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SUMMARY 

 

Resonant Magnetic Perturbation (RMP) fields produced by external control coils 

are considered a viable option for the suppression of Edge Localized Modes (ELMs) in 

present and future tokamaks. Repeated reversals of the toroidal phase of the I-coil 

magnetic field in RMP shot 147170 on DIII-D has generated uniquely different edge 

pedestal profiles, implying different edge transport phenomena. The causes, trends, and 

implications of RMP toroidal phase reversal on edge transport are analyzed by comparing 

various parameters at φ=0° and φ=60° with an I-coil toroidal mode number of n=3. An 

analysis of diffusive and non-diffusive transport effects of these magnetic perturbations 

in the plasma edge has been performed. The change in the diffusive and non-diffusive 

transport in the edge pedestal for this RMP shot is characterized by interpreting the ion 

and electron heat diffusivities, angular momentum transport frequencies, ion diffusion 

coefficients, and the pinch velocities for both phases.  
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CHAPTER 1 

BACKGROUND 

 

 There is a present drive for development of carbon-free power production as a 

sustainable solution to the growing energy demand. Magnetic confinement fusion 

reactors are anticipated to be a viable means to generate base load power for the grid, 

while eliminating the concerns of long term storage of spent fuel which plagues current 

fission reactor technology. There is a worldwide collaborative effort for the construction 

of the International Thermonuclear Experimental Reactor (ITER) [1] presently being 

built in Cadarache, France. Much of the research in the field of plasma physics uses 

smaller research tokamaks around the world to validate as well as finalize the design for 

ITER. One such tokamak in the United States is DIII-D, which is operated by General 

Atomics in San Diego, California. The present work has used experimental data from 

DIII-D as a basis for interpretive modeling. 

 

Toroidal Plasmas 

 A tokamak is a toroid designed to confine plasmas via strong magnetic fields 

produced by external coils. Figure 1 shows a cross section of the DIII-D tokamak, from 

which the data was gathered for the present work. The external magnetic field coils can 

be seen along with the plasma chamber and divertor plate used to capture particles that 

are no longer confined by the magnetic fields. 
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Figure 1: DIII-D tokamak cross section showing toroidal and poloidal magnetic field 

coils and plasma chamber [2]. 

 

Fusion plasmas in tokamaks like DIII-D are exposed to extreme conditions like 

large densities (~ 10
20

 particles per cubic meter), high temperatures ( ~10 keV), large 

currents (a few MA), and strong magnetic fields (a few Tesla). The simplest form of 

magnetic confinement fusion uses electromagnetic forces to guide deuterium or tritium 

ions and electrons along magnetic field lines. If the plasma environment has sufficient 

temperature and density, then fusion will occur. The toroidal plasma is confined by the 

superposition of two magnetic fields in a device called a tokamak, whose coordinate 

system is described by orthogonal unit vectors r, θ, and φ, which respectively represent 

the radial, poloidal, and toroidal directions. The plasma is confined inside the tokamak by 

magnetic fields in two of the three directions: toroidal and poloidal, as shown in Fig. 2.  



 

 

Figure 2: Toroidal and poloidal magnetic fields in a toroidal geometry.

 

The toroidal magnetic field is externally applied, and the poloidal magnetic field 

is induced by a toroidal current, yielding a helical shape to the

magnetic fields lines. There is 

direction, however, the present research will involve investigating plasmas with an 

oscillating radial magnetic field.

 

 Ions and electrons in toroidal geometries are confined in equilibrium to concentric 

toroidal surfaces on which

Maxwell’s equations and Ohm’s Law, the magnetic field lines are confined to these 

toroidal surfaces, therefore also confining the particles guided by these field lines. Thus, 

the surfaces shown in Fi
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: Toroidal and poloidal magnetic fields in a toroidal geometry.

The toroidal magnetic field is externally applied, and the poloidal magnetic field 

is induced by a toroidal current, yielding a helical shape to the superposition of the 

magnetic fields lines. There is typically no magnetic field applied or induced in the radial 

however, the present research will involve investigating plasmas with an 

oscillating radial magnetic field. 

Magnetic Flux Surfaces 

Ions and electrons in toroidal geometries are confined in equilibrium to concentric 

on which pressure is uniform. Due to plasma equilibrium 

Maxwell’s equations and Ohm’s Law, the magnetic field lines are confined to these 

toroidal surfaces, therefore also confining the particles guided by these field lines. Thus, 

the surfaces shown in Fig. 3 are known as flux surfaces.  

: Toroidal and poloidal magnetic fields in a toroidal geometry. 

The toroidal magnetic field is externally applied, and the poloidal magnetic field 

superposition of the 

no magnetic field applied or induced in the radial 

however, the present research will involve investigating plasmas with an 

Ions and electrons in toroidal geometries are confined in equilibrium to concentric 

equilibrium described by 

Maxwell’s equations and Ohm’s Law, the magnetic field lines are confined to these 

toroidal surfaces, therefore also confining the particles guided by these field lines. Thus, 
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Figure 3: Toroidal flux surface depicted by tracing a magnetic field line once around the 

torus. 

 

There are two types of flux surfaces that may arise in tokamaks: rational and 

irrational. Rational flux surfaces occur when the helical magnetic field line is closed, 

forcing a particle to have the same initial and final point for its trajectory after m toroidal 

and n poloidal transits around the torus. These trajectories are said to be on rational 

surfaces described by the safety factor q = m/n.  The magnetic perturbations discussed in 

this work will be of toroidal mode number n = 3, and therefore have resonances on flux 

surfaces where q = m/3.  

The Edge Pedestal 

Collisions tend to cause particles to be displaced from one flux surface to another. 

After many of such collisions, the average trajectory of a particle may have a radial 

component. Caused by random motion, this process is diffusive by nature and can be 

described by classical diffusion theory. However, in the outer 10-15% of the plasma, near 

the vacuum vessel wall, simple diffusion theory does not hold, and instead there is a 

balance of outward diffusive transport and inward “pinch” transport [3] due to 

electromagnetic forces.  

The plasma edge has piqued the interest of researchers in the past few decades as 

playing a major role in global performance of the tokmak plasma. Sharp gradients arise in 
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density, temperature, current, and pressure profiles over a region of a few centimeters just 

inside the last closed flux surface that cause unique transport phenomena as well as 

magneto-hydrodynamic instabilities. These steep gradients form an insulation boundary 

to the plasma core referred to as the transport barrier. The physics that occurs in this edge 

pedestal region controls the edge gradients, and therefore controls the confinement (such 

as high (H) or low (L) modes) of the plasma as a whole. Edge pedestal physics, the 

transition between L and H mode, as well as magneto-hydrodynamic instability 

suppression is not yet completely understood, and is a present topic of interest in the 

fusion plasma physics community, especially with regard to the design of ITER. 
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CHAPTER 2 

INTRODUCTION 

 

   In the 1980’s, a regime of enhanced plasma confinement, called H-mode, was 

discovered in the ASDEX tokamak in Germany [4]. The ratio of plasma pressure to 

magnetic pressure, defined as β, is used to characterize the economy of the reactor by 

comparing fusion power output obtained with energy investment in magnetic fields. H-

mode can be obtained in high β plasmas, which increases the plasma core profiles such as 

temperature, pressure, and density. These profiles are said to sit on a “pedestal” because 

the core values are relatively constant, then drastically decrease at about 90% of the 

plasma radius, generating large gradients in the edge region. Along with the increase in 

plasma core profiles, H-mode plasmas have better energy confinement times by about a 

factor of two larger than those in L-mode, or Low confinement mode. This enhanced 

confinement is attributable to the generation of an energy transport barrier, whose 

formation is not yet fully understood. However, the superior confinement in H-mode 

comes with a price. Magneto-hydrodynamic instabilities called “edge localized modes” 

(ELMs) arise in H-mode and are caused by large pressure gradients and currents in the 

edge pedestal region. The ELM stability boundary is called the peeling-ballooning mode 

limit because of the trade-offs between destabilization of peeling modes due to current 

and ballooning modes due to pressure gradients. If this peeling-ballooning threshold is 

breached, then the ELM occurs, spewing plasma particles and energy from the edge 

region over a very short time interval [5]. The ELM degrades confinement and introduces 

detrimentally high heat and particle fluxes to the first wall and the divertor plate. The 
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edge pedestal profiles then regenerate and enhanced confinement is regained until the 

peeling-ballooning limit is reached again, triggering another ELM. This is a cyclical 

process that can occur at varied frequencies and magnitudes. Although harmful to the 

plasma facing components, the radial transport and impurity control that ELMs can 

provide is beneficial [6]. Type I ELMs are the most intense variety [5] and are of crucial 

concern for future fusion devices such as ITER. 

 Resonant magnetic perturbations (RMPs) have been identified as a means for both 

mitigating and suppressing ELMs while maintaining a steady state H-mode plasma [7]. 

External magnetic fields are applied to the tokamak by running current through three 

dimensionally placed coils outside of the first wall but inside the vacuum vessel. The 

RMP acts to decrease the density by inducing radial particle transport [8]. Decreasing 

density acts to lower the pressure, where high pressure and current driven by pressure 

gradient are a main driver for the ELM instability. ELMs can therefore be mitigated or 

suppressed while still maintaining particle streaming for impurity control to some extent. 

 There has been widespread research on the effect of RMP on toroidal plasmas 

over the past decade. Edge pedestal profiles have been analyzed between similar RMP 

and H-mode shots [9] by comparing density and temperature profiles, confinement times, 

and particle discharge on the diverter plate [10], as well as the role of particle pinch in the 

generation of a transport barrier for both scenarios [8]. Active control methods have been 

investigated to manipulate the safety factor profile in order to determine the window of 

resonance operation when ELMs are suppressed [11]. The dependence of the effect of 

RMP on plasma shape [12] and collisionality [13] has been investigated with particular 

interest to ITER similar scenarios. In addition, spiraling magnetic field lines can generate 



 

8 

 

regions of null magnetic fields called islands. The effect of RMP on magnetic islands and 

overlapping islands to generate an edge stochastic region has also been assessed [14]. 

There has been previous research on the effect of RMPs on magnetic braking via 

electromagnetic torque using resonant harmonics in the applied field as well as the 

neoclassical toroidal viscosity model by applying non-resonant harmonics [15, 16].  

 Prior analysis of RMP with respect to H-mode, safety factor, plasma shape, 

collisionality, toroidal rotation, and edge stochastic regions has laid the groundwork for 

designing the RMP layout for ITER. However, the theoretical foundation of changing the 

toroidal phase of the current producing the RMP in DIII-D is not fully understood. There 

are toroidal asymmetries in the magnetic field in DIII-D, which are a probable cause for 

different transport in the edge and the generation of unique edge pedestal profiles. The 

purpose of the present work is to examine this difference in edge transport between 

perturbations that have been applied with different toroidal phases, or resonant magnetic 

fields generated by currents flowing through external coils in different directions.  

 The RMPs considered in this paper are of toroidal mode number n=3 that resonate 

in the edge region to enhance ion transport and decrease electron density and pressure 

[11], but do not greatly affect the core of the plasma. Future work includes applying the 

present analysis to a similar RMP shot in DIII-D with a nulled out interference, or n=0, in 

the RMP fields between toroidal phases to determine if similar trends occur. 

 In this thesis, basic conservation laws of particle, momentum, and energy 

balances are employed to interpret both diffusive and non-diffusive transport from 

measured density, temperature, and rotation velocity profiles in the edge pedestal using 

previous theory set forth by Stacey[3]. Interpretation of transport parameters such as 
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diffusion coefficients, pinch velocities, and momentum transfer frequencies is used with 

the balance theory [3] as a constraint for experimental data to characterize the dominant 

mechanism for particle transport at each toroidal phase. The motivation for this work is to 

understand the fundamental transport changes caused by varying the I-coil phase in order 

that this awareness can be exploited in future reactors to suppress ELMs in the most 

effective way. 
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CHAPTER 3 

RESONANT MAGNETIC PERTURBATIONS 

 

 Resonant magnetic perturbations are produced by magnet coils located outside of 

the first wall of the tokamak. These externally produced non-axisymmetric radial 

magnetic fields are manipulated to control edge pedestal plasma profiles, which result in 

the mitigation or suppression of ELMs. The RMP can be used to lower the magnitude and 

increase the frequency of ELMs to lessen in the impact on plasma facing components, or 

in some cases completely stifle the ELMs altogether.   

 The physical mechanisms relating to how the RMP changes these plasma 

parameters are only beginning to be understood. The RMPs tend to decrease the edge 

pedestal density [8], which in turn decreases the pressure to below the peeling-ballooning 

mode ELM instability threshold. One theory behind this concept is that the RMP 

produces a “density pump-out” [17] in the edge region, which uses particle streaming 

radially outward along the perturbed field lines as a mechanism for diminishing density, 

and therefore ELM suppression. Another possibility is that radial excursion of the 

magnetic field lines provide a “braking” of the plasma rotation which affects the plasma 

force balance. There are many ways to apply such a resonant perturbation, and the next 

step is to determine the most effective way to suppress ELMs while maintaining impurity 

control, particle streaming, and energy confinement. 

   

Characteristics of DIII-D Shot 147170 

 Different resonant magnetic perturbations are produced in DIII-D by changing the 

parity, magnitude, and toroidal phase of the externally applied magnetic fields. The two 

types of correction coils used are C-coils and I-coils. As shown in Fig. 4, the C-coils are 

located parallel to the DIII-D tokamak axis outside of the vacuum vessel wall. Six I-coil 



 

 

pairs, each with one upper loop and one lower loop, are located toroidally symmetric

around the plasma outside of the

parity when the current in the upper and lower coils of each pair is 

direction and odd parity when the current

coil pair. The toroidal phase of the I

current running through the 

measurement location 

Figure 4: Schematic of I

 

 DIII-D shot 147170 u

the C-coils for RMP ELM

rational surfaces such as q = m/n = 11/3. For this shot, t

each adjacent set of I-coils produces a radial magnetic field in the opposite direction. 

Every 200ms, the current in the I

changes from 0° to 60° or vice versa. This

magnetic perturbation, along with a change in the edge pedestal transport.

running through the I-coil oscillat

axisymmetric radial perturbation field of about 

11 

one upper loop and one lower loop, are located toroidally symmetric

around the plasma outside of the plasma chamber wall. The RMP is said to have 

parity when the current in the upper and lower coils of each pair is flowing

odd parity when the currents are opposite in the upper and lower coils of a 

. The toroidal phase of the I-coil field is defined in reference to the direction of 

current running through the upper coil located at the 30° (clockwise from North) 

 on the tokamak.  

: Schematic of I-coil and C-coil magnet locations for DIII

[19]. 

shot 147170 uses a toroidal mode number n=3 for the I

ELM suppression. A mode number of 3 produces a resonance at n=3 

rational surfaces such as q = m/n = 11/3. For this shot, the I-coils have even parity and 

coils produces a radial magnetic field in the opposite direction. 

current in the I-coil reverses direction, and therefore the toroidal phase 

rom 0° to 60° or vice versa. This process repeats and generates

magnetic perturbation, along with a change in the edge pedestal transport.

coil oscillate between roughly –4 kA to +4kA to

radial perturbation field of about 15G, as shown in Fig.

one upper loop and one lower loop, are located toroidally symmetrically 

The RMP is said to have even 

flowing in the same 

in the upper and lower coils of a 

in reference to the direction of 

(clockwise from North) 

coil magnet locations for DIII-D RMP shot 147170 

for the I-coils and n=1 for 

A mode number of 3 produces a resonance at n=3 

coils have even parity and 

coils produces a radial magnetic field in the opposite direction. 

, and therefore the toroidal phase 

process repeats and generates the resonant 

magnetic perturbation, along with a change in the edge pedestal transport. Currents 

4 kA to +4kA to produce a non-

Fig. 5. Note that if the 



 

 

background radial field were 

and 60° would only shift the field perturbation by 60°, which would

plasma parameters due to the symmetry of the I

there is a non-axisymmetric 

interferes with the 0° phase and destructively interferes with the 60° phase angle.

 

Figure 5: Toroidal dependence of 0° and 60° radial magnetic fields produced by n=3 I

coils. “Background” error field produced by field errors and the n=1 C

 

 

 The toroidal dependence of the radial

cause of the difference between plasma parameters obtained for the 0° and the 60° RMP 

phases analyzed in this paper. 

I-coil located at 30 degrees

measured line average density, whose

of toroidal phase of the I

suppression.  

12 

background radial field were axisymmetric, then reversing the toroidal phase between 0° 

would only shift the field perturbation by 60°, which would

plasma parameters due to the symmetry of the I-coils. However, as indicated in 

axisymmetric “background” radial field component that 

interferes with the 0° phase and destructively interferes with the 60° phase angle.

: Toroidal dependence of 0° and 60° radial magnetic fields produced by n=3 I

coils. “Background” error field produced by field errors and the n=1 C

The toroidal dependence of the radial perturbed magnetic field is 

cause of the difference between plasma parameters obtained for the 0° and the 60° RMP 

analyzed in this paper. Fig. 6 shows the reversal of the I-coil current in the 

coil located at 30 degrees (from North) around the tokamak. Also shown is the 

measured line average density, whose fluctuations are clearly correlated

al phase of the I-coil magnets and likely play an integral role

 

 

symmetric, then reversing the toroidal phase between 0° 

would only shift the field perturbation by 60°, which would have no effect on the 

as indicated in Fig. 5, 

component that constructively 

interferes with the 0° phase and destructively interferes with the 60° phase angle. 

: Toroidal dependence of 0° and 60° radial magnetic fields produced by n=3 I-

coils. “Background” error field produced by field errors and the n=1 C-coil [20]. 

perturbed magnetic field is thought to be the 

cause of the difference between plasma parameters obtained for the 0° and the 60° RMP 

coil current in the upper 

Also shown is the 

correlated with the reversal 

play an integral role in ELM 
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Figure 6: Change in density associated with toroidal phase reversal in the I-coils [20]. 

 

Data Analysis 

 A time slice representing each toroidal phase of the I-coil current was chosen for 

analysis. The 0° phase is characterized by the time slice 3115-3185ms, and the 60° phase 

by 3300-3380ms on the time scale shown in Fig. 6. Core plasma parameters remain 

relatively stable during these time slices [20], making differences in pedestal parameters 

likely to be most influenced by the toroidal phase of the RMP currents and not by 

fluctuations in plasma core parameters. Appendix C may be referenced for experimental 

plasma parameters obtained for each time slice for both toroidal phases. 

 Data for each time slice was obtained from the DIII-D database [18], and spline 

fits of the data collected from the Charge Exchange Recombination (CER) system [21]  

were used to define the carbon ion impurity fraction, temperature, and toroidal and 

poloidal velocity profiles. Hyperbolic tangent fits were employed to fit the electron 

density, temperature, and pressure profiles measured by the Thomson scattering system 

[22]. As an example, the hyperbolic tangent fits of the electron density and the 

experimental data is shown in Fig. 7 for both phases. Subsequently, the Osborne-
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Groebner codes [23] were used to calculate the scale lengths and time derivates for each 

profile. 

Figure 7: Hyperbolic tangent fit for electron density [10
20

/m
3
] for 0° and 60° I-coil 

phases. 

 

 After relevant parameters were obtained from the DIII-D database and calculated, 

the GTEDGE pedestal code [24-26] was used to interpret various transport parameters for 

each time slice. This code performs calculations of three separate boundary conditions for 

the edge plasma in order to determine the edge pedestal density radial profile. A particle 

and energy balance on the core to determine the net ion flux across the separatrix. A two-

dimensional neutral particle calculation using integral transport theory is used to 

determine the inward neutral particle flux across the separatrix. After calculating the 

inward and outward particle fluxes across the separatrix, the ion density at the separatrix 

is calculated using a “2-point” divertor model calculation. With these boundary 

conditions defined, the transport of neutrals refueling the plasma edge and the ion density 

profile are simultaneously calculated [27]. GTEDGE model parameters are adjusted to 

predict the experimental plasma core line average density, energy confinement time, and 

central and edge pedestal temperatures. 
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 The elongated and triangular plasma flux surfaces are modeled using an effective 

circular model that assumes a poloidal average. Eq (1) describes the transformation 

between the effective radius and the actual radius using the plasma triangularity, κ. 

�� � ������	
�  

Using this expression, the normalized radius ρ = r/a between ρ = 0.86 and ρ = 1 is divided 

into twenty-five discrete points, which are the locations where the quantities calculated in 

GTEDGE are defined. With this adjusted core plasma, the edge particle and energy 

fluxes can be calculated and used to interpret measured densities, temperatures, and 

rotation velocities, which can hence be interpreted in terms of the radial electric field, the 

pinch velocity, the particle diffusion coefficient, and the thermal diffusivities in the edge 

pedestal. 

  

(1) 
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CHAPTER 4 

EXPERIMENTAL DATA 

  

Directly Measured Density and Temperature Profiles 

 The experimental set up at DIII-D allows for direct measurement of several key 

parameters used in the analysis of particle diffusion. These quantities include electron 

and carbon ion density, electron and carbon ion temperature, and carbon ion rotation 

velocities. The density and temperature profiles for electrons are measured using the 

Thomson Scattering system [22], and velocity, temperature, and pressure gradient 

profiles of carbon impurities are measured with the Charge Exchange Recombination 

(CER) spectroscopy system [21]. The electron density for both 0° and 60° is shown in 

Fig. 8. 

Figure 8: Measured electron density [ / 10
20

 m
3
] for 0° and 60° phases. 
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Higher density and a larger density gradient for the 0° profile generate a more 

pronounced pedestal located at around ρ = 0.96 as compared to the 60° profile. Because 

the density profile in the plasma edge is a key contributor to the suppression of ELMs, 

Fig. 8 will be a reference for comparison to many of the later profiles analyzed. 

Figure 9: Measured ion and electron temperature profiles as a function of normalized 

radius. 

 

 Ion and electron temperature profiles in Fig. 9 are similar for the 0° and 60° 

phases. The electron temperature profile has a sharper gradient, giving rise to a pedestal, 

again around ρ = 0.96. Both phases have suppressed ELMs by RMPs because the product 

of this temperature profile and the density profile which defines the pressure profile is 

small enough to be within the peeling-ballooning mode ELM stability limits based on 

experimental measurement. Stability calculations using the ELITE code are needed to see 

where these profiles reside with respect to the linear peeling-ballooning stability 

boundary.   
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Calculated Parameters: Particle Flux, Radial Electric Field, and Velocity Profiles 

 

 Experimental profiles are used with classical conservation law constraints in order 

to calculate other experimental values as well as infer transport coefficients. Plasma fluid 

theory based on the first four velocity moments of the Boltzmann transport equation are 

used as constraints for interpretation of the transport underlying the measured density, 

temperature and rotation profiles. The constraints on plasma ion transport are 1) particle 

continuity 2) momentum balance 3) conservation of energy, and 4) heat conductivity. A 

detailed explanation of these moment equations can be referenced in Appendix A. The 

generalized Boltzmann transport equation is described by Eq. (2).  

�
��� � � · �
� � ���� �� � � � �
 · ��
� � �� � �� 
 

Where fj is the distribution function for particles of type j. The right hand side of the 

equation takes into account the loss of particles through collisions, Cj, and  particle 

sources and sinks, Sj. Taking the 0
th

 velocity moment of Eq. (2) and assuming time 

independence, the first constraint on transport is obtained: particle continuity, or particle 

flux [3]. 

� · Γ �  � · � ! � "  

Where Sj is the source, and includes ionization sources, as well as external particle 

sources, nj is the density, and vj is the velocity. Solving Eq. (3) using the measured data 

as input leads to the experimental particle flux, given in Fig. 10 for the two RMP phases. 

(2) 

(3) 
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Figure 10: Calculated particle fluxes calculated from the particle balance equation for 0° 

and 60°. 

 

 The particle flux in the radial direction is larger for the 0° phase than for the 60° 

phase, consistent with the larger particle density for the 0° phase in Fig. 8.  

 Equation (4) is the generalized 1
st
  velocity moment, which is a constraint on 

momentum balance [28]. 

# $�%�&
$' � � · ( ) � * +� � �� � �, � - � � " � 

Where Mj is the momentum stress tensor, R
1
 is the first velocity moment of the collision 

term, and Sj
1
 is the first velocity moment of the source term. Assuming time 

independence and averaging over the flux surfaces, this generalized momentum balance 

can be decomposed into the toroidal and radial directions, as shown in Eqs (5) and (6), 

respectively. Equations (5) and (6) are written for a two species model with main ion 

deuterium species, D, and  a carbon impurity, C [29]. 

�.#./�0.1 � 02.
34. ) 0.13415 � �.*.647 � �.*.893:. � ;4. 

8934. � 6: � 39.84 ) �%<=<
$><$:  

(4) 

(5) 

(6) 
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Where the νdD are composite momentum transport frequencies that take into account 

viscosity, inertia, atomic physics, and other “anomalous” processes [29]. MφD is an 

external toroidal momentum source, such as Neutral Beam Injection (NBI), EA is the 

induced electric field in the toroidal direction, and all other symbols have their usual 

meaning. 

 Carbon rotation velocity profiles are measured with the CER system in DIII-D 

[21], therefore the radial electric field is the only unknown in Eq. (6) when applying the 

momentum conservation constraint to the carbon ion instead of the deuterium ion as 

shown. The expression for the experimental radial electric field is obtained by 

rearranging Eq. (6) into the form of Eq.(7) [3].  

6: � �%?=?
$>?$: � 34189 ) 39184 

The radial electric field is significantly different between the two phases of the I-coil, as 

shown in Fig. 11.  

Figure 11: Measured radial electric field [kV/m] as a function of normalized radius. 

  

(7) 
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 The radial electric field for the I-coil phase 60° remains negative for ρ >0.93, 

while the 0° case becomes positive again just inside the separatrix at about ρ = 0.98. The 

sign change of the electric field between RMP phases will be shown to affect the particle 

pinch velocity and thus have an important effect on transport, and hence on the density 

profiles. Poloidal velocity profiles may also be affected by the radial electric field profiles 

shown in Fig. 11.  

  One major observation is the shift in location of the “well” between phase 

profiles.  There is some uncertainty in determining the separatrix location, which 

introduces some uncertainty in abscissa which may differ for the two phases. Another 

possibility for this radial electric field shift between phases is attributed to data 

processing, where the boundary condition of the electron temperature is assumed to be 50 

eV at a normalized flux surface equal to one. However, this shift was not applied to the 

ion profiles, therefore not affecting the velocity profiles from which this electric field is 

calculated. This electron shift is a common practice for diagnostics in tokamaks, but 

remains an issue to be examined in future analysis, causing possible errors in the 

alignment of profiles, such as the radial electric field. 

 When applying the momentum balance constraints in Eqs (5) and (6) for the 

deuterium ion, several parameters appear which are not directly measured. In the DIII-D 

tokamak, the carbon toroidal and poloidal velocities are measured, and the deuterium 

velocities must be calculated. The deuterium and carbon toroidal velocities are frequently 

found to be comparable, allowing a first order perturbation analysis (shown in Appendix 

B) to be used to obtain the toroidal velocity profile for deuterium [29]. 

34. � 341 � +%<=<@AB�=<CDEF�GA<,H%<IJ<KA?%<L<�I<?�IJ<
  (8) 
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  When addressing the poloidal deuterium velocities, perturbation analysis 

cannot be used due to the differences usually found between the calculated carbon and 

deuterium poloidal rotation profiles. However,  Eq. (6) can again be rearranged, this time 

balancing the deuterium momentum, to obtain the poloidal velocity for deuterium [29]. 

39. � �CA M8934. � �%<=<
$><$: ) 6:N 

Through particle and momuntum constraints, the poloidal and toroidal velocities for both 

carbon and deuterium have been determined, as well as the particle flux and radial 

electric field. Toroidal velocities for both carbon and deuterium are shown in Fig. 12. 

Figure. 12: Toroidal rotation velocities [km/s] for both measured carbon and calculated 

deuterium ions in the 0° and 60° phases. 

 

 An increase in both toroidal rotation velocity and its gradient can be seen for the 

0° relative to the 60° phase in both the carbon and deuterium velocity profiles. Carbon 

and deuterium velocity profiles for both phases are similar enough to validate the use of 

perturbation theory shown in Eq. (8).  

(9) 
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 Poloidal rotation velocities, shown in Fig. 13, are similar between phases for ρ < 

0.96. However, for ρ > 0.96, the poloidal rotation velocity is significantly larger for the 

0° phase for both carbon and deuterium. 

Figure 13: Poloidal rotation velocities for measured carbon and calculated deuterium ions 

for 0° and 60°. 
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CHAPTER 5 

INFERRED PARTICLE TRANSPORT IN THE EDGE PEDESTAL 

 

Momentum Transport Frequencies, Diffusion, and Non-Diffusive Particle Pinch 

 The toroidal momentum balance equation introduces momentum transport, or 

“drag”, frequencies which are not directly measured quantities. Drag frequencies are 

denoted with a ‘d’ subscript, along with the designated ion subscript, and represent the 

momentum loss due to viscosity, charge exchange, inertia, and other “anomolous” forces 

[29]. The interspecies collision frequency is denoted by the subscript “DC”, and accounts 

for the toroidal momentum transfer between deuterium and carbon. By using first order 

perturbation analysis of Eqs (5) and (6), expressions for these momentum transfer 

frequencies can be derived [29], 

02. �  +%<=<@AB�=<CDEO<�GA<,�+%?=?@AB�=?CDEPQ�GA?,�%<L<�%?L?
KA?RST  

021 �  �%?=?@AB�=?CDEPQ�GA?
�L<%<I<?+KA<HKA?,U%?L?KA?VWX  

where the difference in toroidal velocity between the deuterium and the carbon is defined 

in the perturbation analysis above in Eq. (8). The deuterium drag frequencies and 

collision frequencies describing toroidal momentum transfer can be seen in Fig. 14, 

where it is shown that the momentum transport across flux surfaces by viscosity, charge 

exchantge, etc. dominates collisional momentum transfer between ion species. This 

shows that deuterium drag is the dominant mechanism for toroidal momentum transfer, 

and will subsequently be shown to influence radial diffusion. 

(10) 

(11) 
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Figure 14: Calculated toroidal angular momentum transfer frequency νdD and interspecies 

collision frequency, νDC. 

 

 Continuing to rearrange these momentum balance equations, a pinch diffusion 

expression for the radial particle flux, Г, can be obtained [29], 

Γ. � �.3. �  ) %<.<><
$>$: � �.3:.>Y%Z[

 

where the diffusion coefficient, D,  is defined as [29] 

\. �  L<]<I<?�=<CD
	 M1 � IJ<I<? ) =<=?N 

and the pinch velocity is [29] 

3:.>Y%Z[ � _HGA<H%<=<@AB�%<L<�I<?�IJ<
`aAbD<aD �cOaDdH%<L<I<?KA?e
%<=<CD  

It is clear from Eq. (12) that the ion flux consists of a “standard” outward diffusive 

component from the pressure gradient (and therefore density and temperature gradients), 

as well as an inward non-diffusive,  “pinch” term defined by Eq. (14).  

 Returning to Fig. 14, it is seen that deuterium drag frequencies for 60° are larger 

than for the 0° case, resulting in larger outward diffusion coefficients for the 60° case 

than for the 0° case, as shown in Fig. 15. 

(12) 

(13) 

(14) 
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Figure 15: Calculated radially outward diffusion coefficients as a function of normalized 

radius. 

 

 The pinch velocity profiles, which are constructed using measured and calculated 

data to evaluate Eq. (14), become strongly negative (inward) in the plasma edge as shown 

in Fig. 16. Negative pinch velocities indicate an inward electromagnetic force and inward 

non-diffusive particle flux, which is somewhat stronger for the 60° phase than for the 0° 

phase.  
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Figure 16: Calculated inward pinch velocity for 60° and 0°. 

 Momentum transfer frequencies, radial electric field, rotation velocities, as well as 

other factors all influence the pinch velocity profiles shown in Fig. 16. The 

decomposition of the dependence of the pinch velocity on each term in Eq. (14) can be 

seen for the 0° and 60° phases in Figs 17 and 18, respectively. 

 

Figure 17: Decomposition of components of calculated Vpinch for 0° with terms 

depending on NBI and toriodal electric field, radial electric field, poloidal velocity, and 

toroidal velocity. 
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Figure 18: Decomposition of components of calculated Vpinch for 60° into terms 

depending on NBI and toriodal electric field, radial electric field, poloidal velocity, and 

toroidal velocity. 

 

 

 Poloidal velocity plays a key role in defining the pinch velocity for each phase, 

with a large negative Vpinch contribution for ρ > 0.96. This is the same region where the 

calculated poloidal velocity profile notably increased for deuterium ions in Fig. 13. The 

expression is negative due to the negative toroidal magnetic field shown in Appendix C 

Table C.1. The radial electric field component of the pinch velocity is the next most 

important term, enhancing the negative electric field component for the 60° phase and 

partially cancelling it for the for the 0° phase. These radial electric field contributions 

reflect the sign of the field profiles shown in Fig. 11. 

 The two major components of poloidal velocity and radial electric field are the 

only two terms that contain the toroidal drag frequency. Since the toroidal drag frequency 

dominates the collision frequency, the poloidal velocity and radial electric field terms are 

more important in the expression for pinch velocity. Since the 60° drag frequencies are 
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larger than those of 0°, it is expected that the pinch velocity will be larger, which is 

confirmed in Fig. 16. 

 Particle fluxes can be analyzed by looking at the diffusive components compared 

to the non-diffusive pinch components. The decomposition of particle fluxes in such a 

manner is shown in Fig. 19.  

Figure 19: Calculated diffusive and non-diffusive pinch particle flux components of total 

flux and the net flux. 

 

 The larger diffusion coefficients for the 60° case than for the 0° case imply a 

larger outward diffusive flux for 60° than for 0°, which is consistent with the lower 

density profile for the 60° phase shown in Fig. 8. However, both the outward diffusive 

particle flux and the inward non-diffusive pinch transport are larger for the 60° phase, 

with values on the order of 30x10
20

 particles/m
2
s. The net sum of the diffusive and non-

diffusive fluxes yields a smaller total flux in the outward direction for the 60° case than 

for the 0° case on the order of 1x10
20 

particles/m
2
s, which means that this cancellation 

could be sensitive to uncertainties in edge measurements. The larger cancellation of 

particle flux for 60° is associated with a lower edge pedestal density for 60° as compared 

to 0°.  Understanding the underlying mechanisms which cause the pinch velocity and 

radial diffusion coefficient, such as the dependence on the toroidal angular momentum 
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transfer frequencies, is important for understanding how the RMP controls the edge 

density and thereby suppressing ELMs. In further studies, the drag frequencies may 

potentially be used to perturb the flux in a single direction and hence change the net 

particle flux. 

Thermal Diffusivities from Conservation of Energy and Heat Conduction 

 Previous analysis has shown that pressure gradients for DIII-D RMP shots with 

n=3 I-coil perturbations have been reduced due to particle balance without an effective 

change in energy transport [7]. Thermal transport is an important part of plasma edge 

analysis and the formation of transport barriers, and therefore it is desirable to calculate 

thermal diffusivities. Plasma edge analysis is further constrained by conserving energy. 

The 2
nd

 velocity moment of the Boltzmann equation is the conservation of energy for 

both the ions (D,C) and electrons (e) [29]. 

$f<$: �  ) $$' Mg� �.h.N � i%j. ) i.= ) �=�kZlm!nZo g� �h. ) hkZ
 

$fV$: �  ) $$' Mg� �=h=N � i%j= � i.= ) �=�1p1�h=
 

Where, Q = q + (3/2) Г T. The souce of ion energy is NBI or other external heating, and 

the sinks include collisions with electrons and charge exchange. The energy sources for 

electrons are external heating and the energy transferred from ions, while energy may be 

lost due to radiative cooling [29].  

 The 3
rd

 velocity moment of the Boltzmann equation constrains heat conduction, 

however for simplicity, the familiar heat conduction relation shown in Eq. (17) is used in 

lieu of the complex third velocity moment equation.  

i.,= �  )�.,=r.,= stF,Rsu  
Using Eqs (15)-(17) to solve for the ion and electron heat fluxes and the calculated 

particle fluxes from the 0th moment constraint, the experimental heat diffusivities for both 

ions and electrons are inferred. 

(15) 

(16) 

(17) 
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%<,VVWXw$]<,VVWX $:x y

 

 Inferred electron thermal diffusivities, as shown in Fig. 20, the strong dip in the 

pedestal region of the experimental diffusivity profiles implies the presence of an energy 

transport barrier around ρ > 0.96. This thermal transport barrier aligns with the pinch 

velocity inward electromagnetic force barrier discussed previously in Fig. 16. 

 

Figure 20: Inferred electron thermal diffusivities for 60° and 0°. 

 

 The electron thermal diffusivity is much larger in the flattop region for the 60° 

case, but the two phases have similar thermal diffusivities in the outer pedestal region. 

Ion thermal diffusivities, seen in Fig. 21, also show a trend for higher values for the 60° 

situation, however not with as great a difference as the electron diffusivities. 

(18) 
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Figure 21: Inferred ion thermal diffusivities for 0° and 60° phases. 

 

The constant decreasing thermal diffusivity trend does not suggest as much of an energy 

transport barrier for ions as did the electron thermal diffusivity profiles, especially for the 

60° profile. 

 

Ion Orbit Loss 

 Ion orbit loss is a mechanism that affects thermalized plasma ions, energetic 

neutral beam ions, and fusion alpha particles, causing them to travel across the last closed 

flux surface. These ions are assumed to be lost to the plasma and must be taken into 

account when interpretting measured data in terms of diffusive and non-diffusive 

transport processes taking place in the plasma.  

 Conservation of energy and canonical angular momentum can be used to derive a 

mimumum initial velocity, V0,  required for an ion to be lost across the last closed flux 

surface [30]. The mimumum velocity depends on the the initial location and direction of 
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the ion, the electrostatic potential, flux surface configuration, as well as other plasma 

parameters. This minimum velocity can be used to calculate the fraction of particles, 

momentum, and energy lost due to this ion orbit loss mechanism [30].  

z{:j �  |}~��|�~��} �  � �� KU	��KU
2KU� 2�U�bU,��� ��U
��� � � KU	��KU
2KU�U  

;{:j �  G}~��G�~��} �  � �� �LKU
�UKU	��KU
2KU� 2�U�bU,��� ��U
��� � � �LKU
KU	��KU
2KU�U  

6{:j �  @}~��@�~��} �  � �� M�	LKU	NKU	��KU
2KU� 2�U�bU,��� ��U
���
� � M�	LKU	NKU	��KU
2KU�U  

Where ζ0 is the cosine of the angle between the direction of the ion and the toroidal 

magnetic field. These expressions take into account all particles with energy above V0min, 

travelling in all directions. Assuming a Maxwellian velocity distribution for all ions, the 

cumulative fractions of particles, momentum, and energy that are lost can be explicitly 

written as [30] 

z{:j �   � EMv	,�U�����U
N��� 2�U�EMv	N  

;{:j �   � E��,�U�����U

�U��� 2�U�E��
  

6{:j �   � EM�	,�U�����U
N��� 2�U�EM�	N  

where ε0  = mV0
2
/2kT, Г(n) is the gamma function of order n, and Г(n, ε0) is the 

incomplete gamma function of order n. The particle and energy loss fractions, shown in 

Figs. 22 and 23, are slightly higher for the 0° case for ρ > 0.96. Ion orbit momentum loss 

is also larger for the 0° phase, as seen in Fig. 24.  

 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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Figure 22: Calculated cumulative fraction of particles lost in the edge. 

 

Figure 23: Calculated cumulative fraction of energy lost in the edge. 
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Figure 24: Calculated cumulative fraction of momentum lost in the edge. 

 

 The particle and energy loss fractions are significant and must be accounted for in 

various profiles such as the particle flux and thermal diffusivities, which have thus been 

reported in the present work without the ion orbit loss correction. The particle and energy 

orbit loss fractions do not vary significantly between phases; however, the difference 

between  momentum loss fractions between phases is notable in the region identified as 

the transport barrier.  

 Particle loss fractions are applied to correct the original particle balance in Eq. (3) 

Γ{:j � �1 ) z{:j
Γ � �1 ) z{:j
�.!. 

which now does not include lost particles in the transport particle flux used in the 

interpretation of transport. The ion orbit modified flux is compared to the unaltered flux 

from the continuity equation in Fig. 25. 

 

 

 

 

 

 

(25) 
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Figure 25: Calculated particle flux for 0° and 60° phases with and without the ion orbit 

loss correction. 

 

With this correction to the flux, it can be seen that the 0° flux drops below the 60° flux in 

the pedestal region. The transport of particles, as distinguished from the outflux of 

particles due to transport plus ion orbit loss, is clearly seen to be drastically reduced in 

both phases for ρ > 0.96. The reduction is greater for the 0° phase, which is consistent 

with the observation of larger edge particle density for this phase. This was not apparent 

before the ion orbit loss correction was applied.  

 A similar procedure can be used to modify the inferred heat diffusivities. 

r{:j �  ) ��H@~O�
fVWXHv	EVWX��H�~O�
]VWX
%VWXM$]VWX $:� N  

The impact of ion orbit loss on electron thermal diffusivities is seen in Fig. 26 to have a 

small effect on the inerred energy transport for the electrons. The ion orbit loss actually 

increases the profile slightly, but has no major significance in the interpretive outcome 

when comparing the dependence on toroidal phase. The 0° phase profile still takes on a 

value over twice that of the 60° phase in the flattop region, and the two profiles become 

comparable at the thermal transport barrier around ρ = 0.96-0.98 as before. 

 

(26) 
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Figure 26: Calculated electron thermal diffusivities for the 0° and 60° phases with and 

without the ion orbit loss correction. 

 

 The ion orbit loss correction can also be applied to the ion diffusivities in the 

same manner. Effects of this correction are seen in Fig. 27. 

 

Figure 27: Calculated ion thermal diffusivities for the 0° and 60° phases with and without 

the ion orbit loss correction. 

 

Ion orbit loss effects the ion thermal diffusivities in the opposite manner than the 

electrons by decreasing the profile. Toroidal phase has a limited effect on the ion 
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diffusivity profiles, especially in the pedestal region, which is consistent with the 

paradigm that RMPs suppress ELMs without significantly changing thermal transport [7]. 

 

Intrinsic Rotation 

 When analyzing ion orbit momentum loss, it has been recognized [31, 32] that 

momentum loss in the edge occurs in a preferential direction, usually counter-current for 

anti-parallel toroidal current and magnetic field, leaving more particles in the plasma with 

co-current rotation velocities. A counter-current sink in momentum appears as an 

increase in intrinsic co-current rotation in the plasma edge. An expression for the increase 

in toroidal rotation velocity can be shown to be [31] 

Δ34 � 2 E��
√� ;{:j��
3'[��
 

Where Г is the gamma function, and Vth  is the ion thermal velocity. Intrinsic rotation, 

shown in Fig. 28, is induced more for 0° because the momentum loss fraction is larger 

while the ion temperatures are kept fairly constant.  

 

Figure 28: Calculated change in toroidal rotation velocity due to ion orbit loss and 

measured toroidal velocities. 

(27) 
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 The increase in toroidal velocity for 0° is roughly 1x10
4
 m/s from Fig. 12, 

implying that RMPs may cause intrinsic rotation in tokamaks. Intrinsic rotation is 

desirable for the stabilization of Resistive Wall Modes without externally injected torque. 

The calculated intrinsic toroidal velocity for the 0° case is roughly 1x10
4
 m/s in the 

pedestal region, which is consistent with the difference in measured toroidal velocity 

between phases. This is suggestive that ion orbit loss could be causal for the observed 

differences in toroidal velocity between the two phases, and perhaps controllable if better 

understood. However, there may be other mechanisms, such as �� � ���� torque from the 

radial magnetic field perturbation, that are more dominant.  

  

Consistency Check for Pinch Diffusion 

 As a consistency check, a comparison is made between the radial ion particle 

fluxes calculated using the experimental data to solve the continuity equation of Eq. (3) 

with those obtained by using the experimental and calculated data to evaluate the pinch 

diffusion relation of Eq. (12). These fluxes, with and without corrections for ion orbit loss 

[30], are shown in Figs. 29 and 30. 
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Figure 29: Comparison of particle fluxes with and without orbit loss calculated via the 

continuity equation and the pinch diffusion relation for 0°. 

 

Figure 30: Comparison of particle fluxes with and without orbit loss calculated via the 

continuity equation and the pinch diffusion relation for 60°. 

 

It is clear that there is agreement between the two calculations of flux, and for 

each phase the average error is within 8.5%, with the largest error being just under 15% 

at the beginning of the profiles most likely due to boudary condition constraints used in 

the calculation.    
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CHAPTER 6 

CONCLUSIONS 

 

 Repeated reversals of resonant magnetic perturbations of the I-coil between 0° 

and 60° toroidal phases in DIII-D shot 147170 generate different edge pedestal profiles. 

Measured density, temperature, and rotation profile variations can be interpreted as 

differences in diffusive and non-diffusive transport, resulting in a theoretical basis for a 

better understanding of RMP toroidal phase effects on pedestal transport. 

 Large outward diffusive particle fluxes and comparably large inward 

electromagnetic particle pinches are found for both RMP toroidal phases. The opposing 

fluxes compensate each other and produce a net outward particle flux smaller than its 

diffusive and non-diffusive components by an order of magnitude.  The net outward 

particle flux is found to be larger for the 0
o
 than for the 60

o
 RMP phase, agreeing with the 

larger density for 0°. The 60° phase has a larger flux balance, however, with both the 

diffusive and non-diffusive flux components larger than in the 0° phase. The particle 

fluxes found from evaluating the pinch-diffusion relation using experimental data agree 

with the fluxes obtained by solving the continuity equation for both toroidal RMP phases, 

confirming the internal consistency of this analysis. 

 Electron and ion thermal diffusivities inferred from the density and temperature 

profiles are similar for the two toroidal phases in the steep-gradient pedestal region, but 

differ in the flattop region further inward, where the 60° phase is larger than the 0° phase 

for both species. The electron thermal diffusivity profiles exhibited a “transport barrier” 

well just inside the separatrix. 
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 Toroidal momentum transport frequencies, or “drag” frequencies, are larger than 

interspecies collision frequencies, and had a major effect on both the diffusive and non-

diffusive transport. The 60° phase had larger “drag” frequencies, which appeared to be 

the driving factor for the increased flux components for this phase. This would imply that 

one mechanism by which RMP affects edge transport is through exerting a torque on the 

edge plasma. 

 By interpreting the density and rotation velocity profiles, an argument can be 

made that the increased density for the 0° toroidal phase relative to the 60
o
 phase may be 

ultimately driven by the larger intrinsic rotation velocity attributable to ion orbit loss. The 

larger toroidal velocity for 0° leads to an inference of smaller momentum transport 

“drag” frequencies, which in turn is interpreted as smaller particle diffusion coefficients 

by using the momentum balance constraint. The smaller diffusion coefficients for 0° lead 

to fewer particles leaving the plasma via diffusive processes for 0° than 60°. Diffusion 

plays a key role determining the edge pedestal density profiles for each
 
toroidal phase in 

conjunction with the non-diffusive pinch velocities. Other plausible explanations which 

have not been examined in this work, such as the �� � ���� torque from radial currents and 

the non-axisymmetry of the “background” or “error” radial magnetic field, may also play 

a role in driving intrinsic rotation.  

 Future work includes applying the present analysis to a similar RMP shot in DIII-

D with a nulled out interference, or n=0, in the RMP fields between toroidal phases to 

determine if similar trends occur. 
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APPENDIX A 

THE BOLTZMANN EQUATION AND ITS MOMENTS 

 

The particle balance equation shown in Eq. (A.1) can be defined for every particle 

in all regions of the plasma to determine the position and velocity distributions of 

tokamak plasmas [28].  

2��2' ���, … , �| , !�, … , !|, ¡
 � ¢|���, … , �|, !�, … , !| , ¡
 �
 "|���, … , �|, !�, … , !|, ¡
 

Here, F is the distribution function, where the total time rate of change of particles 

in a differential position and velocity phase space volume is equal to the rate of sources 

minus sinks due to particles scattering into or out of other spatial-velocity phase space 

volumes. F1 describes the probability of particle 1 being in a volume element of ∆x1 with 

velocity within the element ∆v1 at time t. This function can then be defined for all N 

particles. The first term on the right hand side, CN, is the collision term that takes into 

account the changes in the particle distribution function due to collisions, resonant 

interactions with electromagnetic waves, as well as other interactions on the same time 

scale. SN is the source term that considers all other particle sources and sinks. The total 

time derivative can be expressed as [28] 

2��2' �  $�$' � ∑ � · � z| � ∑ ¤ · �¥ z| � ¢| � "|| ¦�| ¦�  

where all the collective particle interactions, such as those concerned with 

electromagnetic forces, are included in the distribution function and not the collision or 

source terms. The velocity derivative, or acceleration, can then be expressed in terms of 

(A.1) 

(A.2) 
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the electric and Lorentz forces [28] yielding Eq. (A.3), which is known as the Boltzmann 

equation and can be applied to each particle species in the plasma. 

 $
$' � � · �§ � �� � � � �
 · �¥§ ¨ � � � 

However, kinetic treatment of the plasma is rigorous, and to avoid excessive 

computation time for the large amounts of particles present inside tokamaks, the plasma 

can be treated as a fluid by applying velocity moments to the Boltzmann equation in Eq. 

(A.3) to obtain classical balance equations of continuity, momentum, and energy. The 3
rd

 

velocity of the Boltzmann equation is highly complex, and therefore the familiar heat 

conductivity equation is used to close the system.  

The 0th velocity moment of Eq. (A.3) is taken by multiplying the entire equation 

by 1 and integrating over all possible velocities, and is described by Eq. (A.4), which 

represents continuity of particles. 

$%$' � � · �� � �k 

The continuity equation can be solved for the particle density from the external sources in 

the S
0
 term comprised of ionization sources as well as external particle sources such as 

neutral beam injection (NBI). The simplification of Eq. (A.3) to Eq. (A.4) can be made 

with the following definitions for particle density and average fluid velocity: 

� �  � §�!
©g! 

� �  � §��
�©g��  

By assuming a steady state plasma, this continuity equation directly yields the particle 

flux by integrating the source term over the plasma edge, which was the process used in 

the present work.  

(A.4) 

(A.5) 

(A.6) 

(A.3) 
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The 1
st
  velocity moment of Eq. (A.3) is obtained by multiplying the entire 

equation by ‘mv’ and integrating over all possible velocities, generating an equation that 

represents a momentum balance for the plasma species on which it is applied. 

# $�%�
$' � � · ( ) �*�� � � � �
 � -ª � �ª 

Here, M is the momentum stress tensor defined as 

( ¨ �#���
 

and R
1
 is the collision term due to friction 

-ª ¨ � � #� ©g� 

and S1 is the 1st velocity moment of the source term in Eq. (A.3). The momentum stress 

tensor can be decomposed into thermal and non-thermal motions and the gradient can be 

thought of as a volumetric momentum rate, or streaming of momentum. 

 The 2
nd

 velocity moment of the Boltzmann equation yields an energy balance. 

This equation is constructed by multiplying Eq. (A.3) by ‘
��m(v·v)’ and integrating over 

all possible velocities to obtain Eq. (A.10) [28]. 

�� $$' �h�;
 � � · « � �*� · � � -¬ � �¬ 

Here, TrM is the scalar Trace of tensor M, which can be represented by [28] 

h�; � �#�� · �
 

Which represents an infinitesimal change in volume, or essentially the derivative of the 

determinant of the tensor M brought forth by the chain rule. The value Q is the energy 

flow for all particles of the species to which the energy balance is applied and is defined 

as [28] 

­ � �� �#�� · �
� 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 
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which is matrix form of the kinetic energy flow of the plasma particles. The magnetic 

field term disappears with this integral leaving only the electric field term with the 2nd 

moment of both the collision and source terms. 

 The 3
rd

 velocity moment of the Boltzmann equation represents an energy flux 

balance and is constructed by multiplying Eq. (A.3) by ‘
�� m�¯ · ¯
¯’ and integrating over 

all possible velocities to obtain Eq. (A.13) [28]. 

s°s± � � · ² ) �� ³́ �TrM
¸ ) ³́ ¹ · ¸ ) ³́ ° � º � »¼ � ½¼ 

Here, the θ matrix is the energy flux tensor described by [28] 

θ � 12 nm�¯ · ¯
¯¯ 

and is a new unknown generated by this moment equation. In order to close the set of 

equations and avoid using this detailed energy flux moment, the familiar heat conduction 

equation is used in lieu of Eq. (A.13), 

q � )nχ stsu 

which is justified by the fact that Eq. (A.15) is obtained when simplifying the 3
rd

 velocity 

moment in Eq. (A.13) to leading order under regular tokamak plasma conditions. This set 

of closed equations can be used to interpret plasma characteristics as set forth in the 

present work.  

  

(A.13) 

(A.14) 

(A.15) 
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APPENDIX B 

1
ST

 ORDER PERTURBATION THEORY CALCULATION OF 

DEUTERIUM TOROIDAL VELOCITY 

 

First order perturbation theory is used to calculate the deuterium toroidal rotation 

velocities from the measured carbon impurity ion toroidal velocities. The flux surface 

averaged toroidal angular momentum constraint calculated from plasma fluid theory for 

ion species j is underlying balance used for this calculation. 

nÂmÂ/νÂÃ+vÅÂ ) vÅÃ, � νÆÂvÅÂ5 � nÂeÂEÅÉ � eÂBθΓuÂ � MÅÂ    
This momentum balance equation introduces “drag” frequencies, νdj, that take into 

account momentum loss due to viscosity, charge exchange, inertia, and other anomalous 

processes. EA is the electromagnetically induced toroidal electric field, and MΦ is the 

toroidal component of the momentum input [33]. The quantities on the right hand side of 

Eq. (B.1) are generally known by direct measurements or calculations from 

measurements such as the radial flux. The momentum transfer frequencies can be 

calculated as long as the temperature and density profiles are known in the edge. By 

summing Eq. (B.1) of ion species j with that of ion species k, Eq. (B.2) may be obtained. 

� # �0 Ë+!4 ) !4Ë, � 02 !4 � � �Ë#Ë�0Ë +!4Ë ) !4 , � 02Ë!4Ë� � 647+� * �
�Ë*Ë
 � 89+* Γ: � *ËΓ:Ë, � ;4 

Here, MΦ is the total toroidal momentum input for all species. The two drag frequency 

terms can be combined by defining an effective momentum transfer frequency shown in 

Eq. (B.3).  

(B.1) 

(B.2) 
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02=�� ¨  %&L&IJ&�%ÌLÌIJÌ%&L&�%ÌLÌ �
 �%&=&@AB�=&CDEO&�GA&
��%Ì=Ì@AB�=ÌCDEOÌ�GAÌ
HÍ%&L&IJ&+¥A&H¥AÌ,Î+%&L&�%ÌLÌ,¥AÌ  

A 0
th

 order approximation can be made by setting the term with the difference of toroidal 

velocities for each species equal to zero. This zeroth order approximation of the drag 

frequency can then be written as 

02k �  �%&=&@AB�=&CDEO&�GA&
��%Ì=Ì@AB�=ÌCDEOÌ�GAÌ
+%&L&�%ÌLÌ,¥AÌ  

which can be used in the toroidal momentum balance equation in Eq. (B.1) along with the 

experimentally measured carbon impurity toroidal velocity to determine the zeroth order 

difference between the carbon and deuterium toroidal velocities. 

�!4 ) !4Ë
k   �  �%&=&@AB�=&CDEO&�GA&
H%&L&IJU¥AÌVWX
%&L&�I&ÌHIJU
  

Assuming that the effective momentum transport frequency is about the same as the 

deuterium drag frequency, this expression can be plugged back into the original toroidal 

angular momentum conservation equation in Eq. (B.1), but this time applied to the carbon 

ion to yield an expression for the carbon momentum transfer frequency [33]. 

02Ë �  �%Ì=Ì@AB�=ÌCDEOÌ�GAÌ
�%ÌLÌIÌ&�¥A&H¥AÌ
U%ÌLÌ¥AÌVWX  

 

 

(B.3) 

(B.4) 

(B.5) 

(B.6) 
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APPENDIX C 

 

EXPERIMENTAL DATA OBTAINED FROM THE DIII-D 

DATABASE USED AS INPUT INTO GTEDGE 

 
Data obtained from EFITools in the DIII-D database for both 0° and 60° time 

slices are defined in Table C.1, with the variable names corresponding to the input value 

to GTEDGE and not necessarily the variable name in the EFITools plasma equilibrium 

GUI. The 0° time slice was obtained from the 3371.117ms EFIT3 measurement for shot 

147170 and the 60° time slice was obtained from the 3151.117ms EFIT3 measurement. 

Table C.1: Data from EFITools in the DIII-D database. 

Parameter Description 3371.117ms - 0° 3151.117ms - 60° 

rmajor [m] Major Radius 1.744 1.739 

aminor [m] Minor Radius 0.599 0.599 

elong Elongation 1.804 1.803 

triang Lower Triangularity 0.632 0.647 

plasmacur [MA] Plasma Current 1.612 1.608 

B [T] 
Magnitude of Toroidal 

Magnetic Field 
1.947 1.948 

bphi [T] 
Vector Toroidal Magnetic 

Field 
-1.947 -1.948 

q95 
Safety Factor at 95% flux 

surface 
3.401 3.394 

rx [m] Radial coordinate of x-point 1.308 1.298 

zx [m] Axial coordinate of x-point -1.231 -1.237 

rsep1 [m] 
Radial coordinate of the 

Outboard separatrix 
1.372 1.364 

rsep2 [m] 
Radial coordinate of the 

Inboard separatrix 
1.106 1.109 

zsep1 [m] 
Axial coordinate of the 

Outboard separatrix 
-1.363 -1.363 

zsep2 [m] 
Axial coordinate of the 

Inboard separatrix 
-1.315 -1.318 

ssi95 Magnetic shear 4.485 4.314 

pohmin [MW] 
Minimum ohmic heating 

power 
0.303 1.613 
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GTEDGE model parameters were adjusted in order to balance the background 

plasma. Table C.2 displays the values which matched the calculated and experimentally 

measured line average densities, energy confinement times, and central and pedestal 

temperatures.  

Table C.2: GTEDGE model parameters that balanced the background plasma for 

each toroidal phase. 

Parameter Type 3371.117ms - 0° 3151.117ms - 60° 

Nev2 Balanced 0.4039 E20 0.3705 E20 

tauE Balanced 0.3107 0.163 

Central Temp Balanced 6000 5574 

Pedestal Temp Balanced 1309 1316 

Cballoon Model 38.7 64.5 

Hconf Model 2.82 1.43 

Tauratio Model 0.5 0.5 

Hrat Model 0.39 1.2 

Alphan Model -2.935 -2.513 

Delxpt Model 0.1 0.1 

Delxreal Model 0.05 0.05 

 
Other calculated parameters from the experimental data that were used as direct 

inputs into GTEDGE are shown in Table C.3. Data not listed but gathered from the DIII-

D database as an input to GTEDGE includes radial profiles in the edge at 25 discrete 

points for toroidal velocity, toroidal velocity gradient scale length, poloidal velocity, 

radial electric field, qedge, electron temperature gradient scale length, electron 

temperature, ion temperature gradient scale length, ion temperature,  electron density, and 

electron density gradient scale length. 
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Table C.3: Experimentally calculated values input into GTEDGE. 

Parameter Description 3371.117ms - 0° 3151.117ms - 60° 

xnpedex 
Experimental Density at 

Pedestal 
3.112E19 2.375E19 

xnsepex 
Experimental Density at 

Separatrix 
0.319E19 0.175E19 

tpedexi 
Experimental Ion  Temperature 

at Pedestal 
1531.2 1656 

tsepexi 
Experimental Ion Temperature 

at Separatrix 
343.7 375 

tpedexe 
Experimental Electron 

Temperature at Pedestal 
1087.5 975 

tsepexe 
Experimental Electron 

Temperature at Separatrix 
37.5 37.5 

widthnx 
Width of Density 

Pedestal�Separatrix 
0.106 0.089 

widthtex 
Width of Electron Temperature 

Pedestal�Separatrix 
0.082 0.063 

widthtix 
Width of Ion Temperature 

Pedestal�Separatrix 
0.063 0.048 

gradnbar Density Gradient Scale Length 0.065 0.052 

gradTbar 
Average Temperature Gradient 

Scale Length 
0.05 0.038 

gradTebar 
Electron Temperature Gradient 

Scale Length 
0.044 0.034 

aped 
Ratio of Pedestal Density to 

Average Density 
7.7 6.41 

xnctrped 
Ratio of Central Density to 

Pedestal Density 
1.81 2.4 

tctrped 
Ratio of Center Temperature to 

Average Pedestal Density 
4.58 4.24 
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