], and the work 

notes the extensions help the TL become more broadband than a device without 

extensions, a desirable characteristic for use with hydraulic systems. The TL of empty 

expansion chambers operating in an air system can be improved in several ways; multiple 

chambers targeting specific frequencies, a perforate layer separating the flow path from 

the expansion area and using a fibrous lining to dissipate acoustic energy [8, 9].  

 

Figure 2: Expansion chamber, a) Without inlet/outlet extensions b) With inlet/outlet extensions 

A major difference between airborne mufflers and bladder-style suppressor relate 

to the operational fluids, air and hydraulic oil, respectively. The most notable difference 

is the sound speeds, 343 m/s in air and 1400 m/s in hydraulic fluid. In all media, particle 

a) 

b) 
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displacement is inversely proportional to sound speed; particle displacement is greater for 

air than hydraulic fluid. Particle velocity is the first temporal derivative of acoustic 

particle displacement, and is proportional to particle displacement. Damping is a function 

of particle velocity. Therefore, damping will be more effective for airborne systems due 

to the lower sound speed and alternative noise suppression techniques will be needed for 

hydraulic systems. One noise suppression technique, employed by reactive silencers for 

airborne systems, is reflecting noise back to the source using a specific impedance 

change. 

In bladder-style suppressors, the compliance of the bladder changes the 

impedance of the inlet port, causing some acoustic energy to be reflected to the source 

and decreasing the amount of transmitted energy. The impedance of the suppressor is 

dependent on the ratio of the charge pressure in the bladder to the system pressure, 

known as the charge pressure ratio (CPR). Wilkes and McLean, a bladder-style 

suppressor manufacturer, suggests charging the suppressors to a CPR of 0.5, while 

industry contacts assert that a higher CPR causes bladder-suppressors to perform better 

[1-3, 10]. Example TL curves are presented in Figure 3 and demonstrate the effect of 

changing CPR has on TL over the entire frequency range of interest. As described above 

a partial focus of this thesis is to find a CPR which exhibits the highest TL for a given 

system pressure. 
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Figure 3: Example transmission loss curves for a WM-5081 bladder-style suppressor operating at a 

system pressure of 10.3 MPa and varying CPR 

A major drawback to bladder-style suppressors is that the devices are designed to 

target a small range of system pressures for a given charge pressure; however, many fluid 

power applications operate over a large range of system pressures, as seen in Figure 4 

which shows the time fraction spent at each system pressure of the boom actuator on a 

hydraulic excavator, and charge pressure cannot be adjusted during operation. Selection 

of an optimal charge pressure for use with a given duty cycle is important for the best 

performance of the hydraulic system, both in terms of stress on components and ABN. 

Outside of work done by Marek, et al. [4], no other work has been found on 

characterization bladder-style suppressors. Marek uses linear acoustics as well as 

continuity of pressure and volume velocity to develop a model for predicting the behavior 

of a bladder-style suppressor. The effect of individual suppressor components is studied, 
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and the effect of the CPR is also presented. Besides work by Gruber, et al. [11] no other  

literature was found about the optimization of bladder style suppressors operating over a 

broad range of system pressures. 

 

Figure 4: Example system pressure usage for the boom actuator on a hydraulic excavator  

This thesis describes the development of an approach to find an optimal charge 

pressure condition using a model of a bladder-style suppressor and information pertaining 

to system pressure time history and the spectral content of pressure ripples at those 

system pressures. The optimal charge pressure is found through optimization of an 

objective function. The objective function weights TL by two weighting factors; a 

frequency-weighting factor (FWF) and a time weighting factor (TWF). The FWF 

accounts for the spectral content of the FBN, weighting the objective function towards 

frequencies with higher energy. The TWF accounts for the fraction of time a system 

spends at each different system pressures weighting the objective function towards the 
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most-used system pressures. The optimal charge pressure condition may be found for 

both single and double suppressor configurations. Two dissimilarly charged suppressors 

are employed for systems operating over a broad range of system pressures, allowing 

each suppressor to effectively target different system pressure ranges. 

The remainder of this work will discuss how TL is measured on actual devices 

and modeled for bladder-style suppressors, the creation of the objective function to find 

the optimal charge pressure condition, and example results of the optimization of the 

objective function. The measurement of TL, based on work by Earnhart, et al. [12] further 

discussed in Chapter 2, expands on current methods using multiple pressure transducers 

to resolve pressure amplitudes upstream and downstream of the device, allowing TL to be 

calculated. The modeling of TL for a bladder style suppressor, based on work by Marek, 

et al. [4] further discussed in Chapter 3, is predicted by an equivalent fluid model which 

simulates the acoustic pressure and particle behavior within the device. In Chapter 4, the 

details of a two suppressor system, used for noise treatment in systems operating over 

extremely large pressure ranges, are presented. The optimization objective function is 

discussed in Chapter 5. The optimization of the objective function is used to determine 

the optimal charge pressure for a given usage, a goal of this thesis.  



9 

 

CHAPTER 2 

TRANSMISSION LOSS MEASUREMENT, CALCULATION AND 

EXAMPLE FOR A SINGLE SUPPRESSOR 

Transmission loss (TL) is the ratio of transmitted acoustic energy to incident 

energy, 

 1010log i

t

W
TL

W
  (2.1) 

where Wi is the incident acoustic energy, Wt is the transmitted acoustic energy and higher 

transmission loss is indicative of better performance [6]. The techniques used for TL 

measurement in this work are discussed below. TL is not system dependent allowing for 

easy comparison between devices tested in different systems. Example TL data for a 

bladder style suppressor will be presented. 

2.1 Transmission Loss Measurement 

A method to measure TL of hydraulic elements is based on several existing 

techniques [5, 13-22] and implemented by Earnhart, et al. [12] to characterize the 

behavior of noise control devices, and this technique is applied specifically to bladder-

style suppressors for this work. An acoustic element, modeled as a two-port four-pole 

system, can be described by a transfer matrix relating acoustic pressure and velocity at 

the upstream and downstream ports. A two-microphone method to measure the properties 

of an acoustic element was developed by Seybert and Ross [13] and improved by Chung 

and Blaser [14, 15]. To and Doige [16, 17] further developed the two-microphone method 

using reference pipes both upstream and downstream to determine the transfer matrix of 

the test article. Their work is further developed for systems with mean flow, such as 
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hydraulic systems, with use of time averaging by Lung and Doige [18]. A drawback to 

the two-microphone method is indeterminacy occurring at frequencies corresponding to 

an integer multiple of half wavelengths between the microphones. In order to resolve the 

half-wavelength indeterminacy Kojima and Edge [19] as well as others [20-22] use a 

three-microphone method, with the microphones spaced at unequal intervals, to solve for 

the transfer matrix elements. A least-squares fit is applied to the transfer functions 

between the sensors to robustly estimate the pressure waves.  

The International Standard pertaining to acoustic measurements in a hydraulic 

system is ISO-15086 [23-25].  ISO-15086-1 [23] states the mean velocity of the flow 

must be less than 1% of the speed of sound, which is a Mach number of 0.01, for accurate 

measurements. The Mach number for a given system is calculated by  

 
V

M
c

 , (2.2) 

where c is the speed of sound, nominally 1400 m/s in hydraulic fluid. Flow velocity, V, is 

calculated by  

 
Q

V
A

 , (2.3) 

where Q is the volume flow-rate and A is the cross sectional area of the pipe. The flow 

velocity and Mach number associated with the flow in pipes of any diameter and any 

flow rate can be calculated. This thesis focuses on pipe diameters of 0.019 m and 0.038 m 

with a volume flow-rate of 37.85 liters/minute. The flow velocity and Mach numbers 

associated with flow in these pipes are shown in Table 1. The Mach number values are 

both at least an order of magnitude below the 0.01 of Mach threshold, therefore, mean 

flow can be assumed negligible for measuring TL in systems using pipes of this flow and 
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pipe size. ISO-15086-2 [24] employs a three microphone method to avoid half-

wavelength indeterminacy, with the microphone positions seen in Figure 5. The 

minimum distances from the pipe inlet to the first transducer, x1, as well as the distance 

from the last transducer, x2, to the end of the pipe are dependent on the pipe internal 

diameter, as shown in the legend for Figure 5.  

Table 1: Flow velocity and Mach Number for pipe diameters used in this thesis 

 

Figure 5: ISO 15086-2 dimensions, x
1
≥10d, x

2
≥10d, L=330±2mm, L’=470±2mm 

2.1.1 Experimental Transmission Loss Method 

The testing method described above was implemented to measure two different 

sized bladder style suppressors. Two test rigs, each with matching internal diameters to 

the test article for which it was designed, were built in accordance with ISO-15086-2 

[24].  

A schematic of a representative test rig can be seen in Figure 6. Flow is provided 

to the system at 37.85 liters per minute from a Sauer Danfoss H1 bidirectional 9-piston 

pump driven by a Siemens 60 HP variable-speed AC motor operating at 1500 rpm. The 

motor receives power from a Siemens Simovert Masterdrive variable-frequency drive. 

Inlet Pipe ID (m) Flow velocity (m/s) Mach number 

0.019  2.2135 0.0016 

0.038 0.5534 0.0004 
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The frequency of the drive and pump displacement are set and controlled using xPC-

Target over a CAN-bus interface. Upstream of the test section, a partially closed needle 

valve provides broadband noise across the frequency range of interest, 0 to 4000 Hz, to 

the test section. The test section of both rigs includes two rigid pipe sections; a smaller 

rig has an internal diameter of 0.019 m for its test section and a larger rig has an internal 

diameter of 0.038 m in its test sections with the test device between the pipes. The system 

has six piezoelectric pressure sensors, PCB model 101A06, labeled in Figure 6 as x0 to x5, 

and their placement varies with internal diameter in accordance with the ISO-15086-2 

standard. Each piezoelectric sensor is mounted flush with the inside surface of the test 

section. The data from each sensor are collected by a 24-bit, 8-channel National 

Instruments data acquisition board, model 4472, mounted inside of a PC. Data is captured 

at 10800 samples/second and each sample record is 5120 samples long. Every test run is 

a vector average of 100 sample records. The transfer functions Hij, between sensor i to 

sensor j, are the same transfer functions in the work of Johnston, et al. [22]. The reference 

sensor for upstream and across test component transfer functions is sensor x1. The 

upstream transfer functions used for measurement are H01, and H21, the across test 

component transfer functions are H31, H41 and H51, and the downstream transfer functions 

are H34 and H54. 
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Figure 6: Schematic of test setup for measurement of fluid acoustic properties of a suppressor under 

test. 

The transfer functions are used to calculate the wave amplitudes in the upstream 

and downstream test section. The pressure in the upstream section is  

  x x j t

upstreamp Ae Be e     (2.4) 

and the particle velocity is 

 
0

x x
j t

upstream

Ae Be
Q e

Z

 


 
  (2.5) 

where A and B are the complex amplitudes, γ is the complex wavenumber and Z0 is the 

specific impedance. The upstream wave amplitudes are calculated by placing the 

measured acoustic pressures at each transducer into an over-determined matrix, 

 

0 0

1 1

2 2

x x

x x

x x

e e

F e e

e e

 

 

 







 
 

  
 
 

. (2.6) 

The wave amplitudes are solved for by using a pseudoinverse to compute the least-

squares average of  

 X Fb , (2.7) 
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where p1 is the acoustic pressure at sensor 1, and 

 

01

21

1

H

b

H

 
 
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 

, (2.9) 

where Hij is the transfer function between sensor i and j. The downstream pressure and 

particle velocity are given by 

  x x j t

downstreamp Ee Fe e     (2.10) 

and 

 
0

x x
j t
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Ee Fe
Q e

Z

 


 
 . (2.11) 

Similarly to the upstream section, the waves amplitudes in the downstream section are 

calculated using 

 Y Gc  (2.12) 

where 
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and 



15 

 

 

31

41

51

H

c H

H

 
 

  
 
 

. (2.15) 

The acoustic pressure, p1, and volume velocity, Q1, at the upstream port are 

related to p2 and Q2 at the downstream ports by a transfer matrix with elements tij, 

 
1 11 12 2

1 21 22 2

p t t p

Q t t Q

     
    

     
. (2.16) 

Pressure and velocity can be calculated from the wave amplitudes using the relations in 

Equations (2.4), (2.5), (2.10) and (2.11) and the wave amplitudes calculated above. The 

elements of the transfer matrix, Equation (2.16), can be used to calculate TL, using 

 12
10 11 0 21 22

0

1
TL 20log

2

t
t Z t t

Z
   

.

 (2.17) 

Equation (2.17) can be simplified by assuming the test suppressor is geometrically 

symmetric end to end, and the system is assumed to be reciprocal, as seen in Pierce [8], 

resulting in 

 11 22t t  (2.18) 

and 

 
2

11
21

12

1 t
t

t


 . (2.19) 

It can be shown from Equation (2.16), (2.18) and (2.19) that the elements of the transfer 

matrix can be solved for using 
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Using Equations (2.4), (2.5), (2.10) and (2.11) the transfer matrix elements can be solved 

for in terms of wave amplitudes 
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Substituting the values found in Equation (2.21) into Equation (2.17), TL is then 

 
2 2

1020log
A F

TL
AE BF





. (2.22) 

Assuming an anechoic termination, F=0, the equation takes the familiar form  

 
1020log

A
TL

E
 . (2.23) 

It can be shown that only the plane wave modes of waves A, B, E and F propagate 

in the upstream and downstream pipes, respectively. The cut-on angular frequency, the 

lowest frequency for a given mode to propagate, for a given mode is defined by 

 lm lmck  , (2.24) 

where, c is the speed of sound in meters per second, and  

 
'

lm
lm

j
k

a
 , (2.25) 

where j’ml are the input values causing extrema of Jm(z), the mth order Bessel function of 

argument z, and a is the circular cross section radius of the pipe [6]. The plane wave 
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mode has indices of l=0 and m=0, and its cut-on frequency is 0 Hz; the lowest non-plane 

wave mode is l=0 and m=1. By applying equation (2.25) through (2.24), the frequency 

range of interest, 0 to 4000 Hz, is well below the cut-on frequencies in both inlet pipes, 

and the calculated values of the cut-on frequencies are shown in Table 2.  

Table 2: Cut-on frequencies of first non-planar mode in a cylindrical pipe 

Figure 6 also shows two static pressure sensors, used to measure mean system 

pressure, are mounted in the system, one immediately upstream of the test suppressor and 

one immediately downstream of the test suppressor. The measured difference between 

the sensors yields the pressure loss across the device, which was never measured to be 

greater than the minimum sensor resolution of 70 kPa for any test.  

The system pressure is controlled by a second needle valve located downstream of 

the test section. To isolate the noise generate by the loading valve a termination 

suppressor is connected downstream of the test section, and isolates the test section from 

downstream noise, improving coherence in the transfer functions between the dynamic 

pressure sensors. A thermocouple is used to measure the temperature of the hydraulic 

fluid for each test; the temperature of the compressed gas in the test suppressor is 

estimated to be equal to the temperature of the hydraulic fluid. 

2.1.2 Sensor Calibration 

The sensors are calibrated pursuant to ISO 15086-2 [24]. The sensors are all 

located on the same axial position of a calibration block, Figure 7, which is perpendicular 

to the direction of the pressure wave. As testing measurements occur on a frequency-by-

frequency basis, calibration must also be done on a frequency-by-frequency basis. The 

Inlet Pipe ID (m) Cut-on frequency of first non-plane mode (kHz) 

0.019 43.0 

0.038 21.5 
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inner diameter of the calibration block is narrower than either rig, and it can be shown 

that plane wave behavior can also be assumed within the block. Plane wave behavior 

ensures the pressure sensors will be exposed to the same pressure wave amplitude at each 

frequency with no phase difference. The sensor outputs are then compared using the same 

transfer functions as used during testing. Ideally, the magnitude of all transfer functions 

will be 1 and the phase will be 0˚. Slight manufacturing differences in each sensor will 

cause deviations from the ideal value. ISO 15086-2 [24] sets the maximum allowable 

deviation for amplitude larger than 1% needs to be corrected, while a phase deviation 

larger 0.5˚ need to be corrected, though in practice all differences are corrected. 

 

Figure 7: Calibration block without sensors 

2.1.3 Coherence 

The coherence between any sensor pair is used to ensure the transfer function is 

correctly relating data taken at those two sensors. Coherence values range from 0 to 1, 

with higher values meaning higher correlation and linear relationship between the 

sensors. The coherence is calculated by  
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,

 (2.26) 

where Gxy is the cross-spectral density between x and y, and Gxx and Gyy are the respective 

autospectral densities. When the coherence value decreases it indicates noise has entered 

the measurement, as acoustic waves propagate linearly in hydraulic oil. Frequencies with 

a coherence value of less 0.9 are considered invalid and ignored in computation of TL. 

The termination suppressor ensures noise does not enter from downstream, improving the 

coherence. 

2.2 Measured Transmission Loss Performance of Single Suppressors 

In order to investigate the effect of charge pressure ratio (CPR) on suppressor 

performance the method developed in Section 2.1 was applied to both a WM-5081 

suppressor and a WM-5138 suppressor. The resulting transmission loss curves are seen in 

Figure 8 - Figure 11. Figure 8 and Figure 9 show the effect of the changing the charge 

pressure while holding system pressure constant at 10.3 MPa. In the frequency ranges 

where no TL data is shown, the coherence for any of the transfer functions used dropped 

below 0.9 and was deleted from the data set. The TL rises across the entire frequency 

range of interest as the CPR approaches 1. In Figure 8, an improvement of seven to ten 

dB is seen across the range of frequencies by raising the CPR from 0.3, corresponding to 

a charge pressure of 3.10 MPa, to a CPR of 0.9, which corresponds to a charge pressure 

of 9.31 MPa. The improvement in TL is significant, and shows why optimizing the 

suppressor(s) to the correct charge pressure(s) is necessary in practice. With a CPR of 

over 1 the TL drastically drops to less than a maximum of five dB, approximately twenty-

five dB less than the TL obtained with a CPR of 0.9. It can also be seen that a suppressor 
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with a CPR of 0.3 out-performs a suppressor with a CPR over 1 for the entire frequency 

range. The downward spikes in TL at frequencies of 600 and 1000 Hz are attributed to 

numerical artifacts, and the cause of the artifacts is not known precisely, but may be due 

to standing-waves in the upstream and downstream test sections contaminating the 

measurements. Figure 9 shows a similar trend of TL in relation to CPR, the only 

difference is suppressor size as well as line size. Conclusions are difficult to draw from 

Figure 9 due to significant numerical artifacts in frequencies above 500 Hz. In 

frequencies below 500 Hz, Figure 9 shows that increasing the CPR improves TL. It will 

be shown below, in Section 5.1.1, that a majority of the spectral content of the pressure 

ripple is in frequencies below 500 Hz, allowing this data to inform this thesis. 

 

Figure 8: Transmission loss for WM-5081 Suppressor at 10.3 MPA system pressure with varying 

charge pressures 

9 dB 

27 dB 

600 Hz 

1000 Hz 
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Figure 9: Transmission loss for WM-5138 Suppressor at 10.3 MPA system pressure with varying 

charge pressures 

Figure 10 and Figure 11 show the effect of holding the CPR constant at 0.5 while 

varying system pressure, which requires that the charge pressure be increased for each 

increase in system pressure. In Figure 10, the lower system pressures exhibit higher TL, 

especially in the frequency range from 0 to 1000 Hz. In the frequency range from 1500 

Hz to 2000 Hz the TL values converge, but the lower system pressure still exhibit the 

highest TL. The largest difference between TL of two system pressures for similar 

frequencies is approximately 7 dB, which shows that for the same CPR, suppressors 

operating at a lower system pressure exhibit higher TL. Similar to Figure 9, data taken 

from the rig designed for the WM-5138 shows significant numerical artifacts in 

frequencies above 500 Hz; however the data follows similar trends as the data in Figure 

10. The TL decreases to close to 0 dB at a frequency of 2000 Hz for all measured TL 

curves.  

Artifacts 
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Figure 10: Transmission loss for WM-5081 Suppressor at 50% CPR for several system pressures 

 

Figure 11: Transmission loss for WM-5138 Suppressor at 50% CPR for several system pressures 

7 dB 

Artifacts 
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CHAPTER 3 

MODELING OF SINGLE SUPPRESSOR TRANSMISSION LOSS 

An equivalent-fluid model is used to predict the transmission loss performance of 

a suppressor. Its full development is seen in Marek, et al. [4]. Several authors have 

published work detailing the modeling of mufflers in airborne applications. Airborne 

mufflers primarily use fibrous linings as a damper to absorb acoustic energy, while fluid-

borne suppressors primarily use nitrogen contained in a bladder to add compliance to the 

device. However, many similarities do exists between the geometry of fluid-borne 

suppressors and airborne suppressors, allowing the current literature pertaining to 

airborne muffler models to inform the fluid-borne bladder-style model. Work from 

Selamet [26] greatly influenced the model developed below, as the work focuses on the 

perforate layer as well as inlet/outlet extensions, both geometries found in the Wilkes and 

McLean suppressors being studied in this thesis [1]. Studies by Selamet and Li [7] and 

Denia, et al. [27] were informative as to the acoustic behavior in the inlet/outlet 

extensions in expansion chambers and mufflers, both studies note the extensions  

improve the broadband nature of TL. Both studies use the Helmholtz equation, 

 
2 2 0P k P   , (3.1) 

to model the pressure in the entire system. Other studies from Denia, et al. [27], Lee, et 

al. [28] and Selamet, et al. [29] helped further describe the acoustic behavior, i.e. the 

pressure and particle displacement, at the perforate layer.  The aforementioned studies 

calculate the specific impedance of a single hole in the perforate layer, 
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
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where p1 and p2 are the acoustic pressures directly on each side of the perforate layer, uh 

is the particle velocity at the hole, Rs is the specific resistance, ω is the angular frequency, 

ρ
0
 is the density of the fluid and leff is 

 
eff w hl t d  , (3.3) 

where tw is the wall thickness of the layer, dh is the hole diameter and α is the end 

correction coefficient. The impedance of the perforate layer can be calculated with 

 h
p

Z
Z


 , (3.4) 

where   is the porosity of the perforate layer.  

Even with their similarities, several other important differences remain between 

airborne muffler models and fluid-borne suppressor models. First, most airborne mufflers 

are designed to work at or near atmosphere pressure, while fluid-borne suppressors 

operate up to pressures of 34.5 MPa, causing different behavior, such as sound speed, in 

the nitrogen-charged bladder [6]. Second, mean flow can affect acoustic measurements 

and must be taken into account when measuring TL. The hydraulic fluid model, as shown 

in Marek, et al. [4], assumes linear acoustic behavior in the entirety of the suppressor. 

The model also assumes the mean flow velocity is minimal compared to the speed of 

sound in the fluid.  

3.1 Suppressor Modeling 

The suppressor is modeled by Marek, et al. [4] using three coaxial regions shown 

in Figure 12 along with waves A, B, E, F, G and H. The regions are separated based on 



25 

 

similarity of boundary conditions. The first region represents the upstream and 

downstream pipes, therefore representing waves A, B, E and F, which can be assumed to 

be plane waves as shown Chapter 2, and only hydraulic fluid is present in this region. The 

second region of the device begins at the most upstream inlet port of the annulus, shown 

as x=0 in Figure 12, and ends at the most downstream port of the annulus, shown as x=L. 

Because of the non-rigid behavior at the bladder, plane wave behavior may not be 

assumed in this region, therefore GR,n will represent all forward traveling modes and HR,n 

will represent all reverse traveling modes. The subscript R represents the region the wave 

is propagating in, as waves G and H will propagate in both Region 2 and 3; the subscript 

n represents the index of a given wave mode, with 0 indicating the plane-wave mode. 

Region 3 represents the area where the fluid and nitrogen may contact the bladder, from 

opposite radial directions, upstream of x=0 or downstream of x=L. The difference 

between Regions 2 and 3 is Region 2 includes the perforate layer and annulus while 

Region 3 does not. The positive direction of travel is to the right in Figure 12. 

 

Figure 12: Suppressor model and acoustic waves 



26 

 

In order to accurately model suppressor behavior, the geometry of the suppressor 

must be known. The geometry can be calculated from dimensions shown in Figure 12. 

First the charged volume of gas is calculated using geometry. The initial volume of the 

bladder, before the system is pressurized, is 

   2 2

0 1 2 shell annulusV L L L r r    , (3.5) 

where L is the length of Region 2, L1 and L2 represent the upstream and downstream 

lengths of Region 3 and the radii are shown in Figure 12. The radius of the bladder when 

it is charged with nitrogen and the system is pressurized, rcompressed, can be calculated with 
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1 2

c
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s

PV
r r

P L L L 
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 
, (3.6) 

where Pc is the charge pressure, and Ps is the system pressure. The model assumes the 

bladder is limp mass, i.e. the bladder is assumed to have mass and oscillate but it is non-

elastic. 

The model uses Lamé parameters, λf and λB, to represent the elasticity of the 

hydraulic fluid and the bladder, respectively. The parameter λB represents both the 

bladder and the pressurized nitrogen. Lamé’s second parameter, μ, represents the shear 

modulus, zero for both fluids, making λf and λB directly equivalent to the bulk moduli for 

both media. In addition, a shear modulus of zero means only longitudinal waves will 

propagate in the suppressor.  

Sound speeds are defined as 
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 , (3.7) 
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and for angular frequency ω in rad/s, wavenumbers k are defined as 

 ,f B

f B

k k
c c

 
  , (3.9) 

where the subscripts f and B designate fluid and bladder, respectively. 

The wave number for a given propagating mode, n, in a given region, R, can be 

decomposed into radial and axial components, with subscripts r and x representing radial 

and axial mode components, respectively: 
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, ,f Rx n Rrf nk k k  , (3.10) 
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, ,B Rx n RrL nk k k  . (3.11) 

Within the suppressor the wavenumber in the axial direction is the same for the hydraulic 

fluid and the nitrogen in the bladder; however, the radial wavenumber can differ between 

the propagation media. Acoustic displacement is represented by uRr,n and uRx,n, where the 

subscript R represents the region, the subscript r or x represents radial or axial modes, and 

the subscript n represents the mode number. The acoustic particle displacements are 

given for all three regions by: 
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where Jm and Ym are m
th

 order Bessel functions of the first and second kind, relative 

complex amplitudes of coefficients y1,n to y5,n and y6,n to y9,n are unique for each mode n 

in Regions 2 and 3, and 'x x L  . Acoustic pressure for R region and n mode is 

represented by: 

   1 ,i2 i
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 , (3.22) 

   1 ,i '2 i

1 , 0 1 , e ex nk x t

D n f rf np k J k r A 
 , (3.23) 
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. (3.26) 

Assuming mean flow can be neglected allows an assumption that the values for the 

reverse traveling wavemodes in Equations (3.12) to (3.25) can be found by replacing the 

forward mode with its matching reverse traveling mode; and by replacing all instances of 

,Rx nk  with ,Rx nk . The negligible flow assumption can be validated by calculation of the 

Mach number. As shown in Chapter 2, the Mach number for flow in pipes with diameters 

of 0.019 m and 0.038 m are below 0.001 and allow mean flow to be neglected.  

As discussed above, a given mode, n, in a given region R is described by a unique 

axial wavenumber, kRx,n. In order to solve for the wave number, an eigenequation must be 

solved for in each region. Since the mean flow velocity is negligible the solutions of the 

eigenequation are ,Rx nk , meaning either forward or reverse travelling modes need to be 

solved for, in this case the positive travelling modes are obtained. Solving the 

eigenequation requires boundary conditions which accurately reflect the physical system 

being modeled. In Region 1, where waves A and B propagate upstream of the suppressor 

and waves E and F propagate downstream of the suppressor, the pipe boundary is 
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assumed to be rigid; therefore a zero radial displacement condition must be met at the 

outer wall, 

 
1 , 0

port
r n r r

u


    . (3.27) 

Equations (3.12), (3.13), (3.22) and (3.23) are solved for use the boundary condition seen 

in equation (3.27) to solve for the pressure and particle displacement in Region 1. 

Region 2, where waves G and H propagate, includes the hydraulic fluid, the 

bladder, the annulus and the perforate layer. Equations (3.28) to (3.33) as well as 

Equations (3.14), (3.19) and (3.24) are solved simultaneously with  boundary condition to 

find the wavenumber, k2x,n as well as the relative amplitudes of y1,n through y5,n. The first 

boundary condition follows from assuming that the outer shell of the suppressor is rigid, 

and there is zero displacement at the outer wall, 

 2 , 0
shell

r n r r
u


    . (3.28) 

The displacement of the nitrogen in the bladder must match the displacement of the 

hydraulic fluid, 
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compressed compress
r n r nr r r r

u u
   

       , (3.29) 

where rcompressed- and rcompressed+ represent the limit as r approaches rcompressed from either 

side of the bladder. In addition the forces must also be balanced across the bladder, 

     2

2 2 2 2 2
compressed compressed compressed

s r s rr r r r r r
p p u p u  

     
      , (3.30) 

where 2ru is the second temporal derivative of acoustic displacement u2r and σs is the area 

density of the bladder calculated from 

 
2

b
s

compressed T

m

r L



 , (3.31) 
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where mb is the mass of the bladder and LT is the length of the bladder.  In addition, the 

acoustic displacement and impedance condition across the perforate layer are given by 

 2 , 2 ,
annulus annulus

r n r nr r r r
u u

   
       , (3.32) 

 

and 

 2, 2, 2 ,
annulus annulus annulus

n n p r nr r r r r r
p p Z u

    
            , (3.33) 

where Zp can be calculated from (3.4). Equations (3.14), (3.19) and (3.24) are solved with 

the boundary conditions in Equations (3.28) through (3.33), and the resulting eigenvalues 

are the wavenumbers, k2x,n, which allow the acoustic pressure and particle displacement 

for each mode in Region 2 to be calculated. The boundary conditions in Region 3 are 

similar to the conditions in Region 2, omitting the perforate layer: 

 3 , 0
shell

r n r r
u


    , (3.34) 
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   2

3 3 3
compressed compressed

s rr r r r
p p u 

   
    . (3.36) 

Solving Equations (3.20), (3.21), (3.25) and (3.26) with the boundary conditions shown 

in Equations (3.34) through (3.36), the resulting eigenvalues are they wavenumbers, k3x,n, 

which allow the acoustic pressure and particle displacement for each mode in Region 3  

to be calculated. 

A finite number of radial modes, N, are then considered to solve for the modal 

amplitudes for all waves by using continuity of pressure and displacement at the 

boundaries between regions. An anechoic termination is assumed for this model, meaning 



32 

 

 0F  . (3.37) 

The forward traveling plane wave A, is assumed to be unity for the entire frequency range 

of interest and the other wave amplitudes are in reference to A for a given frequency. 

Other simplifying assumptions are rigid boundaries at 1x L   and 2x L L  , allowing a 

simple relationship between the forward and reverse traveling waves in Region 3, 

 3 , 12i

3 , 3 , e x nk L

U n U nG H


 , (3.38) 

 3 , 22i

3 , 3 , e x nk L

D n D nH G


 . (3.39) 

The remaining axial modes may be solved in the form of are integrals, 
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where m = 0 to M-1, and M = N.  

The TL for a single suppressor can then be found using  

 
1020log

A
TL

E

 
  

 
 (3.48) 

where A and E are the wave amplitudes. 

For a system operating over a broad system pressure range, there is a possibility 

the suppressor operates with a CPR over 1.  This condition violates the linearity 

assumptions made by the model as the bladder remains in contact with the annulus. In 

order to model this condition, the boundary conditions in Regions 2 and 3 are changed to 

rigid behavior at rannulus, emulating an expansion chamber. 

3.2 Predicted Transmission Loss Curves for a Single Suppressor 

For a bladder-style suppressor, TL is a function of its geometric dimensions, 

shown in Figure 13, and CPR. Critical dimensions include the inner radius of the inlet 

and outlet ports, rport, the outer radius of the annulus, rannulus, the inner radius of the shell, 
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rshell, and the effective internal length of the device, L. In addition to the geometric 

properties, TL is also dependent on the ratio of nitrogen charge pressure to system 

pressure. Two models of commercially available suppressors are considered in this thesis; 

the models are the Wilkes & McLean WM-5081 and the Wilkes & McLean WM-5381. 

The dimensions of the suppressors are shown in Table 3. Each suppressor model requires 

inlet and outlet pipes of proper size to ensure constant mean flow through the system. The 

diameters of the inlet and outlet pipes for the two suppressor models are 0.019 m and 

0.038 m, respectively. 

 

Figure 13: Single suppressor dimensions and acoustic waves 

Table 3: Dimensions of bladder-style suppressor used in this study 

 

The model was used to simulate a variety of charge pressures and system 

pressures, as depicted in Figure 14, Figure 15, Figure 16 and Figure 17. TL is presented in 

the frequency domain, and a higher magnitude signifies a greater amount of noise has 

been suppressed at that frequency. Figure 14 and Figure 15 show the predicted TL values 

Parameter WM-5081 WM-5138 

rport 0.00953 m 0.0176 m 

rannulus 0.0102 m 0.0252 m 

rshell 0.0241 m 0.0417 m 

L 0.0447 m 0.0682 m 
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increase as the (CPR) increases for a WM-5081 suppressor and a WM-5138 suppressor 

with highest TL exhibited at a CPR of 0.9, though the TL drastically decreases once the 

CPR is over 1. This prediction matches observed behavior for these devices. In Figure 14, 

the largest difference in TL of 13 dB between CPRs less than one occurs at approximately 

3000 Hz, emphasizing the importance of a properly charged suppressor. The 35 dB TL 

drop-off with an overcharged suppressor further emphasizes the need to avoid using 

overcharged suppressors in practice. However, this is problematic if system pressure 

varies widely. Figure 15 shows predicted TL curves the same charge pressures of a WM-

5138 suppressor. Predicted TL drops to almost zero for each charge pressure ratio in the 

frequency range between 2700 Hz and 3100 Hz, due the length of the device 

corresponding to the half-wavelength associated with this frequency. This behavior is 

also seen in the real device. The biggest difference in TL between suppressors with a CPR 

less than 1 is approximately 10 dB at 1500 Hz. The increase in predicted TL accentuates 

the effect of CPR, and the CPR of 0.9 exhibits the highest TL. The decrease in TL to a 

suppressor with a CPR higher than 1 is even more drastic, emphasizing the negative 

effect of charging suppressors to higher than system pressure. Note that the high 

predicted TL presented here may exceed the measurement capabilities discussed in 

Chapter 2 because the transmitted signal may be close to or below the ambient noise 

level. 
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Figure 14: Predicted transmission loss for WM-5081 Suppressor at 10.3 MPA system pressure as a 

function of CPR 

 

Figure 15: Predicted transmission loss for WM-5138 Suppressor at 10.3 MPA system pressure with 

varying CPR 

13 dB 

35 dB 

10 dB 
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Figure 16 and Figure 17 show a comparison of predicted TL for a suppressor at a 

constant CPR of 0.5 but a discrete set of system pressures, for a WM-5081 suppressor 

and WM-5138 suppressor, respectively. In the modeling of both suppressors, as system 

pressure increases the TL decreases over the full frequency range. In Figure 16, there is a 

large increase near 3000 Hz in the predicted TL performance for the 4.14 MPa system 

pressure. While the predicted TL for the other system pressures also increase near 3000 

Hz, none have a significantly large rise. At 3000 Hz, the difference in TL between the 

4.14 MPa curve and 8.27 MPa curve is nearly 20 dB. The difference between the 8.27 

MPa curve and the 20.7 MPa curve at the same frequency is 10 dB. In Figure 17, the 

largest TL difference, ignoring the nulls in TL, is almost 25 dB at approximately 2000 Hz. 

In Figure 17, the predicted 0 dB TL point shifts by 700 Hz as the simulated system 

pressure increases. Both suppressor sizes show differences in TL for the same CPR at 

different system pressures. The differences in the predicted TL curves are interesting to 

note; however, the system will not operate at a fixed charge ratio in practice but instead 

operate with a fixed charge pressure with varying system pressure, leading to a varying 

CPR.  
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Figure 16: Predicted transmission loss for WM-5081 Suppressor, with 50% CPR of varying system 

pressures 

 

Figure 17: Predicted transmission loss for WM-5138 Suppressor, with 50% CPR of varying system 

pressures 

20 dB 

10 dB 
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3.3 Comparison of Measured Transmission Loss & Predicted Transmission Loss 

The predicted TL performance was compared to measured TL performance at the 

same conditions in order to validate the model. The predicted TL for a single WM-5081 

suppressor is compared to measured TL in Figure 18. The predicted TL and measured TL 

show good agreement in the frequencies below 500 Hz. Numerical artifacts in measured 

TL at frequencies of 600 and 900 Hz make comparison difficult. The predicted TL 

diverges from the measured TL in the frequency range of 1000 Hz to 4000 Hz. The model 

only simulates the noise transmission path through the fluid, while the measurement 

technique is effected by all noise transmission paths, such as through the pipes and 

suppressor shell. The non-fluid transmission paths may impose a limit on the maximum 

TL in practice, explaining the difference in the predicted and measured TL curves. The 

data presented in Figure 18 suggests the limit may be near 30 dB. To determine what 

effect, if any, this will have on optimization results, a maximum TL constraint of 30 dB 

will be applied to an optimization case. 
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Figure 18: Comparison of transmission loss for a single WM-5081 Suppressor at a system pressure of 

10.3 MPa for a variety of CPR 

 The predicted TL and measured TL for a single WM-5138 are shown in Figure 

19. The comparison is similar to that of the WM-5081, where the predicted TL and 

measured TL have good agreement below 500 Hz, while numeric artifacts make it 

difficult to draw conclusions above this frequency. However, the predicted TL for a WM-

5138 suppressor does follow a similar path to the mean value of the artifacts. 
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Figure 19: Comparison of transmission loss for a single WM-5138 Suppressor at a system pressure of 

10.3 MPa for a variety of CPR 
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CHAPTER 4 

MEASUREMENT AND MODELING OF A TWO-SUPPRESSOR 

SYSTEM 

Many hydraulic systems in the field operate over a broad pressure range; this 

range is outside the operational range for a single suppressor and requires two 

suppressors for optimal noise control. Two suppressors allow a broader range of system 

pressures to be effectively targeted. This section discusses selecting the optimal 

architecture for a two-suppressor system, the measurement of the TL exhibited by a two-

suppressor system and a modeling the TL exhibited by a two-suppressor as well as a 

comparison between the measured and modeled TL. 

4.1 Modeling of Two-Suppressor System Architecture 

First, an architecture for the two suppressors must be selected. There are two 

possible general architectures for combining two suppressors; in series or in parallel, as 

seen in Figure 20 and Figure 21. The merits of the two architectures can be compared 

through use of transfer matrices. The effective transfer matrix for each architecture may 

be used as the basis for comparison. A transfer matrix relates the acoustic pressure and 

acoustic volume velocity at two points, 

 
UD

D U

PP a b

Q c d Q

    
     
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, (4.1) 

where a, b, c and d represent the frequency-dependent elements of the transfer matrix, P 

and Q are the Fourier coefficients of acoustic pressure and velocity, respectively and the 

subscripts represent the upstream and downstream ports. As seen in Figure 20 and Figure 
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21 the systems are each comprised of three major elements: pipes, suppressor 1 and 

suppressor 2. Each of these elements can be represented by individual transfer matrices: 
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where Equation (4.2) represents the transfer matrix of the pipe, Equation (4.3) represents 

the transfer matrix of suppressor 1 and Equation (4.4) represents the transfer matrix of 

suppressor 2. 

 

 

Figure 20: Parallel suppressor architecture 

 

Figure 21: Series suppressor architecture 
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 The effective transfer matrix for the parallel architecture is developed first. The 

parallel architecture requires 10 separate ports shown in Figure 20 to assemble the 

effective transfer matrix. In addition, boundary conditions were needed to solve for the 

effective transfer matrix: at point X continuity of pressure requires P1=P2=P6 and 

continuity of volume velocity requires Q1=Q2+Q6, and at point Y continuity of pressure 

requires P5=P9=P10 and continuity of volume velocity requires Q10=Q5+Q9. The effective 

transfer matrix of the parallel architecture is then: 
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  2 2 2 2(   )    parallel p p p p p pD c a b b d d b c d d    . (4.9) 

 Next the effective transfer matrix of the series architecture is developed. The 

series configuration is shown with its nodes in Figure 21. This leads to an effective 

transfer matrix of: 
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    2 1 1 2 1 1      series p p p pA a a a b c b a c c d    , (4.11) 

    2 1 1 2 1 1      series p p p pB a a b b d b b c d d    , (4.12) 
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    2 1 1 2 1 1      series p p p pC c a a b c d a c c d    , (4.13) 

    2 1 1 2 1 1      series p p p pD c a b b d d b c d d    . (4.14) 

The effective transfer matrices are then compared to determine which 

configuration is preferred by maximizing reduction of downstream transmitted energy. 

The lowest transmitted energy is desired; the downstream pressure of the parallel 

architecture is P10 and the downstream pressure of the series architecture is P4. An 

anechoic termination is assumed for both systems. A simplifying assumption of lossless 

pipe was made by setting the transfer matrix of the pipe to the identity matrix. The 

architectures were compared in a situation where one of the suppressors was assumed to 

be lossless, (TL=0 for the entire frequency range), a worst case scenario. The downstream 

pressure in the parallel configuration, P10, is then 

 10 1P P , (4.15) 

indicating that the parallel suppressor architecture has become acoustically transparent 

and transmits all acoustic pressure downstream. The downstream pressure, P4, in the 

series configuration for the same condition is 

 4 2 1 2 1P a P b Q   (4.16) 

which is identical to a single suppressor architecture. This extreme case demonstrates that 

the downstream pressure of a parallel configuration is shown to be dependent on the 

suppressor exhibiting the worse performance, that is the “weak link” dominates the 

system. In contrast, the downstream acoustic pressure of a series configuration is 

dependent on an addition of suppressor performance, which does not allow for a “weak 

link” to dominate the system. Therefore, series configuration of multiple suppressors will 
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be examined in this thesis using the equivalent fluid model presented in Chapter 3 to 

predict wave amplitudes. The relationship between wave amplitude and transfer matrix 

elements developed in Chapter 2 can be used to calculate the TL for two-suppressors in 

series. 

4.2 Measured Transmission Loss of a Two-Suppressor System 

The measurement technique presented in Chapter 2 was also applied for two 

suppressors in line with a separation distance of 10 cm. The measured TL curves are 

shown below in Figure 22 and Figure 23. The charge pressure pair exhibiting the highest 

TL in Figure 22 occurs when both suppressors have CPRs that exhibited the highest TL 

for a single suppressor configuration. In the frequency range from 1000 Hz to 

approximately 3500 Hz there are very few data points because TL is very high and the 

noise of the system exceeds the signal causing the coherence of these frequencies to 

decrease. As stated in Section 2.1.3, data points with coherence value less than 0.9 are 

neglected, and the points in this range do not cross this threshold. A reason the data 

points have coherence values less than 0.9 is the suppressor configuration is performing 

beyond the ability of the current set-up to measure by reducing the transmitted signal to 

levels at or below the level of system noise. 

In Figure 22 the charge pressure pair of [5.17, 11.4] MPa, CPR of [0.5, 1.1], 

shows the effect of a one suppressor having a CPR higher than 1. The TL exhibited by the 

charge pressure pair of [5.17, 11.4] MPa drops by approximately 20 dB from a charge 

pressure pair of [9.31, 9.31] MPa, CPR of [0.9, 0.9]. The TL exhibited by the charge 

pressure pair of [5.17, 11.4] MPa is on the order of a single suppressor with a CPR less 

than 1 for the entire frequency range. Similar effects are exhibited by two WM-5138 

suppressors, seen in Figure 23. Again, combining charge pressures exhibiting high TL for 
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a single suppressor creates the charge pressure pair with the highest TL. The difference is 

best seen in the low frequency range below 500 Hz where there are few numerical 

artifacts and little low coherence dropout, similar to the results presented for the WM-

5081 suppressor model. Also similar to the results of a WM-5081, the charge pressure 

pair of [5.17, 11.4] MPa for a WM-5138 shows the decrease in TL when a suppressor has 

a CPR above 1. 

 

Figure 22: Transmission loss for two WM-5081 Suppressors at 10.3 MPA system pressure with 

varying charge pressures 

20 dB 
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Figure 23: Transmission loss for two WM-5138 Suppressors at 10.3 MPA system pressure with 

varying charge pressures 

To demonstrate changing CPR order in a suppressor pair does not affect TL two 

sets of data at the same system pressure were measured with charge pressure order 

reversed, and the results are seen in Figure 24 and Figure 25. The data for both 

suppressors shows negligible difference when the CPRs are reversed, confirming the 

predictions of the model. For the remainder of the thesis, any result presented for a given 

charge pressure pair [X, Y] MPa will be assumed valid for the charge pressure pair of [Y, 

X] MPa. 
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Figure 24: Transmission loss for two WM-5081 Suppressors at 10.3 MPA system pressure changing 

CPR order 

 

Figure 25: Transmission loss for two WM-5138 Suppressors at 10.3 MPA system pressure changing 

CPR order 
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4.3 Modeled Transmission Loss of a Two-Suppressor System 

The model developed in Chapter 3 can be modified to predict transmission loss 

for a two suppressor setup. First, the wavefield of the downstream suppressor is 

simulated with an assumption of an anechoic termination. The upstream suppressor is 

then simulated, but the assumption of an anechoic termination is no longer valid, 

however; the upstream waves of the downstream suppressor, waves C and D in Figure 

26, can be used to calculate the impedance at the downstream port of the upstream 

suppressor ensuring the upstream suppressor has an output matching the input to the 

downstream suppressor. Modeling the upstream suppressor with this condition and 

renormalizing all waves to A in Figure 26 allows the TL of a two suppressor set up to be 

calculated, again with  

 
2 2

1020log
A F

TL
AE BF





. (4.17)  

 

Figure 26: Two suppressor configuration and acoustic waves 

The predicted TL for a number of two suppressor simulations can be seen in 

Figure 27 and Figure 28, for two WM-5081 suppressors and two WM-5138 suppressors, 

respectively. Both Figures show predicted TL increases as the CPR of both suppressors 

approach 1 from below. When one suppressor of the charge pressure pair has a CPR 

above 1 the TL decreases to a similar magnitude of one suppressor. For a WM-5081 
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suppressor, TL shown in Figure 27, the decrease from a charge pressure pair of [5.17, 

9.31] MPa, CPRs of [0.5, 0.9], to a charge pressure pair of [5.17, 11.4] MPa, CPRs of 

[0.5, 1.1], is approximately 60 dB at a frequency of 3000 Hz. For each charge pressure 

case with both CPRs less than 1 the TL approaches 0 dB at approximately 250 Hz. 

Similar effects are exhibited by WM-5138 Suppressors, shown in Figure 28. The 

decrease from a charge pressure pair of [5.17, 9.31] MPa, CPRs of [0.5, 0.9], to a charge 

pressure pair of [5.17, 11.4] MPa, CPRs of [0.5, 1.1], is approximately 40 dB at 2000 Hz, 

showing the importance of suppressors with a CRP less than 1 with respect to 

performance. As with two WM-5081 suppressors, two WM-5138 suppressors exhibit a 

TL drop-out in frequencies near 250 Hz. Two WM-5138 suppressors exhibit another TL 

drop-out near 2750 Hz, this is an effect of suppressor geometry and is seen in the 

predicted TL for a single WM-5138 in Figure 15. Note that the predicted TLs probably 

exceed the measurement capabilities of the current experimental test set-up. 
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Figure 27: Predicted transmission loss for two WM-5081 Suppressors at 10.3 MPA system pressure 

with varying CPR 

 

Figure 28: Predicted transmission loss for two WM-5138 Suppressors at 10.3 MPA system pressure 

with varying CPR 

60 dB 

40 dB 
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Since the model is inherently for linear systems, TL for charge pressures [X,Y] is 

the same as for charge pressures [Y,X]. Physically, it means that for a suppressor system, 

which suppressor is charged to pressure X and which pressure Y does not matter. 

4.4 Comparison between Measured and Modeled Transmission Loss 

The predicted TL was compared to measured TL for two suppressor 

configurations. The predicted TL and measured TL for two WM-5081 suppressors are 

show in Figure 29. Figure 30 shows frequencies from 0 to 500 Hz, and the measured TL 

shows extremely good agreement with the model in this frequency range. Above 500 Hz, 

numeric artifacts and the data dropout due to the exhibited TL being higher than the limit 

of the test rig make comparison difficult. An important feature to note is the low 

frequency drop out near 250 Hz; for the predicted TL, the TL decreases close to zero, 

while the measured TL shows a decrease at a similar frequency but the TL does not 

decrease all the way to zero.  
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Figure 29: Comparison of transmission loss for two WM-5081 Suppressors at a system pressure of 

10.3 MPa for a variety of charge pressure pairs. Frequency range: 0 to 4000 Hz 

 

Figure 30: Comparison of transmission loss for two WM-5081 Suppressor at a system pressure of 

10.3 MPa for a variety of charge pressure pairs. Frequency range: 0 to 500 Hz  
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The predicted TL and measured TL for two WM-5138 suppressors are shown in 

Figure 31. The measured TL exhibited low coherence across the frequency range of 

interest likely because the TL was reducing the signal below the threshold of system 

noise. For both suppressor models the CPR pair of [0.5, 1.1] loses fewer data points to 

deletion by the coherence thresholds, as lower TL is expected so the signal to noise ratio 

is higher in the downstream section which keeps coherence high. In addition, the low 

frequency range still shows good agreement for charge pressure pairs with CPRs less 

than 1. For the charge pressure pair of [5.17, 11.4] MPa, CPR of [0.5, 1.1], there is very 

good agreement between the model in the frequency range  of 2700 HZ to 3000 Hz where 

TL approaches 0 dB. The results presented shows the model can be used to predict TL. 
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Figure 31: Comparison of transmission loss for two WM-5138 Suppressor at a system pressure of 

10.3 MPa for a variety of charge pressure pairs  

The WM-5081 suppressor model exhibits similar TL behavior as the WM-5138 

suppressor model with respect to CPR, for both single and double suppressor 

configurations. The rest of the thesis will only consider WM-5138 suppressor 

configurations. 
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CHAPTER 5 

OPTIMIZATION OF SUPPRESSOR CHARGE PRESSURE 

An optimization routine is developed which uses a direct-search method to 

determine the optimal charge pressure configuration for bladder-style suppressors in a 

hydraulic system through maximization of an objective function. The objective function 

for the optimization weights predicted TL for a either a single suppressor or pair of 

suppressors in series. The predicted TL for single and double suppressor configurations is 

obtained by using an equivalent fluid model developed by Marek [4] as discussed 

previously. An optimal condition must target the spectral content of the pressure ripple 

and the most used system pressures. In order to accomplish this two weighting factors are 

used: a frequency weighting factor (FWF) and a time weighting factor (TWF). The FWF 

weights the objective function towards the frequencies of the pressure ripple with the 

highest acoustic energy. It is very difficult to predict the exact frequency content of the 

pressure ripple as it fluctuates with each system component and pressure, as such the 

FWF should be based on measurements on an identical physical system corresponding to 

the model of the one being optimized. The TWF weights the system to the most used 

operating pressures. Overall system behavior, including suppressor performance, is 

dependent on system pressure; for accurate optimizations the TWF needs to represent the 

intended usage of the hydraulic system. The development of the objective function is 

described below, as well as the individual effects of the FWF and TWF. 

5.1 Objective Function 

The objective function considered here is applicable to any device exhibiting TL, 

as long as correct optimization variables are chosen. For example, a Helmholtz Resonator 



59 

 

can be optimized if an applicable model is used with the objective function and correct 

optimization variables, such as neck radius, neck length and cavity volume. Bladder-style 

suppressors are the focus of this thesis, and finding the optimal charge pressure condition 

will be the focus of the optimization. The optimal charge pressure condition is found by 

maximizing the objective function 

  
 
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where the optimal charge pressure is defined by 

    
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P P

P P P P F . (5.2) 

In Equation (5.1), TL is the predicted transmission loss for the suppressor from 

the model described previously, f is the frequency in Hertz, Ω is the frequency bandwidth 

of interest, ps,i is the system or load pressure and pc,j and pc,k are the charge pressures for a 

two suppressor configuration. If the optimization is being used for a single suppressor, 

then only pc,j is used in Equation (5.1). The system pressure and both charge pressures 

belong to the set U; the pressure range of interest. The pressure range is dependent on the 

anticipated system pressures, as the charge pressure will range from the lowest usable 

charge pressure to the highest system pressure used as suppressors with a CPR higher 

than 1 exhibit relatively poor TL, and any suppressor charged higher than the highest 

system pressure will always operate in an overcharged condition. Weighting factors W 

and D, described in further detail in Sections 5.1.1 and 5.1.2, respectively, capture the 

spectral content of the pressure ripple and time-dependent aspect of the system pressure. 

Both weighting factors are normalized: the FWF, represented by W, has a maximum 

value of 1 while each TWF, represented by D, has a total value of 1. 
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The spectral content of a given pressure ripple will depend upon how the flow is 

generated and how the flow ripple couples with elements in the system to produce a 

pressure ripple. For example, the pressure ripple due to positive displacement pumps will 

be comprised of frequency components dominated by the pumping element’s 

fundamental frequency and its harmonics; the magnitude of the pressure ripple and its 

spectral content may depend on the load pressure. It is desirable to ensure exhibited TL 

targets the dominant spectral components to reduce maximum possible energy. This is 

accomplished through the use of a frequency weighting factor (FWF), W, in the objective 

function, defined as 

 
,

,

(
( )

max (

d i

i

d i
i

P f
W f

P f
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



, (5.3) 

where |Pd,i(f)| is the magnitude of the dynamic pressure ripple at the i
th

 system pressure as 

each system pressure may have a unique pressure ripple. W is normalized to the highest 

pressure ripple frequency component of all system pressures being considered. |Pd,i(f)| 

can be measured in-situ on the fluid borne noise of a physical system or modeled; for this 

work the FWF was measured to ensure correspondence to the system being optimized. 

A fluid power system may spend different amounts of time at different load 

pressures depending on its usage cycle. The TL of a suppressor is dependent on the CPR, 

so a suppressor charged to a given pressure will exhibit different TL for changes in 

system pressure. To account for the time dependency of the system and weight the 

objective function to the most used system pressures, a time weighting factor D is 

incorporated into the objective function. D is defined by 

 i
i

total

t
D

t
 , (5.4) 
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where it is the amount of time the system spends at the i
th

 system pressure, and ttotal is the 

total time in a complete duty cycle, therefore summing all Di in a duty cycle is equal to 

one,  ΣDi=1. 

TL exhibited by a suppressor is dependent on several factors: the system pressure, 

ps, suppressor geometry, and the charge pressures pc,j 
and pc,k. The system pressure is 

dictated by the system’s usage, and cannot be changed by the objective function. The 

suppressor geometry is also fixed for a given optimization and cannot be adjusted during 

operation. The only independent variables are the charge pressures, and the objective 

function searches through all charge pressure in the set U to determine which gives the 

maximum value of the objective function. 

The remainder of the chapter examines the individual components of the objective 

function, TL, FWF and TWF, and their impact on the optimal results. Chapter 2 and 

Chapter 3 show the results of measured and predicted TL. A FWF for four system 

pressures measured on a test rig constructed at Eaton is shown in Figure 32. The Eaton 

test rig is identical to the Georgia Tech test rig, except for the valve creating noise and the 

Eaton valve better represents the noise source seen in the field. Four TWFs are also 

presented: two are representative of anticipated field usages, a third represents a system 

operating mostly at a single system pressure and a fourth represents a mixed duty cycle of 

the two anticipated usages. 
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Figure 32: Frequency weighting factor (FWF) for system pressures of: a) 3.45 MPa, b) 6.90 MPa c) 

13.8 MPa d) 20.7 MPa. 0-4000 Hz frequency range 

5.1.1 Frequency Weighting Factor 

The objective function is frequency-weighted using the FWF, Equation (5.3), to 

account for variation in energy density over the frequency band of interest. The spectral 

content of the pressure ripple in a given hydraulic system is due to a variety of factors, 

including the choice of pump, valves, flow path diameter changes, and line lengths in the 

system. To weight different pressure ripples consistently, the ripples are measured at 

a) 

b) 

c) 

d) 

Maximum at 240 Hz 
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same position, and the frequency content of the pressure ripple assumed incident on the 

suppressor is normalized to the maximum pressure ripple amplitude at all load pressures 

under consideration. This yields a maximum FWF of 1 at the frequency of maximum 

pressure ripple among all ripples at each load pressure. The FWF at all other frequencies 

and load pressures will have a value between 0 and 1, depending upon the spectral 

content of the pressure ripple. Using the FWF ensures frequencies with little acoustic 

energy are ignored while frequencies with high energy will contribute significantly to the 

objective function value. In order to get an accurate FWF for a given system, a 

measurement of pressure ripple should be taken in-situ during anticipated usage at a 

series of system pressures to capture a representative sampling of the system components. 

An example set of FWFs for four load pressures, shown in Figure 32, was 

generated from data measured on a test rig at Eaton Hydraulics. Eaton employed a 

different noise source upstream of the test section than Georgia Tech, which is more 

representative of noise sources seen in the field, thus these FWFs will be used with the 

optimization. With the exception of the 240 Hz component at the 13.8 MPa load pressure, 

Figure 32c, generally, higher system pressures have a higher magnitude of FWF 

reflecting increased magnitude of pressure ripple with increasing load pressure. The mean 

value of the FWF taken over all frequencies for each pressure can be seen in Table 4, and 

the higher system pressures have a higher FWF, indicating more energy in those system 

pressures. For the lowest three system pressures the mean FWF value increases 

proportionally to the system pressure, plateauing between 13.8 MPa and 20.7 MPa. 
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Table 4: Mean frequency weighting values of data taken on Eaton test rig 

 

5.1.2 Time Weighting Factor 

The objective function is weighted to the most-used load pressures using the 

TWF, Eq. (5.4). In practice, hydraulic system duty cycles typically encompass a broad 

range of load pressures, often idling near 0.690 MPa and reaching pressures up to 35 

MPa, with unequal time spent at each load pressure. As noted earlier, the load pressure 

affects both TL, by changing CPR, and the FWF, as seen in Section 5.1.1, and the amount 

of time the system spends at each pressure needs to be accounted for in the objective 

function. The TWF is a time fraction of each load pressure relative to some user-defined 

complete work cycle. Longer usage at a given load pressure will bias the objective 

function towards those load pressures.  

Example TWFs are shown in Figure 33 to Figure 38; two TWFs are 

representative of system in the field and one is an arbitrary usage of a system 

predominantly operating at a single pressure. The TWF in Figure 33 represents pressure 

in the hydraulic circuit for an excavator’s boom and Figure 34 represents boom pressure 

of an excavator performing back-filling. Both of these TWFs are based on field-measured 

data provided by Eaton Hydraulics. The example TWFs represent more system pressures 

than are represented in the FWF, presented in Section 5.1.1. In order to represent the 

same number of system pressures in the TWF as individual system pressures represented 

in the FWF, the system pressures are combined together using the bins shown in Figure 

33 and Figure 34. The pressure ranges are based on proximity to a pressure represented in 

System Pressure (MPa) Mean FWF value 

3.45 0.000367 

6.90 0.000745 

13.8 0.00144 

20.7 0.00146 
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the FWF. The lower system pressures are grouped into bin 1, and these pressures are 

assumed to have no significant pressure ripple and are neglected. The TWF is 

renormalized using only non-zero system pressure ranges, as seen in Figure 35 and 

Figure 36. An arbitrary TWF, TWF Case 3, for a system working heavily in the 13.8 MPa 

range is shown in Figure 37. TWF Case 4, shown in Figure 38, represents a system 

working equally between TWF Case 1 and TWF Case 2. 

 

Figure 33: TWF Case 1: boom pressure, trenching run 

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 
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Figure 34: TWF Case 2: boom pressure, back filling 

 

Figure 35: TWF Case 1: boom pressure, trenching run. Aggregated pressures derived from bins 

shown in Figure 33 

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 
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Figure 36: TWF Case 2: boom pressure, back filling. Aggregated pressures derived from bins shown 

in Figure 34 

 

Figure 37: TWF Case 3: arbitrary usage of a system operating heavily at 13.8 MPa 
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A hydraulic system may be used with different duty cycles during a work period. 

The work period is defined by the length of time between recharging the suppressors to 

an optimal condition. For the above TWFs the work period is one duty cycle. In practice 

it may not be feasible to recharge the suppressors after each duty cycle and a work period 

may last several duty cycles altering the optimal condition. To account for this, the TWF 

can be adjusted to represent more than one duty cycle, but instead represent the total 

anticipated usage for the work period. An arbitrary TWF for a work period of equal time 

spent trenching and back filling is presented in Figure 38. 

 

Figure 38: TWF Case 4: arbitrary work period usage derived from a system operating in a duty cycle 

of 50% back filling and 50% trenching 

5.2 Example Optimizations 

The objective function was calculated using the FWF and TWFs from Section 

5.1.1 and 5.1.2, respectively. The FWF, found in Section 5.1.1, was selected because it is 

representative of a noise source seen in practice. TWF Cases 1 and 2, seen in Figure 35 
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and Figure 36, were selected because they are representative of anticipated system 

pressures based on measurements taken from an existing system. The results from these 

two TWF cases will be representative of anticipated optimal charge pressure 

configurations. TWF Case 3, seen in Figure 37, was selected because it represents a 

system operating at a single system pressure, producing a different optimal configuration 

and allowing for effects of the FWF to be assessed. TWF Case 4, seen in Figure 38, is a 

combination of TWF Cases 1 and 2, and it was selected to represent a mixed system 

usage, as changing the charge pressure between every system task may be infeasible. In 

Section 2.2, a potential maximum achievable TL was observed, as suppressors only 

control FBN, and the suppressors do not treat the other noise transmission paths. TWF 

Case 1 is analyzed with a hypothetical TL ceiling of 30 dB, as discussed in Section 3.3.  

The optimizations presented below are normalized to their own maximum value. 

The optimal point is defined with a normalized objective function value of 1; however 

other charge pressure configurations may have a normalized objective function value of 

over 0.95, judged to be insignificant difference and valid choice for use in practice. All 

local optima with a normalized objective function value above 0.95 are said to be in the 

selected set, O. 

For a system operating over a broad pressure range, there is a strong possibility 

that the selected set includes more than one charge pressure configuration. In order to 

select a charge pressure configuration from the selected set, factors not directly captured 

in the objective function are analyzed, which include gradient of the objective function 

and ABN. During use, the mass of nitrogen contained in the bladder will decrease 

because of imperfect sealing of the bladder and diffusion through the bladder. The rate at 
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which nitrogen escapes is not known, but assumed to be similar for all suppressors 

regardless of CPR. The loss of nitrogen lowers the charge pressure of the bladder, 

decreasing a suppressor’s effectiveness. The decrease in nitrogen, and the associated 

decrease in suppressor performance, allows the charge pressure configurations in the 

selected set to be compared. The gradient of the objective function for all charge 

pressures in the selected set is calculated 

 
 ,1 ,2,c cP P O

F , (5.5) 

where F is the objective function, pc,1 and pc,2 are the charge pressure configurations in 

the selected set, O, and the lowest gradient magnitude is most desirable. The charge 

pressure configuration with the smallest gradient magnitude will be selected as its 

performance suffers the least with decreasing nitrogen pressure. If the first factor is not 

large enough to differentiate between the configurations in O, a second factor of which 

charge pressure configuration produces less ABN in practice will be considered. The 

breakout noise is different for each system and should be measured in-situ for the 

configurations in the selected set, O. 

For a system with a single suppressor operating at a given system pressure, there 

is a unique charge pressure which produces the highest TL over the entire frequency 

range of interest. This charge pressure is the optimal charge pressure for the system 

usage, and will be labeled as the single pressure optimum. A two suppressor system 

operating at the same system pressure as a single suppressor has the optimal condition of 

both suppressors charged to the single pressure optimum. For a system with a single 

suppressor operating over a range of system pressures, the selected set will be shown to 

be comprised of the single pressure optima of the system pressures represented in the 
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TWF. For a system with two suppressors operating over a range of system pressure, the 

selected set will be shown to be comprised of charge pressure pairs made up of single 

pressure optima of system represented in the TWF; however, the optimal pairing may be 

comprised of dissimilar single pressure optima.  

All optimizations are found using the procedure shown in Figure 39. First the TL 

is calculated for all charge pressure and system pressure cases by TL_calc.m, found in 

Appendix A. Next, the TL is weighted by the appropriate FWF and TWF by 

WeightingOpt.m, found in Appendix B. A direct-search method finds the normalized 

objective function values above 0.95 and places these values into the selected set. The 

values in the optimal are compared with the factors not directly captured by the objective 

function are used to select the optimal charge pressure configuration. 

 

Figure 39: Optimization procedure 
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5.2.1 TWF Case 1: Trenching Run 

The objective function was calculated using TL exhibited by a single WM-5138 

suppressor, TWF Case 1, seen in Figure 35, and the FWF seen in Figure 32. The 

normalized objective function values are presented in Figure 40. The highest value of the 

objective function occurs at a charge pressure of 13.1 MPa. There are three more local 

optima at charge pressures of 6.21 MPa, 2.76 MPa and 20.0 MPa, with normalized 

objective function values of 0.98, 0.76 and 0.05, respectively. All the local optimal 

pressures are in the set of single pressure optima.  The local optimum at 6.21 MPa has a 

normalized objective function value over 0.95, placing it in the selected set, O. The 

normalized objective function values at 2.76 MPa and 20.0 MPa charge pressures do not 

cross the threshold for the selected set. The effect of suppressors with a CPR above 1 can 

be seen in Figure 40, in the region outlined in a box. The charge pressures in this region, 

13.7 MPa to 20.7 MPa, have a CPR above 1 for all system pressures other than 20.7 MPa, 

and assumed to perform as an expansion chamber. The high CPR significantly lowers the 

TL of the suppressor and decreases the normalized objective function value to less than 

0.03 for the range in the box. 
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Figure 40: Objective function values: TWF Case 1, one WM-5138 Suppressor. Circles indicate local 

optima at charge pressures of 2.76, 6.27, 13.1 and 20.0 MPa, respectively. Box indicates low 

performance region 

The selected set for this optimization is comprised of a charge pressure of 6.27 

MPa and a charge pressure of 13.1 MPa, one of which will be selected for use. When the 

factors not directly captured by the objective function are considered, a charge pressure 

of 13.1 MPa has a smaller gradient than a charge pressure of 6.21 MPa, making 13.1 MPa 

the selected charge pressure for a single suppressor in a system operating in TWF Case 1. 

A system operating in TWF Case 1 spends over 50% of its duty cycle at a system 

pressure of 13.8 MPa, and the select charge pressure, 13.1 MPa, is the single pressure 

optimum for that system pressure. The system spends approximately a quarter of its duty 

cycle at system pressures of 3.45 MPa and 6.90 MPa, respectively. However, the single 

pressure optima associated with this system pressure do not have similar objective 

Low 

performance 

region 
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function values. While the single pressure optima of 3.45 MPa will never have a CPR of 

over 1, its CPR with a system pressure of 13.8 MPa is 0.22, a CPR which exhibit low TL 

and low objective function value. The single pressure optima of 6.90 MPA has a CPR of 

0.45, meaning this pressure performs better at a system pressure 13.8 MPa, where the 

system spends over half its time. 

The sharp drop offs in normalized objective function value with increasing charge 

pressure evident in Figure 40 occur at charge pressures matching system pressures in the 

TWF. The effect is explained by analyzing a charge pressure of 6.90 MPa. This charge 

pressure has a CPR of 1 for a system pressure of 6.90 MPa and 0.5 for a system pressure 

of 13.8 MPa. Charge pressures slightly higher than 6.90 MPa also have a CPR of over 1 

for a system pressure of 6.90 MPa, and exhibit poor performance because of the 

assumption they behave as expansion chambers. However, their CPRs are higher for a 

system pressure of 13.8 MPa, while being less than 1, and their TL improves as well as 

their objective function values. For charge pressures slightly lower than 6.90 MPa the 

CPR for system pressures of 6.90 and 13.8 MPa are less than 1, meaning the suppressor 

does not perform as an expansion chamber for either system pressure, which means this 

charge pressure range exhibit the highest overall TL for both system pressures discussed. 

The objective function was calculated using TL exhibited by two WM-5138 

suppressors, TWF Case 1, seen in Figure 35, and the FWF seen in Figure 32. The 

normalized objective function values are shown in Figure 41. The values of the objective 

function are symmetric about charge pressure 1 equal to charge pressure 2 because TL is 

not dependent on charge pressure order. For a single system pressure the optimal charge 

pressure condition would be charging both suppressors to the single pressure optimum for 
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this system pressure. The downside to a configuration with two identically charged 

suppressors is for lower system pressures the suppressors are both overcharged. A setup 

of dissimilar charge pressures will not exhibit as high of TL for larger system pressures 

but reduces the chance of both suppressors having a CPR higher than 1. The optimal 

point has a charge pressure pair of [2.76, 13.1] MPa, both single pressure optima for the 

system pressures of 3.45 MPa and 13.8 MPa, respectively. In the analysis of a single 

suppressor for the same TWF Case, seen above, it was shown that a charge pressure of 

6.90 MPa has a higher objective function value than a charge pressure of 2.76 MPa. 

Charge pressure pairs of [2.76, 13.1] MPa and [6.21, 13.1] MPa generate similar TL 

curves for a system pressure of 13.8 MPa but there is a drastic difference for a system 

pressure of 3.45 MPa, as seen in Figure 42. The difference in TL is the cause of the 

difference in objective function value. The box in Figure 41 shows the region where the 

charge pressures of both suppressors are above 13.8 MPa, and the charge pressure pair 

exhibits extremely low objective function values. The system spends very little time at a 

system pressure of 20.7 MPa which is the only system pressure where the suppressor 

pairings with these charge pressures would have a CPR less than one.  
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Figure 41: Objective function values: TWF Case 1, two WM-5138 Suppressors. Circles indicate local 

optima at charge pressure pairs of [2.76, 13.1] MPa, [2.76, 6.21] MPa and [13.1, 13.1] MPa, 

respectively. Box indicates low performance area. 
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Figure 42: TL Peformance for fwo WM-5138 Suppressors with charge pressures matching optimal 

states in Figure 41 

Other local optima in Figure 41 are found with charge pressure pairs of: [13.1, 

13.1] MPa with a normalized objective function value of 0.92, [6.21, 13.1] MPa with a 

normalized objective function value of 0.917 and a charge pressure pair of [2.76, 6.21] 

MPa with a normalized objective function value of 0.903. None of these values cross the 

threshold of 0.95 to be considered in the selected set. 

5.2.2 TWF Case 2: Back Filling 

The objective function was calculated using TL exhibited by a single WM-5138 

suppressor, TWF Case 2, seen in Figure 36, and the FWF seen in Figure 32. The 

normalized objective function values are presented in Figure 43. The system being 

optimized spends more time in the lower pressures than the system for TWF Case 1. With 

the TWF shifted to lower pressure so does the optimal charge pressure; a charge pressure 

of 6.21 MPa for this TWF Case. This charge pressure is the single pressure optimum for 
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6.90 MPa, which is the second largest system pressure value in the second TWF case. 

Charge pressures of 2.76 MPa and 6.27 MPa define the selected set for this TWF case, 

and are both in the set of single pressure optima. This result shows the single pressure 

optimum for the largest system pressure value in the TWF is not always the optimal 

charge pressure. The next highest local optimum is at a charge pressure of 2.76 MPa, 

with objective function value of 0.997. The factors not captured by the objective function 

were analyzed and the magnitude of the gradient near a charge pressure of 6.21 MPa is 

smaller than the gradient near a charge pressure of 2.76 MPa, therefore the charge 

pressure of 6.21 MPa would be selected for use in practice. 

 

Figure 43: Objective function values: TWF Case 2, one WM-5138 Suppressor. Circles indicate local 

optima charge pressures of 2.76 and 6.27MPa, respectively 

The objective function was calculated using TL exhibited two WM-5138 

suppressors, TWF Case 2, seen in Figure 36, and the FWF seen in Figure 32. The 
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normalized objective function values are shown in Figure 44. The optimal charge 

condition is at a charge pressure pairing of [2.76, 6.21] MPa. For this TWF Case, shown 

in Figure 36, the system spends the most time at a system pressure of 3.45 MPa followed 

by a system pressure of 6.90 MPa, the single pressure optimum of these system pressures 

are the charge pressures found in the optimal charge pressure pair. In addition, a charge 

pressure pair of [2.76, 13.1] MPa has an objective function value of 0.994, placing it in 

the selected set. The factors not captured by the objective function were used to 

determine which charge pressure pair to use. For TWF Case 2, a charge pressure pair of 

[2.76, 13.1] MPa will be selected. The box on Figure 44 indicates an area of relatively 

low objective function value. The low objective function values are cause by the charge 

pressure pairs in this region have a CPR less than one for a system pressure of 13.7 MPa 

and 20.9 MPa, where this system spends 25% of its duty cycle. This emphasizes the need 

for properly charged suppressors.  
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Figure 44: Objective function values: TWF Case 2, two WM-5138 Suppressors. Circles indicate local 

optima at charge pressure pairs of [2.76, 13.1] MPa and [2.76, 6.21] MPa, respectively 

Despite the system spending 75% of its TWF at pressures where a charge pressure 

pair of [2.76, 13.1] MPa exhibits TL on the order of a single suppressor, since one of the 

suppressors has a CPR greater than 1, the charge pressure pair has an overall normalized 

objective function value of 0.99. The reason for the charge pressure pair exhibiting low 

TL yet having a high normalized objective function value is found from analysis of the 

FWF. The difference in TL for charge pressure pairs in the selected set at both system 

pressures under consideration, 6.90 and 13.8 MPa, was weighted by their respective 

FWF. The results of the frequency weighting are shown in Figure 45, where positive 

values mean a charge pressure pair of [2.67, 13.1] MPa performs better and negative 

values mean a charge pressure pair of [2.67, 6.21] MPa performs better. In the frequency 

range of 160 Hz to 210 Hz the charge pressure pair of [2.76, 13.1] MPa outperforms the 
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charge pressure pair of [2.76, 6.27] MPa at both system pressures. The frequency 

weighted TL was also averaged; for a system pressure of 13.8 MPa the mean frequency 

weighted TL is 0.0052, this means the charge pressure pair of [2.76, 13.1] MPa preforms 

better at this system pressure. For a system pressure of 6.90 MPa the mean frequency 

weighted TL is -0.0041, meaning the charge pressure pair of [2.76, 6.21] MPa performs 

better at this system pressure. Comparing the magnitudes of frequency weighted TL, the 

charge pressure pair of [2.76, 13.1] MPa outperforms the charge pressure pair of [2.76, 

6.27] MPa for system pressures of 6.90 and 13.8 MPa before being time weighted. After 

time weighting and normalization, the normalized objective functions values are found to 

be 1 for a charge pressure pair of [2.67, 6.21] MPa, and 0.99 for a charge pressure pair of 

[2.67, 13.1] MPa. 

 

Figure 45: Difference in frequency weighted TL for charge pressure pairs of [2.76,  6.21] MPa and 

[2.76, 13.1] MPa at listed system pressures 
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5.2.3 TWF Case 3: Arbitrary Usage 

The objective function was calculated using TL exhibited by a single WM-5138 

suppressor, TWF Case 3, seen in Figure 37, and the FWF seen in Figure 32. The 

normalized objective function values are shown in Figure 46. The optimal value is at a 

charge pressure of 13.1 MPa, and no other charge pressures are in the selected set. The 

predominant system pressure of TWF Case 3 is 13.7 MPa, which has a single pressure 

optimum of a charge pressure of 13.1 MPa, which is the only point in the selected set and 

selected for use with this TWF.  

 

Figure 46: Objective function values: TWF Case 3; one WM-5138 Suppressor. Circle indicates a 

local optimum at a charge pressure of 13.1 MPa 

The objective function was calculated using TL exhibited by two WM-5138 

suppressors, TWF Case 3, seen in Figure 37, and the FWF seen in Figure 32. The 

normalized values of the objective function are seen in Figure 47. The optimal charge 
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pressure pair is [13.1, 13.1] MPa, where 13.1 MPa is the single pressure optimum for 

13.8 MPa system pressure. The optimal charge pressure configuration of a two-

suppressor system operating with predominately one system pressure is a pairing of 

single pressure optima. An effect of the FWF is seen in the region outlined in Figure 47. 

For a system operating at a given pressure it is seen that increasing CPR improves TL, 

until the CPR becomes larger than one. Generally the highest TL is desirable for the 

optimal condition. However, in the box on Figure 47, charge pressure pairs exhibiting 

lower TL have higher normalized objective function values. For example; a charge 

pressure pair of [4.14, 13.1] MPa exhibits higher TL than a charge pressure pair of [0.69, 

13.1] MPa; however, a charge pressure pair of [0.69, 13.1] MPa has a higher objective 

function value than a charge pressure pair of [4.14, 13.1] MPa. A comparison of the two 

TL curves to the FWF, shown in Figure 48, for a system pressure of 13.7 MPa explains 

this behavior. The TL curve for a charge pressure pair of [4.14, 13.1] MPa has low TL at 

the highest values of the FWF, in the region of 240 Hz outlined in the box, while a charge 

pressure pair of [1.38, 13.1] MPa has a TL near 20 dB for the same frequencies, and this 

range is outlined in black. Above 300 Hz, the TL for the charge pressure pair of [4.14, 

13.1] MPa is higher than the charge pressure pair of [0.69, 13.1] MPa, however the 

values of FWF are below 0.001 in this range. The charge pressure pair of [0.69, 13.1] 

MPa has a higher objective function value than a charge pressure pair of [4.14, 13.1] MPa 

because of the weighting of the FWF. Also shown in Figure 48 is the TL curve of a 

charge pressure pair of [13.1, 13.1] MPa, the optimal charge pressure. The TL exhibited 

by a charge pressure pair of [13.1, 13.1] MPa approaches 0 dB at a frequency of 200 Hz; 

however, the TL increases to a similar value of a charge pressure pair of [0.69, 13.1] MPa 



84 

 

at 240 Hz, and exceeds it above 240 Hz leading to a higher normalized objective function 

value and selection as the optimal charge pressure configuration.  

 

Figure 47: Objective function values; TWF Case 3, two WM-5138 Suppressors. Circle indicates a 

local optimum at a charge pressure pair of [13.1, 13.1] MPa. Box indicates region of low overall TL 

and high normalized objective function value. 
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Figure 48: Transmission loss curves for two charge pressure pairs and FWF at 13.7 MPA. Box 

indicates region of high FWF value 

5.2.4 TWF Case 4: Mixed Usage 

The objective function was calculated using TL exhibited by a single WM-5138 

suppressor, TWF Case 4, seen in Figure 38, and the FWF seen in Figure 32. The 

normalized objective function values are presented in Figure 49. TWF Cases 1 and 2 

have been combined to form TWF Case 4, and it follows the objective function values for 

this TWF case should have similarity to the objective function values of TWF Cases 1 

and 2. The selected set for TWF Case 1 is 6.21 MPa and 13.1 MPa, and the selected set 

for TWF Case 2 is 2.76 MPa and 6.21 MPa. The overlapping point of the selected set, 

6.21 MPa, becomes the global optimum for this TWF case. The other points from the 

selected sets of TWF Case 1 and TWF Case 2 fall below the selected set threshold of 

0.95. 
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Figure 49: Objective function values: TWF Case 4; one WM--5138 Suppressor. Circles indicate local 

optima at charge pressures of 2.76, 6.21 and 13.1 MPa, respectively. 

The objective function was calculated using TL exhibited by a single WM-5138 

suppressor, TWF Case 4, seen in Figure 38, and the FWF seen in Figure 32. The 

normalized objective function values are presented in Figure 50. The optimal charge 

pressure pair is [2.76, 13.1] MPa. This follows from the objective function values of 

TWF Case 1, seen in Figure 41, and objective function values of TWF Case 2, seen in 

Figure 44, as a charge pressure pair of [2.76, 13.1] MPa has a value of 1 and 0.99 for 

TWF Cases 1 and 2, respectively. A local optimum with an objective function value of 

0.95 occurs at a charge pressure pair of [2.76, 6.21] MPa. This charge pressure pair is 

also found to be in the selected set of TWF Case 2 and has a normalized objective 

function value above 0.9 for TWF Case 1. The factors not directly captured by the 

objective function must be considered to differentiate between the local optima in the 
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selected set. The gradient in the region near the charge pressure pair of [2.76, 13.1] MPa 

is smaller than the gradient in the region near the charge pressure pair of [2.76, 13.1] 

MPa, thus the charge pressure pair of [2.76, 13.1] MPa would be selected for use with 

this TWF. 

 

Figure 50: Objective function values; TWF Case 4, two WM-5138 Suppressors. Circles indicate local 

optima at charge pressure pairs of [2.76, 13.1] MPa and [2.76, 6.21] MPa, respectively. 

5.2.5 Results with a 30 dB Constraint on Transmission Loss 

As seen in Section 3.3, there may be an upper limit to TL in a given system. A 

maximum TL ceiling of 30 dB was applied to the results from TWF Case 1 even if the 

model predicted TL greater than 30 dB. The objective function values for TWF Case 1, 

seen in Figure 35, with a single suppressor are calculated with this constraint and the 

normalized values are shown in Figure 51. The objective function has a selected set 

comprising of 6.27 MPa and 13.1 MPa, the same selected set as the unconstrained TL 
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case, also presented in Figure 51. The factors not captured by the objective function are 

used to select the optimal condition from the selected set. For the capped TL case of a 

system operating at TWF Case 1, the objective function for a charge pressure of 13.1 

MPa has a smaller gradient than that of a charge pressure of 6.21 MPa. The charge 

pressure of 13.1 MPa would be selected for use in the system, the same pressure selected 

for TWF Case 1 with unconstrained TL. Since the difference between the objective 

function values for unconstrained TL and constrained TL is difficult to determine in 

Figure 51, the difference between the objective function values are shown in Figure 52. 

The largest difference occurs at a charge pressure of 13.1 MPa, the optimal condition. 

The difference of the two magnitudes is 0.0065, considered to be insignificant, indicating 

that imposing a maximum TL constraint of 30 dB will not affect single suppressor 

optimization. 

 

Figure 51: Objective function values: TWF Case 1, one WM-5138 Suppressor, unconstrained TL and 

constrained TL. Circles represent Charge Pressures of 13.1 and 6.27 MPa, respectively. 
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Figure 52: Difference in objective function values for constrained and unconstrained TL. Circle 

indicates charge pressure of 13.1 MPa 

A maximum TL constraint of 30 dB was also applied to the two suppressor case, 

and the objective function was recalculated, with the resulting values shown in Figure 53. 

The optimal value occurs at a charge pressure pair of [2.76, 13.1] MPa, the same as the 

uncapped TL case. Similarly, the optimal charge pressure pair is the only charge pressure 

pair in the selected set. The objective function values of the constrained TL case were 

normalized to the maximum of the unconstrained TL case; and the difference between the 

cases is shown in Figure 54. The difference at the selected optimal charge pressure pair is 

0.048. The difference is significant, but the optimal point does not shift to a different 

charge pressure pair. This indicates that the optimization method developed is not 

strongly affected by a maximum achievable TL. The maximum difference of normalized 

objective function value occurs, of 0.10, at a charge pressure pair of [13.1, 13.1] MPa, a 



90 

 

charge pressure pair exhibiting large TL for system pressures of 13.8 MPa and above. 

However, this charge pressure pair is not in the selected set for either the TL cases. The 

differences are relative to the TL produced, as a charge pressure pairs with high TL are 

affected more, and the difference is not strongly dependent on TWF. Charge pressure 

configurations of both single pressure optimum, charge pressure pairs of [2.76, 2.76] 

MPa, [6.21, 6.21] MPa and [13.1, 13.1] MPa, exhibit the largest TL and the differences 

between constrained and unconstrained TL have local maxima at these points. In addition, 

the difference is larger for a two suppressor configuration than a single suppressor 

configuration because of a large difference between constrained and unconstrained TL. 

 

Figure 53: Objective function values: TWF Case 1; two WM-5138 Suppressors, constrained TL. 

Circles indicate local optima at charge pressure pairs of [2.76, 13.1] MPa, [2.76, 6.21] MPa and [13.1, 

13.1] MPa respectively 
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Figure 54: Difference in objective function values by imposed 30 dB TL constraint on TWF Case 1, 

two WM-5138 Suppressors 
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CHAPTER 6 

CONCLUSIONS 

A method for optimizing the charge pressure for either one or two suppressors 

operating in a system with a variety of pressures has been developed. The transmission 

loss (TL) behavior of the suppressors is predicted by an equivalent fluid model. Both 

experiment and modeling show the TL of the suppressors is dependent on the charge 

pressure ratio (CPR) and varies over frequency. The variance of TL across system 

pressure and frequency is accounted for in an objective function through use of a time 

weighting factor (TWF) and a frequency weighting factor (FWF). The TWF considers the 

time spent at each system pressure, while the FWF considers the frequency spectrum of 

the noise. For this work the TWFs are anticipated usages, while the FWFs are the results 

of experiment. 

The selected set for all optimizations are made up of single pressure optima. The 

single pressure optimum is the optimum charge pressure for a single system pressure, and 

this point has been found to be close to a CPR of 0.9. For single suppressor 

optimizations, the optimal point is often the single pressure optimum for the largest value 

in the TWF; however, exceptions do occur for some TWF cases. This effect weights the 

objective function towards lower charge pressures. 

For two suppressor optimizations both charge pressures are single pressure 

optimal, though rarely the same charge pressure. The optimal charge pressures are 

dependent on the TWF, however the selected charge pressures are not always the single 

pressure optimum for the system pressures corresponding to the highest two values of the 

TWF. 



93 

 

The spectral content of the noise weights the objective function through the FWF. 

Generally, the largest amount of noise occurs in the low frequency range. The spectral 

content of the noise shifts frequencies system as pressures rise. In addition, the mean 

value of the FWF rises with system pressure, meaning higher system pressures produce 

more noise. The optimal condition is not greatly affected by the FWF, however, a charge 

pressure configuration with low TL at the frequencies with high FWF values has a low 

objective function value.  

Each system pressure causes the system to behave differently, both through its 

effect on CPR and effect on FWF. During use the suppressor has a fixed charge pressure, 

and varying the system pressure effects TL by changing CPR. The TWF weights the 

objective function towards highly used system pressures to account for these effects. The 

effect of the TWF is such that changing the TWF significantly change the optimal charge 

pressure configuration. 

For some optimizations, there are multiple charge pressure configurations with 

objective function values in the selected set. In such cases, factors not directly captured 

by the objective function must be considered to determine the optimal charge pressure 

configuration. The first deciding factor considered is the gradient of the objective 

function in the neighborhood of the optimal point. A lower gradient magnitude means a 

given optimal point performs better as the charge pressure decreases during use. Another 

factor used for consideration is the air-borne noise measured in-situ for a given system. 

Bladder-style suppressors only suppress fluid borne noise for the fluid within the 

device, but acoustic energy may take an alternative path, such as along the shell, to 

downstream of the device and in consequence some systems may exhibit a maximum 
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achievable TL. The objective function was applied to a simulation exhibiting a 

hypothetical constrained maximum TL. The single suppressor optimization is effected 

less than the double suppressor optimization, as less TL is expected from a single 

suppressor than two suppressors. The objective function still predicts similar optimal 

points for a system with a constrained maximum TL as a system without a constrained 

maximum TL, such that the optimization results hold even if a system exhibits a TL 

ceiling. 

6.1 Future Work 

Further development of this work should include improvement in model 

characterization of the suppressors, with a focus on suppressors having a CPR larger than 

1, improving the measurement technique and expanding the pressure resolution of the 

FWF. An update to the model should better predict the TL nulls, especially at low 

frequencies for two suppressor cases, especially relevant due to the predicted nulls’ 

effects on objective function value. For this work, suppressors with a CPR larger than 1 

are assumed to exhibit TL behavior similar to that of an expansion chamber. A better 

model of suppressors for this case would better inform the optimal conditions. The 

experimentally measured TL shows a significant amount of artifacts. Improvement needs 

to be made to the measurement technique to remove the artifacts in order to further 

inform suppressor behavior. In suppressor configurations with high predicted TL, transfer 

function coherence decreases below the necessary threshold for measurement. A method 

for ensuring high transfer function coherence in these cases will allow the behavior of 

suppressor configuration exhibiting high TL, specifically two suppressor configurations, 

to be further investigated. Improving the data acquisition will also better inform the 

model, enabling more accurate results. A FWF with higher frequency resolution would 
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increase the set of single pressure optima and better reflect hydraulic systems, which 

work over a continuous pressure range not discrete pressures. 

For two suppressor configurations, the suppressors were both assumed to be the 

same size. Non-identical suppressors may improve performance as suppressor geometry 

affects the shape of the TL curve allowing specific frequencies to be targeted. Future 

work should analyze the effect of using two dissimilarly sized suppressors. Using 

dissimilar suppressors may allow the shape of the TL curve, particularly the low 

frequency TL decrease, to better match the shape of the FWF. 

Additional future work could be conducted by using the objective function to 

inform an optimal design of a single suppressor operating with a given FWF and a set of 

given TWF. In order to find an accurate optimal suppressor design, a model for 

predicting the FWF of a given pump operating within a system will need to be developed. 
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APPENDIX A 

MATLAB FUNCTION FOR CALCULATION OF TRANSMISSION 

LOSS 

function 

TL_calc5(supNum,freq,PcVec,PsVec,fileName,r_0,r_a0,r_b,zlen,L,unitset) 

  
%Function: TL_calc4.m 
%Version: 4 
%Revision: Corrects predicted transmission loss for the case when one 
%suppressor is overcharged and one suppressor is undercharged 
%Revision: Correction of suppressor terminology 
%Revision: Allows user to omit individual dimensions and use default 

values 
%as well as simulate either a single suppressor set up or a double 
%suppressor set up.  
%        supNum - The number of suppressors in the system 
%        freq - frequencies of interest 
%Inputs:  
 [Hz] (vector 1 x V) 
%        PcVec - Series of monotonically increasing charge pressures 

[psi] 
%        or [Pa] (vector 1 x W) 
%        PsVev - Series of monotonically increasing static pressures 

[psi] 
%        or [Pa] (vector 1 x X) 
%        fileName - title of saved mat file (string) 
%Optional Inputs: 
%        r_0 - inner radius of inlet pipe [in] or [m] 
%        r_a0 - outer radius of suppressor annulus [in] or [m] 
%        r_b - inner radius of suppressor shell [in] or [m] 
%        zlen - inner length of suppressor [in] or [m] 
%        L - seperation length between suppresors [in] or [m] 
%        unitset - a string of either English or Metric which 

determines 
%        the unit set used for the entire simulation 
%Outputs: 
%        A saved W x W x X x V matrix of transmission loss for every 
%        condition simulated 

  
starttime=now; 

  
if supNum ~= 1 && supNum ~= 2 
    error('Not a Simulation case') 
end 

  
%Default dimensions 
dr_0 = 0.69291338512; %radius of inlet pipe 
dr_a0 = 0.99212598324; %uncompressed bladder radius 
dr_b = 1.64173228179; %outer radius of silencer 
dzlen = 2.68503936734; %estimated effective length 
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dL=3.93700787; %Back to back seperation length 
dunitset='English'; 

     
% Default Suppressor dimensions [in] 
if nargin == 5 
    r_0 = dr_0; %radius of inlet pipe 
    r_a0 = dr_a0; %uncompressed bladder radius 
    r_b = dr_b; %outer radius of silencer 
    zlen = dzlen; %estimated effective length 
    L=dL; %Back to back seperation length 
    unitset=dunitset; 
end 

  
if isempty(r_0) 
    r_0=dr_0; 
end 
if isempty(r_a0) 
    r_a0=dr_a0; 
end 
if isempty(r_b) 
    r_b=dr_b; 
end 
if isempty(zlen) 
    zlen=dzlen; 
end 
if isempty(L) 
    L=dL; 
end 
if isempty(unitset) 
    unitset=dunitset; 
end 

  
switch unitset %The Default Unit set is English Units, however the code 

uses metric.   
    case 'English' %If English units are used they are converted into 

metric 
        r_0=r_0./39.3700787; 
        r_a0=r_a0./39.3700787; 
        r_b=r_b./39.3700787; 
        zlen=zlen./39.3700787; 
        L=L./39.3700787; 
        PcPlot=PcVec; %#ok<NASGU> %Used on the contour plot  
        PcVec=PcVec.*6894.75729; 
        PsVec=PsVec.*6894.75729; 
    case 'Metric' 
        PcPlot=PcVec; %#ok<NASGU>  
end 

  
switch supNum 
    case 1 
        m=1; 
        o=1; 
        overall=0; 
        total=length(PsVec)*length(PcVec); %The total number of 

simulations being run 
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        TLmat=zeros(length(PcVec),length(PsVec),length(freq)); 

%Initializes TLmat to proper size 
        for Pc1=PcVec 
                for Ps=PsVec 
                   TL = WM_shell(freq,Pc1,Ps,r_0,r_a0,r_b,zlen); %Calls 

the function that similuates back to back suppressors 
                   overall=overall+1; 
                   disp(['Simulation ' num2str(overall) ' of ' 

num2str(total)]) 
                   TLmat(m,o,:)=TL; %Saves TL data in proper location 
                   o=o+1; 
                end 
            m=m+1; 
            o=1; 
        end 
    case 2 
        n=1; 
        m=1; 
        o=1; 
        overall=0; 
        total=length(PsVec)*.5*length(PcVec)*(length(PcVec)+1)*1; %The 

total number of simulations being run 
        

TLmat=zeros(length(PcVec),length(PcVec),length(PsVec),length(freq)); 

%Initializes TLmat to proper size 
        for Pc1=PcVec 
%             PcVec2=PcVec(PcVec>=Pc1); 
            for Pc2=PcVec 
                for Ps=PsVec 
                   TL = 

WM_shell_Double(freq,Pc1,Pc2,Ps,r_0,r_a0,r_b,zlen,L); %Calls the 

function that similuates back to back suppressors 
                   figure; plot(freq,TL) 
                   title([num2str(Pc1./6894.75729) 

num2str(Pc2./6894.75729)]) 
                   clearvars -except freq Pc1 Pc2 Ps r_0 r_a0 r_b zlen 

L o n m TLmat PcPlot PcVec PsVec unitset supNum overall starttime 

fileName total TL 
                   clearvars -global 
                   overall=overall+1; 
                   disp(['Simulation ' num2str(overall) ' of ' 

num2str(total)]) 
                   TLmat(m,n,o,:)=TL; %Saves TL data in proper location 
                   clear TL 
                   o=o+1; 
                end 
                n=n+1; 
                o=1; 
            end 
            m=m+1; 
            n=m;                         
            o=1; 
        end 
end 
save(fileName,'TLmat','PcPlot','PcVec','PsVec','freq','unitset','supNum

')  
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endtime = now; 
sec = (endtime-starttime)*60*60*24; 
minu = floor(sec/60); 
    sec = sec-minu*60; 
hr = floor(minu/60); 
    minu = minu-hr*60; 
day = floor(hr/24); 
    hr = hr-day*24; 

     
timestr = 'is'; 
if day > 0 
    timestr = [timestr ' ' num2str(day) ' days']; 
end 
if hr > 0 
    timestr = [timestr ' ' num2str(hr) ' hours']; 
end 
if minu > 0 
    timestr = [timestr ' ' num2str(minu) ' minutes']; 
end 
timestr = [timestr ' ' num2str(sec) ' seconds']; 

  

  
disp(['Elapsed time for this simulation ' timestr '.']) 
end 

  

  
function TL = WM_shell(freq,Pc,Ps,r_0,r_a0,r_b,zlen) 

  
starttime=now; 
vs = '(v20)'; 
disp('*************************') 
disp(['Running WM_shell.m ' vs]) 
disp('*************************') 

  
global showdebug 
showdebug = 0; %1 to show debug/error messages 

  
% Initialize simulation data 

  
% Frequencies of interest 
freqsize = size(freq); 
if freqsize(2) > freqsize(1) 
    freq = freq.'; 
end 
clear freqsize 
freqw = freq.'*2*pi; 
numharm = length(freq); 

  
% Modes of interest 
nummode = 6; 
% Pc=6894.75729*Pc; 
% Ps=6894.75729*Ps; 

  
% Fluid properties 
tmp = 35; %fluid temp, C 
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c_f = 1400; %measured sound speed in hydraulic fluid 
rho_f = 865.9731; %density of hydraulic fluid 
k_f = freqw./c_f; %wavenumber in free fluid 
Z_f = rho_f*c_f*ones(1,length(freq)); %Specific acoustic impedance for 

fluid 
lambda_f = ones(1,numharm)*c_f^2*rho_f; %fluid bulk modulus 

  
% Downstream port impedance 
Zp2plus = getzp2(freq, Z_f); %downstream port is modeled as anechoic by 

default 

  
lambda_s = ones(1,numharm)*1.4*max(Ps,Pc)*exp(0.0i); %pressurized gas 

bulk modulus 

  
% Silencer dimensions 
if nargin == 3 
    r_0 = 0.0176; %radius of inlet pipe 
    r_a0 = 0.0252; %uncompressed bladder radius 
    r_b = 0.0417; %outer radius of silencer 
    zlen = 0.0682; %estimated effective length 
end 
if Pc>=Ps 
    r_b=r_a0+0.001; 
end 
%calculate mass of precharge gas 
mass = 0.028*Pc*zlen*pi*(r_b^2-r_a0^2)/(8.314*(273+tmp)); 

  
r_a = sqrt(r_b^2-(mass/0.028*8.314*(273+tmp)/(max(Ps,Pc)*zlen*pi))); 

%compressed radius 
sig = (0.05)/(2*pi*r_a*zlen); %mass per area of bladder; effective 

insert mass is ~50g? 
rho_s = mass/(zlen*pi*(r_b^2-r_a^2)); %compressed density 

  
%wavenumbers and sound speeds 
c_L = sqrt(lambda_s/rho_s); %longitudinal sound speed 
k_L = freqw./c_L; %longitudinal wave number 

  
% Build data structure 
datstruct = struct('freq',freq,'freqw',freqw,'numharm',numharm,... 
    

'nummode',nummode,'Ps',Ps,'Pc',Pc,'tmp',tmp,'c_f',c_f,'rho_f',rho_f,... 
    'k_f',k_f,'Z_f',Z_f,'Zp2plus',Zp2plus,'rho_s',rho_s,'sig',sig,... 
    'c_L',c_L,'k_L',k_L,'r_0',r_0,'r_a',r_a,'r_b',r_b,'zlen',zlen,... 
    'lambda_f',lambda_f,'lambda',lambda_s,'k1_rf',[],'k1_zf',[],... 
    

'k2_rf',[],'k2_rL',[],'k2_zf',[],'k2_zL',[],'TL',[],'coef_mat',[],... 
    'pcp',[],'pcm',[],'badfreq',[],'numpmode',nummode,'numlmode',0,... 
    'numpint',nummode,'numlint',0,'showdebug',showdebug); 
if showdebug == 1 
    save simdat datstruct 
end 

  
% Run simulation and find objective function 
datstruct = analyz(datstruct); 
if showdebug == 1 
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    save simdat datstruct 
end 
datstruct = proc(datstruct); 
TL = datstruct.TL; 
if showdebug == 1 
    save simdat datstruct 
end 

  
% % Plot results of simulation 
% figure; 
% plot(freq,TL); 
% xlabel('Frequency [Hz]'), ylabel('TL [dB]') 
% title([num2str(Pc/1e6) ' MPa precharge, ' num2str(Ps/1e6) ' MPa 

system']) 

  
% Time data 
% Display how long the simulation took 
endtime = now; 
sec = (endtime-starttime)*60*60*24; 
min = floor(sec/60); 
    sec = sec-min*60; 
hr = floor(min/60); 
    min = min-hr*60; 
day = floor(hr/24); 
    hr = hr-day*24; 

     
timestr = 'is'; 
if day > 0 
    timestr = [timestr ' ' num2str(day) ' days']; 
end 
if hr > 0 
    timestr = [timestr ' ' num2str(hr) ' hours']; 
end 
if min > 0 
    timestr = [timestr ' ' num2str(min) ' minutes']; 
end 
timestr = [timestr ' ' num2str(sec) ' seconds']; 

  

  
disp(['Elapsed time for this simulation ' timestr '.']) 

  
end 
% WM_shell.m 
% TL = WM_shell(freq,Pc,Ps) 
% Vs 20 
% Modified for gas bladder silencer 
% Outputs: TL = predicted transmission loss [dB] (vector n x 1) 
% Inputs: freq = frequencies of interest [Hz] (vector n x 1) 
%         Pc = charge pressure of bladder [Pa] 
%         Ps = system pressure [Pa] 

  
function TL = WM_shell_Double(freq,Pc1,Pc2,Ps,r_0,r_a0,r_b,zlen,L) 
clear datstruct TL 
starttime=now; 
vs = '(v20)'; 
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disp('*************************') 
disp(['Running WM_shell.m ' vs]) 
disp('*************************') 

  

  
% Pc1=6894.75729*Pc1; 
% Pc2=6894.75729*Pc2; 
% Ps=6894.75729*Ps; 

  
P=[Pc1,Pc2]; 
for x=[1:2] 
    clearvars -except freq Pc1 Pc2 Ps r_0 r_a0 r_b zlen L o n m TLmat 

PcPlot PcVec PsVec unitset supNum overall starttime fileName total TL 

datstruct x P Z_f_new E0_new F0_new Edown Fdown int_L 
global showdebug 
showdebug = 0; %1 to show debug/error messages 

  
% Initialize simulation data 

  
% Frequencies of interest 
freqsize = size(freq); 
if freqsize(2) > freqsize(1) 
    freq = freq.'; 
end 
clear freqsize 
freqw = freq.'*2*pi; 
numharm = length(freq); 

  
% Modes of interest 
nummode = 6; 

  
% Fluid properties 
tmp = 35; %fluid temp, C 
c_f = 1400; %measured sound speed in hydraulic fluid 
rho_f = 865.9731; %density of hydraulic fluid 
k_f = freqw./c_f; %wavenumber in free fluid 
Z_f = rho_f*c_f*ones(1,length(freq)); %Specific acoustic impedance for 

fluid 
lambda_f = ones(1,numharm)*c_f^2*rho_f; %fluid bulk modulus 

  
% Downstream port impedance 
if x==1 
    Zp2plus = getzp2(freq, Z_f); %downstream port is modeled as 

anechoic by default 
elseif x==2 
    Zp2plus = Z_f_new; 
end 

  
lambda_s = ones(1,numharm)*1.4*max(Ps,P(x))*exp(0.0i); %pressurized gas 

bulk modulus 

  
% Silencer dimensions (in meters) 
% r_0 = 0.0176; %radius of inlet pipe 
% r_a0 = 0.0252; %uncompressed bladder radius 
% r_b = 0.0417; %outer radius of silencer 
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% zlen = 0.0682; %estimated effective length 

  
%calculate mass of precharge gas 
mass = 0.028*P(x)*zlen*pi*(r_b^2-r_a0^2)/(8.314*(273+tmp)); 

  
r_a = sqrt(r_b^2-(mass/0.028*8.314*(273+tmp)/(max(Ps,P(x))*zlen*pi))); 

%compressed radius 
sig = (0.05)/(2*pi*r_a*zlen); %mass per area of bladder; effective 

insert mass is ~50g? 
rho_s = mass/(zlen*pi*(r_b^2-r_a^2)); %compressed density 

  
%wavenumbers and sound speeds 
c_L = sqrt(lambda_s/rho_s); %longitudinal sound speed 
k_L = freqw./c_L; %longitudinal wave number 

  
% Build data structure 
datstruct = struct('freq',freq,'freqw',freqw,'numharm',numharm,... 
    

'nummode',nummode,'Ps',Ps,'Pc',P(x),'tmp',tmp,'c_f',c_f,'rho_f',rho_f,.

.. 
    'k_f',k_f,'Z_f',Z_f,'Zp2plus',Zp2plus,'rho_s',rho_s,'sig',sig,... 
    'c_L',c_L,'k_L',k_L,'r_0',r_0,'r_a',r_a,'r_b',r_b,'zlen',zlen,... 
    'lambda_f',lambda_f,'lambda',lambda_s,'k1_rf',[],'k1_zf',[],... 
    

'k2_rf',[],'k2_rL',[],'k2_zf',[],'k2_zL',[],'TL',[],'coef_mat',[],... 
    'pcp',[],'pcm',[],'badfreq',[],'numpmode',nummode,'numlmode',0,... 
    'numpint',nummode,'numlint',0,'showdebug',showdebug); 
if showdebug == 1 
    save simdat datstruct 
end 

  
if P(x)>=Ps 
    r_b=r_a0; 
    datstruct = struct('freq',freq,'freqw',freqw,'numharm',numharm,... 
    

'nummode',nummode,'Ps',Ps,'Pc',P(x),'tmp',tmp,'c_f',c_f,'rho_f',rho_f,.

.. 
    'k_f',k_f,'Z_f',Z_f,'Zp2plus',Zp2plus,'rho_s',rho_s,'sig',sig,... 
    'c_L',c_L,'k_L',k_L,'r_0',r_0,'r_a',r_a,'r_b',r_b,'zlen',zlen,... 
    'lambda_f',lambda_f,'lambda',lambda_s,'k1_rf',[],'k1_zf',[],... 
    

'k2_rf',[],'k2_rL',[],'k2_zf',[],'k2_zL',[],'TL',[],'coef_mat',[],... 
    'pcp',[],'pcm',[],'badfreq',[],'numpmode',nummode,'numlmode',0,... 
    'numpint',nummode,'numlint',0,'showdebug',showdebug); 
    datstruct = analyz(datstruct); 
    datstruct = proc(datstruct); 
else 
    datstruct = analyz(datstruct); 
    datstruct = proc(datstruct); 
end 

  
if showdebug == 1 
    save simdat datstruct 
end 
if showdebug == 1 
    save simdat datstruct 
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end 
if x==1 
    int_L = L; %length between silencers 
    E0_new = 

ones(1,datstruct.numharm).*exp(1i*int_L*datstruct.k1_zf(:,1).'); 
    F0_new = 

datstruct.coef_mat(1,:).*exp(1i*int_L*datstruct.k1_zf(:,datstruct.nummo

de+1).'); 
    rho_f = datstruct.rho_f; 
    c_f = datstruct.c_f; 
    Z_f_new = (E0_new+F0_new).*(rho_f.*c_f)./(E0_new-F0_new); 
    Edown=datstruct.coef_mat(datstruct.nummode*3+1,:); 
    Fdown=datstruct.coef_mat(datstruct.nummode*4+1,:); 
elseif x==2 
    Aup=ones(1,datstruct.numharm); 
    Bup=datstruct.coef_mat(1,:); 
    Adown=datstruct.coef_mat(datstruct.nummode*3+1,:).*exp(-

1i*datstruct.k1_zf(:,1).'*int_L); 
    Edown_new=Adown.*Edown; 
    Fdown_new=Adown.*Fdown; 
end 
end %the for loop ends here 
TL=20*log10(abs((Aup.^2-Fdown_new.^2)./(Aup.*Edown_new-

Bup.*Fdown_new))); 

  
% figure; 
% plot(freq,TL) 
% title([num2str(Pc1./6894.75729),'    ' num2str(Pc2./6894.75729)]) 

  
% Time data 
% Display how long the simulation took 
endtime = now; 
sec = (endtime-starttime)*60*60*24; 
minu = floor(sec/60); 
    sec = sec-minu*60; 
hr = floor(minu/60); 
    minu = minu-hr*60; 
day = floor(hr/24); 
    hr = hr-day*24; 

     
timestr = 'is'; 
if day > 0 
    timestr = [timestr ' ' num2str(day) ' days']; 
end 
if hr > 0 
    timestr = [timestr ' ' num2str(hr) ' hours']; 
end 
if minu > 0 
    timestr = [timestr ' ' num2str(minu) ' minutes']; 
end 
timestr = [timestr ' ' num2str(sec) ' seconds']; 

  

  
disp(['Elapsed time for this simulation ' timestr '.']) 
end 
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%% 
%analyz 
% by K Marek, revised May 2011 
% Solves eigenfunctions and returns orthogonal wavenumbers 
% This gives us the unique axial wavenumber for each mode. 

  
function datstruct = analyz(datstruct) 

  
global showdebug 
numharm = datstruct.numharm; 
nummode = datstruct.nummode; 
k_f = datstruct.k_f; 
rho_f = datstruct.rho_f; 
r_0 = datstruct.r_0; 
k_L = datstruct.k_L; 
rho_s = datstruct.rho_s; 
sig = datstruct.sig; 
r_a = datstruct.r_a; 
r_b = datstruct.r_b; 
lambda_f = datstruct.lambda_f; 
lambda = datstruct.lambda; 
freqw = datstruct.freqw; 

  

  
% Solution loop 1 

  
% Use a Newton-Raphson method to solve for k_zf using initial value 
% generated by robust root finder.  k1 for k outside silencer region. 

  
disp('Begin root solving') 
indcmax = 200; 
fguess_all = 0.001; 
deltaguess_all = 0.0001; 

  
k1_zf = zeros(numharm,nummode*2); %1st half pos. travelling wave; 2nd 

half neg. 
k1_rf = k1_zf; 

  
disp('Find initial pipe roots'); 
k1_zf(1,:) = findroots_nl([],nummode,r_0,k_f(1),freqw(1),... 
    lambda_f(1),rho_f,fguess_all,deltaguess_all); 
disp('Find subsequent pipe roots'); 

  
for inda = 2:numharm 
    problem = 'none'; 
    for indb = 1:nummode*2 
        indc = 1; 
        convb = 0; 

         
        guess = k1_zf(inda-1,indb); 
        % Negative travelling wave might have negative wavenumber of 

pos. 
        if indb > nummode 
            if abs(k1_zf(inda-1,indb) + k1_zf(inda-1,indb-nummode)) < 

2*deltaguess_all 



106 

 

                guess = -k1_zf(inda,indb-nummode); 
            end 
        end 

         
        [fguess,fprime] = 

eigm(guess,freqw(inda),0,lambda_f(inda),0,rho_f,0,r_0,r_0); 

         
        if(fguess == 0) 
            convb = 1; 
        end 
        while(convb == 0) 
            newguess = guess-fguess/fprime; 
            deltaguess = abs(newguess-guess); 

  
            guess = newguess; 
            [fguess,fprime] = 

eigm(guess,freqw(inda),0,lambda_f(inda),0,rho_f,0,r_0,r_0); 

  
            if(indc > indcmax) 
                if showdebug == 1 
                disp(['Too many iterations, harmonic ' num2str(inda) 

... 
                    ', mode ' num2str(indb) ' in numeric 2-D ' ... 
                    'compression wave solution, section 1']); 
                end 
                problem = 'iterations'; 
            end 
            if((abs(fguess) < fguess_all) && (deltaguess < 

deltaguess_all)) 
                convb = 1; 
                for indd = 1:indb-1 
                    if(abs(guess-k1_zf(inda,indd)) < 2*deltaguess_all) 
                        if showdebug == 1 
                        disp(['Duplicate solution found, harmonic ' ... 
                            num2str(inda) ', modes ' num2str(indd) ' 

and '... 
                            num2str(indb) ', section 1']); 
                        end 
                        problem = 'duplicates'; 
                    end 
                end 
            end 
            indc = indc+1; 
            if ~strcmp(problem,'none') 
                convb = -1; 
            end 
        end 
        if abs(imag(guess)) < deltaguess_all 
            guess = real(guess); 
        end 
        k1_zf(inda,indb) = guess; 
    end 
    % Make sure negative and positives haven't switched up 
    for indb = 1:nummode 
        if (imag(k1_zf(inda,indb))) > 0 || ((imag(k1_zf(inda,indb)) == 

0) && real(k1_zf(inda,indb)) < 0) 
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            if abs(k1_zf(inda,indb)+k1_zf(inda,indb+nummode)) < 

2*deltaguess_all 
                k1_zf(inda,indb) = -k1_zf(inda,indb); 
                k1_zf(inda,indb+nummode) = -k1_zf(inda,indb+nummode); 
            else 
                problem = 'signs1'; 
            end 
        end 
        if (imag(k1_zf(inda,indb+nummode)) < 0) || ... 
                ((imag(k1_zf(inda,indb+nummode)) == 0) && 

(real(k1_zf(inda,indb+nummode)) > 0)) 
            problem = 'signs2'; 
        end 
    end 
    % Call robust root finder if problems were encountered 
    if ~strcmp(problem,'none') 
        disp(problem) 
        disp(k1_zf(inda,:)) 
        disp('Trying findroots_nl.m') 
        k1_zf(inda,:) = 

findroots_nl(k1_zf(inda,:),nummode,r_0,k_f(inda),freqw(inda),lambda_f(i

nda),... 
            rho_f,fguess_all,deltaguess_all); 
    end 
end 

  
% now have k1_zf from above 
for indb = 1:(2*nummode) 
    k1_rf(:,indb) = sqrt(k_f.^2 - (k1_zf(:,indb)).'.^2); 
end 

  
% Solution loop 2 

  
% Use a Newton-Raphson method to solve for k_zf using initial value 
% generated by root finding function.  k2 for k inside silencer region. 

  
indcmax = 200; 
fguess_all = 0.001; 
deltaguess_all = 0.0001; 
maxnums = 500; %Related to e^maxnums becomes to hard to work with 

  
k2_zf = zeros(numharm,nummode*2); 
k2_rf = k2_zf; 
k2_rL = k2_zf; 

  
disp('Find initial silencer roots'); 
k2_zf(1,:) = 

findroots([],nummode,r_a,r_b,k_f(1),k_L(1),freqw(1),lambda_f(1),... 
    lambda(1),rho_f,rho_s,sig,fguess_all,deltaguess_all); 
disp('Find subsequent silencer roots'); 

  
for inda = 2:numharm 
    problem = 'none'; 
    for indb = 1:nummode*2 
        indc = 1; 
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        convb = 0; 

         
        guess = k2_zf(inda-1,indb); 
        % Negative travelling wave might have negative wavenumber of 

pos. 
        if indb > nummode 
            if abs(k2_zf(inda-1,indb) + k2_zf(inda-1,indb-nummode)) < 

2*deltaguess_all 
                guess = -k2_zf(inda,indb-nummode); 
            end 
        end 

  
        [E,dE] = 

eigm(guess,freqw(inda),lambda(inda),lambda_f(inda),rho_s,rho_f,sig,r_a,

r_b); 
        if r_a == r_b 
            fguess = E; 
            fprime = dE; 
            clear E dE %added 
        else 
            fguess = det(E); 
            fprime = trace(adjugate2(E)*dE); 
        end 

         
        if(fguess == 0) 
            convb = 1; 
        end 
        while(convb == 0) 
            newguess = guess-fguess/fprime; 
            deltaguess = abs(newguess-guess); 

  
            oldfguess = fguess; 
            guess = newguess; 

  
            [E,dE] = 

eigm(guess,freqw(inda),lambda(inda),lambda_f(inda),rho_s,rho_f,sig,r_a,

r_b); 
            if r_a == r_b 
                fguess = E; 
                fprime = dE; 
                clear E dE %add 
            else 
                fguess = det(E); 
                fprime = trace(adjugate2(E)*dE); 
            end 

  
            if(indc > indcmax) 
                if showdebug == 1 
                disp(['Too many iterations, harmonic ' num2str(inda) 

... 
                    ', mode ' num2str(indb) ' in numeric 2-D ' ... 
                    'compression wave solution, section 2']); 
                disp(['guess = ' num2str(guess)]); 
                disp(['fguess = ' num2str(oldfguess) ... 
                    '; deltaguess = ' num2str(deltaguess)]); 
                disp(['fprime = ' num2str(fprime)]); 
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                end 
                problem = 'iterations'; 
            end 
            if (abs(fguess) < (deltaguess_all/2*abs(fprime))) && 

(deltaguess < deltaguess_all) 
                convb = 1; 
                for indd = 1:indb-1 
                    if(abs(guess-k2_zf(inda,indd)) < 2*deltaguess_all) 
                        if showdebug == 1 
                        disp(['Duplicate solution found, harmonic ' ... 
                            num2str(inda) ', modes ' num2str(indd) ' 

and '... 
                            num2str(indb) ', section 2']); 
                        end 
                        problem = 'duplicates'; 
                    end 
                end 
                if abs(real(guess)) > maxnums 
                    problem = 'Too large'; 
                end 
            end 
            indc = indc+1; 
            if ~strcmp(problem,'none') 
                convb = -1; 
            end 
        end 
        if abs(imag(guess)) < deltaguess_all 
            guess = real(guess); 
        end 
        k2_zf(inda,indb) = guess; 
    end 
    % Make sure negative and positives haven't switched up 
    for indb = 1:nummode 
        if (imag(k2_zf(inda,indb))) > 0 || ((imag(k2_zf(inda,indb)) == 

0) && real(k2_zf(inda,indb)) < 0) 
            if abs(k2_zf(inda,indb)+k2_zf(inda,indb+nummode)) < 

2*deltaguess_all 
                k2_zf(inda,indb) = -k2_zf(inda,indb); 
                k2_zf(inda,indb+nummode) = -k2_zf(inda,indb+nummode); 
            else 
                problem = 'signs'; 
            end 
        end 
        if (imag(k2_zf(inda,indb+nummode))) < 0 || ... 
                ((imag(k2_zf(inda,indb+nummode)) == 0) && 

real(k2_zf(inda,indb+nummode)) > 0) 
            problem = 'signs'; 
        end 
    end 
    % Call robust root finder if problems were encountered 
    if ~strcmp(problem,'none') 
        disp(problem) 
        disp('Trying findroots.m') 
        k2_zf(inda,:) = 

findroots(k2_zf(inda,:),nummode,r_a,r_b,k_f(inda),k_L(inda),freqw(inda)

,... 
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lambda_f(inda),lambda(inda),rho_f,rho_s,sig,fguess_all,deltaguess_all); 
    end 
end 

  
% now have k2_zf from above 
for indb = 1:(2*nummode) 
    k2_rf(:,indb) = sqrt(k_f.^2 - (k2_zf(:,indb)).'.^2); 
    k2_rL(:,indb) = sqrt(k_L.^2 - (k2_zf(:,indb)).'.^2); 
end 
k2_zL = k2_zf; 

  
disp('Root finding complete') 

  
clear inda indb indc indd 

  
%% Put new data into datstruct 

  
datstruct.k1_rf = k1_rf; 
datstruct.k1_zf = k1_zf; 

  
datstruct.k2_rf = k2_rf; 
datstruct.k2_zf = k2_zf; 
datstruct.k2_rL = k2_rL; 
datstruct.k2_zL = k2_zL; 

  
end 

  
%% 
% findroots 
% by K Marek 
% 
% This root finder uses intelligently placed seed points to find a 

given 
% number of roots of the eigenfunction.  It then uses the argument 
% principle to verify that all the roots in the given area have been 

found. 
% If problems occur, they are addressed automatically and the function 
% tries again. 

  

  
function froots = findroots(seeds,numroots,r_a,r_b,k_f,k_L,w,... 
    lambdaf,lambda,rho_f,rho_s,sig,fguess_all,deltaguess_all) 

  
if r_a == r_b %no liner case 
    froots = 

findroots_nl(seeds,numroots,r_a,k_f,w,lambdaf,rho_f,fguess_all,deltague

ss_all); 
    clearvars -except freq Pc1 Pc2 Ps r_0 r_a0 r_b zlen L o n m TLmat 

PcPlot PcVec PsVec unitset supNum overall starttime fileName total TL 

froots 
    return; 
end 
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global showdebug 

  
% Initialize variables 
allgood = 0; % if all desired roots have been found 
trynum = 1; % how many tries did it take? 
problem = 'none'; 
lfactor = 1000; % how many segements per length to check phase 
rmin = 0; rmax = 0; imin = 0; imax = 0; 
slen = length(seeds); 
deltaguess_all_orig = deltaguess_all; 
dupnum = 1; 
maxnums = 100; %Related to e^maxnums becomes to hard to work with 
k_Tp = k_L; %unused 
immin = 0; 
immax = 0; 

  
while allgood == 0 
    % Initial point guesses, based on trynum and problem 
    if trynum == 1 
        %compression roots lie mostly on imaginary axis 
        froots = zeros(1,numroots*8+6); 
        froots(1:3) = [k_f k_Tp k_L]*1.01; %not quite on the value 

because they are removable discontinuities 
        for irt = 1:numroots 
            k = max(k_L,k_f); 
            k_r = (irt+0.5)*pi/(r_b+r_a*(rho_f/rho_s-1)); 
            guess = sqrt(k^2-k_r^2); 
            if imag(guess) > 0 
                guess = -guess; 
            end 
            froots(3+4*irt) = guess; 
            if irt == 1 
                froots(4:6) = (1:3)*guess/2; 
            else 
                froots((4*irt):(4*irt+2)) = froots(4*irt-1)+(1:3)*... 
                    (guess-froots(4*irt-1))/2; 
            end 
        end 
        froots((4*numroots+4):end) = -froots(1:(4*numroots+3)); 
        immin = min(imag(froots)); 
        immax = max(imag(froots)); 
    else 
        if strcmp(problem,'too_few') 
            % Keep converged roots, add some more to the end 
            imin = min(imin,immin)*(1+(2*(trynum-1)/length(froots))); 
            imax = max(imax,immax)*(1+(2*(trynum-1)/length(froots))); 
            if (rmin == 0) || ~isfinite(rmin) 
                rmin = (0.1+(trynum-1))*min(-real([k_f,k_L])); 
            end 
            if (rmax == 0) || ~isfinite(rmax) 
                rmax = (0.1+(trynum-1))*max(real([k_f,k_L])); 
            end 
            if (imin == 0) || ~isfinite(imin) 
                imin = (0.1+(trynum-1))*rmin; 
            end 
            if (imax == 0) || ~isfinite(imax) 
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                imax = (0.1+(trynum-1))*rmax; 
            end 
            problem = 'missed_some'; %fill in the gaps... 
        end 
        if strcmp(problem,'missed_some') 
            % Choose new root guess locations 
            % Be sure they will eventually cover the whole selection 
            newroots = zeros(1,((trynum^2+trynum+1)*length(froots))); 
            newroots(1:length(froots)) = froots; 
            irt = length(froots)+1; 
            for i_im = 1:trynum*length(froots) 
                ival = imin + (imax-

imin)*i_im/(trynum*length(froots)+1); 
                for i_re = 1:(trynum+1) 
                    rval = rmin + (rmax-rmin)*i_re/(trynum+2); 
                    newroots(irt) = rval+1i*ival; 
                    irt = irt+1; 
                end 
            end 
            froots = newroots; 
        end 
    end 

     
    problem = 'none'; %reset problem flag 

  
    % Find roots using gradient method from all initial points 
    % Use a Newton-Raphson method to solve for k_zf using initial guess 
    % generated by some method above.  k2 for k inside silencer region. 

  
    indcmax = 200; 

  
    for indb = 1:length(froots) 
        indc = 1; 
        convb = 0; 

  
        guess = froots(indb); 

         
        [E,dE] = eigm(guess,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b); 
        fprime = trace(adjugate2(E)*dE); 
        fguess = det(E); 
        if(fguess == 0) 
            convb = 1; 
        end 
        while(convb == 0) 
            newguess = guess-fguess/fprime; 
            deltaguess = abs(newguess-guess); 

  
            guess = newguess; 

  
            [E,dE] = 

eigm(guess,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b); 
            fguess = det(E); 
            fprime = trace(adjugate2(E)*dE); 

             
            if(indc > indcmax) 
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                convb = -1; 
                problem = 'iterations'; 
            end 
            if((abs(fguess) < (deltaguess_all/2*abs(fprime))) && 

(deltaguess < deltaguess_all)) 
                convb = 1; 
            end 
            indc = indc+1; 
        end 
        froots(indb) = guess; 
        if convb == -1 
            froots(indb) = -1i*inf; 
            problem = 'none'; 
        end 
    end 

  
    % Delete non-converged roots 
    inda = 0; 
    newroots = zeros(size(froots)); 
    for indb = 1:length(froots) 
       if isfinite(froots(indb)) 
           newroots(indb-inda) = froots(indb); 
       else 
           inda = inda+1; 
       end 
    end 
    froots = newroots(1:length(froots)-inda); 
    % Delete roots thought to be numerical artifacts 
    inda = 0; 
    newroots = zeros(size(froots)); 
    for indb = 1:length(froots) 
        if (abs(real(froots(indb))) < 

max(abs(real([k_f,k_L,k_Tp,min(imag(froots)),max(imag(froots))])))) 

&&... 
                (max(abs(imag([sqrt(k_f^2-froots(indb)^2),sqrt(k_L^2-

froots(indb)^2)]))) < maxnums) &&... 
                (abs(real(froots(indb))) < maxnums) 
            newroots(indb-inda) = froots(indb); 
        else 
            inda = inda+1; 
        end 
    end 
    froots = newroots(1:length(froots)-inda); 

         
    % Sort roots by type 
    rpnum = 0; 
    rmnum = 0; 
    cpnum = 0; 
    cmnum = 0; 
    rproots = zeros(1,length(froots)); 
    rmroots = rproots; 
    cproots = rproots; 
    cmroots = rproots; 
    for indb = 1:length(froots) 
        if abs(imag(froots(indb))) < deltaguess_all 
            if real(froots(indb)) > 0 
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                rpnum = rpnum+1; 
                rproots(rpnum) = real(froots(indb)); 
            else 
                rmnum = rmnum+1; 
                rmroots(rmnum) = real(froots(indb)); 
            end 
        else 
            if imag(froots(indb)) < 0 
                cpnum = cpnum+1; 
                cproots(cpnum) = froots(indb); 
            else 
                cmnum = cmnum+1; 
                cmroots(cmnum) = froots(indb); 
            end 
        end 
    end 
    rproots = rproots(1:rpnum); 
    rmroots = rmroots(1:rmnum); 
    cproots = cproots(1:cpnum); 
    cmroots = cmroots(1:cmnum); 

     
    % Sort each type of root 
    newroots = zeros(1,rpnum); 
    for indb = 1:rpnum 
        [value,index] = max(real(rproots)); 
        newroots(indb) = rproots(index); 
        rproots(index) = -inf; 
    end 
    rproots = newroots; 
    newroots = zeros(1,rmnum); 
    for indb = 1:rmnum 
        [value,index] = min(real(rmroots)); 
        newroots(indb) = rmroots(index); 
        rmroots(index) = inf; 
    end 
    rmroots = newroots; 
    newroots = zeros(1,cpnum); 
    for indb = 1:cpnum 
        [value,index] = max(imag(cproots)); 
        newroots(indb) = cproots(index); 
        cproots(index) = -1i*inf; 
    end 
    cproots = newroots; 
    newroots = zeros(1,cmnum); 
    for indb = 1:cmnum 
        [value,index] = min(imag(cmroots)); 
        newroots(indb) = cmroots(index); 
        cmroots(index) = 1i*inf; 
    end 
    cmroots = newroots; 

  
    % Eliminate duplicate points 
    if rpnum > 1 
        dcount = 0; 
        newroots = rproots; 
        for indb = 2:rpnum 
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            found_duplicate = 0; 
            indb1 = 1; 
            while (indb1 < indb) && (found_duplicate == 0) 
                if abs(rproots(indb)-rproots(indb1)) < 

(2*dupnum*deltaguess_all) 
                    dcount = dcount+1; 
                    found_duplicate = 1; 
                end 
                indb1 = indb1+1; 
            end 
            if found_duplicate == 0 
                newroots(indb-dcount)=rproots(indb); 
            end 
        end 
        rproots=newroots(1:(rpnum-dcount)); 
        rpnum = rpnum-dcount; 
    end 
    if rmnum > 1 
        dcount = 0; 
        newroots = rmroots; 
        for indb = 2:rmnum 
            found_duplicate = 0; 
            indb1 = 1; 
            while (indb1 < indb) && (found_duplicate == 0) 
                if abs(rmroots(indb)-rmroots(indb1)) < 

(2*dupnum*deltaguess_all) 
                    dcount = dcount+1; 
                    found_duplicate = 1; 
                end 
                indb1 = indb1+1; 
            end 
            if found_duplicate == 0 
                newroots(indb-dcount)=rmroots(indb); 
            end 
        end 
        rmroots=newroots(1:(rmnum-dcount)); 
        rmnum = rmnum-dcount; 
    end 
    if cpnum > 1 
        dcount = 0; 
        newroots = cproots; 
        for indb = 2:cpnum 
            found_duplicate = 0; 
            indb1 = 1; 
            while (indb1 < indb) && (found_duplicate == 0) 
                if abs(cproots(indb)-cproots(indb1)) < 

(2*dupnum*deltaguess_all) 
                    dcount = dcount+1; 
                    found_duplicate = 1; 
                end 
                indb1 = indb1+1; 
            end 
            if found_duplicate == 0 
                newroots(indb-dcount)=cproots(indb); 
            end 
        end 
        cproots=newroots(1:(cpnum-dcount)); 
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        cpnum = cpnum-dcount; 
    end 
    if cmnum > 1 
        dcount = 0; 
        newroots = cmroots; 
        for indb = 2:cmnum 
            found_duplicate = 0; 
            indb1 = 1; 
            while (indb1 < indb) && (found_duplicate == 0) 
                if abs(cmroots(indb)-cmroots(indb1)) < 

(2*dupnum*deltaguess_all) 
                    dcount = dcount+1; 
                    found_duplicate = 1; 
                end 
                indb1 = indb1+1; 
            end 
            if found_duplicate == 0 
                newroots(indb-dcount)=cmroots(indb); 
            end 
        end 
        cmroots=newroots(1:(cmnum-dcount)); 
        cmnum = cmnum-dcount; 
    end 

     
    % Check that enough roots were found (problem = 'too_few') 
    if min(rpnum+cpnum,rmnum+cmnum) < numroots 
        problem = 'too_few'; 
        froots = [rproots cproots rmroots cmroots]; 
        imax = 1.1*max(imag([froots,-k_f,-k_L,-k_Tp,0.05i])); 
        imin = 1.1*min(imag([froots,k_f,k_L,k_Tp,-0.05i])); 
        rmax = min([1.1*max(real([froots,k_f,k_L,k_Tp])),maxnums]); 
        rmin = max([1.1*min(real([froots,-k_f,-k_L,-k_Tp])),-maxnums]); 
        numrootsp = rpnum+cpnum; 
        numrootsm = rmnum+cmnum; 
        proots = [rproots cproots]; 
        mroots = [rmroots cmroots]; 
    else 
        proots = [rproots cproots]; 
        mroots = [rmroots cmroots]; 
        if min(imag(proots)) == 0 
            imin = -1; 
            numrootsp = numroots; 
        else if length(proots) == numroots 
                if numroots == 1 
                    imin = 1.1*min([imag(proots(numroots)),-.05]); 
                    numrootsp = numroots; 
                else 
                    imin = imag(proots(numroots)) + ... 
                        0.1*(imag(proots(numroots))-

imag(proots(numroots-1))); 
                    if abs(imag(proots(numroots)-proots(numroots-1))) < 

5*deltaguess_all 
                        imin = imag(proots(numroots))*1.1; 
                    end 
                    numrootsp = numroots; 
                end 
            else 
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                numrootsp = numroots; 
                pdone = 0; 
                for indd = (numroots+1):length(proots) 
                    if (imag(proots(indd)) > 

1.01*imag(proots(numrootsp))) 
                        numrootsp = indd; 
                        imin = 1.02*imag(proots(indd)); 
                    else 
                        if (pdone == 0) 
                            imin = imag(proots(numrootsp)) + 

0.1*(imag(proots(indd)) - ... 
                                imag(proots(indd-1))); 
                            pdone = 1; 
                        end 
                    end 
                end 
            end 
        end 
        if max(imag(mroots)) == 0 
            imax = 1; 
            numrootsm = numroots; 
        else if length(mroots) == numroots 
                if numroots == 1 
                    imax = 1.1*imag(mroots(numroots)); 
                    numrootsm = numroots;                     
                else 
                    imax = imag(mroots(numroots)) + ... 
                        0.1*(imag(mroots(numroots))-

imag(mroots(numroots-1))); 
                    if abs(imag(mroots(numroots)-mroots(numroots-1))) < 

5*deltaguess_all 
                        imax = imag(mroots(numroots))*1.1; 
                    end 
                    numrootsm = numroots; 
                end 
            else 
                numrootsm = numroots; 
                mdone = 0; 
                for indd = (numroots+1):length(mroots) 
                    if (imag(mroots(indd)) < 

1.01*imag(mroots(numroots))) 
                        numrootsm = indd; 
                        imax = 1.02*imag(mroots(indd)); 
                    else 
                        if (mdone == 0) 
                            imax = imag(mroots(numrootsm)) + 

0.1*(imag(mroots(indd)) - ... 
                                imag(mroots(indd-1))); 
                            mdone = 1; 
                        end 
                    end 
                end 
            end 
        end 
        froots = [proots(1:numrootsp) mroots(1:numrootsm)]; 
        rmax = min([1.1*max(real([froots,k_f,k_L,k_Tp])),maxnums]); 
        rmin = max([1.1*min(real([froots,-k_f,-k_L,-k_Tp])),-maxnums]); 
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    end 

     
    if max(abs([imax,imin])) > 5000 
        imax = 5000; 
        imin = -5000; 
        problem = 'missed_some'; 
    end 

     
    % Use argument principle to determine if all contained roots were 

found 
    if strcmp(problem,'none') || strcmp(problem,'too_few') %continue if 

no problems so far 
        legnum = 1; %four legs to traverse entire rectangle 
        % Leg 1: [rmin imax] to [rmin imin] 
        % Leg 2: [rmin imin] to [rmax imin] 
        % Leg 3: [rmax imin] to [rmax imax] 
        % Leg 4: [rmax imax] to [rmin imax] 
        prevpoint = [rmin imax]; 
        guess = prevpoint(1) + 1i*prevpoint(2); 
        init_arg = 

180/pi*angle(det(eigm2(guess,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b))

); 
        prev_arg = init_arg; 
        numturns = 0; %number of loops the argument makes about origin 
        dpoint = [0 1/lfactor*(imin-imax)]*1/numroots; 
        dpointtemp = dpoint; 
        dptcount = 0; 
        finished = 0; 
        darg_all = 5; 
        while finished == 0 
            % Ensure each point doesn't vary too much in argument 
            goodpoint = 0; 
            while goodpoint == 0 
                if dptcount > 0 
                    thispoint = prevpoint+dpointtemp; 
                    dptcount = dptcount-1; 
                else 
                    thispoint = prevpoint+dpoint; 
                    dpointtemp = dpoint; 
                end 
                if (legnum == 1) && (thispoint(2) < imin) 
                    thispoint(2) = imin; 
                end 
                if (legnum == 2) && (thispoint(1) > rmax) 
                    thispoint(1) = rmax; 
                end 
                if (legnum == 3) && (thispoint(2) > imax) 
                    thispoint(2) = imax; 
                end 
                if (legnum == 4) && (thispoint(1) < rmin) 
                    thispoint(1) = rmin; 
                end 
                guess = thispoint(1) + 1i*thispoint(2); 
                point_arg = 

180/pi*angle(det(eigm2(guess,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b))

); 
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                if (abs(point_arg - prev_arg) < darg_all) || ... 
                        ((abs(point_arg - prev_arg) < (darg_all + 360)) 

&& ... 
                        (abs(point_arg - prev_arg) > (360 - darg_all))) 
                    goodpoint = 1; 
                else 
                    if dptcount == 0 
                        dptcount = 10; 
                        dpointtemp = dpoint/10; 
                    else 
                        dptcount = 10*dptcount; 
                        dpointtemp = dpointtemp/10; 
                    end 
                end 
                if (goodpoint == 0) && (dptcount > 10^7) 
                    problem = 'Duplicates/check'; 
                    dupnum = dupnum+2; 
                    lfactor = lfactor*1.5; 
                    if showdebug == 1 
                    disp('Discontinuous check path in findoots.m') 
                    disp(['At ' num2str(thispoint) ', leg ' 

num2str(legnum)]); 
                    end 
                    goodpoint = 1; 
                    finished = 1; 
                end 
            end 
            % Find the change in angle, record 
            if abs(point_arg - prev_arg) < darg_all 
                numturns = numturns + (point_arg - prev_arg)/360; 
            else 
                if abs(point_arg - prev_arg + 360) < darg_all 
                    numturns = numturns + (point_arg - prev_arg + 

360)/360; 
                else 
                    if abs(point_arg - prev_arg - 360) < darg_all 
                        numturns = numturns + (point_arg - prev_arg - 

360)/360; 
                    else 
                        if showdebug == 1 
                        disp('AAAA!!!! Terrible error in 

findroots!!!!') 
                        end 
                    end 
                end 
            end 

                 
            % Change the leg number if appropriate 
            if (thispoint(1) == rmin) && (thispoint(2) == imin) 
                legnum = 2; 
                dpoint = [1/lfactor*(rmax-rmin) 0]*1/numroots; 
                if dptcount > 0 
                    dpointtemp = dpoint/dptcount; 
                end 
            end 
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            if (thispoint(1) == rmax) && (thispoint(2) == imin) 
                legnum = 3; 
                dpoint = [0 1/lfactor*(imax-imin)]*1/numroots; 
                if dptcount > 0 
                    dpointtemp = dpoint/dptcount; 
                end 
            end 
            if (thispoint(1) == rmax) && (thispoint(2) == imax) 
                legnum = 4; 
                dpoint = [1/lfactor*(rmin-rmax) 0]*1/numroots; 
                if dptcount > 0 
                    dpointtemp = dpoint/dptcount; 
                end 
            end 
            % Check if we're back to the starting point 
            if (thispoint(1) == rmin) && (thispoint(2) == imax) 
                finished = 1; 
            end 
            prevpoint = thispoint; 
            prev_arg = point_arg; 
        end 
        if strcmp(problem,'none') && (abs(numturns + 0 - numrootsp - 

numrootsm) > 0.05) %numturns + numpoles - numzeros = 0 
            if (numturns + 0 - numrootsp - numrootsm) > 0.05 
                problem = 'missed_some'; 
                dupnum = 1; 
            else 
                if (numrootsp+numrootsm) < (2*numroots) 
                    problem = 'too_few'; 
                else 
                    problem = 'Duplicates/check'; 
                    dupnum = dupnum+2; 
                    lfactor = lfactor*1.5; 
                end 
            end 
        end 
    end 

     
    if strcmp(problem,'none') 
        allgood = 1; 
        froots = [proots(1:numroots) mroots(1:numroots)]; 
    else 
        % Return error if too many tries. 
        if trynum > 20 
            disp('Too many tries in findroots!') 
            disp('Exiting on error.') 
            allgood = -1; 
            froots = []; 
        end 
        if showdebug == 1 
        disp(problem) 
        end 
        trynum = trynum + 1; 
    end 
end 
% Roots found! 
if allgood == 1 
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    disp(['Roots found in ' num2str(trynum) ' tries!']) 
end 
end 

  
%% 
% findroots_nl 
% by K Marek 
% 
% This root finder uses intelligently placed seed points to find a 

given 
% number of roots of the eigenfunction.  It then uses the argument 
% principle to verify that all the roots in the given area have been 

found. 
% If problems occur, they are addressed automatically and the function 
% tries again.  This version finds roots when no liner is present (test 
% section or inlet/outlet pipes); r_0 is the outer pipe diameter in any 
% case. 

  

  
function froots = findroots_nl(seeds,numroots,r_0,k_f,w,lambda_f,rho_f, 

... 
    fguess_all,deltaguess_all) 

  
% global showdebug 

  
% Initialize variables 
allgood = 0; % if all desired roots have been found 
trynum = 1; % how many tries did it take? 
problem = 'none'; 
lfactor = 1000; % how many segements per length to check phase 
rmin = 0; rmax = 0; imin = 0; imax = 0; 
slen = length(seeds); 
froots = zeros(1,numroots*8+2+slen); 
deltaguess_all_orig = deltaguess_all; 

  
while allgood == 0 
    % Initial point guesses, based on trynum and problem 
    if trynum == 1 
        froots(1) = k_f; 
        for irt = 1:numroots 
            k_rf = (irt+0.5)*pi/r_0; 
            guess = 1i*imag(sqrt(k_f^2-k_rf^2)); 
            if imag(guess) > 0 
                guess = -guess; 
            end 
            froots(1+4*irt) = guess; 
            if irt == 1 
                froots(2:4) = (1:3)*guess/4; 
            else 
                froots((4*irt-2):(4*irt)) = froots(4*irt-3)+(1:3)*... 
                    (guess-froots(4*irt-3))/4; 
            end 
        end 
        froots(4*numroots+2:(end-slen)) = -froots(1:4*numroots+1); 
        froots((end-slen+1):end) = seeds; 
    else 
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        if strcmp(problem,'missed_some') 
            % Choose new root guess locations 
            % Be sure they will eventually cover the whole selection 
            newroots = zeros(1,((trynum^2+trynum+1)*length(froots))); 
            newroots(1:length(froots)) = froots; 
            irt = length(froots)+1; 
            for i_im = 1:trynum*length(froots) 
                ival = imin + (imax-

imin)*i_im/(trynum*length(froots)+1); 
                newroots(irt) = 1i*ival; 
                for i_re = 1:trynum 
                    rval = rmin + (rmax-rmin)*i_re/(trynum+1); 
                    newroots(irt) = rval+1i*ival; 
                    irt = irt+1; 
                end 
            end 
            froots = newroots; 
        end 
        if strcmp(problem,'too_few') 
            % Keep converged roots, add some more to the end 
            newroots = [froots zeros(1,8*trynum)]; 
            newroots(length(froots)+(1:(4*trynum))) = ... 
                (1i*imax*(1+(1:(4*trynum))/(1+length(froots)/2))); 
            newroots(length(froots)+4*trynum+(1:(4*trynum))) = -

newroots(length(froots)+(1:(4*trynum))); 
            froots = newroots; 
        end 
    end 

     
    problem = 'none'; %reset problem flag 

  
    % Find roots using gradient method from all initial points 
    % Use a Newton-Raphson method to solve for k_zf using initial guess 
    % generated by some method above.  k2 for k inside silencer region. 

  
    indcmax = 200; 
    if trynum > 5 
        deltaguess_all = deltaguess_all_orig*5/trynum; 
    end 

  
    for indb = 1:length(froots) 
        indc = 1; 
        convb = 0; 

  
        guess = froots(indb); 

  
        [fguess,fprime] = eigm(guess,w,0,lambda_f,0,rho_f,0,r_0,r_0); 

         
        if(fguess == 0) 
            convb = 1; 
        end 
        while(convb == 0) 
            newguess = guess-fguess/fprime; 
            deltaguess = abs(newguess-guess); 
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            guess = newguess; 
            [fguess,fprime] = 

eigm(guess,w,0,lambda_f,0,rho_f,0,r_0,r_0); 
            if(indc > indcmax) 
                convb = -1; 
                problem = 'iterations'; 
            end 
            if((abs(fguess) < (deltaguess_all/2*abs(fprime))) && 

(deltaguess < deltaguess_all)) 
                convb = 1; 
            end 
            indc = indc+1; 
        end 
        froots(indb) = guess; 
        if convb == -1 
            froots(indb) = -1i*inf; 
            problem = 'none'; 
        end 
    end 

     
    % Delete non-converged roots 
    inda = 0; 
    newroots = zeros(size(froots)); 
    for indb = 1:length(froots) 
       if isfinite(froots(indb)) 
           newroots(indb-inda) = froots(indb); 
       else 
           inda = inda+1; 
       end 
    end 
    froots = newroots(1:length(froots)-inda); 

     
    % Sort roots by type 
    rpnum = 0; 
    rmnum = 0; 
    cpnum = 0; 
    cmnum = 0; 
    rproots = zeros(1,length(froots)); 
    rmroots = rproots; 
    cproots = rproots; 
    cmroots = rproots; 
    for indb = 1:length(froots) 
        if abs(imag(froots(indb))) < deltaguess_all 
            if real(froots(indb)) > 0 
                rpnum = rpnum+1; 
                rproots(rpnum) = real(froots(indb)); 
            else 
                rmnum = rmnum+1; 
                rmroots(rmnum) = real(froots(indb)); 
            end 
        else 
            if imag(froots(indb)) < 0 
                cpnum = cpnum+1; 
                cproots(cpnum) = froots(indb); 
            else 
                cmnum = cmnum+1; 
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                cmroots(cmnum) = froots(indb); 
            end 
        end 
    end 
    rproots = rproots(1:rpnum); 
    rmroots = rmroots(1:rmnum); 
    cproots = cproots(1:cpnum); 
    cmroots = cmroots(1:cmnum); 

     
    % Sort each type of root 
    newroots = zeros(1,rpnum); 
    for indb = 1:rpnum 
        [value,index] = max(real(rproots)); 
        newroots(indb) = rproots(index); 
        rproots(index) = -inf; 
    end 
    rproots = newroots; 
    newroots = zeros(1,rmnum); 
    for indb = 1:rmnum 
        [value,index] = min(real(rmroots)); 
        newroots(indb) = rmroots(index); 
        rmroots(index) = inf; 
    end 
    rmroots = newroots; 
    newroots = zeros(1,cpnum); 
    for indb = 1:cpnum 
        [value,index] = max(imag(cproots)); 
        newroots(indb) = cproots(index); 
        cproots(index) = -1i*inf; 
    end 
    cproots = newroots; 
    newroots = zeros(1,cmnum); 
    for indb = 1:cmnum 
        [value,index] = min(imag(cmroots)); 
        newroots(indb) = cmroots(index); 
        cmroots(index) = 1i*inf; 
    end 
    cmroots = newroots; 

  
    % Eliminate duplicate points 
    if rpnum > 1 
        dcount = 0; 
        newroots = rproots; 
        for indb = 2:rpnum 
            found_duplicate = 0; 
            indb1 = 1; 
            while (indb1 < indb) && (found_duplicate == 0) 
                if abs(rproots(indb)-rproots(indb1)) < 

(2*deltaguess_all) 
                    dcount = dcount+1; 
                    found_duplicate = 1; 
                end 
                indb1 = indb1+1; 
            end 
            if found_duplicate == 0 
                newroots(indb-dcount)=rproots(indb); 
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            end 
        end 
        rproots=newroots(1:(rpnum-dcount)); 
        rpnum = rpnum-dcount; 
    end 
    if rmnum > 1 
        dcount = 0; 
        newroots = rmroots; 
        for indb = 2:rmnum 
            found_duplicate = 0; 
            indb1 = 1; 
            while (indb1 < indb) && (found_duplicate == 0) 
                if abs(rmroots(indb)-rmroots(indb1)) < 

(2*deltaguess_all) 
                    dcount = dcount+1; 
                    found_duplicate = 1; 
                end 
                indb1 = indb1+1; 
            end 
            if found_duplicate == 0 
                newroots(indb-dcount)=rmroots(indb); 
            end 
        end 
        rmroots=newroots(1:(rmnum-dcount)); 
        rmnum = rmnum-dcount; 
    end 
    if cpnum > 1 
        dcount = 0; 
        newroots = cproots; 
        for indb = 2:cpnum 
            found_duplicate = 0; 
            indb1 = 1; 
            while (indb1 < indb) && (found_duplicate == 0) 
                if abs(cproots(indb)-cproots(indb1)) < 

(2*deltaguess_all) 
                    dcount = dcount+1; 
                    found_duplicate = 1; 
                end 
                indb1 = indb1+1; 
            end 
            if found_duplicate == 0 
                newroots(indb-dcount)=cproots(indb); 
            end 
        end 
        cproots=newroots(1:(cpnum-dcount)); 
        cpnum = cpnum-dcount; 
    end 
    if cmnum > 1 
        dcount = 0; 
        newroots = cmroots; 
        for indb = 2:cmnum 
            found_duplicate = 0; 
            indb1 = 1; 
            while (indb1 < indb) && (found_duplicate == 0) 
                if abs(cmroots(indb)-cmroots(indb1)) < 

(2*deltaguess_all) 
                    dcount = dcount+1; 
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                    found_duplicate = 1; 
                end 
                indb1 = indb1+1; 
            end 
            if found_duplicate == 0 
                newroots(indb-dcount)=cmroots(indb); 
            end 
        end 
        cmroots=newroots(1:(cmnum-dcount)); 
        cmnum = cmnum-dcount; 
    end 

       
    % Check that enough roots were found (problem = 'too_few') 
    if min(rpnum+cpnum,rmnum+cmnum) < numroots 
        problem = 'too_few'; 
        froots = [rproots cproots rmroots cmroots]; 
        imax = 1.1*max(imag([froots,-k_f,0.05i])); 
        imin = 1.1*min(imag([froots,k_f,-0.05i])); 
        rmax = min(1.1*max(real([froots,k_f]))); 
        rmin = max(1.1*min(real([froots,-k_f]))); 
        numrootsp = rpnum+cpnum; 
        numrootsm = rmnum+cmnum; 
    else 
        proots = [rproots cproots]; 
        mroots = [rmroots cmroots]; 
        if min(imag(proots)) == 0 
            imin = -1; 
            numrootsp = numroots; 
        else if length(proots) == numroots 
                if numroots == 1 
                    imin = 1.1*min([imag(proots(numroots)),-.05]); 
                    numrootsp = numroots; 
                else 
                    imin = imag(proots(numroots)) + ... 
                        0.1*(imag(proots(numroots))-

imag(proots(numroots-1))); 
                    numrootsp = numroots; 
                end 
            else 
                numrootsp = numroots; 
                pdone = 0; 
                for indd = (numroots+1):length(proots) 
                    if (imag(proots(indd)) > 

1.01*imag(proots(numrootsp))) 
                        numrootsp = indd; 
                        imin = 1.02*imag(proots(indd)); 
                    else 
                        if (pdone == 0) 
                            imin = imag(proots(numrootsp)) + 

0.1*(imag(proots(indd)) - ... 
                                imag(proots(indd-1))); 
                            pdone = 1; 
                        end 
                    end 
                end 
            end 
        end 
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        if max(imag(mroots)) == 0 
            imax = 1; 
            numrootsm = numroots; 
        else if length(mroots) == numroots 
                if numroots == 1 
                    imax = 1.1*imag(mroots(numroots)); 
                    numrootsm = numroots; 
                else 
                    imax = imag(mroots(numroots)) + ... 
                        0.1*(imag(mroots(numroots))-

imag(mroots(numroots-1))); 
                    numrootsm = numroots; 
                end 
            else 
                numrootsm = numroots; 
                mdone = 0; 
                for indd = (numroots+1):length(mroots) 
                    if (imag(mroots(indd)) < 

1.01*imag(mroots(numroots))) 
                        numrootsm = indd; 
                        imax = 1.02*imag(mroots(indd)); 
                    else 
                        if (mdone == 0) 
                            imax = imag(mroots(numrootsm)) + 

0.1*(imag(mroots(indd)) - ... 
                                imag(mroots(indd-1))); 
                            mdone = 1; 
                        end 
                    end 
                end 
            end 
        end 
        froots = [proots(1:numrootsp) mroots(1:numrootsm)]; 
    end 

     
    rmax = 1.1*max(real([froots,k_f])); 
    rmin = 1.1*min(real([froots,-k_f])); 
    % Use argument principle to determine if all contained roots were 

found 
    if strcmp(problem,'none') || strcmp(problem,'too_few') %continue if 

no problems so far 
        legnum = 1; %four legs to traverse entire rectangle 
        % Leg 1: [rmin imax] to [rmin imin] 
        % Leg 2: [rmin imin] to [rmax imin] 
        % Leg 3: [rmax imin] to [rmax imax] 
        % Leg 4: [rmax imax] to [rmin imax] 
        prevpoint = [rmin imax]; 
        guess = prevpoint(1) + 1i*prevpoint(2); 
        init_arg = 

180/pi*angle(eigm2(guess,w,0,lambda_f,0,rho_f,0,r_0,r_0)); 
        prev_arg = init_arg; 
        numturns = 0; %number of loops the argument makes about origin 
        dpoint = [0 1/lfactor*(imin-imax)]*1/numroots; 
        dpointtemp = dpoint; 
        dptcount = 0; 
        finished = 0; 
        darg_all = 5; 
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        while finished == 0 
            % Ensure each point doesn't vary too much in argument 
            goodpoint = 0; 
            while goodpoint == 0 
                if dptcount > 0 
                    thispoint = prevpoint+dpointtemp; 
                    dptcount = dptcount-1; 
                else 
                    thispoint = prevpoint+dpoint; 
                    dpointtemp = dpoint; 
                end 
                if (legnum == 1) && (thispoint(2) < imin) 
                    thispoint(2) = imin; 
                end 
                if (legnum == 2) && (thispoint(1) > rmax) 
                    thispoint(1) = rmax; 
                end 
                if (legnum == 3) && (thispoint(2) > imax) 
                    thispoint(2) = imax; 
                end 
                if (legnum == 4) && (thispoint(1) < rmin) 
                    thispoint(1) = rmin; 
                end 
                guess = thispoint(1) + 1i*thispoint(2); 
                point_arg = 

180/pi*angle(eigm2(guess,w,0,lambda_f,0,rho_f,0,r_0,r_0)); 

                 
                if (abs(point_arg - prev_arg) < darg_all) || ... 
                        ((abs(point_arg - prev_arg) < (darg_all + 360)) 

&& ... 
                        (abs(point_arg - prev_arg) > (360 - darg_all))) 
                    goodpoint = 1; 
                else 
                    if dptcount == 0 
                        dptcount = 10; 
                        dpointtemp = dpoint/10; 
                    else 
                        dptcount = 10*dptcount; 
                        dpointtemp = dpointtemp/10; 
                    end 
                end 
                if (goodpoint == 0) && (dptcount > 10^7) 
                    problem = 'missed_some'; 
                    if showdebug == 1 
                    disp('Discontinuous check path in findoots.m') 
                    disp(['At ' num2str(thispoint) ', leg ' 

num2str(legnum)]); 
                    end 
                    goodpoint = 1; 
                    finished = 1; 
                end 
            end 
            % Find the change in angle, record 
            if abs(point_arg - prev_arg) < darg_all 
                numturns = numturns + (point_arg - prev_arg)/360; 
            else 
                if abs(point_arg - prev_arg + 360) < darg_all 



129 

 

                    numturns = numturns + (point_arg - prev_arg + 

360)/360; 
                else 
                if abs(point_arg - prev_arg - 360) < darg_all 
                    numturns = numturns + (point_arg - prev_arg - 

360)/360; 
                else 
                    if showdebug == 1 
                    disp('AAAA!!!! Terrible error in 

findroots_nl.m!!!!') 
                    end 
                end 
                end 
            end 

                 
            % Change the leg number if appropriate 
            if (thispoint(1) == rmin) && (thispoint(2) == imin) 
                legnum = 2; 
                dpoint = [1/lfactor*(rmax-rmin) 0]*1/numroots; 
                if dptcount > 0 
                    dpointtemp = dpoint/dptcount; 
                end 
            end 
            if (thispoint(1) == rmax) && (thispoint(2) == imin) 
                legnum = 3; 
                dpoint = [0 1/lfactor*(imax-imin)]*1/numroots; 
                if dptcount > 0 
                    dpointtemp = dpoint/dptcount; 
                end 
            end 
            if (thispoint(1) == rmax) && (thispoint(2) == imax) 
                legnum = 4; 
                dpoint = [1/lfactor*(rmin-rmax) 0]*1/numroots; 
                if dptcount > 0 
                    dpointtemp = dpoint/dptcount; 
                end 
            end 
            % Check if we're back to the starting point 
            if (thispoint(1) == rmin) && (thispoint(2) == imax) 
                finished = 1; 
            end 
            prevpoint = thispoint; 
            prev_arg = point_arg; 
        end 
        if strcmp(problem,'none') && (abs(numturns + 0 - numrootsp - 

numrootsm) > 0.05) %numturns + numpoles - numzeros = 0 
            if (numturns + 0 - numrootsp - numrootsm) > 0.05 
                problem = 'missed_some'; 
            else 
                problem = 'too_few'; 
            end 
        end 
    end 

     
    if strcmp(problem,'none') 
        allgood = 1; 



130 

 

        froots = [proots(1:numroots) mroots(1:numroots)]; 
    else 
        % Return error if too many tries. 
        if trynum > 20 
            disp('Too many tries in findroots_nl!') 
            disp('Exiting on error.') 
            allgood = -1; 
            froots = []; 
        end 
        if showdebug == 1 
        disp(problem) 
        disp(froots) 
        end 
        trynum = trynum + 1; 
    end 
end 
% Roots found! 
if allgood == 1 
    disp(['Roots found in ' num2str(trynum) ' tries!']) 
end 
clearvars -except freq Pc1 Pc2 Ps r_0 r_a0 r_b zlen L o n m TLmat 

PcPlot PcVec PsVec unitset supNum overall starttime fileName total TL 

froots 
end 

  
%% 
%eigm 
% by K Marek 
% June 2011 
% 
% Provides the matrix whose determinant is the eigenfunction.  Also 
% provides the matrix where each element is the derivative wrt/kx of 

the 
% corresponding 'eigenmatrix' elements.  This should save processing 

time 
% over calculating it all more than once. 

  
function [E,dE] = eigm(kz,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b) 

  
choice1 = 2; %2 for compressive liner, 3 for no liner 

  
%test for no liner condition (also for up/down-stream pipe section) 
if r_a == r_b 
    choice1 = 3; 
    clear E dE 
end 

  
% Derive needed quantities 
c_L = sqrt(lambda/rho_s); 
c_f = sqrt(lambdaf/rho_f); 
kL = w/c_L; 
kf = w/c_f; 
krL = sqrt(kL^2-kz^2); 
krf = sqrt(kf^2-kz^2); 

  
%Bessel functions are re-used enough that it's probably worth just 
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%calculating them once. 
j0fa = besselj(0,krf*r_a); 
j1fa = besselj(1,krf*r_a); 

  
if choice1 < 3 
    j0La = besselj(0,krL*r_a); 
    j1La = besselj(1,krL*r_a); 
    y0La = bessely(0,krL*r_a); 
    y1La = bessely(1,krL*r_a); 
    j0Lb = besselj(0,krL*r_b); 
    j1Lb = besselj(1,krL*r_b); 
    y0Lb = bessely(0,krL*r_b); 
    y1Lb = bessely(1,krL*r_b); 
end 

  
if choice1 == 2 %just compression waves 
    % Populate matrix 
    E = zeros(3); 
    %row 1: continuity of radial displacement at r=a 
    E(1,1) = krf/w*j1fa; 
    E(1,2) = -krL/w*j1La; 
    E(1,3) = -krL/w*y1La; 
    %row 2: continuity of stress/pressure at r=a (add limp mass sheet) 
    E(2,1) = kf^2/w^2*lambdaf*j0fa - krf*sig*j1fa; 
    E(2,2) = -kL^2/w^2*lambda*j0La; 
    E(2,3) = -kL^2/w^2*lambda*y0La; 
    %row 3: zero radial displacement at r=b 
    E(3,2) = -krL/w*j1Lb; 
    E(3,3) = -krL/w*y1Lb; 

  

     
    %Populate derivative matrix 
    dE = zeros(3); 
    %row 1 
    dE(1,1) = 1/w*-kz*r_a*j0fa; 
    dE(1,2) = 1/w*kz*r_a*j0La; 
    dE(1,3) = 1/w*kz*r_a*y0La; 
    %row 2 
    dE(2,1) = (1/w^2)*lambdaf*kf^2*kz*r_a/krf*j1fa + sig*kz*r_a*j0fa; 
    dE(2,2) = (1/w^2)*(-lambda*kL^2*kz*r_a/krL*j1La); 
    dE(2,3) = (1/w^2)*(-lambda*kL^2*kz*r_a/krL*y1La); 
    %row 3 
    dE(3,2) = 1/w*kz*r_b*j0Lb; 
    dE(3,3) = 1/w*kz*r_b*y0Lb; 
end 

  
if choice1 == 3 %no liner 
    % Populate matrix 
    E = zeros(1); 
    %row 1: continuity of radial displacement at r=a 
    E(1,1) = krf/w*j1fa; 

         
    %Populate derivative matrix 
    dE = zeros(1); 
    %row 1 
    dE(1,1) = 1/w*-kz*r_a*j0fa;  
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end 

  
end 

  
%% 
%eigm2 
% by K Marek 
% June 2011 
% 
% Provides the matrix whose determinant is the eigenfunction.  Omits 
% derivative matrix. 

  
function [E] = eigm2(kz,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b) 

  
choice1 = 2; %2 for compressive liner, 3 for no liner 

  
%test for no liner condition (also for up/down-stream pipe section) 
if r_a == r_b 
    choice1 = 3; 
    clear E 
end 

  
% Derive needed quantities 
c_L = sqrt(lambda/rho_s); 
c_f = sqrt(lambdaf/rho_f); 
kL = w/c_L; 
kf = w/c_f; 
krL = sqrt(kL^2-kz^2); 
krf = sqrt(kf^2-kz^2); 

  
%Bessel functions are re-used enough that it's probably worth just 
%calculating them once. 
j0fa = besselj(0,krf*r_a); 
j1fa = besselj(1,krf*r_a); 

  
if choice1 < 3 
    j0La = besselj(0,krL*r_a); 
    j1La = besselj(1,krL*r_a); 
    y0La = bessely(0,krL*r_a); 
    y1La = bessely(1,krL*r_a); 
    j1Lb = besselj(1,krL*r_b); 
    y1Lb = bessely(1,krL*r_b); 
end 

  
if choice1 == 2 %just compression waves 
    % Populate matrix 
    E = zeros(3); 
    %row 1: continuity of radial displacement at r=a 
    E(1,1) = krf/w*j1fa; 
    E(1,2) = -krL/w*j1La; 
    E(1,3) = -krL/w*y1La; 
    %row 2: continuity of stress/pressure at r=a (add limp mass sheet) 
    E(2,1) = kf^2/w^2*lambdaf*j0fa - krf*sig*j1fa; 
    E(2,2) = -kL^2/w^2*lambda*j0La; 
    E(2,3) = -kL^2/w^2*lambda*y0La; 
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    %row 3: zero radial displacement at r=b 
    E(3,2) = -krL/w*j1Lb; 
    E(3,3) = -krL/w*y1Lb; 
end 

  
if choice1 == 3 %no liner 
    % Populate matrix 
    E = zeros(1); 
    %row 1: continuity of radial displacement at r=a 
    E(1,1) = krf/w*j1fa; 
end 

  
end 

  
%% 
%adjugate2 
% by K Marek 
% 
% Finds matrix adjugate 

  
function B = adjugate2(A) 

  
[m,n] = size(A); 
if (m ~= n) || (n < 2) 
 error('Matrix A should be size n x n with n >= 2.') 
end 

  
C = zeros(n); 
for ind1 = 1:n 
    A1 = [A(1:ind1-1,:); A(ind1+1:n,:)]; 
    for ind2 = 1:n 
      A2 = [A1(:,1:ind2-1), A1(:,ind2+1:n)]; 
      C(ind1,ind2) = (-1)^(ind1+ind2)*det(A2); 
    end 
end 
B = C.'; 
end 

  
%% 
%bint 
%by K Marek, June 2010 
% 
% This function integrates J0 or Y0 of k*r. 
% It takes a series approximation of the Struve function until it 

appears 
% to converge. 
% char 'type' must be 'j' for besselj or 'y' or 'n' for bessely. 

  
function int_ans = bint(kr,r0,r1,type) 

  
%% int(r*J0) method 
if (kr == 0) && (type == 'j') 
    int_ans = 0.5*(r1^2-r0^2); 
    return 
end 
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if r0 == r1 
    int_ans = 0; 
    return 
end 
if type == 'j' 
    int_ans = r1/kr*besselj(1,kr*r1) - r0/kr*besselj(1,kr*r0); 
else 
    if type == 'y' || type == 'n' 
        int_ans = r1/kr*bessely(1,kr*r1) - r0/kr*bessely(1,kr*r0); 
    else 
        int_ans = 0; 
        disp('Invalid input format to bint.m.') 
        return 
    end 
end 

  
end 

  
%% 
%getzp2 
%by K Marek 
%March 2010 
% 
%This file may be used to import experimental data to get downstream 
%port impedance. By default it gives downstream reflectionless 

condition. 

  
function Zp2 = getzp2(freq, Z_f); 

  
%If reflectionless coefficient is to be used: 
    Zp2 = Z_f; 
    return 

  
% Else load data from a file 
% Do stuff here 

  
end %end function getzp2 

  
%% 
%proc 
%by K Marek, June 2010 
% Mode matching - generates correct relative amplitudes for each mode, 

from 
% which TL calculation is derived 

  
function datstruct = proc(datstruct) 

  
disp('Finding modal amplitudes and TL'); 

  
global showdebug 

  
freq = datstruct.freq; 
freqw = datstruct.freqw; 
numharm = datstruct.numharm; 
nummode = datstruct.nummode; 
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k1_rf = datstruct.k1_rf; 
k1_zf = datstruct.k1_zf; 
r_0 = datstruct.r_0; 
k2_rf = datstruct.k2_rf; 
k2_rL = datstruct.k2_rL; 
k2_zf = datstruct.k2_zf; 
r_a = datstruct.r_a; 
r_b = datstruct.r_b; 
zlen = datstruct.zlen; 
rho_f = datstruct.rho_f; 
rho_s = datstruct.rho_s; 
sig = datstruct.sig; 
c_f = datstruct.c_f; 
lambda_f = datstruct.lambda_f; 
lambda = datstruct.lambda; 
Zp2plus = datstruct.Zp2plus; 
kf = datstruct.k_f; 
kL = datstruct.k_L; 

  
numpmode = datstruct.numpmode; 
numlmode = datstruct.numlmode; 
numpint = datstruct.numpint; 
numlint = datstruct.numlint; 

  
k1fp = k1_rf(:,1:nummode); 
k1fm = k1_rf(:,(nummode+1):2*nummode); 
k1zp = k1_zf(:,1:nummode); 
k1zm = k1_zf(:,(nummode+1):2*nummode); 
k2fp = k2_rf(:,1:nummode); 
k2fm = k2_rf(:,(nummode+1):2*nummode); 
k2Lp = k2_rL(:,1:nummode); 
k2Lm = k2_rL(:,(nummode+1):2*nummode); 
k2zp = k2_zf(:,1:nummode); 
k2zm = k2_zf(:,(nummode+1):2*nummode); 

  
% 2-D compression/shear wave method 
R_1 = zeros(numharm,1); 
T_1 = R_1; 
TL = R_1; 
F_1 = R_1; 
F_2 = R_1; 
badfreq = zeros(1,numharm); 
coef_mat = zeros(3*numpmode+2*nummode,numharm); 

  
pcp = zeros(3,nummode,numharm); 
pcm = pcp; 

  
for inda1 = 1:numharm 

     
    % Calculate propagation coefficients for each mode 
    for inda2 = 1:nummode 
        Ep = 

eigm2(k2zp(inda1,inda2),freqw(inda1),lambda(inda1),lambda_f(inda1),rho_

s,rho_f,sig,r_a,r_b); 
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        Em = 

eigm2(k2zm(inda1,inda2),freqw(inda1),lambda(inda1),lambda_f(inda1),rho_

s,rho_f,sig,r_a,r_b); 
        temp1 = -Ep(:,1); 
        Elen = length(temp1); 
        temp1 = temp1(1:(Elen-1),1); 
        Ep = Ep(1:(Elen-1),2:Elen); 
        pcptemp = [1; linsolve(Ep,temp1)]; 
        pcp(:,inda2,inda1) = pcptemp/sqrt(abs(pcptemp.'*pcptemp)); 

%normalize 
        if (rcond(Ep) < eps) || ~isfinite(rcond(Ep)) 
            badfreq(inda1) = 1; 
            if showdebug == 1 
            disp(['Ill conditioned matrix freq ' 

num2str(freq(inda1))... 
                ', harm ' num2str(inda1) '.']); 
            disp(Ep) 
            disp(temp1) 
            disp(pcp) 
            end 
        end 
        temp1 = -Em(1:(Elen-1),1); 
        Em = Em(1:(Elen-1),2:Elen); 
        pcmtemp = [1; linsolve(Em,temp1)]; 
        pcm(:,inda2,inda1) = pcmtemp/sqrt(abs(pcmtemp.'*pcmtemp)); 

%normalize 
        %Order of coeffeicients: F,L1,L2,T1,T2. 
        clear temp1 pcptemp pcmtemp 
    end 

     
    % Set up integral matrices 
    intP1p = zeros(numpint,nummode); 
    intP2p = zeros(numpint,nummode); 
    intP1m = zeros(numpint,nummode); 
    intP2m = zeros(numpint,nummode); 
    intU1p = zeros(numpint,nummode); 
    intU2p = zeros(numpint,nummode); 
    intU1m = zeros(numpint,nummode); 
    intU2m = zeros(numpint,nummode); 

     
    for inda3 = 1:nummode %mode number 

         
        %Some useful constants we'd like to calculate only once 
        temp1p = bint(k1fp(inda1,inda3),0,r_0,'j'); 
        temp2p = bint(k2fp(inda1,inda3),0,r_a,'j'); 
        temp1m = bint(k1fm(inda1,inda3),0,r_0,'j'); 
        temp2m = bint(k2fm(inda1,inda3),0,r_a,'j'); 

         
        %Calculate where to look at pressure continuity and zero shear 
        %stress 
        rp1 = r_0*(1:numpint)/numpint; %where we look at pressure 
        rp3 = r_b*(1:numpint)/numpint; %and at displacement 

             
        for inda2 = 1:max([nummode,numpint,numlint]) %iterate integrals 

across port faces 
            if inda2 <= numpint %Pressure matching 
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                intP1p(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*bint(k1fp(inda1,inda3),0,rp1(inda2),'j'); 
                intP1m(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*bint(k1fm(inda1,inda3),0,rp1(inda2),'j'); 
                if rp1(inda2) <= r_a 
                    intP2p(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*pcp(1,inda3,inda1)*bint(k2fp(inda1,inda3),0

,rp1(inda2),'j'); 
                    intP2m(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*pcm(1,inda3,inda1)*bint(k2fm(inda1,inda3),0

,rp1(inda2),'j'); 
                else 
                    %compression waves 
                    intP2p(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*pcp(1,inda3,inda1)*temp2p + ... 
                        (-kL(inda1)^2*lambda(inda1))*... 
                        

(pcp(2,inda3,inda1)*bint(k2Lp(inda1,inda3),r_a,rp1(inda2),'j') ... 
                        + 

pcp(3,inda3,inda1)*bint(k2Lp(inda1,inda3),r_a,rp1(inda2),'y')); 
                    intP2m(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*pcm(1,inda3,inda1)*temp2m + ... 
                        (-kL(inda1)^2*lambda(inda1))*... 
                        

(pcm(2,inda3,inda1)*bint(k2Lm(inda1,inda3),r_a,rp1(inda2),'j') ... 
                        + 

pcm(3,inda3,inda1)*bint(k2Lm(inda1,inda3),r_a,rp1(inda2),'y')); 
                    if showdebug == 1 
                    disp('Note: liner overlaps port!'); 
                    end 
                end 
            end 

             
            if inda2 <= numpint 
                if rp3(inda2) <= r_0 
                    intU1p(inda2,inda3) = -1i*k1zp(inda1,inda3)*... 
                        bint(k1fp(inda1,inda3),0,rp3(inda2),'j'); 
                    intU1m(inda2,inda3) = -1i*k1zm(inda1,inda3)*... 
                        bint(k1fm(inda1,inda3),0,rp3(inda2),'j'); 
                else 
                    intU1p(inda2,inda3) = -1i*k1zp(inda1,inda3)*temp1p; 
                    intU1m(inda2,inda3) = -1i*k1zm(inda1,inda3)*temp1m; 
                end 
                if rp3(inda2) <= r_a 
                    intU2p(inda2,inda3) = -

1i*k2zp(inda1,inda3)*pcp(1,inda3,inda1)*... 
                        bint(k2fp(inda1,inda3),0,rp3(inda2),'j'); 
                    intU2m(inda2,inda3) = -

1i*k2zm(inda1,inda3)*pcm(1,inda3,inda1)*... 
                        bint(k2fm(inda1,inda3),0,rp3(inda2),'j'); 
                else 
                    intU2p(inda2,inda3) = -

1i*k2zp(inda1,inda3)*pcp(1,inda3,inda1)*temp2p + ... 
                        (-

1i*k2zp(inda1,inda3))*(pcp(2,inda3,inda1)*bint(k2Lp(inda1,inda3),r_a,rp

3(inda2),'j')... 
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+pcp(3,inda3,inda1)*bint(k2Lp(inda1,inda3),r_a,rp3(inda2),'y')); 
                    intU2m(inda2,inda3) = -

1i*k2zm(inda1,inda3)*pcm(1,inda3,inda1)*temp2m + ... 
                        (-

1i*k2zm(inda1,inda3))*(pcm(2,inda3,inda1)*bint(k2Lm(inda1,inda3),r_a,rp

3(inda2),'j')... 
                        

+pcm(3,inda3,inda1)*bint(k2Lm(inda1,inda3),r_a,rp3(inda2),'y')); 
                end 
            end 
        end 
    end 

     
    %Now fill up linear equations matrix with boundary conditions 
    matA = zeros(4*numpint+2*numlint+numpmode,2*nummode+3*numpmode); 
    matB = zeros(4*numpint+2*numlint+numpmode,1); 

     
    for inda2 = 1:numpint 
        %'A' coefficients: matB vector 
        matB(inda2) = -intU1p(inda2,1); %p1 disp 
        matB(2*numpint+2*numlint+inda2) = -intP1p(inda2,1); %p1 

pressure 
    end 

  
    for inda2 = 1:nummode 
        %KEY: 
        %First rows: displacement at port 1 
        %Second rows: displacement at port 2 
        %Third rows (if applicable): shear stress at port 1 
        %Fourth rows (if applicable): shear stress at port 2 
        %Fifth rows: pressure at port 1 
        %Sixth rows: pressure at port 2 
        %Seventh rows: impedance condition for port 2 

         
        if inda2 <= numpmode 

             
            %'B' coefficients 
            matA(1:numpint,inda2) = intU1m(:,inda2); %p1 disp 
            matA(2*numpint+2*numlint+(1:numpint),inda2) = 

intP1m(:,inda2); %p1 pressure 

             
            %'E' coefficients 
            matA(numpint+(1:numpint),numpmode+2*nummode+inda2) = ... 
                -intU1p(:,inda2); %p2 disp 
            

matA(3*numpint+2*numlint+(1:numpint),numpmode+2*nummode+inda2) = ... 
                -intP1p(:,inda2); %p2 pressure 
            if inda2==1 
                % Zp2 only for plane wave modes; rest are evanescent 

and 
                % shouldn't have any reflections 
                matA(4*numpint+2*numlint+1,numpmode+2*nummode+inda2) = 

... 
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1i*freqw(inda1)*Zp2plus(inda1)*intU1p(numpint,inda2) + 

intP1p(numpint,inda2); 
            end 

  
            %'F' coefficients 
            matA(numpint+(1:numpint),2*numpmode+2*nummode+inda2) = ... 
                -intU1m(:,inda2); %p2 disp 
            

matA(3*numpint+2*numlint+(1:numpint),2*numpmode+2*nummode+inda2) = ... 
                -intP1m(:,inda2); %p2 pressure 
            if inda2==1 
                % Zp2 only for plane wave modes; rest are evanescent 

and 
                % shouldn't have any reflections 
                matA(4*numpint+2*numlint+1,2*numpmode+2*nummode+inda2) 

= ... 
                    

1i*freqw(inda1)*Zp2plus(inda1)*intU1m(numpint,inda2) + 

intP1m(numpint,inda2); 
            else 
                %set all other F coefficients to zero 
                

matA(4*numpint+2*numlint+inda2,2*numpmode+2*nummode+inda2) = 1; 
            end 
        end 

         
        %'C' coefficients 
        matA(1:numpint,numpmode+inda2) = -intU2p(:,inda2); %p1 disp 
        matA(numpint+(1:numpint),numpmode+inda2) = ... 
            intU2p(:,inda2)*exp(-1i*k2zp(inda1,inda2)*zlen); %p2 disp 
        matA(2*numpint+2*numlint+(1:numpint),numpmode+inda2) = -

intP2p(:,inda2); %p1 pressure 
        matA(3*numpint+2*numlint+(1:numpint),numpmode+inda2) = ... 
            intP2p(:,inda2)*exp(-1i*k2zp(inda1,inda2)*zlen); %p2 

pressure 

         
        %'D' coefficients 
        matA(1:numpint,numpmode+nummode+inda2) = ... 
            -intU2m(:,inda2)*exp(1i*k2zm(inda1,inda2)*zlen); %p1 disp 
        matA(numpint+(1:numpint),numpmode+nummode+inda2) = 

intU2m(:,inda2); %p2 disp 
        matA(2*numpint+2*numlint+(1:numpint),numpmode+nummode+inda2) = 

... 
            -intP2m(:,inda2)*exp(1i*k2zm(inda1,inda2)*zlen); %p1 

pressure 
        matA(3*numpint+2*numlint+(1:numpint),numpmode+nummode+inda2) = 

intP2m(:,inda2); %p2 pressure 

  

  
    end 

     

  
    %Re-scale things! 
    for ind5 = 1:(4*numpint+2*numlint+numpmode) 
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        temp = max(abs(matA(ind5,:))); 
        matA(ind5,:) = matA(ind5,:)/temp; 
        matB(ind5) = matB(ind5)/temp; 
    end 

  

     
    matS = linsolve(matA,matB); %solution matrix 
    temp = size(matA); 
    if temp(1) == temp(2) 
        if (rcond(matA) < eps) || ~isfinite(rcond(matA)) 
            if showdebug == 1 
            disp(['Ill conditioned matrix freq ' 

num2str(freq(inda1))... 
                ', harm ' num2str(inda1) '.']); 
            end 
            badfreq(inda1) = 1; 
        end 
    end 

         

     
    R_1(inda1) = matS(1); 
    T_1(inda1) = matS(2*nummode+numpmode+1); 
    F_1(inda1) = T_1(inda1)*((Zp2plus(inda1)-rho_f*c_f)/ ... 
        (Zp2plus(inda1)+rho_f*c_f)); 
    F_2(inda1) = matS(2*nummode+2*numpmode+1); %unused; F_2 = F_1 in 

theory 
    TL(inda1) = -20*log10(abs((T_1(inda1)-R_1(inda1)*F_1(inda1))/... 
        (1-F_1(inda1)^2))); 

  

     
    coef_mat(:,inda1)=matS; 

     
    datstruct.TL = TL; 
    datstruct.coef_mat = coef_mat; 
    datstruct.pcp = pcp; 
    datstruct.pcm = pcm; 
    datstruct.badfreq = badfreq; 
    datstruct.numpmode = numpmode; 
    datstruct.numlmode = numlmode; 
    datstruct.numpint = numpint; 
    datstruct.numlint = numlint; 
end 

  
end 
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APPENDIX B 

WEIGHTING FUNCTION 

function WeightingOpt2(fileName,W,D,div) 

  
%Function: WeightingOpt.m 
%Version: 2 
%Revisions: Handles new input for either a single suppressor or double 
%suppressor configuration 
%Inputs:  
%       fileName - the saved file from TL_calc that includes the freq 

(vector 1 x V), 
%       PcVec (vector 1 x W), PsVec (vector 1 x X), PcPlot (vector 1 x 

W),  
%       unitset, subNum and TLmat (matrix W x W x X x V) 
%       W - Frequency weighting factor, the min frequency and max 

frequency 
%       must be the same as the input to TL_calc but the resolution may 

be 
%       different. WeightingOpt will interpolate the vectors to make 

them 
%       the same dimension. W must have a row for each system pressure.  
%       (vector X x Y) 
%       D - Time weighting factor, must have a non-negative entry for 

each 
%       system pressure (vector 1 x X) 
%Optional Inputs: 
%       div - The number of color bands on the contour plot. A higher 
%       number gives better resolution but slows down processing. 

Default 
%       value is 40. 
%Outputs: 
%        The optimal charge pressure is displayed in the command window 
%        A contour plot should the value of the objective function for 

all 
%        charge pressure pairings 

  
if nargin==3 
    div=40; %Default amount of color divisions 
end 
eval(['load ' fileName]) 
% Data File check, ensures that all need variables are in the file. 
if exist('TLmat','var')==0 
    error('No Transmission Loss matrix in fileName (other variables may 

be missing as well)') 
elseif exist('supNum','var')==0 
    error('No suppressor number in fileName (other variables may be 

missing as well)') 
elseif exist('PcPlot','var')==0 
    error('No plot vector in fileName (other variables may be missing 

as well)') 
elseif exist('PcVec','var')==0 
    error('No charge vector in fileName (other variables may be missing 

as well)') 
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elseif exist('freq','var')==0 
    error('No frequency vector in fileName (other variables may be 

missing as well)') 
elseif exist('unitset','var')==0 
    error('No unit set in fileName') 
end 

     

  
% Input Check, Ensures that every input is the correct size 
[Wrow Wcol]=size(W); 
LPs = length(PsVec); 
LD = length(D); 
if Wrow == LPs && LPs == LD 
elseif Wrow == LPs && LPs ~= LD 
    error('Every Static Pressure does not have a time weighting 

factor') 
elseif Wrow ~= LPs && LPs == LD 
    error('Every Static Pressure does not have a frequency weighting 

factor') 
elseif Wrow ~= LPs && LPs ~= LD 
    error('Every Static Pressure does not have a time weighting factor 

and a frequency weighting factor') 
end 
switch supNum 
case 2 
    %Weights each frequency using the frequency weighting factor, 

creating the Wmat 
    %matrix which is 3 dimensional (W x W x X) 
    Wmat=zeros(length(PcVec),length(PcVec),length(PsVec)); %initializes 

the Wmat matrix 
    for xx=1:length(PcVec) 
        for yy=1:length(PcVec) 
            for zz=1:length(PsVec) 
                

TLint=interp1(freq,reshape(TLmat(xx,yy,zz,:),size(freq)),linspace(min(f

req),max(freq),Wcol)); %Interpolates TL for a given condtion to the 

same size as W 
                Wmat(xx,yy,zz)=mean(W(zz,:).*TLint,2); %weights each 

frequency, takes the average and puts it into the correct location 
            end 
        end 
    end 

  

  
    %Weights each system pressure using the time weighting factor, 

creating the 
    %Dmat matrix which is 2 dimensional (W x W) 
    D=D./sum(D); 
    Dmat=zeros(length(PcVec),length(PcVec)); 
    for xx=1:length(PcVec) 
        for yy=1:length(PcVec) 
            Dmat(xx,yy)=sum(D.*reshape(Wmat(xx,yy,:),size(D)),2); 
        end 
    end 
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    DmatN=Dmat+Dmat.'-diag(diag(Dmat)); %Only half of the coniditions 

are simulated 
    %since the results are symmetric, this line fills in the matrix 
    step=(max(max(DmatN))-min(min(DmatN)))/div;%This determines the 

number of  
    % color steps on the graph currently there are 40. Fewer does not 

show 
    % enough resolution while more slows down processing. 

  
    [aa bb]=max(DmatN); 
    [~, dd]=max(aa); 
    Char1=PcPlot(dd); 
    Char2=PcPlot(bb(dd)); 

  
    DmatN=DmatN./max(max(DmatN)); %Normalization 

  
    % figure % 
    % plot(PcVec./1e6,diag(DmatN)) 
    % xlabel('Charge Pressure (MPa)') 
    % ylabel('Magnitude of Objective Function') 
    % axis([min(PcVec./1e6),max(PcVec./1e6),0,1])  
    figure 
    contourf(PcPlot,PcPlot,DmatN,div,'LineStyle','none');% 
    colorbar 
    switch unitset 
        case 'English' 
            xlabel('Charge Pressure 1 (psi)') 
            ylabel('Charge Pressure 2 (psi)') 
            title( ['The optimal charge pressure pairing is 

'num2str(Char1) ' psi and ' num2str(Char2) ' psi.']) 
        case 'Metric' 
            xlabel('Charge Pressure 1 (Pa)') 
            ylabel('Charge Pressure 2 (Pa)') 
            title(['The optimal charge pressure pairing is ' 

num2str(Char1) ' psi and ' num2str(Char2) ' psi.']) 
    end 

  
    switch unitset %Displays the optimal condition in the command 

window, depending on unit set  
        case 'English' 
            DisMat=['Static Pressures: ';'Normalized  D:    ']; 
            

DisMat2=num2str([round(PsVec./6894.75729);round(100*D)./100]); 
            disp(['The optimal charge pressure pairing is ' 

num2str(Char1) ' psi and ' num2str(Char2) ' psi.']) 
            disp([DisMat DisMat2]) %Displays the normalized Time 

Weighting Factor 
        case 'Metric' 
            DisMat=['Static Pressures: ';'Normalized  D:    ']; 
            DisMat2=num2str([round(PsVec);round(100*D)./100]); 
            disp(['The optimal charge pressure pairing is ' 

num2str(Char1) ' Pa and ' num2str(Char2) ' Pa.']) 
            disp([DisMat DisMat2]) %Displays the normalized Time 

Weighting Factor 
    end 
case 1 
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        %Weights each frequency using the frequency weighting factor, 

creating the Wmat 
    %matrix which is 3 dimensional (W x W x X) 
    Wmat=zeros(length(PcVec),length(PsVec)); %initializes the Wmat 

matrix 
    for xx=1:length(PcVec) 
            for zz=1:length(PsVec) 
                

TLint=interp1(freq,reshape(TLmat(xx,zz,:),size(freq)),linspace(min(freq

),max(freq),Wcol)); %Interpolates TL for a given condtion to the same 

size as W 
                Wmat(xx,zz)=mean(W(zz,:).*TLint,2); %weights each 

frequency, takes the average and puts it into the correct location 
            end 
    end 

  

  
    %Weights each system pressure using the time weighting factor, 

creating the 
    %Dmat matrix which is 2 dimensional (W x W) 
    D=D./sum(D); 
    Dmat=zeros(length(PcVec),1); 
    for xx=1:length(PcVec) 
            Dmat(xx)=mean(D.*reshape(Wmat(xx,:),size(D)),2); 
    end 

  
    Dmat=Dmat./max(max(Dmat)); 
    figure 
    plot(PcPlot.',Dmat) 
    ylabel('Magnitude of Objective Function') 
    axis([min(PcPlot),max(PcPlot),0,1]) 
    [aa bb]=max(Dmat); 
    Char1=PcPlot(bb); 
        switch unitset %Displays the optimal condition in the command 

window, depending on unit set  
        case 'English' 
            Tmat=['Static Pressures: ';'Normalized  D:    ']; 
            

Tmat2=num2str([round(PsVec./6894.75729);round(100*D)./100]); 
            disp(['The optimal charge pressure is ' num2str(Char1) ' 

psi.']) 
            disp([Tmat Tmat2]) 
        case 'Metric' 
            Tmat=['Static Pressures: ';'Normalized  D:    ']; 
            Tmat2=num2str([round(PsVec);round(100*D)./100]); 
            disp(['The optimal charge pressure pairing is ' 

num2str(Char1) ' Pa.']) 
            disp([Tmat Tmat2]) 
        end 
            switch unitset 
        case 'English' 
            xlabel('Charge Pressure 1 (psi)') 
            title(['The optimal charge pressure pairing is ' 

num2str(Char1) ' psi.']) 
        case 'Metric' 
            xlabel('Charge Pressure 1 (Pa)') 



145 

 

            title(['The optimal charge pressure pairing is ' 

num2str(Char1) ' psi.']) 
        end 
end 
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