
EXTENSION OF NEOCLASSICAL ROTATION THEORY FOR 

TOKAMAKS TO ACCOUNT FOR GEOMETRIC 

EXPANSION/COMPRESSION OF MAGNETIC FLUX SURFACES 
 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

of the Nuclear and Radiological  

Engineering Program 

 

 

 

 

by 

 

 

 

Cheonho Bae 

 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctorate in the 

Nuclear and Radiological Engineering Program 

 

 

 

 

 

 

 

 

 

Georgia Institute of Technology 

December 2012 



EXTENSION OF NEOCLASSICAL ROTATION THEORY FOR 

TOKAMAKS TO ACCOUNT FOR GEOMETRIC 

EXPANSION/COMPRESSION OF MAGNETIC FLUX SURFACES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

   

Dr. Weston M. Stacey, Advisor 

Nuclear and Radiological Engineering 

Program 

Georgia Institute of Technology 

 Dr.  Farzad Rahnema 

Nuclear and Radiological Engineering 

Program 

Georgia Institute of Technology 

   

Dr. Wayne M. Solomon 

Princeton Plasma Physics Laboratory 

 Dr. Jeff I. Jagoda 

School of Aerospace Engineering 

Georgia Institute of Technology 

   

Dr. Bojan Petrovic 

Nuclear and Radiological Engineering 

Program 

Georgia Institute of Technology 

  

   

  Date Approved: August 31, 2012  

 



 

iii 

ACKNOWLEDGEMENTS 

 

 I would like to extend my deepest gratitude for all those who have guided and 

supported for the completion of my study at Georgia Tech.  I thank Dr. Jagoda for 

accepting me to Georgia Tech and providing guidance and advises during my Aerospace 

study.  I thank Dr. Rahnema for assistance and guidance as I was making the transition to 

NRE program.  I also thank Dr. Petrovic for the excellent courses that help me 

understand my new study field to comfortably settle in the NRE program.  I thank Dr. 

Solomon not only for the experimental data he provided but also for an excellent 

experimental perspective on my research and the hands-on experience on TRANSP, 

which will be a great tool as I continue my research in nuclear fusion.  I also thank Dr. 

Morley, school of mathematics at Georgia Tech, for the guidance and advises on the 

numerical solution of my theory and the code development.  Lastly, my special thanks 

goes to my advisor, Dr. Stacey, for introducing me into the nuclear fusion world where I 

do find the meaning of my life and for the excellent guidance and patience all throughout 

the difficult times with the research.  I've had many life-changing moments in my short 

life but meeting Dr. Stacey and being introduced into the nuclear fusion field surely stand 

on the top of the list and I sincerely thank Dr. Stacey for having me as one of his students. 

 I also would not forget those support from my family, Yunuk and Youngsoo, and 

friends for making my study at Georgia Tech a pure joy.  I also thank John-Patrick and 

other lab-mates for the good times we shared together at Georgia Tech and wish to 

continue cooperating to realize the dream energy available for the future generations.     

 

 

 

 

 



 iv

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS iii 

LIST OF TABLES vi 

LIST OF FIGURES vii 

SUMMARY viii 

CHAPTER 

1 INTRODUCTION 1 

2 PLASMA FLUID EQUATIONS 4 

2.1  Plasma Fluid Equations in Curvilinear Geometry 4 

2.2  Extended Stacey-Sigmar Poloidal Rotation Model 8 

2.3  Miller Equilibrium Flux Surface Model 10 

3 EXTENDED NEOCLASSICAL ROTATION THEORY IN THE MILLER 

MODEL REPRESENTATION 13 

3.1  Angular Toroidal Torques and Transport with the Miller Geometry 13 

3.2  Stacey-Sigmar Poloidal Rotation Theory with the Miller Geometry 16 

3.3  Toroidal Rotation Calculation Model with the Miller Geometry 19 

4 EXPERIMENT RESULTS 21 

4.1  Rotation Experiment and Velocity Measurement in DIII-D       

Tokamak 21 

4.2  Experimental Data 23 

5 COMPARISON OF PREDICTION AND EXPERIMENT 27 

5.1  Calculated Velocities and Density Asymmetries 27 

5.2  Calculated Momentum Transport Rates 29 

5.3  Circular vs. Miller Model Results 31 



 v

6 NUMERICAL ANALYSIS METHODOLOGY 33 

6.1  Numerical Calculation Model 33 

6.2  Linear and Nonlinear Programming 35 

6.3  Nonlinear SOR Method and Instability Control 37 

6.4  Nonlinear Topological Maps and Simulated Annealing 39 

6.5  Nonlinear Dynamics of the Extended Neoclassical Rotation Model 40 

6.6  Application of Simulated Annealing 41 

6.7  Verification of the Algorithm and of the Results 44 

7 FUTURE RESEARCH 46 

7.1  Future Extensions of Neoclassical Rotation Theory 46 

7.2  Future Improvement of Numerical Analysis Methodology 47 

8    CONCLUSION                   49 

APPENDIX A: INERTIAL AND VISCOSITY TERMS IN CURVILINEAR 

GEOMETRY 51 

APPENDIX B: REVISED CIRCULAR MODEL FORMALISM 54 

APPENDIX C: COEFFICIENTS IN THE MILLER MODEL FORMALISM 57 

APPENDIX D: COEFFICIENTS IN THE NUMERICAL CALCULATION      

MODEL 62 

APPENDIX E: GTROTA (Georgia Tech ROTAtion) USER'S MANUAL 67 

REFERENCES 89 

VITA   93 



 vi

LIST OF TABLES 

Page 

Table 1: Summary of two DIII-D shot parameters 25 



 vii

LIST OF FIGURES 

Page 

Figure 1: Miller equilibrium flux surface geometry 10 

Figure 2: Neutral beam injection configuration in DIII-D and sign conventions 22 

Figure 3: DIII-D tokamak and CER diagnostics 24 

Figure 4: Equilibrium flux surfaces of two DIII-D shots 26 

Figure 5: Calculated velocities for carbon and deuterium for counter-injected upper      

SN shot #138639 28 

Figure 6: Calculated velocities for carbon and deuterium for co-injected lower SN       

shot #142020 28 

Figure 7: Density asymmetries for carbon and deuterium 29 

Figure 8: Toroidal angular momentum transport frequencies for counter-injected shot 

#138639 30 

Figure 9: Toroidal angular momentum transport frequencies for co-injected shot  

#142020 30 

Figure 10: Comparison of predicted carbon velocities with the circular and Miller   

models with measurements for ctr-injected shot #138639 31 

Figure 11: Comparison of predicted carbon velocities with the circular and Miller  

models with measurements for co-injected shot #142020 32 

Figure 12: SOR flowsheet 37 

Figure 13: Condition numbers at initial iteration step 38 

Figure 14: Topological maps for the meshes for 0.25ρ <  ( 0.5α = ) 42 

Figure 15: Topological maps for the meshes for 0.25ρ >  ( 0.5α = ) 42 

Figure 16: Feasible solution sets for local minima in Figs. 14 and 15 (toroidal    

velocities: CW positive / poloidal velocities: positive upward at outer         

mid-plane) 43 

 

 



 viii 

SUMMARY 

 

 An extended neoclassical rotation theory (poloidal and toroidal) is developed 

from the fluid moment equations, using the Braginskii decomposition of the viscosity 

tensor extended to generalized curvilinear geometry and a neoclassical calculation of the 

parallel viscosity coefficient interpolated over collision regimes. Important poloidal 

dependences of density and velocity are calculated using the Miller equilibrium flux 

surface geometry representation, which takes into account elongation, triangularity, flux 

surface compression/expansion and the Shafranov shift.  The resulting set of eight (for a 

two-ion-species plasma model) coupled nonlinear equations for the flux surface averaged 

poloidal and toroidal rotation velocities and for the up-down and in-out density 

asymmetries for both ion species are solved numerically.  The numerical solution 

methodology, a combination of nonlinear Successive Over-Relaxation(SOR) and 

Simulated Annealing(SA), is also discussed.  Comparison of prediction with measured 

carbon poloidal and toroidal rotation velocities in a co-injected and a counter-injected H-

mode discharges in DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] indicates agreement 

to within <10% except in the very edge ( ρ  > .90) in the co-injected discharge. 
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CHAPTER 1 

INTRODUCTION 

 

 Rotation of tokamak plasmas is known to be important for the stabilization of 

Magnetohydrodynamics (MHD) instabilities and for achieving good confinement in 

tokamaks, as well as providing insight about transport.  Earlier studies indicated that 

toroidal rotation affects neoclassical particle transport to suppress the MHD instabilities 

[1-4] and is postulated to play a role in the shear suppression of microinstabilities that 

enhance transport [5].  Because of the importance of characterizing and understanding 

toroidal rotation and the related angular momentum transport in neutral beam driven 

tokamaks, there has been a longstanding effort both experimentally [6-11] and 

theoretically [12-28] to understand and predict toroidal rotation, but this task has been 

challenging.  Poloidal rotation is also of interest because of its role in the shear 

suppression of turbulent energy transport [29].   

 In understanding toroidal rotation and the angular torque mechanisms, 

representation of the viscosity stress is very important.  From the earlier classical studies 

in cylindrical geometry [9, 14, 15], the familiar perpendicular viscosity was calculated to 

be too small to account for the observed momentum damping.  Taking neoclassical 

effects into account [14, 15, 18, 19] did not change this result, leading to the belief that 

the momentum transport in tokamak plasmas must be due to an "anomalous" effect.  For 

clarification, in this research "neoclassical" refers to the classical transport plus the 

transport due to toroidal geometry (i.e., Pfirsch-Schluter (PS) transport) and trapped 

particle effects. 

 What generally has not been accounted for in these early neoclassical studies [14, 

15, 18, 19] is the GYROVISCOUS contribution to the radial angular momentum 

transport, which is larger than the PERPENDICULAR viscosity component by several 
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orders of magnitude when significant up-down asymmetries are present [12, 13].  This 

gyroviscous contribution vanishes in classical cylindrical geometry and appears only at a 

higher gyroradius order in neoclassical theories.  Even more advanced neoclassical 

theories [18, 19, 25] which do not treat poloidal dependencies (geometric expansion and 

compression) of density and velocity in the formalism failed to properly calculate the 

gyroviscous transport contribution, but recovered only the much smaller perpendicular 

viscosity.  However, there exist several theoretical studies [12, 13, 16, 17, 20-24, 26-28] 

that have provided a firm theoretical basis for the importance of gyroviscosity relative to 

perpendicular viscosity.  

 Motivated by the indicated importance of neoclassical gyroviscosity, studies with 

a simple circular flux surface geometry (the "circular model") [29-33] were previously 

carried out to calculate toroidal velocity and the related gyroviscous momentum transport, 

taking into account density and velocity asymmetries in the formalism.  These studies 

established that gyroviscosity predicts the right order of magnitude of the toroidal 

velocity, thus demonstrating the greater importance of the gyroviscous contribution 

relative to the much smaller perpendicular transport.  The calculated carbon toroidal 

velocities, however, were about a factor of two larger (e.g. Ref. [30]) than the 

experimental measurement, indicating either that the approximations in the representation 

of important poloidal asymmetries made in the “circular gyroviscous model” were too 

crude or that other equally significant momentum transport mechanisms must be present, 

or both. 

 One gross approximation in the circular model studies [29-33] is believed to be 

the representation of the actual D-shaped equilibrium flux surfaces with a circular 

geometry, which limits the accuracy in the calculation of poloidal dependences of density 

and velocity.  In these previous studies, it was shown that the angular momentum 

transport rates are strong functions of these poloidal asymmetries.  Thus, without a more 

accurate representation of the poloidal dependences along the flux surfaces, it was not 
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possible to determine how well the extended neoclassical rotation theory could predict 

rotation.  This observation has motivated the development of a new extended neoclassical 

plasma rotation theory based on the more accurate flux surface geometry given by the 

Miller equilibrium flux surface geometry (the "Miller model" hereafter) [34] that became 

available in 1998 [35, 36]. 

Therefore, the main objectives of this research are i) to present the theoretical 

development of a new extended neoclassical rotation and transport theory based on the 

Miller model representation of poloidal asymmetries, and ii) to compare the calculated 

poloidal and toroidal rotation velocities with measurements made in two recent DIII-D 

discharges [37] to verify the new theory.   The implication of the results to the general 

question of the adequacy of neoclassical rotation calculations in accounting for rotation in 

tokamaks is discussed.  To fulfill the second objective, an effective and robust nonlinear 

algorithm was designed to solve the resultant coupled system of nonlinear equations.  The 

challenges in the numerical analysis of the extended neoclassical rotation theory based on 

the Miller model and the chosen numerical methods are also discussed in detail in 

Chapter 5. 
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CHAPTER 2 

PLASMA FLUID EQUATIONS 

 

2.1  Plasma Fluid Equations in Curvilinear Geometry 

 The motions of charged particles in plasmas are governed by the continuity, 

momentum balance, and energy balance equations shown below with “ j ” being species 

(ions or electrons).  

Continuity equation:   ( )
j o

jj j

n
n V S

t

∂
+ ∇⋅ =

∂

��

                                                 
(1) 

Momentum balance equation: 

( )
1 1

( ) ( )Π j jj j jj j j j j j j j jm n V n m V V P n e E V B F S
t

∂
+ ∇ ⋅ + ∇ + ∇ ⋅ = + × + +

∂

�� ��� ��� ��� �� �� �� �� ��

         
(2) 

Energy balance equation: 

2 2 21 1 5

2 2 2
jj j j jj j j j j j j j j jj

TrM n m V V n T V V q n e V E F S
t

∂    
+ ∇ ⋅ + + ⋅ + = ⋅ + +   

∂    
Π

�� �� ��� �� � �� ��

   

(3) 

where 
jTrM  is the scalar trace of the momentum stress tensor 

( )1

3
M I Πj jj j j jj j j j j

j
n m V V n m V V TrP≡ = + +

��� �� �� �� �� � ���
,                                

          
(4) 

jF
��

 is the friction, and  
j j jj

q n Tχ= − ∇
�

 is the heat conduction relation.  The first and 

second term in the momentum balance equation, Eq. (2), can be expanded as 

 ( )
jj

j jj j j j j

n V
m n V m V n m

t t t

∂∂ ∂
= +

∂ ∂ ∂

��
�� ��

,     
 
                                           (5) 

( ) ( )j j j j j j( )j j j j j jn m V V n m V V m V n V∇ = ∇ + ∇
�� �� �� �� �� ��
i i i .

 
  

                                                    
(6) 

When multiplying the Continuity equation by jj
m V
��

, we obtain 

j j j ( )
j o

jj j j j j

n
m V m V S m V n V

t

∂
= − ∇⋅

∂

�� �� �� ��
                

                                                  
(7) 
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which when replacing the first term in Eq. (5) its second term cancels out the second term 

in Eq. (6), thus yielding the basic form of the momentum balance equation used in this 

research. 

 

( )j j

1 1

j( )

Π
j

jj j j j j

o
jj jj j j j

V
n m n m V V P

t

n e E V B F S m V S

∂
+ ∇ + ∇ + ∇ ⋅

∂

= + × + + −

��
�� �� ���
i

�� �� �� �� �� ��                                                           
(8)

                                                                 

 The viscosity tensor(Π j

���
) can be represented in (at least) two different ways by 

different ordering arguments. The short mean free path (i.e., highly collisional or Pfirsch-

Schluter) description of viscosity, originally formulated by Braginskii [13], assumes a 

“strong rotation” ordering in which ion mean flow is on the order of ion thermal speed, 

thV V V⊥ �
≪ ∼  where 

th
V  is the ion thermal velocity.  Mikhailovskii and Tsypin [16] 

realized that this ordering is not one of the most interest in many practical situations, as in 

the plasma edge region or in discharges with slow rotation,  and assumed ion mean flow 

to be on the order of the diamagnetic drift velocity, thus 
th

V V
�
≪  in this “weak rotation” 

ordering.  In reducing the plasma fluid equations to derive a neoclassical plasma rotation 

theory, either Braginskii’s or Mikhailovskii’s viscosity formalism may be employed if the 

corresponding ordering conditions are satisfied.  For this research, we limit the scope of 

the research to Braginskii’s ordering since it is valid for strongly rotating tokamak 

plasmas heated with directed neutral beam injection, except in the edge region.  Using 

this ordering will enable us to check the validity of the new extended neoclassical 

rotation theory against measurements with significant rotation, presumably involving less 

experimental uncertainty.  The extension of the present theory to Mikhailovskii's ordering 

is a useful topic for future research.  

 Applying Braginskii viscosity formalism to axisymmetric ( 0φ∂ ∂ = ) toroidal flux 

surface geometry [17], which is eventually the "Pfirsch-Schluter" extension of classical 

gyroviscosity, the steady-state plasma fluid equations are reduced to Eqs. (9)-(12).  Note 
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that the momentum balance equation is composed of three scalar components ( , ,r θ φ ) 

and that the energy balance equation is not needed in this study with Braginskii's ordering 

(but would be included in future weak rotation studies). 

Continuity equation:  

 

( ) ( )

( )

1 1 1 1 1 1j rj j j r
j rj j j

r r r

e oj e ionjionj

n V n Vh hh h
n V n V

h r h h r h r h h h h

n n V n

θφ φθ
θ

φ θ θ θ φθ θ θ

σ ν

   ∂ ∂∂ ∂∂ ∂
+ + + + +      ∂ ∂ ∂ ∂ ∂ ∂   

= ≡      

(9) 

Radial momentum balance equation: 

 

( ) ( )

( ) ( )1 0

1
Π

j
jj jj j

rr
r

j j r j j rj rj j rj j

p
n m V V

h r

n e E V B V B F S m V Sθ φ φ θ

∂
 ∇ + + ∇
  ∂

= + − + + −

�� �� ���
i i

                                              

(10)

 

Poloidal momentum balance equation: 

  

( ) ( )

( ) ( )1 0

1
Π

j
jj jj j

j j rj j j j j j

p
n m V V

h

n e E V B F S m V S

θθ
θ

θ φ θ θ θ

θ

∂
 ∇ + + ∇
  ∂

= − + + −

�� �� ���
i i

                                                        

(11)

  

Toroidal momentum balance equation: 

 
( ) ( ) ( ) ( )1 0

Π
A

jj jj j j j rj j j j j jn m V V n e V B F S m V Sφ θ φ φ φ
φφ

 ∇ + ∇ = Ε + + + −
 

�� �� ���
i i

        
(12)

 

where ,
r

h hθ  and hφ  are differential metric coefficients (or scale factors) for a given flux 

surface geometry, which relate differential coordinates and their length elements by 

r r
dl h dr= , dl h dθ θ θ= , and dl h dφ φ φ= .  

A

φΕ  is the toroidal component of the inductive 

electric field 
A

E A t= − ∂ ∂
�� ��

.  Details of representing the plasma fluid equations in general 

curvilinear geometry has been worked out earlier [36].  All coordinate components of the 

inertial term, ( )V V ∇
 

�� ��
i , and the viscous term, ( )∇

���
iΠΠΠΠ , can be found in Appendix A.  

 To acquire relations required to solve for rotation velocities and poloidal 

asymmetries, further approximations are made to Eqs. (9)-(12) by introducing the strong 
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rotation ordering to eliminate negligible terms.  We start by neglecting radial velocities 

because rV V Vθ φ<≪   holds in tokamak plasmas.  The continuity equation then becomes  

( ) ( )1 1 1 1j j r
j rj j j e ionj

r r

n V h h
n V n V n

h r h h h h

θ φ

θ

θ θ φ

ν
θ θ θ

 ∂ ∂∂ ∂
+ + + =  ∂ ∂ ∂ ∂                           

(13) 

Assuming that all other terms except the pressure gradient and electromagnetic force 

terms are negligible, the radial momentum balance equation reduces to 

( )1 1j

j j r j j j j j j

r r

P
n e E V B V B n e V B V B

h r h r
θ φ φ θ θ φ φ θ

∂  ∂Φ
= + − = − + − 

∂ ∂                   

(14) 

where Φ  is the electrostatic potential.  In the poloidal momentum balance equation, Eq. 

(11), the inertial and viscous terms from Appendix A reduce to 

( ) j j j j
V V V V h

V V
h h h

θ θ θ φ φ

θ
θ θ φθ θ

∂ ∂
 ∇ = −
  ∂ ∂

�� ��
i ,

                                                                           

(15)

 

 

( ) ( ) ( )1 1

1 1 1

r r

r

rr r

r r

Rh h h
H r H

hh R

h h h h r Rh

θ θ φ θθθ

θ
θ φφ

θ θ θ

θ

θ θ

∂ ∂
∇ Π = Π + Π

∂ ∂

∂∂ ∂
− Π + Π − Π

∂ ∂ ∂

i

 

                                               

(16)

 

where r
H h h hθ φ= .  In the toroidal momentum balance equation, Eq. (12), the inertial and 

viscous terms in Appendix A are reduce to 

( ) rj j j rj j j j j

r r

V V V V V V V Vh h
V V

h r h h r h h h

φ φ θ φ φ θφ φ

φ
φ θ φ θθ θ

   ∂ ∂∂ ∂
 ∇ = + + +        ∂ ∂ ∂ ∂   

�� ��
i ,

                                

(17)

 

( ) ( )1 1 1
r r

r r

BR R
Rh

Rh h r Rh r h B Rh

θφθ
θ φ φ θφφ

θ θ θ θθ θ

 Π   ∂ ∂ ∂ ∂
∇ Π = Π + Π + + Π   

∂ ∂ ∂ ∂    
i . 

            

(18) 

These reduced forms of the continuity and momentum balance equations constitute the 

basic set of relations required to develop any plasma rotation theory in strongly rotating 

plasmas.  In this study, an extended neoclassical rotation theory based on the Miller 

geometry is developed for a two-species “deuterium-carbon” plasma for simplicity but 

can also be extended to multiple ion species by summing over all ion species to calculate 

the friction term and the electron density from charge neutrality.  
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  2.2  Extended Stacey-Sigmar Poloidal Rotation Model 

  Quite different plasma poloidal rotation theories can be developed from the same 

basic set of equations in the previous section, based on which terms are retained in the 

momentum balance equations and how the viscosity and poloidal dependences of density 

and velocity  are represented in Eqs. (9)-(12).  One of the biggest differences among 

existing theories is the number of terms retained in the poloidal momentum balance, Eq. 

(11).  Such differences in poloidal rotation calculation models ultimately affect the 

toroidal velocity calculations.  One of the early poloidal rotation models is based on the 

Hirshman-Sigmar poloidal rotation theory (the H-S model) [38], which neglects all terms 

except the viscosity and friction terms, which are treated with a sophisticated friction and 

viscosity representation.  This model is used in the NCLASS code [39].  The model by 

Kim, Diamond, and Groebner (the KDG model) [40], is a trace-impurity approximation 

to the H-S model. The Shaing-Sigmar-Stacey (the S-S-S model) [1] retain more terms in 

the poloidal momentum balance equation and calculates poloidal density asymmetries to 

represent poloidal dependences.  The most recent form of neoclassical poloidal rotation 

theory evolved from the S-S-S model is the Stacey-Sigmar poloidal rotation model (the 

"S-S model" hereafter) [20, 30, 41], which uses the generalized curvilinear form of 

Braginskii flow rate-of-strain tensor (see Appendix A) [36, 42] and retains all terms to 

obtain  

( ) ( ) ( )

( )

jj j

1

0

Π
j

j j j j j jk j k

j j rj j j ionj j j j elcxj j

p
n m V V M n m V V

h

n e V B E n m V n m V

θ θ θ
θθ

θ

φ θ θ θ

ν
θ

ν ν

∂
 ∇ + ∇ + − + −
  ∂

+ − + + =

�� �� ���
i i

                    

(19) 

which is basically Eq. (11) rewritten with the source and friction terms replaced with 

actual calculation models.  The third term in Eq. (19) is the pressure gradient.  The fourth 

term ( )jMθ  represents any external poloidal momentum input or torque and comes from 

representing the momentum source term as the momentum input minus momentum 
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damping due to charge exchange and elastic scattering of rotating ions with non-rotating 

neutrals, as in  

1

S jj jj j elcxjM n m Vν= −
� ��� ��

.                                                                

                      

(20)

 The fifth term is the interspecies collisional friction and a simple Lorentz form, 

( )
1

j j kj j jk

k

F n m V Vν= − −∑
�� �� ��

, is used in this study.  The sixth term is a combination of 

V B×
�� ��

 force and electric field force, the seventh term comes from the right-hand side of 

Eq. (13), and the last term comes from the 2nd term in Eq. (20).  This S-S model also 

replaces the parallel viscosity coefficient in the H-S model with the Shaing banana-

plateau-PS viscosity interpolation formula  

( ) ( )
( )

3
*2

0 *

0 3 2 * *1 1

j j thj jj

j j j thj j jj

jj jj

n m V qR
n m V qRf

ε ν
η ν

ε ν ν

−

−
= ≡

+ +
 

                                                     

(21) 

where the normalized collision frequency is  *

0jj jj thj
qR Vν ν≡  with 

jjν  being the self-

collision frequency of species " j ", q  is the safety factor, and 0r Rε ≡
 
[17, 42].

    In the S-S poloidal rotation model, the poloidal dependences of density and 

velocity over flux surfaces are represented by the following low-order Fourier expansion,  

( ) ( ) ( ) ( ), 1 cos sinc s
jj j jn r n r n r n rθ θ θ ≈ + +  ,

                                              
 (22a)

 

( ) ( ) ( ) ( ), 1 cos sinc s
jj j jV r V r V r V rθ θ θ ≈ + +                                                

(22b)
 

where the overbar indicates the average values over flux surfaces, the cosine asymmetries 

with superscript "c" represent "in-out" variations, and the sine asymmetries with 

superscript "s" represents "up-down" asymmetries.  More details on the S-S poloidal 

rotation model can be found in Refs. [17] and [42]. 

 Earlier studies with the S-S model [29-33] have developed an extended 

neoclassical rotation theory based on the circular flux surface geometry and the 

calculations were compared to actual velocity measurements [30].  Although the 
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calculated toroidal velocities were off by about a factor of two, these studies proved the 

possibility of using simple analytic flux surface geometry models in this type of 

neoclassical rotation and the related momentum transport calculations but concluded that 

higher accuracy could be achieved with a more accurate flux surface geometry since 

poloidal asymmetries are closely related to the geometric expansion, compression, and 

elongation of flux surfaces  [30].  These findings have motivated the use of the Miller 

flux surface geometry to rederive an extended neoclassical rotation theory [35] based on 

the S-S poloidal rotation model.  

 

2.3  Miller Equilibrium Flux Surface Model 

 The circular model was rather simpler in terms of the derivation and numerical 

coding but lacks the accuracy in the representation of poloidal dependences along the 

flux surfaces.  Miller et al. [34]  presented an analytical geometry to better describe actual 

D-shaped equilibrium flux surfaces of tokamak plasmas with elongation κ  and 

triangularity δ  as shown in Fig. 1, thus one of the most advanced analytic 

representations of the flux surfaces in tokamak plasmas.  
0 ( )R r  is a function of r , the 

half-diameter from the center of plasma along the plasma mid-plane, representing the  

 

 

Figure 1. Miller equilibrium flux surface geometry. 
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shifts of the center of each flux surface.  The R  and Z  coordinates of the Miller model 

are described by
 

( ) ( ) ( )0 0( ) cos sin cosR r R r r x R r rθ θ ξ= + + ≡ + ,

                                          

(23a)

 

( ) sinZ r rκ θ=

                                                                                                  

(23b) 

where 1sinx δ−≡  and sinxξ θ θ≡ + . 

 Analysis of the curvilinear differential geometry in all coordinates( , ,r θ φ ) yields 

the following metric coefficients for the Miller model [34, 35, 43], 

( ) ( )

( )

0

22 2 2

( )
cos sin cos cos 1 cos sin sin

sin 1 cos cos
r

R r
x s s s x

r
h

x

κ δ κκ θ θ θ θ θ ξ

ξ θ κ θ

∂ 
+ + − + +   ∂ =

+ +

,

         

(24)

 

( ) ( )

( )

0

2
22 20

( )
cos sin cos cos 1 cos sin sin

cos sin sin sin 1

R r
r x s s s x

r
h

R
s s

r

κ δ κ

θ

δ κ

κ θ θ θ θ θ ξ

ξ ξ θ κ θ

∂ 
+ + − + +   ∂ =

∂ 
+ − + + 

∂ 

,  

          

(25)

 

( )0( ) 1 cosh R r Rφ ε ξ= = +
 
                    

                                                               
(26) 

where ( ) ( )s r r rκ κ κ= ∂ ∂  and ( ) ( ) ( )2
/ 1s r r rδ δ δ= ∂ ∂ −  account for the changes in 

elongation and triangularity respectively along the radial direction.  Ampere's law 

provides the following magnetic field representations for the Miller model. 

( )
( )

0 ( )
, 1

1 cos
r

R r B
B r

r h

θ

θ θ
ε ξ

∂ 
= + 

∂ + 
  

                                                                 

(27)

 

1 cos

B
B

φ

φ ε ξ
=

+
       

                                                                                             

(28) 

With this analytical Miller model, we can use the S-S poloidal rotation model to calculate 

the poloidal dependences of density and velocity represented in Eqs. (22a) and (22b) 

more accurately, ultimately increasing the accuracy in the toroidal velocity and 

momentum transport calculations. 
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 Different flux surface geometries provide different formulas for the flux surface 

average (FSA) calculations.  For the Miller model, we have   

( )
( )

( )

( , )

( , ) ,
,

,

A r d

A r Y r dB
A r

d Y r d

B

θ

θ

θ

θ

θ

θ θ θ
θ

θ θ

∫
∫

≡ =
∫∫

ℓ






ℓ 




                                           (29) 

where 

( )
( ) ( ) ( )

( ) ( )

2

0

2
2 22 2 2 2 20

( )
1 cos cos sin cos cos 1 cos sin sin

,

cos sin sin sin 1 sin 1 cos cos

R r
x s s s x

r
Y r

R
s s x

r

κ δ κ

δ κ

ε ξ θ θ θ θ θ ξ

θ

ξ ξ θ κ θ ξ θ κ θ

∂ 
+ + + − + +   ∂ =
 ∂   + − + + + +    ∂     

.  

Unlike those of the circular model used in earlier studies [29-33], FSAs in the Miller 

model do not reduce to simple analytic forms, thus must be numerically computed 

separately and imported into the final computation code.  Note here that the circular 

model is simply a special case of the Miller model with elongation 1κ = , triangularity 

0δ =  and no Shafranov shift.  This simple fact served as one of the tools to check the 

accuracy and validity of the new plasma rotation theory against the earlier circular model 

study [29, 30] (see Appendix B for revised circular model formalism) and for the 

numerical coding in this work. 
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CHAPTER 3 

EXTENDED NEOCLASSICAL ROTATION THEORY IN THE 

MILLER MODEL REPRESENTATION 

 

3.1  Angular Toroidal Torques and Transport with the Miller Geometry 

 Now with all theoretical backgrounds required to develop a new extended 

neoclassical rotation theory with the Miller geometry presented, we are ready to derive 

the formalism for calculating toroidal velocity and neoclassical gyroviscous contribution 

to angular momentum damping.  Earlier studies with the circular model [29-33] now 

become special cases of this new theory.  Thus, the new theory with the Miller model was 

developed in a similar fashion to the circular model study [30] so that direct comparison 

would be possible to enable evaluation of the accuracy improvement.  In this chapter, 

derivation of the toroidal angular torque formalism is presented first to stress the 

importance of the gyroviscous contribution to the total viscous torque.  

 From the first term of the toroidal momentum balance equation, Eq. (12), the FSA 

of toroidal angular "inertial" torque using the Miller model is given by 

( )2

0j j j jj j j nj
n m R V V R n m Vφφ ν∇ ∇ =

�� ��
i i

                                                                 
(30) 

with the "inertial”  transport frequency ( njν ), 

ɶ �( )

�

10
0

0

2

2 0

1 cos cos
cos

1 1
sin

1 1 cos 1 1
cos cos cos sin

1
sin

c crj
j jnj V

r r r

s

j j

RV
n V R L

R r h h h

R

R h R
V V

h h h R h

h

φ
φ

θ
θ φ

θ θ θ θ

θ

ξ ξ
ν ε θ

θ
θ ξ

ε θ θ ε θ θ
θ

θ

−
 ∂

= + + + − 
∂ 

 ∂
 

∂ ∂ + + + +
 ∂
  
      

(31)
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where ( )1 1XL X X r− = − ∂ ∂  is the gradient length scales for a given quantity X , 

ɶ , , /
s c

s c
j j

n n ε = , and �
, ,c s c s
j jV Vφ φ ε≡ . 

Also from the 2nd term of the toroidal momentum balance equation, Eq. (12), the 

FSA of toroidal angular "viscous" torque is given by 

( ) ( ) ( )

( )

2 2 2 2

1

3

4 0

1

Π Π Π Π
gv gv

j jj dj

r

R R R R

V R
R R n m V

Rh h r

φ
φ

θ

φ φ φ φ

η ν
θ

⊥

−

∇ ∇ = ∇ ∇ + ∇ ∇ ≈ ∇ ∇

 ∂∂
 = − =

∂ ∂  

��� ��� ��� ���
i i i i i i i i

                   

(32)

 

where ( )4 j j j j j
n m T e Bη =  and the gyroviscous transport (or "drag") frequency is  

1 2

dj dj dj
ν ν ν≈ +                                                                                                         (33)

 
with 

 

�

ɶ

0

1

0 00

0

cos 1 cos
2 cos cos

1 sin 1 sin
sin sin cos

1 sin sin
sin sin cos

s r r

j

j

dj

r rj

s

j

r r

R
h h R h h

V
T

R x R
R h h R h hR e B

n R x R
R h h h h

θ θ
φ

φ θ θ

θ θ

ξ ξ
θ θ

ξ ξ
θ θ θν ε

ξ ξ
θ θ θ

  
+  

  
  
  + += −    
 
  
+ +   
   

,                              (34)

 

ɶ
2

2

0

1

2

j j j

dj

j

G T

R e Bφ

θ
ν ≡

                                                                                                      

(35)

 

where  

( )1 1 1

jj jj Tn V
G r L L L

φ

− − −≡ + +
,                                                                                        

(36)
 

 

ɶ

�

ɶ

ɶ �

2

2

cos 1 cos cos
cos

sin sin
sin sin cos2

sin sin sin
sin sin cos

c

j

s r r r

j

j

r r

s c

j j

r r r

n R R R
h h h h h h

V

R x R
h h h h

n V R R x R
h h h h h h

θ θ θ
φ

θ θ

φ

θ θ θ

θ θ ξ
θ

ε

ξ ξ
θ θ θθ ε

θ ξ ξ
θ θ θ

  
+ +  

  
  
  + +=    
 
  
+ − + +   
   

.                      

 

(37)
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Earlier circular model studies [29-33] were done with 
2

djν  only, but 
1

djν  was identified to 

have non-negligible contribution during the numerical calculation in this work, thus 

included for both the Miller model and the revised circular model theories (see Appendix 

B for the revised circular model formalism).  
2

djν  contains the same 
jG  and ɶ jθ  

representing the radial gradients and poloidal asymmetries respectively, thus allowing 

direct comparison with the earlier circular model formalism [29-33].   Note here in Eq. 

(32) that the gyroviscous contribution accounts for the most of the viscous torque since it 

is much larger than the perpendicular component by the following argument.  Braginskii's 

parallel ( )0η , gyroviscous ( )3,4η , and perpendicular ( )1,2η  viscosity coefficients in a 

collisional plasma are given as follows, expressed with their relative orderings,  

 
0 1 2 1 3 4 32

3 1
0.96 , , 4 , , 2

10 2

nT nT
nTη τ η η η η η η

τ
= = = = =

Ω Ω                      
(38) 

where in tokamak plasmas 510 sτ −
∼ is the typical self-collision time and 8 110 s

−Ω ∼  is 

the typical ion gyrofrequency.  Thus, Braginskii's parallel, gyroviscous, and 

perpendicular viscosity coefficients are in the ratio of 1 2 3 61 / ( ) / ( ) 1 /10 /10τ τ− − − −Ω Ω ≈ .  

Therefore, the ordering among these components are given by 
0 4 2

η η η≫ ≫ .  With the 

parallel contribution identically vanishing in the FSA and ( ) ( )3 4

4 2 210 ~10η τ η η− −≈ Ω ≈ , 

the gyroviscous contribution is the dominant one, larger than the perpendicular 

component generally by a couple of orders of magnitude. 

 Note here that the gyroviscous momentum transport frequency given by Eqs. 

(33)-(37) is a strong function of density and toroidal velocity asymmetries, thus vanishes 

in any formalism that neglects poloidal dependences.  Also, although Braginskii's 

viscosity was derived assuming large collisionality, this Pfirsch-Schluter type 

"neoclassical" gyroviscosity is independent of any explicit collisionality since no direct 

evidence on the trapped particle effect on gyroviscosity has been reported.  When the 
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poloidal asymmetries are not considered, as in the NCLASS code [39], only the 

perpendicular contribution survives and the calculated neoclassical momentum damping 

is negligible [18, 19, 25], leading to the incorrect conclusion that neoclassical transport is 

too small. 

  

3.2  Stacey-Sigmar Poloidal Rotation Theory with the Miller Geometry 

 Calculation of the toroidal angular torques and transport rates in the previous 

section requires a calculation of the poloidal asymmetries (
,c s

jn  and 
,c s

jV ) appearing in 

Eqs. (22a) and (22b).  This can be accomplished by taking Fourier moments (i.e., 1, 

cosine, and sine moments) of the poloidal momentum balance, Eq. (19), with Eqs. (22a) 

and (22b) assumed.  Using the same Fourier moments of the continuity equation, Eq. (13), 

the velocity asymmetries (
,c s

jV ) can be related to the density asymmetries (
,c s

jn ) by  

� ɶs ss
j jjV V nθ θ ε≡ ≈ − ,                                              (39) 

� ɶ

2

1 1
sin

1

1
sin

c
c c

j
j j

R

R hV
V n

h

θθ
θ

θ

θ
θ

ε ε
θ

∂

∂
≡ = − +                                                                 (40) 

to reduce the number of unknowns in the final computation model.  We may consider 

adding an additional atomic physics term on the right-hand side of the continuity 

equation, Eq. (9), to increase the accuracy in the plasma edge region as in one of the early 

circular model studies [44] but this is left as a future research.   

We also assume the same type of Fourier series expansion for the electrostatic 

potential, 

( ) ( ) ( ) ( ), 1 cos sinc s
r r r rθ θ θ Φ ≈ Φ + Φ + Φ  ,                                                   (41) 

and use it in the moments of the poloidal momentum balance equation for " j = electrons" 

to relate the potential asymmetries ( /c sΦ ) to the electron density asymmetries ( /c s

en ).  In 
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doing so, we neglect all other terms except the pressure and electric field terms in the 

poloidal momentum balance, Eq. (19), to yield 
 

 
, ,c s c s

e eT n eΦΦ =                                                                                                   (42) 

where 
,c s

en  are coupled with 
,c s

jn ( j  = ions) by the charge neutrality.  The same Fourier 

moments of the radial momentum balance, Eq. (14), can be used to calculate the radial 

electric field, rE , and the toroidal velocity asymmetries (
/c s

jVφ ) as a function of 
,c s

jn  as in 

Eqs. (43)-(45), again allowing the reduction in the number of unknowns in the numerical 

computation model.  The 1, cosine, and sine moments of the reduced radial momentum 

balance, Eq. (14), are  

� � � ( ) �
' '

0

1 11

1 cos1 cos ( )' 1
1

1 1

r r
j jj j

thj thj thj

r r

hR rE
V V P

V r rV B V B

h h

θ φ

θ θ

ε ξε ξ ++ ∂Φ ∂Φ  
Φ ≡ ≡ = − = − + − ∂ ∂ 

     

(43) 

where  �
'

' 1 1j j
j

jthj thj j

P P
P

V V rn e Bθ

∂
≡ ≡

∂
,  

pf B Bθ φ≡ , � ( )j j p thj
V V f Vθ θ≡ , and � /j j thj

V V Vφ φ≡ , 

� ɶ 1 2s s S S
j j j jV nφ α α= +

                                                                                                
(44)

 

where 
1S

jα  and 
2S

jα  can be found in Appendix C, and   

 

�
�

�

( ) �

�
( )

3 2

'

1 2 2 40

1

1 cos

1

1 1

1 cos( )
1

1

c j C C
j j j

j

r

jrC C C C

j j j j

j

r

V
V

V

h

hR r P

r V

h

θ
φ

φ

φ

ε ξ
α α

ε ξ
α α α α

 
 

+ = +
 
  
 

+∂ 
+ − + − − ∂ 

                                

(45) 

where  
1C

jα , 
2C

jα , 
3C

jα , and 
4C

jα   are all functions of ɶ
c

jn  and can be found in Appendix C.  
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 Using all the coupling relations found so far, the first moment of the poloidal 

momentum balance reduces to Eq. (46a), written in a generic form for simplicity, that 

allows us to calculate the poloidal velocity for two ion species " j " and " k ",  

� � �
2

11 12 13 1j j kA V A V A V Bθ θ θ+ + =

                                                                              

(46a) 

where 11A , 12A , 13A , and 1B  are given in Appendix C.  In the numerical calculation 

model, the quadratic term in Eq. (46a) is treated iteratively  

 
� � � �

1

11 12 13 1

n n n n
n

j j j kA V V A V A V Bθ θ θ θ

−

+ + =
            (46b) 

as a linear term with n  being the current iteration step and 1n −  being the previous step.  

With the quadratic equation possibly having two solutions, this iteration helps steer the 

algorithm towards the solution that is near the initial guesses of poloidal velocities.  In 

Eqs. (46), the friction term appears in 
*

/jk jk thjqR Vν ν=  and the viscous term in 

( )( )3 2 * 3 2 * *1 1j jj jj jjf ε ν ε ν ν− − = + +   from the use of neoclassical parallel viscosity 

expression, ( )*

0 j j j thj j jjn m V qRfη ν= . 

 The cosine and sine moments of the poloidal momentum balance, Eq. (19), reduce 

to Eqs. (47) and (48) respectively (again in generic forms for the two species), to solve 

for ɶ
,c s

jn , 

ɶ ɶ ɶ
1 2 3

c s c

j j kC C C C
A n A n A n B+ + = ,

                                                                                

(47) 

ɶ ɶ ɶ
1 2 3

c s s

j j kS S S S
A n A n A n B+ + =

                                                                                   

(48) 

where ,C S
A and ,C S

B  coefficients are given in Appendix C.  When we assume "two-

species" plasma with the main ion (deuterium) and a majority impurity(carbon), Eqs. 

(46)-(48) provide six equations, with j  being either deuterium or carbon and k being the 

other, leaving two more relations to be identified from the toroidal angular momentum 

balance for the calculation of toroidal velocities.   
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3.3  Toroidal Rotation Calculation Model with the Miller Geometry 

 The calculation model for the toroidal velocity can be derived from the toroidal 

component of the angular momentum balance,  

 

( ) ( )
,

Π jj jj j

A

j j j j rj j j j j atomj j

n m R V V R

Rn e Rn e V B RF RM Rn m V

φ φ

φ θ φ φ φν

   ∇ + ∇
   

= Ε + + + −

�� �� ���
i i

                                          (49) 

from which we can get two additional relations to complete the eight equations to solve 

for the eight unknowns (4 velocities and 4 density asymmetries).  Using the FSAs of first 

(inertial) and second (viscous) torque terms presented in Eqs. (30) and (32), we can take 

FSAs of all other terms in Eq. (49) to find relations for the toroidal velocity calculation.  

The first moment of Eq. (49) yields 

 

( )

0

1

( ) 1
1

j jk j k j jkj j j j
k k

A
jj j j rj

r

n m V V n m y

R r
n e E e B M

r h

φ φ

θ φφ

ν β ν + − ≡∑ ∑ 

∂ 
= + + Γ + 

∂ 
                                                         

(50)
 

where ( ) ( )/ j jk jej dj nj nbj
S nβ ν ν ν ν≡ + + + , ( )1 j kj j

y V Vφ φβ≡ + − , and M φ  is the 

toroidal momentum input.  
jβ
 
represents the radial transport of angular momentum with 

nbjS  being the local neutral beam source rate and njν and djν  are the inertial and 

gyroviscous transport frequencies respectively calculated with Eq. (31) and (33).  Thus, a 

relation between the toroidal velocities of deuterium and impurity can be derived by 

adding 
jy  of the two species, j i= (deuterium) and j I= (carbon) with 

thi I i thIV m m V=  

when assuming equilibrium temperature(
i I

T T= ).  This yields

 
� � ( )i II i i I i I thIV m m V y y Vφ φβ β+ = + ,

                                                          

(51) 

which becomes the 7
th

 equation in the numerical computation model.  

 The last equation comes from manipulating the first moments of radial 

momentum balance, Eq. (43), for the two species.  Since ( )' 1 B rθΦ ≡ ∂Φ ∂  is 
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independent of species, it must be identical when calculated with either j i=  or j I= , 

thus providing 

� � � �

( )

� �

( )

0

' '

0

1

1 cos

( ) 1 1
1

1 cos

1

( ) 1 1
1

1 cos

i i
i I i I

I I

r

ri
i I

I

r

m m
V V V V

m m R r

r h

hm
P P

m R r

r h

φ φ θ θ
ε ξ

ε ξ

ε ξ

  +
− = −   ∂   + 

∂ + 

 
+ − +   ∂   + 

∂ + 

                                (52) 

which is the last, 8
th

, relation that the toroidal velocities of both species must satisfy. 
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CHAPTER 4 

EXPERIMENT RESULTS 

 

 Improvement of the extended neoclassical rotation theory in this research can be 

verified through the comparison of the calculated results with actual DIII-D [37] 

experimental measurements.  In this chapter, a brief discussion on the rotation 

measurements in DIII-D is presented, followed by the detailed information on two DIII-D 

shots (discharges), shot #138639 and shot #142020, used for comparison with the 

theoretical calculations. 

 

4.1  Rotation Experiment and Velocity Measurement in DIII-D Tokamak 

 In DIII-D tokamak, toroidal rotations are provided mainly by the neutral beam 

injections (NBI) except for other special purpose discharges.  Figures 2 show the 

schematic alignment of the NBI ports in DIII-D with 30° , 150 ° , and 330 °  beamlines 

providing CCW-injections and 210 °  beamlines providing CW-injections when viewed 

from the top (notice that each has two beamlines).  In this research, co- and counter- 

injection directions are determined relative to 
pI  direction with parallel direction being 

co- and anti-parallel being counter-injection.  For two shots used in this research, neutral 

beams (dashed black lines) are injected from 30 ° , 150 ° , and 330 °  ports only, thus 

provides strong CCW-rotation for both discharges.  210 °  beamlines can also be used for 

either slow or intrinsic rotation discharges but not used for two shots selected for this 

research because the new extended rotation theory [42]  needs to be verified with strong 

rotation shots.  Figures 2 also show theoretical sign conventions for two shots in red (the 

directions of experimental parameters are shown in blue) that the users of the developed 

code, GTROTA (Georgia Tech ROTAtion), must ensure its correct directions (see 

Appendix E for the user's manual).  Theoretical sign conventions in this research are 
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determined by the orthogonal coordinate system by a right-hand rule with the thumb 

pointing parallel to 
pI  direction.  Therefore, for an accurate and reliable verification of 

the theory, the accurate input values with correct signs into GTROTA code become very 

important.   

 

(a) Shot 138639 (ctr-injection) 

 

 

(b) Shot 142020 (co-injection) 

Figure 2. Neutral beam injection configuration in DIII-D and sign conventions. 
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 Measurement of rotation velocities in tokamaks are done with CER (Charge 

Exchange Recombination) diagnostic system [45-47] that measures the Doppler shift of 

the spectrum of light from an excited ions that have undergone charge exchange with 

beam neutrals [48].  There has been recent improvement in rotation measurement and 

analysis [47, 49, 50], motivating the comparison of theoretical calculations with recent 

shots to verify the new extended theory based on the Miller model.  Figure 3(a) shows 

various diagnostic ports inside DIII-D and 3(b) shows the schematics of the recent CER 

viewing chords in DIII-D [51]  modified to allow the measurement of deuterium 

velocities, which were not possible with earlier CER configurations.  Availability of the 

measured deuterium velocities yields a great future research opportunity in verifying the 

theory and increasing the accuracy in prediction of other variables in the numerical model. 

  

4.2  Experimental Data 

 Since the new extended neoclassical rotation theory was developed based on 

Braginskii's strong rotation orderings, two strongly rotating ELMing (Edge Localized 

Mode) H-mode DIII-D shots are analyzed in this research.  One shot was counter-

injection #138639 (2085 ms) and the other was co-injection  #142020 (2310 ms).  

Summary of the shot parameters are provided in Table I.  In this table, the 

impurity/deuterium density ratio shows the relative amount of impurities with respect to 

deuterium density.  For example, shots 138639 has approximately 10% impurities on 

average with ~9% at the center and ~10% at the 90% flux surfaces.  Throughout the 

radial ranges except the plasma edge, the ratio only slightly fluctuate about the average 

but the fluctuation increases at more than 90% flux surfaces where the ratio is not reliable 

due to lack of atomic physics treatment on the edge.  The incident neutral beam power 

( NB
P ) is given as the ratio of incident vs. capable neutral beam power, which is identical 

to the duty cycle, and also indicates which NBI beamlines were on for the given time for 

each shot.  For example, the 30LT beam for shot 142020 (1.3 MW/2.6 MW) has the 



 24

 

(a) DIII-D interior with diagnostic ports [52] 

 

 

 (b) CER viewing chords in DIII-D [51] 

Figure 3. DIII-D tokamak and CER diagnostics. 
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capability of 2.6MW beam injection but used with 50% duty cycle, thus generating 

1.3MW of beam injection energy.  Figures 4 show the equilibrium flux surfaces for these 

two shots.   

 

Table 1. Summary of two DIII-D shot parameters 

Shot properties shot 138639 (2085 ms) shot 142020 (2310 ms) 

Beam Injection Direction Counter-injection Co-injection 

R  (major radius) 1.734 m 1.796 m 

a (minor radius) 0.586 m 0.592 m 

( )0rκ = / ( )r aκ = (elongation) 1.45 / 1.83 1.39 / 1.85 

( )bottomzδ / ( )top
zδ  (triangularity) 0.22 / 0.6 0.714 / 0.382 

I  (current) -1.181 MW 

(CW from the top view) 

1.074MW 

(CCW from the top view) 

pB  (poloidal magnetic strength) 0.275 T 0.249 T 

Bφ  (toroidal magnetic strength) -1.994 T -1.897 T 

95q (safety factor at 95% flux surface) 4.9 5.63 

loopV  (Loop Voltage) -0.26296 V 0.315715 V 

Divertor configuration Upper Single Null(USN) Lower Single Null(LSN) 

Impurity/deuterium density ratio 

(average/at the center/at 95% flux surfaces) 

0.1 / 0.09 / 0.1 0.04 / 0.04 / 0.05 

NB
P  (Incident Power/ Capable Power) 

 

 

30LT (2.1/2.6 MW),  

150LT (2.2/2.2 MW),  

330LT (2.6/2.6 MW) 

 

30LT (1.3 MW/2.6 MW),  

150LT (1.8 MW/1.8 MW),  

330LT (1.1 MW/2.2MW),  

330RT (1.3 MW/2.2 MW)  
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(a) shot 138639-2085ms                   (b) shot 142020-2310ms 

Figure 4. Equilibrium flux surfaces of two DIII-D shots. 

 

 As mentioned, there have been recent advances in the measurements and analysis 

of toroidal and poloidal rotation, including proper treatment of the apparent velocity 

caused by the energy dependent cross-section [47, 49, 50], as well as extensions to the 

circular model theory since the earlier comparison [30].  Comparison of the calculated 

velocities from the new rotation theory against these measurements are presented in the 

following chapter.  Although only two shots were analyzed in this research, a good 

combination of co- and counter-injection, different directions of Bθ   and 
pI , and the 

different extent of poloidal dependences of upper and lower divertors (as will be shown 

in the next chapter) enables a good test of the theory and the numerical algorithm.  

Efforts to identify more suitable shots are underway, especially shots which take 

advantage of the recent advances in the measurement of deuterium velocity and analysis 

[51]. 
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CHAPTER 5 

COMPARISON OF PREDICTION AND EXPERIMENT  

 

5.1  Calculated Velocities and Density Asymmetries 

 The eight equations and eight unknowns provided in Chapter 3 constitute a self-

consistent system of nonlinear equations, and its numerical calculation model and 

solution methodology is discussed in the next chapter.  In this chapter we discuss the 

comparison of the calculated results and the actual measurement for both shots, which are 

provided in Figs. 5 and 6.  For all the figures in this research, "t" represents "toroidal", 

"p" for "poloidal", "D" or "i" for deuterium, and "C" or "I" for carbon.  In these figures 

computed

DVt  and 
computed

DVp
 
(blue diamonds) are the calculated, thus predicted, toroidal and 

poloidal deuterium velocities respectively for which no measurements are available.  

r aρ =  on the x-axis is the normalized distance from the center of plasma to the last 

closed flux surface (LCFS).  Overall, these two sets of the calculated results show that the 

new extended neoclassical rotation theory based on the Miller equilibrium flux surface 

geometry predicts carbon toroidal and poloidal rotation velocities which agree quite well 

with measured values, generally to within approximately  <10%.  

 The notable exception of a significant under-prediction of the poloidal velocity in 

the edge region of the co-injected shot #142020 is probably attributable to not taking into 

account charge-exchange damping, the effect of divertor on poloidal asymmetry in the 

prediction, use of Braginskii's strong rotation ordering in the edge where rotation is much 

weaker, and ill-conditioning of the numerical calculation model in the edge.  We note 

here that the Miller geometry does not represent the divertor x-point as a simple 

comparison of Figs. (1) and (4) indicates.  It is uncertain at this point how the divertor x-

point would affect the poloidal asymmetry calculation and whether it is related to the  
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(a) V φ   (CCW positive)                               (b) V θ (positive upward at outer mid-plane)                       

Figure 5. Calculated velocities for carbon and deuterium for counter-injected upper SN 

shot #138639. 
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(a) V φ   (CCW positive)                              (b) V θ (positive downward at outer mid-plane)                       

Figure 6. Calculated velocities for carbon and deuterium for co-injected lower SN shot 

#142020. 

 

consistent under-prediction of poloidal velocities for the two shots in this research.  

Inclusion of the divertor effect and other unrepresented plasma physics in the calculation 

model are left as future research.  The results from the Miller model study, however, is a 

significant improvement relative to the earlier circular model study [30], in which the 
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measured carbon toroidal velocities were overpredicted by roughly a factor of 2 and the 

disagreement in predicted and measured carbon poloidal velocities was even larger. 

Figures 7 show the calculated density asymmetries (
,

,

c s

i In ), which are relatively 

small (less than 10% everywhere except in the very edge).    These asymmetries are 

larger for carbon than for deuterium.  Note that a positive/negative sine component 

indicates an upward/downward asymmetry in the density distribution, while a 

positive/negative cosine component indicates an outward/inward asymmetry in the 

density distribution.  The velocity asymmetries (
,

,

c s

i IV ) are coupled with 
,

,

c s

i In  by Eqs. (39), 

(40), (44) and (45), thus can be easily computed from these density asymmetries.  
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 (a) Ctr-injection shot #138639                        (b) Co-injected shot #142020                        

Figure 7. Density asymmetries for carbon and deuterium. 

 

5.2  Calculated Momentum Transport Rates 

The inertial and gyroviscous toroidal angular momentum transport frequencies are 

strong functions of poloidal asymmetries as shown in Eq. (31) and (33)-(37).  These 

transport frequencies are calculated with the density asymmetries shown in Figs. 7 and 

plotted in Figs. 8 and 9 for the range in which neglected edge phenomena are unimportant.  

Since the gyroviscous transport frequency is generally much larger than the inertial 

transport frequency and the deuterium density is much larger than the carbon density, the 
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total toroidal angular momentum transport frequency (neglecting charge-exchange) is 

essentially the gyroviscous toroidal angular momentum transport frequency of deuterium, 

i.e., j dj
ν ν≈  where j

ν  is the total transport rate of species j .  Note that this significant 

neoclassical gyroviscous transport would vanish in a poloidal rotation theory that does 

not account for density and velocity asymmetries.  It is notable that Figs. 8 and 9 imply 

both inward ( , 0nj djν ν < ) and outward ( , 0nj djν ν > )
 
angular momentum transport for both  
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(a) Inertial transport frequency            (b) Gyroviscous transport frequency 

Figure 8. Toroidal angular momentum transport frequencies for counter-injected shot 

#138639. 
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(a) Inertial transport frequency            (b) Gyroviscous transport frequency 

Figure 9. Toroidal angular momentum transport frequencies for co-injected shot #142020.  
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deuterium and carbon.  Although the larger transport frequencies in the plasma edge may 

be due in part to the j thjV Vφ ∼  ordering of the Braginskii formalism and the neglect of 

charge-exchange, the profiles clearly imply both inward and outward momentum 

transport. 

 

5.3  Circular vs. Miller Model Results 

 Since the circular model is just a special case of the Miller geometry (i.e., 1κ =  

and 0δ =  with no Shafranov shift), the same numerical algorithm can be used to 

calculate the velocities for the circular model extended rotation theory.  The predictions 

of the circular and Miller model theories are compared with the measured carbon 

velocities in Figs. 10 and 11.  The Miller model predictions are in significantly better 

agreement with experiment than are the circular model predictions, due to the better 

representation of the poloidal dependences of the flux surfaces, which leads to a more 

accurate calculation of poloidal asymmetries and poloidal rotation velocities.  
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(a) V φ   (CCW positive)                               (b) V θ (positive upward at outer mid-plane) 

Figure 10. Comparison of predicted carbon velocities with the circular and Miller models 

with measurements for ctr-injected shot #138639. 
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(a) V φ   (CCW positive)                               (b) V θ (positive downward at outer mid-plane) 

Figure 11. Comparison of predicted carbon velocities with the circular and Miller models 

with measurements for co-injected shot #142020. 
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CHAPTER 6 

NUMERICAL ANALYSIS METHODOLOGY 

 

 Since the dynamics of nonlinear system of equations involving plasma fluid 

equation is still an unexplored area of research from chaos theory [53], its numerical 

solution requires a detailed analysis of the iterative dynamics and apply the minimization 

(or optimization) approach to identify the true solution from multiple feasible solutions 

generated by nonlinear iterations.  In this research, a combination of nonlinear Successive 

Over-Relaxation (SOR) [54-56] and Simulated Annealing (SA) [57, 58] provides the 

most stable and robust algorithm for the given task, which are discussed in detail in this 

chapter. 

 

6.1  Numerical Calculation Model 

 The resultant system of eight nonlinear equations from the new extended 

neoclassical rotation theory can be solved for the toroidal and poloidal velocities and the 

sin and cos density asymmetries for a two species (deuterium and carbon) plasma, at each 

radial mesh point from the center of plasma to the edge (we use 51 mesh points).  Note 

that all the unknowns in the calculation model, summarized in Eqs. (53), are normalized 

so that numerical round-off errors are minimized, and the calculated results presented in 

Figs. (5)-(7) in the previous chapter are non-normalized values. 

� � � � � �

� � � � � �

ɶ ɶ ɶ ɶ

: Toroidal Velocity (Deuterium), : Toroidal Velocity (Carbon)

: Poloidal Velocity (Deuterium), : Poloidal Velocity (Carbon)

: Cos Asymmetry (Deuterium), : Cos Asymm

i D tD I C tC

i D pD I C pC

c c c c

D i C I

V V V V V V

V V V V V V

n n n n

φ φ φ φ

θ θ θ θ

= = = =

= = = =

= =

ɶ ɶ ɶ ɶ

etry (Carbon)

: Sin Asymmetry (Deuterium), : Sin Asymmetry (Carbon)
s s s s

D i C In n n n= =  

(53)

 

 A numerical algorithm is designed to solve the nonlinearly coupled set of eight 

equations iteratively, using the decomposition of the entire system based on physical 

grounds into three subsystems given in Eqs. (54a)-(54c), written in generic forms.   
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Poloidal rotation subsystem:  
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(54b) 

Toroidal rotation subsystem:  
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                           (54c) 

where all the coefficients can be found in Appendix D.  This decomposition proved to be 

better-conditioned and iteratively more stable than the entire set of eight-by-eight 

nonlinear system taken as a single set by allowing isolation of ill-conditioning to (54c) 

only after reformulating (54a) and (54b) to eliminate singularities in them.  The 

numerical algorithm for this Miller model study is developed independently from the 

earlier circular model calculation algorithm [30] but shares very similar numerical 

characteristics.  More detailed description of the Miller model numerical algorithm is 

given in the following sections. 

 In earlier studies with the circular model [30, 59], Shafranov shift was not 

considered for simplicity but is represented in this study with the following form of 

analytic Shafranov shift model [34],  

( )0

0

1'
2 i

R r
r R θβ∂

≡ ∆ = − +
∂

ℓ

                                                                        

(55) 

where ( )2

02nT Bθ θβ µ=
 
and 

i
ℓ  is the internal inductance.  Studies with more accurate 

Shafranov shift models can be done when these are considered to be critical for accuracy.  

 Now with the given decomposed numerical computation model, Eqs. (54a)-(54c), 

there still remain two major numerical challenges.  First is the instability of the nonlinear 

iteration dynamics and second is the identification of the true solution from the several 

feasible solutions generated by nonlinear iterations.  In short, the former was successfully 
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controlled with nonlinear SOR [54-56] and the latter accomplished by SA [57, 58].  

Before discussing the details of these methods, it is necessary to briefly discuss the 

differences in linear and nonlinear programming to understand the rationale for the 

methods used in this extended neoclassical rotation calculation. 

 

6.2  Linear and Nonlinear Programming 

 Linear programming [54, 60, 61] is the study of maximizing or minimizing linear 

functions subject to linear equality and inequality constraints.  Since linear functions are 

both convex and concave, any local minimum or maximum must be a global optimum.  

Thus, excepting numerical issues, there is no issue with convergence to the "wrong" 

solution.  Thus, literatures [54, 55, 61, 62] on linear programming discusses how fast it 

can converge, and as long as storage is not a concern faster convergence is always 

preferred.   

For simple and standard nonlinear problems [54, 55, 61, 62], it is also possible to 

converge to a single solution using standard numerical methods such as Newton's method 

and its variants.  In the nonlinear non-convex case [53, 56, 63], which includes many 

practical physics problems, the situation changes quite significantly. The higher the 

nonlinearity is, the higher the chance of failing to converge to the physical solution.  In 

this case the iteration will often try to converge towards the true (physical) solution but 

then be eventually disturbed by numerical noises, then drive towards other solutions [53, 

56].  Keeping track of these various approximate solutions as the algorithm progresses, 

the algorithm generates several feasible solutions [53, 62, 63], corresponding to local 

minima in nonlinear topological maps, but only one of them corresponds to the true 

physical solution.  Then, a technique becomes necessary to identify the true solution from 

the nonlinear topological maps [58, 63].  Considering that most minimization techniques 

[55, 62] tend to converge to the nearest local minimum from initial guesses, application 
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of the global minimum search concepts from SA [57, 58] greatly reduces the risk of 

identifying a wrong solution as the true solution and allows search for a global minimum 

within physically feasible range.   

 Another issue is the importance of the accuracy of initial guesses for any iterative 

programming [53-55, 62].  When the initial guesses are too far from the true solution, 

even simple linear and nonlinear problems can continue diverging the iterations far from 

the true solution, increasing the risk of identifying a wrong solution as the true solution 

even if it converges [54, 55, 62].  With nonlinear physics problems, the accuracy of initial 

guesses become increasingly important because minimization algorithm will eventually 

search for the solution near the initial guesses [54, 55], but SA gives the algorithm greater 

flexibility by allowing it to test all the feasible solutions within the feasible range [57, 

58].  For the extended rotation calculation in this research [64], the initial guesses for the 

velocities are believed to be very accurate because the initial � IV θ  and � IV φ  for the carbon 

impurity comes directly from experimental measurement, and the initial deuterium � iV φ  is 

inferred from perturbation theory [59] with � IV φ  as an input, and the initial deuterium � iV θ  

is calculated with other initial guesses based on the momentum balance equation.  The 

initial guesses for ɶ
.c s

jn , however, can be neither measured nor inferred, thus zeros are 

used.  

 In terms of the dynamics of the numerical system, nonlinear algorithms are 

vulnerable to instability (i.e., highly sensitive to numerical errors) [53, 56].   Since all 

nonlinear problems must be solved iteratively, there are several factors that affect the 

dynamics of the iterations such as conditioning of the system, degree of nonlinearity, 

characteristics of the chosen numerical method, accuracy of the initial guesses, etc.  

Instability of the system dynamics was surely an issue for the extended neoclassical 



 37

rotation calculation, especially with the ill-conditioned toroidal rotation subsystem in Eq. 

(54c).  Fortunately, under-relaxation worked very effectively, making nonlinear SOR 

with optimal relaxation weight the key to the stable iterative dynamics of the given 

problem [64].  This dependence of the dynamic stability on many factors also means that 

the final solutions may also slightly vary within a stable range depending on the chosen 

algorithm, relaxation scheme, etc. [53, 65].   

 

6.3  Nonlinear SOR Method and Instability Control 

 Figure 12 is a flowsheet for the nonlinear SOR algorithm for the extended 

neoclassical rotation calculation model.  Since the initial guesses for ɶ
,c s

jn  are zeros, these 

are allowed to be updated whenever new � ,V φ θ  values are available.  Testing the algorithm 

with final calculated asymmetries as new initial guesses appears to help stabilize iteration 

dynamics of the system, but is left for future investigation as a longer run-time and 

 

 

Figure 12. SOR flowsheet. 
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manual input of new asymmetries are not desirable for a user-friendly code. 

 Theoretically, there exists an optimal relaxation weight when solving a 

minimization problem with iterative SOR [54, 55, 62].  The extended rotation calculation 

model in this research [64] adaptively determines the relaxation weights ( w ) based on 

the conditioning of the subsystems at initial iteration ( 1n = ) by 

 
( )

1n
w

cond A

α
=

=

 .              (56) 

Here α  is a constant fixed for all 51 meshes, usually 0.2 2α≤ ≤ , and ( )
1n

cond A
=

 is the 

condition number of each mesh in Eqs. (54a) and (54c) at the initial step, usually 

( )3 100cond A< <  except for the near singularity meshes (i.e., meshes with high 

condition numbers in Fig. 13).  Fig. 13 shows the extreme ill-conditioning of the toroidal 

rotation subsystem near 0.25ρ = , 0.67ρ = , 0.84ρ = , and in the plasma edge, which 

are introduced by one of the coefficients ( 11e ) in Eq. (54c) crossing zero axis at the 

corresponding meshes.   
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Figure 13. Condition numbers at initial iteration step. 

 

 In dealing with the unstable iterative dynamics of this ill-conditioned system, the 

adaptive weight scheme in Eq. (56) serves two purposes: i) the relaxation weight is 
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smaller when the conditioning is worse at a near singular mesh, giving all the meshes the 

same order of deviation magnitude while iterations continue; and ii) it prevents a 

premature termination of the algorithm when a calculated value at a singular mesh 

reaches OFL (OverFlow Level) due to high numerical sensitivity.   Premature termination 

needs to be avoided so that the algorithm can generate topological maps with enough 

feasible solutions (at least three, empirically) for SA to test them for the true solution.  

Thus, for the rotation subsystems in Eqs. (54a) and (54c), the new output velocities at thn  

iteration is calculated by 

 
� ( ) ( ) � �

1

1
n n n

V new w V w V
−

= − +
.                      (57) 

 

6.4  Nonlinear Topological Maps and Simulated Annealing 

 Nonlinear topological maps can be generated with many iterative parameters but 

most commonly by "relative" residuals (or errors) computed with either 1n
r r  or 

1n n
r r −  where n

r  is the residual at n th
 iteration, 1n

r −  is at the previous step iteration, 

and
 1r  is at the initial iteration [54-56].  Application of these popular relative residuals 

yields noisy topological maps probably because the coefficients on both sides of each 

subsystem constantly change its relative magnitudes, especially with the initial guesses of 

ɶ ,c s

jn  being zeros.  To measure the error magnitude relative to the size of constantly-

changing subsystems, a new concept called "normalized" residual ( N
r ) at the n th

 iteration 

step given by  

 
1 1

2 2

n

n

N
n n n

r
r

A x b

≡

+

               (58) 

is devised for a general n th
 iteration system 

n n n
A x b=  where 

n n n n
r b A x= −  is its 

residual.  This normalized residual allows a heuristic measure of the residual size relative 
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to the magnitude of each iteration system.  For example, 310Nr
−=  indicates that the 

residual is approximately one thousandth when the entire system magnitude is 

normalized to one.  Since N
r  is calculated for both poloidal and toroidal subsystems, 

topological maps for the entire system dynamics are given by the 2-norms of both 

normalized residuals of  Eqs. (54a) and (54c) as shown in Fig. 14 and 15.   

 With topological maps provided, a simple local minima searching algorithm can 

assist SA to identify a global minimum within the feasible range, eliminating the need of 

applying a complete implementation of SA [57].  From the empirical testing of the 

nonlinear dynamics of the given problem in this research, there are two important 

considerations when applying SA.  First, it is practically efficient to set a physically 

feasible range and locate a "locally" global minimum within that range.  This is also a 

good practice when we know that the initial guesses are quite close to the true solution as 

is the case with the given problem.  Second, understanding that nonlinear algorithms with 

high numerical sensitivity tend to eventually drive the iterations to trivial solutions [56, 

65], all feasible solutions need to be tested for trivial solutions because these are usually 

identified with much smaller normalized residuals than those of the true solution.  In the 

plasma rotation calculation with strong beam injection, any solution(s) with zero velocity 

(or velocities) can be considered trivial solution(s).   Therefore, use of SA within local 

(not global) feasible range and elimination of trivial solutions based on physics argument 

is empirically proven to be the best minimization method for the extended neoclassical 

rotation calculations [64].    

 

6.5  Nonlinear Dynamics of the Extended Neoclassical Rotation Model 

  Using the numerical methodology discussed in the previous sections, the 

extended neoclassical rotation calculation algorithm was applied to two DIII-D 

discharges given in Chapter 4 and the followings summarize the observed characteristics 

of the nonlinear iterative dynamics of the given problem [64].  First, the iteration has 
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strong tendency to drive towards trivial solutions especially with larger w  values (i.e., 

larger α ).  This means that with w  too large it is possible for the true solution to turn 

into a saddle point, thus not be presented as one of the feasible solutions.  With w  too 

small, the algorithm generates too many feasible solutions,  all of which except one are 

transient solutions.  Thus, examining the solutions with a wide range of α  values in Eq. 

(56) is a simple and robust way to identify the optimal α  value explained theoretically 

[54, 55, 62].  The possibility of theoretically identifying an optimal α  value without such 

a rigorous empirical search will be investigated for future algorithms.   

Secondly, certain relaxation weights, supposedly very close to the optimal α , 

allow the system to stagnate near the true solution.  With optimal α  value, it appears that 

the algorithm tries to converge to a stagnant solution, increasing the confidence when it 

agrees with the true solution selected by SA, which is the case for two shots in this study 

[64].  Lastly, the true solutions are usually identified with n

Nr  below 
310−
 before getting 

disturbed again by numerical noises.  Analysis on more shots are required to generalize 

this finding but with the trivial solutions usually yielding n

Nr  lower by more than an order 

of magnitude (below 
410−
) it can be used as a criteria to test any local minimum for the 

true solution in future algorithms. 

 

6.6  Application of Simulated Annealing 

 Out of two shots analyzed in this research, shot #138639 contains a good mix of 

the characteristics discussed in the previous section with more stable dynamics, thus we 

focus our discussion on this shot.  Figures 14 and 15 present topological maps for four 

selected mesh points for this shot with 0.5α = .  The first three local minima in these 

maps correspond to the three feasible solutions (non-normalized velocities) in Figs. 16.    

 There are subtle differences between the topological maps in Figs. 15 and 16 

because the iterative dynamics are different from the mesh points on the left and right 
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Figure 14. Topological maps for the meshes for 0.25ρ <  ( 0.5α = ). 
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Figure 15. Topological maps for the meshes for 0.25ρ >  ( 0.5α = ). 

 

side of 0.25ρ = .  The iterative dynamics of the mesh points in 0.25 1ρ< <  range, with 

their sample topological maps in Figs. 15, are more stable because the 2nd and 3rd 

solutions sets in Figs. 16 for the well-conditioned mesh points stay quite closer to each 

other (i.e., stagnate at these solutions) for about up to 40 iterations except the deuterium 

polidal velocity in Fig. 16(b), possibly indicating that the algorithm may converge the 

iterations to these solutions unless disturbed by numerical noises.  With all three solutions 

being possible candidates for the true solution in this range, SA identifies the 2nd 

solution set with the lowest n

Nr  as the true solutions.  On the other hand, the mesh points 

on the left side of 0.25ρ =  in Figs. 16, with their sample topoligical maps in Figs. 14, are  
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Figure 16. Feasible solution sets for local minima in Figs. 14 and 15 (toroidal velocities: CW 

positive / poloidal velocities: positive upward at outer mid-plane). 

 

driven towards the trivial solutions much faster because according to Eq. (56) this region 

has much higher w  values.  
I

Vθ  values in this range quickly drive to zeros and introduce 

numerical errors in other velocities causing them to jump to much higher values, which is 

a typically observed response of the system at trivial solutions.  Therefore, in this range 

the first solution set with n

Nr  well below 
310−
 corresponds to the true physical solution 

and it can be verified with lower α  values to yield the same type of iterative dynamics as 

in 0.25 1ρ< <  range.   
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 In Figures 16(c) and 16(d), it can be observed that the mesh points with near 

singularity are highly sensitive to numerical round-off errors.  The present algorithm 

simply neglects these near singular meshes from the output and spline-connects the entire 

radial profile based on the physics argument that such discontinuities cannot physically 

exist in tokamak plasmas.  Thus, the final non-normalized processed velocity profiles for 

this shot #138639 are presented in Figs. 5 with the direction of the toroidal velocities 

reversed as positive counter-clockwise (CCW) to indicate in the direction of the neutral 

beam injection.  The final non-normalized density asymmetries ( ,c s

j
n ), which are the 

additional variables that made this extended neoclassical rotation model highly nonlinear, 

is presented in Fig. 7(a).   More details on how to run the code and process these final 

solutions can be found in the user's manual provided in Appendix E. 

 

6.7  Verification of the Algorithm and of the Results 

 Since the calculation results from the extended neoclassical rotation algorithm 

[64] cannot be verified against known solutions, checking the existence of true solutions 

for a wider range of α  values seems to be the most robust way of numerically verifying 

the final solutions.  Refer to the user's manual in Appendix E for the details on this 

numerical verification.  Another rigorous verification was done during the code 

development phase by turning off some variables (i.e., fixed them at initial guesses) 

selectively with different combinations of variables to check the solutions against known 

characteristics of simpler plasma rotation models [30, 38-40].  In the simplest case, with 

the asymmetries and toroidal velocities fixed at their initial guesses, the algorithm was 

checked to generate the same solutions as in solving a simple linear poloidal rotation 

subsystem in Eq. (54a).  Then, turning on the toroidal velocity subsystem in Eq. (54c) 

allows nonlinear calculation of the velocities with no asymmetries ( ɶ
,

0
c s

jn = ), which we 

would predict to be less accurate poloidal velocities that eventually translate into the 
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over-prediction of toroidal velocities [51].  Finally, turning on the asymmetry iterations 

of Eq. (54b), we can observe the evolution of the true physical solutions to our final 

solutions in Fig. 5.   
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CHAPTER 7 

FUTURE RESEARCH  

 

7.1  Future Extensions of Neoclassical Rotation Theory 

 The Extended Neoclassical Rotation theory in this research is based on 

Braginskii's strong rotation ordering, 
j thjV Vφ ≃ , does not explicitly represent the divertor, 

and does not include neutral recycling and the associated atomic physics in the edge.  

Representation of the divertor x-point may require either a geometric treatment of the 

Miller flux surfaces or additional terms that account for the complicated atomic physics 

in the divertor region, thus needs more investigation in the future.  It is straightforward to 

extend the continuity equation to include all the atomic physics effects and to include a 

neutral recycling calculation, as was done in one of the previous circular model studies 

[59].  Extension of the Miller flux surface geometry model to explicitly represent the 

divertor should be possible but such extensions will still be limited to the strong rotation 

ordering.  Developing a new theory based on Mikhailovskii's weak rotation ordering, 

j thjV Vφ ≪ , would extend the applicability of the current rotation theory based on the S-S 

model to a wider range of weaker plasma rotation as might be found in future burning 

plasmas.  Thus, in summary the next theoretical research directions for the extended 

neoclassical rotation theory [64] are the extension of the current theory to include i) the 

divertor X-point dependence of the magnetic flux surfaces, ii) Mikhailovskii's weak 

rotation ordering viscosity tensor [16, 26-28, 66], and iii) the charge-exchange of 

recycling neutrals, all of which would increase the accuracy in the plasma edge and 

extend applicability to plasmas with weak rotation. 
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 Mikhailovskii’s viscosity formulism [16] has been revised by other researchers 

and most recently by Catto and Simakov [26, 27] and Ramos [28].  A simple way of 

presenting Catto and Simakov’s viscosity formalism to show its relation to Braginskii’s is 

Π Π Π
Mikhailovskii Braginskii Heat

j j j= +
��� ��� ���

.                                                                         (59)

 

This shows that we can extend the current rotation theory by adding Π
Heat

j

���
 to the 

formalism, thus making the current theory a special case of the more general theory based 

on Mikhailovskii's ordering.  In doing so, selectively adding some important terms with 

significant contribution from the heat equation terms may simplify the modification of 

the current theory.  In this regard, use of Braginskii’s formalism in this research can be 

considered as an intermediate step toward developing a more general extended 

neoclassical rotation theory for both strong and weak rotation orderings.  

 

7.2  Future Improvement of Numerical Analysis Methodology 

 Along with theoretical advances, improvement in numerical analysis 

methodology in future research is as important because the nonlinear dynamics of future 

computational models would be very similar to the ones presented in this research.  To 

improve the current algorithm in future studies, there are some possible candidate 

approaches in addition to the minor upgrades suggested in earlier sections.  First, 

realizing that practical physics problems can be formulated into numerical calculation 

models in a variety of ways, examination of other decompositions of the subsystems in 

Eqs. (54a)-(54c) to eliminate singularities and improve conditioning should be 

investigated.  Another aggressive restructuring of the problem by identifying new 

additional relations to set up the entire problem as a least squares problem has gone 

through some initial investigation, showing improvements with conditioning of the 

toroidal rotation subsystem, but this approach requires significant further investigation.  

Another future effort would be in extending the capability of the current algorithm to 
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handle problems with a diverse combination of inputs because tokamak experiments and 

diagnostics are focused on different discharge parameters with different accuracy level.  

To analyze shots with substantially different parameters, the current numerical algorithm 

presented in this research may need to be modified.  Lastly, because of the uncertainties 

associated with experimental data and the inputs to the algorithm, efforts to identify the 

sources of such uncertainties and to design an algorithm with minimized sensitivity to 

these uncertainties will continue during the development of future GTROTA versions.  

For this purpose, investigation on diagnostic limitations and the sensitivity of the results 

to these experimental uncertainties will be necessary in future studies to design and apply 

numerical schemes more resilient to such uncertainties.  Therefore, along with a future 

theoretical research on the extended neoclassical rotation, efforts on the improvement of 

the corresponding numerical model and methodology should continue as well.  
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CHAPTER 8 

CONCLUSIONS  

 

 The extended neoclassical rotation and momentum plasma transport theory based 

on the Stacey-Sigmar model with the more accurate Miller equilibrium flux surface 

geometry was presented in this research.   It was also shown that the gyroviscous 

contribution to viscous transport, ( )2
Π

gv
R φ∇ ⋅∇⋅

���
, accounts for the most of neoclassical 

toroidal angular momentum damping in this model.  Comparisons of the predictions of 

this new theory with experiment for two DIII-D discharges indicate that the new theory 

predicts the measured carbon poloidal and toroidal rotation very well (<10%) everywhere 

except in the very edge for the co-injected shot, where the neglect of recycling neutrals 

and of the divertor and the assumption of strong rotation ordering may be expected to 

cause difficulty.  It is shown that the more accurate poloidal representation of the flux 

surfaces provided by the Miller equilibrium model is responsible for a significantly more 

accurate prediction than is possible with the similar extended neoclassical rotation theory 

based on the circular model [30].  

 The good agreement of prediction with experiment found on the two shots 

examined in this research leads us to tentatively conclude that the extended neoclassical 

rotation theory, when all important terms are retained and properly evaluated, is capable 

of accounting for most of the rotation and momentum transport in tokamaks.  With the 

accuracy in the prediction of carbon velocities calculated in this study, we can also 

conclude that the gyroviscous transport rates calculated with poloidal asymmetries in the 

formalism are at least in the correct order of magnitude and are actually much greater 

than the perpendicular viscous transport.  This also implies that the amount of anomalous 

transport may be smaller than we currently try to explain with turbulent transport theory 
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due to this significant neoclassical transport contribution from gyroviscous effect.  These 

conclusions must, of course, be confirmed by more extensive comparisons of prediction 

with experiment.  Also, improved accuracy in the plasma edge requires extending the 

model further to represent charge-exchange of recycling neutrals, the effect of the 

divertor on poloidal asymmetries, and the weak rotation ordering of Mikhailovskii.  All 

these theoretical advances in future research will also be supported with the 

corresponding improvement in the numerical analysis methodology.  
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APPENDIX A 

INERTIAL AND VISCOSITY TERMS IN CURVILINEAR 

GEOMETRY 

 

A1. Inertial terms in curvilinear geometry: 

( ) rj rj j rj rj j rj jr

r
r r r

V V V V V V V V hhh
V V

h r h h h r h h r

θ θ φ φθ

θ θ φθ θ
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 A2. Viscosity terms in curvilinear geometry: 

 The rate-of-stress tensor elements in the viscous stress tensor is decomposed into 

0 12 34

αβ αβ αβ αβΠ = Π + Π + Π                                                                                       (A4) 

where  

0 0

0Wαβ αβηΠ = − , ( )12 1 2

1 2
W Wαβ αβ αβη ηΠ = − + , and 

34 3 4

3 4W Wαβ αβ αβη ηΠ = + .               (A5) 

The elements of the traceless rate-of-strain tensor are  
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where f fαβ αβ α βδ δ⊥ ≡ − , αβδ  the Kronecker delta function, and αβγε  the antisymmetric 

unit tensor.  The Einstein summation convention is also assumed.  For tokamak plasmas, 

we can assume 

0r rf B B= ≈ , 0f B Bθ θ= ≈ , 1f B Bφ φ= ≈ .                                        (A7) 

Neglecting r
V  since 

rV V Vθ φ<≪ , assuming axisymmetry ( 0φ∂ ∂ ≈ ),  and with A0 
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all the elements of the viscous stress tensors are given by 
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With these, the viscous force terms in general curvilinear geometry are given by  
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where
rH h h hθ φ≡ .  
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APPENDIX B 

REVISED CIRCULAR MODEL FORMALISM 

 

B1. Continuity Equation (cosine and sine moments): 
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 B2. Electron Poloidal Momentum Balance Equation (cosine and sine moments): 
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 B4. Poloidal Momentum Balance Equation (1 moment): 
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B5. Poloidal Momentum Balance Equation (cosine moment): 
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 B6. Poloidal Momentum Balance Equation (sine moment): 
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 B7. Angular Inertial Torque (1 moment):  
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 B8. Angular Viscous Torque (1 moment): 
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where 
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B9. Toroidal Angular Momentum Balance Equation (1 moment): 
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APPENDIX C 

COEFFICIENTS IN THE MILLER MODEL FORMALISM 

 

C1. Poloidal momentum balance equation (1 moment): 
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where q is safety factor, Mθ  is poloidal momentum input, 
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with  Φ  being the average electric potential.   

 C2. Poloidal momentum balance equation (cosine moment): 

�

( ) ( )
�

� �

( )

� �

2
2

3 2

2

1 0
2

*
2

2
2 *2 2 2

2 3

1 sin cos cos
cos

3
,

cos
cos

1 cos

1 1 cos
cos , cos ,

2

j j

C j p

j
jk k rjp

j k
k

j jk jC p C p
j k

h
V V N

h h
A q R rf f

m
f V V

m

A qr f V A f V
h h

θ
θ φ

θ θ

θ

θ θ

θ θ

θ θ θ
θ

θ

θ
ν ε θ ε

ε ξ

θ
θ ν ε θ

≠

≠

  ∂
  − − + −

 ∂ 
 =  

 
 − −∑

+  

 
= − + = ∑  

 

 



 59

� � �

� ( ) ( )

� �

( ) ( )

2
2

3 22 2 2

0

2
2 2

0 3 2

1 1
sin cos

1 sin

1 sin cos 1 cos
cos sin cos

3 3sin

cos 3 cos

sin cos cos
cos

s

j jC p

j j p

c

j j j p

R
B qrf V V V

R h

R

R h h
M P

V q R f f h h

h

M Q

h
V V q R rf f N

h h

θ φ φ

θ

θ θ

θ θ θ

θ

θ
φ φ

θ θ

θ θ
θ

θ

θ θ θ θ
θ θ θ

θθ

θ θ

θ θ θ
θ

θ

∂
=

∂

 ∂
  ∂ ∂  − + + −
  ∂−   
 
 + + 

 ∂
− − −

∂


�

� � �

( )

� �

2 2 0
0 2

*
2

2

2
* 2

2

cos cos

1 sin

cos
cos cos

1 cossin

1 sin

1 cos
cos cos

2 sin

j j p j
j j thj

j
jk j k rjp

j k
k

s

j jp atomj

qR
V q R f f N M

n m V

R

m R h
f V V V

m

h

R

R h
qr f V

h

h

φ θ

θ
θ θ

θ

θ
θ

θ

θ

θ θ

θ

θ θ
ν θ θ

ε ξθ

θ

θθ
ν θ θ

θ

≠


 
 



− +

 ∂
   ∂ − − + − ∑    +   
 

 ∂
 

∂− Φ Φ − +


 





          (C2) 

where �
,c s

V φ  given in Eqs. (A4) and (A5). 

 C3. Poloidal momentum balance equation (sine moment): 
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APPENDIX D 

COEFFICIENTS IN THE NUMERICAL CALCULATION MODEL 

 

The coefficients of the final numerical code come from the coefficients in 

Appendix A updated with the coupling relations between �
,c s

jV φ  and ɶ
,c s

jn , Eqs. (C4) and 

(C5). 

 

D1. Coefficients in the density asymmetry subsystem: 
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D2. Coefficients in the poloidal rotation subsystem: 
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D3. Coefficients in the toroidal rotation subsystem: 

11 12 1, , i II
i I

i thI

y ym
e e f

m V
β β

+
= = =

                                                                        (D7)

 



 66

� �

( )

� �

( )

21 22

2

0

0

1,

1

1 cos

( ) 1 1
1

1 cos

1

( ) 1 1
1

1 cos

i

I

i
i I

I

r

ri
i I

I

r

m
e e

m

m
f V V

m R r

r h

hm
P P

m R r

r h

θ θ

ε ξ

ε ξ

ε ξ

= = −

  +
= − 

∂     + ∂ + 

 
+ − + 

∂     + ∂ + 

                                                             

(D8)

 



 67

APPENDIX E

 

GTROTA (Georgia Tech ROTAtion) USER'S MANUAL

  

 

 

 

GTROTA(Georgia Tech ROTAtion) version 1.0 User's Manual 

 

 

 

Cheonho Bae
1
  

Fusion Research Center & NRE Program, Georgia Institute of Technology 

Atlanta, GA 30332-0425 USA 

 

 

 

 

July 2012 

 

                                                 

 

 
1
 Electronic mail: gth892k@mail.gatech.edu 



 68

1. INTRODUCTION 

  GTROTA is a code that computes the plasma rotation velocities and the related 

momentum transport based on the neoclassical plasma rotation theory with the Stacy-

Sigmar poloidal rotation model using the Miller equilibrium flux surface geometry [1].  

Current rotation theory is based on Braginskii's ordering, thus the code is better suited for 

strong rotation analysis although it would still run for slow rotation analysis with 

decreased accuracy.  This manual introduces the basic physics and numerical calculation 

model, how to create an input subroutine, how to run the code, and how to process the 

outputs.  Details on the plasma rotation theory can be found in Ref. [1] and the numerical 

analysis methodology is discussed in Ref. [2].  Users of this code are highly 

recommended to read these before using the code.  GTROTAv1.0 is currently provided in 

Matlab and will be converted into Fortran in the near future. 

 

2. PHYSICS MODEL 

2.1. Extended plasma rotation theory 

 The extended neoclassical plasma rotation theory and its calculation model [1] is 

derived from the continuity,  

 
( )

j o
jj j

n
n V S

t

∂
+ ∇⋅ =

∂

��

                                                               (1) 

and the momentum balance equations,  

 
( )

1 1

( ) ( )Π j jj j jj j j j j j j j j
m n V n m V V P n e E V B F S

t

∂
+ ∇ ⋅ + ∇ + ∇ ⋅ = + × + +

∂

�� ��� ��� ��� �� �� �� �� ��

        (2) 

where S  is the source, P  is the pressure, Π
���

 is the viscosity tensor, and F  is the 

collisional friction.  The primary goal of the tokamak plasma rotation theory is to predict 

toroidal velocity of the main ion (deuterium), whose measurement is not available, and 
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calculate the associated momentum transport.  The non-negligent poloidal and toroidal 

components of the inertial term in Eq. (2) are 

 
( ) j j j jV V V V h
V V

h h h

θ θ θ φ φ

θ
θ θ φθ θ

∂ ∂
 ∇ = −
  ∂ ∂
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,                                                           (3) 
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�� ��
i

,                         (4) 

and those of the viscosity terms with respect to Braginskii's viscosity representations[3-6]

 
are 
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r r rr r
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Braginskii's viscosity [6] is decomposed into the parallel ( 0 j
η ), perpendicular ( 1 2

,
j j

η η ), 

and gyroviscous ( 3 4
,

j j
η η ) contributions and their relative orderings are shown in Eq. (7) 

with 0 j
η  represented with the Shaing banana-plateau-PS viscosity interpolation 

formula,[5] 

( )( )

3
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, , 4 , , 2

10 21 1

j j thj jj j j j j

j j j thj j j j j j j j

jj jj

n m V qR n T n T
n m V qRf

ε ν
η η η η η η η

τε ν ν

−

−
= ≡ = = = =

Ω Ω+ +
 
 
(7) 

where thj
V  is the thermal velocity of species j , q  is the safety factor, 1ν τ=  is the 

collision frequency with its normalized term 
*

0 thqR Vν ν≡ , Ω  is the gyrofrequency, 

and 
( )( )

3/2 *

3/2 * *1 1

jj

j

jj jj

f
ε ν

ε ν ν

−

−
≡

+ +
.
.
 

 Unlike earlier simple theories [7-9], this extended calculation model [1, 10] 

expands density and velocity with the lowest order Fourier Series, 

( ) ( ), 1 cos sinc s
jj j j

n r n r n nθ θ θ ≈ + +  ,            (8) 
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( ) ( ), 1 cos sinc s
jj j j

V r V r V Vθ θ θ ≈ + +  ,            (9) 

thus introduces poloidal asymmetries ( ,c s

j
n  and ,c s

j
V ) in the formalism.  Earlier, Stacey et 

al.[10] have calculated these asymmetries assuming circular flux surface geometry, 

limiting the accuracy in the calculations.  The calculation model presented in this manual 

[1] is based on a D-shaped elongated geometry given in the next section [11], thus 

calculates the asymmetries more accurately.  
 

 

2.2. Magnetic flux surface geometry 

 The geometry of the D-shaped elongated magnetic flux surface used in the code is 

given by Miller et al. [11] with elongation κ  and triangularityδ  as shown in Fig. 1.  The 

R  and Z  coordinates of the Miller model are given by 
 

( ) ( ) ( )0 0
( ) cos sin cosR r R r r x R r rθ θ ξ= + + ≡ +

,

               

                            (10)

 

( ) sinZ r rκ θ= ,

 

                                                                                                  (11)

 

where
0 ( )R r  is a function of r  (the half-diameter from the center of plasma along the 

plasma mid-plane),  1sinx δ−≡ , and sinxξ θ θ≡ + . 

 

Fig. 1. Miller equilibrium flux surface geometry 
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 Analysis of the curvilinear differential geometry in all coordinates ( , ,r θ φ ) on 

the flux surfaces  yields the following metric coefficients for the Miller geometry [11-13]. 
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 account for the radial changes in 

elongation and triangularity.  Ampere's law provides the following magnetic field 

representations for the Miller model, 
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where the overbars indicate the average values at given r , and the flux surface average 

(FSA) formula for this Miller geometry is given by    
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These FSAs cannot be reduced to simple analytic expressions, thus computed in a 

separate routine and imported into the main code. 
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3. NUMERICAL CALCULATION MODEL   

3.1. Coupled set of nonlinear equations 

 
The extended rotation calculation model [1] is consisted of 8 unknowns (4 

velocities and 4 density asymmetries) when assuming two-species plasma with Eq. (19)
 

summarizing all interchangeably used notations in the code, figures, and equations to 

follow.  In the code, velocities and asymmetries are normalized to the same order of 

magnitude to minimize numerical round-off errors by � j
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Equations (20)

 
to (24) constitute the eight equations, expressed in generic forms, 

to solve for the eight unknowns, with Eqs. (20) to (22) constituting six equations with j  

being either i  (deuterium) or I  (carbon) and k  being the other.
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where 
11A , 

12A , 
13A , 

,C S
A , 

1B , and 
,C S

B  coefficients can be found in Ref. [2].  Equations 

(20) to (22) are the FSAs of Fourier moments of the poloidal momentum balance with all 

the terms retained, thus used to solve for the poloidal velocities and density asymmetries 

that are eventually coupled with toroidal rotation computation model, Eqs. (23) and (24).  
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where 
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ν  being the “inertial” and “viscous” transport frequencies respectively, and 
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constitute the toroidal rotation computation model derived from the toroidal and radial 

components of the momentum balance equation respectively.  The quadratic equation in 

Eq. (20) is converted into Eq. (25) so that the quadratic term is treated as a linear term 

with n  being the current iteration step and 1n −  being the previous step.  With the 

quadratic equation possibly having two solutions, this also ensures that the algorithm 

searches for the physical solution corresponding to the initial guesses of poloidal 

velocities.  
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More details on the derivation of these equations can be found in Ref. [1].   
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must be computed to calculate the velocities and asymmetries.  These are the transport 

rate calculations due to inertial and gyroviscosity.  Gyroviscous component essentially 

dominates the neoclassical viscous transport in tokamak plasmas and also much larger 

than the inertial transport [1]. 

3.2. Decomposed numerical calculation models 

 GTROTAv1.0 solves the following decomposed system of nonlinear equations. 
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GTROTAv1.0 uses nonlinear Successive OverRelaxation (SOR) to iteratively solve for 

the eight unknowns using the algorithm illustrated in Fig. 2.

 

 

Fig. 2. SOR Flowsheet in the elongated model computation 

GTROTAv1.0 uses the experimental measurement of carbon toroidal and poloidal 

velocities as the initial guesses for "VtI" and "VpI" respectively.  It generates the initial 

guess for the deuterium toroidal velocity (Vti) from the perturbation theory using "VtI" as 

an input.  The initial guess for the deuterium poloidal velocity (Vpi) is calculated from 

the momentum balance equation with three other initial guesses as the inputs.  Zeros are 

used as the initial guesses for all the density asymmetries. 

 

4. HOW TO RUN GTROTAv1.0 

4.1.  Step 1: How to create an input subroutine 
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 To run the code, the first thing to do is create an input subroutine.  The default 

input subroutine is "shot138639.m", shown in Table 1.  If a user works on another shot, a 

new input file named "shot******.m" needs to be created.   

Table 1. Input code (shot138639.m)  

function 

[Source_NB,Source_impurity,Source_wall,Elongation,dK_dr,x,a,Kmax,Kmin,del_top_max,del_bottom_max,dR0dr,VtI_one,VpI_one,shot,ne,R0,Bp,B

t,fp,E1,E2,E3,Etor,P_E1,P_E2,P_E3,f_E1_D1,f_E1_D2,f_E1_D3,f_E2_D1,f_E2_D2,f_E2_D3,f_E3_D1,f_E3_D2,f_E3_D3,q,nI,VtI,VpI,ni,Te,Ti,TI,T,

Torque_density,rho,r,ep,delta_r,Phi]=Shot138639(k,e,eV); 

  

%############## SHOT 138639-2085 ms PARAMETERS from TRANSP############### 

nc=textread('nc138639.txt');nI=nc(:,2).*1e19; rho=nc(:,1);%Carbon Density (m^-3); 

Vt=textread('vt138639.txt');VtI=-Vt(:,2)*1000;%Toroidal Velocity(m/s) 

Vp=textread('vp138639.txt');VpI=-Vp(:,2)*1000;%Poloidal Velocity(m/s) 

Torque_read=textread('tq138639.txt');Torque_density=Torque_read(:,2);%Torque input(N.m) 

ne=textread('ne138639.txt');ne=ne(:,2).*1e19;%Electron Density(m^-3) 

te=textread('te138639.txt');Te=te(:,2)*1000; %Electron Temperature (eV)  

Ti=textread('ti138639.txt');TI=Ti(:,2)*1000;Ti=TI;T=Ti;%Ion Temperature(eV); 

vrpot=textread('vrpot138639.txt');Elec_poten=vrpot(:,2);%Electric potential(Volts); 

Phi=vrpot(:,2);Phi(size((rho),1),1)=Phi(size((rho),1)-1,1); 

Bt_profile=textread('bt138639.txt');Bt=-Bt_profile(1:2:101,2);%Toroidal magnetic strength(Tesla);  

Bp_profile=textread('bp138639.txt');Bp=-Bp_profile(1:2:101,2);%Poloidal magnetic strength(Tesla);   

sbtot=textread('sbtot138639.txt');Source_NB=sbtot(:,2);%Total Beam source(m^-3); 

scimp=textread('scimp138639.txt');Source_impurity=scimp(:,2);%Impurity source(m^-3); 

swtot=textread('swtot138639.txt');Source_wall=swtot(:,2);%Wall source(m^-3); 

%############## SHOT 138639-2085 ms PARAMETERS from TRANSP############### 

 

%############## BEAM INJECTION PARAMETERS(from EXPERIMENT) ############### 

E1=81*1000; E2=75*1000; E3=81*1000;%Beam energies(eV) 

P_E1=2.1;P_E2=2.2;P_E3=2.6;%Incident power(MW) 

f_E1_D1=.55;f_E1_D2=.29;f_E1_D3=.16;%E1(81keV) power fraction(full, half, 1/3) 

f_E2_D1=.54;f_E2_D2=.28;f_E2_D3=.18;%E1(75keV) power fraction(full, half, 1/3) 

f_E3_D1=.55;f_E3_D2=.29;f_E3_D3=.16;%E1(81keV) power fraction(full, half, 1/3) 

%############## BEAM INJECTION PARAMETERS(from EXPERIMENT) ############### 

  

%############## PLASMA PARAMETERS from EFIT ################## 

Vloop=0.26296; % in Volts (must always be positive because Ip runs parallel with Vloop) 

R0=1.734; 

a=0.586;  

q0=1.2;q95=4.9;qa=8; 

Kmax=1.83;Kmin=1.45; 

del_top_max=0.6;del_bottom_max=0.22; 

beta_p=1.802; int_inductance=0.880; 
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%############## PLASMA PARAMETERS from EFIT ################## 

  

%############## BASIC CALCULATIONS ################## 

fp=Bp./Bt; 

Etor=Vloop/(2*pi*R0); 

ni=ne-6.*nI;% From Charge Neutrality 

r=rho.*a;% 

ep=r./R0; 

delta_r=r(size((VtI),1))-r(size((VtI),1)-1);% Torque due to Neutral Beam (N*m/m^3); 

dR0dr = -r./R0.*(beta_p + int_inductance/2); 

R0_profile = R0+dR0dr.*delta_r; 

radius=rho.*a; 

del_top=(del_top_max-0)/a.*r;del_bottom=(del_bottom_max-0)/a.*r; % assume linear increase 

x_top=asin(del_top);x_bottom=asin(del_bottom); 

x=(x_top+x_bottom)./2;  

Elongation=(Kmax-Kmin)/a*radius+1.45; 

dK_dr=(Kmax-Kmin)/a; % assume linear increase of elongation 

%############## PLASMA PARAMETERS from EFIT ################## 

  

%############ PARAMETERS MANUALLY ADJUSTED to EFIT PROFILES ############## 

q=40*r.^6+25*r.^4+q0; % manually fitted to profile in EFIT 

%############ PARAMETERS MANUALLY ADJUSTED to EFIT PROFILES ############## 

shot=138639; VtI_one = VtI; VpI_one=VpI; 

return 

 

Inputs in Table 1 are grouped together based on the input sources: TRANPS, EFIT, and 

experiment inputs.  There are 13 inputs generated with TRANSP, with their units, 

summarized in Table 2.  TRANSP generates profiles with 101 mesh points along the 

radial direction but GTROTAv1.0 uses 51 for saving the run-time, thus the input size 

needs to be adjusted so that the final outputs are in (51,1) column-vector format.   Inputs 

from EFIT are directly from EFITools on DIII-D database.   For accuracy, q  profile is 

manually adjusted to fit the q  profile in EFIT, instead of just assuming a linear increase.  

Beam injection parameters need to be acquired from users' collaborating experimentalist.  

For shot#138639, three beams with their beam energies 81keV (30LT), 75keV (150LT), 

and 81keV (330LT) are injected with duty cycles 2.1/2.6MW, 2.2/2.2MW, and 
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2.6/2.6MW respectively.  For 30LT beam, the full, half, and 1/3 power fractions are 0.55, 

0.29, and 0.16 respectively. 

Table 2.  Inputs from TRASNP 

inputs Parameter name unit 

nc138639 Carbon(or impurity) 

density 

19 310 particles m
− −⋅ ⋅  

ne138639 Electron density 19 310 particles m
− −⋅ ⋅  

te138639 Electron temperature keV  

ti138639 Ion temperature keV  

tq138639 Torque input N m⋅  

vp138639 Carbon poloidal velocity 1
km s

−⋅  

vt138639 Carbon toroidal velocity 1
km s

−⋅  

vrpot138639 Electric potential Volts  

sbtot138639 Total beam sources 19 310 particles m
− −⋅ ⋅  

scimp138639 Impurity source 19 310 particles m
− −⋅ ⋅  

swtot138639 Wall source 19 310 particles m
− −⋅ ⋅  

bp138639 Poloidal magnetic field 

profile 

Tesla  

bt138639 Toroidal magnetic field 

profile 

Tesla  

  

4.1.1. Sign convention in the input subroutine 

 Due to the importance of the initial guesses in nonlinear programming, it is 

important that users put the signs of the inputs correctly.  The sign convention for 

GTROTAv1.0 inputs is based on the theoretical coordinates determined by the right hand 



 79

rule with the thumb direction corresponding to the toroidal current ( Iφ ) direction.  An 

example of theoretical sign convention for shot #138639 is illustrated in Fig. 3.  In this 

example, Iφ  is in clockwise (CW) direction, thus with ɵnφ+  being CW positive, ɵnθ+  will 

the positive upward at the outer mid-plane by the right hand rule.   Thus, if the torque 

input is provided with positive values, its sign must be reversed since the beams are 

injected CCW ( ɵnφ−  direction).  Also, for shot #138639, TRANSP inputs for Bφ  and Bθ  

are provided as negative values for CCW positive and downward positive at the outer 

mid-plane respectively, thus their signs must also be reversed to agree with schematics in 

Fig. 3.  Since all DIII-D experiments do not follow this theoretical sign convention and 

experimental sign conventions can differ, users are advised to draw the directions of all 

the inputs in a similar schematic as in Fig. 3 to get the final input signs correctly.  

Otherwise, the code will still run to use a global minimization technique known as 

Simulated Annealing (SA) to identify a wrong solution as the true solution. 

 

Figure 3. Theoretical sign convention for shot #138639 
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4.2. Step 2:  Test run of the code 

Once the input subroutine is created with correct signs, users need to update 

subroutine call command in the main program, GTROTA (see Table 3), as follows.  

Users can simply replace "138639" with user's own subroutine shot number (red color in 

Table 1).  Leave “j_manual_138639.txt” as is for now because this needs to be updated 

after identifying the iteration step numbers that correspond to the true solution from this 

test run.  Leave the default "relaxation(α )=0.5" as is because these will be explained 

later for users to adjust when necessary.   "max_j=100" is the default number of 

maximum iterations, which is set enough for the code to generate at least three local 

minima in nonlinear topological maps, thus can later be adjusted especially with lower 

relaxation (α ) values.   

Table 3. Input subroutine call commands in the main code 

[Elongation,dK_dr,x,a,Kmax,Kmin,del_top_max,del_bottom_max,dR0dr,VtI_one,VpI_one,shot,ne,R0,Bp,Bt,fp,E1,E2,E3,Et

or,P_E1,P_E2,P_E3,f_E1_D1,f_E1_D2,f_E1_D3,f_E2_D1,f_E2_D2,f_E2_D3,f_E3_D1,f_E3_D2,f_E3_D3,q,nI,VtI,VpI,ni,

Te,Ti,TI,T,Torque_density,rho,r,ep,delta_r,Phi]=Shot138639(k,e,eV); 

sol_i=textread('j_manual_138639.txt');sol_iteration=sol_i(:,2);relaxation=0.5;max_j=100; 

 

 Now, GTROTAv1.0 is ready to test run the code for the shot of users’ interest.  

In the Matlab command prompt, type "GTROTA" and hit enter.  When the run is 

completed, GTROTAv1.0 will generate a number of figures including 51 nonlinear 

topological maps from the center mesh ( 0ρ = ) to the edge ( 1ρ = ).  It uses nonlinear 

SOR to control the iterative dynamics of the velocity subsystems with each new 

velocities calculated by 

� ( ) ( ) � �
1

1
n n n

V new w V w V
−

= − +
           (35) 

where relaxation weight is computed by  

( )
1n

w
cond A

α
=

=  .                                                                                                 (36) 
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The default α  for the code ("relaxation" in Table 3) is 0.5α =  and ( )
1n

cond A
=

 are the 

condition numbers of the poloidal and toroidal subsystem for 51 mesh points, thus 

automatically calculated by the code.  Users can start with this default w  to generate 51 

topological maps and use SA to identify the true solution from these maps, or change α  

value once the nonlinear dynamics of the system for the new shot is well-understood.  

Nonlinear dynamics of each mesh is independent from other mesh dynamics but 

similarities exist for nearby meshes.  Thus, SA can be used to identify the true solutions 

for all 51 maps that correspond to the global minima within the physically feasible range.    
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Figure 4. Topological maps for the meshes for 0.25ρ < ( 0.5α = ) 
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Figure 5. Topological maps for the meshes for 0.25ρ > ( 0.5α = ) 
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For GTROTAv1.0, the physically feasible range is usually from zero velocities to 

approximately the triple of the initial guess, meaning that the algorithm assumes that the 

initial guesses at least have the same signs as the true solutions and this reemphasizes the 

importance of the accuracy of your initial guesses.  Figures 4 and 5 present topological 

maps for four selected meshes along the radial profile for shot #138639 with 0.5α = , 

which clearly shows 3~4 local minima before 100 iterations.    

4.2.1. Application of Simulated Annealing 

 A test run of the code also generates three feasible solution sets, as shown in Fig. 

6, that corresponds to the first three local minima near the initial guesses and users need 

to manually identify the true solution with SA.  Shot #138639 is a good example to 

discuss the correct use of SA because it has a good mix of two different types of 

dynamics that users can expect from the code within 0.2 2α< < .  In Figure 6(a), Vpi for 

0.25ρ <  quickly drives to the trivial solutions (i.e., zero velocities), yielding non-

physical numerical blow-up on other velocities.  Thus for 0.25ρ <  range, the first 

solution set (red squares) corresponds to the true solution.  On the other hand, for 

0.25ρ >  range, all three solutions are non-trivial solutions and SA identifies the 2nd 

solution set with the lowest normalized residulas as the true solution.  Although the first 

set in 0.25ρ >  range is closer to the initial guesses, SA eliminates this set for its higher 

residuals by more than an order of magnitude compared to the 2nd (and 3rd) solution set.  

This means that the first set here only appeared as a transient solution that are not 

consistently generated with different α  values.  For an accurate identification of the true 

solution, users must understand two important facts: 1) solution for each mesh is 

independent; 2) trivial solutions must be identified and eliminated from the feasible 

solutions.  Independence of each mesh implies that all 51 topological maps must be 

examined individually to determine the true solution by SA.  Considering that the nearby 
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meshes yield similar dynamics, this is not a difficult task.  Trivial solution sets are 

characterized by one(or multiple) velocity being almost zero while the others are 

numerically blown-up, yielding non-physical solutions.  For shot #138639, α  values 

other than 0.5 actually yield profiles that does not require separate selection about any 

discontinuous points but  0.5α =  is set as default because overall it yields the most stable 

radial profiles.  This type of differences in dynamics about a singular mesh is not rare, 

thus a careful tuning of the dynamics can be acheived by varying α  to a wider range to 

identify the most optimal value, which is actually recommended for this code.   
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Figure 6. Feasible solution sets for the local minima in Figs. 4 and 5 (toroidal velocities: CW 

positive / poloidal velocities: positive upward at outer mid-plane) 
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4.3.  Step 3: How to create the iteration step input for true solutions. 

 Once the code is test-run and users identify the iteration step for each individual 

mesh that corresponds to the true solution, next step is to create a text format input file 

that replace "j_manual_138639.txt" in the main program (Table 3).  Typing either 

"har1_i", har2_i", or "har3_i" in the Matlab command prompt gives the corresponding 

iteration step numbers, j .  Easiest way to create "j_manual_******.txt" is to copy and 

paste the iteration numbers into the Excel spreadsheet (j_manual_138639.xlsx) and save 

it as “.txt” format with a new shot number.  In “j_manual_138639.txt”, users can notice 

that the iteration step numbers for the meshes with high singularities are set as “NaN” so 

that the code will eliminate the discontinuities in the final profile.  These points can be 

easily identified just by observing the profiles in Fig. 6 or refering to the condition 

number plot shown in Fig. 7.  Users are also advised to neglect a few meshes at both ends 

of the profiles.  Meshes for 0.3ρ ≤  usually have very low accuracy because 0r Rε ≡  is 

too small, causing numerical blow-ups.  Also, the results in 0.95ρ >  are less trustworthy 

not only because the numerical systems are extremely ill-conditioned but also because the 

current plasma rotation theory [1] based on Braginskii's ordering with no atomic physics 

treatment in the plasma edge lacks accuracy in the plasma edge and for slow rotation  
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shots.  This manual process is expected to be automated in the future versions after 

analyzing more shots. 

 

4.4. Step 4: Second run and the final processing 

 With "j_manual_******.txt" created, users need to run the code for the 2
nd

 time.  

This second run will generate figures similar to those of shot #138639 in Fig. 8, showing 

the raw solutions (red squares) and the spline-fit (black dots) of the profiles together.  

Here 
exp

CVp  and 
exp

CVt  are the experimental measurement for carbon, 
inf

DVt  is the inferred 

velocities from the perturbation theory, 
initial

DVp  is the initial guess calculated with the 

other velocities from the momentum balance equation. 
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Figure 8. Raw velocities and spline-fitted profiles 

0000 10101010 20202020 30303030 40404040 50505050

-5000-5000-5000-5000

-4000-4000-4000-4000

-3000-3000-3000-3000

-2000-2000-2000-2000

-1000-1000-1000-1000

0000

Poloidal Velocity (Carbon)

Mesh number

V
e
lo

c
it

y
(m

/s
)

 

 

VpVpVpVp
CCCC

eeeexxxxpppp

VpVpVpVp
CCCC

ccccaaaa llll



 86

Figures 9 show the finally processed profiles of the true solution (Vp  and Vt  of 

both species on the same plot) for shot #138639.  Note that the signs of toroidal velocities 

are reversed from Fig. 8 due to the familiarity of the plasma physicists to CCW being 

positive.   
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Figure 9.  Final true solution velocity profiles (toroidal velocities: CCW positive / poloidal 

velocities: positive upward at outer mid-plane) 

 

Figure 10 shows the finally spline-fitted density asymmetries for shot #138639.  

Here meshes for 0.96ρ >  not presented due to the lack of accuracy in this region.   
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Figure 10. Computed density asymmetries 
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The code also calculates the neoclassical angular transport rates, inertial and 

gyroviscous transports,  as shown in Fig. 11 for shot #138639.  Note that GTROTAv1.0 

based on the Stacey-Sigmar poloidal rotation model [1] calculates the gyroviscous 

transport contribution (not the much smaller perpendicular contribution) which accounts 

for the most of the neoclassical viscous damping.  Neoclassical transport frequencies in 

the range 0.9ρ >  tend to fluctuate more as the code tries to spline fit them.  With the 

current theory [1] not developed for slow rotation and not accounting for the atomic 

physics in the edge, when combined with the ill-conditioning of the numerical model in 

the edge, spline-fitted results in the plasma edge is not only less trustworthy but also can 

be misleading in terms of what's really happening in the edge.  Future  extended theory 

and the code will be updated to increase the accuracy in this range. 
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Figure 11. Transport frequencies 

 

5. VERIFICATION OF RESULTS 

GTROTAv1.0 allows users to examine the nonlinear dynamics of the given 

problem by changing the relaxation weights (i.e., changing α ) in Eq. (36).  Users are 

recommended to examine them for 0.2 2α≤ ≤ , or beyond if necessary, with the goal of 

identifying the most commonly appearing solution which corresponds to the true solution 
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that the algorithm always tries to converge to.  Any solution profiles appearing for a 

particular α  value only are likely to be transient solutions that happen to appear with 

higher normalized residuals (much higher than 310−  empirically), thus not the true 

solution.  Once the true solution is identified, users can change the default α  to another 

optimal value that yields most stable true solution profile and process the solution 

manually for the final spline-fitted true solution profiles.    

 

6. CONCLUSIONS 

 This manual for GTROTAv1.0 summarizes the neoclassical rotation theory and 

the numerical model of GTROTA, and the steps to follow for the users of the code.  Use 

of Matlab during the development of the code allowed easy and fast testing of many 

standard and non-standard nonlinear algorithms discussed in Ref. [2].  It is expected to be 

translated into Fortran in the near future.  Due to the inherent nonlinear characteristics of 

the extended plasma rotation theory, some manual steps in the use of the code was 

inevitable but will be automated as much as possible after identifying more generalized 

dynamics in the future versions.  Users are encouraged to contact Cheonho Bae for any 

questions and suggestions regarding the algorithm of GTROTAv1.0. 
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