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SUMMARY

A computational model is developed to investigate fundamental flow physics

and transport phenomena of evaporating wavy-laminar falling liquid films of water

and black liquor1. The computational model is formulated from first principles based

on the conservation laws for mass, momentum, energy and species in addition to

a phase transport equation for capturing interface deformation and evolution. Free

surface waves are generated by monochromatic perturbation of velocity. Contin-

uum models for interfacial evaporation define source terms for liquid vaporization

and species enrichment in the conservation laws. A phenomenological crystallization

model is derived to account for species depletion due to salt precipitation during black

liquor falling film evaporation.

Using highly resolved numerical grids on parallel computers, the computational

model is implemented to analyze the dynamics of backflow (capillary separation ed-

dies) in low Reynolds number falling films, investigate the dominant mechanisms of

heat transfer enhancement in falling films at moderately high Reynolds numbers and

study the fundamental wave structures and wave induced transport in black liquor

falling films on flat and cylindrical walls. Validation of numerical simulations using

analytical results and experimental correlations for wavy falling liquid film flows show

that the computational model and numerical implementation predicts with sufficiently

high accuracy falling film properties such as phase speed, wave height, evaporation

heat transfer coefficient and average species concentration at evaporator exit.

1Black liquor is a highly viscous shear-thinning liquid produced from Kraft pulping of wood. It
is a mixture of organics such as lignin, cellulose and dissolved inorganic salts (Chen & Gao, 2003)
containing about 50% of energy content of pulped wood.
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Simulation results from low Reynolds number falling films indicate that flow cir-

culation (backflow) is not only limited to the solitary-capillary wave regime, but also

occurs in film flow regions with sinusoidal waves. A theory based on the dynamics

of the streamwise pressure gradient is proposed to explain interfacial waves inter-

action that give rise to multiple backflow regions observed in films dominated by

solitary-capillary waves. Results from simulations of moderately high Reynolds num-

ber falling film evaporation presents new insight into heat transfer enhancement due

to formation of an intermediate wave type. The reduction in film thickness at the

intermediate wavefront results in relatively lower conduction thermal resistance and

higher crosswise convective transport. Interfacial phenomena such as wave-breaking

and vapor entrainment observed in experimental studies of black liquor falling films is

qualitatively reproduced in the simulations. The evolution of secondary instabilities

and corresponding force imbalances that give rise to these phenomena is analyzed.

For an evaporating black liquor falling film, numerical predictions of the influence of

wave induced transport on soluble salt crystallization and fouling is discussed.

xx



CHAPTER 1

INTRODUCTION

1.1 Research Objectives

The primary aim of this research study is to investigate in detail the flow physics

and transport phenomena associated with falling liquid film evaporation. The study

focuses on wavy laminar falling films of water and black liquor. Conventional black

liquor evaporation is characterized by high rates of soluble scale fouling resulting

from precipitation of dissolved black liquor salts on heat transfer surface. Soluble

scaling is a concentration and temperature dependent process and for black liquor

in particular, the inverse-solubility2 property makes temperature a critical scaling

parameter. In recent times, high energy costs and strict environmental regulatory

demands require concentration of black liquor to higher mass fractions of dissolved

solids to ensure efficient combustion of the thickened liquor. At high dissolved solids

mass fractions, black liquor evaporator scaling becomes erratic and less predictable

with rapid fouling of heat transfer surface leading eventually to evaporator shut down

(Frederick Jr. et al., 2004).

Falling film evaporation is characterized by high rates of heat transfer and shorter

residence time of the process stream, thus making it more suitable for black liquor

concentration/evaporation. Nevertheless, with liquors at high dissolved solids mass

fraction, its performance still suffers from rapid heat transfer surface fouling albeit

to lesser degrees. Studies have shown that soluble scale deposition in high solids

black liquor evaporators is controlled by crystallization phenomena, and the influence

2Inverse solubility is the phenomenon in which a material becomes less soluble in water as the
temperature of the solution increases.
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of fluid flow and heat transfer associated with the crystallization and evaporation

processes (Frederick Jr. et al., 2004). Extensive experimental research effort has

been dedicated to study kinetics of soluble salts that crystallize during black liquor

evaporation. However, relatively little information has been reported about the hy-

drodynamics and transport phenomena of black liquor falling films and their influence

on the crystallization process. More importantly, since falling liquid film free surface

deformation significantly influence film transport and consequently the temperature

and concentration fields, thorough understanding of the soluble scaling process is

incomplete without accurate prediction of falling film flow field and interfacial evolu-

tion.

This research seeks to develop a computational framework for detailed investiga-

tion of falling film flow and transport based on numerical solution of the conservation

laws. For constant property liquid, the study investigates the influence of different in-

terfacial wave regimes on falling film hydrodynamics and streamwise thermal regions

that evolve in the liquid film due to interfacial deformation. The impact of wave

dynamics on evaporation heat transfer enhancement is also analyzed. The computa-

tional model is applied to study falling film evaporation of black liquor mixture with

dissolved species enrichement and depletion respectively evaluated based on liquid

vaporization and soluble salt crystallization.

1.2 Specific Aims

Specifically, this research aims to:

1. investigate the dynamics and effects of capillary separation vortices for grow-

ing and saturated disturbances in the sinusoidal and solitary wave regimes of

laminar falling liquid film.

2. analyze the distinct streamwise thermal regions that evolve in laminar falling
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liquid film as a consequence of interfacial deformation with emphasis on identi-

fying the dominant mechanism enhancing transport in each region.

3. characterize the structure of saturated black liquor interfacial waves and the free

surface wave dynamics that give rise to wave-breaking and vapor entrainment

in black liquor falling film.

4. analyze the influence of wavy falling film hydrodynamics on transport, salt

crystallization and soluble scaling during black liquor evaporation.

To achieve these objectives, the study conducts numerical simulations over a wide

range of flow and heating conditions for falling films of water and black liquor on

highly resolved numerical grids using parallel computers. Extensive validation of the

computational model and numerical implementation is done by comparing simulation

results with known analytical solutions, reported experimental measurements and

empirical correlations in the literature.

1.3 Motivation

For many industrial processes, the flow of a wavy thin liquid film down a vertical

or inclined surface is central to unit operations involving heat and mass transfer e.g.

film evaporation and concentration, gas absorption in wetted columns, film cooling

etc. For some applications, the process fluid is a simple liquid with readily defined

flow fields. For others, the liquid could be a highly viscous non-Newtonian polymeric

solution where the corresponding flow field is characterized by irregular or complex

interfacial flow structures. It is well reported in the literature that transport of heat

or species in falling liquid films is fundamentally influenced by the presence of free

surface waves (see for example Kutateladze & Gogonin, 1979; Jayanti & Hewitt, 1995;

Miyara, 1999). However, the exact theory describing the mechanism of transport

enhancement particularly for falling film flows with irregular interfacial structures is
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still not fully established.

Numerical solution of the Navier-Stokes equations coupled with conservation laws

for energy and species transport on well resolved grids provide a framework for closer

investigation of the hydrodynamics and mechanisms of transport in thin liquid film

flows. Results from this study are of primary relevance to processes applications

where in-depth knowledge of falling film transport phenomena is necessary for the

design of environmentally friendly, cost effective and functionally optimal heat and

mass transfer devices and equipment. Specifically, the simulation and analysis of

black liquor falling film evaporation with species enrichment/depletion is intended

to serve as framework for studying more complex evaporation induced mass transfer

phenomena such as evaporator heat transfer surface fouling and bulk flow crystal-

lization associated with the evaporation of non-simple liquid mixtures with complex

interfacial flow structures.

1.4 Falling Liquid Films

1.4.1 Literature Review

Falling liquid films are unstable to long wavelength disturbances (Yih, 1963) when the

flow Reynolds number Re exceeds the often cited critical value Rec = (5/4)cot β, β is

the inclination angle between the plane of the free surface and the horizontal. In his

review, Chang (1994) describes distinct wave regimes for the evolution of naturally

excited and forced disturbances on a laminar falling liquid film. Near the inlet, the

waves are short and periodic and linear stability theory predicts exponential growth of

disturbance. For monochromatic disturbances, the emerging wave inherits the forcing

frequency. In contrast, natural noise driven waves assume a non regular structure

consisting of a complex array of large and small waves moving over a substrate (Luan

& Balakotaiah, 2000). As the wave amplitude grows downstream, linear stability

theory ceases to apply and nonlinear effects arrest the amplification process. The
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amplitude of the wave saturates to a finite value depending on Reynolds number and

the fluid Kapitza number. A consequence of nonlinear interaction is the steepening

of the sinusoidal shape of the emerging wave. Further downstream, subharmonic

and characteristic sideband instabilities result in coalescence of neighboring waves

at intermittent locations. Within these locations, the distorted waves evolve into

localized teardrop humps (Chang, 1994). The humps have steep fronts which are

preceded by a series of front running capillary waves. These solitary humps travel in

a non-stationary manner but essentially retain their shapes. Eventually, transverse

variations in wave profile gradually sets in.

Experimental analysis of wave evolution on falling films was pioneered by Kapitza

& Kapitza (1964). They generated surface waves by imposing controlled disturbances

(pressure pulses) on the falling film and then derived wave profiles by observing

shadows of the film. Subsequent experimental studies (Chu & Dukler, 1974, 1975;

Pierson & Whitaker, 1977; Karapantsios et al., 1989; Alekseenko et al., 1985) focused

on direct observation and measurement of surface wave shape and characteristics

using different measurement techniques to generate data describing falling film surface

waves. Nakoryakov et al. (1976) studied two dimensional waves on water films and

measured wave characteristics parameters such as phase velocities, wave separations

and wave peak heights. The experimental studies of Nosoko et al. (1995) resulted

in non-dimensional correlations for predicting phase velocities, wave separations and

wave peak heights as functions of the flow Reynolds number and a physical properties

group K
F

= ρ3
l
ν4
l
g/σ3.

Early theoretical investigations of hydrodynamic instabilities on falling film flows

started with linear stability analysis based on the Orr-Sommerfeld equation. Approx-

imate solutions to the equations were obtained by Benjamin (1957) and Yih (1963)

specifying critical values beyond which falling film flows become unstable. Linear sta-

bility theory is however valid only at the inception of small amplitude waves, failing to
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predict the form of the disturbance downstream. Benney (1966) derived a simplified

equation for the instantaneous film height using the film parameter (defined as the

ratio of height to wavelength for the wave) in a perturbation style expansion of the

momentum equations for low Reynolds number flows. This equation is referred to as

the Long Wave (LW) equation in the literature. The weakly nonlinear form of LW

is based on the assumption of small amplitude waves. This simplification permits a

truncation of the LW expansion yielding the Kuramoto-Sivashinsky (KS) equation.

Sivashinsky & Michelson (1980) conducted numerical studies on the KS equation.

Their results show that solitary waves generated in a bounded domain with periodic

boundary conditions travel at speeds similar to those predicted by linear theory.

The integral boundary layer (IBL) type analysis derives from a simplification of

the Navier-Stokes equations based on boundary layer type assumptions. By assuming

a self-similar solution for the velocity profile, Shkadov (1967, 1968) derived a two-

equation model for the dynamics of free surface waves from the IBL equations. These

equations unlike the LW equations are not restricted to short amplitude waves only.

Alekseenko et al. (1985) showed through experimental measurements that the local

velocity profile in the falling film is not self-similar but parabolic. Tsvelodub & Tri-

fonov (1992) succeeded in constructing stationary waves on a moving frame by solving

the simplified equations with periodic boundary conditions. Chang et al. (1993) also

constructed free surface waves by solving the boundary-layer type equations without

specifying a velocity profile for the flow. The constructed waves showed reasonable

agreement with experimental observations. Whereas previous experimental studies

and predictions from the simplified equations provide fundamental understanding of

falling film surface wave evolution, they fall short of an established theory explaining

film transport enhancement as a consequence interfacial waves.

Numerical solutions of the complete Navier-Stokes equations for falling film flows

have been implemented by several researchers (see for example Kheshgi & Scriven,
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1987; Ho & Patera, 1990; Malamataris & Papanastasiou, 1991; Salamon et al., 1994;

Ramaswamy et al., 1996; Miyara, 2000; Gao et al., 2003; Kunugi & Kino, 2005;

Dietze et al., 2008, 2009). Typical challenges for such simulations include correct

implementation of flow boundary conditions on the evolving interface and resolv-

ing the different length scales for film thickness and flow domain. Malamataris &

Papanastasiou (1991) solved the equations in a truncated domain using modified

outflow boundary conditions. Ho & Patera (1990), Salamon et al. (1994) and Ra-

maswamy et al. (1996) imposed the conservation of mean film thickness constraint on

the flow using periodic boundary conditions with initial spatial waves on the films.

Kheshgi & Scriven (1987) used the Lagrangian finite element method and compared

with the Orr-Sommerfeld linear stability results. Ramaswamy et al. (1996) used the

Arbitrary Eulerian-Lagrangian method which requires careful selection of grid ve-

locity to handle large deformations. Salamon et al. (1994) compared results with

the approximated long wave and boundary layer theories. Miyara (2000) solved the

Navier-Stokes equations using finite difference in 2-D for the velocity distribution and

free surface dynamics using a method based on the MAC algorithm. Gao et al. (2003)

and Dietze et al. (2008, 2009) simulated 2-D falling film flow on a vertical plane by

solving the complete equations using finite volume discretization with the Volume of

Fluid (VOF) (Hirt & Nichols, 1981) interface capturing method . They accounted

for surface tension effects at the interface using the Continuum Surface Force (CSF)

model proposed by Brackbill et al. (1992). Miyara (2000), Gao et al. (2003) and

Dietze et al. (2008, 2009) generated flow disturbances by imposing monochromatic

perturbation of velocity at the inlet.

1.4.2 Falling Film Parameters

In this section we present the relevant parameters for characterizing falling film flow

and transport. The parameters are evaluated using properties of the liquid which is
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indicated by the subscript l.

(a) Nusselt Film Velocity and Thickness

Nusselt (1916) derived expressions for the average velocity and film thickness of a

fully develop falling film in terms of film Reynolds number and properties of the

liquid following his classical analysis of falling film condensation. The analysis

makes the assumption of a flat free surface. For a specified flow Reynolds number

Re, the Nusselt film velocity u
N

and thickness δ
N

are evaluated as:

u
N

=

(
Re2µ

l
g

3ρ
l

) 1
3

(1.1a)

δ
N

=

(
3Reµ2

l

ρ2
l
g

) 1
3

(1.1b)

ρ
l

and µ
l

are the respective density and dynamic viscosity of the liquid, g is

gravitational acceleration.

(b) Film Reynolds Number

The Reynolds number measures the importance of inertia relative to viscous

effects. Convention in the literature prescribes two ways for calculating falling

film Reynolds number:

Re =
ρ

l
δ
N
u

N

µ
l

(1.2a)

Re =
4Γ

µ
l

(1.2b)

Γ is liquid flow circulation. Equation 1.2a is predominantly used in this study.

(c) Weber Number

The Weber and Reynolds numbers are the non-dimensional groups that emerge

from the natural scaling of the Navier-Stokes equations for constant property

falling liquid film. The Weber number measures the importance of surface tension

relative to inertial effects and is evaluated in terms of the Nusselt film parameters:

We =
σ

ρ
l
δ
N
u2

N

(1.3)
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σ is surface tension coefficient.

(d) Kapitza Number

The Kapitza number is a function of only the liquid properties and not the flow

rate. It can be calculated from either the Weber number or the liquid properties

as follows:

Ka =
σ

ρ
l
ν

4/3
l g1/3

(1.4a)

Ka =
WeRe5/3

31/3
(1.4b)

ν
l

is liquid kinematic viscosity.

(e) Viscous Length Scale

The viscous length scale is a measure of the crosswise distance where diffusive

transport dominates in the liquid film. It is evaluated as:

lv =

(
ν2
l

g

)1/3

(1.5)

(f) Nusselt Number

Nusselt number measures the relative importance of convection heat transfer

compared to conduction in the liquid film.

Nu =
h lv
k

l

(1.6)

k
l

is liquid thermal conductivity.

(g) Prandtl Number

The Prandtl number is a measure of the ratio of momentum diffusion to thermal

diffusion in the liquid film.

Pr =
cplµl

k
l

(1.7)

cpl is liquid specific heat capacity.
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1.5 Thesis Outline

Chapter 1 gives an introduction of the thesis topic and outlines the motivation for

this research work. The literature review on falling liquid film is presented.

Chapter 2 describes the formulation of the mathematical model for the flow field

and interface capturing methodology of a constant property falling liquid film.

Chapter 3 describes the finite volume discretization of the computation domain, mo-

mentum equations and a generic scalar transport equation. An overview of the Pres-

sure Implicit with Splitting of Operators (PISO) algorithm is presented.

Chapter 4 analyzes the evolution and dynamics of backflow for sinusoidal and solitary-

capillary wave regimes of laminar falling liquid films.

Chapter 5 presents analysis of free surface evaporation for wavy-laminar falling liquid

films at moderately high Reynolds numbers.

Chapter 6 discusses simulation results for falling film evaporation of black liquor

with emphasis on interfacial wave structure and wave induced transport.

Chapter 7 concludes with fundamental findings from this research study and rec-

ommendations for future work.
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CHAPTER 2

METHODOLOGY

The computational methodology employed in this research study is based on the

finite volume discretization and iterative solution of the conservation laws for 2-D

(flat plate) and 3-D (cylindrical wall) falling film flow and transport. In this chap-

ter, the formulation of the modeling equations for the two-phase hydrodynamics of a

constant property falling liquid film down a vertical wall is presented. Conservation

laws for heat and species transport with phase-change source terms are presented in

subsequent chapters where falling film evaporation with species enrichment is ana-

lyzed. The numerical discretization method and solution algorithm for the discretized

system of equations are discussed in chapter 3.

2.1 Mathematical Model

We consider the wavy-laminar flow of a liquid film down a vertical plane as shown in

Figure 2.1. Adjacent to the wall, the liquid film flows under the influence of gravity

with a well defined interface. Far form the interface, the film is bound by a quiescent

gaseous phase. The simultaneous flow of the two immiscible, incompressible fluids

is described by the Navier-Stokes equations using the single-field representation with

interface evolution modeled using the well established Volume of Fluid (VOF) method

(Hirt & Nichols, 1981). In this formulation, one set of conservation equations is writ-

ten for the whole flow field where material properties are in general discontinuous

across the interfacial boundary. The fluids are identified by a step function which

represents the local volume fraction of each fluid. The step function is assigned a

value of 1 in one particular fluid and 0 elsewhere. The “mixture” (which is under-

stood to be the composite fluid formed by the two immiscible fluids within the flow
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Figure 2.1: Schematic diagram of a wavy falling film: u, v are x, y velocity compo-
nents, h is wave height and g is gravitational acceleration.

region) transport properties are written as combination of the volume fraction and

the individual fluid properties.

2.1.1 Navier-Stokes Equations

The conservation equations in the single-field representation must account for differ-

ences in material properties of individual fluids as well as surface tension acting at

the interface. For the entire flow field, the continuity and momentum equations are

expressed as:

∂ρ

∂t
+∇ · (ρv) = 0 (2.1a)

∂ρv

∂t
+∇ · (ρvv) = −∇p+∇ · τ + ρg +

∫
AI(t)

σκ′n′δI(x− x′) dAI (2.1b)

where v is velocity, τ is the rate of strain tensor, p is pressure. The last term in

equation (2.1b) represents the source of momentum due to surface tension effects. It

only acts at the interface as indicated by the integral of a delta function δI(x) over

the interfacial area AI(t). In this term, σ is the surface tension coefficient, κ′ and

n′ are the respective curvature and unit normal vector at the interface. The stress
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tensor τ is expressed as:

τ = µ(∇v +∇vT) (2.2)

where µ is the dynamic viscosity of the “mixture” and ∇vT is the transpose of the

gradient of velocity vector. For ease of numerical implementation, the viscous term

in equation (2.1b) is reformulated as follows:

∇ · τ = ∇ ·
[
µ(∇v +∇vT)

]
= ∇ · (µ∇v) +∇ · (µ∇vT)

= ∇ · (µ∇v) + (∇v) · (∇µ) + µ∇(∇ · v)

= ∇ · (µ∇v) + (∇v) ·∇µ (2.3)

2.1.2 Interface Evolution (VOF)

The interface-capturing methodology employs the volume fraction α as an indicator

function to mark the different fluids. In general, the interface is not a sharply defined

boundary, rather an infinitesimal transition region exists where the fluid indicator

function varies smoothly. The indicator function is defined as:

α =


1 for a point inside liquid

0 < α < 1 for a point in the transition (interfacial) region

0 for a point inside gas/vapor

(2.4)

The phase volume fraction α propagates as a Lagrangian invariant based on the

prescribed flow field. Thus the transport of α can be defined as:

∂α

∂t
+∇ · (vα) = 0 (2.5)

Using the indicator function, the local fluid properties of the “mixture” are evaluated

as:

ρ = αρ
l
+ (1− α)ρg (2.6a)

µ = αµ
l
+ (1− α)µg (2.6b)
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where subscripts l and g indicate liquid and gas/vapor respectively.

The surface integral in equation (2.1b) representing momentum source from sur-

face tension is converted into a volume force using the phase volume fraction field α

and the Continuum Surface Force (CSF) model proposed by Brackbill et al. (1992):

∫
AI(t)

σκ′n′δ(x− x′) dAI ≈ σκ∇α (2.7)

with interface mean curvature κ given by

κ = −∇ ·
(
∇α
|∇α|

)
(2.8)

2.1.3 Modified VOF Equation

To ensure boundedness and conservation of the phase fraction, a modified version of

equation (2.5) is derived by considering a two-fluid formulation of the conventional

VOF model (Cerne et al., 2001; Berberovic et al., 2009). The modified equation

contains an additional convective term obtained by expressing the velocity field in

terms of a weighted average of the individual phase velocities. The derivation of the

modified VOF method starts with the two-fluid Eulerian model for two-phase flow

where the following evolution equations are solved for the individual phases:

∂α

∂t
+∇ · (v

l
α) = 0 (2.9a)

∂(1− α)

∂t
+∇ · [vg(1− α)] = 0 (2.9b)

subscripts l and g represent liquid and gas phases respectively. Equations (2.9a)

and (2.9b) indicate that individual phases propagate at their corresponding phase

velocities. It follows therefore that the interface can be assumed to propagate at a

weighted velocity expressed as:

v = αv
l
+ (1− α)vg (2.10)
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Equation (2.9a) for the propagation of the liquid phase fraction can be re-written in

terms of the individual liquid and vapor phase velocities as follows:

∂α

∂t
+∇ · [v

l
α + α(v

l
α)− α(v

l
α)︸ ︷︷ ︸

= 0

] +∇ · [α(1− α)vg − α(1− α)vg︸ ︷︷ ︸
= 0

] = 0

∂α

∂t
+∇ · [α(v

l
α) + α(1− α)v

l
] +∇ · [α(1− α)vg ]−∇ · [α(1− α)vg ] = 0

∂α

∂t
+∇ · [α(v

l
α)] +∇ · [α(1− α)v

l
] +∇ · [α(1− α)vg ]−∇ · [α(1− α)vg ] = 0

∂α

∂t
+∇ · [α(v

l
α)] +∇ · [α(1− α)vg ] +∇ · [α(1− α)v

l
]−∇ · [α(1− α)vg ] = 0

∂α

∂t
+∇ · [α {αv

l
+ (1− α)vg}︸ ︷︷ ︸

=v

] +∇ · [(v
l
− vg)︸ ︷︷ ︸

=vr

α(1− α)] = 0

(2.11)

vr = v
l
− vg is the phase relative velocity commonly referred to as the “compression

velocity” (Berberovic et al., 2009) in the literature. It vanishes everywhere except the

phase boundary and its purpose is to keep the interface sharp and reduce numerical

smearing.

The modified formulation for the propagation of α better captures the physics of

the problem since it explicitly accounts for the contributions of individual fluid phases

to the evolution of the interface. Different methods exist for constructing optimal

values of vr that result in well resolved phase boundaries. The relative velocity is

typically treated as an explicit term and the numerical implementation employed in

this study is discussed in § 3.1.4.

2.1.4 Modified Conservation Laws

Combining (2.3), (2.7) and (2.11), the resulting modified system of equations solved

for the two-phase falling film flow field and free surface evolution can be expressed
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as:

∂ρ

∂t
+∇ · (ρv) = 0 (2.12a)

∂ρv

∂t
+∇ · (ρvv) = −∇p+∇ · (µ∇v) + (∇v) ·∇µ+ ρg + σκ∇α (2.12b)

∂α

∂t
+∇ · (vα) +∇ · [vrα(1− α) ] = 0 (2.12c)

In subsequent chapters where different aspects of falling film flows are analyzed, the

corresponding governing equations would be presented in the original forms as spec-

ified in (2.1a), (2.1b) and (2.5).

2.1.5 Boundary and Initial Conditions

The boundary conditions presented in this section are for 2-D falling films over a

flat plate. The conditions for 3-D falling films on a cylindrical wall are discussed in

chapter 6 where simulation results for black liquor 3-D falling films are presented.

(a) Inlet

In this study, the falling liquid is assumed to be a fully developed flat film

at the evaporator entrance. Consequently for a given Reynolds number, the

film thickness and average velocity at the inlet are specified by Nusselt values

(see § 1.4.2). To generate waves on the free surface, the inlet velocity is per-

turbed by a monochromatic time periodic function. In general, the inlet bound-

ary consists of a liquid section defined by x = 0, 0 ≤ y ≤ δ
N

(δ
N

is Nusselt

film thickness) with Dirichlet conditions and a vapor section defined by x = 0,

δ
N
< y ≤ 4 δ

N
where boundary conditions are prescribed based on flow conditions

within the computation domain. At the liquid inlet α = 1, while the streamwise

velocity uo is specified as a parabolic profile scaled by the Nusselt velocity with

monochromatic perturbation (see Xu et al., 2008):

uo =
3

2

[
2

(
y

δ
N

)
−
(
y

δ
N

)2
]

[1 + ε sin(2πft)]u
N

(2.13)
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where f is the forcing frequency in Hz, ε is the amplitude of perturbation which

is set at ε = 0.05 for this study. Gao et al. (2003) compared numerical results

for ε = 0.03 and ε = 0.05 and concluded that the equilibrium wave shape is

insensitive to the amplitude of forcing frequency. Along the boundary x = 0,

δ
N
< y ≤ 4 δ

N
, α = 0 with homogenous streamwise derivative for velocity.

(b) Outlet

Along the boundary x = Le, 0 ≤ y ≤ 4 δ
N

(where Le is streamwise length of the

vertical wall) outflow boundary conditions are specified i.e. ∂u
∂x

= ∂v
∂x

= 0, ∂α
∂x

= 0.

(c) Wall

At the wall (x, y = 0), no-slip conditions are imposed for velocity with zero-

flux for the phase volume fraction i.e. u = v = 0, ∂α
∂y

= 0. For the purpose

of defining the computation domain, we impose a numerical boundary along the

plane defined as ∀x, y = 4 δ
N

where boundary conditions consistent for a wall (i.e.

no-slip for velocity and zero flux for phase fraction) also apply.

(d) Phase Boundary

No boundary conditions are imposed explicitly at the interface since the entire

flow domain is treated as a single fluid following the single-field representation.

Surface tension effects are explicitly accounted for in the formulation of the mo-

mentum equations.

(e) Initial Condition

The film thickness within the flow domain at t = 0 is set to the unperturbed

Nusselt flat film with velocity specified by values from Nusselt theory. For our

simulations, we initialized pressure to zero everywhere in the computation do-

main.
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CHAPTER 3

NUMERICAL METHOD

This chapter presents the numerical discretization methods and solution algorithms

for the algebraic system of equations obtained from discretization of the conservation

laws. The numerical solutions were implemented in OpenFOAM (OpenCFD, 2011).

3.1 Finite Volume Method

3.1.1 Domain Discretization

The computation domain is subdivided into a finite number of non-overlapping control

volume cells (see figure 3.1) over which the governing equations are integrated. Each

cell is bound by a finite number of cell faces. A face is internal if it is shared by two

control cells or external if it represents a boundary of the domain on which a physical

boundary condition is applied. Figure 3.2 shows parameters of a computational cell

used in the finite volume discretization.

Figure 3.1: Section of cylindrical computational flow domain discretized using struc-
tured finite volume cells.

18



Figure 3.2: Parameters in finite volume discretization: P and N are the centroids of
the cell and its neighbor respectively, d denotes the vector between P and N , S

f
is

the face-area vector of the face common to both cells (OpenCFD, 2011).

3.1.2 Discretization of Conservation Law

The finite volume discretization of the governing equations proceeds over a few steps.

First the conservation laws are written as volume integrals over each control volume

and subsequently converted to surface-integrated flux terms using Gauss’s theorem.

The surface integrals are evaluated by summation of fluxes over control volume cell

faces. To determine the fluxes, cell face values of variables are estimated by interpo-

lation using cell centered values at neighboring control cells. The following analysis

presents the finite volume discretization for a generic transport equation. The same

procedures apply to the terms in the heat and species conservation laws.

The standard conservation law for a generic scalar φ can be expressed as:

∂ρφ

∂t︸︷︷︸
transient

+∇ · (ρvφ)︸ ︷︷ ︸
convection

= ∇ · (Λ∇φ)︸ ︷︷ ︸
diffusion

+ Sφ︸︷︷︸
source

(3.1)

where Λ is diffusivity and Sφ is a source term. The first step of the finite volume

discretization of equation (3.1) over a time interval t, t+4t can be expressed as:

∫ t+4t

t

[
∂

∂t

∫
VP

ρφ dV +

∫
VP

∇ · (ρvφ) dV

]
dt =

∫ t+4t

t

[∫
VP

∇ · (Λ∇φ) dV +

∫
VP

Sφ dV

]
dt (3.2)
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where V
P

is the control volume over which the equation is integrated. The generalized

Gauss’s theorem applied to a volume integral can be expressed as:∫
V

∇⊗ φ dV =

∫
S

dS⊗ φ (3.3)

where ⊗ denotes a generalized tensor operator e.g. inner product, and dS is the

differential of the outward normal surface area vector. The terms in equation (3.2)

can be expressed in the form of equation (3.3). The numerical approximation of the

right hand side of equation (3.3) for each term in the discretized scalar equation is

presented in the following sections.

3.1.2.1 Transient Term

With the exception of the phase transport equation (3.22), the first order backward

Euler method was implemented for all other time derivatives. The choice is motivated

by the need for numerical stability and large computation time steps. For the transient

term, a simple difference approximation is implemented as follows:∫
VP

∂ρφ

∂t
dV ≈ VP

ρnPφ
n
P − ρoPφoP
4t

(3.4)

where φo is the known variable value from the previous time step and φn is the

unknown value at the current time step tn = n4t.

3.1.2.2 Gradient Term

Applying Gauss’s theorem to the implicit discretization of the gradient term gives:∫
V

∇φ dV =

∫
S

dSφ ≈
∑
f

Sφn
f

(3.5)

where S is the outward normal surface area vector of the faces in the control cell and

φn
f

is the face-centered value of the variable. Since variables are typically stored at cell

centers of control volumes, φn
f

has to be evaluated by interpolation. In our simulations,

the second order accurate Central Differencing (CD) scheme was implemented for face
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interpolation. The scheme is expressed as (Ferziger & Peric, 2002):

φn
f

= ωfφ
n
P + (1− ωf )φnN (3.6)

where

ωf =
|xf − xN |

|xf − xN |+ |xf − xP |
(3.7)

xi is the position vector at point i.

3.1.2.3 Convection Term

For the generic scalar transport, the convection term is evaluated implicitly as:∫
VP

∇ · (ρvφ) dV =

∫
S

dS · (ρvφ) ≈
∑
f

S·(ρv)f φ
n
f

(3.8)

(ρv)f is the mass flux at the control volume cell faces based on a known velocity field

and φn
f

is determined from equation (3.6).

3.1.2.4 Diffusion Term

The diffusion term is implicitly discretized as follows:∫
VP

∇ · (Λ∇φ) dV =

∫
S

dS · (Λ∇φ) ≈
∑
f

Λf (S·∇f
φn) (3.9)

where Λf is the diffusivity evaluated at the cell face and ∇
f
φn is the face normal

gradient of φn. A second order scheme for evaluating S ·∇
f
φn at the cell face is

expressed as:

S ·∇
f
φn = |S|φ

n
N − φnP
|d|

(3.10)

3.1.2.5 Source Term

A second order scheme for discretizing the explicit source term is expressed as:∫
VP

Sφ dV ≈ SoPVp (3.11)
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i.e. the source term is evaluated using the known variable value at the control volume

center.

With respect to boundary cells, Dirichlet boundary conditions are treated as

known fluxes at cell faces. Neumann conditions are evaluated in terms of variable val-

ues at adjacent cell centers using one-sided face normal derivates (see equation (3.10)).

The resulting fluxes and explicit terms at control volumes with boundary faces are

modified accordingly (see the following for a comprehensive discussion: Hrvoje, 1996;

Rusche, 2002; Ferziger & Peric, 2002). Summation of all flux terms over the control

volume results in the algebraic equation for the finite volume discretization at control

volume P :

a
P
φn

P
+
∑
N

a
N
φn

N
= bo

P
(3.12)

where a
P

is the discretization coefficient of φn at cell P and the summation is over

neighboring cells with respect to P . bo
P

contains all terms evaluated explicitly (e.g.

terms from source, deferred correction, linearization etc using values from the previous

time step) both at cell P and neighboring cells. Equation (3.12) written for each

control volume in the computation domain results in an algebraic system for φ:

Aφ = b (3.13)

where A is the coefficient matrix, b is the vector of explicit terms and φ is the vector

of unknowns. In general A = A(φ) and the system defined by equation (3.13) is

solved iteratively.

3.1.3 Discretization of Navier-Stokes Equations

The modified system of equations solved for the two-phase flow field can be expressed

as:

∂ρ

∂t
+∇ · (ρv) = 0 (3.14a)

∂ρv

∂t
+∇ · (ρvv) = −∇p+∇ · (µ∇v) + (∇v) · ∇µ+ ρg + σκ∇α (3.14b)

22



Two issues of importance are the nonlinearity in the momentum equations and

pressure-velocity coupling. Nonlinearity is handled by lagging a portion of the ve-

locity (Thomas, 1995) i.e. for the convective terms, the mass flux at cell faces is

evaluated using the most recent velocity field that satisfies the continuity constraint:∫
VP

∇ · (ρvv) ≈
∫

VP

∇ · (ρvov) ≈
∑
f

S·(ρv)o
f
v

f
(3.15)

Applying finite volume discretization to equation (3.14b) with the lagged convection

term i.e equation (3.15), and dividing through with the cell volume results in the

semi-discretized momentum equations:

aPvP = H(v)−∇p (3.16)

where

H(v) = −
∑
N

aNvN + qoP +
ρoPv

o
P

4t
(3.17)

qoP represents source terms obtained from the explicit discretization of {(∇v) ·∇µ+

ρg + σκ∇α} at cell P . Equation (3.16) is used to express the discrete velocity field

as:

vP =
H(v)

aP
− 1

aP
∇p (3.18)

Based on interpolation of cell centered values obtained from (3.18), the face flux is

evaluated as:

(ρv)f =

[
ρPH(v)

aP

]
f

−
[
ρP
aP

]
f

[
∇p
]
f

(3.19)

The continuity constraint i.e. equation (3.14a) for a constant density fluid is dis-

cretized as: ∫
VP

∇·(ρv) ≈
∑
f

S·(ρv)f = 0 (3.20)

Combining equations (3.19) and (3.20), the discrete Pressure Poisson Equation is

expressed as: ∑
f

S ·
[(

ρP
aP

)
f

(
∇p
)
f

]
=
∑
f

S ·
[
ρPH(v)

aP

]
f

(3.21)
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The formulation of equation (3.21) ensures that the resulting face fluxes are conserva-

tive. The face normal gradient of the pressure term is evaluated using equation (3.5).

3.1.4 Discretization of Phase Equation

The modified phase volume fraction equation is expressed as:

∂α

∂t
+∇ · (vα) +∇ · [vrα(1− α) ] = 0 (3.22)

The semi-discrete equation obtained from the spatial discretization of equation (3.22)

is expressed as (see for example Rusche, 2002):

∂α

∂t
+
∑
f

Ψα
f(Ψ,S)

+
∑
f

Ψrbαf(Ψrb
,S)

= 0 (3.23)

where Ψ is the volumetric flux (i.e. S·v) evaluated directly from fluxes in the pressure-

velocity solution procedure to ensure conformity with the continuity constraint. Ψrb =

(1− α)
f(Ψrb

,S)
Ψr, where Ψr is constructed so that compression acts perpendicular to

the interface. In this study the compression flux is specified based on the maximum

velocity magnitude in the transition region (Rusche, 2002):

Ψr = Kcn
∗max

|n∗Ψ|
|S|2

(3.24)

where Kc = 1.5 is the adjustable coefficient that specifies the extent of compression

and n∗ is evaluated as:

n∗ =
(∇α∗)f

|(∇α∗)f |+ ωs
(3.25)

ωs = 10−5 is a stabilization parameter that prevents division by zero and α∗ is a

smoothed function constructed from α by convolution (see Rusche, 2002).

3.2 PISO Algorithm

The steps in the Pressure Implicit with Splitting of Operators (PISO) algorithm for

solving the momentum equations is outlined below (Hrvoje, 1996):
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1. Momentum Prediction: an approximation of the velocity field is obtained

by solving a modification of equation (3.16) using the last known pressure field:

aPvP = H(v)−
∑
f

S po
f

(3.26)

2. Pressure Solution: The pressure equation is formulated by assembling the

H(v) operator using the predicted velocity from the Momentum Prediction

step. The solution of the pressure equation gives the first estimate of the new

pressure field.

3. Velocity Correction: Explicit correction of velocity is done using the new

pressure field determined from imposing the continuity constraint in the Pres-

sure Solution step. The correction is done using equation (3.18).

This procedure is repeated iteratively until the tolerance between consecutive cor-

rected velocity fields is satisfied at each time step.

3.3 Numerical Solution Sequence

The coupled system of equations are solved sequentially i.e. for the algebraic system

resulting from discretization of a conservation law, the dominant variable is treated

as the single unknown while other “variables” are evaluated explicitly using values

from the last iteration. The symmetric system from the discrete pressure equation

is solved using preconditioned conjugate gradient method. The discretized phase

fraction equation is solved using an explicit time stepping scheme but with multiple

solution cycles within a time step. All other discrete equations are solve using a pre-

conditioned GMRES iterative solver. At a specified time step, the following numerical

solution sequence is implemented:

• solve the momentum equations with the pressure field from the last iteration to

obtain the intermediate velocity field
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• using the PISO loop solve the discrete Pressure Poisson Equation for the current

pressure field

• with the new pressure field, correct the predicted velocity field to satisfy the

divergence-free condition

• solve the volume phase fraction equation

• solve the species conservation equation

• solve the energy equation

For falling film simulations with evaporation and net species enrichment, the source

terms for the phase fraction, energy and species transport equations are evaluated

immediately after the corresponding equation is solved i.e. evaporation source terms

are evaluated after the energy transport equation is solved and crystallization source

terms are evaluated after species transport equation is solved. This ensures that the

sequential solution procedure uses the most recent variable field values for evaluat-

ing fluid transport properties dependent on flow variables e.g. temperature, species

concentration or phase volume fraction.
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CHAPTER 4

INTERFACIAL WAVES AND BACKFLOW DYNAMICS

IN FALLING LIQUID FILMS

4.1 Background

For laminar falling films, Chang (1994) identifies distinct regimes for the evolution of

disturbances on naturally excited and monochromatically perturbed flows. Nosoko

& Miyara (2004) classified the dominant free surface waves on laminar films based

on the frequency of flow perturbation. At low frequencies, solitary pulses similar

to teardrop humps traveling on a thin substrate film are observed. These waves

have steep fronts which are preceded by a series of front running capillary waves.

At much higher disturbance frequencies, the free surface is dominated by sinusoidal

waves characterized by an asymmetric shape. These waves have gentle wide peaks

with sharp narrow valleys.

Laminar falling liquid film hydrodynamics have been studied numerically by Sala-

mon et al. (1994); Jayanti & Hewitt (1995); Ramaswamy et al. (1996); Miyara (2000);

Gao et al. (2003); Kunugi & Kino (2005); Dietze et al. (2008, 2009). Streamlines and

velocity fields from simulations of Jayanti & Hewitt (1995), Miyara (2000) and Gao

et al. (2003) show that circulation zones were formed in the middle of large amplitude

sinusoidal and solitary waves. Kunugi & Kino (2005) observed separation vortices or

backflow regions from velocity vector fields at the wave troughs in front of solitary-

capillary waves. Dietze et al. (2008) confirmed by numerical simulation on highly

resolved spatial and temporal grids the formation of backflow at the capillary wave

region of low Reynolds number falling liquid films. Further confirmation of the back-

flow phenomenon was provided by Dietze et al. (2009) based on experimental studies
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using laser doppler velocimetry (LDV) and particle image velocimetry (PIV).

Although circulation zones at different wave locations in laminar falling liquid

films were observed by several earlier studies, Dietze et al. (2008, 2009) were the

first to provide a mechanistic explanation of the backflow phenomenon. They show

that backflow forms from a separation eddy that develops at the wall surface due to

adverse pressure gradients in the capillary wave region. The adverse pressure gradient

was a result of change in curvature of the free surface. Dietze et al. (2008) concluded

that the dynamics of the backflow region is determined by the characteristics of the

capillary waves which themselves are governed by the separation of the large wave

humps they precede. Their results also indicate that transport is enhanced in the

liquid film by relatively higher crosswise velocities in the backflow regions.

In this chapter, we employ highly resolved numerical grids to investigate the flow

dynamics leading to formation and subsequent evolution of backflow regions for a

growing interfacial disturbance. The analysis is conducted for both sinusoidal and

solitary interfacial wave regimes of laminar 2-D falling liquid films (see figure 2.1)

at low Reynolds numbers. The study investigates numerically if the formation of

capillary separation vortices (backflow) is possible in falling liquid films without cap-

illary waves. This has greater importance in falling film flow regions dominated by

strictly sinusoidal interfacial waves (see for example Kapitza & Kapitza, 1964) where

capillary waves are absent. For both sinusoidal and solitary-capillary waves, we ana-

lyze the dynamics of backflow regions after formation and investigate how backflow

downstream propagation is influenced by the type of surrounding interfacial waves.

4.2 Mathematical Model

The governing equations for wavy-laminar falling film on a vertical wall without

heat transfer is presented in § 2.1.1. A description of the computation domain and

corresponding boundary and initial conditions are discussed in § 2.1.5.
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4.3 Numerical Validation

The numerical implementation is validated based on comparisons of simulation results

with correlations developed from experimental studies for falling film phase speed and

maximum wave height by Nosoko et al. (1995), and experimentally determined time

traces of liquid film streamwise velocity and free surface profile by Dietze et al. (2009).

4.3.1 Correlations for 2-D Falling Films

Nosoko et al. (1995) conducted falling liquid film experiments using water on a glass

plate of dimensions 205× 245 mm2. The flow Reynolds numbers for the experiments

were in the range Re = 15 − 90 with temperatures between 278 − 296 K. Based

on their experimental results, they proposed the following correlations for regularly

spaced two-dimensional waves on water falling film:

Nhp = 0.49K0.044
F

N0.39
L

Re0.46 (4.1a)

Nuw = 1.13K0.02
F

N0.31
L

Re0.37 (4.1b)

whereNhp andNuw are the non-dimensional maximum wave height and non-dimensional

wave speed respectively, K
F

= ρ3
l
ν4
l
g/σ3 is the non-dimensional physical properties

group and N
L

= L(g/ν2
l
)1/3 is the non-dimensional wave separation calculated from

the distance L between regularly-spaced 2-D waves.

Numerical simulations were conducted for the flow domain and conditions corre-

sponding to the experiments by Nosoko et al. (1995). The length and width of the

computation domain were respectively set at 700δ
N

and 4δ
N

. The uniform mesh sizes

were set at ∆x = 0.15δ
N

and ∆y = 0.03δ
N

in the streamwise and crosswise directions

respectively. The time step was adaptively set based on the global CFL condition for

the α equation. Typical values were in the range 1 - 10 × 10−6 s. Table 4.1 shows

results for phase velocity uw, maximum wave height hp and wave separation L for sim-

ulated water falling film surface waves at different Reynolds numbers Re and forcing
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Table 4.1: Wave properties of simulated water falling film

Re f(Hz) uw (ms−1) hp(m) L(m)

20.1 27 0.24 0.000266 0.0076
20.1 45 0.27 0.000293 0.0118
69.0 30 0.41 0.000492 0.0148
69.0 45 0.35 0.000443 0.0092
69.0 70 0.33 0.000415 0.0064

frequencies f . Transport properties for the simulations were set at ρ
l

= 998.2 kgm−3,

ρg = 1.2 kgm−3, ν
l

= 1 × 10−6 m2s−1, νg = 1.51 × 10−5 m2s−1, σ = 0.073 Nm−1 and

g = 9.78 ms−2.

To compare simulated values with equations 4.1a and 4.1b, uw and hp are respec-

tively non-dimensionalized using Nuw = uw/(νl
g)1/3 and Nhp = hp(g/ν

2
l
)1/3 (Nosoko

et al., 1995). Figure 4.1 shows plots of Nhp and Nuw from numerical simulations by

Gao et al. (2003), Xu et al. (2008) and this study compared with equations (4.1a)

and (4.1b). The results show good agreement both between this work and previously

reported simulation results and the correlations. The Re = 20.1, f = 27 Hz case cor-

responds to the seminal experiment conducted by Kapitza & Kapitza (1964) where

the reported wave speed uw was 0.22 ms−1 (Gao et al., 2003).

4.3.2 2-D Falling Film Experiments

Dietze et al. (2009) conducted falling liquid film experiments and numerical simula-

tions using an aqueous solution of dimethylsulfoxide (DMSO) at Reynolds number

Re = 15, Kapitza number Ka = 509 and perturbation frequency f = 16 Hz. The

transport properties of the DMSO solution were specified as: ρ
l

= 1098.3 kgm−3,

ν
l

= 2.85 × 10−6 m2s−1, σ = 0.0484 Nm−1 at a temperature of 298.35 K. The gas

phase was air with transport properties specified by atmospheric conditions at the

liquid film temperature. Measurements of the liquid film height and streamwise ve-

locity were sampled at a streamwise distance of 120 mm from the inlet where the
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Figure 4.1: Simulated non-dimensional maximum wave height Nhp and non-
dimensional wave speed Nuw for water falling films compared with Nosoko et al.
(1995) correlations

experimental results show that the liquid film surface waves were fully developed.

The streamwise velocity was measured at a distance of 0.12 mm from the wall. Fig-

ure 4.2 show results of their experimental measurements and numerical simulations

for the conditions described above.

To further validate our numerical implementation, simulations were conducted

for flow conditions and transport properties specified for the DMSO solution (Dietze

et al., 2009). Results from our simulations also show that the film free surface was

characterized by fully developed 2-D waves at streamwise distance x > 0.1m from the

inlet. Beyond this point the wave retained its shape and phase speed as it traveled

downstream for the remaining portion of the computation domain. Figure 4.3 shows

plots of the time traces of the wave profile and streamwise velocity sampled at a

distance of 0.12 mm from the wall and 120 mm from the inlet. The plots in figures 4.2

and 4.3 show good agreement between our simulations and results reported by Dietze

et al. (2009). Our simulation slightly under-predicts the maximum wave height of the

liquid film which can be attributed to the different values of ε used in both studies. In
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Figure 4.2: Comparison of numerical and experimental data by Dietze et al. (2009)
for time traces of film thickness and streamwise velocity for Re = 15, f = 16 Hz and
y = 0.12 mm

.

our simulation, ε = 0.05 was used while Dietze et al. (2009) does not report the value

of ε used in their simulation. They however specified that the value of ε was adjusted

so as to match the wave amplitude from their numerical results with experimental

measurements.

4.4 Analysis of Simulation Results

4.4.1 Interfacial Waves and Backflow Evolution

Figure 4.4 shows free surface wave profiles of simulated water falling films at Re = 69

and forcing frequency f set at 30, 45, 70 and 110 Hz. The plots show the variation

of free surface deformation with wavelength of inlet disturbance. Large amplitude

solitary waves preceded by much smaller capillary waves are formed at low frequency
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Figure 4.3: Time traces of film thickness and streamwise velocity from falling film
simulation of DMSO solution (specified in Dietze et al. (2009)) with Re = 15, f =
16 Hz. The time traces were sampled at y = 0.12 mm from the wall and x = 120 mm
from the inlet.

perturbations (see figures 4.4 and 4.5: f = 30 Hz). As perturbation frequency in-

creases, short wavelength inlet disturbances evolve into sinusoidal surface waves with

no preceding capillary waves (see figures 4.4 and 4.5: f = 70 Hz).

The disturbance introduced at the inlet grows as it travels downstream, consistent

with linear stability analysis. The growth in amplitude deforms the free surface of

the liquid film which in turn imposes a streamwise pressure gradient in the liquid

film. This pressure gradient significantly impacts the dynamics and transport within

the liquid film. The sign and magnitude of the streamwise pressure gradient is pro-

portional to the streamwise derivative of the interface curvature Dietze et al. (2008).
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Figure 4.4: Surface wave profiles for simulated water falling film at Re = 69 and
different inlet disturbance frequencies.

(a): f = 30 Hz

(b): f = 70 Hz

Figure 4.5: Film free surface wave profiles for (a): Solitary-capillary waves and (b):
sinusoidal waves both at Re = 69. The red color represents the liquid film while blue
is the gas phase and flow is from left to right.

This implies that the respective downward and upward concavity at the wave crest

and preceding trough give rise to local negative and positive streamwise pressure
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(b): t = 2.415 s

Figure 4.6: Normalized film thickness δ/δ
N

, liquid film streamwise velocity u and
normalized liquid film streamwise pressure gradient px(=

∂p
∂x

)/γ across a solitary wave-
front with Re = 69 and f = 30Hz (note the change in abscissa scale). The streamwise
velocity and pressure gradient distribution were sampled at a distance 20µm from
the wall.

gradients respectively across the wavefront.

Across the wavefront, fluid elements are either accelerated or decelerated depend-

ing on their position relative to the wavefront. Thus for the flow field between the

wave crest and its preceding trough, we can identify regions where ∂u
∂x

changes from

positive to negative (see figure 4.6). As the wave grows to saturation, the steep-

ness at the wavefront increases, with corresponding increase in the magnitude of the
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(b): t = 2.417 s

Figure 4.7: Normalized film thickness δ/δ
N

, liquid film streamwise velocity u and
normalized liquid film streamwise pressure gradient px(=

∂p
∂x

)/γ for the wave front in
figure 4.6 after traveling further downstream. The streamwise velocity and pressure
gradient distribution were sampled at a distance 20µm from the wall.

wavefront streamwise pressure gradient. This results in larger streamwise variations

of liquid streamwise velocity across the wavefront. Figure 4.6 shows the streamwise

velocity and normalized streamwise pressure gradient for a traveling wave at different

times (4t = 0.005 s) for the Re = 69, f = 30 Hz film flow. The streamwise velocity

and pressure gradient distributions were sampled at a distance y = 20µm from the

wall. The streamwise pressure gradient is normalized with the liquid specific weight

γ = ρ
l
g.
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For liquid fluid elements close to the wall, the combined effect of shear and high

local adverse streamwise pressure gradient could overwhelm the gravitational force

driving the flow. At first, accelerated fluid elements (i.e. fluid elements from wave

front region where ∂u
∂x

> 0) move “over” slower or decelerating fluid elements as

depicted by streamlines moving away from the wall (see figure 4.8(a)). As the wave

travels further downstream, the local positive (adverse) streamwise pressure gradient

grows sufficiently large to force a change in sign (from positive to negative) of the

local streamwise velocity of liquid fluid elements in the ∂u
∂x
< 0 region of the wavefront

resulting in such fluid elements traveling upstream. However, the streamwise velocity

of upstream traveling fluid elements remain negative only momentarily. As the wave

front travels slightly further downstream, upstream traveling fluid elements end up

in the wavefront region where ∂p
∂x

< 0 and ∂u
∂x

> 0. As a result, the streamwise

velocity of upstream traveling fluid elements revert back to positive with flow now in

the downstream direction. This cyclic process give rise to the backflow phenomenon

observed in the capillary wave region of laminar falling liquid films (Kunugi & Kino,

2005; Dietze et al., 2008, 2009).

Figures 4.7 - 4.8 show streamwise velocity, streamwise pressure gradient and

streamlines for flow sequences leading to backflow with inlet perturbation frequency

f = 30Hz. Although these results (i.e. figures 4.6 - 4.8) correspond to flow structures

leading to backflow for a liquid film with solitary wave, the same holds true for a falling

film free surface with only sinusoidal waves. Figure 4.9 shows a similar sequence for

a growing sinusoidal wave-train where the increasing adverse pressure gradient at the

wavefront of the leading sinusoidal wave (fully shown) eventually induces backflow at

its wavefront.
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(a): t = 2.416 s (b): t = 2.417 s

Figure 4.8: (a) and (b) are streamlines at the solitary wavefront corresponding to
flow conditions in figure 4.7 (a) and (b) respectively.
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(b): t = 2.4075 s

Figure 4.9: Normalized film thickness δ/δ
N

, liquid film streamwise velocity u and
normalized liquid film streamwise pressure gradient px(=

∂p
∂x

)/γ across the wavefront
with Re = 69 and f = 70 Hz. The streamwise velocity and pressure gradient distri-
bution were sampled at a distance 20µm from the wall.
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4.4.2 Dynamics of Backflow

The crosswise variation of the streamwise pressure gradient is negligible within the

liquid film (see figure 4.10). As a result, liquid fluid elements in the layer just above the

wall experience backflow earlier than those further away. Although flow separation at

the wall occurs at the point where the crosswise derivative of the streamwise velocity

first vanishes for that wave, backflow is initiated only when this derivative is negative.

Figure 4.11 shows plots of the normalized maximum positive (or adverse) streamwise

pressure gradient (px)
+/γ and normalized wall shear stress τw(= µ

l

∂u
∂y
|y=0)/γδ

N
both

measured at the wavefront of traveling solitary (f = 30 Hz) and sinusoidal (f = 70 Hz)

waves. All values are measured at the wall (i.e. y = 0) as the wave continues

downstream. These plots provide qualitative insights with respect to the influence

of downstream wave evolution on the dynamics of falling film backflow. For either

solitary or sinusoidal waves, the adverse streamwise pressure gradient (px)
+/γ for a

growing disturbance (wave) attains a first maximum (see bottom plots of figure 4.11)

which corresponds to saturation point for that disturbance/wave. Subsequent to

attaining the peak value, (px)
+/γ for the sinusoidal wave evolves with small deviations

from the maximum as the wave continues downstream. For the traveling solitary

wave, (px)
+/γ undergoes relatively large excursions from and then back to near-peak

values.

4.4.2.1 Open Vortex

From figure 4.11, backflow (i.e. ∂u
∂y
|y=0 < 0) precedes wave saturation (i.e. (px)

+/γ

attaining first maximum). This means the traveling wave continues to grow in am-

plitude or steepness (resulting in a thinner liquid film directly in front of the wave)

subsequent to the onset of backflow. In addition, the increasingly higher adverse

streamwise pressure gradients developed at the wavefront, forces more liquid fluid
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Figure 4.10: Normalized liquid film streamwise pressure gradient px(=
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)/γ across
the wavefront for Re = 69, f = 30 Hz and 70 Hz sampled at 20µm and 0.0001 m from
the wall.
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Figure 4.11: Normalized maximum positive streamwise pressure gradient (px)
+/γ,

and normalized wall shear stress τw(= µ
l

∂u
∂y
|y=0)/γδ

N
measured at the wavefront of a

solitary wave (a) and sinusoidal wave (b), both traveling downstream.

elements further from both the wall and the wavefront to flow in the upstream di-

rection. As a result, the closed circulation region grows both in the streamwise and
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crosswise directions. Further decrease in height of the liquid film in front of the wave

eventually transforms the growing closed circulation into an open vortex or “U -

loop” (Dietze et al., 2009). This process applies to both solitary and sinusoidal waves

(see figures 4.12 and 4.13). For the closed circulation backflow, a closed loop for the

circulating liquid fluid elements can be defined entirely within the liquid film. This

differentiates it structurally from the open vortex. In general, for a fixed Reynolds

number, the sinusoidal wave attains saturation further downstream than the solitary

wave and the height of its preceding trough at saturation is greater than that of the

solitary wave (see figure 4.14). In particular, the higher adverse streamwise pressure

gradient and smaller preceding film height at saturation induces a more intense open

vortex circulation zone at the solitary wavefront. Figure 4.14 shows crosswise velocity

distributions across the wavefronts of solitary and sinusoidal waves at saturation. The

plots show that at similar points from the wall, liquid fluid elements at the solitary

wavefront circulation zone have higher crosswise velocities indicating higher rates of

crosswise transport.

4.4.2.2 Solitary-Capillary Waves

For both sinusoidal and solitary waves, the flow structure and dynamics leading to

backflow are the same. In addition, the evolution of a closed backflow region into

an open vortex follows the same process for both wave types. However, once the

wavefront adverse streamwise pressure gradient (px)
+/γ grows to its saturation value,

the dynamics of the backflow region evolve differently for the two wave types. For the

sinusoidal wave, (px)
+/γ remains approximately equal to the first maximum value

as the wave travels downstream. Consequently, the backflow region preceding the

saturated wave retains its open vortex structure. This is valid so long as the sinusoidal

structure or shape of the traveling wave is not fundamentally altered by secondary

instabilities.
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 4.12: Streamlines and velocity vector plots showing evolution from flow sep-
aration to closed circulation and then open vortex for the backflow region at the
wavefront of the solitary (f = 30 Hz) wave: t = 2.417 s (i) and (ii); t = 2.419 s (iii)
and (iv); t = 2.422 s (v) and (vi).

Beyond the saturation point, (px)
+/γ for the solitary wave evolves like a time-

periodic function (going through multiple distinct minima/maxima) as the wave trav-

els downstream. This phenomenon is a consequence of the interaction between the

solitary wave and its preceding capillary wave. The nature of the interaction is such

that a decrease in (px)
+/γ or (px)

−/γ across the solitary wavefront is followed by

an increase in (px)
+/γ or (px)

−/γ at the wavefront of the preceding capillary wave.

For convenience, we use (px)
+/γ only in the following analysis. Since (px)

+/γ is a

measure of interface deformation at the wavefront, this interaction suggests a con-

servation of surface (deformation) energy between the solitary and capillary waves.

For the capillary wave, the increase in (px)
+/γ corresponds to an increase in capillary

wavefront steepness (see figure 4.15). For the solitary wave, the decrease in (px)
+/γ
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 4.13: Streamlines and velocity vector plots showing evolution from flow sep-
aration to closed circulation and then open vortex for the backflow region at the
wavefront of the sinusoidal (f = 70 Hz) wave: t = 2.408 s (i) and (ii); t = 2.412 s (iii)
and (iv); t = 2.418 s (v) and (vi).

results in an increase in height of its preceding trough. However, the structure of the

solitary wave is not fundamentally altered (also see figure 4.15).

The combined effect of increased film steepness and large adverse streamwise pres-

sure gradients results in backflow at the capillary wavefront. The corresponding closed

circulation region evolves quickly into an open vortex (see right end of figure 4.16).

For the solitary wave however, the reduced adverse streamwise pressure gradient and

increased height of its preceding wave trough transforms the initial open vortex at

the wavefront of the solitary wave into a closed recirculation region (see left end of

figure 4.16).
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Figure 4.14: Normalized interface height δ/δ
N

and crosswise velocity v at saturation
for solitary (a) and sinusoidal (b) waves at Re = 69.

4.4.2.3 Solitary-Capillary-Capillary Waves

As the wavefront of the capillary wave steepens, the height of its preceding trough

reduces resulting in more liquid fluid elements being displaced away from the capil-

lary wavefront. To conserve the volume of liquid displaced, a second capillary wave

gradually forms in front of the first capillary wave while the height of the trough pre-

ceding the solitary wave increases (see lower plots of figure 4.15). The first capillary

wave appears to inherit the properties of the saturated solitary wave. Similar to the

solitary wave, (px)
+/γ for the first capillary wave grows to a maximum and thereafter

starts to decrease. In this instance, the decrease in (px)
+/γ at the wavefront of the

first capillary wave is followed by an increase in (px)
+/γ at the wavefronts of both

the solitary wave and the newly formed second capillary wave (see figure 4.17).

The increase in (px)
+/γ at the wavefront of the second capillary wave results in
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Figure 4.15: Normalized liquid film streamwise pressure gradient (px = ∂p
∂x

)/γ
and normalized interface height δ/δ

N
for flow conditions corresponding to solitary-

capillary waves interaction.

a backflow region at its wavefront. Unlike the first capillary wave, this closed cir-

culation backflow region does not evolve into an open vortex. This follows from the

fact that energy exchange in this instance is between three waves and that the total

energy exchanged (i.e. between solitary-capillary and solitary-capillary-capillary in-

teractions) is conserved. As a result, the second capillary wavefront is not deformed

(or steepened) sufficiently to transform its closed circulation region into an open vor-

tex. The conservation of exchanged energy also explains why (px)
+/γ for the solitary
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(a) : t = 2.440 s

(b) : t = 2.445 s

(c) : t = 2.450 s

Figure 4.16: Streamlines between the wavefronts of the solitary wave and the pre-
ceding first capillary wave for the flow conditions in figure 4.15. (a): open vortex at
wavefront of solitary wave, (b): closed circulation at wavefront of solitary and capil-
lary waves, (c): open vortex at wavefront of capillary wave and closed circulation at
wavefront of solitary wave.

wave does not grow back to its initial maximum value (see figures 4.11 and 4.17)).

However (px)
+/γ still grows large enough to transform the closed circulation region at

the solitary wavefront back into an open vortex. For the first capillary wave, the de-

crease in (px)
+/γ and increased height of its preceding trough means the open vortex

at its wavefront reverts back to a closed circulation backflow (see figure 4.18).

The cycle of energy exchange and formation of multiple backflow regions con-

tinue as the solitary-capillary wave-train interactions continue travels downstream.

In general the number of preceding capillary waves that develop in front of the large

amplitude solitary wave decrease with increasing frequency of inlet disturbance. Low

frequency disturbances give rise to large amplitude solitary waves which in turn attain

much larger (px)
+/γ at saturation. Such waves are also separated by longer and thin-

ner liquid films in between. Consequently their wave interactions are characterized

by large energy exchanges which allow multiple smaller capillary waves and backflow
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Figure 4.17: Normalized liquid film streamwise pressure gradient (px = ∂p
∂x

)/γ
and normalized interface height δ/δ

N
for flow conditions corresponding to solitary-

capillary-capillary waves interaction.

Figure 4.18: Streamlines at the wavefronts of the solitary wave and the preceding
first and second capillary waves at t = 2.480s showing a newly formed backflow region
at the second capillary wavefront (right-end) and a diminished closed circulation at
the first capillary wavefront (middle). The backflow region at the front of the solitary
wave has reverted to an open vortex.
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regions to evolve.

4.4.3 Buoyancy and Viscous Dissipation

To investigate the influence of buoyancy and viscous dissipation on low Reynolds num-

ber falling film flow separation, numerical simulations were run for water at Reynolds

number Re = 20.1, f = 27 Hz, inlet temperature Tin = 298 K and uniform wall tem-

perature fixed at Tw = 303K. The conservation law for energy transport with viscous

dissipation is expressed as:

∂ρcpT

∂t
+∇ · (ρvcpT ) = ∇ · (k∇T ) + τ :∇v (4.2)

where τ :∇v represents the contribution to internal energy due to viscous dissipation.

Liquid density as a function of temperature variation is given by:

ρ
l

ρref

= 1− Φ(T − Tref) (4.3)

where Φ = 0.257 x 10−3 K−1 is coefficient of volume expansion of water, Tref is same

as inlet temperature and ρref is liquid density at Tref. Analysis of results from the

numerical solution of equation (4.2) with the Navier-Stokes equations indicate that

buoyancy and viscous dissipation have minimal influence on the formation and prop-

agation of backflow for low Reynolds number falling films. In particular, the onset

and subsequent size of the backflow region remained unchanged with addition of heat

transfer effects. We also observed no significant change in surface wave properties

such as wave separation, phase speed and maximum wave amplitude for the case

simulated.
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CHAPTER 5

WAVY-LAMINAR FALLING LIQUID FILM FREE

SURFACE EVAPORATION

5.1 Background

Interfacial waves on falling liquid films enhance energy transfer between the liquid

film and the heating or cooling surface (Kutateladze & Gogonin, 1979; Jayanti &

Hewitt, 1995; Miyara, 1999). Extensive experimental studies (see for example Chun

& Seban, 1971; Schnabel & Schlunder, 1980; Holmberg et al., 1991; Abdulmalik et al.,

1998) have been conducted for falling liquid film evaporation to correlate the average

heat transfer coefficient in terms of film Reynolds number Re and liquid Kapitza

number Ka. These experimental studies are valid over a wide range of liquid Prandtl

numbers and apply to falling liquid films in the laminar, wavy-laminar and turbulent

flow regimes. Although suitable for predicting overall evaporation heat transfer, such

correlations provide little insight into detailed flow physics of falling liquid films as

characterized by free surface deformation and how such deformations in turn influence

local heat transport and rate of evaporation.

At very high Reynolds numbers, falling film interfacial dynamics is dominated

by internal turbulence (Chang, 1994) implying that transport in the liquid film is

predominantly due to turbulent mixing. For low - moderate Reynolds numbers (e.g.

Re < 500), the liquid film consists of long interfacial waves dominated by gravity-

capillary effects. In this so-called wavy-laminar regime, transport in the film is signif-

icantly influenced by the nature and evolution of interfacial waves. Depending on film

Reynolds number Re, Kapitza number Ka and the wavelength of flow perturbation,

the interfacial waves evolve into finite amplitude sinusoidal or solitary waves with the
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later eventually preceded by capillary waves (Chang, 1994; Nosoko & Miyara, 2004).

The present study focuses on falling film evaporation in the wavy-laminar flow regime

with perturbation frequency resulting in solitary-capillary interfacial waves.

Results from the numerical simulations of transport phenomena in low Reynolds

number falling liquid films (Jayanti & Hewitt, 1995; Miyara, 2000; Gao et al., 2003;

Kunugi & Kino, 2005; Dietze et al., 2008, 2009) indicate that transport enhancement

can be attributed to reduction in film thickness and the formation of circulation

zones (see discussion in § 4.1) at specific free surface wave regions within the liquid

film. With respect to transport enhancement, Jayanti & Hewitt (1995) argued that

the overall heat transfer is still dominated by conduction primarily due to reduction

in effective film thickness. They concluded that the contribution of circulation to

heat transfer enhancement is minimal. Miyara (2000) contended that heat transfer

enhancement was due to a combination of both film thinning and convection effects

resulting from circulation flow in solitary or roll waves. Kunugi & Kino (2005) and

Dietze et al. (2008) reported that heat transport is enhanced in the liquid film by

crosswise velocities in the backflow regions. As at the time of this report, numerical

studies for evaporation of moderately high Reynolds number falling liquid films have

not been reported in the literature. As a result, it is not conclusive if the regimes of

transport that dominate low Reynolds number films remain valid at moderately high

Reynolds number wavy-laminar falling film flows.

This chapter investigates the influence of interfacial wave dynamics on evapora-

tion heat transfer for moderately high Reynolds number 2-D wavy-laminar falling

liquid films based on numerical solution of the Navier-Stokes equation on highly re-

solved computational grids. For the waveforms that develop at different regions of

the falling liquid film, we analyze the dominant wave induced mechanism of crosswise

transport and the possible enhancement of evaporation heat transfer. We study the

correlation between free surface waveforms, film thickness and streamwise variation
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Figure 5.1: Schematic diagram of a wavy falling liquid film with constant flux heat-
ing: u, v are x, y velocity components, h is wave height, q′′ is wall heat flux, g is
gravitational acceleration.

of wall temperature for the case of constant wall heat flux. In the fully developed

thermal region, we investigate the interfacial rate of evaporation at different regions

of a fully developed 2-D free surface wave.

5.2 Mathematical Model

We consider the flow of a constant property Newtonian liquid film down a constant

heat flux vertical wall under conditions where the flow regime is wavy-laminar with

the film interface dominated by solitary-capillary waves (see figure 5.1). The liquid

enters the evaporator at saturation conditions and flows under the influence of gravity

with a sharp interface separating it from saturated vapor.
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5.2.1 Governing Equations

The respective continuity, momentum, energy and phase equations for the two-phase

flow field are expressed as:

∂ρ

∂t
+∇ · (ρv) = 0 (5.1a)

∂ρv

∂t
+∇ · (ρvv) = −∇p+∇ · τ + ρg +

∫
AI(t)

σκ′n′δI(x− x′) dAI (5.1b)

∂ρcpT

∂t
+∇ · (ρvcpT ) =∇ · (k∇T )− Ṡq,e (5.1c)

∂α

∂t
+∇ · (vα) = −Ṡv (5.1d)

where v is velocity, τ is the deviatoric stress tensor, p is pressure, T is temperature

and α is phase volume fraction. Ṡq,e and Ṡv are the respective evaporation induced

source terms for latent heat sink and liquid vaporization. The source term in (5.1d)

tracks the position of the interface by accounting for liquid vaporization only.

5.2.2 Evaporation Source Terms

Liquid vaporization at the film free surface results in an interfacial energy sink which

is given by the product of the mass rate of vaporization and the enthalpy of vapor-

ization (at the corresponding saturation conditions). We assume that the interface

remains at saturation temperature Tsat. Thus, for positive deviations of the interfa-

cial temperature Ti from Tsat the heat flux on the excess temperature of the phase

boundary is given by the simplified model (Tanasawa, 1991):

jhe = ηe(Ti − Tsat) (5.2)

where jhe is the evaporation heat flux density. The interfacial vaporization heat trans-

fer coefficient ηe is evaluated as (Schrage, 1953):

ηe =
2ψe

2− ψe
h2
e√

2πRgas

ρg

T
3/2
sat

(5.3)

where ψe is evaporation coefficient (typically 0 < ψe ≤ 1), he is enthalpy of vaporiza-

tion and Rgas is the gas constant of water. The volume V integral of the magnitude of
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the gradient of the phase fraction field α over a region enclosing the interface measures

the interfacial area (Hardt & Wondra, 2008). Combining this integral with equation

(5.2), the evaporation source terms are defined as:

Ṡq,e =
jhe
V

∫
V

|∇α| dV (5.4a)

Ṡv =
Ṡq,e
ρ

l
he

(5.4b)

Since the gradient of the volume fraction field vanishes everywhere except in the

interfacial region, the source terms are non-zero only at the film interface.

5.2.3 Boundary and Initial Conditions

The boundary conditions for velocity and phase volume fraction are the same for the

case of a non-heated falling liquid film as described in § 2.1.5. Only boundary and

initial conditions for temperature are presented in this section. At the liquid and

vapor sections of the evaporator inlet, temperature is fixed at the saturation value.

Along the wall on which the liquid film flows, a constant heat flux is maintained.

At the outlet of the evaporator, outflow conditions are specified i.e. ∂T
∂x

= 0 while a

zero-flux condition is maintained on the numerical wall boundary. The flow domain

is initialized with saturated liquid and vapor.

5.3 Numerical Validation

Validation results for numerical simulation of falling film velocity field and wave

properties (e.g. phase speed, maximum wave height) based on comparisons with

experimental correlations for 2-D falling films are presented and discussed in § 4.3.

In this section, we present validation results for phase change and evaporation heat

transfer by comparing numerical simulation results for the governing equations and

source terms with analytical solutions for Stefan problem and experimental corre-

lations developed for evaporation heat transfer coefficient for wavy-laminar falling

liquid films.
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5.3.1 Stefan Problem

Figure 5.2: Specification of Stefan problem

We consider the case where heat is transferred by conduction from a heated wall

through vapor to a liquid/vapor interface (see figure 5.2). The liquid and the phase

boundary (interface) remain at saturation temperature Tsat while the wall is kept

isothermal at a temperature To > Tsat so that liquid vaporization leads to a motion

of the interface away from the heating wall. With the assumption of a flat interface,

the formulation reduces to a 1-D problem. The analytical solution for this problem

was obtained by Neumann (see Welch & John, 2000; Hardt & Wondra, 2008) where

the interfacial position xi(t) and temperature distribution T (x, t) are respectively

expressed as:

xi(t) = 2ζ
√
λgt (5.5a)

T (x, t) = To +
Tsat − To

erf (ζ)
erf

(
x

2
√
λgt

)
(5.5b)

erf is the error function, λg = κg/ρgcpg is the thermal diffusivity for the vapor phase

and the parameter ζ is determined from the transcendental equation:

ζ exp (ζ2) erf (ζ) =
cpg (To − Tsat)

he
√
π

(5.6)
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Liquid and vapor properties used in the Stefan problem numerical simulation were

set based on the validation studies of Hardt & Wondra (2008): ρ
l
= 1.0 kgm−3, ρg =

1.0 kgm−3, ν
l

= 1.0 e−05 m2s−1, νg = 1.0 e−05 m2s−1, cpl = 1000 Jkg−1K−1, cpg =

1000 Jkg−1K−1, κ
l

= 1.0 Wm−1K−1, κg = 1.0 e− 02 Wm−1K−1, he = 1.0 e 06 Jkg−1,

Tsat = 373.15 K, To = 383.15 K, σ = 0.01 Nm−1 and g = 9.78 ms−2. The choice of

values for liquid density and thermal conductivity is to ensure significantly increased

heat diffusion in the liquid so that the interface always remains close to saturation

temperature. Figures 5.3 and 5.4 show respective plots of the interface position

xi(t) and instantaneous temperature profiles T (x) from our numerical simulation and

Neumann’s analytical solution. The results show good agreement.
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Figure 5.3: Interface position as a function of time for Stefan problem

5.3.2 Evaporation Heat Transfer Coefficient

Table 5.1 shows flow and heating conditions (obtained from experimental studies by

Abdulmalik et al., 1998) for the numerical simulation of wavy laminar falling film

evaporation of water. The liquid and vapor properties for these simulations were
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Figure 5.4: Temperature profile at different time steps for the Stefan problem

set at their corresponding saturation values (Incropera et al., 2007). The length of

the evaporator computation domain is 0.5m and is uniformly discretized with grid

sizes 0.22δ
N

and 0.05δ
N

in the streamwise and normal directions respectively. Time

step for the computation was set at 4t = 6.0µs. Based on the Nusselt film height

δ
N

and Nusselt film velocity u
N

, we define a flow time scale τ
N

= δ
N
/u

N
. To ensure

simulations run until flow attains equilibrium, the stop time was set at tstop/τN ≥ 2000

which is equivalent to about 250, 000 time steps. The frequency of inlet perturbation

was fixed at f = 30 Hz for all simulations, which is much less than the cut-off

frequency (Gao et al., 2003) beyond which flow perturbations are damped out.

Based on Newton’s law of cooling, the local evaporation heat transfer coefficient

is defined as:

h(x, t) =
q
′′

Tw(x, t)− Ti(x, t)
(5.7)

where Tw(x, t) is the local wall temperature, Ti(x, t) is the corresponding interfacial
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Table 5.1: Transport and heating conditions for falling film evaporation simulations.
Ka∗ = 1/Ka3 (Abdulmalik et al., 1998) is evaluated using fluid properties at tem-
perature Tm = (T̄w + Tsat)/2, where T̄w is the time-average mean wall temperature.

Case # Tsat [K] Heat flux [Wm−2] Re Ka∗

1 311.65 19500 200 5.09317e-12
2 311.65 19500 250 5.06420e-12
3 372.75 18200 300 2.92891e-13
4 372.75 18200 350 2.92220e-13
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Figure 5.5: Instantaneous streamwise and corresponding mean values of Nusselt
number and wall temperature for case 1.

temperature and q
′′

is the constant heat flux at the evaporator wall. The time-

averaged mean evaporation heat transfer coefficient h̄ for the falling liquid film is

defined as :

h̄ =
1

Nj

∑
j

1

Le

∫ Le

0

h(x, tj)dx j = 1, 2, ..., Nj (5.8)

where Nj is the number of time steps over which the average is evaluated, Le is the

evaporator length, h(x, tj) is the instantaneous heat transfer coefficient (see figure 5.5)

at time tj. Following (5.8), the time-averaged mean Nusselt number N̄u for the
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Seban (1971); Abdulmalik et al. (1998).

evaporating falling liquid film is expressed as (Abdulmalik et al., 1998):

N̄u =
h̄lv
κ

l

(5.9)

lv = (ν2
l
/g)1/3 is the viscous length scale. Based on experimental studies, Chun &

Seban (1971) and Abdulmalik et al. (1998) proposed the following correlations for the

average Nusselt number for falling film evaporation in the wavy-laminar flow regime:

N̄u = 0.822Re−0.22 (Chun & Seban) (5.10a)

N̄u = 2.65 (Ka∗)0.0563Re−0.158 (Abdulmalik et al.) (5.10b)

Figure 5.6 shows plots of the average Nusselt number calculated from numerical simu-

lation of the cases in table 5.1 and predictions using (5.10a) and (5.10b). The general

trend of the numerical results is consistent with the experimental correlations as ex-

emplified by higher values of Nu compared to Nusselt flat film theory and a decrease
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in Nu with Re in the wavy-laminar regime. Overall, the results show good agreement

with the experimental correlations.

5.4 Analysis of Simulation Results

5.4.1 Free Surface Waves Evolution
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Figure 5.7: Free surface wave profiles for simulated water falling films at different
Reynolds numbers and saturation temperatures.

Figure 5.7 shows free surface wave profiles of evaporating falling water films for the

different Reynolds numbers simulated in this study. The frequency of inlet perturba-

tion for all cases is fixed at f = 30 Hz. Close to the inlet, the interface is characterized

by growing amplitude of flow perturbation. Once the disturbance grows to satura-

tion, the saturated surface wave travels as a solitary wave over a streamwise distance

of about 2 - 3 times the average wave separation where capillary waves gradually
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develop in front of the saturated wave. Over this streamwise distance, the number of

capillary waves formed increase as the wave continues downstream. The amplitude

of the saturated wave and the minimum film thickness (corresponding to the height

of the film at the solitary wavefront) remains uniform in this flow region.

Figure 5.8: Film free surface waves profiles for case 1 showing saturated solitary
wave preceded by: multiple capillary waves only (top); fewer capillary waves and an
intermediate-sized wave (bottom). The red color defines the liquid film while blue
defines the vapor film and flow is from left to right.

As the solitary-capillary wave-train continues downstream, the preceding capillary

waves interact, giving rise to intermediate-sized waves (i.e. the amplitude is greater

than capillary waves’ but less than saturated solitary waves’) between consecutive

saturated solitary waves (see figures 5.7 and 5.8). The transition from capillary to

intermediate-sized waves can also be characterized in terms of the reduction in mul-

tiplicity of capillary waves in front of large amplitude solitary waves. The growth

in amplitude of the intermediate-sized waves results in significant reduction in film

thickness at the intermediate wavefront leading to an overall reduction in mean film

thickness. Further downstream where the film contains fully developed intermediate-

sized waves, the saturated solitary waves still retain their uniform amplitude and

wave separation.
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5.4.2 Wave Properties Compared to 2-D Correlations

Figure 5.9 shows plots of simulation results for wave properties (non-dimensional

wave speed and maximum wave height) for the cases in table 5.1 compared with

correlations from Nosoko et al. (1995). The values for wave speed and wave separation

were evaluated from the flow region dominated by regularly spaced fully developed

solitary waves while the peak wave height was determined considering waves in the

entire flow domain. The plots show that the correlations overstate the maximum

wave height while under-predicting the wave speed. The variation in wave height

between the simulations and correlations is more pronounced. The results indicate

that the correlations proposed by Nosoko et al. (1995) are not suitable for estimating

falling film wave properties for moderately high Reynolds number (200 < Re < 500)

flows. This is consistent with the fact that the experiments for which the correlations

were developed applied to falling films with flow Reynolds numbers in the range

Re = 15 − 90. The significant over-prediction (compared to simulation results) of

the maximum wave height by the low Reynolds number correlations of Nosoko et al.

(1995) underscores the influence of intermediate waves on the reduction of overall film

thickness for moderately high Reynolds number falling films.

5.4.3 Streamwise Thermal Regions

From the plots in figure 5.5, the following distinct thermal regions with respect to

the streamwise variation of the wall temperature or heat transfer coefficient can be

defined for the case of constant wall heat flux:

• region of growing wall temperature close to the inlet.

• an intermediate region of relatively uniform wall temperature.

• region of fluctuating wall temperature beyond the intermediate region.
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Figure 5.9: Simulated non-dimensional maximum wave height Nhp and non-
dimensional wave speed Nuw for water falling films at moderately high Reynolds
numbers (see table 5.1) compared with Nosoko et al. (1995) correlations.

These regions are indicative of the influence of wave evolution on the development of

liquid film thermal conditions and consequently evaporation heat transfer. Figure 5.10

shows plots of the streamwise distribution of wall temperature for the four cases

corresponding to figure 5.7. The plots show that for the film flows at both higher

saturation temperature and Reynolds number, the wall temperature in the fluctuating

region does not deviate significantly from the value in the intermediate region.

5.4.3.1 Growing Wall Temperature

The region of growing wall temperature is characterized by a developing thermal

boundary layer. Although liquid enters the evaporator at saturation conditions, evap-

oration only occurs at the interface when the interfacial surface-normal temperature

gradient is positive or in this formulation Ti − Tsat > 0. The consequence of this free

surface thermal constraint is that a thermal boundary layer develops in the liquid

film at the entrance region. Figure 5.11 shows plots of the normal distribution of

temperature in the liquid film at the entrance region depicting a growing thermal

boundary layer. As the thermal boundary layer grows to fill the liquid film, the wall

temperature approaches a local maximum. From figure 5.10 we observe that the wall
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Figure 5.10: Streamwise variation of wall temperature for simulated water fall films
at different Reynolds numbers and saturation temperatures.

temperature attains its first maximum around x/δ
N
≈ 240 for case 1 (Re = 200,

Tsat = 311.65K, δ
N

= 0.3 mm, Pr = 4.47) and x/δ
N
≈ 200 for case 3 (Re = 300,

Tsat = 372.75K, δ
N

= 0.2 mm, Pr = 1.77). The shorter length of the thermal entrance

region for the higher temperature liquid film is consistent with the relative increase

in diffusion due to lower liquid Prandtl number and an overall relatively thinner film.

5.4.3.2 Near-Uniform Wall Temperature

Once the thermal region becomes fully developed, the wall temperature remains rela-

tively uniform over a few wavelengths downstream. Although the onset of the region

of near-uniform wall temperature is largely dependent on the length of the thermal

entrance region, its extent in the streamwise direction is almost entirely defined by the
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Figure 5.11: Crosswise temperature distribution in the thermal boundary layer at
the entrance region for case 1 showing decreasing growth in wall temperature with
streamwise distance.

evolution of the free surface waves. For all cases simulated in this study, the termina-

tion point for the near-uniform wall temperature region coincides with the flow region

where capillary waves’ interaction leads to formation of intermediate-sized waves (see

figures 5.7 and 5.10). This implies that in the region where the flow is in a strict sense

dominated by purely saturated solitary-capillary waves, the wall temperature (and

consequently heat transfer coefficient) remains approximately uniform. Figure 5.5

shows that the instantaneous heat transfer coefficient in this region is less than the

mean heat transfer coefficient integrated over the evaporator length.

Figure 5.12: Liquid film streamlines for case 1 showing flow separation at the wave-
front of the solitary wave (x/δ

N
= 404; see figures 5.7 and 5.13) in the region where

the wall temperature is approximately uniform.

Studies (Kunugi & Kino, 2005; Dietze et al., 2008, 2009) show that the onset
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Figure 5.13: Plots of film interface in the region of near-uniform wall temperature
showing solitary and multiple capillary waves, normalized streamwise pressure gra-
dient px(=

∂p
∂x

)/γ, normalized crosswise velocity v/u
N

and film temperature for case
1. The streamwise values for velocity, pressure gradient and film temperature were
sampled at y = 75µm from the wall. γ is the specific weight of the liquid.

of capillary waves in constant property low Reynolds number (e.g. Re < 80) ver-

tical falling liquid films with long wavelength disturbances is typically accompanied

by flow separation (or backflow) with the resultant effect of convective heat transfer

enhancement. In our simulations, flow separation is also observed in the region of

uniform wall temperature where multiple capillary waves are formed ahead of a sat-

urated solitary wave (see figure 5.12). However the size of the backflow separation
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Figure 5.14: Interface profile showing fully developed intermediate waves between
saturated solitary waves in the region of fluctuating wall temperature for case 1.

vortex is much smaller (see § 4.4.2 for discussion on backflow dynamics). This is due

to higher liquid streamwise momentum which dampens the impact of the adverse

streamwise pressure gradient primarily responsible for the formation and growth of

the separation vortex at the solitary-capillary wavefront. Consequently, the crosswise

velocity (see figure 5.13) induced by backflow does not result in significant convective

transport from the wall to the interfacial boundary. This underscores a fundamental

difference between low and moderately high Reynolds number falling films in terms

of the effect of backflow in heat transfer enhancement in the solitary-capillary waves

regime.

Fourier’s law applied at the evaporator surface for a thin liquid film of thickness

δ(x, t) can be expressed as:

q” = −κ
l

∂T

∂y

∣∣∣∣
y=0

=
κ

l

(
Tw(x, t)− Ti(x, t)

)
δ(x, t)

+ O (δ(x, t)) (5.11)

With Ti ≈ Tsat, the streamwise derivative of (5.11) for constant heat flux and thermal

conductivity gives:

∂Tw
∂x
≈ q”

κ
l

∂δ

∂x
(5.12)

Equation (5.12) indicates that in the fully developed thermal region, the wall (or
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near-wall region of the liquid film) temperature varies as the film thickness for con-

stant wall heat flux. Figure 5.13 (bottom plot) shows the liquid film temperature

parallel to the wall at y/δ
N

= 0.25 (or y = 75µm) for case 1. The streamwise varia-

tion of temperature is consistent with equation (5.12) (see temperature and interface

plots). The plot shows that across each wave, the minimum temperature (or highest

heat transfer rate) occurs at the wavefront where the film thickness for that wave is

smallest. Within the large solitary wave where ∂δ
∂x
≈ 0 the temperature remains uni-

form. The results clearly show that in the region of near-uniform wall temperature,

heat transfer from the wall is highly dependent on film thickness and consequently

dominated by conduction and any transport enhancement from crosswise convective

effects resulting from backflow or large wave circulation is minimal or negligible.

5.4.3.3 Fluctuating Wall Temperature

With regards to heat transfer, the most consequential effect of the intermediate surface

waves is the significant reduction in film thickness at the intermediate wavefront i.e.

the flow region between consecutive saturated solitary waves (see figure 5.14). As

predicted by equation (5.12), the liquid film near-wall temperature approaches its

minimum value at the intermediate wavefront where the film thickness is smallest

before growing back to the average value fixed by the film height at the solitary-

capillary wavefront upstream of the intermediate wave (see figure 5.15). This repeated

process due to the presence of intermediate waves between saturated solitary waves

give rise to the region of fluctuating wall temperature (see figure 5.5). The heat

transfer enhancement for the entire falling film is largely dependent on the presence

and structure (e.g. minimum film thickness at wavefront) of the intermediate waves.

Figure 5.5 shows that in this region, the heat transfer coefficient is typically greater

than the mean value integrated over the evaporator length.
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Figure 5.15: Plots of film interface in the region of fluctuating wall temperature
showing solitary-capillary waves and the intermediate wave (see figure 5.14) and
their corresponding normalized streamwise pressure gradient px(=

∂p
∂x

)/γ, normal-
ized crosswise velocity v/u

N
and film temperature for case 1. The streamwise values

for velocity, pressure gradient and film temperature were sampled at y = 75µm from
the wall.

In addition to increased heat transport by diffusion, the normalized crosswise ve-

locity at the intermediate wavefront (see figure 5.15) also indicate increased convec-

tive transport. Figure 5.15 shows that even though the streamwise pressure gradient

across the solitary wavefront is greater than the value across the intermediate wave-

front, the crosswise velocity induced by the pressure gradient is about three times
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Figure 5.16: Interfacial evaporation rate along the solitary-capillary-intermediate
wave train in the region of fluctuating wall temperature (see figures 5.14 and 5.15) for
case 1. The evaporation rate is normalized by the value at the intermediate wavefront.

higher at the intermediate wavefront. This is a consequence of the combined effect

of significant reduction in film thickness at the intermediate wavefront which induces

higher velocities to satisfy the continuity constraint.

5.4.4 Evaporation Rates along Waves

Figure 5.16 shows the normalized rate of evaporation at the film interface across a

fully developed solitary-capillary-intermediate wave train in the region of fluctuating

temperature. The plots show that the maximum evaporation rate occurs at the

intermediate wavefront where the film is thinnest. This is due to a combination of

conduction and convective effects. Across the solitary wave, the average evaporation

rate is less than the average rate across the multiple capillary waves in front of the

solitary wave. In general the average evaporation is highest at the intermediate
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wavefront (smallest film thickness and highest crosswise velocity) and least within

the solitary wave (highest film thickness and lowest crosswise velocity). Within the

core of the large amplitude solitary waves, we found no evidence of flow circulations

zones similar to backflow regions that evolve at the wavefront of solitary-capillary

waves (see figure 5.12).
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CHAPTER 6

FALLING FILM EVAPORATION OF BLACK LIQUOR

6.1 Background

Black liquor is a highly viscous liquid residual stream from the pulp production process

that needs to be recycled due to environmental and economic reasons (Gourdon,

2011). The evaporation process is one of the critical unit operations in the recovery

cycle of pulp mills since the efficiency of the cycle is largely dictated by evaporator

performance. To minimize the extent of evaporator heat transfer surface fouling

due to crystallization, falling film evaporation is typically employed for black liquor

concentration (Chen & Gao, 2003). Black liquor mixture consist of dissolved solids

(soluble salts, wood extractives) that is enriched during evaporation. The transport

properties of black liquor are dependent on temperature and dry solids mass fraction,

and its rheology could be Newtonian at low dry solids mass fraction or non-Newtonian

(shear-thinning) at dry solids mass fraction greater than 0.5 (Adams et al., 1997).

Even under conditions where black liquor flow is Newtonian, the combination of high

density and viscosity coupled with relatively low surface tension coefficient could

induce complex interfacial flow structures.

Dissolved solids enrichment during black liquor evaporative concentration is pri-

marily responsible for crystallization fouling. For most Kraft black liquor mixtures,

sodium carbonate (Na2CO3) and sodium sulfate (Na2SO4) are the major inorganic

species. Under certain thermophysicial conditions, enriched soluble salts crystallize

out of the evaporating mixture, forming scales that deposit on evaporator surface

(see for example Hedrick & Kent, 1992; Shi et al., 2003; DeMartini & Verrill, 2007;

Gourdon et al., 2009; Gourdon, 2011). Research studies have been conducted to
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characterize the kinetics and predict conditions under which black liquor salts crys-

tallize. Grace (1975) defined the maximum solubility of Na2CO3 and Na2SO4 in a

black liquor mixture as the critical solids point beyond which soluble salt crystallize.

Rosier (1997) proposed predictive correlations for black liquor soluble salt precipita-

tion. Chen & Gao (2003) discuss the inverse solubility property of black liquor with

implication that dissolved salt have reduced solubility with increasing temperatures of

black liquor mixtures. Gourdon (2009) developed methods for investigating variation

in evaporator heat transfer coefficient due to soluble scale fouling.

Falling film hydrodynamics and heat transfer of evaporating black liquor under

laminar and turbulent flow conditions has been studied experimentally (Johansson,

2008; Johansson et al., 2009a,b) and numerically (Chen & Gao, 2003). Johansson

et al. (2009a) characterized fundamental differences in free surface wave flow struc-

tures for evaporating falling films of water and black liquor at similar film Reynolds

number. In particular bubble formation was observed only in evaporating black liquor

falling films, which was attributed to a combination of surface-active agents and

air/vapor entrainment due to free surface wave-breaking. Johansson et al. (2009b)

proposed correlations for predicting black liquor falling film evaporation heat trans-

fer coefficient for laminar, turbulent and transition flow regimes. Chen & Gao (2003)

simulated black liquor falling film evaporation based on elliptic incompressible Navier-

Stokes equations in 2-D. They assumed a flat free surface for the falling film with liquid

vaporization occurring within the film as opposed to free surface evaporation. The

numerical implementation of Chen & Gao (2003) also includes a phenomenological

model for heat transfer surface fouling due to dissolved solids solid enrichment.

This chapter focuses on the analysis of Newtonian wavy-laminar 2-D (flat plate)

and 3-D (cylindrical) black liquor falling films based on numerical solution of the

transient Navier-Stokes equations on highly resolved spatio-temporal grids. Conser-

vation laws for the transport of heat and species are implemented with source terms
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describing interfacial evaporation and species enrichment/depletion. The study inves-

tigates the fundamental structure of fully developed black liquor falling film interfacial

waves at low and moderately high dry solid mass fraction for specified flow inlet per-

turbation. We analyze free surface wave phenomena such as wave breaking and air

entrainment for films with moderately high dry solid mass fraction. For fully de-

veloped waves, we investigate the influence of wavy film transport on temperature

and species distribution and the possible implications for crystallization and soluble

scaling.

Figure 6.1: 2-D schematic diagram of a black liquor falling film heated by uniform
temperature wall: u, v are x, y velocity components, h is wave height, Tw is uniform
wall temperature, g is gravitational acceleration.

6.2 Mathematical Model

We consider the wavy-laminar flow of Newtonian black liquor mixture down a vertical

wall (flat or cylindrical) maintained at constant temperature Tw (see figure 6.1 for

the 2-D illustration). It is customary to represent all soluble salts in the black liquor

mixture in terms of an overall dry solids mass fraction (Golike et al., 1998; Gourdon,

2009). Individual salts concentrations can be expressed as a function of this fraction.

For evaporating flow, inlet temperature for black liquor and steam is specified by the
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boiling point rise corresponding to the inlet dry solids mass fraction. Species (i.e. dry

solids mass fraction) conservation law accounts for dry solids enrichment as a result

of liquid vaporization and depletion due to salt precipitation.

6.2.1 Governing Equations

Based on the single-field formulation, the respective continuity, momentum, energy,

species and phase equations for the two-phase flow field are expressed as:

∂ρ

∂t
+∇ · (ρv) = 0 (6.1a)

∂ρv

∂t
+∇ · (ρvv) = −∇p+∇ · τ + ρg +

∫
AI(t)

σκ′n′δI(x− x′) dAI (6.1b)

∂ρcpT

∂t
+∇ · (ρvcpT ) = ∇ · (k∇T ) + τ :∇v − Ṡq,e + Ṡq,c (6.1c)

∂ρχs
∂t

+∇ · (ρvχs) = ∇ · (ρ ξ∇χs) + Ṡm,e − Ṡm,c (6.1d)

∂α

∂t
+∇ · (vα) = −Ṡv (6.1e)

where v is velocity, τ is the stress tensor, p is pressure, T is temperature, χs is

mass fraction of dissolved solids (i.e. species) in the black liquor mixture and α is

phase volume fraction. Ṡq,e and Ṡm,e represent the respective heat and mass source

terms resulting from liquid vaporization. Ṡq,c and Ṡm,c represent the respective heat

and mass source terms from species depletion. Conservation of mass fraction in

the liquid film ensures that the mass rate of liquid vaporization equals the mass

rate of species enrichment. The physical presence of salt crystals in the liquid film

due to crystallization is not explicitly captured in this formulation. Rather, the

species depletion terms account for dissolved solids mass fraction destruction when

salt concentration levels attain or exceed supersaturation states. Species transport

occurs in the liquid film only. Ṡv is the rate of liquid vaporization and tracks the

liquid interface due to evaporation of liquid only i.e. no condensation effects are

considered. The energy transport equation (6.1c) also accounts for viscous dissipation

since black liquor flow is typically characterized by relatively large velocity gradients
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and high viscosity. The viscous dissipation term is treated explicitly in the numerical

implementation.

6.2.2 Evaporation Source Terms

Free surface evaporation of black liquor is driven by an excess temperature Ti − Tsb

at the phase boundary where Ti is the interfacial temperature and Tsb is defined as:

Tsb = Tsat +4T
BPR

(6.2a)

4T
BPR

= BPR50

[
9.1χs

8.1− 7.1χs

]
(6.2b)

4T
BPR

is the boiling point rise expressed as a function of the dry solid mass fraction

(see TAPPI manuscripts by Clay, 2011) and BPR50 is the boiling point elevation for a

black liquor mixture with χs = 0.5. Tsat is the saturation temperature at the specified

saturation pressure. The vaporization heat flux density jhe at the phase boundary is

evaluated (Tanasawa, 1991) based on the excess temperature:

jhe =
Ti − Tsb
Ri
e

(6.3)

where the interfacial evaporation heat transfer resistance Ri
e is defined (see Kunkel-

man & Stephan, 2009) as:

Ri
e =

[
2ψe

2− ψe
h2
e√

2πRgas

ρg

T
3/2
sat

]−1

(6.4)

he and Rgas are the respective enthalpy of vaporization and gas constant of water

at saturation conditions. ψe is evaporation coefficient which is set to 0.5 in our

simulations. With the interfacial area evaluated based on the model of Hardt &

Wondra (2008), the evaporation source terms are defined as:

Ṡq,e =
jhe
V

∫
V

|∇α| dV (6.5a)

Ṡm,e =
Ṡq,e
he

(6.5b)

Ṡv =
Ṡm,e
ρ

l

(6.5c)
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V is volume.

6.2.3 Phenomenological Crystallization Model

The mass and heat source terms for species depletion due to salt crystallization are de-

rived based on the phenomenological model for black liquor fouling thermal resistance

of Chen & Gao (2003) . The fouling resistance model follows from an extension of the

empirical models for predicting heat transfer fouling proposed by Muller-Steinhagen

& Branch (1997); Forster et al. (1999). Chen & Gao (2003) assumes that all precipi-

tated salt resulting from elevated concentration due to species enrichment is deposited

on the heat transfer surface. Thus, the derivation of the fouling thermal resistance

starts with a rate equation for mass ms of black liquor salt precipitated per unit

volume:

∂ms

∂t
= Kr (Cb − C∗) (6.6)

where Kr is the surface rate constant, Cb is soluble solids mass concentration in the

bulk flow and C∗ depends on the weight percent of sodium salts in the black liquor

mixture. Equation (6.6) is based on the following simplifying assumptions (Chen &

Gao, 2003):

1. the deposition process is controlled by a first order chemical reaction on the heat

transfer surface i.e. the exponent n of the concentration difference is assigned

a value of one, and the surface rate constant is evaluated based on temperature

conditions at the evaporator wall.

2. the driving force for the reaction is the positive species concentration gradient.

3. the system is considered quiescent and diffusion controlled.

By assuming that the surface rate constant follows Arrhenius equation, Kr is ex-

pressed as:

Kr = K̄r exp

(
−Eact

RTw

)
(6.7)
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where K̄r is the pre-exponential factor and R is the universal gas constant. The rate

of fouling resistance R
FR

can be expressed in terms of the fouling deposit density ρ
d
,

deposit thermal conductivity k
d

and the mass rate of precipitation per unit deposit

area Ad, i.e.:

ρ
d
k

d

∂R
FR

∂t
=

1

Ad

∫
V

∂ms

∂t
dV (6.8)

Using dimensional analysis the expression on the rhs of equation (6.8) can be refor-

mulated in terms of the thermal diffusion length scale l
T
:

1

Ad

∫
V

∂ms

∂t
dV ≈ V

Ad

∂ms

∂t
≡ l

T
Ṡm,c (6.9)

l
T

is defined in terms of the viscous length scale lv (see § 1.4.2) i.e.

l
T

=
lv

Pr2/3
(6.10)

In our simulations, the viscous length scale and Prandtl number are evaluated using

inlet conditions of the black liquor mixture. From equations (6.8) and (6.9), the mass

rate of species depletion can be expressed in terms of the rate of fouling resistance:

l
T

ρ
d
k

d

Ṡm,c =
∂R

FR

∂t
(6.11)

Based on analysis of experimental data on heat transfer fouling reported by Forster

et al. (1999), Chen & Gao (2003) expressed the rate of fouling thermal resistance as:

∂R
FR

∂t
=

Ka

ρ
d
k

d

exp

(
−Eact

RTw

)
(Cb − C∗) (6.12)

Combining equations (6.11) and (6.12), the respective mass and heat source terms

for the species and energy conservation laws resulting from species depletion due to

crystallization can be expressed as:

Ṡm,c =
Pr2/3

lv
ρ

l
Ka exp

(
−Eact

RTw

)
(χs − c∗) (6.13a)

Ṡq,c = 4Ho
s Ṡm,c (6.13b)

77



Table 6.1: Mean values of typical components of black liquor dry solids (Gourdon,
2009)

Analyte Mean value

Na2CO3, wt % 10.0
Na2SO4, wt % 6.03
Na2S, wt % 0.79
Sodium, wt % 18.4
Inorganic carbon, wt % 1.14
Organic carbon, wt % 33.5
Sulfate, wt % 4.08

where (see Chen & Gao, 2003) ρ
l
Ka/ρd

k
d

= 1.2 × 10−6 m2 K/W s, Eact/Eo = 0.95 +

10 c∗/(t + 30), c∗ = 0.8547 − 0.0147 ZNa − 0.0095 WNa, Eo = 3431 kJ/kmol, ZNa is

the effective sodium weight % on total black liquor solids, WNa is the weight % of

Na2CO3 + Na2SO4 on total black liquor solid. ZNa and WNa can be evaluated from

values in table 6.1. 4Ho
s is the enthalpy of crystallization which is approximated by

the enthalpy of formation for Na2CO3 (see § 6.2.4).

6.2.4 Crystallization Parameters

Sodium carbonate and sodium sulfate form the double salt burkeite (2Na2SO4 ·

Na2CO3) when they co-crystallize (Hedrick & Kent, 1992; Frederick Jr. et al., 2004;

Bayuadri, 2006). For high dry solids black liquor evaporation, Frederick Jr. et al.

(2004) reports that in addition to burkeite, another double salt of Na2CO3 and

Na2SO4 but rich in Na2CO3 is formed. Thus, to simplify the numerical implemen-

tation of the crystallization source terms, the primary crystallizing salt in the black

liquor mixture in our formulation is assumed to be Na2CO3. Consequently, parameter

values relevant to species transport and species depletion source terms (e.g.enthalpy

of formation of the precipitated salt, mass diffusivity in species conservation law)

were approximated using corresponding values for Na2CO3. Table 6.2 shows relevant

property values of Na2CO3 used in black liquor numerical simulations.
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Table 6.2: Physical properties of Na2CO3 relevant to species transport model (Derek
& Robert, 1985; Abdullah & Baris, 2006)

Parameter Value Unit

Enthalpy of formation (@ 298 K) −1.131× 106 J mol−1

Molar mass (anhydrous) 0.106 kg mol−1

Density (anhydrous) 2540 kg m−3

Thermal conductivity 0.0418 W m−1 K−1

Specific heat 1042 J kg−1 K−1

Diffusion Coefficient (@ 298 K) 1.1× 10−9 m2 s−1

6.2.5 Black Liquor Transport Properties

Experimental correlations for the transport properties of black liquor relevant to

evaporation are defined in terms of temperature and dry solids mass fraction (see

Adams et al., 1997):

log10

(
µ

l

µw

)
=

χsT ∗

T

0.679− 0.656 χsT ∗

T

(6.14a)

ρ
l

= 1007− 0.495 (T − 273.15) + 6χs (6.14b)

k
l

= 1.44 x 10−3 (T − 273.15)− 0.335χs + 0.58 (6.14c)

cpl = (1− χs) cpw + χs cps + cpe (6.14d)

where µ
l

[Pa-s], ρ
l

[kgm−3], k
l

[W/mK], cpl [J/kgK] are respective black liquor

dynamic viscosity, density, thermal conductivity and specific heat, T ∗ = 373 K,

µw = (36.6T − 10090)−1, cpw = 4216 J/kg K, cps = 1684 + 4.47 (T − 273.15),

cpe = (4930 − 29 (T − 273.15))(1 − χs)χs
3.2 and T is temperature [K]. The mass

diffusion coefficient for black liquor ξl is approximated based on the molecular diffu-

sivity of Na2CO3 = 1.1 × 10−9 m2s−1 and the surface tension coefficient is specified

as σ = 0.033 Nm−1.
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6.2.6 Boundary and Initial Conditions

Boundary conditions for velocity and fluid phase fraction for 2-D falling liquid films

presented in § 2.1.5 are also valid for black liquor flat plate simulations. For simu-

lations of falling film flow on a cylindrical surface at a given Reynolds number, the

perturbed inlet velocity vo and liquid film inlet thickness ro are specified as:

ro = rwall + δ
N

(6.15a)

vo = 0i + u
N

j + ε sin(2πft)[u
N

j + k] (6.15b)

where i, j, k are the coordinate unit vectors, rwall is outer radius of the cylindrical

wall, f is the forcing frequency in Hz and ε = 0.05 for this study. δ
N

and u
N

are

the corresponding Nusselt values (see § 1.4.2). The primary flow direction for the 3-D

simulation is along the y axis and inlet velocity has y and z perturbation components.

On the heating wall, temperature is maintained at a uniform value greater than

the sum of the saturation temperature and boiling point rise for the specified inlet dry

solids mass fraction. All other variables on this wall have zero-flux conditions with

no-slip condition for velocity. For the 3-D simulation, periodic conditions are imposed

at the vertical sides of the cylinder since only a portion of the cross-sectional perime-

ter is simulated. To simplify the computation domain, a numerical wall boundary is

imposed at r = rwall+4δ
N

where zero-flux condition is imposed on all variables except

velocity which has no-slip conditions. The same conditions apply to the numerical

wall boundary for the flat plate. At the outlet, outflow conditions are specified i.e.

stress free conditions for velocity and homogenous face-normal gradients for temper-

ature, species and phase volume fraction. For the 3-D simulation, the flow domain

is initialized with a uniform dry solids mass fraction black liquor mixture of film

thickness ro and velocity field (0, u
N
, 0).
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Table 6.3: Flow and heating conditions for black liquor falling film evaporation
simulations

χs,in Tsat [K] Tin [K] Tw [K] Re Γ [kg/m s] f [Hz]

0.40 348.15 352.99 359.00 160 0.72 30
0.41 324.15 329.18 334.18 56 0.60 30
0.50 348.15 355.15 360.15 50 0.81 25
0.51 324.15 331.40 336.40 11 0.62 30

6.3 Numerical Validation

Validation results are presented for black liquor falling film evaporation heat transfer

coefficient and average dry solids mass fraction at evaporator exit. The simulated

results are compared with experimental results and correlations from falling film ex-

periments by Johansson et al. (2009b).

6.3.1 Evaporation Heat Transfer Coefficient

Table 6.3 shows flow and heating conditions for the numerical simulation of 2-D wavy-

laminar falling film evaporation of black liquor. Inlet temperature for black liquor

and vapor from the evaporating liquid is set at the elevated temperature correspond-

ing to the sum of the saturation temperature and inlet dry solids boiling point rise.

The temperature difference between the inlet liquor and heating wall is set at 5 K.

In general, the vapor within the evaporator is superheated since black liquor evapo-

ration occurs at a temperature greater than the prescribed saturation temperature.

The computation domain is uniformly discretized with step sizes set at 0.178δ
N

and

0.0286δ
N

in the streamwise and normal directions respectively. The streamwise length

of the computation domain is set at 800δ
N

which gives evaporator lengths in the range

0.75m - 1.45m depending on film thickness at the inlet.

For the evaporating black liquor film heated by a uniform temperature wall, the
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Figure 6.2: Streamwise variation of Nusselt number for simulated cases in table 6.3.

instantaneous evaporation heat transfer coefficient is defined as:

h(x, t) =
−κ

l

∂T
∂y

∣∣∣
y=0

Tw − Tin
(6.16)

where Tw is the wall temperature and Tin is the film inlet temperature. The time

averaged heat transfer coefficient h̄ is evaluated using equation (5.8) by integrating

over the evaporator length. The corresponding average Nusselt number N̄u is eval-

uated using equation (5.9). The streamwise variation of the instantaneous Nusselt

number is shown in figure 6.2. The effect of dry solids mass fraction on falling film

evaporation heat transfer coefficient has been studied by Johansson et al. (2009b).

From their experimental results they proposed the following correlation for predicting

the average evaporation heat transfer coefficient for black liquor in the wavy laminar
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Figure 6.3: Simulated average Nusselt number for the cases in table 6.3 compared
with predictions from Nusselt (1916) flat film theory and correlations from Johansson
et al. (2009b).

flow regime:

N̄u = 1.43Re−1/3 (6.17)

Figure 6.3 shows plots of the average Nusselt number from our simulated cases in

table 6.3 and predictions using equation (6.17). The results show good agreement.

6.3.2 Exit Dry solids Mass Fraction

Figure 6.4 shows plots of the liquid film crosswise variation of dry solids mass fraction

and the corresponding average value at the near exit region of the evaporator. Similar

to the mean heat transfer coefficient, the mean dry solids mass fraction χs,mean over

the film thickness is expressed as:

χs,mean-exit =
1

δexit

∫ δexit

0

χs,exit dy (6.18)

In their experimental study, Johansson et al. (2009b) determined the change in black

liquor dry solids mass fraction between evaporator inlet and exit based on an overall

energy balance and the mass flow of vapor produced from the evaporation process.
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Figure 6.4: Crosswise profile of instantaneous dry solids mass fraction and the cor-
responding mean value over the film thickness at the evaporator exit.

Figure 6.5 shows plots of percentage change in mass fraction over the evaporator per

unit length of evaporator from our simulations and the experimental measurements

of Johansson et al. (2009b). The results provide confidence that the numerical im-

plementation predicts with sufficient accuracy the net dry solids enrichment for an

evaporating black liquor mixture.

6.4 Analysis of Simulation Results

6.4.1 Black Liquor Free Surface Waves

Simulations for non-evaporating black liquor falling films on flat plate and cylindri-

cal wall were conducted to investigate the structure and evolution of black liquor

free surface waves. The 2-D simulations investigate the influence of dry solids mass

fraction and Reynolds number on falling film wave structure and formation of com-

plex interfacial flow structures. The 3-D simulation focused on the evolution of 2-D
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Figure 6.5: Percentage increase in average dry solids mass fraction per unit length
of evaporator from numerical simulation compared with experimental results of Jo-
hansson et al. (2009b).

perturbations and analysis of the fundamental structure of the resulting 3-D waves.

6.4.1.1 Effect of Dry Solids

Figure 6.6 shows simulated free surface wave profiles for black liquor falling films at

Re = 80, T = 348.15 K, f = 30 Hz and dry solids mass fraction χs = 0.2, 0.3 and

0.4. From the plots we observe that low dry solids saturated (i.e. fully developed

regularly spaced large amplitude waves) black liquor free surface waves consist of

solitary waves preceded by growing capillary waves (see top plot when χs = 0.20).

This is similar to wave structures on laminar water falling films perturbed by long

wavelength disturbances. For such surface wave types, secondary instabilities typi-

cally evolve from wave regions dominated by capillary waves due to solitary-capillary

wave interaction (Nosoko & Miyara, 2004). As the dry solids mass fraction increases,

the large amplitude wave still retains its tear-drop shape but the preceding capillary

waves no longer develop on the film (see bottom plot when χs = 0.40).

This observation follows from the Weber number We = σ/ρ
l
u2

N
δ
N

dependence on
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Figure 6.6: Surface wave profiles for simulated black liquor falling films at Re = 80,
T = 348.15 K, f = 30 Hz and different dry solids mass fraction.
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dry solids mass fraction. For black liquor (with constant surface tension coefficient)

falling films at fixed Reynolds number, an increase in dry solids mass fraction means
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a decrease in the influence of surface tension relative to inertia on interfacial wave

structure (see figure 6.7). Consequently, the liquid film is more likely to spread out

leading to a flat interfacial surface as opposed to forming curvatures that support

capillary wave structures. The decreasing Weber number also impacts the magnitude

of the streamwise pressure gradient in the liquid film. Dietze et al. (2008) showed

that for constant properties liquid, the streamwise derivative of liquid film pressure

is given by:

∂p

∂x
= −εWe

31/3

∂κ∗

∂x
, κ∗ =

ε(∂2δ/∂x2)

[1 + ε2(∂δ/∂x)2]3/2
(6.19)

where ε = δ
N
/Le and κ∗ is the non-dimensional interface curvature. Adverse stream-

wise pressure gradients at the wavefront of large amplitude waves have been shown

to induce flow separation (see § 4.4.2 for discussion on backflow dynamics) in laminar
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falling films (Dietze et al., 2008, 2009). From equation (6.19) and figure 6.7, we can

conclude that black liquor films with high dry solids mass fraction are less likely to

form backflow regions. In particular, results from our simulations show that backflow

is not observed when We < 1 i.e. for χs ≥ 0.3 at Re = 80.

6.4.1.2 Secondary Instability and Wave-Breaking

For high dry solids black liquor falling films, the absence of capillary waves suggest

that secondary instabilities are less likely to evolve at the immediate wavefronts of

large amplitude waves. Figure 6.8 shows the onset of a growing secondary instability

for χs = 0.40, Re = 80 black liquor falling film. The secondary instability is seen to

evolve from the liquid slope behind the saturated large amplitude wave. In general,

the effect of secondary instabilities increase with Reynolds number. Figure 6.9 shows

developed secondary instabilities for χs = 0.40, Re = 160 black liquor film with

secondary wave sizes and amplitudes comparable to those of saturated large amplitude

primary waves. The large amplitude primary wave tends to travel faster than the

secondary wave due to its larger aggregate body force which makes it relatively easier

to overcome viscous drag. This characteristic becomes more evident as the dry solids

mass fraction of the falling film increases. The result is that the faster traveling

saturated wave eventually merges with the secondary wave in front of it (as shown in

figure 6.10) giving rise to a larger but stable wave. This new wave also goes through

a similar cycle i.e. it accelerates due to increased body force and merges with a

preceding saturated wave. The wave resulting from the second merger is much larger

and consequently unstable.

Figure 6.11 shows the large wave flow sequence post-second merger. The fluid

particles at the wave apex experience much less viscous drag since the streamwise

velocity field in the apex region of the large wave is approximately uniform with

respect to the crosswise direction. As a result, the apex region travels faster under
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Figure 6.10: Film free surface waves (χs = 0.50, Re = 120, T = 348.15 K, f = 30 Hz)
showing flow sequence of a saturated large amplitude wave (left end) merging with a
secondary wave (middle). The red portion represent the liquid film while blue defines
vapor, and flow is from left to right

Figure 6.11: Film free surface waves (χs = 0.50, Re = 120, T = 348.15 K, f = 30 Hz)
showing flow sequence of large wave after second waves merger. The resulting large
wave is unstable as it deforms to form a secondary film.
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Figure 6.12: Film free surface waves (χs = 0.50, Re = 120, T = 348.15 K, f = 30 Hz)
showing bubble migration and subsequent escape from liquid film leading to significant
interfacial distortion and secondary wave-breaking.

gravitational body force relative to the wavefront. This relative motion deforms the

wave in a manner that gives rise to a secondary film adjacent to the substrate film.

The secondary film eventually collapses on the substrate film, trapping a column

of vapor underneath (see bottom plots of figure 6.11) thus entraining vapor in the

liquid film. The entrained vapor bubbles tend to migrate towards the interface before

escaping from the liquid film (see figure 6.12), leaving behind a distorted interfacial

region. The combined action of wave breaking and vapor entrainment fundamentally

alters the structure of the liquid film (compare figures 6.10 and 6.12) and the process

appears to be self sustaining. Johansson (2008) reported similar observations from

falling film experiments of evaporating black liquor suggesting that liquid film vapor

entrainment and bubble formation is primarily due to surface wave interaction which

eventually leads to multiple wave breaking.
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6.4.1.3 Evolution of 2-D Perturbation

Figure 6.13 shows black liquor falling film (χs = 0.50, Re = 120, T = 348.15 K,

f = 25 Hz) free surface waves on a cylindrical wall. The respective outer diameter

and length of the cylinder are 60 mm and 1.28 m. The simulated perimeter is 1
8

th of

actual cylinder perimeter. The uniform grid sizes along the coordinates are 4x =

0.000153 m, 4y = 0.000512 m and 4z = 0.000589 m with the streamwise direction

set along y. In the figure the complete cylinder is shown as smaller cylinder segments

for purposes of illustration. The flow starts from the top of the first cylinder (left

end), exits at the bottom and continues at the top of the second cylinder and so

on until the last cylinder (right end). Flow is from top to bottom on all cylinders.

The flow disturbance is introduced as a monochromatic perturbation of inlet velocity

components along y and z directions as specified in equation (6.15b).

Figure 6.13 shows the evolution of an initial 2-D perturbation into a 3-D wave for

black liquor falling film. The perturbation goes through a number of wave transforma-

tions before complete loss of regularity. Close to the inlet, the wave is predominantly

2-D but gradually evolves into an inverted “U-shaped” wave. Wave-breaking can be

observed at the vertical ends of the inverted “U-shaped” wave (see first cylinder) as

the film height grows to an unstable maximum at these points. In this region, the sep-

aration between consecutive waves remains regular. Further downstream, the second

transformation is initialized as the midpoint of the horizontal section of the inverted

“U-shaped” wave grows both in amplitude and speed. The downward acceleration of

the midpoint (see second cylinder) changes the wave structure into an “M-shaped”

wave. Wave breaking is also observed at the accelerating midpoint as the amplitude

at this point grows to an unstable maximum. Comparing the wave separation on

the first two cylinders, we observe that the second transformation slightly affects the

regularity of the wave separation. Beyond the second transformation, secondary in-

stabilities start evolving between consecutive large waves (see third cylinder). The
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Figure 6.13: Simulated black liquor falling film (χs = 0.50, Re = 120, T = 348.15 K,
f = 25 Hz) free surface waves on cylindrical wall. The full cylinder is shown as
segments. Flow comes in at the top of the outer left cylinder and exits at the bottom
of the outer right cylinder.

secondary disturbances in turn interact with the fast traveling portions of the primary

3-D waves leading to loss of regularity in wave separation.

Figure 6.14 shows free surface waves on an experimental non-evaporating black

liquor falling film on a cylinder of same diameter as the simulated domain in fig-

ure 6.13, and length of 4.5 m. The dry solids fraction for the experimental liquor is

χs = 0.41 at temperature T = 298.15 K with mass flow 0.19 kgs−1 (We = 0.085). The

mass flow of the simulated film is 0.37 kgs−1 (We = 0.018). Both films are in the lam-

inar flow regime where inertia dominate surface tension effects (based on their Weber

numbers) thus allowing for a qualitative comparison of flow structures. Figure 6.14 is

taken from a height of 0.67 m from the inlet which corresponds to the upper section

of the third cylinder in figure 6.13. The plots show that the simulated result correctly
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Figure 6.14: Experimental black liquor (χs = 0.41, T = 298.15 K) falling film free
surface waves.

reproduces the qualitative 3-D structure of the experimental wave with respect to

circumferential variation primary instability and evolution of secondary instabilities.

6.4.2 Wave Induced Transport in Evaporating Film

6.4.2.1 Influence on Temperature and Species

With evaporation and consequently species enrichment limited to the interfacial re-

gion only, a species boundary layer in the interfacial region soon develops in the

evaporating liquid film. The functional dependence of black liquor transport proper-

ties on species concentration and temperature implies stronger coupling and increased

nonlinearity of the transport equations. The combined effect of increased nonlinearity

and highly irregular interfacial wave structures give rise to more complex crosswise

concentration profiles in evaporating black liquor falling films (e.g. see figure 6.4) in

comparison to the regular boundary layer profile.

Falling liquid films interfacial deformation impose streamwise pressure variations

that induce velocity gradients in the liquid film (Dietze et al., 2008, 2009). For

black liquor, the impact of crosswise convective transport to and from the evaporator

surface is of significance to species enrichment i.e. evaporation and more importantly
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soluble scaling. High thermal energy liquid elements transported by convection from

the wall into the liquid film enhance evaporation heat transfer. On the other hand,

species-enriched liquid elements transported from the phase boundary to the higher

temperature evaporator wall region could induce soluble scale fouling as a result of

the inverse solubility property (Chen & Gao, 2003) of dissolved black liquor salts.

High dry solids black liquor falling films at moderately high Reynolds numbers

are characterized by low Weber numbers and consequently low streamwise pressure

gradients (see equation (6.19)). However for regions along the interface where the

curvature gradient is significant e.g. wavefronts of large amplitude waves, sufficiently

high streamwise pressure gradients could still develop, thus creating velocity gradi-

ents that drive crosswise convective transport. Figure 6.15 shows plots of normalized

streamwise pressure gradient, crosswise velocity, dry solids mass fraction and temper-

ature across a large amplitude wavefront for an evaporating black liquor (χs,in = 0.41,

Re = 56) 2-D falling film.

Across the wavefront, a streamwise pressure gradient develops in the liquid film.

From the plots we observe that as pressure grows in the streamwise direction the

crosswise velocity decreases in the same direction, and vice versa. The result of

this streamwise variation of crosswise velocity can be observed from the streamwise

distribution of dry solids mass fraction and temperature in the liquid film across the

large amplitude wavefront. In the region where v is negative, fluid particles from

the interface (i.e. high dry solids and low thermal energy) are transported towards

the wall. The overall effect in the near wall region is that local temperature drops

while local dry solids mass fraction increases as shown in the two bottom plots on

figure 6.15. Away from the wavefront, the curvature variation is negligible and the

crosswise velocity approaches zero. The result is that temperature and dry solids

mass fraction return to uniform near wall values.
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6.4.2.2 Implications for Crystallization and Scaling

In the absence of large amplitude waves, crystallization rates in the liquid film is

highest at the phase boundary due to elevated species concentrations resulting from

interfacial evaporation. This can be seen from the boundary-layer type crystallization

rate profile in the thin liquid film downstream of the large amplitude wavefront shown

in the bottom plot of figure 6.17(b). The normal velocity profile (see top plot of

figure 6.17(b)) at this position indicates that crosswise convective flux is small but

predominantly towards the high temperature wall. Thus the rate of soluble scaling or

transport and deposition of molecules of salt precipitates from the phase boundary on

evaporator surface is limited by resistance to mass diffusion i.e. the precipitated salt

concentration difference (between the interface and the wall) and the film thickness

over which diffusion occurs.

Figure 6.16: Black liquor film free surface waves (χs,in = 0.50, Re = 50) showing
large amplitude waves traveling downstream over a preceding flat thin liquid film.

With the formation of large amplitude waves traveling over sections of thin flat

liquid film, the following inferences can be made:

1. Species enrichment due to liquid vaporization at the phase boundary of the

large wave is limited by high liquid film resistance to conduction heat transfer.

Consequently, lower crystallization rates can be observed at the large wave

interface compared to the interface of the preceding flat thin film (see bottom

plots of figure 6.17).
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Figure 6.17: Crosswise distribution of crystallization rate Ṡm,c, streamwise u and
normal v velocity profiles at streamiwse positions upstream/downstream of the large
amplitude wavefront shown in figure 6.16. See figure 6.18 for waves height and stream-
wise coordinates of sampled positions.

2. When large waves travel over thin film sections undergoing interfacial evapora-

tion, the core of the large wave becomes enriched with liquid elements at higher

species concentration from the interfacial region of the preceding thin film. From

the middle plots of figure 6.17 we observe that the large wave interfacial region

97



 0

 0.5

 1

 1.5

 2

 580  582  584  586  588  590  592

δ
/δ

N

Streamwise distance : x/δ
N

interface

Figure 6.18: Interface profile showing amplitude and streamwise positions of free
surface waves in figure 6.16.

travels in the streamwise direction at a uniform speed approximately four times

the streamwise velocity of the thin film interface.

3. There is significant increase in magnitude and crosswise gradient of the normal

velocity upstream of the large amplitude wavefront as shown in the top plot

of figure 6.17(a). The normal velocity profile defines two crosswise flow regions

based on the sign of v i.e. v > 0 or v+ represents the near-wall region dominated

by transport away from the wall towards the wave core while v < 0 or v−

describes the region dominated by transport from the interface towards the

wave core. Neglecting the zero normal viscous stress boundary condition at the

wall, the plot shows that the crosswise gradient of the normal velocity i.e. ∂v
∂y

,

has a unique stationary point in each flow region. The v+ region has a unique

maximum while v− region has a unique minimum. The preceding analysis

implies that there is a stable point in the core of the large wave where fluid

elements remain almost stationary with respect to the normal direction.

The implication of the second inference is that high species concentration can be

observed in the core of the large amplitude wave though species enrichment i.e. evapo-

ration does not explicitly occur in that region. This is consistent with results from the

bottom plot of figure 6.17(a) which shows that the region of peak crystallization rate
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(or χs) in the large wave corresponds approximately with the height of the thin film

(see figure 6.18) downstream of the large amplitude wave. In addition, the region of

peak crystallization also corresponds to points where fluid elements in the large wave

are near-stationary with respect to the normal direction. In other words, high species

concentration fluid elements from the interfacial region of preceding thin film that

end up in the core of the large wave tend to remain within the wave core as the wave

continues downstream. Finally, the velocity profile (see top plot of figure 6.17(a))

clearly shows a relatively high flux of species rich fluid elements transported from

the interfacial region of the large amplitude wave towards the wave core. All three

inferences combine to explain the high rate of crystallization in the core of the large

amplitude wave compared to its phase boundary. This fundamentally distinguishes

the crystallization process in the large wave compared with the flat thin film.

In the near wall region of the large amplitude wave, the velocity profile indicates

that high temperature liquid elements from the wall are transported to the core of

the large wave. This process enhances mixing and as such exposes the wave core

to elevated temperatures. The resulting combination of high crystallization rates

and temperature increases the potential for soluble scale precipitation due to the

inverse solubility property of black liquor salts. Unlike the thin film downstream of

the wavefront, the relatively high crosswise convective flux in the near wall region

of the large amplitude wave ensures that precipitated salt molecules are not easily

transported to evaporator wall. Consequently the potential for soluble scale fouling

in the large wave is somewhat diminished.

6.4.2.3 Accumulative Effect of Waveforms

To investigate the accumulative effect of free surface wave variation with respect to

fouling, we analyze the change in maximum crystallization rate at a fixed point in

the liquid film with time (see plots in figure 6.19). This is motivated by the fact that
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the crystallization rate is a measure of soluble salts available for evaporator surface

fouling. The variables plotted in figure 6.19 were sampled over a time frame coinciding

with the period of a large amplitude wave in the flow region where surface waves are

fully developed.
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Figure 6.19: Time series of film amplitude and crystallization rates for evaporating
black liquor (χs,in = 0.50, Re = 50) at a fixed point in the liquid film. The values
were sampled at a streamwise distance x/δ

N
= 586.

The results show that the maximum rate of crystallization in the evaporating

liquid film does not vary significantly with time even with relatively large changes in
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film amplitude at the specified point (see bottom and middle plots of figure 6.19).

From the analysis in § 6.4.2.2, we established that at different sections within the liquid

film, convective fluxes do not play a significant role with respect to enhancement of

fouling potential. Thus it suffices to analyze the diffusive transport of soluble salt in

order to evaluate the variation of fouling potential with time (or accumulative effect)

at a fixed point. For simplicity, we define the fouling potential due to diffusive flux

across the liquid film at a fixed point as follows:

diffusive fouling potential ≈
Ṡmax
m,c − Ṡwall

m,c

δ
(6.20)

where Ṡmax
m,c is the maximum crystallization rate in the crosswise direction at a fixed

streamwise position and Ṡwall
m,c is the corresponding rate at the wall. In a strict sense,

the denominator of the right hand side of (6.20) should be evaluated as the normal

distance from the wall to the point where the crystallization rate equals Ṡmax
m,c . However

we retain the above definition to simplify the analysis. The top plot of figure 6.19

shows the diffusive fouling potential variation with time at a fixed point in the liquid

film. The net crystallization rate in the plot is defined as Ṡmax
m,c − Ṡwall

m,c .

The plot shows that over a large amplitude wave period, the diffusive fouling

potential grows from a minimum value corresponding to the large amplitude wavefront

to a maximum value at the tail end of the wave. This process continues as a cycle in

time as waves travel over the fixed streamiwse position. For large amplitude waves

separated by long stretches of thin film sections, extended periods of high fouling rates

would result in rapid build up of soluble scale on heat transfer surface. As the dry

solids mass fraction of the black liquor mixture increases, the large amplitude waves

become bigger (implying much longer thin film sections) and more irregular which

partly explains the rapid and erratic fouling behavior observed during evaporation of

high dry solids black liquor mixtures.
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CHAPTER 7

CONCLUSIONS AND FUTURE RECOMMENDATIONS

7.1 Conclusions

In the following sections we outline the key findings reported in this research study

for the different falling film flow and transport phenomena investigated.

7.1.1 Backflow Dynamics

For low Reynolds number constant property falling liquid films with high Kapitza

numbers such as water, capillary separation vortices or backflow regions also evolve

at the wavefront of sinusoidal waves. This phenomenon has only been previously

reported for films with solitary-capillary waves. Based on analysis of the streamwise

pressure gradient at the wavefront of traveling interfacial waves, we show that the

fundamental film hydrodynamics leading to flow separation and backflow are the same

for both sinusoidal and solitary waves. We characterized the primary differences in

backflow regions for both wave regimes in terms of the intensity of crosswise transport

and the size of the resulting open vortex at wave saturation. Higher crosswise con-

vective fluxes at the backflow regions of solitary waves result in more enhanced film

transport compared to sinusoidal waves. A theory based on post-saturation dynamics

of the streamwise pressure gradient and conservation of surface deformation energy is

proposed to explain the interfacial wave interaction that give rise to capillary waves in

front of saturated solitary waves. A consequence of this interaction is the formation

of multiple backflow regions across the solitary-capillary wave train. The energy ex-

change between the waves also explains the evolution of the post-saturation backflow

region as it is transformed from closed circulation to an open vortex and vice versa.
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7.1.2 Thermal Analysis of Falling Film Evaporation

Simulations of falling liquid film evaporation at moderately high Reynolds numbers

and large wavelength perturbation show that in addition to the well known solitary-

capillary wave form that develop at the film interface, an intermediate wave with

amplitude and wavelength less than the solitary wave’s but greater than the capillary

wave’s also forms on the film interface well after the solitary waves have grown to

saturation. The intermediate waves evolve due to interaction of capillary waves and

are formed in front of the capillary waves preceding a saturated solitary wave. With

respect to heat transfer, the growth of the intermediate waves give rise to significant

film thinning at the intermediate wavefront resulting in relatively higher crosswise

velocities and evaporation rates. This is the primary means by which heat transfer is

enhanced in the falling film. For the case of constant wall heat flux, we identified three

distinct thermal regions in terms of the streamwise variation of the wall temperature:

(1) developing thermal region (growing thermal boundary layer), (2) region of near-

uniform wall temperature and (3) region of fluctuating wall temperature with the

later two regions largely influenced by evolution of film thickness. The heat transfer

is highest in the region of fluctuating temperature where in addition to solitary and

capillary waves, the flow also consists of developed intermediate waves.

7.1.3 Falling Film Evaporation of Black Liquor

With respect to film hydrodynamics our simulation results show that high dry solids

mass fraction in the black liquor mixture damps out capillary waves on the film free

surface. As a result, secondary instabilities evolve in regions where they easily grow

into sizes comparable to large amplitude primary waves. The interaction between

fully developed secondary and saturated primary waves give rise to unstable wave

deformations which in turn leads to wave breaking and air entrainment. Results

from 3-D black liquor simulations show that the initial 2-D perturbations of inlet
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velocity evolve through distinct stages leading to 3-D free surface waves. The loss

of 3-D wave regularity is attributed to interaction between relatively faster traveling

portions of saturated 3-D waves and newly formed secondary instabilities. For the

evaporating black liquor film, wave induced transport ensures that liquid elements

with high species mass fraction are transported from the interfacial region to the core

of large amplitude waves. As a result, similar crystallization rates can be observed at

the interfacial region of thin films as well as the core of large amplitude waves even

though the former has a lower species enrichment rate. The normal velocity profile at

the large amplitude wave and thin flat sections of the liquid film shows that soluble

scaling is a mass diffusion controlled process with a higher fouling potential at the

thin film surface due to lower mass transfer resistance.

7.2 Future Recommendations

7.2.1 Non-Newtonian Black Liquor Rheology

At dry solids mass fraction greater than 0.5, black liquor rheology is characterized

by non-Newtonian deformation. To implement more accurate solvers for simulating

black liquor falling films at high dry solids mass fraction, a more accurate model for

predicting black rheology is required. In addition to temperature and dry solids mass

fraction, the model would also account for the influence of shear stress / strain-rate

in predicting black liquor viscosity.

7.2.2 Crystallization Model

One of the primary objectives of this research is to develop a computational frame-

work for studying more complex evaporation induced mass transfer phenomena such

as bulk flow salt crystallization and evaporator surface soluble scale fouling during

black liquor falling film evaporation. A first step in achieving this objective is accu-

rately predicting the hydrodynamics and flow field for the falling film process. To

this extent, the computational model presented correctly captures important flow
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features such as interfacial deformation, free surface waves evolution and evapora-

tion heat transfer. Species enrichment follows directly from liquid vaporization and

is therefore correctly predicted by the model. To predict soluble salt precipitation

in the evaporating liquid film, accurate crystallization/dissolution models based on

empirically determined rate equations for black liquor would required. These models

would define species depletion source terms based on supersaturation states of crys-

tallizing salts and explicitly account for the inverse solubility property by including

temperature dependence in the crystallization process.

7.2.3 Lagrangian Dynamics of Crystals

A more accurate representation of the flow physics and hydrodynamics of falling liquid

films with crystallization can be obtained by explicitly accounting for the presence

of crystals of different sizes in the liquid film. This formulation would allow for

better capture of the force interactions between solid crystals and liquid thus ensuring

more accurate description of the overall system dynamics. A logical extension of this

formulation would be to allow for mass transfer analysis with respect to competition

between crystallization on the heat transfer surface and bulk flow crystals.
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