

OPTIMAL CONFIGURATION OF ADJUSTABLE NOISE

SUPPRESSORS

A Thesis

Presented to

The Academic Faculty

by

Elliott Ross Gruber

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science in Mechanical Engineering

Georgia Institute of Technology

May, 2013

OPTIMAL CONFIGURATION OF ADJUSTABLE NOISE

SUPPRESSORS

Approved by:

Dr. Kenneth A. Cunefare, Advisor

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Wayne J. Book

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Mardi C. Hastings

School of Mechanical Engineering

Georgia Institute of Technology

Date Approved: [March 27, 2013]

iii

ACKNOWLEDGEMENTS

I must acknowledge several people who helped me complete this work. First, I

must thank both my mother, Amy Gruber, and my father, Larry Gruber, for expertly

raising me and giving me the guidance that allowed me to reach this point in my life.

Next, I would like to thank my advisor, Dr. Kenneth Cunefare, for providing invaluable

insight and guidance to help me complete this project as well as continue my growth as

an engineer and researcher. I would also like to thank Dr. Wayne Book and Dr. Mardi

Hastings for agreeing to participate on the reading committee, with extra gratitude to Dr.

Book for allowing me to use his laboratory facilities. Thanks must also be directed to my

officemates and friends for all of their help, both for expanding my knowledge of

engineering theory and application as well as brightening my day when inevitable

setbacks occurred. In particular, I need to thank the now graduated Dr. Nicholas Earnhart

and Dr. Benjamin Beck for sharing the lessons they learned through the years with me.

I must direct special thanks to Eaton Hydraulics for providing the funding

necessary to complete this work.

iv

TABLE OF CONTENTS

Acknowledgements .. iii

List of Tables ... vi

List Of Figures .. vii

Nomenclature .. xii

Summary .. xiv

Chapter 1 Introduction ...1

Chapter 2 Transmission Loss Measurement, Calculation and Example for a Single

Suppressor ..9

2.1 Transmission Loss Measurement ..9

2.1.1 Experimental Transmission Loss Method ..11

2.1.2 Sensor Calibration ..17

2.1.3 Coherence ...18

2.2 Measured Transmission Loss Performance of Single Suppressors19

Chapter 3 Modeling Of Single Suppressor Transmission Loss ...23

3.1 Suppressor Modeling ...24

3.2 Predicted Transmission Loss Curves for a Single Suppressor33

3.3 Comparison of Measured Transmission Loss & Predicted Transmission Loss 39

Chapter 4 Measurement and Modeling of a Two-Suppressor System42

4.1 Modeling of Two-Suppressor System Architecture ..42

4.2 Measured Transmission Loss of a Two-Suppressor System47

4.3 Modeled Transmission Loss of a Two-Suppressor System51

v

4.4 Comparison between Measured and Modeled Transmission Loss54

Chapter 5 Optimization of Suppressor Charge Pressure..58

5.1 Objective Function ..58

5.1.1 Frequency Weighting Factor ..62

5.1.2 Time Weighting Factor ..64

5.2 Example Optimizations ...68

5.2.1 TWF Case 1: Trenching Run ...72

5.2.2 TWF Case 2: Back Filling ..77

5.2.3 TWF Case 3: Arbitrary Usage ..82

5.2.4 TWF Case 4: Mixed Usage ..85

5.2.5 Results with a 30 dB Constraint on Transmission Loss87

Chapter 6 Conclusions ...92

6.1 Future Work ..94

Appendix A Matlab Function for Calculation of Transmission Loss96

Appendix B Weighting Function ...141

References ..146

vi

 LIST OF TABLES

Table 1: Flow velocity and Mach Number for pipe diameters used in this thesis11

Table 2: Cut-on frequencies of first non-planar mode in a cylindrical pipe17

Table 3: Dimensions of bladder-style suppressor used in this study34

Table 4: Mean frequency weighting values of data taken on Eaton test rig64

vii

LIST OF FIGURES

Figure 1: Bladder style suppressor [1] ...2

Figure 2: Expansion chamber, a) Without inlet/outlet extensions b) With inlet/outlet

extensions ...4

Figure 3: Example transmission loss curves for a WM-5081 bladder-style suppressor

operating at a system pressure of 10.3 MPa and varying CPR6

Figure 4: Example system pressure usage for the boom actuator on a hydraulic excavator7

Figure 5: ISO 15086-2 dimensions, x
1
≥10d, x

2
≥10d, L=330±2mm, L’=470±2mm11

Figure 6: Schematic of test setup for measurement of fluid acoustic properties of a

suppressor under test. ...13

Figure 7: Calibration block without sensors ..18

Figure 8: Transmission loss for WM-5081 Suppressor at 10.3 MPA system pressure with

varying charge pressures ..20

Figure 9: Transmission loss for WM-5138 Suppressor at 10.3 MPA system pressure with

varying charge pressures ..21

Figure 10: Transmission loss for WM-5081 Suppressor at 50% CPR for several system

pressures ...22

Figure 11: Transmission loss for WM-5138 Suppressor at 50% CPR for several system

pressures ...22

Figure 12: Suppressor model and acoustic waves ...25

Figure 13: Single suppressor dimensions and acoustic waves...34

viii

Figure 14: Predicted transmission loss for WM-5081 Suppressor at 10.3 MPA system

pressure as a function of CPR ..36

Figure 15: Predicted transmission loss for WM-5138 Suppressor at 10.3 MPA system

pressure with varying CPR ..36

Figure 16: Predicted transmission loss for WM-5081 Suppressor, with 50% CPR of

varying system pressures ...38

Figure 17: Predicted transmission loss for WM-5138 Suppressor, with 50% CPR of

varying system pressures ...38

Figure 18: Comparison of transmission loss for a single WM-5081 Suppressor at a

system pressure of 10.3 MPa for a variety of CPR ..40

Figure 19: Comparison of transmission loss for a single WM-5138 Suppressor at a

system pressure of 10.3 MPa for a variety of CPR ..41

Figure 20: Parallel suppressor architecture ..43

Figure 21: Series suppressor architecture ..43

Figure 22: Transmission loss for two WM-5081 Suppressors at 10.3 MPA system

pressure with varying charge pressures ...48

Figure 23: Transmission loss for two WM-5138 Suppressors at 10.3 MPA system

pressure with varying charge pressures ...49

Figure 24: Transmission loss for two WM-5081 Suppressors at 10.3 MPA system

pressure changing CPR order...50

Figure 25: Transmission loss for two WM-5138 Suppressors at 10.3 MPA system

pressure changing CPR order...50

Figure 26: Two suppressor configuration and acoustic waves ..51

ix

Figure 27: Predicted transmission loss for two WM-5081 Suppressors at 10.3 MPA

system pressure with varying CPR ..53

Figure 28: Predicted transmission loss for two WM-5138 Suppressors at 10.3 MPA

system pressure with varying CPR ..53

Figure 29: Comparison of transmission loss for two WM-5081 Suppressors at a system

pressure of 10.3 MPa for a variety of charge pressure pairs. Frequency range: 0 to

4000 Hz ..55

Figure 30: Comparison of transmission loss for two WM-5081 Suppressor at a system

pressure of 10.3 MPa for a variety of charge pressure pairs. Frequency range: 0 to

500 Hz ..55

Figure 31: Comparison of transmission loss for two WM-5138 Suppressor at a system

pressure of 10.3 MPa for a variety of charge pressure pairs57

Figure 32: Frequency weighting factor (FWF) for system pressures of: a) 3.45 MPa, b)

6.90 MPa c) 13.8 MPa d) 20.7 MPa. 0-4000 Hz frequency range62

Figure 33: TWF Case 1: boom pressure, trenching run ...65

Figure 34: TWF Case 2: boom pressure, back filling ..66

Figure 35: TWF Case 1: boom pressure, trenching run. Aggregated pressures derived

from bins shown in Figure 33 ..66

Figure 36: TWF Case 2: boom pressure, back filling. Aggregated pressures derived from

bins shown in Figure 34 ...67

Figure 37: TWF Case 3: arbitrary ssage of a system operating heavily at 13.8 MPa67

Figure 38: TWF Case 4: arbitrary work period usage derived from a system operating in a

duty cycle of 50% back filling and 50% trenching ..68

x

Figure 39: Optimization procedure ..71

Figure 40: Objective function values: TWF Case 1, one WM-5138 Suppressor. Circles

indicate local optima at charge pressures of 2.76, 6.27, 13.1 and 20.0 MPa,

respectively. Box indicates low performance region ...73

Figure 41: Objective function values: TWF Case 1, two WM-5138 Suppressors. Circles

indicate local optima at charge pressure pairs of [2.76, 13.1] MPa, [2.76, 6.21]

MPa and [13.1, 13.1] MPa, respectively. Box indicates low performance area. ...76

Figure 42: TL Peformance for fwo WM-5138 Suppressors with charge pressures

matching optimal states in Figure 41 ...77

Figure 43: Objective function values: TWF Case 2, one WM-5138 Suppressor. Circles

indicate local optima charge pressures of 2.76 and 6.27MPa, respectively78

Figure 44: Objective function walues: TWF Case 2, two WM-5138 Suppressors. Circles

indicate local optima at charge pressure pairs of [2.76, 13.1] MPa and [2.76, 6.21]

MPa, respectively ...80

Figure 45: Difference in frequency weighted TL for charge pressure pairs of [2.76, 6.21]

MPa and [2.76, 13.1] MPa at listed system pressures ...81

Figure 46: Objective function values: TWF Case 3; one WM-5138 Suppressor. Circle

indicates a local optimum at a charge pressure of 13.1 MPa82

Figure 47: Objective function values; TWF Case 3, two WM-5138 Suppressors. Circle

indicates a local optimum at a charge pressure pair of [13.1, 13.1] MPa. Box

indicates region of low overall TL and high normalized objective function value.84

Figure 48: Transmission loss curves for two charge pressure pairs and FWF at 13.7 MPA.

Box indicates region of high FWF value ...85

xi

Figure 49: Objective function values: TWF Case 4; one WM--5138 Suppressor. Circles

indicate local optima at charge pressures of 2.76, 6.21 and 13.1 MPa, respectively.86

Figure 50: Objective function values; TWF Case 4, two WM-5138 Suppressors. Circles

indicate local optima at charge pressure pairs of [2.76, 13.1] MPa and [2.76, 6.21]

MPa, respectively. ..87

Figure 51: Objective function values: TWF Case 1, one WM-5138 Suppressor,

unconstained TL and constrained TL. Circles represent Charge Pressures of 13.1

and 6.27 MPa, respectively. ...88

Figure 52: Difference in objective function values for constrained and unconstrained TL.

Circle indicates charge pressure of 13.1 MPa ..89

Figure 53: Objective function calues: TWF Case 1; two WM-5138 Suppressors,

constrained TL. Circles indicate local optima at charge pressure pairs of [2.76,

13.1] MPa, [2.76, 6.21] MPa and [13.1, 13.1] MPa respectively90

Figure 54: Difference in objective function values by imposed 30 dB TL constraint on

TWF Case 1, two WM-5138 Suppressors ...91

xii

NOMENCLATURE

Symbol

A
Cross Sectional

Area [m^2]

A,B,C,D,E,F,G,H,
Complex Wave

Amplitudes

ABN Airborne Noise

c
Speed of Sound

[m/s]

CPR
Charge Pressure

Ratio

D Diameter [m]

D
Time Weighting

Factor

f Frequency [Hz]

F
Objective

Function

FBN
Fluid-borne

Noise

FWF
Frequency

Weighting Factor

Gxx
Autospectral

Density

Gxy

Cross-Spectral

Density Between

x and y

Hij

Transfer

Function

Relating i and j

k

Spring Constant

[N/m],

wavenumber

[rad/m]

L Length [m]

L' Effective Length

m Mass [kg]

M Mach Number

O Selected set

p
Acoustic

Pressure [Mpa]

P Pressure [Mpa]

Q

Quality Factor,

Volume Flowrate

[L/min]

Q
Acoustic

Velocity [m/s]

r Radius [m]

Rs
Specific

Resistance

S

Cross Sectional

Area [m^2],

Separation

Distance [m]

SBN
Structure-borne

Noise

TL
Transmission

Loss [dB]

tw Wall Thickness

TWF
Time Weighting

Factor

xiii

u
Acoustic Particle

displacement [m]

U Set of Pressures

V

Volume [m^3],

Flow Velocity

[m/s]

W
Acoustic Energy

[W]

W
Frequency

Weighting Factor

Z
Impedance

[Pa*s/m]

α
End Correction

Coefficient

λ

Wavelength [m],

Lame's first

parameter

ρ Density [kg/m^3]

σ Sheet Density

φ Porosity

ω Frequency [rad/s]

Ω

Frequency

Bandwidth

Subscript

annulus Device Annulus

B Bladder

c Charge

Chamber
Device

Chamber

compressed

Compression of

the bladder

under pressure

D Downstream

d Dynamic

f fluid

h Hole

i Incident

n modes

p Perforate Layer

Pipe
Inlet/Outlet

Pipe

port Inlet/Outlet Port

R Region

r radial

s System

shell
Outer Shell of

Device

t Transmitted

T Total

U Upstream

x axial

xiv

SUMMARY

Noise generated by fluid power applications can be treated using bladder-style

suppressors, and an optimal operating condition for these devices is sought in this thesis.

Bladder-style suppressors employ a compliant nitrogen-charged bladder to create an

impedance change within the system, reflecting the noise back to the source and

preventing it from propagating downstream. The noise in a hydraulic system is created by

a pump, the flow source in a hydraulic system, and can be separated into three categories:

fluid-borne noise, structure-borne noise and airborne noise. Fluid-borne noise places

addition stress on sealing surfaces, potentially causing leaks. Airborne noise can be

uncomfortable, even hazardous depending on the level. Bladder-style suppressors

primarily treat fluid-borne noise; however, it is seen in the literature that fluid-borne

noise is the cause of structure-borne and airborne noise.

This thesis presents an optimization method for finding the optimal charge

pressure for implementation with a given system operating over a broad range of system

pressures. The optimization weights suppressor performance by the spectral content of

the fluid-borne noise as well as the duty cycle of the system. A single charge pressure

works well over a small range of system pressures, though many fluid power applications

operate over a larger range of system pressure than the usable range of a suppressor. For

systems operating over an extremely broad pressure range, two suppressors charged to

different pressures are used to treat the noise in the entire system pressure range.

To determine suppressor performance experimental measurements were

performed, and models developed, of the transmission loss of this type of device. A

multi-microphone method using transfer function relationships between six sensors

xv

determines the transmission loss of the suppressor under test. An equivalent fluid model

modeling the wave behavior both upstream and downstream, as well as within the

suppressor, was created to predict suppressor transmission loss.

Optimal configurations are found for a set of system pressures, charge pressures

and duty cycles. Analysis of the results shows the time weighting has a more significant

impact on the optimum charge pressure than the frequency weighting, as shown by duty

cycles considered in this thesis. In addition, all charge pressures selected as optimal for

either single suppressor optimizations or double suppressor optimizations, exhibit the

highest transmission loss for a single system pressure in the pressure duty cycle for a

simulated machine.

1

CHAPTER 1

INTRODUCTION

A common method to treat the noise produced by fluid power applications is

implementing bladder-style suppressors into a system; however, little is currently known

about the optimal configuration of bladder-style suppressors. Bladder-style suppressors

use a complaint bladder to create an impedance change, reflecting noise and preventing it

from propagating downstream. Internal features within the suppressor may also introduce

damping. The compliance of the bladder is controlled by charging the bladder with

nitrogen to a given pressure, known as the charge pressure. Nitrogen is selected for use

because of it is inert and noncombustible. Bladder-style suppressors , as seen in Figure 1,

are constructed from two end caps, an outer shell, a perforate layer, the bladder, and an

annulus as seen in Figure 1 [1-3]. The suppressor must be charged prior to use, and the

perforate layer and annulus are used to ensure the pressurized bladder does not extrude

into the flow path before the system is pressurized, as well as adding damping to the

device [1]. The goals of the work presented in this thesis are to find the optimal charge

pressure condition for a single bladder-style suppressor operating in a single-system

pressure fluid power system, and as well as find the optimal charge pressure condition for

either a single bladder-style suppressor or a pair of bladder-style suppressors operating

over a broad range of system pressures.

Performance of all noise control devices, including bladder-style suppressors, is

measured by transmission loss (TL), the ratio of incident power to transmitted power.

Higher TL is indicative of better performance. TL varies by frequency similar to any

noise source, including a pump in a hydraulic system. The spectral content of pump noise

2

is broadband, and a favorable characteristic of bladder style suppressors, compared to

other common noise control devices, is their broadband TL. Outside of a paper published

by Marek, et al. [4] no other work has been found on the performance of bladder-style

suppressors.

Figure 1: Bladder style suppressor [1]

The noise produced by fluid power systems can be damaging to equipment, as

well as uncomfortable, even hazardous, to work around. The main source of noise energy

in a hydraulic system is the pump, which is required for producing flow through the

system. The flow rate will fluctuate slightly during operation, because of non-constant

flow from the pump and fluid compressibility, causing a flow ripple. The flow ripple

couples with the hydraulic fluid and system components to create a dynamic pressure

ripple, which is superimposed onto the mean system, or static, pressure. The dynamic

pressure ripple is the damaging element to system elements, potentially exposing sealing

3

surfaces to strong pressure pulses causing leaks. In addition, system components are

subject to stress cycles causing material fatigue and potential failure.

Noise generated from the pressure ripple can be separated into three general

categories: fluid-borne noise (FBN) i.e. the pressure waves within the fluid, structure-

borne noise (SBN) i.e. the vibrations of pipes and other system components, and air-

borne noise (ABN) i.e. breakout noise. The exact frequency-domain transfer-function

relationships between the three noise types are complicated and difficult to model, but

Johnson and Edge [5] have shown that FBN is the cause of both SBN and ABN. A

reduction of FBN causes a reduction of both SBN and ABN, lessening the stress on

sealing surfaces as well as noise within a worksite.

The noise control solution needs to be robust for a system operating over a broad

range of system pressures and adequately treat broadband FBN to control ABN and SBN.

This goal was brought forward by an industry collaborator, Eaton Hydraulics, who is

developing a new valving technology for use in a hydraulic system operating over a

broad system pressure range. Observations of this technology showed significant

broadband FBN, a potential for extreme amounts of ABN and a noise treatment solution

was needed.

While bladder-style suppressors have not been extensively studied in the

literature, a similar device used in airborne noise control, mufflers, have been studied. A

basic type of airborne muffler is an expansion chamber, a section of inline rigid pipe with

a larger radius than the pipes connecting immediately upstream and downstream of the

device, seen in Figure 2. The change of cross sectional area creates a change in specific

acoustic impedance causing some acoustic energy to be reflected, reducing the amount of

4

transmitted energy [6]. An expansion chamber works as a periodic band stop filter in the

frequency domain, analogous to a capacitor connected in series to an electrical circuit [6].

Some expansion chambers have inlet/outlet extensions, Figure 2b, to change the behavior

of the chamber. The extensions have been studied by Selamet and Li [7], and the work

notes the extensions help the TL become more broadband than a device without

extensions, a desirable characteristic for use with hydraulic systems. The TL of empty

expansion chambers operating in an air system can be improved in several ways; multiple

chambers targeting specific frequencies, a perforate layer separating the flow path from

the expansion area and using a fibrous lining to dissipate acoustic energy [8, 9].

Figure 2: Expansion chamber, a) Without inlet/outlet extensions b) With inlet/outlet extensions

A major difference between airborne mufflers and bladder-style suppressor relate

to the operational fluids, air and hydraulic oil, respectively. The most notable difference

is the sound speeds, 343 m/s in air and 1400 m/s in hydraulic fluid. In all media, particle

a)

b)

5

displacement is inversely proportional to sound speed; particle displacement is greater for

air than hydraulic fluid. Particle velocity is the first temporal derivative of acoustic

particle displacement, and is proportional to particle displacement. Damping is a function

of particle velocity. Therefore, damping will be more effective for airborne systems due

to the lower sound speed and alternative noise suppression techniques will be needed for

hydraulic systems. One noise suppression technique, employed by reactive silencers for

airborne systems, is reflecting noise back to the source using a specific impedance

change.

In bladder-style suppressors, the compliance of the bladder changes the

impedance of the inlet port, causing some acoustic energy to be reflected to the source

and decreasing the amount of transmitted energy. The impedance of the suppressor is

dependent on the ratio of the charge pressure in the bladder to the system pressure,

known as the charge pressure ratio (CPR). Wilkes and McLean, a bladder-style

suppressor manufacturer, suggests charging the suppressors to a CPR of 0.5, while

industry contacts assert that a higher CPR causes bladder-suppressors to perform better

[1-3, 10]. Example TL curves are presented in Figure 3 and demonstrate the effect of

changing CPR has on TL over the entire frequency range of interest. As described above

a partial focus of this thesis is to find a CPR which exhibits the highest TL for a given

system pressure.

6

Figure 3: Example transmission loss curves for a WM-5081 bladder-style suppressor operating at a

system pressure of 10.3 MPa and varying CPR

A major drawback to bladder-style suppressors is that the devices are designed to

target a small range of system pressures for a given charge pressure; however, many fluid

power applications operate over a large range of system pressures, as seen in Figure 4

which shows the time fraction spent at each system pressure of the boom actuator on a

hydraulic excavator, and charge pressure cannot be adjusted during operation. Selection

of an optimal charge pressure for use with a given duty cycle is important for the best

performance of the hydraulic system, both in terms of stress on components and ABN.

Outside of work done by Marek, et al. [4], no other work has been found on

characterization bladder-style suppressors. Marek uses linear acoustics as well as

continuity of pressure and volume velocity to develop a model for predicting the behavior

of a bladder-style suppressor. The effect of individual suppressor components is studied,

7

and the effect of the CPR is also presented. Besides work by Gruber, et al. [11] no other

literature was found about the optimization of bladder style suppressors operating over a

broad range of system pressures.

Figure 4: Example system pressure usage for the boom actuator on a hydraulic excavator

This thesis describes the development of an approach to find an optimal charge

pressure condition using a model of a bladder-style suppressor and information pertaining

to system pressure time history and the spectral content of pressure ripples at those

system pressures. The optimal charge pressure is found through optimization of an

objective function. The objective function weights TL by two weighting factors; a

frequency-weighting factor (FWF) and a time weighting factor (TWF). The FWF

accounts for the spectral content of the FBN, weighting the objective function towards

frequencies with higher energy. The TWF accounts for the fraction of time a system

spends at each different system pressures weighting the objective function towards the

8

most-used system pressures. The optimal charge pressure condition may be found for

both single and double suppressor configurations. Two dissimilarly charged suppressors

are employed for systems operating over a broad range of system pressures, allowing

each suppressor to effectively target different system pressure ranges.

The remainder of this work will discuss how TL is measured on actual devices

and modeled for bladder-style suppressors, the creation of the objective function to find

the optimal charge pressure condition, and example results of the optimization of the

objective function. The measurement of TL, based on work by Earnhart, et al. [12] further

discussed in Chapter 2, expands on current methods using multiple pressure transducers

to resolve pressure amplitudes upstream and downstream of the device, allowing TL to be

calculated. The modeling of TL for a bladder style suppressor, based on work by Marek,

et al. [4] further discussed in Chapter 3, is predicted by an equivalent fluid model which

simulates the acoustic pressure and particle behavior within the device. In Chapter 4, the

details of a two suppressor system, used for noise treatment in systems operating over

extremely large pressure ranges, are presented. The optimization objective function is

discussed in Chapter 5. The optimization of the objective function is used to determine

the optimal charge pressure for a given usage, a goal of this thesis.

9

CHAPTER 2

TRANSMISSION LOSS MEASUREMENT, CALCULATION AND

EXAMPLE FOR A SINGLE SUPPRESSOR

Transmission loss (TL) is the ratio of transmitted acoustic energy to incident

energy,

 1010log i

t

W
TL

W
 (2.1)

where Wi is the incident acoustic energy, Wt is the transmitted acoustic energy and higher

transmission loss is indicative of better performance [6]. The techniques used for TL

measurement in this work are discussed below. TL is not system dependent allowing for

easy comparison between devices tested in different systems. Example TL data for a

bladder style suppressor will be presented.

2.1 Transmission Loss Measurement

A method to measure TL of hydraulic elements is based on several existing

techniques [5, 13-22] and implemented by Earnhart, et al. [12] to characterize the

behavior of noise control devices, and this technique is applied specifically to bladder-

style suppressors for this work. An acoustic element, modeled as a two-port four-pole

system, can be described by a transfer matrix relating acoustic pressure and velocity at

the upstream and downstream ports. A two-microphone method to measure the properties

of an acoustic element was developed by Seybert and Ross [13] and improved by Chung

and Blaser [14, 15]. To and Doige [16, 17] further developed the two-microphone method

using reference pipes both upstream and downstream to determine the transfer matrix of

the test article. Their work is further developed for systems with mean flow, such as

10

hydraulic systems, with use of time averaging by Lung and Doige [18]. A drawback to

the two-microphone method is indeterminacy occurring at frequencies corresponding to

an integer multiple of half wavelengths between the microphones. In order to resolve the

half-wavelength indeterminacy Kojima and Edge [19] as well as others [20-22] use a

three-microphone method, with the microphones spaced at unequal intervals, to solve for

the transfer matrix elements. A least-squares fit is applied to the transfer functions

between the sensors to robustly estimate the pressure waves.

The International Standard pertaining to acoustic measurements in a hydraulic

system is ISO-15086 [23-25]. ISO-15086-1 [23] states the mean velocity of the flow

must be less than 1% of the speed of sound, which is a Mach number of 0.01, for accurate

measurements. The Mach number for a given system is calculated by

V

M
c

 , (2.2)

where c is the speed of sound, nominally 1400 m/s in hydraulic fluid. Flow velocity, V, is

calculated by

Q

V
A

 , (2.3)

where Q is the volume flow-rate and A is the cross sectional area of the pipe. The flow

velocity and Mach number associated with the flow in pipes of any diameter and any

flow rate can be calculated. This thesis focuses on pipe diameters of 0.019 m and 0.038 m

with a volume flow-rate of 37.85 liters/minute. The flow velocity and Mach numbers

associated with flow in these pipes are shown in Table 1. The Mach number values are

both at least an order of magnitude below the 0.01 of Mach threshold, therefore, mean

flow can be assumed negligible for measuring TL in systems using pipes of this flow and

11

pipe size. ISO-15086-2 [24] employs a three microphone method to avoid half-

wavelength indeterminacy, with the microphone positions seen in Figure 5. The

minimum distances from the pipe inlet to the first transducer, x1, as well as the distance

from the last transducer, x2, to the end of the pipe are dependent on the pipe internal

diameter, as shown in the legend for Figure 5.

Table 1: Flow velocity and Mach Number for pipe diameters used in this thesis

Figure 5: ISO 15086-2 dimensions, x
1
≥10d, x

2
≥10d, L=330±2mm, L’=470±2mm

2.1.1 Experimental Transmission Loss Method

The testing method described above was implemented to measure two different

sized bladder style suppressors. Two test rigs, each with matching internal diameters to

the test article for which it was designed, were built in accordance with ISO-15086-2

[24].

A schematic of a representative test rig can be seen in Figure 6. Flow is provided

to the system at 37.85 liters per minute from a Sauer Danfoss H1 bidirectional 9-piston

pump driven by a Siemens 60 HP variable-speed AC motor operating at 1500 rpm. The

motor receives power from a Siemens Simovert Masterdrive variable-frequency drive.

Inlet Pipe ID (m) Flow velocity (m/s) Mach number

0.019 2.2135 0.0016

0.038 0.5534 0.0004

12

The frequency of the drive and pump displacement are set and controlled using xPC-

Target over a CAN-bus interface. Upstream of the test section, a partially closed needle

valve provides broadband noise across the frequency range of interest, 0 to 4000 Hz, to

the test section. The test section of both rigs includes two rigid pipe sections; a smaller

rig has an internal diameter of 0.019 m for its test section and a larger rig has an internal

diameter of 0.038 m in its test sections with the test device between the pipes. The system

has six piezoelectric pressure sensors, PCB model 101A06, labeled in Figure 6 as x0 to x5,

and their placement varies with internal diameter in accordance with the ISO-15086-2

standard. Each piezoelectric sensor is mounted flush with the inside surface of the test

section. The data from each sensor are collected by a 24-bit, 8-channel National

Instruments data acquisition board, model 4472, mounted inside of a PC. Data is captured

at 10800 samples/second and each sample record is 5120 samples long. Every test run is

a vector average of 100 sample records. The transfer functions Hij, between sensor i to

sensor j, are the same transfer functions in the work of Johnston, et al. [22]. The reference

sensor for upstream and across test component transfer functions is sensor x1. The

upstream transfer functions used for measurement are H01, and H21, the across test

component transfer functions are H31, H41 and H51, and the downstream transfer functions

are H34 and H54.

13

Figure 6: Schematic of test setup for measurement of fluid acoustic properties of a suppressor under

test.

The transfer functions are used to calculate the wave amplitudes in the upstream

and downstream test section. The pressure in the upstream section is

  x x j t

upstreamp Ae Be e    (2.4)

and the particle velocity is

0

x x
j t

upstream

Ae Be
Q e

Z

 


 
 (2.5)

where A and B are the complex amplitudes, γ is the complex wavenumber and Z0 is the

specific impedance. The upstream wave amplitudes are calculated by placing the

measured acoustic pressures at each transducer into an over-determined matrix,

0 0

1 1

2 2

x x

x x

x x

e e

F e e

e e

 

 

 







 
 

  
 
 

. (2.6)

The wave amplitudes are solved for by using a pseudoinverse to compute the least-

squares average of

 X Fb , (2.7)

14

 where

1

1

A
p

X
B

p

 
 

  
 
 

, (2.8)

where p1 is the acoustic pressure at sensor 1, and

01

21

1

H

b

H

 
 

  
 
 

, (2.9)

where Hij is the transfer function between sensor i and j. The downstream pressure and

particle velocity are given by

  x x j t

downstreamp Ee Fe e    (2.10)

and

0

x x
j t

downstream

Ee Fe
Q e

Z

 


 
 . (2.11)

Similarly to the upstream section, the waves amplitudes in the downstream section are

calculated using

 Y Gc (2.12)

where

1

1

C
p

Y
D

p

 
 

  
 
 

, (2.13)

3 3

4 4

5 5

x x

x x

x x

e e

G e e

e e

 

 

 







 
 

  
 
 

, (2.14)

and

15

31

41

51

H

c H

H

 
 

  
 
 

. (2.15)

The acoustic pressure, p1, and volume velocity, Q1, at the upstream port are

related to p2 and Q2 at the downstream ports by a transfer matrix with elements tij,

1 11 12 2

1 21 22 2

p t t p

Q t t Q

     
    

     
. (2.16)

Pressure and velocity can be calculated from the wave amplitudes using the relations in

Equations (2.4), (2.5), (2.10) and (2.11) and the wave amplitudes calculated above. The

elements of the transfer matrix, Equation (2.16), can be used to calculate TL, using

 12
10 11 0 21 22

0

1
TL 20log

2

t
t Z t t

Z
   

.

 (2.17)

Equation (2.17) can be simplified by assuming the test suppressor is geometrically

symmetric end to end, and the system is assumed to be reciprocal, as seen in Pierce [8],

resulting in

 11 22t t (2.18)

and

2

11
21

12

1 t
t

t


 . (2.19)

It can be shown from Equation (2.16), (2.18) and (2.19) that the elements of the transfer

matrix can be solved for using

16

2 2

1 1 2 2 2 1
11 12

2 2 1 1 2 2 1 1

2 2

2 1 1 1 2 2
21 22

2 2 1 1 2 2 1 1

p Q p Q p p
t t

p Q p Q p Q p Q

Q Q p Q p Q
t t

p Q p Q p Q p Q

 
 

 

 
 

 

. (2.20)

Using Equations (2.4), (2.5), (2.10) and (2.11) the transfer matrix elements can be solved

for in terms of wave amplitudes

 

2 2 2 2

11 12 0 2 2 2 2

2 2 2 2

21 222 2 2 2

0

2 2
1

2 2
1

A AB B F EF E
t t Z

A B F E

A AB B F EF E
t t

Z A B F E

    
  

  

    
  

  

.(2.21)

Substituting the values found in Equation (2.21) into Equation (2.17), TL is then

2 2

1020log
A F

TL
AE BF





. (2.22)

Assuming an anechoic termination, F=0, the equation takes the familiar form

1020log

A
TL

E
 . (2.23)

It can be shown that only the plane wave modes of waves A, B, E and F propagate

in the upstream and downstream pipes, respectively. The cut-on angular frequency, the

lowest frequency for a given mode to propagate, for a given mode is defined by

 lm lmck  , (2.24)

where, c is the speed of sound in meters per second, and

'

lm
lm

j
k

a
 , (2.25)

where j’ml are the input values causing extrema of Jm(z), the mth order Bessel function of

argument z, and a is the circular cross section radius of the pipe [6]. The plane wave

17

mode has indices of l=0 and m=0, and its cut-on frequency is 0 Hz; the lowest non-plane

wave mode is l=0 and m=1. By applying equation (2.25) through (2.24), the frequency

range of interest, 0 to 4000 Hz, is well below the cut-on frequencies in both inlet pipes,

and the calculated values of the cut-on frequencies are shown in Table 2.

Table 2: Cut-on frequencies of first non-planar mode in a cylindrical pipe

Figure 6 also shows two static pressure sensors, used to measure mean system

pressure, are mounted in the system, one immediately upstream of the test suppressor and

one immediately downstream of the test suppressor. The measured difference between

the sensors yields the pressure loss across the device, which was never measured to be

greater than the minimum sensor resolution of 70 kPa for any test.

The system pressure is controlled by a second needle valve located downstream of

the test section. To isolate the noise generate by the loading valve a termination

suppressor is connected downstream of the test section, and isolates the test section from

downstream noise, improving coherence in the transfer functions between the dynamic

pressure sensors. A thermocouple is used to measure the temperature of the hydraulic

fluid for each test; the temperature of the compressed gas in the test suppressor is

estimated to be equal to the temperature of the hydraulic fluid.

2.1.2 Sensor Calibration

The sensors are calibrated pursuant to ISO 15086-2 [24]. The sensors are all

located on the same axial position of a calibration block, Figure 7, which is perpendicular

to the direction of the pressure wave. As testing measurements occur on a frequency-by-

frequency basis, calibration must also be done on a frequency-by-frequency basis. The

Inlet Pipe ID (m) Cut-on frequency of first non-plane mode (kHz)

0.019 43.0

0.038 21.5

18

inner diameter of the calibration block is narrower than either rig, and it can be shown

that plane wave behavior can also be assumed within the block. Plane wave behavior

ensures the pressure sensors will be exposed to the same pressure wave amplitude at each

frequency with no phase difference. The sensor outputs are then compared using the same

transfer functions as used during testing. Ideally, the magnitude of all transfer functions

will be 1 and the phase will be 0˚. Slight manufacturing differences in each sensor will

cause deviations from the ideal value. ISO 15086-2 [24] sets the maximum allowable

deviation for amplitude larger than 1% needs to be corrected, while a phase deviation

larger 0.5˚ need to be corrected, though in practice all differences are corrected.

Figure 7: Calibration block without sensors

2.1.3 Coherence

The coherence between any sensor pair is used to ensure the transfer function is

correctly relating data taken at those two sensors. Coherence values range from 0 to 1,

with higher values meaning higher correlation and linear relationship between the

sensors. The coherence is calculated by

19

2

xy

xy

xx yy

G
C

G G


,

 (2.26)

where Gxy is the cross-spectral density between x and y, and Gxx and Gyy are the respective

autospectral densities. When the coherence value decreases it indicates noise has entered

the measurement, as acoustic waves propagate linearly in hydraulic oil. Frequencies with

a coherence value of less 0.9 are considered invalid and ignored in computation of TL.

The termination suppressor ensures noise does not enter from downstream, improving the

coherence.

2.2 Measured Transmission Loss Performance of Single Suppressors

In order to investigate the effect of charge pressure ratio (CPR) on suppressor

performance the method developed in Section 2.1 was applied to both a WM-5081

suppressor and a WM-5138 suppressor. The resulting transmission loss curves are seen in

Figure 8 - Figure 11. Figure 8 and Figure 9 show the effect of the changing the charge

pressure while holding system pressure constant at 10.3 MPa. In the frequency ranges

where no TL data is shown, the coherence for any of the transfer functions used dropped

below 0.9 and was deleted from the data set. The TL rises across the entire frequency

range of interest as the CPR approaches 1. In Figure 8, an improvement of seven to ten

dB is seen across the range of frequencies by raising the CPR from 0.3, corresponding to

a charge pressure of 3.10 MPa, to a CPR of 0.9, which corresponds to a charge pressure

of 9.31 MPa. The improvement in TL is significant, and shows why optimizing the

suppressor(s) to the correct charge pressure(s) is necessary in practice. With a CPR of

over 1 the TL drastically drops to less than a maximum of five dB, approximately twenty-

five dB less than the TL obtained with a CPR of 0.9. It can also be seen that a suppressor

20

with a CPR of 0.3 out-performs a suppressor with a CPR over 1 for the entire frequency

range. The downward spikes in TL at frequencies of 600 and 1000 Hz are attributed to

numerical artifacts, and the cause of the artifacts is not known precisely, but may be due

to standing-waves in the upstream and downstream test sections contaminating the

measurements. Figure 9 shows a similar trend of TL in relation to CPR, the only

difference is suppressor size as well as line size. Conclusions are difficult to draw from

Figure 9 due to significant numerical artifacts in frequencies above 500 Hz. In

frequencies below 500 Hz, Figure 9 shows that increasing the CPR improves TL. It will

be shown below, in Section 5.1.1, that a majority of the spectral content of the pressure

ripple is in frequencies below 500 Hz, allowing this data to inform this thesis.

Figure 8: Transmission loss for WM-5081 Suppressor at 10.3 MPA system pressure with varying

charge pressures

9 dB

27 dB

600 Hz

1000 Hz

21

Figure 9: Transmission loss for WM-5138 Suppressor at 10.3 MPA system pressure with varying

charge pressures

Figure 10 and Figure 11 show the effect of holding the CPR constant at 0.5 while

varying system pressure, which requires that the charge pressure be increased for each

increase in system pressure. In Figure 10, the lower system pressures exhibit higher TL,

especially in the frequency range from 0 to 1000 Hz. In the frequency range from 1500

Hz to 2000 Hz the TL values converge, but the lower system pressure still exhibit the

highest TL. The largest difference between TL of two system pressures for similar

frequencies is approximately 7 dB, which shows that for the same CPR, suppressors

operating at a lower system pressure exhibit higher TL. Similar to Figure 9, data taken

from the rig designed for the WM-5138 shows significant numerical artifacts in

frequencies above 500 Hz; however the data follows similar trends as the data in Figure

10. The TL decreases to close to 0 dB at a frequency of 2000 Hz for all measured TL

curves.

Artifacts

22

Figure 10: Transmission loss for WM-5081 Suppressor at 50% CPR for several system pressures

Figure 11: Transmission loss for WM-5138 Suppressor at 50% CPR for several system pressures

7 dB

Artifacts

23

CHAPTER 3

MODELING OF SINGLE SUPPRESSOR TRANSMISSION LOSS

An equivalent-fluid model is used to predict the transmission loss performance of

a suppressor. Its full development is seen in Marek, et al. [4]. Several authors have

published work detailing the modeling of mufflers in airborne applications. Airborne

mufflers primarily use fibrous linings as a damper to absorb acoustic energy, while fluid-

borne suppressors primarily use nitrogen contained in a bladder to add compliance to the

device. However, many similarities do exists between the geometry of fluid-borne

suppressors and airborne suppressors, allowing the current literature pertaining to

airborne muffler models to inform the fluid-borne bladder-style model. Work from

Selamet [26] greatly influenced the model developed below, as the work focuses on the

perforate layer as well as inlet/outlet extensions, both geometries found in the Wilkes and

McLean suppressors being studied in this thesis [1]. Studies by Selamet and Li [7] and

Denia, et al. [27] were informative as to the acoustic behavior in the inlet/outlet

extensions in expansion chambers and mufflers, both studies note the extensions

improve the broadband nature of TL. Both studies use the Helmholtz equation,

2 2 0P k P   , (3.1)

to model the pressure in the entire system. Other studies from Denia, et al. [27], Lee, et

al. [28] and Selamet, et al. [29] helped further describe the acoustic behavior, i.e. the

pressure and particle displacement, at the perforate layer. The aforementioned studies

calculate the specific impedance of a single hole in the perforate layer,

24

 1 2
0h S eff

h

p p
Z R i l

u



   , (3.2)

where p1 and p2 are the acoustic pressures directly on each side of the perforate layer, uh

is the particle velocity at the hole, Rs is the specific resistance, ω is the angular frequency,

ρ
0
 is the density of the fluid and leff is

eff w hl t d  , (3.3)

where tw is the wall thickness of the layer, dh is the hole diameter and α is the end

correction coefficient. The impedance of the perforate layer can be calculated with

 h
p

Z
Z


 , (3.4)

where  is the porosity of the perforate layer.

Even with their similarities, several other important differences remain between

airborne muffler models and fluid-borne suppressor models. First, most airborne mufflers

are designed to work at or near atmosphere pressure, while fluid-borne suppressors

operate up to pressures of 34.5 MPa, causing different behavior, such as sound speed, in

the nitrogen-charged bladder [6]. Second, mean flow can affect acoustic measurements

and must be taken into account when measuring TL. The hydraulic fluid model, as shown

in Marek, et al. [4], assumes linear acoustic behavior in the entirety of the suppressor.

The model also assumes the mean flow velocity is minimal compared to the speed of

sound in the fluid.

3.1 Suppressor Modeling

The suppressor is modeled by Marek, et al. [4] using three coaxial regions shown

in Figure 12 along with waves A, B, E, F, G and H. The regions are separated based on

25

similarity of boundary conditions. The first region represents the upstream and

downstream pipes, therefore representing waves A, B, E and F, which can be assumed to

be plane waves as shown Chapter 2, and only hydraulic fluid is present in this region. The

second region of the device begins at the most upstream inlet port of the annulus, shown

as x=0 in Figure 12, and ends at the most downstream port of the annulus, shown as x=L.

Because of the non-rigid behavior at the bladder, plane wave behavior may not be

assumed in this region, therefore GR,n will represent all forward traveling modes and HR,n

will represent all reverse traveling modes. The subscript R represents the region the wave

is propagating in, as waves G and H will propagate in both Region 2 and 3; the subscript

n represents the index of a given wave mode, with 0 indicating the plane-wave mode.

Region 3 represents the area where the fluid and nitrogen may contact the bladder, from

opposite radial directions, upstream of x=0 or downstream of x=L. The difference

between Regions 2 and 3 is Region 2 includes the perforate layer and annulus while

Region 3 does not. The positive direction of travel is to the right in Figure 12.

Figure 12: Suppressor model and acoustic waves

26

In order to accurately model suppressor behavior, the geometry of the suppressor

must be known. The geometry can be calculated from dimensions shown in Figure 12.

First the charged volume of gas is calculated using geometry. The initial volume of the

bladder, before the system is pressurized, is

   2 2

0 1 2 shell annulusV L L L r r    , (3.5)

where L is the length of Region 2, L1 and L2 represent the upstream and downstream

lengths of Region 3 and the radii are shown in Figure 12. The radius of the bladder when

it is charged with nitrogen and the system is pressurized, rcompressed, can be calculated with

 

2 0

1 2

c
compressed shell

s

PV
r r

P L L L 
 

 
, (3.6)

where Pc is the charge pressure, and Ps is the system pressure. The model assumes the

bladder is limp mass, i.e. the bladder is assumed to have mass and oscillate but it is non-

elastic.

The model uses Lamé parameters, λf and λB, to represent the elasticity of the

hydraulic fluid and the bladder, respectively. The parameter λB represents both the

bladder and the pressurized nitrogen. Lamé’s second parameter, μ, represents the shear

modulus, zero for both fluids, making λf and λB directly equivalent to the bulk moduli for

both media. In addition, a shear modulus of zero means only longitudinal waves will

propagate in the suppressor.

Sound speeds are defined as

f

f

f

c



 , (3.7)

27

 B
B

B

c



 , (3.8)

and for angular frequency ω in rad/s, wavenumbers k are defined as

 ,f B

f B

k k
c c

 
  , (3.9)

where the subscripts f and B designate fluid and bladder, respectively.

The wave number for a given propagating mode, n, in a given region, R, can be

decomposed into radial and axial components, with subscripts r and x representing radial

and axial mode components, respectively:

2 2 2

, ,f Rx n Rrf nk k k  , (3.10)

2 2 2

, ,B Rx n RrL nk k k  . (3.11)

Within the suppressor the wavenumber in the axial direction is the same for the hydraulic

fluid and the nitrogen in the bladder; however, the radial wavenumber can differ between

the propagation media. Acoustic displacement is represented by uRr,n and uRx,n, where the

subscript R represents the region, the subscript r or x represents radial or axial modes, and

the subscript n represents the mode number. The acoustic particle displacements are

given for all three regions by:

   1 ,i i

1 , 1 , 1 1 , e ex nk x t

Ur n rf n rf nu k J k r A 
  , (3.12)

   1 ,i ' i

1 , 1 , 1 1 , e ex nk x t

Dr n rf n rf nu k J k r E 
  , (3.13)

 

    

    

2 ,

2 ,

2 ,

i i

2 , 1, 1 2 , 2,

i i

2 , 2 , 2, 1 2 , 3, 1 2 , 2,

i i

2 , 4, 1 2 , 5, 1 2 , 2,

e e ,

e e ,

e e ,

x n

x n

x n

k x t

rf n n rf n n annulus

k x t

r n rf n n rf n n rf n n annulus compressed

k x t

rL n n rL n n rL n n compressed

k y J k r G r r

u k y J k r y Y k r G r r r

k y J k r y Y k r G r r













 

    

  







, (3.14)

28

    

    

3 ,

3 ,

i i

3 , 6, 1 3 , 7, 1 3 , 3 ,

3 ,
i i

3 , 8, 1 3 , 9, 1 3 , 3 ,

e e ,

e e ,

x n

x n

k x t

rf n n rf n n rf n U n compressed

Ur n
k x t

rL n n rL n n rL n U n compressed

k y J k r y Y k r G r r
u

k y J k r y Y k r G r r









  
 

  

, (3.15)

    

    

3 ,

3 ,

i ' i

3 , 6, 1 3 , 7, 1 3 , 3 ,

3 ,
i ' i

3 , 8, 1 3 , 9, 1 3 , 3 ,

e e ,

e e ,

x n

x n

k x t

rf n n rf n n rf n D n compressed

Dr n
k x t

rL n n rL n n rL n D n compressed

k y J k r y Y k r G r r
u

k y J k r y Y k r G r r









  
 

  

, (3.16)

   1 ,i i

1 , 1 , 0 1 ,i e ex nk x t

Ux n x n rf nu k J k r A 
  , (3.17)

   1 ,i ' i

1 , 1 , 0 1 ,i e ex nk x t

Dx n x n rf nu k J k r A 
  , (3.18)

 

    

    

2 ,

2 ,

2 ,

i i

2 , 1, 0 2 , 2,

i i

2 , 2 , 2, 0 2 , 3, 0 2 , 2,

i i

2 , 4, 0 2 , 5, 0 2 , 2,

i e e ,

i e e ,

i e e ,

x n

x n

x n

k x t

x n n rf n n annulus

k x t

x n x n n rf n n rf n n annulus compressed

k x t

x n n rL n n rL n n compressed

k y J k r G r r

u k y J k r y Y k r G r r r

k y J k r y Y k r G r r













 

    

  







, (3.19)

    

    

3 ,

3 ,

i i

3 , 6, 0 3 , 7, 0 3 , 3 ,

3 ,
i i

3 , 8, 0 3 , 9, 0 3 , 3 ,

i e e ,

i e e ,

x n

x n

k x t

x n n rf n n rf n U n compressed

Ux n
k x t

x n n rL n n rL n U n compressed

k y J k r y Y k r G r r
u

k y J k r y Y k r G r r









  
 

  

, (3.20)

    

    

3 ,

3 ,

i ' i

3 , 6, 0 3 , 7, 0 3 , 3 ,

3 ,
i ' i

3 , 8, 0 3 , 9, 0 3 , 3 ,

i e e ,

i e e ,

x n

x n

k x t

x n n rf n n rf n D n compressed

Dx n
k x t

x n n rL n n rL n D n compressed

k y J k r y Y k r G r r
u

k y J k r y Y k r G r r









  
 

  

, (3.21)

where Jm and Ym are m
th

 order Bessel functions of the first and second kind, relative

complex amplitudes of coefficients y1,n to y5,n and y6,n to y9,n are unique for each mode n

in Regions 2 and 3, and 'x x L  . Acoustic pressure for R region and n mode is

represented by:

   1 ,i2 i

1 , 0 1 , e ex nk x t

U n f rf np k J k r A 
 , (3.22)

   1 ,i '2 i

1 , 0 1 , e ex nk x t

D n f rf np k J k r A 
 , (3.23)

29

 

    

    

2 ,

2 ,

2 ,

i2 i

1, 0 2 , 2,

i2 i

2, 2, 0 2 , 3, 0 2 , 2,

i2 i

4, 0 2 , 5, 0 2 , 2,

e e ,

e e ,

e e ,

x n

x n

x n

k x t

f n rf n n annulus

k x t

n f n rf n n rf n n annulus compressed

k x t

L n rL n n rL n n compressed

k y J k r G r r

p k y J k r y Y k r G r r r

k y J k r y Y k r G r r













 



   


 


,(3.24)

    

    

3 ,

3 ,

i2 i

6, 0 3 , 7, 0 3 , 3 ,

3 ,
i2 i

8, 0 3 , 9, 0 3 , 3 ,

e e ,

e e ,

x n

x n

k x t

f n rf n n rf n U n compressed

U n
k x t

L n rL n n rL n U n compressed

k y J k r y Y k r G r r
p

k y J k r y Y k r G r r









  
 

 

, (3.25)

    

    

3 ,

3 ,

i '2 i

6, 0 3 , 7, 0 3 , 3 ,

3 ,
i '2 i

8, 0 3 , 9, 0 3 , 3 ,

e e ,

e e ,

x n

x n

k x t

f n rf n n rf n D n compressed

D n
k x t

L n rL n n rL n D n compressed

k y J k r y Y k r G r r
p

k y J k r y Y k r G r r









  
 

 

. (3.26)

Assuming mean flow can be neglected allows an assumption that the values for the

reverse traveling wavemodes in Equations (3.12) to (3.25) can be found by replacing the

forward mode with its matching reverse traveling mode; and by replacing all instances of

,Rx nk with ,Rx nk . The negligible flow assumption can be validated by calculation of the

Mach number. As shown in Chapter 2, the Mach number for flow in pipes with diameters

of 0.019 m and 0.038 m are below 0.001 and allow mean flow to be neglected.

As discussed above, a given mode, n, in a given region R is described by a unique

axial wavenumber, kRx,n. In order to solve for the wave number, an eigenequation must be

solved for in each region. Since the mean flow velocity is negligible the solutions of the

eigenequation are ,Rx nk , meaning either forward or reverse travelling modes need to be

solved for, in this case the positive travelling modes are obtained. Solving the

eigenequation requires boundary conditions which accurately reflect the physical system

being modeled. In Region 1, where waves A and B propagate upstream of the suppressor

and waves E and F propagate downstream of the suppressor, the pipe boundary is

30

assumed to be rigid; therefore a zero radial displacement condition must be met at the

outer wall,

1 , 0

port
r n r r

u


    . (3.27)

Equations (3.12), (3.13), (3.22) and (3.23) are solved for use the boundary condition seen

in equation (3.27) to solve for the pressure and particle displacement in Region 1.

Region 2, where waves G and H propagate, includes the hydraulic fluid, the

bladder, the annulus and the perforate layer. Equations (3.28) to (3.33) as well as

Equations (3.14), (3.19) and (3.24) are solved simultaneously with boundary condition to

find the wavenumber, k2x,n as well as the relative amplitudes of y1,n through y5,n. The first

boundary condition follows from assuming that the outer shell of the suppressor is rigid,

and there is zero displacement at the outer wall,

 2 , 0
shell

r n r r
u


    . (3.28)

The displacement of the nitrogen in the bladder must match the displacement of the

hydraulic fluid,

2 , 2 ,

compressed compress
r n r nr r r r

u u
   

       , (3.29)

where rcompressed- and rcompressed+ represent the limit as r approaches rcompressed from either

side of the bladder. In addition the forces must also be balanced across the bladder,

     2

2 2 2 2 2
compressed compressed compressed

s r s rr r r r r r
p p u p u  

     
      , (3.30)

where 2ru is the second temporal derivative of acoustic displacement u2r and σs is the area

density of the bladder calculated from

2

b
s

compressed T

m

r L



 , (3.31)

31

where mb is the mass of the bladder and LT is the length of the bladder. In addition, the

acoustic displacement and impedance condition across the perforate layer are given by

 2 , 2 ,
annulus annulus

r n r nr r r r
u u

   
       , (3.32)

and

 2, 2, 2 ,
annulus annulus annulus

n n p r nr r r r r r
p p Z u

    
            , (3.33)

where Zp can be calculated from (3.4). Equations (3.14), (3.19) and (3.24) are solved with

the boundary conditions in Equations (3.28) through (3.33), and the resulting eigenvalues

are the wavenumbers, k2x,n, which allow the acoustic pressure and particle displacement

for each mode in Region 2 to be calculated. The boundary conditions in Region 3 are

similar to the conditions in Region 2, omitting the perforate layer:

 3 , 0
shell

r n r r
u


    , (3.34)

3 , 3 ,

compressed compressed
r n r nr r r r

u u
   

       , (3.35)

   2

3 3 3
compressed compressed

s rr r r r
p p u 

   
    . (3.36)

Solving Equations (3.20), (3.21), (3.25) and (3.26) with the boundary conditions shown

in Equations (3.34) through (3.36), the resulting eigenvalues are they wavenumbers, k3x,n,

which allow the acoustic pressure and particle displacement for each mode in Region 3

to be calculated.

A finite number of radial modes, N, are then considered to solve for the modal

amplitudes for all waves by using continuity of pressure and displacement at the

boundaries between regions. An anechoic termination is assumed for this model, meaning

32

 0F  . (3.37)

The forward traveling plane wave A, is assumed to be unity for the entire frequency range

of interest and the other wave amplitudes are in reference to A for a given frequency.

Other simplifying assumptions are rigid boundaries at 1x L  and 2x L L  , allowing a

simple relationship between the forward and reverse traveling waves in Region 3,

 3 , 12i

3 , 3 , e x nk L

U n U nG H


 , (3.38)

 3 , 22i

3 , 3 , e x nk L

D n D nH G


 . (3.39)

The remaining axial modes may be solved in the form of are integrals,

    
1 1

1 , 1 , 2, 2,0 0 0 0
0 00 0

a ar rN N

U n U n n nx x x x
n n

p p rdr p p rdr
 

   

   
 

                   , (3.40)

    
1 1

1 , 1 , 2, 2,

0 00 0

a ar rN N

D n D n n nx L x L x L x L
n n

p p rdr p p rdr
 

   

   
 

                   , (3.41)

    
1 1

3 , 3 , 2, 2,0 0 0 0
0 0

c c

annulus annulus

r rN N

U n U n n nx x x x
n nr r

p p rdr p p rdr
 

   

   
 

                   , (3.42)

    
1 1

3 , 3 , 2, 2,

0 0

c c

annulus annulus

r rN N

D n D n n nx L x L x L x L
n nr r

p p rdr p p rdr
 

   

   
 

                   , (3.43)

  

 

 
1

1

1 , 1 ,0 0
001

2 , 2 ,0 0
00

1

3 , 3 ,0 0
0

,

,

,

b

b

b

r N

Ux n Ux n b portx x
nr N

x n x n U port b annulusx x
n r N

U Ux n Ux n b annulusx x
nr

u u rdr r r

u u rdr U r r r

U u u rdr r r


 

 



 

 



 

 



        




         

         








,(3.44)

33

  

 

 
1

1

1 , 1 ,0 0
001

2 , 2 ,

00
1

3 , 3 ,

0

,

,

,

b

b

b

r N

Dx n Dx n b portx x
nr N

x n x n D port b annulusx L x L
n r N

D Dx n Dx n b annulusx L x L
nr

u u rdr r r

u u rdr U r r r

U u u rdr r r


 

 



 

 



 

 



        




         

         








,(3.45)

  
1

1 , 1 ,0 0
00

portr
N

U Ux n Ux nx x
n

U u u rdr


 

 


        , (3.46)

  
1

1 , 1 ,

00

portr
N

D Dx n Dx nx L x L
n

U u u rdr


 

 


       

  
1 1 1

, ,a port b shell c annulus shell annulus

m m m
r r r r r r r r

M M M

  
     , (3.47)

where m = 0 to M-1, and M = N.

The TL for a single suppressor can then be found using

1020log

A
TL

E

 
  

 
 (3.48)

where A and E are the wave amplitudes.

For a system operating over a broad system pressure range, there is a possibility

the suppressor operates with a CPR over 1. This condition violates the linearity

assumptions made by the model as the bladder remains in contact with the annulus. In

order to model this condition, the boundary conditions in Regions 2 and 3 are changed to

rigid behavior at rannulus, emulating an expansion chamber.

3.2 Predicted Transmission Loss Curves for a Single Suppressor

For a bladder-style suppressor, TL is a function of its geometric dimensions,

shown in Figure 13, and CPR. Critical dimensions include the inner radius of the inlet

and outlet ports, rport, the outer radius of the annulus, rannulus, the inner radius of the shell,

34

rshell, and the effective internal length of the device, L. In addition to the geometric

properties, TL is also dependent on the ratio of nitrogen charge pressure to system

pressure. Two models of commercially available suppressors are considered in this thesis;

the models are the Wilkes & McLean WM-5081 and the Wilkes & McLean WM-5381.

The dimensions of the suppressors are shown in Table 3. Each suppressor model requires

inlet and outlet pipes of proper size to ensure constant mean flow through the system. The

diameters of the inlet and outlet pipes for the two suppressor models are 0.019 m and

0.038 m, respectively.

Figure 13: Single suppressor dimensions and acoustic waves

Table 3: Dimensions of bladder-style suppressor used in this study

The model was used to simulate a variety of charge pressures and system

pressures, as depicted in Figure 14, Figure 15, Figure 16 and Figure 17. TL is presented in

the frequency domain, and a higher magnitude signifies a greater amount of noise has

been suppressed at that frequency. Figure 14 and Figure 15 show the predicted TL values

Parameter WM-5081 WM-5138

rport 0.00953 m 0.0176 m

rannulus 0.0102 m 0.0252 m

rshell 0.0241 m 0.0417 m

L 0.0447 m 0.0682 m

35

increase as the (CPR) increases for a WM-5081 suppressor and a WM-5138 suppressor

with highest TL exhibited at a CPR of 0.9, though the TL drastically decreases once the

CPR is over 1. This prediction matches observed behavior for these devices. In Figure 14,

the largest difference in TL of 13 dB between CPRs less than one occurs at approximately

3000 Hz, emphasizing the importance of a properly charged suppressor. The 35 dB TL

drop-off with an overcharged suppressor further emphasizes the need to avoid using

overcharged suppressors in practice. However, this is problematic if system pressure

varies widely. Figure 15 shows predicted TL curves the same charge pressures of a WM-

5138 suppressor. Predicted TL drops to almost zero for each charge pressure ratio in the

frequency range between 2700 Hz and 3100 Hz, due the length of the device

corresponding to the half-wavelength associated with this frequency. This behavior is

also seen in the real device. The biggest difference in TL between suppressors with a CPR

less than 1 is approximately 10 dB at 1500 Hz. The increase in predicted TL accentuates

the effect of CPR, and the CPR of 0.9 exhibits the highest TL. The decrease in TL to a

suppressor with a CPR higher than 1 is even more drastic, emphasizing the negative

effect of charging suppressors to higher than system pressure. Note that the high

predicted TL presented here may exceed the measurement capabilities discussed in

Chapter 2 because the transmitted signal may be close to or below the ambient noise

level.

36

Figure 14: Predicted transmission loss for WM-5081 Suppressor at 10.3 MPA system pressure as a

function of CPR

Figure 15: Predicted transmission loss for WM-5138 Suppressor at 10.3 MPA system pressure with

varying CPR

13 dB

35 dB

10 dB

37

Figure 16 and Figure 17 show a comparison of predicted TL for a suppressor at a

constant CPR of 0.5 but a discrete set of system pressures, for a WM-5081 suppressor

and WM-5138 suppressor, respectively. In the modeling of both suppressors, as system

pressure increases the TL decreases over the full frequency range. In Figure 16, there is a

large increase near 3000 Hz in the predicted TL performance for the 4.14 MPa system

pressure. While the predicted TL for the other system pressures also increase near 3000

Hz, none have a significantly large rise. At 3000 Hz, the difference in TL between the

4.14 MPa curve and 8.27 MPa curve is nearly 20 dB. The difference between the 8.27

MPa curve and the 20.7 MPa curve at the same frequency is 10 dB. In Figure 17, the

largest TL difference, ignoring the nulls in TL, is almost 25 dB at approximately 2000 Hz.

In Figure 17, the predicted 0 dB TL point shifts by 700 Hz as the simulated system

pressure increases. Both suppressor sizes show differences in TL for the same CPR at

different system pressures. The differences in the predicted TL curves are interesting to

note; however, the system will not operate at a fixed charge ratio in practice but instead

operate with a fixed charge pressure with varying system pressure, leading to a varying

CPR.

38

Figure 16: Predicted transmission loss for WM-5081 Suppressor, with 50% CPR of varying system

pressures

Figure 17: Predicted transmission loss for WM-5138 Suppressor, with 50% CPR of varying system

pressures

20 dB

10 dB

39

3.3 Comparison of Measured Transmission Loss & Predicted Transmission Loss

The predicted TL performance was compared to measured TL performance at the

same conditions in order to validate the model. The predicted TL for a single WM-5081

suppressor is compared to measured TL in Figure 18. The predicted TL and measured TL

show good agreement in the frequencies below 500 Hz. Numerical artifacts in measured

TL at frequencies of 600 and 900 Hz make comparison difficult. The predicted TL

diverges from the measured TL in the frequency range of 1000 Hz to 4000 Hz. The model

only simulates the noise transmission path through the fluid, while the measurement

technique is effected by all noise transmission paths, such as through the pipes and

suppressor shell. The non-fluid transmission paths may impose a limit on the maximum

TL in practice, explaining the difference in the predicted and measured TL curves. The

data presented in Figure 18 suggests the limit may be near 30 dB. To determine what

effect, if any, this will have on optimization results, a maximum TL constraint of 30 dB

will be applied to an optimization case.

40

Figure 18: Comparison of transmission loss for a single WM-5081 Suppressor at a system pressure of

10.3 MPa for a variety of CPR

 The predicted TL and measured TL for a single WM-5138 are shown in Figure

19. The comparison is similar to that of the WM-5081, where the predicted TL and

measured TL have good agreement below 500 Hz, while numeric artifacts make it

difficult to draw conclusions above this frequency. However, the predicted TL for a WM-

5138 suppressor does follow a similar path to the mean value of the artifacts.

41

Figure 19: Comparison of transmission loss for a single WM-5138 Suppressor at a system pressure of

10.3 MPa for a variety of CPR

42

CHAPTER 4

MEASUREMENT AND MODELING OF A TWO-SUPPRESSOR

SYSTEM

Many hydraulic systems in the field operate over a broad pressure range; this

range is outside the operational range for a single suppressor and requires two

suppressors for optimal noise control. Two suppressors allow a broader range of system

pressures to be effectively targeted. This section discusses selecting the optimal

architecture for a two-suppressor system, the measurement of the TL exhibited by a two-

suppressor system and a modeling the TL exhibited by a two-suppressor as well as a

comparison between the measured and modeled TL.

4.1 Modeling of Two-Suppressor System Architecture

First, an architecture for the two suppressors must be selected. There are two

possible general architectures for combining two suppressors; in series or in parallel, as

seen in Figure 20 and Figure 21. The merits of the two architectures can be compared

through use of transfer matrices. The effective transfer matrix for each architecture may

be used as the basis for comparison. A transfer matrix relates the acoustic pressure and

acoustic volume velocity at two points,

UD

D U

PP a b

Q c d Q

    
     
    

, (4.1)

where a, b, c and d represent the frequency-dependent elements of the transfer matrix, P

and Q are the Fourier coefficients of acoustic pressure and velocity, respectively and the

subscripts represent the upstream and downstream ports. As seen in Figure 20 and Figure

43

21 the systems are each comprised of three major elements: pipes, suppressor 1 and

suppressor 2. Each of these elements can be represented by individual transfer matrices:

p p UD

p pD U

a b PP

c dQ Q

    
     

    
, (4.2)

1 1

1 1

UD

D U

PP a b

c dQ Q

    
     
    

, (4.3)

2 2

2 2

UD

D U

PP a b

c dQ Q

    
     
    

, (4.4)

where Equation (4.2) represents the transfer matrix of the pipe, Equation (4.3) represents

the transfer matrix of suppressor 1 and Equation (4.4) represents the transfer matrix of

suppressor 2.

Figure 20: Parallel suppressor architecture

Figure 21: Series suppressor architecture

44

 The effective transfer matrix for the parallel architecture is developed first. The

parallel architecture requires 10 separate ports shown in Figure 20 to assemble the

effective transfer matrix. In addition, boundary conditions were needed to solve for the

effective transfer matrix: at point X continuity of pressure requires P1=P2=P6 and

continuity of volume velocity requires Q1=Q2+Q6, and at point Y continuity of pressure

requires P5=P9=P10 and continuity of volume velocity requires Q10=Q5+Q9. The effective

transfer matrix of the parallel architecture is then:

10 1

10 1

parallel parallel

parallel parallel

A BP P

C DQ Q

    
     

    
, (4.5)

  
 

  
 

  

2

2 2 2 2

2 2

2 1 1 1 1

2

1 1 1 1

2

2 1 1 1 1

2

1 1 1 1

2

2 1 1 1 1

2

1 1

parallel p p p p p p p

p p p p p p p p

p p p p p p p

p p p p p p p p p

p p p p p p p

p p p p p p p p p

p p p

A b c a a c a c d c d d

d d a a a b c a b c b c d

b c a a b a b d b d d

a b c a a a b c a b c b c d

b c a a b a b d b d d

b c d a a a b c a b c b c d

b c a a b a

   

  


  

  


  

  


  

  
 

1 1

2

2 1 1 1 1

2

1 1 1 1

)

p p p p

p p p p p p p p p

p p p p p p p

b d b d d

b c d a a a b c a b c b c d

b c a a b a b d b d d



  


  

, (4.6)

2

2 2 2 2parallel p p p p p p pB d d a b c b c d b c d    , (4.7)

45

  
 

  

2

1 1 1 1

1 2

1 1 1 1

2

1 1 1 1

1 2

1 1 1 1

2

1 1 1

2

()

p p p p p p p p

p

p p p p p p p

p p p p p p p p

p

p p p p p p p

p p p p p p p

p

parall

p

el p

b a a a b c a b c b c d
a a

b c a a b a b d b d d

d a a a b c a b c b c d
b c

b c a a b a b d b d d

b a a a b c a b c b c

c

C c

a a

   
 
   
 
            

 

 
 
 
 

 

 






  

  
 

  
 

1

2

1 1 1 1

2

1 1 1 1

2 2

1 1 1 1

2

1 1 1 1

1 2

1 1 1 1

1

()

p

p p p p p p p

p p p p p p p p

p p p p p p p

p p p p p p p p

p

p p p p p

p

p p

p

p

d

b c a a b a b d b d d

d a a a b c a b c b c d
b

b c a a b a b d b d d

b a a a b c a b c b c d
c a

b c a a b a b d b d d

d

d c

c

  
  
  

  
  
     



  

 

 

 
 





  

  


  









  
 

  
 

  

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1

2 2

1 1 1 1

2

1 1 1 1

2 2

1 1

p p p p p p p p

p p p p p p p

p p p p p p p p

p

p p p p p p p

p

p p p p p p p p

p

p p p p

d a a a b c a b c b c d

b c a a b a b d b d d

b a a a b c a b c b c d
c a

b c a a b a b d b d d

d
d a a a b c a b c b c d

d c
b c a a b a

 
 
 
 
 

   


 
 
    

 

   
 
   
 


 







 





 1 1p p pb d b d d

 
 
 

 
 
 
 
 
 










, (4.8)

  2 2 2 2() parallel p p p p p pD c a b b d d b c d d    . (4.9)

 Next the effective transfer matrix of the series architecture is developed. The

series configuration is shown with its nodes in Figure 21. This leads to an effective

transfer matrix of:

4 1

4 1

series series

series series

P PA B

C DQ Q

    
    
    

, (4.10)

    2 1 1 2 1 1 series p p p pA a a a b c b a c c d    , (4.11)

    2 1 1 2 1 1 series p p p pB a a b b d b b c d d    , (4.12)

46

    2 1 1 2 1 1 series p p p pC c a a b c d a c c d    , (4.13)

    2 1 1 2 1 1 series p p p pD c a b b d d b c d d    . (4.14)

The effective transfer matrices are then compared to determine which

configuration is preferred by maximizing reduction of downstream transmitted energy.

The lowest transmitted energy is desired; the downstream pressure of the parallel

architecture is P10 and the downstream pressure of the series architecture is P4. An

anechoic termination is assumed for both systems. A simplifying assumption of lossless

pipe was made by setting the transfer matrix of the pipe to the identity matrix. The

architectures were compared in a situation where one of the suppressors was assumed to

be lossless, (TL=0 for the entire frequency range), a worst case scenario. The downstream

pressure in the parallel configuration, P10, is then

 10 1P P , (4.15)

indicating that the parallel suppressor architecture has become acoustically transparent

and transmits all acoustic pressure downstream. The downstream pressure, P4, in the

series configuration for the same condition is

 4 2 1 2 1P a P b Q  (4.16)

which is identical to a single suppressor architecture. This extreme case demonstrates that

the downstream pressure of a parallel configuration is shown to be dependent on the

suppressor exhibiting the worse performance, that is the “weak link” dominates the

system. In contrast, the downstream acoustic pressure of a series configuration is

dependent on an addition of suppressor performance, which does not allow for a “weak

link” to dominate the system. Therefore, series configuration of multiple suppressors will

47

be examined in this thesis using the equivalent fluid model presented in Chapter 3 to

predict wave amplitudes. The relationship between wave amplitude and transfer matrix

elements developed in Chapter 2 can be used to calculate the TL for two-suppressors in

series.

4.2 Measured Transmission Loss of a Two-Suppressor System

The measurement technique presented in Chapter 2 was also applied for two

suppressors in line with a separation distance of 10 cm. The measured TL curves are

shown below in Figure 22 and Figure 23. The charge pressure pair exhibiting the highest

TL in Figure 22 occurs when both suppressors have CPRs that exhibited the highest TL

for a single suppressor configuration. In the frequency range from 1000 Hz to

approximately 3500 Hz there are very few data points because TL is very high and the

noise of the system exceeds the signal causing the coherence of these frequencies to

decrease. As stated in Section 2.1.3, data points with coherence value less than 0.9 are

neglected, and the points in this range do not cross this threshold. A reason the data

points have coherence values less than 0.9 is the suppressor configuration is performing

beyond the ability of the current set-up to measure by reducing the transmitted signal to

levels at or below the level of system noise.

In Figure 22 the charge pressure pair of [5.17, 11.4] MPa, CPR of [0.5, 1.1],

shows the effect of a one suppressor having a CPR higher than 1. The TL exhibited by the

charge pressure pair of [5.17, 11.4] MPa drops by approximately 20 dB from a charge

pressure pair of [9.31, 9.31] MPa, CPR of [0.9, 0.9]. The TL exhibited by the charge

pressure pair of [5.17, 11.4] MPa is on the order of a single suppressor with a CPR less

than 1 for the entire frequency range. Similar effects are exhibited by two WM-5138

suppressors, seen in Figure 23. Again, combining charge pressures exhibiting high TL for

48

a single suppressor creates the charge pressure pair with the highest TL. The difference is

best seen in the low frequency range below 500 Hz where there are few numerical

artifacts and little low coherence dropout, similar to the results presented for the WM-

5081 suppressor model. Also similar to the results of a WM-5081, the charge pressure

pair of [5.17, 11.4] MPa for a WM-5138 shows the decrease in TL when a suppressor has

a CPR above 1.

Figure 22: Transmission loss for two WM-5081 Suppressors at 10.3 MPA system pressure with

varying charge pressures

20 dB

49

Figure 23: Transmission loss for two WM-5138 Suppressors at 10.3 MPA system pressure with

varying charge pressures

To demonstrate changing CPR order in a suppressor pair does not affect TL two

sets of data at the same system pressure were measured with charge pressure order

reversed, and the results are seen in Figure 24 and Figure 25. The data for both

suppressors shows negligible difference when the CPRs are reversed, confirming the

predictions of the model. For the remainder of the thesis, any result presented for a given

charge pressure pair [X, Y] MPa will be assumed valid for the charge pressure pair of [Y,

X] MPa.

50

Figure 24: Transmission loss for two WM-5081 Suppressors at 10.3 MPA system pressure changing

CPR order

Figure 25: Transmission loss for two WM-5138 Suppressors at 10.3 MPA system pressure changing

CPR order

51

4.3 Modeled Transmission Loss of a Two-Suppressor System

The model developed in Chapter 3 can be modified to predict transmission loss

for a two suppressor setup. First, the wavefield of the downstream suppressor is

simulated with an assumption of an anechoic termination. The upstream suppressor is

then simulated, but the assumption of an anechoic termination is no longer valid,

however; the upstream waves of the downstream suppressor, waves C and D in Figure

26, can be used to calculate the impedance at the downstream port of the upstream

suppressor ensuring the upstream suppressor has an output matching the input to the

downstream suppressor. Modeling the upstream suppressor with this condition and

renormalizing all waves to A in Figure 26 allows the TL of a two suppressor set up to be

calculated, again with

2 2

1020log
A F

TL
AE BF





. (4.17)

Figure 26: Two suppressor configuration and acoustic waves

The predicted TL for a number of two suppressor simulations can be seen in

Figure 27 and Figure 28, for two WM-5081 suppressors and two WM-5138 suppressors,

respectively. Both Figures show predicted TL increases as the CPR of both suppressors

approach 1 from below. When one suppressor of the charge pressure pair has a CPR

above 1 the TL decreases to a similar magnitude of one suppressor. For a WM-5081

52

suppressor, TL shown in Figure 27, the decrease from a charge pressure pair of [5.17,

9.31] MPa, CPRs of [0.5, 0.9], to a charge pressure pair of [5.17, 11.4] MPa, CPRs of

[0.5, 1.1], is approximately 60 dB at a frequency of 3000 Hz. For each charge pressure

case with both CPRs less than 1 the TL approaches 0 dB at approximately 250 Hz.

Similar effects are exhibited by WM-5138 Suppressors, shown in Figure 28. The

decrease from a charge pressure pair of [5.17, 9.31] MPa, CPRs of [0.5, 0.9], to a charge

pressure pair of [5.17, 11.4] MPa, CPRs of [0.5, 1.1], is approximately 40 dB at 2000 Hz,

showing the importance of suppressors with a CRP less than 1 with respect to

performance. As with two WM-5081 suppressors, two WM-5138 suppressors exhibit a

TL drop-out in frequencies near 250 Hz. Two WM-5138 suppressors exhibit another TL

drop-out near 2750 Hz, this is an effect of suppressor geometry and is seen in the

predicted TL for a single WM-5138 in Figure 15. Note that the predicted TLs probably

exceed the measurement capabilities of the current experimental test set-up.

53

Figure 27: Predicted transmission loss for two WM-5081 Suppressors at 10.3 MPA system pressure

with varying CPR

Figure 28: Predicted transmission loss for two WM-5138 Suppressors at 10.3 MPA system pressure

with varying CPR

60 dB

40 dB

54

Since the model is inherently for linear systems, TL for charge pressures [X,Y] is

the same as for charge pressures [Y,X]. Physically, it means that for a suppressor system,

which suppressor is charged to pressure X and which pressure Y does not matter.

4.4 Comparison between Measured and Modeled Transmission Loss

The predicted TL was compared to measured TL for two suppressor

configurations. The predicted TL and measured TL for two WM-5081 suppressors are

show in Figure 29. Figure 30 shows frequencies from 0 to 500 Hz, and the measured TL

shows extremely good agreement with the model in this frequency range. Above 500 Hz,

numeric artifacts and the data dropout due to the exhibited TL being higher than the limit

of the test rig make comparison difficult. An important feature to note is the low

frequency drop out near 250 Hz; for the predicted TL, the TL decreases close to zero,

while the measured TL shows a decrease at a similar frequency but the TL does not

decrease all the way to zero.

55

Figure 29: Comparison of transmission loss for two WM-5081 Suppressors at a system pressure of

10.3 MPa for a variety of charge pressure pairs. Frequency range: 0 to 4000 Hz

Figure 30: Comparison of transmission loss for two WM-5081 Suppressor at a system pressure of

10.3 MPa for a variety of charge pressure pairs. Frequency range: 0 to 500 Hz

56

The predicted TL and measured TL for two WM-5138 suppressors are shown in

Figure 31. The measured TL exhibited low coherence across the frequency range of

interest likely because the TL was reducing the signal below the threshold of system

noise. For both suppressor models the CPR pair of [0.5, 1.1] loses fewer data points to

deletion by the coherence thresholds, as lower TL is expected so the signal to noise ratio

is higher in the downstream section which keeps coherence high. In addition, the low

frequency range still shows good agreement for charge pressure pairs with CPRs less

than 1. For the charge pressure pair of [5.17, 11.4] MPa, CPR of [0.5, 1.1], there is very

good agreement between the model in the frequency range of 2700 HZ to 3000 Hz where

TL approaches 0 dB. The results presented shows the model can be used to predict TL.

57

Figure 31: Comparison of transmission loss for two WM-5138 Suppressor at a system pressure of

10.3 MPa for a variety of charge pressure pairs

The WM-5081 suppressor model exhibits similar TL behavior as the WM-5138

suppressor model with respect to CPR, for both single and double suppressor

configurations. The rest of the thesis will only consider WM-5138 suppressor

configurations.

58

CHAPTER 5

OPTIMIZATION OF SUPPRESSOR CHARGE PRESSURE

An optimization routine is developed which uses a direct-search method to

determine the optimal charge pressure configuration for bladder-style suppressors in a

hydraulic system through maximization of an objective function. The objective function

for the optimization weights predicted TL for a either a single suppressor or pair of

suppressors in series. The predicted TL for single and double suppressor configurations is

obtained by using an equivalent fluid model developed by Marek [4] as discussed

previously. An optimal condition must target the spectral content of the pressure ripple

and the most used system pressures. In order to accomplish this two weighting factors are

used: a frequency weighting factor (FWF) and a time weighting factor (TWF). The FWF

weights the objective function towards the frequencies of the pressure ripple with the

highest acoustic energy. It is very difficult to predict the exact frequency content of the

pressure ripple as it fluctuates with each system component and pressure, as such the

FWF should be based on measurements on an identical physical system corresponding to

the model of the one being optimized. The TWF weights the system to the most used

operating pressures. Overall system behavior, including suppressor performance, is

dependent on system pressure; for accurate optimizations the TWF needs to represent the

intended usage of the hydraulic system. The development of the objective function is

described below, as well as the individual effects of the FWF and TWF.

5.1 Objective Function

The objective function considered here is applicable to any device exhibiting TL,

as long as correct optimization variables are chosen. For example, a Helmholtz Resonator

59

can be optimized if an applicable model is used with the objective function and correct

optimization variables, such as neck radius, neck length and cavity volume. Bladder-style

suppressors are the focus of this thesis, and finding the optimal charge pressure condition

will be the focus of the optimization. The optimal charge pressure condition is found by

maximizing the objective function

  
 

   ,1 ,2 , , ,

, ,

1 1
, , , ,

N M

c c i i s i c j c k

i j k U f

P P D W f TL f P P P
U  




 F , (5.1)

where the optimal charge pressure is defined by

    
,1 ,2

*

,1 ,2 ,1 ,2
,

, arg max ,
c c

c c c c
P P

P P P P F . (5.2)

In Equation (5.1), TL is the predicted transmission loss for the suppressor from

the model described previously, f is the frequency in Hertz, Ω is the frequency bandwidth

of interest, ps,i is the system or load pressure and pc,j and pc,k are the charge pressures for a

two suppressor configuration. If the optimization is being used for a single suppressor,

then only pc,j is used in Equation (5.1). The system pressure and both charge pressures

belong to the set U; the pressure range of interest. The pressure range is dependent on the

anticipated system pressures, as the charge pressure will range from the lowest usable

charge pressure to the highest system pressure used as suppressors with a CPR higher

than 1 exhibit relatively poor TL, and any suppressor charged higher than the highest

system pressure will always operate in an overcharged condition. Weighting factors W

and D, described in further detail in Sections 5.1.1 and 5.1.2, respectively, capture the

spectral content of the pressure ripple and time-dependent aspect of the system pressure.

Both weighting factors are normalized: the FWF, represented by W, has a maximum

value of 1 while each TWF, represented by D, has a total value of 1.

60

The spectral content of a given pressure ripple will depend upon how the flow is

generated and how the flow ripple couples with elements in the system to produce a

pressure ripple. For example, the pressure ripple due to positive displacement pumps will

be comprised of frequency components dominated by the pumping element’s

fundamental frequency and its harmonics; the magnitude of the pressure ripple and its

spectral content may depend on the load pressure. It is desirable to ensure exhibited TL

targets the dominant spectral components to reduce maximum possible energy. This is

accomplished through the use of a frequency weighting factor (FWF), W, in the objective

function, defined as

,

,

(
()

max (

d i

i

d i
i

P f
W f

P f






, (5.3)

where |Pd,i(f)| is the magnitude of the dynamic pressure ripple at the i
th

 system pressure as

each system pressure may have a unique pressure ripple. W is normalized to the highest

pressure ripple frequency component of all system pressures being considered. |Pd,i(f)|

can be measured in-situ on the fluid borne noise of a physical system or modeled; for this

work the FWF was measured to ensure correspondence to the system being optimized.

A fluid power system may spend different amounts of time at different load

pressures depending on its usage cycle. The TL of a suppressor is dependent on the CPR,

so a suppressor charged to a given pressure will exhibit different TL for changes in

system pressure. To account for the time dependency of the system and weight the

objective function to the most used system pressures, a time weighting factor D is

incorporated into the objective function. D is defined by

 i
i

total

t
D

t
 , (5.4)

61

where it is the amount of time the system spends at the i
th

 system pressure, and ttotal is the

total time in a complete duty cycle, therefore summing all Di in a duty cycle is equal to

one, ΣDi=1.

TL exhibited by a suppressor is dependent on several factors: the system pressure,

ps, suppressor geometry, and the charge pressures pc,j
and pc,k. The system pressure is

dictated by the system’s usage, and cannot be changed by the objective function. The

suppressor geometry is also fixed for a given optimization and cannot be adjusted during

operation. The only independent variables are the charge pressures, and the objective

function searches through all charge pressure in the set U to determine which gives the

maximum value of the objective function.

The remainder of the chapter examines the individual components of the objective

function, TL, FWF and TWF, and their impact on the optimal results. Chapter 2 and

Chapter 3 show the results of measured and predicted TL. A FWF for four system

pressures measured on a test rig constructed at Eaton is shown in Figure 32. The Eaton

test rig is identical to the Georgia Tech test rig, except for the valve creating noise and the

Eaton valve better represents the noise source seen in the field. Four TWFs are also

presented: two are representative of anticipated field usages, a third represents a system

operating mostly at a single system pressure and a fourth represents a mixed duty cycle of

the two anticipated usages.

62

Figure 32: Frequency weighting factor (FWF) for system pressures of: a) 3.45 MPa, b) 6.90 MPa c)

13.8 MPa d) 20.7 MPa. 0-4000 Hz frequency range

5.1.1 Frequency Weighting Factor

The objective function is frequency-weighted using the FWF, Equation (5.3), to

account for variation in energy density over the frequency band of interest. The spectral

content of the pressure ripple in a given hydraulic system is due to a variety of factors,

including the choice of pump, valves, flow path diameter changes, and line lengths in the

system. To weight different pressure ripples consistently, the ripples are measured at

a)

b)

c)

d)

Maximum at 240 Hz

63

same position, and the frequency content of the pressure ripple assumed incident on the

suppressor is normalized to the maximum pressure ripple amplitude at all load pressures

under consideration. This yields a maximum FWF of 1 at the frequency of maximum

pressure ripple among all ripples at each load pressure. The FWF at all other frequencies

and load pressures will have a value between 0 and 1, depending upon the spectral

content of the pressure ripple. Using the FWF ensures frequencies with little acoustic

energy are ignored while frequencies with high energy will contribute significantly to the

objective function value. In order to get an accurate FWF for a given system, a

measurement of pressure ripple should be taken in-situ during anticipated usage at a

series of system pressures to capture a representative sampling of the system components.

An example set of FWFs for four load pressures, shown in Figure 32, was

generated from data measured on a test rig at Eaton Hydraulics. Eaton employed a

different noise source upstream of the test section than Georgia Tech, which is more

representative of noise sources seen in the field, thus these FWFs will be used with the

optimization. With the exception of the 240 Hz component at the 13.8 MPa load pressure,

Figure 32c, generally, higher system pressures have a higher magnitude of FWF

reflecting increased magnitude of pressure ripple with increasing load pressure. The mean

value of the FWF taken over all frequencies for each pressure can be seen in Table 4, and

the higher system pressures have a higher FWF, indicating more energy in those system

pressures. For the lowest three system pressures the mean FWF value increases

proportionally to the system pressure, plateauing between 13.8 MPa and 20.7 MPa.

64

Table 4: Mean frequency weighting values of data taken on Eaton test rig

5.1.2 Time Weighting Factor

The objective function is weighted to the most-used load pressures using the

TWF, Eq. (5.4). In practice, hydraulic system duty cycles typically encompass a broad

range of load pressures, often idling near 0.690 MPa and reaching pressures up to 35

MPa, with unequal time spent at each load pressure. As noted earlier, the load pressure

affects both TL, by changing CPR, and the FWF, as seen in Section 5.1.1, and the amount

of time the system spends at each pressure needs to be accounted for in the objective

function. The TWF is a time fraction of each load pressure relative to some user-defined

complete work cycle. Longer usage at a given load pressure will bias the objective

function towards those load pressures.

Example TWFs are shown in Figure 33 to Figure 38; two TWFs are

representative of system in the field and one is an arbitrary usage of a system

predominantly operating at a single pressure. The TWF in Figure 33 represents pressure

in the hydraulic circuit for an excavator’s boom and Figure 34 represents boom pressure

of an excavator performing back-filling. Both of these TWFs are based on field-measured

data provided by Eaton Hydraulics. The example TWFs represent more system pressures

than are represented in the FWF, presented in Section 5.1.1. In order to represent the

same number of system pressures in the TWF as individual system pressures represented

in the FWF, the system pressures are combined together using the bins shown in Figure

33 and Figure 34. The pressure ranges are based on proximity to a pressure represented in

System Pressure (MPa) Mean FWF value

3.45 0.000367

6.90 0.000745

13.8 0.00144

20.7 0.00146

65

the FWF. The lower system pressures are grouped into bin 1, and these pressures are

assumed to have no significant pressure ripple and are neglected. The TWF is

renormalized using only non-zero system pressure ranges, as seen in Figure 35 and

Figure 36. An arbitrary TWF, TWF Case 3, for a system working heavily in the 13.8 MPa

range is shown in Figure 37. TWF Case 4, shown in Figure 38, represents a system

working equally between TWF Case 1 and TWF Case 2.

Figure 33: TWF Case 1: boom pressure, trenching run

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

66

Figure 34: TWF Case 2: boom pressure, back filling

Figure 35: TWF Case 1: boom pressure, trenching run. Aggregated pressures derived from bins

shown in Figure 33

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

67

Figure 36: TWF Case 2: boom pressure, back filling. Aggregated pressures derived from bins shown

in Figure 34

Figure 37: TWF Case 3: arbitrary usage of a system operating heavily at 13.8 MPa

68

A hydraulic system may be used with different duty cycles during a work period.

The work period is defined by the length of time between recharging the suppressors to

an optimal condition. For the above TWFs the work period is one duty cycle. In practice

it may not be feasible to recharge the suppressors after each duty cycle and a work period

may last several duty cycles altering the optimal condition. To account for this, the TWF

can be adjusted to represent more than one duty cycle, but instead represent the total

anticipated usage for the work period. An arbitrary TWF for a work period of equal time

spent trenching and back filling is presented in Figure 38.

Figure 38: TWF Case 4: arbitrary work period usage derived from a system operating in a duty cycle

of 50% back filling and 50% trenching

5.2 Example Optimizations

The objective function was calculated using the FWF and TWFs from Section

5.1.1 and 5.1.2, respectively. The FWF, found in Section 5.1.1, was selected because it is

representative of a noise source seen in practice. TWF Cases 1 and 2, seen in Figure 35

69

and Figure 36, were selected because they are representative of anticipated system

pressures based on measurements taken from an existing system. The results from these

two TWF cases will be representative of anticipated optimal charge pressure

configurations. TWF Case 3, seen in Figure 37, was selected because it represents a

system operating at a single system pressure, producing a different optimal configuration

and allowing for effects of the FWF to be assessed. TWF Case 4, seen in Figure 38, is a

combination of TWF Cases 1 and 2, and it was selected to represent a mixed system

usage, as changing the charge pressure between every system task may be infeasible. In

Section 2.2, a potential maximum achievable TL was observed, as suppressors only

control FBN, and the suppressors do not treat the other noise transmission paths. TWF

Case 1 is analyzed with a hypothetical TL ceiling of 30 dB, as discussed in Section 3.3.

The optimizations presented below are normalized to their own maximum value.

The optimal point is defined with a normalized objective function value of 1; however

other charge pressure configurations may have a normalized objective function value of

over 0.95, judged to be insignificant difference and valid choice for use in practice. All

local optima with a normalized objective function value above 0.95 are said to be in the

selected set, O.

For a system operating over a broad pressure range, there is a strong possibility

that the selected set includes more than one charge pressure configuration. In order to

select a charge pressure configuration from the selected set, factors not directly captured

in the objective function are analyzed, which include gradient of the objective function

and ABN. During use, the mass of nitrogen contained in the bladder will decrease

because of imperfect sealing of the bladder and diffusion through the bladder. The rate at

70

which nitrogen escapes is not known, but assumed to be similar for all suppressors

regardless of CPR. The loss of nitrogen lowers the charge pressure of the bladder,

decreasing a suppressor’s effectiveness. The decrease in nitrogen, and the associated

decrease in suppressor performance, allows the charge pressure configurations in the

selected set to be compared. The gradient of the objective function for all charge

pressures in the selected set is calculated

 ,1 ,2,c cP P O

F , (5.5)

where F is the objective function, pc,1 and pc,2 are the charge pressure configurations in

the selected set, O, and the lowest gradient magnitude is most desirable. The charge

pressure configuration with the smallest gradient magnitude will be selected as its

performance suffers the least with decreasing nitrogen pressure. If the first factor is not

large enough to differentiate between the configurations in O, a second factor of which

charge pressure configuration produces less ABN in practice will be considered. The

breakout noise is different for each system and should be measured in-situ for the

configurations in the selected set, O.

For a system with a single suppressor operating at a given system pressure, there

is a unique charge pressure which produces the highest TL over the entire frequency

range of interest. This charge pressure is the optimal charge pressure for the system

usage, and will be labeled as the single pressure optimum. A two suppressor system

operating at the same system pressure as a single suppressor has the optimal condition of

both suppressors charged to the single pressure optimum. For a system with a single

suppressor operating over a range of system pressures, the selected set will be shown to

be comprised of the single pressure optima of the system pressures represented in the

71

TWF. For a system with two suppressors operating over a range of system pressure, the

selected set will be shown to be comprised of charge pressure pairs made up of single

pressure optima of system represented in the TWF; however, the optimal pairing may be

comprised of dissimilar single pressure optima.

All optimizations are found using the procedure shown in Figure 39. First the TL

is calculated for all charge pressure and system pressure cases by TL_calc.m, found in

Appendix A. Next, the TL is weighted by the appropriate FWF and TWF by

WeightingOpt.m, found in Appendix B. A direct-search method finds the normalized

objective function values above 0.95 and places these values into the selected set. The

values in the optimal are compared with the factors not directly captured by the objective

function are used to select the optimal charge pressure configuration.

Figure 39: Optimization procedure

72

5.2.1 TWF Case 1: Trenching Run

The objective function was calculated using TL exhibited by a single WM-5138

suppressor, TWF Case 1, seen in Figure 35, and the FWF seen in Figure 32. The

normalized objective function values are presented in Figure 40. The highest value of the

objective function occurs at a charge pressure of 13.1 MPa. There are three more local

optima at charge pressures of 6.21 MPa, 2.76 MPa and 20.0 MPa, with normalized

objective function values of 0.98, 0.76 and 0.05, respectively. All the local optimal

pressures are in the set of single pressure optima. The local optimum at 6.21 MPa has a

normalized objective function value over 0.95, placing it in the selected set, O. The

normalized objective function values at 2.76 MPa and 20.0 MPa charge pressures do not

cross the threshold for the selected set. The effect of suppressors with a CPR above 1 can

be seen in Figure 40, in the region outlined in a box. The charge pressures in this region,

13.7 MPa to 20.7 MPa, have a CPR above 1 for all system pressures other than 20.7 MPa,

and assumed to perform as an expansion chamber. The high CPR significantly lowers the

TL of the suppressor and decreases the normalized objective function value to less than

0.03 for the range in the box.

73

Figure 40: Objective function values: TWF Case 1, one WM-5138 Suppressor. Circles indicate local

optima at charge pressures of 2.76, 6.27, 13.1 and 20.0 MPa, respectively. Box indicates low

performance region

The selected set for this optimization is comprised of a charge pressure of 6.27

MPa and a charge pressure of 13.1 MPa, one of which will be selected for use. When the

factors not directly captured by the objective function are considered, a charge pressure

of 13.1 MPa has a smaller gradient than a charge pressure of 6.21 MPa, making 13.1 MPa

the selected charge pressure for a single suppressor in a system operating in TWF Case 1.

A system operating in TWF Case 1 spends over 50% of its duty cycle at a system

pressure of 13.8 MPa, and the select charge pressure, 13.1 MPa, is the single pressure

optimum for that system pressure. The system spends approximately a quarter of its duty

cycle at system pressures of 3.45 MPa and 6.90 MPa, respectively. However, the single

pressure optima associated with this system pressure do not have similar objective

Low

performance

region

74

function values. While the single pressure optima of 3.45 MPa will never have a CPR of

over 1, its CPR with a system pressure of 13.8 MPa is 0.22, a CPR which exhibit low TL

and low objective function value. The single pressure optima of 6.90 MPA has a CPR of

0.45, meaning this pressure performs better at a system pressure 13.8 MPa, where the

system spends over half its time.

The sharp drop offs in normalized objective function value with increasing charge

pressure evident in Figure 40 occur at charge pressures matching system pressures in the

TWF. The effect is explained by analyzing a charge pressure of 6.90 MPa. This charge

pressure has a CPR of 1 for a system pressure of 6.90 MPa and 0.5 for a system pressure

of 13.8 MPa. Charge pressures slightly higher than 6.90 MPa also have a CPR of over 1

for a system pressure of 6.90 MPa, and exhibit poor performance because of the

assumption they behave as expansion chambers. However, their CPRs are higher for a

system pressure of 13.8 MPa, while being less than 1, and their TL improves as well as

their objective function values. For charge pressures slightly lower than 6.90 MPa the

CPR for system pressures of 6.90 and 13.8 MPa are less than 1, meaning the suppressor

does not perform as an expansion chamber for either system pressure, which means this

charge pressure range exhibit the highest overall TL for both system pressures discussed.

The objective function was calculated using TL exhibited by two WM-5138

suppressors, TWF Case 1, seen in Figure 35, and the FWF seen in Figure 32. The

normalized objective function values are shown in Figure 41. The values of the objective

function are symmetric about charge pressure 1 equal to charge pressure 2 because TL is

not dependent on charge pressure order. For a single system pressure the optimal charge

pressure condition would be charging both suppressors to the single pressure optimum for

75

this system pressure. The downside to a configuration with two identically charged

suppressors is for lower system pressures the suppressors are both overcharged. A setup

of dissimilar charge pressures will not exhibit as high of TL for larger system pressures

but reduces the chance of both suppressors having a CPR higher than 1. The optimal

point has a charge pressure pair of [2.76, 13.1] MPa, both single pressure optima for the

system pressures of 3.45 MPa and 13.8 MPa, respectively. In the analysis of a single

suppressor for the same TWF Case, seen above, it was shown that a charge pressure of

6.90 MPa has a higher objective function value than a charge pressure of 2.76 MPa.

Charge pressure pairs of [2.76, 13.1] MPa and [6.21, 13.1] MPa generate similar TL

curves for a system pressure of 13.8 MPa but there is a drastic difference for a system

pressure of 3.45 MPa, as seen in Figure 42. The difference in TL is the cause of the

difference in objective function value. The box in Figure 41 shows the region where the

charge pressures of both suppressors are above 13.8 MPa, and the charge pressure pair

exhibits extremely low objective function values. The system spends very little time at a

system pressure of 20.7 MPa which is the only system pressure where the suppressor

pairings with these charge pressures would have a CPR less than one.

76

Figure 41: Objective function values: TWF Case 1, two WM-5138 Suppressors. Circles indicate local

optima at charge pressure pairs of [2.76, 13.1] MPa, [2.76, 6.21] MPa and [13.1, 13.1] MPa,

respectively. Box indicates low performance area.

77

Figure 42: TL Peformance for fwo WM-5138 Suppressors with charge pressures matching optimal

states in Figure 41

Other local optima in Figure 41 are found with charge pressure pairs of: [13.1,

13.1] MPa with a normalized objective function value of 0.92, [6.21, 13.1] MPa with a

normalized objective function value of 0.917 and a charge pressure pair of [2.76, 6.21]

MPa with a normalized objective function value of 0.903. None of these values cross the

threshold of 0.95 to be considered in the selected set.

5.2.2 TWF Case 2: Back Filling

The objective function was calculated using TL exhibited by a single WM-5138

suppressor, TWF Case 2, seen in Figure 36, and the FWF seen in Figure 32. The

normalized objective function values are presented in Figure 43. The system being

optimized spends more time in the lower pressures than the system for TWF Case 1. With

the TWF shifted to lower pressure so does the optimal charge pressure; a charge pressure

of 6.21 MPa for this TWF Case. This charge pressure is the single pressure optimum for

78

6.90 MPa, which is the second largest system pressure value in the second TWF case.

Charge pressures of 2.76 MPa and 6.27 MPa define the selected set for this TWF case,

and are both in the set of single pressure optima. This result shows the single pressure

optimum for the largest system pressure value in the TWF is not always the optimal

charge pressure. The next highest local optimum is at a charge pressure of 2.76 MPa,

with objective function value of 0.997. The factors not captured by the objective function

were analyzed and the magnitude of the gradient near a charge pressure of 6.21 MPa is

smaller than the gradient near a charge pressure of 2.76 MPa, therefore the charge

pressure of 6.21 MPa would be selected for use in practice.

Figure 43: Objective function values: TWF Case 2, one WM-5138 Suppressor. Circles indicate local

optima charge pressures of 2.76 and 6.27MPa, respectively

The objective function was calculated using TL exhibited two WM-5138

suppressors, TWF Case 2, seen in Figure 36, and the FWF seen in Figure 32. The

79

normalized objective function values are shown in Figure 44. The optimal charge

condition is at a charge pressure pairing of [2.76, 6.21] MPa. For this TWF Case, shown

in Figure 36, the system spends the most time at a system pressure of 3.45 MPa followed

by a system pressure of 6.90 MPa, the single pressure optimum of these system pressures

are the charge pressures found in the optimal charge pressure pair. In addition, a charge

pressure pair of [2.76, 13.1] MPa has an objective function value of 0.994, placing it in

the selected set. The factors not captured by the objective function were used to

determine which charge pressure pair to use. For TWF Case 2, a charge pressure pair of

[2.76, 13.1] MPa will be selected. The box on Figure 44 indicates an area of relatively

low objective function value. The low objective function values are cause by the charge

pressure pairs in this region have a CPR less than one for a system pressure of 13.7 MPa

and 20.9 MPa, where this system spends 25% of its duty cycle. This emphasizes the need

for properly charged suppressors.

80

Figure 44: Objective function values: TWF Case 2, two WM-5138 Suppressors. Circles indicate local

optima at charge pressure pairs of [2.76, 13.1] MPa and [2.76, 6.21] MPa, respectively

Despite the system spending 75% of its TWF at pressures where a charge pressure

pair of [2.76, 13.1] MPa exhibits TL on the order of a single suppressor, since one of the

suppressors has a CPR greater than 1, the charge pressure pair has an overall normalized

objective function value of 0.99. The reason for the charge pressure pair exhibiting low

TL yet having a high normalized objective function value is found from analysis of the

FWF. The difference in TL for charge pressure pairs in the selected set at both system

pressures under consideration, 6.90 and 13.8 MPa, was weighted by their respective

FWF. The results of the frequency weighting are shown in Figure 45, where positive

values mean a charge pressure pair of [2.67, 13.1] MPa performs better and negative

values mean a charge pressure pair of [2.67, 6.21] MPa performs better. In the frequency

range of 160 Hz to 210 Hz the charge pressure pair of [2.76, 13.1] MPa outperforms the

81

charge pressure pair of [2.76, 6.27] MPa at both system pressures. The frequency

weighted TL was also averaged; for a system pressure of 13.8 MPa the mean frequency

weighted TL is 0.0052, this means the charge pressure pair of [2.76, 13.1] MPa preforms

better at this system pressure. For a system pressure of 6.90 MPa the mean frequency

weighted TL is -0.0041, meaning the charge pressure pair of [2.76, 6.21] MPa performs

better at this system pressure. Comparing the magnitudes of frequency weighted TL, the

charge pressure pair of [2.76, 13.1] MPa outperforms the charge pressure pair of [2.76,

6.27] MPa for system pressures of 6.90 and 13.8 MPa before being time weighted. After

time weighting and normalization, the normalized objective functions values are found to

be 1 for a charge pressure pair of [2.67, 6.21] MPa, and 0.99 for a charge pressure pair of

[2.67, 13.1] MPa.

Figure 45: Difference in frequency weighted TL for charge pressure pairs of [2.76, 6.21] MPa and

[2.76, 13.1] MPa at listed system pressures

82

5.2.3 TWF Case 3: Arbitrary Usage

The objective function was calculated using TL exhibited by a single WM-5138

suppressor, TWF Case 3, seen in Figure 37, and the FWF seen in Figure 32. The

normalized objective function values are shown in Figure 46. The optimal value is at a

charge pressure of 13.1 MPa, and no other charge pressures are in the selected set. The

predominant system pressure of TWF Case 3 is 13.7 MPa, which has a single pressure

optimum of a charge pressure of 13.1 MPa, which is the only point in the selected set and

selected for use with this TWF.

Figure 46: Objective function values: TWF Case 3; one WM-5138 Suppressor. Circle indicates a

local optimum at a charge pressure of 13.1 MPa

The objective function was calculated using TL exhibited by two WM-5138

suppressors, TWF Case 3, seen in Figure 37, and the FWF seen in Figure 32. The

normalized values of the objective function are seen in Figure 47. The optimal charge

83

pressure pair is [13.1, 13.1] MPa, where 13.1 MPa is the single pressure optimum for

13.8 MPa system pressure. The optimal charge pressure configuration of a two-

suppressor system operating with predominately one system pressure is a pairing of

single pressure optima. An effect of the FWF is seen in the region outlined in Figure 47.

For a system operating at a given pressure it is seen that increasing CPR improves TL,

until the CPR becomes larger than one. Generally the highest TL is desirable for the

optimal condition. However, in the box on Figure 47, charge pressure pairs exhibiting

lower TL have higher normalized objective function values. For example; a charge

pressure pair of [4.14, 13.1] MPa exhibits higher TL than a charge pressure pair of [0.69,

13.1] MPa; however, a charge pressure pair of [0.69, 13.1] MPa has a higher objective

function value than a charge pressure pair of [4.14, 13.1] MPa. A comparison of the two

TL curves to the FWF, shown in Figure 48, for a system pressure of 13.7 MPa explains

this behavior. The TL curve for a charge pressure pair of [4.14, 13.1] MPa has low TL at

the highest values of the FWF, in the region of 240 Hz outlined in the box, while a charge

pressure pair of [1.38, 13.1] MPa has a TL near 20 dB for the same frequencies, and this

range is outlined in black. Above 300 Hz, the TL for the charge pressure pair of [4.14,

13.1] MPa is higher than the charge pressure pair of [0.69, 13.1] MPa, however the

values of FWF are below 0.001 in this range. The charge pressure pair of [0.69, 13.1]

MPa has a higher objective function value than a charge pressure pair of [4.14, 13.1] MPa

because of the weighting of the FWF. Also shown in Figure 48 is the TL curve of a

charge pressure pair of [13.1, 13.1] MPa, the optimal charge pressure. The TL exhibited

by a charge pressure pair of [13.1, 13.1] MPa approaches 0 dB at a frequency of 200 Hz;

however, the TL increases to a similar value of a charge pressure pair of [0.69, 13.1] MPa

84

at 240 Hz, and exceeds it above 240 Hz leading to a higher normalized objective function

value and selection as the optimal charge pressure configuration.

Figure 47: Objective function values; TWF Case 3, two WM-5138 Suppressors. Circle indicates a

local optimum at a charge pressure pair of [13.1, 13.1] MPa. Box indicates region of low overall TL

and high normalized objective function value.

85

Figure 48: Transmission loss curves for two charge pressure pairs and FWF at 13.7 MPA. Box

indicates region of high FWF value

5.2.4 TWF Case 4: Mixed Usage

The objective function was calculated using TL exhibited by a single WM-5138

suppressor, TWF Case 4, seen in Figure 38, and the FWF seen in Figure 32. The

normalized objective function values are presented in Figure 49. TWF Cases 1 and 2

have been combined to form TWF Case 4, and it follows the objective function values for

this TWF case should have similarity to the objective function values of TWF Cases 1

and 2. The selected set for TWF Case 1 is 6.21 MPa and 13.1 MPa, and the selected set

for TWF Case 2 is 2.76 MPa and 6.21 MPa. The overlapping point of the selected set,

6.21 MPa, becomes the global optimum for this TWF case. The other points from the

selected sets of TWF Case 1 and TWF Case 2 fall below the selected set threshold of

0.95.

86

Figure 49: Objective function values: TWF Case 4; one WM--5138 Suppressor. Circles indicate local

optima at charge pressures of 2.76, 6.21 and 13.1 MPa, respectively.

The objective function was calculated using TL exhibited by a single WM-5138

suppressor, TWF Case 4, seen in Figure 38, and the FWF seen in Figure 32. The

normalized objective function values are presented in Figure 50. The optimal charge

pressure pair is [2.76, 13.1] MPa. This follows from the objective function values of

TWF Case 1, seen in Figure 41, and objective function values of TWF Case 2, seen in

Figure 44, as a charge pressure pair of [2.76, 13.1] MPa has a value of 1 and 0.99 for

TWF Cases 1 and 2, respectively. A local optimum with an objective function value of

0.95 occurs at a charge pressure pair of [2.76, 6.21] MPa. This charge pressure pair is

also found to be in the selected set of TWF Case 2 and has a normalized objective

function value above 0.9 for TWF Case 1. The factors not directly captured by the

objective function must be considered to differentiate between the local optima in the

87

selected set. The gradient in the region near the charge pressure pair of [2.76, 13.1] MPa

is smaller than the gradient in the region near the charge pressure pair of [2.76, 13.1]

MPa, thus the charge pressure pair of [2.76, 13.1] MPa would be selected for use with

this TWF.

Figure 50: Objective function values; TWF Case 4, two WM-5138 Suppressors. Circles indicate local

optima at charge pressure pairs of [2.76, 13.1] MPa and [2.76, 6.21] MPa, respectively.

5.2.5 Results with a 30 dB Constraint on Transmission Loss

As seen in Section 3.3, there may be an upper limit to TL in a given system. A

maximum TL ceiling of 30 dB was applied to the results from TWF Case 1 even if the

model predicted TL greater than 30 dB. The objective function values for TWF Case 1,

seen in Figure 35, with a single suppressor are calculated with this constraint and the

normalized values are shown in Figure 51. The objective function has a selected set

comprising of 6.27 MPa and 13.1 MPa, the same selected set as the unconstrained TL

88

case, also presented in Figure 51. The factors not captured by the objective function are

used to select the optimal condition from the selected set. For the capped TL case of a

system operating at TWF Case 1, the objective function for a charge pressure of 13.1

MPa has a smaller gradient than that of a charge pressure of 6.21 MPa. The charge

pressure of 13.1 MPa would be selected for use in the system, the same pressure selected

for TWF Case 1 with unconstrained TL. Since the difference between the objective

function values for unconstrained TL and constrained TL is difficult to determine in

Figure 51, the difference between the objective function values are shown in Figure 52.

The largest difference occurs at a charge pressure of 13.1 MPa, the optimal condition.

The difference of the two magnitudes is 0.0065, considered to be insignificant, indicating

that imposing a maximum TL constraint of 30 dB will not affect single suppressor

optimization.

Figure 51: Objective function values: TWF Case 1, one WM-5138 Suppressor, unconstrained TL and

constrained TL. Circles represent Charge Pressures of 13.1 and 6.27 MPa, respectively.

89

Figure 52: Difference in objective function values for constrained and unconstrained TL. Circle

indicates charge pressure of 13.1 MPa

A maximum TL constraint of 30 dB was also applied to the two suppressor case,

and the objective function was recalculated, with the resulting values shown in Figure 53.

The optimal value occurs at a charge pressure pair of [2.76, 13.1] MPa, the same as the

uncapped TL case. Similarly, the optimal charge pressure pair is the only charge pressure

pair in the selected set. The objective function values of the constrained TL case were

normalized to the maximum of the unconstrained TL case; and the difference between the

cases is shown in Figure 54. The difference at the selected optimal charge pressure pair is

0.048. The difference is significant, but the optimal point does not shift to a different

charge pressure pair. This indicates that the optimization method developed is not

strongly affected by a maximum achievable TL. The maximum difference of normalized

objective function value occurs, of 0.10, at a charge pressure pair of [13.1, 13.1] MPa, a

90

charge pressure pair exhibiting large TL for system pressures of 13.8 MPa and above.

However, this charge pressure pair is not in the selected set for either the TL cases. The

differences are relative to the TL produced, as a charge pressure pairs with high TL are

affected more, and the difference is not strongly dependent on TWF. Charge pressure

configurations of both single pressure optimum, charge pressure pairs of [2.76, 2.76]

MPa, [6.21, 6.21] MPa and [13.1, 13.1] MPa, exhibit the largest TL and the differences

between constrained and unconstrained TL have local maxima at these points. In addition,

the difference is larger for a two suppressor configuration than a single suppressor

configuration because of a large difference between constrained and unconstrained TL.

Figure 53: Objective function values: TWF Case 1; two WM-5138 Suppressors, constrained TL.

Circles indicate local optima at charge pressure pairs of [2.76, 13.1] MPa, [2.76, 6.21] MPa and [13.1,

13.1] MPa respectively

91

Figure 54: Difference in objective function values by imposed 30 dB TL constraint on TWF Case 1,

two WM-5138 Suppressors

92

CHAPTER 6

CONCLUSIONS

A method for optimizing the charge pressure for either one or two suppressors

operating in a system with a variety of pressures has been developed. The transmission

loss (TL) behavior of the suppressors is predicted by an equivalent fluid model. Both

experiment and modeling show the TL of the suppressors is dependent on the charge

pressure ratio (CPR) and varies over frequency. The variance of TL across system

pressure and frequency is accounted for in an objective function through use of a time

weighting factor (TWF) and a frequency weighting factor (FWF). The TWF considers the

time spent at each system pressure, while the FWF considers the frequency spectrum of

the noise. For this work the TWFs are anticipated usages, while the FWFs are the results

of experiment.

The selected set for all optimizations are made up of single pressure optima. The

single pressure optimum is the optimum charge pressure for a single system pressure, and

this point has been found to be close to a CPR of 0.9. For single suppressor

optimizations, the optimal point is often the single pressure optimum for the largest value

in the TWF; however, exceptions do occur for some TWF cases. This effect weights the

objective function towards lower charge pressures.

For two suppressor optimizations both charge pressures are single pressure

optimal, though rarely the same charge pressure. The optimal charge pressures are

dependent on the TWF, however the selected charge pressures are not always the single

pressure optimum for the system pressures corresponding to the highest two values of the

TWF.

93

The spectral content of the noise weights the objective function through the FWF.

Generally, the largest amount of noise occurs in the low frequency range. The spectral

content of the noise shifts frequencies system as pressures rise. In addition, the mean

value of the FWF rises with system pressure, meaning higher system pressures produce

more noise. The optimal condition is not greatly affected by the FWF, however, a charge

pressure configuration with low TL at the frequencies with high FWF values has a low

objective function value.

Each system pressure causes the system to behave differently, both through its

effect on CPR and effect on FWF. During use the suppressor has a fixed charge pressure,

and varying the system pressure effects TL by changing CPR. The TWF weights the

objective function towards highly used system pressures to account for these effects. The

effect of the TWF is such that changing the TWF significantly change the optimal charge

pressure configuration.

For some optimizations, there are multiple charge pressure configurations with

objective function values in the selected set. In such cases, factors not directly captured

by the objective function must be considered to determine the optimal charge pressure

configuration. The first deciding factor considered is the gradient of the objective

function in the neighborhood of the optimal point. A lower gradient magnitude means a

given optimal point performs better as the charge pressure decreases during use. Another

factor used for consideration is the air-borne noise measured in-situ for a given system.

Bladder-style suppressors only suppress fluid borne noise for the fluid within the

device, but acoustic energy may take an alternative path, such as along the shell, to

downstream of the device and in consequence some systems may exhibit a maximum

94

achievable TL. The objective function was applied to a simulation exhibiting a

hypothetical constrained maximum TL. The single suppressor optimization is effected

less than the double suppressor optimization, as less TL is expected from a single

suppressor than two suppressors. The objective function still predicts similar optimal

points for a system with a constrained maximum TL as a system without a constrained

maximum TL, such that the optimization results hold even if a system exhibits a TL

ceiling.

6.1 Future Work

Further development of this work should include improvement in model

characterization of the suppressors, with a focus on suppressors having a CPR larger than

1, improving the measurement technique and expanding the pressure resolution of the

FWF. An update to the model should better predict the TL nulls, especially at low

frequencies for two suppressor cases, especially relevant due to the predicted nulls’

effects on objective function value. For this work, suppressors with a CPR larger than 1

are assumed to exhibit TL behavior similar to that of an expansion chamber. A better

model of suppressors for this case would better inform the optimal conditions. The

experimentally measured TL shows a significant amount of artifacts. Improvement needs

to be made to the measurement technique to remove the artifacts in order to further

inform suppressor behavior. In suppressor configurations with high predicted TL, transfer

function coherence decreases below the necessary threshold for measurement. A method

for ensuring high transfer function coherence in these cases will allow the behavior of

suppressor configuration exhibiting high TL, specifically two suppressor configurations,

to be further investigated. Improving the data acquisition will also better inform the

model, enabling more accurate results. A FWF with higher frequency resolution would

95

increase the set of single pressure optima and better reflect hydraulic systems, which

work over a continuous pressure range not discrete pressures.

For two suppressor configurations, the suppressors were both assumed to be the

same size. Non-identical suppressors may improve performance as suppressor geometry

affects the shape of the TL curve allowing specific frequencies to be targeted. Future

work should analyze the effect of using two dissimilarly sized suppressors. Using

dissimilar suppressors may allow the shape of the TL curve, particularly the low

frequency TL decrease, to better match the shape of the FWF.

Additional future work could be conducted by using the objective function to

inform an optimal design of a single suppressor operating with a given FWF and a set of

given TWF. In order to find an accurate optimal suppressor design, a model for

predicting the FWF of a given pump operating within a system will need to be developed.

96

APPENDIX A

MATLAB FUNCTION FOR CALCULATION OF TRANSMISSION

LOSS

function

TL_calc5(supNum,freq,PcVec,PsVec,fileName,r_0,r_a0,r_b,zlen,L,unitset)

%Function: TL_calc4.m
%Version: 4
%Revision: Corrects predicted transmission loss for the case when one
%suppressor is overcharged and one suppressor is undercharged
%Revision: Correction of suppressor terminology
%Revision: Allows user to omit individual dimensions and use default

values
%as well as simulate either a single suppressor set up or a double
%suppressor set up.
% supNum - The number of suppressors in the system
% freq - frequencies of interest
%Inputs:
 [Hz] (vector 1 x V)
% PcVec - Series of monotonically increasing charge pressures

[psi]
% or [Pa] (vector 1 x W)
% PsVev - Series of monotonically increasing static pressures

[psi]
% or [Pa] (vector 1 x X)
% fileName - title of saved mat file (string)
%Optional Inputs:
% r_0 - inner radius of inlet pipe [in] or [m]
% r_a0 - outer radius of suppressor annulus [in] or [m]
% r_b - inner radius of suppressor shell [in] or [m]
% zlen - inner length of suppressor [in] or [m]
% L - seperation length between suppresors [in] or [m]
% unitset - a string of either English or Metric which

determines
% the unit set used for the entire simulation
%Outputs:
% A saved W x W x X x V matrix of transmission loss for every
% condition simulated

starttime=now;

if supNum ~= 1 && supNum ~= 2
 error('Not a Simulation case')
end

%Default dimensions
dr_0 = 0.69291338512; %radius of inlet pipe
dr_a0 = 0.99212598324; %uncompressed bladder radius
dr_b = 1.64173228179; %outer radius of silencer
dzlen = 2.68503936734; %estimated effective length

97

dL=3.93700787; %Back to back seperation length
dunitset='English';

% Default Suppressor dimensions [in]
if nargin == 5
 r_0 = dr_0; %radius of inlet pipe
 r_a0 = dr_a0; %uncompressed bladder radius
 r_b = dr_b; %outer radius of silencer
 zlen = dzlen; %estimated effective length
 L=dL; %Back to back seperation length
 unitset=dunitset;
end

if isempty(r_0)
 r_0=dr_0;
end
if isempty(r_a0)
 r_a0=dr_a0;
end
if isempty(r_b)
 r_b=dr_b;
end
if isempty(zlen)
 zlen=dzlen;
end
if isempty(L)
 L=dL;
end
if isempty(unitset)
 unitset=dunitset;
end

switch unitset %The Default Unit set is English Units, however the code

uses metric.
 case 'English' %If English units are used they are converted into

metric
 r_0=r_0./39.3700787;
 r_a0=r_a0./39.3700787;
 r_b=r_b./39.3700787;
 zlen=zlen./39.3700787;
 L=L./39.3700787;
 PcPlot=PcVec; %#ok<NASGU> %Used on the contour plot
 PcVec=PcVec.*6894.75729;
 PsVec=PsVec.*6894.75729;
 case 'Metric'
 PcPlot=PcVec; %#ok<NASGU>
end

switch supNum
 case 1
 m=1;
 o=1;
 overall=0;
 total=length(PsVec)*length(PcVec); %The total number of

simulations being run

98

 TLmat=zeros(length(PcVec),length(PsVec),length(freq));

%Initializes TLmat to proper size
 for Pc1=PcVec
 for Ps=PsVec
 TL = WM_shell(freq,Pc1,Ps,r_0,r_a0,r_b,zlen); %Calls

the function that similuates back to back suppressors
 overall=overall+1;
 disp(['Simulation ' num2str(overall) ' of '

num2str(total)])
 TLmat(m,o,:)=TL; %Saves TL data in proper location
 o=o+1;
 end
 m=m+1;
 o=1;
 end
 case 2
 n=1;
 m=1;
 o=1;
 overall=0;
 total=length(PsVec)*.5*length(PcVec)*(length(PcVec)+1)*1; %The

total number of simulations being run

TLmat=zeros(length(PcVec),length(PcVec),length(PsVec),length(freq));

%Initializes TLmat to proper size
 for Pc1=PcVec
% PcVec2=PcVec(PcVec>=Pc1);
 for Pc2=PcVec
 for Ps=PsVec
 TL =

WM_shell_Double(freq,Pc1,Pc2,Ps,r_0,r_a0,r_b,zlen,L); %Calls the

function that similuates back to back suppressors
 figure; plot(freq,TL)
 title([num2str(Pc1./6894.75729)

num2str(Pc2./6894.75729)])
 clearvars -except freq Pc1 Pc2 Ps r_0 r_a0 r_b zlen

L o n m TLmat PcPlot PcVec PsVec unitset supNum overall starttime

fileName total TL
 clearvars -global
 overall=overall+1;
 disp(['Simulation ' num2str(overall) ' of '

num2str(total)])
 TLmat(m,n,o,:)=TL; %Saves TL data in proper location
 clear TL
 o=o+1;
 end
 n=n+1;
 o=1;
 end
 m=m+1;
 n=m;
 o=1;
 end
end
save(fileName,'TLmat','PcPlot','PcVec','PsVec','freq','unitset','supNum

')

99

endtime = now;
sec = (endtime-starttime)*60*60*24;
minu = floor(sec/60);
 sec = sec-minu*60;
hr = floor(minu/60);
 minu = minu-hr*60;
day = floor(hr/24);
 hr = hr-day*24;

timestr = 'is';
if day > 0
 timestr = [timestr ' ' num2str(day) ' days'];
end
if hr > 0
 timestr = [timestr ' ' num2str(hr) ' hours'];
end
if minu > 0
 timestr = [timestr ' ' num2str(minu) ' minutes'];
end
timestr = [timestr ' ' num2str(sec) ' seconds'];

disp(['Elapsed time for this simulation ' timestr '.'])
end

function TL = WM_shell(freq,Pc,Ps,r_0,r_a0,r_b,zlen)

starttime=now;
vs = '(v20)';
disp('*************************')
disp(['Running WM_shell.m ' vs])
disp('*************************')

global showdebug
showdebug = 0; %1 to show debug/error messages

% Initialize simulation data

% Frequencies of interest
freqsize = size(freq);
if freqsize(2) > freqsize(1)
 freq = freq.';
end
clear freqsize
freqw = freq.'*2*pi;
numharm = length(freq);

% Modes of interest
nummode = 6;
% Pc=6894.75729*Pc;
% Ps=6894.75729*Ps;

% Fluid properties
tmp = 35; %fluid temp, C

100

c_f = 1400; %measured sound speed in hydraulic fluid
rho_f = 865.9731; %density of hydraulic fluid
k_f = freqw./c_f; %wavenumber in free fluid
Z_f = rho_f*c_f*ones(1,length(freq)); %Specific acoustic impedance for

fluid
lambda_f = ones(1,numharm)*c_f^2*rho_f; %fluid bulk modulus

% Downstream port impedance
Zp2plus = getzp2(freq, Z_f); %downstream port is modeled as anechoic by

default

lambda_s = ones(1,numharm)*1.4*max(Ps,Pc)*exp(0.0i); %pressurized gas

bulk modulus

% Silencer dimensions
if nargin == 3
 r_0 = 0.0176; %radius of inlet pipe
 r_a0 = 0.0252; %uncompressed bladder radius
 r_b = 0.0417; %outer radius of silencer
 zlen = 0.0682; %estimated effective length
end
if Pc>=Ps
 r_b=r_a0+0.001;
end
%calculate mass of precharge gas
mass = 0.028*Pc*zlen*pi*(r_b^2-r_a0^2)/(8.314*(273+tmp));

r_a = sqrt(r_b^2-(mass/0.028*8.314*(273+tmp)/(max(Ps,Pc)*zlen*pi)));

%compressed radius
sig = (0.05)/(2*pi*r_a*zlen); %mass per area of bladder; effective

insert mass is ~50g?
rho_s = mass/(zlen*pi*(r_b^2-r_a^2)); %compressed density

%wavenumbers and sound speeds
c_L = sqrt(lambda_s/rho_s); %longitudinal sound speed
k_L = freqw./c_L; %longitudinal wave number

% Build data structure
datstruct = struct('freq',freq,'freqw',freqw,'numharm',numharm,...

'nummode',nummode,'Ps',Ps,'Pc',Pc,'tmp',tmp,'c_f',c_f,'rho_f',rho_f,...
 'k_f',k_f,'Z_f',Z_f,'Zp2plus',Zp2plus,'rho_s',rho_s,'sig',sig,...
 'c_L',c_L,'k_L',k_L,'r_0',r_0,'r_a',r_a,'r_b',r_b,'zlen',zlen,...
 'lambda_f',lambda_f,'lambda',lambda_s,'k1_rf',[],'k1_zf',[],...

'k2_rf',[],'k2_rL',[],'k2_zf',[],'k2_zL',[],'TL',[],'coef_mat',[],...
 'pcp',[],'pcm',[],'badfreq',[],'numpmode',nummode,'numlmode',0,...
 'numpint',nummode,'numlint',0,'showdebug',showdebug);
if showdebug == 1
 save simdat datstruct
end

% Run simulation and find objective function
datstruct = analyz(datstruct);
if showdebug == 1

101

 save simdat datstruct
end
datstruct = proc(datstruct);
TL = datstruct.TL;
if showdebug == 1
 save simdat datstruct
end

% % Plot results of simulation
% figure;
% plot(freq,TL);
% xlabel('Frequency [Hz]'), ylabel('TL [dB]')
% title([num2str(Pc/1e6) ' MPa precharge, ' num2str(Ps/1e6) ' MPa

system'])

% Time data
% Display how long the simulation took
endtime = now;
sec = (endtime-starttime)*60*60*24;
min = floor(sec/60);
 sec = sec-min*60;
hr = floor(min/60);
 min = min-hr*60;
day = floor(hr/24);
 hr = hr-day*24;

timestr = 'is';
if day > 0
 timestr = [timestr ' ' num2str(day) ' days'];
end
if hr > 0
 timestr = [timestr ' ' num2str(hr) ' hours'];
end
if min > 0
 timestr = [timestr ' ' num2str(min) ' minutes'];
end
timestr = [timestr ' ' num2str(sec) ' seconds'];

disp(['Elapsed time for this simulation ' timestr '.'])

end
% WM_shell.m
% TL = WM_shell(freq,Pc,Ps)
% Vs 20
% Modified for gas bladder silencer
% Outputs: TL = predicted transmission loss [dB] (vector n x 1)
% Inputs: freq = frequencies of interest [Hz] (vector n x 1)
% Pc = charge pressure of bladder [Pa]
% Ps = system pressure [Pa]

function TL = WM_shell_Double(freq,Pc1,Pc2,Ps,r_0,r_a0,r_b,zlen,L)
clear datstruct TL
starttime=now;
vs = '(v20)';

102

disp('*************************')
disp(['Running WM_shell.m ' vs])
disp('*************************')

% Pc1=6894.75729*Pc1;
% Pc2=6894.75729*Pc2;
% Ps=6894.75729*Ps;

P=[Pc1,Pc2];
for x=[1:2]
 clearvars -except freq Pc1 Pc2 Ps r_0 r_a0 r_b zlen L o n m TLmat

PcPlot PcVec PsVec unitset supNum overall starttime fileName total TL

datstruct x P Z_f_new E0_new F0_new Edown Fdown int_L
global showdebug
showdebug = 0; %1 to show debug/error messages

% Initialize simulation data

% Frequencies of interest
freqsize = size(freq);
if freqsize(2) > freqsize(1)
 freq = freq.';
end
clear freqsize
freqw = freq.'*2*pi;
numharm = length(freq);

% Modes of interest
nummode = 6;

% Fluid properties
tmp = 35; %fluid temp, C
c_f = 1400; %measured sound speed in hydraulic fluid
rho_f = 865.9731; %density of hydraulic fluid
k_f = freqw./c_f; %wavenumber in free fluid
Z_f = rho_f*c_f*ones(1,length(freq)); %Specific acoustic impedance for

fluid
lambda_f = ones(1,numharm)*c_f^2*rho_f; %fluid bulk modulus

% Downstream port impedance
if x==1
 Zp2plus = getzp2(freq, Z_f); %downstream port is modeled as

anechoic by default
elseif x==2
 Zp2plus = Z_f_new;
end

lambda_s = ones(1,numharm)*1.4*max(Ps,P(x))*exp(0.0i); %pressurized gas

bulk modulus

% Silencer dimensions (in meters)
% r_0 = 0.0176; %radius of inlet pipe
% r_a0 = 0.0252; %uncompressed bladder radius
% r_b = 0.0417; %outer radius of silencer

103

% zlen = 0.0682; %estimated effective length

%calculate mass of precharge gas
mass = 0.028*P(x)*zlen*pi*(r_b^2-r_a0^2)/(8.314*(273+tmp));

r_a = sqrt(r_b^2-(mass/0.028*8.314*(273+tmp)/(max(Ps,P(x))*zlen*pi)));

%compressed radius
sig = (0.05)/(2*pi*r_a*zlen); %mass per area of bladder; effective

insert mass is ~50g?
rho_s = mass/(zlen*pi*(r_b^2-r_a^2)); %compressed density

%wavenumbers and sound speeds
c_L = sqrt(lambda_s/rho_s); %longitudinal sound speed
k_L = freqw./c_L; %longitudinal wave number

% Build data structure
datstruct = struct('freq',freq,'freqw',freqw,'numharm',numharm,...

'nummode',nummode,'Ps',Ps,'Pc',P(x),'tmp',tmp,'c_f',c_f,'rho_f',rho_f,.

..
 'k_f',k_f,'Z_f',Z_f,'Zp2plus',Zp2plus,'rho_s',rho_s,'sig',sig,...
 'c_L',c_L,'k_L',k_L,'r_0',r_0,'r_a',r_a,'r_b',r_b,'zlen',zlen,...
 'lambda_f',lambda_f,'lambda',lambda_s,'k1_rf',[],'k1_zf',[],...

'k2_rf',[],'k2_rL',[],'k2_zf',[],'k2_zL',[],'TL',[],'coef_mat',[],...
 'pcp',[],'pcm',[],'badfreq',[],'numpmode',nummode,'numlmode',0,...
 'numpint',nummode,'numlint',0,'showdebug',showdebug);
if showdebug == 1
 save simdat datstruct
end

if P(x)>=Ps
 r_b=r_a0;
 datstruct = struct('freq',freq,'freqw',freqw,'numharm',numharm,...

'nummode',nummode,'Ps',Ps,'Pc',P(x),'tmp',tmp,'c_f',c_f,'rho_f',rho_f,.

..
 'k_f',k_f,'Z_f',Z_f,'Zp2plus',Zp2plus,'rho_s',rho_s,'sig',sig,...
 'c_L',c_L,'k_L',k_L,'r_0',r_0,'r_a',r_a,'r_b',r_b,'zlen',zlen,...
 'lambda_f',lambda_f,'lambda',lambda_s,'k1_rf',[],'k1_zf',[],...

'k2_rf',[],'k2_rL',[],'k2_zf',[],'k2_zL',[],'TL',[],'coef_mat',[],...
 'pcp',[],'pcm',[],'badfreq',[],'numpmode',nummode,'numlmode',0,...
 'numpint',nummode,'numlint',0,'showdebug',showdebug);
 datstruct = analyz(datstruct);
 datstruct = proc(datstruct);
else
 datstruct = analyz(datstruct);
 datstruct = proc(datstruct);
end

if showdebug == 1
 save simdat datstruct
end
if showdebug == 1
 save simdat datstruct

104

end
if x==1
 int_L = L; %length between silencers
 E0_new =

ones(1,datstruct.numharm).*exp(1i*int_L*datstruct.k1_zf(:,1).');
 F0_new =

datstruct.coef_mat(1,:).*exp(1i*int_L*datstruct.k1_zf(:,datstruct.nummo

de+1).');
 rho_f = datstruct.rho_f;
 c_f = datstruct.c_f;
 Z_f_new = (E0_new+F0_new).*(rho_f.*c_f)./(E0_new-F0_new);
 Edown=datstruct.coef_mat(datstruct.nummode*3+1,:);
 Fdown=datstruct.coef_mat(datstruct.nummode*4+1,:);
elseif x==2
 Aup=ones(1,datstruct.numharm);
 Bup=datstruct.coef_mat(1,:);
 Adown=datstruct.coef_mat(datstruct.nummode*3+1,:).*exp(-

1i*datstruct.k1_zf(:,1).'*int_L);
 Edown_new=Adown.*Edown;
 Fdown_new=Adown.*Fdown;
end
end %the for loop ends here
TL=20*log10(abs((Aup.^2-Fdown_new.^2)./(Aup.*Edown_new-

Bup.*Fdown_new)));

% figure;
% plot(freq,TL)
% title([num2str(Pc1./6894.75729),' ' num2str(Pc2./6894.75729)])

% Time data
% Display how long the simulation took
endtime = now;
sec = (endtime-starttime)*60*60*24;
minu = floor(sec/60);
 sec = sec-minu*60;
hr = floor(minu/60);
 minu = minu-hr*60;
day = floor(hr/24);
 hr = hr-day*24;

timestr = 'is';
if day > 0
 timestr = [timestr ' ' num2str(day) ' days'];
end
if hr > 0
 timestr = [timestr ' ' num2str(hr) ' hours'];
end
if minu > 0
 timestr = [timestr ' ' num2str(minu) ' minutes'];
end
timestr = [timestr ' ' num2str(sec) ' seconds'];

disp(['Elapsed time for this simulation ' timestr '.'])
end

105

%%
%analyz
% by K Marek, revised May 2011
% Solves eigenfunctions and returns orthogonal wavenumbers
% This gives us the unique axial wavenumber for each mode.

function datstruct = analyz(datstruct)

global showdebug
numharm = datstruct.numharm;
nummode = datstruct.nummode;
k_f = datstruct.k_f;
rho_f = datstruct.rho_f;
r_0 = datstruct.r_0;
k_L = datstruct.k_L;
rho_s = datstruct.rho_s;
sig = datstruct.sig;
r_a = datstruct.r_a;
r_b = datstruct.r_b;
lambda_f = datstruct.lambda_f;
lambda = datstruct.lambda;
freqw = datstruct.freqw;

% Solution loop 1

% Use a Newton-Raphson method to solve for k_zf using initial value
% generated by robust root finder. k1 for k outside silencer region.

disp('Begin root solving')
indcmax = 200;
fguess_all = 0.001;
deltaguess_all = 0.0001;

k1_zf = zeros(numharm,nummode*2); %1st half pos. travelling wave; 2nd

half neg.
k1_rf = k1_zf;

disp('Find initial pipe roots');
k1_zf(1,:) = findroots_nl([],nummode,r_0,k_f(1),freqw(1),...
 lambda_f(1),rho_f,fguess_all,deltaguess_all);
disp('Find subsequent pipe roots');

for inda = 2:numharm
 problem = 'none';
 for indb = 1:nummode*2
 indc = 1;
 convb = 0;

 guess = k1_zf(inda-1,indb);
 % Negative travelling wave might have negative wavenumber of

pos.
 if indb > nummode
 if abs(k1_zf(inda-1,indb) + k1_zf(inda-1,indb-nummode)) <

2*deltaguess_all

106

 guess = -k1_zf(inda,indb-nummode);
 end
 end

 [fguess,fprime] =

eigm(guess,freqw(inda),0,lambda_f(inda),0,rho_f,0,r_0,r_0);

 if(fguess == 0)
 convb = 1;
 end
 while(convb == 0)
 newguess = guess-fguess/fprime;
 deltaguess = abs(newguess-guess);

 guess = newguess;
 [fguess,fprime] =

eigm(guess,freqw(inda),0,lambda_f(inda),0,rho_f,0,r_0,r_0);

 if(indc > indcmax)
 if showdebug == 1
 disp(['Too many iterations, harmonic ' num2str(inda)

...
 ', mode ' num2str(indb) ' in numeric 2-D ' ...
 'compression wave solution, section 1']);
 end
 problem = 'iterations';
 end
 if((abs(fguess) < fguess_all) && (deltaguess <

deltaguess_all))
 convb = 1;
 for indd = 1:indb-1
 if(abs(guess-k1_zf(inda,indd)) < 2*deltaguess_all)
 if showdebug == 1
 disp(['Duplicate solution found, harmonic ' ...
 num2str(inda) ', modes ' num2str(indd) '

and '...
 num2str(indb) ', section 1']);
 end
 problem = 'duplicates';
 end
 end
 end
 indc = indc+1;
 if ~strcmp(problem,'none')
 convb = -1;
 end
 end
 if abs(imag(guess)) < deltaguess_all
 guess = real(guess);
 end
 k1_zf(inda,indb) = guess;
 end
 % Make sure negative and positives haven't switched up
 for indb = 1:nummode
 if (imag(k1_zf(inda,indb))) > 0 || ((imag(k1_zf(inda,indb)) ==

0) && real(k1_zf(inda,indb)) < 0)

107

 if abs(k1_zf(inda,indb)+k1_zf(inda,indb+nummode)) <

2*deltaguess_all
 k1_zf(inda,indb) = -k1_zf(inda,indb);
 k1_zf(inda,indb+nummode) = -k1_zf(inda,indb+nummode);
 else
 problem = 'signs1';
 end
 end
 if (imag(k1_zf(inda,indb+nummode)) < 0) || ...
 ((imag(k1_zf(inda,indb+nummode)) == 0) &&

(real(k1_zf(inda,indb+nummode)) > 0))
 problem = 'signs2';
 end
 end
 % Call robust root finder if problems were encountered
 if ~strcmp(problem,'none')
 disp(problem)
 disp(k1_zf(inda,:))
 disp('Trying findroots_nl.m')
 k1_zf(inda,:) =

findroots_nl(k1_zf(inda,:),nummode,r_0,k_f(inda),freqw(inda),lambda_f(i

nda),...
 rho_f,fguess_all,deltaguess_all);
 end
end

% now have k1_zf from above
for indb = 1:(2*nummode)
 k1_rf(:,indb) = sqrt(k_f.^2 - (k1_zf(:,indb)).'.^2);
end

% Solution loop 2

% Use a Newton-Raphson method to solve for k_zf using initial value
% generated by root finding function. k2 for k inside silencer region.

indcmax = 200;
fguess_all = 0.001;
deltaguess_all = 0.0001;
maxnums = 500; %Related to e^maxnums becomes to hard to work with

k2_zf = zeros(numharm,nummode*2);
k2_rf = k2_zf;
k2_rL = k2_zf;

disp('Find initial silencer roots');
k2_zf(1,:) =

findroots([],nummode,r_a,r_b,k_f(1),k_L(1),freqw(1),lambda_f(1),...
 lambda(1),rho_f,rho_s,sig,fguess_all,deltaguess_all);
disp('Find subsequent silencer roots');

for inda = 2:numharm
 problem = 'none';
 for indb = 1:nummode*2
 indc = 1;

108

 convb = 0;

 guess = k2_zf(inda-1,indb);
 % Negative travelling wave might have negative wavenumber of

pos.
 if indb > nummode
 if abs(k2_zf(inda-1,indb) + k2_zf(inda-1,indb-nummode)) <

2*deltaguess_all
 guess = -k2_zf(inda,indb-nummode);
 end
 end

 [E,dE] =

eigm(guess,freqw(inda),lambda(inda),lambda_f(inda),rho_s,rho_f,sig,r_a,

r_b);
 if r_a == r_b
 fguess = E;
 fprime = dE;
 clear E dE %added
 else
 fguess = det(E);
 fprime = trace(adjugate2(E)*dE);
 end

 if(fguess == 0)
 convb = 1;
 end
 while(convb == 0)
 newguess = guess-fguess/fprime;
 deltaguess = abs(newguess-guess);

 oldfguess = fguess;
 guess = newguess;

 [E,dE] =

eigm(guess,freqw(inda),lambda(inda),lambda_f(inda),rho_s,rho_f,sig,r_a,

r_b);
 if r_a == r_b
 fguess = E;
 fprime = dE;
 clear E dE %add
 else
 fguess = det(E);
 fprime = trace(adjugate2(E)*dE);
 end

 if(indc > indcmax)
 if showdebug == 1
 disp(['Too many iterations, harmonic ' num2str(inda)

...
 ', mode ' num2str(indb) ' in numeric 2-D ' ...
 'compression wave solution, section 2']);
 disp(['guess = ' num2str(guess)]);
 disp(['fguess = ' num2str(oldfguess) ...
 '; deltaguess = ' num2str(deltaguess)]);
 disp(['fprime = ' num2str(fprime)]);

109

 end
 problem = 'iterations';
 end
 if (abs(fguess) < (deltaguess_all/2*abs(fprime))) &&

(deltaguess < deltaguess_all)
 convb = 1;
 for indd = 1:indb-1
 if(abs(guess-k2_zf(inda,indd)) < 2*deltaguess_all)
 if showdebug == 1
 disp(['Duplicate solution found, harmonic ' ...
 num2str(inda) ', modes ' num2str(indd) '

and '...
 num2str(indb) ', section 2']);
 end
 problem = 'duplicates';
 end
 end
 if abs(real(guess)) > maxnums
 problem = 'Too large';
 end
 end
 indc = indc+1;
 if ~strcmp(problem,'none')
 convb = -1;
 end
 end
 if abs(imag(guess)) < deltaguess_all
 guess = real(guess);
 end
 k2_zf(inda,indb) = guess;
 end
 % Make sure negative and positives haven't switched up
 for indb = 1:nummode
 if (imag(k2_zf(inda,indb))) > 0 || ((imag(k2_zf(inda,indb)) ==

0) && real(k2_zf(inda,indb)) < 0)
 if abs(k2_zf(inda,indb)+k2_zf(inda,indb+nummode)) <

2*deltaguess_all
 k2_zf(inda,indb) = -k2_zf(inda,indb);
 k2_zf(inda,indb+nummode) = -k2_zf(inda,indb+nummode);
 else
 problem = 'signs';
 end
 end
 if (imag(k2_zf(inda,indb+nummode))) < 0 || ...
 ((imag(k2_zf(inda,indb+nummode)) == 0) &&

real(k2_zf(inda,indb+nummode)) > 0)
 problem = 'signs';
 end
 end
 % Call robust root finder if problems were encountered
 if ~strcmp(problem,'none')
 disp(problem)
 disp('Trying findroots.m')
 k2_zf(inda,:) =

findroots(k2_zf(inda,:),nummode,r_a,r_b,k_f(inda),k_L(inda),freqw(inda)

,...

110

lambda_f(inda),lambda(inda),rho_f,rho_s,sig,fguess_all,deltaguess_all);
 end
end

% now have k2_zf from above
for indb = 1:(2*nummode)
 k2_rf(:,indb) = sqrt(k_f.^2 - (k2_zf(:,indb)).'.^2);
 k2_rL(:,indb) = sqrt(k_L.^2 - (k2_zf(:,indb)).'.^2);
end
k2_zL = k2_zf;

disp('Root finding complete')

clear inda indb indc indd

%% Put new data into datstruct

datstruct.k1_rf = k1_rf;
datstruct.k1_zf = k1_zf;

datstruct.k2_rf = k2_rf;
datstruct.k2_zf = k2_zf;
datstruct.k2_rL = k2_rL;
datstruct.k2_zL = k2_zL;

end

%%
% findroots
% by K Marek
%
% This root finder uses intelligently placed seed points to find a

given
% number of roots of the eigenfunction. It then uses the argument
% principle to verify that all the roots in the given area have been

found.
% If problems occur, they are addressed automatically and the function
% tries again.

function froots = findroots(seeds,numroots,r_a,r_b,k_f,k_L,w,...
 lambdaf,lambda,rho_f,rho_s,sig,fguess_all,deltaguess_all)

if r_a == r_b %no liner case
 froots =

findroots_nl(seeds,numroots,r_a,k_f,w,lambdaf,rho_f,fguess_all,deltague

ss_all);
 clearvars -except freq Pc1 Pc2 Ps r_0 r_a0 r_b zlen L o n m TLmat

PcPlot PcVec PsVec unitset supNum overall starttime fileName total TL

froots
 return;
end

111

global showdebug

% Initialize variables
allgood = 0; % if all desired roots have been found
trynum = 1; % how many tries did it take?
problem = 'none';
lfactor = 1000; % how many segements per length to check phase
rmin = 0; rmax = 0; imin = 0; imax = 0;
slen = length(seeds);
deltaguess_all_orig = deltaguess_all;
dupnum = 1;
maxnums = 100; %Related to e^maxnums becomes to hard to work with
k_Tp = k_L; %unused
immin = 0;
immax = 0;

while allgood == 0
 % Initial point guesses, based on trynum and problem
 if trynum == 1
 %compression roots lie mostly on imaginary axis
 froots = zeros(1,numroots*8+6);
 froots(1:3) = [k_f k_Tp k_L]*1.01; %not quite on the value

because they are removable discontinuities
 for irt = 1:numroots
 k = max(k_L,k_f);
 k_r = (irt+0.5)*pi/(r_b+r_a*(rho_f/rho_s-1));
 guess = sqrt(k^2-k_r^2);
 if imag(guess) > 0
 guess = -guess;
 end
 froots(3+4*irt) = guess;
 if irt == 1
 froots(4:6) = (1:3)*guess/2;
 else
 froots((4*irt):(4*irt+2)) = froots(4*irt-1)+(1:3)*...
 (guess-froots(4*irt-1))/2;
 end
 end
 froots((4*numroots+4):end) = -froots(1:(4*numroots+3));
 immin = min(imag(froots));
 immax = max(imag(froots));
 else
 if strcmp(problem,'too_few')
 % Keep converged roots, add some more to the end
 imin = min(imin,immin)*(1+(2*(trynum-1)/length(froots)));
 imax = max(imax,immax)*(1+(2*(trynum-1)/length(froots)));
 if (rmin == 0) || ~isfinite(rmin)
 rmin = (0.1+(trynum-1))*min(-real([k_f,k_L]));
 end
 if (rmax == 0) || ~isfinite(rmax)
 rmax = (0.1+(trynum-1))*max(real([k_f,k_L]));
 end
 if (imin == 0) || ~isfinite(imin)
 imin = (0.1+(trynum-1))*rmin;
 end
 if (imax == 0) || ~isfinite(imax)

112

 imax = (0.1+(trynum-1))*rmax;
 end
 problem = 'missed_some'; %fill in the gaps...
 end
 if strcmp(problem,'missed_some')
 % Choose new root guess locations
 % Be sure they will eventually cover the whole selection
 newroots = zeros(1,((trynum^2+trynum+1)*length(froots)));
 newroots(1:length(froots)) = froots;
 irt = length(froots)+1;
 for i_im = 1:trynum*length(froots)
 ival = imin + (imax-

imin)*i_im/(trynum*length(froots)+1);
 for i_re = 1:(trynum+1)
 rval = rmin + (rmax-rmin)*i_re/(trynum+2);
 newroots(irt) = rval+1i*ival;
 irt = irt+1;
 end
 end
 froots = newroots;
 end
 end

 problem = 'none'; %reset problem flag

 % Find roots using gradient method from all initial points
 % Use a Newton-Raphson method to solve for k_zf using initial guess
 % generated by some method above. k2 for k inside silencer region.

 indcmax = 200;

 for indb = 1:length(froots)
 indc = 1;
 convb = 0;

 guess = froots(indb);

 [E,dE] = eigm(guess,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b);
 fprime = trace(adjugate2(E)*dE);
 fguess = det(E);
 if(fguess == 0)
 convb = 1;
 end
 while(convb == 0)
 newguess = guess-fguess/fprime;
 deltaguess = abs(newguess-guess);

 guess = newguess;

 [E,dE] =

eigm(guess,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b);
 fguess = det(E);
 fprime = trace(adjugate2(E)*dE);

 if(indc > indcmax)

113

 convb = -1;
 problem = 'iterations';
 end
 if((abs(fguess) < (deltaguess_all/2*abs(fprime))) &&

(deltaguess < deltaguess_all))
 convb = 1;
 end
 indc = indc+1;
 end
 froots(indb) = guess;
 if convb == -1
 froots(indb) = -1i*inf;
 problem = 'none';
 end
 end

 % Delete non-converged roots
 inda = 0;
 newroots = zeros(size(froots));
 for indb = 1:length(froots)
 if isfinite(froots(indb))
 newroots(indb-inda) = froots(indb);
 else
 inda = inda+1;
 end
 end
 froots = newroots(1:length(froots)-inda);
 % Delete roots thought to be numerical artifacts
 inda = 0;
 newroots = zeros(size(froots));
 for indb = 1:length(froots)
 if (abs(real(froots(indb))) <

max(abs(real([k_f,k_L,k_Tp,min(imag(froots)),max(imag(froots))]))))

&&...
 (max(abs(imag([sqrt(k_f^2-froots(indb)^2),sqrt(k_L^2-

froots(indb)^2)]))) < maxnums) &&...
 (abs(real(froots(indb))) < maxnums)
 newroots(indb-inda) = froots(indb);
 else
 inda = inda+1;
 end
 end
 froots = newroots(1:length(froots)-inda);

 % Sort roots by type
 rpnum = 0;
 rmnum = 0;
 cpnum = 0;
 cmnum = 0;
 rproots = zeros(1,length(froots));
 rmroots = rproots;
 cproots = rproots;
 cmroots = rproots;
 for indb = 1:length(froots)
 if abs(imag(froots(indb))) < deltaguess_all
 if real(froots(indb)) > 0

114

 rpnum = rpnum+1;
 rproots(rpnum) = real(froots(indb));
 else
 rmnum = rmnum+1;
 rmroots(rmnum) = real(froots(indb));
 end
 else
 if imag(froots(indb)) < 0
 cpnum = cpnum+1;
 cproots(cpnum) = froots(indb);
 else
 cmnum = cmnum+1;
 cmroots(cmnum) = froots(indb);
 end
 end
 end
 rproots = rproots(1:rpnum);
 rmroots = rmroots(1:rmnum);
 cproots = cproots(1:cpnum);
 cmroots = cmroots(1:cmnum);

 % Sort each type of root
 newroots = zeros(1,rpnum);
 for indb = 1:rpnum
 [value,index] = max(real(rproots));
 newroots(indb) = rproots(index);
 rproots(index) = -inf;
 end
 rproots = newroots;
 newroots = zeros(1,rmnum);
 for indb = 1:rmnum
 [value,index] = min(real(rmroots));
 newroots(indb) = rmroots(index);
 rmroots(index) = inf;
 end
 rmroots = newroots;
 newroots = zeros(1,cpnum);
 for indb = 1:cpnum
 [value,index] = max(imag(cproots));
 newroots(indb) = cproots(index);
 cproots(index) = -1i*inf;
 end
 cproots = newroots;
 newroots = zeros(1,cmnum);
 for indb = 1:cmnum
 [value,index] = min(imag(cmroots));
 newroots(indb) = cmroots(index);
 cmroots(index) = 1i*inf;
 end
 cmroots = newroots;

 % Eliminate duplicate points
 if rpnum > 1
 dcount = 0;
 newroots = rproots;
 for indb = 2:rpnum

115

 found_duplicate = 0;
 indb1 = 1;
 while (indb1 < indb) && (found_duplicate == 0)
 if abs(rproots(indb)-rproots(indb1)) <

(2*dupnum*deltaguess_all)
 dcount = dcount+1;
 found_duplicate = 1;
 end
 indb1 = indb1+1;
 end
 if found_duplicate == 0
 newroots(indb-dcount)=rproots(indb);
 end
 end
 rproots=newroots(1:(rpnum-dcount));
 rpnum = rpnum-dcount;
 end
 if rmnum > 1
 dcount = 0;
 newroots = rmroots;
 for indb = 2:rmnum
 found_duplicate = 0;
 indb1 = 1;
 while (indb1 < indb) && (found_duplicate == 0)
 if abs(rmroots(indb)-rmroots(indb1)) <

(2*dupnum*deltaguess_all)
 dcount = dcount+1;
 found_duplicate = 1;
 end
 indb1 = indb1+1;
 end
 if found_duplicate == 0
 newroots(indb-dcount)=rmroots(indb);
 end
 end
 rmroots=newroots(1:(rmnum-dcount));
 rmnum = rmnum-dcount;
 end
 if cpnum > 1
 dcount = 0;
 newroots = cproots;
 for indb = 2:cpnum
 found_duplicate = 0;
 indb1 = 1;
 while (indb1 < indb) && (found_duplicate == 0)
 if abs(cproots(indb)-cproots(indb1)) <

(2*dupnum*deltaguess_all)
 dcount = dcount+1;
 found_duplicate = 1;
 end
 indb1 = indb1+1;
 end
 if found_duplicate == 0
 newroots(indb-dcount)=cproots(indb);
 end
 end
 cproots=newroots(1:(cpnum-dcount));

116

 cpnum = cpnum-dcount;
 end
 if cmnum > 1
 dcount = 0;
 newroots = cmroots;
 for indb = 2:cmnum
 found_duplicate = 0;
 indb1 = 1;
 while (indb1 < indb) && (found_duplicate == 0)
 if abs(cmroots(indb)-cmroots(indb1)) <

(2*dupnum*deltaguess_all)
 dcount = dcount+1;
 found_duplicate = 1;
 end
 indb1 = indb1+1;
 end
 if found_duplicate == 0
 newroots(indb-dcount)=cmroots(indb);
 end
 end
 cmroots=newroots(1:(cmnum-dcount));
 cmnum = cmnum-dcount;
 end

 % Check that enough roots were found (problem = 'too_few')
 if min(rpnum+cpnum,rmnum+cmnum) < numroots
 problem = 'too_few';
 froots = [rproots cproots rmroots cmroots];
 imax = 1.1*max(imag([froots,-k_f,-k_L,-k_Tp,0.05i]));
 imin = 1.1*min(imag([froots,k_f,k_L,k_Tp,-0.05i]));
 rmax = min([1.1*max(real([froots,k_f,k_L,k_Tp])),maxnums]);
 rmin = max([1.1*min(real([froots,-k_f,-k_L,-k_Tp])),-maxnums]);
 numrootsp = rpnum+cpnum;
 numrootsm = rmnum+cmnum;
 proots = [rproots cproots];
 mroots = [rmroots cmroots];
 else
 proots = [rproots cproots];
 mroots = [rmroots cmroots];
 if min(imag(proots)) == 0
 imin = -1;
 numrootsp = numroots;
 else if length(proots) == numroots
 if numroots == 1
 imin = 1.1*min([imag(proots(numroots)),-.05]);
 numrootsp = numroots;
 else
 imin = imag(proots(numroots)) + ...
 0.1*(imag(proots(numroots))-

imag(proots(numroots-1)));
 if abs(imag(proots(numroots)-proots(numroots-1))) <

5*deltaguess_all
 imin = imag(proots(numroots))*1.1;
 end
 numrootsp = numroots;
 end
 else

117

 numrootsp = numroots;
 pdone = 0;
 for indd = (numroots+1):length(proots)
 if (imag(proots(indd)) >

1.01*imag(proots(numrootsp)))
 numrootsp = indd;
 imin = 1.02*imag(proots(indd));
 else
 if (pdone == 0)
 imin = imag(proots(numrootsp)) +

0.1*(imag(proots(indd)) - ...
 imag(proots(indd-1)));
 pdone = 1;
 end
 end
 end
 end
 end
 if max(imag(mroots)) == 0
 imax = 1;
 numrootsm = numroots;
 else if length(mroots) == numroots
 if numroots == 1
 imax = 1.1*imag(mroots(numroots));
 numrootsm = numroots;
 else
 imax = imag(mroots(numroots)) + ...
 0.1*(imag(mroots(numroots))-

imag(mroots(numroots-1)));
 if abs(imag(mroots(numroots)-mroots(numroots-1))) <

5*deltaguess_all
 imax = imag(mroots(numroots))*1.1;
 end
 numrootsm = numroots;
 end
 else
 numrootsm = numroots;
 mdone = 0;
 for indd = (numroots+1):length(mroots)
 if (imag(mroots(indd)) <

1.01*imag(mroots(numroots)))
 numrootsm = indd;
 imax = 1.02*imag(mroots(indd));
 else
 if (mdone == 0)
 imax = imag(mroots(numrootsm)) +

0.1*(imag(mroots(indd)) - ...
 imag(mroots(indd-1)));
 mdone = 1;
 end
 end
 end
 end
 end
 froots = [proots(1:numrootsp) mroots(1:numrootsm)];
 rmax = min([1.1*max(real([froots,k_f,k_L,k_Tp])),maxnums]);
 rmin = max([1.1*min(real([froots,-k_f,-k_L,-k_Tp])),-maxnums]);

118

 end

 if max(abs([imax,imin])) > 5000
 imax = 5000;
 imin = -5000;
 problem = 'missed_some';
 end

 % Use argument principle to determine if all contained roots were

found
 if strcmp(problem,'none') || strcmp(problem,'too_few') %continue if

no problems so far
 legnum = 1; %four legs to traverse entire rectangle
 % Leg 1: [rmin imax] to [rmin imin]
 % Leg 2: [rmin imin] to [rmax imin]
 % Leg 3: [rmax imin] to [rmax imax]
 % Leg 4: [rmax imax] to [rmin imax]
 prevpoint = [rmin imax];
 guess = prevpoint(1) + 1i*prevpoint(2);
 init_arg =

180/pi*angle(det(eigm2(guess,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b))

);
 prev_arg = init_arg;
 numturns = 0; %number of loops the argument makes about origin
 dpoint = [0 1/lfactor*(imin-imax)]*1/numroots;
 dpointtemp = dpoint;
 dptcount = 0;
 finished = 0;
 darg_all = 5;
 while finished == 0
 % Ensure each point doesn't vary too much in argument
 goodpoint = 0;
 while goodpoint == 0
 if dptcount > 0
 thispoint = prevpoint+dpointtemp;
 dptcount = dptcount-1;
 else
 thispoint = prevpoint+dpoint;
 dpointtemp = dpoint;
 end
 if (legnum == 1) && (thispoint(2) < imin)
 thispoint(2) = imin;
 end
 if (legnum == 2) && (thispoint(1) > rmax)
 thispoint(1) = rmax;
 end
 if (legnum == 3) && (thispoint(2) > imax)
 thispoint(2) = imax;
 end
 if (legnum == 4) && (thispoint(1) < rmin)
 thispoint(1) = rmin;
 end
 guess = thispoint(1) + 1i*thispoint(2);
 point_arg =

180/pi*angle(det(eigm2(guess,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b))

);

119

 if (abs(point_arg - prev_arg) < darg_all) || ...
 ((abs(point_arg - prev_arg) < (darg_all + 360))

&& ...
 (abs(point_arg - prev_arg) > (360 - darg_all)))
 goodpoint = 1;
 else
 if dptcount == 0
 dptcount = 10;
 dpointtemp = dpoint/10;
 else
 dptcount = 10*dptcount;
 dpointtemp = dpointtemp/10;
 end
 end
 if (goodpoint == 0) && (dptcount > 10^7)
 problem = 'Duplicates/check';
 dupnum = dupnum+2;
 lfactor = lfactor*1.5;
 if showdebug == 1
 disp('Discontinuous check path in findoots.m')
 disp(['At ' num2str(thispoint) ', leg '

num2str(legnum)]);
 end
 goodpoint = 1;
 finished = 1;
 end
 end
 % Find the change in angle, record
 if abs(point_arg - prev_arg) < darg_all
 numturns = numturns + (point_arg - prev_arg)/360;
 else
 if abs(point_arg - prev_arg + 360) < darg_all
 numturns = numturns + (point_arg - prev_arg +

360)/360;
 else
 if abs(point_arg - prev_arg - 360) < darg_all
 numturns = numturns + (point_arg - prev_arg -

360)/360;
 else
 if showdebug == 1
 disp('AAAA!!!! Terrible error in

findroots!!!!')
 end
 end
 end
 end

 % Change the leg number if appropriate
 if (thispoint(1) == rmin) && (thispoint(2) == imin)
 legnum = 2;
 dpoint = [1/lfactor*(rmax-rmin) 0]*1/numroots;
 if dptcount > 0
 dpointtemp = dpoint/dptcount;
 end
 end

120

 if (thispoint(1) == rmax) && (thispoint(2) == imin)
 legnum = 3;
 dpoint = [0 1/lfactor*(imax-imin)]*1/numroots;
 if dptcount > 0
 dpointtemp = dpoint/dptcount;
 end
 end
 if (thispoint(1) == rmax) && (thispoint(2) == imax)
 legnum = 4;
 dpoint = [1/lfactor*(rmin-rmax) 0]*1/numroots;
 if dptcount > 0
 dpointtemp = dpoint/dptcount;
 end
 end
 % Check if we're back to the starting point
 if (thispoint(1) == rmin) && (thispoint(2) == imax)
 finished = 1;
 end
 prevpoint = thispoint;
 prev_arg = point_arg;
 end
 if strcmp(problem,'none') && (abs(numturns + 0 - numrootsp -

numrootsm) > 0.05) %numturns + numpoles - numzeros = 0
 if (numturns + 0 - numrootsp - numrootsm) > 0.05
 problem = 'missed_some';
 dupnum = 1;
 else
 if (numrootsp+numrootsm) < (2*numroots)
 problem = 'too_few';
 else
 problem = 'Duplicates/check';
 dupnum = dupnum+2;
 lfactor = lfactor*1.5;
 end
 end
 end
 end

 if strcmp(problem,'none')
 allgood = 1;
 froots = [proots(1:numroots) mroots(1:numroots)];
 else
 % Return error if too many tries.
 if trynum > 20
 disp('Too many tries in findroots!')
 disp('Exiting on error.')
 allgood = -1;
 froots = [];
 end
 if showdebug == 1
 disp(problem)
 end
 trynum = trynum + 1;
 end
end
% Roots found!
if allgood == 1

121

 disp(['Roots found in ' num2str(trynum) ' tries!'])
end
end

%%
% findroots_nl
% by K Marek
%
% This root finder uses intelligently placed seed points to find a

given
% number of roots of the eigenfunction. It then uses the argument
% principle to verify that all the roots in the given area have been

found.
% If problems occur, they are addressed automatically and the function
% tries again. This version finds roots when no liner is present (test
% section or inlet/outlet pipes); r_0 is the outer pipe diameter in any
% case.

function froots = findroots_nl(seeds,numroots,r_0,k_f,w,lambda_f,rho_f,

...
 fguess_all,deltaguess_all)

% global showdebug

% Initialize variables
allgood = 0; % if all desired roots have been found
trynum = 1; % how many tries did it take?
problem = 'none';
lfactor = 1000; % how many segements per length to check phase
rmin = 0; rmax = 0; imin = 0; imax = 0;
slen = length(seeds);
froots = zeros(1,numroots*8+2+slen);
deltaguess_all_orig = deltaguess_all;

while allgood == 0
 % Initial point guesses, based on trynum and problem
 if trynum == 1
 froots(1) = k_f;
 for irt = 1:numroots
 k_rf = (irt+0.5)*pi/r_0;
 guess = 1i*imag(sqrt(k_f^2-k_rf^2));
 if imag(guess) > 0
 guess = -guess;
 end
 froots(1+4*irt) = guess;
 if irt == 1
 froots(2:4) = (1:3)*guess/4;
 else
 froots((4*irt-2):(4*irt)) = froots(4*irt-3)+(1:3)*...
 (guess-froots(4*irt-3))/4;
 end
 end
 froots(4*numroots+2:(end-slen)) = -froots(1:4*numroots+1);
 froots((end-slen+1):end) = seeds;
 else

122

 if strcmp(problem,'missed_some')
 % Choose new root guess locations
 % Be sure they will eventually cover the whole selection
 newroots = zeros(1,((trynum^2+trynum+1)*length(froots)));
 newroots(1:length(froots)) = froots;
 irt = length(froots)+1;
 for i_im = 1:trynum*length(froots)
 ival = imin + (imax-

imin)*i_im/(trynum*length(froots)+1);
 newroots(irt) = 1i*ival;
 for i_re = 1:trynum
 rval = rmin + (rmax-rmin)*i_re/(trynum+1);
 newroots(irt) = rval+1i*ival;
 irt = irt+1;
 end
 end
 froots = newroots;
 end
 if strcmp(problem,'too_few')
 % Keep converged roots, add some more to the end
 newroots = [froots zeros(1,8*trynum)];
 newroots(length(froots)+(1:(4*trynum))) = ...
 (1i*imax*(1+(1:(4*trynum))/(1+length(froots)/2)));
 newroots(length(froots)+4*trynum+(1:(4*trynum))) = -

newroots(length(froots)+(1:(4*trynum)));
 froots = newroots;
 end
 end

 problem = 'none'; %reset problem flag

 % Find roots using gradient method from all initial points
 % Use a Newton-Raphson method to solve for k_zf using initial guess
 % generated by some method above. k2 for k inside silencer region.

 indcmax = 200;
 if trynum > 5
 deltaguess_all = deltaguess_all_orig*5/trynum;
 end

 for indb = 1:length(froots)
 indc = 1;
 convb = 0;

 guess = froots(indb);

 [fguess,fprime] = eigm(guess,w,0,lambda_f,0,rho_f,0,r_0,r_0);

 if(fguess == 0)
 convb = 1;
 end
 while(convb == 0)
 newguess = guess-fguess/fprime;
 deltaguess = abs(newguess-guess);

123

 guess = newguess;
 [fguess,fprime] =

eigm(guess,w,0,lambda_f,0,rho_f,0,r_0,r_0);
 if(indc > indcmax)
 convb = -1;
 problem = 'iterations';
 end
 if((abs(fguess) < (deltaguess_all/2*abs(fprime))) &&

(deltaguess < deltaguess_all))
 convb = 1;
 end
 indc = indc+1;
 end
 froots(indb) = guess;
 if convb == -1
 froots(indb) = -1i*inf;
 problem = 'none';
 end
 end

 % Delete non-converged roots
 inda = 0;
 newroots = zeros(size(froots));
 for indb = 1:length(froots)
 if isfinite(froots(indb))
 newroots(indb-inda) = froots(indb);
 else
 inda = inda+1;
 end
 end
 froots = newroots(1:length(froots)-inda);

 % Sort roots by type
 rpnum = 0;
 rmnum = 0;
 cpnum = 0;
 cmnum = 0;
 rproots = zeros(1,length(froots));
 rmroots = rproots;
 cproots = rproots;
 cmroots = rproots;
 for indb = 1:length(froots)
 if abs(imag(froots(indb))) < deltaguess_all
 if real(froots(indb)) > 0
 rpnum = rpnum+1;
 rproots(rpnum) = real(froots(indb));
 else
 rmnum = rmnum+1;
 rmroots(rmnum) = real(froots(indb));
 end
 else
 if imag(froots(indb)) < 0
 cpnum = cpnum+1;
 cproots(cpnum) = froots(indb);
 else
 cmnum = cmnum+1;

124

 cmroots(cmnum) = froots(indb);
 end
 end
 end
 rproots = rproots(1:rpnum);
 rmroots = rmroots(1:rmnum);
 cproots = cproots(1:cpnum);
 cmroots = cmroots(1:cmnum);

 % Sort each type of root
 newroots = zeros(1,rpnum);
 for indb = 1:rpnum
 [value,index] = max(real(rproots));
 newroots(indb) = rproots(index);
 rproots(index) = -inf;
 end
 rproots = newroots;
 newroots = zeros(1,rmnum);
 for indb = 1:rmnum
 [value,index] = min(real(rmroots));
 newroots(indb) = rmroots(index);
 rmroots(index) = inf;
 end
 rmroots = newroots;
 newroots = zeros(1,cpnum);
 for indb = 1:cpnum
 [value,index] = max(imag(cproots));
 newroots(indb) = cproots(index);
 cproots(index) = -1i*inf;
 end
 cproots = newroots;
 newroots = zeros(1,cmnum);
 for indb = 1:cmnum
 [value,index] = min(imag(cmroots));
 newroots(indb) = cmroots(index);
 cmroots(index) = 1i*inf;
 end
 cmroots = newroots;

 % Eliminate duplicate points
 if rpnum > 1
 dcount = 0;
 newroots = rproots;
 for indb = 2:rpnum
 found_duplicate = 0;
 indb1 = 1;
 while (indb1 < indb) && (found_duplicate == 0)
 if abs(rproots(indb)-rproots(indb1)) <

(2*deltaguess_all)
 dcount = dcount+1;
 found_duplicate = 1;
 end
 indb1 = indb1+1;
 end
 if found_duplicate == 0
 newroots(indb-dcount)=rproots(indb);

125

 end
 end
 rproots=newroots(1:(rpnum-dcount));
 rpnum = rpnum-dcount;
 end
 if rmnum > 1
 dcount = 0;
 newroots = rmroots;
 for indb = 2:rmnum
 found_duplicate = 0;
 indb1 = 1;
 while (indb1 < indb) && (found_duplicate == 0)
 if abs(rmroots(indb)-rmroots(indb1)) <

(2*deltaguess_all)
 dcount = dcount+1;
 found_duplicate = 1;
 end
 indb1 = indb1+1;
 end
 if found_duplicate == 0
 newroots(indb-dcount)=rmroots(indb);
 end
 end
 rmroots=newroots(1:(rmnum-dcount));
 rmnum = rmnum-dcount;
 end
 if cpnum > 1
 dcount = 0;
 newroots = cproots;
 for indb = 2:cpnum
 found_duplicate = 0;
 indb1 = 1;
 while (indb1 < indb) && (found_duplicate == 0)
 if abs(cproots(indb)-cproots(indb1)) <

(2*deltaguess_all)
 dcount = dcount+1;
 found_duplicate = 1;
 end
 indb1 = indb1+1;
 end
 if found_duplicate == 0
 newroots(indb-dcount)=cproots(indb);
 end
 end
 cproots=newroots(1:(cpnum-dcount));
 cpnum = cpnum-dcount;
 end
 if cmnum > 1
 dcount = 0;
 newroots = cmroots;
 for indb = 2:cmnum
 found_duplicate = 0;
 indb1 = 1;
 while (indb1 < indb) && (found_duplicate == 0)
 if abs(cmroots(indb)-cmroots(indb1)) <

(2*deltaguess_all)
 dcount = dcount+1;

126

 found_duplicate = 1;
 end
 indb1 = indb1+1;
 end
 if found_duplicate == 0
 newroots(indb-dcount)=cmroots(indb);
 end
 end
 cmroots=newroots(1:(cmnum-dcount));
 cmnum = cmnum-dcount;
 end

 % Check that enough roots were found (problem = 'too_few')
 if min(rpnum+cpnum,rmnum+cmnum) < numroots
 problem = 'too_few';
 froots = [rproots cproots rmroots cmroots];
 imax = 1.1*max(imag([froots,-k_f,0.05i]));
 imin = 1.1*min(imag([froots,k_f,-0.05i]));
 rmax = min(1.1*max(real([froots,k_f])));
 rmin = max(1.1*min(real([froots,-k_f])));
 numrootsp = rpnum+cpnum;
 numrootsm = rmnum+cmnum;
 else
 proots = [rproots cproots];
 mroots = [rmroots cmroots];
 if min(imag(proots)) == 0
 imin = -1;
 numrootsp = numroots;
 else if length(proots) == numroots
 if numroots == 1
 imin = 1.1*min([imag(proots(numroots)),-.05]);
 numrootsp = numroots;
 else
 imin = imag(proots(numroots)) + ...
 0.1*(imag(proots(numroots))-

imag(proots(numroots-1)));
 numrootsp = numroots;
 end
 else
 numrootsp = numroots;
 pdone = 0;
 for indd = (numroots+1):length(proots)
 if (imag(proots(indd)) >

1.01*imag(proots(numrootsp)))
 numrootsp = indd;
 imin = 1.02*imag(proots(indd));
 else
 if (pdone == 0)
 imin = imag(proots(numrootsp)) +

0.1*(imag(proots(indd)) - ...
 imag(proots(indd-1)));
 pdone = 1;
 end
 end
 end
 end
 end

127

 if max(imag(mroots)) == 0
 imax = 1;
 numrootsm = numroots;
 else if length(mroots) == numroots
 if numroots == 1
 imax = 1.1*imag(mroots(numroots));
 numrootsm = numroots;
 else
 imax = imag(mroots(numroots)) + ...
 0.1*(imag(mroots(numroots))-

imag(mroots(numroots-1)));
 numrootsm = numroots;
 end
 else
 numrootsm = numroots;
 mdone = 0;
 for indd = (numroots+1):length(mroots)
 if (imag(mroots(indd)) <

1.01*imag(mroots(numroots)))
 numrootsm = indd;
 imax = 1.02*imag(mroots(indd));
 else
 if (mdone == 0)
 imax = imag(mroots(numrootsm)) +

0.1*(imag(mroots(indd)) - ...
 imag(mroots(indd-1)));
 mdone = 1;
 end
 end
 end
 end
 end
 froots = [proots(1:numrootsp) mroots(1:numrootsm)];
 end

 rmax = 1.1*max(real([froots,k_f]));
 rmin = 1.1*min(real([froots,-k_f]));
 % Use argument principle to determine if all contained roots were

found
 if strcmp(problem,'none') || strcmp(problem,'too_few') %continue if

no problems so far
 legnum = 1; %four legs to traverse entire rectangle
 % Leg 1: [rmin imax] to [rmin imin]
 % Leg 2: [rmin imin] to [rmax imin]
 % Leg 3: [rmax imin] to [rmax imax]
 % Leg 4: [rmax imax] to [rmin imax]
 prevpoint = [rmin imax];
 guess = prevpoint(1) + 1i*prevpoint(2);
 init_arg =

180/pi*angle(eigm2(guess,w,0,lambda_f,0,rho_f,0,r_0,r_0));
 prev_arg = init_arg;
 numturns = 0; %number of loops the argument makes about origin
 dpoint = [0 1/lfactor*(imin-imax)]*1/numroots;
 dpointtemp = dpoint;
 dptcount = 0;
 finished = 0;
 darg_all = 5;

128

 while finished == 0
 % Ensure each point doesn't vary too much in argument
 goodpoint = 0;
 while goodpoint == 0
 if dptcount > 0
 thispoint = prevpoint+dpointtemp;
 dptcount = dptcount-1;
 else
 thispoint = prevpoint+dpoint;
 dpointtemp = dpoint;
 end
 if (legnum == 1) && (thispoint(2) < imin)
 thispoint(2) = imin;
 end
 if (legnum == 2) && (thispoint(1) > rmax)
 thispoint(1) = rmax;
 end
 if (legnum == 3) && (thispoint(2) > imax)
 thispoint(2) = imax;
 end
 if (legnum == 4) && (thispoint(1) < rmin)
 thispoint(1) = rmin;
 end
 guess = thispoint(1) + 1i*thispoint(2);
 point_arg =

180/pi*angle(eigm2(guess,w,0,lambda_f,0,rho_f,0,r_0,r_0));

 if (abs(point_arg - prev_arg) < darg_all) || ...
 ((abs(point_arg - prev_arg) < (darg_all + 360))

&& ...
 (abs(point_arg - prev_arg) > (360 - darg_all)))
 goodpoint = 1;
 else
 if dptcount == 0
 dptcount = 10;
 dpointtemp = dpoint/10;
 else
 dptcount = 10*dptcount;
 dpointtemp = dpointtemp/10;
 end
 end
 if (goodpoint == 0) && (dptcount > 10^7)
 problem = 'missed_some';
 if showdebug == 1
 disp('Discontinuous check path in findoots.m')
 disp(['At ' num2str(thispoint) ', leg '

num2str(legnum)]);
 end
 goodpoint = 1;
 finished = 1;
 end
 end
 % Find the change in angle, record
 if abs(point_arg - prev_arg) < darg_all
 numturns = numturns + (point_arg - prev_arg)/360;
 else
 if abs(point_arg - prev_arg + 360) < darg_all

129

 numturns = numturns + (point_arg - prev_arg +

360)/360;
 else
 if abs(point_arg - prev_arg - 360) < darg_all
 numturns = numturns + (point_arg - prev_arg -

360)/360;
 else
 if showdebug == 1
 disp('AAAA!!!! Terrible error in

findroots_nl.m!!!!')
 end
 end
 end
 end

 % Change the leg number if appropriate
 if (thispoint(1) == rmin) && (thispoint(2) == imin)
 legnum = 2;
 dpoint = [1/lfactor*(rmax-rmin) 0]*1/numroots;
 if dptcount > 0
 dpointtemp = dpoint/dptcount;
 end
 end
 if (thispoint(1) == rmax) && (thispoint(2) == imin)
 legnum = 3;
 dpoint = [0 1/lfactor*(imax-imin)]*1/numroots;
 if dptcount > 0
 dpointtemp = dpoint/dptcount;
 end
 end
 if (thispoint(1) == rmax) && (thispoint(2) == imax)
 legnum = 4;
 dpoint = [1/lfactor*(rmin-rmax) 0]*1/numroots;
 if dptcount > 0
 dpointtemp = dpoint/dptcount;
 end
 end
 % Check if we're back to the starting point
 if (thispoint(1) == rmin) && (thispoint(2) == imax)
 finished = 1;
 end
 prevpoint = thispoint;
 prev_arg = point_arg;
 end
 if strcmp(problem,'none') && (abs(numturns + 0 - numrootsp -

numrootsm) > 0.05) %numturns + numpoles - numzeros = 0
 if (numturns + 0 - numrootsp - numrootsm) > 0.05
 problem = 'missed_some';
 else
 problem = 'too_few';
 end
 end
 end

 if strcmp(problem,'none')
 allgood = 1;

130

 froots = [proots(1:numroots) mroots(1:numroots)];
 else
 % Return error if too many tries.
 if trynum > 20
 disp('Too many tries in findroots_nl!')
 disp('Exiting on error.')
 allgood = -1;
 froots = [];
 end
 if showdebug == 1
 disp(problem)
 disp(froots)
 end
 trynum = trynum + 1;
 end
end
% Roots found!
if allgood == 1
 disp(['Roots found in ' num2str(trynum) ' tries!'])
end
clearvars -except freq Pc1 Pc2 Ps r_0 r_a0 r_b zlen L o n m TLmat

PcPlot PcVec PsVec unitset supNum overall starttime fileName total TL

froots
end

%%
%eigm
% by K Marek
% June 2011
%
% Provides the matrix whose determinant is the eigenfunction. Also
% provides the matrix where each element is the derivative wrt/kx of

the
% corresponding 'eigenmatrix' elements. This should save processing

time
% over calculating it all more than once.

function [E,dE] = eigm(kz,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b)

choice1 = 2; %2 for compressive liner, 3 for no liner

%test for no liner condition (also for up/down-stream pipe section)
if r_a == r_b
 choice1 = 3;
 clear E dE
end

% Derive needed quantities
c_L = sqrt(lambda/rho_s);
c_f = sqrt(lambdaf/rho_f);
kL = w/c_L;
kf = w/c_f;
krL = sqrt(kL^2-kz^2);
krf = sqrt(kf^2-kz^2);

%Bessel functions are re-used enough that it's probably worth just

131

%calculating them once.
j0fa = besselj(0,krf*r_a);
j1fa = besselj(1,krf*r_a);

if choice1 < 3
 j0La = besselj(0,krL*r_a);
 j1La = besselj(1,krL*r_a);
 y0La = bessely(0,krL*r_a);
 y1La = bessely(1,krL*r_a);
 j0Lb = besselj(0,krL*r_b);
 j1Lb = besselj(1,krL*r_b);
 y0Lb = bessely(0,krL*r_b);
 y1Lb = bessely(1,krL*r_b);
end

if choice1 == 2 %just compression waves
 % Populate matrix
 E = zeros(3);
 %row 1: continuity of radial displacement at r=a
 E(1,1) = krf/w*j1fa;
 E(1,2) = -krL/w*j1La;
 E(1,3) = -krL/w*y1La;
 %row 2: continuity of stress/pressure at r=a (add limp mass sheet)
 E(2,1) = kf^2/w^2*lambdaf*j0fa - krf*sig*j1fa;
 E(2,2) = -kL^2/w^2*lambda*j0La;
 E(2,3) = -kL^2/w^2*lambda*y0La;
 %row 3: zero radial displacement at r=b
 E(3,2) = -krL/w*j1Lb;
 E(3,3) = -krL/w*y1Lb;

 %Populate derivative matrix
 dE = zeros(3);
 %row 1
 dE(1,1) = 1/w*-kz*r_a*j0fa;
 dE(1,2) = 1/w*kz*r_a*j0La;
 dE(1,3) = 1/w*kz*r_a*y0La;
 %row 2
 dE(2,1) = (1/w^2)*lambdaf*kf^2*kz*r_a/krf*j1fa + sig*kz*r_a*j0fa;
 dE(2,2) = (1/w^2)*(-lambda*kL^2*kz*r_a/krL*j1La);
 dE(2,3) = (1/w^2)*(-lambda*kL^2*kz*r_a/krL*y1La);
 %row 3
 dE(3,2) = 1/w*kz*r_b*j0Lb;
 dE(3,3) = 1/w*kz*r_b*y0Lb;
end

if choice1 == 3 %no liner
 % Populate matrix
 E = zeros(1);
 %row 1: continuity of radial displacement at r=a
 E(1,1) = krf/w*j1fa;

 %Populate derivative matrix
 dE = zeros(1);
 %row 1
 dE(1,1) = 1/w*-kz*r_a*j0fa;

132

end

end

%%
%eigm2
% by K Marek
% June 2011
%
% Provides the matrix whose determinant is the eigenfunction. Omits
% derivative matrix.

function [E] = eigm2(kz,w,lambda,lambdaf,rho_s,rho_f,sig,r_a,r_b)

choice1 = 2; %2 for compressive liner, 3 for no liner

%test for no liner condition (also for up/down-stream pipe section)
if r_a == r_b
 choice1 = 3;
 clear E
end

% Derive needed quantities
c_L = sqrt(lambda/rho_s);
c_f = sqrt(lambdaf/rho_f);
kL = w/c_L;
kf = w/c_f;
krL = sqrt(kL^2-kz^2);
krf = sqrt(kf^2-kz^2);

%Bessel functions are re-used enough that it's probably worth just
%calculating them once.
j0fa = besselj(0,krf*r_a);
j1fa = besselj(1,krf*r_a);

if choice1 < 3
 j0La = besselj(0,krL*r_a);
 j1La = besselj(1,krL*r_a);
 y0La = bessely(0,krL*r_a);
 y1La = bessely(1,krL*r_a);
 j1Lb = besselj(1,krL*r_b);
 y1Lb = bessely(1,krL*r_b);
end

if choice1 == 2 %just compression waves
 % Populate matrix
 E = zeros(3);
 %row 1: continuity of radial displacement at r=a
 E(1,1) = krf/w*j1fa;
 E(1,2) = -krL/w*j1La;
 E(1,3) = -krL/w*y1La;
 %row 2: continuity of stress/pressure at r=a (add limp mass sheet)
 E(2,1) = kf^2/w^2*lambdaf*j0fa - krf*sig*j1fa;
 E(2,2) = -kL^2/w^2*lambda*j0La;
 E(2,3) = -kL^2/w^2*lambda*y0La;

133

 %row 3: zero radial displacement at r=b
 E(3,2) = -krL/w*j1Lb;
 E(3,3) = -krL/w*y1Lb;
end

if choice1 == 3 %no liner
 % Populate matrix
 E = zeros(1);
 %row 1: continuity of radial displacement at r=a
 E(1,1) = krf/w*j1fa;
end

end

%%
%adjugate2
% by K Marek
%
% Finds matrix adjugate

function B = adjugate2(A)

[m,n] = size(A);
if (m ~= n) || (n < 2)
 error('Matrix A should be size n x n with n >= 2.')
end

C = zeros(n);
for ind1 = 1:n
 A1 = [A(1:ind1-1,:); A(ind1+1:n,:)];
 for ind2 = 1:n
 A2 = [A1(:,1:ind2-1), A1(:,ind2+1:n)];
 C(ind1,ind2) = (-1)^(ind1+ind2)*det(A2);
 end
end
B = C.';
end

%%
%bint
%by K Marek, June 2010
%
% This function integrates J0 or Y0 of k*r.
% It takes a series approximation of the Struve function until it

appears
% to converge.
% char 'type' must be 'j' for besselj or 'y' or 'n' for bessely.

function int_ans = bint(kr,r0,r1,type)

%% int(r*J0) method
if (kr == 0) && (type == 'j')
 int_ans = 0.5*(r1^2-r0^2);
 return
end

134

if r0 == r1
 int_ans = 0;
 return
end
if type == 'j'
 int_ans = r1/kr*besselj(1,kr*r1) - r0/kr*besselj(1,kr*r0);
else
 if type == 'y' || type == 'n'
 int_ans = r1/kr*bessely(1,kr*r1) - r0/kr*bessely(1,kr*r0);
 else
 int_ans = 0;
 disp('Invalid input format to bint.m.')
 return
 end
end

end

%%
%getzp2
%by K Marek
%March 2010
%
%This file may be used to import experimental data to get downstream
%port impedance. By default it gives downstream reflectionless

condition.

function Zp2 = getzp2(freq, Z_f);

%If reflectionless coefficient is to be used:
 Zp2 = Z_f;
 return

% Else load data from a file
% Do stuff here

end %end function getzp2

%%
%proc
%by K Marek, June 2010
% Mode matching - generates correct relative amplitudes for each mode,

from
% which TL calculation is derived

function datstruct = proc(datstruct)

disp('Finding modal amplitudes and TL');

global showdebug

freq = datstruct.freq;
freqw = datstruct.freqw;
numharm = datstruct.numharm;
nummode = datstruct.nummode;

135

k1_rf = datstruct.k1_rf;
k1_zf = datstruct.k1_zf;
r_0 = datstruct.r_0;
k2_rf = datstruct.k2_rf;
k2_rL = datstruct.k2_rL;
k2_zf = datstruct.k2_zf;
r_a = datstruct.r_a;
r_b = datstruct.r_b;
zlen = datstruct.zlen;
rho_f = datstruct.rho_f;
rho_s = datstruct.rho_s;
sig = datstruct.sig;
c_f = datstruct.c_f;
lambda_f = datstruct.lambda_f;
lambda = datstruct.lambda;
Zp2plus = datstruct.Zp2plus;
kf = datstruct.k_f;
kL = datstruct.k_L;

numpmode = datstruct.numpmode;
numlmode = datstruct.numlmode;
numpint = datstruct.numpint;
numlint = datstruct.numlint;

k1fp = k1_rf(:,1:nummode);
k1fm = k1_rf(:,(nummode+1):2*nummode);
k1zp = k1_zf(:,1:nummode);
k1zm = k1_zf(:,(nummode+1):2*nummode);
k2fp = k2_rf(:,1:nummode);
k2fm = k2_rf(:,(nummode+1):2*nummode);
k2Lp = k2_rL(:,1:nummode);
k2Lm = k2_rL(:,(nummode+1):2*nummode);
k2zp = k2_zf(:,1:nummode);
k2zm = k2_zf(:,(nummode+1):2*nummode);

% 2-D compression/shear wave method
R_1 = zeros(numharm,1);
T_1 = R_1;
TL = R_1;
F_1 = R_1;
F_2 = R_1;
badfreq = zeros(1,numharm);
coef_mat = zeros(3*numpmode+2*nummode,numharm);

pcp = zeros(3,nummode,numharm);
pcm = pcp;

for inda1 = 1:numharm

 % Calculate propagation coefficients for each mode
 for inda2 = 1:nummode
 Ep =

eigm2(k2zp(inda1,inda2),freqw(inda1),lambda(inda1),lambda_f(inda1),rho_

s,rho_f,sig,r_a,r_b);

136

 Em =

eigm2(k2zm(inda1,inda2),freqw(inda1),lambda(inda1),lambda_f(inda1),rho_

s,rho_f,sig,r_a,r_b);
 temp1 = -Ep(:,1);
 Elen = length(temp1);
 temp1 = temp1(1:(Elen-1),1);
 Ep = Ep(1:(Elen-1),2:Elen);
 pcptemp = [1; linsolve(Ep,temp1)];
 pcp(:,inda2,inda1) = pcptemp/sqrt(abs(pcptemp.'*pcptemp));

%normalize
 if (rcond(Ep) < eps) || ~isfinite(rcond(Ep))
 badfreq(inda1) = 1;
 if showdebug == 1
 disp(['Ill conditioned matrix freq '

num2str(freq(inda1))...
 ', harm ' num2str(inda1) '.']);
 disp(Ep)
 disp(temp1)
 disp(pcp)
 end
 end
 temp1 = -Em(1:(Elen-1),1);
 Em = Em(1:(Elen-1),2:Elen);
 pcmtemp = [1; linsolve(Em,temp1)];
 pcm(:,inda2,inda1) = pcmtemp/sqrt(abs(pcmtemp.'*pcmtemp));

%normalize
 %Order of coeffeicients: F,L1,L2,T1,T2.
 clear temp1 pcptemp pcmtemp
 end

 % Set up integral matrices
 intP1p = zeros(numpint,nummode);
 intP2p = zeros(numpint,nummode);
 intP1m = zeros(numpint,nummode);
 intP2m = zeros(numpint,nummode);
 intU1p = zeros(numpint,nummode);
 intU2p = zeros(numpint,nummode);
 intU1m = zeros(numpint,nummode);
 intU2m = zeros(numpint,nummode);

 for inda3 = 1:nummode %mode number

 %Some useful constants we'd like to calculate only once
 temp1p = bint(k1fp(inda1,inda3),0,r_0,'j');
 temp2p = bint(k2fp(inda1,inda3),0,r_a,'j');
 temp1m = bint(k1fm(inda1,inda3),0,r_0,'j');
 temp2m = bint(k2fm(inda1,inda3),0,r_a,'j');

 %Calculate where to look at pressure continuity and zero shear
 %stress
 rp1 = r_0*(1:numpint)/numpint; %where we look at pressure
 rp3 = r_b*(1:numpint)/numpint; %and at displacement

 for inda2 = 1:max([nummode,numpint,numlint]) %iterate integrals

across port faces
 if inda2 <= numpint %Pressure matching

137

 intP1p(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*bint(k1fp(inda1,inda3),0,rp1(inda2),'j');
 intP1m(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*bint(k1fm(inda1,inda3),0,rp1(inda2),'j');
 if rp1(inda2) <= r_a
 intP2p(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*pcp(1,inda3,inda1)*bint(k2fp(inda1,inda3),0

,rp1(inda2),'j');
 intP2m(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*pcm(1,inda3,inda1)*bint(k2fm(inda1,inda3),0

,rp1(inda2),'j');
 else
 %compression waves
 intP2p(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*pcp(1,inda3,inda1)*temp2p + ...
 (-kL(inda1)^2*lambda(inda1))*...

(pcp(2,inda3,inda1)*bint(k2Lp(inda1,inda3),r_a,rp1(inda2),'j') ...
 +

pcp(3,inda3,inda1)*bint(k2Lp(inda1,inda3),r_a,rp1(inda2),'y'));
 intP2m(inda2,inda3) = -

kf(inda1)^2*lambda_f(inda1)*pcm(1,inda3,inda1)*temp2m + ...
 (-kL(inda1)^2*lambda(inda1))*...

(pcm(2,inda3,inda1)*bint(k2Lm(inda1,inda3),r_a,rp1(inda2),'j') ...
 +

pcm(3,inda3,inda1)*bint(k2Lm(inda1,inda3),r_a,rp1(inda2),'y'));
 if showdebug == 1
 disp('Note: liner overlaps port!');
 end
 end
 end

 if inda2 <= numpint
 if rp3(inda2) <= r_0
 intU1p(inda2,inda3) = -1i*k1zp(inda1,inda3)*...
 bint(k1fp(inda1,inda3),0,rp3(inda2),'j');
 intU1m(inda2,inda3) = -1i*k1zm(inda1,inda3)*...
 bint(k1fm(inda1,inda3),0,rp3(inda2),'j');
 else
 intU1p(inda2,inda3) = -1i*k1zp(inda1,inda3)*temp1p;
 intU1m(inda2,inda3) = -1i*k1zm(inda1,inda3)*temp1m;
 end
 if rp3(inda2) <= r_a
 intU2p(inda2,inda3) = -

1i*k2zp(inda1,inda3)*pcp(1,inda3,inda1)*...
 bint(k2fp(inda1,inda3),0,rp3(inda2),'j');
 intU2m(inda2,inda3) = -

1i*k2zm(inda1,inda3)*pcm(1,inda3,inda1)*...
 bint(k2fm(inda1,inda3),0,rp3(inda2),'j');
 else
 intU2p(inda2,inda3) = -

1i*k2zp(inda1,inda3)*pcp(1,inda3,inda1)*temp2p + ...
 (-

1i*k2zp(inda1,inda3))*(pcp(2,inda3,inda1)*bint(k2Lp(inda1,inda3),r_a,rp

3(inda2),'j')...

138

+pcp(3,inda3,inda1)*bint(k2Lp(inda1,inda3),r_a,rp3(inda2),'y'));
 intU2m(inda2,inda3) = -

1i*k2zm(inda1,inda3)*pcm(1,inda3,inda1)*temp2m + ...
 (-

1i*k2zm(inda1,inda3))*(pcm(2,inda3,inda1)*bint(k2Lm(inda1,inda3),r_a,rp

3(inda2),'j')...

+pcm(3,inda3,inda1)*bint(k2Lm(inda1,inda3),r_a,rp3(inda2),'y'));
 end
 end
 end
 end

 %Now fill up linear equations matrix with boundary conditions
 matA = zeros(4*numpint+2*numlint+numpmode,2*nummode+3*numpmode);
 matB = zeros(4*numpint+2*numlint+numpmode,1);

 for inda2 = 1:numpint
 %'A' coefficients: matB vector
 matB(inda2) = -intU1p(inda2,1); %p1 disp
 matB(2*numpint+2*numlint+inda2) = -intP1p(inda2,1); %p1

pressure
 end

 for inda2 = 1:nummode
 %KEY:
 %First rows: displacement at port 1
 %Second rows: displacement at port 2
 %Third rows (if applicable): shear stress at port 1
 %Fourth rows (if applicable): shear stress at port 2
 %Fifth rows: pressure at port 1
 %Sixth rows: pressure at port 2
 %Seventh rows: impedance condition for port 2

 if inda2 <= numpmode

 %'B' coefficients
 matA(1:numpint,inda2) = intU1m(:,inda2); %p1 disp
 matA(2*numpint+2*numlint+(1:numpint),inda2) =

intP1m(:,inda2); %p1 pressure

 %'E' coefficients
 matA(numpint+(1:numpint),numpmode+2*nummode+inda2) = ...
 -intU1p(:,inda2); %p2 disp

matA(3*numpint+2*numlint+(1:numpint),numpmode+2*nummode+inda2) = ...
 -intP1p(:,inda2); %p2 pressure
 if inda2==1
 % Zp2 only for plane wave modes; rest are evanescent

and
 % shouldn't have any reflections
 matA(4*numpint+2*numlint+1,numpmode+2*nummode+inda2) =

...

139

1i*freqw(inda1)*Zp2plus(inda1)*intU1p(numpint,inda2) +

intP1p(numpint,inda2);
 end

 %'F' coefficients
 matA(numpint+(1:numpint),2*numpmode+2*nummode+inda2) = ...
 -intU1m(:,inda2); %p2 disp

matA(3*numpint+2*numlint+(1:numpint),2*numpmode+2*nummode+inda2) = ...
 -intP1m(:,inda2); %p2 pressure
 if inda2==1
 % Zp2 only for plane wave modes; rest are evanescent

and
 % shouldn't have any reflections
 matA(4*numpint+2*numlint+1,2*numpmode+2*nummode+inda2)

= ...

1i*freqw(inda1)*Zp2plus(inda1)*intU1m(numpint,inda2) +

intP1m(numpint,inda2);
 else
 %set all other F coefficients to zero

matA(4*numpint+2*numlint+inda2,2*numpmode+2*nummode+inda2) = 1;
 end
 end

 %'C' coefficients
 matA(1:numpint,numpmode+inda2) = -intU2p(:,inda2); %p1 disp
 matA(numpint+(1:numpint),numpmode+inda2) = ...
 intU2p(:,inda2)*exp(-1i*k2zp(inda1,inda2)*zlen); %p2 disp
 matA(2*numpint+2*numlint+(1:numpint),numpmode+inda2) = -

intP2p(:,inda2); %p1 pressure
 matA(3*numpint+2*numlint+(1:numpint),numpmode+inda2) = ...
 intP2p(:,inda2)*exp(-1i*k2zp(inda1,inda2)*zlen); %p2

pressure

 %'D' coefficients
 matA(1:numpint,numpmode+nummode+inda2) = ...
 -intU2m(:,inda2)*exp(1i*k2zm(inda1,inda2)*zlen); %p1 disp
 matA(numpint+(1:numpint),numpmode+nummode+inda2) =

intU2m(:,inda2); %p2 disp
 matA(2*numpint+2*numlint+(1:numpint),numpmode+nummode+inda2) =

...
 -intP2m(:,inda2)*exp(1i*k2zm(inda1,inda2)*zlen); %p1

pressure
 matA(3*numpint+2*numlint+(1:numpint),numpmode+nummode+inda2) =

intP2m(:,inda2); %p2 pressure

 end

 %Re-scale things!
 for ind5 = 1:(4*numpint+2*numlint+numpmode)

140

 temp = max(abs(matA(ind5,:)));
 matA(ind5,:) = matA(ind5,:)/temp;
 matB(ind5) = matB(ind5)/temp;
 end

 matS = linsolve(matA,matB); %solution matrix
 temp = size(matA);
 if temp(1) == temp(2)
 if (rcond(matA) < eps) || ~isfinite(rcond(matA))
 if showdebug == 1
 disp(['Ill conditioned matrix freq '

num2str(freq(inda1))...
 ', harm ' num2str(inda1) '.']);
 end
 badfreq(inda1) = 1;
 end
 end

 R_1(inda1) = matS(1);
 T_1(inda1) = matS(2*nummode+numpmode+1);
 F_1(inda1) = T_1(inda1)*((Zp2plus(inda1)-rho_f*c_f)/ ...
 (Zp2plus(inda1)+rho_f*c_f));
 F_2(inda1) = matS(2*nummode+2*numpmode+1); %unused; F_2 = F_1 in

theory
 TL(inda1) = -20*log10(abs((T_1(inda1)-R_1(inda1)*F_1(inda1))/...
 (1-F_1(inda1)^2)));

 coef_mat(:,inda1)=matS;

 datstruct.TL = TL;
 datstruct.coef_mat = coef_mat;
 datstruct.pcp = pcp;
 datstruct.pcm = pcm;
 datstruct.badfreq = badfreq;
 datstruct.numpmode = numpmode;
 datstruct.numlmode = numlmode;
 datstruct.numpint = numpint;
 datstruct.numlint = numlint;
end

end

141

APPENDIX B

WEIGHTING FUNCTION

function WeightingOpt2(fileName,W,D,div)

%Function: WeightingOpt.m
%Version: 2
%Revisions: Handles new input for either a single suppressor or double
%suppressor configuration
%Inputs:
% fileName - the saved file from TL_calc that includes the freq

(vector 1 x V),
% PcVec (vector 1 x W), PsVec (vector 1 x X), PcPlot (vector 1 x

W),
% unitset, subNum and TLmat (matrix W x W x X x V)
% W - Frequency weighting factor, the min frequency and max

frequency
% must be the same as the input to TL_calc but the resolution may

be
% different. WeightingOpt will interpolate the vectors to make

them
% the same dimension. W must have a row for each system pressure.
% (vector X x Y)
% D - Time weighting factor, must have a non-negative entry for

each
% system pressure (vector 1 x X)
%Optional Inputs:
% div - The number of color bands on the contour plot. A higher
% number gives better resolution but slows down processing.

Default
% value is 40.
%Outputs:
% The optimal charge pressure is displayed in the command window
% A contour plot should the value of the objective function for

all
% charge pressure pairings

if nargin==3
 div=40; %Default amount of color divisions
end
eval(['load ' fileName])
% Data File check, ensures that all need variables are in the file.
if exist('TLmat','var')==0
 error('No Transmission Loss matrix in fileName (other variables may

be missing as well)')
elseif exist('supNum','var')==0
 error('No suppressor number in fileName (other variables may be

missing as well)')
elseif exist('PcPlot','var')==0
 error('No plot vector in fileName (other variables may be missing

as well)')
elseif exist('PcVec','var')==0
 error('No charge vector in fileName (other variables may be missing

as well)')

142

elseif exist('freq','var')==0
 error('No frequency vector in fileName (other variables may be

missing as well)')
elseif exist('unitset','var')==0
 error('No unit set in fileName')
end

% Input Check, Ensures that every input is the correct size
[Wrow Wcol]=size(W);
LPs = length(PsVec);
LD = length(D);
if Wrow == LPs && LPs == LD
elseif Wrow == LPs && LPs ~= LD
 error('Every Static Pressure does not have a time weighting

factor')
elseif Wrow ~= LPs && LPs == LD
 error('Every Static Pressure does not have a frequency weighting

factor')
elseif Wrow ~= LPs && LPs ~= LD
 error('Every Static Pressure does not have a time weighting factor

and a frequency weighting factor')
end
switch supNum
case 2
 %Weights each frequency using the frequency weighting factor,

creating the Wmat
 %matrix which is 3 dimensional (W x W x X)
 Wmat=zeros(length(PcVec),length(PcVec),length(PsVec)); %initializes

the Wmat matrix
 for xx=1:length(PcVec)
 for yy=1:length(PcVec)
 for zz=1:length(PsVec)

TLint=interp1(freq,reshape(TLmat(xx,yy,zz,:),size(freq)),linspace(min(f

req),max(freq),Wcol)); %Interpolates TL for a given condtion to the

same size as W
 Wmat(xx,yy,zz)=mean(W(zz,:).*TLint,2); %weights each

frequency, takes the average and puts it into the correct location
 end
 end
 end

 %Weights each system pressure using the time weighting factor,

creating the
 %Dmat matrix which is 2 dimensional (W x W)
 D=D./sum(D);
 Dmat=zeros(length(PcVec),length(PcVec));
 for xx=1:length(PcVec)
 for yy=1:length(PcVec)
 Dmat(xx,yy)=sum(D.*reshape(Wmat(xx,yy,:),size(D)),2);
 end
 end

143

 DmatN=Dmat+Dmat.'-diag(diag(Dmat)); %Only half of the coniditions

are simulated
 %since the results are symmetric, this line fills in the matrix
 step=(max(max(DmatN))-min(min(DmatN)))/div;%This determines the

number of
 % color steps on the graph currently there are 40. Fewer does not

show
 % enough resolution while more slows down processing.

 [aa bb]=max(DmatN);
 [~, dd]=max(aa);
 Char1=PcPlot(dd);
 Char2=PcPlot(bb(dd));

 DmatN=DmatN./max(max(DmatN)); %Normalization

 % figure %
 % plot(PcVec./1e6,diag(DmatN))
 % xlabel('Charge Pressure (MPa)')
 % ylabel('Magnitude of Objective Function')
 % axis([min(PcVec./1e6),max(PcVec./1e6),0,1])
 figure
 contourf(PcPlot,PcPlot,DmatN,div,'LineStyle','none');%
 colorbar
 switch unitset
 case 'English'
 xlabel('Charge Pressure 1 (psi)')
 ylabel('Charge Pressure 2 (psi)')
 title(['The optimal charge pressure pairing is

'num2str(Char1) ' psi and ' num2str(Char2) ' psi.'])
 case 'Metric'
 xlabel('Charge Pressure 1 (Pa)')
 ylabel('Charge Pressure 2 (Pa)')
 title(['The optimal charge pressure pairing is '

num2str(Char1) ' psi and ' num2str(Char2) ' psi.'])
 end

 switch unitset %Displays the optimal condition in the command

window, depending on unit set
 case 'English'
 DisMat=['Static Pressures: ';'Normalized D: '];

DisMat2=num2str([round(PsVec./6894.75729);round(100*D)./100]);
 disp(['The optimal charge pressure pairing is '

num2str(Char1) ' psi and ' num2str(Char2) ' psi.'])
 disp([DisMat DisMat2]) %Displays the normalized Time

Weighting Factor
 case 'Metric'
 DisMat=['Static Pressures: ';'Normalized D: '];
 DisMat2=num2str([round(PsVec);round(100*D)./100]);
 disp(['The optimal charge pressure pairing is '

num2str(Char1) ' Pa and ' num2str(Char2) ' Pa.'])
 disp([DisMat DisMat2]) %Displays the normalized Time

Weighting Factor
 end
case 1

144

 %Weights each frequency using the frequency weighting factor,

creating the Wmat
 %matrix which is 3 dimensional (W x W x X)
 Wmat=zeros(length(PcVec),length(PsVec)); %initializes the Wmat

matrix
 for xx=1:length(PcVec)
 for zz=1:length(PsVec)

TLint=interp1(freq,reshape(TLmat(xx,zz,:),size(freq)),linspace(min(freq

),max(freq),Wcol)); %Interpolates TL for a given condtion to the same

size as W
 Wmat(xx,zz)=mean(W(zz,:).*TLint,2); %weights each

frequency, takes the average and puts it into the correct location
 end
 end

 %Weights each system pressure using the time weighting factor,

creating the
 %Dmat matrix which is 2 dimensional (W x W)
 D=D./sum(D);
 Dmat=zeros(length(PcVec),1);
 for xx=1:length(PcVec)
 Dmat(xx)=mean(D.*reshape(Wmat(xx,:),size(D)),2);
 end

 Dmat=Dmat./max(max(Dmat));
 figure
 plot(PcPlot.',Dmat)
 ylabel('Magnitude of Objective Function')
 axis([min(PcPlot),max(PcPlot),0,1])
 [aa bb]=max(Dmat);
 Char1=PcPlot(bb);
 switch unitset %Displays the optimal condition in the command

window, depending on unit set
 case 'English'
 Tmat=['Static Pressures: ';'Normalized D: '];

Tmat2=num2str([round(PsVec./6894.75729);round(100*D)./100]);
 disp(['The optimal charge pressure is ' num2str(Char1) '

psi.'])
 disp([Tmat Tmat2])
 case 'Metric'
 Tmat=['Static Pressures: ';'Normalized D: '];
 Tmat2=num2str([round(PsVec);round(100*D)./100]);
 disp(['The optimal charge pressure pairing is '

num2str(Char1) ' Pa.'])
 disp([Tmat Tmat2])
 end
 switch unitset
 case 'English'
 xlabel('Charge Pressure 1 (psi)')
 title(['The optimal charge pressure pairing is '

num2str(Char1) ' psi.'])
 case 'Metric'
 xlabel('Charge Pressure 1 (Pa)')

145

 title(['The optimal charge pressure pairing is '

num2str(Char1) ' psi.'])
 end
end

146

REFERENCES

[1] E. Arendt. Pulsation Absorbing Device. USPTO Pat. No. 4,759,387 (1988).

[2] J.C. Shiery. Noise Suppressor. USPTO Pat. No. 5,732,741 (1998).

[3] J. Gary M. Jenski and J.C. Shiery. Noise Suppressor. USPTO Pat. No. 5,735,313

(1998).

[4] K.A. Marek, E.R. Gruber, and K.A. Cunefare, Linear Analytical Model for a

Pressurized Gas Bladder Style Hydraulic Silencer. International Journal of Fluid

Power, 2012. Submitted.

[5] D.N. Johnston and K.A. Edge, A Test Method for Measurement of Pump Fluid-

Borne Noise Characteristics, in International Off-Highway & Powerplant

Congress and Exposition. 1991: Milwaukee, Wisconsin.

[6] L.E. Kinsler, et al., Fundamentals of Acoustics. 4th ed. 1999: John Wiley & Sons,

Inc.

[7] A. Selamet and Z.L. Ji, Acoustic Attenuation Performance of Circular Expansion

Chambers With Extended Inlet/Outlet. Journal of Sound and Vibration, 1999.

223(2): p. 197-212.

[8] A.D. Pierce, Acoustics: An Introduction to Its Physical Properties and

Applications. 1989, Melville, NY: Acoustical Society of America.

[9] R. Kirby and A. Cummings, Prediction of the bulk acoustic properties of fibrous

materials at low frequencies. Applied Acoustics, 1999. 56(2): p. 101-125.

[10] R. Wilkes. Noise Reduction in Hydraulic Systems. in Inter-Noise 95. 1995.

Newport Beach, CA, USA.

[11] E.R. Gruber, et al., Optimization of Single and Dual Suppressors Under Varying

Load and Pressure Conditions. International Journal of Fluid Power, 2012.

Submitted.

[12] N.E. Earnhart, K.A. Marek, and K.A. Cunefare. Evaluation of hydraulic silencers.

in NoiseCon10. 2010. Baltimore, MD.

[13] A.F. Seybert and D.F. Ross, Experimental determination of acoustic properties

using a two-microphone random-excitation technique. Journal of the Acoustical

Society of America, 1976. 61(5): p. 1362-1370.

[14] J.Y. Chung and D.A. Blaser, Transfer function method of measuring in-duct

acoustic properties. I. Theory. Journal of the Acoustical Society of America,

1980. 68(3): p. 907-913.

[15] J.Y. Chung and D.A. Blaser, Transfer function method of measuring in-duct

acoustic properties. II. Experiment. Journal of the Acoustical Society of America,

1980. 68(3): p. 914-921.

[16] C.W.S. To and A.G. Doige, A transient testing technique for the determination of

matrix parameters of acoustic systems, I: Theory and principles. Journal of Sound

and Vibration, 1979. 62(2): p. 207-222.

[17] C.W.S. To and A.G. Doige, A transient testing technique for the determination of

matrix parameters of acoustic systems, II: Experimental procedures and results.

Journal of Sound and Vibration, 1979. 62(2): p. 223-233.

[18] T.Y. Lung and A.G. Doige, A time-averaging transient testing method for

acoustic properties of piping systems and mufflers with flow. Journal of the

Acoustical Society of America, 1982. 73(3): p. 867-876.

147

[19] E. Kojima and K.A. Edge. Experimental determination of hydraulic silencer

transfer matrices and assessment of the method for use as a standard test

procedure. in Innovations in Fluid Power, 7th Bath International Fluid Power

Workshop. 1994. University of Bath, UK: Research Studies Press Ltd.

[20] K.K. Lau, D.N. Johnston, and K.A. Edge. Fluid borne noise characteristics of

hydraulic filters and silencers. in Innovations in Fluid Power, 7th Bath

International Fluid Power Workshop. 1994. University of Bath, UK: Research

Studies Press Ltd.

[21] J.E. Drew, D.K. Longmore, and D.N. Johnston, Measurement of the longitudinal

transmission characteristics of fluid-filled hoses. Proceedings of the Institution of

Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 1997.

211(3): p. 219-228.

[22] D.N. Johnston, D.K. Longmore, and J.E. Drew, A technique for the measurement

of the transfer matrix characteristics of two-port hydraulic components. Fluid

Power Systems and Technology, 1994. 1: p. 25-33.

[23] ISO-15086-1, Hydraulic fluid power - Determination of fluid-borne noise

characteristics of components and systems, in Introduction. 2001, International

Standards Organization: Geneva, Switzerland.

[24] ISO-15086-2, Hydraulic fluid power - Determination of fluid-borne noise

characteristics of components and systems, in Measurement of speed of sound in

a fluid in a pipe. 2000, International Standards Organization: Geneva,

Switzerland.

[25] ISO-15086-3, Hydraulic fluid power - Determination of the fluid-borne noise

characteristics of components and systems, in Measurement of hydraulic

impedance. 2008, International Standards Organization: Geneva, Switzerland.

[26] A. Selamet, et al., Analytical approach for sound attenuation in perforated

dissipative silencers. Journal of the Acoustical Society of America, 2005. 115(5):

p. 2091-2099.

[27] F.D. Denia, et al., Acoustic attenuation performance of perforated dissipative

mufflers with empty inlet/outlet extensions. Journal of Sound and Vibration, 2007.

302: p. 1000-1017.

[28] I. Lee, A. Selamet, and N.T. Huff, Impact of perforation impedance on the

transmission loss of reactive and dissipative silencers. Journal of the Acoustical

Society of America, 2006. 120(6): p. 3706-3713.

[29] A. Selamet, et al., Analytical approach for sound attenuation in perforated

dissipative silencers. Journal of the Acoustical Society of America, 2004. 115(5):

p. 2091-2099.

