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SUMMARY 

Recently a periodic surface model was developed to assist geometric construction 

in computer-aided nano-design. This implicit surface model helps create super-porous 

nano structures parametrically and support crystal packing. In this thesis, a new approach 

for pathway search in phase transition simulation of crystal structures is proposed. The 

approach relies on the interpolation of periodic loci surface models. Respective periodic 

plane models are reconstructed from the positions of individual atoms at the initial and 

final states, and surface correspondence is found using a Simulated Annealing-like 

algorithm. With geometric constraints imposed based on physical and chemical properties 

of crystals, two surface interpolation methods are used to approximate the intermediate 

atom positions on the transition pathway in the full search of the minimum energy path. 

This hybrid approach integrates geometry information in configuration space and physics 

information to allow for efficient transition pathway search. The methods are 

demonstrated by examples of FeTi, VO2, and FePt. Additionally, two new particle swarm 

optimization (PSO) algorithms are developed and applied to crystal structure relaxation 

of the initial and final states. The PSO algorithms are integrated into the Quantum-

Espresso open-source software package and tested against the default Broyden-Fletcher-

Goldfarb-Shanno relaxation method.  
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1. INTRODUCTION 

This chapter presents an overview of the material that will be discussed throughout 

the thesis. In section 1.1 the problem to be studied is discussed in a broad sense, and 

section 1.2 explains the importance of the problem in terms of real life application. 

Section 1.3 discusses in more detail the approach that will be taken to solve the problem. 

Finally, section 1.4 outlines the novel contributions that are made as part of the work in 

this thesis.  

1.1 Problem To Be Solved 

Properties of materials are of great interest to scientists and engineers; before a 

material can be applied, its characteristics must be well understood. The choice of 

material can be the difference between a successful design and complete failure. As a 

result, the study of materials has long been important to researchers. Traditionally, this 

involves laboratories, material samples, and dedicated machinery for experimentation and 

testing of mathematical predictions. Since the advent of the computer and computer 

modeling, however, an alternative approach to the study of material properties has 

emerged. Although the traditional laboratory settings are still common, more and more 

researchers have focused on computer aided modeling of materials and material behavior 

under various conditions. Techniques like the finite element method are being used 

heavily to predict and visualize behavior. There has also been a focus on material 

modeling on micro- and nano-scales, which can be used to gain a deeper understanding of 

material behavior as a result of loading and phase transitions. 
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However, modeling and simulation at these small scales have proven to be quite 

difficult. In this thesis, the focus is on nano-scale modeling of crystal structures, as well 

as the simulation of the structures’ transition between different phases. With the 

observation that hyperbolic surfaces exist in nature ubiquitously and periodic features are 

common in condensed materials, recently an implicit surface modeling approach was 

proposed, the periodic surface (PS) model, which can represent geometric structures at 

nano scales. Periodic surfaces are applied as either loci or foci in geometry construction. 

Loci surfaces are fictional continuous surfaces that pass through discrete particles in 3-

dimensional space, whereas foci surfaces can be regarded as isosurfaces of potential or 

density in which discrete particles are enclosed. This surface model allows for parametric 

construction of highly porous structures from atomic scale to meso scale. The PS model 

can be used to simplify the task of modeling the material, as well as provide a way to 

simulate phase transitions. In combination with previously developed methods, this gives 

us a method for prediction of activation energies and material behavior in nano- to meso-

scales.  

When simulating the transition of a material from one phase to another, we start 

with known initial and final states. The arrangement of the structure in these two states is 

found experimentally and available in literature. The purpose of the phase transition 

simulation is to find the activation energy, or the amount of energy that must be 

transferred into the system to complete the transition from initial to final state. Total 

potential energy of the system can be calculated at the initial, final, as well as all 

intermediate states. A set of intermediate states where the potential energy at each state is 

minimized is known as the minimum energy path (MEP), and the position along the MEP 



  3

that has the highest potential energy is referred to as the saddle point. The difference in 

energy between the initial state and the saddle point is the activation energy of the 

transition. The search for the MEP, and the associated saddle point and activation energy, 

is the primary focus of this work. Current searching methods are investigated, and 

improvements are implemented at several steps.   

1.2 Why Is This Problem Important? 

As mentioned, foci surfaces can be used to model structural change in phase 

transitions. A phase transition is a geometric and topological transformation process of 

materials from one phase to another, each of which has a unique and homogeneous 

physical property. Understanding and controlling phase transitions is critical in designing 

various functional materials, such as for information storage (e.g. magnetic disk, phase-

change memory, CD-ROM) and energy storage (e.g. battery, shape-memory alloy, solid-

state materials for hydrogen storage). More generally, a tool which allows engineers to 

visualize and gather information about phase transitions would be an asset for the 

application of the functional materials as part of a solution to engineering problems. The 

creation of such a tool is the motivation behind the research presented in this work. 

1.3 Problem Solution Approach 

For the more limited scope of this thesis, the open-source software package 

Quantum Espresso (QE) is used to investigate and improve the phase transition 

simulation process using periodic surface models and unconstrained optimization 

techniques. QE is a suite of computer codes for nanoscale electronic structure calculations 

and materials modeling. It uses well known optimization and phase transition techniques 

to simulate the transition process and determine the required activation energy. The intent 
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is to decrease computation time and improve accuracy within QE by applying the PS 

model and various particle swarm optimization (PSO) algorithms.  

More specificially, the purpose of this thesis is to present a new geometry-guided 

approach to provide good initial guesses of transition path for crystals aided by the PS 

models so that the model construction for design and pathway search for first-principles 

simulation can be effectively integrated. Good initial guesses reduce the risk of being 

trapped in the paths of saddle points with local minimum energy. Thus the accuracy of the 

true pathway prediction can be improved. Additionally, various PSO algorithms are tested 

in place of the standard BFGS optimization algorithm for structure relaxation in QE, and 

the effects on simulation accuracy and completion time are investigated.  

In the metamorphosis approach presented here, atom locations at the initial and 

final states are found in literature, and a global optimization scheme is used to move the 

atoms into “relaxed” positions that represent a global minimum on the potential energy 

surface (PES). The native BFGS optimization can be replaced with a PSO algorithm. 

Then PS models of the start and end crystal structures are built based on loci surfaces. 

Loci surface construction is used because intersections of loci surfaces present a 

convenient method of defining atom locations in a crystal structure. The initial guess of 

the transition path is represented as the interpolation between the start and end PS models 

in the parameter space. A method of finding the correspondence between atoms in the 

initial and final states will be presented and used to construct PS models. Two methods of 

PS model interpolation are also developed. Fig. 1 shows an outline of the foreseen 

computer-aided transition pathway design process. It is hoped that the closed-loop 
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process can iteratively find a good design of materials structure and composition with the 

desirable transition rate. The shaded boxes show the new method presented in the thesis.  

 
Fig. 1: Steps of computer-aided transition pathway design 

 
The native process in QE and the standard Nudged Elastic Band (NEB) method 

omits the steps seen in the shaded boxes in Fig. 1. The input consists of atom positions 

for the initial and final states, optimized using BFGS, and the method relies on linear 

interpolation of atom positions to find an initial guess of the minimum energy path. This 

initial guess is then used to search for the saddle point and find the energy barrier for the 

phase transition. Depending on the accuracy of the initial guess, the MEP that is found 

may have unwanted kinks or there may not be an image that captures the saddle point. As 

a result, the predicted activation energy may be inaccurate, and computation time depends 

on the accuracy of the initial guess. The intent with the additional and alternate steps 

shown in the shaded boxes in Fig. 1 is to improve the accuracy of the energy barrier 

prediction, as outlined in the following section. 

1.4 Novel Contributions 

The primary contribution of this thesis is an improvement of the saddle point 

search process using the steps outlined in the shaded boxes in Fig. 1. Rather than relying 

on an initial guess based on linear interpolation of positions, a method is presented to 
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generate a more accurate initial guess to improve accuracy and computation time of the 

NEB method. A more accurate initial guess of the MEP reduces the aforementioned 

kinks, improves computation time, and helps avoid areas of local minimum energy. To 

this extent, images are built of the initial and final states using the PS model. Then, the 

correspondence of atoms between initial and final states is determined under the 

assumption that each atom moves to the nearest available position. A Simulated 

Annealing-like algorithm is used to find the correspondence of the periodic planes whose 

intersections represent atom positions. Then, two techniques are presented to show the 

metamorphosis of the structure by an interpolation of the periodic planes between initial 

and final states. At intermediate states, the location of atoms is again found by the 

intersections of periodic surfaces, and this information about the locations of atoms in 

intermediate states provides a more accurate initial guess of the MEP. As shown in the 

demonstrations, the improved initial guess leads to more accurate estimates of the 

activation energy compared to the empirical default initial guess used in the standard 

NEB method. The proposed method can be used in place of the standard NEB method for 

any structure composed of one or more of the 14 bravais lattices.  

Before the transition simulation process can begin, the crystal structures in the 

initial and final states must undergo relaxation. During this process, the atom locations 

are optimized and moved into regions where total energy is minimized. The default 

relaxation method within QE relies on a BFGS global optimization algorithm to find 

minimum energy atom locations. As an alternative, a basic PSO algorithm is substituted 

for the BFGS scheme and integrated as part of the QE software. PSO is selected because 

it is a global optimization algorithm and should be able to replace BFGS seamlessly. It 
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also uses multiple individuals as part of the “swarm” and investigates different regions of 

the search space simultaneously. Additionally, two modified versions of the standard PSO 

algorithm are proposed and tested. These modified versions of PSO are shown to have 

advantages over the original algorithm for some functions. The simultaneous search of 

different regions, especially within the modified versions of PSO, can more quickly find 

the local minima to which the individual atoms might move and therefore make the 

relaxation process more efficient. 

In the remainder of this thesis, existing methods and concepts in geometric 

modeling, transition pathway search, and global optimization are summarized in Chapter 

2 as a background to the proposed methods. Chapter 3 provides an overview of the 

geometry-guided transition pathway search and describes the method of feature-based 

crystal construction. It also details the morphing of surfaces between states and discusses 

the searching of surface correspondence based on a minimum energy change approach as 

well as constraints that can be applied.Finally, three example structures are tested and the 

results are compared to the native method available within QE. Chapter 4 discusses the 

original as well as modified versions of the PSO algorithm and provides data about each 

algorithm’s performance with standard test functions. It also details the integration of the 

PSO algorithms with QE. Finally, chapter 5 summarizes the findings and draws 

conclusions. 
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2. LITERATURE REVIEW 

In this chapter, relevant work is presented that has already been done concerning 

the problems addressed in this thesis. Geometric modeling, transition path search, and 

saddle point search are covered in sections 2.1, 2.2, and 2.3, respectively, while section 

2.4 talks about some existing ideas and methodology with particle swarm optimization. 

Traditionally, phase transition is described from a top-down viewpoint as the 

transformation of a thermodynamic system from one phase to another. A phase is a state 

where all physical properties are uniform throughout the material, and the system has a 

particular level of free energy. When external conditions are altered, such as a change in 

temperature or pressure, one or more properties of the material change and a phase 

transition occurs. The system moves from one free energy level to another as a result of 

these external influences. The external conditions and amount of energy input required 

are quantitative measures that are used to define the phase transition. It is not necessary 

for the material to undergo a change in its state of matter, for example from liquid to 

solid. Material properties can change while remaining in the same state throughout the 

transition. Although phase changes in materials are a widely studied subject and much is 

known about it, a complete understanding of phase transitions is not yet available; even 

the classifications of first-, second-, and infinite- order [1,2] cannot be made without 

ambiguity. 

Phase transition describes a wide variety of processes in diverse domains, such as 

liquid, ferromagnetic, superconducting, and others. In this thesis, I take a bottom-up 

viewpoint and refer to phase changes as geometric and topological reconfiguration, rather 



  9

than the top-down classical thermodynamic viewpoint. With this approach, we are 

interested in changes in the material structure on an atomic scale. Structural changes in 

phase transitions have been found more common than previously thought. For instance, 

ferromagnetic phase transition was recently found to be related to crystal shape changes 

[3,4]. The modeling of materials and phase changes from this bottom-up viewpoint have 

been discussed frequently in literature (e.g. [5,6]). 

The most important step involved in modeling phase transition is the knowledge 

of the activation energy barrier during the transition, which can be found by traversing the 

transition pathway. A number of methods already exist to search transition paths and 

saddle points on a potential energy surface (PES), where configurations with local 

minimal energy correspond to the stable or metastable states of the materials system. The 

energy difference between initial state and the saddle point with the lowest possible 

energy barrier on a PES, which corresponds to the highest energy level along the 

minimum energy path (MEP), gives the estimate of the transition rate constant. The lower 

the energy difference is, the easier or faster the transition could be. Most of these pathway 

and saddle-pont search methods, which will be summarized in Section 2.2 and Section 

2.3, rely on an initial guess of the transition path from the initial state (or phase) to the 

final one. The search usually is a local refinement process of which the final path passes 

through the saddle point with the lowest possible energy barrier. Thus the accuracy of 

these methods sensitively depends on the initial guesses of the paths. Existing methods 

give the initial guesses by either simple linear interpolation of atoms’ positions or case-

by-case empirical approaches. New approaches which systematically provide initial 

guesses that are reasonably close to the MEP are needed. In the remainder of this chapter, 
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a summary of existing transition path and saddle point search methods and molecular 

scale geometric modeling techniques is presented.   

2.1 Geometric Modeling of Molecular Structures 

As part of research efforts in computer aided molecular design, modeling of 

geometry and topology of molecular structures has attracted researchers’ attention. More 

detailed introduction and analysis of the Periodic Surface (PS) model, which provides a 

convenient method for representing porous, repetitive structures, is presented in [7] as 

well as Chapter 3. A feature based approach to construct crystal structures based on loci 

surfaces using the PS model was proposed [8]. Additionally, based on PS models, 

reconstruction of loci surfaces from crystals [9], complexity control [10], and Minkowski 

sum [11] were studied. 

In addition to the PS model, other methods have also been investigated and shown 

to be effective. Edelsbrunner developed a novel method for modeling smooth surfaces 

based on skins specified by a set of weighted points [12]. Similarly, a method for 

reconstructing surfaces from a finite set of points was also proposed [13]. Bajaj et al. 

represented the surface boundary of molecules using a set of non-uniform rational B-

spline patches [14]. Other efforts in geometry modeling include the construction of 

quality meshes for implicit salvation models of biomolecular structures [ 15] and 

computation and triangulation of the molecular surface of a protein with beta shapes 

[16,17,18]. Topology of ribbons [19], frequently used for modeling of DNA and proteins, 

was described in terms of the “knottiness” or link between two curves. An approach for 

computing the Euclidean Voronoi diagram for spheres [20] has also been presented. The 
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Voronoi diagram was further used as a tool for meshing of particle systems within 

bounded regions [21]. 

2.2 Transition Path Search 

In order to determine the magnitude of the activation energy barrier during 

transition, we must first find the transition path. Transition path search methods are 

classified either as chain-of-states methods, including nudged elastic band (NEB) and 

string methods, or as one of the other methods. Chain-of-states methods rely on a 

collection of images that represent intermediate states of the atomic structure as it 

transforms from initial to final configurations along the transition path. These discrete 

states are chained to each other using interpolation after the search converges, and the 

transition pathway and saddle point are obtained. Chain-of-states methods work best on 

surfaces that may have more than one saddle point; when there is more than one transition 

pathway, these methods converge to the path which is closest to the initial guess. The 

most common and well developed of these methods is the NEB [22], which relies on a 

series of images, or points in the configuration space corresponding to intermediate states, 

connected by springs. To increase resolution at the region of interest (ROI) and accuracy 

of saddle point energy estimates, the NEB method omits the perpendicular component of 

the spring force, as well as the parallel component of the true force due to the gradient of 

potential energy. The purpose of the springs is to keep the images evenly distributed on 

the transition path. In some cases, this method produces paths with unwanted kinks when 

the potential energy changes quickly, or it may not have any images that are directly on 

the saddle point. The improved tangent NEB [23] and doubly nudged elastic band [24] 

methods reduce the appearance of kinks by generating a better estimate of the tangent 
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direction of the path at each image and re-introducing a perpendicular spring force 

component, respectively. The estimate of tangent direction is improved by using only one 

neighbor rather than two neighbors and a central finite difference approximation as with 

the original NEB. Free-end NEB [25] only requires knowledge of either the initial or final 

state, rather than both, and climbing image NEB [26] allows the image with the highest 

energy to climb in order to locate the saddle point. Eigenvector following optimization 

can be applied to the result of NEB to locate actual saddle points, and results can be 

improved further by introducing energy-weighted or gradient-weighted adaptive spring 

constants that increase the resolution of the ROI [27]. 

String methods [28,29] represent the transition path continuously as Splines that 

evolve and converge to the MEP in two steps when subjected to perpendicular forces. The 

curve is discretized as a set of points and solved by standard ODE solvers in the evolution 

step; these points are then redistributed along the string based on parameterization 

constraints and Spline interpolations in the re-parameterization step. As opposed to NEB, 

the number of points used in the String method can be modified dynamically. The 

Growing String method [30] takes advantage of this by starting with points at the reactant 

and product, and then adding points which meet at the saddle point. The quadratic String 

method [31] is a variation that uses a multi-objective optimization approach. A local 

quadratic approximation of the PES is made and searched using the quasi-Newton 

technique. 

Methods that are not classified as chain-of-states include the path sampling and 

averaging accelerated Langevin dynamics method [32] and the conjugate peak refinement 

method [33], which finds saddle points and the MEP by searching the maximum of one 
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direction and the minima of all other conjugate directions iteratively. The Hamilton-

Jacobi method [34] relies on the solution of a Hamilton-Jacobi type equation to generate 

the MEP. 

2.3 Saddle Point Search 

Instead of searching the complete MEP, saddle point search methods only locate 

the saddle point on the MEP. They are categorized into local and global search methods. 

One of the original local methods is the automated surface walking algorithm [35,36]. It 

is based on eigenvectors of the Hessian matrix with local quadratic approximations of the 

PES. The Hessian matrix is updated iteratively similar to the quasi-Newton method, and 

one of the active coordinates is scaled so that the Hessian eigenvalues lie in a required 

range. The more recent ridge method [37] uses a pair of images to search for the saddle 

point, with the direction of the connecting line between the two images constrained such 

that the pair is kept on the ridge. Also using two images, the dimer method [38] has a 

fixed distance between them. The pair first moves uphill in the translation step, and then 

rotates towards the lowest curvature mode of the PES in the rotation step. Reduced 

Gradient Following [39] and Reduced Potential Energy Surface Model [40] methods use 

intersections of zero-gradient curves and surfaces, with saddle point search occurring 

within the subspace of these curves or surfaces. Finally, the Synchronous Transit method 

[41] estimates the transition state by minimizing the interpolated inter-atomic distances 

and refines the saddle point estimate through conjugate gradient optimization. 

Local search methods may locate the saddle point which does not have the 

maximum energy on the MEP if there are multiple saddle points. Global search methods 

have the advantage that the saddle point with the maximum energy is located if the search 
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converges. The Dewar-Healy-Stewart method [42] searches for the saddle point by 

iteratively reducing the distance between reactant and product images. The Activation-

Relaxation technique [43] can travel between many saddle points using a two step 

process; an image first jumps from a local minimum to a saddle point, and then back 

down to another minimum. This approach allows for movement between many saddle 

points without the knowledge of the final product. The Step and Slide method [44] uses 

an image from the initial and final state. Energy levels of each are increased gradually, 

and the distance between them is minimized while remaining on the same isoenergy 

surface. The interval Newton’s method [45] is capable of finding all stationary points by 

solving the equation of vanishing gradient. 

The proposed geometry guided approach in this thesis is to provide an initial 

guess of the transition pathway that is reasonably close to the MEP in order to accelerate 

the searching of the chain-of-state methods, particularly the widely used climbing image 

NEB method. The geometry of crystals is constructed by a periodic surface model. The 

initial guess is computed by the metamorphosis of the surface model. 

2.4 Particle Swarm Optimization and BFGS Algorithm 

Particle Swarm Optimization (PSO) was first proposed by James Kennedy and 

Russell Eberhart in 1995 [46]. It is based on the behavior of groups of birds or insects, 

and the movement of the entire swarm towards an “optimum” location, such as a food 

source, even when some individual members may not know the exact location. The 

movement updates of each individual in the group are based on its own velocity and 

position, as well as its on best previous location and the best previous location which was 

found by the swarm as a whole. With the classical PSO algorithm, this approach results in 
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a search of a relatively large region and convergence of all the individuals to one area 

which was found to be optimal. Compared to other optimization techniques, it is 

relatively simple and resistant to local optima. By adding more individuals to the swarm 

and increasing the size of the initial search space, the search can be very comprehensive 

and convergence to a global optimum is still achieved. By varying some of the parameters 

discussed in chapter 4, individual particles can also be forced to favor either their own 

previous best position or the swarm’s previous best, allowing for customization based on 

the application. 

Mathematically, the velocity update for N  particles with I  iterations is 

expressed as 

( ) ( 1) ( 1) ( 1)
1 1 , 2 2[ ] [ ]ϑ − − −= + − + −i i i i

j j best j j best jV V c r P X c r O X  

where 1, 2,...,j N= ,  1, 2,...,i I= , and ( )i
jV  is the velocity of particle j  at iteration i . 

ϑ , 1c , and 2c  are constants, 1r  and 2r  are random numbers between 0 and 1,  ,best jP  

is the best previous position of particle j , bestO  is the neighbors’ previous best position,  

and jX  is the location of particle j . Each iteration also updates the positions as 

( ) ( 1) ( )−= +i i i
j j jX X V  

With this original method, usually every particle in the search space is considered 

a neighbor, so bestO  is the best position of any particle in the population. When searching 

for a global minimum, the best position is defined as one where the value of the objective 

function is the lowest. A pseudo-algorithm for the PSO searching process is shown in 

Table 1. This pseudo-code demonstrates the procedure using a generic objective function 

and considering all particles as neighbors. The objective function can be of any degree, 
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although higher degree functions generally require a longer computation time to find the 

global optimum.   

Table 1: Pseudo-code for the standard PSO algorithm 

INPUT: number of particles { }N , upper and lower search space boundaries { , }
u l
b b , objective function 

1
{ ( , ..., )}

N
f x x , maximum number of iterations { }Maxi , constants for local and global directions 

1 2
{ , }c c , movement restriction { }J , convergence threshold { }epsilon  

OUTPUT: location of global optimum 
1

{ ,..., }
N

x x  

FOR 1:i N=  

    ()*( )i u l lX rand b b b= − +  

    i ipbest X=  

    0iV =  

    ( )i if f X=  

END 
arg min( )=

i
obest f  

min( )=
i

fbest f  

FOR 1:i Maxi=  
     FOR 1:j N=  

          1 2* * ()*( ) * ()*( )ϑ= + − + −j j j j jnewV V c rand pbest x c rand obest x  

          j j jnewX X newV= +  

          ( )j jnewf f X=  

     END 
     X newX=  
     V newV=  

     
,

arg min ( , ))= jj obest
obest newf fbest  

     FOR 1:n N=  

          IF n nnewf f<  

               n npbest X=  

          END 
     END 
     f newf=  

     IF min( )if epsilon<  

          BREAK 
     END 
END 
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With a sufficiently largeN , this PSO technique is a powerful tool for finding the 

minimum with a variety of functions. Because of the random initial distribution of 

particles, much of the search space is explored, and velocity updates based on 

neighboring particles increase the likelihood of convergence. However, the algorithm is 

not robust for functions with many similar local minima, and oftentimes fails to converge 

to the global optimum location. Table 2 shows a visual demonstration of the initial 

random distribution of particles as well as the distribution after convergence for two 

different functions. In this case a population of 100 particles was used. It can be seen that 

the algorithm works well for the relatively simple Booth function, as all the particles 

quickly converged to the global minimum. However, in the case of the more complex 

Rastrigin function, the particles converged to one of the local minima rather than the 

global minimum in the center. As will be shown in section 4.4, the success rate for this 

function is particularly low. This tendency to converge to a local minimum on complex 

functions is one of the main drawbacks of the standard PSO algorithm. Additionally, it 

does not provide any information about the landscape besides the location that was 

obtained, so it can be difficult to discern whether the optimum that was found is local or 

global. To address these issues, we propose the following two novel optimization 

techniques based on the original PSO method. 
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Table 2: Basic PSO 

Function Initial (Random) Distribution Final Distribution 

Booth 

  

Rastrigin 

  

Rastrigin 

(Iso) 

 

Improvements and additions have been made by various research groups since the 

original publication. For the most part, improvements focus on the particles’ tendency to 

stagnate in some areas of the search space, and to clump together prematurely when a 

potential global optimum is found. The Collision-Avoiding Swarms algorithm [47] 
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presents an application for improvised music in which particles are attracted to the center 

of mass where the global optimum is most likely located, but at the same time experience 

a repulsive force to prevent collisions with other particles. Similarly, Self-Organized 

Criticality [48] assigns some or all particles a criticality value, which increases when it 

gets within a threshold distance from another particle. If a particle’s criticality becomes 

too high, the criticality value is distributed between its’ nearest neighbors. Dissipative 

PSO [49] introduces additional “chaos” in the optimization algorithm to increase the 

velocity of particles for some iterations and prevent stagnation. The concept of sub-

swarms with different variations [50,51] is introduced to split the initial swarm into 

smaller groups that exchange information among each other and rearrange themselves 

frequently. Hierarchical grouping of particles according to quality was also investigated 

[ 52 ]. Incorporating some ideas from ant colony optimization, the Estimation of 

Distribution PSO [53] uses all the particles’ personal best locations to guide the swarm 

towards the most promising regions of the search space. Finally, the PSO with Spatial 

Particle Extension [54] is another proposed method to prevent particles from clustering 

together by bouncing them off each other if the distance between particles is too small. 

The PSO method and its extensions have been tested on a number of different test 

functions up to relatively high dimensions [55]. 

In order to integrate the PSO algorithms discussed in Chapter 4 with the Quantum 

Espresso software package, we must first investigate the native methods employed within 

the software. Quantum Espresso uses the quasi-Newton Broyden-Fletcher-Goldfarb-

Shanno (BFGS) optimization method for structure relaxation. When a previously known 

arrangement of atom positions in a crystal structure is provided, it must first be “relaxed” 



  20

into a minimum energy position before transition pathway search can begin. Each atom 

moves to a location that represents an overall minimum energy position on the PES. In 

this case the PES is the objective function and each atom location is a parameter. 

Therefore, the dimension of the objective function depends on the number of atoms in the 

structure, and the overall energy of the structure depends on the atom locations. Thus 

optimization must be performed to move each atom into a region that minimizes energy 

for the system overall. 

The BFGS method iteratively updates each atom’s position using a quasi-Newton 

approximate Hessian method. The Hessian is initially approximated as an identity matrix, 

and is subsequently updated in each iteration. The inverse Hessian is required to update 

positions, and is evaluated according to 

1 1 1 1
1

1 2

( )( )
( )

T T T T T
i i i i i i i i i i i i i i

i T T
i i i i

B B B B
B

− − − −
−

+

+ + +
= −

S y y y S S y S S y
S y S y

 

where 

i i iα=S p  

1i i iα += −x x  

1i i i+= −y g g  

and 

1
i i iB −= −p g  

B  represents the approximate Hessian matrix, 
r

i
g  is the gradient of the objective 

function, and ix
r

 is the position of atom i . Position updates continue according to  

1i i i iα+ = +x x p  

until the convergence threshold of the objective function value is reached.  
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In the following chapters, improvements to the NEB method are proposed using 

geometric modeling via periodic surfaces. Additionally, in chapter 4, two extensions to 

the basic PSO algorithm are presented that improve accuracy and convergence rate, and a 

method of incorporating these PSO algorithms with phase transition simulation is 

outlined.  
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3. CORRESPONDENCE AND TRANSITION PATH 

SEARCH 

In this chapter the methods for periodic plane correspondence and transition path 

search, including some situational techniques that can be applied, are explained. First an 

overview of the periodic surface model is given, followed by discussion of crystal 

construction with foci surfaces in section 3.1. Then atom correspondence search is 

presented in section 3.2, along with the concepts of atom correlation and classification of 

positions. For the remainder of the chapter, section 3.3 covers transition path search with 

plane correspondence by minimum potential, including the simulated annealing pair-

searching algorithm and plane constraints for strongly bonded pairs. 

The periodic surface model has the implicit form and is defined as 

 ( )
1 1

2 0
= =

= ⋅ =∑∑( ) cos ( )y m pk
L M

T
lm l m

l m

r p r  (1) 

where lk  is the scale parameter, 
T

m m m m m
a b c =  p , , ,a  is a basis vector, such as one of 

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 0 0 1 1 0 1 1

0 0 1 0 1 0 1 1 1

0 0 0 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1

=

−

                
               
               
               
               
                              

e e e e e e e e e e e e e e{ , , , , , , , , , , , , , , }K

1 0 1 1 1

0 1 1 1 1

1 1 1 1 1

1 1 1 1 1

− −

−

− −

           
            
            
            
            
                        

K
 

which represents a basis plane in the Euclidean space 3R , 
T

x y z w =  r , , ,  is the 

location vector with homogeneous coordinates, and lmm  is the periodic moment. We 

assume 1w =  if not explicitly specified. The degree of ( )ry  in Eqn.(1) is defined as 
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the number of unique vectors in the basis vector set { }mp . The scale of ( )ry  is defined 

as the number of unique scale parameters in { }lk . We can assume scale parameters are 

natural numbers ( ∈k ¥ ). 

Fig. 2 lists some examples of periodic surface models. Triply periodic minimal 

surfaces, such as P-, D-, G-, and I-WP cubic morphologies that are frequently referred to 

in chemistry and polymer literature, can be adequately approximated. Besides the cubic 

phase, other mesophase structures such as spherical micelles, lamellar, rod-like hexagonal 

phases can also be modeled. The lamellar structure, for example, can be represented as a 

periodic surface model using the equation 

 cos(2 ) 0zπ =  (2) 

and the P-structure is described using 

 cos(2 ) cos(2 ) cos(2 ) 0x y zπ π π+ + =   (3) 

Equations corresponding to the other structures in Fig. 2 are more involved. They are 

discussed in greater detail in [7]. 
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Fig. 2: Periodic surface models of cubic phase and mesophase structures 

 

The searching process in computer-aided transition pathway design starts with a 

unit cell of a crystal material in its initial state before it undergoes phase transition. The 

desirable locations of the atoms that make up this unit cell are known, and a loci surface 

model is reconstructed. Similarly, loci surface model reconstruction is also used for the 

final state to which the material will transition. The next step is to find intermediate steps 

between the known initial and final states. Using the atoms in the unit cell, the location of 

each atom in the initial state is compared to all the atoms in the final state. The 

correspondence between the states is determined based on the minimum distance 

approach or the minimum energy change, which will be discussed in Section 3.2 and 

Section 3.3, respectively. Once it is known to which location each atom transitions, 

interpolation of corresponding PS models is used to find the atom locations at 

intermediate states. At each intermediate state, interpolated loci surfaces are used to 

model the geometry. Particularly for crystals, the simplest loci surfaces are periodic 
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planes. This information about the geometric transition process of the unit cell, as a more 

accurate initial guess of the transition path, can be fed into the transition pathway search 

methods.  

3.1 Crystal Construction by Loci Surfaces 

A process of tiling by intersection as described in [8] can be used to construct 

crystal structures. They are built with 14 Bravais lattices, each of which can be 

constructed via intersections of periodic surfaces. For three periodic surfaces 

= = =1 2 3( ) 0, ( ) 0, ( ) 0y y yr r r , the intersection is found by solving 

= + + =2 2 2
1 2 3( ) ( ) ( ) ( ) 0y y y yr r r r . This provides a method for generating each of the 

points in a lattice. For instance, Fig. 3 shows a body centered and a face centered cubic 

structure. They are generated by  

 
( )( ) ( )

( )
π π

π

− + + + + +

+ + =

2 2

2

cos 0 5 cos ( 0 5)

cos ( 0 5) 0

x y . x y .

y z .
 (4) 

and 

 ( )( )π π

π

+ + + − + + +

− − + =

2 2

2

cos cos ( ( ))

cos ( ( )) 0

x y z x y z

x y z
 (5) 

respectively. The markers in the figure indicate atom positions generated by intersections 

of periodic surfaces. In the same way, all types of lattices can be constructed.  
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Fig. 3: Body centered and face centered cubic structures constructed by loci periodic surfaces 

The most generic approach to reconstruct loci surface models from crystals is by 

constructing y-z, x-z, and x-y planes for each atom. Given a unit cell with the size of a , 

b , and c  in the respective x, y, and z direction, the y-z, x-z, and x-y planes that go 

through the origin (0,0,0) have the respective basis vectors  

 

0 1 0 0 2

0 0 1 0 2

0 0 0 1 2

 =


=
 =

( ) [ , , , / ]

( ) [ , , , / ]

( ) [ , , , / ]

yz

xz

xy

a

b

c

p

p

p

 (6) 

and the respective scale parameters  

 

1 2

1 2

1 2

 =


=
 =

/ ( )

/ ( )

/ ( )

k

k

k

x

y

z

a

b

c

 (7) 

If an atom in the unit cell has the coordinates x ,y , and z , then the respective basis 

vectors for the y-z, x-z, and x-y planes that go through the atom are  

 

1 0 0 2

0 1 0 2

0 0 1 2

 = +


= +
 = +

( ) [ , , , / ]

( ) [ , , , / ]

( ) [ , , , / ]

yz

xz

xy

x a x

y b y

z c z

p

p

p

 (8) 

with the same scale parameters as in Eqn.(7). 

Obviously, when special knowledge about atoms is available, the periodic planes 

(a) body-centered cubic (b) face-centered cubic 
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to construct atoms are not necessarily y-z, x-z, or x-y planes, such as the ones in Fig. 3(b). 

The number of planes can be reduced because of the correlation between atoms. Similar 

to Eqn.(6), the information required to build a plane is the normal direction of the plane 

and its distance between the atom and the new origin of reference along the normal 

direction. For an atom in the unit cell with the coordinates x , y , and z , the basis 

vector of a periodic plane with the normal vector =ˆ ( , , )
x y z

n n n n  (where 

+ + =2 2 2 1
x y z
n n n ) is either 2= − + +( , , ) [ , , , / ( )]

x y z x y z
x y z n n n a n x n y n zp ,  

2= − + +( , , ) [ , , , / ( )]
x y z x y z

x y z n n n b n x n y n zp , or 

2= − + +( , , ) [ , , , / ( )]
x y z x y z

x y z n n n c n x n y n zp  corresponding to the rotated plane with 

respect to x-, y-, or z-axis. The respective scale parameter for the plane is 2= / ( )k xn a , 

2= / ( )k
y
n b , or 2= / ( )k zn c . 

One important question that needs to be answered for the transition searching 

process is how atoms in initial and final states are corresponding to each other. Searching 

the correspondence between atoms is described in Section 3.2. 

3.2 Searching Correspondence of Atoms 

In general, there are two steps in modeling surface morphing. First, the location 

correspondence of atoms is identified. Then the PS models of the corresponding atoms 

are paired and the interpolation is made between them. To compare atom locations 

between the initial and final states, we may use a matrix form for the locations, with rows 

1, 2, and 3 containing the x, y, and z coordinates, respectively. For example, a cubic 



  28

structure with one corner at (0,0,0) and size of a , b , and c  is represented by the 

matrix  

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 

a a a a

b b b b

c c c c

 

It is assumed that each atom will transition to the nearest position in the final 

state. Data for atom locations in the final state is listed in a matrix with identical 

dimensions. Starting with the first column in the matrix of the initial phase, the Euclidean 

distance is calculated between this location and each location in the matrix of the final 

phase. The process is then repeated for all other columns in the initial matrix. The 

correspondence between locations in the initial and final phases is determined based on 

the minimum distance between them. That is, if 1[ , ..., ]nq q  is the initial matrix containing 

n locations and the final matrix is 1
' '[ , ..., ]nq q , then the distance ijd  between the i th 

location in the initial matrix and the j th in the final one is '| |ij i jd q q= −  where 

1 ≤ ≤i n  and 1 ≤ ≤j n . For the i th location at the initial stage, the corresponding 

Fi th location at the final stage is determined by  

 
≤ ≤

=
1

arg min
F ijj n
i d  (9) 

However, for complex crystal structures it becomes inconvenient to track all 

points individually. Inaccuracy can be introduced if there is a significant amount of 

rotation or scaling in the crystal, as the assumption may no longer be valid that each atom 

moves to the nearest position. Therefore, some improvements and simplifications can be 

introduced for certain structures. These include the classification approach described in 
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Section 3.2.1 and the correlation approach introduced in Section 3.2.2. 

3.2.1 Classification of Positions 
 

In many crystal structures, more than one type of element is present in the unit 

cell. In these cases it is not necessary to compare the locations of all atoms in the initial 

and final states because an atom of one element cannot move into a location occupied by 

a different element. The data in the location matrices needs to be sorted so that the atoms 

of each element are grouped together. In general, if certain atoms are not likely to be in 

certain positions, those positions can be excluded in the pair-wise comparison. The 

available positions are classified and grouped into several subsets. For example, in a body 

centered cubic structure, the first eight columns of the matrix can represent the corner 

atoms which are all the same element, and a final ninth column would represent the 

location of the central atom. Each atom in the initial configuration would then only be 

compared to atoms of the same element in the final phase, reducing the amount of 

computation needed in multi-element structures.  

Suppose that there are a total of T  different types of elements. The column 

indices of the location matrix can be grouped into T  subsets as 

− −
+ + +L L

1 1 2 1 1
(1, ..., )( 1, ..., ) ( 1, ..., ) ( 1, ..., )

t t T
n n n n n n n  

The computation of minimal distance for type t  element then is based on 

 
− + ≤ ≤

=
1 1

arg min
t t

F ijn j n
i d  (10) 

instead of Eqn.(9). 

3.2.2 Correlation of Atoms 
 

Depending on the types of bonds in the crystal, there may be groups of atoms that 

remain equidistant from each other on the same plane throughout the phase transition 
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process. With graphite, for example, the bonds between carbon atoms along each plane 

are stronger than the bonds that connect planes to each other. The weaker bonds are more 

likely to separate, leaving the planes intact. This type of property can be taken into 

consideration when modeling the phase transition process. Atoms that are located on the 

same plane and remain in the same position relative to each other do not have to be 

considered individually during the process outlined in Section 3.2.1. Only the position of 

one of the atoms on the plane must be found, and the rest are placed in the same positions 

with respect to the coordinates of the first. This reduces the amount of computation when 

comparing atom coordinates because the corresponding position must be found for only 

one reference atom on the plane.  

In the graphite example, the structure can be modeled with hexagonal unit cells 

where atoms in the individual planes are connected with covalent bonds, while the planes 

are connected to each other by the van der Waals force. This indicates that atoms which 

are in the same plane are likely to remain on that plane. We call this special case face 

correlation. An example of a hexagonal structure is shown in Fig. 4(a) where the colored 

surfaces represent planes along which the atoms are covalently bonded. We can take 

advantage of these characteristics when modeling the structure by reducing the number of 

periodic surfaces required to construct it. Normally each of the 14 atoms in the unit cell of 

Fig. 4(a) would be represented by three perpendicular planes, meaning that interpolation 

must be performed on 42 individual periodic surfaces. However, because the atoms in 

each layer have a common periodic surface, this number is reduced to 30. Two unique 

surfaces are required for each point, with the third being the common planes on the top 

and bottom of the hexagonal unit cell, shown in Fig. 4(a).  
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Fig. 4: Correlation of atoms (a)Hexagonal unit cell with face correlation, (b)Two strongly bonded atoms 

with edge correlation 

 
In cases where only two atoms have a bond that is stronger than other bonds in the 

structure, these atoms are less likely to break apart during phase transition. The number of 

surfaces required for modeling can be reduced again because of shared intersection 

planes. The two planes that intersect to form the line along which the atoms are bonded 

are used to generate the locations of both atoms. Thus, instead of using six planes to 

model these two atoms, the number can be reduced to four. If the two atoms in Fig. 4(b) 

have a strong bond and can be assumed to remain in the same position relative to each 

other, they can be modeled using the four planes shown. The two vertical planes are 

common to both atoms. Their intersection represents the line along which the atoms are 

bonded. In addition, the two horizontal planes are used to define each atom’s position 

along the z-axis. This special case of periodic surfaces is called edge correlation.  

In summary, we find correspondence of atoms between initial and final states so 

that the respective periodic planes can be constructed. The interpolation of the planes then 

locates intermediate positions of atoms during the transition process. If all three planes 

for each atom are fully constructed, the correlation and energy exchange between atoms 

are ignored. Pair-wise comparison between individual atoms is used in searching 

correspondence, which is purely based on geometry. Instead, if the number of planes is 

(a) (b) 



  32

reduced because of face correlation or edge correlation, the interaction among atoms is 

implicitly considered. Geometry and physics become more integrated. Yet, this atom 

correspondence approach assumes corresponding planes between initial and final states 

only translate during the transition process, whereas the rotation of planes is not 

considered. For instance, in the most general case, all planes are in either y-z, x-z, or x-y 

direction. A y-z plane in the initial state only translates to a y-z plane in the final state, 

similar for the other two. More importantly, when the number of planes increases, the 

exhaustive searching method of atom correspondence becomes combinatorially 

expensive. In Section 3.3, we present a different approach to find the correspondence of 

periodic planes directly by a heuristic searching method without the need of computing 

the correspondence of atoms. 

3.3 Correspondence of Periodic Planes by Minimum Potential Energy Change 

Different from the atom correspondence method in Section 3.2 where each plane 

will simply move to the nearest available position, an alternative approach is to find the 

correspondence of planes directly by considering the total potential energy change of the 

system. We define the total potential energy change as a function of both displacement 

and rotation of each plane. The pair-wise correspondence between the initial and final 

planes is found by searching the minimum potential change. This method yields better 

results in more general structures where the planes undergo both rotation and translation. 

Since searching the global minimum of potential energy change has combinatorial 

complexity, heuristic optimization methods can be used for large systems. Here, we use a 

Monte Carlo simulation or simulated annealing (SA)-like algorithm. The potential energy 
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change is defined in Section 3.3.1, and the SA search algorithm is described in Section 

3.3.2. 

3.3.1 Translational and Rotational Potential Change 
 

As illustrated in Fig. 5, plane i  used in the construction of a unit cell in the 

initial state is represented by a point and a vector, ia
r

 and 
r
ip  respectively. If there are 

two or more atoms located on the plane, 
r
ia  can be placed at the center of the convex 

polygon formed by the atoms; otherwise it is simply placed at the location of the atom. 

r
ip  is a unit vector indicating the normal direction of the plane. Similarly, points 

r
ib  and 

vectors 
r
iq  are placed on the unit cell for the final state. 

 
Fig. 5: Correspondence between locations and directions of planes 

 

The points 
r
ia  and 

r
ib  are used to calculate the displacement of the planes. We 

use the Euclidean distance formula to find the distance id  between 
r
ia  and 

r
ib , which is 

then used to find the translational potential change ∆ ( )
i i

V d  between the two locations 

for pair i , given by 



  34

 
2

max

( ) [ ]
( )

i
i i

d
V d s

d
∆ =   (11) 

where s  is a constant coefficient and maxd  is the largest possible distance between any 

two planes. 

In addition to the translational potential change, a rotational potential change is 

also defined for the transition of each plane. The angle θi  between 
r

i
p  and 

r

i
q  is found 

and used to calculate the rotational potential change ∆ ( )
i i

U q , given by 

 
1

2

cos( )
( ) [ ]i
i i

U c
q

q
−

∆ =   (12) 

where c  is a constant coefficient. Through experimentation with different values, 

300c s= =  was found to be the most effective setting. The ratio of c  to s  is the most 

important factor as it determines whether rotation or translation is preferred in the 

optimization. By settting the two values equal to each other, the correspondence search 

treats both types of movement equally. Because the translational and rotational potential 

change terms are normalized, the numerical value of c  and s  is not important for an 

exhaustive search. However, when using an optimization algorithm as discussed in the 

next section, higher values allow for faster convergence when compared to lower values. 

By running trials with a range of different numbers, it was found that 300c s= =  yields 

the best combination of convergence speed and accuracy. ∆ ( )
i i

U q  is added to ∆ ( )
i i

V d  

to receive the combined potential change for the plane’s transition. In a structure with n  

planes, the total potential change is obtained by the summation of all planes as 

 
1=

∆ = ∆ + ∆∑( )
n

total i i
i

W U V   (13) 
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Searching the correspondence of periodic planes is to find an arrangement with 

the minimum total potential change between the initial and final states. In each iteration, 

r

i
a  and 

r

i
p  remain unchanged, but they are used in combination with a different pair of 

r

i
b  and 

r

i
q  to find the total potential change. The combination that yields the lowest 

∆
total

W  is used to determine to which location each plane transitions. After the 

correspondence between planes is determined, each of the atom locations in the final state 

is found using the intersection of the planes.  

When the total number of planes is low such as in simple crystals, all 

combinations can be checked. For complex crystal structures with a large number of basis 

atoms in one unit cell, the effects of combinatorial complexity make it highly impractical 

to check all possible combinations. Even a structure with ten plane locations presents 

billions of possibilities. It becomes computationally expensive to go through more than a 

few thousand iterations, so a heuristic global optimization approach is preferred. The 

algorithm discussed in the following section provides a method of optimizing the solution 

without searching through all possible combinations. Although individual iterations of the 

algorithm are more involved than the simple exhaustive searching technique, the overall 

searching process is less computationally expensive for cases where the structure is more 

complex. 

3.3.2 Simulated Annealing (SA) Algorithm 
 

In order to generalize the method and make it applicable to a wider range of 

structures, we use a SA-like optimization method to find the match with the minimum 

total potential change. The pseudo-code of the SA algorithm is listed in Table 3. In each 
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iteration, pairs of planes in the final state are switched. Two randomly chosen 
r

i
q  and 

r

i
b  

values are switched and a new total potential change ∆
,total new

W  is found using the new 

arrangement. Using the Metropolis criterion, if 0∆ − ∆ <
,

( )
total new total

W W , the switch is 

accepted. Otherwise, the switch may still be accepted, but with a certain probability. That 

is, a random number 0 1∈ [ , )u  is generated. If ( )≤ ∆ − ∆
,

exp ( ) /
total total new

u W W T  

where T  is a temperature variable, then the switch is accepted. Otherwise, it is rejected. 

The value of T  is decreased over time, after either every iteration or every few 

iterations, to simulate cooling of the material. Table 3 lists the pseudo-code of the 

algorithm.  

3.3.3 Plane Constraints for Strongly Bonded Pairs 
 

In the cases where a pair of atoms has a bond that is much stronger than other 

bonds in the structure, as discussed in section 3.2.2, some constraints must be placed on 

the corresponding planes to prevent the bond from breaking or elongating. Using Fig. 5 as 

reference, the two horizontal planes must remain equidistant from each other throughout 

the transition. The distance between the two planes is kept unchanged and specified as 

 − = −
r rr r r r r r

� �
1 2 1 1 1 2 1 1

( ) / | | ( ) / | |a a p p b b q q  (14) 

where 1a
r

 and 1p
r

 correspond to one plane and 2a
r

corresponds to the other at the initial 

state, whereas 1b
r

, 1q
r

 and 2b
r

 correspond to the final state.  
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Table 3: Pseudo-code of the algorithm to search correspondence of planes with minimum potential change 

INPUT: initial points 
r

{ }
i
a , final points 

r

{ }
i
b , initial vectors 

r
{ }

i
p , final vectors 

r
{ }

i
q , 

temperature T  

OUTPUT: Combination of switches that yields the lowest ∆
total

W  

size = number of planes in the structure;  
∆T = Interval of temperature change; 

1=

∆ = ∆ + ∆∑( )
size

total i i
i

W U V ; 

WHILE (T > 0) 
    m = random integer between 1 and size 
    n = random integer between 1 and size 
    

( )
1

=old

m
q q ; 

( )
2

=old

n
q q ; 

( )
1

=old

m
b b ; 

( )
2

=old

n
b b ; 

    
( )
1

= old

n
q q ; 

( )
2

= old

m
q q ; 

( )
1

= old

n
b b ; 

( )
2

= old

m
b b ; 

    
1=

∆ = ∆ + ∆∑,
( )

size

total new i i
i

W U V ; 

    IF 0∆ − ∆ >
,

( )
total new total

W W  

          u = random number between 0 and 1; 

         ( )= − ∆ − ∆
,

exp ( ) /
total new total

g W W T ; 

           IF >u g  

           
( )
1

= old

m
q q ; 

( )
2

= old

n
q q ; 

( )
1

= old

m
b b ; 

( )
2

= old

n
b b ;  

               ∆ = ∆
,total new total

W W ; 

           END  
    END 

    ∆ = ∆
,total total new

W W ; 

    = − ∆T T T ; 
END 

 

Additionally, the angle between the two horizontal planes may remain constant. 

That is, for each pair of planes i  and j , the condition 

 ⋅ = ⋅
i j i j
p p q q
r r r r

 (15) 

must be satisfied. For the searching process outlined in Section 3.3.2, the constraints in 

Eqns.(14) and (15) are enforced by rejecting any switch that does not meet the criteria. 

After a switch is made, we check if the resulting plane positions adhere to all of the 
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constraints. If so, the process continues and ∆
,total new

W  is calculated. If not, the switch is 

rejected and a new combination is found. These constraints are further enforced as in the 

pseudo code in Table 4. 

Table 4: Extension of the pseudo-code in Table 3 for plane constraint enforcement 

… 

IF u > g OR 
1 2 1 2

≠
r r r r
� �p p q q  OR 

3 4 3 4
≠

r r r r
� �p p q q OR − ≠ −

r rr r r r r r
� �

1 2 1 1 1 2 1 1
( ) / | | ( ) / | |a a p p b b q q  

                    
( )
1

= old

m
q q ; 

( )
2

= old

n
q q ; 

( )
1

= old

m
b b ; 

( )
2

= old

n
b b ; 

                   ∆ = ∆
,total new total

W W ;   

END  
… 
 

Plane-constrained structures, such as the graphite unit cell discussed in Section 

3.2.2, have groups of atoms that remain in the same plane throughout the transition. The 

ip
r

 that represents this plane in the initial state must transition to a specific iq
r

 which 

represents that plane’s location in the final state. If a switch is made that causes this plane 

to transition to a different location, that combination is rejected and a new switch is made. 

After the correspondence of periodic surfaces between the initial and final states is 

found, interpolation of surfaces is used to find the locations of each atom for a number of 

intermediate states. Each atom moves along a transition path to its final position in a 

predetermined number of steps. Interpolation is only applied to the surfaces, yielding a 

new set of surfaces at each step. Each atom location at any stage is found by the 

intersection of three surfaces. 

A simple surface linear interpolation approach is used to define the intermediate 

basis vectors between the initial and final vectors by linear interpolation between the two. 

Suppose that there are K  stages during the morphing process. If a basis vector in the 
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initial state (stage 1) is 1( )
mp  and the corresponding one in the final state (stage K) is 

( )K
mp , then the basis vector ( )k

mp  for the intermediate k th stage is given by  

                 11= − +( ) ( ) ( ) ( ) ( )( )k k k K
m m mp p pl l  ( 0 1< <( )kl  for 2 1= −, ,k KK ) (16) 

with the interpolation coefficients ( )kl ’s for all basis vectors 1= , ,m MK . Particularly, 

1 0=( )l  and 1=( )Kl . The intervals of interpolation coefficients ( )kl ’s are chosen 

depending on how many intermediate states are desired.  

The surface linear interpolation approach is a straight-forward method for finding 

intermediate steps in a phase transition process. The positions of atoms during the 

transition are nonlinearly interpolated between initial and final states by the surface linear 

interpolation. Yet, the physical interaction between atoms is not captured when deciding 

their intermediate positions. Physical forces may prevent atoms from colliding or getting 

too close to each other. To model the physical interaction, a second approach, potential 

driven surface interpolation, is also proposed here. The physical forces between atoms are 

captured by the potential between surfaces. Given two surfaces  

( )
1 1

2 0
= =

= ⋅ =∑∑ ,( ) cos ( )
i i

i i i i
i i

L M

i l m l m
l m

r p ry m pk  

and 

( )
1 1

2 0
= =

= ⋅ =∑∑ ,
( ) cos ( )y m pk

j j

j j j j
j j

L M

j l m l m
l m

r p r  

the pair-wise potential between them is defined as  

( ) ( )2
, ,

( , ) exp ( ) cos ( )( )
i i j j i j i j i j i j i j

j i j i

i j l m l m m m m m m m l l m m
l l m m

E a a b b c cy y m m p k k a a
< <

 = − + + + ⋅ + −  
∑ ∑  (17) 

Eqn.(17) combines the differences between the basis vectors and moments. Particularly, 
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the lowest potential between two periodic planes that have the same normal direction is 

achieved when the distance in-between is the largest. That is, the two planes have a 2/p  

phase difference. Two perpendicular planes also have a relatively low potential. 

Suppose that there are a total of N  surfaces in a model. The potential driven 

surface interpolation approach individually finds the interpolation coefficient ( )k
i
l  for the 

i th surface at the k th stage, instead of the predetermined ( )l k ’s for all surfaces. The 

process is to find ( )l k
i

’s such that the total pair-wise potential for all surfaces at the k th 

stage is minimized. That is, we need to solve  

 

( )
1 1 1

1
1 1

2

1

2 0 and 1 1

( ) ( )

( ) ( ) ( ) ( )

, ,

( ) ( )

( ) ( ) ( )

min ( ), ( ) , ,

. .

( )

( ) ( , , )

k k
N

N N
k k k k
i i j j

i j i

N k k
ii

k k
i i i

E for k K

s t

C N

C i N

l l
y l y l

l l

l l e l

= = +

=
−

=

=

= − ≤ ≤ =

∑ ∑

∑

K
K

K

 (18) 

Notice that intermediate surface ( )y k
i

 at stage k  is a function of ( )l k
i

 where its 

corresponding basis vectors are calculated similar to Eqn.(16). The equality constraint C1 

is the boundary condition that the initial and final stages are met. At the same time, it 

ensures that the system evolves by stages with the predetermined values of ( )l k ’s. The 

lower and upper bound constraint C2 ensures that the system evolves forward in general, 

where a small number e  is introduced in the lower bound such that a limited setback is 

allowed to have more stable intermediate states with a lower potential level.  

3.4 Results and Analysis 

This section includes a demonstration of the loci-surface guided transition path search 

methods proposed in Chapter 3 by examples of iron-titanium (FeTi), vanadium dioxide 

(VO2), and iron-platinum (FePt) phase transition. FeTi is being extensively studied as a 



  41

candidate material for hydrogen storage applications. VO2 thin films undergo changes 

during reversible and ultra-fast metal-to-semiconductor phase transition, which can be 

widely applied in high-volume rewritable holographic storage, high-speed fiber-optical 

switching, smart windows, etc. The layered state of FePt exhibits high magnetocrystalline 

anisotropy, making it potentially useful as a material in high density data storage. In order 

to search saddle points on the PES by methods such as the NEB, a good initial guess is 

required. The proposed geometry-guided path search method provides such an initial 

guess that is close to the minimum energy path. 

3.4.1 FeTi+H Transition  
 

FeTi experiences transition from a body-centric structure to an orthorhombic state 

where it can hold two hydrogen (H) atoms. Fig. 6-(a) shows four unit cells of the FeTi 

structure at its initial state. The unit cell of FeTi is body-centered cubic, where the Ti 

atoms are at the center and Fe atoms at the corners. The size of the unit cell is a = b = c = 

5.629 bohr [56]. Fig. 6-(b) shows one of the possible final states when two H atoms are 

absorbed in each unit cell forming the structure of FeTiH. This is an orthorhombic 

structure with Fe and Ti atoms on each face. Fe atoms still occupy the corners as well as 

the centers of the top and bottom faces. Ti atoms are located in the center of each side 

face. H atoms are located on two side faces. The size of the unit cell is a = 5.586 bohr, b 

8.585 bohr, and c = 8.292 bohr [56]. Notice that Fig. 6-(b) shows two unit cells of FeTiH, 

which correspond to four unit cells of FeTi.  
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Fig. 6: Comparison between FeTi and FeTiH 

Geometry optimization or relaxation based on the ab initio molecular dynamics 

(CPMD) is performed first on both initial and final states of the FeTi+H transition using 

the software tool Quantum-Espresso [57]. Since searching the saddle point of the 

transition process, where H atoms are absorbed, requires us to have the same number of 

atoms in a unit cell, H atoms are introduced into the body-centered cubic FeTi structure to 

match the final FeTiH structure. In a physical experiment, the space around the FeTi 

material would be saturated with H atoms which are readily available for absorption. As 

shown in Fig. 7, there are two basis atoms for each type of Fe, Ti, and H in one unit cell 

of FeTiH as the final structure. Correspondingly, for two unit cells of body-centered FeTi, 

there are two Fe atoms and two Ti atoms as the basis of the initial structure, in addition to 

the two H atoms. In the initial structure, there is a H atom placed on the side of each unit 

cell, which is one of the most likely positions where H atoms are first absorbed in the cell 

[58]. The size of the unit cell for the initial structure is also set to be the size of the final 

structure, where meta-stable structure is likely to form. After the geometry optimization, 

meta-stable structures with the local minimum total energy are found, which are very 

(a) FeTi (b) FeTiH 

Fe 

Ti 

H 
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close to the ones in Fig. 7.  

 
Fig. 7: Initial and final phases of FeTi with H absorbed  

During the search of the initial transition path, atom locations for a unit cell of the 

two states in Fig. 7 are compared using the method described in Section 3.2. For each 

atom in the initial state, the corresponding location in the final state is found based on 

Eqn.(10). Three planes are defined for each atom in the initial or final state. The 

respective y-z, x-z, and x-y planes of atom i  are 

( ) ( )
( ) ( )
( ) ( )

ψ π

ψ π

ψ π

 = + + =
 = + + =
 = + + =

cos ( / 2 ) / 2 0

cos ( / 2 ) / 2 0

cos ( / 2 ) / 2 0

yz
i i
xz
i i
xy
i i

x x a x

y y b y

z z c z

 

where a = 5.586, b = 8.585, and c = 8.292 define the size of the unit cell, and 
i
x , 

i
y , and 

i
z  are the atoms’ coordinates listed in Table 5. 

Table 5: Initial and final geometris of FeTiH after relaxation (unit: bohr) 

Initial structure Final structure 
 xi yi zi  xi yi zi 
Fe 0.000000000 0.000000000 0.000000000 Fe 0.000000000 -0.407605434 0.000000000 
Fe 0.000000000 4.292490268 0.000000000 Fe 0.000000000 4.700081861 4.146037265 
Ti 2.793000491 2.147048391 4.146037265 Ti 2.793000491 -0.104477173 4.146037265 
Ti 2.793000491 6.437932145 4.146037265 Ti 2.793000491 4.396994224 0.000000000 
H 0.000000000 0.000000000 4.146037265 H 0.000000000 2.146238663 2.072969363 
H 0.000000000 4.292490268 4.146037265 H 0.000000000 2.146238663 6.219105168 

 

Face correlation as described in Section 3.2.2 is used to reduce the number of loci 

planes. If we assume that the two basis Fe atoms are always on the same vertical y-z 

plane during the transition, the total number of planes is reduced from 18 to 17. Similarly, 

(a) FeTi+H initial structure (b) FeTiH final structure 
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if the two Ti atoms and two H atoms are always on the same y-z plane respectively, the 

number of planes is further reduced to 15.  

By the surface linear interpolation in Eqn.(16), the basis vectors of the planes that 

define the atom positions in the initial and final states, and the basis vectors for planes in 

the intermediate states can be found. The PS models in Fig. 8 represent six different states 

during the phase transition. Two unit cells of FeTi morph to one unit cell of FeTiH. It can 

be seen that the basis H atom on the right moves up while the basis H atom on the left 

moves down. At the same time, the basis Fe atom in the middle moves down towards the 

center of the face, while the basis Fe atom in the corner shifts right. For the two basis Ti 

atoms, the left one moves up to the top face while the right one moves further out of the 

unit cell. 

Using the potential-driven surface interpolation in Eqn.(18), we receive a different 

initial guess of the transition path, as shown in Fig. 9. Compared to the previous one in 

Fig. 8, atoms tend to move individually one after another instead of simultaneously. Table 

6 shows the detailed interpolation coefficients ( )l k
i ’s for each plane at each stage as a 

result of minimizing potentials. 

The initial guess of the transition path in Fig. 8 is imported as the input of the 

NEB method in Quantum-Espresso to find the MEP. The result is shown in Fig. 10, where 

each image at the bottom of the figure represents a state with a total of six. The initial and 

final states are the respective ones in Fig. 8, whereas the other four intermediate ones 

have been updated to reflect the MEP. The calculated energy level for each state is shown 

with the solid lines. Particularly, image 3, corresponding to −4713.9203 eV, has the 

highest energy level along the MEP. It is the saddle point found by the NEB method. The 
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activation energy is 1.5771 eV, which corresponds to 0.26285 eV per atom. The second 

initial guess of transition path in Fig. 9 from the potential-driven surface interpolation is 

also used to run the NEB. The resulted MEP is shown as the dash lines in Fig. 10. The 

corresponding images are shown at the top of the figure. It is seen that the MEP found by 

the initial guess from the potential-driven surface interpolation gives a saddle point 

energy value of −4708.5716 eV. The activation energy found is 6.9258 eV, which 

corresponds to 1.1543 eV per atom. This is a higher energy level of the saddle point than 

the one from the surface linear interpolation. The lower energy saddle point reflects the 

true MEP better. In contrast, we also run the NEB method with its empirical default initial 

guess, which is the simple linear interpolation of atom positions. The result is also shown 

in Fig. 10, represented as the dotted lines. In this case, the NEB method fails in searching 

the saddle point after 100 NEB iterations, since there is no intermediate state that has 

higher energy level than both the initial and final states. Total CPU time required for the 

potential-driven method was 34 hours on a computer node with four CPU’s, while the 

linear interpolation method required 14.5 hours. Experimentally, the activation energy for 

this material has been found to be 0.2912 eV per atom [59], which is very close to the 

result obtained with the surface linear interpolation method. 
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Fig. 8: Initial guess of the transition path for FeTi+H based on the surface linear interpolation in Eqn.(16)  

 

 
Fig. 9: Initial guess of the transition path for FeTi+H based on the potential-driven surface interpolation in 

Eqn.(18)  
 
 
 

Table 6: Interpolation coefficients for y-z, x-z, x-y planes as the result of the potential-driven surface 
interpolation in Fig. 9 

 k=1 k=2 k=3 k=4 k=5 k=6 
 y-z x-z x-y y-z x-z x-y y-z x-z x-y - y-z x-z x-y y-z x-z x-y y-z x-z x-y 
Fe 0 0 0 0 0 0 1 .9837 .6394 .9995 .9979 .9963 .9995 .9999 .9992 1 1 1 
Fe 0 0 0 .6409 0 .4990 .6555 0 .5000 .9968 0 .7783 .9998 .1684 .7773 1 1 1 
Ti 0 0 0 .0146 0 .4990 .3269 0 .4984 .9970 0 .9970 1 .6723 1 1 1 1 
Ti 0 0 0 0 .4834 0 0 .4824 0 . 2289 .4814 .5361 1 .6723 .9994 1 1 1 
H 0 0 0 0 .4990 0 0 .4980 0 0 .5361 0 .7328 .6723 .6723 1 1 1 
H 0 0 0 .4990 .4912 0 .4980 .4902 .3269 .5361 .4892 .5361 .6723 .6723 .6723 1 1 1 

 

  
 

(1) 0.0=λ  (2) 0.2=λ  (3) 0.4=λ  

  
 

(4) 0.6=λ  (5) 0.8=λ  (6) 1.0=λ  

   
(1) 0.0=λ  (2) 0.2=λ  (3) 0.4=λ  

   
(4) 0.6=λ  (5) 0.8=λ  (6) 1.0=λ  
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Fig. 10: Results of MEP in FeTi+H transition by the NEB method with different initial guesses 

 

It can be seen from the results in Fig. 10 that both proposed methods are superior 

to the default empirical initial guess, which fails to find the saddle point in this case. It is 

also observed that our more involved, potential-driven surface interpolation method 

generates poorer results than the simpler linear interpolation method, as the resulting 

saddle point energy level is higher. One possible explanation for this result is that for the 

predicted intermediate states of the potential-driven interpolation method the atoms move 

individually, as seen in Fig. 9, rather than simultaneously as in Fig. 8. It has been 

discovered by first-principles simulations and experimentally observed (e.g. [60,61]) that 

the individual movement or single-hop diffusion sometimes requires a greater amount of 

energy than the coordinated diffusion. For this example, the linear interpolation method 

may provide a more accurate prediction of atom movement and therefore generate a better 

result in terms of saddle point energy levels. However, the potential driven surface 

−4715.7775 
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−4722.7941 

−4708.5716 

−4715.4812 

−4717.9910 
(final state) 

−4716.4783 
−4715.9963 
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interpolation method still provides more flexibility and a different guess of transition 

path; it also avoids paths which may result in atom collisions, which could be an 

important consideration. 

3.4.2 VO2 Transition 
 

To demonstrate the process outlined in Section 3.3, we will use an example of 

VO2 transition. The initial rutile phase and final M2 phase of VO2 are shown in Fig. 11. In 

each unit cell, there are eight oxygen (O) basis atoms. Following the procedure in Section 

3.1, we build two tetrahedrons or eight different planes for each phase so that the 

positions of the O atoms can be uniquely determined by the intersections of the eight 

planes. Setting the values of c and s in Eqns.(11) and (12) to be at least 300, we can 

reliably find the correct correspondence of the periodic planes between the initial and 

final stages. The corresponding normal directions and the center points of the planes are 

listed in Table 7, where the minimum total potential change 447 35∆ = .totalW  is found. 

Table 7: Initial and final locations and directions of planes for O in Fig. 11 

Plane 
ia
r

 ip
r

 
ib
r

 iq
r

 

1 (3.4438,3.4438,0.8981) [0.4201, 0.4201,0.8044] (3.6265,3.5620,0.9862) [0.4256,0.4265,0.7981] 
2 (5.1631,5.1631,0.8981) [-0.4201,-0.4201,0.8044] (5.4706,5.4009,0.8778) [-0.3957,-0.3965,0.8284] 
3 (3.7285,4.8784,1.7961) [-0.5242,0.5242,0.6712] (3.9357,5.0874,1.8640) [-0.5336,0.5719,0.6231] 
4 (4.8784,3.7285,1.7961) [0.5242,-0.5242,0.6712] (5.0714,3.9539,1.8640) [0.5382,-0.4997,0.6787] 
5 (3.4438,3.4438,6.2864) [0.4201, 0.4201,0.8044] (3.7540,3.5504,6.5575) [0.3982,0.3865,0.8319] 
6 (5.1631,5.1631,6.2864) [-0.4201,-0.4201,0.8044] (5.5981,5.3893,6.6658) [-0.4493,-0.4361,0.7797] 
7 (3.7285,4.8784,7.1844) [-0.5242,0.5242,0.6712] (4.0220,5.0766,7.5656) [-0.5939,0.5616,0.5761] 
8 (4.8784,3.7285,7.1844) [0.5242,-0.5242,0.6712] (5.1126,3.9530,7.5656) [0.4960,-0.5373,0.6820] 

 

Similar to the previous example in Section 3.4.1, the surface linear interpolation 

method is used to find the initial guess of transition path. After the NEB search, the 

respective energy levels for seven images are: 1) −5006.1158eV, 2) −5000.6632eV, 3) 

−5003.8746eV, 4) −4997.6627eV, 5) −4990.0234eV, 6) −4989.7258eV, and 7) 

−5006.4782eV. Image 6) has the highest energy and therefore represents the saddle point. 
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The activation energy found is 16.39 eV, which corresponds to 1.37 eV per atom. The 

experimental data for the activation energy is approximately 0.6 eV per atom [62]. Using 

the empirical default initial guess, the NEB fails to locate the saddle point again. 

 
Fig. 11: Initial and final phases of VO2 

3.4.3 FePt Transition 
 

The unit cell of the initial disordered A1 state of FePt is face centered cubic with two 

iron (Fe) and two platinum (Pt) atoms each. The structure transitions into a layered L10 

face centered tetragonal phase, where atoms of the same species are located in the same 

plane. Both phases are shown in Fig. 12. In the final phase, the dimensions of the unit cell 

are a=3.874 bohr and c=3.714 bohr [63]. Similar to the previous examples, the surface 

linear interpolation is used to generate an initial guess of atom locations during the 

transition, where the activation energy found is 0.8099 eV per atom. The result from the 

empirical default initial guess is 0.7602 eV per atom. Both are reasonably close to the 

experimentally measured 1.7 eV per atom [64]. 

(a) VO2 initial rutile phase (b) VO2 final M2 phase 

V 

O 
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Fig. 12: Initial and final phases of FePt 

 

Fe 

Pt 

(b) FePt final L10 phase (a) FePt initial A1 phase 
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4. PARTICLE SWARM OPTIMIZATION FOR 

STRUCTURE RELAXATION 

As discussed in section 2.4, the original PSO method is inspired by the movement 

of a group of insects or birds who fly collectively as a group and also learn from each 

other about potential sources of food. Using this type of behavior, the swarm can search a 

larger area and at the same time relay useful information to all the individuals in the 

group. Similarly, an optimization algorithm based on this principle is useful for finding 

the global minimum or maximum of a numerical function on a continuous domain. To 

address some of the drawbacks of the original PSO algorithm, two improved methods are 

proposed in the following sections, the “Random Group” PSO in section 4.1, and the 

“Active Group” PSO in section 4.2. Then, experiments that were done with each method 

are presented in section 4.3, and finally the results of the experiments and performance 

evaluation are presented in section 4.4.  

The default method used within Quantum Espresso for relaxation is a BFGS 

algorithm, as discussed in section 2.4. This algorithm is a local optimization method that 

searches the space near the given start and end positions for a local optimum. Usually a 

local optimum is found very close to the starting positions, so that the relaxed crystal 

structure coordinates are very similar to the input coordinates. However, a relaxed 

position with a lower potential energy may be available, which would be more favorable 

for transition path search. In order to find other optima in the space, and possibly 

arrangements with lower potential energy, a global optimization method is required. 

Using the standard PSO algorithm, we can investigate the search space more thoroughly, 
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and increase the chance of finding a more relaxed position. Additionally, as will be shown 

in the following sections, the proposed methods allow us to search the space for a global 

optimum as well as several local optima using additional groups. By replacing the native 

BFGS method with PSO algorithms, we are trying to improve the simulation by finding a 

lower energy relaxed position for the initial and final structures.    

To investigate the robustness and efficiency of the PSO algorithm compared to the 

two proposed methods, each algorithm is applied to the five test functions shown in Table 

8. These functions are commonly used in the field of continuous function optimization 

and provide sufficient variety to test for robustness. The Booth and Sphere functions are 

unimodal; they have a single local optimum that is also the global optimum. The others 

are multimodal, i.e. they have multiple local optima and one global optimum. All of the 

functions have a global optimum value where ( ) 0f x = . 
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Table 8: Test functions 

Sphere 

 

2

1
( )

n

i
i

f x x
=

=∑  

Booth 2 2
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1
( ) 10 ( 10cos(2 ))
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i i
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f x n x xπ
=

= + −∑  

Ackley 

2

1

1

( ) 20 exp( 0.2 1/ )

1
exp( cos(2 )) 20

n

i
i

n

i
i

f x n x

x e
n

π

=

=

= − ⋅ − ⋅ ⋅ −

⋅ ⋅ + +

∑

∑
 



  54

Griewank 2

1 1

1
( ) cos( ) 1

4000

nn
i

i
i i

x
f x x

i= =

= − +∑ ∏  

 

4.1 Random Group PSO 

To increase the chance of finding the global optimum and provide information 

about local optima, the Random Group PSO (RG-PSO) divides the initial population of 

particles into groups of sizen . Each group is also assigned an initial criticality value of 

zero. The updates then proceed similar to the standard PSO, but only particles from the 

same group are considered as neighbors. At each iteration, the position of each group is 

calculated as the average position of its’ particles. Then, a Euclidean distance calculation 

is made to find the distance between groups. If the average position of particles in any 

group moves within the threshold distance (td) of the average position of any other group, 

the criticality value for one of the groups is increased by one. If any group’s criticality 

reaches a predetermined “maxcrit” value or higher, all of its particles are relocated 

randomly in the search space. This re-location scheme allows only one group to converge 

to a particular location in the search space, regardless of whether the location is a local or 

global minimum. At the same time, given a sufficient number of iterations, the remaining 

groups have a chance to converge to another minimum. The algorithm increases the 

probability of finding the global optimum by avoiding premature convergence to local 

optima, and also provides more information about the landscape as different groups 
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converge to various local optima. Table 9 shows a comparison of results using the 

original PSO method with results using RG-PSO and the AG-PSO method discussed in 

the next section. Visually, the two proposed methods have similar results, so a single 

picture is used to represent both methods simultaneously. The red and blue markers 

represent the average location of each group for RG-PSO and locations of each particle 

for regular PSO. It is obvious that the proposed methods are not ideal for the Booth and 

Sphere functions, or unimodal functions in general, as the different groups are unable to 

converge to the global optimum and simply end up distributed near the global optimum 

location. With the Rastrigin function as well as the other multimodal functions, however, 

we can see several groups converging on the global optimum in the center, as well as 

other groups converging to the various local minima. By increasing the number of 

particles and groups in the population, we can also increase the number of local minima 

that will be found. At the same time, it can be seen that the particles in the standard PSO 

tend to converge to a single location, which is oftentimes not the global optimum. 

For testing purposes the threshold distance was set to 0.5 percent of the search 

space, and a maxcrit value of four was used. The velocity updates are now given by 

( ) ( 1) ( 1) ( 1)
1 1 , 2 2[ ] [ ]− − −= + − + −i i i i

j j best j j best jV V c r P X c r R Xϑ  

where bestR  is the best previous position of any particle in the group. A pseudo- 
 
algorithm for the RG-PSO process is shown in Table 10. 
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Table 10: Pseudo-code for the RG-PSO method 

INPUT: number of particles { }N , number of particles in each sub-group { }gsize , upper and lower 

search space boundaries { , }
u l
b b , objective function 

1
{ ( , ..., )}

N
f x x , maximum number of iterations 

{ }Maxi , constants for local and global directions 
1 2

{ , }c c , movement restriction { }J , convergence 

threshold { }epsilon , threshold distance { }td , maximum allowed criticality before relocation 

{ }mcrit  

OUTPUT: location of global optimum 
1

{ ,..., }
N

x x  

FOR 1:i N=  

    ()*( )i u l lX rand b b b= − +  

    i ipbest X=  

    0iV =  

    ( )i if f X=  

END 
= /groups N gsize  

FOR 1= :i groups  

     
1 1 1 2( )* ( )* *

arg min( , , , )
i i gsize i gsize i gsize

gbest f f f
− + − +

= K  

     
1 1 1 2( )* ( )* *

min( , , , )
i i gsize i gsize i gsize

fgbest f f f
− + − +

= K  

END 
FOR 1:i Maxi=  
     FOR 1:j groups=  

          FOR 1= − +( * ) : ( * )n j gsize gsize j gsize  

               1 2* * ()*( ) * ()*( )n n n n j nV V c rand pbest x c rand gbest xϑ= + − + −  

               n n nX X V= +  

          END 

          1= − +( ( (( * ) : ( * )))) /
j

avglocation sum x j gsize gsize j gsize gsize  

     END 
     FOR 1= :j groups    

          FOR 1= +( ) :k j groups    

               2= −(( ( ) ( )) ^ )
j

dist sqrt avglocation k avglocation j  

               IF <
j

dist td  

                    1= +
k k

crit crit  

                     IF >
k

crit mcrit  

                          FOR 1= − +( * ) : ( * )h k gsize gsize k gsize  

                               = − +() * ( )
h u l l

X rand b b b  

                               0=
h

V  

                          END 
                   END 
              END 
           END 
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     END 
     FOR 1= :n N  

          = ( )
n n

newf f X  

      END 
     FOR 1= :a groups  

          FOR 1= − +(( * ) ) : ( * )k a gsize gsize a gsize  

               IF <
k a

newf fgbest  

                    =
a k

gbest X  

                    =
a k

fgbest newf  

               END 
          END 
     END 
     FOR 1:n N=  

          IF n nnewf f<  

               n npbest X=  

          END 
     END 
     f newf=  

     IF min( )if epsilon<  

          BREAK 
     END 
END 
 
 
4.2 Active Group PSO 

The Active Group PSO (AG-PSO) algorithm is similar to the RG-PSO in that the 

initial population is divided into smaller groups. However, rather than re-distributing 

particles randomly when two groups get too close to each other, each group actively 

moves away from its’ m  nearest neighboring groups. The velocity update is  

( ) ( 1) ( 1) ( 1) ( 1)
1 1 , 2 2 3 2 ,

1

[ ] [ ] ( [ ])ϑ − − − −
+

=

= + − + − − −∑
m

i i i i i
j j best j j best j k k best j

k

V V c r P X c r G X c r G X  

where ,k bestG  is the best location of the nearest neighboring group k, 1c , 2c , and 3c  are 

constants, and kr  ( 1, , 2k m= +K ) is a random number between 0 and 1. A pseudo-

algorithm of the AG-PSO process is shown in Table 11. 
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Like the RG-PSO, the AG-PSO improves the probability of finding a global 

optimum when compared to standard PSO and also provides more information about the 

landscape. Initial and final particle distributions are similar to those for RG-PSO seen in 

Table 9. The intent with the AG-PSO is to avoid wasteful iterations where two or more 

groups move towards each other before being randomly re-distributed. By actively 

moving away from each other, the groups are less likely to stay in the same area for 

multiple iterations. The algorithm should become more efficient as it no longer has to 

wait to reach the threshold distance and maximum criticality before exploring a different 

region. By adjusting the value of 3c , AG-PSO can also be more effective at exploring 

regions that are densely populated with local optima. As two groups approach an area 

with multiple local optima, they may search within threshold distance of each other if the 

optima are sufficiently close. Rather than being re-distributed as with RG-PSO, the two 

groups may converge to different optima within a small region. A similarly thorough 

search with RG-PSO would require a smaller threshold distance, which makes the 

algorithm less efficient.  
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Table 11: Pseudo-code for the AG-PSO method 

INPUT: number of particles { }N , number of particles in each sub-group { }gsize , upper and lower 

search space boundaries { , }
u l
b b , objective function 

1
{ ( , ..., )}

N
f x x , maximum number of iterations 

{ }Maxi , constants for local and global directions 
1 2

{ , }c c , constants for movement away from 

neighboring groups { }
k
c ,movement restriction { }J , convergence threshold { }epsilon , number of 

neighboring groups to be considered { }m  

OUTPUT: location of global optimum 
1

{ ,..., }
N

x x  

FOR 1:i N=  

    ()*( )i u l lX rand b b b= − +  

    i ipbest X=  

    0iV =  

    ( )i if f X=  

END 
= /groups N gsize  

FOR 1= :i groups  

     
1 1 1 2( )* ( )* *

arg min( , , , )
i i gsize i gsize i gsize

gbest f f f
− + − +

= K  

     
1 1 1 2( )* ( )* *

min( , , , )
i i gsize i gsize i gsize

fgbest f f f
− + − +

= K  

END 
FOR 1:i Maxi=  
     FOR 1:j groups=  

          1= − +( ( (( * ) : ( * )))) /
j

avglocation sum x j gsize gsize j gsize gsize  

      END 
     FOR 1= :j groups  

          FOR 1= :k groups  

               
,

( ) ( )
j k

dist avglocation k avglocation j= −  

           END 
     END 
     FOR 1 2 2= : : ( * )j groups  

          
2

=
,: /j j

M dist  

          
1

1
+
=

,:
:

j
M groups  

          
1 1+ +
=

:, : : ,:
( )

j j j j
B sortrows M  

      END 
     FOR 1= :j groups  

          FOR 1= − +( * ) : ( * )n j gsize gsize j gsize  

               =( )vadd n zeros  

                    FOR 2 1= +: ( )k neighbors  

                         
23 , *

( * () * ( ))
k jn n B n

vadd vadd c rand avglocation X= + −  

                    END 
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              1 2* * ()*( ) * ()*( )n n n n j n nV V c rand pbest x c rand gbest x vaddϑ= + − + − − \ 

              n n nX X V= +  

          END 
     END 
     FOR 1= :n N  

          = ( )
n n

newf f X  

      END 
     FOR 1= :a groups  

          FOR 1= − +(( * ) ) : ( * )k a gsize gsize a gsize  

               IF <
k a

newf fgbest  

                    =
a k

gbest X  

                    =
a k

fgbest newf  

               END 
          END 
     END 
     FOR 1:n N=  

          IF n nnewf f<  

               n npbest X=  

          END 
     END 
     f newf=  

     IF min( )if epsilon<  

          BREAK 
     END 
END 

    

Both the RG-PSO and AG-PSO methods involve the calculation of Euclidean 

distances at each iteration; as a result the computation time per iteration is increased 

compared to the standard PSO algorithm. This increase is offset by the increased accuracy 

and fewer iterations required to find the global optimum. Further discussion about the 

performance of PSO, RG-PSO and AG-PSO follows in section 4.4.  

4.3 Experiments 

In all of the experiments, the so called gbest PSO algorithm is used, where the 

entire population of particles is considered to be the neighborhood, and bestG  is the best 
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particle in the entire population. Parameter values 1 2 1.7c c= =  and 0.6ϑ =  are used as 

recommended in [65]. Standard PSO, RG-PSO, and AG-PSO are each run 100 times for 

each test function, and the average results are presented in Table 13. Avg, Med, Max, and 

Min represent the Average, Median, Maximum, and Minimum number of iterations, 

respectively, needed to find the global optimum. Suc is the success rate of the algorithm; 

that is, how often it converged to the global optimum. And finally, Avg(s) is the average 

time, in seconds, that was needed to complete each run. Failed runs where the maximum 

number of iterations is reached were not included for the calculation of Avg, Med, Max, 

and Avg(s). 

In each case, the particles have been initialized with a random position with the 

values randomly chosen within the minimum and maximum boundaries depending on the 

objective function. However, the position and velocity during subsequent iterations are 

not restricted to within these boundaries. Table 12 shows the boundary values for the 

range of possible initial positions, the objective function evaluation goals to be achieved 

by the algorithms, as well as the dimension that was used for each test function. The 

maximum number of iterations is set at 1000 in each case, and a swarm size of 100N =  

was used with a group size of 5 in the case of RG-PSO and AG-PSO. Dimensions larger 

than two are possible and generally make the optimization more difficult. Because the 

application in this case is to structure relaxation, where the input objective function that 

describes the potential energy surface oftentimes has a dimension larger than two, test 

functions with higher dimensions are considered in section 4.5. For now, however, only 

two dimensional test functions are used, as these allow for relatively fast computation 

times and are sufficient to test the accuracy and robustness of the algorithms. 
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For the RG-PSO algorithm, the velocity of the particles in a group is reset to zero 

if the group is relocated. The threshold distance is set as 1% of the upper search space 

boundary. Additionally, for RG-PSO as well as AG-PSO, the initial ϑ  value is set to 

0.6, and is then decreased by 0.1 every 200 iterations. This gradual decrease of the ϑ  

value was not implemented with the standard PSO algorithm, as it did not require more 

than 200 iterations for most of the cycles. The number of neighbors, m , was set to 3 for 

AG-PSO, and a 3c  value of 0.3 was used for the Ackley function, while 3 0.5=c  was 

used for the Sphere, Booth, Rastrigin, and Griewank functions. For the Ackley function, 

AG-PSO with 3c  greater than 0.3 produced very low success rates and the algorithm 

was not competitive, while the other functions did not show significant improvement 

when 3c  was lowered.  

Table 12: Parameters for Test Functions 

Name 
Initial Position 

Boundaries 
Goal Dimension 

Sphere 2[ 100;100]−  0.01 2 

Booth 2[ 10;10]−  0.01 2 

Rastrigin 2[ 5.5;5.5]−  0.1 2 

Ackley 2[ 32;32]−  0.1 2 

Griewank 2[ 600;600]−  0.1 2 

 

4.4 Results and Significance 
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The RG-PSO and AG-PSO algorithms were expected to take more time per 

iteration because a Euclidean distance calculation is involved that is not required with the 

standard PSO. Indeed, this is the case for the multimodal functions. Table 13 shows that 

both RG-PSO and AG-PSO have a large Avg(s) for the Rastrigin, Ackley, and Griewank 

functions. However, for the unimodal functions, RG-PSO outperformed standard PSO in 

completion time as well as average iterations. This may be due to the reduced number of 

neighbor comparisons with the RG-PSO. Unlike the standard PSO, the RG-PSO 

algorithm does not have to compare each particle to all others in the population. Instead, 

each particle is only evaluated with respect to the four others in its’ group, and the groups 

are compared to each other, reducing the overall number of computations that are 

required. Additionally, thanks to the fast convergence with unimodal functions, there is 

not as much time to reach maximum criticality, so the additional steps of checking 

threshold distance and re-arranging individual groups are not as frequent as they are with 

multimodal functions.  

AG-PSO did not perform well for any of the cases; completion time and average 

iterations are significantly higher. The algorithm performs better when 3c  is reduced, 

and with 3c  close to zero the results are similar to those of the RG-PSO (Avg=12.53, 

Avg(s)=0.0616 with 3c =0.1). When 3c  is significantly reduced or even set equal to 

zero, AG-PSO becomes similar to RG-PSO, without the additional step of re-positioning 

groups when they reach maximum criticality. In fact, it is also similar to the standard PSO 

in this case, so we should expect the results with very low 3c  values to be comparable to 

those obtained with PSO and RG-PSO. However, the intent with the AG-PSO is to 
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prevent groups from clumping up at local or even global optima, and this effect is lost 

when 3c  is zero. Therefore, a 3c  value of zero is not advisable, and values between 0.3 

and 0.5 were used in the experiments. In general, a more active movement away from the 

nearest neighbors using higher values of 3c  similar to 1c  and 2c  proved to be highly 

ineffective, with inaccurate results and long computation times. Because the 

implementation of 3c  and the movement away from other particles counteracts the base 

PSO algorithm’s tendency to continuously move the particles towards each other, 3c  

values that are similar to 1c  and 2c  cause a situation where groups and particles are 

simultaneously drawn in opposite directions. This results in many iterations where 

individual groups or particles move very little from their previous positions, and 

subsequently the efficiency of the algorithm is reduced. Values of 3c  that are 

significantly higher than 1c  and 2c  allow for faster convergence but lower accuracy. 

Particles are allowed to move relatively quickly, but the region near the global optimum is 

not searched as thoroughly as with standard PSO. 

The RG-PSO algorithm, on the other hand, showed very good performance across 

all example functions. As shown in Table 13, the success rate is 1.00 for each function, 

and average cycle completion times increase consistently with function complexity. In 

some cases, such as with the Rastrigin function, RG-PSO yielded success rates of 100% 

even when the convergence criteria was narrowed from 0.1 to 0.01. Overall completion 

times are similar to or lower than those for the standard PSO algorithm on all but the 

Rastrigin function, where PSO showed fast convergence but very low success rates. 

Overall, the RG-PSO algorithm displayed the best combination of accuracy and fast 
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convergence, providing consistently high success rates as well as information about local 

optima if required. 

The success rate for PSO was for the most part consistent with previously 

obtained results that can be seen in the literature. With the Rastrigin function, however, it 

is unusually low. Even using a convergence goal of 0.1 rather than the 0.01 that was used 

with RG-PSO, the PSO algorithm showed very low success rates. Possibly due to the 

geometry of this function, approximately 40% of the time the PSO algorithm settles in a 

local optimum and is unable to escape, and with the convergence goal set at 0.01 the 

success rate drops even lower to approximately 36%. As a result, the global optimum is 

not found within the iteration limit. One reason the standard PSO is significantly less 

successful on the Rastrigin function than on the other multimodal functions may be 

because the function values at the local optima are very close to those at the global 

optimum. Unlike the other multimodal functions used here, this allows the algorithm to 

converge to a location that is believed to be the global optimum, as it meets the 0.1 

convergence criteria. This allows the algorithm to quickly settle in a location that meets 

the convergence criteria but is not the global optimum. It is shown, however, that the use 

of sub-groups with RG-PSO and AG-PSO results in a success rate close to 1.00 for all of 

the test functions, giving them an advantage over standard PSO.  
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Table 13: Iterations Required to Achieve Goals for Each Algorithm and Test Function  

Algorithm  Avg Med Max Min Suc Avg(s) 

  Sphere 

PSO  28.9 28 66 9 1.00 0.138 

RG-PSO  26.3 25 49 2 1.00 0.0681 

AG-PSO  478 486 641 23 1.00 2.47 

  Booth 

PSO  39.5 16.5 567 1 0.94 0.429 

RG-PSO  12.3 12 21 1 1.00 0.0539 

AG-PSO  232 194.5 574 2 1.00 1.12 

  Rastrigin 

PSO  21.5 17 80 1 0.59 0.102 

RG-PSO  84.6 58 384 9 1.00 0.253 

AG-PSO  482 494.5 943 3 0.96 2.15 

  Ackley 

PSO  30.5 29 79 11 1.00 0.0752 

RG-PSO  29.9 28 90 6 1.00 0.143 

AG-PSO  44.6 43.5 104 16 1.00 0.216 

  Griewank 

PSO  18.7 16.5 55 3 1.00 0.0706 

RG-PSO  18.4 17 53 1 1.00 0.1007 

AG-PSO  359 449 633 13 1.00 1.72 

 

4.5 PSO Integration With Quantum Espresso 

In this section, the methods for integrating the original and proposed PSO 

algorithms within QE in place of the native BFGS algorithm are discussed. A pseudo-

algorithm for the BFGS method discussed in section 2.4 is shown in Table 14. This BFGS 

algorithm iteratively updates each atom’s position until an acceptable overall minimum 



  69

energy location is found. Although this approach has proven to be robust within the QE 

software, it may be possible to increase the efficiency of the process by replacing the 

existing BFGS method with a PSO algorithm. Rather than using one set of atom locations 

and updating each atom’s position individually, we can use each particle in the PSO 

method to represent one possible set of atom locations. Therefore, it becomes possible to 

simultaneously search a larger region in the search space and reduce the amount of time 

required to find the relaxed position. 

Table 14: Pseudo-code for standard BFGS algorithm 

INPUT: set of k  locations as initial guess 
0

r
{ }x , objective function { ( )}

i
f x , gradient of the objective 

function 
r

{ }
i
g , initial approximate Hessian matrix 

0
{ }B , initial step size 

0
{ }a ,  convergence 

threshold { }epsilon  

OUTPUT: set of i optimized locations 
r

{ }
i
x  

WHILE 1( ( ) ( ))i if x f x epsilon+ − >
r r

 

     FOR 1:i k=  

         ip
r

 = 1
i iB g−−
r

 

         iα  = 1i ix x+ −
r r

 

         iS
r

 = i ipα r
  

         iy
r

 = 
1+
−

r r

i i
g g  

         1
1iB
−

+ = 
1 1 1 1

2

( )( )
( )

T T T T T
i i i i i i i i i i i i i i

T T
i i i i

B S y y B y S S B y S S y B
S y S y

− − − −+ + +
−

r r r r rr r r r r

r rr r  

         1ix +

r
 = i i ix pα+r

 

     END 
END 

 

Comparing the standard BFGS algorithm shown in Table 14 to the version that is 

implemented in QE, there is one notable difference. The standard BFGS process uses a 

“WHILE” loop to continue making position updates until a satisfactory objective function 

value is reached. This means that when the algorithm is started, it will run either until the 

condition is satisfied, or a maximum allowable number of iterations is reached. On the 
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other hand, the BFGS algorithm module implemented in QE omits the “WHILE” loop. 

Instead, only one iteration and position update is done each time the algorithm is called, 

and the loop and exit criteria are stored in a separate file. Most pertinent data, such as 

initial atom locations, gradients, and the energy evaluation subroutine are stored in a 

separate directory as well and called each time the BFGS algorithm is used. At the end of 

the iteration, the updated information is written back into the file, and called again when 

the next iteration begins. The criteria for termination of the BFGS process is stored and 

evaluated outside of this BFGS module, and the algorithm is called repeatedly until the 

convergence criteria is met. This difference must be considered when implementing the 

various PSO methods shown in Table 2, Table 10, and Table 11 because multiple 

iterations, rather than one, are computed when the algorithm is called. Additionally, the 

objective function must be evaluated for each particle in the PSO algorithm, so multiple 

function calls are required at each iteration rather than the single evaluation that is needed 

for each iteration of BFGS.  

Considering these changes, the PSO algorithm was implemented to work 

seamlessly with the existing module. Since the energy calculation is performed in a 

separate file, the algorithm is a modified version of that shown in Table 2. The pseudo-

code for the PSO method implemented for relaxation is shown in Table 19. Rather than 

evaluating an objective function for each particle, the “electrons()” subroutine is called to 

calculate total energy based on atom positions, and the resultant total energy is returned as 

“etot”. Each particle within the PSO represents a possible arrangement of atom positions; 

therefore the subroutine must be called once for each particle within each iteration. In 

addition to these changes, the code for each of the PSO algorithms had to be translated 
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from its MATLAB version into FORTRAN code that is used in QE. A copy of these 

algorithms is provided in the Appendix. 

The results for atom positions and final energy are shown in Table 16, and 

computation times for relaxation of the initial and final states are shown in Table 15. A 

PSO algorithm with ten particles was used, and 15 particles with five groups were used in 

the RG-PSO and AG-PSO algorithms. When applied to relaxation, the standard PSO 

algorithm requires a longer computation time than the native BFGS algorithm. This is to 

be expected because the electrons() subroutine is called ten times within each iteration, 

compared to just a few calls overall for the BFGS algorithm. It can also be seen from 

Table 16 that the atom positions did not match those that were obtained using BFGS, but 

in some cases the minimum energy that is found is lower. For the examples shown, it is 

likely that many local minima exist, and the BFGS method simply converges to a location 

close to the starting position. The global search within the PSO method, however, can 

find the global optimum or a local optimum that is different from those found with BFGS. 

Therefore, it is not likely that the same set of atom locations will be found. It is also seen 

in Table 15 that computation times for RG-PSO and AG-PSO were significantly lower 

than those for PSO, and in some cases also lower than BFGS. This may be due to the low 

number number of groups that were used; each group only had to be compared to four 

other groups.  

To visualize the energy surface for the FeTiH and VO2 structures, contour plots for 

the total potential energy of the structures are shown in Fig. 13 and Fig. 14, respectively. 

These plots were generated by keeping all but two of the dimensions constant, and 

varying the remaining two across a range of values. For the FeTiH structure, the y and z 
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coordinates for one of the H atoms were varied, and similarly the y and z coordinates 

were varied for one of the O atoms in the VO2 structure. The initial state was used as the 

default configuration for each structure, and each of the two coordinates were adjusted 

between 0.5 and 5 in increments of 0.5, resulting in a total of 100 data points. The 

unrelaxed positions for each atom can be seen in appendix sections 6.7 and 6.8. At each 

set of values, the total potential energy of the structure was evaluated using a QE module 

and plotted with Matlab, with the y-coordinate shown on the x-axis, and the z-coordinate 

on the y-axis. This approach was used because the structures are relatively complex, with 

twelve atoms and 36 dimensions that can be adjusted in the VO2 example. A plot of the 

PES that involves variation of all 36 parameters would have been very involved and 

difficult to show on a 2- or 3-dimensional graph, so this simplified approach was used. 

However, even with this simplified plotting method and relatively small range of values, 

we can see that the surface has many local minima, making it a challenging problem for 

global optimization.   
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Fig. 13: FeTiH energy contour plot 

 
 

 
Fig. 14: VO2 energy contour plot 
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Additional trials with alternate settings were also done to better understand the 

behavior of the PSO algorithms in this application. As expected, an increase in the 

number of particles and groups yields longer computation times. The RG-PSO algorithm 

with 30 groups of 3 particles (90 total particles) resulted in a convergence time of 48485 

seconds for the VO2 structure, and 10393 seconds for FeTiH. These computation times 

are significantly longer than those required by BFGS. Each of the 30 groups settled on a 

different local optimum location, but the algorithm again failed to find the same 

arrangement that was found with BFGS. Trials with 150 particles and 300 particles with a 

group size of five were also attempted. For the FeTiH structure, results were similar to the 

90 particle case, with longer computation times and convergence to many local optima. 

Relaxation for the VO2 material fails to converge if a very large number of particles is 

used; with computation times reaching in excess of 30 hours, none of the groups settle on 

a global optimum. The standard PSO algorithm performed slightly better than RG-PSO 

when using 100 and 300 particles. Computation times did not increase as drastically, but 

the optimum location that was found did not match the BFGS result.    

Table 17 shows that in some cases a more optimal energy level was found using 

the PSO algorithms. Again, this is due to the global searching nature of PSO, as opposed 

to the local search of BFGS. In all cases, the optimum locations that were found had 

energy levels very close to those found by BFGS. As mentioned previously, AG-PSO was 

found to be less effective than the RG-PSO algorithm, so it was omitted from many of the 

testing trials in this section. It should be noted that although data is presented for 

relaxation from initial state and final state, the starting position that is used has no effect 

on the PSO algorithms. For each material, the initial and final states are located on the 
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same potential energy surface, but the different starting locations lead to different results 

with the BFGS algorithm. The PSO methods, however, search the entire space using a 

random initial distribution of particles, regardless of whether the relaxation is for initial 

state or final state. The different results seen in Table 17 are simply due to the random 

element of the PSO algorithms. 

Table 15: Relaxation computation time (s), for initial and final states 

 BFGS PSO RG-PSO AG-PSO 

FeTi 
Initial 983 1204 802 829 

Final 568 789 479 459 

VO2 
Initial 8940 10918 4857 4803 

Final 35837 38060 5221 5640 

FePt 
Initial 21 102 21 21 

Final 72 241 72 71 

 

Table 16: Atom locations and minimum energies for FeTi, VO2, and FePt 

 BFGS PSO 
Final Energy 

BFGS PSO 

FeTi Initial 

Fe (0.0,0.0,0.0) (3.06,0.0172,-0.549) 

-346.52938 -346.5294 

Fe (0.0,4.29,0.0) (5.38,0.651,3.14) 

Ti (2.79,2.14,4.14) (2.81,4.24,5.28) 

Ti (2.79,6.44,4.14) (4.23,-1.10,0.686) 

H (0.0,0.0,4.14) (0.117,2.94,4.03) 

H (0.0,4.29,4.14) (4.07,1.59,2.37) 
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FeTi Final 

Fe (0.0,-0.408,0.0) (2.35,3.29,2.37) 

-346.7658 -346.7305 

Fe (0.0,4.7,4.14) (5.55,1.68,4.02) 

Ti (2.79,-0.104,4.14) (2.43,1.05,2.54) 

Ti (2.79,4.39,0.0) (2.43,0.88,1.50) 

H (0.0,2.14,2.07) (0.885,1.26,0.402) 

H (0.0,2.14,6.22) (3.33,1.94,1.11) 

VO2 Initial 

V (0.0,0.0,0.0) (4.101,4.35,1.31) 

-367.94 -366.019 

V (4.52,4.52,2.83) (4.80,1.24,4.41) 

V (0.0,0.0,5.66) (2.18,1.57,4.66) 

V (4.52,4.52,8.49) (3.15,0.364,4.55) 

O (1.73,1.73,2.83) (2.09,1.87,0.568) 

O (7.31,7.31,2.83) (5.21,1.83,0.935) 

O (6.25,2.79,0.0) (4.24,3.68,1.69) 

O (2.79,6.25,0.0) (0.56,2.09,1.29) 

O (1.73,1.73,8.49) (2.78,3.99,1.90) 

O (7.31,7.31,8.49) (3.36,0.119,3.93) 

O (6.25,2.79,5.66) (4.05,1.77,1.44) 

O (2.79,6.25,5.66) (1.82,-0.373,4.39) 

VO2 Final 

V (-0.002,0.98,-0.002) No Convergence 

-368.067 -353.77 
V (4.3,5.28,2.69) No Convergence 

V (0.002,0.98,5.39) No Convergence 

V (4.3,5.28,8.08) No Convergence 
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O (1.73,2.7,2.7) No Convergence 

O (6.88,7.87,2.69) No Convergence 

O (6.03,3.56,-0.001) No Convergence 

O (2.58,7.005,-0.0004) No Convergence 

O (6.89,-0.75,8.08) No Convergence 

O (1.72,11.32,8.08) No Convergence 

O (6.02,3.56,5.39) No Convergence 

O (2.57,7.007,5.39) No Convergence 

FePt Initial 

Fe (2.57,0.0,3.51) (1.48,1.32,1.89) 

-281.445 -281.505 
Fe (2.57,2.57,0.0) (1.01,2.57,0.898) 

Pt (0.0,0.0,0.0) (1.89,2.36,-2.50) 

Pt (0.0,2.57,3.51) (3.33,4.24,4.38) 

FePt Final 

Fe (2.57,0.0,3.51) (0.468,1.83,2.18) 

-280.8954 -280.8955 
Fe (0.0,2.57,3.51) (3.11,3.64,1.45) 

Pt (0.0,0.0,0.0) (2.74,1.25,2.75) 

Pt (2.57,2.57,0.0) (2.91,0.737,2.69) 

 

Table 17: Total energy at optimal location found by each algorithm 

 BFGS PSO RG-PSO 

FeTi Initial -346.52938 -346.5294 -346.513 

FeTi Final -346.7658 -346.7305 -346.729 

VO2 Initial -367.94 -366.019 -366.019 
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VO2 Final -368.067 -353.77 -363.718 

FePt Initial -281.445 -281.505 -281.445 

FePt Final -280.8954 -280.8955 -280.895 

 

A graphical representation of the relaxed positions found using BFGS and RG-

PSO is shown in table  

 

 

 

Table 18. The FePt structure is not shown because it is relatively trivial compared 

to the FeTiH and VO2 examples, and AG-PSO results are omitted because they are similar 

or worse than those obtained with RG-PSO. The atom distribution in the relaxed states 

confirms the findings of the previously shown data. BFGS relaxation converges to a local 

optimum with atom positions very similar to the starting positions; the difference between 

the BFGS relaxed state and the initial distribution is not noticeable, as each atom 

experiences very slight movement. After relaxation with the RG-PSO, however, we can 

see a drastically different atom distribution. These positions represent the global optimum 

energy level, or at least a different local optimum than that found by BFGS. Since the 

starting position has no effect on the RG-PSO algorithm, it is free to search the space for 

any locations of minimum energy, resulting in an amorphous material. Additional 

coordinates and figures of optima found by other groups of the RG-PSO algorithm are 

shown in appendix sections 6.9 and 6.10. 
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Table 18: Relaxed positions with BFGS and RG-PSO 

 Starting Positions After relaxation with 
BFGS 

After relaxation with 
RG-PSO 

FeTiH 

   

VO2 

   

 

The RG-PSO result seen in  

 

 

 

Table 18 is not useful for our transition simulation application. Although a lower 

energy state may be found, the atom positions no longer represent the initial state that is 

required for simulation. In order to find the same local optimum that is found with the 

BFGS algorithm, we can initially force all the PSO particles into the starting structure 
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position instead of using a random distribution. This technique greatly increases the 

likelihood that the same local optimum and relaxed position will be found. Using the 

standard PSO algorithm with ten particles, convergence was achieved in 1840 seconds for 

the initial FeTiH structure, and 664 seconds for the final FeTiH structure. Although these 

computation times are higher than the 983 seconds and 568 seconds required by BFGS 

for the respective cases, the algorithm converged to the expected local optimum, and the 

same relaxed structure was found. RG-PSO with 15 particles and five groups was less 

consistent, requiring only 764 seconds for relaxation of the initial structure and 869 

seconds for the final structure, but again the desired local optimum was found. Some 

typical results of the RG-PSO search with forced initial positions for the FeTiH and VO2 

structures can be seen in section 6.11, where the positions and energy values in the first 

row show the same result that is found by BFGS, and the following rows show additional 

optima that were found by other groups.  

Although the methods worked as intended and in some cases found a global 

optimum or a better local optimum than BFGS, the resulting structures represent an 

amorphous material that is different from the crystal structure found with BFGS 

relaxation. It is possible to find the same result as BFGS by forcing the particles into a 

specific starting position, but the computation times are generally longer than BFGS with 

the benefit that more information about the search space is obtained through the 

additional optima that are found.       
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Table 19: Pseudo-code for PSO algorithm implemented with QE 

INPUT (from file): array containing the initial atom locations 
0

r
{ }x , energy of the system 

r
{ ( )}

i
f x , 

array containing components of the gradient 
r

{ }
i
g , number of particles { }N  

INPUT (within module): convergence threshold { _ }energy thr , upper and lower search space 

boundaries { , }
u l
b b , constants for local and global directions 

1 2
{ , }c c , movement restriction { }J , 

maximum number of iterations {Maxi } 
 

OUTPUT: set of i optimized locations 
r

{ }
i
x  

FOR 1:i Maxi=  
FOR 1:i N=  

    ()*( )i u l lX rand b b b= − +  

    i ipbest X=  

    0iV =  

    ( )i if f x=
r

 

END      
min( )igbest f=  

FOR 1:j N=  

     1 2* * ()*( ) * ()*( )j j j j jnewV V c rand pbest x c rand gbest xϑ= + − + −  

     j j jnewX X newV= +  

     CALL ( )electrons newX  

     =jnewf etot  
END 
X newX=  
V newV=  

min( )igbest f=  

IF min( ) min( )i if newf>  

     min( )igbest newf=  

END 
FOR 1:n N=  

     IF n nnewf f<  

          n npbest X=  

     END 
END 
FOR 1:i N=             

     =
r r

i
x x  

      ( )i if f x=
r

 

END 
=j jf newf  

END 
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5. CONCLUSIONS AND RECOMMENDATIONS 

In this thesis, the general shortcomings of the classic particle swarm optimization 

method were demonstrated, in particular with regard to multimodal functions. Some of 

these drawbacks were addressed using the novel Random Group and Active Group 

particle swarm optimization methods by splitting the initial population of particles into 

smaller groups and using two different techniques for position and velocity updates of 

particles. Through the use of a variety of test functions, it was shown that the RG-PSO 

algorithm yields an improvement not only in accuracy, but also in computation time for 

some functions, while the AG-PSO method also provides better accuracy than the 

standard PSO algorithm. The potential of these variations of the PSO method for use 

within the Quantum Espresso software was also demonstrated. Compared to the native 

BFGS method, a more favorable energy state and faster convergence was achieved in 

some cases.   

Further, a geometry-guided phase transition pathway search method for finding 

intermediate states in the phase transition of crystals was proposed. A periodic surface 

model is used to build crystals parametrically for ease of construction and modification. 

The transition pathway is then estimated by interpolation of periodic planes, and atom 

positions are determined by intersection of the loci surfaces. The estimation can provide a 

good initial guess of MEP for physics-based transition path and saddle point search 

methods such that the risk of being trapped in a local minimum energy path is reduced. To 

enable this integrated computer-aided transition pathway design, methods were developed 

for finding correspondence of atom locations and periodic planes in the initial and final 
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states of a crystalline material’s unit cell. A heuristic global optimization approach is 

taken to reduce the complexity of searching correspondence. Once the surface models in 

the initial and final states are matched, the developed surface linear interpolation and 

potential-driven surface interpolation methods are used to make predictions about how 

each atom will move.  

The proposed approaches are intended to integrate geometry and physics 

information in materials modeling and simulation. Further exploration of the intrinsic 

relation between the two that goes beyond the simple observations is meaningful. 

Observations from this thesis include that geometric structures and physical properties in 

nanoscale materials have connections and even one-to-one mappings. Metamorphosis in 

geometry can integrate more physics of phase transitions. Structures with strongly bonded 

atoms can simplify the computation of geometric morphing. Modeling the interactions 

among geometric entities can help simulate physical phenomena more efficiently.  

Numerical error is a challenge in our proposed approach. When the angles between 

intersecting planes are small and rotation is involved during the surface interpolation, the 

numerical error to compute intersections may become significant. The discretization of 

the 3D space to generate fine-grained models in our implicit modeling scheme is then 

essential to keep errors small, which will increase the computation time. One possible 

way to alleviate this is to define planes with intersecting angles as large as possible, such 

as the y-z, x-z, and x-y planes. In this thesis we have shown that for some cases the saddle 

point is identified more accurately using our techniques.  

5.1 Conclusions 

A few major conclusions can be drawn from the work presented in this thesis. 
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• The simmulated annealing global optimization algorithm is effective for searching 

plane correspondence. In a general case, as well as the examples shown, too many 

atoms may be present to check all possible correspondence combinations. 

Considering that three planes are required to represent each atom, the number of 

possibilities increases quickly due to combinatorial complexity. Depending on the 

values that are used for T  and T∆ , the algorithm can converge quickly and settle 

on a combination that is fairly close to optimal. With this application in particular, the 

global optimum is not absolutely required. Even a local optimum is able to generate 

an initial guess of atom movement that is more favorable than the linear prediction 

used with the standard NEB method. Therefore, optimization using the SA algorithm 

is faster than an exhaustive search and still generates acceptable results.  

• Surface linear interpolation is generally more effective for atom movement prediction 

than potential-driven surface interpolation, but both methods can be improvements 

over the standard NEB method with a linear initial guess. It was found that the 

potential-driven method tends to predict individual movement of atoms, rather than 

the simultaneous movement we see with surface linear interpolation. This causes a 

less accurate guess of initial path and as a result a higher error in the prediction of 

activation energy. Although the surface linear interpolation method may predict some 

atom positions that are not physically feasible, it yielded more accurate results for the 

examples that were tested. In some cases, however, both methods are preferred over 

the native NEB method, which may not converge using its initial guess of a linear 

path.   

• Both RG-PSO and AG-PSO show better accuracy than the standard PSO method. 
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Particularly for some of the multimodal test functions that were used, the PSO method 

shows low success rates and was likely to settle at a local optimum. Although 

computation times are higher in some cases, RG-PSO and AG-PSO have success rates 

of 100 percent for most of the test function trials. Additionally, using the RG-PSO and 

AG-PSO methods, we can obtain more information about other optima in the search 

space, rather than just the singular global optimum value we get with standard PSO. 

In general, using the newly proposed methods in this thesis, we can get higher 

accuracy and more information in exchange for slightly longer computation times.   

• RG-PSO is more effective and converges faster than AG-PSO. It was found that for 

all of the test functions, as well as with the Quantum Espresso implementation, RG-

PSO was much more useful. With the AG-PSO algorithm, the movement away from 

neighboring groups inhibits convergence, as it often results in the groups moving 

away from an optimum position. This effect can be counteracted by using a very low 

3c  value; however, as 3c  approaches zero, the AG-PSO algorithm becomes identical 

to RG-PSO. Although the accuracy with AG-PSO was also high, it does not show any 

advantages over RG-PSO, and therefore it was omitted from some of the test runs.  

• Global optimization methods are not ideal for implementation with Quantum 

Espresso for the relaxation portion of pathway search. Using the default BFGS 

method within Quantum Espresso, we generally find a local optimum which is 

located very close to the starting position. This allows us to find a relaxed state that 

has atom positions very similar to the starting and ending locations obtained from 

literature. The PSO algorithms, on the other hand, are a global search across the entire 

search space that is defined within the algorithm. By default, the particles are initially 
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distributed randomly throughout this search space, so the start and end locations are 

not used. There is a chance that a local optimum is found that matches the result from 

the BFGS algorithm, but in most cases the global optimum or a different local 

optimum is found and the resulting atom locations represent an amorphous material 

rather than a crystal structure. If the starting positions of some or all of the particles 

are specified corresponding to the locations we find in literature, the algorithm can 

return the same result as the BFGS method. Using RG-PSO, we can obtain this 

particular local optimum, as well as the global optimum or other local optima. By 

implementing this modification it is possible to use the PSO methods to find the same 

local optimum as the BFGS method, but the technique is slower than the standard 

BFGS algorithm and the advantage of global search is not utilized. 

5.2 Recommendations 

In future research, we would like to extend our techniques to more applications 

and test how effective our methods are, with opportunities to further refine our approach. 

The correspondence search and surface interpolation methods are designed to work with 

any crystal structure, and have been demonstrated with three examples. However, it may 

be beneficial to test these methods using additional structures to show their robustness. It 

may also be possible to extend the interpolation to other, non-crystal materials that can be 

modeled using periodic surfaces. 

It will also be useful to make the proposed PSO variations more robust and useful 

for general cases. Currently a useful result is only obtained if the starting distribution of 

particles is adjusted manually, or if the search space is constrained such that the number 

of optima is reduced. Both of these techniques require relatively detailed knowledge 
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about the particular example that is being studied. To create a more useful tool, the 

amount of user input that is required should be similar to the BFGS method, so some 

refinement of the PSO methods is required to find the expected local optimum more 

reliably.    
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6. APPENDIX 

6.1 STANDARD PSO ALGORITHM 

 
clear all; 
  
N=100;        %Number of particles. 
  
xbl=-10;        %Upper and lower search space boundaries in x and y. 
xbu=10; 
ybl=-10; 
ybu=10; 
Maxi=500;      %Maximum number of iterations. 
cl=1.5;          %Constants for local and global terms. 
cg=2; 
theta=0.5;       %Movement restriction. 
  
  
for g=1:N 
    x(1,g)=rand()*(xbu-xbl)+xbl; 
    x(2,g)=rand()*(ybu-ybl)+ybl; 
end 
  
for i=1:N             %Assign random initial positions and initial zero velocities. 
    v(1:2,i)=0; 
    f(1,i)=(x(1,i)+2*x(2,i)-7)^2+(2*x(1,i)+x(2,i)-5)^2;         %Objective function. 
end 
  
y=randsample(length(x),length(x)); 
y=y';                         
  
for i=1:N 
    newx(:,i)=x(:,y(i));               %Re-sorts the positions vector randomly. 
    newf(1,i)=f(1,y(i)); 
    pbest(:,i)=newx(:,i); 
end 
x=newx;     
f=newf; 
  
[C,I]=min(f); 
gbest=x(:,I); 
  
for i=1:Maxi                                          
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    for j=1:N                                              
        newv(:,j)=theta*v(:,j)+cl*rand()*(pbest(:,j)-x(:,j))+cg*rand()*(gbest-x(:,j));        
        newx(:,j)=x(:,j)+newv(:,j); 
        newf(1,j)=(x(1,j)+2*x(2,j)-7)^2+(2*x(1,j)+x(2,j)-5)^2; 
    end 
    x=newx; 
    v=newv; 
    [C,I]=min(f); 
    gbest=x(:,I); 
    if C<min(newf) 
        [C,I]=min(newf); 
        gbest=x(:,I); 
    end 
    for n=1:N 
        if newf(n)<f(n)                  
            pbest(:,n)=x(:,n);             
        end 
    end 
    f=newf; 
    if min(f)<0.01      %Ends the loop if objective function for any particles is  
        break          %close to 0 (global min).                            
    end 
end 
  
  
[C,I]=min(f); 
I 
x(:,I) 
min(f) 
  
%Create grid to show function and particles. 
 
[b,d]=meshgrid(-5.5:.1:5.5,-5.5:.1:5.5); 
  
n=2; 
z=(b+2*d-7).^2+(2*b+d-5).^2; 
surfc(b,d,z,'EdgeColor','none'); 
  
hold on; 
for i=1:N 
    n=2; 
    z=(x(1,i)+2*x(2,i)-7)^2+(2*x(1,i)+x(2,i)-5)^2;  
    plot3(x(1,i),x(2,i),z,'r.','MarkerSize',20) 
    shading interp 
end 
hold off; 
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6.2 RG-PSO ALGORITHM 

 
%Modified hybrid PSO algorithm for implementation with crystal phase transition. 
%The initial population of particles is divided into sub-groups, and particles in 
%each sub-group update their positions based on personal best and sub-group 
%best. Additionally, the sub-group best is updated with criticality to prevent sub-
%groups from getting too close to each other and finding the same optimum.  
  
  
clear all; 
  
N=100;           %Number of particles. 
gsize=5;          %Number of particles in each sub-group. 
  
xbl=-10;          %Upper and lower search space boundaries in x and y. 
xbu=10; 
ybl=-10; 
ybu=10; 
  
Maxi=1000;      %Maximum number of iterations. 
cl=1.7;           %Constants for local and global terms. 
cg=1.7; 
theta=0.6;        %Movement restriction (may also lower this with iterations). 
td=0.01*xbu;      %Threshold distance (distance between avg. position of 

%particle groups that is "too close"). 
maxcrit=4;        %Maximum allowed criticality value before relocation. 
      
for i=1:N                         %Assign random initial positions and initial 
    x(1,i)=rand()*(xbu-xbl)+xbl;   %zero velocities. Evaluate objective function at     
    x(2,i)=rand()*(ybu-ybl)+ybl;   %each position. 
    v(1:2,i)=0; 
    f(1,i)=(x(1,i)+2*x(2,i)-7)^2+(2*x(1,i)+x(2,i)-5)^2; 
end 
  
  
if floor(N/gsize) == N/gsize       %Make sure number of groups is rounded up  
    groups = N/gsize;             %to nearest integer. 
else 
    groups = floor(N/gsize)+1; 
end 
  
y=randsample(length(x),length(x)); 
y=y';                                  %Transpose 
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for i=1:N 
    newx(:,i)=x(:,y(i));     %Re-sorts the positions vector randomly. 
    newf(1,i)=f(1,y(i)); 
    pbest(:,i)=newx(:,i); 
end 
x=newx;     
f=newf; 
  
for i=1:groups               %Finds the best particle in each group and stores it 

%in "gbest" array. 
    [C,I]=min(f(((i*gsize)-gsize+1):i*gsize));   %Objective function for gbest 

%locations is stored in "fgbest". 
 
    gbest(:,i)=x(:,I);        
    fgbest(i)=min(f(((i*gsize)-gsize+1):i*gsize)); 
end  
  
  
crit=zeros(1,groups);             %Sets up an initial zero matrix for "criticality". 
for i=1:Maxi    %Update positions and velocities, re-evaluate objective function. 
    for j=1:groups                %Each group uses its own gbest for updates. 
        for n=(j*gsize-gsize+1):(j*gsize) %"j*gsize-gsize+1:j*gsize" forces search 

%by %group, i.e. 1-5, 6-10, 11-15 etc.   
       v(:,n)=theta*v(:,n)+cl*rand()*(pbest(:,n)-x(:,n))+cg*rand()*(gbest(:,j)-x(:,n));        
       x(:,n)=x(:,n)+v(:,n); 
        end 
        for m=1:2 
            avglocation(m,j)=(sum(x(m,(j*gsize-gsize+1):(j*gsize))))/gsize; 
        end 
    end 
    for j=1:groups                                  
        for k=j+1:groups 
            dist(j)=sqrt(sum((avglocation(:,k)-avglocation(:,j)))^2); %Find distance 

between average locations of each group. 
            if dist(j)<td  %If distance is less than threshold, increase criticality of 
                crit(k)=crit(k)+1;  %that group by one. If criticality is large 

%enough, relocate all particles in that 
                if crit(k)>=maxcrit        %group randomly. 
                    for h=(k*gsize-gsize+1):(k*gsize) 
                        x(1,h)=rand()*(xbu-xbl)+xbl; 
                        x(2,h)=rand()*(ybu-ybl)+ybl; 
                        v(1:2,h)=0; 
                    end 
                end 
            end 
        end 
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    end 
    for n=1:N 
        newf(n)=(x(1,n)+2*x(2,n)-7)^2+(2*x(1,n)+x(2,n)-5)^2; 
    end 
    for a=1:groups 
        for k=((a*gsize)-gsize+1):(a*gsize) 
            if newf(k)<fgbest(a)     %Replace gbest/pbest values if better value      
                gbest(:,a)=x(:,k);    %is found.  
                fgbest(a)=newf(k); 
            end 
        end 
    end 
    for n=1:N 
        if newf(n)<f(n)                  
            pbest(:,n)=x(:,n);             
        end 
    end 
    f=newf; 
    if min(f)<0.01  %Ends the loop if objective function for any particles is close  
        i           %to 0 (global min). 
        break 
    end     
    i 
end 
  
for j=1:groups                                             
    [C,I]=min(f((j*gsize-gsize+1):(j*gsize)));     %Displays x and y coordinates of    

location(1:2,j)=x(1:2,I+j*gsize-gsize);        % best particle in each group, as  
    location(3,j)=min(f((j*gsize-gsize+1):(j*gsize)));  %well as objective function 

%at those locations. 
end 
min(location(3,:)) 
[C,I]=min(location(3,1:groups)); 
 
%Commands to create grid and show function and particle locations marked in 
red. 
[b,d]=meshgrid(-10:.1:10,-10:.1:10); 
z=(b+2*d-7).^2+(2*b+d-5).^2; 
surfc(b,d,z,'EdgeColor','none'); 
  
hold on; 
for i=1:groups 
    z=(location(1,i)+2*location(2,i)-7)^2+(2*location(1,i)+location(2,i)-5)^2;  
    plot3(location(1,i),location(2,i),z,'r.','MarkerSize',20) 
    shading interp 
end 
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hold off; 
 
6.3 AG-PSO ALGORITHM 

 
%Modified hybrid PSO algorithm for implementation with crystal phase transition. 
The initial %population of particles is divided into sub-groups, and particles in 
each sub-group update their %positions based on personal best and sub-group 
best. Additionally, the sub-group best is %influenced by the (three) closest other 
sub-groups and moves away from them. To do this, 
%additional, negative terms are implemented in the velocity/position updates that 
cause the group %to move away rather than towards a particular location. 
   
clear all; 
  
N=100;        %Number of particles. 
gsize=5;       %Number of particles in each sub-group. 
  
xbl=-10;        %Upper and lower search space boundaries in x and y. 
xbu=10; 
ybl=-10; 
ybu=10; 
  
Maxi=1000;      %Maximum number of iterations. 
cl=1.7;           %Constants for local and global terms. 
cg=1.7; 
cn=0.1;          %Constant for terms from neighbors. 
theta=0.6;        %Movement restriction (may also lower this with iterations). 
neighbors=3;         %Number of neighboring groups to be considered. 
  
 
for i=1:N                          %Assign random initial positions and initial 
    x(1,i)=rand()*(xbu-xbl)+xbl;   %zero velocities. Evaluate objective function at     
    x(2,i)=rand()*(ybu-ybl)+ybl;   %each position. 
    v(1:2,i)=0; 
    f(1,i)=(x(1,i)+2*x(2,i)-7)^2+(2*x(1,i)+x(2,i)-5)^2;                                                             
end 
  
if floor(N/gsize) == N/gsize 
    groups = N/gsize; 
else 
    groups = floor(N/gsize)+1; 
end 
  
y=randsample(length(x),length(x)); 
y=y';                                  %Transpose 
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for i=1:N 
    newx(:,i)=x(:,y(i));                 %Re-sorts the positions vector randomly. 
    newf(1,i)=f(1,y(i)); 
    pbest(:,i)=newx(:,i); 
end 
x=newx;     
f=newf; 
  
for i=1:groups 
    [C,I]=min(f(((i*gsize)-gsize+1):i*gsize)); 
    gbest(:,i)=x(:,I); 
    fgbest(i)=min(f(((i*gsize)-gsize+1):i*gsize)); 
end  
  
  
theta=0.6; 
for i=1:Maxi   
    if i==0.2*Maxi | i==0.4*Maxi | i==0.6*Maxi | i==0.8*Maxi  %This “if” condition  
        theta=theta-0.1                % gradually reduces the value of theta. 
    end 
    for j=1:groups 
        for m=1:2 
            avglocation(m,j)=(sum(x(m,(j*gsize-gsize+1):(j*gsize))))/gsize; 
        end  
    end 
    for j=1:groups 
        for k=1:groups 
            dist(j,k)=sqrt(sum((avglocation(:,k)-avglocation(:,j)))^2); 
        end 
    end 
    for j=1:2:(groups*2) 
        M(j,:)=dist(ceil(j/2),:);      %M is matrix of distances between groups  
        M(j+1,:)=1:groups;         %and indices. 
        B(:,j:(j+1))=sortrows(M(j:(j+1),:)');   %B is matrix of sorted distances,    
    end                       %from min to max, and corresponding indices. 
     
    for j=1:groups         
        for n=(j*gsize-gsize+1):(j*gsize) 
            vadd(1:2,n)=zeros;       %"vadd" is the sum of additional terms   

%from neighboring locations.  
            for k=2:(neighbors+1)    %It is subtracted from the standard "v" term 

%in each update. 
                vadd(:,n)=vadd(:,n)+(cn*rand()*(avglocation(:,B(k,j*2))-x(:,n)));    
            end 
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            v(:,n)=theta*v(:,n)+cl*rand()*(pbest(:,n)-x(:,n))+cg*rand()*(gbest(:,j)-
x(:,n))-vadd(:,n); 

            x(:,n)=x(:,n)+v(:,n); 
        end 
    end 
  
    for n=1:N 
        newf(n)=(x(1,n)+2*x(2,n)-7)^2+(2*x(1,n)+x(2,n)-5)^2;                     
    end 
    for a=1:groups 
       for k=((a*gsize)-gsize+1):(a*gsize) 
            if newf(k)<fgbest(a)         %Replace gbest/pbest values if better  
                gbest(:,a)=x(:,k);        %value is found. 
                fgbest(a)=newf(k); 
            end 
        end 
    end 
    for n=1:N 
        if newf(n)<f(n)                  
            pbest(:,n)=x(:,n);             
        end 
    end 
    f=newf; 
    if min(f)<0.01                     %Ends the loop if objective function for  
        i                              %any particles is close to 0 (global min).                   
        break 
    end 
    i 
end 
  
  
for j=1:groups                                             
    [C,I]=min(f((j*gsize-gsize+1):(j*gsize)));       %Displays x and y coordinates 

%of best particle in each group, 
    location(1:2,j)=x(1:2,I+j*gsize-gsize);         %as well as objective function 

%at those locations. 
    location(3,j)=min(f((j*gsize-gsize+1):(j*gsize))); 
end 
location 
min(location(3,:)) 
[C,I]=min(location(3,1:groups)); 
 
%Commands to create grid and show function and particle locations marked in 
%red. 
[b,d]=meshgrid(-10:.1:10,-10:.1:10); 
z=(b+2*d-7).^2+(2*b+d-5).^2; 
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surfc(b,d,z,'EdgeColor','none'); 
  
hold on; 
for i=1:groups 
    z=(location(1,i)+2*location(2,i)-7)^2+(2*location(1,i)+location(2,i)-5)^2;  
    plot3(location(1,i),location(2,i),z,'r.','MarkerSize',20) 
    shading interp 
end 
hold off; 
 
6.4 PSO MODULE (FORTRAN) 

 
!PSO algorithm used to optimize the atom positions. Uses 
some initialization and subroutines from the bfgs module, 
!but the optimization algorithm is replaced with PSO. 
 
MODULE bfgs_module 
 
USE kinds,      ONLY : DP 
USE io_files,   ONLY : iunbfgs, prefix 
USE constants,  ONLY : eps16       
USE basic_algebra_routines 
 
IMPLICIT NONE 
PRIVATE 
PUBLIC :: bfgs, terminate_bfgs 
PUBLIC :: bfgs_ndim, epsilon, N, NN, MX, ITRN, NPRN, &    

trust_radius_max, trust_radius_min,  
trust_radius_ini, w_1, w_2 

 
SAVE 
 
CHARACTER (len=8) :: fname="energy" 
 
REAL(DP), ALLOCATABLE :: & 
    pos(:),             & 
    grad(:),            & 
    pos_p(:),           & 
    grad_p(:),          & 
    inv_hess(:,:),      & 
    metric(:,:),        & 
    h_block(:,:),       & 
    hinv_block(:,:),    & 
    step(:),            & 
    step_old(:),        & 
    pos_old(:,:),       & 
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    grad_old(:,:),      & 
    pos_best(:),        & 
    X(:,:),             & 
    V(:,:),             & 
    F(:),               & 
    A(:),               & 
    BST(:),             & 
    V1(:),              & 
    V2(:),              & 
    V3(:),              & 
    V4(:),              & 
    XX(:,:),            & 
    VI(:) 
REAL(DP) :: & 
    trust_radius,       & 
    trust_radius_old,   & 
    energy_p 
INTEGER :: & 
    scf_iter,           & 
    bfgs_iter,          & 
    gdiis_iter           
LOGICAL :: tr_min_hit, conv_bfgs 
 
INTEGER ::  bfgs_ndim, IU, NSTEPpso, IV, N, NN, MX, ITRN, 
NPRN 
 
REAL(DP)  :: epsilon, trust_radius_max, trust_radius_min, 
trust_radius_ini, w_1, w_2 
 
CONTAINS 
 
SUBROUTINE bfgs(  pos_in, h, energy, grad_in, fcell,  & 
fixion, scratch, stdout, energy_thr, grad_thr, cell_thr, & 
energy_error, grad_error, cell_error, istep, nstep, & 
step_accepted, stop_bfgs, lmovecell) 
 
COMMON /RNDM/IU      
COMMON /KFF/KF,NFCALL,FTIT 
CHARACTER *70 FTIT 
REAL(DP) :: FI, BEST, II, NF, NFBEST, RANDS, IV, B, PI 
                                                  
REAL(DP),           INTENT(INOUT) :: pos_in(:) 
REAL(DP),           INTENT(OUT)   :: h(3,3) 
REAL(DP),           INTENT(INOUT) :: energy 
REAL(DP),           INTENT(INOUT) :: grad_in(:) 
REAL(DP),           INTENT(INOUT) :: fcell(3,3) 
INTEGER,            INTENT(IN)    :: fixion(:) 
CHARACTER(LEN=*),   INTENT(IN)    :: scratch 
INTEGER,            INTENT(IN)    :: stdout 



  98

REAL(DP),           INTENT(IN)    :: energy_thr, grad_thr, & 
cell_thr 

INTEGER,            INTENT(OUT)   :: istep 
INTEGER,            INTENT(IN)    :: nstep 
REAL(DP),           INTENT(OUT)   :: energy_error, & 

grad_error, cell_error 
LOGICAL,            INTENT(OUT)   :: step_accepted, & 

stop_bfgs 
LOGICAL,            INTENT(IN)    :: lmovecell 
 
INTEGER  :: ni,iii,ji,k,nat, M, KF, LCOUNT, NFCALL, IU, & 
ITER, IN, JJ, J, I 
LOGICAL  :: lwolfe 
REAL(DP) :: dEOs, den 
REAL(DP) :: hinv(3,3),g(3,3),givn(3,3),garbage, ginv(3,3) 
REAL(DP) :: A1, A2, A3, W, SIGMA, FFMIN, RAND  
REAL :: FMIN 
 
FMIN = 1.0E30 
A1 = 1.7D00              
A2 = 1.7D00 
A3 = 0.005D00 
W  = 0.6D00 
SIGMA = 1.D-03 
epsilon          = 1.D-08   !Accuracy needed for termination 
N                = 1000 
NN               = 1000 
MX               = 100 
NSTEPpso         = 15 
ITRN             = 10000 
NPRN             = 500 
 
ni=SIZE( pos_in ) + 9 
nat=size (pos_in) / 3 
 
ALLOCATE( V(N,MX)) 
ALLOCATE( F(N)) 
ALLOCATE( A(MX)) 
ALLOCATE( BST(MX)) 
ALLOCATE( V1(MX)) 
ALLOCATE( V2(MX)) 
ALLOCATE( V3(MX)) 
ALLOCATE( V4(MX)) 
ALLOCATE( XX(N,MX)) 
ALLOCATE( VI(MX)) 
ALLOCATE( X(N,MX)) 
ALLOCATE( pos(   ni) ) 
ALLOCATE( grad(  ni) ) 



  99

ALLOCATE( grad_old( ni, bfgs_ndim) ) 
ALLOCATE( pos_old( ni, bfgs_ndim) ) 
ALLOCATE( inv_hess( ni, ni ) ) 
ALLOCATE( pos_p(   ni) ) 
ALLOCATE( grad_p(  ni) ) 
ALLOCATE( step(    ni) ) 
ALLOCATE( step_old(ni) ) 
ALLOCATE( pos_best(ni) ) 
ALLOCATE( hinv_block( ni-9, ni-9) ) 
ALLOCATE( metric( ni, ni ) ) 
CALL invmat(3, h, hinv, garbage) 
hinv_block = 0.d0 
FORALL ( k=0:nat-1, iii=1:3, ji=1:3 ) 
hinv_block(iii+3*k,ji+3*k) = hinv(iii,ji) 
g=MATMUL(TRANSPOSE(h),h) 
CALL invmat(3,g,ginv,garbage) 
metric = 0.d0 
FORALL ( k=0:nat-1,   iii=1:3, ji=1:3 ) metric(iii+3*k, 
ji+3*k) = g(iii,ji) 
FORALL ( k=nat:nat+2, iii=1:3, ji=1:3 ) metric(iii+3*k, 
ji+3*k) = 10.0* ginv(iii,ji) 
pos = 0.0 
pos(1:ni-9) = pos_in 
IF (lmovecell) FORALL( iii=1:3, ji=1:3) pos( ni-9 + 
ji+3*(iii-1) ) = h(iii,ji) 
grad=0.0 
grad(1:ni-9)=grad_in 
IF (lmovecell) FORALL( iii=1:3, ji=1:3) grad( ni-9 + 
ji+3*(iii-1) ) = fcell(iii,ji) 
 
IF ( lmovecell ) fname="enthalpy" 
CALL read_bfgs_file( pos, grad, fixion, energy, scratch, &       

ni, stdout ) 
scf_iter = scf_iter+1 
istep    = scf_iter 
 
energy_error = ABS( energy_p - energy ) 
grad_error = MAXVAL( ABS( MATMUL( TRANSPOSE(hinv_block), 

grad(1:ni-9)) ) ) 
conv_bfgs = energy_error < energy_thr 
conv_bfgs = conv_bfgs .AND. ( grad_error < grad_thr ) 
 
IF( lmovecell) THEN 
   cell_error = MAXVAL( ABS( grad(ni-8:ni) ) ) 
   conv_bfgs = conv_bfgs .AND. ( cell_error < cell_thr ) 
END IF 
stop_bfgs = conv_bfgs .OR. ( scf_iter >= nstep)                        
IF (stop_bfgs) GOTO 1000 
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WRITE( UNIT = stdout, FMT = '(/,5X,"number of scf &  
cycles",T30,"= ",I3)' ) scf_iter 
WRITE( UNIT = stdout,  FMT = '(5X,"number of bfgs & 
steps",T30,"= ",I3,/)' ) bfgs_iter 
IF ( scf_iter > 1 ) WRITE( UNIT = stdout, FMT = '(5X,A," & 
old",T30,"= ",F18.10," Ry")' ) fname, energy_p 
WRITE( UNIT = stdout, FMT = '(5X,A," new",T30,"= ",F18.10,"& 
Ry",/)' ) fname,energy 
 
IF ( ( energy > energy_p ) .AND. ( scf_iter > 1 ) ) THEN 
        step_accepted = .FALSE. 
WRITE( UNIT = stdout, & 
& FMT = '(5X,"CASE: ",A,"_new > ",A,"_old",/)' ) fname,fname 
ELSE 
!----------------------------------------------------------- 
!PSO algorithm starts here. 
 
CALL FSELECT(KF,M,FTIT) 
 
FFMIN=1.D30 
LCOUNT=0 
NFCALL=0 
IU=5121 
 
DO I=1,N 
   DO J=1,M 
   CALL RANDOM(RAND) 
        X(I,J)=(RAND)*5   !Generates RANDOM(0,5) 
   ENDDO 
   F(I)=1.0D30 
ENDDO 
 
DO I=1,N 
   DO J=1,M 
       CALL RANDOM(RAND) 
       V(I,J)=(RAND-0.5D+00) 
   ENDDO 
ENDDO 
 
WRITE(*,*)'CHECKING VALUES OF N, NPRN', N, NPRN 
WRITE(*,*)'FINISHED INITIAL VELOCITY ASSIGNMENT' 
 
DO 100 ITER=1,ITRN 
CALL read_bfgs_file( pos, grad, fixion, energy, scratch, & 
ni, stdout) 
   DO I=1,N 
       DO J=1,M 
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           A(J)=X(I,J) 
           VI(J)=V(I,J) 
       ENDDO 
       CALL LSRCH(A,M,VI,NSTEPpso,FI) 
       IF(FI.LT.F(I))THEN 
       F(I)=FI 
       DO IN=1,M 
           BST(IN)=A(IN) 
       ENDDO 
       DO J=1,M 
         XX(I,J)=A(J) !XX(I,J) is the M-tuple value of X  
       ENDDO          !associated with local best F(I). 
       ENDIF 
       ENDDO 
 
DO I=1,N 
      BEST=1.0D30 
      DO II=1,NN 
          CALL RANDOM(RAND) 
          NF=INT(RAND*N)+1 
          IF(BEST.GT.F(NF)) THEN 
          BEST=F(NF) 
          NFBEST=NF 
          ENDIF 
      ENDDO 
      DO J=1,M 
          CALL RANDOM(RAND) 
          V1(J)=A1*RAND*(XX(I,J)-X(I,J)) 
          CALL RANDOM(RAND) 
          V2(J)=V(I,J) 
          IF(F(NFBEST).LT.F(I)) THEN 
          V2(J)=A2*W*RAND*(XX(NFBEST,J)-X(I,J)) 
          ENDIF 
          V4(J)=W*V(I,J) 
          V(I,J)=V1(J)+V2(J)+V4(J) 
      ENDDO 
      ENDDO 
 
DO I=1,N 
   DO J=1,M 
   RANDS=0.D00 
   X(I,J)=X(I,J)+V(I,J)*(1.D00+RANDS) 
   ENDDO 
ENDDO 
 
DO I=1,N 
   IF(F(I).LT.FMIN) THEN 
   FMIN=F(I) 
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   II=I 
   DO J=1,M 
       BST(J)=XX(II,J) 
   ENDDO 
   ENDIF 
ENDDO 
    
IF(LCOUNT.EQ.NPRN) THEN 
LCOUNT=0 
WRITE(*,*)'OPTIMAL SOLUTION UP TO THIS POINT (FUNCTION   

CALLS=',NFCALL,')' 
WRITE(*,*)'X = ',(BST(J),J=1,M),' MIN F = ',FMIN 
WRITE(*,*)'CHECK SIZE OF X', SIZE(X(:,:)) 
IF(DABS(FFMIN-FMIN).LT.EPSILON) GOTO 999 
FFMIN=FMIN 
ENDIF 
LCOUNT=LCOUNT+1 
 
CALL write_bfgs_file( pos, energy, grad, scratch)    
DO J=1,M 
   POS(J)=BST(J) 
ENDDO 
 
100 CONTINUE 
999 WRITE(*,*)'-----------------------------------------' 
WRITE(*,*)'FINAL X = ',(BST(J),J=1,M),' FINAL MIN F = ',FMIN 
WRITE(*,*)'COMPUTATION OVER:FOR ',FTIT 
WRITE(*,*)'NO. OF VARIABLES=',M,' END.' 
WRITE(*,*)'NUMBER OF ITERATIONS USED', ITER 
 
 
!----------------------------------------------------------- 
ENDIF 
 
1000  CONTINUE 
IF ( lmovecell ) FORALL( iii=1:3, ji=1:3) h(iii,ji) = pos(   

n-9 + ji+3*(iii-1) ) 
pos_in = pos(1:ni-9) 
grad_in = grad(1:ni-9) 
 
DEALLOCATE( pos ) 
DEALLOCATE( grad ) 
DEALLOCATE( pos_p ) 
DEALLOCATE( grad_p ) 
DEALLOCATE( pos_old ) 
DEALLOCATE( grad_old ) 
DEALLOCATE( inv_hess ) 
DEALLOCATE( step ) 
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DEALLOCATE( step_old ) 
DEALLOCATE( pos_best ) 
DEALLOCATE( hinv_block ) 
DEALLOCATE( metric ) 
 
RETURN 
 
CONTAINS 
 
SUBROUTINE LSRCH(A,M,VI,NSTEPpso,FI) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
INTEGER :: M, NSTEPpso 
REAL(DP) :: B(M), A(M), VI(MX) 
M = SIZE(pos_in(:)) 
AMN=1.0D30 
DO J=1,NSTEPpso 
DO JJ=1,M 
B(JJ)=A(JJ)+(J-(NSTEPpso/2)-1)*VI(JJ) 
ENDDO 
CALL FUNC(B,M,FI) 
IF(FI.LT.AMN) THEN 
AMN=FI 
DO JJ=1,M             
A(JJ)=B(JJ) 
ENDDO 
ENDIF 
ENDDO 
FI=AMN 
RETURN 
END SUBROUTINE LSRCH 
 
SUBROUTINE RANDOM(RAND1) 
DOUBLE PRECISION RAND1 
COMMON /RNDM/IU,IV 
INTEGER IU,IV 
RAND=REAL(RAND1) 
IV=IU*65539 
IF(IV.LT.0) THEN 
IV=IV+2147483547+1 
ENDIF 
RAND=IV 
IU=IV 
RAND=RAND*0.4656613E-09 
RAND1=DBLE(RAND) 
RETURN 
END SUBROUTINE RANDOM 
 
SUBROUTINE FSELECT(KF,M,FTIT) 
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INTEGER :: KF, M 
CHARACTER *70 TIT(100),FTIT 
DO I=1,91 
WRITE(*,*)TIT(I) 
ENDDO 
KF=1 
M=SIZE(POS(:)) 
FTIT=TIT(KF) !Stores the name of the chosen function in 

!FTIT. 
RETURN 
END SUBROUTINE FSELECT 
 
SUBROUTINE FUNC(X,M,F) 
INTEGER :: M, NFCALL, KF 
COMMON /RNDM/IU,IV 
COMMON /KFF/KF,NFCALL,FTIT 
INTEGER IU,IV 
REAL(DP) :: X, F, PI 
DIMENSION X(*) 
CHARACTER *70 FTIT 
PI=4.D+00*DATAN(1.D+00) 
NFCALL=NFCALL+1 
IF(KF.EQ.1) THEN 
F=energy 
RETURN 
ENDIF 
STOP 
END SUBROUTINE FUNC 
 
END SUBROUTINE bfgs 
 
SUBROUTINE read_bfgs_file( pos, grad, fixion, energy, & 

scratch, ni, stdout ) 
IMPLICIT NONE 
REAL(DP),         INTENT(INOUT) :: pos(:) 
REAL(DP),         INTENT(INOUT) :: grad(:) 
INTEGER,          INTENT(IN)    :: fixion(:) 
CHARACTER(LEN=*), INTENT(IN)    :: scratch 
INTEGER,          INTENT(IN)    :: ni 
INTEGER,          INTENT(IN)    :: stdout 
REAL(DP),         INTENT(INOUT) :: energy 
CHARACTER(LEN=256) :: bfgs_file 
LOGICAL            :: file_exists 
REAL(DP) :: garbage, scnorm, trust_radius_ini 
bfgs_file = TRIM( scratch ) // TRIM( prefix ) // '.bfgs' 
INQUIRE( FILE = TRIM( bfgs_file ) , EXIST = file_exists ) 
IF ( file_exists ) THEN 
OPEN( UNIT = iunbfgs, FILE = TRIM( bfgs_file ), & 
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STATUS = 'UNKNOWN', ACTION = 'READ' ) 
READ( iunbfgs, * ) pos_p 
READ( iunbfgs, * ) grad_p 
READ( iunbfgs, * ) scf_iter          
READ( iunbfgs, * ) bfgs_iter 
READ( iunbfgs, * ) gdiis_iter 
READ( iunbfgs, * ) energy_p 
READ( iunbfgs, * ) pos_old 
READ( iunbfgs, * ) grad_old 
READ( iunbfgs, * ) inv_hess 
READ( iunbfgs, * ) tr_min_hit 
CLOSE( UNIT = iunbfgs ) 
trust_radius_old = scnorm( pos(:) - pos_p(:) ) 
step_old = ( pos(:) - pos_p(:) ) / trust_radius_old 
ELSE 
WRITE( UNIT = stdout, FMT = '(/,5X,"BFGS Geometry 

Optimization")' ) 
call invmat(ni, metric, inv_hess, garbage) 
pos_p      = 0.0_DP 
grad_p     = 0.0_DP 
scf_iter   = 0 
bfgs_iter  = 0 
gdiis_iter = 0 
energy_p   = energy 
step_old   = 0.0_DP 
trust_radius_old = trust_radius_ini 
pos_old  = 0.0_DP 
grad_old = 0.0_DP 
tr_min_hit = .FALSE. 
END IF 
END SUBROUTINE read_bfgs_file 
 
SUBROUTINE write_bfgs_file( pos, energy, grad, scratch ) 
IMPLICIT NONE 
REAL(DP),         INTENT(IN) :: pos(:) 
REAL(DP),         INTENT(IN) :: energy 
REAL(DP),         INTENT(IN) :: grad(:) 
CHARACTER(LEN=*), INTENT(IN) :: scratch 
OPEN( UNIT = iunbfgs, FILE = TRIM( scratch )//TRIM( prefix 

)//'.bfgs', & 
STATUS = 'UNKNOWN', ACTION = 'WRITE' ) 
WRITE( iunbfgs, * ) pos 
WRITE( iunbfgs, * ) grad 
WRITE( iunbfgs, * ) scf_iter 
WRITE( iunbfgs, * ) bfgs_iter 
WRITE( iunbfgs, * ) gdiis_iter 
WRITE( iunbfgs, * ) energy 
WRITE( iunbfgs, * ) pos_old 
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WRITE( iunbfgs, * ) grad_old 
WRITE( iunbfgs, * ) inv_hess 
WRITE( iunbfgs, * ) tr_min_hit 
CLOSE( UNIT = iunbfgs ) 
END SUBROUTINE write_bfgs_file 
 
REAL(DP) FUNCTION scnorm( vect )  
IMPLICIT NONE 
REAL(DP), INTENT(IN) :: vect(:) 
scnorm =SQRT( DOT_PRODUCT( vect , MATMUL( metric, vect ) ) ) 
END FUNCTION scnorm 
 
SUBROUTINE terminate_bfgs( energy, energy_thr, grad_thr, & 
cell_thr, lmovecell, stdout, scratch ) 
USE io_files, ONLY : prefix, delete_if_present 
IMPLICIT NONE 
REAL(DP),         INTENT(IN) :: energy, energy_thr, & 

grad_thr, cell_thr 
LOGICAL,          INTENT(IN) :: lmovecell 
INTEGER,          INTENT(IN) :: stdout 
CHARACTER(LEN=*), INTENT(IN) :: scratch 
IF ( conv_bfgs ) THEN 
WRITE( UNIT = stdout, & 
& FMT = '(/,5X,"bfgs converged in ",I3," scf cycles and ", & 
&         I3," bfgs steps")' ) scf_iter, bfgs_iter 
IF ( lmovecell ) THEN 
WRITE( UNIT = stdout, & 
& FMT = '(5X,"(criteria: energy < ",E8.2,", force < ",E8.2, 
&       ", cell < ",E8.2,")")') energy_thr, grad_thr, & 
&cell_thr 
ELSE 
WRITE( UNIT = stdout, & 
& FMT = '(5X,"(criteria: energy < ",E8.2,", force < ",E8.2,  
&                        ")")') energy_thr, grad_thr 
END IF 
WRITE( UNIT = stdout, & 
& FMT = '(/,5X,"End of BFGS Geometry Optimization")' ) 
WRITE( UNIT = stdout, & 
& FMT = '(/,5X,"Final ",A," = ",F18.10," Ry")' ) fname, 
&energy 
CALL delete_if_present( TRIM( scratch ) // TRIM( prefix ) // 

'.bfgs' ) 
ELSE 
WRITE( UNIT = stdout, & 
FMT = '(/,5X,"The maximum number of steps has been 

reached.")' ) 
WRITE( UNIT = stdout, & 
FMT = '(/,5X,"End of BFGS Geometry Optimization")' ) 
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END IF 
END SUBROUTINE terminate_bfgs 
 
 

END MODULE bfgs_module 
 
6.5 CORRESPONDENCE SEARCH ALGORITHM (FeTiH structure example) 

 
% Rather than generating all the permutations for the arrangements, in this code 
%two numbers are switched at a time and the new potential is compared.  Then 
%a simulated annealing process is used to determine whether to accept or reject 
%the change. 
  
clear all; 
  
x=2.956;      %Side lengths of FeTiH structure. 
y=4.535; 
z=4.388; 
c=0.5;         %Constant to multiply with angular potential. 
b=0.5;         %Constant to multiply with distance. 
a=12;          %Number of planes in the structure for Fe atoms. 
aTi=12;        %Number of planes in the structure for Ti atoms. 
  
% v=[1:a]; 
% var=perms(v); 
  
%Matlab does not allow perms(v) for large values of a (larger than 10?). 
%Instead I will manually switch two of the numbers in v and compute the new 
%potential and compare with the initial, then use delta/T criteria to 
%accept or reject the change. 
  
  
%The following are only for Fe planes. 
  
p=[x/2,x,x/2,0,x/2,x/2,2*x,2*x,2*x,-x,-x,-x;      %Initial points for vectors in initial  
    0,x/2,x,x/2,x/2,x/2,0,0,0,x,x,x;              %state. 
    x/2,x/2,x/2,x/2,x,0,0,0,0,x,x,x]; 
  
q=[y/2,y,y/2,0,y/2,y/2,y/2,y/2,y/2,y/2,y/2,y/2;   %Initial points for vectors in final  
    0,z/2,z,z/2,z/2,z/2,z/2,z/2,z/2,z/2,z/2,z/2;   % state. 
    x/2,x/2,x/2,x/2,x,0,x,x,x,0,0,0]; 
  
vp=[ 0,1,0,-1,0, 0,1,0, 0,1,0, 0;    %Direction vectors in initial state. 
    -1,0,1, 0,0, 0,0,1,-1,0,1,-1; 
     0,0,0, 0,1,-1,0,0, 0,0,0, 0; 
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     0,0,0, 0,0, 0,0,0, 0,0,0, 0]; 
  
vq=[0,1,0,-1,0, 0,1,0, 0,1,0, 0;    %Direction vectors in final state. 
    -1,0,1, 0,0, 0,0,1,-1,0,1,-1; 
     0,0,0, 0,1,-1,0,0, 0,0,0, 0; 
     0,0,0, 0,0, 0,0,0, 0,0,0, 0]; 
  
%These are for the Ti planes. 
pTi=[x/2,x/2,x/2,-x/2,-x/2,-x/2,x/2,x/2,x/2,3*(x/2),3*(x/2),3*(x/2); 
     x/2,x/2,x/2,x/2,x/2,x/2,3*(x/2),3*(x/2),3*(x/2),x/2,x/2,x/2; 
     x/2,x/2,x/2,x/2,x/2,x/2,x/2,x/2,x/2,x/2,x/2,x/2]; 
qTi=[x/2,x/2,x/2,0,0,0,x/2,x/2,x/2,x,x,x; 
     0,0,0,x/2,x/2,x/2,x,x,x,x/2,x/2,x/2; 
     x/2,x/2,x/2,x/2,x/2,x/2,x/2,x/2,x/2,x/2,x/2,x/2]; 
vpTi=[0,1,0,0,1,0,0,1,0,0,1,0; 
      1,0,0,1,0,0,1,0,0,1,0,0; 
      0,0,1,0,0,1,0,0,1,0,0,1]; 
vqTi=[0,1,0,0,1,0,0,1,0,0,1,0; 
      1,0,0,1,0,0,1,0,0,1,0,0; 
      0,0,1,0,0,1,0,0,1,0,0,1]; 
  
%Distance potential with final values set in the standard starting position. 
for m=1:a 
   initdist(1,m)=sqrt((q(1,m)-p(1,m))^2+(q(2,m)-p(2,m))^2+(q(3,m)-p(3,m))^2); 

initangle(1,m)=acos((dot(vp(:,m),vq(:,m)))/(sqrt((vp(1,m))^2+(vp(2,m))^2+(vp(3,
m))^2)*(sqrt((vq(1,m))^2+(vq(2,m))^2+(vq(3,m))^2)))); 

end 
for m=1:a 
    initdistpotential(1,m)=b*(initdist(1,m))^2;  
    initangularpotential(1,m)=c*(1-cos(initangle(1,m))); 
end 
initdistpotential=sum(initdistpotential); 
initangularpotential=sum(initangularpotential); 
initpotential=initdistpotential+initangularpotential; 
  
%Same thing for the planes of the other species 
for m=1:aTi 
    initdistTi(1,m)=sqrt((qTi(1,m)-pTi(1,m))^2+(qTi(2,m)-pTi(2,m))^2+(qTi(3,m)-   

pTi(3,m))^2); 
initangleTi(1,m)=acos((dot(vpTi(:,m),vqTi(:,m)))/(sqrt((vpTi(1,m))^2+(vpTi(2,m)
)^2+(vpTi(3,m))^2)*(sqrt((vqTi(1,m))^2+(vqTi(2,m))^2+(vqTi(3,m))^2)))); 

end 
for m=1:aTi 
    initdistpotentialTi(1,m)=b*(initdist(1,m))^2;  
    initangularpotentialTi(1,m)=c*(1-cos(initangle(1,m))); 
end 
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initdistpotentialTi=sum(initdistpotentialTi); 
initangularpotentialTi=sum(initangularpotentialTi); 
initpotentialTi=initdistpotentialTi+initangularpotentialTi; 
  
%Swich two numbers in the arrangement and see if potential is reduced. 
for h=0:5:500  %h represents gradual temperature change in 5 degree  
    T=800-h;   %increments. 
    i=randint(1,1,[1,a]); 
    j=randint(1,1,[1,a]); 
    newq=q; 
    newqTi=qTi 
    newq(:,i)=q(:,j); 
    newq(:,j)=q(:,i); 
    newqTi(:,i)=qTi(:,j); 
    newqTi(:,j)=qTi(:,i); 
    newvq=vq; 
    newvqTi=vqTi; 
    newvq(:,i)=vq(:,j); 
    newvq(:,j)=vq(:,i); 
    newvqTi(:,i)=vqTi(:,j); 
    newvqTi(:,j)=vqTi(:,i); 
     
    %Compute new potentials after switches are made.  
    for m=1:a 
        dist(1,m)=sqrt((newq(1,m)-p(1,m))^2+(newq(2,m)-p(2,m))^2+(newq(3,m)- 

p(3,m))^2); 
        

angle(1,m)=acos((dot(vp(:,m),newvq(:,m)))/(sqrt((vp(1,m))^2+(vp(2,m))^2
+(vp(3,m))^2)*(sqrt((newvq(1,m))^2+(newvq(2,m))^2+(newvq(3,m))^2)))); 

    end 
    for m=1:a 
        distpotential(1,m)=b*(dist(1,m))^2;  
        angularpotential(1,m)=c*(1-cos(angle(1,m))); 
    end 
    distpotential=sum(distpotential); 
    angularpotential=sum(angularpotential); 
    potential=distpotential+angularpotential; 
    for m=1:aTi 
        distTi(1,m)=sqrt((newqTi(1,m)-pTi(1,m))^2+(newqTi(2,m)-

pTi(2,m))^2+(newqTi(3,m)-pTi(3,m))^2); 
        

angleTi(1,m)=acos((dot(vpTi(:,m),newvqTi(:,m)))/(sqrt((vpTi(1,m))^2+(vpTi(
2,m))^2+(vpTi(3,m))^2)*(sqrt((newvqTi(1,m))^2+(newvqTi(2,m))^2+(newvq
Ti(3,m))^2)))); 

    end 
    for m=1:aTi 
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        distpotentialTi(1,m)=b*(distTi(1,m))^2;  
        angularpotentialTi(1,m)=c*(1-cos(angleTi(1,m))); 
    end 
    distpotentialTi=sum(distpotentialTi); 
    angularpotentialTi=sum(angularpotentialTi); 
    potentialTi=distpotentialTi+angularpotentialTi; 
     
     
     
    delta=(potential-initpotential)+(potentialTi-initpotentialTi); 
    if delta<0 
        q=newq; 
        vq=newvq; 
        initpotential=potential; 
        qTi=newqTi; 
        vqTi=newvqTi; 
        initpotentialTi=potentialTi; 
    elseif delta>0     %Still a chance to accept the change even if delta>0. 
        r=rand(1); 
        h=exp(-delta/T); 
        if r<h 
            q=newq; 
            vq=newvq; 
            initpotential=potential; 
            qTi=newqTi; 
            vqTi=newvqTi; 
            initpotentialTi=potentialTi; 
        end 
    end 
end 
 
%Code for plane constraints. In this case planes 1 & 2 and 3 & 4 are used. 
if (dot(newvq(:,1),newvq(:,2)) = dot(vq(:,1),vq(:,2))) & 
  (dot(newvq(:,3),newvq(:,4)) = dot(vq(:,3),vq(:,4))) &  
  (((p(:,1)-p(:,2))*vp(:,1))/(sqrt((vp(1,1))^2+(vp(2,1))^2+(vp(3,1))^2))) = 
  (((q(:,1)-q(:,2))*vq(:,1))/(sqrt((vq(1,1))^2+(vq(2,1))^2+(vq(3,1))^2))) 
  q=newq; 
  vq=newvq; 
  initpotential=potential; 
end 
 
vp 
vq 
vpTi 
vqTi 
initpotential; 
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qTi 
vqTi 
initpotentialTi; 
totalpotential=initpotential+initpotentialTi 
 
6.6 INTERMEDIATE POSITION SEARCH ALGORITHM WITH SURFACE 

LINEAR INTERPOLATION (FeTiH example) 

 
% Find initial transition pathway of FeTi+H with simple nonlinear interpolation of 
%basis vectors 
 
clear all; 
  
n=0.4        %Lambda value that is used in interpolation 
  
isovalue1 = 0.0; 
isovalue2 = 0; 
isovalue3 = 0; 
 
%Threshold values to find and plot atom positions. 
isovalueFe = 0.0004; 
isovalueTi = 0.0004; 
isovalueH = 0.0004; 
  
% Cell dimensions corresponding to Quantum-Espresso. 
celldm = [5.58600098264628; 1.536874154262517; 1.484438430311231]; 
  
% Initial coordinates of atoms corresponding to Quantum-Espresso. 
coordFe1_init = [0.000000000;    0.000000000;    0.000000000]; 
coordFe2_init = [0.000000000;    4.292490268;    0.000000000]; 
coordTi1_init = [2.793000491;    2.147048391;    4.146037265]; 
coordTi2_init = [2.793000491;    6.437932145;    4.146037265]; 
coordH1_init = [0.000000000;    0.000000000;    4.146037265]; 
coordH2_init = [0.000000000;    4.292490268;    4.146037265]; 
  
% Final coordinates of atoms corresponding to Quantum-Espresso. 
coordFe1_final = [0.000000000;   -0.407605434;    0.000000000]; 
coordFe2_final = [0.000000000;    4.700081861;    4.146037265]; 
coordTi1_final = [2.793000491;   -0.104477173;    4.146037265]; 
coordTi2_final = [2.793000491;    4.396994224;    0.000000000]; 
coordH1_final = [0.000000000;    2.146238663;    2.072969363]; 
coordH2_final = [0.000000000;    2.146238663;    6.219105168]; 
  
% The actual size of the unit cell. 
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cellsize = [celldm(1); celldm(1)*celldm(2); celldm(1)*celldm(3) ]; 
  
% Basic x,y,z planes that intersect at (0,0,0) 
A_x = [1 ];  
H_x = [ 1;  
        0 ;  
        0 ];  
alpha_x = [cellsize(1)/2]; 
lamda_x = [cellsize(1)*2]; 
  
A_y = [1 ];  
H_y = [ 0 ;  
        1 ;  
        0 ];  
alpha_y = [cellsize(2)/2]; 
lamda_y = [cellsize(2)*2]; 
  
A_z = [1 ];  
H_z = [ 0 ;  
        0 ;  
        1];  
alpha_z = [cellsize(3)/2]; 
lamda_z = [cellsize(3)*2]; 
  
 % Discretize the unit cell as a 3-D matrix 
x=-0.0:cellsize(1)/100:cellsize(1); 
y=-0.0:cellsize(2)/100:cellsize(2); 
z=-0.0:cellsize(3)/100:cellsize(3); 
[X,Y,Z]=meshgrid(x,y,z); 
  
V = zeros(size(X,1),size(Y,1),size(Z,1)); 
  
%Defining planes and intersections of planes for each of the 14 points.  
VxFe1trans = nodal(A_x, H_x, (1-n)*(alpha_x+coordFe1_init(1))+n* 

(alpha_x+coordFe1_final(1)), lamda_x, X,Y,Z); 
VyFe1trans = nodal(A_y, H_y, (1-n)*(alpha_y+coordFe1_init(2))+n* 

(alpha_y+coordFe1_final(2)), lamda_y, X,Y,Z); 
VzFe1trans = nodal(A_z, H_z, (1-n)*(alpha_z+coordFe1_init(3))+n* 

(alpha_z+coordFe1_final(3)), lamda_z, X,Y,Z); 
  
VxFe2trans = VxFe1trans;   %% Shared plane 
VyFe2trans = nodal(A_y, H_y, (1-n)*(alpha_y+coordFe2_init(2))+n*   

(alpha_y+coordFe2_final(2)), lamda_y, X,Y,Z); 
VzFe2trans = nodal(A_z, H_z, (1-n)*(alpha_z+coordFe2_init(3))+n* 

(alpha_z+coordFe2_final(3)), lamda_z, X,Y,Z); 
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VxTi1trans = nodal(A_x, H_x, (1-n)*(alpha_x+coordTi1_init(1))+n* 
(alpha_x+coordTi1_final(1)), lamda_x, X,Y,Z); 

VyTi1trans = nodal(A_y, H_y, (1-n)*(alpha_y+coordTi1_init(2))+n* 
(alpha_y+coordTi1_final(2)), lamda_y, X,Y,Z); 

VzTi1trans = nodal(A_z, H_z, (1-n)*(alpha_z+coordTi1_init(3))+n* 
(alpha_z+coordTi1_final(3)), lamda_z, X,Y,Z); 

  
VxTi2trans = VxTi1trans;   %% Shared plane 
VyTi2trans = nodal(A_y, H_y, (1-n)*(alpha_y+coordTi2_init(2))+n* 

(alpha_y+coordTi2_final(2)), lamda_y, X,Y,Z); 
VzTi2trans = nodal(A_z, H_z, (1-n)*(alpha_z+coordTi2_init(3))+n* 

(alpha_z+coordTi2_final(3)), lamda_z, X,Y,Z); 
  
VxH1trans = nodal(A_x, H_x, (1-n)*(alpha_x+coordH1_init(1))+n* 

(alpha_x+coordH1_final(1)), lamda_x, X,Y,Z); 
VyH1trans = nodal(A_y, H_y, (1-n)*(alpha_y+coordH1_init(2))+n* 

(alpha_y+coordH1_final(2)), lamda_y, X,Y,Z); 
VzH1trans = nodal(A_x, H_z, (1-n)*(alpha_z+coordH1_init(3))+n* 

(alpha_z+coordH1_final(3)), lamda_z, X,Y,Z); 
  
VxH2trans = VxH1trans;  %% Shared plane 
VyH2trans = nodal(A_y, H_y, (1-n)*(alpha_y+coordH2_init(2))+n* 

(alpha_y+coordH2_final(2)), lamda_y, X,Y,Z); 
VzH2trans = nodal(A_z, H_z, (1-n)*(alpha_z+coordH2_init(3))+n* 

(alpha_z+coordH2_final(3)), lamda_z, X,Y,Z); 
  
Int1 = VxFe1trans.^2+VyFe1trans.^2+VzFe1trans.^2;   %%%Fe1 
Int2 = VxFe2trans.^2+VyFe2trans.^2+VzFe2trans.^2;   %%%Fe2 
  
Int3 = VxTi1trans.^2+VyTi1trans.^2+VzTi1trans.^2;   %%%Ti1  
Int4 = VxTi2trans.^2+VyTi2trans.^2+VzTi2trans.^2;   %%%Ti2 
  
Int5 = VxH1trans.^2+VyH1trans.^2+VzH1trans.^2;   %%%H1  
Int6 = VxH2trans.^2+VyH2trans.^2+VzH2trans.^2;   %%%H2 
  
%Show marker at each intersection. 
       
figure('Color','white'); hold on; 
  
S = size(Int1); 
V=zeros(S); 
for i=1:S(1) 
    for j=1:S(2) 
        for k=1:S(3) 
            if Int1(i,j,k)<=isovalueFe 
                plot3(X(i,j,k),Y(i,j,k),Z(i,j,k),'r.','MarkerSize',240);  
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                Fe1 = [X(i,j,k); Y(i,j,k); Z(i,j,k)] 
            end 
        end 
    end 
end 
  
S = size(Int2); 
V=zeros(S); 
for i=1:S(1) 
    for j=1:S(2) 
        for k=1:S(3) 
            if Int2(i,j,k)<=isovalueFe 
                plot3(X(i,j,k),Y(i,j,k),Z(i,j,k),'r.','MarkerSize',240);  
                Fe2 = [X(i,j,k); Y(i,j,k); Z(i,j,k)] 
            end 
        end 
    end 
end 
  
S = size(Int3); 
V=zeros(S); 
for i=1:S(1) 
    for j=1:S(2) 
        for k=1:S(3) 
            if Int3(i,j,k)<=isovalueTi 
                plot3(X(i,j,k),Y(i,j,k),Z(i,j,k),'.','Color',[0 1 0],'MarkerSize',240);  
                Ti1 = [X(i,j,k); Y(i,j,k); Z(i,j,k)] 
            end 
        end 
    end 
end 
  
S = size(Int4); 
V=zeros(S); 
for i=1:S(1) 
    for j=1:S(2) 
        for k=1:S(3) 
            if Int4(i,j,k)<=isovalueTi 
                plot3(X(i,j,k),Y(i,j,k),Z(i,j,k),'.','Color',[0 1 0],'MarkerSize',240);  
                Ti2 = [X(i,j,k); Y(i,j,k); Z(i,j,k)] 
            end 
        end 
    end 
end 
  
S = size(Int5); 
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V=zeros(S); 
for i=1:S(1) 
    for j=1:S(2) 
        for k=1:S(3) 
            if Int5(i,j,k)<=isovalueH 
                plot3(X(i,j,k),Y(i,j,k),Z(i,j,k),'c.','MarkerSize',80);  
                H1 = [X(i,j,k); Y(i,j,k); Z(i,j,k)] 
            end 
        end 
    end 
end 
  
S = size(Int6); 
V=zeros(S); 
for i=1:S(1) 
    for j=1:S(2) 
        for k=1:S(3) 
            if Int6(i,j,k)<=isovalueH 
                plot3(X(i,j,k),Y(i,j,k),Z(i,j,k),'c.','MarkerSize',80);  
                H2 = [X(i,j,k); Y(i,j,k); Z(i,j,k)] 
            end 
        end 
    end 
end 
  
  
  
  
draw_ps(X,Y,Z,VxFe1trans,isovalue1,0.1,'yellow'); 
draw_ps(X,Y,Z,VyFe1trans,isovalue2,0.1,'blue'); 
draw_ps(X,Y,Z,VzFe1trans,isovalue3,0.1,'green'); 
%  
draw_ps(X,Y,Z,VyFe2trans,isovalue2,0.1,'blue'); 
%  
draw_ps(X,Y,Z,VyH1trans,isovalue2,0.1,'yellow'); 
%  
draw_ps(X,Y,Z,VyH2trans,isovalue2,0.1,'yellow'); 
 
axis equal; 
view([51,17]); 
hold off; 
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6.7 INITIAL AND FINAL POSITIONS AND CELL DIMENSIONS (FePt) 

 
%%% Initial coordinates of atoms corresponding to Quantum-Espresso. 
coordFe1_init = [3.660380211,    0.000000000,    3.509202918]; 
coordFe2_init = [3.660380211,    3.660380211,    0.000000000]; 
coordPt1_init = [0.000000000,    0.000000000,    0.000000000]; 
coordPt2_init = [0.000000000,    3.660380211,    3.509202918]; 
 
%%% Final coordinates of atoms corresponding to Quantum-Espresso. 
coordFe1_final = [3.660380211,    0.000000000,    3.509202918]; 
coordFe2_final = [0.000000000,    3.660380211,    3.509202918]; 
coordPt1_final = [0.000000000,    0.000000000,    0.000000000]; 
coordPt2_final = [3.660380211,    3.660380211,    0.000000000]; 
 
%%% The actual size of the unit cell. 
celldm = [7.32076042177662; 1; 0.958699019101704]; 
cellsize = [celldm(1); celldm(1)*celldm(2); celldm(1)*celldm(3) ]; 
 
6.8 INITIAL AND FINAL POSITIONS AND CELL DIMENSIONS (VO2) 

 
%%% Initial coordinates of atoms corresponding to Quantum-Espresso. 
coordV1_init = [0.000000000   0.000000000   0.000000000]; 
coordV2_init = [4.303450622   4.303450622   2.694165438]; 
coordV3_init = [0.000000000   0.000000000   5.388336672]; 
coordV4_init = [4.303450622   4.303450622   8.082507906]; 
coordO1_init = [1.724380595   1.724380595   2.694167742]; 
coordO2_init = [6.882520648   6.882520648   2.694167742]; 
coordO3_init = [6.028197539   2.578703704   0.000000000]; 
coordO4_init = [2.578703704   6.028197539   0.000000000]; 
coordO5_init = [1.724380595   1.724380595   8.082505602]; 
coordO6_init = [6.882520648   6.882520648   8.082505602]; 
coordO7_init = [6.028197822   2.578703421   5.388336672]; 
coordO8_init = [2.578703421   6.028197822   5.388336672]; 
 
%%% Final coordinates of atoms corresponding to Quantum-Espresso. 
coordV1_final = [-0.480280207   0.067047838   0.000000000]; 
coordV2_final = [4.538374156   4.743830495   2.760782806]; 
coordV3_final = [-0.001176736   0.655526527   5.657753506]; 
coordV4_final = [4.538374156   4.743830495   8.554724205]; 
coordO1_final = [1.692399181   1.801384761   2.958551401]; 
coordO2_final = [7.224617185   7.318169591   2.633469670]; 
coordO3_final = [6.297190733   2.742166323   0.000000000]; 
coordO4_final = [2.890028988   6.142496562   0.000000000]; 
coordO5_final = [1.692399181   1.801384761   8.356954986]; 
coordO6_final = [7.224617185   7.318169591   8.682036717]; 
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coordO7_final = [6.420737676   2.739544822   5.657753506]; 
coordO8_final = [3.148950028   6.110294353   5.657753506]; 
 
%%% The actual size of the unit cell. 
cellsize = [9.037246305, 9.037246305, 11.315507011 ]; 
 
6.9 VO2 RELAXATION RESULTS WITH RG-PSO 

Structure Energy Positions 

 

-366.019 

4.423980941, 1.671226267, 3.979258887        
0.881107209, 0.514755910, 2.290170453         
3.225147374, 1.178981302, 6.731167542 
1.125862848, 1.143979101, 5.839797111 
4.229051123, 2.498240801, 1.117036941 
4.020334630, 4.705744403, 4.998290693 
5.930616251, 0.151394508, 3.365915590 
2.352194655, 6.320788947, 3.982557505  
4.360103321, 4.149141849, 5.417612214 
0.445131877, 1.421900419, 3.445483234 
2.540591195, 1.141025929, 1.347512024 
2.309596249, 5.520135246, 3.393616808 

 

-365.205 

3.512396613, 2.501422437, 1.568790528 
3.408344381, 1.070480545, 2.571516979 
2.907960065, 1.986159632, 3.617672413 
4.009659454, 0.203301767, 2.228267432 
4.176966829, 2.232262846, 1.516185974 
2.778613200, 0.898073397, 2.638325822 
3.485321237, 3.590923680, 3.174748326 
1.366347059, 1.186188780, 2.088690271 
0.033731880, 3.216409133, 4.629438456  
0.600199617, 5.685626781, 0.338921628 
1.022233461, 0.152346475, 2.639870101 
2.994653483, 4.803863405, 1.908338800 

 

-364.581 

1.162002535, 2.344680951, 3.355575741 
2.777390612, 4.364518664, 0.227653379 
5.509609097, 0.575114951, 6.461794239 
0.899258598, 5.033635656, 4.251383044 
2.781605042, 2.637730563, 2.896756192 
5.224550779, 5.251772380, 0.835794261 
0.470561368, 2.320449483, 2.600190471 
4.954059738, 3.864296165, 0.767016901 
0.451955436, 4.294783951, 4.134775105 
2.741926466, 4.516266061, 1.568480890 
1.888702781, 4.907534556, 5.453433397 
2.107891842, 5.203145890, 1.048401156 
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-364.462 

0.638363732, 2.783124044, 3.930149240 
0.710928099, 2.882327841, 0.290671868 
2.354330648, 1.030716975, 3.584532472 
2.008385886, 2.883097743, 3.411364708 
3.612912052, 1.617209609, 1.863968747 
2.041891527, 2.780039448, 2.744831804 
1.664561572, 3.178170522, 1.042970273 
3.164370664, 2.995092972, 0.051480363 
0.296276588, 3.434062812, 4.835760551 
4.024220886, 3.864578350, 1.199596073 
4.713999796, 3.167505020, 4.387928625 
3.665317670, 0.591251998, 0.620349980 

 

-362.093 

0.857343480, 4.433694530, 2.777516367 
3.491745848, 3.337652723, 2.466042776 
2.249927120, 2.993231547, 0.914456659 
3.535278004, 1.210399939, 1.945216088 
1.643026696, 2.780510091, 2.244532082 
2.647269830, 2.681438296, 1.384082198 
3.756313192, 2.583090549, 3.348028584 
3.091840960, 2.201913476, 0.992015042 
4.465527069, 3.603190365, 1.145714824 
2.884348880, 2.755038177, 1.688941206 
4.201689084, 2.515373460, 2.294839157 
4.039091386, 1.841373219, 2.034115517 

 
 
6.10 FeTiH RELAXATION RESULTS WITH RG-PSO 

Structure Energy Positions 

 

-346.731 

4.571887260, 3.555060352, 5.904005979       
3.320016284, 0.600950297, 2.086143099 
2.848045363, 2.887198547, 1.608489132 
4.528391179, 0.803799518, 2.631356446 
3.242845557, 4.691790913, 3.501430909 
2.084460989, 4.957379136, 3.055452812 

 

-346.529705 

4.642583860, 3.067931619, 3.024552226 
2.384445372, 1.809753390, 0.597041077 
2.801944018, 1.952110752, 4.001081126 
2.707209123, 4.120775042, 4.535899024 
1.151817552, 0.895773520, 2.915068288 
1.690803253, 0.970809589, 4.716733135 
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-346.529704 

2.770318295, 3.962055301, 1.768692071 
3.334395492, 2.148204458, 0.959363678 
2.672309576, 3.418875375, 0.377336117 
2.552527428, 2.441578643, 3.210695998 
1.694561953, 2.435370780, 3.299105176 
3.804746124, 4.328960901, 3.375027624 

 

-346.528 

2.335825878, 5.327399190, 3.310146107 
2.289501287, 4.236778767, 1.751725994 
3.543183724, 4.505598791, 3.516631183 
2.143349208, 3.107171495, 1.920265024 
1.450201587, 3.029518746, 3.771372001 
3.879081650, 3.806753482, 3.928010924 

 

-346.529 

2.155944831, 0.953057993, 2.319383952 
1.111230488, 4.725245291, 3.410717186 
5.260873796, 3.300891121, 0.190687058 
1.129042926, 1.256196117, 1.653106099 
2.344451609, 4.680518576, 6.207635787 
3.891310758, 3.424067911, 1.530297612 

 
 
6.11 RELAXATION RESULTS WITH RG-PSO USING FORCED INITIAL 

POSITIONS 

FeTiH Structure: 

Positions Energy 
0.000000000, 0.000000000, 0.000000000 
0.000000000, 4.292490482, 0.000000000 
2.793000459, 2.146245241, 4.146037101 
2.793000459, 6.438735485, 4.146037101 
0.000000000, 0.000000000, 4.146037101 
0.000000000, 4.292490482, 4.146037101 

-346.52938 

1.216259504, 4.659608126, 1.289208427 
4.431491242, 2.365923136, 2.777527199 
1.972322458, 2.852667117, 3.747156084 
0.409371907, 4.181063469, 2.157675349 
1.869283166, 2.973086544, 5.228643027 
1.389285094, 1.691310855, 0.064644718 

-346.52941 

5.114182636, 3.825653589, 2.508126871 
0.031724322, 1.960965000, 3.013705387 
4.997944691, 3.294378376, 1.134801894 
1.024940564, 1.401822718, 0.315897688 
4.594663003, 2.303588045, 4.146407279 

-346.5285 
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3.832872406, 4.067084974, 2.807462293 
0.270155079, 1.696123881, 2.187758676 
3.892564138, 2.638100793, 1.797057248 
2.541189487, 2.037428607, 2.938413414 
1.204724212, 5.049720549, 3.447798687 
3.319753923, 3.304638466, 4.325110963 
3.115009714, 3.867357963, 2.409619527 

-346.5216 

1.036358760, 4.231627832, 3.219428045 
2.102036586, 4.078738570, 1.211394200 
4.149277691, 1.835658385, 4.290093443 
2.169903538, 3.946845024, 3.860114766 
2.733948222, 1.982080847, 3.495538518 
4.643507954, 4.413042142, 2.678111030 

-346.5215 

 
BFGS searching result: 
 
Positions:  0.000000000   0.000000000   0.000000000 
  0.000000000   4.292490268   0.000000000 
  2.793000491   2.147048391   4.146037265 
  2.793000491   6.437932145   4.146037265 
  0.000000000   0.000000000   4.146037265 
  0.000000000   4.292490268   4.146037265 
 
Energy: -346.529387 
 
VO2 Structure: 
 

Positions Energy 
0.000000000, 0.000000000, 0.000000000 
4.518623415, 4.518623532, 2.828850156 
0.000000000, 0.000000000, 5.657753523 
4.518623415, 4.518623415, 8.486656422 
1.728094242, 1.728094242, 2.828853424 
7.309151619, 7.309151619, 2.828853252 
6.247159185, 2.790087120, 0.000000000 
2.790087120, 6.247159185, 0.000000000 
1.728094686, 1.728094686, 8.486653759 
7.309151619, 7.309151619, 8.486653759 
6.247165118, 2.790081187, 5.657753506 
2.790081187, 6.247165118, 5.657753506 

-367.94 

2.015851166, 2.672613379, 1.301796643 
4.152902573, 1.543624201, 4.323921905 
1.478822024, 1.345980500, 2.692661580        
3.262738863, 4.547325571, 3.036211701 
2.431135820, 1.022824891, 3.024056946        
2.682022305, 2.982274864, 3.399130587       
0.375979038, 0.140044109, 4.125434159        
4.081966683, 1.917919506, 3.661266396  
1.588261658, 2.340935221, 3.944295105  
3.608907577, 2.033204320, 4.386557394  
1.817631559, 1.309084864, 0.054206631    

-366.0195 
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1.135938180, 1.210379768, 0.570777573 
4.404177963, 2.883651064, 1.737073929       
0.924983712, 0.632543840, 2.239561067       
1.660487349, 1.082059216, 0.592040399        
4.861675158, 3.623126750, 1.634677641        
2.081444345, 1.649563076, 3.405428381        
2.782590779, 1.753521253, 2.225375825        
3.92043959, 0.5781382493, 4.237783565        
3.044125541, 0.373883516, 3.296594040        
1.519057883, 2.462209468, 3.869328435        
2.018888996, 3.175352762, 3.012880256        
2.960987108, 2.781104619, 1.571398896    
0.555315760, 2.312509271, 0.064801085 

-364.6211 

3.592929039, 1.841863884, 3.710910789        
3.901808355, 0.567201937, 4.042351040        
3.812865306, 3.407608548, 2.476622619       
0.217116252, 1.436856073, 3.270920147        
3.531734724, 1.479858627, 4.839454249        
2.284658562, 5.308289635, 3.651016468        
2.309321798, 2.257862768, 5.033363483        
3.683478871, 1.556613318, 1.695186205 

5.157794989, 0.2636789301, 4.791443712        
1.9183238074, 1.675960390, 4.717836509       
0.7455009915, 2.012157067, 2.331880854        
2.105525298, 1.658401879, 0.3153178238 

-365.9589 

4.393766816, 1.706443327, 3.667199613 
0.515105675, 0.185985287, 2.253273223        
3.113785912, 1.854231101, 0.150070561        
5.550261402, 2.941201871, 0.527724947        
5.786992793, 1.888754457, 2.458672167 
0.124839535, 3.104469597, 3.256454805        
6.453235694, 5.496081131, 4.658800366        
2.181798558, 1.892027131, 4.736524186        
3.772382210, 1.923715865, 3.812733253        
2.085740065, 0.244363281, 4.334670500        
4.223438323, 2.689116862, 3.314449409        
1.383127876, 4.349482959, 0.810463894 

-363.4634 

BFGS searching result: 
 
Positions:  0.000000000   0.000000000   0.000000000 
  4.518623153   4.518623153   2.828850173 
  0.000000000   0.000000000   5.657753506 
  4.518623153   4.518623153   8.486656838 
  1.728094686   1.728094686   2.828853252 
  7.309151619   7.309151619   2.828853252 
  6.247159185   2.790087120   0.000000000 
  2.790087120   6.247159185   0.000000000 
  1.728094686   1.728094686   8.486653759 
  7.309151619   7.309151619   8.486653759 
  6.247165118   2.790081187   5.657753506 
  2.790081187   6.247165118   5.657753506 
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Energy: -367.942756  
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