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SUMMARY

In design and optimization of a complex system, there exist various methods

for de�ning the relationship between the system as a whole, the subsystems and

the individual components. Traditional methods provide requirements at the system

level which lead to a set of design targets for each subsystem. Meeting these targets is

sometimes a simple task or can be very di�cult and expensive, but this is not captured

in the design process and therefore unknown at the system level. This work compares

Requirements Allocation (RA) with Distributed Value Driven Design (DVDD).

A computational experiment is proposed as a means of evaluating RA and DVDD.

A common preliminary design is determined by optimizing the utility of the system,

and then a Subsystem of Interest (SOI) is chosen as the focal point of subsystem

design. First the behavior of a designer using Requirements Allocation is modeled

with an optimization problem where the distance to the design targets is minimized.

Next, two formulations of DVDD objective functions are used to approximate the

system-level value function. The �rst is a linear approximation and the second is

a nonlinear approximation with higher �delity around the preliminary design point.

This computational experiment is applied to a series hybrid vehicle where the SOI is

the electric motor.

In this case study, RA proves to be more e�ective than DVDD on average. It is

still possible that the use of objectives is superior to design targets. This work shows

that, for this case study, a linear approximation as well as a slightly higher �delity

approximation are not well suited to �nd the design alternative with the highest

expected utility.
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Chapter I

INTRODUCTION

1.1 Problem Statement

Systems engineering seeks to bring a methodology to the design of complex systems

that can be repeated across various domains and applications. The complexity of man

made objects has increased substantially in the last century. Previously, a novel idea

or machine could be conceived and produced by one person. But with the introduction

of complex systems like aircraft, spacecraft or large energy generation facilities, the

ideas and relationships of the system can no longer be fully comprehended by one

person, especially when a system may include multiple technical domains [30].

The role of the system designer is to properly partition the system and supervise

the integration of all the subsystems, components, subcomponents and parts. The

system designer is present throughout the design process from concept exploration

to maintenance and disposal. The decisions made by a system designer are of high

consequence due to the scale of complex systems. A failure to meet program projec-

tions could cost millions or billions of dollars and push back �nal production by years

[8, 9, 10]. A key task for the system designer is to e�ectively relay his preferences to

the individual subsystem designers. It is the purpose of this thesis to evaluate two

methods for communicating from the system level to the subsystem level in order to

achieve the �nal design with the highest utility.

In order to e�ectively comprehend a complex system, it is partitioned into a

structural hierarchy leading to multiple levels of complexity. As shown in Figure 1,

the complexity decreases and the required domain expertise increases as we move

down the system hierarchy. This system decomposition reduces the problem scope to
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be addressed by technical experts and simpli�es the engineering problem that must

be comprehended by the system designer.

Figure 1: Change in Complexity and Technical Depth among the Levels of a Complex
System

The transition of design activities from the system level to the subsystem level

often occurs in the transition from preliminary design of the system to subsystem

design. A system level model is constructed and multiple simplifying assumptions

are made about the subsystems to evaluate possible design alternatives. Once a sys-

tem design is selected, the preferences of the system designer are communicated to

the subsystem designers to complete the design of the individual subsystems. Tradi-

tionally, this is done using requirements which are design targets allocated from the

system level to the subsystem level.

It has been proposed by Collopy [5] that the use of design targets is a substantial

reason for cost and schedule overruns that often arise in the development of complex

design programs. He suggests that a value based approach and the use of an objective
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function at the subsystem level can lead to a system design with higher expected

utility. To evaluate the superiority of one method over the other, an example system is

designed using both Requirements Allocation (RA) and Value Driven Design (VDD),

yielding quantitative metrics used for comparison.

1.2 Motivation and Hypothesis

The thought exercises and theory proposed by Collopy prompts the need for further

study of multi-level system design. The systems engineering process has long relied

on the use of requirements and design targets at every level of the system hierarchy.

The systems engineering community has also been witness to numerous instances

where the targets set could not be achieved within the allotted budget and schedule

[8, 9, 10]. This motivates the evaluation of alternative approaches that may curb

these shortfalls and improve the systems engineering process as a whole. The work

in this thesis is driven by the following hypothesis.

Hypothesis: Overall system performance can be improved by formulating

the subsystem design problem in terms of objectives rather than targets.

This proposition is based on the belief that there is a better way to communicate

the needs of the system designer to the subsystem designer. The two approaches

of interest prescribe di�erent ways to perform that multi-level communication. The

hypothesis is rejected if, on average, the subsystem design by RA yields a higher

expected utility than the subsystem design by VDD. The results of this work support

or discount the claim of the hypothesis, but cannot outright declare one method

superior to the other. The case study presented models the actions of system and

3



subsystem designers, and therefore, provides representative guidance to the designers

of complex system.

A computational experiment is presented and carried out to investigate this hy-

pothesis. The experiment is de�ned by completing a common preliminary design

followed by the design of an individual subsystem using each method and examining

the expected utility of the design resulting from each approach. The example system

is modeled with varying levels of �delity to approximate the assumptions made by the

system designer during preliminary design and the subsystem designer during subsys-

tem design. In the approach of Requirements Allocation, design targets are assigned

to the subsystem attributes based on the preliminary design. In the approach of

Value Driven Design, a weighted sum value function is derived from the preliminary

design and applied at the subsystem level. Each approach is then used to optimize

the subsystem under uncertainty yielding the overall expected utility of the system.

Finally, the expected value and distribution of the utility is used to compare each

method and highlight the key factors that may support or discount the motivating

hypothesis.

1.3 Thesis Organization

In this chapter, the problem is de�ned as a de�ciency in current methods used to

design complex systems. A new approach is proposed based on the previous work

of other researchers and a need is identi�ed to evaluate the possible advantages of

the proposed approach. The motivating hypothesis is presented and the means of

accepting or rejecting the hypothesis is discussed. The next chapter provides a review

of current systems engineering practices including the use of design targets as well

as the background and development of value-based approaches. Chapter 3 de�nes

in detail the computational experiment used to evaluate each method. Chapter 4

discusses the construction and implementation of an example system used to carry

4



out the experiment. This includes the key assumptions made to model the interactions

that go on between the system designer and the subsystem designer. In Chapter 5,

the results of the computational experiment are provided and discussed in the context

of the motivating hypothesis. Finally, in Chapter 6 the contributions of this work are

summarized and possibilities for future work are proposed.
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Chapter II

REVIEW OF CURRENT AND LEGACY METHODS

This chapter looks at the current methods employed by the systems engineering com-

munity and points to certain de�ciencies that could be mitigated by new methods. A

review of RA is provided and examples are given that suggest the source of cost and

schedule overruns that are prevalent in the development of large complex systems .

Decision Theory is introduced as a framework to ensure rational choices are made

when comparing possible alternatives. Utility Theory is discussed as a means to im-

plement Decision Theory. In seeking a solution to the problems caused by design

targets, Value Driven Design is proposed as a way reform current system engineering

practices and ensure compliance with the foundations of Decision Theory and Utility

Theory.

2.1 Requirements Allocation and the Use of Design Targets

Requirements Allocation is the process of transferring the needs and desires of the

system level designer to the subsystem level designer which results in derived require-

ments. In the traditional method of systems engineering, system requirements will be

developed based on stakeholder input and available resources. As the design process

moves toward design of subsystems and components, the practice of RA is used to

partition the system as well as the system requirements [13]. This is a systematic

process to determine the requirement values that are eligible for allocation and how

that is to be carried out. Those requirements with numerical de�nitions can be re-

lated to the system as a whole through a mathematical hierarchy. An example system

hierarchy partitioned by subsystem is shown in Figure 2.

The International Council on Systems Engineering (INCOSE) provides the most
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VehicleModel(DymolaAndMatlab)SeriesHybridVehicleModel[Package] bdd [  ]

«block»

InternalCombustionEngine

«block»

MechanicalTransmission

«block»

ControlSystem

«block»

WireCoil

«block»

Vehicle

«block»

Battery

«block»

Stator

«block»

Motor

«block»

Rotor

Figure 2: Hierarchical System Decomposition for a Series Hybrid Vehicle

basic implementation of RA [14]. A speci�cation tree is completed using the system

hierarchy as the structure. Completeness is measured by �the inclusion of all items

required in the system.� The speci�cation tree now provides the entire system speci�-

cation and subsystem requirements are crafted using language and rhetoric consistent

with the system level requirements. While some numerical values can be transferred

easily, subjective input can be introduced by the engineer in requirements that have a

performance value associated with them. Guidance is provided by INCOSE to make

this process as consistent as possible, but falls short of providing a mathematically

derived or automated method for ensuring consistency across the multiple domains of

a system. Some work has been done to improve this process and is discussed below.

Grady [13], not the �rst by far, but one of the most thorough, provides the idea of

requirement margins. Margins are de�ned as the di�erence between the design target

and the maximum error value, known as the threshold. While targets have always

been employed in requirement speci�cation, thresholds provide leeway if needed and

imply a direction of improvement. Grady also suggests the practice of margin ac-

count transfers between subsystems. In the case that one subsystem cannot reach the

threshold while another passed the target, a margin transfer allocation may be made

to keep both subsystem requirements satis�ed as well as the parent requirement at

7



the system level. At �rst, this appears to be a suitable alternative to violated require-

ments. However, additional inconsistencies often arise that cannot be accounted for

in a swift and agile form within the systems engineering process.

In spite of a well established method of requirement speci�cation and the the dis-

cipline of systems engineering, large and complex systems continue to fail at meeting

cost and schedule targets. A 2001 report found that the US Army Comanche heli-

copter encountered numerous problems throughout the acquisition process [9]. The

issues described include �ve program restructurings, a ten year extension to the pro-

duction schedule, and a 38% reduction in total planned aircraft. Similar examples

exist with the US Air Force B-2 Bomber and the Department of Defense Joint Strike

Fighter programs [10, 8]. In [4], Collopy provides an aerospace example to illustrate

this problem which is typical of many complex systems. A turbo-pump housing man-

ufacturer has exceeded the cost target and is far within the weight budget. The pump

manufacturer chooses a new design that reduces the cost by $10, but increases the

weight by 40 lbs. and the housing is now within the cost and weight speci�cation.

Conversely, the payload ring manufacturer has exceeded the weight limit by 10 lbs.

To combat this, the ring company uses a new design that reduces the weight by 15

lbs, but increases the cost by $80, so that the payload ring is also now within the

speci�cation. This example is illustrated at the component level, but is analogous for

the subsystem level as well. Although the actions by both contractors are rational

with respect to their own interests, it is clear that the requirement speci�cation did

not adequately provide information from the system level to the subsystem level to

achieve the highest value system (see Table 1). Collopy suggests that the use of an

objective function, instead of speci�cation-based design, can lead to improvements

in both cost and production time while still utilizing domain speci�c experts and

concurrent engineering practices.

It is the goal of this thesis to show that there are superior methods to system

8



Table 1: Summary of the Changes to a Fictional Aerospace System Due to Require-
ment Violations [4]

Weight ∆ Cost ∆
Housing +40 lbs. -$10
Ring -10 lbs. +80

Total ∆ +25 lbs. +$70

design and decomposition which have a basis in Utility Theory and Decision Theory.

We propose that an objective function is needed to better communicate the needs

of the system designer to the subsystem designer. This inherently implies that the

system designer has preferences for possible outcomes and also has beliefs about the

probability of certain outcomes occurring. From this, we can conclude that Decision

Theory with the aid of a utility function would be a good place to start in looking for

a solution to the shortfalls of RA. The next section provides a foundation for these

concepts.

2.2 The Application of Decision Theory to System Design

Decision Theory can be applied to many other domains, but is especially well-suited to

design due to the systematic method that can be used for any decision in any context.

In the context of system design this discipline is known as Decision-Based Design

(DBD) [15, 27]. With a mathematical foundation in Utility Theory, Decision Theory

is directed at the allocation of resources by choosing alternatives under uncertainty

[18]. Hazelrigg [16] provides a thorough introduction to Decision Theory motivated

by the idea that all engineering activities are decisions with uncertain outcomes.

Every engineering activity, or decision can be decomposed into the choice between

a set of alternatives, the uncertain outcome of each alternative, and the personal pref-

erences of the decision maker with respect to each outcome. The decision alternatives

are all the possible options from which the engineer may choose, but he may only

choose one. The decision outcome is the result of any one alternative and can have
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multiple terms. For example, the engine choice in a vehicle will have a mass element,

cost element, physical form factor element, and power element. This outcome can

never be deterministic. As Hazelrigg suggests, this would imply a perfect knowledge

of the future. For this reason, outcomes are treated as random variables formed by

the decision maker's prior beliefs. The last component of any decision is the pref-

erence of the decision maker which is associated with the possible outcome of each

alternative. The decision maker holds no preference for the alternative, but only the

outcome that is caused by choosing that alternative. Under the assumption that the

decision maker is rational, he would choose the alternative that provides him with

the greatest utility and because uncertainty is present, this becomes expected utility.

An illustration of Decision Theory is shown in Figure 3.

Figure 3: Illustration of Decision Theory Using a Decision Tree

The decomposition of choices as described above requires the ability to character-

ize and implement the preferences of the decision maker under uncertainty. Utility

theory is an appropriate method to complete this task since it allows the preferences

of the decision maker to be elicited under uncertainty enabling the selection of the

alternative with the highest expected utility. Decision Theory provides the systematic
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decomposition of the problem and Utility Theory provides the means to �nd the best

alternative under uncertainty. Recall that we are currently forming the foundation

required to obtain an objective function that provides the most complete information

the subsystem designer from the system designer. The axioms and foundations of

Utility Theory are provided below.

2.2.1 Utility Theory as a Means of Implementing Decision Based Design

Previous work by Hazelrigg [15], Thompson and Paredis [32], and Lee [22] has shown

that Utility Theory, based on logical axioms, is suitable for making decisions in the

context of system design which is inherently completed with imperfect knowledge.

Utility Theory states that the decision maker should select the alternative with the

highest expected utility. This is purely based on the preferences of the decision maker

and is elicited using a utility function. There are �ve axioms of Utility Theory which

are provided in Table 2. These axioms were de�ned as the foundation of Utility

Theory in 1944 by von Neumann and Morgenstern [34] and were built upon by other

investigators with similar conclusions [17, 2, 24, 26]. This is known as von Neumann-

Morgenstern Utility Theory (vN-M).

The vN-M axioms express characteristics of the decision maker's preferences that

must be satis�ed, thereby qualifying the decision maker as rational. The �rst axiom

proposes that the decision maker has preferences for each possible outcome and those

preferences can be communicated clearly. The second axiom states that the prefer-

ences of the decision maker must be transitive and consistent. The third through �fth

axioms are concerned with a vN-M lottery. A vN-M lottery is de�ned as a choice be-

tween n alternatives with uncertain outcomes A1, A2, ..., An where the outcomes are

ranked from most to least preferred. Each outcome has a probability of occurrence p1,

p2, ..., pn where (0 < p < 1). The third vN-M axiom states that the decision maker's

preferences must be continuous over a region. With respect to the lottery, this means
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Table 2: The Axioms of Utility Theory [34]
1. Complete Ordering
For any (u,v): either u � v OR u ≺ v OR u ∼ v
2. Transitivity
For any (u,v,w): if u � v AND v � w THEN u � ww
3. Continuity
For any (u,v,w) such that u � w � v, then for some α where 0 < α < 1,
w ∼ αu+ (1− α)v
4. Convexity
For any (u,v) such that u � v, then for any α where 0 < α < 1,
u � αu+ (1− α)v
5. Combining
For any (u,v) where (0 < αβ < 1) and γ = αβ,
α(βu+ (1− β)v) + (1− α)v ∼ γu+ (1− γ)v

(u, v, w) are outcomes. (α, β) are probabilities. u � v indicates that
outcome u is preferred to outcome v. u ∼ v indicates that

outcomes u and v are equally preferred.

that any lottery with two possible outcomes can be reduced to a single equivalent

certain outcome. The fourth vN-M axiom states that preferences must be convex.

In a vN-M lottery if an speci�c outcome is preferred, then a higher probability of

receiving it must always be preferred over a smaller probability of receiving it. The

last vN-M axiom proposes that compound lotteries can be reduced to a single lottery.

These axioms, above all, impose rationality on the decision maker. This is not

always the case for real world decisions, but it is assumed that an engineer or system

designer in will continuously seek rationality in design activities. So long as the

decision maker observes these axioms and preserves rationality, his or her behavior

can be modeled by maximizing the expected value of the resulting utility function.

These axioms would be violated in a case when the decision maker deliberately chooses

an alternative that is not based on their elicited preferences. An example of this may

occur if the decision maker does not actually have the authority to allocate design

resources.
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2.2.2 The Elicitation and Use of Utility Functions

In addition the the axioms of Utility Theory, von Neumann and Morgenstern also de-

�ned the basis of utility functions. Two forms of these functions have been developed;

one to analyze single objective design problems and another to analyze problems with

multiple objectives.

Single attribute utility functions determine the utility of an alternative based on

one objective that includes all other parameters of the design problem. Equations

1 and 2 show that Y is the single attribute over which preference is elicited and is

de�ned as a function of ~X. One criticism of this formulation is that the decision

maker will rarely have enough knowledge about the alternatives to provide a rational

preference over a single attribute. However, if the formulation of system parameters

can be successfully aggregated, this method has been shown to be useful in conveying

a decision maker's preference [16].

U = Pref(Y ) (1)

Y = f(X1, X2,..., Xn) (2)

A widely accepted method for aggregating preferences of multiple objectives was

developed by Keeney and Rai�a [20] in 1993. Preferences of the decision maker are

elicited over multiple objectives and then combined to create a single measurement of

e�ectiveness for each design alternative. The utility aggregation is performed using

an additive utility function (Eqn. 3) or a multiplicative utility function (Eqn. 4).

u(f1( ~X), . . . , fn( ~X)) = k1u1(f1( ~X) + k2u2(f2( ~X)) + · · ·+ knun(fn( ~X)) (3)

1 + ku(f1( ~X), . . . , fn( ~X) =
n∏
i=1

(1 + kkiuk(fi( ~X))) (4)
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Scaling constants are represented by ki to show the relative importance of moving

from the worst to the best value of attribute i. One assumption made using this

theory is that the preference for a vN-M lottery attribute does not depend on the

preference of other attributes. For example, in the decision to purchase a new vehicle,

the buyer's preferences for back seat leg room are independent of his preference for top

speed. While this method has been found to be more accurate than single attribute

utility functions, it has also been criticized for requiring too much e�ort to acquire

preferences without introducing additional subjectivity [11].

2.2.3 Design Targets in the Context of Decision Theory

An example of inconsistencies due to requirements allocation is given in Section 2.1

and now we will look at a more general case that shows that irrationality is the cause

of those inconsistencies. Abbas and Matheson [1] showed that when using targets1 to

determine the allocation of resources, the preferences of the decision maker will change

depending on events within the design process. If, according to the decision maker,

the target will be achieved, the decision maker becomes risk averse to preserve the

successful element. Conversely, if the target appears to be out of reach, the decision

maker will take a risk seeking preference often trying radical or new methods to reach

the target.

This inconsistency is illustrated in Figure 4 using probability distribution func-

tions. There exists some component with an attribute of mass where less is better.

4(a) shows that during preliminary design there is some normally distributed uncer-

tainty associated with the mass of the artifact. If simple targets are used and no

margins are set (the di�erence between objective and threshold), then the require-

ment is set at the expected value. The subsystem design phase is now shown in 4(b)

1In this context, the term target is expanded from engineering system requirements to anything

that may be of concern to an organization like expenditure budgets, project time lines or quarterly

pro�ts.
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Figure 4: E�ect of Altering Risk Preference during the Design Process (derived from
[5])

where the decision maker will adopt either risk averse or risk seeking preferences. If

it appears that the requirement will be met, he will adopt risk averse preferences at-

tempting to preserve the successful design. Due to the increased risk, this causes the

left side of the probability distribution to contract toward the mean which, in turn,

causes the mean to shift right. If the subsystem design leads to the conclusion that

the requirement will not be met, the decision maker adopts risk seeking preferences

in an attempt to return to a successful design. This causes the right side of the dis-

tribution to spread outward, further increasing the expected value of the component

mass. By imposing a mass target on the component, the expected value of the mass

has increased simply because of the change in preference between design phases. At

this point a Engineering Change Order would be completed to either choose a new
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preliminary design or alter the mass target of another component. Mass is often min-

imized, but in the case of an attribute being maximized such as utility, 4(b) would

be mirrored across the design target. This is possibly one of the leading causes for

the extensive schedule delays and cost increases that often occur in the development

of complex systems [5].

Recalling the axioms of Utility Theory and the importance of rationality, it is

suggested that target based design leads the decision maker to choose alternatives that

do not maximize the expected utility and cause inconsistencies due to irrationality.

This thesis aims to support e�orts that propose the use of a properly derived objective

function to avoid these inconsistencies.

2.3 Building on Decision Based Design with Value Driven De-

sign

It is now clear that rationality is extremely important to system design and especially

over the chronological life-cycle of the design process. It is also clear that when

traditional methods of systems engineering employ design targets, the decision maker

is not guaranteed to maximize the expected utility of the system and, therefore, su�er

monetary, time and performance losses in the system life-cycle. In light of these

de�ciencies, Distributed Value Driven Design (DVDD) has been proposed as a formal

framework by Collopy [4] which follows the axioms of Utility Theory as well as the

process of decision analysis provided by DBD. It also employs quantitative �nancial

metrics to further remove subjectivity from the comparison of design alternatives.

2.3.1 Using Distributed Optimization to Optimize the Value of a Design
Alternative

In addition to assigning value to a design alternative, VDD also seeks to derive an

objective function for each subsystem from the system level objective function. This

method has roots in the �eld of multidisciplinary optimization (MDO) developed
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primarily by Sobieski et al. [31] and Cramer et al. [7]. MDO integrates predictive

models with a system decomposition optimization structure. Although this method

looks for the �best� design at the system and subsystem levels, it often employs

constraints similar to design targets which of course lead to suboptimal alternatives

from which to choose.

VDD relies heavily on distributed optimization which dictates that instead of de-

signing subsystems to be feasible and adequate, they should be optimized with respect

to the parent system. Recalling the axioms of Utility Theory, the decision maker

should choose the alternative with the highest expected utility and, thus, the use of

distributed optimization for complex systems is appropriate. The objective function

derived from VDD is referred to as the Distributed Value Driven Design objective

function due to its distributed nature from the perspective of the system designer.

VDD requires a few assumptions that set the standard practices of the engineering

�rm as well as the current position within the design process. First, it is assumed that

preliminary design of the system has been completed and the general architecture is

set. This allows for approximately 10% deviation in attribute values, but does not

allow for attributes to be deleted or appended. VDD also requires that the system

already be decomposed into some �xed hierarchical structure where all subsystem

interfaces have been speci�ed. Lastly, the extensive attributes must be speci�ed.

Extensive attributes are de�ned as subsystem attributes that collectively impact the

overall attributes of the system. In RA, these are the attributes that are assigned

targets based on system level requirements like subsystem mass or component cost.

2.3.2 System Value as a Means of Comparing Alternatives

Value based design methods have been proposed by many researchers since the work

of von Neumann and Morgenstern [34], but have not penetrated into the practice of
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complex system design until recently. Sage [29] was one of the �rst to apply value-

centric ideas to decision analysis of complex systems. He proposed Value System

Design as a way to extract extrinsic valuation of a system from the system properties.

Sage also noted the need for methods that promote rational decision making in design.

It was suggested by Hazelrigg [15] that any engineering �rm is ultimately only

concerned with pro�t and, therefore, systems should be optimized with an objective

to maximize pro�t. This has been contested with the argument that pro�t is an

improper measure of e�ectiveness for domains such as scienti�c research or national

security. If we take the perspective of the engineering �rm, there will always be a

customer paying for the �rm's products and services. Regardless of the end-user's

speci�c needs, a price has been placed on the capabilities of the system and it is

the role of the engineering �rm to capitalize on those needs. This is illustrated in

Figure 5 by the framework for optimal product design developed by Hazelrigg. In

an in�uence diagram, square boxes denote design choices, rounded boxes denote a

decision consequence and ovals denote a chance event.

Figure 5: Framework for Optimal Product Design (derived from [16])
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Along these lines, Collopy [6] argued that system utility and monetary value are

equivalent and, therefore, the decision maker should prefer the design with the most

value in monetary units. This further imposes rationality that is required by Utility

Theory and Decision Theory since it allows for the use of traditional �nancial goals

and quantitative metrics such as net present value and reservation price.

2.4 Summary

In this chapter, the current methods of systems engineering are reviewed, revealing

inconsistencies in the design process. It has been suggested that design targets ob-

tained by Requirements Allocation ensure a suboptimal system due to actions taken

by the subsystem designers as well as the system designer. Subsystem designers will

act rationally with respect to their own interest and system designers will change their

risk preference based on the current state of the design; both actions having a negative

e�ect on the �nal design of the system. Decision Theory is introduced to provide a

process for any design decision and the axioms of Utility Theory are given as a means

of design under uncertainty. Upon these ideas, Value Driven Design is introduced as

a proposed solution to the suggested inconsistencies present with current methods.

VDD assigns extrinsic value to system properties and further promotes rationality by

using distributed optimization to ensure that if each subsystem is optimal, the overall

system will also be optimal.
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Chapter III

DEFINITION OF THE COMPUTATIONAL EXPERIMENT

The primary contribution of the work presented in this thesis is to support the moti-

vating hypothesis which states that a better subsystem design, and therefore a better

system design, can be achieved by using an objective function derived from Value

Driven Design rather than design targets.

The comparison is completed through a computational experiment which models

the actions of subsystem designers implementing each approach. The �ow of infor-

mation between the system and subsystem designers is illustrated in Figure 6. Past

research and the experience of technical experts provides the system designer with

feasibility constraints on each subsystem. The system designer then uses this infor-

mation during preliminary design to select the design alternative with the highest

expected utility. In order to achieve this design alternative, the system designer must

communicate his needs to the subsystem designers. This work compares two possible

approaches for relaying this information from the system level to the subsystem level;

Requirements Allocation using targets and DVDD using an objective function. Since

the initial feasibility constraints are a prediction, the true optimum will always dif-

fer from the prediction. Uncertainty is introduced to model this plausible variation

and the two approaches are compared to evaluate performance with respect to the

motivating hypothesis.

RA involves the assignment of targets to subsystems and components while DVDD

assigns a weighted sum objective function to each subsystem or component. This is

completed by using a common starting point and then evaluating the expected utility

of the �nal system design that results from each approach. This chapter explains
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Figure 6: Information Flow Between the System and Subsystem Designers

the computational experiment used to test the hypothesis and highlights the key

similarities and di�erences between each method. This experiment will be applied

to a speci�c design problem in the next chapter with a discussion of the results in

Chapter 5. Figure 7 shows the process �ow for the computational experiment.

Figure 7: Computational Experiment Process Flow Diagram
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3.1 Establishing the Context for a Comparison of Methods

The two methods of interest in this computational experiment fall within a larger

process of design. The early stages of design as well as later stages are not included

in this discussion since each is una�ected by the method used for subsystem design.

It is assumed that the stages up to preliminary system design have been completed.

This provides a system level design as a starting point for the two methods of interest.

Similarly, once the subsystem design has been completed, the same actions are taken

to produce, distribute and maintain the system.

Both approaches assume that a decomposition of the system has been completed.

A structural decomposition partitions the system hierarchically into subsystems and

components which conserves computational resources during optimization. Refer to

Figure 2 for an example of a structural system decomposition. To ensure consistency,

the targets and objective functions from each approach are applied to the same sub-

system while all other subsystems are kept constant.

The key di�erence between Requirements Allocation and Value Driven Design is

the form of information used to communicate the needs of the system designer to the

subsystem designer. RA utilizes design targets that are selected based on a system

level model. This provides an extremely high incentive to meet the targets but little

incentive to exceed the targets if possible. Speci�cs of implementing this method

including the construction of the optimization problem used to model the actions of

the subsystem designer will be discussed in Section 3.3.2.

Value Driven Design, on the other hand, provides the subsystem designer with

more information about the needs of the system level designer. The objective function

for this case is based on the partial derivatives of the system model with respect to

the subsystem attributes. This provides richer information to the subsystem designer

which can quantify design trade-o�s faced during subsystem design [4].
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3.1.1 De�ning the Mathematical Formulation of the System and Subsys-
tem Relationships

Prior to the design of the system and subsystems, a mathematical foundation must

be provided to understand the role of the system and subsystem design within the

experiment as a whole.

The system level value is de�ned by the objective function π (~x) where the vector

~x is composed of the system level attributes x1, x2, . . . , xn contained in the attribute

space X. Each system level attribute in�uences consumer demand and therefore

in�uences value. The attributes in X would be most familiar to the consumer of a

speci�c system (e.g. top speed and e�ciency of a consumer vehicle). Each system

attribute is a function of the extensive attributes, which are de�ned as the subsystem

attributes that collectively a�ect the overall system attributes.

The extensive attributes of subsystem i are de�ned by yi,1, yi,2, . . . , yi,mi
composing

the vector ~yi in the extensive attribute spaceYi. In the example of a consumer vehicle,

these attributes would include the engine power or the mechanical driveline e�ciency.

We de�ne the composition vector function h (~z) where ~z is the concatenation of all

the extensive attributes. This allows use to relate the extensive attributes of the

subsystems to the system objective function by Equation 5.

π (~x) = π (h (~z)) (5)

At the system level the extensive attributes are treated as design variables. How-

ever, they must be in accordance with the constraints of the initial feasibility model,

g (~z), which is provided by the technical experts of each subsystem. This is due to the

fact that the extensive attributes are not independent of each other. This interdepen-

dency is de�ned explicitly by the function v in Equation 6. g (~z) is then de�ned as

the implicit form of v in Equation 7 to model the feasible attribute space as a whole.
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v (z2, z3) = z1 (6)

g (~z) = v (z2, z3)− z1 where g (~z) ≥ 0 (7)

We will establish a ∗ notation to identify the speci�c design that has been chosen

as the most preferred system alternative. This yields the system attribute vector

~x∗ with corresponding subsystem extensive attribute vectors ~y∗i for each subsystem

i. The composition of these extensive attribute vectors is referred to as ~z∗. These

vectors are known once the optimization of the system model has been completed.

The preliminary system attribute vectors remain static for the duration of the design

process and are used to derive the design targets and DVDD objective function.

Once the system level relationships have been established we can de�ne the sub-

system objective function as φi(~yi) where the vector ~yi is composed of the extensive

attributes of subsystem i in Yi. The two approaches being compared di�er in the

construction of the objective function φi for each subsystem. In each approach and

throughout the computational experiment, the length of the subsystem attribute vec-

tor ~yi must remain constant. More intermediate variables may be introduced to

increase the �delity of the subsystem model, but the same extensive attributes are

used to convey subsystem merit with respect to the system as a whole. During sub-

system design, the constraints from the system-level design are neglected and a higher

�delity model, fi, is used to determine the extensive attributes for each subsystem.

The design variables of this model are exclusive to that subsystem. In the example

of a consumer vehicle, the design variables for the internal combustion engine may be

the displacement in liters or the intake valve radius in inches.

~yi = fi (di,1, di,2, . . . , di,pi) (8)
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With the mathematical relationships between the system and subsystems de�ned,

we will move on to the preliminary design at the system level.

3.2 De�ning the Preliminary System Design

Maximizing the utility at the system level to establish the preliminary design is im-

perative to both Requirements Allocation and Value Driven Design. This is more

than an overall system architecture de�nition that may be determined during con-

cept exploration and as is noted below, must be a good approximation of the �nal

subsystem design. This requires a full computational model that has at least some

estimation for every subsystem.

3.2.1 Constructing the System Model

The computational experiment is used to model the actions of the design participants.

In practice, assumptions and approximations are made to provide a starting point

for design. This means the decision maker has incomplete knowledge about the

design problem and there exists uncertainty about the future of the system [16]. Any

model of the system or subsystems is an approximation of the real world, but in this

experiment, one speci�c subsystem will be approximated with the knowledge that new

information will be obtained during subsystem design. In practice, new information

would become available during the design process for every single component. For

this work, we are concerned with how the subsystem design may di�er from the needs

of the system designer due to this new information.

In the computational experiment, which particular subsystem is chosen is not

important; however, we must have separate models with varying levels of �delity (i.e.,

new information) to perform the subsystem design on that particular element. With

this in mind, the Subsystem of Interest (SOI) used in the computational experiment

should be determined before the system model is constructed to ensure that a more

accurate subsystem design can be completed following the preliminary design.
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Once the SOI is determined the system level model is constructed with a separate

model for each subsystem based on the structural decomposition. A very simple

model could decompose the system into the SOI and the rest of the system while a

more realistic decomposition would break the system into multiple subsystems based

on the task performed or technical domain, one of which being the SOI. The models

used for the subsystems can vary in �delity so long as values can be found for every

system level attribute that contributes to the overall utility. In this experiment,

some subsystems are modeled using a curve �t from market data and others use more

detailed physics-based equations to model behavior of the subsystem. Once the model

is constructed, the system can be optimized to maximize utility.

Figure 8: Preliminary Design System Model

Figure 8 shows a generic system model that is used for this experiment to model

the actions of the system designers. Note that during preliminary design the subsys-

tem functions fi are abstracted away using feasibility constraints initially provided by

the technical experts. The objective function is any function that may determine the

goodness of a preliminary design. For the reasons outlined in Chapter 2, this work

will employ the axioms of Utility Theory for the objective function. Utility Theory is

only useful when uncertainty is present and although uncertainty is not used in the

preliminary design, it is present in the evaluation of each subsystem design so it must

be employed in the preliminary system model.
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3.2.2 Maximizing the Utility of the System Model

This experiment relies on a deterministic global optimum found using a constrained

optimization algorithm. The optimization formulation is as follows.

Find: ~z = {~y1, ~y2, . . . , ~yi}

That Maximizes: π (h (~z))

Subject To: g (~z)≥ 0

The extensive attributes of the subsystems are treated as design variables and are

subject to the feasibility constraints provided by the domain experts. This solution

~z ∗, to this optimization formulation must satisfy the Karush-Kuhn-Tucker (KKT)

conditions [21]. The KKT conditions are outlined in Equation 9 below1.

∇π (~z ∗) +
k∑
j=1

µk∇gk (~z ∗) = 0 (9)

where

gk (~z ∗) ≥ 0 ∀k

µk ≥ 0 ∀k

µkgk (~z ∗) = 0 ∀k

In modeling the actions of the system designers, the KKT conditions express that

the negative gradient of the objective must exist inside the simplex of all the gradients

of the active constraints. An illustration of the system optimum in light of the KKT

conditions and a single active constraint is given in Figure 9.

For this work, extra care was taken to make sure that the global system optimum

was found prior to moving on in the computational experiment. This is important

because the authors may not know exactly where the optimum exists on the Pareto

1This problem has been formulated as a maximization instead of a minimization as originally

prescribed by the KKT conditions. However, the constraint inequality has also been reversed, so

the KKT conditions remain the same overall.
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Figure 9: System-Level Optimization Problem for One Active Constraint

frontier for the computational experiment. However, it is assumed that system de-

signers familiar with the problem domain would have the knowledge and experience

to quickly �nd the neighborhood of the global optimum.

3.3 De�ning the Subsystem Design

3.3.1 Applying Uncertainty to the Subsystem Design Stage

As noted previously, both of the proposed approaches de�ne a format used to relay

information from the system level to the subsystem level. The initial feasibility con-

straints provided to the system designer from the technical experts are predictions.

The di�erence between the predictions of the domain experts and the actual feasibil-

ity realized through subsystem design is modeled using uncertainty. The e�ect of this

uncertainty on the ability of the subsystem designers to reach the system optimum is

illustrated in Figure 10.

If the subsystem design were completed deterministically in this experiment, it

would be implied that the system designer has perfect knowledge about the entire

system. Then the design targets would be reached every time and would be guaran-

teed to be the alternative with the highest attainable utility. But since this is not

the case and the knowledge about the system is imperfect, uncertainty is introduced

and it is the goal of the optimization to maximize the expected value of the system
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Figure 10: Shift of g (~z) Due to Di�erences Between the Predicted Feasibility and
Actual Feasibility

utility. Sources of this uncertainty include technological advances, logistical or in-

ventory problems, economic changes, or political instability. The uncertainty present

shifts the feasibility constraint g (~z) with respect to ~z∗. Favorable uncertainty, like re-

cent technological advancement, may shift g (~z) towards the unconstrained optimum.

This would make the design point ~z∗ easily attainable. Conversely, unfavorable uncer-

tainty as shown in Figure 10 shifts g (~z) to the extent where ~z∗is no longer attainable.

Unfavorable uncertainty may model realities such as an increase in material costs.

For the design of the SOI, various constants in the SOI model are treated as

random variables with a speci�c distribution. The choice and characteristics of the

distribution are based on the beliefs of the decision maker about the possible values

that may result from the sources listed above. The distribution chosen for each

variable need not be the same type and is only dependent on the beliefs of the decision

maker. It is acceptable to apply a normal distribution to one variable and a triangular

distribution on another. Rarely does the decision maker have enough information to

use a specialty distribution like a beta or gamma distribution. Likewise, he usually

has at least some belief about the possible outcome for each alternative so a uniform

distribution is seldom appropriate.
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The Common Random Number [19] sampling technique is used to reduce the num-

ber of samples that are needed. The statistical technique takes uses the exact same

sample to evaluate each approach. This means that given the same true feasibility

during the subsystem design, it can be evaluated which approach will provide the

maximum utility. Evaluating this over the entire set of uncertainty values provides

the information needed to determine which approach yields the highest expected util-

ity. A Latin Hypercube Sampling (LHS) method is used to generate the random

variables in this experiment. LHS takes advantage of randomization, but also em-

ploys strati�cation of the sample space to ensure that the system attributes are not

dominated by a select few variables [28].

3.3.2 Subsystem Design by Requirements Allocation

This section will de�ne the experiment used to model subsystem design using RA.

In this scenario, the subsystem designer is provided targets based on the preliminary

system design. The subsystem designer is rewarded if he can meet or exceed the

targets. However, due to the cost-minimizing nature of designers, it is not expected

that the targets will ever be exceeded. Exceeding the targets would require additional

resources without additional incentive. Recall that the literature suggests the behav-

ior of the subsystem designer will depend on his current beliefs about the probability

of reaching the target. Because of this, the actions of the subsystem designer are

modeled as an optimization problem which seeks to minimize the distance between

the current design and the target.

This can be modeled mathematically by Equation 10 where the goodness of an

alternative is evaluated based on the distance between the design targets and the cur-

rent extensive attributes of the system. In general, requirements are speci�ed at the

system level by the optimal extensive attribute vector ~z∗ which was selected by opti-

mizing π (~z). The subsystem level targets are taken directly from the ~yi components
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of ~z∗.

φi(~yi) =

pi∑
k=1

(
yi,k − y∗i,k

y∗i,k

)2

(10)

The resulting optimization problem is given below, with the recognition that reach-

ing the target perfectly results in a function output of zero.

Find: ~d
SOI

=
{
d

SOI,1
, d

SOI,2
, . . . , d

SOI,p

}
That Minimizes: φ

SOI
(~y

SOI
) =

p
SOI∑
k=1

(
yi,k−y∗i,k
y∗i,k

)2

Subject To: ~y
SOI

= f
(
d

SOI,1
, d

SOI,2
, . . . , d

SOI,p

)
Under the uncertainty that is used to model the di�erence in predicted feasibility

and actual feasibility, there are two distinct possible outcomes. First, the uncertainty

realization is favorable and the presumed system optimum, ~z∗ is achieved. Second,

the uncertainty realization re�ects that of Figure 10 and ~z∗ cannot be reached and

the subsystem is designed as close to the targets as possible. In either case, the vector

~z ′ represents the true subsystem design realization. In order to compare this result

with the result of DVDD, we evaluate the system value objective π (h (~z ′)) at this

new design point.

3.3.3 Subsystem Design by Value Driven Design

Modeling Value Driven Design is very similar in process to Requirements Allocation,

but a di�erent optimization formulation is used to model the actions of the subsys-

tem designers. The behavior being modeled is as follows. Based on the alternative

found during preliminary design, an objective function is provided to the subsystem

designer which re�ects how the system-level value is a�ected by changes in the exten-

sive attributes of the subsystem. Instead of a �pass/fail� incentive structure as is used

with design targets, the incentive for the subsystem designer in value-based design is

monotonically increasing and proportional to the result of maximizing the objective

function.
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The best evaluation of DVDD would be provided by designing the SOI strictly

using the system value objective. This would create an objective function of the

form π (~z∗, ~ySOI) where ~z∗ contains all the optimal extensive attributes except for

those associated with the SOI. A Genetic Algorithm or similar optimizer could be

used to perform a global search. In most cases, however, this would be extremely

computationally expensive. Because of this, the system value objective must be

approximated.

This behavior of the subsystem designer under a value-based incentive structure

is modeled mathematically for the SOI by choosing the subsystem design variables

~d
SOI

that maximize the system-level value while the extensive attributes of the other

subsystems remain constant (at ~z∗).

Find: ~d
SOI

=
{
d

SOI,1
, d

SOI,2
, . . . , d

SOI,p

}
That Maximizes: φ

SOI
(~y

SOI
) = π (h (~z))

Subject To: ~y
SOI

= f
(
d

SOI,1
, d

SOI,2
, . . . , d

SOI,p

)
The evaluation for this formulation can be computationally expensive so the sys-

tem value objective is approximated. Two types of approximations are proposed for

the computational experiment. The �rst is a linear approximation at ~z∗ and the

second is a higher order approximation, also at ~z∗.

Collopy [4] proposes a linear approximation using a Taylor expansion around ~z∗

which results in the following optimization problem.

Find: ~d
SOI

=
{
d

SOI,1
, d

SOI,2
, . . . , d

SOI,p

}

That Maximizes: φ
SOI

(~y
SOI

) = ∇Tπ (~z∗) · ~y
SOI

(
~d
SOI

)
This approach assumes that in the neighborhood of ~z∗, the higher order terms of

the system value objective Taylor series expansion are zero. In this case study, this

assumption is tested to determine if a linear approximation of π (~z∗) is appropriate.
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It is possible that if a global optimization method is used such as a Genetic Algorithm

(GA), the result will converge on a design very far from the location of the Taylor

expansion yielding a system utility much worse than that obtained with ~z∗.

In response to this possibility, we propose an alternative approach that accounts

for some of the nonlinearities in the system value. This is done by replacing the

linearized gradient with a function to approximate the system value function around

~z∗ yielding the following optimization formulation.

Find: ~d
SOI

=
{
d

SOI,1
, d

SOI,2
, . . . , d

SOI,p

}

That Maximizes: φ
SOI

(~y
SOI

) = S
(
~z∗, ~y

SOI

(
~d
SOI

))
where the function S includes some of the higher order terms of the Taylor ap-

proximation.

Again, to allow for the comparison of RA with DVDD, the resulting design ~z ′ is

used to evaluate the system value objective, π (h (~z ′)) for each uncertainty realization.

3.4 Summary

In this chapter, a computational experiment is proposed to model the actions taken

by subsystem designers employing either RA or DVDD during subsystem design. The

predictions of technical experts are provided to the system designer in the form of

initial feasibility constraints. The preliminary system design is completed under these

constraints. Then subsystem design is performed using two approaches. The two

approaches being evaluated di�er in the form of information that is passed from the

system level to the subsystem level to convey the needs of the system designer. Each

approach provides a di�erent incentive structure for the actions of the subsystem

designers and these actions are modeled in the computational experiment by the

formulation of optimization problems. The actions of the subsystem designer using

RA are modeled by an optimization problem that seeks to minimize the distance
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between the current design and the targets. DVDD provides an incentive structure

that encourages the subsystem designer to �nd the subsystem design variables that

maximize the overall system value objective. This can be done in multiple ways, and

in this work is completed by accounting for the higher order derivatives of the system

value objective near ~z∗ found during preliminary design. Each approach results in an

design ~z′ which is used to evaluate the system value objective yielding the expected

utility of the system. This allows for the comparison of each approach.
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Chapter IV

CASE STUDY: A SERIES HYBRID VEHICLE

This chapter provides and overview of the example system used to evaluate the two

approaches proposed for the subsystem design. The example system is a series hybrid

vehicle. The system and subsystem relationships of Chapter 3 are applied to this

hybrid vehicle and the modeling techniques used to approximate the actions of the

system and subsystem designers using each approach are discussed. Chapter 5 then

summarizes the results of the computational experiment.

4.1 Concept Development and Initial Assumptions of the Ex-

ample System

The two proposed methods can be applied to many di�erent complex systems. In this

work, a consumer hybrid vehicle was chosen as the example system based on the past

experience of the author. The architecture in Figure 11 is used due to its simplicity

compared with the more popular parallel hybrid architecture. Because there is only

one energy path through the system, the vehicle control system is simpli�ed and

the mechanical gearing can be approximated by a simple gear box instead of a full

transmission. Energy is initially converted from chemical to rotational to electrical in

the Internal Combustion Engine and Generator. The electrical energy is then stored

in the Battery before being regulated and transmitted to the four Electric Motors.

Finally, the Electric Motor converts the electrical energy to rotational energy at the

Wheel.

The �delity of the system model is such that there are four subsystems with ex-

tensive attributes that a�ect the overall value of the system. These are the Electric

Motor, Gearbox, Internal Combustion (IC) Engine, and Battery. The computational
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Figure 11: System Architecture of the Series Hybrid Vehicle

experiment requires a System of Interest (SOI) to be chosen as the focal point of

subsystem design. The SOI must be easily approximated at the system level dur-

ing preliminary design, but it should also be �t for higher �delity modeling during

subsystem design. Here, the Electric Motor subsystem is chosen as the SOI since it

can be modeled using simple power relationships as well as from �rst principles using

geometric relationships.

4.1.1 De�ning the Design Variables, System Attributes and Extensive
Attributes

A mathematical foundation of the system and subsystem relationships was provided

in Section 3.1.1 and is now applied to the example system. Tables 3, 4, and 5 provide

a summary of the design variables and attributes used for the respective models and

system value objective. Speci�cs about each variable and model are provided in the

next section.
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Table 3: System Attributes of the Series Hybrid Vehicle

Attribute Name Description Units

x1 vmax maximum sustainable speed of the vehicle mph

x2 amax acceleration of the vehicle from 0 - 60 mph s

x3 η fuel economy of the vehicle mpg

x4 εerr drive cycle error mph

The system attribute vector, ~x is summarized in Table 3. These attributes are

used in the system objective function, π (~x), to determine the overall utility of a

particular vehicle design.

Table 4: Extensive Attributes for Each Vehicle Subsystem

Extensive Attribute Name Description Units

y1,1 τstall electric motor stall torque N·m

y1,2 ωmax electric motor no-load speed rad/s

y1,3 c electric motor cost USD ($)

y2,1 rg total gear ratio -

y3,1 PIC IC engine max power W

y4,1 Ns battery cells in series -

y4,2 Np battery cells in parallel -

The extensive attributes in Table 4 compose the vector ~z. During preliminary

design, this vector is varied to �nd the system design that maximizes the total utility.

Feasibility and the nonlinear relationships between each variable are determined by

the system model discussed in Sections 4.2 and 4.3, respectively. Variables y1,1, y1,2,

and y1,3 describe the electric motor, y2,1 describes the gearbox, y3,1 describes the
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internal combustion engine, and variables y4,1 and y4,2 describe the battery. In the

method of Requirements Allocation, targets are set for ~y
SOI

whereas in DVDD, an

objective function is provided to optimize π (~z∗) with respect to ~y
SOI

.

Table 5: Design Variables of the Electric Motor Subsystem

Variable Name Description Units

d1 Ds,int interior stator diameter m

d2 Dw wire diameter m

d3 l axial length m

d4 KDs stator ratio where KDs =
Ds,int

Ds,ext
-

d5 KDr rotor ratio where KDr = Dr,ext

Dr,int
-

Table 5 summarizes the design variables of the SOI. The vector ~d de�nes the

basic geometry of the electric motor. The physics-based model used to determine the

electric motor extensive attributes from the design variables is discussed in Section

4.4.

Now that the variables and attributes have been established using the conventions

of the previous chapter, the construction of the vehicle and electric motor models are

reviewed.

4.2 Initial Feasibility Model of the Electric Motor

Prior to the modeling of the system or subsystem, technical experts provide guidelines

to the system designer as to what is feasible. This is always a prediction based on

the beliefs of the technical experts and re�ects the Pareto frontier of possible design

alternatives. There are many ways to model this prediction, but in this work it comes

in the form of a kriging model. Kriging models [23] are a type of surrogate model

sometimes referred to as Design and Analysis of Computer Experiments (DACE)
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approximations. It is an interpolation technique used to approximate a high �delity

model that is computationally expensive to evaluate and can provide feasibility as an

explicit constraint. The method of Support Vector Domain Descriptions (SVDD) [25]

was also investigated as a possible means of providing the initial feasibility model,

but as an implicit constraint, it was found to be insu�cient in approximating the

Pareto frontier.

Table 6: De�nition of the Electric Motor Design Space, D

Design Variable Units Lower Bound Upper Bound

Ds,int m 0.04 0.25
Dw m 0.1 0.01
l m 0.10 1.0

KDs - 1.01 1.50
KDr - 0.10 0.35

In approximating the feasible region, a full-factorial Design of Experiments (DOE)

was performed across the design space D for the electric motor subsystem. The

bounds of the electric motor design variables are provided in Table 6. Four views of

the electric motor design space are provided in Figure 12.

As mentioned above, the initial feasibility constraint that is ultimately passed

from the technical experts to the system designer is in the form of a kriging model.

This can be used to model the stall torque as a function of the no-load speed and

the motor cost in Equation 11. The function is then converted to an implicit design

constraint by Equation 12 (generalized as g (~z) ≥ 0 in Chapter 3).

τmax = Q (ωmax, c) (11)

Q (ωmax, c)− τmax ≥ 0 (12)

The kriging model of the extensive attribute Pareto frontier around the global ~z∗ is

shown in Figure 13. In comparing this with the SVDD approximation, it is clear that
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Figure 12: Electric Motor Extensive Attribute Space

an explicit model is much less expensive once the general area of the global optimum

is known. Since the technical experts can be assumed to have prior knowledge of

this region of the attribute space, it is valid to use a kriging model as the feasibility

constraint during preliminary design.

4.3 Preliminary Design at the System Level

This section will discuss the system vehicle model and the methods used to optimize

π (~z) during preliminary design. From the perspective of the system designer, there is

a relatively simple approximation for each subsystem based on the initial feasibility

guidelines provided by the technical experts. The model in Figure 14 is constructed

in ModelCenter which is a computational tool used to connect various simulations

and perform optimizations of many di�erent forms.

The KrigingTauPredictor is the model of the initial feasibility constraint in Equa-

tion 11 provided by the electric motor domain experts. This provides the feasible

torque and motor speed used in MotorParameters to get the speci�c characteristics
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Figure 13: Kriging Approximation for the Electric Motor at ~z∗

of the motor. Then using the motor characteristics as well as the extensive attributes

of the other subsystems, DymolaPHEV simulates the design alternative to determine

the system attributes, ~x. After a unit conversion, the system attributes and the ve-

hicle cost information are used in the DemandModel to calculate the overall value in

terms of pro�t for that alternative. The last model, UtilityConverter simply applies a

penalty function to alternatives with a large drive-cycle error. Each subsystem model

and the use and necessity of this penalty function are described below.

4.3.1 The System-Level Vehicle Model

The series hybrid vehicle system is dynamically modeled using Dymola. Dymola is

a commercial modeling and simulation environment based on the Modelica program-

ming language. A series hybrid vehicle crosses many di�erent disciplines including the

mechanical, electrical and control domains. Because of Dymola's unique capability

to model components from multiple domains, it is a suitable engineering tool for this
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Figure 14: ModelCenter Model Used to Optimize π (~x) in Preliminary Design

work.

The Dymola diagram for the system model is provided in Figure 15. Each con-

nector color represents a speci�c domain. Blue denotes electrical, black denotes rota-

tional, green denotes translational and dark blue denotes the control domain. Each

block contains a set of equations and equalities to relate the block inputs to the block

outputs.

Initial observations reveal that there is one electric motor in the model while the

vehicle being modeled contains four. To simplify the simulation, the three extensive

attributes for the electric motor can be used to model four electric motors in series

along a single shaft. Recall the electric motor extensive attributes are stall torque,

no-load speed and cost. This series motor setup will multiply the torque and cost by

four, but leave the speed the same. However, when considering the initial feasibility

model, only one motor should be modeled since the same assumption cannot be made

for the speci�c physical phenomena that occur inside the motor.

The vehicle model is �rst provided a velocity command which is the input for a

simple limited PID controller. The limited PID controller allows for proper control
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Figure 15: Simulation Model for the Series Hybrid Vehicle

during braking as well as during acceleration. The overall speed of the vehicle is

regulated by the voltage provided to the electric motor by the DC-to-DC power

converter. The DC-to-DC power converter is limited to a maximum current of 500 A

and operates at an e�ciency of 85%. All the variables for the power converter remain

constant throughout the experiment and its cost is aggregated into the �xed cost of

the vehicle.

The energy �ow through the system originates in a parallel circuit containing the

battery and internal combustion engine. The vehicle being modeled is said to have a

plug-in architecture since the battery is initially at full charge. The battery has been

modeled with a Lithium-Polymer chemistry and the design variables for the battery

are the number of cells in series and parallel. For each cell there is an associated cost

and mass which is constant. If the total number of cells increases, so too will the cost

and mass of the battery according to their respective per cell rates.

The IC engine is essentially a generator so that it can be assumed to operate at
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single speed where power is most e�cient. This e�ciency is set at 35% to re�ect a

state-of-the-art motor common to hybrid vehicles. Engine cost is solely a function of

engine power (Equation 13). This was derived from a market survey of commercial IC

engines with various con�gurations and a power rating between 40 kW and 160 kW.

A hysteresis loop controls the IC engine such that if the battery state of charge drops

below 40%, it generates electrical power until the battery returns to a 90% state-of-

charge. The data collected in the market survey of internal combustion engines is

provided in Appendix A.1.

engine cost = 0.0177 · PIC + 850.6 (13)

From the energy generation and storage circuit, the system energy �ow moves

from through the DC-to-DC power converter and into the electric motor where it is

converted into rotational energy. The electric motor is essentially modeled by a set

of two equations that relate the torque and speed to the motor resistance and torque

constant.

Rm =
V 2
max

ωmax · τstall
(14)

kτ =
Vmax
ωmax

(15)

where Vmax is the maximum voltage in V, ωmax is the no-load speed in rad/s,

τstall is the stall torque in N·m, Rm is the motor resistance in Ω, and kτ is the torque

constant in V ·s/rad. The initial feasibility model provides the possible con�gurations

of torque, speed and cost for the motor and these are used (sans cost) to �nd the

motor parameters.

Once converted into rotational energy by the electric motor, energy �ows through

the gearbox and wheels to the road. The gear ratio, rg, is the only design variable
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associated with the gearbox and is used to regulate the feedback error that may occur

with di�erent motor design alternatives. Since any gear ratio can be used with the

same mass and cost, these values are kept constant and are accounted for in the �xed

vehicle cost. Similarly, the wheel radius of a vehicle is often determined by the size

of the vehicle and predicted use case. Since every vehicle design alternative will have

the same exterior body and consumer use case, the wheel radius is held constant at

0.27 m.

Finally, the environment is accounted for by a model for air drag. Once again,

the frontal area of the vehicle is kept constant throughout the experiment so this

subsystem model is only dependent on the speed of the vehicle and uses physical

constants as parameters.

4.3.2 Vehicle Performance Tests

Recall that the system attributes that directly a�ect value are vehicle speed, acceler-

ation, e�ciency and drive cycle error. These attributes are determined by simulating

the Dymola system model using two test cases. The �rst tests for acceleration and

sustainable top speed and the second test uses a standard drive cycle to determine

fuel e�ciency and drive cycle error.

Figure 16 provides a time vs. speed plot of the acceleration and top speed simula-

tion where time is in seconds and speed is in m/s. A step function from 0 to 100 m/s is

provided as a request velocity. The acceleration of the vehicle is measured by the time

in seconds to reach 26.8 m/s (60 mph) from rest. The velocity request remains at 100

m/s for the duration of the simulation to determine the maximum sustainable speed.

The absolute maximum speed of the vehicle is a result of using only the battery before

the state of charge is depleted to 40% and the internal combustion engine is engaged.

Since the velocity request is so high, the battery continues to deplete even with the

IC engine engaged. The �nal sustainable speed is reached after the battery charge
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Figure 16: Vehicle Speed for Acceleration and Top Speed Tests

has been fully depleted and the IC engine is the sole power source. While the initial

peak speed is higher than the sustainable top speed, a consumer would ultimately

judge value based on sustainable top speed.

The second system test employs the use of the Urban Dynamometer Driving

Schedule (UDDS) as a means of determining the vehicle fuel e�ciency and ability

to follow a predetermined drive cycle. The UDDS is an Environmental Protection

Agency (EPA) standard driving schedule used for light duty vehicles in a city environ-

ment [33]. The system vehicle is shown following the the UDDS drive cycle in Figure

17. When testing a vehicle against its ability to follow the drive cycle, it is assumed

that the overall vehicle value will drop o� signi�cantly if the actual speed deviates

more that 1 mph from the standard. The vehicle fuel e�ciency is calculated using

the distance traveled and the fuel used to fully recharge the battery after completion.

4.3.3 Modeling Consumer Demand

Once the performance tests are completed and the system attributes are determined,

a consumer demand model is used to �nd the value of the resulting design alternative.
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Figure 17: Vehicle Speed According to the UDDS Drive-Cycle Test

The consumer demand model employed in this work was proposed by Hazelrigg [16].

The background of this application is provided in Chapter 2 and is now applied to

the example system.

Figure 18 shows the framework for optimal product design applied to the example

system. During preliminary system design, the vector ~z is selected and the system

attributes ~x are calculated. During subsystem design, the electric motor extensive

attributes are optimized according to each approach. The expected utility of the

system is used to quantify each approach and provide a means of comparison.

Consumer demand is modeled by surveying possible car buyers to elicit their

preferences with respect to the system attributes. Various design alternatives are

provided to the respondents, for which they must give a price they would be willing

to pay for that alternative. This provides a function of the system attributes and

vehicle cost that yields the price at which the total pro�t will be maximized.

As mentioned above, there exists an additional penalty function applied to the

system utility which depends on the vehicle drive-cycle error. Since it is di�cult to

elicit the preferences of a consumer for more than three system attributes, it would
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Figure 18: In�uence Diagram for the System Value Objective

be nice to account for this outside the survey by making a simple assumption. It

is clear that this is important to consumers, but only to the extent that the vehicle

can complete a standard driving schedule. This allows for the assumption that if the

vehicle does not complete the drive-cycle within 1 mph of the target schedule, the

value would drop o� to the end user. A plot of the utility penalty function is provided

in Figure 19.

The demand model accounts for the total number of vehicles that would be sold

given the survey results. This �rst results in an overall pro�t on the order of billions

of dollars. From this, the risk preference of the decision maker is applied to the pro�t,

yielding an expected utility. In this work, the risk preference of the decision maker is

assumed to be neutral (i.e., neither risk seeking or risk averse). Because of this, the

expected system utility can be expressed as expected system pro�t in US dollars.

4.3.4 Computing the Design Targets and DVDD Objective Function

Once the system level preliminary design is found, the design targets and DVDD

objective function can be determined. For Requirements Allocation, the optimization

problem de�ned in Chapter 3 models the behavior of a subsystem designer that is
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Figure 19: Utility Penalty Coe�cient as a Function of Drive-Cycle Error in mph

provided targets as a design goal. The targets for the SOI of the example system are

the electric motor stall torque, no-load speed and motor cost. From the perspective

of the subsystem designer, these are simply the vector ~y∗SOI containing the optimal

extensive attributes above.

On the other hand, additional modeling is required to provided an objective func-

tion used to model the DVDD approach. Two objectives are calculated for the exam-

ple system. The �rst follows the approach proposed by Collopy in [4] where π (~z) is

approximated by a �rst-order Taylor series expansion. The second objective function

proposed by the author accounts for some of the nonlinearities in π (~z).

The linear approximation is achieved by performing a central di�erence approxi-

mation of the gradient where these gradients are the coe�cients αm for the subsystem

objective function. Equations 16, 17 and 18 show this approximation for the electric

motor extensive attributes where hm is 0.1% of the extensive attribute at ~z∗.

ατ =
π
(
~z∗, τ ∗stall + 1

2
hτ
)
− π

(
~z∗, τ ∗stall − 1

2
hτ
)

hτ
(16)
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αω =
π
(
~z∗, ω∗max + 1

2
hω
)
− π

(
~z∗, ω∗max − 1

2
hω
)

hω
(17)

αc =
π
(
~z∗, c∗ + 1

2
hc
)
− π

(
~z∗, c∗ − 1

2
hc
)

hc
(18)

The approximation of the system value objective proposed by the author seeks

to account for some of the nonlinearities that may occur in the above approxima-

tions. For this example system, the no-load speed is the extensive attribute that is

approximated with more �delity. This replaces the coe�cient αω with the function

S (~z∗, ωmax). The speci�c form of this function and the values for αm are provided in

Chapter 5.

4.4 Subsystem Design of the Electric Motor Subsystem

Since the electric motor is the SOI for the computational experiment, extensive e�orts

were made to model it with high �delity from basic geometry. Figure 20 provides

an approximate schematic to describe the geometry of the permanent magnet DC

brushless motor. The �rst design variable, Ds,int is the stator interior diameter in

meters. The other three diameters are derived directly from this by Equations 19, 20

and 21.

Ds,ext =
Ds,int

KDs

(19)

Dr,ext = kg ·Ds,int (20)

Dr,int = KDr ·Dr,ext (21)

where
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Ds,ext = stator exterior diameter in m

KDs = stator ratio

Dr,ext = rotor exterior diameter in m

kg = air gap ratio

Dr,int = rotor interior diameter in m

KDr = rotor ratio

The length, l in meters, is taken along the shaft of the motor and is normal to the

Ds,int. The diameter of the wire used in the motor coils, Dw in meters, dictates the

number of coil turns that are possible within the space between each shoe as well as

radially between the interior and exterior diameters of the stator. The volume of each

motor component is used to calculate the mass and cost based on the physical density

and the commoditized cost of each material, respectively. The three primary materials

in the motor are steel for the housing, copper for the wire coil and neodymium iron

boron for the magnetic core. The result of this model is the extensive attribute vector

~ySOI containing the motor stall torque, no-load speed and cost.

Figure 20: Basic Electric Motor Geometry Schematic [3]

The primary equations used to model the electric motor are derived from Gieras

[12] and the source code is provided in Appendix A.2. The DOE used for the initial
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feasibility constraints on the extensive attributes of the motor was completed using

this Matlab model across the design space D.

The ModelCenter model in Figure 21 is similar to the one used in preliminary

design, but the KrigingTauPredictor is replaced with the high �delity electric motor

model which is optimized according to the two approaches being evaluated. The un-

certainty used to model the di�erence between the initial predictions of the technical

experts and the reality of current feasibility is the input to the theMotorOptimization

element.

Figure 21: ModelCenter Model Used to Perform Subsystem Design

To model the uncertainty, Various parameters of the electric motor are sampled

using a Latin Hypercube Sampling method. A symmetric triangular distribution is

applied to each uncertain parameter where the peak is equal to the value in the initial

feasibility model and the bounds are equal to ±2.5% of the original value. In order to

e�ectively evaluate the two methods for subsystem design, the uncertainty samples

are constant across the application of each approach. This uses the technique of

Common Random Numbers (CRN) [19] which allows a smaller number of evaluations

to yield statistically signi�cant data. Since the computational experiment is such that

the rest of the subsystem extensive attributes are kept constant, the rest of the model

remains consistent with the form used during preliminary design.

The optimization formulations used to model each approach were provided in
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Table 7: Uncertain Motor Parameters

Parameter Description Default Value Units

pα pole pitch-shoe ratio 0.84 -
Br remanence magnetic �eld 1.45 T
kw coil winding factor 0.926 -
kg air gap coe�cient 0.98 -
kc Carter's coe�cient 1.05 -

Rexternal sum of external resistance 1 Ω
kv,stator stator volume coe�cient 1 -
kv,rotor rotor volume coe�cient 1 -
csteel cost of steel housing 0.787 $/kg
cmag cost of magnetic core 5.4E+05 $/m3

ccopper cost of copper wire 7.90 $/kg

Chapter 3. In RA, the subsystem designer seeks to obtain the target, but has little

incentive to push beyond the provided target. In DVDD, the subsystem designer is

provided with an objective function which is some approximation of π (~z).

4.5 Summary

This chapter de�nes the example system as a series hybrid vehicle with an individual

electric motor at each wheel. The initial feasibility constraint provided to the system

designer by the technical experts is modeled as a kriging model although an implicit

model called an SVDD approximation is also investigated. The vehicle simulation

performed in Dymola was discussed as well as each subsystem and its respective

extensive attributes. This simulation results in the performance attributes of the

vehicle which are maximum sustainable speed in m/s, acceleration from 0 to 60 mph in

seconds and fuel e�ciency in mpg. A consumer demand model is proposed as a means

of measuring the value of a system in terms of pro�t. The process of communicating

the needs of the system designer to the subsystem designers is de�ned for the example

system using each approach. Finally, the subsystem design of the electric motor

is summarized and the di�erences between the application of RA and DVDD are

provided.
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Chapter V

COMPARING REQUIREMENTS ALLOCATION WITH

VALUE DRIVEN DESIGN

The motivating hypothesis for this work suggests that in the transition from system

preliminary design to subsystem design, an alternative with higher expected utility

will result if a DVDD objective function is used rather than design targets. In the

previous chapter, the computational experiment is reviewed and the example system

is established as a series hybrid vehicle. The results of performing the computational

experiment on the example system are now discussed. First, the results of the prelim-

inary system design are presented from which the design targets and DVDD objective

function are derived. Then subsystem design is performed using each approach and

the results are interpreted.

5.1 Preliminary System Design

Recall the high level actions for complex system design from Figure 6 that are being

modeled by the computational experiment. Prior to performing the system level opti-

mization, the kriging model is constructed to approximate the feasibility predictions

of the technical experts with respect to the SOI. The results of this model have been

summarized in the previous chapter. The system level optimization is carried out

using a Algorithm (GA) which is somewhat expensive, but is more likely to �nd the

global optimum. Table 8 summarizes the resulting system attributes found during

preliminary design. The corresponding extensive attribute vector, ~z, is provided in

Table 9.

This system design corresponds to an overall expected utility of 1.173E+09. For
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Table 8: System Attribute Values for Preliminary Design

Attribute Value Units

Top speed 110.0 mph
0 to 60 mph Acceleration 10.62 s

Fuel E�ciency 40.48 mpg
Drive-Cycle Error 0.883 mph

Table 9: Extensive Attribute Values for Preliminary Design

Extensive Attribute Value Units

τstall 284.7 N·m
ωmax 122.0 rad/s
c 2,132 USD ($)
rg 1.226 -
PIC 60,000 W
Ns 155 -
Np 15 -

this experiment, the preference of the decision maker has been assumed to be risk

neutral so that the expected utility can be interpreted as an expected annual pro�t

of $1.173 billion.

From this design point, the design targets and DVDD objective for the SOI are

derived. The extensive attributes of the other subsystems remain constant throughout

the rest of the experiment. For Requirements Allocation, design targets are taken

directly from ~z and provided to the subsystem designer. In the case of the DVDD

objective function, the approximation of π (~z) at ~z∗ must be completed. The details

of this method are given in Section 5.2.2. In examining the electric motor extensive

attribute space, we can see the location of the SOI preliminary design in Figure 22.

5.2 Subsystem Design

With the system preliminary design completed, the results of each proposed approach

are given and the comparison is evaluated.
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Figure 22: SOI Preliminary Design Relative to Other Feasible Motor Alternatives

5.2.1 Subsystem Design Using Requirements Allocation

In employing design targets, two possible scenarios will result. These are due to

changes in the actual Pareto front from the initial prediction that is used during

preliminary system design. If the changes to the Pareto front are favorable, the

target will be reached. This may occur due to technological advances or a decrease

in material costs. But if the actual Pareto front shifts to a point such that ~z∗ is no

longer attainable, the design alternative closest to the target will be selected. This

instance would occur in the case of rising prices or programmatic disruptions to the

development process.

The actions of a subsystem designer using design targets are modeled by opti-

mizing the electric motor to the design alternative closest to the targets. Since the

system preliminary design depends on the prediction of the technical expert's predic-

tion for the Pareto frontier of feasibility, there will be very few designs for which the

closest alternative has a better expected utility than the target. Figure 23 provides

the Cumulative Distribution Function (CDF) of expected utility for subsystem design
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using RA. This is the result of 1000 LHS uncertainty samples. The red line shows

the target value.

Figure 23: Expected Utility CDF for Subsystem Design Using RA

From this �gure, it is clear that regardless of the nature of the uncertainty, the

use of RA will only reach the target 30% of the time. Chapter 2 proposes that the use

of design targets are a possible cause for the extensive budget and schedule shortfalls

of current complex system development. This CDF supports that claim and shows

that using design targets e�ectively places a ceiling on the possible improvements

that may be made during subsystem design. Note that a select few designs do have

an expected utility greater than the design target. In the optimization, this point

happens to be the closest to the target, but this is also an accurate outcome for the

scenario being modeled. In some cases, there are simply no extra resources required

for the subsystem designer to surpass the target. And so in select circumstances,

the subsystem design may actually be better than the target set during preliminary

system design.
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5.2.2 Subsystem Design Using Value Driven Design

Before the the DVDD objective function can be applied to the electric motor for

subsystem design the approximations for the system value objective with respect to

the extensive attributes must be completed.

The central di�erence approximation for each extensive attribute of the electric

motor is given by Table 10 and visualized in Figure 24. Recall that there are two ways

of formulating the DVDD objective function. The �rst, proposed by Collopy [4], is

a �rst-order Taylor series approximation around ~z∗. The second is an approximation

proposed by the author to account for some of the nonlinearities in the system value

objective.

Table 10: DVDD Objective Function Coe�cients

Coe�cient Value

ατ 1.59E+07
αω 5.00E+06
αc 3.38E+05

In the visualizations of the system value function, we see that π (~z) with respect

to stall torque and cost is su�ciently linear around ~z∗ to justify the use of a linear

approximation. However, the linear approximation for the gradient of π (~z) with

respect to no-load speed is poor. Although the motor speed gradient is of similar

magnitude to the gradients of the other two attributes, the linear approximation

would become invalid very quickly as we move away from ~z∗, the location of the

Taylor series expansion. The nonlinearities associated with this extensive attribute

are due to two opposing extensive attributes - max speed and fuel e�ciency. Thus,

the system value objective is so sensitive to changes in the motor speed that any

deviation will cause a drastic drop in system utility.

One element of the computational experiment is to optimize the SOI using the

DVDD objective formulation proposed by Collopy in [4]. This objective function is
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Figure 24: System Value Objective Gradient with respect to Each Electric Motor
Extensive Attribute

given by Equation 22.

φmotor (ymotor) = ατ · τstall + αω · ωmax + αc · c (22)

Using this objective function, the motor is optimized to a point very far from ~z∗

and results in an expected utility of zero for the overall system. This is explained by

the linear approximation around ~z∗. The area for which it is valid is so small, that the

optimizer quickly �nds a design point along the approximation that seems preferred,

but is actually invalid due to the shape of the system objective with respect to motor

speed.

For this reason, the author proposes a new DVDD objective function that seeks

to account for this problem. The gradient coe�cients for stall torque and cost remain

unchanged but the approximation of the gradient for the no-load speed takes the

following form.
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S (ωmax) = A (x+ θ)−B ln (cosh (C (x+ θ))) + s0 (23)

where A, B and C are approximation constants. This function is compared to the

previous plot of the motor speed gradient in Figure 25. Equation 23 is speci�c to this

problem so in future work, a more generalized method should be used to approximate

the system value function when such nonlinearities are present.

Figure 25: Higher Order Approximation for the Gradient of π (~z) with respect to
Motor Speed

Now that the system value objective has been approximated, the optimization of

the SOI is completed. This is done under uncertainty, using the same sample set that

was used for RA. Equation 24 provides the objective function used in terms of ατ ,

αc and motor speed approximation given above. The CDF in Figure 26 is the result

of the SOI design using the previously established DVDD objective function. As a

point of reference, the preliminary design design is provided by the red line.

φmotor (ymotor) = ατ · τstall + S (ωmax) + αc · c (24)
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Figure 26: Expected Utility CDF for Subsystem Design Using DVDD

We see from this plot that optimization using the DVDD objective reaches the

target approximately as often as with RA. However, if the system design is reached,

it is almost de�nitely surpassed to �nd a design alternative with a higher expected

utility. This is one advantage over Requirements Allocation which gives little possi-

bility of �nding an alternative with an expected utility greater than that speci�ed in

preliminary design. Now that the results have been provided for each method, in the

next section we compare the two and interpret the �ndings.

5.3 Quantitative Comparison of Requirements Allocation with

Value Driven Design

The hypothesis for this work is that, on average, the use of a DVDD objective function

instead of design targets yields a system alternative with higher expected utility. First,

we visualize the CDF's produced by each method on the same plot. This is provided

in Figure 27 along with the preliminary system design as a reference.

As mentioned above, there are two possible scenarios based on the uncertain

parameters in the motor. In the �rst case, the uncertainty is favorable, the Pareto
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Figure 27: Expected Utility CDF for RA and DVDD

frontier is pushed beyond the preliminary design and the design target can be reached.

Here, the method of Requirements Allocation will lead to an alternative at the the

preliminary system design, but DVDD will lead to an alternative that is truly on the

Pareto frontier and, therefore, has a higher expected utility. In the second possible

scenario, the uncertainty is unfavorable and the true Pareto frontier is moved to a

point with a lower expected utility than that of the preliminary design. Now as seen

in the plot to the left of the target, the design target cannot be reached, but RA is

much better at getting closer to the target and, thus, achieving a higher expected

utility.

We can visualize this further by the plotting the di�erence between the expected

utility obtained by DVDD and the expected utility obtained by design targets. This

relationship is de�ned mathematically in Equation 25 and the CDF is provided in

Figure 28.

U∆,k = UV DD,k − Utargets,k ∀ k = 1, 2, . . . , 1000 (25)

In support of the motivating hypothesis, one would hope that this di�erence would
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Figure 28: CDF of the Di�erence Between DVDD and RA

have a positive mean. We would expect DVDD to do as good, if not better, than

design targets when the uncertainty is unfavorable. We would also expect this ap-

proach to surpass the design targets when the uncertainty is favorable. However, we

see that on average, the use of design targets actually yields a higher utility. When

the uncertain parameters are su�ciently close to their original values, the DVDD

objective does produce a better design alternative than design targets. But in most

cases when the Pareto frontier is shifted away from ~z∗, the method of design targets

is superior. Further investigation should be done to characterize the uncertainty and

in cases that the uncertainty is very small, DVDD would possibly be superior. In this

case, with uncertainty at ±2.5%, it is better to use the method of design targets.

5.3.1 Further Investigation into the Approach of Value Driven Design

By looking more in depth at the attribute space, we can gain insight into the cases

where the DVDD objective failed to �nd the highest attainable expected utility. These

cases are those in which the Requirements Allocation approach determined an alter-

native with a higher expected utility than that of the DVDD objective.
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Figure 29 provides a plot of the Pareto frontier based on the initial feasibility

model for the electric motor as well as the gradient approximation with respect to

stall torque and motor cost. Recall that these two gradients appeared to be su�ciently

well approximated with a �rst-order Taylor series approximation.

Figure 29: The Pareto Frontier of the Electric Motor Feasibility and the Linear
Approximation of the System Value Objective, π (~z)

It is clear that at the preliminary design, the linear approximation is su�cient, but

quickly becomes inadequate as we move away from the ~z∗. This inadequacy becomes

more pronounced when uncertainty is introduced since doing so can shift, rotate or

otherwise deform the Pareto frontier. With this in mind, we now turn to the results of

the subsystem design using the DVDD objective in Figure 30. The orange points are

the Pareto frontier determined by the initial feasibility model while the blue points

are the optimal designs found using the DVDD objective under uncertainty.

The highest density cluster exists very close to ~z∗, but many designs deviate from

the area where the approximation of the system value objective is valid. In addition

to the nonlinearities with respect to motor speed, this suggests that the assumption

of linearity for the system value objective with respect to stall torque and motor cost
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Figure 30: Result of subsystem design using the DVDD objective under uncertainty

is also invalid. The higher order terms for motor speed were accounted for, but it is

clear that this should have been done for the other extensive attributes as well. A

better way to account for these nonlinearities in each extensive attribute would be to

use a surrogate model to approximate the gradients of the system value objective.

5.4 Summary

This chapter provides the results of the computational experiment used to compare

Requirements Allocation with the use of a DVDD objective function. The preliminary

system design is presented and the electric motor design at ~z∗ is shown to exist on

the edge of the Pareto frontier prediction provided by the technical experts. From

this design point, the design targets are determined and the gradient information is

derived for the DVDD objective. The results of subsystem design using RA con�rm

claims suggested in Chapter 2. These claims suggest the use of design targets as a

possible source for the extensive budget and schedule shortfalls common to current

system development e�orts. This speci�c application of Value Driven Design to a
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series hybrid vehicle shows that a linear approximation of the system value objective

is inadequate in this case. E�orts are made to perform a higher �delity approximation

of the system value function with respect to the electric motor no-load speed. If

this further approximation is not performed, the motor optimization fails for every

uncertainty sample. Although the DVDD objective leads to useful design alternatives

near ~z∗, it is not found to be superior to the use of design targets. This is primarily

due to the linearized approximation of the system value objective with respect to the

motor stall torque and cost. These initially appear to be su�cient, but due to the

bounds of the uncertainty on the motor parameters, the true Pareto Front shifts too

far from the preliminary system design for theses approximations to remain valid.

Further investigation is proposed to determine if the DVDD objective is possibly

superior to RA when the uncertainty is much smaller than ±2.5%. It is also suggested

that the nonlinearities present in the system value objective be accounted for by using

a surrogate model instead of a Taylor series approximation.
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Chapter VI

CONCLUSIONS AND FUTURE WORK

6.1 Review of the Motivating Hypothesis

A primary task of the system designer is to communicate his preferences about the

system to the subsystem designers. Traditionally, this has been done through Re-

quirements Allocation which sets subsystem design targets based on the system-level

preliminary design. Relevant literature was reviewed in Chapter 2 to suggest that this

process has many �aws and is possibly the source of budget and schedule overruns in

the development of modern complex systems. Value Driven Design was proposed as

an alternative method for relaying the system designer's preferences to the subsystem

designer. This employs an objective function instead of design targets with an incen-

tive for the subsystem designer to �nd an alternative that best �ts the preferences of

the system designer. To compare each proposed approach, the following hypothesis

was provided.

Hypothesis: Overall system performance can be improved by formulating

the subsystem design problem in terms of objectives rather than targets.

To test this hypothesis, a model was constructed to approximate the actions of

subsystem designers using each approach. To inform the system-level preliminary

design, technical experts provide an initial feasibility model with respect to each

subsystem. From this, the system is optimized for expected utility and the design
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targets and DVDD objective are derived. Subsystem design is then performed under

uncertainty for each approach. This experiment is applied to a series hybrid vehicle

and the electric motor is analyzed as the Subsystem of Interest.

In evaluating the motivating hypothesis, the CDF's for each approach are com-

pared. It was found that, on average, the method of Requirements Allocation actually

yielded a design alternative with higher expected utility. For this reason, the hypoth-

esis has been rejected for this representative case study.

Additionally, the results provided in this thesis were signi�cant in providing in-

sight about both methods. The claim that RA is inadequate at obtaining the system

target under uncertainty was supported in this case study. This was illustrated by a

ceiling that is e�ectively placed on subsystem design when using design targets since

there is little incentive for the subsystem designer to surpass the expected utility

set the preliminary design. In contrast, the DVDD objective showed the possibility

of surpassing the system-level preliminary design when the uncertainty was favor-

able. However, when the uncertainty was unfavorable, this method was inadequate

in �nding the design alternative with the highest expected utility.

6.2 Contributions

This work provided several contributions to the study of Engineering Design and

Systems Engineering as a whole. The primary contributions are as follows.

1. A computational experiment to model the actions of designers providing insight

into the incentive structure present in the design of complex systems.

2. For this case study, the common practice of Requirements Allocation is shown

to be insu�cient in �nding a design alternative on the Pareto frontier when

uncertainty conditions are favorable.

3. For this case study, the formulation of Value Driven Design proposed by Collopy
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in [4] is found to be inappropriate when nonlinearities exist in the system value

function at the preliminary system design point, ~z∗.

4. A formulation of Value Driven Design speci�c to the example system that ac-

counts for some of these nonlinearities is shown to �nd a design alternative

with higher expected utility than the system-level preliminary design when un-

certainty conditions are favorable.

6.3 Limitations and Future Work

This thesis as provides a representative case study to compare Requirements Alloca-

tion with Value Driven Design. Signi�cant problems are discovered in applying Value

Driven Design to the example system. Most notably, the use of a linear approxima-

tion for the system value objective is not su�cient with this degree of complexity and

the amount of uncertainty present in the example system. Even when some of the

nonlinearities are accounted for, extensive e�ort must be applied to the system-level

preliminary design to ensure that it was very close to the actual Pareto frontier.

Two possible experiments could provide further insight into this issue. First,

smaller bounds for the uncertainty could be assumed. The system value objective is

su�ciently approximated very close to the preliminary design so if the uncertainty

is small, this approximation would remain valid. Second, a better method of ap-

proximating the system value objective could be used. This work suggests the use

of a surrogate model to account for the nonlinearities in a larger area around the

preliminary design.

Additionally, the demand model used to approximate consumer value could be

improved. For this work, a small number of survey responses were used to populate

the model and the respondents were asked to make some assumptions. Future im-

provements could include increasing the number of respondents as well as surveying

consumers that are truly in the market for a new vehicle.
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Appendix A

RELEVANT SOURCE CODE AND

MARKET DATA

A.1 Internal Combustion Engine (Market Survey Data)

Table 11: Internal combustion engines used to compute the engine cost-power func-
tion (Equation 13)

Name Size (L) Power (W) Cost (USD)

Chevrolet G10 1.0 54,436 1,599
Honda ES2 1.8 64,130 1,699
Toyota 5EFE 1.5 69,350 2,299
Chevrolet G13 1.3 74,570 1,999
Toyota 1NZFE 1.5 79,044 3,099
Honda A20A3 2.0 82,027 1,899
Toyota 2TZFE 2.4 99,178 2,699
Toyota 1ZZFE 1.8 104,398 2,999
Honda H23A1 2.3 119,312 2,999
Honda H22A1 2.1 139,446 2,699
Toyota 2JZGE 3.0 164,045 3,999

A.2 Electric Motor (Matlab Source Code)

1 function [tauStall,omegaMax,Resistance,torqueConstant,Mass,...

2 Inertia,Cost]=motor_bt(D_1in,D_w,l,kD1,kD2)

3

4 % Written by Brian J Taylor, Georgia Institute of Technology

5

6 % This code follows Example 6.2 from Gieras of an 8-pole,

7 % 3-phase permanent magnet DC brushless motor. The equations

8 % are primarily derived from the text while others are
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9 % derived from geometry. The function input is the basic

10 % geometry of the motor and the function yields many

11 % performance and intermediate attributes of the electric motor.

12

13 % Motor Parameters

14 m_1=3 % *number of phases

15 poles=8; % *number of poles (picure pg. 171)

16 p=poles/2; % *number of pole pairs (eqn 6.12)

17 alpha=0.84; % *Pole pitch to shoe width ratio

18 k_f=(4/pi)*sin(alpha*pi/2);% *exitation field form

19 % factor (eqn 5.23)

20 mu_not=0.4*pi*10�-6;% *mag perm of free space(H/m)

21 mu_rec=1.05; % *recoil permiability of NdFeB (H/m)

22 % (www.magnetsales.com/Neo/Neoprops.htm)

23 mu_rrec=mu_rec/mu_not; % *relative recoil permiability (H/m)

24 B_r=1.45; % *remanence magnetic field (Neodymium

25 % Iron Boron)(T) (www.intemag.com/uploads/Rare%20

26 % Earth%20Magnets%20Data%20Book/Neodymium%20

27 % Single%20Sheets/N5311.pdf)

28 k_w=0.926; % *winding factor

29 k_p=pi*sqrt(3)/6; % *packing factor

30 k_g=0.98; % *gap coefficient

31 rho_w=1.68*10�(-8); % *resistivity of copper (ohm*meter)

32 density_steel=7850; % *density of steel (kg/m�3)

33 density_copper=8940; % *density of copper (kg/m�3)

34 density_magnet=7500; % *density of Neodymium Iron Boron (kg/m�3)

35 k_c=1.05; % *Carters coefficient k_c > 1
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36 k_sat=1.1;% *saturation factor k_sat > 1

37 Rexternal=1;% *resistance of all the external components (ohms)

38

39 % Geometry

40 % D_1in=0.132; % stator interior diameter

41 r_1in=D_1in/2;

42 D_1out=kD1.*D_1in; % stator exterior diameter

43 r_1out=D_1out./2;

44 D_2out= k_g.*D_1in; % rotor exterior diameter

45 r_2out=D_2out/2;

46 D_2in=kD2.*D_2out; % rotor interior diameter

47 r_2in=D_2in/2;

48 r_w=D_w/2;

49

50 % Functions

51

52 % Motor Constants

53 tau=pi.*D_1in/(2*p); % pole pitch (eqn 4.26)

54 b_p=alpha.*tau; % pole shoe width (eqn 5.4)

55 h_a= r_1out - r_1in; % armature pole length (derived)

56 N_p=floor(0.225.*tau.*k_p.*... % number of

57 (r_1out-r_1in)./(pi.*r_w.�2)); % windings per pole (derived)

58 N=2.*p.*N_p./m_1; % number of turns per phase (derived)

59 g=r_1in - r_2out; % air gap distance (derived)

60 h_m=r_2out - r_2in ;% magnet thickness (derived)

61 B_mg=B_r./(1 + mu_rec.*(g./h_m)); % max magnetic

62 % flux density through the air gap (eqn 2.14)
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63 B_mg1=k_f.*B_mg % B_mg at fundamental harmonic (eqn. 5.2)

64 phi_f=(2/pi).*tau.*l.*B_mg1; % excitation flux (eqn. 5.6)

65 phi_f_sq=b_p.*l.*B_mg; %square wave excitation flux (eqn. 6.18)

66 kE=8.*p.*N_p.*k_w.*phi_f_sq./(2*pi); %EMF constant (V-s)

67 torqueConstant=kE; % torque constant (Nm/A)

68

69 % Resistance

70 l_w=N_p.*(2*(l + 0.3*tau) + ... % times 12 since there

71 2*0.7*tau)*3.*p; % are 3 poles per phase and 3 phases (derived)

72 A_w=pi.*r_w.�2; %(derived)

73

74 % assume that the total resistance is the resistance of the

75 % external components + the resistance of the wire

76 Resistance_w=rho_w.*l_w./A_w; %(derived)

77 Resistance=Rexternal + Resistance_w; %(derived)

78

79 % Inductance

80 % armature inductance

81 g_prime=k_c.*k_sat.*g + (h_m./mu_rrec); %(App. A)

82 L_a=mu_not.*(pi/12).*(D_1in./g_prime).*(alpha.�3).*l.*...

83 (N./(4.*p.*3)).�2; %(App. A)

84

85 % Volume (m�3) (not currently used)

86 Ao=0.225.*tau.*k_p.*... % cross sectional area taken

87 (r_1out-r_1in); % up by one side of a winding %(derived)

88 v1=(pi.*(r_1out.*r_1out - r_1in.*r_1in) - ...

89 4.*Ao.*(poles+1)).*l; % stator volume (derived)
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90

91 v2=pi.*(r_2out.*r_2out - r_2in.*r_2in)...

92 .*l; % rotor volume %(derived)

93 vol_wire=A_w.*l_w; %volume of windings %(derived)

94 % Volume=v1 + v2 + vol_wire;

95

96 % Mass

97 mass_stator=v1.*density_steel; %(derived)

98 mass_rotor=v2.*density_magnet; %(derived)

99 mass_wire=vol_wire.*density_copper; %(derived)

100 Mass=mass_stator + mass_rotor + mass_wire; %(derived)

101

102 % Cost

103 % stator ($0.787/kg steel) (Jan '12, www.worldsteelprices.com)

104 statorCost=mass_stator*(0.787);

105 % rotor ($1050/0.00193 m�3 rare earth magnet)

106 rotorCost=v2.*(1050/0.0019304);

107 % wire ($7.90/kg copper)

108 wireCost=mass_wire*(7.90);

109 Cost=statorCost+rotorCost+wireCost;

110

111 %Moment of inertia ( not currently used)

112 Inertia=0.5.*Mass.*(r_2out.*r_2out + r_2in.*r_2in);

113

114 V=200;

115 b=0.1;

116 I=V./Resistance;
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117 P=I.*V;

118

119 tauStall=torqueConstant.*V./Resistance.*min(N_p,1);

120 omegaMax=V.*torqueConstant./(Resistance.*...

121 b+torqueConstant.*torqueConstant).*min(N_p,1);

122 end
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