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ABSTRACT 

This thesis focuses on the demonstration of the existence of and analysis of 

phenomena related to the discontinuous non-equilibrium phase transition between an active 

(or reactive) state and a poisoned (or extinguished) state occurring in a stochastic lattice-gas 

realization of Schloegl’s second model for autocatalysis. This realization, also known as the 

Quadratic Contact Process, involves spontaneous annihilation, autocatalytic creation, and 

diffusion or hopping of particles on a square lattice, where creation at empty sites requires a 

suitable nearby pair of particles. The poisoned state exists for all annihilation rates p>0 and is 

an absorbing particle-free “vacuum” state. The populated active steady state exists just for p 

below a critical value, pe. Our initial studies without particle hopping demonstrated a 

dependence on orientation or slope, S, of the equistability or stationary point p=peq(S) for a 

planar interface separating active and poisoned states. They also showed that pe = peq(S=1) 

for diagonal interfaces. This orientation dependence was shown to extend to non-zero hop 

rates h>0, but to quickly weaken with increasing h. If pf denotes the critical value below 

which a finite population can survive, then we show that pf =peq(S=0) and that pf < pe. This 

strict inequality contrasts a postulate of Durrett, and is a direct consequence of the occurrence 

of coexisting stable active and poisoned states for a finite range  pf ≤ p ≤ pe. Although this so-

called generic two-phase coexistence (2PC) contrasts behavior in thermodynamic systems. 

However, one still finds metastability and nucleation phenomena similar to those in 

discontinuous equilibrium transitions. We also provide a theoretical framework for analysis 

of such metastability phenomena. Extensions of the basic model are considered to different 

lattices and to introduce tricritical behavior. Most precise analysis was performed with 
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kinetic Monte Carlo simulation. However, we also developed exact hierarchical master 

equations and performed approximate truncation analysis of these equations. 
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CHAPTER  1.  GENERAL INTRODUCTION 

Introduction 

Non-equilibrium phase transitions have attracted the interest of the statistical physics 

community for many decades. Lattice-gas (LG) models provide one framework within which 

to describe and analyze such behavior for non-equilibrium many-particle systems [1]. In 

many of these models, the spatial structure of the system is described by a lattice (typically, 

square, triangular, hexagonal or cubic), the sites of which are specified to be in one of two 

states. Here, we will refer to these states as either occupied or vacant. The evolution of the 

LG model for a process of interest includes specification of all possible transitions between 

different configurations of particles on the lattice together with assignment of the associated 

rates. In the mathematical statistics community, such models are called Interacting Particle 

Systems (IPS), and they correspond to stochastic Markov processes for evolution between 

different possible configurations of the system [2]. Behavior for an infinite lattice is typically 

of primary interest. However, in order to analyze model behavior by computer simulation, it 

is necessary to use a finite lattice and invariably periodic boundary are imposed to minimize 

edge effects. 

Specification of the evolution of stochastic spatial models for non-equilibrium 

processes often is not based on a Hamiltonian and may incorporate irreversible steps [3]. 

Thus, the microscopic rates governing evolution are not constrained by detailed-balance 

conditions. Such conditions are based on first specifying a Hamiltonian describing the energy 

of all possible configurations of the system. Then, the ratio of the rates for forward and 

reverse processes is determined by the energy difference between initial and final states. 
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Significantly, in part due to the lack of this detailed-balance constraint, these non-equilibrium 

models can display a richer variety of spatiotemporal behavior than traditional Hamiltonian 

systems. Such models have been broadly applied in describing dynamics and pattern 

formation in systems including, i.e., adsorption-desorption phenomena, chemical reactions, 

population dynamics, spread of epidemics or information, and other ecological and 

sociological phenomena [1, 3-6].  

A specific feature of non-equilibrium models is the possible occurrence of “absorbing 

states” (using the language of Markov processes) from which the system can never escape [1, 

3, 5, and 7]. One example is for a reaction model where particle can spontaneously annihilate 

at some specified rate, p, but are also created autocatalytically in the presence of another 

nearby particle or particles. For this system, it is clear that the particle-free “vacuum” state is 

an absorbing state (since it is impossible to create particle without preexisting particles). A 

related example is for epidemic models where sick individuals recover at a specified rate, r, 

but healthy individuals are infected by sick neighbor(s). Here, it is clear that the completely 

healthy population is an absorbing state. 

In addition, the steady-states of such non-equilibrium models often exhibit continuous 

(second-order) and discontinuous (first-order) phase transitions as some control parameter is 

varied, which are similar to the very familiar equilibrium phase transitions in Hamiltonian 

systems [1, 3, 5, and 7]. For continuous non-equilibrium transitions, this analogy has been 

explored in most detail. In fact, the concept of universality carries over from equilibrium 

transitions: universality mean that fundamental features of behavior near the transition are 

independent of the details of the model (i.e., they are the same or “universal” for a broad 

class of models). A robust universality class for continuous non-equilibrium transitions to 
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absorbing states (described above) has been identified. Technically, this is described as the 

universality class of directed percolation or Reggeon field theory [3, 5, and 7].  

To provide two examples, consider the reaction and epidemic models above. For the 

reaction model, one can imagine that the reaction is extinguished (and the system is particle-

free) when the particle annihilation rate exceeds a critical value pc. If the model exhibits a 

continuous transition to this extinguished state, one anticipates that the steady-state particle 

concentration has the form C ~ (pc – p)β1
 as p approaches pc from below. For p>pc, the system 

always evolves to the vacuum absorbing state with C=0.  For the epidemic model, one can 

imagine that the epidemic always dies out recover rate exceeds a critical value rc. If the 

model exhibits a continuous transition to the completely healthy state, one anticipates that the 

steady-state fraction of sick individuals has the form S ~ (rc – r)β2
 as r approaches rc from 

below. However, both models lie the directed percolation universality class, and one finds 

that β1 = β2 ≈ 0.583 [1]. 

Less attention has been paid to discontinuous non-equilibrium transitions for which 

universality does not apply [8-13]. Perhaps the most extensive studies have been for two-

component or three-state reaction models (see below), including the Ziff-Gulari-Barshad 

(ZGB) model [8], which do display discontinuous transitions. The ZGB model is introduced 

by Ziff, Gulari, and Barshad in 1986 to mimic the oxidation of carbon monoxide (CO) on a 

catalytic surface, and it is often described as a monomer-dimer surface reaction model. The 

model involves the following steps: random adsorption of monomers (representing CO) at 

single empty sites of a two-dimensional lattice (d=2); random adsorption of dimers 

(representing O2) at neighboring empty pairs of sites followed by immediate dissociation into 

constituent atoms residing on these two sites; and irreversible reaction of adjacent adsorbed 
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monomer species (CO) and atoms from the dissociated dimer species (O) to form the product 

(CO2). Thus the two-components on the surface are CO and O, and the three possible states 

of surface sites are: (i) occupied by CO; (ii) occupied by O; (iii) unoccupied or empty. 

Specifically, with increasing CO adsorption rate (or CO partial pressure above the surface), 

the ZGB model exhibits a discontinuous transition from an active (i.e., reactive) state with a 

non-zero production rate for CO2 to an absorbing or poisoned state [8], in which the surface 

is completely covered or saturated by CO.  

Various related phenomena for this non-equilibrium transition have been analyzed in 

some detail: the steady-state coverage versus partial pressure including the pressure at the 

discontinuous poisoning transition [8]; propagation and fluctuation behavior of interfaces 

separating active and CO-poisoned states [8,10,11]; “epidemic properties” related to the 

survival of an active or reactive “droplet” (i.e., compact region of the active state) embedded 

in the CO-poisoned absorbing state [9, 12]; and nucleation of droplets of the CO-absorbing 

state within the metastable reactive state and associated metastability phenomena [10, 13]. 

Some features of observed behavior are unusual for a discontinuous transition [4], and likely 

reflect the presence of a weak line tension at the interface between reactive and absorbing 

states. (Recall that discontinuous equilibrium transitions are always associated with a finite 

line tension in 2D or surface tension in 3D at interface separating the two coexisting states.) 

Such simple ZGB-type models are invaluable for elucidating basic issues associated with 

non-equilibrium phase transitions in reaction systems. 

Single-component models (in which the system includes only one type of particle) are 

even simpler and perhaps more convenient for exploring fundamental issues for 

discontinuous non-equilibrium transitions. The single-component Bidaux-Boccara-Chaté 
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(BBC) model [14] is a probabilistic synchronous cellular automaton in which the state of all 

sites is updated simultaneously at discrete time steps. The state of site x at time t+1 depends 

on the number of occupied sites in the set comprising x and its eight closest neighbors at time 

t based on some stochastic rule [14].  The transition in the BBC is discontinuous in d≥2 

dimensions, but continuous for d=1 [1]. Another single-component model is the so-called 

triplet creation model [15]. Here particles spontaneously annihilate, but are also created 

autocatalytically in the presence of three nearby particles (a triplet). This triplet creation 

model may provide an example of a model with a discontinuous transition for d=1 at least for 

sufficiently rapid particle hopping.  

Perhaps, the single-component reaction model considered most often in the context of 

discontinuous phase transitions is Schloegl’s second model (Schloegl 1972). More general 

versions of Schloegl-type models associated with autocatalytic kinetics [16], when 

traditionally formulated at the mean-field level, provide classic examples of bifurcation 

behavior and of synergetics (i.e. spatio-temporal behavior) [17]. Schloegl’s first model for 

autocatalysis in a reactive system of particles, X, includes the following steps: X↔2X 

(autocatalytic reaction of a particle by a nearby existing particle), X→∅ (spontaneous 

annihilation) and possibly particle diffusion. For this model, the mean-field kinetics is 

quadratic leading to a continuous transition to the particle-free vacuum steady-state state. 

Schloegl’s second model includes the following steps: 2X↔3X (autocatalytic reaction of 

particle by a nearby existing pair of particles), X→∅ (spontaneous annihilation) and possibly 

particle diffusion, for which the mean-field kinetics is cubic suggesting a discontinuous 

transition (at least in the presence of fluctuations or in a lattice-gas model realization).  
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The behavior of lattice-gas versions or realizations of these non-equilibrium reaction 

models can be rigorously formulated in terms of master equations for the evolution of the 

probabilities of various configurations. Typically, it is impossible to solve these equations 

exactly with analytic methods. However, an analytic treatment of model behavior can be 

developed based on truncation approximations to the exact master equations. The simplest 

approximation is mean-field site approximation which ignores all spatial correlations. This 

approximation could be interpreted as describing the exact behavior of the models with 

particle hopping to nearest-neighbor (NN) empty sites at rate h in the limit h → ∞, since such 

hopping “stirs” the system destroying spatial correlations. In the pair approximation, one 

factorizes probabilities for the multi-site configurations into products of probabilities for the 

constituent pairs, and divides by single-site probabilities for sites shared by the pairs (to 

avoid over counting). One retains equations for both single-site and pair probabilities and in 

this way accounts to some extent for correlations between neighboring sites. These two 

approximations can reveal qualitative features of exact model behavior. 

  Kinetic Monte Carlo (KMC) simulation is the most common tool for precise 

analysis of non-equilibrium LG models. This approach uses a random number generator to 

select and implement various processes with the appropriate relative weights thereby 

generating evolution of the model through specific sequence configurations [18]. In this 

dissertation, we perform a KMC simulation analysis for models defined on a rectangular-

shaped (Lx × Ly) site square lattice with periodic boundary conditions. The latter limit “edge 

effects” and allow assessment of behavior for an infinite lattice provided that Lx and Ly are 

chosen moderately large. Two kinds of simulation: constant-p (CP) simulation and constant-

coverage (CC) simulation [19] are adopted for analysis (in the context of models involving 
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adsorption-desorption or annihilation-creation of particles). In a constant-pressure simulation 

algorithm, one specifies an adsorption (or annihilation) rate p and runs simulation to 

implement adsorption (or annihilation), desorption (or creation) and diffusion with the 

appropriate relative rates to determine both the dynamics and the steady-state behavior. In 

CC simulations, one specifies a target coverage θ (or concentration C) and then runs the 

simulation attempting to adsorb or desorb (annihilate or create particles) if the actual 

coverage (concentration) is below or above the target θ (C), respectively. The adsorption rate 

p = p(θ) (annihilation rate p=p(C)) is the fraction of adsorption (annihilation) attempts. For a 

sufficiently large system, these two simulation processes should be equivalent.  

In this dissertation, we consider various realizations of Schloegl’s second model for 

the evolution of particle populations on a square lattice (d=2) to analyze the behavior of 

discontinuous non-equilibrium phase transitions. In the first realization, one can use the 

language of adsorption-desorption of particles on a square lattice, the following steps are 

involved [3, 20]: random adsorption of particles at empty sites at a rate or “pressure” p; 

cooperative desorption of particles at rate k/4 where k = 0, 1, 2, or 4 denotes the number of 

diagonally adjacent pairs of NN empty sites. Thus, one has: k=0 for particles with just 0 or 1 

empty NN sites, and also for 2 empty NN sites which are on opposite sides of the particle; 

k=1 for particles with just 2 diagonally adjacent empty NN sites; k=2 for particles with 3 

empty NN sites; and k=4 for particles with all 4 NN sites empty. See Fig.1. We use this 

realization in Chapters 2 and 3.  

In the second realization for Schloegl’s second model is formulated in terms of the 

spontaneous annihilation and autocatalytic creation of particles. This realization interchanges 

the role of particles and vacancies from that in the above description of adsorption-desorption 
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model. This realization on a square lattice as a stochastic Markov process involves the 

following components: (i) spontaneous particle annihilation occurring randomly at rate p; (ii)  

autocatalytic particle creation at an empty site requiring one or more diagonally adjacent 

pairs of occupied sites; specifically, the creation rate is given by k/4, where k is the number 

of such diagonally adjacent occupied pairs and thus can take the values k = 0, 1, 2,or 4; (iii)  

hopping of particles to any adjacent empty sites at rate h (per target site), a third process 

which could also be added in the adsorption-desorption realization. See Fig.2 for a schematic 

of these processes. We use this realization in Chapters 4, 5, and 6. 

In a third realization, Schloegl’s second model is regarded as a spatial “contact 

processes” which can describe the spread of disease (or information) by nearest-neighbor 

interaction between individuals distributed on a square lattice of site [1, 3]. This realization is 

most commonly referred to as the Quadratic Contact Processes (QCP). Individuals at each 

site of the lattice are either sick or healthy. Sick individuals recover spontaneously at a fixed 

rate and healthy individuals are infected by diagonal pairs of sick neighbors (an 

“autocatalytic” process) at rates which can be deduced from the above realizations. Thus, the 

sick (healthy) state corresponds to vacancies or empty sites (particles or filled sites) in the 

first adsorption-desorption realization, whereas the opposite is true for the second reaction 

model realization. 

Our studies of the above realizations of the QCP or Schloegl second model reveal the 

feature of generic two-phase coexistence (2PC) or true bistability [21], which means the 

coexistence of stable active and absorbing states occurring for a finite range of “pressure” 

parameter, p. This dramatically contrasts behavior for discontinuous equilibrium transitions 

where coexistence can only occur at a single value of the relevant parameter p 



 9 

 

(corresponding to equality of chemical potentials of the two phases). For the QCP, 2PC can 

be understood in terms of an orientation dependence of propagation, and specifically of the 

pressure for equistability or stationarity, of planar interfaces separating active and absorbing 

states [22]. Perhaps the classic example of such a 2PC phenomenon is provided by Toom’s 

synchronous North-East-Center (NEC) stochastic cellular-automata “voting” model [23-26]. 

In this model, an array of voters on a square grid chooses one of two parties. Votes are 

updated synchronously at discrete times based on the votes of selected neighbors those to the 

north (N) and east (E) or the center (C) site under consideration. However, this model 

introduces an explicit artificial asymmetry in to dynamic voting rules (favoring north and 

east over south and west neighbors) which helps induce generic two-phase coexistence. In 

this respect, our realization of the QCP or of Schloegl’s second model is more appealing 

example of this fundamental non-equilibrium phenomenon since there is no artificial 

asymmetry in the rates. 

Thesis Organization  

The main body of this Dissertation is based on three published papers (Chapters 2, 3, 

and 4), and two additional manuscripts (Chapters 5 and 6) which are to be submitted in 2009. 

A fourth published Letter is not included as it constitutes a condensed version of the material 

in Ch.2. Additional publications should also result from the material in the appendices.  

Chapter 2 reprints the published paper “Generic two-phase coexistence, relaxation 

kinetics, and interface propagation in the quadratic contact process: Simulation studies”, by 

X. Guo, D.-J. Liu and J.W. Evans in Physical Review E 75 (2007) 061129. This paper gives a 

detailed description and analysis of the first adsorption-desorption realization of the QCP 
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model on a square lattice, noting a special feature of the dynamics in this model in the 

absence of particle hopping. It also specifies in detail the kinetic Monte Carlo simulation 

procedures including constant-p and constant-coverage (CC) simulations. The steady-state 

behavior for the model, specifically generic two-phase coexistence, is characterized. 

Simulation results for the kinetics of relaxation to the steady states of the QCP for spatially 

homogeneous systems are also given. 

Further, an “effective” spinodal point terminating a metastable active state for 

pressures above the two-phase coexistence region is identified, and “rapid” relaxation or 

poisoning kinetics for pressures above this spinodal pressure are described. This paper also 

gives analysis of slower nucleation-mediated relaxation or poisoning for pressures in the 

metastable region below this spinodal but above the PC region, and elucidates the dynamics 

of poisoned droplets within the two-phase coexistence region. For lower pressures below the 

two-phase coexistence region, some unusual aspects of relaxation kinetics are elucidated by 

making a connection to bootstrap percolation models. In addition, the propagation of 

interfaces with various orientations between the absorbing and active states in spatially 

inhomogeneous systems is analyzed. The dependence of propagation and equistability on 

interface orientation underlies the generic two-phase coexistence in the QCP. A condensed 

version of this study has also been published as “Quadratic Contact process: Phase-

separation with Orientation-dependent Equistability” by D.-J. Liu, X. Guo, and J.W. Evans 

in Physical Review Letters 96 (2007) 050601. 

Chapter 3 reprints the published paper “Generic two-phase coexistence, relaxation 

kinetics, and interface propagation in the quadratic contact process: Analytic studies”, by X. 

Guo, J.W. Evans, and D.-J. Liu in Physica A 387 (2008) 177-201. In this paper, the 
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hierarchical form of the exact master equations and appropriate truncation approximations 

for spatially homogeneous states of the QCP are developed. Corresponding predictions for 

steady-states and kinetics from analytic studies are compared with results from KMC 

simulations. Further, this analytic treatment is used to treat the spatially non-uniform states. 

The primary focus is on analysis of the propagation of planar interfaces separating the active 

and absorbing states for various orientations. In particular, we determine the orientation-

dependence of the equistability pressure. We also consider planar perturbations of the active 

state and determine the critical form of such perturbations above which they grow. In 

addition, the dynamics of two-dimensional droplets of one phase embedded in the other is 

explored. 

Chapter 4 reprints the published paper “Schloegl’s second model for autocatalysis 

with particle diffusion: Lattice-gas realization exhibiting generic two-phase coexistence”, by 

X. Guo, D.-J. Liu and J.W. Evans in the Journal Chemical Physics 130, (2009) 074106. In 

this paper, we specify the second reaction model realization of Schloegl’s second model with 

particle hopping on a square lattice, as well as outlining related fundamental concepts. We 

also review previous results for this model in the limiting cases of zero and infinite particle 

diffusion. We analyze the steady states and their relative stability which leads to a 

characterization of the discontinuous phase transition in this model and demonstrates the so-

called generic two-phase coexistence. We also analyze key aspects of the kinetics elucidating 

metastability associated with this transition. Generic two-phase coexistence in this model is 

again tied to an orientation-dependence of the equistability of planar interfaces separating the 

active and poisoned states. Thus, we are motivated characterize both interface structure and 

propagation. Exploiting these insights, we present a droplet analysis in order to characterize 
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both phase stability in generic two-phase coexistence regime and the size and structure of 

critical droplets in the metastable regime.  

Chapter 5 corresponds to the unpublished manuscript “Metastability in Schlogel’s 

second model for autocatalysis: lattice-gas realization with particle diffusion” which we plan 

to submit for publication to Physical Review E in 2009. This work constitutes a more 

detailed study of metastability already considered in Chapter 4 for Schloegl's second model 

with particle hopping. However, Chapter 5 considers larger hops rate and applies both KMC 

simulation and an analytic approximation. Specifically, we provide a more accurate 

assessment of the location of ps+ by characterizing the associated poisoning kinetics and 

interface propagation behavior. 

Chapter 6 corresponds to the unpublished manuscript “Tricritical behavior in a 

hybrid of standard and quadratic contact process models” which we also plan to submit for 

publication to Physica A in 2009. The key strategy here is to explore “perturbations” of the 

quadratic contact process associated with incorporating or “mixing in” a component of the 

standard contact process mechanism. Since the former exhibits a discontinuous transition and 

the latter a continuous transition, one could imagine conversion from a discontinuous to a 

continuous transition with an increasing relative contribution from the standard contact 

process. Such a conversion corresponds to a non-equilibrium tricritical point where one 

might expect unique scaling behavior. We show that this tricritical point does exist and 

analyze the associated scaling. 

At the end of this dissertation, several appendices are included presenting additional 

analysis and results. Appendix A provides a finite-size scaling analysis for the QCP with 

particle hopping to assess the dependence of simulation results on system size. For 
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comparison with our analysis of non-equilibrium models, Appendix B presents pair-

approximation analysis for interface evolution in a LG realization of the equilibrium 2D Ising 

model with Glauber or adsorption-desorption dynamics. Appendix C provides some 

additional results (supplementing Chapter 5) from our KMC simulation and from analysis of 

the pair approximation for the QCP with particle hopping. Appendix D provides some 

additional results (supplementing Chapter 6) of our analysis of tricritical behavior in a 

generalized Schloegl model. Appendix E provides an analysis based on the site 

approximation of critical droplets and related phenomena for Schloegl’s second model. 

Appendix F presents some basic analysis of Schloegl’s second model for autocatalysis on 

various lattices, and well as of a modified model. 
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Figures 

 

Figure 1.   Schematic of desorption rules and rates in the adsorption-desorption model 
realization of the QCP. Solid (open) circles denote particles (empty sites) on 
the square lattice. Description rates (k values) for the central particle are 
indicated above (below) the various configurations. 
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Figure 2. Schematic of particle annihilation, autocatalytic creation, and hopping 
processes in Schloegl’s second model or the QCP on a square lattice. Here 
particles are denoted by filled circles (••••) and empty sites by open circles (o). 
Rates for the various processes are also indicated, and the bar through the 
arrow indicates that the process is not allowed. 
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Abstract 

The quadratic contact process is formulated as an adsorption-desorption model on a 

two-dimensional square lattice. It involves random adsorption at empty sites and correlated 

desorption requiring diagonally adjacent pairs of empty neighbors. We assess model 

behavior utilizing kinetic Monte Carlo simulations. One finds generic two-phase coexistence 

between a low-coverage active steady-state and a completely covered or “poisoned” 

absorbing steady-state, i.e., both states are stable over a finite range of adsorption rates or 

“pressures”. This behavior is in marked contrast to that for equilibrium phase separation. For 

spatially homogeneous systems, we provide a comprehensive characterization of the kinetics 

of relaxation to the steady-states. We analyze rapid poisoning for higher pressures above an 

effective spinodal point terminating a metastable active state, nucleation-mediated poisoning 

in the metastable region, the dynamics of poisoned droplets within the two-phase coexistence 
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region, and behavior reminiscent of bootstrap percolation dynamics for lower pressures. For 

spatially inhomogeneous systems, we analyze the propagation of planar interfaces between 

active and absorbing states, fully characterizing an orientation-dependence which underlies 

the generic two-phase coexistence.  

PACS 05.70.Fh, 05.50.+q, 02.50.Ey 

I. Introduction 

Stochastic spatial models for far-from-equilibrium processes incorporating 

irreversible steps [1] can display a richer variety of spatiotemporal behavior than traditional 

Hamiltonian systems where microscopic transition rates are constrained to satisfy detailed-

balance. One example of a feature specific to non-equilibrium systems is the occurrence of 

absorbing states, using the parlance of Markov processes, from which the system can never 

escape [1-4]. Nonetheless, more generally, the steady-states of such non-equilibrium models 

often exhibit continuous (second-order) and discontinuous (first-order) phase transitions 

which appear analogous to equilibrium phase transitions in Hamiltonian systems [1-4]. Most 

effort towards exploring this analogy has focused on continuous non-equilibrium transitions 

where the concept of universality carries over from equilibrium transitions. In fact, a robust 

universality class for continuous transitions to non-degenerate absorbing states has been 

identified as that of directed percolation or Reggeon field theory [2-4]. 

For non-equilibrium processes, less attention has been paid to discontinuous 

transitions where universality does not apply [5-11]. However, one such well-known 

example is provided by the two-component Ziff-Gulari-Barshad (ZGB) model for a 

monomer-dimer surface reaction [5]. This ZGB model includes the following steps: random 
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adsorption of monomers at single empty sites of a two-dimensional lattice (d=2); dissociative 

adsorption of dimers at empty pairs of sites; and irreversible reaction of adjacent monomer 

and dimer species. In this model, a discontinuous transition from an active (i.e., reactive) 

state to a monomer-poisoned absorbing state occurs for sufficiently high monomer 

adsorption rate or “partial pressure” [5]. Various phenomena related to this non-equilibrium 

transition have been analyzed in some detail: the steady-state coverage versus partial pressure 

including the pressure at the discontinuous poisoning transition [5]; propagation and 

fluctuation behavior of interfaces between active and poisoned states [5,7,8]; epidemic 

properties related to an active droplet embedded in the monomer-poisoned absorbing state 

[6,9]; and nucleation of droplets of the absorbing state within the metastable active state and 

associated metastability phenomena [7,11]. Some features of observed behavior are unusual 

for a discontinuous transitions [10] (e.g., apparent algebraic scaling of epidemic properties 

[6]), and likely reflect the presence of a weak line tension at the interface between active and 

absorbing states. We explore this latter issue elsewhere [12].  

To facilitate a fundamental understanding of discontinuous non-equilibrium 

transitions, it is more convenient and natural to search for and analyze single-component 

models with the desired behavior (as an alternative to further analysis of the more complex 

two-component ZGB model). Such simpler single-component models which purportedly 

exhibit discontinuous transitions in low-dimensions have also been developed and analyzed 

previously. The so-called Bidaux-Boccara-Chaté model [13] is a probabilistic cellular 

automata which exhibits a discontinuous transition in d≥2 dimensions, but not for d=1 [2]. 

The so-called triplet creation model [14] was developed to provide an example of a model 

with a discontinuous transition for d=1 at least for sufficiently rapid particle hopping. The 
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issue of existence of this discontinuous transition in this model has also been addressed in 

more recent studies [15]. Schloegl’s second model for autocatalysis, described in more detail 

below, provides another example of a single-component model designed with the potential to 

exhibit a discontinuous transition. 

 There has been considerable interest in the class of Schloegl-type models associated 

with autocatalytic kinetics [16], where mean-field versions provide classic examples of 

bifurcation behavior and synergetics [17]. Special cases of this kinetics are as follows: 

X↔2X and X→∅ for Schloegl’s first model, and 2X↔3X and X→∅ for Schloegl’s second 

model, where X denotes a particle (so, e.g., X→∅ represents particle annihilation). The 

mean-field kinetics are quadratic for the first model suggesting a continuous transition to the 

vacuum state, and cubic for the second model suggesting a discontinuous transition. It is 

indeed the case that various discrete realizations of the first model exhibit a continuous 

transition in the universality class of directed percolation. However, contrasting early reports, 

one careful study of a synchronous cellular-automata type realization of the second model 

[18] reported a continuous transition for spatial dimension d=1-3. A discontinuous transition 

emerged only for d≥4. Another study of a lattice-gas model realization confirmed the 

existence of a continuous transition for d=1 [2].  Both studies actually included particle 

hopping which should if anything enhance a discontinuous transition reflecting given that 

bistability is exhibited by the mean-field version of the model. However, within the context 

of the current study, it should be recognized that model behavior will depend on the specific 

discrete realization. 

In this work, we adopt a realization of Schloegl-type models on a square lattice (d=2) 

which is in the spirit of adsorption-desorption models. These models are also referred to as a 
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“contact processes”. Roughly speaking, the following adsorption-desorption prescription 

interchanges the role of particles and vacancies from that in the above description of Schloegl 

models. In the standard contact process (SCP) which mimics Schloegl’s first model, particles 

adsorb randomly on the empty sites at fixed rate or “pressure”, and desorb at a rate 

proportional to the number of empty nearest-neighbor (NN) sites [2-4]. Not surprisingly, this 

process exhibits a continuous poisoning transition to a completely covered surface (an 

absorbing state) which is in the directed percolation universality class. In the quadratic 

contact process (QCP) which mimics Schloegl’s second model, again particles adsorb 

randomly on the empty sites at fixed rate or “pressure”, and desorb at a rate proportional to 

the number of diagonally adjacent pairs of empty NN sites [1,19]. We have recently shown 

that this QCP exhibits a discontinuous poisoning transition between an active state with a low 

coverage and a completely covered surface (again an absorbing state) [19]. These models are 

related to more general threshold contact processes where desorption is allowed (at a single 

rate) only if M or more adjacent sites are empty [20]. Then, the case M=1 is similar to the 

SCP, M=2 to the QCP (as discussed further below), and models with M≥3 have no active 

state for any p>0 on a square lattice. For M=3, particles within completely filled rectangular 

regions cannot desorb, so these regions spread irreversibly. For M=4, no particles in clusters 

of any shape cannot desorb, so all clusters spread irreversibly. 

The traditional picture for discontinuous transitions to absorbing states is that the 

active and absorbing states coexist at a unique equistability pressure. Remarkably, for the 

QCP, coexistence of stable active and absorbing states occurs for a finite range of pressure. 

This means that for any pressure in this range, droplets of the absorbing state embedded in 

the active cannot grow indefinitely but rather die out, even though the absorbing state is 
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stable. Likewise, droplets of the active state embedded in the absorbing state cannot grow 

indefinitely and instead die out. This feature leads to so-called generic two-phase coexistence 

(PC) or true bistability [21], which dramatically contrasts behavior for discontinuous 

equilibrium transitions. For the QCP, PC can be understood in terms of an orientation 

dependence of the propagation of planar interfaces between active and absorbing states [18], 

as described in more detail in the following sections.  

We should note that the prototype for such PC phenomenon is provided by Toom’s 

synchronous North-East-Center (NEC) stochastic cellular-automata model [22-25]. In this 

model, individuals located on a square lattice change their votes for one of two parties guided 

by the majority of their current vote and those of their neighbors to their north and east. 

However, some biased randomness or noise is also included in the rules for voting. The 

overall magnitude of this noise corresponds to an effective temperature, and the bias towards 

one of the two parties is analogous to the application of an external magnetic field in the 

Ising model. PC occurs below a critical noise amplitude for sufficiently small bias. This 

behavior is elucidated by a heuristic analysis of the evolution of droplets of preferred party 

votes embedded in a state dominated by votes for the disfavored party. This analysis reveals 

that these preferred droplets do not grow, but rather shrink at a finite rate [23,24]. The strong 

asymmetry in the voting rules is believed to be responsible for PC, which also occurs in 

continuum analogues of the Toom model [25].  

The outline of this paper is as follows. In Sec. II, we first specify our discrete 

stochastic lattice-gas (LG) model for the QCP on a square lattice, emphasizing a special 

feature of the dynamics in this model. We also describe our kinetic Monte Carlo simulation 

procedures. Then, we characterize the steady-state behavior for the model, specifically 
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generic two-phase coexistence, which was observed in our previous simulation study [19]. 

Next, in Sec. III, we focus on simulation results for the kinetics of relaxation to the steady 

states of the QCP for spatially homogeneous systems. We identify an “effective” spinodal 

point terminating a metastable active state for pressures above the two-phase coexistence 

region, and describe “rapid” relaxation or poisoning kinetics for pressures above this 

spinodal pressure. We also analyze nucleation-mediated relaxation or poisoning for pressures 

in the metastable region, and we characterize the dynamics of poisoned droplets within the 

two-phase coexistence region. In addition, for lower pressures below the two-phase 

coexistence region, some unusual aspects of relaxation kinetics are elucidated by making a 

connection to bootstrap percolation models. In Sec. IV, we analyze the propagation of 

interfaces with various orientations between the absorbing and active states in spatially 

inhomogeneous systems. As noted above, the dependence of propagation and equistability on 

interface orientation underlies the generic two-phase coexistence in the QCP. A summary 

and discussion of other models with generic two-phase coexistence, and of various 

generalized QCP-type models, is presented in Sec. V. 

II. Adsorption-Desorption Model for QCP:  Steady-St ate Behavior 

Our adsorption-desorption model realization of the QCP on a square lattice involves 

the following steps [1,19]: random adsorption of particles at empty sites at rate or “pressure” 

p; cooperative desorption of particles at rate k/4 where k = 0, 1, 2, or 4 denotes the number of 

diagonally adjacent pairs of NN empty sites. Thus, one has: k=0 for particles with just 0 or 1 

empty NN sites, and also for 2 empty NN sites which are on opposite sides of the particle; 

k=1 for particles with just 2 diagonally adjacent empty NN sites; k=2 for particles with 3 
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empty NN sites; and k=4 for particles with all 4 NN sites empty. See Fig.1. Below we use θ 

= θ(p, t) to denote the coverage, i.e., the fraction of filled sites, which generally evolves with 

time. Also θss = θss(p) denotes the value of θ in the active steady state which, intuitively, one 

expects to exist at least for low p. In fact, the existence of such a state for sufficiently small p 

has been proved rigorously [20,26]. In this small p regime, most particles are isolated with a 

desorption rate of unity. Consequently, evolution is approximately described by Langmuir 

kinetics,  

dθ/dt ≈ p(1-θ) - 1⋅θ for p<<1, and θss = p + O(p2).      (1) 

For a more systematic expansion of θ with p, one might regard the QCP as a perturbation of a 

random adsorption-desorption model. Then, one could use a perturbation-theoretic analysis 

within a creation-annihilation operator formulation of the problem to analyze steady-state 

behavior [2]. For high p, one should expect that adsorption will swamp desorption, so that the 

system will reach a completely covered or “poisoned” absorbing state with θ = θ(p) ≡ 1.  

Our kinetic Monte Carlo (KMC) simulation analysis of the behavior of this model is 

performed on “rectangular shaped” (Lx×Ly)-site square lattices with periodic boundary 

conditions. In conventional constant-p simulations, one specifies an adsorption rate p and 

then runs the simulation implementing adsorption and reaction with the appropriate relative 

rates. In this way, one determines both the dynamics and the steady-state behavior including 

the variation of the steady-state coverage, θss(p), with p. Alternatively, in a constant-coverage 

(CC) simulation algorithm [27], one specifies a target coverage θ and runs the simulation 

attempting to adsorb (desorb) if the actual coverage is below (above) the target θ. The 

fraction of adsorption attempts yields the pressure p=p(θ). The two simulation approaches 
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should be equivalent for a sufficiently large system. In previous studies, the CC approach has 

proven particularly useful for analyzing discontinuous transitions where specifying θ 

anywhere in the range of the discontinuous jump of θ versus p should give the same 

“equistability pressure” corresponding to coexistence of the two steady-states. However, for 

the QCP, the situation proves more complex than for conventional discontinuous transitions 

where one has a unique equistability pressure. 

As indicated in Sec. I, simulations of the QCP demonstrate the existence of a 

discontinuous transition from active to absorbing states with increasing p. More specifically, 

starting from an empty lattice, conventional simulations reveal the evolution to a stable active 

state for 0 ≤ p ≤ peq* ≈ 0.0944, where θss increases monotonically with p to a maximum of 

θss(p=peq*) ≈ 0.17 (See Fig. 2). In this regime, simulations indicate that droplets of the 

absorbing state embedded in the active state never grow indefinitely, i.e., the state is stable 

against local perturbations (See Sec. III C for a detailed discussion). For larger p, the system 

eventually poisons reaching the absorbing state, as shown in Sec. III A and III B. Due to a 

special feature of the QCP rules described below, the absorbing state is always stable against 

local perturbations, i.e. droplets of the empty or active state can never grow for any p≥0. 

Thus, one might assign generic two-phase coexistence (PC) for 0 ≤ p ≤ peq*, although below 

we will impose a more restrictive definition. 

Remarkably, CC simulations reveal that the equistability pressure at which a 

stationary planar interface is formed between the active and absorbing states depends on the 

interface orientation, S [19]. We denote this pressure by peq(S). These simulations were 

performed in a rectangular system with Ly = SLx containing an initial perfect strip of the 
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absorbing state with slope S. The strip quickly equilibrated but remains stable, its overall 

slope being preserved by the periodic boundary conditions. Specifically, peq(S) displays a 

maximum of peq(S=1) = 0.09443±0.00003 (corresponding to peq*) and decreases with 

increasing S to a minimum of peq(S→∞) = 0.0869±0.0005 [19]. By symmetry, one has that 

peq(S) = peq(1/S). Conventional simulations support these observations: for p<peq(S), the 

active state displaces the absorbing state separated from it by a planar interface of slope S, 

and for p>peq(S), the opposite is true. See Sec. IV for a comprehensive analysis of interface 

propagation. 

Reformulating the above observations, for peq(S=∞ ) < p < peq(S=1), the active state 

will displace the absorbing state separated from it by a planar interface with a slope 

sufficiently close to unity. Also, the absorbing state will displace the active state separated by 

a planar interface with a slope sufficiently close to S=∞. Thus, in this regime, both states are 

stable against certain non-local interfaces, in addition to being stable against local 

perturbations by embedded droplets. Using this more restrictive definition, we associate PC 

only with the regime peq(S=∞) < p < peq(S=1) = peq*. Certainly, we are not providing a 

rigorous proof of PC for this model. However, we believe that the discussion in Sec.3C 

provides a clear heuristic picture. Finally we mention that for 0 ≤ p ≤ peq(S=∞), the absorbing 

state is not stable relative to the active state separated from it by a planar interface with any 

slope 0<S<∞. 

At this point, it is appropriate to emphasize that the specific form of the desorption 

rules in the QCP imply certain special features for the dynamics in this model. First, it is 

clear that a vertical strip of the poisoned state (or even a single vertical column) can never be 
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eroded for any p≥0. The same is true for horizontal strips. Particles in such strips can never 

have more than one empty NN site, and thus have k=0. Consequently, analysis of the 

evolution of vertical strips, and the determination of peq(S=∞) above is quite delicate: while a 

vertical strip will not expand in an infinite system for p ≤  peq(S=∞), it will expand in a finite 

system due to the certainty of completion of additional filled rows of sites (which 

corresponds to falling into a new absorbing state). Thus, careful analysis of the size-

dependence of behavior is required to accurately determine peq(S=∞) [19]. Second, an 

isolated empty patch or an isolated patch of the active state embedded in the absorbing state 

can never grow outside of a rectangle inscribing that patch. Thus, eventually, the patch must 

be filled in for any p>0; i.e., the system will evolve to the absorbing state with probability of 

unity [1]. This feature automatically guarantees the above mentioned stability of the 

absorbing state against local perturbations for any p>0.  

Finally, having introduced our adsorption-desorption version of the QCP, we mention 

that one motivation for consideration of such lattice-gas models is application to modeling of 

catalytic reactions on single-crystal surfaces. Such reactions can exhibit discontinuous 

poisoning-type transitions. The ZGB model [5] was intended to describe surface science 

studies of CO-oxidation on single-crystal catalyst surfaces. However, under typical low 

pressure conditions, CO has high surface mobility which produces strong bistability rather 

than a discontinuous transition [28]. Thus, the jump in coverage or in the CO2-production 

rate observed experimentally upon increasing the CO-partial pressure corresponds to a 

spinodal point, rather than to the discontinuous transition at an equistability point. In fact, 

behavior with strong bistability is better captured by hybrid models directly incorporating 

infinite CO mobility but finite mobility for oxygen [28]. However, for high-pressure 
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catalysis, CO surface mobility is inhibited which allows strong fluctuations and sharp 

interfaces to develop. In this regime, basic aspects of behavior could be qualitatively similar 

to that displayed by simpler ZGB or QCP type models with limited or zero surface mobility 

[29]. 

III. Relaxation Kinetics in the QCP 

A. “Rapid” Poisoning Kinetics above the Metastable Re gion 

The traditional picture of discontinuous transitions holds that a state which is stable 

below the transition extends to a metastable state above the transition for a finite region in 

parameter space which is terminated by a spinodal point. Thus, for the QCP, one would 

expect a metastable active state to exist for some finite range of p>peq(S=1). However, the 

precise nature and even the existence of such metastable extensions is a subtle question. For 

equilibrium Ising-type interacting lattice-gas models, it has now been demonstrated 

rigorously that there does not exist a unique analytic metastable extension of the stable state 

above the transition [30,31]. Consequently, the spinodal point is not uniquely defined. 

However, instead one can generate a C∞ family of metastable extensions in a rather natural 

and simple way by following the dynamics of the model. The latter approach is adapted for 

the QCP below in Sec. III B.  

For the QCP (and for similar models with discontinuous transitions), one might 

expect that there exists some “effective” spinodal value ps(eff) (or narrow range of p-values), 

such that poisoning for p>ps(eff) occurs much more quickly than in the metastable region for 

peq(S=1) < p < ps(eff). Based on mean-field theories (see Ref. [32] and Appendix A), for 

p>ps(eff), one might expect the rate of poisoning to be controlled primarily by the distance 
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from the effective spinodal, δps = p-ps(eff) at least for sufficiently small δps. In this case, one 

has that θ ≈ θ(δpst). Thus, an estimate of ps(eff) can be made by plotting θ versus δps t and 

achieving collapse of curves for suitable choice of ps(eff). A similar approach was reasonably 

effective for the ZGB model and its extensions to include surface mobility [7]. Figure 3(a) 

shows the evolution of θ versus t starting from an empty lattice at t=0 for a range of p=0.110-

0.125 expected to be above ps(eff). Indeed, good collapse of these curves plotted against the 

rescaled time δpst is achieved choosing ps(eff) ≈ 0.0997±0.0005. See Fig.3(b). Similar results 

are achieved using a higher range of p=0.0130-0.0145 with a value of ps(eff) in the range 

specified above yielding the best collapse. 

B. Nucleation-Mediated Poisoning in the Metastable Region 

To motivate our analysis of nucleation-mediated poisoning for the QCP, it is 

appropriate to first review the heuristic framework for nucleation in equilibrium models. The 

basic idea is that there exists a finite free energy barrier, Enuc, to the nucleation of a critical 

droplet of the stable phase in a background of the metastable phase (where subcritical 

droplets shrink and supercritical droplets grow). One can show that Enuc ≈ bσ2/∆. Here, b>0 

is a constant, σ denotes the line tension of the interface between the coexisting states at the 

transition, and ∆ is a measure of the (small) distance from the transition, i.e., the driving 

force for creation of the stable phase [31]. Then, critical droplets of the stable state are 

nucleated at a rate knuc ∝ exp(-βEnuc), where β is the inverse temperature. Once critical 

droplets are formed, they grow with a velocity v  ∝ ∆ [31] ignoring finite-curvature 

corrections. We consider a large system where the nucleation-mediated transition from the 

metastable to the stable state occurs by the spontaneous formation and growth of many 
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supercritical droplets. The kinetics of this process is reasonably described within a continuum 

two-dimensional Avrami formulation [33]. In such formulations, droplets are nucleated at 

random locations in the plane at a fixed rate, and thereafter expand at constant velocity with a 

fixed shape. If θm (θs) denotes the density in the metastable state (stable state), then it follows 

that 

θ(t) ≈ θm + (θs - θm){1 – exp[-a (t/τchar)
3]}, where τchar ∝ v-2/3 k-1/3.    (2) 

Using the results above, the characteristic time for nucleation satisfies τchar ∝ ∆-2/3 exp(λnuc/∆) 

where λnuc ≈ 1/3 b β σ2. The procedure for generating a C∞ family of metastable states 

(labeled by λ) is to run the dynamics starting from a suitable state near the metastable state 

for a time τrun or the order of exp(λ/∆) where λ<λnuc [30,31]. Since τrun diverges 

exponentially as ∆→0, it is not surprising that one obtains a C∞ extension of the stable state. 

However, such extensions can vary strongly with λ and somewhat have limited physical 

significance. Thus, they may provide limited insight into the location of any effective 

spinodal point. Extensions with the most physical significance presumably correspond to 

choosing λ close to λnuc. 

For the non-equilibrium QCP, it is reasonable to propose that the rate of nucleation of 

critical droplets of the absorbing state within a background for the metastable state for 

p>peq(S=1) satisfies 

knuc ∝ exp(-cnuc/δp), where δp = p – peq(S=1)>0,      (3) 

noting that δp>0 replaces ∆>0 above (cf. Ref. [11] which considers the ZGB model). The 

parameter cnuc should encode information about the effective line tension between coexisting 

active and absorbing states in the QCP. These critical droplets will grow with a velocity v ∝ 
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δp [7,8,28] at least if one ignores corrections due to finite-curvature. Then, (2) should apply 

to this non-equilibrium system defining a characteristic time  

τchar = (δp)-2/3 exp[cnuc/(3δp)],         (4) 

and setting θs=1 corresponding to the stable absorbing state. To obtain a C∞ family of 

extensions of the active state (labeled by c<cnuc), one can naturally run the QCP starting from 

an empty lattice for a time τrun(c) ∝ (δp)-2/3exp[c/(3δp)]. More practically, a natural extension 

might be obtained by choosing τrun as some fixed small fraction of τchar. One such metastable 

extension is shown in Fig. 2. 

Our focus here is on analyzing the Avrami-like nucleation-mediated poisoning 

kinetics in the QCP for suitably small δp, and in extracting a value for the key parameter cnuc. 

The value of p>peq(S=1) (determining δp) cannot be chosen too high since one must remain 

within the metastable region. On the other hand, δp cannot be too small since then 

simulations for a finite size system would generate only a single droplet rather than the 

multiple droplets assumed in our Avrami analysis [11]. The value p = 0.098 (or δp ≈ 0.0036) 

for a 1024×1024 site system meets these requirements, and Fig. 4 shows the corresponding 

evolution during poisoning.  To quantify the kinetics, Fig. 5(a) shows the evolution of θ 

versus t starting from an empty lattice at t=0 for a range of p = 0.0975-0.0990 in the 

metastable region above peq(S=1) ≈ 0.0944. Collapsing these curves by plotting against a 

rescaled time t/τchar indicates an optimum choice of cnuc in the range cnuc = 0.02-0.03, as 

shown in Fig. 5(b). We also confirm that the shape of these collapsed curves is well 

described by the Avrami form (2). 
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Of course, the detailed evolution of configurations in the QCP, as shown in Fig.4, is 

somewhat different than in classic continuum Avrami models. This partly due to discrete 

lattice effects, and partly due to fluctuations in the shapes of growing droplets. It is thus 

appropriate to note that discrete lattice versions of the Avrami model with deterministic 

droplet growth have been developed for which the kinetics is also exactly solvable and 

significantly for which the kinetics have essentially the same form as in the continuum model 

[34]. Perhaps, even more relevant is the observation that lattice versions of the Avrami model 

with stochastic droplet growth have also been developed. These are usually referred to as 

cooperative sequential adsorption (or filling) models [34,35]. Evolving configurations in 

these simple irreversible models do resemble those for the QCP shown in Fig.4. 

C. Dynamics of Poisoned Droplets in the Two-Phase C oexistence 

Region 

Next, we further elucidate the unusual generic two-phase coexistence or true 

bistability exhibited by the QCP. For peq(S=∞) < p < peq(S=1), we consider the evolution of 

poisoned droplets of the absorbing state which are embedded in the active state. Such 

droplets form spontaneously, although in our study it is more convenient to embed such 

droplets “by hand”. Since the absorbing state is stable, we must rationalize why such droplets 

ultimately disappear rather than growing until the (stable) absorbing state takes over the 

system.  

To characterize such droplet dynamics, it is instructive to focus on a “worst case 

scenario”. Imagine that a square-shaped droplet is formed or created with sides orientated 

with the principal lattice directions (i.e., with slopes S=0 and S=∞). Then, since p > 
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peq(S=∞), the sides of this droplet should initially tend to grow outwards with finite velocity. 

Assuming that growth at the corners of this droplet is inhibited, one expects a tendency 

towards the development of a roughly octagonal shaped droplet. Then, since p < peq(S=1), the 

facets with slope S= ±1 at the corners will tend to shrink, and the sides with slopes S=0 or ∞ 

will grow out yielding a diamond shaped droplet. Thereafter, this diamond shaped droplet 

will naturally shrink. From standard simulations, we can readily explore the progression of 

droplet shapes for various p. Such analyses reveal that the simple progression in geometric 

shapes mentioned above is somewhat concealed due to large fluctuations. Fig.6 shows 

simulations with an initial 128×128 site droplet and with p=0.0940. Even with this large size 

and “high” p close to peq(S=1), fluctuations in droplet shape are significant and shrinkage of 

clusters starting at the corners is perhaps more evident that growth of the S=0 and S=∞ sides. 

However, analysis of the total coverage of the system during this simulation (not shown) 

does reveal an initial increase corresponding to the regime of net growth from a square to 

diamond shaped droplet. Then, a fairly sudden transition occurs to a regime of nonlinear 

decrease of the total coverage consistent with the picture of a diamond shaped cluster 

shrinking with constant velocity.  

Of course the above analysis of droplet evolution is heuristic rather than rigorous, and 

the understanding of behavior at droplet corners is limited. However, as droplets become 

larger, a simple deterministic geometric picture of evolution becomes more applicable where 

behavior is controlled by the orientation dependence of the propagation of planar interfaces. 

In contrast, for smaller clusters, simple geometric evolution is largely concealed by 

fluctuations. 
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D. Relaxation Kkinetics for p=0 or p=0+: Bootstrap Percolation 

Relaxation behavior for p below the two-phase coexistence regime is strongly 

impacted by the special feature of the QCP which makes the absorbing state stable against 

localized perturbations (i.e., an isolated active or empty droplet embedded in the absorbing 

state can never survive). In general, to systematically analyze relaxation kinetics in models 

with unstable or metastable absorbing states, typically one might start with a state 

corresponding to a lattice partially filled by a random distribution of particles with initial 

coverage θi. Then, for low initial vacancy concentrations, θv = 1-θi <<1, the system is 

initially close to the absorbing state, and one can follow evolution to the active state [7].  

However, there is some deviation from this simple scenario for the QCP. First, 

consider the simplest case for p=0 where particles with k>0 irreversibly desorb in the 

absence of adsorption. For a strictly finite (Lx×Lx)-site system (i.e., Lx=Ly=L, say), one might 

expect the following scenario described in terms of “small” critical value for θv=θv*(L). For 

θv<θv*, empty square or rectangular patches will be formed and grow around any clusters of 

vacant sites. However, typically the system will eventually “freeze” into a distribution of 

small isolated non-overlapping empty rectangles. (This distribution will include vacant 

squares and single vacant sites.) In this case, the system would never reach the active state 

for p=0 which corresponds to an empty lattice.  For θv>θv*, these growing vacant rectangular 

patches can link sufficiently to percolate, and this leads to the ultimate removal of all 

particles from the lattice. 

More generally, for infinitesimal non-zero pressure p=0+, it then follows that this 

system of size L would typically reach the active state only for θi < θi*(L) ≡ 1-θv*(L), and 
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would eventually reach the absorbing state for θi > θi*(L) ≡ 1-θv*(L). Indeed, simulations 

indicate that there does exist such a critical value for the initial vacancy coverage, although 

behavior as L=Lx→∞ is more subtle as we describe below. 

A detailed characterization of the above critical behavior follows from recognizing 

that the dynamics of the p=0 QCP model maps onto that of a specific bootstrap percolation 

(BP) model. In the standard BP model on a square lattice, one culls particles which have a 

two or more neighboring empty sites [36,37]. This standard BP model is isomorphic to that 

of so-called 2n diffusion percolation (2n DP) on a square lattice where one adds particles at 

empty sites if any two or more neighboring sites are occupied [36]. The QCP dynamics for 

p=0 is actually isomorphic to a variant of 2n DP denoted by s2n DP which requires at least 

two of the occupied neighbors of the empty site be diagonal neighbors [36].  

We translate the key result for these types of BP or DP models into the language used 

in the current paper where one starts with a “small” random distribution of vacancies of 

density θv on an otherwise occupied lattice, and progressively removes particles according to 

the prescribed QCP rules. Then, there exists a constant γ such that the critical value 

θv*=θv*(L) of the vacancy density satisfies θv* ≈ γ/ln(L), as L→∞. Thus, one has θv*→0 and 

θi*→1, as L→∞, i.e., an infinite system will always reach the active state no matter how 

close is the initial coverage, θi<1, to unity. A more common presentation of this result is that 

for a fixed initial θv, there exists a critical linear system size L = L*(θv) ~ exp[γ/θv], such that 

when L<<L*, typically frozen distributions of isolated empty rectangular patches result. 

However, for L considerably in excess of L*, the lattice will typically completely empty. The 

above relationships have been demonstrated rigorously for the standard BP or 2n DP model 
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[38,39], and are supported by numerical simulations for several variants (including s2n DP). 

The dynamics of interest for small θv relies on rare bottleneck events, i.e., the linkage of 

large clusters of vacant sites, which has also been described as “capture of a critical droplet” 

[38].  

 A key conclusion from the above results is that there are very strong finite-size 

effects on the dynamics as reflected by the exponential increase of L* with the inverse of θv. 

Simulation results indicate that γ ≈ 0.25 for standard BP considering sizes up to L ≈2×104 

(although this γ-value is far from the true asymptotic value [39]), and γ ≈ 0.47 for s2n DP or 

the p=0 QCP considering sizes up to L  ≈ 800 [37]. The larger value of γ in the latter case 

should be expected since desorption is more difficult for the p=0 QCP than for standard BP. 

Thus, for a given size L, a larger value of θv* ~ γ/ln(L) is required for percolative removal of 

all particles in the p=0 QCP compared to standard BP. Equivalently, for a given θv, a larger 

size L*(θv) ~ exp(γ/θv) is required for such percolation in the p=0 QCP.  

E. Relaxation Kinetics for Lower p: Simulation Resu lts 

Next, we turn to the issue of characterizing the relaxation kinetics in the QCP for 

general lower (but non-zero) p starting with a random distribution of vacancies of coverage 

θv. Here, we select a finite system size, e.g., L = 256 or 512. Then, in our standard analysis 

for each fixed p>0, we run simulations for various θv to determine the critical value θv*(p, L) 

which separates evolution to a poisoned state (for θv < θv*) and to the active state for (θv > 

θv*). In the former case, the system evolves to produce an array of separated active droplets 

which can be inscribed within a distribution of non-overlapping isolated rectangles. Once 
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such a state is achieved, it is clear that the system must eventually evolve to an absorbing 

state just as for p=0+. For the latter case, the active droplets link sufficiently to percolate, 

leading to evolution to the active state. Strictly speaking, for θv sufficiently close to θv*, there 

can be a significant probability for the system to reach either absorbing or active state. Thus, 

more precisely, we should state that the system reaches the poisoned state with probability 

above (below) 0.5 for θv < θv* (θv > θv*).  From a series of such analyses for various p, we 

can map out the dependence of θv*(p, L) versus p. See the inset to Fig.7(b) which actually 

plots a closely related quantity (see below). 

The above analysis strictly applies only for p < peq(S=1). However, with some 

ambiguity, one can extend the analysis into the metastable region at least for p slightly above 

peq(S=1). Here, the critical coverage θv = θv*(p, L) separates evolution to the absorbing state 

and to the metastable state. See Fig. 7(a). 

Choosing θv = θv*(p, L) for large L, one finds that after some transient period, the 

coverage evolves from the initial value of θi*(p, L) = 1 - θv*(p, L) to a final value of θf*(p, L) 

which is quasi-stationary for 1000’s of time units and is typically somewhat different from   

θi*(p, L). For example, Fig. 7(a) shows that θi* ≈ 0.57 versus θf* ≈ 0.4 when p=0.0950 and 

L=256.  We naturally map out θf*(p, L) versus p, which is actually the quantity shown in the 

inset to Fig.7. We regard this dependence as more fundamental than that of θi*(p,L) versus p, 

which should depend more strongly on the specific choice of the random initial conditions. 

The form of the θf* versus p curve is somewhat reminiscent of the variation of the unstable 

steady-state coverage with p in mean-field-type treatments of the QCP (see Ref. [32] and 
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Appendix A). However, we shall see below that this behavior is not associated with an 

unstable steady-state. 

It should be emphasized that the form of θf*(p, L) versus p shown in Fig.7 exhibits 

significant finite-size effects. This is most obvious for p=0+ where θf*(0+, L) ~ 1- γ/ln(L) → 

1, as L→∞. For moderate p, no significant finite-size effects are evident from our simulations 

(and this is consistent with the picture below for evolution with a quasi-steady state 

coverage). However, it is difficult to rule out finite-size effects since they are weak and 

subtle. Nonetheless, one can say that as L→∞, at least the portion of the θf*(p, L) versus p 

curve near p=0 will rise to go smoothly through θf*(p=0, L=∞) = 1. 

We also note that the variation of θf*(p, L) with p can be determined by an alternative 

analysis where simulations are performed in an (L×L)-site system where one fixes θv > 

θv*(L) — i.e., θi <1 - θv*(L)—and explores evolution for various p. There exists a critical 

pressure, p*(θv, L), such that for p < p*(θv, L), the system will evolve to the active state, and 

for p > p*(θv, L) the system will poison (since evolution produces an array of active droplets 

which can be inscribed within a distribution of non-overlapping isolated rectangles). See Fig. 

7(b). When p = p*(θv, L), after a transient period, the coverage evolves from its initial value 

θi = 1 - θv of to a final quasi-stationary value of θf*.  Plotting this θf* versus θi recovers the 

curve shown in the inset to Fig.7. 

Finally, we characterize in more detail the evolution of states with quasi-stationary 

coverage θ = θf* observed for pressure p upon choosing an initial θv = θv*(p, L). As noted 

above, such behavior is reminiscent of unstable steady-states in mean-field models. In fact, 

robust unstable steady-states can exist in lattice-gas models in the hydrodynamic limit of 
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rapid hopping of some species [28]. However, such states are not expected for models with 

finite mobility. Indeed, monitoring the evolution of the system from the initial random 

distribution of vacancies (or filled sites) as shown in Fig. 8 reveals a complex and persistent 

coarsening process. Just as for BP slightly above the percolation threshold, one finds slow 

coalescence of overlapping rectangular clusters of the active state to form progressively 

larger inscribing rectangular clusters. This coarsening process (which tends to reduce the 

coverage) is exactly counterbalanced by the filling and disappearance of isolated clusters of 

the active state (which tends to increase the coverage). 

IV. Propagation of Interfaces Separating Active and  Absorbing 

States 

A. Analysis for a Vertical Interface with Slope S= ∞∞∞∞ 

Analysis of the propagation vertical interfaces in the QCP, and thus determination of 

peq(S=∞), is delicate for reasons outlined below. For a finite (Lx×Ly)-site system with 

periodic boundary conditions which includes a vertical filled strip of length Ly, particles 

within completely filled columns of the strip can never desorb. Consequently, the strip (and 

in particular its core) can never shrink. Consider the partially completed columns adjacent to 

the completed columns of the strip. Completion of each such column corresponds to falling 

into a new absorbing state. Consequently, this event must eventually occur with probability 

unity in conventional simulations (for any p>0) in a finite system. It must also occur in CC 

simulations provided there are sufficient particles in the system to allow column completion. 

In this sense, either conventional or CC simulations in finite systems are potentially 
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“corrupted”. This is why our previous CC simulations provided a careful analysis of finite-

size effects [19]. The potential problem is that this “artificial” finite-size propagation can lead 

to an underestimate of peq(S=∞) if the latter is determined by the absence of any expansion of 

the absorbing state. We are thus motivated to systematically explore finite-size effects in 

standard simulations for the propagation of vertical interfaces. 

One strategy to systematically assess finite-size effects is to perform simulations for a 

sequence of system sizes with Ly = 2n Lx for increasing n containing a vertical interface of 

length Ly. The tendency for finite-size corruption corresponding to “artificial” column 

completion should decrease as n→∞. To explore this phenomenon, we show in Fig. 9 the 

dependence on Ly of the number of completed columns as a function of time starting with a 

single complete vertical column. For a lower pressure of p =0.087, columns are artificially 

completed for small Ly, but this rate of column completion appears to vanish as Ly →∞, 

consistent with the choice of p ≈ peq(S=∞) ≈ 0.087. For a higher pressure p=0.092 satisfying 

peq(S=∞) < p < peq(S=1), columns are completed artificially quickly for small Ly. The rate of 

completion does decrease for increasing Ly, but now saturates at a finite value for Ly →∞. 

This is consistent with the choice p > peq(S=∞). 

Finally, it is instructive to analyze the non-zero propagation velocity of a vertical 

interface, V(S=∞, p) < 0 versus p > peq(S=∞) for a large system (where finite size corruption 

is negligible). Results from our standard constant-p simulation are shown below in Fig.10. 

B. Analysis for Interfaces with Slopes 1 ≤≤≤≤ S <∞∞∞∞ 

It is appropriate to present a comprehensive analysis of the dynamics of interfaces 

separating active and absorbing states with various prescribed slopes S. This behavior can be 
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obtained from standard constant-p simulations. Again, the orientation dependence of 

propagation underlies the generic two-phase coexistence or true bistability of the QCP. Here, 

we consider systems with Ly = S⋅Lx and with periodic boundary conditions starting from an 

initial filled strip of slope S. After a possible initial transient, the total number of filled sites 

in the system changes linearly in time. By monitoring this change and accounting for the 

different local coverages of the absorbing state, θ=1, and the active state, θ=θss(p), as 

described above, one can readily extract the propagation velocity, V(S,p), as a function of p.  

Results for V(S,p) versus p with S = 1, 2, and 4 are shown in Fig.10 for a broad range 

of p≥0. For 0 ≤p≤peq(S), the active state is more stable than the absorbing state and displaces 

the latter (for 0<S<∞). We assign V(S,p)>0 in this case. Since V(S,p)=0 when p=peq(S), this 

feature allows an independent check on the results for equistability pressures from CC 

simulations. Estimates of peq(S) from this analysis are consistent with those presented in 

Sec.2. As p increases above peq(S), the absorbing state becomes more stable and displaces the 

active state, so V(S,p)<0. Interface configurations corresponding to the equistability pressure 

are shown in Fig.11 for various slopes S. These were obtained from CC simulations. 

Some more detailed discussion is appropriate for the regime where p > peq(S) and 

V(S,p)<0 as the associated interface propagation may not be well-defined. First, consider the 

case S=1 where the active state is only metastable for p>peq(S=1), and so interface 

propagation is transient, i.e., propagation only persists until spontaneous nucleation-mediated 

decay of the active state. Just as for the active state coverage, θss(p) versus p, one does not 

expect there to exist a unique analytic extension of V(S=1,p) versus p into the metastable 

region p>peq(S=1). However, presumably there does exist a C∞-family of extensions obtained 
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by simulation of transient front propagation for times on the order of τrun(c) given in Sec.3A 

with and c<cnuc. Second, consider the case S>1 where there is a finite range of pressure, 

peq(S>1) < p < peq(S=1), where propagation of the absorbing state into the active state is 

persistent since the active state is stable against nucleation. In this regime, propagation and 

the associated velocity, V(S,p)<0, are well-defined. Again, a unique analytic extension will 

not exist for p > peq(S=1).  

An expanded view of the behavior of V(S,p) versus p in this regime of p ≈ peq(S) is 

shown in the inset to Fig.10. It appears that there is a confluence of the curves for different S 

at some p-value above peq(S=1). Examination of interface propagation in mean-field 

treatments of the QCP extended to treat spatially non-uniform systems also indicate a 

tendency for such velocity curves to merge quite close together at a spinodal point [32]. (This 

spinodal point is well-defined in mean-field treatments.) Thus, Fig.9 indicates an effective 

spinodal point for the active metastable state in the QCP somewhat above p=0.098, 

consistent with the analysis in Sec. III A.  

C. Irreversible Shrinkage of the Absorbing State fo r p=0 

Although not central to the analysis of generic two-phase coexistence, for a complete 

analysis of interface propagation in the QCP, we consider in more detail the special case 

when p=0. Here, surprisingly, we are able to present exact results for the non-trivial 

propagation behavior. For 0<S<∞, this case corresponds to irreversible shrinkage of a strip of 

the absorbing state. The exact analysis is perhaps most readily achieved by recognizing that 

the dynamics of shrinkage the interface of the absorbing state in the p=0 QCP model maps 

exactly onto the dynamics of irreversible growth of an interface in the 1+1 dimensional 
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bridge-site deposition model [40], or equivalently onto the single-step deposition model [40-

42]. Both these models involve random deposition at specific allowed sites. The dynamics in 

these models is in turn equivalent to that of a fully asymmetric spin exchange model (i.e., an 

up-spin can exchange with a neighboring down-spin only on the left, say), where spin up 

(down) corresponds to a step up (down) in the single-step model. See Fig.12 where an 

interface with mean slope S=1 in the QCP is drawn aligned horizontally and corresponds to a 

flat interface in the single-step models with mean slope, σ, of zero. This in turn corresponds 

to the spin exchange model in the case of equal populations of up and down spins, i.e., with 

zero net magnetization (also denoted by σ) of zero. More generally, the equivalence of these 

models extends to interfaces and surfaces with more general orientations. Specifically, an 

interface with mean slope S = (1+σ)/(1-σ) > 1 in the QCP corresponds to a surface with 

mean slope 0 < σ = (S-1)/(S+1) < 1 in the single-step deposition models, and visa versa (as 

the natural axes differ by 45°). 

In the exact analysis, one considers systems with a finite width of interface 

(specifically, a finite width in the horizontal direction in Fig.12 corresponding to S=1 or σ=0) 

where regular or skewed periodic boundary conditions preserve the mean slope. Then, in the 

reference frame moving with the interface or growing surface, there are a finite number of 

possible configurations. A simple but critical observation for the deposition models is that 

each configuration has the same number of local valleys and peaks [41]. Thus, for the 

prescribed deposition dynamics, each configuration can be destroyed or created in the same 

number of ways. Destruction occurs by deposition which can occur only at a local valley, and 

creation occurs starting from a configuration which differs only by removal of a particle at 
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one peak to create a local valley (and by deposition at that valley). This observation implies 

that in the steady-state, all allowed configurations have the same weight [40-42]. Given this 

information, one can immediately calculate the steady-state values of various quantities of 

interest such as the density of local valleys which determines the propagation velocity. Then, 

one can extract values of these quantities in the limit of infinite system width (which is of 

primary interest). 

The central result from this analysis for the single-step deposition model on an 

infinite surface with a deposition rate of unity is that the film growth velocity in the direction 

orthogonal to σ=0 satisfies V⊥(σ) = ½ (1-σ2) for orientations 0≤σ≤1 [40,42]. Thus, the 

growth velocity normal to the mean orientation of the film surface satisfies V(σ) = 

V⊥(σ)/(1+σ2)1/2. Translating the result into the language of the QCP for p=0, one must note 

that all particles desorbing from the eroding interface have exactly 2 empty NN sites, so k=1 

and the desorption rate is ¼. Also, inspection of Fig.12 indicates that distances must be 

rescaled by a factor of 1/√2. This, it follows that infinite interfaces in the p=0 QCP has a 

propagation velocity 

V(S≥1, p=0) = V(σ)/(4√2) = ¼ S(S+1)-1(S2+1)-1/2 ~ 1/(4S), as S→∞.   (5) 

In particular, we note that V(S=1, p=0) = 1/(8√2) ≈ 0.0884,  V(S=2, p=0) = 1/(6√5) ≈ 0.0745, 

and V(S=4, p=0) = 1/(5√17) ≈ 0.0485, consistent with simulation results. As an aside, we 

mention that the above exact analysis also determines finite-size corrections to the result (5). 

V. Summary and Discussion 

Our realization of the quadratic contact process (QCP) as an adsoption-desorption 

model on a square lattice displays generic two-phase coexistence (PC) or true bistability 
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between an active state and an absorbing state for a range of adsorption rates of pressures. 

This feature derives from the dependence on interface orientation of the equistability pressure 

for these two states. This behavior of the QCP is in marked contrast to that for discontinuous 

transitions in equilibrium systems where equistability occurs at a single pressure.  

Indeed, it is natural to compare behavior of the QCP with the equilibrium states of a 

reversible adsorption-desorption model on a square lattice with random adsorption at rate p 

and correlated desorption at rate exp[nβφ]. Here, β=1/(kT) denotes the inverse temperature, n 

denotes the number of occupied NN sites, and φ<0 denotes a NN attractive adspecies 

interaction. The equilibrium properties of this reversible adsorption-desorption model 

correspond to the 2D Ising model. For low pressures, the steady-state coverage satisfies 

θss(p) = p + O(p2), just as in the QCP. Below a critical temperature, Tc=0.57φ/k, increasing p 

reveals a unique equistability pressure, peq, where θss(p) undergoes a discontinuous jump 

corresponding to a transition from a dilute to a dense 2D phase with θss(p) closer to unity. 

The discontinuous transition disappears as T approaches Tc. 

From a broader perspective, generic two-phase coexistence (PC) can never occur in 

conventional equilibrium models such as the Ising model. This is readily understood since 

coexistence requires equality of the chemical potentials for the coexisting phases, and this 

occurs only for a single pressure. One perspective on PC in non-equilibrium models in d 

spatial dimensions is that the stationary distribution of histories in these models can be 

regarded as a constituting “generalized Ising models” in d+1 dimensions [23]. For these 

higher dimensional systems, the free energy can be identically zero in a finite region of 

parameter space. 
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As noted in Sec. I, perhaps the prototype of generic two-phase coexistence or true 

bistability is provided by Toom’s NEC stochastic cellular-automata model [22]. The origin of 

PC in this model derives from the strong broken symmetry of the dynamic voting rules. This 

results in an obvious strong anisotropy in interface propagation. The dynamic adsorption-

desorption rules of the QCP do not incorporate broken symmetry and the anisotropy in 

interface propagation underlying PC is more subtle. One could speculate that PC in the QCP 

is related to the presence of an absorbing state, an intrinsically non-equilibrium feature absent 

in Toom’s model. However, this is not the case, as shown in our discussion in Appendix B of 

generalizations of the QCP [19]. We should emphasize that PC has been observed in a 

variety of other non-equilibrium models. One such class models pertain to interface motion 

in the presence of pinning sites, where both pinned and propagating states exist [21]. 

Bistability derives from the feature that a greater driving force is required to depin an 

interface rather than to just maintain motion. Another class of examples derives from non-

equilibrium adsorption-desorption models with enhanced binding at the substrate [47]. Under 

suitable conditions, PC exists between a non-wetting phase (corresponding to the film 

surface pinned to the substrate) and a growing phase. Although not described in Ref. [47], 

one can relate PC in this model to anisotropy in propagation of the growing phase. Another 

class of stochastic cellular automata models has been applied to explore generic stability of 

temporally periodic states (against the expected desynchronization of spatially separated 

regions) [48]. Again analysis of the evolution (and shrinkage) of temporally out-of-phase 

droplets is instructive. Currently, we are exploring the hypothesis that PC is a very general 

phenomenon in non-equilibrium adsorption-desorption or reaction models with discontinuous 
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transitions, but that it is typically difficult discern due to a combination of weak orientation-

dependence of interface propagation and due to weak metastability. 

In all of the above analyses, consideration of the evolution (and shrinkage) of droplets 

of one phase embedded in another is invaluable in understanding the origin of PC. Of course, 

the concept of critical droplets has long proved a valuable tool for characterizing 

metastability and nucleation-mediated kinetics in classic equilibrium models [43]. Here, the 

same framework is shown to extend to the consideration of nucleation-mediated kinetics in 

the metastable regime just outside the two-phase coexistence regime in the non-equilibrium 

QCP model. We also note that this approach has been applied previously for ZGB-type 

models [7,11].  

Finally, it is natural to consider several modifications or generalizations of the QCP: 

(i) introduction of an additional random desorption pathway which removes the absorbing 

state but preserves PC; (ii) introduction of hopping at rate h which allows connection with 

the mean-field QCP in the limit as h→∞; (iii) consideration of the QCP on different two-

dimensional lattices which can change the nature of the phase transition to the adsorbing 

state; (iv) “relaxing” the constraint on desorption in the QCP so that all particles with two or 

more empty neighbors can desorb (i.e., the M=2 threshold contact process). See Appendix B 

for further discussion. 

Acknowledgements 

Work at the Ames Laboratory was supported by the U.S. Department of Energy 

(Basic Energy Sciences, Division of Chemical Sciences) under Contract No. DE-AC02-

07CH11358. XG was also partly supported for this work by NSF Grant CHE-0414768. 



 47 

 

Appendix A: Mean-Field QCP in the Limit of Rapid St irring 

The  QCP is naturally generalized to allow hopping of particles to NN empty sites at 

rate h. Introducing any degree of hopping removes the special feature of standard QCP rules 

which prohibits growth of isolated empty droplets embedded in the absorbing phase and 

which prohibits the shrinkage of vertical strip of the absorbing state (as noted in Ref. [1]).  

 Here, we focus on behavior in the h→∞ rapid-stirring hydrodynamic limit. We note 

that for this single-component model with the conventional prescription of hopping to NN 

empty sites, one will recover a simple description of chemical diffusion with constant 

diffusion coefficient D=h (where spatial units are in lattice constants) [44]. In contrast, for 

multi-component models, typically chemical diffusion is non-trivial in the hydrodynamic 

limit (even in the absence of inter-particle interactions beyond site exclusion) [28]. Below, 

the coverage θ = θ(x, t) at site x = (i, j) regarded as a continuous variable, and its evolution 

for spatially non-uniform systems is described exactly by the mean-field reaction-diffusion 

equation [1] 

 ∂/∂t θ = f(θ)+ D ∂2/∂x2 θ,                                                                                          (A1) 

 f(θ) = p(1-θ) - θ(1-θ)2.  

It is convenient to write f(θ) = - ∂/∂θ U(θ) with “potential”  

U(θ) = ½ p(1-θ)2 - 1/3 (1-θ)3 + ¼ (1-θ)4.                                                                       (A2) 

The stable steady states correspond to the minima of U, i.e., θ=θabsorb= 1 for all p (the 

absorbing state) and θ = θactive(p) = ½ - ½ (1-4p)1/2 for p< ps(mf) = ¼ (the stable active state). 

These are separated by an unstable steady-state with θ = θunstable(p) = ½+ ½ (1-4p)1/2 for p< 

ps(mf) = ¼, corresponding to a local maximum of U. 
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To analyze propagation of planar interfaces with velocity V between active and 

absorbing states, one considers solutions of the form θ=θ(x-Vt) [47,48]. Substitution into Eq. 

(A1) yields  

D θ′′ = - ∂/∂θ [-U(θ)] –V θ′,                  (A3) 

where the prime denotes derivative with respect to the single variable. This Newton-type 

equation describes the motion of a pseudo-particle with position θ subject to a two-hill 

potential –U(θ) and subject to a drag force with drag coefficient V. The physical interface 

corresponds to motion from one hill to the other with (almost) vanishing initial and final 

velocities. Equistability corresponds to the case V=0, which by conservation of energy 

requires that the two hills have equal height. A simple calculation shows that this 

corresponds to p = peq(mf) = 2/9 ≈ 0.222 (mean-field) [1,48]. This result also follows as a 

special case of the analysis of the general mean-field Schloegl model of the second kind [17], 

where it is shown that  

V ∝ (θabsorb + θactive - 2θunstable).                 (A4) 

This expression also shows that V has a finite value, Vs, say, at the spinodal 

p=ps(mf)= ¼ , and that V-Vs ~ (1-4p)1/2, as p→ps(mf). The non-linear behavior as p 

approaches ps is reminiscent of the behavior shown in our simulation results for V(S, p) for 

the QCP in Fig.10. 

Appendix B. Modifications and Generalizations of th e QCP 

We consider the following modifications or generalizations of the standard QCP: 

(i) Addition to the QCP of a separate random desorption pathway associated with a 

“small” desorption rate d≥0 [19]. Making an analogy with the conventional equilibrium Ising 
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model, d corresponds to a temperature-like variable, with d=0 recovering the standard QCP. 

This generalized model removes the special feature of standard QCP rules which prohibits 

growth of isolated empty droplets and which prohibits the shrinkage of vertical strip of the 

absorbing state. However, we find that generic two-phase coexistence (PC) persist in this 

generalized model extending to a range of d>0. PC terminates at an Ising–like critical point 

d=dc [19]. A detailed analysis of this generalized model will be provided elsewhere. This 

observation supports the claim made above that the presence of an absorbing state in the 

QCP should not be regarded as producing PC. It should also be noted that this generalized 

model constitutes just one way of perturbing the desorption rates in the QCP, and we find 

that various other perturbations will also preserve generic two-phase coexistence. 

(ii) An adsorption-desorption version of the QCP on a triangular lattice (with 

coordination number 6): adsorption occurs randomly at rate p, and cooperative desorption of 

particles occurs at rate k/4 where k = 0, 1, 2, 3, 4, or 6 denotes the number of adjacent pairs 

of NN empty sites. Interestingly, the mean-field kinetics remains unchanged from the case of 

the square lattice in contrast to the conversion of the type of transition. CC simulation studies 

reveal a continuous transition to the absorbing state occurs at p ≈ 0.177. The simulated 

steady-state coverage in the active state actually follows the mean-field value from Appendix 

A more closely and for higher p than for the QCP on the square lattice. This feature is 

presumably a consequence of the higher coordination number for the triangular lattice. 

However, eventually the steady-state coverage for the QCP on the triangular lattice departs 

strongly from MF behavior in the vicinity of the continuous transition. 

(iii) Relaxation of the constraint on desorption in the QCP so that now any particle 

with two or more empty neighbors can desorb. Choosing the desorption rate to always equal 
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unity, this process corresponds to the threshold contact process for M=2 [20]. A previous 

study proved the existence of a phase transition, but did not determine its nature [20]. Our 

own simulation study reveals the existence of a discontinuous transition at peq*≈ 0.36 

(starting from an empty lattice) which should be compared with peq* ≈ 0.0944 for the QCP. 

The generic two-phase coexistence also occurs. The substantial increase in adsorption rate 

peq* from its value for the standard QCP is readily understood since the effective desorption 

rate is also significantly higher than in the standard QCP. An additional perspective comes 

from applying a mean field analysis wherein  

dθ/dt = p(1-θ) - θ(1-θ)2(1+2θ+3θ2),                                                                       (B1) 

for the M=2 threshold contact process. 

From Eq. (B1）, one finds a spinodal pressure ps ≈ 0.678 for this process versus ps ≈ 

0.25 for the QCP, so the increase in the mean-field ps mimics the increase in peq*. Some other 

features of this threshold contact process should be noted. Like the QCP, one still has the 

special feature that vertical (or horizontal) strips of the absorbing phase cannot be eroded, 

and that empty patches embedded in the absorbing state cannot grow outside of a rectangular 

region inscribing them. The irreversible erosion of planar interfaces for p=0 is identical to 

that in the QCP. Relaxation kinetics for p=0 or p=0+ is described by the standard BP model. 
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Figures  

 

Figure 1.  Schematic of desorption processes and rates in the QCP. Filled (empty) 
circles denote particles (empty sites) on the square lattice. Desorption rates 
(k-values) for the central particle are indicated above (below) the various 
configurations.  
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Figure 2.  Equation of state for the QCP: steady-state coverage, θθθθ=θθθθss, versus p. The 
lower solid curve is the active steady-state for which a metastable extension 
is indicated. The solid vertical lines denote the boundaries of the generic 
two-phase coexistence region. Inset: equistability pressure, peq(S), versus 
interface slope, S. 

 

Figure 3.   (a) Rapid poisoning kinetics above the effective spinodal point, ps(eff), for a 
range of p = 0.110, 0.115, 0.120, and 0.125 (b) Scaled poisoning kinetics for 
the above p-values indicating that ps(eff) = 0.0995 ±±±± 0.0005. 
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Figure 4.    Images of QCP configurations in a 1024××××1024 site system during nucleation-
mediated poisoning for p=0.098 in the metastable region. Images correspond 
to unevenly spaced times but roughly equal coverage increments (time 
increasing from left to right, top then bottom rows, with coverages of 0.20, 
0.35, 0.57, 0.76, 0.90, and 0.97). 

 

 

Figure 5. (a) Nucleation-mediated poisoning kinetics in the metastable region for a 
range of p = 0.0975, 0.0980, 0.0985, and 0.0990. Data is taken from 
simulations on a large 1024××××1024 site lattice to ensure the system is in the 
multi-droplet regime and to reduce significant statistical fluctuations. (b) 
Scaled poisoning kinetics for the above p-values in terms of the 
characteristic time, ττττchar, given in the text. The best data collapse is for 
cnuc=0.024. Also shown as solid curves are the Avrami kinetics (1) with best-
fit values of a=0.0002 (cnuc =0.024) and a=0.008 (cnuc=0.036). 
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Figure 6. Dynamics of a large initially square poisoned droplet in the two-phase 
coexistence region for p = 0.0940. The system size is 256××××256 sites and the 
initial droplet size is 128××××128 sites. Images are shown for equal time 
increments of ~4000 time units (time increasing from left to right, top then 
bottom rows). 
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Figure 7.  (a) Relaxation kinetics for fixed p = 0.0950 and L=256 in the metastable 
region just above the two-phase coexistence region, and for varying the 
initial coverage θθθθi (shown). The critical initial coverage separating evolution 
directly to the absorbing state and to the metastable state is θθθθi*(p=0.0950, 
L=256) ≈≈≈≈ 0.57 for which θθθθf*(p=0.0950, L=256)  ≈≈≈≈ 0.4. Shown for comparison 
as a dotted line is evolution to the metastable state for θθθθi =0. (b) Relaxation 
kinetics for fixed initial coverage, θθθθi = 0.7, varying p (shown). Inset: θθθθf*(p, L) 
versus p (shown as * symbols) for L=256. 
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Figure 8.  Images of QCP configurations for a 256××××256 site system during the 
coarsening process choosing θθθθv=θθθθv*(p, L=256) = 0.3 (so θθθθi=0.7) for p = 
0.084. These parameters correspond to the central curve in Fig.7b. Images 
are shown for equal time increments of 400 time units (time increasing 
from left to right, top then bottom rows). 
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Figure 9.    Number of completed columns versus time for vertical interfaces of various 
lengths, Ly = 64, 128, 256, 512, 1024 (shown). Results are presented for: (a) 
p=0.088; and (b) p=0.092. 

 

 

Figure 10.  Interface propagation velocity, V(S, p) versus p, in the QCP for broad range 
of p. Behavior is shown for interface slopes S=1, 2, 4, and ∞∞∞∞. Inset: Behavior 
near the equistability pressures and approaching the effective spinodal 
point. Note that V(S=∞∞∞∞, p) ≡≡≡≡ 0 for p<peq(S=∞∞∞∞) ≈≈≈≈ 0.0869, and that V(S=∞∞∞∞, 
p)<0 only for p>peq(S=∞∞∞∞). 
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Figure 11. Configurations of equistable interfaces between the active and absorbing 
states in the QCP for various interface slopes S = 1 (top left), 2 (top right), 4 
(bottom left), and ∞∞∞∞ (bottom right). Images sizes are 256××××256 sites. 
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Figure 12. Schematic demonstrating the equivalence of: (a) irreversible erosion of the 
absorbing state in the QCP with p=0; (b) interface growth in the 1+1 
dimensional bridge-site; (c) interface growth in the single-step deposition 
models; and (d) evolution in a fully asymmetric spin exchange model. We 
indicate the active sites for erosion by desorption in the QCP (a), and for 
deposition in models (b) and (c). The active sites for spin exchange are 
circled in (d). The thin diagonal lines in (b) guide the eye in identifying local 
peaks and valleys of the growing interface. 
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Abstract 

The quadratic contact process is implemented as an adsorption-desorption model on a 

two-dimensional square lattice. The model involves random adsorption at empty sites, and 

correlated desorption requiring diagonal pairs of empty neighbors. A simulation study of this 

model [Phys. Rev. Lett. 98, 050601 (2007)] revealed the existence of generic two-phase 

coexistence between a low-coverage active steady-state and a completely covered absorbing 

state. Here, an analytic treatment of model behavior is developed based on truncation 

approximations to the exact master equations. Applying this approach for spatially 

homogeneous states, we characterize steady-state behavior as well as the kinetics of 

relaxation to the steady-states. Extending consideration to spatially inhomogeneous states, we 

obtain discrete reaction-diffusion type equations characterizing evolution. These are 

employed to analyze an orientation-dependence of the propagation of planar interfaces 

between active and absorbing states which underlies the generic two-phase coexistence. We 
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also describe the dynamics and critical forms of planar perturbations of the active state and of 

droplets of one phase embedded in the other.   

PACS 05.70.Fh, 02.50.Ey, 05.45.-a, 05.50.+q, 

1. Introduction 

Stochastic spatial models for far-from-equilibrium processes [1] often display a richer 

variety of spatiotemporal behavior than traditional Hamiltonian systems. However, they can 

also exhibit some intriguing similarities. The steady-states of such non-equilibrium models 

often exhibit continuous and discontinuous phase transitions which appear analogous to 

equilibrium phase transitions in Hamiltonian systems [1-4]. Most effort towards exploring 

this analogy has focused on continuous non-equilibrium transitions where the concept of 

universality carries over from the equilibrium case. Instead, our interest here is in 

discontinuous non-equilibrium transitions which have received less attention. A commonly 

studied example is provided by the two-component Ziff-Gulari-Barshad (ZGB) model for a 

monomer-dimer surface reaction [5]. However, for a fundamental understanding of 

discontinuous non-equilibrium transitions, it is more convenient and natural to search for and 

analyze single-component models with the desired behavior. This observation motivates our 

consideration of a so-called quadratic contact process (QCP). 

A familiar realization of a QCP is referred to as Schloegl’s second model for 

autocatalysis [1,6,7]. In the most relevant special case of this model, particles X either 

spontaneously annihilate (X→∅) at a rate k, or are autocatalytically created and destroyed 

via a trimolecular reaction (2X↔3X). For low k, an active steady state with finite particle 

density is expected to exist, in addition to the vacuum steady state with no particles. 



 63 

 

However, for high enough k, only the vacuum state should exist. In another realization of a 

QCP for epidemic spread on a periodic lattice, sick individuals recover spontaneously at 

some rate kr, and healthy individuals become infected at rate ki if they have two suitably 

configured sick neighbors. For low kr/ki, a sustained epidemic steady state should exist, in 

addition to a completely healthy steady-state. For high enough kr/ki, only the completely 

healthy steady state should exist. Here, we realize a QCP as an adsorption-desorption model 

on a two-dimensional lattice representing a single-crystal surface [1,8]. Particles absorb 

randomly at empty sites at rate or “pressure” p, and desorb from the surface provided there 

exist suitable pairs of empty neighbors. For low p, an active lower coverage steady-state is 

expected to exist, in addition to a completely covered or “poisoned” state. For high enough p, 

only the poisoned state should exist.  

All of these model realizations have cubic mean-field kinetics and thus display the 

same mean-field behavior including bistability disappearing at a fold bifurcation. This feature 

suggests that discrete stochastic implementations of these models might exhibit 

discontinuous transitions. However, behavior of such implementations depends on the 

specific realization [7,8], and often continuous (instead of discontinuous) transitions are 

observed in lower spatial dimensions. 

We adopt a specific prescription of the QCP on a square lattice which is motivated by 

a formulation of Durrett [1]: particles adsorb randomly at empty sites at rate or pressure p; 

particles desorb cooperatively at rate k/4 where k = 0, 1, 2, or 4 denotes the number of 

diagonally adjacent pairs of nearest neighbor (NN) empty sites. Thus, one has: k=0 for 

particles with just 0 or 1 empty NN sites, and also for 2 empty NN sites which are on 

opposite sides of the particle; k=1 for particles with just 2 diagonally adjacent empty NN 
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sites; k=2 for particles with 3 empty NN sites; and k=4 for particles with all 4 NN sites 

empty. See Fig.1. Now, we describe a special feature of this QCP following immediately 

from the above rules [1,8]. This special feature, which impacts our analysis below, is 

manifested to two ways. First, a filled vertical strip (or single column) spanning the system 

can never be eroded by desorption for any p≥0. The same is true for filled horizontal strips or 

rows. Particles within such strips can never have more than one empty NN site, and thus have 

k=0. Second, an isolated non-poisoned droplet embedded in an otherwise covered lattice can 

never grow outside of a rectangle inscribing that droplet. Thus, eventually, the droplet must 

be filled in and perish for any p>0. This latter feature was noted by Durrett [1]. 

One could consider various modified adsorption-desorption prescriptions of the QCP, 

e.g., allowing desorption for particles with two or more neighboring empty sites on the 

square lattice irrespective of their configuration. Such a prescription is in the spirit of so-

called threshold contact processes [9], and preserves the cubic mean-field kinetics and 

bistability. Analysis of such modified models reveal qualitatively similar behavior to that for 

the above Durrett-type prescription including a discontinuous transition and generic two-

phase coexistence [10].  Below we consider exclusively the Durrett-type prescription 

outlined above.  One minor advantage of this prescription, which will become clear in Sec.2, 

is a simplification of the exact master equations resulting from the specific form of the 

desorption rates, and an associated simple condensed form for the mean-field kinetics. 

Kinetic Monte Carlo (KMC) simulation studies of our Durrett-type QCP [8] suggest 

that for an infinite system, there exists an active steady state with low coverage satisfying θ = 

θactive(p) = p + O(p2) for sufficiently small p. More specifically, simulations suggest that an 

infinite system starting with an empty lattice will evolves to this active steady state for p < 
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peq* ≈ 0.09443, but will undergo a discontinuous transition and evolve to a completely 

covered lattice with θ = θabsorb(p) ≡ 1 for p > peq*. The latter is an absorbing or poisoned state 

from which the system can never escape. More detailed analysis reveals that the equistability 

pressure, peq = peq(S), for which a planar interface separating the active and absorbing states 

or phases is stationary, depends on the interface slope, S. This is in marked contrast to 

equilibrium systems. Specifically, peq(S) displays a maximum of peq(S=1) = peq* ≈ 0.09443 

for diagonal interfaces, and decreases with increasing S to a minimum of peq(S→∞) ≈ 0.0869 

for vertical interfaces [8]. Recalling that vertical strips cannot shrink, it follows that vertical 

interfaces are stationary for p< peq(S=∞) in an infinite system, whereas the absorbing state 

expands for p> peq(S=∞). As an aside, in a finite system, columns adjacent to the completely 

filled columns at the interface invariably fill, so the absorbing state expands for any p>0. 

Thus, determination of peq(S=∞) avoiding such finite-size effects is delicate [8].   

Another perspective on the unusual behavior of the QCP relative to equilibrium 

systems is that each of the active and absorbing states are stable against local perturbations 

by the other state for a finite range of p. This phenomenon is called generic two-phase 

coexistence [11-13] or “true bistability” [8]. It contrasts behavior in equilibrium systems 

where coexistence of stable phases can occur only at a single p corresponding to equal 

chemical potentials. To more fully characterize of this generic two-phase coexistence 

phenomenon for the QCP and to elucidate its origins, first consider the evolution an isolated 

droplet of the absorbing state embedded in the active state. This droplet will certainly shrink 

and perish for p < peq(S=∞). It will grow for p > peq(S=1), at least if it is sufficiently large 

[10]. For peq(S=∞) < p < peq(S=1), the situation is less clear [8,10]. Simulations have been 
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applied to monitor the evolution of a square absorbing droplet. Its sides initially grow 

outward since p > peq(S=∞). However, growth at the corners is inhibited, and so soon facets 

with slope S = ±1 develop and dominate the droplet which becomes diamond shaped. 

Subsequently, this droplet shrinks and disappears since p < peq(S=1) [10]. Thus, the active 

state is stable against local perturbations for p < peq(S=1). Second, we recall the special 

feature of the QCP described above which ensures that an isolated droplet of the active state 

embedded in poisoned state will perish with certainty for any p>0. 

Thus, we conclude that both the active and absorbing phases in the QCP are stable 

against local perturbations by the other phase for 0 < p < peq(S=1), which might reasonably 

be identified as the regime of two-phase coexistence. Our characterization above of 

equistability pressures for planar interfaces demonstrates that for the narrower regime of 

peq(S=∞) < p < peq(S=1), both the active and absorbing states are also stable against non-local 

perturbations, i.e., either can displace the other separated by a planar interface of suitable 

orientation. For the QCP, we have used the latter more restrictive condition to identify 

generic two-phase coexistence with the regime peq(S=∞) < p < peq(S=1) [8,10]. One 

motivation of this more restrictive choice is in part that various perturbations of the QCP to 

include particle hopping or random desorption [8] with infinitesimal rates remove the above 

special feature of the QCP and reduce two-phase coexistence to the latter narrower regime. 

The classic example of generic two-phase coexistence is provided by Toom’s 

synchronous cellular automata model for the stochastic dynamics of an array of voters 

distributed on a square lattice. In this model, only voters to the north and east are considered 

when an individual changes votes [12,13]. Thus, in contrast to the QCP, Toom’s dynamic 

rules incorporate strong symmetry-breaking which helps induces two-phase coexistence. It 
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should be noted that considerations of droplet dynamics and anisotropy in interface 

propagation, analogous to those above, were used to elucidate behavior in Toom’s model 

[12,13]. Finally, from a broader perspective, it is appropriate to mention that occurrence of 

two-phase coexistence and the associated orientation-dependence of interface propagation 

and equistability has been postulated to occur for broad classes of lattice-gas adsorption-

desorption or reaction models exhibiting discontinuous transitions [10]. 

The focus of our study in this paper is on the development of an analytic treatment for 

our adsorption-desorption realization of the QCP. This treatment will be based on truncation 

of the hierarchical form of the corresponding exact master equations. The reader is refereed 

to Ref. [14] for a more general discussion of this strategy. While such an approach does 

involve approximations, it can provide insight into model behavior which is lacking in 

Kinetic Monte Carlo (KMC) simulation studies. Indeed, this type of approach, as typically 

applied to spatially homogeneous systems, has enjoyed some success in analysis of kinetics 

and steady-state behavior for the ZGB model and other lattice-gas adsorption-desorption or 

surface reaction type models [15,16]. However, effective and comprehensive analysis of 

current model requires extension to treat spatially non-uniform states, e.g., for analysis of 

interface propagation. This extension has been considered only rarely in previous analyses of 

lattice-gas models [17]. It naturally produces novel types of discrete reaction-diffusion 

equations (RDE’s). For higher order truncation approximations, these discrete RDE’s 

involves both site coverages and various local spatial correlations, and they also incorporate 

complex prescriptions of “diffusive coupling”. These features contrast with commonly 

studied discrete RDE’s [18-20]. 
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The outline of paper is as follows. In Sec.2, we develop the hierarchical form of the 

exact master equations and appropriate truncation approximations for spatially homogeneous 

states of the QCP. We compare predictions for steady-states and kinetics with results from 

KMC simulations. In Sec.3, we extend the above analysis to treat spatially non-uniform 

states. The primary focus is on analysis of the propagation of planar interfaces separating the 

active and absorbing states for various orientations. In particular, we determine the 

orientation-dependence of the equistability pressure. We also consider planar perturbations of 

the active state and determine the critical form of such perturbations above which they grow. 

In addition, we explore the dynamics of two-dimensional droplets of one phase embedded in 

the other. Finally, Sec.4 provides some further discussion and conclusions. 

2. Exact Master Equations & Approximations: Spatial ly 

Homogeneous Case 

The exact master equations for our QCP (or for any other lattice-gas adsorption-

desorption model) can be written in the form of an infinite coupled hierarchy. See Ref. [14]. 

Let x (o) denote a filled (empty) site, and let P’s denote probabilities of various 

configurations of such sites. Then, for example, one has for the coverage that θ = P[x]. 

Exploiting rotational symmetry of the model, the first two equations in the hierarchy for the 

evolution of these quantities with time, t, for a spatially uniform system have the form 
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   (2) 

The gain (loss) terms correspond to adsorption (desorption). In the first line on the 

right-hand-side of (1), integer factors reflect the number of equivalent contributing 

configurations or terms due to rotational or reflection symmetries. Fractions reflect 

desorption rates of the form k/4. The first line on the RHS of (2) has an extra symmetry 

factor of 2. The second line on the right-hand-side of (1) and (2) is obtained by exact 

simplification using conservation of probability relations, and the specific form of the QCP 

desorption rates. Below, we apply various approximate truncation procedures to this 

hierarchy. We will also utilize the exact relation  

P[xx] = 1 – 2 P[o] + P[oo] = 2θ - 1 + P[oo] ≥ 2θ-1.       (3) 

Thus, from (3), the conditional probability, Q = P[x x]/P[x], for finding a filled site 

adjacent to a specified filled site (a key quantity utilized below) satisfies Q ≥ (2θ-1)/θ which 

is a non-trivial constraint for θ ≥ ½ . 

2.1. Site-, Pair-, and Higher-Order Approximations 

The simplest mean-field site approximation ignores all spatial correlations. It could be 

interpreted as describing exactly behavior in a modified QCP with particle hopping to NN 

empty sites at rate h in the hydrodynamic limit h→∞. However, it does not exactly describe 

the case h=0 of interest here.  The site approximation completely factorizes the above multi-
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site configuration probabilities in terms of single-site quantities P[x] = θ and P[o] = 1-P[x]. 

One thus obtains the kinetic equation 

d/dt P[x] = p ⋅P[o] – P[x] P[o]2  or  d/dt θ = p(1-θ) - θ(1-θ)2,    (4) 

so θ(1-θ) = p or θ = 1 in the steady-states.       (5) 

As expected for mean-field approximations, rather than a discontinuous transition, 

equation (5) reveals bistability for 0 < p < ps(site) = ¼ = 0.25 (the upper spinodal), where 

θ(ps) = θs(site) = ½. In this regime, a stable active state with  

θ=θactive(p) = ½ - ½ (1-4p)1/2 = p + O(p2)        (6) 

coexists with a stable absorbing state with θ = θabsorb(p) ≡ 1. These two stable states are 

separated by an unstable steady state with θ = θunstable(p) = ½ + ½ (1-4p)1/2. The absorbing 

state is the only steady-state for p> ps = ¼.  Analysis within the site approximation of the 

propagation of an interface between active and absorbing states with slope S=1 (see Sec.3) 

yields an equistability pressure, peq(S=1) ≈ 0.2113 (site) which as expected is somewhat 

below ps(site). However, these values of ps(site) = 1/4, θs(site) = 1/2, and peq(S=1) ≈ 0.2113 

(site) are well above the precise simulation values of ps(eff) ≈ 0.0995±0.0005, θs ≈ 

0.22±0.02, and peq(S=1) ≈ 0.09443 [8,10]. This inaccuracy might be expected as the site 

approximation is quite severe. 

A significantly improved description comes from applying the pair approximation. 

This approximation suitably factorizes probabilities for the above multi-site configurations in 

the desorption terms of (1) and (2) into products of probabilities for the m constituent pairs, 

and divides by P[x]m-1 to avoid over-counting the central shared filled site [14,15,21]. One 

thus obtains 
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d/dt P[x] = p⋅P[o] – P[x  o]2/P[x], and                   (7) 

d/dt P[x  x] = 2p⋅P[x  o] – P[x  x] P[x  o]2/P[x]2.      (8) 

Since one has P[x o] + P[x x] = P[x], one can use P[x o] = P[x] – P[x x] and P[o] = 1-

P[x] to close these equations. In terms of conditional probability, Q = P[x x]/P[x], for finding 

a filled site adjacent to a specified filled site, (7) and (8) become  

d/dt θ = p(1-θ) – (1-Q)2 θ , and         (9) 

d/dt (θQ) = [2p - Q(1-Q)] (1-Q) θ.                 (10) 

Note that one can rearrange (9) and (10) to obtain  

d/dt Q = 2p [1 – Q(1+θ)/(2θ)].                  (11) 

These equations also immediately yield the steady-state relations 

p(1-θ) – (1-Q)2θ  = 0 and Q(1-Q) = 2p,   or   θ = Q =1.                         (12) 

Either eliminating p from (12), or examining the steady-state form of (11), one 

obtains the simple steady-state relation [22] 

Q = 2θ/(1+θ) ≥ θ,                              (13) 

 

which applies for both stable and unstable steady-states. This inequality demonstrates that all 

steady-states exhibit particle clustering, noting that Q = θ applies for a random distribution of 

particles.  

From the second equation in (12), it is clear that the bistability regime in the pair 

approximation is 0 < p < ps(pair) =1/8 = 0.125 (the upper spinodal), where Q(ps) = Qs(pair)= 

1/2 and θ(ps) = θs(pair) = 1/3. In this regime, a stable active state with  

Q=Qactive(p) = ½ - ½ (1-8p)1/2 = 2p + O(p2),                (14) 
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and θ = θactive(p) = p+O(p2), coexists with a stable absorbing state with Q = Qabsorb(p) ≡1 and 

θ = θabsorb(p) ≡1. These states are separated by an unstable steady state with Q = Qunstable(p) = 

½ + ½ (1-8p)1/2. These values for ps(pair)=1/8, Qs(pair)=1/2, and θs(pair)=1/3 are not far 

above the precise simulation values of ps(eff) ≈ 0.0997±0.0005, Qs ≈ 0.38±0.03 (see below) 

and θs ≈ 0.22±0.02 [8,10]. Analysis within the pair approximation of the propagation of 

interface with slope S=1 (see Section 3) yields an equistability pressure of peq(S=1) ≈ 0.1083 

(pair) somewhat below ps(pair). This value is quite close to the simulation value of peq(S=1) 

≈ 0.09443 [8]. The effectiveness of the pair approximation is further illustrated below in 

Sec.2.2 and 2.3. 

Given the success of the pair approximation, it is natural to explore higher-order 

approximations. To systematize such approximations, it is convenient to first rewrite multi-

site configuration probabilities in terms of filled site configurations, then to factorize these 

exactly in terms of conditional probabilities, and finally to apply a truncation approximation 

to the conditional probabilities [14]. These approximations are called m-NN corresponding to 

ignoring the influence of sites which are further than mth nearest neighbor (NN) to the site of 

interest. The lead to closed coupled non-linear sets of N(m) equations.  Further details are 

provided in Appendix A. 

2.2. Results for Steady-State Behavior: Approximati on VS Simulation 

The 0-NN approximation recovers the site-approximation evolution equation (4) for 

P[x] so N(0) = 1. The 1-NN approximation recovers the pair-approximation equations (7) and 

(8) for P[x] and P[xx] so N(1) = 2. The 2-NN approximation produces a closed set of N(2) = 

5 equations for the evolution of P[x], P[x x], and P’s for a bent triple, a T-shaped quartet, and 
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a square quartet of filled sites [23]. The 3-NN approximation produces a closed set of N(3) = 

11 equations for the evolution of the above five P’s, plus P’s for two more connected 

configurations (a linear triple, a cross-shaped quintuple), and four more disconnected 

configurations (a 2NN pair, a 3NN pair, a T and cross with the central site missing).  

Predictions for the steady-state θ(p) versus p in the active state for the pair and 

higher-order approximations, as well as from simulations, are shown in Fig.2. We do not 

show results for the site approximation which reasonably describes behavior for lower p, but 

not near the spinodal point. An expanded view of the small difference between the simulated 

and approximate coverages, ∆θ(p), versus p is shown in the inset to Fig.2. The higher-order 

approximations describe somewhat better exact behavior (although this offset by poorer 

predictions for equistability as discussed below). Since the conditional probability, Q, is a 

basic quantity describing correlations, we compare predictions for the steady-state Q(p) 

versus p from analytic 1-NN, 2-NN and 3-NN approximations with simulation results. See 

Fig.3. The 0-NN site approximation Q=θ fails to describe behavior even for low p. 

2.3. Pair-Approximation Results for Relaxation Kine tics 

One can also apply the various m-NN approximations above to assess relaxation 

kinetics in the QCP. We focus on pair-approximation predictions. We first show in Fig.4a 

pair-approximation predictions for the evolution of θ(t) versus t starting with an empty lattice 

for a range of δps = p - ps(pair) >0 above the spinodal. The rate of poisoning is roughly 

controlled by δps, so evolution is described by the form θ(t) ≈ f(δps t). This behavior and the 

form of f is qualitatively similar to precise simulation results for kinetics of the QCP in Ref. 

[10] for the corresponding range of δp = p - ps(eff). Fig.4b shows the evolution of Q-θ which 
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is positive during the intermediate stages of poisoning indicating the development of 

clustering. 

Henceforth, we focus on pair-approximation predictions for the evolution of θ(t) 

versus t for fixed p below the spinodal starting from a partially randomly filled lattice with 

various initial coverages, θi = Qi. See Fig.5a. For each fixed p, there exists a special value of 

the initial coverage, θi* = θi*(p), so that for θi > θi* the system poisons, and for θi < θi* it 

reaches the active steady-state. A more complete picture of behavior comes from 

examination of phase-portrait for flow in the (θ, Q)-plane which describes evolution starting 

from any pair of values of θ and Q. See Fig. 6 for behavior for p=0.10 which is below 

ps(pair) = 1/8. Recall from the introduction to Sec. 2 that physical states are restricted to Q ≥ 

(2θ-1)/θ for θ ≥ 1/2. For initially random states, the system starts at a point on the line (θ, Q) 

= (θi, θi). When θi = θi*, this point lies on the separatrix delineating domains of attraction for 

the active state (denoted by A) and the absorbing or poisoned state (denoted by P). The 

system then evolves to the unstable steady-state (denoted by U) by flowing along this 

separatrix. In this case, the coverage decreases from θi = θi* as the system moves along the 

separatrix to the unstable steady-state which lies in the region Q > θ corresponding to states 

with particle clustering [cf. (10)]. This explains the initial decrease of coverage in Fig.5a for 

θi close to θi*. 

The kinetics in higher-order approximations exhibit similar behavior (not shown). For 

relaxation at fixed p below the spinodal starting from a partially randomly filled lattice, again 

there is a special value of θi=θi* for which the system evolves to the unstable steady-state. 

Now, the initial states for various θi lie on a one-dimensional curve in the N(m) dimensional 
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space of the configurational probability variables. For θi=θi*, this curve crosses the N(m)-1 

dimensional separatrix hypersurface delineating domains of attraction for the active and 

absorbing states, and evolution corresponds to flow on this hypersurface to the unstable state. 

2.4. Comparison with Simulation Results for Relaxat ion Kinetics 

Here, we compare pair-approximation predictions for relaxation kinetics for lower p 

with simulation results. Fig.5b shows simulation results for the evolution of θ(t) versus t for 

fixed p=0.08 starting from a partially randomly filled lattice with various initial coverages, θi. 

This choice of p=0.08 is not only below the spinodal, ps(eff) ≈ 0.0995, but also below the 

regime of two-phase coexistence. Behavior is qualitatively similar to pair-approximation 

kinetics in Fig.5a in that there appears to exist a value θi* of θi such that the system poisons 

for θi>θi* and approaches the active state for θi<θi*. However, the transient kinetics is 

distinct from that of the pair approximation. More significantly, it should be emphasized that 

for θi = θi*, the system does not evolve to an unstable steady state, but rather to a “coarsening 

state”. In this state, there is a balance between shrinkage and disappearance of isolated quasi-

rectangular regions of the active state, and coalescence and growth of other generally larger 

active regions [10]. See the inset to Fig.5b. 

A more complete picture of simulation predictions for relaxation kinetics when 

p=0.08 and comparison with pair-approximation behavior comes from examination of phase-

portrait for flow in the (θ, Q)-plane. Rather than just starting from random states (θ, Q) = (θi, 

θi), we generate a more expansive portrait by starting with states on the “anti-clustering” 

boundary of the physical phase space. Specifically, we generate Q=0 states with no NN pairs 

of particles by Random Sequential Adsorption (RSA) with NN exclusion when 0 ≤ θ ≤ θJ ≈ 
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0.3641 (RSA jamming coverage) [14], and by adding relaxation mechanisms to RSA for θJ < 

θ ≤ ½ [24]. For the boundary with Q = (2θ-1)/θ and ½ ≤ θ ≤ 1, we start with a perfect 

checkerboard c(2×2)-structure of alternating filled and empty sites, and randomly occupy a 

suitable fraction of the remaining empty sites. The phase-portrait for evolution starting from 

these states obtained from simulations of the QCP is shown in Fig.7. All states with Q=0 and 

0 ≤ θ ≤ 1/2 evolve to the active steady state. States with Q = (2θ -1)/θ and θ > 1/2 evolve to 

the active state for initial coverages θ < θ* ≈ 0.78 and poison for θ > θ*. We estimate that the 

“coarsening state” occurs at (θc, Qc) ≈ (0.80, 0.97) for p=0.08. Simulated behavior has overall 

qualitative similarities with the pair-approximation predictions. However, there are 

significant differences near the coarsening state (versus near the unstable state), as well as in 

the evolution towards the steady states. 

The trajectories starting from the anti-clustering boundaries in the (θ, Q)-plane tend to 

follow a well-defined upper envelope which leads to the steady states. The states along this 

envelope, like the coarsening state, display some degree of phase separation between the 

active and absorbing states. Thus, one can determine Q as a function of θ by taking a suitable 

average of the values for the absorbing state Qabsorb = 1 and the active state Qactive ≈ 0.23. This 

average should be weighted by the fractional area of the phases and also by the local 

coverage yielding for this envelope 

Qenvelope = Qenvelope(θ) = θ-1 [1 – (1-θactiveQactive)(1-θ)(1-θactive)
-1],             (15) 

which interpolates between the active and absorbing states. In particular for θ =θc ≈ 0.80, this 

relation yields Qc ≈ 0.97 entirely consistent with the estimate above. This envelope 

corresponds to significantly higher Q-values than for the flow trajectories predicted by the 
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pair approximation from the unstable to the stable active states. This reflects the feature that 

the pair approximation does not accommodate a tendency for phase-separation [25]. Of 

course, simulated evolution near the coarsening state is also more complex than pair 

approximation evolution near the unstable state. Furthermore, simulated evolution in this 

regime is subject to finite-size-effects (when the size of the coarsening features becomes 

comparable to the system size) and to large fluctuations. Thus, our simulations were 

performed for a large 1000×1000 site system.  

3. Master Equations and Approximations for Interfac e Evolution 

In this section, we are primarily interested in analyzing the propagation of interfaces 

separating stable active and absorbing phases, and in application of this analysis to the 

determination of equistability pressures. To implement this analysis, one must first extend the 

master equation formulation to treat spatially non-uniform states. For such states, the 

configuration probabilities in hierarchical master equations depend on the site location. Also, 

symmetry-equivalent terms collected together in (1) and (2) must typically be enumerated 

separately. However, some exact simplification is still possible using conservation of 

probability relations and the specific form of desorption rates for the QCP [cf. (1) and (2)]. 

This simplification leads to the following exact form for the first two hierarchical equations 
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where filled and empty sites are also labeled by their position (i,j) on the square lattice. Thus, 

θi,j = P[xi,j] denotes the coverage of site (i,j).  For the special case of a system with 

translational invariance, it is clear that (16) and (17) reduce to the equations (1) and (2) of 

Sec. 2. 

Despite the additional complexity of the equations (16) and (17) relative to the 

spatially homogeneous case, the truncation procedures described above can still be 

implemented, but now with all probabilities labeled by site location. As a result, one obtains 

a coupled set of discrete reaction-diffusion type equations (RDE’s) for a finite number of 

different types of configurational probabilities. An analogous procedure was implemented for 

the ZGB model on a square lattice, but only at the level of the site approximation and only 

for vertical interfaces [17]. In a broader context, there has been considerable interest in 

discrete RDE’s of the Nagumo-type for bistable systems [18-20]. Most focus has been on 

assessing the phenomenon of propagation failure [18-20], a feature not seen in analogous 

continuum RDE’s [26,27]. 

As indicated above, our primary interest here is in determining equistability pressures 

for coexisting stable active and absorbing phases. Here, it suffices to consider the evolution 

of planar interfaces between active and inactive states where the spatial non-uniformity is 
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only in a single direction. In particular, our focus is on determining the propagation velocity, 

V(p) = V(p, S), versus p, for various interface slopes, S. Unless otherwise stated, we use the 

convention that V>0 corresponds to the active state displacing or eroding the absorbing state, 

and V<0 corresponds to the opposite case. Then, the equistability pressure, peq = peq(S), is 

determined from the condition V(p = peq(S), S) = 0.  For planar interfaces, there is 

considerable simplification of the discrete RDE’s which reduce to a one-dimensional form. 

This case will be considered exclusively in Sec.3A-3E. In Sec.3F, we consider two-

dimensional droplet dynamics necessarily starting from the general form of (16) and (17). 

3.1. Site-Approximation Formulation for Planar Inte rfaces 

First, we consider vertical interfaces with S=∞ separating active and absorbing states 

for p < ps(site). Then, the site occupancies in (16) are just labeled by the column index, i, so 

that θi = P[xi,j] = 1 - P[oi,j]. See Fig. 8. In the site approximation, these equations reduce to 

d/dt P[xi] = p⋅P[oi] – ½ P[xi] P[oi] P[oi+1] – ½ P[xi] P[oi] P[oi-1].             (18) 

Equation (18) can be written in a discrete RDE form as  

d/dt θi = p(1-θi) - ½ θi(1-θi)(2 - θi-1 - θi+1) = p(1-θi) - θi(1-θi)
2 + D(θi) ∆θi,             (19) 

with discrete Laplacian ∆ui = ui+1 -2ui +ui-1 (noting that columns are separated by one lattice 

constant) and the pseudo-diffusion coefficient satisfies D(θ)= ½ θ(1-θ). From (19), it follows 

that a poisoned column with θi=1 will remain poisoned for all later times, so that absorbing 

vertical strips cannot be eroded within this approximation (preserving exact behavior). 

Second, we consider diagonal interfaces with slope S=1 separating active and 

absorbing states for p<ps(site). Now, each diagonal row of sites labeled by m, say, will have 

its own coverage, θm = P[xm] = 1 - P[om]. These diagonal rows are separated by a distance 
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d1=1/√2 lattice constants (in the direction orthogonal to the rows), a feature which impacts 

determination of propagation velocities from solution of the discrete RDE’s. Factorizing the 

exact master equations (16) within the site approximation incorporating the reduced 

symmetry yields the equations 

  d/dt P[xm] = p⋅P[om] – 1/4 P[xm]P[om-1]
2 – ½ P[xm]P[om-1]P[om+1] – 1/4 P[xi]P[om+1]

2.     (20) 

These can be simplified and written in discrete RDE-type forms as  

d/dt θm  = p(1-θm) – ¼ θm(2 - θm-1 - θm+1)
2  

             = p(1-θm) - θm(1-θm)2 + D(θm-1, θm, θm+1) ∆1θm    

              = p(1-θm) - θm(1-θm)2 + D(θm) ∆1θm – θm (∆1θm)2/16,                                 (21) 

where ∆1um = (um+1 -2um +um-1)/(d1)
2 is a discrete Laplacian, D(θm-1, θm, θm+1) =                      

θm(4 - θm-1 - 2θm - θm+1)/8 is a pseudo-diffusion coefficient, and D(θ) is as above. 

This analysis is readily extended to consider interfaces with general integer slope S≥1 

for p<ps(site). Now, off-diagonal rows with slope S, labeled by m, will each have distinct 

coverages, θm. See Fig.8. These rows are separated by a distance dS = 1/√(1+S2). Factorizing 

(16) within the site approximation yields 

d/dt θm = p(1 - θm) – ¼ θm (2 - θm-1 - θm+1) (2 - θm-S - θm+S)   

    =  p(1-θm) - θm(1-θm)2 + D(θm) ∆1,S θm - ¼ S2(1+S2)-2 θm ∆1θm ∆Sθm,          (22) 

where ∆Sum = (um+S - 2um + um-S)/(SdS)
2 and ∆1,S um = [(1+S2)-1 ∆1um + S2(1+S2)-1 ∆Sum] are 

refined discrete Laplacians, and D(θ) is as above. Thus, (22) reduces to (21) for S=1. 

Discrete diffusion terms involving ∆, ∆1, ∆S, or ∆1,S naturally vanish for a linear coverage 

profile. 
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3.2. Site-Approximation Analysis and Numerics: Vert ical Interfaces 

It is instructive to first consider separately the special case of a vertical interface with 

S=∞ for p < ps(site). As noted in Sec.3A, analysis of the evolution equations (19) within the 

site approximation shows that the absorbing state can never be eroded, preserving a basic 

property of the QCP. This special feature significantly impacts behavior, e.g., ensuring that 

V(p, S=∞) ≤ 0 for all p≥0 according to our sign convention. Numerical integration of (19) 

further reveals that the vertical absorbing strip is stationary, i.e., it does not erode or grow, so 

that V(p, S=∞) ≡ 0 for p ≤ peq(S=∞) ≈ 0.2071 (site). Only for p > peq(S=∞) (site) does the 

absorbing state expand into the active state with V(p, S=∞) < 0. Numerical results for V(p, 

S=∞) versus p will be presented in Sec.3C which indicate an apparent non-linear decrease in 

the magnitude of  V(p, S=∞) < 0 to zero as p → peq(S=∞) (site) from above. This feature is 

reminiscent of behavior approaching threshold for propagation failure in Nagumo-type 

discrete RDE’s [19].  

Here, we provide a more detailed analysis of the stationary regime p < peq(S=∞), 

including a characterization of the transition point at p = peq(S=∞). For p < peq(S=∞), the 

interface profiles corresponding to stationary solutions of (18) are chosen to satisfy 

θ0 = θ-1 =… = 1, and 1 > θ1 > θ2 >… with θi → θactive(p) (site approx.) , as i→∞.   (23) 

From the steady-state form of (19), these coverages satisfy the recurrence relations  

θ2 = 1 - 2p/θ1, and θi+1 = 2 - θi-1 - 2p/θi for i>1.               (24) 

Selection of θ1=θ1(p), which determines the entire profile, must produce the desired 

asymptotic behavior, θi → θactive(p), as i→∞, and is thus non-trivial. 
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It is clear that for p=0, the stationary profile corresponds to a sharp jump from the 

absorbing state to the active empty state with θ1 = θ2 =… =0. Furthermore, as p increases, 

one expects that the profile becomes broader. This feature is illustrated by linearization of 

(24) for large i using θi(p) = θactive(p) + δθi(p) with small δθi to show that  

δθi(p) ~ λi, as i→∞, where λ=λ(p)=[1-√(1-r2)]/r with r=r(p)=θactive/(1-θactive).        (25) 

Broadening of the interface is a consequence of the feature that both r(p) and λ(p) 

increase monotonically with p from zero when p=0 to unity when p = ps(site). The latter 

follows from the observation that θactive → 0, as p → 0, and θactive → θs = ½, as p → ps(site) = 

¼. Note, however, that the stationary interface exists only for p ≤ peq(S=∞) ≈ 0.2071 < 

ps(site). 

While instructive, the above analysis of the behavior of the stationary profile does not 

provide much insight into the transition from a stationary to a propagating vertical interface 

at p=peq(S=∞) ≈ 0.2071 (site). To achieve such insight, it is convenient to recast the 3-term 

recurrence relation (24) for i>1 into the form of an iterated map [28], (ui, vi) → (ui+1, vi+1), in 

a two-dimensional phase space (ui, vi) = (θi-1, θi). This iterated map has the form 

 ui+1 = vi, and vi+1 = 2 – ui -2p/vi,                 (26) 

with a the fixed point, (u, v) = (θactive, θactive). Linearizing the map (26) about this fixed point 

shows that the two eigenvalues of the associated Jacobian sum to 2(1-θactive)/θactive ≥ 2 for 

p≤ps(site). Thus, the magnitude of at least one eigenvalue must be larger than unity implying 

that this fixed point is unstable [28] 

As the first component in of our numerical analysis of this iterated map, we start at 

points (u, v) = (θactive+ε, θactive+ε′) slightly perturbed from the fixed point (ε, ε′<<1) and 
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iterate. Points from these different iterations together generate a continuous curve. Fig.9 

shows these curves of the iterated points for three p-values: for smaller p, the curve connects 

the unstable fixed point to the physical boundaries u=1 and v=1 of the phase space. This 

corresponds to a physical stationary profile where θi varies from θ0 = 1 to θi→∞ = θactive. For p 

≈ 0.2071, the curve reaches the physical boundaries tangentially corresponding to 

p=peq(S=∞). For larger p, the curve never reaches these boundaries corresponding to the lack 

of a stationary solution. 

The second component in our analysis is motivated by the observation from Fig.9 that 

at the threshold value of p=peq(S=∞), the continuous curve generated from the orbits reaches 

the physical boundaries of the phase space at (u, v) = (1-p, 1) or (1, 1-p) [29]. A key 

consequence of this observation and the recurrence relations (24) is that at the threshold, 

p=peq(S=∞), the stationary profile has the form  

θi≤0(p)=1, θ1(p)=1-p, θ2(p)=(1-3p)/(1-p), θ3(p)=(1-4p-p2)/(1-3p), etc.,             (27) 

Thus, knowledge of the form of θ1(p) =1-p in this special case allows determination 

of the form of all the θi>1(p). Of course, it remains to determine the value of p=peq(S=∞). 

However, this can be done efficiently with numerical simulations by adjusting estimates of p 

to satisfy the requirement that θi(p) → θactive(p), as i→∞, yielding the precise estimate of 

peq(S=∞) ≈ 0.2071068.  Insight into the relation θ1(p) = 1-p when p = peq(S=∞) is provided in 

Sec.3.4. 
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3.3. Site-Approximation Analysis and Numerics: Inte rfaces for 1 ≤≤≤≤S≤≤≤≤∞∞∞∞:  

Results within the site approximation for the interface propagation velocity, V(p, S), 

versus p with p<ps(site) are shown in Fig.10. These results are obtained from numerical 

analysis of (21) and (22) for a diagonal and off-diagonal interfaces with slopes S≥1.  The 

active state displaces the absorbing state for p < peq(S), so that V(p, S) > 0, and the opposite 

applies for p > peq(S). We determine that peq(S=1) ≈ 0.2113 (site) as mentioned in Sec.2A, 

peq(S=2) ≈ 0.2100, peq(S=4) ≈ 0.2074, peq(S=8) ≈ 0.2057, etc. (site). Note that the limiting 

value peq(S→∞) ≈ 0.2055 is below peq(S=∞) ≈ 0.2071 obtained from analysis of behavior for 

a vertical interface in Sec.3B. To emphasize this point, Fig. 10 also shows the behavior of 

V(p, S= ∞) versus p for a vertical interface. The curves for V(p, S) versus p for large S pivot 

around the point (p=peq(S→∞), V=0) and appear to converge uniformly to the curve V(p, 

S=∞) versus p, as S→∞. This feature is shown most clearly in the inset to Fig.10. Such 

detailed behavior likely does not reflect the exact behavior of the QCP. Based on these 

results, the site-approximation prediction for the regime of generic two-phase coexistence is 

peq(S→∞) ≈ 0.2055 < p < peq(S=1) ≈ 0.2113 in the sense described in Sec.1. 

The trends in these site-approximation results are qualitatively consistent with exact 

QCP behavior as determined in simulation studies [8,10]. Two specific features should be 

noted. First, for moderate S≥1, the site approximation yields reasonably accurate values for 

V(p, S) if one compares simulation to approximation for the same δp = p - peq(S). Second, 

and perhaps more significantly, just as for exact QCP behavior observed from simulations 

[10], one finds a tendency of the V(p, S) curves for different S to merge for increasing p 

approaching the spinodal point. Actually, our numerical analysis indicates that these 
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velocities are not exactly equal when p=ps. However, from a broader perspective, a tendency 

for the V(p, S) curves to merge provides a new characterization of the metastable regime. 

One simple perspective on the tendency for V(p, S) curves to merge comes 

examination of the discrete RDE’s given in Sec.3A. Let x denote the physical distance in the 

direction of propagation (measured in lattice constants), so that x = dS m = m/√(1+S2) in 

terms of the diagonal or off-diagonal row number m for interfaces of slope 1≤S<∞, and x = i 

in terms of column number i for vertical interfaces. Then, for profiles with slowly varying 

coverages, all of the forms ∆, ∆S, and ∆1,S of the discrete Laplacian reduce to ∂2/∂x2. 

Consequently, setting D(θ) = ½ θ(1-θ) as in Sec.3A, the discrete reaction-diffusion equations 

(21) and (22) for 1≤S<∞, as well as the equations (19) for S=∞, reduce to the same 

continuum RDE 

∂θ/∂t ≈ p(1-θ) - θ(1-θ)2 + D(θ) ∂2θ/∂x2,                (28) 

provided that we neglect higher-order terms which are quadratic in profile curvature. This 

feature together with the observation that interface profiles become broader for increasing p 

explains the tendency for the V(p, S) to merge for different S. As an aside, we note that the 

continuum RDE (28) does not have a mass-conserving form for the diffusion term. It is also 

distinct from the RDE describing behavior in a modified QCP with particle hopping to NN 

empty sites at rate h in the hydrodynamic limit h→∞ in which D=h=constant [1, 17]. 

Given the feature that merging of velocity curves occurs both in the site 

approximation and in simulations of exact model behavior, further elucidation is appropriate. 

Examination of terms dropped in going from the discrete RDE’s to (28) suggests that the 

difference between the V(p, S) for different S scales like the inverse 4th power of a suitable 
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measure of the interface profile width. Indeed, we find a linear variation of the difference δV 

= V(p, S=1) - V(p, S=2) with the 4th power of a measure of the maximum gradient of the 

profile (the inverse of this quantity measuring interface width). See Fig.11. Numerical 

evidence indicates that δV oscillates weakly and does not exactly reach zero as p → ps. 

Another perspective comes from the development of “dispersion relations” for interface 

propagation in Appendix B. 

3.4. Site-Approximation Analysis of Planar Critical  Perturbations 

For p < ps(site), one can consider planar vertical perturbations of the active state 

where again coverages and correlations depend only on column index i. One might expect 

that such a perturbation of the active state will always decay for sufficiently small p. 

However, at least for p sufficiently close to ps(site), there should exist a critical size above 

which the perturbation will survive and grow. In the latter case, a localized region of the 

absorbing state will develop, and spread by propagation of two interfaces traveling outwards 

in opposite directions. These concepts have analogues for continuum RDE’s which provide 

mean-field descriptions of bistable systems. In the continuum case, the unique shape of the 

planar critical perturbation or “critical nucleus” is readily determined, including its maximum 

or peak coverage [27]. The size and shape of the unstable steady-state profile of this critical 

perturbation obtained from the discrete RDE’s for the site approximation is of primary 

interest here.  

Clearly, the maximum (peak) coverage of the critical perturbation must be strictly 

less than unity for p > peq(S=∞). Otherwise, a propagating front would develop spreading the 

absorbing state across the system. Furthermore, one might expect that this peak coverage 
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should increase continuously and approach unity as p decreases to peq(S=∞). In this case, the 

profile of each side of the critical perturbation will correspond to the stationary interface 

between active and absorbing states at p=peq(S=∞). The possibility of an unstable critical 

perturbation with the peak coverage less than unity for some p < peq(S=∞) would seem to 

contradict the feature that the active state is more stable. Such a perturbation larger than this 

critical size could not grow indefinitely. However, it could grow transiently creating a local 

region of the absorbing state bordered by stationary interfaces separating the active state. Its 

stability is ensured by the special feature of the QCP that vertical poisoned strips cannot be 

eroded. This “discrete anomaly” is realized within the site approximation, but has no 

analogue in the continuum case.  

Another feature of our analysis of critical perturbation behavior for the discrete 

RDE’s is that we can select different symmetry classes for the perturbation, contrasting the 

continuum case. We first consider the case of profiles which have reflection symmetry about 

i=0 so that θi = θ-i and θi →θactive, as i→∞, where θ0 is the maximum coverage in the profile. 

Analysis of the steady-state form of (19) for the critical perturbation reveals that  

θ1 = 1 – p/θ0, and θi+1 = 2 - θi-1 - 2p/θi  for i≥1.               (29) 

Selection of θ0 = θ0(p), which determines the entire profile, is non-trivial as it must 

produce the desired asymptotic behavior, θi → θactive(p), as i→∞. The forms of critical 

perturbations symmetric about i=0 determined in this way are shown in Fig.12a for various p 

≥ peq(S=∞). We now comment further on two limiting cases. First, as p decreases towards 

peq(S=∞), the peak coverage, θ0 does approach unity, so the profile of each side of the critical 

profile approaches the stationary interface described in Sec.3B. From (29), θ0(p) = 1 implies 
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that θ1(p) = 1-p at p = peq(S=∞), a result utilized in Sec.3B. Second, as p increases towards 

ps(site) from below, the size of the critical perturbation should decrease and ultimately 

vanish. Consistently, choosing θ0 = θactive = ½ (site) at p = ps = ¼ (site) in (29) implies that all 

θi = θactive = ½ for all i>0. 

Next, we consider perturbations which are reflection symmetry about i= -½. Now, θ0 

= θ-1 is the maximum coverage, and θi = θ-i-1 for i≥1, where θi → θactive, as i → ∞. Analysis of 

the steady-state form of (19) for the critical perturbation now reveals that 

θ1 = 2 - θ0 -2p/θ0 → 1-2p, as θ0 →1,                 (30) 

which yields distinct behavior from that associated with (29). See Fig.12b. A more complete 

analysis reveals that the size of the critical perturbation vanishes at p = ps = ¼ (site), and 

increases as p decreases towards peq(S=∞). However, θ0 = θ-1 only reaches a value of θ0 ≈ 

0.9417, rather than unity, at p= peq(S=∞). Furthermore, a critical perturbation with θ0<1 

exists for a range p0 < p < peq(S=∞) ≈ 0.2071, where p0 ≈ 0.1962. One finds that θ0 →1, as p 

→ p0. Thus, for critical perturbations in this symmetry class, we have realized the “discrete 

anomaly” mentioned above. For p0 < p < peq(S=∞) ≈ 0.2071, perturbations exceeding the 

critical size grow transiently. 

Another perspective on these critical perturbations comes from representing their 

profiles in terms of the vertices of polygons inscribed by continuous curves generated from 

the orbits of the iterated map (26) as shown in Fig.9. In Fig.13, we represent both symmetry 

classes of critical perturbations for p = 0.24 < ps(site) = ¼ and for p = peq(S=∞) ≈ 0.2071. In 

addition, we represent the critical perturbation symmetric about i= -1/2 for p ≈ 0.1962 < 

peq(S=∞). Here, the continuous curve extends beyond the physical phase space, 0≤ u, v ≤1. 
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Finally, we note that one can extend the above concept of critical perturbations to 

situations where the coverages and spatial correlations are constant along rows of finite slope 

S. The basic features are illustrated by the case S=1 where coverages are labeled by the 

diagonal row number m as in Sec.3C. Consider perturbations of the active state where the 

maximum coverage corresponds to θ0, and where θm = θ-m → θactive, as m→∞. The profile of 

critical perturbations is determined from analysis of the steady-state form of (21). It follows 

that  

θ1 = 1 – p1/2(1- θ0)
1/2 (θ0)

-1/2, and θm+1 = 2 - θm-1 – 2p1/2(1- θm)1/2 (θm)-1/2 for m>0.  (31) 

As p → peq(S=1) from above, one has θ0 → 1, so from (31) all θm → 1 for fixed m. 

The profile of the critical perturbation becomes infinitely broad, each side corresponding to 

the stationary profile at p = peq(S=1). As p → ps =1/4 from below, one has θ0 → θactive = ½, so 

from (31) all θm → θactive, and the critical perturbation decreases in size and vanishes. 

 

3.5. Pair-Approximation Formulation and Analysis of  Planar Interfaces 

and Critical Perturbations 

The pair approximation was particularly successful in describing steady-state 

behavior and kinetics for spatially homogeneous systems in Sec. 2B and 2C. Thus, we 

naturally extend its application to consider the propagation of planar interfaces separating 

active and absorbing states for p < ps(pair), as well as the behavior of associated planar 

critical perturbations. As for the site approximation treatment, the coverages depend on the 

column index, i, for vertical interfaces, or on the diagonal or off-diagonal row index, m, for 

interfaces with finite slope S. In the pair approximation treatment, the same is true for pair 
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probabilities of which there are now two types: those for neighboring sites in the same 

column, denoted by ψ’s, and those for neighboring sites in the same horizontal row, denoted 

by ϕ’s. See Fig. 8. The analysis here starts with the exact master equations for a non-uniform 

system (16) and (17), and factorizes multi-site probabilities in terms of the above site and 

pair probabilities. This leads to particularly complex sets of coupled discrete RDE’s for these 

quantities. These are presented in Appendix C. 

As with site approximation, it is instructive to first consider the special case of 

vertical interfaces and associated planar critical perturbations. Here, behavior is impacted by 

the feature incorporated into the discrete RDE’s for the pair approximation that filled vertical 

columns or strips cannot be eroded. Numerical integration of these discrete RDE’s reveals 

that such vertical absorbing strips are stationary for p ≤ peq(S=∞) ≈ 0.10601 (pair), and that 

the absorbing state expands into the active state only for p > peq(S=∞) (pair). Analysis of 

planar vertical critical perturbations reveals a “discrete anomaly” as seen already in the site 

approximation in Sec.3.4, i.e., a finite perturbation of the active state by the absorbing state 

with peak coverage less than unity persists for a small range of p below peq(S=∞) (pair). A 

detailed presentation of these results is provided in Appendix D. 

Next, in Fig.14, we present results of a comprehensive numerical analysis of the 

discrete RDE’s within the pair approximation for the interface propagation velocity, V(p, S), 

versus p. We consider diagonal and off-diagonal interfaces with slope S≥1, and vertical 

interfaces with slope S= ∞. The sign convention of Fig. 8 is used. We determine that peq(S=1) 

≈ 0.1083 (pair) as mentioned in Sec.2A, peq(S=2) ≈ 0.1078 (pair), peq(S=4) ≈ 0.1070 (pair), 

peq(S=8) ≈ 0.1062 (pair), etc.. Analogous to behavior in the site approximation, peq(S→∞) ≈ 
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0.1056 (pair) is below the value of peq(S=∞) ≈ 0.1060 (pair). More generally, overall 

behavior of this family of curves for various S is qualitatively similar to that observed for the 

site approximation. In particular, this includes a pivoting of the curves around the point 

(p=peq(S→∞), V=0) and apparent uniform convergence to the curve V(p, S=∞) versus p, as 

S→∞.  

More significantly, the overall behavior and trends in these pair approximation results 

for V(p, S) versus p are in semi-quantitative agreement with exact QCP behavior as 

determined in simulation studies. In particular, for moderate S≥1, the pair approximation 

yields roughly the correct values for V(p, S) if one compares with simulation values for 

either the same absolute p or the same δp = p-peq(S). For p=0, one can determine exactly the 

velocity of shrinkage of an absorbing strip with various slopes in the QCP to obtain V(p=0, 

S) = ¼ S(S+1)-1(S2+1)-1/2 [8,10]. These values are quite close to pair-approximation 

predictions. Just as for exact QCP behavior (and in the site approximation analysis), one 

finds a tendency of the V(p, S) curves for different S to merge approaching the spinodal 

point. However, as in the site approximation, pair-approximation velocities are not exactly 

equal when p=ps(pair).  

Summarizing the above results, the pair-approximation prediction for the regime of 

generic two-phase coexistence is peq(S→∞) ≈ 0.1056 < p < peq(S=1) ≈ 0.1083 in the sense 

described in Sec.1. This result should be compared with precise simulation predictions for 

generic two-phase coexistence in the QCP for peq(S=∞) ≈0.0869 < p < peq(S=1) ≈ 0.0944 [8]. 

In principle, one could extend this analysis to higher-order approximations. See Appendix E. 
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3.6. Dynamics and Criticality for Two-Dimensional D roplets 

For analysis of metastability in the vicinity of discontinuous transitions, as well as for 

insight into generic two-phase coexistence, it is instructive to analyze the dynamics of two-

dimensional droplets of one phase embedded within the other [8,10,12,13]. 

We first consider behavior in the regime of generic two-phase coexistence, peq(S→∞) 

< p < peq(S=1), where the embedded droplet should eventually disappear since both active 

and absorbing states are stable against local perturbations. In analyzing the behavior of a 

droplet of the absorbing phase embedded in the active phase, we consider a “worst case 

scenario” of a large square-shaped poisoned droplet with edges aligned with the principal 

lattice directions (S=0 and S=∞). Then, initially the droplet should grow since p > peq(S=∞). 

Numerical integration of the full two-dimensional form of the non-uniform master equations 

(16) and (17), after applying a truncation approximation, reveals that the droplet does indeed 

grow initially. However, growth at the corners of the droplet is inhibited, and thus facets with 

slope S= ±1 develop. Subsequently, these shrink producing an octagonal shaped cluster. 

Eventually the original sides with slopes S=0 or ∞ grow out producing a diamond-shapes 

cluster which then shrinks and disappears. See Fig.15 for site-approximation results with 

p=0.209. Analogous behavior is observed in simulation studies, although fluctuations conceal 

the simple geometric progression of droplet shapes [8,10]. In analyzing the behavior of a 

droplet of the active phase embedded in the absorbing phase, we also consider a “worst case 

scenario” of a large diagonal active or empty droplet with edges having slopes S=±1. Then, 

initially the droplet will grow since p < peq(S=1). However, ultimately growth is constrained 

by the feature of the QCP preserved in truncation approximations that an empty or active 
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droplet embedded in the absorbing phase cannot grow outside of a rectangle inscribing that 

droplet. Indeed, the diamond-shaped droplet initially grows outward to form a larger square 

droplet, but then growth is arrested and the droplet shrinks and disappears. See Fig.15 for 

site-approximation results for p=0.209. 

Second, we discuss the existence of critical droplets of the absorbing phase embedded 

in the active phase for peq(S=1) < p < ps (noting that for smaller p such droplets shrink and 

perish). Analogous to our discussion of planar perturbations in Sec.3D and 3F, one expects 

that a small perturbation will decay, and that there exists a critical size only above which a 

perturbation will survive. In the latter case, a localized region of the absorbing state will 

develop, and spread by propagation of a curved interface traveling outwards. Of primary 

interest here is the size and shape of the critical perturbation. This unstable steady-state 

profile can be obtained by analysis of the time-independent version of (16) and (17) after 

applying a truncation approximation. Again we must also specify the “symmetry class” of the 

perturbation. We consider the case of profiles which have a 4-fold symmetry about the site (i, 

j) = (0, 0), so that θi,j = θ±i,±j → θactive, as |i| + |j|→∞, so θ0,0 is the maximum coverage in the 

profile. In the site approximation, factorizing the steady-state form of (16) produces a set of 

recurrence relations for the coverages θ0 = θ0,0, θ1 = θ0,±1 = θ±1,0, θ2 = θ±1,±1, θ3 = θ0,±2 = θ±2,0, 

etc., which have the form 

p(1-θ0) = θ0(1-θ1)
2, 2p(1-θ1) = θ1(1-θ2)(1-θ0) + θ1(1-θ2)(1-θ3),…             (32) 

These are solved (non-trivially) for the θm>0 in terms of θ0=θ0(p) and then θ0 is 

selected to satisfy the boundary condition for |i| + |j|→∞. 
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4. Conclusions 

We have developed an approximate analytic treatment for the QCP based on 

truncation of the exact master equations for both spatially homogeneous and inhomogeneous 

states. Qualitative features of exact model behavior are recovered even with the simplest site 

approximation. The pair approximation is even more effective, being capable of semi-

quantitative predictions. Analysis is facilitated by exact simplification of the master 

equations for the QCP before applying the factorization approximations. This simplification 

is aided by the specific form of the desorption rates in our Durrett-type formulation of the 

QCP.  

We should also emphasize that the strategies developed and applied here are 

applicable to a broad class of non-equilibrium lattice-gas adsorption-desorption or reaction 

models. Our approach extends to treat the QCP on other types of lattices as illustrated in 

Appendix F. Furthermore, these techniques are effective for analysis of generalized QCP 

models which include other pathways for desorption as well as particle hopping [30]. One 

could apply this type of analysis to models for the stochastic dynamics of systems described 

by a Hamiltonian where the steady states are conventional equilibrium states. A close 

analogue to the QCP is an adsorption-desorption model with random desorption at empty 

sites at rate p, and correlated desorption at a rate proportional to αn where n denotes the 

number of filled nearest neighbors (choosing α<1 for attractive interactions). The 

equilibrium states are described by the Ising lattice-gas model. For sufficiently small α<1, 

site or pair approximations to the exact master equations produce bistability between stable 

high and low coverage states. Extending this analysis to non-uniform states, one can 
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determine the equistability pressure. One generally finds an artificial dependence on interface 

orientation introduced by the approximation, but absent in exact model behavior. 

These dynamic mean-field truncation approximations invariably fail to capture 

certain finer details associated with fluctuation-controlled behavior either for non-

equilibrium models or for Hamiltonian-based models. For the QCP, these shortcomings 

include a failure to describe nucleation-mediated transitions from the active state to the 

absorbing state for p>peq(S=1), and as inability to capture existence and subtle dynamics 

“coarsening states” described in Sec. 2E. The latter are replaced by unstable steady states in 

dynamic mean-field formulations. These analytic formulations do however provide 

additional insight into relaxation kinetics and interface propagation beyond that attained with 

KMC simulations. 

One spin-off of our analysis of spatially non-uniform states is the generation of novel 

classes of discrete RDE’s which provide new challenges for mathematical analysis. These 

involve not just site coverages or concentrations, but also local spatial correlations. Also, the 

“diffusive coupling” arising from the correlated desorption dynamics (rather than from 

particle hopping) is more complex than in conventional forms describing discrete diffusion 

[18-20]. 
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Appendix A: Higher-Order Dynamic Cluster Approximat ions 

Given the success of the pair approximation in describing spatially uniform states as 

demonstrated in Sec.2, it is natural to explore higher-order approximations. To systematize 

such approximations, it is convenient to first rewrite multi-site configuration probabilities in 

terms of filled site configurations, then to factorize these exactly in terms of conditional 

probabilities, and finally to apply a truncation approximation to the conditional probabilities 

[14]. An example of the first two steps is as follows: 
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Here, Q’s denote conditional probabilities for finding the site denoted x filled given 

the other sites denoted by x′ are specified filled, so e.g., Q =P[xx]/P[x] = Q[x x′]. A natural 

truncation procedure for the Q’s is to ignore the influence of x′-sites more than a specific 

suitably-defined distance from the filled x-site of interest [14]. Specifically, our m-NN 

approximation ignores all x′-sites which are further than mth nearest-neighbors from the x-

site. Thus, the 0-NN approximation ignores all x′-sites (the site approximation). The 1-NN 

approximation considers only NN x′-sites (the pair approximation). The 2-NN considers NN 

and also diagonal or 2NN x′-sites, etc. Thus, for example, one has that 
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and this Q is left untruncated in the 3-NN approximation. The accuracy of these truncation 

approximations would benefit from a propensity for specified filled x′-sites to shield the x-

site of interest from the influence of more distant x′-sites. For QCP for p=0, i.e, irreversible 

cooperative desorption, does exhibit a corresponding filled-site Markov field property, i.e., 

walls of filled sites shield the influence of sites on one side from the other [14]. However, 

such “complete shielding” is absent in the QCP with p>0.  

After implementing the truncation approximation, the Q’s can be rewritten as ratios 

of P’s. One performs this procedure on a sufficient number of hierarchical equations for P’s 

to obtain a closed coupled set of N(m) evolution equations, where one expects that N(m) will 

increase quickly with the order of the approximation, m [14]. These closed evolution 

equations can then be integrated to determine kinetics, or the corresponding N(m) coupled 

algebraic equations obtained from dP/dt = 0 can be solved to determine steady-state behavior. 

Appendix B: “Dispersion Relations” for V (P, S) in the Site 

Approximation 

Additional characterization of the orientation dependence of interface propagation is 

possible by focusing on the form of the edge of the front close to the active state. 

Specifically, one writes θ = θactive + δθ where δθ →0 at this front. Analogous to our treatment 

of stationary profiles in Sec.3B, we assume that δθ decays exponentially like  

δθ ~ λ(x-Vt) = exp[-κ(x-Vt)], as x→ ∞,                (B1) 
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where λ=e-κ and x=i for vertical interfaces, or x=dS m diagonal or off-diagonal interfaces, is 

the appropriate physical distance in the propagation direction (cf. Sec.3C). Here, for 

convenience, we adopt the convention that V>0 when the absorbing state displaces the active 

state (in contrast to that used in the text). Then, substitution into the discrete RDE’s for the 

site approximation followed by linearization yields “dispersion relations” of the form 

κ V = -(1-2θactive)(1-θactive) + D(θactive) FS(κ),               (B2) 

Where, FS=∞(κ) = 2 cosh(κ) - 2        

 and  F1≤S<∞(κ) = (1+S2)-1 [2⋅cosh(κdS) - 2]/dS
2 + S2(1+S2)-1 [2⋅cosh(κSdS) - 2]/(SdS)

2. 

In the slow decay regime κ<<1, one has that FS(κ) ~ κ2, and (B2) reduces to the 

relation obtained from analysis of the continuum RDE (28). However, in general for finite 

decay rate, there is a dependence of κ on interface orientation. Since V>0 for p close to ps, 

(B2) has a solution for κ=κs which is non-vanishing at p=ps satisfying 4κs Vs = FS(κs). Since 

Vs ≈ 0.06 is quite small, it follows that FS(κs)≈ (κs)
2 and κs ≈ 4Vs roughly independent of 

interface slope S. 

Appendix C: Pair-Approximation Formulation for Plan ar Interfaces 

First, we consider propagation of vertical interfaces with slope S=∞ separating active 

and absorbing states. After factorizing the non-uniform hierarchical master equations (16) 

and (17), one obtains a coupled set of equations for the coverages, θi = P[xi], in each column 

i, and for probabilities of pairs of neighboring filled sites oriented horizontally, ϕi-1/2= P[xi-1 

xi], in columns i-1 and i, and vertically, ψi, in column i. See Fig.8. These equations have the 

form 
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d/dt θi = p(1-θi) - ½ (θi - ψi)(2θi - ϕi-1/2 -ϕi+1/2)/θi,                (C1) 

d/dt ψi = 2p(θi - ψi) – ½ ψi (θi - ψi)(2θi - ϕi-1/2 - ϕi+1/2)/(θi)
2.             (C2) 

d/dt ϕi-1/2 = p(θi-1+θi -2ϕi-1/2) - ½ ϕi-1/2(θi-ϕi+1/2)(θi-ψi)/(θi)
2  

                   - ½ ϕi-1/2(θi-1-ϕi-3/2)(θi-1-ψi-1)/(θi-1)
2,               (C3) 

From this form, it is clear that a poisoned column with θi = ψi = 1 will remain 

poisoned for all later times, so that absorbing vertical strips cannot be eroded within this 

approximation. Also, if columns i and i-1 are poisoned, then it follows that ϕi-1/2 = 1 for all 

later times.  

Second, we consider the evolution of diagonal interfaces with slope S=1. As in our 

site-approximation treatment, each diagonal row of sites is labeled by m and has its own 

coverage, θm. Conveniently, by reflection symmetry in a line orthogonal to these rows, the 

probability for an NN pair of filled sites in diagonal rows m and m+1 is independent of 

whether the pair is horizontal or vertical on the square lattice. This probability is denoted 

here by ϕm+1/2 since the center of this pair is midway between rows m and m+1. Factorizing 

the non-uniform master equations (16) and (17) and simplifying yields 

d/dt θm = p(1-θm) - ¼ (2θm - ϕm-1/2 - ϕm+1/2)
2/θm,               (C4) 

d/dt ϕm-1/2 = p(θm-1 + θm - 2ϕm-1/2)  

        - ¼ ϕm-1/2 (θm-1 - ϕm-3/2)(2θm-1 - ϕm-1/2 - ϕm-3/2)/(θm-1)
2  

        - ¼ ϕm-1/2 (θm - ϕm+1/2)(2θm - ϕm-1/2 - ϕm+1/2)/(θm)2.            (C5) 

Third, we can extend the above analysis to consider interfaces with general integer 

slope S≥1. As for the site approximation, off-diagonal rows with slope S, labeled by m, will 

have distinct coverages, θm. However, now we must also introduce two probabilities, ϕm+S/2 
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for NN horizontal pairs of filled sites in rows m and m+S, and ψm+1/2 for NN vertical pairs of 

filled sites in rows m and m+1. See Fig.8. 

The above equations cannot be simply written in the conventional discrete RDE form 

as for the site approximation. However, our selected notation illustrates that they do 

effectively have such a form. For example, for linear profiles, the equations reduce to those 

for the homogeneous pair approximation in Sec.2.1. 

Appendix D: Pair-Approximation Analysis of Vertical  Interfaces and 

Planar Critical Perturbations 

Here, we analyze stationary vertical profiles within the pair approximation including 

stationary interfaces for p ≤ peq(S=∞), and planar critical perturbations from the active state 

for p ≤ ps (pair).  In both cases, analysis utilizes the steady-state form of (C1)-(C3). It is 

convenient to introduce the conditional probability, Qi, for finding a particle or filled site in 

column i directly above (or below) a specified filled site in the same column, so that ψi = θi 

Qi.  Then, noting that ϕi±1/2 can be eliminated from (C1) and (C2), one obtains the steady-

state relation 

Qi = 2θi/(1+θi) ≥ θi.                  (D1) 

(D1) is the analogue of the relation (13) for homogeneous systems. Using (D1) to eliminate 

ψi from (C1) and (C3) yields a closed pair of recurrence relations 

ϕi+1/2  = 2(1-p)θi - ϕi-1/2 – 2p, and                 (D2) 

2p(θi-1+θi -2ϕi-1/2) = ϕi-1/2(θi -ϕi+1/2)(1-θi)/[θi(1+θi)]  

                                 + ϕi-1/2(θi -ϕi-3/2)(1-θi-1)/[θi-1(1+θi-1)],                                   (D3) 
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or alternatively that θi =ψi =1 in which case (D2) and (D3) do not apply. 

First, we consider stationary vertical interfaces between the absorbing and active 

states for p < peq(S=∞). These stationary solutions are chosen to satisfy  

θ0 = θ-1 =… 1, ϕ-1/2 = ϕ-3/2 =… 1, with  

1 > θ1 > θ2 >… as well as 1 > ϕ1/2 > ϕ3/2 >…                                                           (D4) 

with θi → θactive(p), and ϕi+1/2 →2(θactive)
2/(1+θactive), as i→∞. Then, (D2) and (D3) apply for 

i>0 and can be solved as follows. For i=1, substitution of (D2) into (D3) gives a complex 

relationship between ϕ1/2 and θ1. However, one can readily check that the solution is θ1=ϕ1/2, 

as is required from basic probability considerations [31]. Then, using (D2) for i=1 

immediately gives ϕ3/2 = ϕ3/2(θ1) as a function of θ1. For i>1, recursive substitution of (D2) 

into (D3) gives a cubic equation for θi in terms of previously determined quantities θi-1, ϕi-3/2, 

ϕi-1/2, and ϕi+1/2 which are known functions of θ1. Thus, one can obtain all θi>1 = θi>1(θ1) as 

functions of θ1, which is still unknown. The value of θ1 must be selected to guarantee 

satisfaction of the desired boundary condition as i→∞. The stationary profile is a sharp step 

function with θ1 = θ2 =…=0 etc. for p=0, and becomes progressively broader as p increases. 

Next, we analyze stationary planar vertical critical perturbations from the active state 

for p < ps(pair). First, consider perturbations which have reflection symmetry about i=0, 

where θ0<1 is the maximum coverage. Then, one has θi = θ-i as well as ϕi+1/2 = ϕ-i+1/2 for i≥0, 

together with the boundary conditions θi → θactive(p), as i→∞. Analysis of the first equation 

in (D2) for i=0 yields 

ϕ1/2 = θ0 – p(1+ θ0), so that ϕ1/2 →1-2p as θ0 →1.              (D5) 
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Perhaps of most significance is that that limiting behavior θ0 →1 [32] occurs when p 

≈ 0.10598, slightly below peq(S=∞) ≈ 0.10601 (pair). In addition, one can show that ϕ1/2 → 

1/6 (the spinodal value of the active steady-state pair probability) as p→ps = 1/8 (pair), 

corresponding to a decrease in size and disappearance of the critical perturbation at the 

spinodal. One can also consider perturbations which have reflection symmetry about i = -1/2. 

Finally, we note that one can explore the recurrence relations (D2) and (D3) in the 

form of an iterated map, (ui, vi) = (θi-1, θi) → (ui+1, vi+1), which at each step involves solving 

a cubic equation for coverage (after specifying an initial value for the horizontal pair 

probability). As in the site approximation, we can start with values of the coverage and pair 

probability randomly perturbed from the active steady-state values, and then generate 

associated orbits. Unlike the pair approximation, these orbits often survive only a finite 

number of iterations before the solution becomes complex. Also, this procedure does not 

generate a simple continuous curve symmetric about u=v as in the site approximation, but 

rather a more complex structure. Longer lived orbits do tend to generate a continuous curve, 

but it does no pass through the active fixed point and is not tangent to u=1 and v=1 at 

p=peq(S=∞) (pair).  These features presumably underlie more complex behavior described 

above for critical perturbations symmetric about i=0. 

Appendix E: Higher-Order Approximations for Planar Interfaces 

Rather complicated discrete RDE’s describing non-uniform states can be derived for 

higher-order truncation approximations. One expects to find the same qualitative behavior as 

within the site and pair approximations. However, one should not expect to find the same 

degree of improvement in agreement with exact results as observed in going from the site to 
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the pair approximation.  Primarily for this reason, we only describe results for propagation of 

an interface with slope S=1 in the 2NN approximation. In this case, the reduced symmetry 

relative to the spatially uniform system means that one must consider probabilities for 8 

(rather than 5) quantities for each diagonal row. Numerical analysis of these equations 

reveals that peq(S=1) ≈ 0.117 (2NN). This value is actually higher than the pair-

approximation prediction, and thus deviates slightly further from the precise simulation 

result. This feature might be anticipated from examination of the shape of the equation of 

state for the 2NN approximation (relative to that for the pair approximation) shown in Fig.2. 

While it is not possible to simply determine peq(S=1) from a simple equal-area type 

construction as for equilibrium systems, this type of analysis suggests a shift of peq(S=1) to 

higher values for higher-order approximations. 

Appendix F: QCP on a Triangular Lattice 

An adsorption-desorption version of the QCP on a triangular lattice (with 

coordination number 6) has rules analogous to that on the square lattice: adsorption occurs 

randomly at rate p, and cooperative desorption of particles occurs at rate k/4 where k = 0 to 4, 

or k=6 denotes the number of adjacent pairs of NN empty sites. Simulation studies reveal a 

continuous transition to the absorbing state occurs at p ≈ 0.177 [10]. The steady-state 

coverage in the active state follows the site-approximation value more closely and for higher 

p than for the QCP on the square lattice, but it departs strongly in the vicinity of the 

continuous transition. 

It should also be noted that the exact master equations for this model on the triangular 

lattice can be simplified just as for the square lattice case. In particular, for spatially 
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homogeneous states, one has that dθ/dt = p(1-θ) – P(x2o), where P(x2o) is the probability of 

finding some site filled and two specific adjacent NN sites both empty. Thus, one recovers 

exactly the same site-approximation kinetics for this model as for the square lattice. 

Simplification of the exact master equations also extends to the spatially inhomogeneous 

case, d/dt θi,j = p(1-θi,j) – Pi,j(x2o), where Pi,j(x2o) equals one sixth of the sum of the 

probabilities of finding site (i,j) filled and one of the six possible adjacent NN pairs of sites 

both empty. 
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Figure 1. Schematic of desorption rules and rates in the QCP. 
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Figure 2.   Predictions of m-NN approximations and simulation results for steady-state 
θθθθ(p) versus p. Inset: Expanded view of differences between approximate and 
simulated steady-state θθθθ(p). 

 

 

Figure 3.   Predictions of m-NN approximations and simulation results for steady-state 
Q(p) versus p. 

 



 107 

 

 

Figure 4. Pair-approximation predictions for relaxation kinetics: (a) poisoning kinetics 
above the spinodal for δδδδps = p-ps = 0.010-0.025; (b) corresponding evolution of 
Q-θθθθ (>0 for clustering) 

 

. 

Figure 5.   Relaxation kinetics at fixed lower p below peq and ps starting from a random 
state for varying initial θθθθ=θθθθi (including θθθθi=0, an initially empty lattice, shown 
as a dashed line): (a) pair approximation predictions for p=0.1; (b) 
simulation predictions for p=0.08. Inset: the “coarsening state” achieved 
after t=2××××104 time units starting with θθθθi ≈≈≈≈ 0.76. 
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Figure 6.  Pair-approximation prediction of the phase-portrait for flow in the (θθθθ, Q)-
plane for p=0.10 below ps=1/8. The shaded region, Q≤≤≤≤(2θθθθ-1)/θθθθ, is not 
physically accessible. The dotted line, Q=θθθθ, corresponds to random states 
(cf. Fig.5). The dot-dashed line, Q=2θθθθ/(1+θθθθ), illustrates the steady-state 
relation (10). Active (A), poisoned (P), and unstable (U) states are indicated. 
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Figure 7.  Simulated prediction of the phase-portrait for flow in the (θθθθ, Q)-plane for 
p=0.08. Trajectories start from the “anti-clustering” boundary of physically 
accessible (θθθθ,Q)-space with Q=0 for θθθθ≤≤≤≤1/2, and Q=(2θθθθ-1)/θθθθ for θθθθ≥≥≥≥1/2. The 
location of the active (A) and poisoned (P) states, and the estimated location 
of the “coarsening state” (C) are also indicated. 
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Figure 8.    Schematic for labeling of rows in the non-uniform master equations and 
associated truncation approximations. 

 

 

Figure 9.    Orbit of iterated map (ui, vi) →→→→ (ui+1, vi+1) for the site approximation starting 
from a point (θθθθactive(p), θθθθactive(p)+εεεε) close to the unstable fixed point. Behavior 
is shown for p=0.10 and p=peq(S=∞∞∞∞) ≈≈≈≈0.2071 (for which stationary profiles 
exist), and for p=0.22 (no stationary profile).  

 



 111 

 

 

Figure 10. Predictions for V(S,p) versus p from the site approximation. Inset: Detailed 
view of behavior for p close to the equistability pressure for various 
interface orientations.  

 

 

Figure 11.  Difference δδδδV = V(p, S=1)-V(p, S=2) versus the 4th power of a measure of the 
maximum gradient, gmax, of the profile. Here gmax is taken as the maximum 
coverage difference between consecutive rows aligned with the interface. 



 112 

 

 

Figure 12.  Site-approximation results for planar vertical critical perturbations: (a) 
perturbations symmetric about i=0 for p=peq(S=∞∞∞∞)≈≈≈≈0.2071 and p=0.225; 
(b) perturbations symmetric about i=-1/2 for p=peq(S=∞∞∞∞)≈≈≈≈0.2071 and 
p=0.225. 

 

 

Figure 13.  Characterization of planar vertical critical perturbations in terms of orbits 
of the iterated map for the site approximation. 
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Figure 14. Predictions for V(S,p) versus p from the pair approximation. Inset: Detailed 
view of behavior for p close to the equistability pressure for various 
interface orientations. 

 

 

Figure 15.  Dynamics of embedded droplets in the two-phase coexistence region as 
predicted by the site approximation: (a) poisoned square-shaped droplet in 
the active phase; (b) diamond-shaped empty or active droplet in the 
absorbing phase. 
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Abstract 

 We analyze a discontinuous non-equilibrium phase transition between an active (or 

reactive) state and a poisoned (or extinguished) state occurring in a stochastic lattice-gas 

realization of Schloegl’s second model for autocatalysis. This realization, also known as the 

Quadratic Contact Process, involves spontaneous annihilation, autocatalytic creation, and 

diffusion of particles on a square lattice, where creation at empty sites requires a suitable 

nearby pair of particles. The poisoned state exists for all annihilation rates p>0 and is an 

absorbing particle-free “vacuum” state. The populated active steady state exists only for p 

below a critical value, pe. If pf denotes the critical value below which a finite population can 

survive, then we show that pf < pe. This strict inequality contrasts a postulate of Durrett, and 

is a direct consequence of the occurrence of coexisting stable active and poisoned states for a 

finite range  pf ≤ p ≤ pe (which shrinks with increasing diffusivity). This so-called generic 

two-phase coexistence markedly contrasts behavior in thermodynamic systems. However, 
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one still finds metastability and nucleation phenomena similar to those in discontinuous 

equilibrium transitions. 

PACS Numbers: 05.70.Fh, 02.50.Ey, 05.50.+q, 05.70.Ln 

I. Introduction 

 Deterministic non-linear chemical kinetics and the corresponding bifurcations or 

phase transitions of non-equilibrium steady states for macroscopic reaction systems have 

traditionally been analyzed by mean-field rate equations1,2. The associated deterministic 

reaction front propagation and pattern formation have also been described by reaction-

diffusion equations at the mean-field level1,3,4. In addition, there are numerous studies 

examining stochastic effects on chemical kinetics via mean-field master equations1,5,6 and on 

associated pattern formation via multivariate master equations1. The latter can be recast 

utilizing time-dependent Ginzburg-Landau-type formulations to produce Langevin reaction-

diffusion equations6-8.  

The deterministic mean-field analyses have been successfully applied to three-

dimensional solution-phase, gas-phase, electrochemical and biochemical systems, with 

perhaps the best known study of pattern formation being for the Belousov-Zhabotinskii 

reaction1,2. Fluctuation effects have been considered particularly in the context of 

biochemical reactions9. Heterogeneous catalysis on extended single-crystal surfaces under 

low-pressure conditions has provided a remarkably rich variety of two-dimensional examples 

of deterministic non-linear dynamics10 and pattern formation11, even for mechanistically 

simple surface reactions. Again, mean-field analysis is traditionally applied. Fluctuation 
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effects have also been considered in surface reactions under conditions where they become 

more significant, e.g., for nanoscale systems12,13 and under higher-pressure conditions13,14. 

           However, it is natural to attempt to advance beyond mean-field-level descriptions of 

chemical reaction phenomena to statistical mechanical analyses of appropriate atomistic 

models for interacting particle systems. This is particularly relevant for situations where the 

reactants are not “well-stirred” or spatially randomized, as applies for surface reactions. Two 

of several possible modeling strategies are as follows. The first applies reactive lattice gas 

automata models where particles on a lattice are assigned velocities (generally subject to 

randomization) and move around colliding and reacting15,16. One can thereby describe 

reactive hydrodynamics and reaction-diffusion phenomena which might be analyzed via 

lattice Boltzmann equations. The second applies traditional stochastic lattice-gas models 

where the state of sites changes at specified rates associated with reaction, diffusion, etc. 

(akin to the Glauber model, except that the rates generally do not satisfying detailed-

balance)17. These models are described by an exact hierarchy of master equations for multi-

site probabilities which is amenable to approximate analysis. The current study and the 

following discussion focus on this second class of models. 

Indeed, for stochastic lattice-gas “reaction” models, there has been considerable 

interest in non-equilibrium phase transitions. Most attention has been paid to universality in 

continuous transitions [17-19], with relatively little investigation of discontinuous transitions. 

One exception is studies of the Ziff-Gulari-Barshad (ZGB) model20 for monomer-dimer 

surface reactions which exhibits a discontinuous transition to a monomer-poisoned absorbing 

state. Various related phenomena have been analyzed in some detail: propagation and 

fluctuation behavior of interfaces between active and poisoned states20-22; epidemic 
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properties of an active droplet embedded in the poisoned state23,24; and nucleation of droplets 

within the metastable active state21,25. While a realistic and predictive atomistic-level 

description of surface reactions generally requires far more complex models26, simple ZGB-

type models are invaluable for elucidating basic issues associated with non-equilibrium phase 

transitions in reaction systems. In fact, it is natural to search for even simpler single-

component reaction models to explore remaining fundamental issues for discontinuous phase 

transitions.  

This last observation motivates our consideration in this paper of a stochastic lattice-

gas realization of a Schloegl’s second model3,27,28 for autocatalysis. This model for 

autocatalysis in a reactive system of particles, X, includes the following mechanistic 

steps3,27,28:  

X→∅ (spontaneous annihilation), 2X→3X (autocatalytic creation),   (1) 

and possibly particle diffusion. Spontaneous annihilation occurs at rate p, and autocatalytic 

creation occurs at a suitably prescribed rate subject to the requirement of at least one 

preexisting nearby pair of particles. A more general formulation also includes spontaneous 

creation ∅→X, but this process is excluded in our study. Traditional off-lattice formulations 

also include the autocatalytic annihilation process 3X→2X in order to avoid population 

explosion3,27,28. However, in our stochastic lattice-gas formulation, autocatalytic particle 

creation requires an empty site ∅, and is thus more accurately represented as29-31 

2X+∅→3X. This empty site requirement automatically limits population growth. It should 

also be noted that there exist lattice gas automata treatments of this model15,16. Of course, 

there is no Hamiltonian or detailed-balance constraint on the rates for lattice gas formulations 

this non-equilibrium model. 
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Both off-lattice and lattice formulations display cubic mean-field kinetics, i.e., the 

rate of change of particle concentration is a cubic function of concentration, C. Upon 

increasing the annihilation rate p, there is a bifurcation in the steady-states from bistability 

(where a stable active steady state with finite population C>0 coexists with the stable C=0 

vacuum state) to monostability (where the C=0 vacuum state is the unique stable steady 

state)27-31. Consequently, this mean-field formulation of Schloegl’s second model provided a 

non-equilibrium analogue of the van der Waals description of discontinuous liquid-gas 

equilibrium phase transitions in fluids. 

The above characterization of mean-field steady-state behavior suggests that lattice 

gas realizations of Schloegl’s second model might provide a prototype for a non-equilibrium 

discontinuous phase transition. If so, it is perhaps the most simple and natural model which 

could provide a fundamental understanding of such behavior. However, it turns out that 

behavior of this non-equilibrium model depends on the specific realization and on the lattice 

dimension. For two-dimensional lattices, one can find either continuous or discontinuous 

transitions28,30. Thus, in this contribution, we will restrict our attention to a specific stochastic 

lattice-gas model realization Schloegl’s second model on a square lattice. This realization is 

also known as the Quadratic Contact Process (QCP)29-31 and it does display a discontinuous 

transition. 

In Sec.II, we describe in detail our QCP realization of Schloegl’s second model with 

particle hopping on a square lattice, as well as outlining related fundamental concepts. We 

also review previous results for this model in the limiting cases of zero and infinite particle 

diffusion. Next, in Sec.III, we analyze the steady states and their relative stability which leads 

to a characterization the discontinuous phase transition in this model and demonstrates so-
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called generic two-phase coexistence. We also analyze key aspects of the kinetics elucidating 

metastability associated with this transition. Generic two-phase coexistence in this model is 

tied to an orientation-dependence of the equistability of planar interfaces separating the 

active and poisoned states. Thus, in Sec.IV, we are motivated characterize both interface 

structure and propagation. Exploiting these insights, in Sec. V, we present a droplet analysis 

in order to characterize both phase stability in generic two-phase coexistence regime and the 

size and structure of critical droplets in the metastable regime. Concluding remarks are 

offered in Sec. VI. 

II. Model Specification and Fundamental Concepts 

A. Model Specification, Steady-States, and Critical  Annihilation Rates 

Our realization Schloegl’s second model, or equivalently of the QCP, on a square 

lattice as a stochastic Markov process involves the following components29-31: (i) 

spontaneous particle annihilation occurring randomly at rate p; (ii)  autocatalytic particle 

creation at an empty site requiring one or more diagonally adjacent pairs of occupied sites; 

specifically, the creation rate is given by k/4, where k is the number of such diagonally 

adjacent occupied pairs and thus can take the values k = 0, 1, 2,or 4; (iii)  hopping of particles 

to any adjacent empty sites at rate h (per target site). See Fig.1 for a schematic of these 

processes. A key variable is the particle density or concentration, C, i.e., the fraction of filled 

sites which satisfies 0≤C≤1. In this paper, we shall focus exclusively on the properties of this 

model for an infinite square lattice. Of course, all kinetic Monte Carlo simulations are 

performed on a finite lattice (with periodic boundary conditions) and care must be taken to 

eliminate finite-size-effects. 
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It is immediately clear that for any p>0, the “vacuum state” with no particles (C=0) 

corresponds to an absorbing steady state for this model (to use the terminology of Markov 

processes) from which the system can never escape. This state could also be described as a 

poisoned or extinguished state. However, one also expects that at least for small p, there 

exists an active or reactive steady-state with a non-zero particle density for the model on an 

infinite lattice. (On a finite lattice, the system will always eventually evolve to the absorbing 

state.) Indeed, for p<<1, the lattice should be almost completely populated, so most empty 

sites are completely surrounded by particles and the associated particle creation rate is unity. 

Thus, in this regime, effectively one has random annihilation of particles at rate p and 

random creation of particles at empty sites at rate 1, so that the “equilibrium” steady-state 

concentration will trivially satisfy Ceq(p) = 1-p + O(p2).  

It is appropriate to now introduce some basic quantities to be investigated for this 

model. First, we let pe(h) denote the critical value of the annihilation rate p such that an 

active steady state exists for 0 ≤ p ≤ pe(h) on an infinite lattice29. Implicitly, the active steady 

state in this regime is stable against perturbations by vacuum state droplets, i.e., such vacuum 

droplets must perish. One expects that Ceq(p) will decrease continuously with increasing p 

from a maximum value of Ceq(0)=1 to some minimum value Ceq(pe). The latter would be 

strictly positive if the model exhibits a discontinuous transition from the active to the vacuum 

state, and zero for a continuous transition. Second, we define another possibly distinct critical 

value, pf(h), of the annihilation rate p such that for pf(h) ≤ p the vacuum state is stable against 

perturbations by active state droplets. Said differently29, there is a non-zero probability of 

survival of particles starting from a finite set of populated sites for p ≤ pf(h).  



 121 

 

For a broad class of stochastic models, including the QCP with h≥0, general 

arguments demonstrate that pf(h)  ≤ pe(h), i.e., survivability of a finite set of populated sites 

implies existence of an active steady state, but not necessarily the reverse29,32. The above 

discussion shows that the strict inequality pf <pe is equivalent to generic two-phase 

coexistence30,31,33-36 for pf(h) ≤ p ≤ pe(h) where both the active and vacuum steady states are 

simultaneously stable. 

B. Interface Propagation and Equistability 

For p ≤ pe(h), one can consider the propagation of planar interfaces separating the 

active and vacuum states with various orientations relative to the underlying square 

lattice30,31. We will label the slope of the interface by S, measured relative the principle 

lattice direction, so the corresponding angle giving the interface orientation is θ = arctan S. 

By rotational symmetry, behavior for orientations θ and θ ± π/2 are equivalent (e.g., S=0 and 

S=∞ are equivalent). Let V(p, h, S) denote the propagation velocity of this interface, where 

V>0 corresponds to the active state displacing the vacuum state, and V<0 the opposite case. 

Propagation occurs indefinitely for p ≤ pe(h) since spontaneous nucleation of the active state 

within the absorbing vacuum state is not possible for any p≥0, and the active state is by 

definition stable. As a result, it follows that V(p, h, S) is well-defined for all p ≤ pe(h). This 

contrasts behavior in thermodynamic systems where interface propagation away from a 

single equistability point is transient.  

In the absence of particle annihilation for p=0, V(p=0, h, S) is strictly positive (except 

for h=S=0 as discussed below). Propagation for p=0 corresponds to expansion of a 

completely filled region of the lattice into a vacuum region by irreversible autocatalytic 
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creation of particles at the interface. Furthermore, one expects such V(p, h, S) to decrease 

with increasing p as the stability of the active state decreases relative to that of the vacuum 

state. We anticipate that active and vacuum states separated by a planar interface with slope S 

will be equistable, corresponding to a stationary interface, at a unique value the annihilation 

rate p = peq(h, S). (One exception is for h=S=0.) For generality, we have allowed for the 

possibility that peq(h, S) depends explicitly on S and that peq(h, S) < pe(h). In contrast, peq and 

pe must be equal and independent of S in thermodynamic systems. In our general scenario, 

we have that V(p, h, S) > 0 for p < peq(h, S), and V(p, h, S) < 0 for peq(h, S) < p < pe(h). For 

the QCP with h≥0, it is also reasonable to expect that typically V varies linearly with p close 

to equistability, so that in this regime one has 

V(p, h, S) ≈ -B(h,S)δpeq(h, S), for small δpeq(h, S) = p - peq(h, S),    (2)  

with B>0 (except for h=S=0). 

In this general scenario, one also expects that the critical annihilation rates, pe(h) and 

pf(h), are related to the annihilation rates, peq(h, S), for equistability via  

        pe(h) = max 0≤S≤∞ peq(h, S) = peq(h, max) and pf(h) = min 0≤S≤∞ peq(h, S) = peq(h, min)  (3) 

The first identity should hold since for any p smaller than peq(h, max), there exists a 

range of orientations such that an interface expands into the vacuum state creating a stable 

active state in its wake. For p above peq(h, max), an active droplet should be destroyed by the 

surrounding vacuum state encroaching on all sides, so the active state is not stable. For the 

second identity, a similar rationalization applies except that for h=0 there is some ambiguity 

in defining        peq(h=0, S=0). We will exploit the relationships (3) in our simulation analysis 

in Sec. III. Below, for convenience, we shall often leave implicit the h-dependence. 
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C. Dimensional Analysis 

It will sometimes be instructive to utilize a simple dimensional analysis to elucidate 

the behavior of key quantities in terms of a suitably defined characteristic length, Lc, and 

characteristic time, τc. Since both particle annihilation and creation rates are of order unity in 

our model, the same applies for τc =O(1). One might expect that (Lc)
2 ≈ (Lr)

2 + (Ld)
2, where 

Lr=O(1) is a “reaction range” which reflects spatial coupling in the particle creation process, 

and Ld ≈ (hτc)
1/2 is the diffusion length21 . Then, one has that21 Lc ∝ (a+h)1/2 where a=O(1). 

Equivalently, one can write Lc ≈ (Deff τc)
1/2 in terms of an effective diffusion coefficient Deff 

∝ a + h. Some motivation for this form of Deff comes from the so-called diffusion 

approximation in classical spatial contact models37, and from the approximate analysis of the 

master equations for spatially non-uniform states in the QCP38,39. In terms of these 

characteristic quantities, one expects that  

V ~ Lc/τc ~ (Deff/τc)
1/2, so that V ~ (a+h)1/2 ~ h1/2, for large h.     (4) 

A more complete representation of behavior near equistability (except for h=S=0) should be 

given by V(p, h, S) ~ -(a+h)1/2 δpeq(h, S) where again δpeq(h, S) = p - peq(h, S) (cf. Sec.II B). 

For large h, these predictions for the behavior of V(p, h, S) are confirmed by a mean-field 

reaction-diffusion equation analysis. See Ref. 3 and Sec. II D. 

D. Model Behavior in Limiting Cases: h=0, h →→→→∞∞∞∞ 

We briefly review previous analyses of the QCP with h=0 (i.e., no particle hopping) 

on an infinite square lattice. Simulation studies30,31 indicate the existence of a discontinuous 

phase transition. Specifically, starting from a completely populated lattice, the system 
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evolves to an active state for 0 ≤ p ≤ pe(h=0)=0.09443 (±0.00003), but instead to the 

“poisoned” Ceq=0 vacuum state for p > pe(h=0). The active steady-state value, Ceq(p), of C 

decreases from Ceq = 1 for p=0 to Ceq ≈ 0.83 as p→pe(h=0). As might be anticipated based on 

mean-field modeling, the discontinuous transition behavior will be preserved for h>0. See 

Sec. III. 

A remarkable feature30,31 of the QCP with h=0 emerged from consideration of 

equistability of the active and vacuum states separated by a planar interfaces with various 

slopes S. The annihilation rate, peq(S) = peq(h=0, S), corresponding to equistability does 

actually depend on interface orientation or slope, S, in marked contrast to a thermodynamic 

systems! Also, peq(S) achieves a maximum value of peq(max) = peq(S=1) = pe for a diagonally 

oriented interface with slope S=1. For other orientations or slopes S, equistability occurs at 

lower p = peq(S) with a minimum of peq(S→0) = peq(S→∞) = 0.0869 (±0.0004) being 

achieved approaching horizontal or vertical interfaces with S = 0 or ∞.  

One special quirk for this QCP with h=0 is that the vacuum state bordered by a 

vertical interface can never be populated for any p>0, i.e., this vacuum region can never 

shrink30,31. This follows from the rule for autocatalytic creation of particles noting that empty 

sites in a vertical vacuum strip never have diagonally adjacent occupied neighboring pairs. In 

an infinite system, one has that the interface is stationary V(p, S=0 or ∞) = 0 for all 0 ≤ p ≤ 

peq(S→0) ≈ 0.0869. Expansion of the vacuum state into the active state30,31 with V(p, S=0 or 

∞) <0 only occurs for p > peq(S→0) ≈ 0.0869. As a result, there is some ambiguity in 

defining peq(min). The second identity in Eq. (2) only applies for h=0 if one sets peq(min)=0, 

as now discussed. 
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Another ramification of this quirk29,30 for h=0 is that the critical value for survival of 

finite populations satisfies pf(h=0) = 0. Given the special rule for autocatalytic creation of 

particles, for the QCP with h=0, a finite populated region can never expand outside of a 

rectangle inscribing the initial populated sites. As a result, all particles must eventually be 

annihilated based on the properties of finite-state Markov processes with absorbing states5.  

The QCP with h>0 avoids the above quirk. The vacuum state separated by a vertical 

interface from the active state can either expand or shrink depending on the value of p. Also, 

a finite set of populated sites can in principle expand and survive indefinitely. Durrett has 

postulated29 that pf(h) = pe(h) for the QCP with any h>0, which is no doubt a common 

expectation. However, the current work will in fact show that this Durrett postulate does not 

hold for h>0, and that this failure is a direct consequence of so-called generic two-phase 

coexistence. 

Finally, we mention that for the QCP in the limit h→∞ of a well-stirred or 

randomized system, behavior is described exactly by a mean-field treatment3,29,31. Exact 

analysis based on the mean-field rate equation for the kinetics3,31, 

dC/dt = R(C) = -pC + C2(1-C),        (5) 

demonstrates bistability, i.e., coexistence of stable active and vacuum states, with the 

concentration in the active steady state satisfying31 

Ceq(p) = ½ + ½(1-4p)1/2,  for ps-(h=∞) = 0 ≤ p ≤ ¼ = ps+(h=∞).     (6) 

Here, ps±(h) denote upper and lower spinodal points. Analysis of interface propagation based 

on a mean-field reaction-diffusion equation3,31 demonstrates that for large h 

V(p, h, S) ∝ h1/2[1-3(1-4p)1/2], for ps-(h=∞) = 0 ≤ p ≤ ¼ = ps+(h=∞),    (7) 
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independent of S, corresponding to equistability31,33 when p = pe(h=∞) = pf(h=∞) = 2/9. 

Thus, the Durrett postulate29 is satisfied in the h=∞ mean-field limit.   

III. Steady-States and Kinetics: Simulation Results   

Conventional Kinetic Monte Carlo (KMC) simulation (for some selected constant p) 

of the general QCP for h≥0 can be used to follow evolution starting from a completely 

populated lattice to the final steady state. This allows determination of the active steady-state 

concentration, Ceq(p), versus p, and thus estimation of pe = pe(h). See Fig.2 which displays 

this “equation of state” for h=0.001 revealing a discontinuous transition just as for h=0. 

However, one shortcoming of such a conventional KMC simulation analysis is that for p just 

slightly above pe(h), the system tends to get trapped for long times in a metastable active 

state before reaching the vacuum state. This leads to the potential for overestimation of pe(h).  

These general features of the non-equilibrium discontinuous transition, and the challenges for 

accurate determination of pe, are analogous to those seen in the ZGB model20,23,40. This 

prompted development of an alternative approach20,30,31 to determine pe and related quantities 

which we adopt in Sec. III A. 

A. Equistability of Active and Vacuum Steady-States  

A comprehensive picture of the relative stability of active and vacuum states follows 

from consideration of the equistability of interfaces between these states with various 

orientations S. This analysis also leads to a reliable determination of the critical annihilation 

rate, pe, for existence of an active state from the relation pe = max 0≤S≤∞ peq(S) = peq(max), 

where we leave implicit the h-dependence. Our analysis for h>0 presented below indicates 
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that peq(S) does depend on S, where the maximum is achieved for S=1 so that pe = peq(S=1) 

for all h>0 (just as for h=0). We also find that pf = peq(min) = min 0≤S≤∞ peq(S) = peq(S=0) = 

peq(S=∞) is strictly below pe = peq(max) = peq(S=1) for h>0, contrasting the Durrett 

postulate29. 

All of our results for peq(S) were obtained from so-called constant-population 

ensemble simulations30,41 involving the following steps: (i) a target population is selected 

(usually Ct ≈ ½); (ii) at each step, a site is picked at random; (iii)  with probability 

4h*/(1+4h*), one attempts to hop in one of four randomly chosen directions (which requires 

the selected site to be occupied and the chosen adjacent site to be empty); (iv) with 

probability 1/(1+4h*), one attempts to either annihilate or create particles; if C>Ct applies for 

the current value of C, then annihilation is attempted (occurring if the site is populated), and 

if C<Ct  then autocatalytic particle creation is attempted (occurring if the site is empty and 

with a probability k/4 ≤1); (v) we track the fraction, f, of attempts to annihilate particles in 

(iv). Then, the fraction of attempts to annihilate is 1-f and p :1 = f :1-f , so that p=f/(1-f). To 

match the correct relative rates for particle hopping and particle annihilation and creation in 

conventional simulation, one sets 4h*/1 = 4h/(1+p), so that h = (1+p)h*. Starting with a 

planar interface between completely filled and vacuum states with the selected S, the 

constant-population ensemble simulation preserves this planar interface geometry for Ct ≈ ½ 

and the output pressure automatically corresponds to the desired peq(S). 

The S-dependence of peq(S) described above is shown in the inset of Fig. 2 for the 

case h=0.001. In our determination of peq(S), we have also performed a finite-size scaling 

analysis30 (not shown) revealing a weak dependence of our estimates on system size.  For 



 128 

 

h=0.001, we find that pe = peq(S=1) = 0.0958 and that pf = peq(S=0 or ∞) = 0.0941 (obtained 

from interpolating constant coverage simulation results for h* close to 0.001). Based on the 

general arguments in Sec. 2A, one has stability of both the active and vacuum steady states 

for pf < p < pe. Thus, in the “equation of state” plot Fig. 2, we include two vertical lines at p 

= pe and p = pf to indicate the extent of regime of generic two-phase coexistence. 

A more comprehensive set of results for the h-dependence of pe = peq(max) = 

peq(S=1) and pf = peq(min) = peq(S=0 or ∞) are reported in Table I (obtained from 

interpolation of constant coverage simulation results for various h*). Note that pe varies 

roughly linearly with small h, but pf varies non-linearly quickly approaching pe. Thus, the 

width ∆peq = pe – pf of the regime of generic two-phase coexistence decreases quickly with 

increasing h, and is below 0.0001 for h>0.01. From our simulations alone, we cannot rule out 

the possibility that ∆peq becomes zero above some critical value hc of h. See Sec. VI for 

further discussion of this point. The limiting behavior, peq(S=1) = peq(S=0 or ∞) = 2/9 for 

h=∞, follows from (7). It should be noted that a similar shrinkage to the width of the generic 

two-phase coexistence region occurs upon introducing a spontaneous particle creation. In this 

case, two-phase coexistence (and the discontinuous transition) terminate at a critical 

point30,42. 

B. Metastable States, Spinodal Points, and Poisonin g Kinetics 

For the QCP with h≥0 on an infinite lattice, one finds evidence for a metastable 

extension of the active steady state into a regime pe ≤ p ≤ ps+. Here, ps+ denotes an effective 

upper spinodal point. However, just as for thermodynamic systems, the precise nature and 

even the existence of the metastable state and spinodal point in an infinite system is a subtle 



 129 

 

issue. In fact, based on behavior for equilibrium Ising-type systems43-45, there should not 

exist a unique analytic metastable extension of the active state steady state, but rather a 

family of C∞ metastable extensions31. Consequently, there is no natural unique definition of 

ps+. However, from a more practical perspective, concepts of metastability and spinodal 

points are particularly valuable in characterizing the kinetics of non-equilibrium models in 

the vicinity of discontinuous transitions21,25,31. Indeed, analysis of the kinetics is likely the 

most effective way to define these quantities, a strategy which has been used for equilibrium 

systems44. Finally, we note that some studies of equilibrium systems have defined different 

types of spinodal points specific to finite systems46. These are distinct from ps+ specific to an 

infinite system considered here.  

Here, we first consider determination of the location of the effective upper spinodal 

point through analysis of the “rapid” poisoning kinetics, i.e., evolution to the vacuum state, 

for p>ps+. In later sections, we will present two distinct but complementary and consistent 

strategies to locate ps+. We emphasize that there is some ambiguity in each of these 

strategies, so that one never achieves a precise and unambiguous determination of the 

spinodal point. In the regime p>ps+, evolution is not nucleation-limited (cf. Sec. III C). The 

system should poison exponentially quickly as predicted by a mean-field theory31,38, and the 

poisoning rate should depend strongly on the distance δps+ = p-ps+ >0 above the upper 

spinodal. Specifically, one might anticipate that C(t) has the form C ≈ c(δps+t), so that curves 

for C(t) versus δps+t for different p should collapse21,31 for the appropriate choice of ps+. 

Application of this idea requires selection a suitable regime of p in which to analyze the 

kinetics. We typically choose the lowest value corresponding to δps+ ≈ 0.010 and the width of 
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this regime as roughly 0.015. This procedure is illustrated for h=0.001 where optimum 

collapse is achieved with ps+≈0.102 in Fig. 3.  

Results for ps+ versus h≥0 are summarized in Table I.  We should caution that results 

depend to some extent on the choice of the p-regime. Even for h→∞ where ps+ = ¼ is well-

defined29, the estimate from the above procedure deviates from ¼ when using a p-regime 

which is a significant finite distance from ps+. Note that the width of the metastable regime,  

∆ps+ = ps+ - pe, appears to shrink slightly as h becomes no zero, and is actually roughly 

constant for a significant range of h before increasing to its significantly larger h→∞ limiting 

value of 1/36. 

Finally, we discuss the lower spinodal, ps- < peq(min) = pf. Previous analysis of 

kinetics at low p for the QCP indicated that31 ps- = 0 for h=0. Our simulations of the kinetics 

of the QCP for h≥0 (not shown) provide no evidence for existence of a non-trivial lower 

spinodal with ps- greater than 0.The mean-field treatment described in Sec. I and higher-order 

dynamic cluster approximations of exact master equations38,39 predict that ps- = 0 for any 

h≥0. Thus, we anticipate that ps- =0 for our lattice-gas realization for the QCP with any h≥0. 

C. Avrami Analysis of Nucleation-Mediated Poisoning  Kinetics 

Next, we analyze the nucleation-mediated poisoning kinetics, i.e., evolution to the 

vacuum state, for pe < p < ps+, which is much slower than and different in nature from the 

poisoning described above for p > ps+. A detailed analysis of these kinetics for h=0 can be 

found in Ref. 31. Behavior for h>0 is qualitatively similar, and is analyzed here in the same 

way. 
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Just as for thermodynamic systems, the idea here is that there exists a critical size for 

droplets of the poisoned or vacuum state above which they will grow and below which they 

shrink. Poisoning is then controlled by the fluctuation-mediated formation and subsequent 

growth of such critical droplets. Key parameters are the nucleation rate of critical droplets, 

knuc, and the propagation velocity, Vgrow, of selected interface orientations of the super-

critical droplets. Following the postulate in Ref. 25 abd 31 for knuc, and adopting ideas from 

Sec. II C for Vgrow, we propose that  

knuc ∝ exp(-cnuc/δpeq+) and Vgrow ~ (a+h)1/2 δpeq+, where δpeq+ = p – pe.    (8) 

Also, based on a dimensional analysis or mean-field analysis, we expect that cnuc(h) ~ a+h for 

large h (cf. Sec. V D). Then, an Avrami formulation47 demonstrates that the nucleation 

kinetics is controlled by the characteristic time τnuc ∝ (Vgrow)-2/3(knuc)
-1/3. Specifically, after a 

“short” transient period during which the system reaches the metastable active state with 

particle concentration Cm, the time evolution of the particle concentration should be given 

by25,31 

C(t)/Cm ≈ exp[-A(t/τnuc)
3], choosing τnuc = (cnuc)

-1/3(δpeq+)
-2/3exp[cnuc/(3δpeq+)].  (9) 

Plotting C(t)/Cm versus t/τnuc for various δpeq+ and fixed h and adjusting cnuc to 

optimize collapse of this family of curves provides an estimate of cnuc = cnuc(h). This analysis 

has already been successfully applied31 to the QCP with h=0, but it extends to quantify the 

variation of cnuc(h) with h. Specifically, for each h, we choose the same set of values of δpeq+ 

= 0.0031 + 0.0005 m, with m = 0, 1, 2, and 3. Then, in Fig.4, we show both the ‘raw’ kinetics 

C(t)/Cm versus t, as well as the optimum collapsed curves for four choices of h=0.001, 0.1, 

0.2, and 0.4. Behavior for h=0.001 is essentially indistinguishable from that reported 

previously31 for h=0.  Interestingly, nucleation-mediated poisoning is significantly faster for 
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h=0.1 than for h=0.001 (or h=0). It is also somewhat faster for h=0.2, but slower for h=0.4 

and becomes progressively slower for larger h. This trend is reflected in the estimated values 

of cnuc ≈ 0.024,31 0.023, 0.012, 0.021, and 0.048 for h = 0, 0.001, 0.1, 0.2, and 0.4, 

respectively. The non-monotonic variation of the lifetime of the metastable state with 

increasing h might be anticipated from the results in Sec. III B for the variation of the width 

of the metastable region. 

Some theoretical underpinning for the above formulation of poisoning kinetics will 

follow from our analysis of the nature of critical droplets of the vacuum state embedded in 

the active state, and of the associated nucleation barrier, presented in Sec. V. 

IV. Interface Structure and Propagation 

As discussed in Sec. II and Sec. III, generic two-phase coexistence in our QCP 

realization of Schloegl’s model is directly tied to an orientation-dependence of the 

equistability of planar interfaces separating the active and poisoned states. This motivates a 

more detailed analysis of interface structure and propagation in this section. The resulting 

insight will be invaluable for our analysis of critical droplets in Sec. V. 

A. Coarse-Grained Kpz Description of Interface Struc ture 

To elucidate the propagation and structure of the interface between active and 

vacuum states, it is natural to adopt a coarse-grained mesoscale picture. Here, the interface 

location at time t is described by a continuous “height” function, y(x, t), measured in a 

direction orthogonal to the global interface orientation for varying location, x, along the 

interface. Then, evolution of y is described by a suitable stochastic partial differential 
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equation. For the S=1 “high symmetry” orientation, this evolution equation should have23,24 

the Kardar-Parisi-Zhang (KPZ) form48,49 

∂y/∂t = V0 + ½λ (∂y/∂x)2 + ν ∂2y/∂x2 + … + η(x,t),               (10) 

in the regime of small slopes where V0 = V(p, h, S=1) and η(x,t) represents a non-conserved 

noise term satisfying <η(x,t)>=0 and <η(x,t) η(x′,t′)> = γ δ(x-x′)δ(t-t′). On the right hand 

side of (10), the kinetic coefficient λ>0 in the non-linear term can be estimated from simple 

geometric arguments50. The linear term provides stability by damping meandering of the 

interface, and the kinetic coefficient ν is discussed in further below. Description of interface 

propagation and structure is more complex for other orientations, but the corresponding 

evolution equation should have a linear stabilizing term with a possibly orientation-

dependent ν. 

Analysis of Eq. (10) reveals that for long times the interface achieves a stationary 

local structure independent of λ. The slopes ∂y/∂x adopt a Gaussian distribution with 

variance γ/(2ν), and a spatial correlation function satisfies48 

G(x) = <[y(x+x′,t)-y(x′,t)]2> = <[y(x,t)-y(0,t)]2> ≈ γ/(2ν) |x|2α with α = ½ ,            (11) 

provided that |x| is not too large. Equivalently, the long-time stationary interface roughness, 

Wsat(L), measured in a “small” finite window of width L satisfies48,49 

Wsat(L)2 = L-1 ∫0<x<L dx [y(x,t)-<y(t)>L]
2 ∝ (γ/ν) L2α with α = ½,             (12) 

where <y(t)>L denotes the average over the window. Thus, the ratio γ/ν measures the 

amplitude of interface wandering. Often α is referred to as the wandering or roughness 

exponent, and α = ½ corresponds to simple random walk behavior of the interface.  
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In general KPZ-type formulations of interface propagation, the kinetic coefficient ν is 

often referred to as an “effective line tension”49. However, this can be misleading. A more 

appropriate perspective comes from a coarse-grained formulation of equilibrium interface 

fluctuations via evaporation-condensation51 which is described by Eq. (10) with V0=0 and 

λ=0.  In this case, the kinetic coefficient ν ∝ Γ σ~ >0 is proportional to the product of a 

suitable mobility, Γ, and the interface stiffness or interface rigidity51, σ~. Also, as a result of 

the fluctuation-dissipation relation, γ/(2ν) = kT/σ~ is independent of Γ in the equilibrium case.  

For our non-equilibrium application, ν might most appropriately be regarded as a 

product of an effective mobility, Γeff, and an effective stiffness, σ~eff. In fact, ν should not just 

be interpreted as an effective line tension since: (i) the interface stiffness and line tension 

coincide only when the interface properties are isotropic51; (ii) the presence of the mobility 

factor means that ν scales differently with h than either the stiffness or line tension (see 

Sec.V). On the latter issue, a dimensional analysis (cf. Sec. II C) indicates that the kinetic 

coefficient, ν, satisfies 

ν ~ (Lc)
2/τc, so that ν ~ a+ h ~ h for large h.                 (13) 

This prediction is confirmed by a mean-field reaction-diffusion equation analysis. See Ref. 3 

and Sec. V. 

B. Interface Stiffness 

Motivated by the above discussion, we examine the structure of interfaces separating 

active and vacuum steady states at equistability for different interface orientations, θ = 
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arctan(S), and for various h. Direct inspection of simulation images provides insight into the 

dependence on θ and h of 

G(x) ∝ (|x| γ)/(Γeff σ
~

eff ) or Wsat ∝ (L γ)/(Γeff σ
~

eff ).                (14) 

Fig. 5 compares behavior for interfaces with S=0 and S=1 when h*=h=0, and also for 

h*=0.001 and h*=0.1. A strong anisotropy in interface structure is evident for h*=h=0 with 

significantly greater roughness for S=1 than S=0. If we assume there is no strong θ-

dependence of Γeff/γ, then one concludes that a maximum (minimum) in the effective 

interface stiffness, σ~eff, is achieved for S=0 (S=1) when h=0. Upon increasing h* or h to as 

little as 0.001, this anisotropy appears to be significantly reduced. For h*=0.1, interface 

behavior appears close to isotropic. 

The other dramatic feature apparent in Fig. 5 is that the interfaces roughness for S=0 

increases dramatically as h is increased from h*=0 to h*=0.001 and further to h*=0.1. A 

similar, but less dramatic increase, is apparent for S=1. However, from the dimensional 

analysis above, eventually ν must grow with increasing h and thus eventually the interface 

roughness will decrease. If we assume that the ratio Γeff/γ is a non-decreasing function of h, 

then we are forced to conclude that the effective stiffness, σ~eff, at least initially decreases 

with increasing h>0. The decrease in is σ~eff more dramatic for S=0 than for S=1. However, 

since ν ~ Γeff σ
~

eff ~ a+ h ~ h, for large h, it might be anticipated that σ~eff will increase for 

large h, behavior confirmed in Sec. V. Thus, we conclude that σ~eff varies non-monotonically 

with h. This proposal seems consistent with the observed non-monotonic variation with h of 

the lifetime of the metastable state described in Sec. III C. See Sec. V for further discussion. 



 136 

 

To elucidate this proposed non-monotonic variation of σ~eff with h, we recall that 

interface properties quickly become more isotropic as h increases above zero. Enhanced 

isotropy generally reduces stiffness in thermodynamic systems. Suppressing the dependence 

of various quantities on p, one can represent the dependence of stiffness on the angle, θ = 

arctan(S), defining the local orientation of the interface in this four-fold symmetric system 

via   

 σ~eff(θ) ≈ σ~1(h) + g(h) [cos(2θ)]2,                 (15) 

where g(h)>0 measures the strength of the anisotropy. Here, we just keep the lowest-order 

terms in the Fourier expansion, and we have recast52 the conventional expansion in a form so 

that σ~1(h) corresponds to the stiffness for an interface with S=1. The requirement that g(h)>0 

ensures that the stiffness is maximum (minimum) for S= 0 and ∞ (S=1). We also anticipate 

that g(h) decreases quickly towards zero as h increases above zero resulting in the above-

mentioned initial rapid decease in σ~eff for S=0. The less dramatic initial decrease in σ~eff for 

S=1 requires that σ~1(h) also decreases initially as h increases above zero, although probably 

much less strongly than g(h). The strong variation of g(h) versus the weaker variation of σ~

1(h) is what motivated our choice of the form (15). The proposed non-monotonic behavior of 

σ~eff requires that σ~1(h) also vary non-monotonically, eventually increasing for large h.  

C. Dependence of Interface Propagation Velocity on Annihilation Rate 

Here, we consider the propagation velocity of planar interfaces separating the vacuum 

and both stable and metastable active states with slopes S=1 and S=0 (or S=∞) as a function 
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of p. As noted in Sec. II, interface propagation for any S is well-defined (i.e., it occurs 

indefinitely) for p < pe(h). For such well-defined propagation, V(p, h, S) can be readily 

determined by monitoring the linear variation with time of empty sites in a finite system with 

periodic boundary conditions by selecting an initial strip geometry for the vacuum state, 

say31. The increase or decrease in population corresponds to expansion or shrinkage of the 

vacuum state strip. To convert these variation rates into a velocity, one must also know the 

particle concentration in the active state31. Comparative results are shown for V(p, h, S=1) 

and V(p, h, S=0 or ∞) versus p for h=0 in Fig. 6a and h=0.001 in Fig. 6b. Note that these 

curves provide upper and lower bounds on the V(p, h, S) for all other S. Behavior is 

consistent with the general comments in Sec. II B. 

In contrast, for p > pe(h), it is not possible to sustain indefinite interface propagation 

with the vacuum state displacing the metastable active state since spontaneous nucleation of 

the vacuum state occurs within the metastable active state. More technically, there will not 

exist an analytic extension of the well-defined V(p, h, S) from31 p < pe(h) to p > pe(h). For 

example, one does not have a well-defined extension of V(p, S=1)>0 for p < peq(S=1) = pe to 

V(p, S=1) < 0 for p > pe. Interestingly, for S=0 (or ∞), interface propagation is well-defined 

for not just p < peq(S=0 or ∞) where V(p, S=0) > 0, but also for the regime peq(S=0) < p < pe 

above the relevant equistability pressure where V(p, S=0) < 0. Thus, one expects V(p, S=0) 

to be an analytic function at p = peq(S=0), where V(p, S=0) = 0, and also up to pe (but not for 

p > pe).   

Despite these complications, it is instructive to explore the behavior of V(p, h, S) < 0 

for pe(h) < p < ps+ as estimated from transient propagation. In fact, we will see that such an 

analysis provides an unconventional second strategy to estimate the upper spinodal, ps+. 
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However, there are practical issues in the determination of V(p, h, S) which should be 

addressed before discussing simulation results. The major challenge is that we wish to 

determine V(p, h, S) approaching the upper spinodal where interface motion becomes more 

transient and less robust since spontaneous nucleation of the vacuum state within the active 

state regions becomes more facile. The latter leads an additional decrease in the particle 

population not associated with expansion of the vacuum strip, potentially leading to 

overestimation of the magnitude of V<0. We partly ameliorate this problem53 by determining 

the size of the vacuum strip counting only those empty sites which are connected to the strip, 

and excluding those which are part of disconnected isolated vacuum clusters or droplets 

within the active state. See Fig. 7.  

Results for transient interface propagation for p>pe(h) are also presented in Fig. 6. A 

tendency for the V(p, h, S) curves for different S to merge, and for their slopes, dV/dp, to 

diverge, as p→ps+ might be anticipated noting results from any of: (i) a mean-field reaction-

diffusion equation analysis (7) for large h; (ii)  a more complex analysis of interface 

propagation based on non-uniform master equations38,39; or (iii)  previous simulations31 for 

the QCP with h=0. Indeed, when viewed over a broad range of p, these V(p, h, S)-curves in 

Fig. 6 do appear to merge and their slopes increase strongly as p→ps+ (based on the estimates 

of ps+ in Sec.4A). However, an expanded view near this upper spinodal, where there is 

considerable ambiguity in determining V(p, h, S), does not show complete merging and the 

slopes do not diverge.  



 139 

 

D. Dependence of Interface Propagation Velocity on Hop Rate 

The independence of peq on S in the limit as h→∞ is a consequence of the more 

general feature that V(p, h, S) becomes “independent” of orientation, S, for this mean-field 

reaction-diffusion regime (noting that particle diffusion is isotropic). By “independent”, we 

mean that differences in V for different S become insignificant relative to the magnitude of 

V. In fact, a stronger condition applies, as described below. To illustrate this behavior of V(p, 

h, S), we determine the dependence on h of both V(p=0, h, S=1) and V(p=0, h, S=0 or ∞). 

The “large” difference between these velocities for h=0, where30,31 V(p=0, h=0, S=1) = 

1/(8√2) ≈ 0.0884 (in units of lattice constants per unit time) and V(p=0, h=0, S=0 or ∞) = 0 

quickly shrinks upon increasing h. Similar behavior is observed for p>0. See Fig. 8 for 

behavior when p=0 and p=0.05.  Anticipating that V ~ (a+h)1/2 (cf. Sec. II C), we plot the 

square of V versus h in Fig. 8 producing a near-linear variation, V(p, h, S)2 ≈ e(p, S)2 + 

d(p)2h + O(h-n) with n>0. Thus, one has that 

V(p, h, S) ≈ [d(p) h1/2 + ½ e(p, S)2 d(p)-1 h-1/2 + O(h-n-1/2)],  for large h,             (16) 

so that differences in V for different S decrease like h-1/2 if e(p,S) depends explicitly on S, or 

faster otherwise. Close to equistability, one has that e(p, S) ≈ e(S) δpeq(h,S) and d(p) ≈       

d⋅δpeq(h,S), so that V(p, h, S) ≈ d [d-2 e(S)2 + h]1/2 δpeq(h,S), where δpeq(h, S) = p-peq(h, S).  

V. Droplet Structure and Evolution 

In this section, we consider droplets of a stable phase embedded in a distinct stable or 

metastable phase. These studies elucidate both the feature of generic two-phase coexistence, 

as well as nucleation mediated poisoning kinetics. 
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A. Droplet Analysis of Phase Stability 

In Fig. 9, we summarize a droplet analysis of phase stability44 demonstrating generic 

two-phase coexistence for the QCP with h=0.001 in the regime pf = 0.0941 ≤ p ≤ pe = 0.0958.  

First, we discuss stability of the vacuum state for h=0.001. In Fig. 9a, we show the 

fate of a large diagonal droplet of occupied sites embedded in the vacuum state for p=0.0950. 

This droplet quickly converts to a diagonal droplet of the active state. Initially, the sides 

expand since p < peq(S=1). Indeed, the initial diagonal shape was chosen to maximize this 

initial growth rate. However, these faster growing diagonal facets quickly “grow out” 

converting the droplet to a square shape with horizontal and vertical facets which then shrink 

since p > peq(S=0) = peq(S=∞). Thus, the active droplet ultimately disappears no matter how 

large the initial size, showing that the vacuum state is stable for p = 0.0950. In contrast, for p 

= 0.0920 < pf, such a diagonal active droplet converts to a square shape and thereafter 

expands since p < peq(S=0) = peq(S=∞), i.e., the vacuum state is not stable. See Fig. 9b. 

Next, we explore stability of the active state for h=0.001. In Fig. 9c, we show the fate 

of a large square droplet of the vacuum state embedded in a sea of an initially completely 

populated lattice for p = 0.0950. This surrounding sea quickly converts to the active state. 

Initially, the droplet sides expand since p > peq(S=0) = peq(S=∞), the initial square shape 

being chosen to maximize this initial growth rate. However, these faster growing horizontal 

and vertical facets quickly grow out converting the droplet to a diamond shape with diagonal 

facets which shrink since p < peq(S=1). Thus, the vacuum droplet ultimately disappears no 

matter how large the initial size, showing that the active state is stable for p = 0.0950. In 
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contrast for p = 0.0970 > pe, such a square vacuum droplet converts to a diagonal shape and 

thereafter expands since p > peq(S=1), i.e., the active state is not stable. See Fig. 9d. 

The qualitative picture described in detail above for h=0.001 applies for all h>0. Our 

analysis of droplet evolution also extends to the more general case and corresponds to a 

kinematic Wulff construction of “growth shapes”48,49. The above type of droplet analysis also 

clarifies the feature that critical value for survival of finite populated regions, pf = peq(min), is 

strictly below the critical value for existence for an active state, pe = peq(max), for h>0, in 

contrast to the Durrett postulate29. 

B. Critical Droplets: Basic Formulation 

The concept of a critical droplet of a stable state embedded within a metastable state 

is quite general. The idea is that stable droplets which are smaller than some critical size will 

shrink due their high edge curvature. However, those above the critical size will grow. In the 

regime pe < p <ps+, nucleation-limited poisoning is controlled by the spontaneous fluctuation-

mediated creation of droplets of the vacuum state with the critical size or larger embedded in 

the metastable active state. Growth of these supercritical droplets will spread the vacuum 

state across the system.  

Since the vacuum state is an absorbing state, fluctuation-mediated evolution to the 

active state is not possible for any p. However, consider evolution starting from a state with a 

low density of randomly distributed particles. Then, a type of nucleation-limited evolution to 

the stable active state should occur for ps- < p < pf (provided that31 h>0). This follows since 

the initial state includes a low concentration of critical and supercritical active droplets 
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whose growth will spread the active state across the system. As noted in Sec. III B, we expect 

that ps- =0. 

The above observations prompt a detailed analysis of both vacuum and active critical 

droplets. More precisely, we will define a critical droplet as the smallest droplet of the stable 

state embedded in the metastable state which is just as likely to grow as to shrink. Thus, a 

slightly larger droplet is more likely to grow. Three additional comments are appropriate. (i) 

One must sample over all possible droplet shapes for anisotropic systems where critical 

droplets are not circular. (ii)  The probabilistic aspect of our definition reflects the feature that 

the evolution of small droplets is stochastic. Indeed, even droplet survival or disappearance is 

generally ambiguous (see below). (iii)  For droplet sizes which are large enough, evolution is 

however effectively deterministic and the critical size and shape are unambiguous. 

To provide insight into critical size behavior, it is instructive to consider first the 

simpler scenario of reaction model with isotropic interface properties where pe = pf = peq(S) 

for all S. Here, critical droplets are circular with a critical radius, Rc, determined by the 

condition that the curved interface must be stationary. We have proposed that the normal 

velocity of the planar interface, V0, satisfies V0 ∝ (a+h)1/2 δpeq for small δpeq = p - pe = p - pf 

and the kinetic coefficient, ν, satisfies ν ~ a+h (see Sec.2C and Sec.4A). Then, based on a 

KPZ formulation (10), the velocity of an interface with non-zero curvature κ, or radius of 

curvature R=1/κ, has the form 

 V(R) ≈ |V0| - ν⋅κ ≈ |V0| - ν/R, so that                 (17) 

κc ≈ |V0|/ν and Rc ≈ ν/|V0| ∝ (a+h)1/2/|δpeq|.                (18) 
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One caveat in the application of this analysis for critical droplets of the vacuum state where 

p>pe is that V0 is strictly not well-defined and must be extracted from studies of transient 

interface propagation (cf. Sec. IV B). This form (18) of Rc can be confirmed in the isotropic 

regime of large h based on a mean-field reaction-diffusion equation analysis3. However, this 

variation of Rc with δpeq could be obscured21,23 for systems where ν and σ~eff decrease 

strongly to small values with decreasing δpeq.  

Analysis of critical droplets for anisotropic systems, such as the QCP with finite h≥0, 

is more complicated. The shape of the critical droplet will not be circular due to anisotropy in 

both the interface propagation velocity and the interface stiffness. The relationship κc ≈ |V0|/ν 

can still be used to determine the direction dependent κc, and thus the shape of the critical 

cluster: (i) For active droplets when p<pf, the smaller |V0| for S = 0 or ∞ should produce 

critical clusters which tend to be facetted with smaller κc in the horizontal and vertical 

directions, i.e., square-shaped critical active droplets. This effect should be amplified by the 

larger σ~eff and ν for S=0 or ∞ (relative to S=1). (ii)  For vacuum droplets when p>pe, the 

effect of the smaller |V0| for S=1 (relative to other S) should be to produce critical clusters 

which tend to be facetted with smaller κc in the diagonal direction. However, this effect 

should be offset to some degree by the smaller interface stiffness, σ~eff, and smaller ν, for S=1 

(relative to S=0).  

Finally, we consider the p-dependence of the critical size. For critical vacuum 

droplets as p → peq(S=1) = pe from above, the curvature of diagonal edges vanishes which 

one anticipates will force divergence of the critical droplet size. For critical active droplets as 
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p → peq(S=0) = pf from below, the curvature of horizontal and vertical edges vanishes which 

one anticipates will force divergence of the critical droplet size. 

 C. Critical Droplets: Simulation Results 

One can perform conventional constant-p simulations for different initial droplet sizes 

to assess the survival probability as a function of size, and thereby determine the critical size 

(for various p)21,23. However, simulations using the constant-population ensemble provide a 

way to more directly or “automatically” assess the critical size21,41. Here, one chooses an 

initial droplet-type configuration and appropriate target concentration, Ct. Constant-

population ensemble simulation stabilizes this droplet configuration while allowing 

conversion to the appropriate critical droplet structure. The simulation outputs the 

annihilation rate, p, corresponding to the selected critical size. Inverting this data gives 

critical size versus p. All results shown below are obtained from this approach. One caution 

is while constant-population ensemble simulations must recover results for constant-p 

simulations for large systems, our results for small critical sizes use somewhat small systems 

in order to help stabilize the droplet. As an aside, our critical size analysis provides a third 

strategy for estimating spinodal point locations from the condition that the critical size should 

be of order unity at the spinodal. Below Rc will denote a measure of the critical linear size of 

the generally non-spherical clusters. 

First, we present simulation results for the behavior of the critical size of vacuum 

droplets embedded in the metastable active state in the regime pe ≤ p ≤ ps+ for the QCP with 

h≥0. As for thermodynamic systems, there is some ambiguity in assessing droplet survival 

since new droplets of the vacuum state can always be spontaneously nucleated in the 
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surrounding metastable active state. Results for the variation of the critical linear dimension, 

Rc, of vacuum droplets with p>pe are shown in Fig. 10 for h*=0.001 (so that h ≈ 0.0011) . 

Here, the relevant variable is δpeq = δpeq+ = p - pe >0. Results in the inset to Fig. 10 are 

consistent with the dependence Rc ∝ 1/δpeq+. Estimating an effective spinodal point, ps+, from 

the condition that Rc = O(1) at p=ps+, indicates that ps+ ≈ 0.103-0.104 for h*=0.001. In 

addition, a similar analyses (not shown) indicates that ps+ ≈ 0.102-0.103 for h*=h=0, and for 

h*=0.1 indicates that ps+ ≈ 0.152-0.155. In the former case, Rc measured as a function of δpeq 

is essentially identical to results for h*=0.001. These estimates for ps+ are consistent with 

those reported in Table I from an analysis of the kinetics in Sec. III B. 

Second, we analyze the critical size of active state droplets embedded in the vacuum 

state when p ≤ pf for the QCP with h>0 (but not with h=0). For h=0, the previously 

mentioned quirk of the QCP means that droplets never survive29,30. For h>0, one can 

precisely define the critical size of active droplets based on a survival probability of 0.5 since 

survival of such droplets in a background of an absorbing state is unambiguous21,23. This 

contrasts the case of vacuum droplets described above, and also the traditional case of 

droplets in thermodynamic systems. Results for the variation of the critical linear dimension, 

Rc, of active droplets with p < pf are shown in Fig. 10 for h*=0.001. Now, the relevant 

variable is now δpeq = δpeq- = p – pf  < 0 (appropriately modifying the above definition), and 

again it seems that behavior of Rc is reasonably described by the form Rc ∝ 1/|δpeq-|. 

However, the average or effective value of ν for active droplets may be different from that 

for vacuum droplets for the same h. Our results appear consistent with the identification ps-

=0, as estimated from the condition that Rc = O(1) when p=ps-. 
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Finally, we describe results for the shape and structure of critical droplets derived 

from the above simulations.  Fig. 11a shows critical active droplets of ~104 populated sites 

for h*=0.001 and h*=0.1. For small h* or h, the perimeter of the droplet tends to be facetted 

along horizontal and vertical directions and the effective stiffness of the interface between 

active and vacuum states is high. This behavior is consistent with our analysis in Sec. V B. 

For larger h* or h, the cluster is less faceted, and the interface less stiff. Fig. 11b shows 

critical vacuum droplets of ~104 empty sites for h*=0, h*=0.01, and h*=0.1. Again the 

interface at the perimeter of the droplets clearly becomes less stiff with increasing h. Note 

that the shape of the critical vacuum droplets is much less facetted than that of the active 

droplets for the same small h*=0.001, again consistent with our analysis in Sec. V B. As 

noted in Sec. V A, interface stiffness will eventually increase with increasing h, and critical 

droplets will become circular due to reduced anisotropy.  

D. Critical Droplets: Thermodynamic Analogy 

The predicted variation of Rc with δpeq from a “kinetic” analysis described in Sec. V 

B and Sec. V C can also be extracted from a heuristic quasi-thermodynamic analysis44,54. For 

simplicity, we first present this analysis for isotropic systems. One introduces an effective 

free energy advantage per unit area, δU, for the stable state (relative to the metastable state) 

which is assumed to satisfy δU ≈ A|δpeq| with A>0 at most weakly dependent on h. In 

addition, one introduces an effective line tension, σeff, for the interface between active and 

vacuum states. Then, the effective free energy of a droplet of radius R of the stable state 

embedded in the metastable state satisfies  

F(R) = -πR2δU + 2πRσeff,                   (19) 
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and critical droplets correspond to maximizing F. Thus, the critical radius, Rc, and the 

effective barrier for nucleation of critical droplets, Enuc = F(Rc), satisfy44,54 

Rc = σeff/δU = A-1σeff/|δpeq| and Enuc = π(σeff)
2/δU = πA-1(σeff)

2/|δpeq|,            (20) 

The result for Rc is consistent with the analysis (18) above in Sec. V B provided that σeff ~ 

(a+h)1/2 for large h. The feature that σeff ~ (a+h)1/2 is confirmed below, and also highlights an 

issue raised in Sec. IV B: the effective interface stiffness or line tension, σ~eff  = σeff for an 

isotropic system (see below), can have different scaling with h than the kinetic coefficient ν 

∝ Γ σ~eff ~ a+ h. The discrepancy is due to the behavior of the effective mobility Γeff ~ 

(a+h)1/2.  

The expression for Enuc allows assessment of the rate, knuc, for spontaneous nucleation 

of critical clusters of the vacuum state embedded in the metastable active state assuming the 

form25,31 knuc ∝ exp(-bEnuc) for some constant b>0. Comparing this expression for knuc with 

the form knuc ∝ exp(-cnuc/δpeq+) adopted in Sec. III C for our Avrami analysis of nucleation-

mediated poisoning, we conclude that 

cnuc(h) = πbA-1(σeff)
2 ~ a+h, for large h.                (21) 

The numerical results that cnuc(h) ≈ 0.024, 0.023, 0.012, 0.021, and 0.048 for h = 0, 0.001, 

0.1, 0.2, and 0.4, respectively, indicates that σeff  varies non-monotonically with h. 

This thermodynamic analysis of Rc involves the effective line tension, σeff, of the 

interface between active and vacuum states, whereas the kinetic analysis in the preceding 

sections involved the stiffness, σ~eff, through the relation ν ∝ Γ σ~eff. For general anisotropic 

thermodynamic systems, these quantities are related by51 σ~eff  = σeff + d2σeff/dθ
2. Thus, σ~eff  
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and σeff are equivalent only for isotropic systems, as noted above. If we assume that the same 

relation applies for anisotropic non-equilibrium systems, then adopting the expression (15) 

for σ~eff(θ), it follows that52 

 σeff(θ) ≈ σ1(h) - g(h)[cos(2θ)]2/15, where σ1(h)  = σ~1(h) + 8g(h)/15.            (22) 

Given the reduced amplitude of terms involving the presumed rapidly decreasing function 

g(h) compared with (12) (cf. Sec. IV B), the non-monotonic variation of σeff with increasing 

h should be weaker than the presumed strong non-monotonicity of σ~eff. This is consistent 

with the numerical results for cnuc(h) presented above. 

E. Ginzburg-Landau Type Formulation 

Finally, we note that it is possible to provide a solid basis for the above quasi-

thermodynamic analysis if one restricts attention to the regime of large h where mean-field 

description of kinetics and spatiotemporal behavior applies. In this regime, the reaction 

kinetics can be formulated in terms of a local effective free energy density3,  

U(C) = ½ pC2 – 1/3 C3 + ¼ C4, satisfying R(C) = -d/dC U(C),             (23) 

where R(C) is given in (5). U(C) has a double-well form for 0=ps- < p<ps+=1/4, and the 

difference in well depths is δU ≈ 2/9 δpeq for small δpeq = p-pe = p-2/9. 

Spatiotemporal behavior can be described in terms of an associated Ginzburg-

Landau-type effective free energy (or Lyapunov) functional3,  

F = ∫dx [U(C(x)) + ½ h|∇C(x)|2] .                 (24) 

The mean-field reaction diffusion equations for the QCP with large h then take the form of a 

deterministic Cahn-Allen equation3,55. Thus, it is also possible to explicitly evaluate σeff =    
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σ~eff ∝ h1/2 (independent of θ) from the value (per unit length) of F integrated across an 

interface between active and vacuum states55. In fact, this result follows from a simple 

scaling analysis noting that the width of the interface scales like h1/2, and thus the magnitude 

of ∇C like h-1/2. Consequently, one finds that Rc = σeff/δU ∝ h1/2/|δpeq|, a result reported 

above which can also be obtained from a more direct analysis of the mean-field reaction-

diffusion equations3.  

Finally, it should also be noted that stochastic aspects of nucleation mediated 

poisoning for large h in this regime 2/9 = pe < p < ps+ = ¼ can be treated within the 

framework of the appropriate Langevin version of the above reaction-diffusion or Cahn-

Allen equation8,54-56,  

∂C/∂t = -δF[C]/δC + ζ = R(C) + h∇2C + ζ,                 (25) 

but with non-trivial multiplicative noise8,55,56, ζ. Here, ζ = ζac + ζdiff has contributions from 

non-conserved particle annihilation-creation noise and conserved particle diffusion noise55,56. 

A detailed analysis will be reported in a separate paper55. 

VI. Conclusions 

 Our realization of Schloegl’s second model for autocatalysis including particle 

diffusion with hop rate h≥0 on a square lattice has revealed a non-equilibrium discontinuous 

phase transition between an active state and an absorbing vacuum state. The critical 

annihilation rate for existence of an active state, pe(h), strictly exceeds that for survival of a 

finite population, pf(h), for h>0 contrasting the postulate of Durrett29.  This feature is a direct 

consequence of a dependence on orientation of the annihilation rate peq(h, S) for equistability 

of a planar interface separating the active and vacuum states, as previously identified30,31 for 
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the case h=0. This orientation-dependence in turn leads to generic two-phase coexistence 

which is quite distinct from behavior in thermodynamic systems. Nonetheless, one does still 

find existence of a metastable state just above the discontinuous transition and associated 

nucleation phenomena exhibiting features quite analogous to discontinuous phase transitions 

in equilibrium systems. 

As noted in Sec. III A, from simulation data alone, we cannot rule out the existence of 

a critical value, hc, of h such that pe = pf for h≥hc, i.e., generic two-phase coexistence 

disappears but the discontinuous transition persists in this regime. However, in our 

realization of the QCP on a square lattice modified to include spontaneous particle creation30, 

and in Toom’s noisy North-East-Center voting model32-35, generic two-phase coexistence 

does persist until disappearance of the discontinuous transition at a critical point. Also, 

analysis based on approximate truncation of the exact mater equations39 for the QCP with 

h≥0 indicate that pe > pf for all h<∞. 

 It is natural to ask whether the features displayed by this model apply more 

broadly for non-equilibrium models displaying discontinuous phase transitions? We do 

expect that interface orientation dependent propagation and equistability, as well as generic 

two-phase coexistence, do occur more generally. However, the orientation-dependence may 

often be very weak and the regime of two-phase coexistence may be narrow and as a 

consequence difficult to detect57. 

Acknowledgements 

This work was supported by the Division of Chemical Sciences and by the SciDAC 

Computational Chemistry program of the U.S. Department of Energy (Basic Energy 



 151 

 

Sciences). It was performed at Ames Laboratory which is operated for the USDOE by Iowa 

State University under Contract No. DE-AC02-07CH11358. 

References  

1 G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New 
York, 1977). 
2 P. Gray and S.K. Scott, Chemical Oscillations and Instabilities (Clarendon, Oxford, 1994). 
3 A.S. Mikhailov, Foundations of Synergetics I (Springer, Berlin, 1990). 
4 Chemical Waves and Patterns, R. Kapral and K. Showalter, ed.s (Kluwer, Amsterdam, 
1995). 
5 N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, 
Amsterdam, (1981). 
6 A.S. Mikhailov and A.Yu. Loskutov, Foundations of Synergetics II (Springer, Berlin, 
1996). 
7 J. Garcia-Ojalvo and J.M. Sancho, Noise in Spatially Extended Systems (Springer, Berlin, 
1999). 
8 M. Hildebrandt, A.S. Mikhailov, and G. Ertl, Phys. Rev. Lett. 81, 2602 (1998). 
9 D.T. Gillespie and L. Petzold, in System Modeling in Cellular Biology, Z. Szallasi et al., 
ed.s (MIT Press, Cambridge, 2006), p.331. 
10 R. Imbihl, Prog. Surf. Sci. 44, 185 (1993). 
11 R. Imbihl and G. Ertl, Chem. Rev. 95, 697 (1995). 
12 Y. Suchorksi, J. Beben, E.W. James, J.W. Evans, and R. Imbihl, Phys. Rev. Lett. 82, 1907 
(1999). 
13 D.-J. Liu and J.W. Evans, J. Phys.: Cond. Matt. 19, 065129 (2007). 
14 J. Starke, C. Reichert, M. Eiswirth, H.H. Rotermund, and G. Ertl, Europhys. Lett. 73, 820 
(2006). 
15 D. Dab, A. Lawniczak, J.P. Boon and R. Kapral, Phys. Rev. Lett. 64, 2462 (1990). 
16 J.P. Boon, D. Dab, R. Kapral, and A. Lawniczak, Phys. Rep. 273, 55 (1996). 
17 J. Marro and R. Dickman, Nonequilibrium Phase Transitions in Lattice Models 
(Cambridge UP, Cambridge, 1999). 
18 H. Hinrichsen, Adv. Phys. 49, 815 (2000). 
19 G. Odor, Rev. Mod. Phys. 76, 663 (2004). 
20 R.M. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Lett. 56, 2553 (1986). 
21 J.W. Evans and T.R. Ray, Phys. Rev. E, 50, 4302 (1994). 
22 R. H. Goodman, D. S. Graff, L. M. Sander, P. Leroux-Hugon, and E. Clément  
Phys. Rev. E 52, 5904 (1995). 
23 J.W. Evans and M.S. Miesch, Phys. Rev. Lett. 66, 833 (1991). 
24 E. Loscar and E.V. Albano, Rep. Prog. Phys. 66, 1343 (2003). 
25 E. Machado, G.M. Buendia, and P.A. Rikvold, Phys. Rev. E 71, 031603 (2005). 
26 D.-J. Liu and J.W. Evans, Surf. Sci., in press (2009) (Ertl Issue). 
27 F. Schloegl, Z. Phys. 253, 147 (1972). 
28 P. Grassberger, Z. Phys. B Cond. Matt. 47, 365 (1982). 



 152 

 

29 R. Durrett, SIAM Rev. 41, 677 (1999). 
30 D.-J. Liu, X. Guo, and J.W. Evans, Phys. Rev. Lett., 98, 050601 (2007). 
31 X. Guo, D.-J. Liu, and J.W. Evans, Phys. Rev. E, 75, 061129 (2007). 
32 C. Bezuidenhout and L. Gray, Ann. Prob. 22, 1160 (1994). 
33 A.L. Toom, in Multicomponent Random Systems, edited by R.L. Dobrushin and Y.G. Sinai 
(Marcel Dekker, New York, 1980). 
34 C.H. Bennett and G. Grinstein, Phys. Rev. Lett. 55, 657 (1985). 
35 G. Grinstein, IBM J. Res. Dev. 48, 5 (2004). 
36 M.A. Munoz, F. de los Santos, and M.M.T. da Gama, Euro. Phys. J. B 43, 73 (2005). 
37 D. Mollison, J. Roy. Stat. Soc. B, 39, 283 (1977). 
38 X. Guo, J.W. Evans, and D.-J. Liu, Physica A 387, 177 (2008). 
39 X. Guo, D.-J. Liu, and J.W. Evans, Physica A, to be submitted (2009). 
40 Interchange the role of particles and empty sites in the QCP [32,33]. Then, one has 
spontaneous creation of particles at empty sites, and their autocatalytic removal given 
suitable empty pairs of sites. The former mimics monomer adsorption in the ZGB model, and 
the latter mimics reactive monomer removal (which requires empty pairs sites to allow dimer 
adsorption). 
41 R.M. Ziff and B.J. Brosilow, Phys. Rev. A 46, 4630 (1992). 
42 D.-J. Liu, J. Stat. Phys., submitted (2008). 
43 R.H. Schonmann and S.B. Shlosman, Comm. Math. Phys. 194, 389 (1998). 
44 S. Shlosman, Physica A 263, 180 (1999). 
45 S. Friedli and C.-E. Pfister, Phys. Rev. Lett. 92, 015702 (2004). 
46 P.A. Rikvold, H. Tomita, S. Miyashita, and S.W. Sides, Phys. Rev. E 49, 5080 (1994). 
This study described the spinodal associated with an infinite Ising system as the “mean-field 
spinodal point” (MFSP), although it cannot be assessed with a simple mean-field theory. 
47 M. Avrami, J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941). 
48 J. Krug and H. Spohn, in Solids Far from equilibrium: Growth, Morphology and Defects, 
C. Godreche ed. (Cambridge UP, Cambridge, 1991). 
49 A.-L. Barabasi and H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge UP, 
Cambridge, 1995). 
50 For a planar interface with small slope ∂y/∂x measured relative to S=1, the normal velocity 
is denoted V(S=1+∂h/∂x). By a Pythagorean construction, the velocity in the y-direction is   
∂y/∂t = V(S=1+∂h/∂x)[1+(∂h/∂x)2]1/2 ≈ V0 + δV +1/2 V0 (∂h/∂x)2, where V0 = V(S=1), and      
δV = V(S=1+∂h/∂x) – V(S=1) ≈ C(∂h/∂x)2 (Ref. 31). Thus, one has λ = 2C + V0. 
51 H.-C. Jeong and E.D. Williams, Surf. Sci. Rep. 34, 171 (1999). 
52 Writing σ~eff(θ) ≈ σav(h) + f(h) cos(4θ), it follows that σeff(θ) ≈ σav(h) - f(h) cos(4θ)/15. 

These identities are equivalent to (15) and (22) noting that σ~1(h) = σav(h) - f(h) and g(h) = 
2f(h). 
53 An increasing number of vacuum clusters which nucleate just ahead of the interface can be 
incorporated into the advancing interface as time progresses corrupting estimation of V. 
54 J.D. Gunton and M. Droz, Introduction to the Theory of Metastable and Unstable States, 
Springer Lecture Notes in Physics Vol. 183 (Springer, Berlin, 1983). 
55 A. Matzavinos, X. Guo, D.-J. Liu, and J.W. Evans, to be submitted (2009). Here,                         
ζac ∝ C1/2(p+C-C2)1/2ξac is the non-conserved particle annihilation-creation noise, and              



 153 

 

ζdiff ∝ ∇[h1/2C1/2(1-C)1/2ξdiff] is the conserved particle diffusion noise. ξac and ξdiff are 
independent white noises. 
56 M. Hildebrand and A.S. Mikhailov, J. Phys. Chem. 100, 19089 (1996). 
57 D.-J. Liu and J.W. Evans., to be submitted (2009). 



 154 

 

Table 

 



 155 

 

Figures 

 

Figure 1. Schematic of particle annihilation, autocatalytic creation, and hopping 
processes in Schloegl’s second model or the QCP on a square lattice. Here 
particles are denoted by filled circles (••••) and empty sites by open circles (o). 
Rates for the various processes are also indicated, and the bar through the 
arrow indicates that the process is not allowed. 

 

 

Figure 2.  Steady-state concentration, Ceq, versus particle annihilation rate, p, in the 
QCP with h=0.001. The vertical lines indicate p = pf = 0.0941 and p = pe = 
0.0958 bordering the regime of generic two-phase coexistence for h=0.001. 
The dotted line indicates the metastable active state. Inset: Dependence of 
annihilation rate, peq(S), for interface equistability on interface slope, S, for 
h=0.001. 
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Figure 3.  KMC simulation results for evolution of the particle concentration in the 
QCP with h=0.001: (a) C(t) versus time, t, for evolution from a completely 
populated lattice (C=1) to the vacuum state (C=0) for various annihilation 
rates, p (shown), above the effective upper spinodal, ps+; (b) C(t) versus 
scaled time, δδδδps+t, where δδδδps+ = p - ps+ for the optimum choice of ps+ = 0.102 
to achieve collapse; (c) C(t) versus scaled time, δδδδps+t, for a less than optimum 
ps+=0.104. 

 

 

 



 157 

 

 

Figure 4.   Nucleation-mediated poisoning kinetics for pe < p < ps+. Results are shown 
for h=0.001 (a), 0.1 (b), 0.2 (c), and 0.4 (d). In all cases, we consider four 
values of p corresponding to δδδδpeq+ = p - pe = 0.0031 + 0.0005 m, with m = 0, 
1, 2, and 3. We show both the ‘raw’ kinetics C(t)/Cm versus t in the main 
plot, where the curve with the most (least) rapid decay corresponds to the 
largest (smallest) p and δδδδpeq+. The insets show the optimum collapsed curves 
leading to estimates of cnuc(h), as described in the text. 



 158 

 

 

Figure 5. Structure of interfaces between the active state and poisoned state at 
equistability. Particles are black and empty sites are white (so the poisoned 
vacuum state is completely white). Left column: S=0. Right column: S=1. 
Top (a), middle (b), and bottom (c) frames correspond to h*=0, h*=0.001, 
and h*=0.1, respectively. System size is 256××××256 sites. 
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Figure 6.   KMC simulation results for V(p, h, S=1) and V(p, h, S=0 or ∞∞∞∞) versus p for 
the QCP with: (a) h=0; and (b) h=0.001. Insets show behavior close to the 
upper spinodal point ps+ ≈≈≈≈0.101 (0.102) for h=0 (0.001). Note that the p-value 
where V(p, h, S=1) = 0  corresponds to p = pe(h) where pe = 0.0944 for h=0, 
and pe = 0.0958 for h=0.001. 

 

 

Figure 7.   KMC simulation image of interface propagation of the vacuum state (upper 
right) into the active state (lower left) for h=0 and p=0.100 (above pe = 
0.0944 and close to ps+ ≈≈≈≈ 0.101). Image size: 256××××256 sites. The image was 
taken ~800 Monte Carlo steps after the initiation of propagation from a 
straight interface separating completely filled and empty regions. The image 
distinguishes empty sites within and connected to the vacuum state (white) 
from disconnected empty sites and clusters interior to the active state (grey). 
Occupied sites are black. Note that spontaneous nucleation of the vacuum 
state occurs within the active state, so that the interior (grey) vacuum 
clusters grow in time. 
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Figure 8.   KMC simulation results for the square of the propagation velocities, V(p, h, 
S=1) (upper curve) and V(p, h, S=0) (lower curve) versus h for planar 
interfaces separating active and vacuum states. Insets show V(p, h, S) versus 
h. Left frame (a): p=0. Right frame (b): p=0.05. 
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Figure 9.   KMC simulations of droplet evolution for the QCP with h=0.001. Evolution 
of an initially diamond-shaped filled droplet (embedded in the vacuum state) 
quickly converting to an active droplet and: (a) shrinking for p=0.0950 
within the two-phase coexistence (2PC) region; (b) growing for p=0.0920 
below the 2PC region. Evolution of an initially square-shaped vacuum 
droplet (embedded in the completely occupied state which quickly converts 
to the active state) and: (c) shrinking for p=0.0950 within the 2PC region; 
and (d) growing for p=0.0970 above the 2PC region. Initial occupied droplet 
sizes are 128√√√√2××××128√√√√2 sites in (a) and (b). Initial vacuum droplet sizes are 
256××××256 sites in (c) and (d). Images are shown at 0, ~8000, ~24000, and 
~40000 Monte Carlo steps. In all cases, occupied sites are black and empty 
sites are white. 
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Figure 10. Critical linear size, Rc, in lattice constants for the QCP with h*=0.001 for 
vacuum droplets versus p > pe = 0.0959 (right portion of plot), and for 
droplets of the active state versus p < pf  = 0.0943 (left portion of plot). 
Vertical lines indicate pf  and pe. Insets: 1/Rc versus δδδδpeq = p -pf (left portion) 
or p – pe (right portion) revealing near-linear proportionality. Here R c was 
determined in a simple fashion, e.g., by identifying (Rc)

2 as the number of 
occupied sites for active droplets. 

 

 

Figure 11. (a) Critical droplets of the active state of ~104 populated sites for the QCP 
with h*=0.001 and p = 0.0938 so δδδδpeq = -0.0005 (middle), and for h*=0.1 and 
p=0.1506 so δδδδpeq = -0.0003 since pf  ≈≈≈≈ 0.1509 (right). Note the somewhat 
facetted square shape for h*=0.001. (b) Critical vacuum droplets of ~104 
empty sites for h*=0 and p = 0.0948 so δδδδpeq = 0.0004 (left), h*=0.001 and p = 
0.0964 so δδδδpeq = 0.0005 (middle), and h*=0.1 and p = 0.1514 so δδδδpeq = 0.0005 
since pe ≈≈≈≈ 0.1509 (right). In all cases, occupied sites are black and empty sites 
are white. 
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CHAPTER 5. METASTABILITY IN SCHLOEGL’S SECOND MODEL  

FOR AUTOCATALYSIS: LATTICE-GAS REALIZATION WITH 

PARTICLE DIFFUSION 

Xiaofang Guo and J.W. Evans 

Ames Laboratory – USDOE and Department of Mathematics, 

Iowa State University, Ames, Iowa 50011 

 Abstract 

We analyze metastability associated with a discontinuous non-equilibrium phase 

transition in a stochastic lattice-gas realization of Schloegl’s second model for autocatalysis. 

This realization involves spontaneous annihilation, autocatalytic creation, and diffusion of 

particles on a square lattice, where creation at empty sites requires an adjacent diagonal pair 

of particles. This model, also known as the Quadratic Contact Process, exhibits discontinuous 

transition between a populated active state and a particle-free “vacuum” poisoned state, as 

well as generic two-phase coexistence. The poisoned state exists for all annihilation rates p>0 

and is an absorbing state in the sense of Markov processes. The active or reactive steady state 

exists just for p below a critical value, pe, but a metastable extension appears for a range of 

higher p up to an effective upper spinodal point, ps+. We assess the location of ps+ (above pe) 

and by characterizing associated poisoning kinetics and interface propagation behavior for 

various hop rates. 

PACS Numbers: 05.70.Fh, 02.50.Ey, 05.50.+q, 05.70.Ln 
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1. Introduction  

There has been long-standing interest in discontinuous equilibrium phase transitions 

in thermodynamic systems, and particularly in associated metastability and nucleation 

phenomena [1,2]. For example, in the mean-field van der Waals description of a fluid below 

the critical temperature for phase separation, the low-density (high-density) metastable state 

exists for pressures above (below) the equistability pressure, determined by the Maxwell 

construction, up to a well-defined upper (lower) spinodal point [3]. However, in contrast, 

statistical mechanical analyses indicate a dependence of spinodal behavior on system size 

[1,2]. Furthermore, for the equilibrium Ising model for an infinite system [4-6], it has been 

shown that there not exist a unique analytic metastable extension of the active state steady 

state. It is possible to generate a family of C∞ metastable extensions by running the dynamics 

from a suitable initial state for a period of time increasing exponentially with the distance 

from the transition point [4-6]. However, this family of extensions does not provide much 

insight into the location of the effective spinodal point for an infinite system, and in fact there 

is no natural unique definition.  

Non-equilibrium systems actually provide a richer variety of non-equilibrium phase 

transition or bifurcation behavior [7,8]. Bistability of steady states is the analogue of phase 

separation in the van der Waals model, its disappearance at a cusp bifurcation being the non-

equilibrium analogous of a critical point [8,9]. A natural goal is to advance beyond mean-

field-level to statistical mechanical analyses. Recent studies of non-equilibrium phase 

transitions in lattice-gas models have focused on universality in continuous transitions [10-

12]. However, increasing attention is being paid to analysis of various phenomena in 
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reaction-diffusion type models exhibiting discontinuous transitions: propagation and 

fluctuation behavior of interfaces between active and poisoned states [13-18]; epidemic 

properties of an active droplet embedded in the poisoned state [19,20]; and nucleation of 

droplets within the metastable active state [14,18,21].  

It is well recognized that reaction-diffusion models with discontinuous transitions 

exhibit metastability [9]. However, just as for equilibrium systems, one does not expect the 

existence of a unique analytic extension of stable states beyond transition points, and thus 

one does not expect spinodal points to be uniquely or well-defined for infinite systems 

[24,25]. Nonetheless, the concept of a spinodal provides a valuable tool for interpretation of 

model dynamics, so further analysis is appropriate. Interestingly, for non-equilibrium 

systems, there exist both additional challenges and advantages relative to equilibrium 

systems. The challenge derives from the feature that there does not exist a thermodynamic 

framework for analysis of these systems, e.g., critical droplets within the metastable state 

cannot be describe in terms of a free energy functional [1]. On the other hand, for models 

exhibiting mean-field bistability, one can recover true bistability in the statistical mechanical 

model in the regime of rapid particle hopping [9,22], in which case spinodal points are well-

defined.  

In this study, we consider Schloegl’s second model for autocatalysis in a reactive 

system of particles, X, which traditionally includes the following mechanistic steps [8,16-

18,23-27]:  

X→∅ (spontaneous annihilation), 2X→3X (autocatalytic creation),   (1) 
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and possibly particle diffusion. Annihilation occurs at rate p, and autocatalytic creation 

occurring at a suitably prescribed rate requires existing nearby pairs of particles. The most 

general formulation also includes spontaneous creation ∅→X, but this process is excluded in 

our study. Traditional off-lattice formulations also include the autocatalytic annihilation 

process 3X→2X in order to avoid population explosion [8,23]. However, in lattice 

formulations, autocatalytic particle creation requires an empty site ∅, and is thus more 

accurately represented as 2X+∅→3X [16-18,26,27]. This empty site requirement 

automatically limits population growth.  

Both off-lattice and lattice formulations display cubic mean-field kinetics, i.e., the 

rate of change of particle concentration is a cubic function of concentration, C [8,18,23,27]. 

Upon increasing the annihilation rate p, there is a bifurcation in the steady-states from 

bistability (where a stable active steady state with finite population C>0 coexists with the 

stable C=0 vacuum state) to monostability (where the vacuum state is the unique stable 

steady state) [18]. In this contribution, we will restrict our attention to a specific realization 

Schloegl’s second model on a square lattice, also known as the Quadratic Contact Process 

(QCP) [16-18,27], which displays a discontinuous transition from an active state to the 

vacuum state when p exceeds pe. One also finds evidence for a metastable extension of the 

active steady state into a regime pe ≤ p ≤ ps+, where, ps+ denotes an effective upper spinodal 

point of central interest in this study. Our interest here is exclusively in behavior in the limit 

of infinite system size, rather than considering finite systems where a variety of approaches 

to defining spinodals have been considered [1,28]. 

In Sec.2, we describe in detail the realization of the QCP analyzed in this paper, as 

well as presenting the hierarchical form of the exact master equations for this model. In 
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Sec.3, we present simulation results for “moderate” hop rate for poisoning kinetics in the 

vicinity of the effective spinodal point. Next, in Sec.4, we present an analysis of model 

behavior within the pair-approximation to the exact master equations. This actually facilitates 

interpretation of the simulation results. Finally, in Sec.5, we present a coarse-grained 

continuum Langevin reaction-diffusion equations describing the model, but based on the 

pair-approximation rather than a traditional mean-field site-approximation. Conclusions are 

provided in Sec.6.  

2. Model Specification and Master Equations 

Our realization Schloegl’s second model, or equivalently of the QCP, on a square 

lattice as a stochastic Markov process involves the following components [26-18,27]: (i) 

particle annihilation occurring randomly at rate p; (ii)  particle creation at empty sites 

requiring one or more diagonally adjacent pairs of occupied sites; specifically, the creation 

rate is given by k/4, where k is the number of adjacent diagonal occupied pairs and thus can 

take the values k = 0, 1, 2, or 4; (iii)  hopping of particles to any adjacent empty sites at rate h 

(per target site). Fig.1 provides a schematic of these processes. Again C denotes the particle 

concentration, i.e., the fraction of filled sites. For any p>0, the “vacuum state” with C=0 

corresponds to an absorbing steady state from which the system cannot escape. However, 

there also exists an active or reactive steady-state with C=Ceq(p)>0 for 0<p≤pe. Indeed, for 

p<<1, the lattice is almost completely populated with Ceq(p) = 1-p + O(p2) independent of h.  

While kinetic Monte Carlo (KMC) simulation will be utilized below to provide 

precise results for the evolution of C, it is instructive to present the exact master equations for 

the QCP with h≥0 in the form of an infinite coupled hierarchy. It will be instructive to 
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explore the predictions of truncation approximations to these equations. Here, we only 

present the main results. For details of the formulation, see Ref. [29] which analyzed the 

QCP with h=0.  

First, consider spatially homogeneous states of the QCP with h≥0 on an infinite 

square lattice.  We let “x” denote an occupied site and “o” an empty site. Then, P[x] = C 

denotes the probability of a occupied site, P[o] = 1-C the probability of an empty site, P[x  x] 

the probability of an adjacent occupied pair, P[o o] the probability of an adjacent empty pair, 

etc.. Conservation of probability ensures that all configurational probabilities can be written 

as combinations of such probabilities for configurations with just empty sites, e.g., P[x] = 1 - 

P[o], P[x o] = P[o] - P[o o], P[xx] = 1-2P[o]+P[oo], etc. [30], or instead with just occupied-

site configurations. For the QCP, we favor empty site configurations when developing the 

master equations. A similar situation applies for models which just include irreversible 

cooperative creation of particles and no annihilation or hopping, usually referred to as 

“cooperative sequential adsorption” models [30]. The exact form of the first two such 

hierarchical master equations in an infinite coupled set becomes 

[ ] [ ] [ ] [ ] (2b)            . oo P6h - 
o-

o
 P4h  o-o P2h  oox

x

 Pxo P2pood/dt P

(2a)                                                                                         and   , 
xo
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The first gain term in (1a,b) corresponds to particle annihilation, the second loss term to 

autocatalytic creation, and the last three terms in the P[o o]-equation to particle hopping. 

Particle hopping terms are absent in the P[o]-equation since hopping preserves particle 

number. The autocatalytic creation terms equations are obtained by exact reduction of 
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contributions from multiple configurations after exploiting the specific form of the creation 

rates [29]. The hopping terms incorporate an exact simplification applicable for particle 

hopping with simple site exclusion [31]. We also exploited rotational symmetries to identify 

equivalent contributions. 

For a more complete analysis of model behavior, one can extend the above 

hierarchical master equations to consider spatially non-uniform or inhomogeneous states in 

an infinite system [29]. In particular, one can use these generalized equations to analyze the 

propagation of planar interfaces separating vacuum and active states for various slopes, S, to 

determine annihilation rates, p=peq(S), corresponding to stationarity of these interfaces.  

To this end, we introduce location-dependent probabilities for specific configurations 

of sites, e.g., P[oi,j] for the probability that site (i,j) is empty, P[oi,j oi+1,j] for the probability 

that the adjacent pair of sites (i,j) and (i+1,j) are both empty, an analogous quantity for the 

probability of a vertical pair of empty sites, etc..  Then, the first two equations in the exact set 

of hierarchical master equations describing the evolution of these quantities have the form 
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See Ref.[29], which treats the QCP with h=0, for the complete set of autocatalytic particle 

creation terms. For the QCP with h>0, additional terms corresponding to hopping in both the 

P[oi,j] and P[oi,j oi+1,j] equations have been simplified by exact reduction [31,32]. For vertical 

interfaces, S=∞, probabilities are independent of j leading to significant simplification of (3); 

a different simplification applies for diagonal interfaces with slope S=1 (cf. Ref.[29]). 

In the regime h→∞ where the system is well-stirred, all multi-site configuration 

probabilities factorize in terms of single-site probabilities. This implies that behavior is 

described exactly as h→∞ by the mean-field reaction-diffusion equation [18,27] 

dC/dt = R(C) + D ∇2C         (4) 

with cubic mean-field kinetics R(C) = -pC + C2(1-C), and where D=a2 h denotes the diffusion 

coefficient for lattice constant ‘a’. One finds a stable active steady state satisfying p=C(1-C), 

so that Ceq =  ½ + ½ (1-4p)1/2 for 0 ≤ p ≤ ps+, as well as a stable vacuum steady-state C=0. 

Here, ps+ denotes the (mean-field) upper spinodal. Note that one can write 

R(C) = -d/dC U(C) with U(C) = ½ pC2 – 1/3 C3 + ¼ C4.    (5) 

The effective free energy density, U(C), has a double-well form for 0 ≤ p < ps+= ¼, 

and reduces to U(C) = ¼ C2(2/3 – C)2 at equistability p = pe = 2/9 with equal well heights 

[18,27]. Correspondingly, the velocity with which the active state displaces the vacuum state 

in the bistable region satisfies V(p) ∝ D1/2[3(1-4p)1/2 - 1] for 0 ≤ p ≤ ps+ = ¼ and vanishes at p 

= pe = 2/9 [3,18]. 
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3. Simulation Results: Spinodal Points; Poisoning K inetics; 

Interface Propagation 

We perform conventional KMC simulations to determine the poisoning kinetics for 

our realization of Schloegl’s model. In these simulations, processes are implemented with 

probabilities in proportion to the physical rates. Simulations become less efficient for 

increasing h, as most time is spent on hopping of a high concentration of mobile particles. 

This scenario applies for both idealized and realistic atomistic models of reaction-limited 

models.  

Of particular interest in this study is the poisoning kinetics of the QCP for moderate 

hop rate h for p>pe and specifically around the effective spinodal point. As p>pe increases, 

one should find a transition from slow poisoning mediated by nucleation and growth of 

supercritical vacuum droplets to a faster poisoning associated with spinodal decomposition 

[17,18]. Thus, direct inspection of simulation images for various p should give some insight 

into the spinodal location. Previous simulation studies have determined the variation with h 

of the annihilation rate, pe = pe(h), below which a stable active steady state exists [18]. In 

addition, these studies determine a distinct annihilation rate, pf = pf(h), such that pf < pe and 

both active and vacuum states are stable against local perturbations by the other state in the 

regime pf < p < pe, i.e., the model exhibits generic two-phase coexistence [16-18]. 

Specifically, these simulations have shown that pe = 0.0944, 0.1967, 0.2150, and 0.2222• for 

h=0, 1, 4, and ∞ [18]. See Table I. In addition, the width of the generic two-phase 

coexistence region satisfies pe - pf = 0.0075 for h=0+, quickly decreasing to pe – pf < 0.0001 

for h ≥ 0.02 [18].  
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In Fig.2, we show evolution in the QCP with h=1 from a completely filled lattice for 

various p>pe(h=1) ≈ 0.197. In Fig.2a-b for p≤0.210, it is clear that poisoning occurs via 

nucleation and growth of vacuum droplets. However, as p increases to 0.214, Fig.2c-e 

suggest a transition in the mechanism of poisoning. Tentatively, we assign an effective 

spinodal point of ps+(h=1) ≈ 0.213. In Fig.3, we show the analogous evolution for the QCP 

with h=4 for various p>pe(h=4) ≈ 0.215. Fig.3a-b for p≤0.234 reveal nucleation-mediated 

poisoning, but Fig.3c-e suggest a transition to a different mechanism for higher p. 

Tentatively, we assign an effective spinodal point of ps+(h=4) ≈ 0.236. See Table I.  

A more detailed characterization of nucleation-mediated poisoning for pe < p < ps+ is 

possible utilizing concepts from Avrami theory [33] combined with recent postulates for the 

nucleation rate in these non-equilibrium systems [17,18,21]. We propose that the nucleation 

rate for supercritical droplets of the vacuum state has the form knuc ∝ exp(-cnuc/δpe), where 

δpe = p-pe, and that thereafter these droplets grow with a velocity scaling like Vgrow ∝ δpe. 

Then, nucleation kinetics is controlled by a characteristic time τnuc ∝ (Vgrow)-2/3(knuc)
-1/3. 

Specifically, after a transient where the concentration reaches a metastable state value Cm, 

one has that [33] 

C(t)/Cm ≈ exp[-A(t/τnuc)
3] choosing τnuc = (δpe)

-2/3 exp[cnuc/(3δpe)].   (6) 

Fig.4 confirms this behavior for nucleation-mediated poisoning kinetics for the QCP 

with h=1 for p=0.208-0.211 above pe(h=1)=0.197 and below ps+(h=1) ≈ 0.213. We extract an 

estimate of cnuc(h=1) ≈ 0.14-0.15 which reflects the magnitude of the effective barrier for 

nucleation of supercritical vacuum droplets [18]. Note that significantly smaller values of cnuc 

were obtained previously for h=0 – 0.4 [18]. We have performed a similar analysis of 
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nucleation-mediated poisoning kinetics with h=4 for p=0.233-0.235 above pe(h=1)=0.215 

and below ps+(h=1) ≈ 0.236. As expected [18], we extract an even higher estimate of 

cnuc(h=4) ≈ 0.36-0.37. 

Another strategy to assess the location of effective spinodal point is based on the idea 

that the rate of rapid poisoning in the regime p>ps+ should depend primarily on the distance, 

δps+ = p-ps+ >0, above an effective spinodal. Specifically, C should have the form C ≈ 

c(δps+t), so that curves for C versus δps+t for different p should collapse for the appropriate 

choice of ps+ [14,17,18]. Application of this idea requires selection a suitable regime pmin < p 

< pmax in which to analyze the kinetics. In fact, we choose two different regimes for higher or 

lower ∆ = pmin - ps+ based on the above estimates of ps+ to assess the dependence of our new 

estimates of ps+ on ∆. Fig.5a shows poisoning kinetics in the QCP for h=1 for a range of 

p=0.220-0.235 (∆≈0.007) above pe(h=1)=0.197 suggesting ps+(h=1) = 0.207-0.208, but 

Fig.5b for p=0.215-0.225 (∆≈0.002) suggests that ps+(h=1) = 0.209-0.210. A similar analysis 

of poisoning kinetics in the QCP for h=4 for a range of p=0.245-0.270 (∆≈0.009) above 

pe(h=4)=0.215 suggesting ps+(h=4) = 0.226-0.227, but for p=0.240-0.260 (∆≈0.004) suggests 

that ps+(h=4) = 0.228-0.229. Thus, the estimate of ps+ appears to increase as ∆ becomes 

smaller. In Sec.4, with the aid of the analytic pair-approximation for model kinetics, we will 

discuss how to obtain a refined estimate of ps+ accounting for this dependence on ∆. 

As an aside, we remark that for h=0 where previous studies have indicated very weak 

metastability, inspection of images of evolution during poisoning does not reveal such a clear 

distinction between nucleation-mediated poisoning and spinodal decomposition. See Fig.6. 

Analysis of rapid poisoning kinetics for p>ps+ suggests that perhaps ps+ = 0.100-0.101. 
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Finally, we comment on another strategy to provide insight into the effective ps+. This 

is motivated by the observation that mean-field results suggest that the velocity of 

propagation, V(p)<0, of the vacuum state displacing the metastable active state for p>pe 

might have unusual behavior approaching ps+. One complication is that such propagation is 

transient as the metastable active state eventually poisons. This becomes more problematic 

for p approaching ps+ where spontaneous nucleation of the vacuum state becomes more 

facile. To partly ameliorate this problem, we previously adopted a percolation-theoretic 

approach defining the interface as empty sites with filled neighbors connected to the bulk 

vacuum state. This allowed us to ignore possibly large droplets of the vacuum state nucleated 

ahead of the front in the metastable active state. However, eventually the vacuum droplets 

embedded in the active state percolate causing an artificial divergence of the interface 

velocity.  

To avoid this complication, here we adopt a different simpler definition of the 

interface as well as its location and thus velocity. We initialize the (large finite) system with 

a sharp interface separating the vacuum state on one side and a completely filled lattice on 

the other. Then, we determine the subsequent mean location of this interface by matching to 

that of a reference sharp interface with the vacuum state on one side and a uniform state on 

the other which poisons starting from an initially completely filled state. See the schematic 

Fig.7. This strategy gives a well-defined interface location even for p>ps+ where the non-

vacuum state poisons rapidly. To interpret simulation results, two observations should be 

made regarding this definition of interface location and velocity in the context of a mean-

field model: (i) as p→ps+ from below, it takes longer to reach the true asymptotic velocity 
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(which is non-analytic at ps+); (ii) for p>ps+, the propagating front accelerates (with changing 

shape).  

Corresponding results for the interface velocity, V(p), versus p in the QCP with h=1 

are shown in Fig.8 where V(p) is determined as the difference in interface location at initial 

time ti ≈  60 from that at a range of final times, tf. The result is largely independent of tf up to 

p≈0.212, but |V(p)| becomes larger for longer tf for higher p, consistent with acceleration of 

the front for p>ps+. This suggests that ps+(h=1) ≈ 0.212, reasonably consistent with the 

estimate from Fig.2. 

4. Pair-Approximation Results: Spinodal Points; Poi soning 

Kinetics; Interface Propagation 

The lowest-order site-approximation (cf. Sec.2) fails to capture the h-dependence of 

the reaction kinetics which is of primary interest here. However, this dependence is 

incorporated in the higher-order approximations. Here, we consider only the pair-

approximation [29,34]. In the hierarchical master equations for uniform states (2), this 

approximation factorizes multi-site probabilities in the particle creation terms as products of 

the m constituent pair probabilities and divides by P[o]m-1 to avoid over-counting of the 

shared central empty site. One thereby obtains a closed set of equations for single-site and 

pair probabilities. In addition, hopping terms involving the probabilities of separated pairs of 

empty sites are factorized as P[o]2. Since P[x]=1-P[o] and P[xo]=P[o]-P[oo], the pair-

approximation yields the closed equations 

dt P[o] = pP[x] – P[xo]2/P[o] = p(1-P[o]) – (P[o]-P[oo])2/P[o],  and 

d/dt P[oo] = 2pP[xo] – P[xo]2P[oo]/P[o]2 + 6h(P[o]2 – P[oo])                                (7) 
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     = 2p(P[o]-P[oo]) – (P[o]-P[oo])2P[oo]/P[o]2 + 6h(P[o]2 – P[oo]).  

Below it is convenient to let K = P[xo]/P[o] denote the conditional probability or 

concentration of finding a particle adjacent to a prescribed empty site. Due to spatial 

correlations, K is distinct from the concentration C = P[x] = 1-P[o]. Then, noting that P[xo] = 

K(1-C) and    P[o o] = (1-K)(1-C), the pair-approximation then yields the kinetic equations 

d/dt C = -pC + K2(1-C) and d/dt K + (1-K)(1-C)-1 d/dt C =  [-2p + K(1-K)]K - 6h(K-C) . (8) 

The hopping term in the second equation of (7) forces K→C, as h→∞, thus correctly 

recovering mean-field behavior. Solving (8) in the steady-state determines Ceq and Keq versus 

p in the pair-approximation including their h-dependence. For example, one finds that 

 Ceq = 1-p +O(p2) and Keq = 1- (2+6h)(1+6h)-1p + O(p2).     (9) 

The differing linear terms show that spatial correlations persist even for small p when h<∞. 

One can also eliminate p from steady-state form of (8) to obtain Keq as a function of Ceq. One 

thus obtains 

Keq ≈ Ceq[1-Ceq(1-Ceq)/(6h)] and ps+(pair) ≈ 1/4 -1/(48h), for h>>1.            (10) 

Similarly, one obtains 

Keq ≈ Ceq(2-Ceq)
-1[1-6h(2-Ceq)(1-Ceq)/Ceq]

-1 and ps+(pair) ≈ 1/8 + h, for h<<1.       (11) 

Next, we utilize numerical analysis of the pair-approximation equations to provide 

additional insight into the cases h=1 and h=4 considered by simulations in Sec.3.  

Specifically, we analyze the rapid poisoning kinetics for p>ps+ choosing ranges of pmin < p < 

pmax for the same distance ∆ = pmin - ps+ above ps+ as in the simulation studies. Exact steady-

state analysis indicates that ps+(pair) ≈ 0.2329 for h=1, and ps+(pair) ≈ 0.2451 for h=4. See 

Table I. However, Fig.9a shows pair-approximation kinetics in the QCP for h=1 for a range 
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of p=0.240-0.255 (∆≈0.007) suggesting that ps+(h=1) = 0.224-0.225, and Fig.9b shows 

p=0.235-0.245 (∆≈0.002) suggesting that ps+(h=1) = 0.229-0.230. Thus, even the latter 

estimate is about 0.003 below the correct value. If this correction is applied to the simulation 

estimate in Fig.5b, one obtains ps+(h=1) ≈ 0.213 (consistent with direct analysis from Fig.2). 

Similar pair-approximation analysis of kinetics in the QCP for h=4 for a range of p=0.254-

0.279 (∆≈0.009) suggests that ps+(h=4) = 0.234-0.235, but for p=0.249-0.269 (∆≈0.004) 

suggests that ps+(h=4) = 0.239-0.240. The latter is 0.005 below the exact value, a correction if 

applied to simulation results for h=4 give the estimate of ps+(h=4) ≈ 0.235 (consistent with 

direct analysis from Fig.2). 

Finally, we discuss extension of the pair-approximation to the description of spatially 

non-uniform states. In particular, we wish to analyze the propagation of an interface between 

the active and vacuum states to determine the equistability pressure, pe, and also the 

characteristics of interface propagation for p>pe and particularly for p≈ps+ (just as in Sec.3). 

The truncation procedure based on factorization of probabilities naturally extends to the 

infinite hierarchy (3) for spatially non-uniform states either at the level of the site- or pair-

approximation. In either case, the result is a set of discrete reaction-diffusion type equations. 

An example of this procedure for a lattice-gas reaction model at the level of the site 

approximation is found in Ref. [35], and for the QCP with h=0 at the level of the site- and 

pair-approximations is found in Ref. [29]. Extension of the latter analysis to include diffusion 

terms is straightforward. We present results at the pair-approximation level based on analysis 

of coupled discrete reaction-diffusion equations (RDE’s) for single-site and pair probabilities 
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which vary with location (i.e., lattice site). For special cases of vertical or diagonal interfaces, 

these can be simplified as in Ref.[29]. 

We have noted previously that the QCP for h≥0 exhibits generic two-phase 

coexistence [16-18]. This feature derives from the property that the equistability or 

stationarity point for a planar interface separating active and vacuum states depends on the 

orientation of the interface. This property is preserved in the pair-approximation. Table II  

shows the dependence of the annihilation rates for stationarity of vertical (or horizontal) 

interfaces (S=∞ or 0) and diagonal interfaces (S=1) as a function of h. There are some 

complications associated with propagation failure of vertical interfaces [29,36] which will be 

discussed elsewhere. However, the main observation here is that pair-approximation predicts 

that the orientation-dependence of interface propagation and equistability quickly diminishes 

with increasing h (although not as quickly as actual model behavior determined from 

simulations [18]).  

However, our primary interest here is in analyzing the variation of velocity of 

propagation, V(p)<0, of an interface between a vacuum state and a state which is initially a 

filled lattice, i.e., the analogue of the interface propagation analyzed by simulation in Fig.8. 

Within the pair-approximation, this corresponds to the vacuum state displacing the 

metastable active state for pe<p<ps+ or displacing a poisoning state for p>ps+. Results for V(p) 

versus p in the QCP with h=1 are shown in Fig.10 where V(p) is determined as the difference 

in interface location at initial time ti=300 from that at a range of final times, tf. The result is 

largely independent of tf up to p≈0.232 just below ps+=0.233, but |V(p)| becomes larger for 

longer tf for higher p, consistent with acceleration of the front for p>ps+. Thus, behavior is 

entirely analogous to that in Fig.8. 
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5. Continuum RDE’s Based on the Pair-Approximation 

Mean-field continuum Langevin reaction-diffusion equations (RDE’s) [37,38] have 

provided a useful conceptual framework for analysis of fluctuation effects in reaction-

diffusion systems, where the hop rate is sufficiently large to ensure effective mixing (and 

thus mean-field reaction kinetics), but no so large as to completely quench fluctuations [9]. 

However, for our analysis of the QCP with moderate particle hop rates, there are significant 

deviations from mean-field reaction kinetics as reflected in the shift of the spinodal points 

from its h→∞ mean-field value of ¼. Consequently, we are motivated to incorporate a 

higher-level pair-approximation description of reaction kinetics into a continuum RDE 

formulation. One strategy to derive continuum RDE’s without noise terms is to coarse-grain 

the discrete RDE’s which follow from the exact hierarchical master equations after applying 

the appropriate factorization approximation (cf. Ref. [38]). This analysis will not yield noise 

terms might come from consideration of suitable birth-death master equations for discrete 

populations of relevant “species” in an array of spatial cells [1,37,38]. 

To coarse-grain the discrete RDE’s, we start with the factorized form of (3) for the 

probabilities of empty sites and adjacent empty pairs at specific locations. We then rewrite 

these in terms of coarse-grained continuum variables to describe their spatial variation after 

applying suitable Tayor expansions (cf. Ref.[39]). Note that concentration gradients can 

induce different nearest-neighbor correlations in horizontal and vertical directions, so we use 

two corresponding variables. The complete set of variables are:  

U(r = (i,j)a) = P[oi,j], V(r = (i+½,j)a) = P[oi,j oi+1,j], and W(r = (i,j+½)a) = P[oi,j oi,j+1/2],    (12) 
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where again ‘a’ is the lattice constant. Examples of required Taylor expansions are: 

P[oi±1,j] = U(r) ± a Ux(r) + ½ a2 Uxx(r) +… for r = (i,j)a, 

P[oi+1,j oi+2,j] = V(r) + a Vx(r) + ½ a2 Vxx(r) +… for r = (i+½ ,j)a  (13)  

P[oi+1,j oi+1,j±1] = W(r) + ½ a Wx(r) ± ½ a Wy(r) + 1/8 a2 Wxx(r) + 1/8 a2 Wyy(r) ± ¼ a2 

Wxy(r) +…  

again for r = (i+½ ,j)a. Thus (3) becomes: 

∂/∂t U = p(1-U) – U-1(U-V)(U-W) + 1/8 a2 (U-V)Wyy + 1/8 a2 (U-W)Vxx + a2h 

(Uxx+Uyy),                                                                                                                              (14) 

∂/∂t V = 2p(U-V) – U-2 V(U-V)(U-W) + 6h(U2-V) + a2 h U(7/2 Uxx +½ Uyy) + ¼ a2 p 

Uxx + other 

where ‘other’ denotes additional O(a2) terms , and the W-equation follows from that for V by 

rotational symmetry. Note that for a spatially uniform system where V=W, (14) recovers to 

the spatially-uniform pair-approximation kinetics (7). 

Addition of noise terms to the above RDE’s would allow simulation of metastability 

and nucleation-mediated poisoning as described in Sec.3 (see Fig.4). Standard procedures are 

available at the mean-field level to generate such noise terms which include non-conserved 

contributions due to reaction (summing separate contributions from particle annihilation and 

creation for our model) and conserved contributions due to diffusion [18,37,38]. For the 

above formulation at the level of the pair-approximation, it is necessary to start with master 

equations describing the evolution of discrete populations of both empty sites and empty 

pairs for a finite region. One then generates the coarse-grained Fokker-Planck equations from 

which the form of multiplicative noise terms can be deduced. Details will be presented 

elsewhere [40]. 
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6. Conclusions 

Our stochastic realization of Schloegl’s second model for autocatalysis with particle 

diffusion on a square lattice, aka the Quadratic Contact process, provides an ideal testing 

ground to explore issues related to discontinuous phase transitions and associated 

metastability phenomena in non-equilibrium reaction-diffusion models. Based on analysis for 

equilibrium Ising-type models, one does not expect that an unambiguous precise definition is 

possible for the spinodal point in our non-equilibrium model for an infinite lattice. 

Nonetheless, the concept of a spinodal appears to provide a useful tool for analyzing 

poisoning kinetics, particularly for moderate or large hop rates. Our combination of 

simulation and pair-approximation analysis is effective in determining the location of the 

effective spinodal point as a function of particle hop rate. 
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Tables 

Table I. KMC simulation and pair-approximation results for p e, ps+, and the width of 
the metastable regime ∆∆∆∆ps+ = ps+ - pe in the QCP with particle hop rate h≥≥≥≥0. 
*From KMC simulation, one finds that pe = 0.09443 and pf = 0.0869 for h=0, but 
pf – pe < 0.0001 for h > 0.02. 

 pe ps+ ∆ps+ 

h=0 KMC 0.094* 0.101 0.007 

h=0 PAIR 0.1083 0.1250 0.0167 

h=1 KMC 0.199 0.213 0.014 

h=1 PAIR 0.2079 0.2329 0.0250 

h=4 KMC 0.215 0.236 0.021 

h=4 PAIR 0.2181 0.2451 0.0270 

h=∞ EXACT 0.2222• 0.2500 0.2780 
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Table II. Pair-approximation results for the QCP with partic le hop rate h. Values of p 
for equistability of vertical interfaces, peq(S=∞∞∞∞), and diagonal interfaces, 
peq(S=1), between active and vacuum states, and for the upper spinodal, ps+. 

PAIR 

APPROX.  

peq(S=∞ or 0) peq(S=1)=pe ps+ 

h=0             0.1060 0.1083 1/8 = 0.1250 

h=0.01 0.11759 0.11863 0.13429 

h=0.05 0.14335 0.14368 0.15997 

h=0.10 0.16018 0.16035 0.17828 

h=0.20 0.17776 0.17784 0.19801 

h=0.50           0.197546 0.197573 0.22078 

h=1.0 0.207900 0.207909 0.23292 
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Figures  

 

 

 Figure 1.  Schematic of particle annihilation, autocatalytic creation, and hopping 
processes in Schloegl’s second model or the QCP on a square lattice. Here 
particles are denoted by filled circles (••••) and empty sites by open circles 
(o). Rates for the various processes are also indicated, and the bar through 
the arrow indicates that the process is inactive. 
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Figure 2.     Simulated evolution in the QCP with h=1 starting from a filled 1024××××1024 
site lattice (which quickly evolves to a metastable active state) for: (a) 
p=0.208; t= 480, 960, 1440; (b) p=0.210 t= 240, 480, 720; (c) p=0.212; t= 96, 
192, 288; (d) p=0.213; t= 96, 192, 288; (e) p=0.214; t= 96, 192, 288. 
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Figure 3.   Simulated evolution in the QCP with h=4 starting from a filled 512××××512 site 
lattice (which quickly evolves to a metastable active state) for: (a) p=0.232; 
t= 290, 580, 870; (b) p=0.234 t= 116, 232, 348; (c) p=0.235; t= 58, 116, 174; 
(d) p=0.236; t= 58, 116, 174; (e) p=0.237; t= 58, 116, 174. 
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Figure 4.    Simulation results for nucleation-mediated poisoning kinetics in the QCP 
for h=1 for p=0.208-0.211 between pe(h=1)=0.197 and ps+(h=1) ≈≈≈≈ 0.213. The 
parameter cnuc is extracted from the characteristic time for nucleation ττττnuc 
in (6). It reflects the magnitude of the effective barrier to nucleation, and is 
significantly larger than values for h=0-0.4 determined previously [18]. 
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Figure 5.  Simulation results for the poisoning kinetics in the QCP for h=1 for: (a) 
p=0.220-0.235 data suggesting that ps+(h=1) = 0.207-0.208; (b) p=0.215-0.225 
data suggesting that ps+(h=1) = 0.209-0.210. 
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Figure 6.   Simulated evolution in the QCP with h=0 starting from a filled 1024××××1024 
site lattice (which quickly evolves to a metastable active state) for: (a) 
p=0.098; t= 455, 2275, 4090; (b) p=0.100 t= 455, 910, 1365; (c) p=0.101; t= 
455, 910, 1365. 
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Figure 7.  Schematic for determination of the location, x(t), of a vertical interface 
between the vacuum state and an initially filled “poisoning state” from the 
concentration profiles in the QCP for p>pe. Profiles are shown as solid 
curves passing through discrete average concentrations, Ci = <Ci,j>j for 
columns i, where (i,j) is the site label on the square lattice. x(t) matches the 
location of the reference sharp interface (dashed curves) so that ∑∑∑∑i Ci(t) = 
∑∑∑∑i<x(t) C(t), where C(t)→→→→0 as t→→→→∞∞∞∞ denotes the concentration of a uniform 
initially filled state. Profiles shown are taken from pair-approximation 
simulations with h=1 and p=0.235 exceeding ps+≈≈≈≈0.233. An analogous 
definition is possible for other interface orientations.  
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Figure 8.   Simulation results for the propagation velocity, V(p), for an interface 
between vacuum and poisoning states in the QCP with h=1 defined as in 
Fig.6 where velocity is measured as the difference in location between time 
t i = 60 and tf (shown). Results depend on tf just below and above p = ps+ ≈≈≈≈ 
0.213. Inset: V(p) over a broader range of p. 
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Figure 9.   Pair-approximation results for the poisoning kinetics in the QCP for h=1 for: 
(a) p=0.240-0.255 data suggesting that ps+(h=1) = 0.224-0.225; (b) p=0.235-
0.245 data suggesting that ps+(h=1) = 0.229-0.230. 
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Figure 10. Pair-approximation results for the propagation velocity, V(p), for an 
interface between vacuum and poisoning states in the QCP with h=1 
defined as in Fig.7 where velocity is measured as the difference in location 
between time ti = 60 and tf (shown). Results depend on tf just below and 
above p = ps+ ≈≈≈≈ 0.233. Inset: V(p) over a broader range of p. Note the semi-
quantitative agreement with simulation results in the inset to Fig.8. 
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Ames Laboratory – USDOE1 and Department of Mathematics2, 

Iowa State University, Ames Iowa 50011 

Abstract 

We analyze a lattice-gas version of a model for autocatalysis with particle diffusion 

which incorporates both the mechanisms of Schloegl’s first and second models. Adjusting 

the relative strength of these mechanisms induces a crossover between continuous and 

discontinuous transitions, as suggested by a mean-field analysis. Kinetic Monte Carlo 

simulations are used to map out corresponding tricritical line as a function of particle hop 

rate, and a detailed analysis is provided of the tricritical “epidemic exponent” for the case of 

no hopping. The complete phase diagram is also recovered reasonably accurately by applying 

the pair-approximation to the exact hierarchical form of the master equations for this model. 

1. Introduction 

Non-equilibrium systems are well known to provide a richer variety of phase 

transition or bifurcation behavior than traditional equilibrium systems [1,2]. However, there 

are also many similarities in behavior. At the mean-field level of analysis, bistability of 

steady states is the analogue of phase separation in the van der Waals model, its 

disappearance at a cusp bifurcation being the non-equilibrium analogous of a critical point 
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[2-4]. It is also straightforward to construct non-equilibrium systems also exhibit continuous 

phase transitions at the mean-field level. However, a natural goal is to advance beyond mean-

field-level to statistical mechanical analyses of these non-equilibrium models. Such recent 

studies of non-equilibrium phase transitions in lattice-gas models have focused on 

universality in continuous transitions [5-7]. However, increasing attention is being paid to 

analysis of various phenomena in reaction-diffusion type models exhibiting discontinuous 

transitions [8-14]. Consequently, it is natural to also explore the crossover between 

continuous and discontinuous transition behavior, i.e., to assess tricritical behavior in non-

equilibrium systems [15]. To achieve this goal, it is natural to consider a generalized or 

hybrid version of Schloegl’s first and second models for autocatalysis, which are described 

below.  

In the traditional off-lattice mean-field context, special cases of Schloegl’s first (n=1) 

and second (n=2) models of relevance here have the mechanism [2,14,16-22]:  

X→∅ (spontaneous annihilation), nX→(n+1)X (autocatalytic creation).  

Thus, spontaneous annihilation occurs at rate p, and autocatalytic creation occurring at a 

suitably prescribed rate requires existing nearby particle in the first model (n=1), or nearby 

pair of particles in the second model (n=2). The most general formulation also includes 

spontaneous particle creation ∅→X, but this process is excluded in our study. Traditional 

off-lattice formulations also include the autocatalytic annihilation process (n+1)X→nX in 

order to avoid population explosion [2,16]. Implicitly, the models are usually assumed to 

include particle diffusion. These models display quadratic (cubic) mean-field kinetics for n=1 

(n=2), i.e., the rate of change of particle concentration is a quadratic (cubic) function of 

concentration, C [2,16-19]. Upon increasing the annihilation rate p, there is a bifurcation in 
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the steady-states from a regime with a stable active steady state with finite population C>0 to 

one where the vacuum state with C=0 is the unique stable steady state [5,22]. For n=1, this 

transition is continuous, but for n=2 it is discontinuous. 

In this work, we will consider exclusively lattice-gas formulations where 

autocatalytic particle creation requires an empty site ∅, and is thus more accurately 

represented as nX+∅→(n+1)X [14,19-22]. This empty site requirement automatically limits 

population growth. However, the mean-field treatment of these models has essentially the 

same features as the traditional off-lattice formulation. The lattice-gas formulation of 

Schloegl’s models might also be described as the standard Contact Process (SCP) for the first 

model (n=1), and as the Quadratic Contact Process (QCP) for the second model (n=2) 

[5,14,20-22]. The former provides the prototype for a continuous phase transition to an 

absorbing vacuum state which is in the universality class of directed percolation or Reggeon 

field theory [5]. The second, at least with a suitable choice of rates, provides an example of a 

discontinuous phase transition actually displaying generic two-phase coexistence. 

In this work we shall consider a lattice-gas realization of a hybrid version of 

Schloegl’s first and second models (or equivalently of the SCP and QCP) with particle 

hopping. Our focus is on analysis of tricritical behavior associated with the conversion 

between continuous and discontinuous transitions. For the most part, we focus on the regime 

where the QCP is “perturbed” by adding a “small amount” of the SCP mechanism. From this 

perspective, the generalized model could provide additional insight into the behavior of the 

pure QCP, particularly for small particle hop rate where unusual generic two-phase 

coexistence is observed. 
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In Sec.2, we describe in detail the realization of the hybrid QCP+SCP model analyzed 

in this paper, as well as presenting the hierarchical form of the exact master equations for this 

model. Mean-field behavior is also briefly described. In Sec.3, we present simulation results 

focusing on determination of the tricritical point as a function of hop rate. A more detailed 

analysis of tricriticality is also provided for the case of no hopping. Next, in Sec.4, we 

present an analysis of model behavior within the pair-approximation to the exact master 

equations. This approximation reasonably describes behavior observed in simulation studies. 

Conclusions are provided in Sec.5.  

2. Model Specification and Master Equations 

Our realization the generalized or hybrid Schloegl model, or equivalently of the 

QCP+SCP, on a square lattice as a stochastic Markov process involves the following 

components (cf. Ref.[14,20-22]): (i) particle annihilation occurring randomly at rate p; (ii)  

particle creation at empty sites requiring one or more diagonally adjacent pairs of occupied 

sites (the QCP mechanism); specifically, the creation rate is given by k/4, where k is the 

number of adjacent diagonal occupied pairs and thus can take the values k = 0, 1, 2, or 4; (iii)  

a separate pathway for particle creation at empty sites requiring just one or more adjacent 

occupied sites (the SCP mechanism); specifically, the creation rate is given by j⋅δ, where j is 

the number of adjacent occupied sites and thus can take the values j = 0-4; (iv) hopping of 

particles to any adjacent empty sites at rate h (per target site). Fig.1 provides a schematic of 

these processes. Again C denotes the particle concentration, i.e., the fraction of filled sites. 

For any p>0, the “vacuum state” with C=0 corresponds to an absorbing steady state from 

which the system cannot escape. However, there also exists an active or reactive steady-state 
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with C=Ceq(p)>0 at least for small p. Indeed, for p<<1, the lattice is almost completely 

populated with Ceq(p) = 1-(1+4δ)-1p + O(p2) independent of h.  

While kinetic Monte Carlo (KMC) simulation will be utilized below to provide 

precise results for the steady-state variation of C with p (i.e., the equation of state) for various 

δ and h. In particular, we will determine the tricritical value of δtc=δtc(h) of δ, such that the 

model for a specific h exhibits a discontinuous transition to a vacuum state for δ<δtc, and a 

continuous transition for δ>δtc. However, it is also instructive to present the exact master 

equations for the QCP+SCP with h≥0 in the form of an infinite coupled hierarchy. It will be 

instructive to explore the predictions of truncation approximations to these equations.  

First, we consider spatially homogeneous states of the QCP+SCP with h≥0 on an 

infinite square lattice.  We let “x” denote an occupied site and “o” an empty site. Then, P[x] 

= C denotes the probability of a occupied site, P[o] = 1-C the probability of an empty site, 

P[x  x] the probability of an adjacent occupied pair, P[o o] the probability of an adjacent 

empty pair, etc.. Conservation of probability ensures that all configurational probabilities can 

be written as combinations of such probabilities for configurations with just empty sites, e.g., 

P[x] = 1 - P[o], P[x o] = P[o] - P[o o], P[xx] = 1-2P[o]+P[o o], etc. [23], or instead with just 

occupied-site configurations. For the QCP, we favor empty site configurations when 

developing the master equations. A similar situation applies for models which just include 

irreversible cooperative creation of particles and no annihilation or hopping, usually referred 

to as “cooperative sequential adsorption” models [23]. The exact form of the first two such 

hierarchical master equations in an infinite coupled set becomes (cf. Ref.[24]) 
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where again probabilities of configurations involving filled sites can be rewritten in terms of 

those just involving empty sites. The first gain terms in (1) and (2) (proportional to p) 

correspond to particle annihilation, the second group of loss terms to autocatalytic creation 

via the QCP mechanism, the third group (proportional to δ) to autocatalytic creation via the 

SCP mechanism, and the last three terms in the P[o o]-equation (proportional to h) to particle 

hopping. Particle hopping terms are absent in the P[o]-equation since hopping preserves 

particle number. After the second equality, we have implemented an exact summation and 

simplification of terms associated with particle creation for both QCP and SCP mechanisms. 
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Likewise, the hopping terms incorporate an exact cancellation and simplification applicable 

for the special case of particle hopping with simple site exclusion [25,26]. We also exploited 

rotational symmetries to identify equivalent contributions. 

One can extend the above exact hierarchy to treat spatially non-uniform states [24]. 

Here, one introduces the probabilities P[xi,j] = Ci,j that site (i,j) is occupied, P[oi,j] = 1-Ci,j that 

site (i,j) is empty, P[oi,j oi+1,j] that both sites (i,j) and (i+1,j)  are empty, etc.. The form of the 

hierarchy naturally extends (1) and (2) above, but now hopping terms appear in the equation 

for the single-site quantity of the form [24] d/dt P[oi,j]|hop = h(P[oi+1,j]+P[oi,j+1]+P[oi-1,j]+P[oi,j-

1]-4P[oi,j]). 

It is instructive to provide a mean-field analysis for the above QCP+SCP model. This 

corresponds to ignoring all spatial correlations, so probabilities of multi-site configurations 

factor as a product of constituent single-site probabilities. This treatment describes exactly 

behavior in the limit h→∞ where the system is “well-stirred” by rapid particle diffusion. We 

apply this procedure to the spatially non-uniform version of (1), and writing the result in 

terms of the possibly spatially varying particle concentration C(r=(i,j)a) = Ci,j at coarse-

grained position r for lattice constant ‘a’. One then obtains the mean-field reaction-diffusion 

equation (RDE) 

∂C/∂t = R(C) + D ∇2C with R(C) = -p⋅C + C2(1-C) + 4δ⋅C(1-C),    (3) 

and where D=a2 h denotes the particle diffusion coefficient. One finds a stable uniform active 

steady state satisfying p=C(1-C)+4δ(1-C) for certain p, as well as a vacuum steady-state C=0.  

 A schematic of steady-state behavior (i.e., the equation of state) for h→∞ is 

presented in Fig.2. When δ < δtc = ¼, the model displays bistability of an active populated 

and vacuum state provided that ps-(δ) < p < ps+(δ). The upper and lower spinodals satisfy  
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ps-(δ) = 4δ and ps+(δ) = (1+4δ)2/4 = 4δ + (1-4δ)2/4.      (4) 

For p<ps- (p>ps+), only the active (vacuum) state is stable. Bistability disappears at δ 

= δtc. For δ>δtc, one instead finds a continuous transition at p=pc(δ) =4δ from a unique stable 

active steady-state exists for p<pc(δ) to a unique stable vacuum state for p>pc(δ) [27].  

Additional insight into steady-state behavior comes from writing 

R(C) = -d/dC U(C) with U(C) = ½ (p-4δ)C2 – 1/3 (1-4δ)C3 + ¼ C4.   (5) 

The effective free energy density, U(C), has a double-well form when δ < δtc for ps-

(δ) < p < ps+(δ), and reduces to U(C) = ¼ C2(2/3-8δ/3 -C)2 with equal well heights when p = 

peq(δ) = 4δ+(2/9)(4δ–1)2. Insight into the significance of p=peq(δ) comes from analysis based 

on the RDE (3) for the evolution of an interface separating the stable active state from the 

stable vacuum state in the bistable region. One finds that the interface is stationary at p = 

peq(δ), i.e., this corresponds to the equistability point for the active and vacuum states within 

the bistable region. 

Fig. 3 shows the phase diagram in the p-δ plane for the mean-field QCP+SCP 

including the spinodal lines, p=ps±(δ), and the equistability line, p=peq(δ), for δ<δtc which 

merge at δ=δtc.  The continuation of these lines for δ>δtc is given by p=pc(δ) corresponding to 

the continuous transition. In a stochastic or statistical mechanical version of the model, peq(δ) 

would correspond to the location of a discontinuous transition. Thus, it is natural to introduce 

a general transition p = ptr(δ) which would correspond to a discontinuous transition ptr(δ) = 

peq(δ) for δ<δtc and a continuous transition ptr(δ) = pc(δ) for δ>δtc. Thus, δ = δtc would 

correspond to a tricritical point.  
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3. Simulation Results: Tricritical Behavior in the QCP+SCP 

As δ increases from zero in the QCP+SCP for fixed particle hop rate h<0 (including 

h=0), one expects to observe a conversion from a discontinuous to a continuous transition 

upon reaching a tricritical value δ=δtc(h). Our primary goal here is to apply kinetic Monte 

Carlo simulations to determine δ=δtc(h). One complication is that the QCP for δ=0 exhibits 

generic two-phase coexistence: stable active and vacuum states coexist not just for a single 

value of p (which would correspond to the location of the unique discontinuous transition for 

a thermodynamic system), but rather for a finite range pf(δ) < p < pe(δ). The origin of this 

behavior is that the annihilation rate for equistability of active and vacuum states separated 

by a planar interface depends on the orientation of the interface, pe (pf) corresponds to 

diagonal (horizontal or vertical) interfaces. Thus, both pe(δ) and pf(δ) can be regarded as 

corresponding to special cases of equistability points, peq(δ). Previous analysis for the QCP 

with δ=0 revealed that pe =0.0944 and pf =0.0869 when h=0, but that ∆peq = pe-pf decreases 

very quickly with increasing h from ∆peq =0.0075 when h=0 to ∆peq<10-4 when h=0.02. 

Similarly, for fixed h≥0, we expect that generic two-phase coexistence persists for δ>0, but 

that ∆peq decreases quickly with increasing δ and vanishes at δ = δtc. New results for h=0 and 

increasing δ>0 are shown in Table I confirming the very rapid decrease of ∆peq with 

increasing δ [28].  

Thus, as a practical matter, except very close to (δ, h)=(0, 0), one has that pe(δ) ≈ pf(δ) 

in the QCP+SCP for δ<δtc and some fixed h corresponding to equistability of the two phases 

and to the location of a discontinuous transition ptr(δ) = peq(δ). For δ>δtc, the discontinuous 

transition is replaced by a continuous transition at p = ptr(δ) = pc(δ).  
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Our initial goal for analysis of the QCP+SCP for fixed h (including h=0) and varying 

δ is to determine the value of p= ptr(δ) of the transition as a function of δ. Rather than 

conventional “constant-p” simulations, it is more convenient to utilize “constant 

concentration (CC)” simulations [29]. In the former, one selects p and then decides whether 

to annihilate or create a particle at a randomly selected site based on this value. For the latter 

CC simulations [29], one selects a target particle concentration Ct and annihilates (creates) a 

particle and a randomly selected site if the actual concentration satisfies C>Ct (C<Ct). The p-

value associated with Ct is then determined from the fraction of attempts to annihilate a 

particle. The constant-p and the constant concentration simulations should be consistent for a 

large system. However, the latter are particularly convenient for determining the locations of 

discontinuous and continuous transitions, our initial objective here (as well as the regime of 

generic two-phase coexistence). These simulation results also provide an estimate of the 

location δ=δtc of the conversion from a discontinuous to a continuous transition. 

Fig.4a provides results from CC simulations for p versus C in the QCP+SCP with 

h=0 and various δ>0. From these results, we extract precise estimates of the transition 

location p=ptr(δ) versus δ>0 shown in Table II . In addition, analysis of this data to determine 

dp/dC|C=0 versus δ reveals a sudden transition from small positive to substantial negative 

values as δ exceeds δtc(h=0) ≈ 0.032. A refined determination of δtc(h=0) will be provided 

immediately below. These results for ptr(δ) versus δ, the estimate of δtc(h=0), and also more 

detailed results for pe(δ) and pf(δ) versus δ from Table I, are summarized in Fig.4b.  

For a more detailed characterization of behavior at the transition point p=ptr(δ) and in 

particular at the tricritical point, δ=δtc, for the QCP+SCP with h=0, we perform an epidemic 
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analysis to assess the evolution of a patch of filled sites or of the active state embedded in the 

vacuum state. Of particular interest is the behavior at p=ptr(δ) of survival probability, Ps(t), 

versus t. For a continuous transition when δ exceeds δtc, one has that Ps(t) ~ t-ζ, as t→∞, 

where the exponent ζ = ζDP ≈ 0.451 adopts the value of the directed percolation universality 

class [5,15]. However, exactly at the tricritical point, ζ = ζtc will adopt a distinct value 

associated with the universality class of tricritical points, and for which we shall see that ζtc > 

ζDP. Furthermore, close to δ=δtc, the effective value of ζ would plausibly be controlled by ζtc 

rather than ζDP. For a discontinuous transition when δ<δtc, one expects that asymptotically 

Ps(t)→0 exponentially as t→∞ (at least for finite effective line tension of the interface 

between active and vacuum states). However, in practice, simulation data might mimic 

algebraic decay with a larger exponent ζ. The inset to Fig.5 shows behavior of Ps(t) versus t 

for the QCP+SCP with h=0 at p=ptr(δ) for a broad range of δ=0.01-0.07 which is consistent 

with the above picture. 

The above observations indicate that the effective ζ will evolve from values smaller 

than ζtc to values larger than ζtc as δ increases through δtc. Consequently, a plot of ln[Ps(t)] 

versus ln[t] should evolve from positive to negative curvature as δ increases through δtc. See 

the main part of Fig.5 which shows higher quality data for a restricted range of δ around δtc. 

With this in mind, it is natural to fit simulation data for a suitable range of t to the form 

ln[Ps(t)] ≈ - ζ0 - ζ1 ln[t] - ζ2 (ln[t])2.       (6) 

Then, ζ2 should evolve from negative values for δ<δtc to positive values for δ>δtc. 

Thus, the optimum estimate of δtc should come from the value of δ when ζ2=0, and the 

optimum estimate of ζtc should come from the value of ζ1 at this point. Thus, the simulation 
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data shown in Fig.5, and the associated ζ1 and ζ2 values reported in Table III  from the range 

t=1000-8000 indicate that δtc ≈ 0.034 and ζtc ≈ 1.24 for the QCP+SCP with h=0. 

Finally in this section, we briefly assess the location of the tricritical point in the 

QCP+SCP with finite h>0. Here, we just perform a CC analysis for various h>0 to determine 

ptr(δ) versus δ, and the value of δ=δtc(h). Results for C versus p with h=0.5 are shown in 

Fig.6, and an analysis of dp/dC|C=0 versus δ reveals a sudden transition to negative values as 

δ exceeds δtc(h=0.5) ≈ 0.032. Results for δtc(h) from a similar analysis for other finite h, 

together with the exact result for h=∞ from the mean-field analysis in Sec.2, are plotted to 

show the entire tricritical line in Fig.7.  

4. Pair-Approximation Analysis: Tricritical Behavio r in the 

QCP+SCP 

First, we consider an approximate analysis of the exact master equations for spatially 

uniform states. The lowest-order mean-field site-approximation (which ignores all spatial 

correlations) fails to capture the h-dependence of the reaction kinetics which is of interest 

here. However, this dependence is incorporated in the higher-order approximations. Here, we 

consider only the pair-approximation [24,30]. In the hierarchical master equations for 

uniform states (1), this approximation factorizes multi-site probabilities in the particle 

creation terms as products of the m constituent pair probabilities and divides by P[o]m-1 to 

avoid over-counting of the shared central empty site. One thereby obtains a closed set of 

equations for single-site and pair probabilities. In addition, hopping terms involving the 

probabilities of separated pairs of empty sites are factorized as P[o]2. Thus, the pair-

approximation yields the equations 
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d/dt P[o] = p⋅P[x] – P[o x]2/P[o] + 4δ⋅P[o x] ,  and 

d/dt P[o o] = 2p⋅P[o x] – P[o x]2 P[o o]/P[o]2 - 6δ⋅P[o o]P[o x]/P[o]                        (7) 

                     + 6h(P[o]2 - P[o o]), 

which can be closed using P[x] = 1-P[o] and P[xo] = P[o]-P[oo]. 

Below it is convenient to introduce the conditional probability or concentration, K = 

P[xo]/P[o], of finding a particle adjacent to a prescribed empty site. Due to spatial 

correlations, K is distinct from the concentration C = P[x] = 1-P[o]. Then, noting that P[xo] = 

K(1-C) and that P[o o] = (1-K)(1-C), the pair-approximation then yields the kinetic equations 

        . C)-6h(K K)]K -(16- K)-K(1 - [2p   C)]-K)(1-[(1d/dt C)-(1

and K,4δ - K -C)-C/(1p  Cd/dt  C)-(1
 1-

2-1

+=

⋅⋅=

δ
              (8)                   

The hopping term in the second equation of (8) forces K→C as h→∞, thus correctly 

recovering mean-field behavior corresponding to the absence of spatial correlations. 

Our primary interest is in the analysis of steady-state behavior where dC/dt=dK/dt=0. 

Eliminating C from the steady-state form of (8) yields 

[2p-K(1-K)-6δ(1-K)][p+K2+4δK] + 6h[p-K(1-K)-4δ(1-K)] = 0.            (9) 

The motivation for selecting K as the natural variable over C is particularly clear for 

the case h=0, which we now discuss in some detail (analogous to our simulation treatment).  

For the QCP+SCP with h=0, the steady-state relation (9) reduces to 2p-K(1-K)-6δ(1-

K)=0. Thus, analysis of tricritical behavior is no more difficult than for the mean-field 

treatment corresponding to h→∞. It is readily shown that when δ < δtc = 1/6, the model 

displays bistability of an active populated and vacuum state provided that ps-(δ) < p < ps+(δ). 

The upper and lower spinodals predicted from the pair-approximation satisfy  
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ps-(δ) = 3δ and ps+(δ) = (1+6δ)2/8 = 3δ + (1-6δ)2/8.                (10) 

For p<ps- (p>ps+), only the active (vacuum) state is stable. Bistability disappears at δ 

= δtc. For δ>δtc, one instead finds a continuous transition at p=pc(δ) =3δ from a unique stable 

active steady-state exists for p<pc(δ) to a unique stable vacuum state for p>pc(δ) [27].  A 

more complete analysis of pair-approximation predictions for steady-state behavior when 

h=0 is shown in Fig.8. This is the analogue of Fig.2 for mean-field behavior where δtc = ¼ 

for h=∞. 

For a comprehensive analysis of pair-approximation behavior and comparison with 

simulation predictions for h=0 (or any finite h>0), it is necessary to determine equistability 

values for p in the bistable region when δ<δtc. This requires consideration of spatially non-

uniform states, specifically the evolution of planar interfaces separating stable active and 

vacuum states. To this end, it is necessary to apply the pair-approximation to the spatially-

non-uniform version of the hierarchical master equations (1) and (2) which were discussed 

briefly in Sec.2. This yields a coupled set of discrete RDE’s for site dependent particle 

concentration, Ci,j, and related pair probabilities. (For a development of such equations in the 

pair-approximation for the QCP, see Ref.[24] for h=0 and Ref.[31] for h>0. For lower-level 

site-approximation developments of such equations for other reaction-diffusion models, see 

Ref.[32-33].) Analysis of interface propagation described by these equations reveals a 

dependence on orientation, just as seen in simulation studies of the QCP+SCP. Specifically, 

we find that the equistability value of p depends on interface orientation, corresponding to 

generic two-phase coexistence. 
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For the QCP+SCP with h=0, results for the equistability p versus δ for horizontal (or 

vertical) and for diagonal interfaces predicted from the pair-approximation are shown in 

Table IV. These values quickly merge with increasing δ, just as do pe and pf in the 

simulation analysis for h=0 (although merging of the latter is even faster; cf. Table I). Fig. 9 

shows pair-approximation prediction for the phase diagram in the p-δ plane for the 

QCP+SCP model with h=0 including the spinodal lines, p=ps±(δ), and the equistability line, 

p=peq(δ), for δ<δtc which merge at δ=δtc.  The continuation of these lines for δ>δtc is given by 

p=pc(δ) corresponding to the continuous transition. The mean-field analogue of this plot is 

provided by Fig.3, and the analogue from simulation studies is provided by Fig.4b (but 

without the spinodal lines). 

Finally, for the general QCP+SCP with h≥0, Fig.10 presents the results of a pair-

approximation steady-state analysis based on (9) to determine the tricritical line δtc versus h. 

The analogue of this plot from simulation studies is provided by Fig.7. In both cases, δtc 

increases monotonically with h reaching the same mean-field value of δtc = ¼ for h=∞. 

However, the pair-approximation is not able to accurately predict the value of δtc, and thus its 

variation for small h. 

5. Conclusions  

In summary, we have provided a comprehensive analysis of tricritical behavior in a 

lattice-gas realization of a hybrid version of Schloegl’s first and second models for 

autocatalysis with particle diffusion. This models also corresponds to a combination of the 

standard Contact Process (SCP) and Quadratic Contact process (QCP) on a square lattice. Of 
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particular focus in our study was mapping out of the tricritical line as a function of hop rate 

showing convergence to the mean-field value in the limit of rapid hopping. In addition, we 

provided a detailed analysis of trictitical behavior for the special case of the model without 

particle hopping, specifically determining an “epidemic exponent”. It should be noted that a 

previous study considered a modified version of this hybrid model on various lattices without 

particle hopping obtaining a number of other exponents related to tricritical behavior [15].  
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Table 

Table I.  Values of pe and pf versus δδδδ for the QCP+SCP with h=0. 

δ pf pe 

0 0.0869 0.09443 

0.0001 0.0901 0.09456 

0.0002 0.0910 0.09503 

0.0005 0.0929 0.09549 

0.001 0.0947 0.09622 

0.002 0.0974 0.09798 
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Table II.  Location of the transition p=ptr (δδδδ) for the QCP+SCP with h=0. 

δ ptr 

0.01 0.11554 

0.02 0.13622 

0.03 0.15669 

0.04 0.17787 

0.05 0.19941 

0.06 0.22203 

0.07 0.24490 

 

 

 

Table III. Values of parameters ζζζζ1 and ζζζζ2 versus δδδδ for the QCP+SCP with h=0. 

δ ζ1 ζ2 

0.030 1.47357 -0.06994 

0.032 1.50569 -0.07333 

0.034 1.20198 0.01006 

0.036 1.04131 0.02397 

0.038 0.92689 0.04320 

0.040 0.77899 0.09712 
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Table IV. Pair-approximation prediction of equistability point s in the QCP+SCP with 
h=0. 

δ peq(horizontal/

vertical) 

peq(diagonal) 

0.0 0.1060 0.1083 

0.01 0.12530 0.12607 

0.02 0.14416 0.14447 

0.03 0.16342 0.16356 

0.04 0.18329 0.18336 

0.10 0.31772 0.31772 

1/6 1/2 1/2 
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Figures 

 

 

Figure 1. Schematic of particle annihilation, autocatalytic creation, and hopping 
processes in our generalized Schloegl model (QCP+SCP) on a square lattice. 
Here particles are denoted by filled circles (••••) and empty sites by open 
circles (o). Rates for the various processes are also indicated, and the bar 
through the arrow indicates that the process is inactive. 
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Figure 2:  Mean-field steady-state behavior for particle concentration, C, versus p in 
the QCP+SCP. For δδδδ<δδδδtc = ¼ below the tricritical point (tc), we show upper 
(s+) and lower (s-) spinodals bordering the region of bistability. For δδδδ<δδδδtc, 
we show the location of the continuous transition (c) to the vacuum state. 
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Figure 3:  Phase diagram in the p-δδδδ plane for the mean-field QCP+SCP including the 
spinodal lines, p=ps±±±±(δδδδ), and the equistability line, p=peq(δδδδ), for δδδδ<δδδδtc below 
the tricritical point (tc) which merge at δδδδ=δδδδtc.  The continuation of these lines 
for δδδδ>δδδδtc is given by p=pc(δδδδ) corresponding to the continuous transition. 
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Figure 4:   Simulation analysis of the QCP+SCP for h=0: (a) Results of CC simulations 
for p versus C=Ct used to determine ptr (δδδδ) versus δδδδ by extrapolation of C(p) 
versus p to C=0; (b) Plot of results for ptr (δδδδ) versus δδδδ obtained from (a), also 
showing the tricritical point (tc). The inset shows pe (lower curve) and pf 
(upper curve) versus δδδδ for a range of very small δδδδ where they are 
significantly different. 
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Figure 5:  Epidemic analysis for the QCP+SCP with h=0. Survival probability, Ps(t), 
versus time, t, for a single occupied site embedded in the vacuum state for 
various δδδδ choosing p=ptr (δδδδ) with values given in Table II. The inset shows 
behavior for a broad range of δδδδ varying between 0.01 and 0.07 in increments 
of 0.01. The main plot shows high-quality data in the vicinity of the 
tricritical point used to estimate δδδδtc ≈≈≈≈0.034±±±±0.001 and ζζζζtc ≈≈≈≈ 1.24. 
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Figure 6:   CC simulation results for the QCP+SCP with h=0.5 showing p versus C (or 
equivalently C versus p) for various δδδδ. This data is used to estimate 
δδδδtc(h=0.5) ≈≈≈≈ 0.070. 
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Figure 7:  Simulation results for the tricritical line, δδδδtc(h), versus h for the general 
QCP+SCP with h≥≥≥≥0. This line separates regions of discontinuous (below) 
and continuous (above) transitions. 
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Figure 8:  Pair-approximation predictions for steady-state behavior for particle 
concentration, C, versus p in the QCP+SCP with h=0. For δδδδ<δδδδtc = 1/6 
below the tricritical point (tc), we show upper (s+) and lower (s-) spinodals 
bordering the region of bistability. For δδδδ<δδδδtc, we show the location of the 
continuous transition (c) to the vacuum state. 
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Figure 9:  Pair-approximation predictions for the phase diagram in the p-δδδδ plane for 
the mean-field QCP+SCP with h=0.  including the spinodal lines, p=ps±±±±(δδδδ), 
and the equistability line, p=peq(δδδδ), for δδδδ<δδδδtc below the tricritical point (tc) 
which merge at δδδδ=δδδδtc.  The continuation of these lines for δδδδ>δδδδtc is given by 
p=pc(δδδδ) corresponding to the continuous transition. The inset shows distinct 
values for peq for horizontal or vertical interafces (lower curve) and for 
diagonal interfaces (upper curve) versus δδδδ for a range of very small δδδδ where 
they are significantly different. 
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Figure 10: Pair-approximation predictions for the tricritical line, δδδδtc(h), versus h for the 
general QCP+SCP with h≥≥≥≥0. This line separates regions of bistability 
(below) and monostability (above). 
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CHAPTER 7. GENERAL CONCLUSIONS 

The studies in this thesis have focused on analysis of a non-equilibrium statistical 

mechanical model for reactions, specifically a realization of Schloegl’s second model for 

autocatalysis on a square lattice (also known as the Quadratic Contact process). While this 

model, and similar models, exhibit some features which are similar to equilibrium models 

described by a Hamiltonian (e.g., discontinuous phase transitions and associated 

metastability and nucleation phenomena), there are also fundamental differences. Perhaps 

most significant is the discovery for the QCP of generic two-phase coexistence, i.e., two 

distinct stable phases or states in the reaction model can coexist for a finite range of control 

parameter. This contrasts behavior in equilibrium systems which phases can coexist only at a 

single point in parameter space (where the chemical potentials of the two phases are equal). 

The various chapters in the thesis present a detailed analysis of this novel phenomenon for 

the QCP and its variations or generalizations. One related topic of particular interest was the 

analysis of metastability phenomena in these non-equilibrium systems where the standard 

tools and concepts of thermodynamics are not available to facilitate understanding. Indeed 

this type of issue has been highlighted in the report of the Basic Energy Sciences Advisory 

Committee (BESAC) of the US Department of Energy as one of five Science Grand 

Challenge Areas. We have also made significant progress on analyzing such metastability 

phenomena.  

In closing, to summarize the developments and discoveries from the work presented 

in this thesis, we present a bulleted list of the main highlights: 
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*Discovery utilizing kinetic Monte Carlo simulation of generic two-phase 

coexistence (2PC) in a stochastic realization of Schloegl’s second model for autocatalysis, or 

equivalently the Quadratic Contact process.  

*Demonstration of the failure of the Durrett hypothesis pertaining to the above model 

with particle diffusion (as a direct consequence of 2PC). 

*Development of exact master equations and approximate hierarchical truncations to 

provide an effective (semi-quantitative) treatment of the above models. 

*Development and analysis of discrete reaction-diffusion equations for spatially 

inhomogeneous states associated with the above approximations, together with development 

and application of a novel iterated map strategy for their analysis. 

*Detailed analysis of metastability associated with the discontinuous phase transition 

in the above models. Development and application of appropriate concepts to describe 

nucleation phenomena in these non-equilibrium models. 

*Development of hybrid or generalized Schloegl’s models which exhibit tricritical 

behavior, and analysis of this behavior using constant concentration simulations and 

epidemic analysis. 

*Analysis of critical and stationary droplets in the above models at the level of the 

site-approximation to the master equations for spatially non-uniform states. Discovery of a 

new phenomenology of stationary droplets with a range of sizes (contrasting the traditional 

picture of critical droplets). 

*Extension of the QCP and related models to a variety of lattices (other than the 

square lattice). 
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APPENDIX A: FINITE-SIZE SCALING ANALYSIS  

Here, we provide some additional discussion of the type of simulation analysis 

presented in Chapter 2 and Chapter 4 for the Quadratic Contact Process potentially with 

particle hopping. Specifically, we check for finite-size effects in these simulations, i.e., a 

dependence of key quantities on the size of the simulation system. In principle, any finite 

system must evolve to the absorbing state. However, in practice for larger systems, the time-

scale for this evolution is far longer than assessed by simulation. Nonetheless, there can be 

some dependence of key quantities on system size. Our intent here is to assess this 

dependence. 

To this end, for h≥0, we perform constant-coverage (CC) simulations in rectangular 

Lx×Ly site systems with Ly = SLx starting from an initial filled strip of slope S of the 

absorbing state for target coverage θ=0.5. The goal is to assess the equistability pressure, peq, 

for an interface of slope S. Here, we show the cases of h=0 and h=0.001. Simulations 

indicate clear slope dependence as discussed in previous chapters.  

For h=0 and S>0, peq depends only very weakly on Ly (i.e., very weak finite-size 

effects) with peq(Ly → ∞) = 0.09443, 0.09400, and 0.09283, for S=1, 2, and 4, respectively 

[1]. See Fig. 1(a). For h=0 and for the special case S=0(∞) [1], there is particular concern 

regarding finite-size effects and the adsorbing state cannot shrink. In fact, it could “grow 

artificially” even for small p in any finite system, thus potentially corrupting the estimate of 

peq. For this reason, we perform we perform CC simulations for a sequence of systems with 

Ly = 2nLx containing a vertical interface of length 2nLx, and extrapolate behavior n→∞ for 
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different simulation times (in order obtain the most accurate estimate of behavior for n→∞) 

[1]. See Fig. 1(b).  

For h=0.001, we find a slightly stronger dependence of peq on Ly (with differing 

behavior for different S) with peq(Ly → ∞) = 0.09592, 0.09563, 0.09496, and 0.0944, for 

S=1, 2, 4, and 0(∞), respectively. See Fig.2. 
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Figures 

 

Figure 1.    Quadratic Contact Process for h=0.  (a) Dependence of peq on interface slope 
S. Inset shows CC simulation analysis of system size effects for S = 1, 2, and 
4, (b) Analysis of effect of system size and CC simulation time on estimates 
for peq (S=∞). 
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Figure 2.   Quadratic Contact Process for h=0.001. CC simulation analysis of system 
size effects on peq for S=0, 1, 2, and 4. 
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APPENDIX B: PAIR-APPROXIMATION FOR INTERFACE 

EVOLUTION IN A LG ADSORPTION-DESORPTION MODEL 

REALIZATION OF THE 2D ISING MODEL 

In a lattice-gas (LG) adsorption-desorption model realization of the Ising model, the 

adsorption rate is proportional to p, and desorption rate is proportional to αn, 0 ≤ α ≤ 1, n is 

the number of filled nearest-neighbor (NN) sites. For a spatially uniform system, the first 

entry in the hierarchical form of the master equations has the form 
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where x denotes a filled site, and o denotes an empty site. 

Here we consider the simplest mean-field site approximation which ignores all spatial 

correlations. Then, above equation can be written as  

4
θ)αθθ(1θ)p(1

dt

dθ
⋅+−−−=                                                                                   (2) 

where we introduce the notation θ=P[x].   

For steady-state, we have 

θ1

θ)αθθ(1
p0

dt

dθ 4

−
⋅+−

=⇒=                                                                               (3) 

There exists a critical value, 0.36αc = , for the parameter α, such that the steady-states 

exhibit bistability for cαα < . Fig.1 illustrates this feature. We can also determine the upper 



 231 

 

and lower limits, Ps+ and Ps-, for the regime of bistability. See Fig.2. Table 1 lists Ps+ and Ps- 

values for various α. 

To determine the equistability pressure, we analyze the propagation of interfaces 

separating stable coexisting stable states or phases. To perform this analysis, we need to 

extend the master equation formulation to treat spatially non-uniform states. We consider the 

vertical interfaces with S=∞, and the diagonal interfaces with S=1 separating active and 

absorbing states for p<ps(site) and cαα < . In the site approximation, for the case S=∞ 

(vertical interfaces), we have 

( ) ( ) i
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21i
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For the case S=1 (diagonal interfaces), we have 

( ) ( ) i
x

1i
x

1i
x

21i
x

1i
o

1i
o

1i
x

1i
o

1i
o

2i
x

i
o

i
o

i
x PPPα)PPP(PαPPPαPPp/dtdP +−+−+−−+ ++⋅+⋅+−⋅=                 (5) 

Results within the site approximation for the interface propagation velocity, V (p, S, 

α) versus p with fixed α=0.05 and α=0.3 are shown in Fig. 3. These results are obtained from 

numerical analysis of (4) and (5) for vertical and diagonal interfaces. We find that V(p) = 0 

for vertical interface not just at a single point, but for finite range of p which crosses the point 

V(peq, S=1) = 0, i.e., one has propagation failure for a finite region. As α approaches to αc, 

this propagation failure region becomes narrow. For α = 0.05, this range is 0.0084-0.0147, 

and for s=1 peq is around 0.0112-0.0113. For α = 0.3, the width of the propagation failure 

region is neglibible, so peq(s=1) ≈ peq(s=∞) = 0.1643.  

 

 

 



 232 

 

Table 1.  ps- and ps+ for different αααα 

α Ps- Ps+ 

0.05 0.00

110593 

0.11

3027 

0.10 0.00

82088 

0.12

182 

0.15 0.02

55279 

0.13

2208 

0.20 0.05

52786 

0.14

4721 

0.25 0.09

75314 

0.16

0205 

0.30 0.14

9854 

0.18

0175 

0.35 0.20

5853 

0.20

8279 

 

Figures 
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Figure 1. Steady-state coverage behavior for fixed value α  

 

       Figure 2. Schematic showing ps+ and ps- 
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Figure 3. V (p, S) versus p from site approximation for S=1 and S=∞ with fixed α 

APPENDIX C: SUPPLEMENTARY RESULTS FOR QCP WITH 

PARTICLE HOPPING 

In this Appendix, we provide some additional results from KMC simulation and from 

analysis of the pair approximation for QCP with particle hopping. These results supplement 

those presented in Chapter 5. 
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Figure 1.  Simulated evolution in the QCP with h=0 starting from a filled 1024××××1024 
site lattice (which quickly evolves to a metastable active state) in the vicinity 
of p=ps+. (a) p=0.098 (b) p=0.100 (c) p=0.102 (d) p=0.104; t= 182, 364, 546; 
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Figure 2.   Simulation results for poisoning kinetics in the QCP when h=0 for p=0.110-
0.125 yielding the estimate ps+=0.100-0.102 (a). A second range of p from 
p=0.105-0.115 gives a similar estimate ps+ =0.099-0.101 (b). 
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Figure 3.   Pair-approximation results for poisoning kinetics in the QCP when h=0 for 
p=0.135-0.150 yielding ps+=0.115-0.120 (a) (cf. the exact result ps+=0.125). A 
second range of p from p=0.1295-0.1370 gives an estimate ps+ =0.120-0.122 
(b). 
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Figure 4.   Simulated evolution in the QCP with h=0.4 starting from a filled 1024××××1024 
site lattice (which quickly evolves to a metastable active state) in the vicinity 
of p=ps+: (a) p=0.188 (b) p=0.189 (c) p=0.190 (d) p=0.191. Times are t=280, 
560, 840. 
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Figure 5.   Simulation results for poisoning kinetics in the QCP when h=0.4 for p=0.200-
0.215 yielding the estimate ps+=0.188-0.189 (a). A second range of p from 
p=0.195-0.205 gives a similar estimate ps+ =0.188-0.189 (b). 
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Figure 6.   Pair-approximation results for poisoning kinetics in the QCP when h=0.4 for 
p=0.226-0.241 yielding the estimate ps+=0.206-0.207 (a). A second range of p 
from p=0.221-0.231 gives an estimate ps+ =0.209-0.210 (b). 

 



 241 

 

 

 

Figure 7.   Simulated poisoning kinetics in the QCP for h=4 for a range of p=0.245-
0.270 above pe(h=4)=0.215 suggesting ps+(h=4) = 0.226-0.227 (a) Data for 
p=0.240-0.260 suggests that ps+(h=4) = 0.228-0.229 (b). 
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Figure 8.  Pair-approximation analysis of poisoning kinetics in the QCP for h=4 for a 
range of p=0.254-0.279 suggesting ps+(h=4) = 0.234-0.235 (a) Data for 
p=0.249-0.269 suggests that ps+(h=4) = 0.239-0.240 (b). 
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Figure 9.   Simulation results for nucleation-mediated poisoning kinetics in the QCP for 
h=4 for p=0.233-0.235 between pe(h=4)=0.215 and ps+(h=4) ≈≈≈≈ 0.236. The 
parameter cnuc is extracted from the characteristic time for nucleation ττττnuc. 
It reflects the magnitude of the effective barrier to nucleation, and is 
significantly larger than values for h=0-1 determined previously. 
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APPENDIX D: TRICRITICALITY IN A HYBRID QCP+MCP MODE L 

The hybrid QCP+SCP model described in Sec.2 (Ch.6) includes particle creation via 

two distinct “parallel” mechanisms at empty sites with k≥1 adjacent diagonal occupied pairs. 

Creation occurs via the QCP mechanism with rate k/4. However, creation also occurs at rate 

j⋅δ via the SCP mechanism, where j=2 for k=1, j=3 for k=2, and j=4 for k=4. See Fig.1 in 

Ch.6. It is natural to consider modifying the model replacing the SCP mechanism with a 

SCP-like particle creation mechanism that is not operative for those configurations where the 

QCP is operative. We naturally choose this SCP-like mechanism such that particle creation 

occurs with rate δ, say, only at empty sites with exactly one filled neighboring site. We will 

describe this SCP-like particle creation mechanism as the modified Contact Process (MCP). 

Thus, the hybrid QCP+MCP model considered here one has: (i) particle annihilation ate rate 

p: (ii) particle hopping to adjacent empty sites at rate h (per direction); and (iii) particle 

creation via both the QCP and MCP mechanisms.  

Note that in the QCP+MCP (QCP+SCP) models, the total particle creation rate at an 

empty site completely surrounded by four filled sites is given by 1 (1+4δ). As a result for 

annihilation rate p<<1 where the lattice is almost completely populated in the active steady-

state, the steady-state particle population satisfies Ceq(p) = 1-p + O(p2) for the QCP+MCP, 

versus Ceq(p) = 1-(1+4δ)-1p + O(p2) for the QCP+SCP, in both cases independent of h. On the 

other hand, in an active state where Ceq is small and spatial correlations are weak, most 

empty sites have just one filled neighbor, so the particle creation rate at those sites is δ for 

both models. 
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For spatially uniform states, the exact form of the first hierarchical master equations, 

after exact reduction of the QCP and hopping terms described previously, becomes 

(1)                                                                    
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and where P’s in the two MCP loss terms in (2) are equivalent so these terms can be 

combined. 

Next, we present a mean-field analysis of the QCP+MCP model starting with the 

generalized version of the above exact master equations for spatially non-uniform states. 

For a coarse-grained particle concentration, C=C(r=(i,j)a), where ‘a’ denotes the lattice 

constant, this analysis yields the reaction-diffusion equation (RDE) 

∂C/∂t = R(C) + D ∇2C with R(C) = -p⋅C + C2(1-C) + 4δ⋅C(1-C)4,    (3) 

and where D=a2 h. One finds a stable uniform active steady state satisfying p=C(1-C)+4δ(1-

C)4 for certain p, as well as a vacuum steady-state C=0. However, steady-state bifurcations 

are significantly more complex in this model than in the QCP+SCP.  

One can identify a number of distinct steady-state bifurcation values for δ. Fig.A 

illustrates the steady-state dependence of C on p for selectedδ. These are chosen to best 

illustrate the bifurcation behavior which is summarized schematically in Fig.B and in the 

following: 



 246 

 

(i) For small δ≥0, a high-C stable active state exists for 0 ≤ p ≤ ps+(δ), and a stable 

vacuum state exists for p ≥ ps1-(δ), so the model exhibits bistability in the regime ps1-(δ) ≤ p ≤ 

ps+(δ). This is analogous to behavior in the QCP+SCP. Here, one has ps1-(δ) = 4δ (just as in 

the QCP+SCP), and ps+(δ) = ¼ + ¼ δ + O(δ2) which increases smoothly with δ. See Fig.A(a). 

(ii) When δ increases above δcts = 1/16 = 0.0625, a stable low-C active state develops 

which coexists with the above stable high-C active state. This low-C state exists for ps2-(δ) ≤ 

p ≤ pcts(δ), where ps2-(δ) = ¼ + 4(δ - 1/16) – 256(δ - 1/16)2 +… = 4δ - 256(δ - 1/16)2 +… for 

δ≥1/16. Also, pcts(δ) = 4δ corresponds to a continuous transition from the stable low-C active 

state to the stable vacuum state. Thus, bistability exists in the regime ps2-(δ) ≤ p ≤ ps+(δ). See 

Fig.A(b) and (c). 

 (iii)  For δ>δcts, pcts(δ) increases faster than ps+(δ), so soon both ps2-(δ) and ps+(δ) are 

below pc(δ). As δ increases further to reach a critical point δcp = 2/27 ≈ 0.0741, ps2-(δ) and 

ps+(δ) merge and bistability disappears. At this critical point, we find that Ccp = ¼ and pcp = 

9/32 ≈ 0.2813. Also when δ = δcp, the continuous transition to the vacuum state persists, but 

occurs at a slightly higher p-value of pcts = 4δcp = 8/27 ≈ 0.2963. See Fig.A(d). 

For a more complete characterization of mean-field behavior, we also note the 

following. For δ below or just above δcts, one can determine p=peq(δ) corresponding to 

equistability between the high-C active and vacuum states, where ps-(δ) ≤ peq(δ) ≤ ps+(δ) [1]. 

This equistability point is determined from analysis of the effective potential U(C) defined by 

R(C) = -dU/dC, analogous to the treatment for the QCP+SCP. As δ increases above δcts, one 

finds that pcts(δ) = 4δ increases more quickly that peq(δ), and consequently pcts(δ) and peq(δ) 

will intersect. This occurs at a δ=δeq ≈ 0.068 (between δcts and δcp). See Fig.B. 
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Based on the above mean-field analysis, we describe behavior in the QCP+MCP 

lattice-gas model with large h for various regimes of δ: (a) For 0≤δ<δeq, one expects a 

discontinuous transition from a high-C active state to a vacuum state when p increases above 

peq(δ). (b) For δeq<δ<δcp, one expects the discontinuous transition to persist, but instead to 

occur between the high-C active state and a low-C active state when p increases above peq(δ). 

This low-C active state then undergoes a continuous transition to the vacuum state as p 

increases to pcts(δ) which is above peq(δ). As δ increases to δcp, the discontinuous transition 

disappears at this critical point. (c) For δ≥δcp, the continuous transition from an active state to 

the vacuum state persists. Thus, to summarize behavior for the QCP+MCP with large h, a 

discontinuous transition for small δ converts to coexisting discontinuous and continuous 

transitions when δ increases above δeq ≈ 0.068. Then, the discontinuous transition disappears 

at a critical point soon after when δ increases to δcp ≈ 0.074, leaving just the continuous 

transition. In contrast for the QCP+SCP with large h, the discontinuous transition converts 

directly to a continuous transition as δ increases above the tricritical value δtc = ¼. 

The pair-approximation to the exact master equations described above can be applied 

in an attempt to describe behavior for finite h≥0 (including h=0). Here, we consider 

exclusively the case h=0. It is convenient to introduce the natural variable K = P[x o]/P[o] 

which denotes the conditional probability of finding a filled site next to a specified empty 

site. Then, the pair-approximation produces the steady-state condition p = ½ K(1-K) + 6δ(1-

K)3 or K=0. Behavior is actually qualitatively distinct to that seen in mean-field treatment of 

the QCP+MCP, and more like that in for the QCP+SCP. Specifically, the pair approximation 

for h=0 predicts a direct transition from bistability to a continuous transition at a tricritical 
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point δcp = 1/18. However, in contrast to the general situation for tricitical points (and that for 

the QCP+SCP), the curvature d2C/dp2|tc =0 vanishes at the tricritical point (just like at a 

critical point).  Also when δ ≥ δtc, the continuous transition to the vacuum state occurs at 

pcts(δ) = 3δ. See Fig.C. 

Next, we present the results of a simulation study for the QCP+MCP with h=0. We 

caution that the quality of the data in this study is not as high as that for the QCP+SCP. Fig.D 

show the results of CC simulations to determine the variation of p with C, but plotted to show 

C(p) versus p, for a range of δ around what appears to be a tricritical point, δ=δtc. From this 

data, we extract ptr(δ) = limC→0 p(C), which corresponds the location of the discontinuous 

transition for δ<δtc (noting that the two-phase coexistence region will have negligible width 

except for very small δ), and to the location of the continuous transition pcts(δ) for δ>δtc. We 

also determine dp/dC|C=0 versus δ which is around zero or slightly positive for small δ, but 

makes a transition to significant negative values as δ increases above δtc ≈ 0.026-0.028. In 

addition, we have performed an epidemic analysis to assess the evolution of a single 

occupied site embedded in the vacuum state. Specifically, we determine the behavior at the 

transition point, p=ptr(δ), of the survival probability, Ps(t), versus t, fitting data to the form 

Ps(t) ~ t-ζ, as t→∞. For δct ≈ 0.026-0.028, one obtains ζtc = 1.40-1.58. It is clear that ζtc adopts 

larger (smaller) values for δ significantly smaller (larger) than δtc, consistent with our 

discussion for the QCP+SCP. See Fig.E. This value of δtc seems somewhat above that for the 

QCP+SCP, perhaps reflecting the coincidence of tricritical and critical behavior in the pair-

approximation treatment. 
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In summary, simulation studies of the QCP+MCP for h=0 indicate that a 

discontinuous transition for low δ converts directly to a continuous transition as δ increases 

above a tricritical value of δtc ≈ 0.026-0.028. Interestingly, the pair-approximation for h=0 

also predicts such behavior despite the contrasting mean-field behavior for the QCP+MCP. 

The latter displays indirect conversion from a discontinuous to continuous transition via a 

region of coexistence of both transitions (with the discontinuous transition disappearing at a 

critical point). Finally, we briefly describe anticipated behavior in the QCP+MCP model as a 

function of h. No doubt the model will exhibit a tricritical point for a range of h≥0. However, 

for large enough h, mean-field behavior must be realized. Thus, the tricritical line in the 

(h,δ)-plane emanating from (h, δ) ≈ (0, 0.027) propagates for a range of h before expanding 

into a region of finite width (in δ) corresponding to coexistence of discontinuous and 

continuous transitions.  

 References 

[1] ps-(δ) corresponds to ps1-(δ) and ps2-(δ) for δ<δcts and δ>δcts, respectively. 
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Figures  

 

 

Figure A.   Mean-field variation of steady-state C(p) with p in the QCP+MCP: (a) 
δδδδ<δδδδcts; (b) δδδδcts < δδδδ < δδδδeq; (c) δδδδeq < δδδδ < δδδδcp; (d) δδδδ = δδδδcp. The notation s+ and si- 
indicate upper and lower spinodals, respectively; cp indicates the critical 
point, and cts the continuous transition. 
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Figure B. Schematic of the mean-field phase-diagram in the p-δδδδ plane for the 
QCP+MCP. This is distorted from quantitative behavior described in the 
text in order to show clearly different regions. 
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Figure C.    Pair-approximation prediction for variation of steady-state C(p) with p in 
the QCP+MCP with h=0: (a) δδδδ=0; (b) 0 < δδδδ < δδδδtc; (c) δδδδ = δδδδtc = 1/18; (d) δδδδ > 
δδδδtc. The notation s+ and s- indicate upper and lower spinodals, 
respectively; tc indicates the tricritical point, and cts the continuous 
transition. 
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Figure D. CC simulation results for steady-state behavior in the QCP+MCP with h=0 
for various δδδδ. From this data, we estimate that δδδδct ≈≈≈≈ 0.026-0.028.  

 

 

Figure E.  Epidemic analysis for the QCP+MCP with h=0. Survival probability, Ps(t), 
versus time, t, for a single occupied site embedded in a vacuum state for 
various δδδδ from 0.021 to 0.035, and choosing p = ptr (δδδδ). For δδδδct ≈≈≈≈ 0.026-0.028, 
one obtains ζζζζtc = 1.40-1.58. 
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APPENDIX E: DISCRETE RDE ANALYSIS OF FRONTS AND 

DROPLETS FOR THE SITE-APPROXIMATION TO THE QUADRATI C 

CONTACT PROCESS WITH HOPPING 

We consider the adsorption-desorption realization of the quadratic contact process on 

a square lattice where particles adsorb at empty sites at rate p and desorb at from sites with 

k≥1 adjacent diagonal empty pairs at rate k/4, as in Ch.3. However, here we also allow 

particles to hop to adjacent empty sites at rate h. Within the site-approximation (ignoring all 

spatial correlations) the coverage, θi,j, at site (i,j) for spatially non-uniform states satisfies the 

discrete reaction-diffusion equations (RDE’s) 

d/dt θi,j = p(1-θi,j) – ¼ θi,j(2-θi+1,j -θi-1,j)(2-θi,j+1 -θi,j-1) + h(θi+1,j + θi-1,j +θi,j+1 + θi,j-1 -4θi,j) (1) 

For uniform states, these equations recover bistability between a low-θ active steady 

state, θ=θeq(p) = ½[1- (1-4p)1/2], and a poisoned state with θ=1, for 0≤p≤ps+=1/4.  

The above equations (1) for non-uniform states predict that planar interfaces between 

these states in the bistable regime will generally evolve with constant velocity, where: (i) the 

active state displaces the less stable poisoned state for low p≥0; (ii) the poisoned state 

displaces the less stable active state for higher p≤ps+. However, this evolution depends on 

interface orientation or slope S (relative to the principal lattice direction).  We focus on 

diagonal interfaces (S=1) where θi,j = θ(i-j), and vertical interfaces (S=∞) where θi,j = θ(i). 

Note that behavior for vertical and horizontal (S=0) interfaces is equivalent by rotational 

symmetry. For S=1 and all h≥0, there appears to be a unique a p = peq(S=1) for which there is 

a stationary interface corresponding to equistability of the two states.  For S=0 or ∞ and h>0, 

we find that there is a finite window of p=peq(S=0 or ∞) of stationary interfaces or of 
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equistability, which might also be described as a regime or “propagation failure”. Note, 

however, that this window quickly shrinks in width with increasing h>0. The extreme case 

for h=0 is discussed in Ch.3. All these cases of equistability or stationary interfaces 

correspond to non-trivial time-independent solutions of (1). 

For the simpler case with S=1 with a unique equistability p=peq(S=1), we make some 

additional observations. For peq(S=1)<p<ps+ where the poisoned state is more stable, one 

might expect a planar perturbation of the active state by the poisoned state [where θi,j = θeq + 

δθ(i-j) with small δθ≥0] would grow spreading the poisoned state across the entire system. 

However, this is only true for a perturbation above a critical size. This “critical planar 

perturbation” of the active state by the poisoned state corresponds to another non-trivial 

steady-state solution of (1). Likewise, for 0<p<peq(S=1) where the active state is more stable, 

one might expect a planar perturbation of the poisoned state by the active state [where θi,j = 1 

- δθ(i-j) with small δθ≥0] would grow spreading the active state across the entire system. 

However, again this is only true above a critical size and the associated “critical planar 

perturbation” is yet another non-trivial steady-state solution of (1). 

In addition to non-trivial planar steady-state solutions of (1), it is natural to consider 

“droplet-like” steady state solutions. Indeed, nucleation theory which considers the 

fluctuation-induced formation of a more stable steady-state from a less stable one is based on 

consideration and analysis of such “critical droplets”. The following two subsections 

consider both planar and droplet-like steady-state solutions of (1). 

A. Planar Steady-State Solutions of the Discrete RDE’s 
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For this analysis, we find that it is convenient to recast the steady-state form of (1) as 

an iterated map. The form of this iterated map depends on the orientation of the planar 

interface or perturbation. However, the general idea is as follows. Let θ(i) denote the 

coverage at all sites in the diagonal row for S=1 or horizontal row for S=0, or vertical column 

for S=∞. Then, the iterated map adopts the notation (ui, vi) = (θ(i-1), θ(i)) where the map is 

(ui, vi) → (ui+1, vi+1). Below we separately describe this mapping and procedure in detail for 

S=1 and S=0 or ∞.  

A1. Iterated Map for Vertical Interfaces 

Assume that i
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 To perform our numerical analysis of this iterated map, we start at point 

)',(),( εθεθ ++= activeactivevu  or )'1,1(),( εε ++=vu  (where λεε =/' ) slightly perturbed 

from the fixed point ),(),( activeactivevu θθ=  and iterate. Points from these different iterations 

together generate a continuous curve.   

A2. Iterated Map for Diagonal Interfaces 
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Assume again that i
activei cpp λθθ += )()( . For h=0, we obtain 
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To perform the iterated map analysis, the same strategy is applied as above. 

First, we apply the iterated map procedure to obtain accurate estimates of peq(s=1) 

and peq(S=0 or ∞) by searching for loci of the map which directly connect (u, v) = (θeq, θeq) 

to (u, v) = (1, 1). These loci correspond to stationary interfaces between the two steady states. 

An example of such an interfaces, and several examples of such loci will be shown in the 

figures below for S=1. The results for peq are shown in Table I. 

Next, we show numerical results for the stationary interface (with p=peq), and planar 

critical perturbations of the poisoned state (for p<peq) and of the active steady-state (for 

p>peq) for S=1 and h=0 in Fig.A. The orbits of the iterated map for the same three p-values 

are shown in Fig.B. Corresponding orbits for the stationary interface (with p=peq), and planar 

critical perturbations of the poisoned state (for p<peq) and of the active steady-state (for 

p>peq) for S=1 are shown in Fig.C for h=0.01 and in Fig.D for h=1. 

B. Steady-State Droplet Solutions of the Discrete RDE’s 

First, we consider the case for the QCP with h=0.01 of poisoned droplets embedded 

in the active state for higher p where peq(S=1)=0.2128 < p < ps+ = ¼ = 0.250. In this regime, 
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the poisoned state is more stable. Thus, a traditional “nucleation theory” perspective would 

suggest that there exists a critical size for the poisoned droplets below which they will shrink 

and above which they will grow spreading the poisoned state across the system. Simulations 

for fixed p starting with square poisoned droplets of various sizes embedded in an empty 

lattice do indeed find this behavior. Examples of this evolution are shown in Fig.E. The 

existence of a size which appears to be stable, so the droplet survives for long times without 

growing or shrinking, is less clear. The results of this analysis for the critical droplet size 

versus p are shown in Fig.F. The size appears to diverge as p approaches peq(S=1) from 

above, analogous to behavior in traditional nucleation theory. (For simplicity the plotted size 

Rs is just the square root of the initial number of filled sites). It appears that 1/Rc goes to zero 

non-linearly approaching p=peq(S=1) from above. 

The situation for active droplets embedded in the poisoned state for lower p around 

and below peq(S=0 or ∞) can be significantly more complicated due to occurrence of a 

regime of “propagation failure” for horizontal or vertical interfaces. This suggests the 

possibility of a finite range of sizes where active droplets are stationary, i.e., they neither 

grow nor shrink. (Perhaps such a narrow regime of sizes could even exist for vacuum 

droplets at higher p.) A schematic of the proposed complex behavior is shown in Fig.G.  

 To provide a reasonably comprehensive analysis of active droplets for h=0.01, 

consider first the choice p=0.2070 below peq(S=0)=0.2081. It is certainly the case that large 

enough active droplets grow, small enough active droplets shrink, and now it appears easier 

to find stable droplets for sizes in between. See Fig.H. A more detailed analysis for this 

p=0.2070 actually reveals three distinct sizes for stationary droplets. See Fig.I .  
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We have repeated the above analysis for various p. For example, Fig.J shows a 

broader range of sizes for stationary droplets exists for a slightly higher p=0.2075. A 

summary of such analyses for various p just showing the maximum and minimum stationary 

sizes is shown in Fig.K. This behavior is consistent with that proposed in the schematic 

Fig.G.  

Table 

Table I.  Equistability points for diagonal (S=1) and horizontal or vertical (S=0 or ∞∞∞∞) 
interfaces.  

h peq(S=1) peq(S=0 or ∞) 

0 0.2114 0-0.2071 

0.01 0.2128 0.2081-0.2097* 

0.1 0.2177 0.2172 

1 0.2215 0.2215 

∞ (mean-field limit) 2/9 2/9 
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Figure 

 

 

Figure A. Numerical results for the stationary interface (with p=peq=0.2114), and 
planar critical perturbations of the poisoned state (for p<peq) and of the 
active steady-state (for p>peq) for S=1 and h=0  

 

 

Figure B. Orbits of the iterated map for S=1 and h=0 for p<peq, p=peq=0.2114, and 
p>peq (the same three p values as shown in Figure A.) 
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Figure C. Orbits of the iterated map for S=1 and h=0 for p<peq, p=peq=0.2114, and 
p>peq. 

 

 

Figure D. Orbits of the iterated map for S=1 and h=1 for p<peq, p=peq=0.2177, and 
p>peq. 
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Figure E.  Evolution of poisoned droplets of different initial sizes Ri embedded in the 
active steady state for p=0.2145: a. Ri=36 b. Ri=38  

 

 

Figure F. Dependence of the critical size of poisoned droplets on p 
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Figure G. Schematic of proposed behavior for active droplets (bottom) and the 
associated interface propagation velocities V (top). 
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Figure H. Evolution of active droplets of different initial sizes Ri embedded in the 
poisoned state for p=0.2070, a. Ri=30, b.Ri=38, c.Ri=42 

 

 

Figure I.   Evolution of active droplets of various initial sizes and selection of various 
stationary sizes for p=0.2070. 
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Figure I.   Evolution of active droplets of various initial sizes and selection of various 
stationary sizes for p=0.2075. 

 

 

Figure K.  Dependence of the maximum and minimum size of stationary active droplets 
on p  
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APPENDIX F: SCHLOEGL’S SECOND MODEL AND ITS VARIANT S 

(QUADRATIC AND CUBIC CONTACT PROCESSES) ON VARIOUS 

LATTICES 

A. Quadratic Contact Process 

We first provide a general definition and also some basic analysis of Schloegl’s 

second model for autocatalysis, aka the Quadratic Contact process (QCP), on various lattices. 

Specifically, we will consider square, triangular, and cubic lattices. In the QCP, particles 

undergo random spontaneous annihilation at fixed rate p. Particles are also created 

autocatalytically at empty sites at a rate proportional to the number of “suitably connected 

filled pairs” on sites neighboring the empty site. It is convenient to choose a normalization 

for these creation rates so that the mean-field kinetics for the model will be independent of 

lattice type. We shall see that this goal is achieved by the choice of creation rate as k/kmax, 

where k is the number of suitably connected filled pairs, and kmax is the maximum number of 

such filled pairs. Note that “suitably connected filled pairs” corresponds to diagonal 

neighboring pairs on the square and cubic lattices, and to neighboring filled pairs on the 

triangular lattice. Thus, we have kmax = 4, 6, and 12 for square, triangular, and cubic lattices, 

respectively. Fig.1-3 provide schematics of particle annihilation and creation rules and rates 

for the QCP on the square, triangular, and cubic lattices, respectively.  

Next, we present the mean-field kinetics of the particle concentration, C, for the QCP. 

These kinetics are obtained by ignoring all spatial correlations, so that the probability of 

multi-site configurations is simply given by a product of the relevant single site probabilities. 

For a square lattice, we obtain the kinetic equation:  
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The various contributions to the positive creation (gain) term on the RHS of eq.(1) 

correspond to different k as enumerated in Fig.1. For a triangular lattice, we obtain the 

kinetic equation:  
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The various contributions to the positive creation (gain) term on the RHS of eq(2) 

correspond to different k as enumerated in Fig.2. For a cubic lattice, we obtain the kinetic 

equation:  
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The various contributions to the positive creation (gain) term on the RHS of eq.(3) 

correspond to different k as enumerated in Fig.3. The first integer factor corresponds to the 

configurational degeneracy, and the second fractional factor to k/12. 

Each of Eq. (1-3) can be simplified to the same equation: 

   C)(1CpCdtdC 2 −+−=                                                                                                   (4) 

i.e., the same mean-field kinetics apply for the QCP on any lattice. 

Perhaps, a more significant feature of our rate choice (than universal mean-field 

kinetics) is that it facilitates an exact reduction of the master equations which specify the 

exact dynamics of the QCP. (This reduction actually applies for both for spatially uniform 



 268 

 

and non-uniform states, although here we consider only the former.) Furthermore, this exact 

reduction not only immediately allows recovery of the lattice-independent mean-field 

kinetics, but also allows ready generation of higher-order approximations for the kinetics. We 

demonstrate the latter for the so-called pair-approximation (whereas mean-field kinetics 

corresponds to the site-approximation).  

The exact master equations for the QCP form an infinite coupled hierarchy for the 

evolution of the probability of a single filled site, a filled pair, etc. (or equivalently, one can 

consider empty configurations). It will be convenient to introduce the following notation. Let 

x (o) denote a filled (empty) site, and let P’s denote probabilities of various configurations of 

such sites. For example, P[x]=C and P[xx] denote the probabilities of a single filled site and a 

filled pair, respectively. Similarly, P[o]=1-C and P[oo] denote the probability of a single 

empty site and empty pair, respectively. Conservation of probability implies that 

P[x]+P[o]=1, P[xo]+P[oo]=P[o], P[xx]+P[xo]=P[x], P[xx]+2P[xo]+P[oo]=1, etc. Then, in 

terms of probabilities for empty configurations, the exact master equations have the form 

d/dt P[o] = p⋅P[x] – particle creation terms,                   (5) 

d/dt P[oo] = 2p⋅P[xo] – particle creation terms,  etc.                 (6) 

The particle creation terms in each equation correspond to a sum over various 

relevant configurations multiplied by the appropriate rates. As an aside, we favor empty 

configurations in writing these equations by analogy with irreversible cooperative creation 

processes (i.e., processes without particle annihilation) where empty site configuration 

probabilities have certain special spatial Markov properties.  

A schematic enumeration of the creation terms for eq.(5) is provided by Fig.1-3 for 

the square, triangular, and cubic lattices, respectively. Similar to eq.(1-3), an exact reduction 
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is possible for these various terms. One can show that eq.(5) always reduces exactly to the 

simple and intuitive equation 

     d/dt P[o] = p⋅P[x] – P[o + 2x],                    (7) 

where the term P[o+2x] represents the probability of an empty site with a suitably connected 

filled pair on neighboring sites.  

An enumeration of the creation terms for eq.(6) is straightforward for the square and 

cubic lattices, but rather lengthy for the triangular lattice. Fig.4a,c provides a complete 

enumeration for the square and cubic lattices. Fig.5a provides only a partial enumeration for 

the triangular lattice. For the square and cubic lattices, one can consider creation of a particle 

on one of the two empty sites enumerating all possible configurations of neighbors of just 

that one empty site. Then, the total creation rate comes from doubling this result. For the 

triangular lattice, the empty sites in the pair share two neighbors, so one must enumerate 

configurations of all neighbors of both empty sites. One then determines the total rate of 

creation of particles at either site in the empty pair for each such configuration. An exact 

reduction of these desorption terms is also possible in all cases, although the form of these 

terms depends on the lattice type. For a square lattice, one obtains 

       d/dt P[o o] = 2p⋅P[x o] – P[2o+2x],       (8) 

where the terms P[2o+2x] represents the probability of a empty pair where one site in this 

pair has a suitably connected filled pair on neighboring sites. See Fig.4b. (Note that there is 

only one such configuration for the square lattices.) For a hexagonal lattice, one obtains 

        d/dt P[o o] = 2p⋅P[x o] – 2/3 P[2o+2xE] – 2/3 P[2o+2xS],    (9) 

where the terms P[2o+2xE] and P[2o+2xS] represents probabilities of an empty pair where 

one site in this pair has a neighboring filled pair. There are two such distinct configurations, 
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one where the filled pair is at the end of the empty pair (with probability denoted 

P[2o+2xE]), and the other where the filled pair is on the side of the empty pair (with 

probability denoted P[2o+2xS]). See Fig.5b. Similarly, for a cubic lattice, one obtains 

 d/dt P[o o] = 2p⋅P[x o] – 2/3 P[2o+2xL] – 2/3 P[2o+2xB],                         (10) 

where the terms P[2o+2xL] and P[2o+2xB] represents probabilities of an empty pair where 

one site in this pair has a diagonal filled pair on neighboring sites. There are two such distinct 

configurations, one where the empty pair and one filled site form a linear triple (with 

probability denoted P[2o+2xL]), and the other both empty sites form a bent triple with the 

filled pair (with probability denoted P[2o+2xB]). See Fig.4d. 

Finally, we implement the pair-approximation to the above exact master equations for 

the QCP on various lattices. For this approximation, for square and cubic lattices, we obtain:  

d/dt P[o] = p⋅P[x] – P[x  o]2/P[o] = p⋅P[x] – (P[x  o]/P[o])2 P[o], and             (11) 

d/dt P[o o] = 2p⋅P[x  o] – c P[o o] P[x  o]2/P[o]2 

       = [2p – c (P[o o]/P[o]) (P[x  o]/P[o])] (P[x o]/P[o]) P[o].            (12) 

where c = 1 (4/3) for a square (cubic) lattices. To close these equations, we can use P[x] = 1 - 

P[o] and P[x o] = P[o] – P[o o] (where the latter follows from P[x o] + P[o o] = P[o]). 

However, it is more instructive to reformulate (11) and (12) by introducing the conditional 

probability, Q = P[o o]/P[o] and noting that P[x o]/P[o] = 1-Q. This leads to the equations 

d/dt C = -p C + (1-Q)2(1-C) , and                  (13) 

d/dt [ (1-C)Q ] = [2p – c Q(1-Q)](1-Q)(1-C),                (14) 

Consequently, one obtains the steady-state relations: 

pC – (1-Q)2(1-C)  = 0 and c Q(1-Q) = 2p  for active states,              (15) 
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or C = 0 and Q =1 for the absorbing state. From Eq, (15), it follows that the bistability regime 

in the pair-approximation exists for 0 < p < ps(pair) = c/8  (the upper spinodal). Thus, one has 

ps(pair) = 1/8 (1/6) for the square (cubic) lattices. 

    For the hexagonal lattice, the form of the equations in the pair-approximation 

differs since the sites in the “suitable connected filled pair” are neighboring sites. This 

introduces extra factors of P[x x] in the numerator in the pair approximation for P[o+2x], 

P[2o+2xE], and P[2o+2xS] (as well as compensating additional factors of P[x] in the 

denominator). We do not discuss this case further. 

    Finally, we discuss simulation results for the QCP on various lattices, and compare 

these with results from the above pair-approximation analysis. In general, appearance of 

bistability in a mean-field site-approximation or higher-order pair-approximation is 

suggestive of a discontinuous transition in a lattice-gas model. In the case of the QCP, this 

would correspond to a transition from a high-concentration active state for 0 ≤ p ≤ pe to a 

particle-free “vacuum” or poisoned state for p>pe. Note that the latter is an absorbing state. 

Since these models do not include particle diffusion, one expects relatively weak 

metastability. Consequently, the discontinuous transition at p=pe should occur only at a 

slightly lower p than the upper spinodal point p=ps (where one might anticipate that ps can be 

predicted relatively accurately by the pair-approximation).  

   It should be noted that the situation can be more complex than suggested above. 

First, even when mean-field and higher-order approximations exhibit bistability, it is possible 

that fluctuations can “destroy” the discontinuous transition in the lattice-gas model. Second, 

if the QCP lattice-gas model does exhibit a discontinuous transition, previous studies for the 

square lattice suggest that there will be generic two-phase coexistence. This means that for a 
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finite range pf < p < pe, one can find an orientation varying continuously with p such that a 

planar interface separating active and vacuum state is stationary (i.e., an orientation-

dependent version of equistability). 

   Previous simulation results for the QCP on a square lattice indicate a discontinuous 

transition with pe = 0.0944. This pe-value should be compared with ps(pair) = 1/8 = 0.125 

(and a simulation estimate of ps = 0.11). In contrast, previous simulation results for the QCP 

on a hexagonal lattice reveal the absence of a discontinuous transition (presumably due to 

fluctuation effects). Instead, one finds a continuous transition at p≈0.177. Finally, we present 

new results for the QCP on a cubic lattice. Direct simulation reveals the existence of a stable 

active state for 0≤p≤pe where pe ≈ 0.148. See Fig.6. This pe-value should be compared with 

pe(pair) = 1/6 = 0.166•.  

B. CUBIC CONTACT PROCESSES 

We first provide a general definition and also some basic analysis of what might be 

viewed as a third version of Schloegl’s model for autocatalysis on various lattices. We will 

however focus on analysis for the hexagonal lattice. This model might also be regarded as a 

Cubic Contact Process (CCP). In the CCP, particles undergo random spontaneous 

annihilation at fixed rate p. Particles are also created autocatalytically at empty sites at a rate 

proportional to the number of “suitably connected filled triples” on sites neighboring the 

empty site. It is convenient to choose a normalization for these creation rates so that the 

mean-field kinetics for the model will be independent of lattice type. We shall see that this 

goal is achieved by the choice of creation rate as k/kmax, where k is the number of suitably 

connected filled triples, and kmax is the maximum number of such filled triples. Note that 

“suitably connected filled pairs” corresponds to diagonal neighboring filled triples on the 
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square lattice, and to neighboring filled triples on the triangular lattice. Thus, we have kmax = 

4 and 6 for square and triangular lattices, respectively. 

However, the CCP is trivial on a square lattice since once a cluster of more than one 

empty site is formed, it can never shrink. This implies that the vacuum state is the only stable 

steady-state for all p>0. However, the model is non-trivial on a triangular lattice, supporting 

an active steady-state for a finite range of p. Thus, below we consider only this case. Fig.7 

provides a schematic of particle annihilation and creation rules and rates for the CCP on a 

triangular lattice.  

    Next, we present the mean-field kinetics of the particle concentration, C, for the 

CCP. These kinetics are obtained by ignoring all spatial correlations, so that the probability 

of multi-site configurations is simply given by a product of the relevant single site 

probabilities. For a triangular lattice, we obtain the kinetic equation:  

( ) ( )

( ) ( ) 

















−×+−






 ×+×+

−×+−×

+−=
4334

256

C1C
6

1
6C1C

6

1
6

6

2
6

C1C
6

3
6C1C

6

6
1

pC
dt

dC
.                          (16) 

The various contributions to the positive creation (gain) term on the RHS of eq.(16) 

correspond to different k as enumerated in Fig.7. Eq. (16) can be simplified to: 

    C)(1CpCdtdC 3 −+−= .                             (17)                                                                            

A significant feature of our rate choice is that it facilitates an exact reduction of the 

master equations which specify the exact dynamics of the CCP. Furthermore, this exact 

reduction not only immediately allows recovery of the lattice-independent mean-field 

kinetics, but also allows ready generation of higher-order approximations for the kinetics. We 
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demonstrate the latter for the so-called pair-approximation (whereas mean-field kinetics 

corresponds to the site-approximation).  

The exact master equations for the CCP form an infinite coupled hierarchy for the 

evolution of the probability of a single filled site, a filled pair, etc. (or equivalently, one can 

consider empty configurations). Below, we let x (o) denote a filled (empty) site, and let P’s 

denote probabilities of various configurations of such sites. For example, P[x]=C and P[xx] 

denote the probabilities of a single filled site and a filled pair, respectively. Similarly, 

P[o]=1-C and P[oo] denote the probability of a single empty site and empty pair, 

respectively. Conservation of probability implies that P[x]+P[o]=1, P[xo]+P[oo]=P[o], 

P[xx]+P[xo]=P[x], P[xx]+2P[xo]+P[oo]=1, etc. Then, in terms of probabilities for empty 

configurations, the exact master equations have the form 

d/dt P[o] = p⋅P[x] – particle creation terms,                 (18) 

d/dt P[oo] = 2p⋅P[xo] – particle creation terms,  etc.               (19) 

The particle creation terms in each equation correspond to a sum over various 

relevant configurations multiplied by the appropriate rates. As an aside, we favor empty 

configurations in writing these equations by analogy with irreversible cooperative creation 

processes (i.e., processes without particle annihilation) where empty site configuration 

probabilities have certain special spatial Markov properties.  

    A schematic enumeration of the creation terms for eq.(18) is provided by Fig.7 for 

the triangular lattices. Similar to eq.(16), an exact reduction is possible for these various 

terms. One can show that eq.(18) reduces exactly to the simple and intuitive equation 

     d/dt P[o] = p⋅P[x] – P[o + 3x],                 (20) 
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where the term P[o+3x] represents the probability of an empty site with a neighboring filled 

triple.  

An enumeration of the creation terms for eq.(19) is rather lengthy for the triangular 

lattice. A partial listing is provided in Fig.8a. The empty sites in the pair share two 

neighbors, so one must enumerate configurations of all neighbors of both empty sites. One 

then determines the total rate of creation of particles at either site in the empty pair for each 

such configuration. An exact reduction of these desorption terms is also possible and yields 

for a triangular lattice 

   d/dt P[o o] = 2p⋅P[x o] – 2/6 P[2o+3xE] – 4/6 P[2o+3xS],              (21) 

where the terms P[2o+3xE] and P[2o+3xS] represents probabilities of an empty pair where 

one site in this pair has a neighboring filled triple. There are two such distinct configurations, 

one where the filled triple is at the end of the empty pair (with probability denoted 

P[2o+3xE]), and the other where the filled triple is on the side of the empty pair (with 

probability denoted P[2o+3xS]). See Fig.8b. 

Finally, we implement the pair-approximation to the above exact master equations for 

the QCP on various lattices. For this approximation, we obtain:  

d/dt P[o] = p⋅P[x] – (P[x  o]3 P[x x]2)/(P[o]2 P[x]4) and               (22) 

d/dt P[o o] = 2p⋅P[x  o] – 2/6 (P[o o] P[x  o]3 P[x x]2)/(P[o]2  P[x]4)  

                 – 4/6 (P[o o] P[x  o]4 P[x x]2)/(P[o]3 P[x]5)             (23) 

To close these equations, we can use P[x] = 1 - P[o], P[x o] = P[o] – P[o o] (which 

follows from P[x o] + P[o o] = P[o]), and P[x x] = 1 – 2P[o] + P[oo] (which follows from P[x 

x] + P[x o] = P[x]). 
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Figures  

 

Figure 1.   Schematic of particle annihilation and creation rules and rates (p and k/4) 
for the QCP on a square lattice. The configurational degeneracy (#) is also 
indicated. 

 

 

Figure 2.   Schematic of particle annihilation and creation rules and rates (p and k/6) 
for the QCP on a triangular lattice. The configurational degeneracy (#) is 
also indicated.  
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Figure 3.   Schematic of particle annihilation and creation rules and rates (p and k/12) 
for the QCP on a cubic lattice. The configurational degeneracy (#) is also 
indicated. 
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Figure 4.   Configurations relevant for particle creation in the d/dt P[o o]-equation for 
the QCP on square (a) and cubic (c) lattices. Here, a thicker bond is drawn 
to indicate the empty pair on which we are considering particle creation. 
Also, k indicates creation rate and # the configurational degeneracy. The 
reduced form from summing these terms is also shown for the square (b) 
and cubic (d) lattice. 
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Figure 5.   Partial listing of configurations relevant for particle creation in the d/dt P[o 
o]-equation for the QCP on triangular lattice (a). Here, it is the central 
empty pair on which we are considering particle creation. Also, k indicates 
creation rate and # the configurational degeneracy. The reduced form from 
summing these terms is also shown in (b). 
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Figure 6. Simulation results for the steady-state particle concentration, C, versus 
annihilation rate, p, in the active state for the QCP on a cubic lattice. It 
follows that pe ≈≈≈≈ 0.148. 

 

 

Figure 7. Schematic of particle annihilation and creation rules and rates (p and k/6) for 
the CCP on a triangular lattice. The configurational degeneracy (#) is also 
indicated.  
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Figure 8.   Partial listing of configurations relevant for particle creation in the d/dt P[o 
o]-equation for the CCP on triangular lattice (a). Here, it is the central 
empty pair on which we are considering particle creation. Also, k indicates 
creation rate and # the configurational degeneracy. The reduced form from 
summing these terms is also shown in (b). 
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