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SUMMARY 

Computational models and simulations are essential system design tools that allow for 

improved decision making and cost reductions during all phases of the design process.  

However, the most accurate models are often computationally expensive and can 

therefore only be used sporadically. Consequently, designers are often forced to choose 

between exploring many design alternatives with less accurate, inexpensive models and 

evaluating fewer alternatives with the most accurate models.  To achieve both broad 

exploration of the alternatives and accurate determination of the best alternative with 

reasonable costs incurred, surrogate modeling and variable accuracy modeling are used 

widely.  A surrogate model is a mathematically tractable approximation of a more 

expensive model based on a limited sampling of that model, while variable accuracy 

modeling involves a collection of different models of the same system with different 

accuracies and computational costs.  As compared to using only very accurate and 

expensive models, designers can determine the best solutions more efficiently using 

surrogate and variable accuracy models because obviously poor solutions can be 

eliminated inexpensively using only the less expensive, less accurate models. The most 

accurate models are then reserved for discerning the best solution from the set of good 

solutions.   

In this thesis, a Value-Based Global Optimization (VGO) algorithm is introduced.  The 

algorithm uses kriging-like surrogate models and a sequential sampling strategy based on 

Value of Information (VoI) to optimize an objective characterized by multiple analysis 

models with different accuracies.  It builds on two primary research contributions.  The 
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first is a novel surrogate modeling method that accommodates data from any number of 

analysis models with different accuracies and costs.  The second contribution is the use of 

Value of Information (VoI) as a new metric for guiding the sequential sampling process 

for global optimization.  In this manner, the cost of further analysis is explicitly taken 

into account during the optimization process. 

Results characterizing the algorithm show that VGO outperforms Efficient Global 

Optimization (EGO), a similar global optimization algorithm that is considered to be the 

current state of the art.  It is shown that when cost is taken into account in the final utility, 

VGO achieves a higher utility than EGO with statistical significance.  In further 

experiments, it is shown that VGO can be successfully applied to higher dimensional 

problems as well as practical engineering design examples.   
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CHAPTER 1: MOTIVATION FOR VALUE-BASED GLOBAL 

OPTIMIZATION 

Systems design problems are often complex, involving many interactions between 

multiple subsystems [25, 56].  For example, if a designer or team of designers is 

attempting to design an airplane, hundreds of thousands of individual components must 

work together.  On the engineering side of the spectrum, the mechanical systems, 

electrical systems, and control systems must all be seamlessly integrated.  Other 

stakeholders are also involved; for example, how many passengers can the airplane seat 

and what will be their comfort level?  Many variables come into play: the size of the 

fuselage, the size and placement of the seats, the size and placement of the engine, the 

engine acoustics, the in-flight amenities, etc.  If one were to design an ‘optimal’ aircraft 

with respect to some high level objective, the problem would literally have hundreds of 

thousands of design variables.   

In this dissertation, the design space is defined as the range and associated units of inputs 

or design variables from which a final design artifact is selected.  The design space for 

systems engineering problems is potentially very large at all stages of the design process. 

From initial concept exploration to final sizing choices, there are many possible variables 

and combinations to consider. Naturally, it is not feasible from a time or cost perspective 

to prototype many potential design artifacts. Fortunately, modeling, simulation, and 

optimization can greatly assist with assessing the viability and performance of potential 

design alternatives. These tools have become vital to engineering design and decision 

making.   
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Models, while never perfectly accurate, are often the only option for design space 

exploration and informed decision making because they are significantly cheaper than 

physical experiments and prototypes.  However, in systems engineering, the design space 

is often so big that even simulating so many possible alternatives not possible.  This is 

particularly true for very accurate models-- while faster processors and more 

sophisticated simulation environments allow for very sophisticated modeling, added 

accuracy comes at a cost.  For example, it is not unusual for a Finite Element Simulation 

to take several days.  Even if a simulation only takes a few minutes, it may require tens of 

thousands of evaluations during an optimization or uncertainty analysis.  Therefore, it is 

not necessarily pragmatic or even possible to explore an entire design space at a high 

level of detail due to time and computational costs incurred.   

To counter the problem of computational cost, methods have been proposed for reducing 

the number of design variables by using screening methods [61] or by performing a 

sensitivity analysis [9].  These methods allow a designer to identify the design variables 

or uncertain variables, variables that are not directly controlled by the designer, that have 

the greatest effects on the overall system performance.  Then, analyses can be run using 

only the most significant variables and neglecting those that have only marginal effects 

on system performance. 

Alternatively, methods have been developed for approximating an otherwise 

computationally intractable functional relationship by using a simplified or surrogate 

model [9, 13, 30, 31, 46, 54, 55, 60, 61, 67].  For example, a complex simulation model 

might be approximated by a high-order polynomial surface, reducing the simulation time 

from over a minute to less than one second.  By reducing the number of design variables 
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or approximating expensive functions with cheaper surrogates, evaluation of many more 

design alternatives can be performed at a more reasonable cost as compared to the 

original, high-dimensional analysis.   

Design problems are frequently framed as optimization problems: the designer is seeking 

the best possible design artifact within the confines of the design space to meet his or her 

needs.  For example, a designer may seek the design that will produce the most profit or 

achieve the highest performance specifications.  In engineering applications, however, 

simply finding the mathematical optimum of a design optimization problem, if even 

possible, is not the primary objective.  Even if sufficient computing resources were 

available, it would generally be impossible to prove global optimality analytically for 

complex, black-box simulation analysis models.  Therefore, what is actually desired is 

not so much an optimal solution, but a sufficiently good solution that can be achieved at a 

reasonable design process cost.  For example, an electronic widget that is ‘optimally’ 

designed with respect to performance may have no real value if it takes two years to find 

this particular design artifact and implement it.  By then a competitor may have already 

produced another widget, or consumer demands may have shifted.  Thus, the cost of the 

design process must be considered because it may greatly affect the utility of the final 

widget. 

To that end, the Value-based Global Optimization (VGO) algorithm presented in this 

paper relies on the use of a utility function [65].  Utility functions are a mathematical 

means for comparing the relative profitability or goodness of a particular design artifact.  

However, many utility functions neglect the costs incurred during the design process 

itself.  In the VGO approach, the costs of the process and analyses are modeled explicitly 
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and included in the utility function [63].  This provides a mathematically sound 

mechanism for considering the overall utility of the artifact including the cost of the 

design process.   

In this chapter, the motivation and critical research issues associated with this algorithm 

are described. In Section 1.1, common trade-offs made in the systems design area are 

described. These trade-offs illustrate a need for variable accuracy modeling, which is 

addressed in Section 1.2. Variable accuracy modeling is a key contribution of the VGO 

algorithm.   The critical issues that must be addressed in the VGO algorithm development 

are described in Section 1.3.   The research questions and hypotheses, stemming from the 

critical issues, are then addressed in Section 1.4. Finally, this chapter concludes with a 

description of the remained of the thesis in Section 1.5. 

1.1 THE DESIGNER’S DILEMMA 

As discussed previously, modeling, simulation, and optimization have become 

increasingly important to the success of design and decision making endeavors in a 

variety of disciplines.  This need for modeling and simulation is a product of the 

following problem characteristics: 1) large, high-dimensional design spaces 2) system 

complexity, and 3) the cost of prototypes and physical experimentation.  Although no 

computational model can ever perfectly emulate a physical system, performing 

simulations is essential for making informed design decisions in the absence of physical 

prototypes.  As modeling and simulation packages grow increasingly sophisticated, the 

error between model predictions and their physical counterparts has decreased.  However, 

accuracy comes at a cost with respect to computation time.  Thus, given limited 
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computing resources and limited time, designers are often confronted with the difficult 

choice between the following two extremes as is depicted in Figure 1.1: 

 
 

FIGURE 1.1: DESIGNER’S DILEMMA: LEVEL OF FIDELITY VERSUS LEVEL 

O F EXPLORATION 

1) Explore many design alternatives with an inexpensive, low-fidelity model.  This is 

known as broad exploration, or global search.  With global search, a designer is 

unlikely to miss promising regions of the design space altogether.  The drawback, is 

that models that are inexpensive enough to allow global, exhaustive search are 

unlikely to be accurate enough to allow accurate determination of the best solution 

from among the good solutions. 

2) Explore a smaller number of design alternatives with a very accurate but expensive 

high-fidelity model. This is known as local refinement.  Often, an accurate, expensive 

model is used.  In this case, the best alternative is likely to be identified if it is among 

the small number of design alternatives considered, but there is no guarantee that an 

even better solution does not exist in the unexplored design space. 
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Given these two extremes, the logical question to ask is: does there exist a way to trade 

off inexpensive, broad exploration with high accuracy refinement in a way that does not 

compromise the quality of the solution? To achieve this, innovative use of models is 

required.  Conceptually, this is illustrated in Figure 1.2.  It can be seen that very little 

quality and very little exploration is sacrificed at the optimal point (designated by the 

star) but the level of effort required is reasonable.  The question is: how is this 

compromise reached in practice? 

 
 

FIGURE 1.2:A DESIRABLE COMPROMISE BETWEEN EXPLORATION AND 

ACCURACY 

Achieving this compromise is not feasible using a single analysis model with a particular 

cost and level of accuracy—we would again be forced to choose between broad 

exploration and local refinement, or between reasonable cost and high accuracy.  Instead, 

we must use multiple models at different accuracies and costs to achieve this 

compromise.   

1.2 CONCEPTUAL APPROACH: MODELS AT DIFFERENT ACCURACIES 

One approach to reducing the cost of global search without sacrificing accuracy in the 

neighborhood of the optimum is to use multiple analysis models of differing levels of 
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accuracy [3, 15, 29, 38, 48, 59].  At this point, it is necessary to discuss what is truly 

meant by accuracy.  Often in the literature the word fidelity is used interchangeably with 

accuracy; however, in this dissertation, the terms fidelity and accuracy are used with the 

following meanings. 

Fidelity refers to the degree to which a model reflects the behavior of a real system being 

modeled [24].  It is a property of a model.  One can state that model A has higher fidelity 

than model B if model A includes additional phenomena beyond all the ones included B.  

Note that this comparison between models A and B is a partial ordering; it is possible for 

A to include phenomena not included in B and vice versa.  The term ‘level of fidelity’ 

must thus be used with caution because it is not a metric that can provide a full ordering 

of all models for a particular system. 

Accuracy is different from fidelity in that it applies only to simulations (i.e., experiments 

performed on models [8]).  It characterizes the degree of closeness of a prediction to its 

actual, true value.  Only in the context of a specific simulation can one assess accuracy.  

Depending on the context of the experiment, a model of a particular fidelity can produce 

very different levels of accuracy.   

When considering how accuracy is achieved in practice, it is also useful to consider the 

definitions for resolution and abstraction.  Resolution is a special type of fidelity 

characterization that refers specifically to the level of discretization of a model or 

simulation in either space or time.  For instance, a finite element model has a higher 

resolution if the mesh is denser, meaning that the discretization intervals are smaller. 
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Similarly, a dynamic simulation has a higher resolution of the differential equations are 

solved using a smaller time step. 

Finally, abstraction or level of abstraction refers to the level of information content of a 

model.  As is true for fidelity, it is a property of a model rather than of a simulation.  

Through a process of abstraction (or generalization), certain system properties are 

removed from a model so that one can no longer obtain information about these 

properties in an experiment or simulation [18]. 

Based on these definitions, the term variable fidelity modeling, though widely used in the 

literature [3, 4, 15, 38, 45, 49, 68], is somewhat of a misnomer for two reasons.  First, in 

the context of design optimization one is interested primarily in the accuracy of a model 

prediction, not its fidelity.  Even though varying the level of fidelity is one way to 

influence the accuracy of a prediction, the level of fidelity does not directly characterize 

the accuracy.  Therefore, in this dissertation the term accuracy is used most often to 

characterize model quality.   

Secondly, the term variable or varying is also something of a misnomer when referring to 

models.  Models do not change their accuracies dynamically, at least not in a way that is 

meaningful or controllable by designers.  Models typically do not have a tuning knob to 

make them more or less accurate with ease, though that would be exceedingly useful.  

Given the current state of the art, the only way a model might be considered truly 

‘variable’ with respect to accuracy is that simulations may be run at higher or lower 

resolutions to yield more or less accurate analyses.  In practice, however, these are treated 

as different models.  Models of ‘varying levels of accuracy’ or ‘different levels of 
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accuracy’ or ‘variable fidelity’ all refer to the same thing: a collection of models and their 

associated simulations all of which are characterized as having different levels of 

accuracy.   

Using multiple models at differing accuracies enables computational resources to be used 

more effectively by relying on the most accurate — and most costly — analysis models 

only when we approach the optimum.  This idea is illustrated in Figure 1.3; assuming a 

maximization problem, it is necessary to tighten the accuracy bounds as we get closer to 

the optimum.  A very accurate assessment of a bad solution’s inadequacy is a waste of 

computational resources.  When a solution is not promising, what is needed is a model 

with just enough accuracy to enable us to identify the general direction in which better 

solutions can be found.  However, an inaccurate model by itself cannot discern the best 

solutions from the set of good solutions, so in the neighborhood of the optimum we must 

rely on our most accurate models.  In this fashion, combining models with multiple 

accuracies enables global exploration at reasonable cost while still ensuring high 

accuracy in the neighborhood of the optimum. 
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FIGURE 1.3: AN OBJECTIVE FUNCTION AND ITS DESIRED ACCURACY 

BOUNDS 

1.3 CRITICAL ISSUES AND MODEL MANAGEMENT 

In the previous section, it was illustrated that conceptually, models at different levels of 

accuracy can enable design space exploration in a cost efficient and effective manner.  In 

this section, more practical considerations are addressed.  Specifically, what algorithmic 

infrastructure is required for managing information obtained from each of the models? 

Past approaches to variable accuracy modeling tend to be limited to only two models.  

Clearly, two models are superior to one, but what is more desirable is if any and all 

available models could be leveraged to aid in the design space exploration and 

optimization.  In addition to this weakness, past approaches to variable accuracy 

modeling and optimization generally do not explicitly account for the cost of the analyses 

used during the optimization process [2, 4, 15, 38, 44, 52, 53, 68].   

What is needed, therefore, is a global optimization algorithm which leverages simulation 

outcomes from any number of models at different accuracies while accounting for their 

associated costs explicitly.  In this fashion, all of the relevant simulation data can be used 
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to make cost-effective decisions throughout the optimization process.  In particular, the 

most accurate and costly models should only be used when it is valuable to do so, and 

less accurate models should be used to ensure sufficient global exploration at low cost.  

Thus, a method for using multi-accuracy data in a meaningful way is a critical component 

of a new global optimization algorithm, as well as quantifying value and selecting the 

most valuable analysis action at every step in the optimization process.   

Thus, the critical issues that must be addressed in this thesis are as follows:  

1. A method for combining multi-accuracy predictions from any number of models 

is needed so that better alternatives can be found at lower cost. 

2. A mathematically sound method for trading off cost and solution quality in the 

optimization context must be developed to determine the most valuable analysis 

at every step in the optimization. 

The critical issues identified must both be addressed in order to develop and characterize 

a meaningful algorithm for solving engineering design optimization problems in a cost 

effective manner.  While each of these issues could be viewed as separate contributions, 

together they are much more powerful.  The result will be an automated way to balance 

global search and local refinement during optimization and find good design artifacts 

based on whatever data and analyses are available.   Another particularly useful outcome 

of explicitly considering costs is the ability to stop the optimization process when the 

point of diminishing returns is reached—that is, when the cost of further evaluation 

outweighs the potential benefit of further refinement.   These issues map directly to the 

research questions presented in the next section. 
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1.4 RESEARCH QUESTIONS AND HYPOTHESES 

The goal of this dissertation is to address the following research question: 

Primary Research Question: How can designers perform design optimizations at a 

reasonable cost without sacrificing solution quality? 

Hypothesis: A Value-Based Global Optimization (VGO) algorithm will allow designers to 

achieve good solutions (design artifacts) at better costs than can be achieved with 

comparable existing algorithms.  

This primary hypothesis is that a new optimization algorithm (VGO) is needed in order to 

best leverage the available resources.  By leveraging models of varying accuracies, 

accounting for costs explicitly, and adopting a value-driven strategy for selecting 

additional analyses during the optimization process, VGO will allow designers to achieve 

good solutions (design artifacts) at better costs than can be achieved with comparable 

existing algorithms. 

The contributions of this algorithm must be two-fold: to allow for multiple models at 

multiple accuracies and costs, and to provide a meaningful method for sequential 

sampling.  Sequential sampling will be discussed in greater detail in Section 2.3.2, but the 

basic premise is that new analyses are added dynamically during the optimization 

process. In this case, we want to add analyses only where it is most valuable to do so, 

where value can be formally calculated.  Each contribution is addressed in a separate 

secondary research question. 
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Secondary Research Question 1: How can data from multiple models of varying levels of 

accuracy be used advantageously during the design optimization process? 

In the context of optimization, merely running various simulations throughout the design 

space is not useful, unless a more ‘brute force’ method of dense sampling is being used.  

What is more efficient is making use of correlations in the data and fitting a surface to the 

data to gain further insights as to where the best solutions might be found.  Recall that in 

Chapter 1, the idea of surrogate modeling was briefly introduced.  This concept will be 

detailed in Section 2.2, and a detailed overview of current surrogate modeling approaches 

will be provided.  For conceptual understanding at this stage, it is sufficient to understand 

that a surrogate model provides a mathematically tractable (cheap to evaluate) surface 

that is fit to the available simulation data.  Fitting a surface to the data allows an 

optimizer to make use of valuable properties such as gradient information, and in some 

cases the uncertainty associated with the predicted surface.   

In VGO, we seek to leverage both surrogate modeling capabilities and variable accuracy 

modeling to achieve low cost, high accuracy optimization.  Many different approaches to 

both surrogate modeling and variable accuracy modeling have been described in the 

literature, sometimes even in combination.  However, none provides a surrogate 

functional structure that allows for any number of models to be used without restriction 

as to where in the design space data can be added.  Specifically, many have the restriction 

that the most accurate models can only be evaluated at design sites where the less 

accurate models have already been evaluated [29, 35].   
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A design site is a point in the design space, or a particular combination of input variables, 

where analyses have been performed.  Each design site has an associated observation of 

the objective function from a simulation model, or an associated output that was 

determined from analysis of the design site using a particular model.  A design site and 

its associated observation make up a sample site.  These terms are captured pictorially in 

Figure 1.4. 

 

 
 

FIGURE 1.4: A DESIGN SPACE POPULATED BY SAMPLE SITES 

 

The hypothesis for this question is a proposed method for creating surrogate models 

using data from any number of models at different accuracies with no sampling 

restrictions regarding where design sites from a particular model can be taken. 

Sample Sites

Design Site

Observation
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Secondary Hypothesis 1: A Gaussian process-based surrogate model, similar to a kriging 

model, can be derived mathematically to accommodate multi-accuracy observations from 

any number of different models. 

To formulate a surrogate model based on multi-accuracy data, a Gaussian process 

modeling approach is used.  This approach allows for the resulting surface to make use of 

statistical properties, such as correlation between the simulation observations.   This 

Gaussian process-based surrogate model is fit to the design sites and their associated 

observations of the objective function in the design space.  This model can then be used 

to make predictions about the objective function at any point in the design space, 

regardless of sampling density.  The resulting functional structure is similar to that of a 

classic kriging model [55].   

Kriging modeling, which has been used widely in the field of computational experiments, 

assumes zero uncertainty at all design sites and observations, resulting in an interpolator.  

Because computational experiments are generally deterministic, this is often a desirable 

property.  However, the approach proposed in this thesis relaxes this assumption and 

allows for model uncertainty; this relaxation is necessary in order to accommodate data at 

different accuracies.  In this thesis, it is assumed that the uncertainty in each model, or 

specifically, the amount by which the model differs from the true experimental value, can 

be adequately characterized by a zero mean Gaussian process with known variance.  The 

result is that the surrogate surface, rather than being an interpolator, instead is weighted 

by the accuracy of the individual sample sites to which the model is fit.  This allows for 

more ‘weight’ to be given to the most accurate models and eliminates any restrictions on 

where sample sites can be added.  That is, the surrogate model will simply tend closer to 
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points from more accurate models and further from the less accurate observations.   The 

conceptual approach for this surrogate model is discussed with more rigor in Section 3.4 

and the mathematical derivation of this surrogate model is given in Section 4.1.   

This surrogate modeling approach is only one of the two critical issues associated with 

the VGO algorithm.  The second critical issue is concerned with sequential sampling and 

assessing the value of a particular analysis at each step in the optimization process.  This 

leads to the second Secondary Research Question: 

Secondary Research Question 2: How can the most valuable design site and analysis be 

dynamically selected at each step in the optimization process? 

Secondary Hypothesis 2: Maximizing the Value of Information (VoI) provides a metric 

for choosing the next design site and associated analysis model at each step in the 

optimization process. 

For the VGO optimization algorithm, the surrogate modeling approach from Secondary 

Research Question 1 is used in conjunction with the Value of Information (VoI) metric 

for sequential sampling.  This means that at each iteration in the optimization, a new 

sample site is added to further guide the optimization process.  VoI allows for effective 

selection of this new point and analysis by providing a mathematical means for 

calculating value for any site in the design space for any of the available models.  Then, it 

is merely a matter of picking the design site and analysis with the maximum value.   

The VoI metric comes from information theory but lends itself readily to design 

optimization problems.  In the context of VGO, VoI automatically takes into account the 
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likelihood of finding an improved solution, given the cost of performing an analysis and 

the model accuracy.  A very powerful property of the VoI metric is that it naturally 

balances global search with local refinement without the specification of any user-defined 

tuning parameters.  Sometimes a very cheap analysis that reduces the uncertainty in the 

global space may be of more value than a very costly analysis in the vicinity of the 

current optimum.  Another unusual property of VoI as compared to other sequential 

sampling criteria is that it provides an intuitive stopping criterion requiring no user-

defined parameters.  The VGO algorithm stops when the VoI is less than or equal to zero; 

that is, no more additional analyses are performed when the potential benefit is 

outweighed by the cost.  Because of the above properties, the VoI metric sequential 

sampling, in conjunction with the Gaussian process surrogate for multi-accuracy data, 

provides an effective way to navigate the design space during optimization. 

1.5 THESIS OVERVIEW AND ROADMAP 

In this chapter, the motivation for Value-Based Global Optimization (VGO) was 

presented. The critical issues of managing multi-accuracy data and selecting cost 

effective analyses during optimization were defined.  This led to a general, proposed 

approach and associated research questions and hypotheses. To summarize briefly, a new 

global optimization algorithm is needed because existing global optimization approaches 

do not allow for multi-accuracy analyses from any number of models without restriction 

as to where design sites can be added.  Additionally, current global optimization 

approaches rarely account for analysis cost during the sequential sampling process.  Also, 

current global optimization approaches generally rely on user-defined stopping criteria 

rather than stopping when it is no longer valuable to continue sampling.  These 
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limitations prevent existing global optimization approaches from being as efficient and 

cost-effective as possible.  We hypothesize the VGO can outperform comparable global 

optimization algorithms by leveraging multi-accuracy data and a value-based sequential 

sampling strategy. 

In the next chapter, a critical review of related work is given.  Background for this 

algorithm covers several different disciplines, including relevant literature in design and 

systems engineering, design optimization, surrogate modeling approaches, sampling 

approaches, variable accuracy modeling approaches, information theory, and global 

optimization algorithms.   Particular attention will be given to similar global optimization 

algorithms so that theoretical and experimental comparisons can be made. 

In Chapter 3, the theory behind Value-Based Global Optimization is introduced and the 

conceptual approach is given.  The goal of this chapter is to provide a relatively simple 

illustration of each of the components of the algorithm and how they interact.  Starting 

with a pictorial representation of the algorithm and a simple pseudo-code representation, 

explanations are then given regarding the two main contributions: the Gaussian process-

based surrogate model for multi-accuracy data and the Value of Information (VoI) metric 

for sequential sampling during the optimization process.  Background information and 

basic mathematical descriptions are provided, particularly for the VoI.  This chapter also 

addresses the problem characteristics and the basics of selecting an appropriate objective 

function and models to solve the problem. 

In Chapter 4, the focus is on the technical details of the VGO algorithm.  The first 

contribution of this chapter is a detailed mathematical description and derivation of then 
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Gaussian process-based surrogate model which can accommodate data from any number 

of models at different accuracies.  The second contribution is a detailed description of the 

mathematical formulae used to calculate the Value of Information during the sequential 

sampling step of the algorithm.  Mathematical details regarding some particular 

calculations are given, and the problem setup is discussed in greater detail.  Problem 

initialization, costs, accuracies, and nested optimizations are addressed.  After presenting 

the mathematical details of the algorithm, an illustration of the working algorithm is 

provided.  Finally, Chapter 4 is concluded with a summary of contributions and a 

description of characterizations needed to compare the VGO algorithm to other global 

optimization approaches. .  

Chapter 5 is focused heavily on demonstration and characterization of the VGO 

algorithm.  Several experiments are presented and the results explained.  Specifically, a 

method for creating a meaningful test suite for comparing VGO to other global 

optimization algorithms is provided.  Then, the defined test suite is used to run 

comparisons between VGO and the Efficient Global Optimization (EGO) algorithm.  The 

results are analyzed with respect to solution quality and costs incurred, and it is shown 

that VGO is superior for the particular test suite with statistical significance.  After this 

comparison, more experiments were run to show the versatility and scalability of VGO.   

The VGO algorithm is used to solve two known global optimization problems in three 

and six dimensions.  Finally, based on some experimental results, qualitative discourse is 

provided for selecting meaningful combinations of models in terms of accuracy and cost 

in the context of VGO. 
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While Chapter 5 deals primarily with theoretical test problems, the focus of Chapter 6 is a 

more advanced engineering example. In Chapter 6, multiple models of a hydraulic hybrid 

car are used in conjunction with VGO to perform a profit optimization.  The intention of 

this example is to show that the VGO algorithm is viable and effective in real world 

applications.  In this chapter, we walk through the model construction for the hybrid 

models of different accuracies as well as a brief description of demand modeling in order 

to calculate the expected profit for a particular design artifact.  Selection of appropriate 

costs and model characterization with respect to accuracy are discussed, and the chapter 

concludes with a discussion of the results and associated computational time and cost. 

The thesis concludes with Chapter 7 where a summary of the research questions, 

hypotheses, and contributions are provided along with a critical review of the 

achievements and potential shortcomings of the VGO algorithm.  Opportunities for future 

work are delineated.   
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CHAPTER 2: LITERATURE REVIEW 

In the previous chapter, the context, motivation, and problem were defined, leading to the 

critical issues and research questions regarding the VGO algorithm.  In this chapter, the 

focus is on surveying the relevant literature and providing a critical review of similar 

work.   

To adequately address all of the aspects of VGO, many different genres of literature need 

to be surveyed.  The chapter will proceed as follows.  First, relevant literature from 

decision making in design and systems engineering will be reviewed.  This section helps 

to frame the context from which the motivation for VGO is drawn as well as common 

methodologies for setting up and solving design problems.  Next, a detailed discussion of 

surrogate modeling is provided with a specific focus on kriging modeling techniques, 

followed by a detailed discussion of sampling strategies for constructing surrogates.   

Following the surrogate modeling and sampling strategy discussion, a detailed 

description of variable accuracy modeling is provided along with many different 

examples from the literature.  Finally, global optimization algorithms comparable to 

VGO are presented; many of these algorithms also leverage surrogate modeling or multi-

accuracy modeling techniques in the context of the algorithms.  The chapter concludes 

with a return to the thesis overview and roadmap. 

2.1 DECISION MAKING IN DESIGN 

In chapter 1, some of the challenges of designing and engineering large, complex systems 

were discussed [25, 57].  Regardless of the system complexity, the engineering design 
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process generally involves the transformation of design requirements and objectives into 

a design artifact.  That artifact is often iteratively refined in order to best meet the 

requirements and preferences of the designer and stakeholders [47]. When large systems 

are designed, there are often several distinct stages to this process and several iterations 

of design artifacts.   

The engineering design process may have several stages, but for the purpose of this thesis 

it is useful to distinguish between two phases of the process.  The first phase is often 

referred to as conceptual design.  During conceptual design, basic design concepts are 

generated.  More formally, system architectures are abstracted in terms of subunits and 

their interactions. For example, a designer needs to create a man-powered transportation 

vehicle.  In the conceptual design phase, he might generate some concepts at a high level 

of abstraction, some of which might resemble a bicycle, a tricycle, a scooter, a 

wheelchair, etc.  The mere act of generating basic solution structures is non-trivial, as 

creativity is required as well as an understanding of how the interactions of the various 

subsystems will affect the success of the final design.  As one might imagine, this phases 

becomes infinitely more challenging as the systems being designed increase in number of 

parts, number of subsystems (e.g. electrical, controls, mechanical).  This is the more 

open-ended phase of the design process, and is not the focus of this thesis.   

This thesis is targeted more toward the second phase of the design process.  This phase 

occurs once the overall system architecture is known and the sizing and refinement stage 

of the design process can begin.  For example, the decision maker has already decided 

that he is going to design a bicycle, but there are still many decisions to be made.  He still 

needs to select a wheel diameter, a frame length, and gear ratios.  In this phase, modeling 
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and simulation are invaluable aids in making final parameter selections because full scale 

prototypes can often be circumvented.   

Now the problem becomes a matter of selecting the ‘best’ sizes and parameter values for 

the particular system architecture.  Selection of the ‘best’ parameter values depends 

completely on the decision maker’s preferences.  These individual preferences may be 

based on corporate or consumer objectives, but ultimately the decision maker’s 

preferences must be captured in an objective function in order to rigorously determine the 

value of a particular design artifact.  That is, we seek to maximize the overall utility of 

the final design artifact, but doing so requires understanding the tradeoffs that are being 

made.  In the next section, the use and formulation of utility functions for evaluating and 

comparing design alternatives is discussed. 

2.1.1 Utility Functions 

In order to unambiguously determine if one design alternative is preferable to another, a 

mathematically rigorous objective function is required.  To that end, this thesis is written 

from a Decision-Based Design (DBD) perspective [26, 39, 64].  In DBD, it is assumed 

decisions are best made using mathematically sound methods derived from decision 

theory; in particular, the use of a utility function to quantify a design artifact’s goodness is 

a critical element.   

While there are many approaches for formulating a utility function, the goal is to capture 

a design artifact’s goodness from a life-cycle perspective with due consideration given to 

risk preferences and uncertainty.  A meaningful utility function allows a decision maker 

to understand the tradeoffs being made by choosing one design alternative over another. 
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A common approach for utility function construction in design applications is to use 

Multi-attribute utility theory (MAUT) [33], which is an extension of von Neumann and 

Morgenstern’s utility theory [65].  An attribute is a measurable design outcome which 

affects the artifact’s perceived goodness.  For example, in designing a car, a decision 

maker may select several relevant attributes that affect the utility, including maximum 

speed, fuel economy, and maximum acceleration. Note that attributes are not design 

variables; rather, they are affected by the choice of design variables.  In theory, MAUT 

provides a mathematically sound way of considering different attributes of a design with 

different units into a single function with a consistent set of units.  However, MAUT can 

easily lead to meaningless and inconsistent results when more than two attributes are 

being traded off.    

The complications associated with MAUT have led others in the design research field to 

pursue a single criterion method that adequately represents an artifact’s utility.  A logical 

choice is to use economic value or profit to characterize the goodness of a particular 

design alternative [66].  Using expected profit as a utility function eliminates many of the 

complications associated with MAUT, but is not without its own share of challenges.  In 

order to predict the profitability of a particular design artifact, it is necessary to 

characterize the demand for that artifact.  How many people will buy this particular 

artifact, and at what price?  Predicting profit requires a mapping between the attributes 

and expected sales and must account for the cost of creating the design artifact and the 

price at which it is sold.  These issues are addressed in the context of the engineering 

example of designing a hydraulic hybrid car presented in Chapter 6. 
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A very positive upside to using profit as a utility function is the fact that the units are 

always currency.  In this thesis, where analysis cost is being explicitly accounted for, it is 

relatively straightforward to account for costs incurred in the final utility function.  Recall 

that engineers are mainly interested in good solutions at reasonable cost, not 

mathematically optimal solutions.  A profit function lends itself to this type of 

formulation quite naturally.  Very simply, the expected utility of a design artifact is the 

expected profit from that artifact less the analysis costs incurred during the design 

process to select that particular alternative.   

2.1.2 The Role of Optimization in Design 

As discussed in Chapter 1, design problems are often formulated as optimization 

problems.  In the previous section, utility functions for quantifying a design alternative’s 

goodness were discussed; these utility functions serve as objective functions that a 

designer seeks to maximize.  Logically, a designer would choose the design alternative 

with the maximum expected utility.  An optimization scheme is often useful in this 

context. 

Optimization is a very mature field in the engineering and mathematical communities and 

can be used throughout the entire design process to aid in the decision making process.  

Depending on the stage of the design process (e.g. conceptual or refinement) as well as 

the nature of the design problem, optimization takes on many different functional forms.  

During conceptual design process, there is often a high cost for generating alternatives, as 

well as a lot of uncertainty.  The number of distinct concepts considered by designers at 

this stage is typically small; so, the ‘optimization’ taking place is often done by brute 

force, Pugh selection [50], quality function deployment [1], or by calculating a utility 
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associated with each alternative [42].  These are not typical optimization schemes in the 

sense that the design space is not continuous, nor are the examples relevant for mixed 

integer optimization approaches.  In these cases, optimization is merely a more formal 

way of selecting which alternatives to explore further as compared to a designer making 

an ad hoc decision. 

As we move into an age where generating design concepts and associated models of said 

designs is not so expensive and is becoming increasingly automated, a greater number of 

candidates can be considered at early stages in the design process.  However, as the 

number of potential candidates grows, there are some inherent difficulties with 

performing a thorough evaluation of all potential design candidates.  First, depending on 

the domain, performing a rigorous simulation or developing a detailed model of each 

candidate may be computationally prohibitive.  Additionally, even if each candidate 

could be modeled in a reasonable amount of time, this type of design space is often 

discrete and multi-modal, so conventional gradient based optimization is often not 

applicable. 

Because of the discrete nature of some design spaces, attention has been given to 

evolutionary algorithms and other stochastic optimization algorithms.  These algorithms 

are often capable of obtaining near global optimality even in noisy design spaces 

exhibiting multi-modality and/or discontinuities [7, 46].  Much success has been achieved 

in solving complex engineering problems using evolutionary techniques [17, 71], but 

more study is needed for using these techniques during the conceptual design process.   
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Optimization is more often employed in the refinement stages of the design process when 

the overall system architecture is known. A more classical optimization scheme can be 

used to determine final parameter sizes (e.g. diameters, gear ratios, engine sizes, etc.) 

based on a utility function.  In this later stage of the design process, the design space is 

more often continuous, making classical, gradient-based optimization methods fairly easy 

to apply.   

However, even in these cases where the solution structure is already known, the cost of 

running an optimization can be high.  The models used to evaluate the system 

architecture can be computationally expensive, but beyond that, optimization requires 

many function evaluations and optimization under uncertainty involves even more 

function evaluations.  Even if the system model only takes a couple minutes to run the 

optimization may be prohibitively expensive.  For example, if an optimization under 

uncertainty requires 1000 steps and 1000 Monte Carlo samples per step, at two minutes 

per simulation, this optimization would take 3.8 years.  Therefore, improving the 

efficiency of the optimization process without sacrificing solution quality is a very 

important research issue in design.   

One approach to managing the cost of optimization is to use low fidelity approximations 

of high fidelity models that can either assist or take the place of these expensive 

simulations during the optimization process.  This idea is discussed in detail in the next 

section, along with several specific approaches.   
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2.2 SURROGATE MODELING 

A surrogate model is a mathematically tractable function that is used to approximate a 

complex or black-box model.  Consider the optimization example from the previous 

section where a particular model took two minutes to evaluate and the optimization 

would have taken 3.8 years.  If the simulation model were replaced with a surrogate 

model taking only .2 seconds to evaluate, the optimization would be complete in just 55 

hours.   

Many different types of surrogate models are prevalent in the engineering and 

optimization literature [9, 13, 30, 31, 46, 54, 55, 60, 61, 67].  Surrogate models are not 

only used for optimization; they can also be used for design space exploration and 

visualization because many observations of the surrogate can be made at low cost.  The 

primary objective of a surrogate model is always to create a computationally tractable 

approximation of an otherwise expensive model so that the cost of a particular process 

can be reduced while still retaining an acceptable degree of accuracy.    

To create these models, sample sites of the high accuracy model are required.  It is 

impossible to circumvent the use of expensive, high accuracy models altogether, but the 

amount of function evaluations to seed, or fit, the surrogate model is far fewer than would 

be required to run an entire optimization.  At this point, it is useful to review some terms 

from Chapter 1.  Recall that a sample site of a model includes a design site and an 

associated observation, that is, a sample site includes both the x-coordinates or inputs and 

the calculated output from the model.  These sample sites are used to seed the surface, 

and an approximating function is fitted to the given data.  The resulting approximation is 

computationally inexpensive to evaluate at any point in the space, so it can be used for 
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optimization or other exploration very efficiently.  A fairly detailed taxonomy of 

surrogate surfaces is presented in [61] and in [30], and some common types include 

polynomial approximations, radial basis functions  [12, 17, 46, 71], spline 

approximations [14],  and kriging models [9, 10, 16, 23, 41, 54, 55, 61, 67].   While all 

approaches have their advantages and drawbacks in terms of computational complexity 

and accuracy, the remainder of this thesis draws on kriging modeling.  Kriging modeling 

is particularly well-suited for applications in computer experiments and is explained in 

detail in the next section.   

2.2.1 Kriging Modeling 

Kriging modeling is an interpolation technique that has its origins in geostatistics 

literature [10] but is now very prolific in engineering and computational experiments.  

Mathematically, kriging models consist of a sum of a regression model and a realization 

of a zero-mean Gaussian process realization.  This model construction allows for a lot of 

flexibility in model properties and fits.  The basic premise of kriging modeling is shown 

in Figure 2.1.  We see the same set of sample sites shown in Chapter 1, only this time we 

show the basic components for fitting a kriging model to this data.  First, a regression 

model is fit; in the picture, this is a zero-order regression model equal to the mean of the 

observations.  Then, a zero-mean Gaussian process realization makes up the difference 

between the regression model and the design sites, and this is added to the regression 

model to get the resulting kriging fit.  While this is a very high level explanation of 

kriging modeling, this basic representation should allow for better understanding of the 

relevant kriging literature and discussion.   
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FIGURE 2.1: KRIGING MODELING OVERVIEW 

 

2.2.1.1 The Advantages of Kriging Modeling 

Kriging modeling was first applied to computer experiments by Sacks et al [55] because 

of certain desirable properties.  The first desirable property of kriging models is that they 

are interpolators; a kriging predictor evaluated at a design site always returns the exact 

observation value at that design site.  This is particularly useful for computer experiments 

(as opposed to physical experiments), because computer experiments are often 

deterministic and lack measurement noise.  Generally, there is no need to assume any 

uncertainty associated with the sample sites.   

The second property of kriging models that make them desirable for computer 

experiments is that they are rooted in statistics.  Many of the assumptions made in the 
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formulation of the kriging predictor are good assumptions in design and engineering 

domains; the resulting surfaces are reasonably smooth and observations taken from 

nearby design sites are often highly correlated.  This means that kriging models can result 

in a good fit for design and engineering problems.  In addition, because kriging models 

are statistical in nature, the predictor parameters can be determined without user input by 

using Maximum Likelihood Estimation (MLE).   That is, kriging models do not require 

any user-defined tuning parameters; everything can be determined mathematically by 

leveraging the statistical nature of the model. 

A final property of kriging models that causes them to be very prolific in the engineering 

literature is that kriging models also have the advantage of providing an equation for the 

mean-squared error (MSE) of the predictor.  The MSE provides a single metric for 

assessing the kriging model’s accuracy at any location in the design space.  While the 

model being approximated is assumed to have zero error, there is error between the 

kriging predictor and the underlying model, particularly at points in the design space that 

are far from any design sites.  This allows the designer to make decisions knowing how 

much confidence he or she can have in the kriging model. 

2.2.1.2 The Shortcomings of Kriging Modeling 

While kriging models have many appealing attributes for computational experiments, 

they do also have some shortcomings.  One limitation of kriging models is that they can 

be computationally expensive to generate.  There are two aspects to this expense: the first 

is the expense of generating the sample sites to which the kriging model is fit, and the 

second expense is the actual fitting of the kriging model.  The cost of evaluating the 

sample sites is not a property of the kriging modeling technique and will be addressed 
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later.  However, it is important to discuss the expense associated with fitting the actual 

kriging model.   

Generation time for kriging models increases exponentially with the number of design 

sites, so particularly for large space with many sample sites, the cost of fitting a kriging 

model is non-negligible.  Some effort has been made to reduce the computational effort 

involved in fitting a model to a very large design space.  In an optimization context, for 

example, adaptive kriging methods can be used.  In an adaptive method, only the nearest 

neighbors of the design site under consideration by the optimizer are used to construct a 

localized kriging model [9].  By choosing a relatively small number of nearest neighbors 

(<1000), the computation time for constructing the localized kriging model is small.  

However, since only localized models are constructed, this technique is not appropriate 

for visualizing the entire design space.   

The remaining shortcomings of kriging predictors discussed here have something to do 

with its interpolation properties.  This may seem inconsistent, as interpolation was just 

described as a desirable property for many applications.  There are some applications, 

however, where interpolating the sample sites is not the most desirable outcome and 

poses a restriction on the types of problems to which kriging can be applied.  In 

particular, the interpolation assumption does not explicitly allow for model error.  That is, 

it must be assumed that the underlying model is perfectly accurate; the error at the design 

sites where the original model has been sampled is identically zero.  If this assumption is 

valid, then it is logical to interpolate the given data.  However, should it become 

necessary to recognize model error, as will be seen in this thesis, then the classical 

kriging formulation will not suffice. 
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An extension of the interpolation limitation imposed by kriging is that interpolating the 

sample points is only desirable if the design sites are only drawn from one coherent set of 

data from one model. Combining data from multiple models of varying accuracy and 

interpolating the design sites would not result in a meaningful fit.  More importantly, 

having multiple data points at the same input, even if they came from different models, 

would cause a classic kriging fit to fail due to a singularity.   To handle data from 

multiple models with uncertainty, as is done in this thesis, a modified kriging approach 

will be required.   

2.2.1.3 Modified Kriging Modeling Approaches 

In the literature there have been some proposed modifications to the classic kriging 

approach in order to either relax the interpolation constraint and/or to accommodate data 

from multiple models at multiple accuracies.   

One modified kriging formulation is known as stochastic kriging [5].  This kriging 

formulation does relax the interpolation constraint to allow for model error.  However, 

this model error is not the same as model inadequacy.  Model error, in this context, is due 

the stochastic nature of discrete simulations; these simulations are not deterministic, so a 

single observation is not representative of the expected value of the simulation at a design 

site. To adjust the kriging fit accordingly, an uncorrelated zero-mean Gaussian error term, 

or white noise term, is added to the kriging model beyond the regression and Gaussian 

process realization terms.  The result is that the kriging model does not interpolate the 

sample sites exactly but rather has a bit of a smoothing effect.  Model inadequacy, on the 

other hand, is a key factor in the VGO algorithm presented in this thesis.  Model 

inadequacy refers to the difference between a particular deterministic model and reality; 
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the error itself is deterministic but unknown.  Model inadequacy cannot be addressed the 

same way as model error in the stochastic kriging formulation.   

Other modified kriging algorithms have been developed to accommodate model 

inadequacy and more specifically, to accommodate sample sites from any number of 

different models at different accuracies [29, 34, 35, 51].   These kriging modeling 

approaches each have their own shortcomings.  For example, in [51], design sites from 

the higher fidelity models can only be added where the available lower fidelity model has 

already been sampled.  This means that the design sites for the high fidelity model are a 

subset of the design sites for the low fidelity model.   Some versions of kriging modeling 

for multi-accuracy data assume that the different models are correlated, which requires 

estimation of a large number of hyperparameters as compared to the VGO surrogate 

modeling approach presented in Chapters 3 & 4 [29].   

2.2.1.4 Kriging Modeling Conclusions 

This section provided a relatively lengthy discussion of kriging literature and variations 

on classic kriging modeling approaches.  Many advantages and shortcomings were 

identified; some of these will be re-addressed in the derivation of the surrogate modeling 

approach for VGO found in Chapter 4.  While other researchers have provided some 

similar kriging modeling approaches, the approach used in VGO seems to be unique in 

that there is no restriction on number of models sampled or where samples can be added 

and from which models.  Additionally, the assumed correlation structure is different in 

VGO from most of the other formulations; the resulting model is more intuitive with 

fewer parameters to estimate.   
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As for any surrogate model, the accuracy of a kriging model, modified or not, is going to 

depend on the number and quality of sample sites that are used to seed the model.  In the 

next section, sampling strategies are discussed.   

2.3 SAMPLING STRATEGIES 

A sampling strategy is a method by which design sites are selected for the purpose of 

fitting a surrogate model. Surrogate models of all varieties are fit to some sample sites 

obtained by evaluating a particular model at a particular design site.  Depending on the 

number and quality of sample sties, the quality of the surrogate models will differ.  

Generally, larger numbers of sample sites lead to more accurate surrogate models.    

There are two general strategies for sampling.  One option is that a surrogate model can 

be fit to a predetermined set of samples selected using either a design of experiments or 

other selection criteria for a given number of samples.  That is, the design sites are 

strategically selected a priori, evaluated, and then the surface is fit to the samples.  

Alternatively, design sites can be added incrementally using information from the current 

iteration of the surrogate model, with the model being dynamically updated as new 

samples are added.  If the intent is to get a reasonably accurate view of the entire design 

space, then a global, fixed sampling approach is likely to be a good choice.  On the other 

hand, if optimization is the primary concern, it is not economical to sample the entire 

design space evenly or even to achieve uniform accuracy throughout the space; for 

optimization, high accuracy is only needed near the optimum.  A detailed discussion of 

fixed sampling strategies is given here, followed by a description of several incremental 

sampling strategies. 
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2.3.1 Fixed Sampling Strategies 

Fixed sampling approaches require the a priori selection of design sites using proven 

statistical techniques.  These design sites are then evaluated using the underlying 

computational model, and the surrogate model is fit to the sample sites; once the 

surrogate is fit it is not generally modified.  Fixed sampling approaches are most 

commonly used when it is necessary to accurately model the entire design space; that is, 

the objective is to visualize a complex function while saving costly function evaluations 

by using a surrogate.   

One if the most common approaches to fixed sampling is to use a space-filling design of 

experiments to select the design sites prior to sampling and fitting.  One logical choice 

would be to simply use a Full Factorial sample and create a grid, but this approach is 

neither very efficient nor very strategic. Other fixed sampling techniques include Latin 

Hypercube Sampling (LHS) [43], Quasi-Latin Hypercube Designs (Quasi-LHD) [69], 

Cascading Latin Hypercubes [22], Orthogonal Arrays [62], and maxi-min variants of the 

above [32].   

 Latin hypercube sampling (LHS)  [43]  is a very commonly used stratified sampling 

technique that has been used in conjunction with kriging models [67]. While Latin 

hypercube designs ensure that the model is sampled throughout the range of all the input 

variables, it has been shown that LHS is often too sparse for capturing all of the details of 

complex models [55].  While simply increasing the number of samples may reduce the 

error of the kriging model, adding samples in areas in which the model is already 

sufficiently accurate is a waste of resources.  Because kriging models include a closed 

form solution for MSE, this parameter can be leveraged to come up with more strategic 
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space filling sampling approaches.  This leads to some different types of designs for 

fitting a kriging model where the samples are not equally spaced or rigorously stratified, 

but rather, spaced in a way that guarantees optimal accuracy with respect to a particular 

metric for a fixed number of samples.   

There are many different metrics that have been used for selecting optimal design site 

configurations in fixed sampling situations with a predetermined number of design sties 

[55].  These metrics are specifically tailored for kriging modeling in that they rely on the 

estimate of MSE given by the kriging model. One such metric for selecting design sites is 

known as minimizing Integrated Mean Squared Error (IMSE).  In this method, the design 

sites are selected such that the integral of the MSE function throughout the design space 

is minimized.  It is useful to recall that the MSE at a design site for a classic kriging 

model is identically zero.  Logically, MSE increases with distance from design sites.  

This metric seeks to minimize the overall integral of MSE; the best solution will have the 

small MSE consistently throughout the design space.  This metric is appropriate when 

global accuracy is desired.   

Another metric presented for fixed sampling is Maximum Mean Squared Error (MMSE).  

In MMSE, design sites are selected such that the maximum of the MSE in the design 

space is minimized.  While this metric is still appropriate for global accuracy, the 

emphasis of MMSE is different from that of IMSE; for MMSE the maximum MSE 

present at any point in the design space is minimized, whereas IMSE does not bound the 

error at any one point, but rather seeks to minimize the total amount of error in the design 

space.  One last fixed sampling metric worthy of mention is an entropy criterion, whereby 
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a Bayesian design approach is taken to select the design sites to minimize the expected 

posterior entropy.   

While all of these methods are appropriate in a global exploration context, none of them 

is ideal for design optimization.  First, by using a fixed sampling strategy, the number of 

design sites is pre-specified without any mathematical justification as far as the cost 

incurred and the desired quality of the resulting surrogate.   Additionally, all of these 

methods are generally targeted towards global accuracy; none of these methods allow for 

accuracy to vary throughout the space.  If the accuracy of the surrogate model is not 

allowed to vary throughout the design space, then no resources are specifically channeled 

toward finding the optimum.  In fact, resources are simply allocated evenly throughout 

the design space, even in areas that lack promising solutions.  As was discussed in 

Chapter 1, it makes sense from an engineering design optimization perspective to allocate 

a lot of resources in promising regions but not to waste time accurately assessing poor 

solutions.  To accomplish this non-uniform accuracy surrogate model, it is important to 

examine incremental approaches for adding design points so that the current state of 

knowledge dictates where it is most valuable to expend additional computational effort.   

2.3.2 Sequential Sampling Strategies 

While fixed sampling strategies are simple to implement and can ensure reasonable 

global accuracy, they are largely not conducive to channeling the computational 

resources toward finding the optimum.  In this case, it makes more sense to start with a 

smaller number of samples to fit an initial surface and then incrementally add design sites 

to increase accuracy in promising areas or in areas with high uncertainty.   
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Metrics for incremental sampling are present in the literature, primarily in situations 

where the emphasis is on optimization rather than global exploration.  However, it should 

be noted the individual metrics used to select additional design sites are not specific to 

global optimization.  It is perfectly plausible to implement an incremental sampling 

scheme with the intention being global accuracy.  For example, the same criteria 

presented in the previous section (IMSE, MMSE, posterior entropy) can be employed in 

incremental schemes.  The difference is that rather than deciding how many points to 

sample beforehand, the same metrics can be used to guide the selection of only one 

additional design site or even a few design sites at a time.  After the new sites are added, 

the surface is updated and additional design sites can be selected for evaluation and added 

to the surrogate model in the next iteration.   

In the global optimization literature, several metrics are presented for selecting the next 

design sites based on the current kriging fit [30].  While these metrics are all used in 

incremental sampling schemes, the emphasis for many of these metrics is strictly 

optimization.  Unlike IMSE and MMSE, these sequential sampling metrics are designed 

to favor finding the best solution at high accuracy, rather than focusing on the overall 

accuracy of the entire space.   

One commonly used sequential sampling metric is maximizing the Probability of 

Improvement (PI).  The PI metric is a function for calculating the probability of finding 

an improvement over the current best design site in the next iteration.  To calculate PI, 

the user must provide a pre-specified target value.  For example, at any candidate design 

site in the design space, a user might want to know the probability of improving over the 

current best by 5% or more, where 5% is the target value.  This target value is quantified 
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as a percentage improvement over the current best, and it is also possible to use multiple 

target values at once.  Conceptually, this is an appropriate metric for global optimization; 

samples are added if and only if they have the highest probability of resulting in 

improvement over the current best point based on the current kriging model. 

Additionally, sampling stops when the probability of improving by some percentage is 

equal to zero for every candidate design site in the design space.  However, the most 

obvious disadvantage of this approach is that the target value must be specified by the 

user.  The selection of an appropriate target value is likely to have a high impact on the 

quality of results achieved.  Also, while the stopping criterion is intuitive, the cost of 

performing additional function evaluations is not taken into account.  It is likely that 

situations would arise when the cost of running an additional analysis would outweigh 

the improvement that could be achieved over the current best.   

Another incremental metric presented in the global optimization literature is Expected 

Improvement (EI) [19, 29-31].  This metric is similar to the PI approach, but in this 

metric the expected amount of improvement over the current best is maximized.  Rather 

than targeting a design site that has the highest probability of yielding improvement, here 

the design site with the greatest amount of expected improvement is selected.  Again, this 

criterion is appropriate in global optimization; the focus is not on global exploration and 

uniform accuracy, but on finding the global optimum.  There is a simple stopping 

criterion as well; stop when the expected improvement is smaller than some constant.  

The obvious drawback is that the user must define this constant and, much like PI, the 

quality of results achieved are sensitive to this choice of constant.   
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There is also a multi-point version of this criterion [19] in which multiple design sites are 

selected for evaluation in only one iteration, which reduces the cost of fitting a kriging 

surface after each new point is added.  The shortcomings of this metric are that 

uncertainty and model accuracy are not taken into account, nor is the cost of analyzing 

the new design site.    

Finally, the incremental sampling strategy most similar to VoI that has been presented in 

the literature is the augmented expected improvement metric, or augmented EI.  Modified 

EI does account for the cost of additional function evaluations [29].  However, modified 

EI also includes a number of user defined parameters that can affect the searching 

behaviors and the stopping criteria.  Specifically, augmented EI includes three user 

defined parameters that reflect the reduction in value for less accurate analysis models, 

the reduction in value due to random error, and the reduction in value due to cost of 

analysis.  However, these user-defined parameters are not transparent to the user.  While 

much of the same data is incorporated in both the proposed VoI metric and the augmeted 

expected improvement metric (risk preferences, uncertainty, etc.) they are not 

mathematically equivalent and VoI is hopefully a bit more transparent to the user.    

Perhaps most importantly, the augmented EI metric, just like the original EI metric, 

requires a user-defined stopping criterion, and the success and efficiency of the 

optimization is likely to be sensitive to the choice of this stopping criterion.  Because the 

augmented EI function was specially designed to work in conjunction with models at 

varying accuracies, it seems logical to now discuss the literature regarding variable 

accuracy modeling.   
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2.4 VARIABLE ACCURACY MODELING 

Variable accuracy modeling implies the use of multiple models of differing accuracies 

and costs for the purpose of creating more accurate surrogate models and/or performing 

optimizations efficiently and effectively.  The idea is that less accurate, inexpensive 

models can be used to perform global search while more accurate, more expensive 

models are reserved for local refinement in areas of interest.  The results achieved using 

models of varying accuracy should, in theory, be more accurate than densely sampling 

using only a low fidelity model and much less costly than sampling with only a high 

fidelity model.  That is, variable accuracy modeling should afford a solution to the 

designer’s dilemma presented in Chapter 1 by enabling both broad exploration and high 

accuracy while incurring only modest computational expense.   

Specific examples of variable accuracy modeling from the literature will now be 

discussed.  Recall that fidelity and accuracy are often used interchangeably in the 

literature, but in this thesis it is assumed that fidelity is a property of a model reflecting 

the amount of knowledge captured in that model, while accuracy describes the closeness 

between reality and a simulation outcome.  Variable accuracy modeling has two different 

aspects to it: one is how to create the individual models to be sampled, and the other is 

how to leverage the multi-accuracy data acquired from the available models.    The 

literature contains many approaches to both aspects of the problem. 

The idea of using multi-accuracy data in the optimization process for engineering design 

dates at least to the seventies [59].  One of the simplest approaches to multiple accuracy 

modeling in an optimization context is to create feasibility constraints that can be tested 

quickly using an inexpensive model.  If certain conditions are not met, then no further 
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function evaluations take place.  This type of strategy is used in conjunction with an 

optimization framework by Paredis [48], and by Gurnani et al [20, 21].   

Other approaches to multiple accuracy modeling include the space mapping approach [6], 

which attempts to create a mapping or correction between a coarse (low accuracy) design 

space and a fine (high accuracy) design space that yields the same computational 

outcome.    

Seminal work in variable accuracy modeling has been done by Alexandrov et al. [2-4].  

In one of their examples, an aerodynamic optimization is performed using the Euler 

equations over variable mesh sizes, effectively changing the resolution of the model.  In 

another approach, variable-fidelity physics models are used, where the high-fidelity 

model is the Navier-Stokes equation and the low fidelity model is the Euler equation.  In 

both cases, the method of correlation for the low and high accuracy data is a first order 

error function in a given trust region using augmented Lagrangian methods, which have 

been shown to converge to a Karush-Kuhn-Tucker (KKT) feasible point for constrained 

minimization problems [52].  Using the low fidelity model and this corrective factor, 

nested optimizations are performed on the low fidelity model, and then the trust region is 

adjusted based on the performance of the high fidelity model.  While this method requires 

relatively few function calls to the high fidelity model, the method is restricted to 

derivative based optimization approaches.   

Other similar works [15, 38, 53, 68] apply a very similar trust region optimization 

technique successfully using one of the low fidelity model types presented by 

Alexandrov, or by using a surrogate model as the low fidelity model.  All of the examples 
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presented in these works are in the aerospace domain, typically dealing with optimization 

of airplane wings or other control surfaces for aerial vehicles.   

Much work has focused on the use of surrogate models as low fidelity models.  Instead of 

replacing a complex function with a surrogate, the idea is to leverage both during 

optimization.  Some variable-fidelity optimization literature exploits the use of local 

response surface approximations (RSA’s) with a variety of different sampling and 

interpolation techniques; this is particularly common in the Multi-Disciplinary 

Optimization (MDO) domain. One approach is to use response surface approximations 

with high-fidelity sampling in conjunction with the trust region methodology presented 

by Alexandrov et al [49].  In [52, 53], a concurrent subspace optimization technique is 

used and a comparison of RSA constructions is provided.  Other surrogate assisted work 

includes the use of radial basis function surrogates during the optimization process [17, 

46, 71].  Zang provides an overview of the surrogates and optimization techniques 

applied to the MDO domain [70].   

Most of the prior work presented thus far in this section makes use of gradient-based 

optimization techniques; the infrastructure in these multi-accuracy modeling is often 

specifically tailored towards those gradient-based techniques.  Some other related work, 

however, does make use of stochastic optimizers in conjunction with variable fidelity 

models [17, 20, 21, 46, 68, 71].  Most of these approaches are similar to those previously 

presented in that they still use local interpolation or surrogate surfaces.   

As illustrated by the prolific literature on the subject, models at multiple levels of 

accuracy can aid in the optimization or design space exploration processes by enabling 
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inexpensive search coupled with high accuracy.  While there are many approaches to 

managing multi-accuracy data during optimization, many of the previously delineated 

approaches have some shortcomings.  Several approaches to multiple accuracy modeling 

are limited to only two analysis models, and moreover, do not explicitly account for the 

cost of the analyses used during the process [2, 4, 15, 38, 44, 52, 53, 68].  Therefore, 

what is needed is a method to combine predictions from any number of models of 

different accuracies so that all of the relevant information can be used and weighted 

according to its accuracy in a cost effective manner. 

So far in this chapter, systems design, surrogate modeling, sampling strategies, and 

variable accuracy modeling have all been discussed in isolation.  In the next section, 

specialized global optimization algorithms that incorporate some or all of these 

techniques are presented.  Special attention is given to algorithms that are comparable to 

VGO.  

2.5 GLOBAL OPTIMIZATION ALGORITHMS 

Optimization is a very mature field in the engineering and mathematical communities.  In 

Section 2.1.2, the role of optimization in design and systems engineering was discussed.  

In this section, the focus is not on individual optimizers so much as on global 

optimization algorithms, which are really more like optimization suites.  These 

algorithms are tailored more directly to design and computer experiment scenarios where 

computationally expensive models are often involved.  Often, these algorithms leverage 

surrogate models, models of varying levels of accuracy, and/ or sequential sampling 

strategies along with classical optimization algorithms to solve global, multi-modal 

problems involving costly models and simulations [3, 29-31, 34, 35].   
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While it is theoretically possible to solve design problems by using classical optimization 

techniques, it is usually not practical to do so.  The problem with applying traditional 

optimization techniques to systems design is the number of function evaluations required 

per iteration.  For a gradient based optimizer in three dimensions, each step of the 

optimizer would require four function evaluations, one at the current location, and three 

to compute the gradient.  Because design problems can be multi-modal, a simple 

gradient-based optimizer is not likely to find the global optimum with only one starting 

point.  If the underlying model is expensive to evaluate, it can be computationally 

prohibitive to evaluate a high fidelity model multiple times at each step in the 

optimization process.  Finally, classical optimizers are not designed to take the cost of 

optimization into account.  While optimization techniques are very useful and are used in 

the optimization schemes presented in this section, it is important to frame engineering 

design problems in a practical way that favors good solutions achieved at a reasonable 

cost rather than mathematical optima. 

Approaches to global optimization in this domain have tended to be based either on 

kriging modeling or on models with differing accuracies, but not both.  The most closely 

related approach to the VGO algorithm is the Multi-Fidelity Sequential Kriging 

Optimization (MFSKO) algorithm, based on the augmented expected improvement 

metric [29]. The MFSKO uses a multi-fidelity kriging modeling technique but assumes 

that the higher fidelity design sites are subsets of the lowest fidelity design sites.  Based 

on the MFSKO predicted mean and MSE, the augmented expected improvement metric 

is then used for sequential sampling.  The augmented EI does account for cost and 

includes three user defined parameters that reflect the reduction in value for less accurate 
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analysis models, the reduction in value due to random error, and the reduction in value 

due to cost of analysis.  However, the user-defined parameters are not transparent to the 

user.  Our approach uses the VoI metric which includes much of the same information 

(risk preferences, uncertainty, etc.) but is mathematically different from augmented EI 

and more transparent for the user.  Perhaps most importantly, the augmented EI metric 

(much like the EI metric presented in EGO) requires a user-defined stopping criterion and 

does not necessarily stop when it is no longer valuable to continue to run analyses.   In 

the next two sections, we describe in detail our approach for variable fidelity surrogate 

modeling and incremental sampling for global optimization.  

2.5.1 Efficient Global Optimization 

Efficient Global Optimization (EGO) is a global optimization algorithm presented by 

Jones et al [31].  EGO relies on a kriging surrogate model coupled with a rigorous metric 

for selecting additional design sites called Expected Improvement (EI).  Seminal work in 

the area of using stochastic models for global optimization was done by Kushner in the 

1960s [36].  The idea was that stochastic models could be used to aid in the optimization 

of multi-peak, multi-modal functions that are often encountered in engineering design, 

and that statistical information could be leveraged to select new design sites.   

The Expected Improvement (EI) metric used in EGO leverages information from the 

kriging model to balance global search, indicated by areas with high uncertainty or MSE, 

and local refinement, indicated by areas where the surface has a promising objective 

value [28].  To calculate the expected improvement at a site x which has not yet been 

sampled, information from the kriging predictor and the MSE from the kriging predictor 

are used to provide insight about the unknown simulation output, y(x).  While y(x) is not 
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random, it can be modeled as having a Gaussian distribution with the mean and standard 

deviation characterized by the predicted value from the kriging model and its associated 

uncertainty.  The expected value of the amount by which y(x) is predicted to improve 

over the current best observation is known as the Expected Improvement.  This sampling 

metric is computationally inexpensive and fairly intuitive.  The stopping criterion 

imposed states that the optimization stops when the EI is less than some constant—in this 

thesis, this constant is referred to as a.  The problem is that this constant must be defined 

by the user, so the success and efficiency of the optimization will be dependent on a good 

choice of this constant. 

Aside from the problem of selecting a good constant for the stopping criteria, this global 

optimization algorithm has a couple other shortcomings.  First, the EI metric is 

completely independent of simulation cost; the expected improvement is based solely on 

the predictions about the simulation outcome and is not adjusted to reflect the costs 

incurred by performing the simulation.  The second shortcoming is that EI is 

incompatible with models of varying accuracies.  Specifically, the calculated EI would be 

exactly the same for each x  regardless of the simulation to be used to obtain the sample; 

the accuracy of the model is not taken into account in the EI metric.   

Overall, the EGO algorithm has many positive properties due to its statistical nature; it 

has been applied successfully in the engineering design domain [58].  However, EI is best 

applied when only one, relatively inexpensive model is available for sampling.  In cases 

where multiple models can be leveraged, particularly if one or more of the models is very 

costly, then a sampling metric weighting cost and accuracy combined with a surrogate 

modeling technique which can handle multiple models would be more effective.   
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2.5.2 Multi-Fidelity Sequential Kriging Optimization 

Multi-Fidelity Sequential Kriging Optimization (MFSKO) is a global optimization 

algorithm with its roots in EGO but with some significant modifications [29].  MFSKO 

addresses some of the shortcomings of EGO delineated at the end of the previous section.  

In particular, MFSKO uses a surrogate model that does accommodate variable accuracy 

models and an augmented Expected Improvement (augmented EI) metric that takes into 

account model cost and uncertainty.  This algorithm is probably the most similar 

algorithm to VGO currently available in the literature, but there are some significant 

differences in both the multi-fidelity surrogate modeling approach and the sequential 

sampling metric. 

The kriging-based multi-accuracy surrogate modeling technique used in MFSKO is 

derived from the surrogate modeling techniques of Kennedy and O’Hagan [34, 35].  

There are some slight simplifications in MFSKO, but the overall idea is the same.  Unlike 

some of the previously introduced methods for variable accuracy modeling, this 

technique allows for any number of models of varying accuracies as opposed to just two.  

One of the main assumptions is that there must be correlation and some general 

similarities between all the models used during the optimization process.  The resulting 

correlation structure is more complex than the one for VGO, and typically there are more 

hyperparameters which must be determined when fitting the model.   

The augmented EI function used for sequential sampling is the same as the EI function 

from the EGO algorithm but with three multiplicative factors.  The first factor reflects the 

correlation between the model being considered for simulation at the untried point x and 

the most accurate simulation.  The factor is equal to one for the highest fidelity model 
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and zero if the model is completely uncorrelated with the most accurate model.  It is 

effectively a discount factor for using a less accurate model and addresses model 

inadequacy.  The second factor is an adjustment for when the model contains random 

errors, different from model inadequacy.  It reflects an updated posterior for repeated 

samples and is equal to 1 when then variance for the model is zero.  In VGO, it is 

assumed that the models are deterministic, and the posterior mean and variance is 

calculated in a more sophisticated manner.  The final factor is a ratio between the cost of 

the model being evaluated and the highest fidelity model; it is literally a discount for 

using a cheaper model, and is equal to one for the highest fidelity model.   

While the augmented EI function captures much of the same information as the VoI 

metric used in VGO, these factors are less transparent to the user.  Also, because the 

analysis cost is set up as a discount factor and not subtracted from the augmented EI, the 

optimization does not automatically stop when the expected improvement is equal to the 

cost incurred.  The authors address this, stating that it was indeed a design choice.  This 

setup affords the user to have an objective function that is not necessarily expressed in 

dollars; with VoI it is assumed that the utility function is a profit function and that costs 

translate directly to that utility.  However, VoI circumvents the need for specifying an 

arbitrary stopping constant, the same way as is prescribed with EGO. 

MFSKO is one of the most sophisticated global optimization schemes available and it 

leverages surrogate modeling, variable accuracy modeling for any number of models, and 

sequential sampling strategies.  It takes into account model accuracy, random error, and 

cost.  The assumption that utility be expressed in dollars or profit is not necessary in 

MFSKO.  However, the surrogate model is more complex, the augmented EI function 
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contains discount factors that are not transparent to the use, and it relies on the 

specification of an arbitrary stopping constant. 

2.6 THESIS ROADMAP 

In this chapter, the relevant literature from several different genres was reviewed.  The 

chapter began with an overview of systems engineering and design, specifically focusing 

on the role of utility functions and optimization during the different design stages.  Next, 

surrogate modeling techniques were surveyed with a section devoted specifically to 

kriging modeling.  The surrogate modeling section was followed by a review of different 

sampling strategies for seeding the surrogate models, including both fixed sampling 

approaches and sequential sampling approaches.  The next section was devoted to 

variable accuracy modeling techniques, which we established as a way of solving the 

designer’s dilemma presented in Chapter 1.  The chapter concluded with a review of a 

few select global optimization algorithms that leverage some combination of surrogate 

models, variable accuracy modeling, sampling strategies, and optimization techniques.  

The global optimization algorithms surveyed are specifically targeted toward 

optimization problems that rely on expensive computational simulations, and these 

algorithms are in some way comparable to VGO.  In the next chapter, VGO is discussed 

in detail on a conceptual level.   
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CHAPTER 3: CONCEPTUAL APPROACH FOR VALUE-BASED 

GLOBAL OPTIMIZATION 

In this chapter, the VGO algorithm is presented.  The focus in this chapter is purely 

conceptual; the mathematical and implementation details are presented in Chapter 4.   

The next section in the chapter is dedicated to the problem setup and certain assumption 

that have been made about the objective function and the available models.  The overall 

approach for the VGO algorithm is then presented in section 3.2; the goal is to show how 

all of the different aspects of VGO come together to solve design optimization problems.  

In Section 3.3, the pseudo-code is presented, and is used to guide the discussion for the 

remainder of the chapter.  

In Section 3.4, the approach taken for the variable accuracy Gaussian process-based 

surrogate modeling technique is discussed.  In Section 3.5, Value of Information is 

explained, from its roots in decision theory to its application in VGO. 

Section 3.6 is a review of the general properties, advantages, and disadvantages of VGO 

and in Section 3.7 the research questions are revisited.  This is followed by a discussion 

of how VGO theoretically addresses the research questions and research gap.  Finally, the 

chapter concludes in Section 3.8 with a return to the thesis roadmap. 

3.1 PROBLEM CHARACTERISTICS AND SETUP 

First, it is necessary to describe the context and some assumptions in greater detail.  To 

use VGO, it is required that one or more models be available from which to sample or 

observe outcomes at different design sites.  This may seem trivial, but there are some 
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restrictions on the relationship between the models.  Models at different accuracies are 

not models of different aspects; this thesis is not concerned with interfacing between 

geometric models, mechanical simulations, control models, etc.  While this is in itself an 

important problem, it would not be meaningful to fit a surface to models of different 

aspects.  What is needed are models with comparable inputs and outputs, some of which 

are more accurate (and costly) than others.  The outputs must be a measure of the same 

attribute.   

VGO takes this constraint even one step further.  Not only must the different models map 

to the same attribute space, but the resulting objective function to be maximized must be 

a profit or other utility function measured in dollars. This is why maximization is 

assumed throughout the thesis, and allows us to compute an overall utility function that 

takes into account both the profitability of a particular artifact as determined by model 

observations as well as the cost of performing the analyses.  Having the utility function in 

dollars negates the need for any unit conversions between the costs incurred during the 

process and the resulting profitability of the selected artifact.   

Requiring the objective function to be a profit metric may seem like a significant 

limitation of VGO.  Huang et al [29] deliberately circumvented this constraint by using a 

cost ratio discount factor in their augmented EI function instead of subtracting the cost 

directly.  However, given the merits of a single metric utility function described in 

Section 2.1.1 and the nature of design decision making, it can be argued that considering 

other attributes instead of profit is misleading.  It is difficult to argue that any other factor 

is a more fundamental objective than profit.  For example, if one were designing a 

hydraulic hybrid vehicle as will be described in Chapter 6, the decision maker might 
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consider maximizing fuel economy while minimizing production costs.  While this is not 

an incorrect idea necessarily, does it not simply reduce to maximizing profit?  If there is 

no market for a particular vehicle, then there is no point in creating such a vehicle.  Cost 

effective, strategic decisions can generally be formulated as financial decisions, merely a 

consequence of maximizing profits while minimizing costs.  Consequently, the use of 

profit as a utility function is not considered a shortcoming in this thesis, but rather a way 

of encouraging financially sound decision making practices.  That is, it is assumed that 

the externalities that would influence the utility of the final artifact have been quantified 

and internalized into a profit function.   

Now that the requirements for the objective function and models have been delineated, 

other problem characteristics can be addressed.  VGO does not require any particular 

smoothness or monotonicity in the design space; in fact, it is assumed that in most cases 

the designer will not know what the design space looks like.  If it were possible to 

visualize the design space and know that it were monotonic, then a simple gradient-based 

optimizer could be employed on a reasonably accurate, not too expensive model, and 

good results could be achieved.  Additionally, there is no restriction on the accuracy or 

correlation of the individual models used.  While it is meaningless to use a completely 

inaccurate model, as long as the models are adequately characterized by their standard 

deviations, then VGO will automatically behave as appropriate.  This model 

characterization will be discussed in further detail in the VoI sections of this chapter and 

in Chapter 4.  The conceptual approach for VGO will now be explained. 
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3.2 CONCEPTUAL APPROACH 

In this section, the overarching concepts of VGO are presented.  Working from the top 

down, the overall concept is first presented, and then some detail about the individual 

elements is provided.   

To provide a pictorial description of the algorithm, the approach of the VGO algorithm is 

illustrated in Figure 3.1.  The first image represents a potential starting point for the 

algorithm.  Starting with samples from any number of models at different accuracies, a 

Gaussian process-based surrogate model is fit to the data, as is depicted in the second 

image.  The solid line represents the predictor, and the dashed line might represent the 

uncertainty, or mean squared error (MSE) of the predictor.  Then, given the costs and 

accuracies of the available analysis models and the current prediction of the truth, the 

next design site and analysis model are selected using the Value of Information (VoI) 

selection criterion, as shown in the third image.  The star represents what might be the 

sample site added after VoI was maximized.  That is, the next design site and model are 

chosen to be the most valuable considering the cost of the analysis, its accuracy, 

reduction of uncertainty, and potential for improvement in the objective function.   

 
 

FIGURE 3.1: VGO APPROACH FOR COST EFFECTIVE OPTIMIZATION 
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USING MODELS OF DIFFERING ACCURACIES 

 

After the new design site is selected, it is evaluated using the appropriate model, and 

added to the design space as a sample site.  At this point, the process repeats until it is no 

longer valuable to do so, as is determined using the VoI metric. 

For the sake of clarity, some terms will be discussed in more detail.  When the VGO 

algorithm begins, it is seeded with what is known as an initial sample.  There are many 

potential options for initial samples which will be discussed in greater detail in Chapter 4.  

The initial sample could also be called a fixed sample in that it is determined prior to 

running any optimizations or fitting the initial prediction; recall that fixed sampling 

strategies were discussed in Chapter 2.  After the surrogate model is fit, sequential 

sampling is used for the remainder of the global optimization routine.  Value of 

Information is the metric for sequential sampling, whereby new samples are added to the 

design space and the surrogate model is updated dynamically at each step in the 

optimization process. 

It is important to mention at this point that selecting the best new design site/ analysis 

combination requires an explicit maximization of the VoI function over the range of the 

design space.  The details of how this maximization is implemented are provided in 

Chapter 4, but it does exist as a nested optimization in every step of the overall global 

optimization.  This is no different from maximizing Expected Improvement, or 

minimizing the maximum MSE; most sampling criteria require a nested optimization.    

One of the most attractive features of VGO is the stopping criterion.  VGO stops when 

there is no value in performing additional analyses to refine the solution.  VGO naturally 



   

57 
 

balances local refinement and global search; there is value both in trying to refine the 

surrogate surface in the most promising areas as well as reducing uncertainty in areas that 

may have few or no sample sites.  Once the cost incurred in performing additional 

analyses exceeds the potential gains of global search and local refinement, no further 

sample sites are added.  At this point, a local gradient-based maximization is run on the 

current surrogate surface starting from the best sample site to determine the surface 

maximum. 

3.3 PSEUDO-CODE 

The overarching description and pictorial representation were provided in the previous 

section.  Here is a pseudo-code outline of the VGO algorithm:  

Value-Based Global Optimization (VGO)  

Initialize: 

  set S := GenerateLHS(numSamples) 

  set Y := AnalyzeLowFidelityModel(S)    

Iterate: 

  while forever 

    set  ̂(x):=GenerateVarAccKriging(S,Y) 

    set  ̂   := max( ̂     ,…,  ̂     
 ) 

    for i=1 to numModels   

      set [    (i), maxVoI(i)]:=MaximizeVoI( ̂   ,  ̂   ,   ) 
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    end 

    set [maxVoI, index] 

     :=argmax(maxVoI(1),…,maxVoI(numModels)) 

    if maxVoI<0 

      break while loop 

    end if 

    set S:=S ⋃              

    set Y:= Y ⋃                                   

  end while 

Terminate: 

  set globalMax:=Maximize( ̂   ) 

Note that the initial sample does not have to be LHS (Latin Hypercube Sampling), nor do 

the initial samples necessarily need to be evaluated using the lowest fidelity model; 

however, in the examples presented later in this thesis, this is how the algorithm was 

seeded.  The decision to use LHS is very common in surrogate modeling; it is a way to 

ensure reasonably global coverage without densely sampling.  As far as using the lowest 

fidelity model, this is in line with the VoI concept: use the less expensive models for 

global exploration and save the most accurate ones for local refinement.  Experimental 

results will be shown and discussed in more detail in Chapter 5, but as long as the low 

fidelity model can provide some information about where good solutions might be found 
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and is characterized appropriately, then VGO is not overly sensitive to the fixed sampling 

strategy. 

The VGO algorithm, as implemented, naturally trades off global search and local 

refinement.  The variance of the simulation prediction drives up value proportionally to 

uncertainty, which results in global search.  On the other hand, the neighborhood of good 

solutions is an attractive search area due to the high predicted mean.  In addition, VGO 

tends to use the high fidelity model only in the local refinement stages.  That is, only 

when a region seems promising and it is cost effective does the algorithm tap into the 

more expensive resources.  Finally, the VGO algorithm has an intuitive stopping criterion 

that does not require user input; stop when the VoI is less than or equal to zero, that is, 

when it is no longer valuable to search further. 

3.4 GAUSSIAN PROCESS MODELING FOR VARIABLE ACCURACY DATA 

The previous sections focused on problem setup, problem characteristics and the 

overview of the VGO approach.  Now that VGO has been explained at a high level, this 

section is focused on a conceptual explanation of the surrogate modeling technique 

employed in the algorithm.   

In Chapter 2, surrogate modeling and particularly kriging modeling were discussed at 

length [9, 10, 16, 23, 41, 54, 55, 61, 67].  There is no shortage of existing surrogate 

modeling techniques, but there are very few that can accommodate variable accuracy data 

from any number of models, and none with the same assumptions as VGO.  In traditional 

kriging modeling, zero uncertainty is assumed at all design sites, resulting in an 

interpolator. This is generally a desirable property for deterministic computer 
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experiments from a single underlying model.  In VGO, this assumption is relaxed, 

allowing for model inadequacy, or error between the available analysis models and the 

true behavior of a system.  This relaxed assumption allows observations from n analysis 

models of varying levels of accuracy to be considered simultaneously. The end result of 

is a smooth, continuous surrogate surface that tends closest to the most accurate samples 

in the design space.  That is, the closeness with which the surface tends to a particular 

design site is weighted by its accuracy.  To understand how this is accomplished, it is 

necessary to understand the assumptions made in defining the model.   

Assumption 1:  The truth, or the objective function resulting from the physical system 

that is being simulated, can be modeled as the sum of a polynomial regression and a 

zero-order Gaussian process. 

This is an important distinction between the VGO surrogate modeling approach and the 

classic kriging approach.  In kriging modeling, it is assumed that the underlying 

simulation can be modeled as the sum of a polynomial regression and a zero-order 

Gaussain process.  By assuming that the truth can be modeled as such, many of the same 

properties of kriging modeling are preserved while necessitating an extra term to 

compensate for the difference between observations of the truth taken from simulation 

data and the truth itself, or a term to represent model inadequacy.  This is illustrated in 

Figure 3.2.  In classic kriging, the resulting surrogate would interpolate the model 

observations exactly, negating the need for an additional term in the model to compensate 

for the difference between the observations and the truth.   
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FIGURE 3.2: ASSUMED MODEL OF THE TRUTH 

 

Assumption 2: The error between the truth and the simulation observations for a given 

simulation can be modeled as a zero-mean Gaussian process. 

In the first assumption, the need for an additional term to compensate for model 

inadequacy was established.  In this assumption, it is stated that this term can be modeled 

as a zero-mean Gaussian process.  This model inadequacy term is quite different from the 

model error term used in stochastic kriging, as presented in [5].  In stochastic kriging, the 

error is assumed to be due to the stochastic nature of discrete event simulations.  Because 

these simulations are nondeterministic, a white noise error term is added to the regression 

and Gaussian process terms.  In contrast, in this thesis, we consider model inadequacy, 

which is an error term that is deterministic but unknown.  This error is therefore reflected 

in the model as a distinct correlated Gaussian process.  That is, if an observation is 

greater than the truth, then it is assumed that in some neighborhood of that observation, 

other observations will also be greater than the truth.  The size of that neighborhood is 

captured using the correlation strength.  The correlation strength need not be specified; 
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this can be determined mathematically using Maximum Likelihood Estimation (MLE), 

which will be explained and justified in the mathematical derivation presented in Chapter 

4.  For now, the important assumption is that for each model, the difference between the 

truth and observations from a particular model can be represented as a correlated 

Gaussian process.   

Some possible realizations of model error are shown in Figure 3.3.   In this figure, Model 

1 might represent a low fidelity model; its error has a relatively high variance but is very 

smooth.  This type of phenomenon might occur when certain physics are abstracted from 

a model, for example.  Model 2, on the other hand, is much more accurate in that the 

variance is small, but the error is much rougher, indicating that the model might have 

some higher frequency content or uncertainty associated with it.  These are just possible 

correlated Gaussian process realizations which might represent model error; the 

requirement is that models classified as more accurate exhibit less variance with respect 

to the truth than their less accurate counterparts. 
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FIGURE 3.3: POSSIBLE GAUSSIAN PROCESS REALIZATIONS FOR THE 

ERROR BETWEEN MODELS AND THE TRUTH 

 

Assumption 3: The error between a given model and the truth is assumed to be 

uncorrelated to the error between any other model and the truth.   

In the previous assumption, it was explained that the error between the truth and 

observations from a particular model are assumed to be represented by a correlated 

Gaussian process.  In this assumption, it is established that while the individual model 

error models are correlated within themselves, they are not correlated with each other.  

Referring back to Figure 3.3, the error of Model 1 and the error of Model 2 do not exhibit 

any explicit correlation with each other.  In practice, this means that if a Model 1 

observation is above the mean (the truth), this bears no indication on whether or not an 

observation of Model 2 at or near the same design site will also be above the mean.   
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While it is assumed that the individual models bear some correlation with the truth 

function and therefore probably exhibit some of the same behaviors, it is not necessary to 

assume that the errors of the individual models are correlated with each other.  This 

simplifies the math in the derivation significantly, but it is also logical.  If the models are 

constructed with different physics, with different grid sizes, and/or with different 

resolutions, the resulting errors will likely have different roughness and different standard 

deviations.   

By adopting the above assumptions, kriging modeling can be tailored to accommodate 

sample sites from any number of models at different accuracies.  Classic kriging models 

are a combination of a regression model and a zero-mean Gaussian process that captures 

the error between the regression model and the observations.  The VGO modeling 

technique is a combination of a regression model, a zero-mean Gaussian process that 

captures the error between the regression model and the observations, and an additional 

zero-mean Gaussian process realization that captures the difference between the 

observations and the truth.  This will be demonstrated and explained mathematically in 

Chapter 4, but the resulting model is very similar to the classic kriging model; only one 

matrix has a different construction.  Consequently, many of the desirable properties of 

kriging models are retained while mainly relaxing the interpolation constraint.   

One such desirable property of kriging models is that the hyperparameters can be 

determined without user input using Maximum Likelihood Estimation (MLE).  MLE is 

used to determine the Gaussian process that is statistically most likely to yield the given 

realization.  This is what makes the statistical basis of kriging and the Gaussian process 

modeling assumptions so attractive.  Using a straightforward maximization of the 
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likelihood function, which is basically a multivariate Gaussian probability density 

function, the hyperparameters for the kriging model can be determined automatically 

without any tuning from the user. 

The other attractive property of kriging models that is leveraged in the VGO approach is 

that kriging models explicitly model the uncertainty in their predictions in terms of a 

mean squared error (MSE).  The MSE provides a statistical means for bounding the 

accuracy of the kriging model at any point in the design space.  A large MSE would 

indicate high uncertainty.  In classic kriging formulations, the MSE at the design sites is 

identically zero.  In the modified VGO approach, the MSE at the design sites is equal to 

the variance of the model from which the samples were drawn.   

In summary, VGO uses a modified kriging modeling technique for fitting a surrogate 

model to sample sites from different models at different accuracies.  While VGO has 

unique assumptions, the use of the statistical basis of the kriging model allows for many 

of the advantageous properties of kriging models to be maintained.  In VGO, any model 

can be sampled at any design site irrespective of prior function evaluations; this allows us 

to select the most valuable analysis at any particular iteration.   Additionally, it is 

assumed that the different model inadequacies are not correlated with each other, which 

keeps the number of hyperparameters to a minimum.  The result is a continuous, smooth 

surrogate surface which is weighted by the accuracy of the sample sites to which the 

model is fit.  The mathematical details and further explanation will be provided in 

Chapter 4.   
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3.5 VALUE OF INFORMATION AS A SAMPLING STRATEGY 

The second component of VGO warranting further detail is the use of Value of 

Information (VoI) as a sequential sampling strategy.  Up until this point, the use of 

sequential sampling to update the predicted surface has been justified; adding sample 

sites in a meaningful way can help designers to optimize expensive functions without 

densely sampling the entire space.  There are certain regions of the design space that are 

beneficial to model very accurately.  However, in other regions it is only important to 

ensure that the uncertainty is low enough that the designer can be confident that he did 

not miss a promising area.  Sequential sampling allows for design sites to be added for 

either local refinement or global exploration in areas where the samples are most needed. 

The need for a novel sequential sampling strategy is rooted in the belief that the utility of 

a particular design is not merely a function of the final artifact utility but also a function 

of the analysis costs incurred during the design process to arrive at that particular artifact.  

Therefore, what is desired is a sequential sampling metric that accounts for the analysis 

costs incurred when a new design site is added to the design space before a decision is 

made about whether or not to run the simulation.  However, the costs do not tell the 

whole story; it is also necessary to consider the prior and posterior uncertainty (before 

and after analysis) to determine whether a particular analysis is valuable at a given design 

site.  To do this, the Value of Information metric is presented.  While the VoI metric is an 

established metric from decision theory, it has not previously been used as a sampling 

criterion for global optimization algorithms. The idea of using VoI, or specifically, 

maximizing VoI was introduced conceptually in Chapter 1, but up until this point has not 

been rigorously defined.   



   

67 
 

 

The Value of Information metric is a measure of the expected benefit of gathering 

additional information prior to making a decision [27, 37]. . This metric provides a 

mathematically sound mechanism for trading off solution quality, potential for 

improvement, and the cost of performing additional analyses.  By combining the VoI 

metric for finding the next sites for evaluation with the Gaussian process surrogate model 

for multiple analysis models, it is possible to navigate a design space of multi-accuracy 

data in a cost-effective manner. 

Value of Information comes from decision theory, and to fully understand the concept of 

value of a particular information source it is necessary to frame the design optimization 

problem as a series of decision problems.  At any point in the optimization, there is an 

option to stop analyzing and select the current best solution.  There is also the option to 

perform an additional analysis at any given design site in the design space prior to 

making a selection.  The value of information is defined as the expected difference in 

payout of a decision made with or without performing additional analyses. For example, 

assume that there exists some prior belief about the objective that we hope to maximize, 

specifically  ̂.  Given the sample sites (information) already obtained (   ), there is a 

belief about the current best solution, 

 ̂        
      

 ̂      (3.1) 

 

After performing some additional analysis at a point     , in the design space, a 

simulation outcome    is obtained, and the incorporation of that new piece of information 
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into the knowledge state results in some posterior belief,        , where y is a random 

variable representing our belief about the updated truth surface.  This posterior belief 

might have a higher objective function value than  ̂    and it would then be selected, 

else  ̂    from the prior would be selected.   The ex-post value of analysis    at any 

       is then:  

     max ( [ | 
 
   ]  ̂

   
)  ̂

   
 (3.2) 

 

In the case where an analysis is performed, the equation above represents the difference 

between the payoff given the choice max( [       ]  ̂     resulting after observing the 

simulation outcome      ,  and the payoff that would have resulted under the prior action 

 ̂   , which would have certainly been selected had the simulation y not been performed.  

This value can be positive or zero; the simulation outcome       might not lead to a 

change in action, in which case the value of information would be zero.  If an 

improvement in the objective function is achieved because of the additional analysis, then 

the value of information is positive.   

Now, if the cost of obtaining the simulation outcome y  is considered, this leads to the 

realized incremental gain: 

               ( [ | 
 
   ]  ̂

   
)  ̂

   
   (3.3) 

 

where   is the cost of analysis to obtain the simulation outcome      .  Therefore, if the 

cost   is equal to or exceeds the value of the source, then the realized gain is 0 or 

negative, implying that performing the additional analysis would be a waste of resources.  
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This is precisely the principle applied when considering whether to perform a particular 

analysis on a design site. 

For any design site, there are multiple analyses or models available from which to gather 

data.  The value of information is source specific; that is, the value of an analysis of 

model i at a potential design site        is different from the value of an analysis from 

model j for the same x.  The value of the particular information source depends on the 

available alternatives and the quality of the available sources.  If after performing an 

analysis, the selected design remains unchanged, then the value of information is zero; 

the additional analysis did not result in any improvement in our objective function.  If the 

analysis causes a change in the selected artifact and therefore an improvement in the 

objective function, then the value of information is positive.   

The problem is that the value of information or realized incremental gain is only useful 

from the decision making perspective prior to running the additional analysis and yet can 

only truly be known after the simulation is performed.  Thus, what is used in practice is 

the expected value of information.  If the analysis model has no uncertainty associated 

with it, that is, the posterior variance is zero, then the expected value of perfect 

information can be calculated.  When using models of varying accuracy, however, it is 

assumed that the models exhibit model inadequacy and have some positive uncertainty 

associated with them and thus the expected value of imperfect information is used.  This 

quantity represents the difference between the expected utility with the new analysis 

included and the expected utility without the added analysis.  To ensure that cost is 

accounted for, VGO actually uses the expected incremental gain to represent VoI, and the 
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terminology is used interchangeably since the two quantities differ only by a constant 

cost for a particular analysis.   

It was explained previously that in VGO, VoI is used as a sequential sampling strategy.  

This means that at each step in the optimization process, the expected value of 

information or expected incremental gain for each analysis is maximized within the 

bounds of the design space.  It does not matter mathematically speaking if the 

optimization is run on the VoI strictly speaking or on the incremental gain; the two differ 

only by a constant and therefore have the same mathematical optimum.  This must be 

done for each available analysis.  Then, the maximum of individual maxima for the 

models is determined, and this point and analysis are selected to be added to the sample 

sites.  This continues until the maximum expected gain for each model is less than zero.  

For this stopping criteria, it makes sense to use the incremental gain calculation to factor 

in the cost of the analysis to ensure that the potential payoff is significant enough to 

outweigh the cost of analysis incurred by adding the new design site. 

 In terms of global optimization, this is a novel approach.  The Value of Information and 

realized incremental gain give a mathematically sound, rational approach for determining 

when to stop sampling based on model cost, accuracy, and potential for improvement.  

Additionally, the VoI metric naturally balances local refinement with global search 

without any additional tuning factors from the user.  Sometimes an inexpensive analysis 

in an area with high uncertainty provides more value than a very expensive analysis near 

the optimum, and vice versa.  That is, a simple, inexpensive model that can reduce the 

uncertainty in an area with very sparse sample sites might be the most valuable analysis 

during a particular iteration, or a more accurate analysis may be justified to refine the 



   

71 
 

surface near other promising sample sites.  VoI will also naturally screen out analysis 

models that are not cost effective or that are dominated by other analysis models (e.g., 

there exists a model of the same cost with better accuracy).   

In this section, the conceptual approach to Value of Information was explained.  Further 

details are provided in Chapter 4, where the full mathematical derivation is provided, 

along with specific calculations related to the individual terms.   

3.6 PROPERTIES OF VGO 

Now that the conceptual approach to VGO has been explained, along with more detail on 

the surrogate modeling and sequential sampling techniques, some of the resulting 

properties of this algorithm will be summarized, along with some of the primary 

advantages and shortcomings.   

VGO is a global optimization algorithm that is aimed specifically at design problems 

relying heavily on the use of models and simulations.  The goal of VGO is not truly 

mathematical optimality, but rather good solutions at reasonable cost.  This is a key 

distinguishing factor from other global optimization algorithms; the formulation of the 

overall utility is a function of both the solution quality and the costs incurred in reaching 

that solution.   

There are two main aspects to VGO: one is a surrogate modeling method that can 

accommodate simulation data at varying accuracies, and the other is the use of Value of 

Information for sequential sampling.  These two contributions allow for the leveraging of 

all available models in the most meaningful and cost-effective way while still allowing 

for highly accurate solutions.   
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The main advantages to VGO (conceptually) are its specificity to engineering design 

problems, its general lack of need for user input, and its simple and logical stopping 

criterion.  Thus far in the presentation of the algorithm, the only disadvantage is the 

requirement that the utility function be expressed in profit.  While this may seem limiting, 

it can also be viewed as a guideline; it is generally a good idea to approach systems 

engineering and management problems with a clear understanding of the bottom line 

without obfuscating it with less meaningful intermediate attributes.  More advantages and 

disadvantages will be discussed in the experimental characterizations presented in 

Chapter 5.   

It should also be noted at this point that the size of the design problem that can be 

accommodated using VGO is somewhat limited.  In Chapter 1, we conceptually discuss 

the difficulties of designing very large systems with thousands of variables; in fact, there 

are likely large, complex systems that could conceivably include up to a million design 

variables.  The size of the problem that can be accommodated by VGO is approximately 

10 dimensions (design variables) or less.  That is, VGO can handle similarly sized 

problems as other similar global optimization suites.  There is some mathematical 

reasoning for this size restriction.  For kriging modeling techniques and variants thereof, 

there is a high risk of ill-conditioning during matrix inversion for a very large number of 

sample sites, which is likely to occur as the dimensionality of the problem increases.   

In spite of the limitations on the number of design variables, VGO is still a useful tool for 

aiding in the design of large systems.  In the thesis, we assume a relatively early stage of 

the design process.  It is likely that for such large problems, the variables included at later 

stages of the design process will be dependent on many decisions made early in the 
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design process.  For example, if an electric hybrid were selected over a hydraulic hybrid 

in the early design stages, then accumulator volume would not be a meaningful design 

parameter in the more detailed design phase.  However, it should also be noted that, in 

this thesis, all of the design variables are assumed to be continuous.  For a very large 

system, there are likely to be several discrete variables.  It is therefore a good idea to pare 

down the number design options using simpler models of relatively small dimensionality 

to narrow the search space before trying to include additional variables.  Considering too 

many variables all at once is likely to be inefficient, regardless of the choice of 

optimization algorithm.  A common approach to limiting the number of design variables 

is to perform a screening test to check which variables have the highest impact on the 

objective function.  Alternatively, a designer may work with smaller subsystem problems 

for the overall system.  For these smaller sub-problems, VGO is likely to be a useful 

algorithm, particularly in the early design stages before too many detailed parameters are 

known.  As computing power continues to increase, it will be possible to consider larger 

numbers of design variables, but it must still be efficient to do so before applying any 

optimization algorithm. 

3.7 ADDRESSING THE RESEARCH QUESTIONS 

At this time, it is logical to return the research questions presented in Chapter 1 and 

discuss the conceptual contributions presented thus far. 

Recall the primary research question for this thesis: 

Primary Research Question: How can designers perform design optimizations at a 

reasonable cost without sacrificing solution quality? 
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Hypothesis: A Value-Based Global Optimization (VGO) algorithm will allow designers to 

achieve good solutions (design artifacts) at better costs than can be achieved with 

comparable existing algorithms.  

So far, the VGO algorithm has been presented in concept only.  Some conceptual 

comparisons have been made with other algorithms, but more explicit comparisons will  

be made in Chapter 5.  So far, it has been established that VGO can leverage any number 

of available models, takes into account the cost of analysis, and allows for selective 

sampling in regions of the design space that are either highly promising or highly 

uncertain.  Assuming a proper utility function, the flexibility and cost-effectiveness of 

VGO make it very attractive compared to other algorithms currently available in the 

literature.  This question will be revisited again in Chapter 7 after all of the experimental 

results have been presented. 

Secondary Research Question 1: How can data from multiple models of varying levels of 

accuracy be used advantageously during the design optimization process? 

Secondary Hypothesis 1: A Gaussian process-based surrogate model, similar to a kriging 

model, can be derived to accommodate multi-accuracy observations from any number of 

different models. 

The first secondary research question relates directly to the surrogate modeling technique 

described in Section 3.4.  So far, only the conceptual approach has been presented.  The 

mathematical foundations will be derived in Chapter 4.  It has been explained that, in 

principle, by relaxing the interpolation constraint generally imposed by classic kriging 
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modeling techniques, it is possible to create a surrogate surface that is weighted by the 

accuracy of the individual samples to which it is fit.  This allows the optimization to 

continue while leveraging all of the available sample sites with the understanding that 

some of the information is more certain than other information.  This also creates a 

situation where varying levels of accuracy of the surrogate surface can be achieved in 

different regions.  It was established in Chapter 1 that there is no need to precisely know 

how bad a poor solution is, only the general direction in which better solutions can be 

found.  On the other hand, it is necessary to model the most promising regions of the 

design space with high accuracy in order to discern the best solution from the space of 

good solutions.  This variable accuracy modeling technique allows for the predictor 

accuracy to vary appropriately, allowing us to achieve both broad exploration and high 

accuracy.  

Secondary Research Question 2: How can the most valuable design site and analysis be 

dynamically selected at each step in the optimization process? 

Secondary Hypothesis 2: Maximizing the Value of Information (VoI) provides a metric 

for choosing the next design site and associated analysis model at each step in the 

optimization process. 

The second secondary research question pertains directly to the VoI sequential sampling 

criterion presented in Section 3.5.  By calculating value as function of cost, accuracy, 

uncertainty, and potential for improvement, VoI provides a novel means for sequential 

sampling and surface updating during the optimization process.  VoI leverages the most 

cost-effective analyses and naturally balances global search and local refinement.  The 
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VoI function complements the surrogate surface modeling technique described in the first 

secondary research question in that it helps to identify and refine the promising regions 

on the surface and reduces uncertainty in the areas that have only been sparsely sampled.  

The fact that it also takes into account cost means that VoI enables the creation of a cost-

effective, accurate predictive surface that can be used for optimization. 

3.8 THESIS ROADMAP 

In this chapter, the conceptual approach for VGO was described.  The problem setup and 

assumptions were delineated, followed by an overview of the algorithm and the 

associated pseudo-code.  This was followed by a more detailed discussion of the 

Gaussian process-based surrogate modeling technique used in VGO to leverage multi-

accuracy data.  The relationship with classic kriging modeling was discussed along with a 

discussion of the new or adjusted assumptions that make this surrogate modeling 

technique different from the others presented in the literature.  Following the surrogate 

modeling discussion, the basic tenets of Value of Information were described.  By 

maximizing the expected gain, VoI provides a mathematically sound mechanism for 

sequential sampling by accounting for uncertainty, cost, and potential for improvement of 

the objective function.  The overall properties, advantages, and disadvantages 

encountered in this conceptual realization were recapped, and the preliminary responses 

to the research questions were discussed.  The basic foundations for addressing the 

research questions were laid, but the experimental results to validate the hypotheses are 

not presented until Chapter 5.  In the next chapter, the theoretical foundations for VGO 

are laid.  This chapter includes all of the mathematical derivations related to the Gaussian 

process-based surrogate model and the actual mathematics of calculating the expected 
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value of information.  Once the algorithm theory has been derived in detail, the algorithm 

is characterized using experimental results in Chapter 5, and is illustrated on a practical 

example in Chapter 6. 
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CHAPTER 4: THEORETICAL FOUNDATION OF VALUE-BASED 

GLOBAL OPTIMIZATION 

This chapter provides all of the mathematical derivations relevant to the VGO algorithm.  

In the previous chapter, the focus was on the conceptual approach, assumptions, and 

contributions with respect to the research questions.  Now that the approach is 

understood, all of the underlying mathematics must be rigorously presented.  In Section 

4.1, the Gaussian process-based surrogate model for multi-accuracy data is derived.  In 

Section 4.2, the full formulation for expected value of information and all of the 

calculations relevant for determining the individual terms are provided.  The remaining 

sections pertain to initialization, intermediate optimizations, and the stopping criterion.  

This chapter provides a complete theoretical description of the VGO algorithm. 

4.1 MATHEMATICAL FORMULATION FOR MULTI-ACCURACY GAUSSIAN 

PROCESS-BASED SURROGATE MODEL 

One of the primary contributions of the VGO algorithm is a novel surrogate modeling 

technique which can accommodate seed data from any number of simulations of different 

accuracies.  From the overview of the algorithm presented in Chapter 3, the first step 

after the initial fixed sample and at each step in the optimization after a new sample site 

is added is to fit a surrogate model to the available data.  As explained previously, a novel 

surrogate modeling approach is required to fit to data from analysis models of varying 

accuracies with the assumptions delineated in Chapter 3.  In this section, the 

mathematical derivation is presented.   
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The approach taken in this thesis is a modification of classic kriging modeling, and the 

initial steps of the derivation follow the kriging derivation.  Following the seminal work 

of Sacks et al. [54], we adopt a model: 

      T                (4.1) 

 

This model consists of a regression term,  T    , and a zero mean Gaussian process 

term,     .  In classic kriging modeling approaches, this model would represent the 

outcome of a particular simulation, or an objective function based directly on the 

simulation data.  However, in this approach, it is assumed that this expression is a model 

of a truth or a true objective function that cannot be observed directly.  That is, while the 

outcomes of the computer models are deterministic, they are all merely approximations 

of some true objective that is in essence unknown.  The difference between a simulation 

model and the true objective is called model inadequacy [34], which is assumed to be 

normally distributed: 

 (   )                       (4.2) 

 

where     is the simulation outcome for model i at design site    , and     is the normally 

distributed model inadequacy for model i.  It is important to note that in this approach, 

the     terms are potentially correlated with inadequacy errors for the same model at 

different design sites, whereas in stochastic kriging they are uncorrelated [28]. This 

means that for a particular model i,     is correlated with     if     and     are in the same 
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neighborhood.  In stochastic kriging, on the other hand, the     terms are assumed to be 

uncorrelated resulting in a white noise term.   

A surrogate model, by definition, is a function of the seed data to which it is fit.  

Therefore, to determine the unknown parameters for the regression,  T     , and the 

Gaussian process,     , the available seed data from the analysis models are used.  Since 

VGO is specifically targeted toward engineering design optimization, it is assumed that 

the design space is the p dimensional space defined by the optimization variables and 

their ranges.  It is also assumed that there exists a single, real objective function that we 

seek to maximize, generally for VGO this objective function will be profit or another 

utility function capturing monetary gains.  Finally, it is assumed that this design space is 

populated by evaluating each of   unique analysis models    times for a total of   

∑   design sites.  Recall that in this context a design site refers to a point in the design 

space at which one of the underlying analysis models has been evaluated and each design 

site has a corresponding observation, which is the predicted value of the objective 

function predicted by an analysis model.   

The design sites are captured in a matrix    and the observations are captured in a vector 

  .  To simplify the mathematical derivation, it is assumed that the observation space is 

one-dimensional, restricted to     

  [          ⏟                 ⏟                   ⏟      ]          

   [          
⏞      

Model  

           
⏞      

Model  

             
⏞      

Model q

]          

 

  (4.3) 
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Based on the previous discussion, we assume that the observations of the analysis model 

at the design sites can be modeled as follows: 

              (4.4) 

Again,     is a regression term, usually a zero-order or in some cases first or second 

order polynomial in p dimensions.  In this model,   is a Gaussian process realization 

representing the error between the regression function and the unknown truth.  The 

remaining term    is also Gaussian process realization, but this time representing the 

model inadequacy of the individual analysis models.  That is, it is assumed that the 

observation sites    can be modeled as the sum of a regression model and two Gaussian 

process realizations, one representing the difference between the regression model and 

the truth, and the other capturing the difference between the truth and the model 

observations.   

   is the only term in this model formulation that is different from the traditional 

formulation presented in [54].   or a design site    ,    represents the model inadequacy 

error for model  . We assume that the model inadequacy error at site     is correlated with 

the model inadequacy error at site     for the same model,  , but uncorrelated with the 

model inadequacy error for any other model,  .  It is also assumed that the model 

inadequacy errors,   , are uncorrelated with the error,  , in the regression model.  These 

assumptions about correlation are increasingly important as the derivation progresses. 

Now that the assumed models have been established, what is needed is a way to predict 

the objective function values for any point in the design space.  A predictor is the desired 
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outcome of the surrogate modeling strategy, a way of inexpensively determining an 

estimate on the objective for any value in the design space given the data that has already 

been acquired.   

Following the traditional kriging derivation, we now consider the linear predictor: 

 ̂        T    with             (4.5) 

The error between the surrogate model and reality is then the difference between the 

linear predictor,  ̂   , and the truth,     , from equation 4.1.  Recall that the truth is 

assumed to be the sum of a regression term  T  and a Gaussian process z.  Consequently, 

the error can be described as: 

 ̂             T          (4.6)   

From 4.4 and 4.1: 

 ̂              T                T          (4.7)  

To keep the predictor unbiased we impose the constraint: 

 T              (4.8)  

This means that the difference in the expected value between the predictor and the 

assumed model for the simulation observations is zero.  Because all of the Gaussian 

processes used in the derivation are zero-mean by definition, this constraint need only be 

imposed on the regression terms. 
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Using Equation 4.8, the error now becomes: 

 ̂                            (4.9)  

Up until this point in the derivation, we have been looking strictly at error.  The goal is to 

minimize this error, but in order simplify the expression, the mean squared error (MSE) 

of the predictor is introduced, which is the expected value of the error, squared. 

       [( ̂        )
 
]  (4.10)  

  [             
         

                  ] 
 

 (4.11)  

In order to simplify this expression, the assumptions made about the nature of the 

Gaussian processes described in Chapter 3 must be drawn upon.  These assumptions aid 

in determining the covariance structure for each term.   

First Term Covariance: 

 [   ]       (4.12)  

This term is defined as in [54].  For Z, the covariance is assumed to be     where the 

correlation R is defined as 

                   (4.13)    

representing the correlation between the Gaussian process realizations at the design sites.  

Recall that, depending on the design sites’ relative proximity, it is assumed that there 

exists some correlation between their observation values.  In this notation,   is the 
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roughness parameter characterizing the width of the correlation kernel  .  As    

increases, the neighborhood for one design site to be correlated with another gets smaller, 

and the surface gets rougher.  As    decreases, the neighborhood gets larger, resulting in a 

smoother surface.   

There are many candidate correlation kernels which may be appropriate depending on the 

nature of the function being approximated.  Some options include linear, exponential, and 

Gaussian.  One of the most commonly used correlation kernels and the one used 

throughout this thesis is the Gaussian correlation kernel for stationary correlations.  For 

two vectors   and    in p dimensions, this correlation structure is defined as: 

           ∏ exp    |      |
 
 

 

   

 

  

(4.14)  

This correlation structure looks like a simple, normal distribution centered at a particular 

design site.  The correlation is identically one at the design site—a design site is always 

perfectly correlated with itself.  The drop off in correlation strength is smooth and 

continuous, asymptotically approaching zero as the distance between the design sites 

increases.  The standard deviation of the distribution increases as   decreases, and vice 

versa.  The result is a smooth, continuous surface. 

Second Term Covariance: 

 [   
 ]     (4.15)  
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It was assumed that the Gaussian process accounting for the difference between the 

regression model and the truth, Z, is modeled separately from the Gaussian process 

accounting for the difference between the truth and the observations of a particular 

model,      Because the model inadequacy errors,   , are modeled as independent 

Gaussian process realizations, they are uncorrelated with Z, and the resulting covariance 

is 0.   

Third Term Covariance: 

E[    
 ]  ∑  

   

 

   

 

  

(4.16) 
 

This term represents the covariance structure for the model inadequacy errors,      

Because there exists a    for each analysis model, two different correlations must be 

considered: the correlation between observations from different analysis models and the 

correlations between samples from the same model. It is assumed that the model 

inadequacy errors,   , are correlated for design sites of the same analysis model but 

uncorrelated for design sites of different analysis models. This modeling assumption is 

different from previous multi-accuracy kriging modeling approaches [29, 35].  This 

assumption is based on the belief that the model inadequacy between one model and the 

truth is completely independent of the inadequacy between any other model and the truth.  

The models may be based on different underlying physics, different assumptions, 

different meshes, or different abstractions; for this reason, the nature of the model 

inadequacy for a given model cannot be assumed to be correlated with another analysis 
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model.  Note that this not imply that the simulation results,    , themselves are 

uncorrelated, only that their error with respect to the truth is.  

The covariance structure for an individual model   for correlations between samples from 

the same model i is   
   . Here the correlation structure    is defined as in Equation 4.14, 

but including only the design sites from model   and with a separate p-dimensional vector 

   of roughness parameters.   

While the    parameter for the covariance for Z is assumed to be unknown (and is 

calculated using Maximum Likelihood Estimation),   
  is assumed to be a known, user-

supplied parameter characterizing the accuracy of each individual model  ; there is one, 

1-dimensional   
  for each of the q analysis models available.  A very inaccurate model 

has a large variance with respect to the truth, while a more accurate model has a smaller 

variance.  For a new prediction at a site   which has not been previously sampled, the 

correlation of every design site for each of the individual analysis models must be taken 

into account.  Therefore, the final covariance structure for    is  a block diagonal matrix: 

E[    
 ]= 

[
 
 
 
 
  

   [ ] [ ] [ ]

[ ]   
   [ ]  

[ ] [ ]  [ ]

[ ]  [ ]   
   ]

 
 
 
 

 

  

(4.17) 
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Fourth Term Covariance: 

E[  ]=         (4.18)  

Here, z is defined as the Gaussian process describing the error between the regression 

model and the truth, and Z is the Gaussian process realization representing this same 

error with respect to the observations,   .  The correlation structure between   and  , is 

then as defined above as in [54] with: 

     [                          (      
  )]   (4.19)   

as the correlation between a prediction site   and the design sites  The prediction site is 

an arbitrary location in the design space where we seek to predict the value of the 

objective function, while     is a design site where an observation of an analysis model 

already exists.  The function      describes the correlation between the prediction site x 

and all of the previously sampled design sites in the design space as a function of the 

distance between x and all of the available design sites.   

Fifth Term Covariance: 

 [   ]   0  (4.20)    
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  , the model inadequacy Gaussian process realization, is assumed to be uncorrelated 

with z, the Gaussian process representing the difference between the regression model 

and the truth.  Just as it is assumed that there is no correlation between the realization 

capturing the difference between the regression and the truth and the realization capturing 

model inadequacy, there is also assumed to be no correlation between the model 

inadequacy realization and the actual Gaussian process assumed to model the difference 

between the true regression and truth captured in the underlying model defined in 

Equation 4.1. 

Sixth Term Covariance: 

E[  ]       (4.21) 

This is by definition a property of the Gaussian process z, and is the same as in the 

derivation of classic kriging in [54].  This term completes the six terms in the MSE 

expression given in Equation 4.11. 

Combining all these terms, the MSE can now be rewritten as:  

        T    T (∑  
   

 

   

)       T        

  

(4.22)   

        T     T    T (∑  
   

 

   

)   

  

(4.23)   

At this point the remaining unknown parameters must be determined.  These are 

determined in two steps: first, the MSE is minimized, and second, the likelihood is 
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maximized.  The MSE, as explained previously, represents the uncertainty of the error 

between the prediction and the unknown truth.  Clearly, it is desirable for the discrepancy 

between the two to be minimized in order for the predictor to be as accurate as possible.  

In the classic kriging formulation, the MSE at the design sites is identically zero because 

the underlying simulation is assumed to be perfectly accurate.  In this formulation, the 

MSE at the design sites is   
 , capturing the model inadequacy of a particular observation.  

The MSE increases with distance from the design sites; since there is little to no 

correlation with the other observations when far from any other design sites, the 

uncertainty about the accuracy of the model is the highest.  Overall, it is desirable to 

minimize this potential error.   

After the MSE is minimized, the maximum likelihood estimation (MLE) is used to 

determine the Gaussian process which is most likely to yield a particular realization.  This 

is one of the primary advantages of kriging modeling.  Using MLE, it is possible to 

determine all of the unknown model parameters automatically while leveraging the 

statistical nature of the underlying model.  Given the sample sites, MLE aids in the 

determination of the underlying Gaussian process that would most likely yield that 

particular set of samples.  Specifically, it helps in the determination of the roughness and 

variance parameters that define the predictor.   

First, the MSE must be minimized.  Recall from Equation 4.3 that  

   [         
⏞      

Model  

          
⏞      

Model  

           
⏞      

Model q

]        

To solve for    we begin by minimizing the MSE with respect to c, 



   

90 
 

   
 

            T     T    T (∑  
   

 

   

)   

  

(4.24)  

Subject to the same unbiased constraint previously imposed in Equation 4.8 

 T       (4.25)  

The details of this minimization can be found in [54], with the difference that the 

covariance matrix now includes an additional term corresponding to the covariance of the 

model inadequacy: 

        ∑  
   

 

   

 

  

(4.26)   

In the original kriging formulation, the covariance   would simply be equal to     

because the model is assumed to be perfectly accurate.  By introducing model inadequacy 

and in order to use models at different accuracies, the second term is introduced, as is 

defined in Equation 4.17. 

From the first order necessary conditions for optimality, minimizing MSE subject to the 

unbiased constraint, we get: 

[
  

 T  
] [

 

  
 ⁄
]  [

   

 
] 

  

(4.27)  

with solution: 
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         (        
    

 
)  (4.28)   

         T          T                  (4.29)    

Substituting 4.28 and 4.29 into Equation 4.5, and knowing that   and     are symmetric, 

the prediction,  ̂, is then: 

 ̂        T   (        
    

 
)
T

        (4.30)   

       T        T                T  T         T        (4.31)  

To simplify this expression, a generalized Least Squares fit is used.  To implement this, 

the regression problem       is solved, where    is modeled the realization of a 

stochastic process.   

The generalized least squares fit becomes 

                       (4.32)   

                        (4.33)   

and the predictor can be rewritten as 

 ̂                                         (4.34) 

                   (4.35) 

where 
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                 .  (4.36) 

This formulation of the predictor is nearly identical to the classic kriging predictor, only 

   is instead a function of the expanded covariance matrix  . 

The MSE then becomes 

             T  T                   T              (4.37) 

where    T                  and       and     are found from maximum 

likelihood estimation. 

To maximize the likelihood, the most probable Gaussian probability density function is 

selected: 

         
      

      

(
 

    
 

 ⁄    
 

 ⁄
  

 

 
        T            ).  (4.38) 

To make the problem more computationally tractable, the natural logarithm of L is 

maximized, 

         
 ln       

      

(   (   
 

 ⁄ )  
 

 
        T            ).  (4.39) 

Since the individual    are assumed to be known as a metric of model accuracy,   is 

maximized over the remaining unknown parameters.  Therefore, we need 

  

  
   

  

  
   

  

   
                  

. 

 (4.40) 
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Because of the complexity of   it is not possible to find a closed form expression for any 

of the partial derivatives. This is different from the derivation presented in [54], where it 

is possible to develop an analytical expression for      and the optimization reduces to 

one dimension.  In this case, the maximization must be done numerically over all 

unknown parameters. 

4.2 VALUE OF INFORMATION IMPLEMENTATION 

In the previous section, the theoretical foundations for the Gaussian process surrogate 

modeling component of VGO were presented.  In this section, the VoI theory is 

developed.  This section builds on the conceptual approach provided in Section 3.5. 

VoI is most understandable when it is applied at the individual decision level.  To set the 

context, assume that at any step in the optimization process or for each step of the VGO 

algorithm, there exists a choice to add an additional analysis and subsequently sample site 

at a point x in the design space.  We want to assess how much value there is in 

performing a given analysis at that point.  This metric is targeted specifically toward 

optimization, unlike many other sequential sampling strategies.  The value is added when 

the result is some improvement in the objective function, that is, when the particular 

artifact that would be selected changes from what would have been selected prior to the 

analysis because the new artifact is more profitable. 

To determine in advance what the expected value of an analysis is (even though the true 

value cannot be known until after analysis), a utility function is constructed over the 

range of possible simulation outcomes.  These possible outcomes are compared to the 

current best available; the current best is defined as the artifact that would be selected if 
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the optimization process were to stop prior to any additional analyses.  The expected 

value of information from analyzing a point x is defined as 

       ∫   ̃        [        ]  [            ]    
 

  

 [ (       )]  (4.41) 

where x is the point where the analysis is to be performed and       is its associated 

observation or simulation outcome.  In this equation,   is a dummy variable over which 

the integration is performed.  The quantity   ̃    represents the probability distribution of 

possible outcomes and is computed as a Bayesian update of the prior beliefs about the 

truth at point x and the posterior of the simulation results and is defined in Equation 4.45. 

E[            ] is the expected utility of choosing the current best design site,  ̂   .  

This quantity is fixed irrespective of the simulation outcome,      , and is the basis for 

comparison between the alternatives. For the risk neutral case,  

 [            ]=    ̂max     (4.42) 

In this expression,  ̂max is the current best solution, and   is the cost incurred by 

performing a particular analysis at site x.  This formulation is in line with the assumption 

that utility, u, is defined as the difference between the artifact utility and the analysis cost 

incurred in achieving that utility.   

 [        ], on the other hand, is the expected utility of choosing  the new design site 

after analysis, and this quantity very much depends on the simulation outcome      .  

Specifically, it depends on how the new predictive surface behavior after the new sample 

site                 is added to the design space. 
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In this expression,     represents the updated predictor at site x given the new 

observation,      .  Again, C is the cost of analyzing x.  

Clearly only one choice will be made; if the utility of selecting the new design site is 

higher than that of selecting current (that is, the information from the analysis causes the 

designer to change her selection) then the new design site will be selected; otherwise, the 

current best achieved prior to the additional analysis, will be selected.   

Since only one decision will be made to select the new design site or the current best 

(whichever has the higher utility), the integral from 4.41, or the expected utility of 

analyzing x with a particular model, can be divided into a sum of two integrals as 

follows: 

 [  Analyze   ]  ∫   ̃

  

  

                  ∫   ̃           
 

  

    (4.43) 

where    is the point at which the  expected utility of selecting the new design site is 

equal to the expected utility of selecting the current best; that is, the information provided 

by analyzing x results in the decision maker being indifferent to selecting the new or old 

solutions.  The remaining terms are defined as follows, assuming risk neutrality: 

 Current Best:  ̂max 

This quantity is computed as the predicted value of the surrogate model  

 ̂              ̂      at the design site with the maximum observation value.  

This calculation will be discussed in more detail in Section 4.2.5. 
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 Cost:   

This is the cost of running the particular simulation.  This quantity only varies 

with the choice of model i and is not affected by the prediction site x. 

 Prior of the truth:     ̂ √ )  

This is the predicted mean and standard deviation of the surrogate model, which is 

prediction the value of the truth.  The mean is equivalent to the predictor, and the 

standard deviation is simply the square root of the MSE.  This is representative of 

the current fit before a new sample is potentially added. 

 Prior of the simulation:             for each of the   analysis models.  

These quantities have not yet been introduced, but come into play when 

predicting the posterior on the truth in Equation 4.44.  This mean and standard 

deviation representing the prior on the simulation is distinct from the prior on the 

truth.  Our belief about the outcome of a particular simulation is only a function of 

the other data we have from that simulation.  Similarly, the uncertainty associated 

with the simulation outcome is different from the uncertainty about the truth; 

specifically, there is no model inadequacy assumed in the model.  Model 

inadequacy is a characterization with respect to the truth—if a model has been 

sampled, we know with 100% certainty what the simulation outcome is, and the 

uncertainty,    , goes to zero at the sample sites. 

 Outcome of the simulation:           
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This is the simulation outcome (which is not known until the analysis is run) and 

its associated model inadequacy with respect to the truth. 

These terms are used to compute the probability density function representing the 

distribution of possible outcomes.   

To determine   ̃    for a particular analysis, we must ignore the observations from other 

analysis models and consider only the observations from the model currently under 

consideration.  It should be noted once again that VoI must be calculated separately for 

each model available, and then the maximum of the maximum VoI’s from each model is 

taken to determine the next site and analysis.  Therefore, if VoI for Model 1 is being 

calculated: 

  ̃     
 

√      
  

 
 
       

 

    
 

  (4.44) 

where     and    
  are the predicted mean and variance at x given the observations from 

model 1 only.   

4.2.1 Calculating the Prior Mean for Each Model 

In the previous section,     was introduced as a way to assess the prior mean on a 

particular simulation outcome at a point x in the design site with respect to a particular 

model.  This is distinct from  ̂, the prediction of the truth in that     takes into 

consideration only design sites from model i.  If the prediction site x  is very close to a 

design site      from model i, then it is expected that the simulation outcome y will be 

very highly correlated to the observation at    .  On the other hand, if x is not close to any 
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design sites from model i, then there will be high uncertainty about the outcome of the 

simulation, and the prediction will converge to that of the predicted truth. 

To derive this expression, it is assumed that 

          (4.45) 

where    is the Gaussian process that perfectly models the behavior of model i, y is the 

truth and    is the Gaussian process that models the error between the two.   

Additionally, 

 ̂   ̂    ̂  (4.46) 

This is the prediction of the mean given only the data from model i and can be expressed 

as the sum of the Gaussian process realizations used to predict the truth and the error 

between the truth and model i.   

The mean corresponding to the prior belief about the outcome of a particular analysis 

model is calculated from the following predictor:  

     ̂   ̂    ̂   ̂    
   

   (4.47) 

where  ̂ is the prediction of the truth,    ̂ is the predicted error between the truth and 

model i, and  

  
    

  (     ̂    )  (4.48) 
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Here,     are the observed design sites from Model i,  ̂     is the prediction of the truth at 

the design sites from model i, and   
   corresponds to the correlation matrix for design 

sites only from Model i, that is    is    for    .   

Making the substitution that  ̂    =    
 
    , we get 

 ̂   ̂    
      (4.49) 

Where 

     
   

      ̃   (4.50) 

Here,   
  corresponds to the distance between the prediction site x and the design sites 

from model i only and not the distances between x and all of the design sites in S.  As the 

distance from x to the design sites from model i  increases, the correlations go to zero.  

This means that, per Equation 4.48, as   
  goes to zero, the predicted     converges to  ̂   

That is, if there is insufficient about the simulation outcomes from a particular model, the 

best estimate we have about the model outcome is the prediction of the truth. 

In equation 4.49,  ̃ is defined as follows: 

 ̃  [

    
  
 

 

    
   

 
]  (4.51) 

Recall that c was defined in Equation 4.28 as 
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         (        
    

 
) 

    

And from Equation 4.29,  

         T          T                     

4.2.2 Calculating the Predicted Variance for Each Model 

In the previous section, a method for calculating the prior mean with respect to a 

particular simulation was defined. It is necessary to define the variance or MSE 

associated with this mean.  The variance for a prediction site x given the observations of 

model i only is notated as    
    and is determined from  

var  ̂      
   E      ̂  

 ]  (4.52) 

It is again assumed from Equation 4.45 that         where    is the Gaussian process 

that perfectly models the behavior of model i, y is the truth and    is the Gaussian process 

that models the error between the two.  Again, from Equation 4.46,  ̂   ̂    ̂, which is 

the prediction of the mean given only the data from model i and the Gaussian process 

realizations used to predict the truth and the error between the truth and model i.  Thus, 

   
  E[    ̂         ̂ 

 ]  (4.53) 

The full derivation for this expression can be found in Appendix A.  

The resulting expression for    
  is: 
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     (4.54) 

In the above expression, c  is defined in Equation 4.28 and    is defined in Equation 4.50.  

Similar to the prior mean derived in the previous section, in the absence of samples from 

model i, the prior variance will converge to the variance of the predicted truth. 

Some sample results for mean and variance with respect to a particular model for a one-

dimensional problem are captured in Figure 4.1.  The predicted mean interpolates the 

design sites from Model 1, and the variance is identically zero at the design sites because 

the model is deterministic.  This is different from the estimate of the truth where there 

exists a non-zero variance at the design sites due to the recognition of model inadequacy.   

 
FIGURE 4.1: PRIOR MEAN AND VARIANCE WITH 

RESPECT TO MODEL 1 
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4.2.3 Calculating the Posterior on the Truth 

The posterior on the estimate of the truth,    , is a normal distribution needed to evaluate 

the VoI integral.  The mean of this distribution is a new predictor     that would result 

once a new design site 1ms   and its associated observation y are added to the current 

vector of design sites, S, and the current vector of observations, SY , respectively.  The 

currently unknown simulation outcome y is assumed to be normally distributed, which 

means that the resulting posterior for the truth estimate will also be normally distributed.  

The structure of the predictor     is the same as in derived in Section 4.1, but one 

additional design site is added.  That is, for a particular candidate evaluation site x, the 

design site is known with certainty: 1ms x  .  Its associated observation, y, is not known 

until after the analysis is performed, but we assume that it is normally distributed.  To 

calculate the posterior mean for the truth prediction, we use the same Gaussian process-

based surrogate model presented in 4.1. The variance of the posterior of the truth estimate 

is then simply the MSE associated with the predictor.  Thus, the resulting posterior 

distribution for the truth prediction is normal, with mean and variance described as 

follows: 

         ̅  ̅   ̅    ̅  ̅      ̅       ̅  ̅    ̅    ̅  ̅    ̅, 

    T  ̅T ̅    ̅        ̅T ̅       ̅ ) 

 

 (4.55) 

The mean is derived from Equations 4.33 and 4.34, and the variance is derived from 

Equation 4.37.  In this expression,  
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 ̅  [
  
 
] 

 (4.56) 

where [  ]    is defined from Equation 4.3.  [ ̅]         is comprised of the current set 

of simulation outcomes with the new simulation outcome y appended to it.  Similarly,  

 ̅  [
  ̃
 ̃  ̃   

] 
 (4.57) 

Where [ ]    is the covariance matrix used to predict the truth at the current iteration 

of the algorithm.  [ ̅]             has one additional row and column appended to it 

containing the covariance information for the new design site, 1ms  . The remaining terms 

[ ̅]        and [ ̅]        are comprised of the current fit parameters [ ]    and 

[ ]   ,  respectively, but contain an additional entry to accommodate the new design 

site. Finally,  [ ]    remains unchanged from the prior truth estimate to the posterior, as 

the dimensionality of the problem does not change. 

 This distribution associated with  ̂   on the whole represents the updated surrogate 

model when the new design site is added to the space.  Only the mean of this quantity, 

however, is needed to compute VoI for the risk neutral case, as is presented in this thesis.  

This means we must compute    

       ̅     ̅   ̅    ̅  ̅      ̅            ̅  ̅    ̅    ̅  ̅    ̅  (4.58) 

Normally, the predictor model is grouped by x so that the same form of the equation can 

be used for different values of x; that is, the same model can be used to calculate a 
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prediction for any x in the space.  Here, however, we want to evaluate the model for the 

same x design site but for different values of y, the posterior on the simulation.  The 

design site in x is fixed but the resulting model will vary depending on the observation 

from the analysis model at site x, specifically the posterior outcome y.  Thus, the posterior 

on the truth given y can instead be represented as follows: 

             
 (4.59) 

where    and    are constants if it is assumed that the MLE parameters remain 

unchanged with the addition of the new design site.  Rather than recalculate and optimize 

the MLE for each evaluation of VoI, which would be computationally prohibitive, it is 

assumed that the addition of one new sample site will not have a drastic effect on the fit 

parameters.  Consequently, the parameters of the current surrogate surface are used and 

the maximization is skipped.  This assumption expedites the calculation significantly.   

4.2.4 Calculating    and    using Block Matrix Inversion  

To further expedite the calculation of  ̂   ,    and    can be computed as functions of the 

terms from the previous fit and the update terms separately.  By employing a block 

matrix inversion technique, there is no need to calculate  ̅   explicitly, which saves 

significant computation time. 

In the previous section, it was mentioned that  

 ̅  [
  ̃
 ̃  ̃   

] 
 (4.60) 
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Where [ ]    is the already known covariance matrix.  By constructing the matrix in 

this fashion, it is only necessary to calculate the entries for the appended row and column, 

rather than recalculating the entire matrix.  Additionally, we can view it as a block matrix 

setup: 

 ̅  [
  
  

] 
 (4.61) 

This setup allows us to compute the inverse of  ̅ as 

 ̅   [
                                       

                           ] 
 (4.62) 

These calculations are simplified by realizing that: 

        
 (4.63) 

Also,             is a scalar.  Everything else can be broken down into the known 

components from the current fit, [ ]   , [ ]   , and [ ]    and the ‘update’ terms 

appended to them.  By substituting the block matrix formula from 4.62 with the proper 

individual terms into Equation 4.58,    and    can be computed with minimal additional 

calculations and no new matrix inversions.  The full details of the derivation are given in 

Appendix B. 
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4.2.5 Computing the Current Best 

In Equation 4.42,  ̂max was introduced as the current best solution, or more accurately, the 

design that would be selected if no further analysis occurred.  Determination of this 

parameter is not altogether straight forward, however.   

The most likely candidate for determining the current best is to maximize the current 

predictor of the objective.  There are two problems with this approach.  One, an extra 

maximization is incurred.  The other problem is more conceptual; in early steps of the 

optimization when the design space is only sparsely populated, it is possible that the 

predicted maximum is not in the neighborhood of one of the sample sites and is therefore 

an unrealized, predicted gain.   

Another alternative would be to use the observation value at the most promising design 

site.  This approach, however, does not take into account the accuracy of the prediction or 

the predicted value of the truth.   

The approach used in this thesis is to select the value of the truth predictor at the most 

promising design site.  That is, we select the maximum value of the truth incurred at a 

previously sampled site.  This saves the need for an additional maximization of the 

surrogate model, and prevents the current best from being too speculative.   

4.2.6 Final VoI Integration and Computation 

Now that all of the individual terms have been defined, we return to the integral presented 

in Equation 4.44: 
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 [  Analyze   ]  ∫   ̃

  

  

       ̂max       ∫   ̃      
 

  

 ̂         (4.64) 

It was mentioned previously that    represents an indifference point; the point at which 

the decision maker is indifferent between selecting the current best or the new design site 

given the simulation outcome. 

   can be found as 

   
 ̂      

  
  (4.65) 

Given the individual terms, the result of the integral for  [  Analyze   ] can be 

computed analytically using any available mathematical software with symbolic 

manipulation capabilities. 

Before using the VoI calculation in context, it should be noted that 

       [  Analyze   ]   ̂
   

  (4.66) 

We are interested in the potential for improvement over the current best.  Knowing that 

the value of information is zero or positive, and when cost is included, the minimum 

value of information is  –C (cost).  When  [  Analyze   ] is calculated, the overall 

utility is considered, including the case where no change is made and the profit incurred 

is that of  ̂max.  However, to determine if there is value in performing an additional 

analysis and therefore any potential for changing the current best design, the utility of 

 ̂max must be deducted before VoI is maximized.  This simple subtraction does not 
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change the location of the maximum, but does make the stopping criterion more intuitive.  

It is the subtraction of cost and this current best that allow VGO to stop when VoI is less 

than zero. 

4.2.7 Maximizing VoI 

In the context of VGO, it is not sufficient to merely compute VoI; rather, it must be 

maximized over the entire range of the design space.  This is a multi-modal global 

optimization problem unto itself.   While the VoI surface tends to be smooth and 

continuous, it is also prone to flat regions—unpromising regions where the VoI is 

identically the cost incurred running an analysis, because there is effectively no chance of 

exceeding the current best in that region.   

There are multiple optimization options for this type of problem.  In this thesis, the 

approach taken is to use a multi-start gradient optimization.  Gradient optimizations are 

started on a Latin Hypercube grid that scales with the number of dimensions.  That is, 

more samples are used as the dimensionality of the problem increases.  In addition, 

optimizations are started at the vertices of the design space hypercube, and at the current 

best design site.  Because VoI must be maximized for each available analysis, this is a 

reasonably significant number of function evaluations.  

There may be more efficient approaches for maximizing VoI.  In the future, it may be a 

good idea to derive an analytical expression for the gradient to prevent the optimizer from 

getting ‘stuck’ in flat regions, but this approach could still could cause tuning problems in 

the optimization.  For example, a relatively small tolerance on the change in the function 

value would be needed for the optimizer to step through a flat region and reach a peak; 
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however, it is not necessary to determine the mathematical maximum very accurately, 

which would incur unnecessary computational expense.  Another alternative is to start 

fewer gradient-based optimizations at better chosen starting points; for example, the 

peaks of VoI from the previous iteration are likely to be good starting points, as are 

points that lie at maximum distances from the current set of design sites.  Improving the 

efficiency of this optimization is left for future work. 

4.3 VGO INITIALIZATION 

In the previous sections, the multi-accuracy surrogate modeling technique and the VoI 

theoretical foundations were established.  In this section and the remaining sections, the 

remaining details of the VGO algorithm are addressed.  

In order to initialize the VGO algorithm, a fixed sampling of design sites must be selected 

and evaluated.  While a particularly dense sampling is unnecessary and in fact 

unadvisable, it is necessary to get some global coverage of the design space so that 

reasonable VoI calculations can be made.  There are basically two mechanisms that can 

cause the VoI to be underestimated, both of which can be triggered by under-sampling at 

initialization: either the predicted mean of the simulation outcome is underestimated, or 

the uncertainty of the truth prediction (MSE) can be underestimated.   

In the first case, because VoI relies heavily on the prior mean of the simulation outcome 

as means for assessing promising areas of the design space, having too few samples can 

result in understated VoI calculations in highly uncertain areas.  Because of the statistical 

properties of the surrogate surface, when it is very sparsely sampled and the design sites 

are uncorrelated, the surface converges to the mean of the data as the sample sites get 
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further away.  This results in a lot of flat, seemingly unpromising areas.  While the high 

uncertainty in these areas does increase VoI, it also helps to have a reasonable estimation 

of the expected mean of the simulation outcome.   

In the second case, under-sampling can effectively cause aliasing in the surrogate model 

with respect to the models and truth.  Not only is an erroneous initial fit misleading to the 

optimizer, but the estimated MSE could be underestimated.  If the predicted surface is 

(erroneously) very smooth, then the MSE is unlikely to capture the true uncertainty of the 

prediction if the simulation models exhibit high frequency behavior.  When the MSE is 

underestimated, the VoI will subsequently be underestimated.   

To avoid these pitfalls, it is necessary to begin with an initial sample of sufficient size.  If 

the model behavior is known up front or if some expert knowledge is available, then the 

Nyquist criterion should be followed.  If the model behavior is not known, it may be wise 

to err on the side of too many samples from the lowest fidelity model, particularly if it is 

inexpensive to evaluate.  Another option would be to run the VGO algorithm more than 

once with different initial sample sizes to verify solution quality.   

While beginning with a sufficient global sample will help to ensure the success of the 

VGO algorithm, it is also not necessary to over-sample, especially with expensive 

analyses.  To do so would undermine the intent of using VGO in the first place; it is 

desirable to reserve your computational resources for valuable analyses.  Therefore, it is 

advisable to do the initial fixed sample with a sufficient sampling of low accuracy 

analyses and then allow VoI maximization to determine how best to sample going 

forward. 
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In this thesis, the initialization approach taken is to use a Latin Hypercube design with a 

mini-max criterion.  That is, an LHS design is selected that minimizes the maximum 

distance between two design sites.  The LHS design sites are then evaluated with the 

lowest fidelity model available, and these sample sites are used to seed the initial 

surrogate model.  The size of the LHS sample depends on the size and dimensionality of 

the design problem, and will be addressed on a case by case basis in Chapters 5 and 6.  

This is by no means the only acceptable initialization scheme, and some experiments in 

Chapter 5 show that the performance of VGO is reasonably robust with respect to the size 

of the initial sample.   

4.4 VGO STOPPING CRITERION 

As has been mentioned several times previously, one of the most attractive features of 

VGO is its intuitive stopping criterion.  VGO stops when the maximum VoI for all 

models is less than zero.  Specifically,  

             
 

( [            ]   ̂
   

)      (4.67) 

This means that the maximum expected value added by analyzing a new design site x 

with the cost of analysis taken into account does not exceed the current best solution for 

any x.  

While this stopping criterion requires no tuning parameters from the user, it does rely on 

the analysis cost and accuracy data provided by the user.  Determination of these 

parameters is discussed in further detail in Section 6.2.  If the models are not 

appropriately characterized in terms of their costs and standard deviations relative to the 

truth, then VGO may stop prematurely or run longer than desired.  This idea of relative 
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accuracy and cost with respect to the truth will be discussed again in Section 5.2, but in 

this context, if the relative costs are too low and/or the relative accuracies are too high, 

then it will be valuable to allow analyses to continue for a long time.  On the other hand, 

if the relative cost is too high and/or the relative accuracy is too low, further analysis will 

be less valuable very early on in the optimization. 

4.5 FINAL MAXIMIZATION 

After the sequential sampling process is completed and it is no longer valuable to perform 

additional analyses, a final optimization is run on the surrogate model of the truth.  In the  

VGO implementation presented in this thesis, this maximization is a single start, 

gradient-based optimization starting from the best design site.  The result of this 

maximization is returned as the best design artifact, along with the predicted utility, and 

the VGO algorithm is complete.  This section completes the theoretical description of 

VGO.  In the next section, a brief illustration of the VGO algorithm is provided. 

4.6 VGO ILLUSTRATION 

The VGO algorithm, including the multi-accuracy kriging model and the Value of 

Information metric has been implemented in MATLAB.  While more rigorous 

performance testing is provided in the next chapters, in this section, a brief illustration of 

the algorithm and discussion of its behavior are provided.  The algorithm illustration is a 

two-dimensional test problem with two models, a low and a high fidelity.  The generation 

of the test problem will be discussed in Section 5.1; here the focus is on the outcome.  For 

this test problem, the cost for a model 1 analysis is $2.50 and the cost for one run of 

model 2 is assumed to be $800.  The variances for models 1 and 2 are .05 and .0008, 

respectively. 
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Figure 4.2 shows the initial seeding of the VGO algorithm this 2-D optimization problem.  

The individual images within the figure are as follows.  The upper left shows the truth.  

While in practice the truth is almost never known, for the purposes of the test cases 

provided in this thesis, it provides a useful basis for assessing the algorithm’s 

performance.  In the upper right, the current surrogate surface fit to the current set of 

samples is shown.  For this example, the initial surrogate model is seeded with 30 LHS 

design sites from the low fidelity model; the blue dots indicate the presence of low 

fidelity samples, which is all that is present at the initial seeding.  In subsequent 

iterations, red dots indicate the presence of high fidelity samples.  The lower left and 

right images in the figure capture the calculated VoI for the low and high fidelity model, 

respectively.  For each step in the optimization, the site and analysis combination with the 

highest VoI is sampled in the next iteration and the surrogate surface is refit. 

Figure 4.7 shows the 20
th

 iteration of the VGO algorithm for this test problem.  It can be 

seen that high fidelity analyses have been added in the most promising regions of the 

design space, and that some additional low fidelity analyses have been added as well.  

This natural balance of global search and local refinement is one of the attractive features 

of using VoI for sequential sampling.  The sequential sampling process continues until 

the maximum VoI achieved for both analysis models is less than zero. 

The final iteration of the VGO algorithm for this test problem is shown in Figure 4.11.  It 

can be seen in the current fit that both global coverage and local accuracy have been 

achieved.  The VoI plots have both dropped below zero; they settle to their prescribed 

costs as the predicted surface accuracy increases and the current best is known with more 

confidence.   
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FIGURE 4.2: INITIAL SEEDING OF GAUSSIAN PROCESS MODEL 
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FIGURE 4.4: 8
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FIGURE 4.6: 16
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FIGURE 4.8: 24
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FIGURE 4.10: 32
ND

 ITERATION OF VGO ALGORITHM 
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4.7 THESIS ROADMAP 

In this chapter, the theoretical foundations for the VGO algorithm were developed in 

detail.  Emphasis was placed specifically on the mathematical derivation for the multi-

accuracy, Gaussian process-based surrogate model that plays an important role in the 

functionality of the VGO algorithm.  This derivation is similar to the classic kriging 

derivation, but different assumptions about the accuracy of the models with respect to the 

truth leads to a different covariance matrix and a greater number of hyperparameters to be 

determined using MLE.  The second emphasis of this chapter is the application of VoI to 

this domain and the calculation of the individual terms in the VoI integral.  This portion 

of the algorithm relies heavily on Bayesian statistics to formulate beliefs about the prior 

and posterior utility once a new sample site is added to the design space.  Once the 

surrogate model and VoI were derived, the final sections of the chapter were focused on 

implementation details of the algorithm, including initialization, maximizing VoI, and 

final maximization of the truth prediction.  The chapter concluded with a pictorial 

illustration of the VGO algorithm for a two-dimensional, two model test problem.   

While the test problem illustrated in this chapter highlighted some of the promising 

attributes of VGO, rigorous experimentation is needed to characterize its performance.  

This will be the focus of Chapter 5. 
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CHAPTER 5: PERFORMANCE CHARACTERIZATION OF VALUE-

BASED GLOBAL OPTIMIZATION 

In the previous chapter, the theoretical foundations for the VGO algorithm were 

provided.  In this chapter, several experiments are used to characterize the VGO 

algorithm.  The goal is to show when it is favorable to use VGO and how best to use 

VGO.  The experiments are presented in three sections.  In Section 5.1, experiments are 

presented for comparing the performance of VGO with Efficient Global Optimization 

(EGO).  In Section 5.2, the emphasis is on the scalability of VGO.  The algorithm is 

applied to two well-known optimization test functions in three and six dimensions.  

Finally, in Section 5.3, experimental results are used to aid in a qualitative discussion 

about model usage; specifically, the usefulness of adding a model to the available 

analyses is discussed.  The chapter concludes in Section 5.4 with a return to the thesis 

roadmap. 

5.1 COMPARISON WITH EFFICIENT GLOBAL OPTIMIZATION (EGO) 

In this section, the goal is to provide a rigorous performance comparison of VGO with 

EGO.  The section begins with a review of EGO, which was first introduced in Chapter 2.  

This description of EGO is followed by a discussion of the ways in which VGO and EGO 

differ and a conceptual discussion about when it is best to use one algorithm or the other.  

Finally, an experimental comparison of the two algorithms and statistical analysis of the 

results is presented.  The algorithm solutions are compared in terms of solution quality as 

well as costs incurred during the optimization process.  For robustness, the experiment is 

run for different initial fixed samples. 
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5.1.1 Overview of Efficient Global Optimization 

Efficient Global Optimization (EGO) [31] is a global optimization algorithm that 

leverages a kriging surrogate modeling technique in conjunction with the Expected 

Improvement (EI) sequential sampling strategy.  The EI for a candidate design site x with 

an unknown observation y  is the expected value of the potential improvement over the 

current best.   The mathematical definition of EI is as follows: 

 [    ]     ̂     ̂ (   (
 ̂     ̂

√ 
))  √   (

 ̂     ̂

√ 
) 

(5.1) 

 

In the above expression,   denotes a normal cumulative distribution function and   is a 

normal probability distribution function.  From Chapter 4, √  is the square root of the 

MSE function associated with the kriging model.  The remaining terms are consistent 

with the definitions provided in Chapter 4.  Again, y is assumed to be normally 

distributed.  Conceptually, EI takes the expected value of the portion of the normal 

distribution on y that improves upon  ̂   .  If the prior mean on y is sufficiently smaller 

than  ̂   , then integral of the tail of the distribution where the posterior mean would 

exceed  ̂    is very small, resulting in a very small expected improvement.  On the other 

hand, if the prior mean on y is near  ̂   , then there will exist a more substantial portion 

of the prior distribution that exceeds  ̂   , resulting in a larger integral and thus a larger 

expected improvement. 

In EGO, sequential sampling ends when  

     [    ]    (5.2) 
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where a is a user-defined constant.  It will be shown in the experimental results later in 

this section that the effectiveness of the EGO algorithm depends heavily on the choice of 

a.   If a is too small, then the sampling and optimization process continues at the expense 

of additional analyses with little or no payout in terms of the objective function 

improving.  On the other hand, if a is too large, then optimization can stop prematurely 

before a good design artifact is determined. 

5.1.2 Comparison of Algorithms 

For comparison purposes, the pseudo-code for EGO is provided below. 

Efficient Global Optimization (EGO) 

Initialize: 

  set S := GenerateLHS(numSamples) 

  set Y := AnalyzeModel(S)    

Iterate: 

  while forever 

    set  ̂(x):=GenerateKriging(S,Y) 

    set  ̂   := max( ̂    ,…,  ̂    ) 

    set [    , maxEI]:=MaximizeEI( ̂   ,  ̂   ) 

    if maxEI< a 

      break while loop 
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    end if 

    set S:=S ⋃       

    set Y:= Y ⋃                     

  end while 

Terminate: 

  set globalMax:=Maximize( ̂   ) 

Similarly to VGO, the algorithm begins with a fixed sample of design sites to seed the 

initial kriging fit.  Like VGO, the choice of this fixed sampling strategy is by no means 

limited to LHS, but that is the approach used in this thesis.  The analysis model is 

evaluated at these design sites, providing the initial set of samples. 

The surrogate modeling approach used in EGO is the classic kriging modeling technique 

and is not adapted for either multiple models or for model inadequacy.  This is one 

primary disadvantage of EGO—EGO is only applicable for one analysis model.  Not only 

is the choice of surrogates not suited to multi-accuracy modeling, but the EI metric does 

not provide a mathematical mechanism to account for analysis quality or cost; EI is based 

entirely on the prior mean and variance.  As a result, if EI were to be calculated for more 

than one model, the result would be identical across models and would provide no 

mechanism for selecting the best analysis.  Because no model uncertainty is assumed and 

only one model can be used, it is assumed in this thesis that EGO uses only the highest 

fidelity model when comparison experiments are run.  This is probably the most 

significant drawback of EGO when compared to VGO. 
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Finally, the EGO stopping criterion is quite different from that of VGO, not only because 

it is based on EI instead of VoI, but because it relies so heavily on an appropriate 

selection of a by the user.  This is another area where VGO improves on EGO; the 

stopping criterion is much more intuitive and less sensitive to a single user-defined 

parameter.   

VGO does have some drawbacks when compared to EGO.  The most significant 

drawback is that VoI is more expensive to calculate and subsequently optimize than EI.  

While both sampling metrics require a multi-start or global optimization technique in 

order to find the maximum, EI is a simpler calculation and lends itself easily to 

determining analytical gradient information.  Therefore, if working with only inexpensive 

analysis models, it would be faster and simpler to run EGO with a few different choices 

of a and simply pick the best solution.  It is assumed in this thesis that in engineering 

design, the analysis model costs are much more significant than the costs of surrogate 

fitting and optimization of VoI or EI.  If this assumption is clearly violated, then some of 

the attractiveness of VGO wanes due to the complexity of the VoI maximization, which 

must be performed for every available model.   

5.1.3 Performance Evaluation: VGO vs. EGO 

In the previous section, a conceptual comparison of VGO and EGO was provided.  In this 

section, the focus is on experimental data to validate that discussion.  To test the 

performance of the VGO algorithm, it has been applied to a suite of randomly generated 

test problems. This same suite is then subsequently solved using EGO.  In this section, 

we detail how these test problems were generated, the results of the algorithms, and the 

analysis costs incurred. 
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5.1.3.1 Generation of the Test Suite 

While there is no shortage of known global optimization test problems, their primary 

objective is not in alignment with that of VGO.  Normal global optimization test 

problems tend to be multi-modal with fairly sharp global maxima; this is perfect for 

testing a classic global optimization approach and even global optimization suites 

involving only one analysis model that do not account for cost.  In VGO, the focus is not 

purely on mathematical optimality, but rather on good solution quality at reasonable cost.  

Additionally, to make full use of VGO, multiple test functions of different accuracies are 

required, which is not a standard feature of most known test functions.  In Section 5.2, 

known test problems will be used with some adaptations, but in this section, the test suite 

used is original and designed to allow for multiple models and cost accounting. 

The methodology developed to create the suite allows for the creation of any number of 

unique individual test problems or instances with any number of analysis models 

associated with a particular instance.  To generate a particular test problem, a truth model 

is randomly generated as a realization of a Gaussian process with randomly selected 

variance and roughness parameters.  This is done by generating a correlated set of 

random samples.  The sample set must be sufficiently dense to avoid aliasing; that is, if 

the statistical parameters dictate a very rough surface, but samples are only sparsely 

generated, then the surface can look artificially smooth.  As the number of samples 

increases, however, the size of the covariance matrix increases, resulting in more 

significant computational expense.  For small test problems in one to three dimensions, 

this is generally not a problem, but as the dimensionality of the test problems increases, 

the size of this matrix must be taken into consideration.   
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After the correlated samples are generated, a classic kriging model is fit to those samples, 

and that function represents the truth.  Although in practice the truth can never be known, 

for the purposes of performing a controlled computational experiment and assessing the 

algorithm’s accuracy, a truth model is constructed.   

Multiple analysis models are then generated using additional realizations of Gaussian 

processes to represent model inadequacies.  By changing the variance of the Gaussian 

process, we can generate less accurate models (high variance) and more accurate models 

(low variance).  The method is the same as that of generating the truth: generate a 

correlated sample, and then fit a kriging model to the sample.  This model inadequacy 

term is then added to the truth to create a function for a particular analysis model.  By 

generating the test suite this way, we ensure that the modeling assumption made in 

Equation 4.4 is in fact true.  We know that the truth can be represented by a regression 

term and Gaussian process realization because we generated it that way, and similarly, 

we know that the model error can be characterized by an additional zero-mean Gaussian 

process, because that is how the analysis models were created.  It is these analysis models 

from which observations are drawn in order to fit the Gaussian process surrogate surface 

and to run VGO.   

This test suite is in some ways ‘optimal’ with respect to VGO because the truth is known, 

and we know that the modeling assumptions hold.  In practice, the low and high fidelity 

models might correspond to a finite difference model and a differential equation-based 

model for the same system.  Alternatively, the analysis models might be a set of finite 

element models of the system with different mesh resolutions, or even different 

considerations regarding linear and non-linear effects in the underlying model.  
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Additionally, the truth would be unknown.  It is the responsibility of the user, in this case, 

to assign an appropriate variance,   
  to each model in order to characterize the analysis 

models’ expected accuracy with respect to reality.  These considerations will be 

discussed in more detail during the presentation of the practical example in Chapter 6.    

In this example, the variance used to generate the model inadequacy for each model is 

also used to calculate the VoI, which means that no additional model characterization is 

necessary.  The only parameters that need to be supplied for this example are the costs of 

each of the models.   

For the results presented in this section, a suite of 20 individual two-dimensional 

instances each having two analysis models is generated.  The suite consists of a truth 

surface and two analysis models—one low fidelity model, and one high fidelity model.  It 

is assumed that the truth models represent a profit function in millions of dollars; typical 

surfaces can range from about $1 million to as much as $10 million.  As far as the 

specific statistical parameters, the truth models are generated using randomly generated 

variance      values ranging from 0.01 to 10 and θ values ranging from 0.01 to 30.  As 

such, the roughness of the surfaces is allowed to vary randomly when the suite is 

generated, so the surfaces range from very smooth to very peaked with many local 

optima.  The result is similar to having different frequency content; when there is high 

correlation, the frequency content is lower, and when the correlation is lower, the 

frequency content is higher.  For simplicity of comparison, the accuracies (  
 ) and costs 

of the two analysis models remain the same for each of the 20 instances.  The cost for a 

model 1 analysis is $2.50 and the cost for one run of model 2 is $800.  The model 

inadequacies characterized as variances are .05 and .0008, respectively. 
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5.1.3.2 Comparison Results 

For this experiment, the 20 instance suite is run with the VGO algorithm and with the 

EGO algorithm.  The same initial set of 30 LHS design sites are used for both VGO and 

EGO, but EGO is seeded with high fidelity design sites, while VGO is seeded with low 

fidelity design sites.  For the EGO algorithm, multiple stopping criteria are used because 

the quality of the results can be highly dependent on the user’s choice of  .  Figure 5.1 

shows the difference between VGO and EGO expected utility for various a values.  To 

compute the overall expected utility, the cost of analyses is subtracted from the artifact 

utility.  The artifact utility is the value of the truth at the input value returned by the 

optimizer.  That is, the global optimization algorithm returns an x and a predicted  ̂   .  

Since the test suite affords the luxury of knowing the truth and the location of the true 

optimum, to evaluate the achieved artifact utility, the truth is evaluated at x.  This 

represents the utility of the actual artifact that would be manufactured with specifications 

x.  The cost of analysis is then determined by the number of function evaluations from 

each model (for EGO there is only the high fidelity model) multiplied by the assigned 

cost per analysis for that model.   The difference between these two quantities gives the 

overall utility. 

The goal of VGO is to achieve the best possible overall utility.  To achieve a good overall 

utility, it is necessary to arrive at a good artifact utility while only incurring reasonable 

analysis costs.  If the goal were purely to find the mathematical optimum, then VGO 

would not be required; it is because the costs are so vital engineering decision making 

that VGO is designed the way it is, and that these test suites were designed to make fair 

comparisons with respect to overall utility. 
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FIGURE 5.1: STATISTICS FOR VGO UTILITY MINUS EGO UTILITY 

WITH DIFFERENT STOPPING CRITERIA 
 

The data captured in Figure 5.1 is a boxplot capturing the delta between VGO overall 

utility and EGO overall utility, assuming that the truth is known with certainty, for 

various a values over the suite of 20 instances.  The boxplot shows the median in red, and 

the box shows the 25
th

 and 75
th

 percentiles.  The whiskers indicate the extremes of the 

distribution, and additional points plotted separately are considered to be outliers.  

Overall, the expected utility is always higher on average for VGO than EGO.  The 

different values of a illustrate an important trend.  Moving from left to right in the figure, 

for small values of a, good quality solutions are found but at high cost.  Then, as a 

increases, an optimal region can be seen where good solutions are found at reasonable 

cost—there is without a doubt, an optimal choice of a, but there is no way to determine 

this optimal value analytically.  In this optimal region, VGO utility does not exceed EGO 

utility by very much.  Then, as a continues to increase, solution quality is no longer 
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reliable, though the cost is low.  This is why the variance on the solutions increases as a 

gets large; sometimes, the optimizer gets ‘lucky’ and finds a good solution quickly and 

hence at low cost, and other times stops very early before finding a good solution.   

While the expected utility results for VGO show promise in comparison to EGO, this 

particular suite is such that the cost of analysis is not a very large portion of the overall 

utility; that is, artifact utility dominates the overall utility.  The same results can be 

interpreted differently by focusing purely on the cost of analyses, as shown in Figure 5.2.   

 

FIGURE 5.2: DIFFERENCE IN ANALYSIS COSTS USING VGO VERSUS 

EGO WITH DIFFERENT STOPPING CRITERIA 

Here, a box plot containing VGO total cost of analysis followed by the EGO results of 

analysis costs for the various a’s are presented. VGO is the clear winner in terms of lower 

analysis cost, independent of the stopping criteria for EGO.  However, it is not 
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meaningful to consider cost in isolation without considering solution quality—the 

cheapest analyses would always win if artifact utility is not taken into consideration.  The 

value of a for EGO which gave the most comparable results to VGO in terms of the 

quality of the artifact utility is a=1e-3.  Comparing only that particular set of EGO results 

to VGO, the total costs incurred were $776,000 for EGO and $168,020 for VGO.  

Therefore, for only very small differences in artifact utility, the EGO algorithm incurred 

analysis costs 4.6 times those incurred by VGO. This is a very promising result.  It 

indicates that leveraging multiple models at different costs and accuracies can help 

designers to conserve resources.  If also indicates that VoI, in conjunction with multiple 

models, allows for cost effective selection of valuable analyses during optimization. 

Finally, to compare strictly the quality of the optimization results, it is necessary to 

examine the artifact utilities achieved by both algorithms in isolation.  Figure 5.3 depicts 

a box plot of the distributions of the differences between VGO artifact utility and EGO 

artifact utility for different stopping criteria.  Positive values indicate that VGO found a 

superior design artifact, while negative values indicate that EGO found a superior design 

artifact for particular test problems.  Overall, VGO performs comparably to EGO for the 

smallest stopping criteria; that is, VGO is on par with the tightest tolerances tested for 

EGO.  As the stopping criteria becomes larger and therefore less stringent, the VGO 

solution quality tends to be measurably better than that of EGO. 
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FIGURE 5.3: STATISTICS FOR VGO ARTIFACT UTILITY MINUS EGO 

ARTIFACT UTILITY WITH DIFFERENT STOPPING CRITERIA 

5.1.3.3 Sign Test Results 

In the previous section, a single suite of 20 two-dimensional, two-model problems with 

an initial sample of 30 LHS was used to compare the outcomes of VGO and EGO with 

respect to overall utility, artifact utility, and analysis cost incurred.  While the previous 

section focused on a more visual version of the results and a discussion of the qualitative 

properties of the figures, the focus in this section is on showing statistical significance. 

The first experiment in this section is the exact same experiment from the previous 

section, but the results are presented differently.  In these experiments, a sign test is used 

to test the hypothesis ‘The VGO utility exceeds the EGO utility with median=m’.  This is 

known as the null hypothesis.  The sign test allows us to either accept or reject the null 

hypothesis with a particular one-sided p-value.   
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The first set of results is captured in Table 5.1.  The EGO algorithm is run with different 

values of a,  which is shown in the left-most column of the table.  The top row of the 

table shows the median value m for the hypothesis being tested.  The ‘W’ columns 

indicated the number of wins out of a possible 20 trials; a win is achieved if the VGO 

utility less the EGO utility is a positive number.   On average, as the median value is 

increased, the number of wins decreases.  For the results to be statistically significant, at 

least 15 out of 20 wins must be achieved to accept the null hypothesis; otherwise, the 

hypothesis is rejected.  Cells indicating a rejected hypothesis are shaded in red.   

TABLE 5.1. SIGN TEST RESULTS, 30 LHS SAMPLES 

VGO vs EGO, 30 LHS Initial Sample 

  
Median= 

0 
Median= 

0.01 
Median= 

0.02 
Median= 

0.022 
Median= 

0.025 

  W P-value  W P-value  W P-value  W P-value  W P-value  

a=1e-5 20 9.54E-07 20 9.54E-07 20 9.54E-07 20 9.54E-07 19 2.00E-05 

a=1e-3 20 9.54E-07 20 9.54E-07 18 2.01E-04 17 1.29E-03 13 1.32E-01 

a=1e-2 20 9.54E-07 20 9.54E-07 17 1.29E-03 15 2.07E-02 11 4.12E-01 

a=1.5e-2 20 9.54E-07 20 9.54E-07 18 2.01E-04 15 2.07E-02 12 2.52E-01 

a=1.9e-2 20 9.54E-07 20 9.54E-07 17 1.29E-03 16 5.91E-03 14 5.77E-02 

a=2e-2 20 9.54E-07 20 9.54E-07 17 1.29E-03 16 5.91E-03 14 5.77E-02 

Obviously, with m=0, VGO is the clear winner independent of the value of a.  The 

purpose of testing the different medians is merely to see by how much VGO wins.  Since 

the objective is actually in millions, when VGO wins by m=0.01¸ that corresponds to a 

net increase in profit of $10,000.   

To test the robustness of VGO with respect to the initial sample, the same experiment 

was run on the same test suite of 20 instances but with 20 LHS initial samples and 10 

LHS initial samples.  These results are captured in Table 5.2 and Table 5.3, respectively. 
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TABLE 5.2. SIGN TEST RESULTS, 20 LHS SAMPLES 

VGO vs EGO, 20 LHS Initial Sample 

  
Median= 

0 
Median= 

0.01 
Median= 

0.02 
Median= 

0.022 
Median= 

0.025 

  W P-value  W P-value  W P-value  W P-value  W P-value  

a=1e-5 20 9.54E-07 19 2.00E-05 17 0.0013 16 0.0059 15 2.07E-02 

a=1e-3 19 2.00E-05 17 1.30E-03 6 0.0577 6 0.0577 6 5.77E-02 

a=1e-2 19 2.00E-05 19 2.00E-05 13 0.1316 12 0.2517 11 0.4119 

a=1.5e-2 19 2.00E-05 19 2.00E-05 13 0.1316 12 0.2517 11 0.4119 

a=1.9e-2 19 2.00E-05 19 2.00E-05 13 0.1316 12 0.2517 11 0.4119 

a=2e-2 19 2.00E-05 19 2.00E-05 13 0.1316 12 0.2517 11 0.4119 

 

TABLE 5.3. SIGN TEST RESULTS, 10 LHS SAMPLES 

VGO vs EGO, 10 LHS Initial Sample 

  
Median= 

0 
Median= 

0.01 
Median= 

0.02 
Median= 

0.022 
Median= 

0.025 

  W P-value  W P-value  W P-value  W P-value  W P-value  

a=1e-5 20 9.54E-07 20 9.54E-07 16 0.0059 15 2.07E-02 15 2.07E-02 

a=1e-3 20 9.54E-07 17 1.30E-03 8 0.2517 8 0.2517 6 5.77E-02 

a=1e-2 19 2.00E-05 16 0.0059 13 0.1316 12 0.2517 12 0.2517 

a=1.5e-2 19 2.00E-05 16 0.0059 12 0.2517 12 0.2517 12 0.2517 

a=1.9e-2 20 9.54E-07 18 2.01E-04 13 0.1316 12 0.2517 12 0.2517 

a=2e-2 20 9.54E-07 17 1.30E-03 12 0.2517 12 0.2517 12 0.2517 

Clearly, from the above tables, VGO is still the clear winner overall with statistical 

significance, but on the whole, the amount by which VGO wins is smaller for these 

particular sets of samples.  Some of that discrepancy is merely due to the stochastic 

nature of the algorithm.  It can also happen that for a small initial sample, the VoI 

calculation is working with less complete information.  In the 30 sample case, VGO is 

initialized with low fidelity samples.  It can happen that with only 10 or 20 samples to go 

on, the high fidelity model is used sooner before a more complete exploration of the 

design space occurs, resulting in a higher total number of high fidelity function 
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evaluations.  This hypothesis is validated by the fact that the analysis cost for VGO is on 

average higher for the 20 and 10 LHS case than it is for the 30 LHS case.   

An alternate view of the results of this experiment is provided in Table 5.4.  This table 

was produced by leveraging the knowledge that 15 wins amount to a statistically 

significant validation of the null hypothesis.  By calculating the difference between VGO 

utility and EGO utility and sorting the values from largest to smallest, the 15
th

 value gives 

the maximum median value m for which the null hypothesis would be accepted.  It is 

particularly clear in this table that VGO achieves the greatest improvement over EGO 

with 30 initial samples, and the smallest improvement over EGO with only 10 initial 

samples.  However, VGO is still the overall winner regardless of the initial sample size. 

TABLE 5.4. A SUMMARY OF MEDIAN VALUES BY WHICH VGO UTILITY 

EXCEEDS EGO UTILITY 

Median Values by Trial 

  30 LHS 20 LHS 10 LHS 

a=1e-5 0.0325 0.0264 0.0252 

a=1e-3 0.0248 0.0129 0.0117 

a=1e-2 0.0222 0.0158 0.0107 

a=1.5e-2 0.0223 0.0158 0.0107 

a=1.9e-2 0.0236 0.0158 0.0128 

a=2e-2 0.0236 0.0158 0.0107 

In summary, the VGO algorithm outperforms EGO in terms of overall utility (artifact 

utility less analysis costs) with statistically significant results as determined using the sign 

test.   

5.2 SCALABILITY 

In the previous section, it was shown that VGO works well as compared to EGO, but the 

test problems were limited to two dimensions.  In this section, the goal is to show that 
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VGO can be successfully applied to higher dimensional problems.  No comparisons are 

made in this section; these experiments are merely an illustration of the VGO algorithm’s 

capabilities in higher dimensional design spaces. 

For these experiments, known global optimization functions from Dixon and Szego are 

used [11].  Specifically, the Hartmann-3 in three dimensions and Hartmann-6 in six 

dimensions are used.  Obviously, per the discussion in Section 5.1, the test functions must 

be adapted somewhat to accommodate multiple accuracy models.  There are some slight 

differences in the approach taken for each function, but the overall concept is that the 

original published function is used as the truth, and Gaussian processes are again 

generated to represent model inadequacies.  The sum of the truth and these inadequacies 

are used as the available analysis models to solve the optimization problem.    

5.2.1 Hartmann-3 Results 

The Hartmann-3 test function is a common global optimization test problem originally 

defined by Dixon and Szego [11].  The Hartmann-3 function is defined as 

             ∑     [ ∑   (      )
 
]

 

   

 

   

  (5.3) 

The three dimensional search space is defined as 

                  (5.4) 

The parameters are defined as follows:  
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The test problem is normally formulated as a minimization, but in this thesis the negative 

is used so that it becomes a maximization problem.  For the maximization case, 

Hartmann-3 exhibits four local maxima.   

The solution to Hartmann-3 is shown in . 

TABLE 5.5. HARTMANN-3 TRUE SOLUTION 

Hartmann-3  

Global Maximum [0.114614, 0.555649, 0.852547] 

Maximum Value 3.86278 

For this experiment, the Hartmann-3 test function is used to represent the truth.  A low 

and high fidelity model are then generated using the same correlated Gaussian process 

generation technique described in 5.1 when generating the test suite.  These Gaussian 

processes represent the model inadequacy term and is added to the truth to create an 

analysis model.  Two model inadequacies were generated with variances of 0.1 and 0.001 

for low and high fidelity, respectively.  Since the solution is ~3.8, these variances 

translate to 2-standard deviations of 0.63 and 0.063, respectively, or 16.3% and 1.63%, 

respectively.  The assigned model costs are $.000025 and $.0004.  In terms of the costs, 

they are inexpensive enough (considering the maximum profit is only $3.86) to ensure 
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that it is worthwhile to perform some additional analyses.  Also, the high fidelity model is 

an order of magnitude more accurate than the low fidelity model, so the cost is at least an 

order of magnitude higher.  Selecting appropriate costs in practice will be discussed in 

greater detail in Chapter 6. 

The experiment is run with an initial LHS sample size of 40 low fidelity samples.  Upon 

completion, the VGO algorithm has sampled the low fidelity model a total of 52 times 

(an additional 12 beyond the 40 seed samples) and the high fidelity model a total of 48 

times.  The results of the experiment are captured in .  The predicted maximum is the 

final set of x-coordinates determined by the optimizer, and the predicted maximum value 

is the estimate of the surrogate model at the predicted maximum.  The artifact utility is 

the actual Hartmann-3 function value at the predicted maximum.  The cost is computed 

based on the number of function evaluations and their associated costs, and the difference 

between the artifact utility and the cost incurred gives the actual utility. 

TABLE 5.6.  HARTMANN-3 EXPERIMENTAL RESULTS FROM VGO 

Hartmann-3 Experimental Result 

Predicted Maximum [0.3466, 0.5541, 0.8662] 

Predicted Maximum Value 3.9864 

Artifact Utility 3.8141 

Cost 0.0205 

Final Utility 3.7936 

It appears that the VGO algorithm found a local maximum instead of the global 

maximum, but that is less important than the overall solution quality in terms of cost and 

what is achievable in terms of the model accuracy.  Realistically, the best possible 

solution VGO can find is the optimum of the highest fidelity model.  If the optimum for 

the highest fidelity model is not the same as that of the truth, that discrepancy can only be 
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accounted for in the uncertainty and how much analysis cost should be invested in that 

model.  For this example, the artifact utility found was 3.81 and the actual artifact utility 

maximum was 3.86, a difference of .05.  Previously, it was established that two standard 

deviations for the highest fidelity model is .063 with respect to the truth, and this solution 

falls within those bounds. 

The goal of this experiment was to show that VGO can find a good solution at a 

reasonable cost for a problem of higher dimensionality.  In this experiment, VGO 

successfully found a good solution within the expected error bounds of the global 

optimum considering the model inadequacy of the best available model.  In the next 

experiment, VGO will be applied to a 6-dimensional problem.   

5.2.2 Hartmann-6 Results 

The goal for this experiment is to show that VGO can be successfully applied to an even 

higher dimensional problem; for this problem, the design space is assumed to be in six 

dimensions.  The Hartmann-6 test function is defined as follows: 
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                    (5.9) 
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And the parameters are defined as follows: 
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]  (5.12) 

Much like the Hartmann-3 test case, the known Hartmann-6 test function is used as a 

truth function to assess the quality of the results achieved.  In the Hartmann-3 test, a three 

dimensional Gaussian process realization to represent model inadequacy was generated 

for each of the two desired analysis models and then added to the truth to give the final 

analysis model functions.  In this case, the same concept is applied, but a six dimensional 

problem would result in a very large covariance matrix to generate the correlated sample.  

To make the problem more computationally feasible, two three dimensional correlated 

samples are generated and added as separate error terms; that is, one is assumed to be a 

function of              and the other is assumed to be a function of             .  

This is an approximation, but a fairly subtle one, and simply saves time in the problem 

generation stage.  

The Hartmann-6 function is also intended for minimization, so for this thesis, the 

negative is taken to create a maximization problem.  It has six local maxima, and the 

global maximum is in . 
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TABLE 5.7. HARTMANN-6 TRUE SOLUTION 

Hartmann-6 

Global Maximum [0.2017, 0.15, 0.4769, 0.2753, 0.3117, 0.6573] 

Maximum Value 3.32237 

 

To generate the low and high fidelity analysis models, variances of 0.1 and 0.001 and 

costs of $.000025 and $.0004 are used for low and high fidelity models, respectively.  

These are the same generation parameters as used in the Hartmann-3 example.   

To run the Hartmann-6 optimization, 120 low fidelity LHS samples were used.  After the 

VGO algorithm was completed, the low fidelity model was sampled 7 additional times, 

and the high fidelity model was sampled 6 times.  The optimization results are captured 

in Table 5.8.   

TABLE 5.8: HARTMANN-6 EXPERIMENTAL RESULTS FROM VGO 

Hartmann-6 Experimental Result 

Predicted Maximum [0.1848, 0.1522, 0.4675, 0.2694, 0.3032, 0.6637] 

Predicted Maximum Value 3.2838 

Artifact Utility 3.312 

Cost 0.005575 

Final Utility 3.306425 

Max Hi Fidelity 3.3288 

For this experiment, the predicted maximum came out to be reasonably close to the true 

maximum.  The true artifact utility at the solution was 3.312, as compared to 3.32237 for 

the true Hartmann-6 function, and 3.3288 which was the maximum of the highest fidelity 

model.  Since the same distribution parameters hold, the artifact utility is within about .01 

of the true solution, which is well within the two standard deviations of .063 for the high 

fidelity model with respect to the truth. 
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Overall, the algorithm performed effectively and efficiently with relatively few additional 

function evaluations on a high dimensional test problem.  The results of the Hartmann-3 

and Hartmann-6 test cases illustrate that VGO is scalable and very functional in higher 

dimensional design spaces. 

5.3 SELECTION OF MEANINGFUL COLLECTIONS OF MODELS 

The purpose of the experiments presented in this section is to provide some basis for a 

qualitative discussion about selecting meaningful models.  In this section the focus is not 

so much on the individual experimental outcomes but on the heuristics that can be 

extracted from them.  Specifically, the goal is guide the selection of models with 

meaningful cost and accuracy combinations that will get used if VGO is run.  Intuitively, 

it may be tempting to use any and all available models when running VGO; however, for 

any analysis model available during the optimization, VoI is maximized, which does 

incur some computational expense.  Hence, it is useful to use some discretion when 

selecting analysis models for use during VGO. 

The first heuristic is very logical and can be justified without any experimentation.  

Sometimes, there will be cases where one model dominates another in the Pareto sense.  

For example, if you a designer has two models available, model A and model B, and 

model B is cheaper with the same or better accuracy as model A, then there is no value in 

ever using model A.  Similarly, if model B is more accurate than A at the same cost or 

cheaper, then there will be no value in using model A.  This is illustrated in Figure 5.4.  It 

should be noted that a model is more accurate as variance decreases in order for the 

figure to be logical. 
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FIGURE 5.4: ANALYSIS MODEL PARETO DOMINANCE 

If a second model, Model B, is to be added to the available analyses, and it does not 

dominate Model A (in which case Model A should not be used), then the question 

becomes, where within the two remaining quadrants is adding Model B valuable?  For 

some experimental validation, it is assumed that a model is valuable if it is called for 

analysis at least one time during the VGO optimization.  Clearly, the cost-variance 

combinations on the axes are still dominated, but at some points both models are clearly 

valuable.   

To begin a study on the value of particular analysis models, work from Thompson et al.  

provides a useful starting point [63].  Before considering the case when multiple models 

are valuable, it is first necessary to consider when only one model is valuable in the 

context of decision making.  In some cases, the cost-variance combination of a model 
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results in it being completely inefficient and a waste of resources; it is better to simply 

make a decision.  This boundary is captured by Thompson in Figure 5.5. 

 

FIGURE 5.5: SCREENING TEST FOR COST-VARIANCE COMBINATIONS 

[63] 

To fully understand this plot, a few terms need to be defined.  In this figure, the axes are 

normalized cost and a normalized standard deviation.  Different analysis models have 

different properties, but everything can be reduced to a scaling problem.  For example, a 

surface that appears very flat over a large range of possible outcomes will exhibit more 

surface features over a smaller range of possible outcomes.  Similarly, a utility function 

may predict outcomes in the billions or on the order of only a dollar.  The analysis costs 

must be scaled accordingly.  This scaling problem can be solved by normalizing the 

analysis model cost and variance with the variance of the truth or of the highest fidelity 

model.  In the case of this figure, it is assumed that there are two possible decision 
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outcomes and two available analysis models.  The decision maker can either make a 

choice up front or choose to analyze one of the models before either analyzing the other 

model or making a decision.  Thus, one model is normalized with respect to the standard 

deviation other to achieve the normalized ratios in the plot.  In this thesis, when dealing 

with test problems where the truth is available, these normalized quantities are computed 

with respect to the standard deviation of the truth.   

The plot also shows different values of R, which is the constant representing risk 

aversion.  In this thesis, we are concerned only with the risk neutral case, though other 

risk preferences could surely be applied.  Therefore, it is the solid line with which we are 

most concerned.  Interestingly, at some point, no matter how accurate a particular 

analysis model is, it will never be used if it is too costly with respect to the range of the 

objective function.  This is the situation to the right of the solid line, where the plot is 

labeled ‘Select product with higher expected utility.’  This means that analysis should be 

skipped altogether and a decision should be made based on the available information.  

The other side of the line reads ‘See boundary plot’—these are not addressed in this 

thesis, but the idea is that a more rigorous test should be used to determine if an analysis 

is valuable.  In this thesis, we would calculate the VoI before performing the analysis.   

To ensure that the ratios calculated by Thompson are indeed applicable to VGO, a brief 

experiment was conducted.  For a suite of 20 analyses, the maximum VoI calculated for 

any available analysis at any step in the optimization was retrieved.  This quantity, when 

scaled with respect to the standard deviation of the truth, gives the maximum analysis 

cost that would result in the model being used at that particular iteration.  In other words, 

this quantity is an absolute upper bound on when a model would have ever been used at a 
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particular cost during the optimization process.  By scaling the maximum VoI, which 

translates to the maximum possible cost, and the model accuracy with respect to the 

standard deviation of the truth, the distribution in Figure 5.6 is achieved.      

 

FIGURE 5.6: INITIAL SCREENING FOR MODEL COST-ACCURACY 

COMBINATIONS USED IN VGO 

As can be seen by the higher model standard deviations (   , Model 1 is the low fidelity 

model and Model 2 is the high fidelity model.  This data indicates that the cutoff 

normalized cost of 0.4 computed by Thompson is likely valid for determining if a model 

is too costly in the context of VGO. 

To address the original question of where within the quadrant a second model is valuable, 

a large suite of experiments was run.  For this experiment, a set cost-variance 
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combination was selected for model 1, and the model 2 cost-variance combinations were 

allowed to vary.  For each cost-variance combination, a suite of 20 test problems was run.  

If the second model was called even once, the optimization was terminated and the 

second model was considered to be valuable.  If the second model is never used, it is 

considered to not be valuable.  Using this approach, a probability of a model being 

valuable can be calculated as the number of valuable uses out of a possible 20 trials.  The 

results are shown in Figure 5.7.  It should be noted that the sample sizes are not large 

enough to achieve statistical significance, and there is a stochastic property to these 

optimizations such that there is a reasonable degree of uncertainty in the probability 

estimations.  This study is not intended to rigorously determine the probability of a model 

being valuable; it is simply an illustration to guide the discussion.      

  

FIGURE 5.7: PROBABILITY OF MODEL B BEING VALUABLE 

Cost

0.18 1 0.85 0.6 0.2 0.3 0.15 0.1

0.162 1 0.9 0.4 0.15 0.25 0.05 0.05

0.122 1 0.95 0.4 0.35 0.05 0 0.05

0.082 1 1 0.55 0.15 0.15 0.1 0.05

0.042 1 1 0.5 0.4 0.2 0.05 0

0.002 1 1 0.7 0.3 0.15 0.05 0.05

0.00002 1 1 0.8 0.4 0.15 0 0.05

2E-07 1 1 0.85 0.45 0.15 0.05 0.05

0.008 0.131 0.18 0.22 0.254 0.377 0.5

Variance

Model A: 
Cost= .005

Variance = 0.2

Often Valuable

Sometimes Valuable

Occasionally Valuable

Rarely or Never Valuable
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The figure presented is intended to mimic the fourth quadrant (bottom right) of Figure 

5.4.  The values along the cost axis represent normalized costs, and the values on the 

variance axis are normalized variances.  Each cost-variance combination is considered in 

conjunction with the given cost-variance combination for Model A.  The probability in 

each entry of the matrix represents the number of times Model B was deemed valuable 

out of 20 trials.  As per the caveat in the previous paragraph, this sampling is insufficient 

to show any statistical significance.  As such, the different outcomes are grouped into 

four categories: Often valuable, for estimated probabilities of 0.8 and higher, Sometimes 

valuable, for estimated probabilities of 0.4 to 0.8, Occasionally valuable, for estimated 

probabilities of 0.15 to 0.6, and Rarely or Never valuable, for estimated probabilities of 0 

to 0.15.  These breakdowns are based purely on the outcomes shown to give some 

intuition about the potential for a model to be valuable.  For a binomial distribution with 

p=0.5 and 20 samples, there is a variance of 5.  This means that there is a very high 

degree of uncertainty associated with the mid-range and small probabilities.   

In spite of this uncertainty, certain trends can be discussed.  One interesting trend is that 

in spite of very high accuracy, there is a threshold for cost above which a model is rarely 

valuable.  This can be seen in the bottom row of the matrix; the accuracy is high, but the 

likelihood of a model being valuable drops off significantly as the cost increases, even 

though the normalized cost is substantially less than the upper bound of 0.4.   For the 

high cost analyses, it was hypothesized that there would be a much clearer trend; at a 

similar variance to Model A, it is seems that Model B would be much less valuable than a 

very accurate Model B.  This trend is occluded by small sample sizes and the drop off in 

value resulting from increasing cost on the whole.  This is quite different from the case 
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where the models have similar costs but Model B is more accurate; this case lands quite 

clearly in the ‘Often Valuable’ range.  It seems that more rigorous study is needed to 

determine when two similarly accurate models with different costs are both valuable.   

While the experimental results in this section are more qualitative in nature than those 

presented in Sections 5.1 and 5.2, they provide a starting point for understanding what it 

means for a model to be valuable, and what it means for multiple models to be valuable.  

Some basic understanding of whether or not it is useful to include a second analysis 

model based on normalized cost and variance combinations is provided. 

5.4 THESIS ROADMAP 

This chapter concludes the theoretical experiments and characterization of VGO.  In this 

chapter, suite of test problems was developed and used to compare the effectiveness and 

efficiency of VGO with respect to EGO.  VGO was shown to produce a higher overall 

utility than EGO with statistical significance.  Then, the scalability of VGO was tested by 

performing experiments on tailored versions of the Hartmann-3 and Hartmann-6 global 

optimization test problems.  Results indicated that VGO could perform within the 

expected accuracy bounds for high dimensional problems and incur relatively low 

analysis costs.  Finally, the chapter concluded with a discussion of model value in terms 

of normalized cost-accuracy combinations.  Some cost thresholds were provided and 

validated for single analysis models; no matter how accurate a model is, if analysis cost is 

considered, then there is a price at which performing an analysis is never valuable.  The 

notion of model dominance in the Pareto sense was discussed, as well as some basic 

trends for determining when a pair of models is valuable as opposed to only a single 

model.  In the next chapter, VGO is applied to a practical engineering example.   
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CHAPTER 6: APPLICATION OF VGO: HYDRAULIC HYBRID CAR 

In this chapter, the VGO algorithm is applied to a hydraulic hybrid car design problem.  

The goal in this chapter is to show that VGO can be successfully applied to practical 

engineering problems and can achieve an acceptable level of accuracy at reasonable 

costs.  The problem setup is described in Section 6.1 and includes a description of the 

design variables, simulation outputs, and construction of the utility function.  Some detail 

about the modeling of the physical system is given in Section 6.2.  The methodology for 

creating simulations at varying accuracies is given in Section 6.3.  This is followed by a 

discussion of the demand modeling used to form the utility function in Section 6.4 and 

some details on the setup and implementation in Section 6.5, including assignment of the 

model costs and accuracies.  Some characteristic results and discussion of their 

significance are provided in Section 6.6.  The chapter concludes with a final look at the 

thesis roadmap. 

6.1 BACKGROUND FOR HYDRAULIC HYBRID PROBLEM 

Given increasing global energy demands, many automobile manufacturing companies are 

developing cars that run on a mixture of energy sources or solely on an energy source 

other than gasoline.  Fully electric cars, hybrid gasoline/electric cars, diesel automobiles, 

and even natural gas vehicles have made their way to the commercial marketplace.  They 

have enjoyed mixed success; gasoline powered vehicles are being made smaller and more 

efficient and are more competitive in terms of fuel economy than they used to be.  The 

hybrid-electric car, such as the Prius, has enjoyed the most success of the alternative 

fueled vehicles.   
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In this problem, the decision maker is a lead product developer for an automobile 

manufacturer.  Rather than trying to duplicate or improve upon the already popular Prius 

technology, this designer is investigating the profitability of a hydraulic hybrid car.  

While some hydraulic hybrid delivery trucks are currently available, there are no 

passenger cars currently in this market niche.  The basic idea is that the car would have a 

diesel engine running on diesel that would run at maximum efficiency at all times.  

Sometimes the engine will drive the car directly; at times when this energy is not needed, 

the energy will be used to charge up a hydraulic accumulator, the pressure from which 

can also help to power the drive train.  Much like the Prius charges its electric battery 

while stopped, similarly, this vehicle would build pressure in the accumulator at low 

speeds and while stopped. 

In this problem, it is assumed that three attributes will affect the overall profitability of 

the vehicle: the fuel economy, the top speed, and the maximum acceleration.  These 

attributes, along with the price at which the vehicle is sold, will affect the demand for the 

vehicle.  It is subsequently assumed that demand is a driver for revenue, and that this 

revenue less the cost to produce the vehicle results in profit.  It is this profit that is used as 

a utility function for this problem.  Finally, to keep the size of the problem manageable, it 

is assumed that the design variables for the vehicle are restricted to the engine size, the 

front pump size, and the rear pump size.  These relationships are captured in an influence 

diagram in Figure 6.1.  In the diagram, the pink rectangles indicate design variables, and 

the green rectangles indicate intermediate outputs determined through modeling and 

simulation.  Market perception is an uncertain variable, indicated by the beige oval.  
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Finally, utility is the orange hexagon, and is a function of all of the other variables 

captured in the influence diagram. 

 
FIGURE 6.1: INFLUENCE DIAGRAM FOR HYDRAULIC HYBRID PROBLEM 

 

The role of the decision maker in this problem is to determine the most profitable 

combination of design variables to present to the CEO of the company before the vehicle 

goes to detailed design and manufacturing.   

At this stage in the design process, many assumptions have already been made.  It has 

already been assumed that the vehicle will be a hydraulic hybrid, and some architecture 

has already been assigned in order to simulate the vehicle behavior.  Still, the level of 

uncertainty in the design is very high.  It is still assumed to be in the early design stages, 

and it has not yet been determined if it is even profitable to produce this type of vehicle.  

Still, to make the best possible decision, it is important to ensure that we have optimized 

this vehicle.  That way, if we compare it to other alternatives, we are comparing the best 

possible instantiation of this vehicle to other similarly optimized alternatives. 
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6.2 HYDRAULIC HYBRID MODEL 

To simulate the behavior of the hydraulic hybrid vehicle under consideration, a 

MATLAB model was created.  The model is structured in a steady state fashion, even 

though it is actually a dynamic simulation.  To assess the performance of the hydraulic 

hybrid vehicle, the Urban Dynamometer Driving Schedule (UDDS) is used.  The purpose 

of UDDS is to simulate city driving for light duty or passenger vehicles, and it serves as a 

benchmark for assessing fuel economy in city conditions.  Normally, passenger vehicles 

have two different fuel ratings, city and highway, so the UDDS would be used to 

simulate city conditions, as opposed to the highway conditions. 

The UDDS is divided into one second time increments with a starting and ending vehicle 

velocity.  After reading in the UDDS, the MATLAB hybrid model back-calculates the 

state of the vehicle for each time step given the vehicle velocity.  This negates the need 

for using an ODE solver and makes the simulation reasonably inexpensive.  As described 

in the previous section, the model has three input or design variables: diesel engine size 

(Watts), Pump/Motor B size (       , and Pump/Motor E size (       .  It is assumed 

that the engine is constantly running at the most efficient power output.  The power from 

the engine is then simply channeled differently depending on the velocity demands of the 

vehicle.  The pumps function both as regular pumps, sending hydraulic oil into an 

accumulator (charging) when the engine power is not needed, and as motors, allowing oil 

from the accumulator to power the drive train along with the diesel engine.  The model 

also includes regeneration, whereby the motors pump oil into the accumulator during 

braking.  The overall system architecture is very similar to the one shown in Figure 6.2, 

as published by Li et al. [40].    
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FIGURE 6.2: SCHEMATIC OF HYDRAULIC HYBRID [40] 

 

The MATLAB model of the hybrid vehicle is designed to calculate fuel economy in 

miles per gallon based on a particular architecture’s performance of the UDDS.  

However, because of the way velocity is constrained, it is necessary to also assess a 

particular architecture’s ability to even perform the drive cycle based on speed and 

acceleration demands.  Sometimes, the component sizes under consideration are too 

small to achieve the desired velocities, but the vehicle velocity is already constrained.  

Rather than the model simply failing, what happens is that the demands placed on the 

pumps during the motoring phase are too high; if the state of the pump is examined, it can 

be seen that the pump is allowing more oil to pass than it physically can.  That is, the 

pump’s swash plate is open more than the full amount.  Another way the model can draw 

power that does not truly exist is to draw power from the accumulator after it is already 

empty.  If either of these conditions is detected, then a penalty is incurred. 
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The reason for using a penalty function, and specifically, a penalty function that scales 

with the degree of severity of the violation, is to ensure a meaningful objective function 

to guide the optimization process.  We never want to actually select a vehicle that cannot 

perform the drive cycle, but if we simply assign a zero or negative constant profit to those 

vehicles, the design space will exhibit steep, sharp valleys that are flat on the bottom.  If 

the penalty does not reflect improvement and degree of severity, it is hard for the 

optimizer to find more promising solutions without getting stuck in the deep valleys.  In 

addition, because a kriging-like surrogate model is used during VGO, having a design 

space that is too rough is hard to model accurately.  Thus, intelligent decisions about the 

structuring of the utility function must be made. 

If a particular design artifact is penalized in anyway, then the penalty is used as the utility 

or profit value for the particular artifact.  The penalty is scaled appropriately with the 

profit function, and this set up allows for the demand modeling portion of the analysis to 

be skipped if a particular artifact is unpromising.  The details of the demand model are 

given in Section 6.4.   

6.3 MODELS AT DIFFERING ACCURACIES 

In the previous section, the basic elements of the MATLAB model for the hydraulic 

hybrid model were described.  What is needed for VGO, however, is (at least) two 

models at different accuracies.  Rather than trying to tweak the physics of the MATLAB 

model, the approach taken in this example is to consider uncertainty in the high fidelity 

model.  For the low fidelity model, the hybrid model described in the previous section is 

used with the three design variables and all other parameters completely specified, and 
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the model is deterministic.  For the high fidelity model, 18 uncertain inputs are 

considered. 

To construct the high fidelity model, the same base model as the low fidelity model is 

used in conjunction with consideration of uncertainty.  For this model, a triangular 

distribution is constructed for all 18 uncertain inputs.  Most of the uncertain inputs are 

uncertain due to environmental factors, natural variation, or machine tolerance.  For 

example, some of these inputs include the air density, drag coefficient, and the energy 

density of diesel fuel.  Other uncertain inputs, such as mass, are a function of the size of 

the components being used, but for the sake of model simplicity is approximated as a 

reasonably estimated constant.  To get a better calculation of expected utility, 100 Monte 

Carlo samples are run over the uncertain inputs before running the drive train model.  

This model is therefore, more accurate and more expensive to evaluate than its low 

fidelity counterpart.   

6.4 DEMAND MODELING 

For both the low and high fidelity models, a demand model is used to translate from the 

fuel economy attribute to expected profit for the vehicle.  The demand model is 

implemented in Excel, and is called by MATLAB only for cases where there is no 

penalty assessed.  No matter how a demand model is constructed, there is always a high 

amount of uncertainty.  Until a product actually goes to market and consumer behavior 

can be observed directly, it is difficult to predict the way a product will be received.  

However, by making some assumptions, it is possible to at least come up with an 

estimate of demand so that profit can be predicted.   
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There are two aspects to the demand model: one is to determine the potential market size, 

and the other is to determine the price at which a product will sell.  The market size is 

estimated using a simple statistic.  In 2011, 2% of automobile buyers bought hybrid 

vehicles, which amounts to 286,620 consumers.  This number represents the maximum 

number of potential consumers regardless of vehicle price.  The pricing aspect is bit more 

complicated.  In this thesis, a polling approach is used.  For a sample of potential 

consumers, a list of fuel economies is provided, and the consumers are asked to name the 

maximum price that they would pay for a vehicle with that fuel economy.  The same 

approach can be used for multiple attributes, but for simplicity, this example is restricted 

to a single attribute. 

To determine the market share or the percentage of the market size that will actually go 

through with purchasing the vehicle, and the pricing strategy, a Bayesian approach is 

taken.  The basic idea is that there is an assumed prior on the market share, which varies 

between zero and one, that can be characterized as a beta distribution.  Then, based on the 

survey results, a binomial distribution is used to characterize a response ‘Yes’ or ‘No’ to 

the question ‘Would you buy this vehicle at this price?’.  This response is then used to 

update the beta distribution to better estimate the expected market share for a particular 

price.  By collecting and interpolating data over a range of fuel economies and a range of 

prices, a maximization can be performed for the selection of the price that yields the 

maximum profit, where profit is the market share, times the market size, times the price 

at which the product is sold, less the costs to produce the product.   

Assuming the survey information is constant, the Excel workbook for demand is run as a 

macro with inputs of fuel economy and the production cost, which is estimated based on 
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the engine and pump sizes for the particular artifact under consideration, and the outputs 

are the expected profit and the optimal vehicle price.  It is the expected profit which is 

adopted as the utility function over which the optimization is performed. 

6.5 PROBLEM SETUP 

So far, the low and high fidelity simulation models to calculate the expected fuel 

economy have been described.  In the previous section, an overview of the demand 

modeling used to predict the profitability of a particular vehicle was given.  Many of the 

modeling details have been omitted, as they are not vital to the success of this 

experiment.  More important considerations with respect to VGO are the determination of 

the model inadequacies and model costs in practice.  In the previous chapter, when most 

of the experiments were theoretical in nature, assigning the model inadequacy was often 

trivial because it was used to generate the model error up front.  Here, we are faced with 

two models and an unknown truth, so it is necessary to now assign model inadequacies.  

This section is dedicated to discussion the determination of the model inadequacies and 

subsequently the costs, and how these parameters can affect the experimental results.   

6.5.1 Determining Model Inadequacies 

In general, a good strategy for determining model inadequacy is to start with the highest 

fidelity model, and work down to the lowest fidelity.  Without knowing the truth or 

having some experimental validation to assess the accuracy of the highest fidelity model, 

the best characterization that can be made about the highest fidelity model’s accuracy is a 

good faith estimate.  Unfortunately, this is an unscientific answer; if there is experimental 

data available, then statistical analysis could be used to characterize the accuracy of the 

highest fidelity model.  In the absence of this information, however, the best a decision 



   

159 
 

maker can do is to estimate.  For the hybrid problem, the utility function is taken to be 

profit in millions, with many predicted outcomes being on the order of billions.  In this 

case, the high fidelity model variance was assigned to be $700.  What this actually means 

is that   
      , so the standard deviation          , and           .  However, 

since the profit is actually in millions, this means that         million.  For an early 

stage of this design process with anticipated profits in the billions, this is a reasonably 

accurate prediction. 

Determining the lower fidelity model inadequacies can be done a bit more scientifically, 

in that we can characterize the less accurate models with respect to the most accurate 

model.  For the low fidelity hybrid model, a fast estimate was made by calculating the 

expected profit for the same design variables with each model.   The difference in 

expected profit (~$555 M) was set to be equal to      Taking the scaling of the objective 

into consideration, the resulting variance is   
        .  Clearly, more rigorous 

characterization could be performed, but as long as the order of magnitude of relative 

accuracy is captured for the different models, the performance of VGO is not heavily 

affected by the precise model inadequacy values. 

In special cases, particular simulation model might be biased such that the expected error 

Gaussian process realization would not have a mean of zero.  For example, finite element 

analyses are known to converge from above; therefore, it might be known that this 

simulation data lies strictly above the truth.  In this special case, expert knowledge or a 

good-faith estimate should be used to determine both upper and lower bounds for the 

simulation error.  That is, a simulation outcome may differ with respect to the truth with a 

range from 0 to some upper bound, n, rather than from –n to +n.  In this case, rather than 
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using n as the assumed model inadequacy (which would imply error of magnitude n both 

above and below the mean), the simulation data should be adjusted in the negative 

direction by constant n/2 to make the prediction mean of the error function equal to zero.  

Then, this model can be assigned a standard deviation of n/2 instead of n.  This eliminates 

the need for overestimating the error bounds, if we can intelligently capture the existence 

of the bias.   

6.5.2 Determining Model Costs 

There are many potential ways to assess the cost of a particular analysis model.  It is 

logical that the model cost should scale with computation time; if computation time were 

not a consideration, then VGO probably would not be used in the first place.  Generally, 

it is possible to estimate an average run time for a model once it is constructed.  To 

calculate cost, this time could be translated to time on cloud or cluster to get from time to 

cost.  However, these costs do not necessarily tell the whole story and might undercut the 

actual costs of running the model.  One cost that should also be considered is the 

engineer’s hourly rate for running the model.  Even if a model is fairly automated, an 

engineer is probably required to keep an eye on the simulation.  If a simulation requires 

the engineer to be in the loop, then an even higher rate should be assigned to the model 

cost.  Another cost to consider is the cost of model construction; while one could argue 

that these are sunk costs, these costs can be depreciated over the simulations run during 

the optimization problem.  It is also necessary to consider the time sensitivity of the 

decision; if profit is lost if a decision is not made within a certain time frame, a cost 

penalty should be assessed accordingly.  These are some of the costs that could 
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theoretically be taken into account when determining the analysis cost for a particular 

model. 

In practice, it is necessary to realize that very cheap models when compared to very 

profitable objective functions will result in many function evaluations.  On the other 

hand, if a model is too costly, as shown in Section 5.3, it will never be used.  For the 

hybrid problem, time was not accounted for directly, so it was necessary to ensure that 

the costs assigned led to a solution in a ‘reasonable’ amount of time.  In running the 

hybrid experiments, a few different costs were used.  At first the costs were assigned to 

be $1000 for a low fidelity analysis and $10 million for a high fidelity analysis.  These 

costs may seem high, but a decision is ensured quickly, and this experiment served as a 

quick screening result to assess what a good solution might be.  After this very quick 

analysis, less expensive costs were used.  One trial was run at $100 and $5 M, and finally 

more realistic costs of $10 for a low fidelity analysis and $1 M for a high fidelity analysis 

were used.  Intuitively, the relative cost should bear some resemblance to the relative 

accuracy, but as was shown in the experiment in Section 5.3, it is not always easy to tell 

on sight when a particular cost-accuracy combination is valuable.  

6.6 RESULTS 

The hydraulic hybrid optimization problem was solved three times using the VGO 

algorithm.  For each trial, an initial LHS sample of 100 low fidelity analyses was used.  

The primary difference between the trials is the assumed cost of the models.  The first 

trial used the highest costs, and the final trial employed the lowest costs.  The results 

from the first trial are captured in Table 6.1.  The table entries are as follows: the 

assumed model costs, low and high fidelity; the assumed variances, low and high fidelity; 
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the number of initial low fidelity samples; the total number of low fidelity analyses 

performed during the optimization, including the initial sample; the total number of high 

fidelity analyses performed during the optimization; the resulting design variables, engine 

size (W), Pump E size (       , and Pump B size (       ; the predicted profit in 

millions of dollars from the final surrogate model fit; the predicted profit in millions of 

the high fidelity analysis for the resulting design variables; the cost of analysis incurred in 

millions of dollars; the final overall utility, or high fidelity profit less the analysis costs, 

again in millions of dollars. 

TABLE 6.1. TRIAL 1 HYDRAULIC HYBRID RESULTS 

Hybrid Experiment 1 

Costs (in millions): [.01; 10] 

Variances (in millions): [77000; 700] 

Initial Samples: 100 

Low Fidelity Analyses: 110 

High Fidelity Analyses: 14 

Predicted Maximum (engine size, Pump E,  Pump B): [28230, 2.7473e-5, 2.8132e-5] 

Predicted Profit from Surrogate (in millions): 2132.4 

High Fidelity Profit at Predicted Maximum (in millions): 2107.9 

Analysis Cost (in millions): 141.1 

Utility (in millions): 1966.8 

 

In these experiments, there is no known truth, nor is the true maximum profit known.  In 

order to characterize the solution quality, the high fidelity profit, which is assumed to be 

the artifact utility, can be compared to the best solution from an optimization of the high 

fidelity model.  The result found by VGO is $2,107,900,000.  The predicted profit is 

within the expected accuracy bounds.  In this trial, the high fidelity model is expensive to 

evaluate; the error of the artifact utility is exceeded by the analysis costs incurred for this 
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trial.  By setting the analysis cost high, it is ensured that the algorithm does not take too 

many steps.  This trial is not intended to produce a high quality result, but rather a 

benchmark.  Better results are achieved in the next trials. 

The results for the second hydraulic hybrid optimization are shown in Table 6.2.   

TABLE 6.2. TRIAL 2 HYDRAULIC HYBRID RESULTS 

Hybrid Experiment 2 

Costs (in millions): [.001, 5] 

Variances (in millions): [77000; 700] 

Initial Samples: 100 

Low Fidelity Analyses: 105 

High Fidelity Analyses: 9 

Predicted Maximum (engine size, Pump E, Pump B): [27319, 2.8596e-5, 2.849e-5] 

Predicted Profit from Surrogate (in millions): 2095.6 

High Fidelity Profit at Predicted Maximum (in millions): 2108.3 

Analysis Cost (in millions): 25.105 

Utility (in millions): 2083.195 

In this trial, the model costs are lower, and interestingly, few analyses are used.  The 

analysis cost incurred in this trial is only 17% of what it was in the previous trial.  In 

terms of solution quality, the artifact utility is $2,108,300,000, which is slightly better 

than the result achieved previously, but the overall utility for this trial, taking analysis 

costs into account, is much higher. 

The final trial results are shown in Table 6.3.   

TABLE 6.3. TRIAL 3 HYDRAULIC HYBRID RESULTS 

Hybrid Experiment 3 

Costs (in millions): [.0001, 1] 

Variances (in millions): [77000; 700] 

Initial Samples: 100 

Low Fidelity Analyses: 102 
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High Fidelity Analyses: 9 

Predicted Maximum (engine size, Pump E, Pump B): [27803, 2.9655e-5, 2.543e-5] 

Predicted Profit from Surrogate (in millions): 2047.2 

High Fidelity Profit at Predicted Maximum (in millions): 2048.9 

Analysis Cost (in millions): 0.0102 

Utility (in millions): 2048.8898 

There is an inherent stochastic nature to the algorithm, so the fact that the artifact utility 

is not as high for this trial as in the previous trial is likely an issue of bad luck.  The costs 

for analysis were probably the most realistic for this trial, but the algorithm still stopped 

after relatively few iterations.  For all three trials, the overall utility achieved was similar.   

The goal in this chapter was to show that VGO could be successfully applied to practical 

engineering problems.  The trials shown illustrate that this is in fact the case.  The 

accuracy of the optimization is reasonably good considering the model inadequacies 

given.  By combining global search and local refinement, these solutions are achieved 

with relatively few function evaluations.  As a comparison, if a single gradient 

optimization were run (which is impractical, a multi-start would be needed in this 

dimensionality), 25 steps would not be unreasonable.  With four function evaluations per 

step, one for the function value and three for the gradient, that would be 100 function 

evaluations.  With VGO, the whole optimization with global coverage is completed with 

approximately the same number of function evaluations. 

As far as the manager’s decision is concerned, the best design artifact had a fuel economy 

of about 28.5 mpg, with a suggested vehicle price of $35,280.  The demand model may 

be inaccurate, but tuning the demand model would not affect the predicted fuel economy, 

nor would it affect the applicability of VGO.  With those results, the manager may want 
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to consider investing in compact, high fuel economy, classic gasoline cars, where higher 

gas mileage might be achieved with a lower associated price tag. 

6.7 THESIS ROADMAP 

This focus of this chapter was the applicability of VGO to a practical, engineering design 

example.  Results showed that VGO could in fact, be successfully applied and achieve 

good solutions at very reasonable costs.  The accuracy of the solutions achieved were in 

line with the assumed accuracy of the models.  This chapter also contained discussion 

about determining model accuracy and costs in practice.  The next and final chapter 

provides a summary and critical review of the work presented in this thesis.   
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CHAPTER 7: CONCLUSION 

This thesis concludes with a summary of the contributions and a critique of the research 

presented.  The purpose of this thesis is to provide the theoretical foundations for a new 

global optimization suite known as Value-Based Global Optimization.  A review of the 

algorithm and its characterization as presented up to this point is provided in Section 7.1.  

The research questions and hypotheses are revisited in Section 7.2, with a complete 

discussion of the hypothesis validity given the theoretical contributions of VGO and the 

characterizations provided in Chapters 5 and 6.  The contributions of the thesis are then 

summarized in Section 7.3.  Finally, the thesis is concluded with suggestions for future 

work in Section 7.4 and some closing remarks in Section 7.5. 

7.1 A SUMMARY OF THIS THESIS 

During the engineering design process, it is often necessary for a decision maker to rely 

on simulation data from various system models. These models enable a designer to make 

more informed decisions when uncertainty is high and physical prototypes are too costly.  

While computational models and experiments can greatly reduce the cost of analysis over 

a physical experiment, even simulation models can be too costly to perform exhaustive 

searches over the range of possible alternatives and to perform optimizations.  Often, 

designers are forced to choose between exhaustive global search with inexpensive, less 

accurate models and accurate assessment of only a few design alternatives with more 

costly models.  Global optimization suites that make use of different computational cost 

reduction techniques can aid designers in achieving good solutions at a reasonable cost.  

The current state of the art for design problems and cost reduction techniques are 
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reviewed in Chapter 2, and global optimization algorithms targeted toward this type of 

problem are reviewed in Section 2.5.  It is shown that many of the current cost reduction 

techniques are not specifically targeted toward optimization, and that many of the current 

global optimization algorithms are not ideal for engineering design problems, where the 

objective is to find good solutions at reasonable cost. 

In Chapter 3, the VGO global optimization algorithm is presented.  VGO makes use of 

surrogate modeling, multi-accuracy modeling, and sequential sampling to enable users to 

find accurate solutions in an efficient manner.  It is argued that using models of different 

accuracies allows for more efficient global optimization by channeling the computational 

resources toward promising solutions; global exploration can be performed using the less 

accurate, inexpensive models and local refinement can be performed with the more 

accurate, more expensive models.  In this way, global search and local refinement can 

both be achieved at reasonable cost without sacrificing solution quality.   

There are two primary aspects of VGO that distinguish it from similar algorithms.  The 

first is a novel surrogate modeling technique that allows for data from any number of 

models at different accuracies with no restrictions on the correlation between the different 

models.  The second contribution is the use of Value of Information as a sequential 

sampling strategy.  While VoI is a known entity from decision theory, it has not been 

previously applied in this context.  Value of Information allows the designer to choose 

both the next design site and analysis in a way that is cost-effective.  This sampling 

criterion naturally balances global search and local refinement and indicates if an analysis 

is too costly to justify.  There is a very natural stopping criterion—stop sampling when it 
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is no longer valuable to do so, i.e. when the potential benefit of analysis is outweighed by 

the costs incurred.   

While Chapter 3 is focused on the conceptual approach for the VGO algorithm, the 

theoretical foundations for this algorithm are then delineated in Chapter 4.  In Chapter 4, 

the mathematical formulation for the surrogate modeling technique is derived.  The 

surrogate modeling approach derived in this thesis is based largely on kriging modeling.  

However, rather than resulting in an interpolator, the mathematical formulation is tailored 

to result in a weighted fit based on the accuracy of the samples to which the surrogate is 

fit.  In addition to the surrogate model, the theory for VoI is also described, along with 

some implementation details for the algorithm. 

In Chapter 5, several experimental results are presented with the intention of 

characterizing the performance of the VGO algorithm.  In particular, VGO is rigorously 

compared to Efficient Global Optimization (EGO), which is considered to be the current 

state of the art.  It was shown that VGO outperformed EGO on suites of test problems 

with statistical significance when accuracy and cost were both taken into consideration.  

That is, VGO found equally good or better solutions at a lower analysis cost.  In addition 

to the EGO comparison, VGO is tested for scalability to higher dimensional search 

spaces using known optimization test functions.  It is shown that VGO is capable of 

finding good solutions within the accuracy bounds of the available models while using 

relatively few costly function evaluations. Finally, Chapter 5 concludes with a qualitative 

discussion of model value.  In particular, boundaries on the acceptable costliness 

individual models are established.  In addition, the value of adding a second model to the 

available models given the cost and accuracy of the first model is discussed qualitatively.   
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Finally, in Chapter 6, VGO is used to solve an engineering design problem on a hydraulic 

hybrid vehicle.  The applicability of VGO to practical problems is illustrated, and more of 

the subtleties of using VGO in practice are discussed.  Two different simulation models 

are used to run the algorithm and solve the problem, one where the model is assumed to 

be deterministic (low fidelity) and one where uncertainty is taken into account (high 

fidelity).  Three different optimization trials are run, and the results show that VGO finds 

solutions within the expected accuracy bounds with relatively few function evaluations.  

While the total number of function evaluations is low considering the problem’s 

dimensionality, the number of high fidelity function evaluations is very low.  The end 

result is that the analysis costs are lower than could be achieved using only a single 

model or by using a gradient search method. 

7.2 REVISITING THE RESEARCH QUESTIONS AND HYPOTHESES 

From Chapter 1, the primary research question for this thesis is: 

How can designers perform design optimizations at a reasonable cost without sacrificing 

solution quality? 

The hypothesis is that a Value-Based Global Optimization (VGO) algorithm will allow 

designers to achieve good solutions (design artifacts) at better costs than can be achieved 

with comparable existing algorithms.  This hypothesis is validated conceptually in 

Chapter 3, where it is reasoned that using models at different accuracies in conjunction 

with a value-based search criterion allows for designers to assess the quality of good 

solutions with high accuracy while still reducing uncertainty in the global search space by 

using lesser quality models.  This hypothesis is then validated experimentally in Chapter 
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5, where it is shown with statistical significance that VGO outperforms EGO on a suite of 

global optimization test problems.  The results of the experiments show that even in the 

cases where VGO and EGO achieve similar quality solutions, VGO does so with much 

lower analysis costs. 

The first secondary research question pertains specifically to adapting surrogate modeling 

techniques to multi-accuracy data: 

 How can data from multiple models of varying levels of accuracy be used 

advantageously during the design optimization process? 

The hypothesis is that a Gaussian process-based surrogate model, similar to a kriging 

model, can be derived mathematically to accommodate multi-accuracy observations from 

any number of different models.  This approach is conceptually validated in Section 3.4, 

and the mathematical derivation is provided in Section 4.1.  The result is a surrogate 

modeling technique that retains many of the desirable properties of the standard kriging 

modeling formulation while taking into account the accuracies of the individual samples 

to which the model is fit.  Illustrations of the surrogate model are shown in Section 4.6. 

The second secondary research question is related to the sequential sampling technique 

employed during VGO: 

How can the most valuable design site and analysis be dynamically selected at each step 

in the optimization process? 
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The hypothesis is that maximizing the Value of Information (VoI) provides a metric for 

choosing the next design site and associated analysis model at each step in the 

optimization process.  The reasoning for using a value-based sequential sampling method 

is provided in Chapter 3, and the theoretical foundations of VoI are described in Chapter 

4.  It can be seen from the sample results in Section 4.6 and any of the experimental 

results shown in Chapters 5 and 6 that VoI does indeed provide a meaningful sampling 

criterion for choosing both design sites and analyses during the optimization process.  

Moreover, VoI is naturally cost-effective because model accuracy and cost are taken into 

account explicitly, which makes it an ideal, intuitive metric for engineering design.  By 

performing sequential sampling using VoI, low analysis costs are achieved for high 

quality solutions as compared to algorithms using the Expected Improvement (EI) metric 

for sequential sampling. 

7.3 CONTRIBUTIONS 

The primary overarching contribution of this thesis is the development and 

characterization of Value-Based Global Optimization, a global optimization algorithm 

intended for simulation-based engineering design problems.  This algorithm combines a 

new surrogate modeling technique with a novel sequential sampling technique.  These 

new techniques allow VGO to channel the available computational resources in a way 

that is efficient and effective in an optimization context.  It is based on the premise that 

engineers are not concerned with mathematical optimality, but rather on finding good 

solutions at reasonable cost in a reasonable amount of time.  By allowing for multiple 

computational models to be used during the optimization process and focusing on the 

value of each individual analysis, solution quality comparable to other algorithms can be 
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achieved at only a fraction of the analysis cost.  In this thesis, the VGO algorithm is 

developed at a conceptual and theoretical level.  It is also tested and compared to similar 

algorithms in order to characterize its performance. 

One of the main components of the VGO algorithm is the Gaussian process-based 

surrogate modeling technique for multi-accuracy data, which is a significant research 

contribution on its own.  While multi-accuracy modeling and surrogate modeling are both 

relatively mature fields, combining the two is still fairly uncommon.  In addition, very 

few existing algorithms allow for data from more than two different models without any 

restrictions about the higher fidelity design sites being a subset of the lower fidelity 

design sites.  When comparing the surrogate modeling technique from VGO to existing 

surrogate modeling techniques for multi-accuracy data, the one used in VGO allows for 

the fewest assumptions about model correlations and the smallest number of 

hyperparameters that must be estimated by maximizing likelihood.  That is, by assuming 

that the model error terms are independent Gaussian process realizations, there is no 

resulting correlation between the various models even if they exhibit similar behaviors.  

The resulting surrogate model retains many desirable properties of kriging models, rooted 

in its statistical nature and its simple calculation for determining the expected mean 

squared error.  However, rather than being an interpolator, the resulting surrogate surface 

is weighted by the accuracy of the samples to which it is fit.   

The surrogate surface modeling technique presented in this thesis is a significant research 

contribution not only because it is different from any other available surrogate modeling 

technique, but because it is targeted toward optimization in an engineering context.  This 

surrogate modeling technique is not only fit to multi-accuracy data, but is a variable 
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accuracy modeling technique unto itself.  This surrogate allows for high accuracy regions 

in promising areas and low accuracy regions where the solutions are obviously poor.  

This is precisely what is desired for performing accurate optimizations at reasonable 

costs—the surface is accurate enough to guide the optimizer toward better solutions but 

reserves the best accuracy for areas that could lead to the final solution. 

A second independent research contribution stemming from VGO is the application of 

Value of Information from decision theory to sequential sampling during global 

optimization.  While VoI is an established metric, it has never before been applied as a 

sequential sampling metric for surrogate modeling and optimization.  In this thesis, VoI is 

introduced in this new domain and the individual quantities needed to calculate VoI are 

all defined for use in the context of VGO.  Several derivations are required to compute 

VoI correctly in the context of VGO, including the derivation of the simulation mean and 

variance, as well as the posterior on the truth estimate.  All of the necessary calculations 

to use VoI as a sequential sampling metric are provided as a contribution of this thesis.  

In addition, a novel characteristic of VoI is an intuitive stopping criterion that is not 

dependent on a user-defined constant.  This makes the VGO algorithm more robust to 

user input in terms of the resulting solution quality. 

The remaining research contributions presented in this thesis are in some way related to 

the characterization of VGO and illustrating its capabilities.  In Chapter 5, a rigorous 

performance comparison of VGO and EGO is presented.  There are two research 

contributions in this experiment.  The first contribution is the test suite used to perform 

the experiments.  The suite is specifically designed to emulate engineering design 

problems involving multiple analysis models, an unknown truth objective function, and 
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evaluation costs.  The generation technique for the test suite provides a novel approach 

for generating infinite possible test cases with different surface features and for providing 

any number of analysis models to simulate the unknown truth.  The second contribution 

in this performance characterization is the results and analysis of the results.  VGO is 

shown to outperform EGO, the current state of the art, with statistical significance by 

using a sign test to interpret the results.   

In Section 5.2 and in Chapter 6, VGO is shown to be applicable to high dimensional 

problems and practical engineering problems.  This is the first time VGO has been 

applied to such test problems.  These test cases function as a first step toward illustrating 

all of the capabilities of VGO.  While no direct comparisons to other algorithms are made 

in these example problems, the number of function evaluations required to run the 

optimizations is small enough that meaningful discussions can be provided about the cost 

of analyses incurred.  In Section 5.2, the solutions of the test problems are known, so it is 

not difficult to assess the accuracy of the solutions obtained.  In Chapter 6, the truth is not 

known, but repeat trials show that good solutions can be achieved at a reasonable cost on 

practical examples.     

The final contribution of this thesis is a first step toward defining a meaningful set of 

analysis models, as shown in Section 5.3.  While this discussion is very qualitative in 

nature, this is not a topic that is typically broached in the existing literature.  The benefit 

of using multiple models with different cost-accuracy combinations is generally accepted 

in the literature, and different model construction methods are discussed.  However, what 

is not often discussed is how many models should be used and what combination of cost-

accuracy combinations is most efficient.  While VoI will naturally ‘filter’ out models that 



   

175 
 

are not useful, it can save some additional calculation time of maximizing VoI if an 

efficient set of models is selected before VGO is run.  As variable accuracy modeling 

continues to gain momentum in the optimization domain, it will be necessary to continue 

making research contributions in this area. 

7.4 LIMITATIONS AND FUTURE WORK 

In the previous section, the many research contributions of VGO and this thesis were 

enumerated.  The algorithm has been shown to outperform the previous state of the art in 

global optimization techniques for engineering design optimization problems.  However, 

there are certain limitations of VGO that warrant further discussion.   

A very common limitation of variable accuracy modeling techniques in general, which is 

also a limitation of VGO, is the assumed parameterization of the available models.  

Specifically, it is assumed that the inputs and outputs of the various models are in 

alignment.  In order to fit surrogate surfaces and run optimizations using multi-accuracy 

data, the models must map the same inputs to the same outputs.  This is not always 

practical in real engineering examples; often, models of different fidelities are at different 

abstractions.  It is likely that the inaccurate models have fewer, more general inputs while 

the more accurate models exhibit more detailed inputs and parameters.  It is also assumed 

that the output space is the same; in VGO, it assumed that all model outputs can be 

mapped to utility or a profit function.  There are not currently any algorithms for multi-

accuracy modeling that can accommodate models of different abstractions that rely on 

different sets of inputs and outputs.  This is an area where further research is required.   
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One limitation of VGO has to do with the assumptions made in developing the algorithm.  

The derivation of the surrogate surface presented in this thesis assumes no correlation 

between model error and the truth.  While this assumption simplifies the derivation and 

the number of hyperparameters which must be estimated, it would be useful to further 

assess the validity of this assumption and its effect on performance.  Clearly, there could 

be cases where the error of a particular model is correlated with the truth, particularly if 

the model is a low frequency approximation of a high frequency phenomenon.  These 

cases need to be investigated explicitly. 

Another limitation of VGO has to do with the cost of the algorithm itself.  While the costs 

of the individual analyses are modeled explicitly during VGO, the cost of the surrogate 

model fitting and the cost of optimizing the Value of Information are ignored.  There are 

opportunities here both for reducing the costs associated with the algorithm and modeling 

them explicitly.  For example, the cost of maximizing VoI could be included with the 

individual analysis cost so that more intelligent cost-benefit tradeoffs could be made.  If 

the costs of the algorithm can be modeled and accounted for, better decisions can be 

made in the context of optimization.   

Beyond modeling the algorithm costs incurred, there is still room for improvement in the 

implementation of the algorithm.  While the version of VGO used in this thesis contains 

many efficiency tactics, there is still room for improving the speed and cost of several 

calculations.  In particular, if the cost associated with maximizing VoI could be reduced, 

the algorithm would be much more effective.  Currently, VoI is maximized using a multi-

start gradient optimization with a relatively large number of starting points.  Because the 

VoI calculation involves calculating the posterior on the truth, which is effectively a new 
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surrogate surface less the likelihood maximization, these maximizations are fairly 

expensive.  This is one area where expected improvement is more attractive; the 

calculation of EI is very inexpensive.  While VGO is conceptually superior to EGO in 

cases where multiple analysis models are available, it is less attractive if the costs of the 

analyses are low.  In this thesis it is assumed that the cost of analysis is much more 

significant than the cost of the algorithm; if this assumption is violated then there are 

cases where EGO is more efficient in terms of total computation time.   

There is still room for improvement in describing a method for determining the costs and 

accuracies of the individual models in VGO.  Recall that these are user-supplied inputs so 

that the models can be correctly characterized by their accuracy and their value assessed.  

Particularly in the hybrid example shown in Chapter 6, meaningful determination of these 

parameters was not trivial and had an effect on the performance of the algorithm.  

Assuming higher model costs causes the algorithm to terminate sooner, while less 

expensive models result in a longer runtime.  If the costs and accuracies are not 

determined in a meaningful way, the desired results may not be achieved.   

Along these same lines, further research is needed on what constitutes an effective set of 

analysis models.  While some discussion was provided in this thesis about the value of 

models in terms of cost-accuracy combinations, much more rigorous experimentation is 

needed to show results with statistical significance.  This is a research area that has 

largely been ignored in the past.  The use of variable accuracy modeling is gaining in 

popularity, and there has been discussion on basic ways of constructing such models.  

However, the cost-accuracy characterization has not been considered explicitly in the 

literature, and a desirable number of models has not yet been established. 
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In this thesis, the VGO algorithm was subjected to some performance testing applied to 

problems with as many as six dimensions.  There is still room for additional performance 

characterization, and even higher dimensional problems should be tested in the future.  

Problems up to 10 dimensions with more analysis models and a greater variety of cost-

accuracy combinations are needed to continue to characterize the performance of VGO.  

Larger test suites with randomly generated model parameters could aid in a more 

rigorous comparison of VGO and EGO.  Beyond theoretical examples, VGO should be 

run on a greater variety of practical engineering examples. 

A final area of suggested improvement which will enable many of the other 

recommended tests and improvements to be implemented more readily is an open-source 

implementation of VGO that is publicly available.  If VGO is readily accessible, more 

practitioners can run tests and make improvements to the algorithm.  There will naturally 

be more practical examples and resources available if the VGO code is freely available.   

7.5 CLOSING REMARKS 

VGO is a global optimization algorithm that builds on novel surrogate modeling and 

sequential sampling techniques in order to solve engineering design problems with high 

accuracy at reasonable cost.  Several currently available optimization techniques employ 

surrogate modeling in conjunction with sequential sampling, but VGO takes these 

techniques a step further by allowing models at different accuracies and by explicitly 

accounting for analysis costs incurred.  Results show that VGO can achieve high quality 

solutions with low analysis cost by strategically selecting the analyses dynamically 

during the optimization process.  By using a value-based sequential sampling metric, cost 

effective trade-offs can be made with minimal user input.    
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The contributions of VGO will affect the state of the art for global optimization 

algorithms in a design context.  By shifting the focus from true global optimality to a 

more practical perspective of good solutions at reasonable cost, optimization algorithms 

can be tailored more appropriately to meet designers’ needs.  Looking beyond the 

optimization aspects of the algorithm, the surrogate modeling technique presented in this 

thesis is likely to have an impact on the use of surrogates in conjunction with multi-

accuracy data.  By providing a mathematical formulation that is similar enough to classic 

kriging, it may encourage more users to consider expanding from optimizations and 

analyses using only one underlying simulation to multiple simulations.  This shift will 

save a lot of time and resources in the context of many future design decisions.   
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APPENDIX A: DERIVATION OF SIMULATION PRIOR VARIANCE 
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APPENDIX B: DERIVATION OF POSTERIOR MEAN OF TRUTH 
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