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SUMMARY 
 

 

 

In this paper, the coarse mesh transport method is extended to hexagonal geometry.  This 

stochastic-deterministic hybrid transport method calculates the eigenvalue and explicit 

pin fission density profile of hexagonal reactor cores.  It models the exact detail within 

complex heterogeneous cores without homogenizing regions or materials, and neither 

block-level nor core-level asymmetry poses any limitations to the method.  It solves 

eigenvalue problems by first splitting the core into a set of coarse meshes, and then using 

Monte Carlo methods to create a library of response expansion coefficients, found by 

expanding the angular current in phase-space distribution using a set of polynomials 

orthogonal on the angular half-space defined by mesh boundaries.  The coarse meshes are 

coupled by the angular current at their interfaces.  A deterministic sweeping procedure is 

then used to iteratively construct the solution. 

 

The method is evaluated using benchmark problems based on a gas-cooled, graphite-

moderated high temperature reactor.  The method quickly solves problems to any level of 

detail desired by the user.  In this paper, it is used to explicitly calculate the fission 

density of individual fuel pins and determine the reactivity worth of individual control 

rods.  In every case, results for the core multiplication factor and pin fission density 

distribution are found within several minutes.  Results are highly accurate when 

compared to direct Monte Carlo reference solutions; errors in the eigenvalue calculations 

are on the order of 0.02%, and errors in the pin fission density average less than 0.1%. 
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1. INTRODUCTION 

 

 

 

Several new reactor concepts, including the Next Generation Nuclear Plant (NGNP), are 

designed to be built with prismatic block cores.  That is, their fuel assemblies are 

arranged in a hexagonal lattice.  A representative example is the Very High Temperature 

Reactor (VHTR) (Idaho National Laboratory 2010), a graphite-moderated reactor which 

features strong heterogeneity at both the core and block level.  This reactor is optically 

thin when compared to current water-moderated reactors, and the neutron angular flux 

exhibits stronger anisotropy than that in LWRs.  Asymmetric blocks and the presence of 

burnable absorbers near fuel rods challenge low-order transport approximations (Lee et 

al. 2007), especially those which homogenize block structure.  It is essential that robust 

reactor analysis methods exist which are capable of treating these new reactors.  

Therefore, a method which does not rely on homogenization and low-order 

approximations to the transport equation is desirable.  The heterogeneous coarse-mesh 

transport (COMET) method (Mosher and Rahnema, 2006; Forget and Rahnema 2006b) 

has been shown to accurately determine the eigenvalue and power profiles of modern 

light water and heavy water reactors.  This method does not homogenize regions, it does 

not resort to diffusion approximations, and it reaches solutions orders of magnitude faster 

than traditional Monte Carlo and fine mesh methods.  However, it has only been 

demonstrated in water-moderated reactors on a Cartesian grid. 

 

This study extends the COMET method into hexagonal geometry.  In chapter 2, the 

COMET method will be briefly described.  The extension of the method to hexagonal 
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geometry is discussed and implemented in chapter 3.  The accuracy and efficiency of the 

method are evaluated in chapter 4; this chapter also includes a demonstration of the 

versatility of the method in calculating local effects, such as the worth of individual 

control rods, in highly heterogeneous and asymmetric environments.  Concluding 

remarks and a discussion of future work are given in chapter 5. 
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2. BACKGROUND 

 

 

 

The behavior of neutrons within a nuclear reactor core is described by the neutron 

transport equation (Bell and Glasstone, 1970): 
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It has as a boundary condition equation 2: 

 

( ) ( ) 0ˆˆ0ˆˆ,,ˆ,,ˆ, >Ω′⋅<Ω⋅′Ω′=Ω nandnErBEr bb

rr
ψψ    (2) 

 

The angular flux of neutrons is symbolized by ψ, and neutrons are defined within the 

volume to be at some position r
r
, traveling in some direction Ω̂ , and to have some 

energy E.  Macroscopic reaction cross-sections are denoted by σ, with t, s, and f 

specifying the types of reactions as total, scattering, and fission.  Ιn each fission, ν 

neutrons are introduced to the system within the energy spectrum χ.  An external source 

Q may or may not be present; when it is absent, k represents the multiplication factor of 

the system.  In the boundary condition given by equation 2, B is an arbitrary boundary 
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operator acting at a point br
r
 along the boundary of the core which has outward normal 

vector n̂ . 

 

2.1. Reactor Analysis in Hexagonal Cores 

 

Traditionally, reactor analysis methods have approximated equation 1 by using nodal 

diffusion techniques to quickly calculate eigenvalues and determine power profiles.  

Hexagonal lattice structure in cores challenges methods, as a coordinate system for two 

dimensional hexagonal geometry is not apparent.  Some strategies, such as splitting the 

hexagonal blocks into six triangular nodes, have been implemented with success.  Cho 

and Kim (1998) utilized a high order polynomial expansion diffusion method for 2-D 

triangular nodes.  When compared with a fine mesh diffusion benchmark (Chao and 

Shatilla, 1995), their method calculated the multiplication factor with 30 pcm and the 

assembly power levels to an average error of under 1% within seconds.  More recently, 

González-Pintor et al. (2009) demonstrated a high order finite element diffusion method 

which also divided the hexagonal assemblies into triangular nodes.  Compared to the 

same fine mesh diffusion benchmark as before, this method calculated the eigenvalue of 

the core to an error within 1 pcm in seconds, along with the assembly average powers to 

less than 0.25% error, with an average error of less than 0.1%.  However, these results are 

for VVER-style reactor cores and are in comparison to those obtained using the diffusion 

code DIF3D.  When DIF3D has been compared to a Monte Carlo solution for a 2-D 

VHTR-style core (Lee et al. 2007), it requires the use of surface-dependent discontinuity 

factors to keep the error in the eigenvalue calculation below 300 pcm when control rods 
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are present in fuel blocks or below 650 pcm for cores with control rods present in 

reflector blocks.  Even with these surface-dependent discontinuity factors, the average 

error in the block-averaged fission density are below 5%, but the maximum error 

approaches 13%, depending on the method for generating cross sections for the 

calculations.  Without the use of surface-dependent discontinuity factors, eigenvalue 

calculations are in error by more than 1%, and the maximum error in the block-averaged 

fission density ranges from 12.9% to 18.9%.  Control rod worth calculations have errors 

of up to 25%, although this is reduced to within 10% when surface-dependent 

discontinuity factors are used and in some cases was found to an error of as low as 1.9%. 

 

Thilagam et al. (2009) have demonstrated a method to calculate the pin power levels 

individually throughout a hexagonal core by homogenizing individual pin cells and 

solving the entire core pin by pin.  When compared to a Monte Carlo benchmark 

solution, this method has calculated the fission rate for pins in selected assemblies with 

no gadolinium present to errors of within 5%, and errors up to 7.3% for mixed uranium-

gadolinium pins.  Assembly-averaged fission rates were calculated within 8% of the 

benchmark, and the core multiplication factor was found to an error of within 200 pcm.  

The core benchmark used was an uncontrolled VVER-style light water reactor problem.  

However, when the benchmark problem was changed to a controlled VVER-style reactor, 

the error in the multiplication factor determined by this method increased to 1500 pcm, 

and the assembly-averaged fission rate had a maximum error of 15.7%.  For a more 

accurate detailed solution, such as the fission density distribution for every pin in a core 

to an error of within 1%, or for calculations within heterogeneous reactors where control 
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blocks are present, it is clear that a method is necessary which does not rely on 

homogenization or diffusion techniques. 

 

As computational resources have improved, methods based on solving the transport 

equation without approximation have gained in popularity.  Methods such as fine mesh 

transport and stochastic methods are now more frequently used, as they offer greater 

accuracy than low-order approximations such as diffusion.  Stochastic methods, such as 

MCNP (X-5 Monte Carlo Team, 2005) are able to treat complicated geometric 

specifications to a very high degree of accuracy, but the calculation of a precise detailed 

solution, such as the explicit pin power distribution, comes with a high computational 

price for large systems.  The reference solutions used in chapter 4 of this paper were 

determined using stochastic methods, and required days of computing time. 

 

Deterministic methods exist which are capable of treating thermal reactors with 

hexagonal geometry.  Cho et al. (2007) demonstrated their use of the DeCART method 

with hexagonal capability in solving a 2-D eigenvalue problem based on the VHTR.  

When compared to a Monte Carlo reference solution, the eigenvalue error was found to 

be between 200 and 600 pcm, and block-averaged power levels were found to a 

maximum error of below 0.5%.  Their solution of the full-core problem took 

approximately four hours of computing time.  As this is an example of hexagonal 

functionality being added to an existing transport method for Cartesian geometry, let us 

consider other such methods. 
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A collection of results from various deterministic methods has been compiled for a 

benchmark based on a 2-D PWR problem (Smith et al., 2003).  A variety of methods 

demonstrated their ability to solve the eigenvalue problem to an error of under 250 pcm 

as well as the pin power distribution to a mean relative error of under 1%.  Most of these 

methods required days or hours of computing time to reach a solution, while a couple 

took only minutes.  However, the COMET method solved the problem with an 

eigenvalue error of 120 pcm and a mean relative error in the pin power calculation of 

0.56%, and required only seconds of computing time to reach the solution (Forget et al., 

2004).  As this method has been shown to be fast and highly accurate, this paper will 

extend its functionality in order to treat hexagonal geometry in full core problems. 

 

2.2. A Hybrid Coarse Mesh Transport Method 

 

The method developed in this paper is a hybrid with the robust geometric capability of a 

Monte Carlo method, but it takes advantage of a deterministic procedure in order to 

produce a solution at a greatly enhanced speed and with comparable accuracy.  For the 

sake of clarity, a brief summary of the COMET method is presented here.  COMET is an 

incident flux response expansion method (Mosher and Rahnema, 2006) which solves 

reactor core eigenvalue problems by dividing the reactor into a set of heterogeneous 

coarse meshes.   

 

The method uses a set of pre-computed response functions to iteratively solve a full-core 

transport problem.  The problem is divided into a series of smaller local problems without 
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approximation, by first splitting the core into a collection of non-overlapping coarse 

meshes which are coupled by the angular current at their interfaces.  The transport 

equation within each mesh i becomes 
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with boundary condition 

 

 ( ) ( )ErEr jijjiiji ,ˆ,,ˆ, Ω=Ω
rr

ψψ ,       (4) 

 

where mesh i and mesh j meet at the surface defined by ijr
r
 and, where in̂  designates the 

outward normal of mesh i, jjii nn Ω⋅−=Ω⋅ ˆˆˆˆ .  Here the value k is the multiplication 

factor of the entire core; it is not an eigenvalue of equation 3.  For a typical water-

moderated reactor core calculation, each coarse mesh would be the size of a fuel 

assembly.  Fixed-source calculations are conducted on each unique coarse mesh in order 

to determine the outgoing angular current as a response to a given incoming angular 

current.  A unique coarse mesh depends only on the mesh geometry and material 

composition.  Forget and Rahnema (2006b) use a Monte Carlo method to conduct these 
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calculations, as it allows the material and geometry specifications of the mesh to be 

modeled exactly without approximation. 

 

The COMET method generates response functions using the fact that any angular partial 

current distribution over a face f of a mesh i can be given as the sum of a complete set of 

functions Γa
(w
r
) orthogonal over the half-space w

r
 defined by a coarse mesh face, as 

shown in equation 5. 

 

( ) ( )∑
∞

=

± Γ=
0a

aa

ifif wcwJ
rr
        (5) 

 

For the method to be practical, the series is truncated at an order high enough to preserve 

accuracy.  In order to generate a library of response functions, a fixed-source calculation 

is conducted at all desired expansion orders a using an incoming angular current source 

on face f of mesh i equal to the distribution Γa
.  The outgoing angular current J

+
 from 

each face f’ is tallied in terms of the orthogonal function set chosen, and the coefficients 

c, found using equation 6, are stored in a database to be used for solving the full core 

problem. 

 

 ( ) ( )∫ Γ= + wdwwJc a

ifif

a

if

rrr
'''        (6) 

 

Response functions for the fission density within each pin in a mesh are also calculated 

and tabulated.  In the interest of computational efficiency, response function calculations 
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are conducted by solving equation 3 using several different values of k.  The solution 

procedure interpolates between the calculated response expansion coefficients to 

determine the coefficient for a desired core multiplication factor. 

 

The solution to the full-core problem is composed iteratively using the response 

functions.  A two-level iteration procedure is used to determine the core eigenvalue and 

the partial currents at mesh interfaces throughout the core.  An initial guess is made for 

the eigenvalue and partial currents, and the guess is improved using a deterministic 

sweeping process.  Starting at some mesh, the outgoing angular current from each face of 

that mesh is determined from the incoming angular current using linear superposition of 

the response functions.  The outgoing current from one mesh becomes the updated guess 

for the incoming angular current for the neighboring mesh.  Iterations are conducted until 

all calculated partial currents converge to a desired limit.  Once convergence is reached 

for the inner iterations, the multiplication factor k is re-calculated using the neutron 

balance method.  Outer iterations continue until convergence of the eigenvalue, at which 

point the fission density of each pin will be known, and the full-core problem has been 

solved. 
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3. METHOD 

 

 

 

Recognizing that the existing coarse mesh transport method for water-moderated reactors 

in Cartesian geometry quickly produces accurate results (Forget and Rahnema, 2006a, 

2006b, 2006c), it is used as the starting point for the hexagonal coarse mesh method.  The 

following sections describe the extension to hexagonal geometry.  The method consists of 

three steps.  First, fixed-source calculations are conducted stochastically to determine the 

incident current response expansion coefficients necessary to solve the problem.  Second, 

these solutions are compiled in a library.  Finally, a deterministic solution method 

calculates the core eigenvalue and pin fission density distribution. 

 

3.1. Response Coefficient Generation 

 

Following in the method of Forget and Rahnema (2006b), a tensor product of shifted 

Legendre polynomials is chosen as the orthogonal set in which to expand the angular 

current: 

 

 ( ) [ ]( ) [ ]( ) [ ]( ) gnm

U

l

a PPuPEr δϕµ π,01,1,0 ~~~
,ˆ, −=ΩΓ

r
     (7) 

 

The reference system will be defined by the mesh face, where the spatial variable u 

extends along the length of the mesh face from 0 to U, the azimuthal angle ϕ from the 

mesh face is defined from 0 to π, and µ, the cosine of the polar angle from the mesh face, 

extends from -1 to 1.  Figure 1 illustrates the relationship between the mesh coordinate 
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system and the Cartesian coordinate system.  Using the multigroup treatment of the 

energy variable over G groups, the angular current on face f of mesh i becomes 

 

 ( ) ( )∑
∞

=

± ΩΓ=Ω
1

,ˆ,,ˆ,
a

aa

ifif ErcErJ
rr

 .     (8) 

 

Here an approximation to the transport equation is introduced by truncating the infinite 

sum of the orthogonal series. 

 

A method to generate the response expansion coefficients a

ifc  from equation 8 is as 

follows.  An incoming angular current distribution over one mesh face f is given as a 

source for a single mesh.  Vacuum boundary conditions are specified, and no current 

enters from the other five faces, such that for the sake of equation 9, ff ≠' : 

 

 
( )

0

,ˆ,

' =

ΩΓ=
−

−

if
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if

J

ErJ
r

        (9) 

 

A separate fixed source calculation is conducted for an incoming current source on each 

phase space expansion order on each unique face of each unique mesh in the core.  A 

more detailed discussion of unique meshes is presented in section 3.2.1. 
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From each fixed-source calculation, the outgoing angular current J
+
 is determined for all 

six faces f’.  Using the orthogonality relationship, we solve equation 8 for '

'

a

ifc  given the 

calculated current exiting face f’ as: 

 

 ( ) ( )∫∫∫ ΩΩΓΩ= + dEdrdErErJc a

if

a

if
ˆ,ˆ,,ˆ, '

'

'

'

rrr
     (10) 

 

For a complete set of coefficients, equation 10 must be solved for all expansion orders a’.  

In order to implement this method, we return to the coordinate system of the problem.  

Therefore, the expansion coefficients for the angular current J
+ 
exiting face f’ of mesh i, 

in group g’, with spatial and angular expansion orders l’, m’, and n’ as a response to an 

incoming current on face f in group g having spatial and angular expansion orders l, m, 

and n are defined as equation 11: 

 

 ( ) [ ]( ) [ ]( ) [ ]( )∫ ∫ ∫ −+= ϕµδϕµϕµ π ddduPPuPEuJc gnm
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ifglmn

nmlgfi '
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~~~
,,,  (11) 

 

It will be shown in chapter 4 that the higher the expansion orders L, M, and N at which 

the orthogonal series are truncated, the more accurate the results generated by the method 

will be. 

 

3.1.1. Treatment of Hexagonal Geometry 

 

Since in a hexagonal mesh, the spatial and angular variables defined by each mesh face 

will have different orientations, and since the planes defined by the mesh faces 
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themselves are not linearly independent, it is evident that a set of coordinate 

transformations must be introduced.  The Cartesian coordinate system is used here for the 

sake of simplicity.  Figure 1 depicts a typical hexagonal mesh in the Cartesian x-y plane.   

 

x

y

30o

60o

 

Figure 1. Mesh geometry in Cartesian coordinates 

 

 

To illustrate the concept of a different coordinate system for each mesh face, consider 

figure 2.  An example incoming source particle will be traveling from some position u in 

direction Ω̂  in three-dimensional space.  Figure 2a shows a portion of the mesh from 

figure 1, but is focused specifically on the lower-left mesh face; the mesh boundary is 

represented by a dashed line.  The projection of the direction vector Ω̂  onto the x-y plane 

is shown along with the angle ϕ, and the relation of the spatial coordinate u for this 

particular mesh face to the Cartesian x-y plane can be seen.  The outward normal unit 

vector n̂  from the mesh face is also shown.  Figure 2b projects the direction vector onto 
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the plane defined by the Cartesian z axis and the outward normal of the mesh face n̂ .  

The angle θ is displayed, from which µ can be calculated. 

 

x

y

u

30o

60o

ϕϕϕϕ

ΩΩΩΩxy

n̂

  

z

ΩΩΩΩzn

θθθθn̂

 

(a) projection onto x-y plane    (b) projection onto z-n plane 

Figure 2. Mesh coordinate systems for incoming source particles 

 

 

The spatial coordinate u, defined along each mesh face, must be transformed into a 

coordinate in the Cartesian x-y plane.  Similarly, the angles ϕ and µ defined from each 

mesh face must be transformed into some combination of the angular components Ωx, Ωy, 

and Ωz.  As an example, the Cartesian angular components for the face depicted are found 

using equation 12: 
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       (12) 

 

A similar set of equations may be determined for each mesh face.  In this way, the 

incoming angular current surface source defined by equation 9 is applied to the coarse 

mesh. 

 

Neutrons will be transported through the mesh, with some being eventually absorbed 

within the mesh, and the rest escaping.  An exiting neutron will be at some position along 

a mesh face and traveling at some angle defined in Cartesian geometry.  A second 

coordinate transformation must be applied in order to solve equation 11, placing 

Cartesian coordinates back into the u, ϕ, and µ phase space variables defined by the mesh 

face.  However, the coordinate system for particles leaving the mesh must be oriented so 

that the angular half-space over which the orthogonal expansion of the angular current is 

defined is that space outside of the mesh.  This must be done so that the mesh boundary 

conditions given by equation 4 may be satisfied.  Figure 3 shows an example mesh and 

its neighboring meshes; the mesh face coordinate systems for incoming neutrons are 

shown as dashed lines inside of the hexagonal meshes, while the mesh face coordinate 

systems for neutrons exiting the meshes are given as solid lines outside of the hexagonal 

meshes.  The coordinate system used for particles exiting each mesh face is the same as 

the coordinate scheme for particles entering the neighboring mesh face. 
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Figure 3. Interactions between meshes 

 

 

 

3.2. Response Coefficient Library 

 

Upon completion of the response function generation, the set of response coefficients is 

compiled into a data library.  The library includes all coefficients for all desired 

combinations of the expansion orders present in the problem, so that for every unique 

mesh, the total number of response function coefficients to be stored for the angular 

current will be 

 

( ) ( )( ) ( )( )Ξ⋅+⋅⋅×Ξ⋅+⋅⋅× 11 LGFLGFK u      (13) 

 

for each of the I(fuel) meshes which are fuel blocks, and 
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 ( ) ( )( ) ( )( )Ξ⋅+⋅⋅×Ξ⋅+⋅⋅ 11 LGFLGF u      (14) 

 

for each of the I(nonfuel) meshes which have no multiplying material present.  Response 

coefficient calculations are conducted in fuel blocks at K different values of the core 

multiplication factor.  Note that for two-dimensional hexagonal meshes, the parameter F 

is equal to six for all meshes, but the number of unique mesh faces F(u) may vary from 

mesh to mesh. 

 

We introduce Ξ to represent the number of angular expansion terms.  Forget and 

Rahnema (2006b) showed that generating response functions for (M+1)× (N+1) angular 

expansion orders would produce high-order cross terms which do not contribute to the 

solution.  It is necessary to eliminate these in order to maintain a constant expansion 

order.  Therefore, let Ξ represent the number of terms such that Mm ≤ , Nn ≤ , and 

( ) ( )NMnm ,max≤+ . 

 

The same library may be used for the analysis of any reactor core whose component 

blocks consist of some combination of the meshes in the library and whose core 

eigenvalue is within the range for which response coefficients have been calculated.  The 

solutions for all problems presented in the following section will be calculated using the 

same response coefficient library. 
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3.2.1. Uniqueness of meshes 

 

It has been noted that response expansion coefficients must be generated for the unique 

meshes present within the core.  The uniqueness of a mesh depends solely on its 

geometry and material composition (i.e., its block design or type) and not its position 

within the core.  Refer to the benchmark problem presented in section 4.3.  In each core 

problem, there are 127 blocks present.  However, there are only 8 unique meshes.  66 

blocks are graphite reflectors composed of the same material; as they are identical except 

for their position in the core, response expansion coefficients need only be generated 

once for this particular mesh.  Twelve blocks in the core are fuel blocks utilizing 

enrichment #3.  These also are identical to each other, and as such, response expansion 

coefficients need only be generated once for this block design.  As reactor cores generally 

consist of many blocks which are identical to each other in structure and material 

composition at core loading, having to generate response expansion coefficients for only 

the unique meshes rather than every individual block represents the key to this method’s 

efficiency. 

 

3.3. Deterministic Solution Construction 

 

The final step in the method is a deterministic sweep which composes the solution to the 

problem.  In some sequence, each mesh within the core is solved to determine the angular 

current response coefficient at each face.  The effect of the sweeping order on the final 

solution will be analyzed in the following section; since the solutions of the fixed-source 
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transport problems within each mesh are independent of the solutions in neighboring 

meshes, the choice of sweeping order should not affect the accuracy of the solution.  This 

will be shown in the following section of this paper.  However, differing sweeping 

techniques may influence the speed of the convergence of the solution.  Several sweeping 

strategies are here proposed and will be investigated: sweeping from the center mesh 

outward, from the outermost meshes inward, and through the core in rows of meshes.  A 

diagram of the sweeping methods is included in figure 4. 

 

 

 

 
(a) In-Out   (b) Out-In   (c) Rows 

Figure 4. Mesh sweeping schemes 

 

 

 

Other deterministic solution algorithms were not considered in this paper, however, an 

investigation into the feasibility of other methods, such as the Chebyshev polynomial 

method described by Stamm’ler and Abbate (1983) should be conducted in the future. 
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4. RESULTS 

 

 

 

In this chapter, the method is evaluated using a series of reactor eigenvalue problems.  

The problems chosen have been evaluated by Connolly, Rahnema, and Zhang previously 

(2011a, 2011b), and are here examined in greater detail.  Benchmark problems describing 

a stylized high temperature gas-cooled reactor will be used as the bases for these 

calculations.  The effect of the maximum expansion order of the angular current at mesh 

interfaces on the accuracy of the solution will be analyzed.  An investigation is conducted 

to determine an optimal deterministic sweeping method. 

 

4.1. Simple Test Problems 

 

First, the performance of the new method will be evaluated with very simple problems.  

The problems illustrated here are not intended to portray realistic reactor designs, but 

merely to serve as test problems for methods development and error diagnostics.  They 

are presented only to challenge the code’s handling of sharp flux gradients, material 

boundaries, regions of high neutron leakage and absorption, and asymmetric systems.  

These test problems use the block structure and six-group cross section data from a 

benchmark problem (Zhang et al., 2009) based on the Japanese High Temperature Test 

Reactor (HTTR).  Each core consists of three rings of prismatic blocks around a center 

block.  The boundary of the system is corrugated as the method handles only full blocks.  

A boundary condition of no re-entrant particles is specified. 
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Three unique types of blocks are present in the core.  The first is a fuel block, which is 

modeled as a hexagonal prismatic block of graphite with 33 fuel pins and 3 absorber pins.  

The fuel is treated as a pin consisting of a homogeneous mixture of graphite and a 4.3% 

enriched uranium oxide fuel compact, neglecting the heterogeneity due to the coated fuel 

particles in a graphite matrix.  The absorber is a combination of boron carbide and 

carbon.  In two of the test problems, control blocks are present which are modeled as 

graphite blocks with a single boron carbide control rod in the center.  Reflector blocks are 

also present which consist solely of graphite.  The three types of block geometry used are 

shown in figure 5. 

 

 

 

 
Figure 5. Fuel, control, and reflector blocks 

 

 

 

As the first preliminary test, the simplest problem is presented.  Let the first problem 

consist entirely of fuel blocks, as depicted in figure 6.  This test is intended to challenge 

the performance of the method in a system with large flux gradients and a large amount 

of leakage. 
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MCNP5 (X-5 Monte Carlo Team, 2005) was used to acquire a reference solution.  Five 

hundred million active particle histories were sampled for tallying after 62.5 million 

particle histories were skipped to converge the fission source.  The system eigenvalue 

was found to be 0.84309 +/- 0.00003.  The average statistical uncertainty in the pin 

fission densities was 0.067%, with the maximum pin fission density uncertainty at 0.19% 

for the six pins at the outermost corners of the core.  All calculations presented in this 

paper were performed using 2 GHz processors with 16 GB of memory per eight-

processor node.  This calculation required 60.5 days of total computing time using 64 

processors running in parallel. 

 

As the first problem is quite simple, a second problem is now presented.  The aim of the 

test is to introduce differing types of coarse meshes so as to challenge the method’s 

performance in heterogeneous systems.  This problem places a control block at the center 

of the reactor, and surrounds the core with reflectors.  The core geometry is illustrated in 

figure 7.  A reference solution was calculated in MCNP5 in which 500 million particle 

histories were sampled for tallying after skipping 62.5 million particle histories.  The 

eigenvalue of the core was calculated to be 0.82156 +/- 0.00003.  All pin fission densities 

were calculated to a statistical uncertainty of between 0.03% and 0.05%.  This calculation 

required 63.7 days of computing time using 32 processors running in parallel. 
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Figure 6. Test core #1  

 

 

 

 
Figure 7. Test core #2 
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Now, in order to present a greater challenge to the capabilities of the method, a third and 

final problem is presented.  This test case includes 27 fuel blocks, 4 reflector blocks, and 

6 control blocks arranged as shown in figure 8.  The power profile in the region 

surrounded by control blocks will be of special interest; low errors will demonstrate the 

method’s accuracy even near absorbers.  Furthermore, the core is asymmetric in order to 

illustrate that the method does not require symmetric problems to produce accurate 

solutions.  The reference solution was calculated in MCNP as in the previous cases, 

skipping 62.5 million particle histories before running 500 million particle histories for 

tallying.  This core eigenvalue was found to be 0.70840 +/- 0.00003.  The average 

statistical uncertainty of the pin fission density tallies was 0.069%, with a maximum pin 

fission density uncertainty of 0.30%.  All uncertainties over 0.2% were found in the fuel 

block on the outermost ring, in the corner, between the edge of the core and the control 

assemblies.  This calculation took 54.2 days of computing time on 16 processors running 

in parallel. 
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Figure 8. Test core #3 

 

 

4.2. Simple Test Problem Results 

 

In order to solve these problems, the response coefficient generator performed a total of 

13,500 response function calculations, each requiring 10 million particle histories.  A 

typical response function calculation for a fuel block required 12.5 minutes of computing 

time on a single processor; a typical calculation for a block without fuel required 2.75 

minutes.  The entire response function library was calculated in approximately 30 hours 

using 64 processors, roughly 80 days of total computing time.  The collection of response 

functions was compiled in a database requiring 24.00 minutes on a single processor to 

complete.  This database may be used for any reactor physics calculation with these 

assemblies and a core eigenvalue between 0.67 and 0.87.  
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Results are presented in Tables 1-3.  Included in each table are the expansion orders for 

which the calculation was carried out in space, cosine of the polar angle, and azimuthal 

angle.  That is, (L, M, N) in the first row of the table represents the maximum orders of l, 

m, and n from equation 7 which are used in the solution of the problem. 

 

For the sake of the results presented in this paper, the definition used for the relative error 

in some quantity q will be as given in equation 14: 

 

ref

refmethod

q
q

qq
RE

−
=         (14) 

 

The relative difference between the reference solution and the method solution for the 

eigenvalue is presented in the table for each test case and given in per cent mille.  Since it 

would be impractical to present all pin fission density errors for full core problems, even 

for small cores such as these, the four rows which follow show several definitions of the 

average errors in the calculation of the pin fission densities.  These include the average 

relative error between the method solution and the reference solution: 

 

 
P

RE

AVG
p

p∑
=         (15) 

 

where the absolute relative error for each pin p is averaged over all P pins, the root mean 

squared error: 
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the mean relative error: 
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       (17) 

 

which weights the relative errors by the fission density of each pin fdp and divides by the 

average pin fission density fdavg, and the maximum relative error.  Pin fission density 

results are given as per cent relative errors.  Since many reactor analysis codes give 

block-averaged fission density rates, this data will also be included in the tables.  The 

statistical uncertainty in the method’s results will be presented in the table as well.  The 

final value presented in each table is the computing time required to complete the 

calculation, given in seconds.  Computation was conducted on a single processor. 

 

All solutions utilized the same convergence criteria.  Inner iterations on the current used a 

convergence ratio of 5x10
-5
.  As a safety check for inner iteration convergence, pin 

fission densities converged to 10
-4
.  Outer iterations on the eigenvalue used a 

convergence criterion of 5x10
-5
.  Cores were swept using the outward sweeping method 

illustrated in figure 4a, as this is demonstrated to be the fastest technique in section 4.5 of 

this paper. 
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Table 1. Test core #1 results 

 (0,0,0) (2,0,0) (4,0,0) 

k-eff (pcm) -5247 1655 1780 

σk-eff (pcm) 6 6 6 

Block AVG % 1.830 1.398 1.372 

Block RMS % 2.333 1.759 1.727 

Block MRE % 1.185 0.904 0.884 

Block MAX % 4.342 3.511 3.383 

Pin AVG % 3.272 1.867 1.752 

Pin RMS % 6.225 2.494 2.294 

Pin MRE % 1.899 1.016 1.032 

Pin MAX % 33.002 6.216 5.880 

AVG σpin (%) 0.058 0.069 0.071 

MAX σpin (%) 0.133 0.184 0.186 

Time (s) 14 9 10 

 (0,2,2) (2,2,2) (4,2,2) 

k-eff (pcm) -5953 109 119 

σk-eff (pcm) 7 8 8 

Block AVG % 2.984 0.182 0.180 

Block RMS % 3.774 0.223 0.218 

Block MRE % 1.925 0.140 0.138 

Block MAX % 7.180 0.567 0.543 

Pin AVG % 4.863 0.240 0.226 

Pin RMS % 7.733 0.325 0.299 

Pin MRE % 2.434 0.173 0.168 

Pin MAX % 36.866 1.686 1.518 

AVG σpin (%) 0.068 0.078 0.078 

MAX σpin (%) 0.155 0.209 0.208 

Time (s) 15 21 43 

 (0,4,4) (2,4,4) (4,4,4) 

k-eff (pcm) -5996 50 60 

σk-eff (pcm) 7 8 8 

Block AVG % 3.007 0.184 0.187 

Block RMS % 3.803 0.218 0.220 

Block MRE % 1.940 0.141 0.143 

Block MAX % 7.229 0.501 0.487 

Pin AVG % 4.909 0.230 0.226 

Pin RMS % 7.808 0.299 0.288 

Pin MRE % 2.454 0.171 0.173 

Pin MAX % 37.183 1.158 1.350 

AVG σpin (%) 0.069 0.080 0.080 

MAX σpin (%) 0.158 0.212 0.213 

Time (s) 18 43 102 
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The results for test core #1 are presented in Table 1.  Core #1 includes 1221 fuel pins 

within the region.  In the (2, 4, 4) case, 6 pins had relative errors of greater than 1.0%.  

All of these pins were found in the outermost ring of the core, where flux and power 

levels are lowest.  The highest fission density of any of these pins was 0.22, and the other 

five were below 0.2. 

 

It should be noted that the maximum statistical uncertainty of the pin fission density 

calculations was far greater than the average; these high uncertainties occurred at the 

outside of the core where individual pins had very low fission density values.  This 

phenomenon will also appear in the third core. 

 

The results for test core #2 are presented in Table 2.  Again, the highest errors were in the 

pins at the core periphery, however, at the (2, 4, 4) and (4, 4, 4) order calculations the 

highest relative errors in the pin calculations were 0.6%.  The lower errors in the pin 

fission density calculations in core #2 when compared with core #1 may be a result of the 

flatter flux profile in the second core.  Core #1 is a bare reactor with a peaking factor of 

2.347, and the pin with the lowest fission density in the first core has a value of only 

0.059.  In contrast, core #2 is surrounded by reflector blocks and has a control block in 

the center of the core.  The fission densities of pins within the core range from 0.726 to 

1.363. 
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Table 2. Test core #2 results 

 (0,0,0) (2,0,0) (4,0,0) 

k-eff (pcm) -6221 1419 1539 

σk-eff (pcm) 7 7 7 

Block AVG % 1.730 0.332 0.316 

Block RMS % 1.832 0.385 0.367 

Block MRE % 1.755 0.329 0.313 

Block MAX % 2.350 0.756 0.700 

Pin AVG % 1.918 0.723 0.683 

Pin RMS % 2.165 0.903 0.812 

Pin MRE % 1.904 0.705 0.667 

Pin MAX % 4.601 2.660 1.907 

AVG σpin (%) 0.048 0.050 0.052 

MAX σpin (%) 0.051 0.054 0.055 

Time (s) 16 12 12 

 (0,2,2) (2,2,2) (4,2,2) 

k-eff (pcm) -6592 110 117 

σk-eff (pcm) 8 9 9 

Block AVG % 1.205 0.167 0.166 

Block RMS % 1.268 0.191 0.190 

Block MRE % 1.226 0.161 0.160 

Block MAX % 1.703 0.346 0.343 

Pin AVG % 1.265 0.189 0.186 

Pin RMS % 1.503 0.229 0.226 

Pin MRE % 1.278 0.182 0.179 

Pin MAX % 4.076 0.695 0.682 

AVG σpin (%) 0.056 0.057 0.057 

MAX σpin (%) 0.059 0.061 0.061 

Time (s) 16 29 58 

 (0,4,4) (2,4,4) (4,4,4) 

k-eff (pcm) -6626 57 64 

σk-eff (pcm) 8 9 9 

Block AVG % 1.197 0.166 0.167 

Block RMS % 1.259 0.190 0.191 

Block MRE % 1.218 0.160 0.161 

Block MAX % 1.692 0.341 0.343 

Pin AVG % 1.252 0.188 0.188 

Pin RMS % 1.491 0.227 0.228 

Pin MRE % 1.267 0.181 0.181 

Pin MAX % 4.044 0.589 0.597 

AVG σpin (%) 0.057 0.058 0.058 

MAX σpin (%) 0.059 0.062 0.062 

Time (s) 19 63 139 

 



 

 32 

Table 3. Test core #3 results 

 (0,0,0) (2,0,0) (4,0,0) 

k-eff (pcm) > 5000 1649 1766 

σk-eff (pcm) - 7 7 

Block AVG % - 3.021 3.034 

Block RMS % - 3.980 4.000 

Block MRE % - 2.144 2.158 

Block MAX % - 10.324 10.396 

Pin AVG % - 3.387 3.301 

Pin RMS % - 4.441 4.338 

Pin MRE % - 2.269 2.230 

Pin MAX % - 12.759 12.152 

AVG σpin (%) - 0.071 0.073 

MAX σpin (%) - 0.191 0.193 

Time (s) - 14 16 

 (0,2,2) (2,2,2) (4,2,2) 

k-eff (pcm) > 5000 72 80 

σk-eff (pcm) - 8 8 

Block AVG % - 0.153 0.158 

Block RMS % - 0.184 0.187 

Block MRE % - 0.128 0.133 

Block MAX % - 0.455 0.455 

Pin AVG % - 0.224 0.212 

Pin RMS % - 0.301 0.276 

Pin MRE % - 0.168 0.167 

Pin MAX % - 1.287 1.158 

AVG σpin (%) - 0.081 0.082 

MAX σpin (%) - 0.216 0.216 

Time (s) - 43 91 

 (0,4,4) (2,4,4) (4,4,4) 

k-eff (pcm) > 5000 9 17 

σk-eff (pcm) - 8 9 

Block AVG % - 0.127 0.131 

Block RMS % - 0.157 0.159 

Block MRE % - 0.094 0.097 

Block MAX % - 0.328 0.317 

Pin AVG % - 0.191 0.184 

Pin RMS % - 0.250 0.238 

Pin MRE % - 0.145 0.144 

Pin MAX % - 0.933 0.933 

AVG σpin (%) - 0.083 0.083 

MAX σpin (%) - 0.220 0.221 

Time (s) - 96 245 
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Calculations were attempted for the 0
th
 spatial order, but these calculations were not 

successfully completed.  In all three attempts, the method began to converge on a 

multiplication factor outside of the range for which response expansion coefficients were 

generated.  It can only be concluded that these calculations, had they been successfully 

completed, would have relative error in the eigenvalue calculation of over 5%, which 

would place them in line with calculations performed on the other two cores for the same 

expansion orders. 

 

The results for the final test core are given in Table 3.  The range of power levels within 

core #3 was the highest of the three test cores.  The peaking factor was 2.451, and the 

lowest pin fission density in the core was only 0.022.  Core #3 contains 891 fuel pins.  Of 

those, only 9 pins were found to have relative fission density errors greater than 0.75% 

between the reference solution and the (2, 4, 4) calculation.  The highest fission density 

found for one of those high-error pins was 0.43, and the eight other pins had fission 

density levels of at or below 0.25.  Of special interest in core #3 was the fuel block 

surrounded on five sides by control blocks.  For the (2, 4, 4) calculation, the average 

relative error in the pin fission densities in this block was 0.129%, with a maximum error 

of 0.337%.  Due to some error cancellation, the average fission density calculated for the 

entire block was found to an error of 0.072%.  These low errors show that the new 

method calculates accurate results even in regions near strong absorbers. 
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In all three core calculations, it is apparent that the expansion of both the spatial and 

angular variable above the zeroth order is essential for any meaningful results.  Valid 

results are only produced once the spatial variable and the angular variables are expanded 

to at least the second order. 

 

It can be seen in all three calculations that in these graphite-moderated systems, 

expanding the angular component of the flux from second order to fourth order leads to a 

reduction in the eigenvalue calculation by a factor of two, while expansion of the spatial 

component of the flux from second order to fourth order has no statistically significant 

effect on the eigenvalue calculation at all.  In no case where the current was expanded in 

the angular variables to at least second order did the error in the eigenvalue change by 

greater than the convergence criteria plus σ or any of the errors in the pin fission density 

change by greater than the convergence criteria plus 2σ when the expansion order used 

was expanded from second order to fourth in the spatial variable.  This is likely due to the 

fact that these graphite blocks have a higher neutron mean free path and a lower optical 

thickness.  Variations in the flux due to pin-level heterogeneity will therefore be minor.  

It may be concluded that expansion of the spatial component of the current is unnecessary 

past a second-order expansion; if response function calculations were not conducted for 

expansion orders in space greater than 2, 40% fewer response function calculations 

would be performed. 

 

The efficiency of the method can easily be seen.  For each different core, MCNP 

reference solutions took many days of computing time to calculate.  In contrast, the 
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method required a one-time computation of a response function library which took less 

computing time to complete than two full-core reference solutions.  After that pre-

computation was complete, the method was able to solve whole-core test problems 

exhibiting a range of eigenvalues and pin fission density levels in only a few minutes. 

 

4.3. A realistic reactor problem 

 

The method has proven its ability to accurately and efficiently solve several test 

problems, but it must also be evaluated against a more realistic reactor problem.  This 

paper will adapt a different benchmark problem (Zhang et al., 2011), also based on the 

HTTR, in order to evaluate the accuracy of solutions calculated by the method.  This 

problem has been chosen for its more realistic core design.  The problem utilizes a cross 

section library with six energy groups; the same cross section set will be used for all 

response coefficient calculations.  Eight unique coarse meshes are present within the 

core: four fuel blocks, two control blocks, and two reflector blocks.  The block geometry 

to be used in the problems is presented in figure 9. 

 

Two core configurations will be used as a starting point for the analysis of the accuracy 

of the hexagonal coarse mesh method.  The first is the partially controlled core; the 

second is a core with all rods withdrawn.  Figure 10 depicts the partially controlled core 

geometry.  The uncontrolled core configuration has the same fuel layout but with all 

control rods withdrawn. 
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Figure 9. Block geometry. Depicted are representative fuel, control, and reflector blocks. 

 

 

 

 

 

 
Figure 10. The partially-controlled core configuration. 

 

 

 

Only the material and geometry specifications have been taken from the benchmark 

paper; new calculations are performed here for the sake of this analysis.  A full core 

Monte Carlo calculation was conducted using MCNP5 in order to establish a reference 
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solution, including the eigenvalues and pin fission density distributions of both core 

configurations.  A calculation conducted on the partially controlled core used 50,000 

particle histories per cycle, and used 4,000 active cycles to compose the pin fission 

density profile and eigenvalue after 1,000 cycles were run to converge the fission source.  

The partially controlled core was found to have a multiplication factor of 1.01179 with an 

uncertainty of 0.00005.  Pin fission densities were found for all 990 pins in the core; 

uncertainties in the fission density values ranged from 0.03-0.05%.  The calculation was 

conducted over 7.5 hours on a 16-processor cluster.  2 GHz processors were used for all 

calculations in this paper. 

 

The reference solution for the core with all rods withdrawn was found using 50,000 

particles histories per cycle and 4,000 active cycles after the initial 1,000 cycles were 

used to converge the fission source.  The reference value for the multiplication factor of 

the uncontrolled core was 1.13683 with an uncertainty of 0.00005.  The uncertainty in the 

pin fission density calculations ranged from 0.03-0.04%.  The calculation was conducted 

over 9.75 hours on a 16-processor cluster. 

 

4.4. Response Expansion Coefficient Library 

 

Response expansion coefficient calculations were performed for the eight unique meshes 

present in the reactor problem.  For each calculation, the incoming current source given 

by equation 8 was presented using ten million incoming surface source neutrons sampled 

from the distribution defined by the product of the shifted Legendre polynomials. 
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All of the reactor calculations presented in the rest of this paper used the data from the 

same response expansion coefficient library.  As indicated in the previous section, four 

unique multiplying meshes are present in the core, each with 33 fuel pins.  Each fuel 

block has one-third rotational symmetry, and therefore two unique faces.  Two control 

configurations are present in the core: a control block with rods inserted, and a control 

block with rods withdrawn.  These also have one-third rotational symmetry.  Finally, two 

reflector blocks are present, each with a different material specification.  These blocks are 

one-sixth symmetric, and as such only have a single unique face.  Using a six-group cross 

section library, and expanding the angular current to second order in space and fourth 

order in both angular variables, the parameters in equation 13 become G=6, L=2, and 

Ξ=15. For the two reflector blocks, F=6 and F(u)=1; for the two control blocks, F=6 and 

F(u)=2.  For the four fuel blocks, F=6, F(u)=2, P=33, and K=3.  Response expansion 

calculations were performed for three values of the core eigenvalue: k=1.0, 1.1, and 1.2.  

These calculations required 14.5 hours on a 48 processor cluster. 

 

To perform the control rod worth calculations for single rods in section 4.6, an additional 

unique mesh was introduced.  Based on the control block, but with only one of the three 

rods inserted, the new block has six unique faces.  Calculations required an additional 1.7 

hours on 48 processors. 
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4.5. HTTR Problem Results and Sweeping Order Analysis 

 

Solutions to the benchmark problems were calculated using the new method.  Based on 

the expansion order analysis in section 4.2, a maximum expansion order of (2, 4, 4) is 

used for this problem. 

 

It is desirable to determine an optimal scheme for conducting the deterministic sweep.  In 

section 3.3, three different sweeping orders were proposed.  They are evaluated below for 

the accuracy of the eigenvalue and pin fission density profile calculated, and for the 

speed of convergence.  Table 4 shows the effects of the sweeping order on the partially 

controlled core; table 5 depicts results for the all-rods-out core configuration. 

 

 

 

Table 4. Sweep Order Analysis of Partially Controlled Core 

 Out -> In In -> Out Rows 

k-eff (pcm) -27 -33 -30 

σk-eff (pcm) 7 7 7 

Block AVG % 0.030 0.026 0.033 

Block RMS % 0.034 0.030 0.039 

Block MRE % 0.031 0.027 0.033 

Block MAX % 0.056 0.052 0.088 

Pin AVG % 0.110 0.108 0.111 

Pin RMS % 0.163 0.161 0.164 

Pin MRE % 0.100 0.099 0.101 

Pin MAX % 0.872 0.872 0.909 

AVG σpin (%) 0.063 0.063 0.063 

MAX σpin (%) 0.076 0.077 0.077 

Time (s) 179 166 215 

 

 

 

 



 

 40 

At most, six pins within the partially controlled core were calculated to have a relative 

error of over 0.8%.  All of these pins were within the regions of the core at lowest power, 

the hottest of them having 0.53 times the fission density of the average fuel pin.  As 

shown by the mean relative error figures, the relative errors were generally smaller in 

pins with higher fission density. 

 

 

 

Table 5. Sweep Order Analysis of Uncontrolled Core 

 Out -> In In -> Out Rows 

k-eff (pcm) -8 -11 -10 

σk-eff (pcm) 8 8 8 

Block AVG % 0.038 0.038 0.045 

Block RMS % 0.046 0.045 0.054 

Block MRE % 0.038 0.038 0.045 

Block MAX % 0.076 0.076 0.120 

Pin AVG % 0.086 0.086 0.091 

Pin RMS % 0.113 0.113 0.116 

Pin MRE % 0.087 0.087 0.091 

Pin MAX % 0.319 0.319 0.353 

AVG σpin (%) 0.060 0.060 0.060 

MAX σpin (%) 0.064 0.064 0.064 

Time (s) 357 343 378 

 

 

 

The high accuracy achieved by this new method is clear.  In both cores, the average error 

in the pin fission density calculation was within the convergence criteria plus 2σ.  The 

same is true of the eigenvalue calculation for the uncontrolled core.  Although the 

calculated value of keff in the partially controlled core was not within the 95% confidence 

interval, the error was approximately 30 pcm regardless of the sweeping technique 

employed.  The difference in solution time between the two trials was mostly a result of 
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the initial guess for keff; a better initial guess for the multiplication factor in the 

uncontrolled core would have sped up the convergence of the solution. 

 

It can be seen that as expected, the differences in the relative errors resulting from 

different sweeping schemes are well within the confidence interval 2σ for the uncertainty 

of the solutions.  Therefore, the in→out sweeping pattern is recommended as it produces 

results more quickly than the other methods. 

 

4.6. Control rod worth analysis 

 

The efficiency of the hexagonal coarse mesh method has been proven.  An example is 

here presented to highlight both the benefits of using a pure transport method instead of a 

homogenized diffusion technique, and the computational speed of the method.  These 

calculations will use the HTTR core and introduce a new block configuration for a 

control block with only one rod inserted.  The reactivity worth of each control rod may be 

calculated using the all-rods-out configuration as a starting point.  A change in reactivity 

ρ due to control rod insertion may be calculated as (Duderstadt and Hamilton, 1976): 

 

 
k

kk '−
=∆ρ          (16) 

 

The multiplication factor of the core with all rods withdrawn shall be designated k.  A 

full-core eigenvalue calculation will be conducted for the core with a single control rod 

inserted; eigenvalues will be determined for every unique configuration of the core with a 
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single rod in.  The reactivity worth of each rod may then be calculated using equation 16, 

where k’ will be the multiplication factor of the core with one rod in. 

 

To again establish the capability of the method in solving full core problems, Table 6 

presents the relative errors between the method solution and a reference solution 

calculated by MCNP5.  This is a core with all rods out except one of the three center 

rods.  The reference calculation used 100,000 particle histories per cycle, and ran 10,000 

active cycles after skipping 6,000 inactive cycles.  The calculated multiplication factor 

was 1.10268 +/- 0.00002, and the uncertainty in the fission density calculations was no 

greater than 0.04% for any of the 990 pins in the core.  The calculation took 86.25 hours 

on 16 processors in parallel. 

 

 

Table 6. Results for core with rod α inserted 
k-eff (pcm) 0 

σk-eff (pcm) 8 

Block AVG % 0.065 

Block RMS % 0.074 

Block MRE % 0.066 

Block MAX % 0.131 

Pin AVG % 0.105 

Pin RMS % 0.136 

Pin MRE % 0.105 

Pin MAX % 0.859 

AVG σpin (%) 0.060 

MAX σpin (%) 0.071 

Time (s) 227 

 

 

 

Given the high accuracy of the results already presented, it would be unnecessary to 

calculate a reference solution for all eleven unique core configurations with a single rod 

inserted.  The rod worth in per cent mille of reactivity is given in table 7 for core 
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calculations conducted at the expansion order (2, 4, 4).  The uncertainty of the reactivity 

worth calculations for each rod is between 18 and 19 pcm in reactivity units.  A one-sixth 

slice of the reactor is presented in figure 11 with each control rod labeled.   

 

 

Table 7. Control rod worth 

Rod -ρ (pcm) 

α 2993 

β 2123 

γ 1960 

δ 1809 

ε 989 

ζ 905 

η 737 

θ 655 

ι 608 

κ 478 

λ 377 

 

 

 
Figure 10. Control rod designations 
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This control rod analysis calculation is an example of a problem that diffusion-based and 

homogenization-based methods would be unable to solve.  Because of its reliance on 

transport theory without approximation to the core design, this method yields accurate 

results quickly.  This analysis required 12 eigenvalue calculations; one for the all-rods-

out basis case, and one for each unique control rod placement.  Only 61 minutes were 

required for the calculations.  It has been shown that the hexagonal coarse mesh method 

can solve a variety of reactor core problems to a very high degree of accuracy in an order 

of minutes. 
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5. CONCLUSIONS 

 

 

 

A new transport method has been developed for the whole core neutronics analysis of 

hexagonal geometry in two dimensions.  The method is highly accurate and efficient.  It 

uses a stochastic technique to generate a response expansion library and performs a 

deterministic sweep to compose the whole core solution.  The method models the detailed 

heterogeneity of the core and produces detailed solutions nearly three orders of 

magnitude more quickly than full-core Monte Carlo calculations.  It is highly accurate, 

determining core eigenvalues to an error on the order of 0.02%, and explicitly calculating 

the relative pin fission density of every individual fuel pin in the core to an average error 

of less than 0.1%.  It has been shown that individual control rod worth can be calculated, 

highlighting the capability of the method. 

 

An extension of the method to three-dimensional geometry is the next step in its 

development.  In order to further establish the robust capability of this hexagonal coarse 

mesh method, it would be desirable to evaluate its performance in solving other reactor 

types, such as fast breeder reactor cores.  It is anticipated that due to the high level of 

anisotropy in the flux within a fast reactor, it may be necessary to expand the angular 

current to a higher order, however, this is not expected to significantly challenge the 

method.  However, due to the complex energy spectral effects within fast reactors, it may 

be necessary to use the continuous energy treatment instead of the multigroup treatment; 

because the method relies on Monte Carlo methods, it may be possible to due this in the 

future.  The integration of some method for determining time-dependent behavior would 
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expand the capability of the method from solving only steady-state or eigenvalue 

problems to handling transient reactor calculations.  Furthermore, a procedure for 

calculating burnup would allow COMET to perform core depletion (fuel cycle) 

calculations.  Once extended to three dimensions, for practical reactor core calculations, 

the method should take thermal hydraulics into account.  Such a versatile method would 

be a valuable tool for evaluating the safety and performance of a fleet of new reactors. 
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