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CHAPTER 1. Introduction and Overview of the Work in this

Thesis

The rare earth compounds, R5T4 (T is Si or Ge) have been extensively studied

since the discovery of a giant magnetocaloric effect (MCE) in Gd5(SixGe1−x)4 in 1997

[PG97b, PG97d, PG97c, PG97a]. Modern magnetic refrigeration is based on the MCE:

by exposing a working material to a changing magnetic field, the temperature of the

material, which is in an adiabatic environment, changes monotonically with the ex-

ternal field. In contrast to the conventional gas cycle refrigeration driven by a com-

pressor, the magnetic refrigeration is considered to be more environmentally friendly

due to the use of solid refrigerants rather than Chloro-Flouro-Carbon gases that are

known pollutants. Additionally, the magnetic refrigeration driven by magnetic field of-

fers higher thermodynamic efficiencies. After 1997, a wide range of interesting magnetic

phenomena, such as magnetoresistance and magnetostriction, were also found in mixed

solid solutions, Gd5(SixGe1−x)4 [MAI+98, MSGL+98, LPG99]. Gd5(SixGe1−x)4 alloys

have received great attention recently not only because of their potential applications

[PG97d, PG98, Mil06], but also because of the intriguing underlying physics.

The origin of the observed phenomena lies in the large entropy change associated with

the first-order magnetostructural transition. This unusual transformation of the crystal

structure causes a considerable change of specific interatomic and magnetic interactions

[PG97c]. The alloys have a distinct slab-structure, where each slab is formed by more

than one monolayer of atoms. The interatomic interactions between the monolayers
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belonging to the same slab are strong and the interactions between the slabs are weak,

which lead to the relative movement between neighbor slabs in the first order transition.

These compounds have been studied with respect to their basic structural and, for

some of them, their magnetic properties over the past four decades. However, the

magnetic structures of Gd5(SixGe1−x)4 alloys had not been determined, which hampered

our understanding of the magnetoelastic coupling between the magnetic structure and

the crystallographic structure.

The high intrinsic resolution of synchrotron radiation provides a very sensitive probe

of magnetism and magnetoelastic effects. The magneto-structural transition was in-

vestigated by measuring both crystallographic and magnetic diffractions simultaneously

in Gd5Si0.33Ge3.67. The antiferromagnetic phase is determined to have coupled layered

structures, which can be compared to the artificial magnetic multilayer systems where

magnetic layers are separated by nonmagnetic spacers. The giant magnetoresistance

found in these materials can be explained as the consequence of nontrivial interlayer cou-

pling from magnetoelastic interactions [TSP00]. For the ferromagnetic phase, 2D slabs

are interconnected through Ge(Si)-Ge(Si) covalent-like bonds [CPP+00]. (see Fig. 2.4)

The interslab bonds are broken when the distance between all Ge(Si) atoms increases

during the transformation to the O(II) phase [PG97c], leading to AFM ordering.

Gd5Ge4 is believed to play a key role in advancing our understanding of the un-

derlying physics for the Gd5(SixGe1−x)4 system. As we will mention in Chapter 2, the

rich magnetic properties of Gd5Ge4, which has the representative crystallographic struc-

ture, but different magnetic phase diagram from that of other Ge-rich Gd5(SixGe1−x)4

alloys, motivated the first X-ray Resonant Magnetic Scattering (XRMS) study on this

compound. Though a large number of publications had reported the novel magnetic

properties of the Gd5(SixGe1−x)4 series before our study, no magnetic structure mea-

surement had been done. Generally speaking, the magnetic properties of materials can

not be fully understood without the detailed knowledge of the magnetic structure. Scat-
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tering techniques are invaluable tools for such investigations. X-ray resonant magnetic

scattering is ideal for the study of Gd5(SixGe1−x)4 compounds, in which naturally oc-

curring Gd has a large neutron absorption cross section.

This study has revealed that below the Néel temperature, TN = 127 K, the an-

tiferromagnetic order is described by a magnetic unit cell which is the same as the

crystallographic unit cell. The magnetic interactions between all three Gd sublattices

yield a commensurate magnetic structure with a propagation vector, q = 0. The mag-

netic moments are ferromagnetically aligned within the slabs, while their stacking in

the b-direction is antiferromagnetic. Furthermore, all Gd sites order within the same

magnetic space group, Pnm′a. The magnetic moments are primarily aligned along the

c-axis and the c-components of the magnetic moments at the 3 different sites are the

same within the error. (see the right part in Fig. 6.2)

Generally, spin reorientation transitions arise from the competition between dif-

ferent favorable orientations of the moments in a crystal. An understanding of the

spin reorientation transitions can be related to the magnetic anisotropy. The magnetic

structure of Tb5Ge4 has been investigated by neutron scattering experiments and the

spin-reorientation transition was reported [RMA+02]. Through the comparison between

Tb5Ge4 and Gd5Ge4, the subtle concave feature, found in the temperature dependence

of magnetic order parameter in Gd5Ge4, is also interpreted as the result of spin re-

orientation. The possible origins of the magnetic anisotropies which trigger the spin

reorientation are discussed.

Magnetic torque method is commonly used to measure the anisotropy energy in

ferromagnet. Unfortunately, the magnetic anisotropy energy of antiferromagnets is not

accessible through magnetic torque measurements and must instead be estimated from

microscopic magnetic structure measurements. The spin-flop transition in FM/AFM

slabbed (FM slabs stack antiferromagnetically) Gd5Ge4 has been reported based on

the magnetization measurements [LGL+04, OPG+06]. However, these measurements
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provided no direct information regarding the arrangement of Gd moments on the three

inequivalent sites in the spin-flop phase. The general interest in the origin of the magnetic

anisotropy in Gd compounds also motivates the study of the spin-flop transition in

Gd5Ge4. The experimental setup described in Fig. 5.3 offers the ability to measure

the rotation of magnetic moments in a spin-flop transition with polarization analysis.

The XRMS experiments on Gd5Ge4 have shown that the antiferromagnetically aligned

moments at the three Gd sites flop from the c axis to a axis at T = 10 K with a critical

field, Hsf = 9 kOe, along the c axis. The magnetic space group changes from Pnm′a

to Pn′m′a′ at all three sublattices. Both phases have intraslab FM correlations and

interslab AFM correlations, which are unchanged in both phases below TN = 125 K.

We conclude that this field induced transition is a pure spin-flop transition, since the

antiferromagnetically ordered moments at the three Gd sites flop from the c direction

to the a direction by the applied field along the c axis at the transition. Though Gd3+

ions have negligible single ion anisotropy, the easy plane anisotropy of the ordered state

in Gd5Ge4 originates from the combination of both the magnetic dipolar interactions

and to a lesser extent the SO coupling of the conduction electrons via 4f -5d exchange

interaction.

Studies of the magnetization, heat capacity, and neutron scattering of R5(Si,Ge)4 in-

dicate that significant magnetic short-range order (SRO) is retained above Néel temper-

ature. These results have recently been interpreted as evidence of a Griffiths phase based

on Small-Angle Neutron Scattering (SANS) measurements of polycrystalline Tb5Si2Ge2

[MAM+06]. A Griffiths phase is a nanoscale magnetic clustering phenomenon that is

driven by randomness in magnetic interactions and can be induced by chemical disorder

or competing magnetic interactions. Interestingly, a ferromagnetic (FM) Griffiths-like

phase has also been proposed to exist above the Néel transition in antiferromagnetic

(AFM) Gd5Ge4 (based on magnetization studies) [OPKAG+06]. This is possible due

to the nature of the AFM ordering in Gd5Ge4, which consists of strongly ferromagnetic
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block layers that have a weak AFM inter-block coupling. Our diffraction studies on

single-crystal specimens provided no direct evidence of the magnetic SRO in the com-

pound, which may be due to the low signal to background ratio. However, the calcula-

tion of the experimental error excludes the possibility of the model of ferromagnetically

coupled slabs with random orientation along b axis above TN in zero field.
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CHAPTER 2. Survey of R5(SixGe1−x)4

Discovery of Gd5(SixGe1−x)4

In 1967, Gd5(SixGe1−x)4 alloys were first found by Smith et al [STJ67] and Holtzberg

et al [HGM67]. Smith et al reported that both Gd5Ge4 and Gd5Si4 have Sm5Ge4-type

crystallographic structure, in which Gd5Si4 orders ferromagnetically at TC = 336 K.

Holtzberg et al used Ge as substitution for Si in the silicide structure and found that the

diluted compounds maintain the magnetic properties and the O(I)-type orthorhombic

structure for Si concentration above 50% (0.5 < x ≤ 1). The other parent compound,

Gd5Ge4, has an O(II)-type orthorhombic structure which is different from Gd5Si4. The

difference will be described in a later section. Different magnetic properties were found

in the O(II)-type Gd5(SixGe1−x)4 (0 ≤ x ≤ 0.3), which presents a low ordering tem-

perature. Gd5Ge4 orders antiferromagnetically in the low temperature region, while the

addition of small amounts of Si orders first antiferromagnetically, then ferromagnetically,

with decreasing temperature. The compounds Gd5(SixGe1−x)4 with 0.3 < x < 0.5 were

not characterized but acknowledged as a ternary intermediate phases [STJ67, SJT67],

since the end members of the solid solution are not isostructural.

In 1997, a giant magnetocaloric effect was reported by Pecharsky and Gschneidner in

Gd5(SixGe1−x)4 alloys [PG97b, PG97d, PG97c, PG97a, PG98]. Subsequently, the first

phase diagram (see Fig. 2.1) at zero field of the Gd5(SixGe1−x)4 system was determined

by Pecharsky and Gschneidner due to interest in the relationship between the mag-

netic properties and crystallographic structures in the systems [PG97d, PG97c, PG98].
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Samples over the whole composition range, 0 < x < 1, were grown and characterized.

The intermediate phase (0.3 < x < 0.5) was identified as monoclinic [PG97c], which is

labeled as the M-type structure. The low temperature transitions, which lead to the

giant magnetocaloric effect in both the Ge-rich O(I)-type and the intermediate M-type

compounds, were found to be first-order and reversible [PG97d].

Properties of Gd5(SixGe1−x)4

There are many novel properties found in the series of Gd5(SixGe1−x)4 that can be

tuned by varying external parameters. Gd5(SixGe1−x)4 alloys, for x ≤ 0.5, are most

interesting, in which magnetocaloric effect [PG97b, PG97a, PG98, TBBdB02], colos-

sal magnetostriction [MBAI00, MAI+98, HJS+04], giant magnetoresistance [MSGL+98,

LPG99, LPGT00, MAMI01], unusual Hall effect [SMAI00], and spontaneous generation

of voltage [LPG01, SBC+02]. were reported. The following is a short summary.

Magnetocaloric Effect

The magnetocaloric effect (MCE) can be exploited for magnetic refrigeration. Be-

yond its application in cryogenics, thermomagnetic cooling in refrigeration also is con-

sidered environmentally friendly in contrast to conventional vapor cycle cooling and has

generated interest in both scientific and engineering fields. Furthermore, it was reported

that magnetic refrigeration has the potential for higher efficiencies [TBBdB02], which can

create savings in cost and energy consumption. The MCE is a magneto-thermodynamic

phenomenon: by exposing a working material to a changing magnetic field, the temper-

ature of the material, which is in an adiabatic environment, changes monotonically with

the external field. This process is reversible. Physicists in the field of cryogenics often

call MCE as adiabatic demagnetization. Nevertheless the MCE is an intrinsic property

of a magnetic solid used as working materials in magnetic refrigeration.
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One of the most used materials is gadolinium, which is the one with the previous

best MCE at room temperature before the discovery of R5(SixGe1−x)4. The magnetic

entropy change, ∆Sm, which can be calculated from the data obtained in magnetization

measurements, is an important parameter for evaluation of MCE. By applying similar

experimental conditions, the magnetic entropy change of Gd5Si2Ge2 [TBBdB02] is twice

larger than that of Gd. This result was also confirmed by the heat capacity measurements

with varying temperature and magnetic field. The magnetic entropy change, ∆Sm, and

the adiabatic temperature change, ∆Tad, was evaluated as a function of temperature

from the magnetization measurements as shown in Fig. 2.2. The peak of Gd5Si2Ge2 is

narrower and higher ( ≥ 30%) than that of pure Gd.

Giant Magnetoresistance

In addition to a giant MCE, another remarkable phenomenon in Gd5(SixGe1−x)4

compounds, is the extraordinary magnetoresistance, in both 0.24 ≤ x ≤ 0.5 [MSGL+98,

LPG99, LPGT00] and in the 0 ≤ x ≤ 0.2 alloys [MAMI01]. Magnetoresistance is the

change of electrical resistivity of a material under the application of an external magnetic

field. The sign of the magnetoresistance found in Gd5(SixGe1−x)4 is negative, which is

also found in multilayered structures composed of alternating layers of magnetic and non-

magnetic metals, such as iron/chromium or cobalt/copper. In Gd5(SixGe1−x)4, the field

induced ferromagnetic phases show a low resistivity compared to the antiferromagnetic or

paramagnetic phases. By exposing the samples to a changing magnetic field at selected

temperatures, a negative but small magnetoresistance was observed from the O(I)/FM

phase [MSGL+98]. However, the drastic changes of the resistivity, ∆ρ/ρ ≃ −50%, occur

at the magnetostructural first-order transition, which is reversible by the application of

an external magnetic field above the Curie temperature. The temperatures required for

triggering the giant magnetoresistance in Gd5(SixGe1−x)4 (x ≤ 0.5) can vary from ∼ 20

to ∼ 290 K with different x values.
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Figure 2.2 MCE curves comparing Gd5Si2Ge2 and Gd. (Left) ∆Sm(T,
∆H = 5 Tesla) curves; and (right) ∆Tad(T, ∆H = 5 Tesla)
curves. The Curie temperatures of 276 and 294 K, respectively,
for Gd5Si2Ge2 and Gd are noted on the MCE curves. The fig-
ure is taken from Ref. [Mil06]. Data for these curves were taken
from Ref. [PG97b]
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Another interesting behavior was also found in the temperature dependence of the

electrical resistivity in the alloys with 0 ≤ x ≤ 0.2, which present a metal-insulator-

like transition concomitant with the second order AFM-PM transition [LPGM01, SS99,

MAMI01, SBC+03]. The electrical resistivity increases with temperature like a normal

metal in the AFM phase and smoothly decreases with temperature in the PM phase.

(see Fig. 4.8)

Colossal Magnetostriction

Magnetostriction is a phenomenon in which the change in shape and volume of a ma-

terial due to the application of magnetic field. In Gd5(SixGe1−x)4, the magnetostriction

effect also arises from the first order magnetostructural transition. Thermal expansions

as large as ∆l/l ≃ 0.16% for 0 ≤ x ≤ 0.2 (i.e., a relative volume change ∆V/V ≃ 0.48%)

[MBAI00, MMA+03] and ∆l/l ≃ 0.13% (∆V/V ≃ 0.4%) for 0.24 ≤ x ≤ 0.5 [MAI+98]

were observed at the Curie temperatures. Nazih et al reported that the single crystal

with x = 0.43 expanded along the a axis by as much as ∆l/l = +0.68% and shrank

along the b and c axes as much as −0.20% and −0.21%, respectively [NdVZ+03]. Simi-

lar results were obtained by Hanet et al with an x ≃ 0.5 single crystal [HPS+02]. Since

the transition is also field-induced, Gd5(SixGe1−x)4 compounds for x ≃ 0.5 can be used

as magnetostrictive transducers, which convert magnetic energy into kinetic energy or

the reverse.

Crystallographic Structures in R5(SixGe1−x)4

In 1967, Smith et al. found that the majority of silicides and all the germanides

crystallized in the Sm5Ge4-type structure [STJ66, STJ67]. The Sm5Ge4-type structure

was described as a five-layered sequence of monolayers stacked along the longest unit cell

edge [SJT67]. Today, the view of the crystallography of the R5(SixGe1−x)4 compounds
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has been changed since the further studies on the series of compounds reported that

the apparently isostructural R5Si4 and R5Ge4 compounds have very different magnetic

properties [HGM67, EZO+91]. In 1997, Pecharsky and Gschneidner studied samples

over the entire composition range 0 < x < 1, leading to the first phase diagram at

zero field of the Gd5(SixGe1−x)4 system [PG97d, PG97c, PG98]. (see Fig. 2.1) In all,

three types of structures were found (O(I), O(II), M). The R5(SixGe1−x)4 compounds

are more appropriately described in terms of strongly interacting monolayers forming

tightly bound [CPP+00], nearly two dimensional slabs stacking along b axis, as shown

in Fig. 2.3. The features of rigidity inside the slab and flexibility between neighbor slabs

were observed upon the first order structural transformation from one kind of slabbed

structure to another, which provided the proof of much greater interactions within slabs

than those between slabs. The neighbor slabs, stacking along the b-axis, may slide easily

with different lateral displacements along the a-axis. The variation of one or more of

the external thermodynamic parameters can motivate such martensitic-like structural

changes.

Four distinctly layered structures were found in the R5T4 compounds, where R rep-

resents rare earth metals and T represents the Group IVA elements, as shown in Fig. 2.4.

(see Pecharsky’s review [PG])

• The O(I):Gd5Si4-type structure is illustrated in Fig. 2.4 (a). The distinct charac-

ter in this type is the strong T-T bonds, where the T-atoms are located on the

surfaces of the slabs. In consequence, strong interslab interactions are transferred

along the b-axis. There are two types of T-T bonds: the short one ∼ 2.6 Å

and the long one ∼ 5.4 Å shown as thick solid lines and dashed lines in Fig. 2.4,

respectively. The crystal structure for such type is Pnma and known in the liter-

ature as the O(I)-type structure [PG97c]. A ferromagnetic state is coupled to the

O(I)-type structure in the magneto-structural transition of PM/M-to-FM/O(I) or
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Figure 2.3 The crystal structure of Gd5Ge4. Shaded regions indicate the
“slabs” stacked along the b direction. The slabs are infinite in
the ac plane but they are limited to ∼ 7 Å along the b-axis. It
is interesting to note that each slab consists of five monolayers
(ABCBA) stacked along the b-axis, originally used by Smith et
al [SJT67] to describe the crystallography of the Sm5Ge4-type
structure.
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AFM/O(II)-to-FM/O(I).

• The M:Gd5Si2Ge2-type structure belongs to the P1121/a space group symmetry

and is shown in Fig. 2.4 (b). In such structure, the strongly bonded T-T dimers

are only found between every other slab. Therefore only half populations of in-

terslab interactions are formed strongly to be the short T-T bonds. The other

half populations present relatively weak interslab interactions. The characterized

distances for such weak ones are ∼ 3.5 and 4.5 Å for the short and long interslab

T-T connections, respectively. Thus, the interslab magnetic interactions are much

different [PG97c, CPP+00]. The Gd5Si2Ge2-type structure is associated with a

paramagnetic state in the magneto-structural transition of PM/M-to-FM/O(I).

• The O(II):Sm5Ge4-type is illustrated in Fig. 2.4 (c). This type compounds crys-

tallize in the space group Pnma and are known in the literature as the O(II)-type

structure. Now, only weak interacting interslab T-T contacts are present with

∼ 3.5 Å short T-T pairs and the ∼ 4.5 Å long ones. No strongly bonded interslab

T-T dimer is present. Such structure is associated with an antiferromagnetic state

in the magneto-structural transition of AFM/O(II)-to-FM/O(I).

• The Tm5Si2Sb2-type [KPD04] is shown in Fig. 2.4 (d). The space group for this

type structure is Ccmb, which has higher symmetry than all the other three struc-

tures. In the Tm5Si2Sb2-type structure, all interslab interactions are also uniform,

which is similar to both the O(I) and O(II) type structures. Furthermore, all the

interslab T-T distances are same, i.e. ∼ 4.1 Å.

In summary, the relations among the four crystal structures discussed above would

be described in this way: one type structure can be generated by another by sliding

neighboring slabs in opposite directions along the a-axis. From the symmetry point of
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Figure 2.4 Four different types of layered structures found among R5T4

compounds: (a) the Gd5Si4-type; (b) the Gd5Si2Ge2-type; (c)
the Sm5Ge4-type; (d) the Tm5Si2Sb2-type. See the text for
a description of differences and relationships among these four
structure types. (From Ref. [PG])
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view, the space group P1121/a is a subgroup of Pnma, while the later is a subgroup of

Ccmb [PG].

Properties of Gd5Ge4

One end member in the Gd5(SixGe1−x)4 system, Gd5Ge4, shows magnetocaloric ef-

fect, magnetoresistance, and magnetostriction related to the first order magnetostruc-

tural transition which result from the instability of its slab-formed chemical structure.

Such instability arises from the role of T-site atoms which are located at the interslab

locations. In Gd5(SixGe1−x)4, the positions of both Si and Ge atoms at T-sites are not

randomly generated according to the ratio of their populations, but arranged with prefer-

ence. Si atoms prefer the intraslab positions while Ge atoms favor the interslab positions

[CPP+00, MM06]. In Gd5Ge4, the intrinsic disorder, due to the Si/Ge substitution on

the T-sites, does not appear to exist. Thus the electronic structure of conduction bands,

where exchange interactions are transferred, is expected to be influenced by the ratio of

Si/Ge populations.

In zero field, the magnetic ground state of Gd5Ge4 is AFM [LPGM01, LGP02,

HMC+04, MMA+03, CLB+04]. No FM phase is observed when cooling from Néel

temperature to 2 K, while the crystallographic structure remains in the O(II) phase

[LPGM01, PHGR03], as shown in Fig. 2.5. The application of a magnetic field exceed-

ing 18 kOe at 4.3 K transforms the AFM state in Gd5Ge4 into a ferromagnetic FM

state in a similar fashion to that usually observed during metamagnetic transitions (see

the inset in Fig. 2.5). This observation is different from the behavior of the Ge-rich

compounds (0 < x ≤ 0.2), which order AFM at ∼125-135 K and undergo a first-order

AFM/O(II)-to-FM/O(I) transition upon further cooling in zero field. However both the

temperature and the applied magnetic field can induce the first order transition from

AFM state into the FM state by exposing the Gd5(SixGe1−x)4 sample (0 ≤ x ≤ 0.2) to
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a magnetic field exceeding ∼ 10 kOe. Again, the crystallographic transformation from

the O(II)-type to the T-T bond rich O(I)-type polymorph occurs simultaneously with

the magnetic transition [PHGR03, MHKAGP05].

The coupling between magnetic and crystallographic structures at the first order tran-

sition has led to the speculation that the restoration of strong T-T bonds between the

slabs will considerably strengthen interslab magnetic exchange interactions. Haskel et al

[HLH+07] applied X-ray magnetic circular dichroism (XMCD) measurements and den-

sity functional theory (DFT) to study the electronic conduction states in Gd5(SixGe1−x)4

materials through the first-order transition. The long-range Ruderman-Kittel-Kasuya-

Yosida (RKKY) ferromagnetic interactions between the localized Gd 4f moments in

neighbor slabs, is communicated by the 4p band of the Ge atoms at interslab positions,

which is hybridized with Gd 5d spin-dependent conduction states. The magnetic polar-

ization of electrons in Gd 5d conduction band is communicated to the Ge sites through

the orbital hybridization. The Ge(Si) bond-breaking transition, which destroys 3D fer-

romagnetic order, act as a trigger regulating the strength of interslab RKKY exchange

coupling [HLH+07].

The magnetization measurements show reversibility of the magnetostructural trans-

formation induced by a magnetic field at low temperatures in Gd5Ge4, which is not

presented in the measurement of any other member of the R5(SixGe1−x)4 family. There

are three regions separated by ∼ 10 K and ∼ 20 K in the temperature dependent phase

diagram. In the low and high temperature regions, the magnetic field-induced AFM-

FM transition in a polycrystalline Gd5Ge4 is irreversible and completely reversible, re-

spectively. The intermediate region represents a mixture of states [CALB05, LGP02,

TPGP04]. The magnetic phase diagram for x=0 is displayed in Fig. 2.5. By regu-

lating the sample temperature under a proper constant magnetic field, the first order

reversible transitions were observed. The inverse FM/O(I)-to-AFM/O(II) transition can

be induced by heating the sample to above 25 K. Above 25 K, the critical magnetic field
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for the first order reversible transition response linearly with temperature [TPGP04].

A similar phase diagram with the first-order AFM/O(II)-to-FM/O(I) transition was re-

ported if external hydrostatic pressure was applied as the alternative of magnetic field

[MAM+03].

In addition to the interplay between reversibility and irreversibility of the magne-

tostructural transition, another interesting feature in Gd5Ge4 is the possibility of mag-

netic short range order above the Néel temperature indicated by the low field magne-

tization measurement of a single crystal [OPKAG+06]. Beside Gd5Ge4, studies of the

magnetization, heat capacity, and neutron scattering of Tb5Si2Ge2 indicate that mag-

netic short-range order is also retained. These results have recently been interpreted as

evidence of a Griffiths phase based on Small-Angle Neutron Scattering (SANS) measure-

ments of polycrystalline sample [MAM+06]. Above TN = 127 K but below TG = 240 K,

the deviation of magnetization from Curie-Weiss behavior in Gd5Ge4, which is quite

similar to that reported in polycrystalline Tb5Si2Ge2 [MAM+06], is also attributed to

the Griffiths-like phase [Gri69]. Such deviations can be easily suppressed by magnetic

fields above ∼ 5 kOe. Unlike the negligible anisotropy of the true paramagnetic state

above 240 K, the Griffiths-like phase in Gd5Ge4 exhibits strong magnetic anisotropy.

In the measurements along all three axes, the magnetization along b-axis shows the

largest value between 127 K and 240 K. Such magnetic anisotropy is consistent with

the anisotropy found in the long range ordered FM Gd5Ge4 phase, in which the easy

magnetization direction is also along b-axis [OPG+06]. Ouyang et al believed that the

dynamic FM clusters maintain the O(II)-type crystal structure in the AFM long range

order state, which results from the competition between the AFM and FM interactions.

It seems that all magnetic properties mentioned above are related to the AFM/O(II)

structure in Gd5Ge4. The magnetic structure of Gd5Ge4 in AFM phase is expected

to be similar to that of Tb5Ge4 because of similarities in both chemical structure and

magnetic phase diagram. Neutron powder experiments showed that Tb5Ge4 has a com-
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Figure 2.5 The magnetic phase diagram of Gd5Ge4, which was constructed
from the heat capacity and magnetization data, delineates the
phase fields observed in the system during iso-field heating or
isothermal magnetizing. The inset shows the magnetization of
Gd5Ge4 cooled in zero magnetic field. During the first mag-
netic field increase, which is shown by open squares in the in-
set, a metamagnetic like transition occurs at ∼ 18 kOe. Dur-
ing the first magnetic-field reduction (closed circles) and during
the second and following magnetic-field increases (opened trian-
gles), the magnetization behavior is typical of a soft ferromagnet.
(Taken from Ref. [LPGM01])
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plex structure in the magnetic ordered state: the magnetic ordered slabs are coupled to

each other with a commensurate antiferromagnetic modulation vector along the b-axis.

Each slab has internal canted magnetic moments with all three components, in which

the ferromagnetically coupled c component is the major one [SP78, RMA+02]. Ritter et

al pointed out that a spin reorientation, which only affects the intraslab ferromagnetic

canting without influence on the antiferromagnetic modulation, occurs below the Néel

temperature in Tb5Ge4 [RMA+02]. Though no scattering experiment had been done,

the AFM structure of Gd5Ge4 was proposed by Magen et al [MAM+03] as shown in

Fig. 2.6. Due to the fact that the extrapolated Curie-Weiss temperature is positive in

Gd5Ge4 [HGM67, PG98, LGP02], which is even higher than that in Tb5Ge4, strong

ferromagnetic exchange interactions is believed to be present in the AFM phase. A

collinear structure was proposed for the antiferromagnetic phase (see Fig. 2.6) due to

the high value of the Curie-Weiss temperature. However, Levin et al claimed that a

small non-collinearity exists in Gd5Ge4, which originates from the exchange anisotropies

from different Gd intraslab and interslab interactions [LGP02].

In summary, the magnetocaloric, magnetoelastic, and magnetoresistive effects in

Gd5(SixGe1−x)4 were believed to have their origins in an unusual transformation of the

crystal structure causing a considerable change of specific interatomic and magnetic

interactions. Before our XRMS studies, no detailed information about the magnetic

structures of the materials existed, which hampered our understanding of the coupling

between the magnetic structure and the crystallographic structure. In antiferromagnetic

materials, the overall magnetization is zero. However, this is not necessarily achieved by

a simple antiferromagnetic modulation. More complicated magnetic structures can arise

in the Sm5Ge4-type orthorhombic crystal. We had applied the XRMS technique and used

magnetic symmetry analysis to elucidate the antiferromagnetic structures of Gd5Ge4 and

Gd5(SixGe1−x)4. The first order magneto-structural transition was confirmed by mea-

suring both crystallographic and magnetic diffraction simultaneously in Gd5(SixGe1−x)4.
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Figure 2.6 Schematic representation of the crystallographic and proposed
magnetic structures of Gd5Ge4 in the (a, b) plane at low temper-
ature. Only the Ge atoms participating in the Ge-Ge covalent
like bonds are depicted as solid spheres. A solid line linking the
Ge atoms represents a formed bond [O(I)], whereas a dashed line
is used for a broken one [O(II)]. Gray arrows are used to illustrate
the change in the magnetic coupling induced by magnetic field,
hydrostatic pressure or temperature. (From Ref. [MAM+03])
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The antiferromagnetic phase is completely transformed into the ferromagnetic phase with

a concomitant crystallographic structural change. The slab-formed layered magnetic or-

der is naturally related to the slab shift in the structural changeover. The unusual order

parameter found in Gd5Ge4 motivated us to study the possible spin-reorientation in

zero-field, which is related to the delicate competition between the magneto-crystalline

anisotropies. The investigations of the spin-flop transition, which is induced by exter-

nal magnetic field, provided insight into the magnetic anisotropy. Though Gd3+ ions

have negligible single ion anisotropy, the easy plane anisotropy of the ordered state in

Gd5Ge4 originates from the combination of both the magnetic dipolar interactions and

to a lesser extent the SO coupling of the conduction electrons via 4f-5d exchange in-

teraction. Studies of the magnetization of Gd5Ge4 indicate that magnetic short-range

order (SRO) is retained above Néel temperature. However, our XRMS study could not

find any significant evidence of SRO. The reason could be that the magnetic diffuse sig-

nal is below our sensitivity limit. Though no detailed information about the magnetic

SRO can be concluded, the simple model with magnetic short-range order along b-axis

and long-range order along a and c axes, which we proposed for the magnetic SRO in

Gd5Ge4, is excluded.
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CHAPTER 3. X-ray Resonant Scattering and Symmetry

Analysis

Overview of X-Ray Scattering Techniques

X-ray diffraction by magnetic materials was first demonstrated by de Bergevin and

Brunel [dB72] using an x-ray tube source. The effects induced by magnetic properties of

the sample are usually very small compared with charge induced effects, e.g. Thomson

scattering. In the past two decades there has been much new activity in the study of the

magnetic properties of materials using x-rays. The fast recent developments in photon

sources, based on synchrotron radiation and improved optics, have led to the fruitful

results gained in X-ray studies of magnetic materials [Mar88]. Compared to conventional

x-ray generators, there are some exciting advantages from the synchrotron radiation with

the help of modern optics, which include: a high brightness with the option of superior

resolution, a high degree of linear polarization, tunability of the primary photon energy,

and the provision of good beams of circularly polarized photons [LC96].

X-ray scattering and neutron scattering are two invaluable methods in the study

of magnetic structures in condensed matter. They are often complementary to each

other. Each method has its own advantages and disadvantages for specific situations.

When compared with the well-established technique of neutron magnetic diffraction,

synchrotron-based photon diffraction has several intrinsic advantages:

First, the angular resolution obtained in photon diffraction is much better than that

in a neutron diffraction experiment under similar experimental conditions. A direct
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comparison can be found in some applications such as critical scattering from holmium

[THH+94].

Second, relatively small samples are adequate for photon scattering experiments since

the beam size can be quite small from highly collimated radiation and the photon flux

is high from third generation of synchrotron sources.

Third, in non-resonant x-ray magnetic scattering, the ratio of spin and orbital com-

ponents of the magnetic moment can be derived from polarization analysis [GGH+91].

Polarization analysis is a useful tool and utilized in both x-ray scattering and neutron

scattering. The cross-sections for different magnetic components can be analyzed from

the polarization of both the incoming and outgoing beam, and therefore provides in-

formation concerning the magnetic moment direction. Further, photon beams from a

synchrotron source naturally have a high degree of linear polarization while neutron

beams from reactor and spallation sources are unpolarized. The neutrons can only be

polarized through a polarimeter with a reduced intensity.

Fourth, x-ray magnetic diffraction is a useful tool for scattering studies of the com-

pounds which contain Gd, Eu, and Sm. In contrast, thermal neutron scattering is not

applicable for these compounds unless an expensive isotopic substitution is used, since

the naturally occurring Gd, Eu, Sm have large neutron absorption cross sections. Never-

theless, some compounds that contain the Gd, Eu, and Sm rare earth elements are very

interesting. The first choice for microscopic measurements of these compounds would

be X-ray magnetic scattering. For instance, in our case, the study of the magnetic

properties of Gd5(SixGe1−x)4 alloys is feasible by applying x-ray magnetic scattering.

Finally, by tuning the energy of incoming x-ray beam close to the absorption edge

of the atoms of interest, the resonant signal from scattering process is element specific

which, for example, enables it to be used as a method of atomic labeling or to separate

the magnetic contributions from different types magnetic ions. This is a very attractive

feature in the study of complex magnetic materials containing different magnetic atoms.
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Resonant Magnetic Scattering

When the incident photon energy is tuned near an absorption edge of the target

atom, large resonant enhancements of the scattering, which is related to a quantum-

mechanical process, may be observed. The incoming photon first excites an inner shell

electron from the ground state to a high energy state above the Fermi level in a photon-

absorption transition. Subsequently, an inverse, photon-emitting, transition occurs and

an elastic scattered photon is released, as depicted in Fig. 3.1. The cross section of

resonant scattering depends on the specific absorption edge, photon polarization states,

and the magnetic state of the sample since the scattered photon transfers the polariza-

tion information from the excitation state of the transition electron. Since the scattered

photon acts as the carrier of the polarization state, resonant scattering technique is ap-

plicable for the investigation of magnetic materials, as first suggested by Blume [Blu85].

Experimentally, resonant scattering was first observed by Gibbs et al in 1988 in a study

of the magnetic spiral structure of metallic holmium. [GHI+88] Subsequently the theo-

retical interpretation followed from Hannon et al in 1988 by using the model of electric

multipole transitions [HTBG88].

Resonant scattering, as illustrated above, is considered a coherent elastic process.

There are four parts to the total coherent elastic scattering amplitude: pure charge

Thompson scattering and pure non-resonant magnetic scattering, and contributions from

absorptive and dispersive processes. The latter two contributions can be understood on

the basis of multipole transitions, which lead to both charge and magnetic scattering.

The latter arises from the magnetic interactions of the electrons involved in the electric

multipole transitions. For example in Gd5Ge4, the magnetic resonant scattering results

from electric dipole transitions between 2p core state and 5d conduction band states,

since the overlap between the radial functions of 2p and 5d is much larger than that of

2p and 6s. The largest resonant enhancements have been observed for incident photon
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Figure 3.1 A schematic view of the XRMS process. Only a few core states
are displayed, and the conduction bands are shown without the
rich structure that exists in results from a realistic model. The
figure shows the states when the core hole electron is excited
above the Fermi level. The excitation and decay processes of
the core electron happen within the core hole life time (Γ). The
offset in energy between spin up and down states results from
the intra-atomic magnetic exchange interaction between 4f and
5d orbitals.
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energies near the M absorption edges in actinides, and near the L absorption edges

in rare earth and transition metals. For some resonances, the magnetic scattering is

comparable to the charge scattering [MVI+90, TSL+92].

Resonant Scattering Amplitude and Polarization Dependence

In the resonant scattering process, an inner shell electron is promoted by the incident

photon into an unoccupied state above the Fermi energy, which subsequently decays

through the emission of an elastically scattered photon. The amplitude for magnetic

resonant scattering then depends on the matrix elements which couple the final state

and the intermediate states allowed by the Pauli exclusion principle. Multipole operators

of dipole, quadrupole,. . . , are generated by Taylor expansion of the exponential in the

momentum operator.

Here, the details of the derivation for the magnetic scattering amplitude are not

presented. The interested readers can read the relevant papers [Blu85, HTBG88, HM96].

From Eq. (13) in Blume’s paper [Blu85], the cross section for scattering from an initial

state, |a, k, ǫ >, into a final state, |b, k′, ǫ′ > should be:

d2σ
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′ ). (3.2)

k and ǫ (k′ and ǫ′) represent the wave vector and the polarization of the incoming

(outgoing) photon. Q = k′ − k is the scattering vector. |a >, |b >, and |c > represent
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the initial, final, and intermediate electronic states, respectively. Γc is the energy level

width relevant to the intermediate-state lifetime.

In Eq. 3.5, the first term is normal Thompson scattering and the second is the non-

resonant spin scattering. The third and fourth terms are the second-order perturbation

expansion of the resonant scattering. The physical meanings of the last two terms

are different: the incoming photon has been absorbed first (the third term) and the

scattered photon has been released first (the fourth term). When the incident photon

energy is tuned close to the energy for excitation of electron between the initial and the

intermediate states (h̄ω ≃ Ec − Ea for absorption or h̄ω ≃ Ea − Ec for dispersion), the

denominators in the third and fourth terms decrease to very small numbers comparing

to the corresponding numerators. As a consequence, the third and fourth terms become

important. Typically, the cross-section of the resonant magnetic scattering, though still

considerably smaller than that of the Thompson scattering, is about 50 ∼ 100 times

as that of the non-resonant magnetic signal. In the study of ferromagnets, the charge

and magnetic Bragg reflections overlap each other, since the modulation vectors for

both structures are same. As a result, the charge signal overwhelms the magnetic part

even with the improved signal to background ratio obtained from polarization analysis.

However, in many antiferromagnets, the charge and magnetic Bragg reflections are well

separated due to the difference in the modulation vectors. Therefore, the resonant

magnetic scattering technique is commonly used in the study of antiferromagnets.

The exponential, eik·r, can be expanded to first order to include electric dipole,

magnetic dipole, and electric quadrupole interactions. The electric dipole interaction is

dominant in resonant scattering in R5(SixGe1−x)4 as we see in Fig. 4.2 (b). Here, only

the electric dipole interaction is considered and the scattering amplitude is:

FXRES,E1 ∼
(
e

mc

)2∑

c

∑

i,j

< b|ǫ′† · pi|c >< c|ǫ · pj|a >
Ea − Ec + h̄ωk − iΓc/2

(3.3)
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where, Q =< c|r|a >. The indices, i and j under
∑

are the labels for identification

of each electron in the material. We note that the initial state and the final state are

identical, |a >≡ |b >, for elastic scattering. In addition, a momentum operator, p, can

be substituted by a position operator, r, using the commutation relation p = im
h̄

[H, r].

Let us consider the diagram of schematic atomic energy levels displayed in Fig. 3.1.

The splitting between the spin-up and spin-down electrons represents a net magnetic

moment or an induced moment in the atom. The diagram is simplified by ignoring a finite

energy width of core states in reality. The matrix elements of multipole transitions can

be calculated by use of Fermi’s Golden Rule. The transition rates depend on the initial

and final states of spin-orbit configurations. The selection rules for dipole transitions

require l′ = l ± 1 and m′ = m± 1,m. Since the overlap between the radial functions of

2p and 5d is much larger than that of 2p and 6s, the matrix element of the l′ = l + 1

transition is dominant over that of the l′ = l− 1 transition. A single magnetic quantum

number is used for describing the states of the initial and intermediate orbitals, since

Q†
nQn′(n = 0,±1) vanishes unless n = n′.

(ǫ′† · Q†)(ǫ · Q) =
∑

n

ǫ′†n · ǫn|Qn|2

=
1

2
{
∑

n

(ǫ′† · ǫ)(|Q+1|2 + |Q−1|2)

+ iµ · (ǫ′† × ǫ)(|Q+1|2 − |Q−1|2)}

+ (µ · ǫ′†)(µ · ǫ)(2|Q0|2 − |Q+1|2 − |Q−1|2)} (3.6)

Here, µ is a unit vector, which defines the magnetic quantization direction.

In Eq. 3.6, all terms are arranged according to the ascending order of powers of

µ, which is a well-known result for the resonant scattering amplitude. This expression
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Figure 3.2 The coordinate system used for the polarization dependence of
the resonant scattering amplitudes described in the text. k and
k′ are the incident and scattered wave vectors. ǫσ and ǫπ are the
components of the polarization perpendicular and parallel to
the scattering plane. The e2 axis is perpendicular to the plane
of scattering. The e3 axis is parallel to the scattering vector.

also provides a convenient form for polarization analysis. Fig. 3.2 shows the scattering

geometry used in construction of the 2 × 2 matrices according to the four different

polarization channels: σ-σ′, σ-π′, π-σ′, and π-π′. σ and π polarizations are defined

as photons polarized perpendicular to the scattering plane and polarized in the plane,

respectively.

With regard to the dependence of the scattering amplitude on polarization states, a

conclusive list is made based on the four polarization channels for the following terms:

ǫ′ ·ǫ, (ǫ′×ǫ) ·µ, and (ǫ′ ·µ)(ǫ ·µ). The geometry matrices are listed in Table 3.1. There

are three zero values for the scattering amplitude formed with Eq. 3.6: the two in the

σ-π′ and π-σ′ channels from ǫ′ · ǫ, which is related to charge scattering, and the one in

the σ-σ channel from (ǫ′×ǫ) ·µ, which is related to magnetic scattering. Since magnetic

scattering amplitude is usually much smaller than charge scattering amplitude, the σ-π′

and π-σ′ are two good choices for the measurement of magnetic resonant signal, where
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Table 3.1 k̂ and k̂′ denote unit vectors in the directions of the primary
and secondary photon beams and k̂ · k̂′ = cosθ where θ is the
angle of scattering. The vector µ is a unit vector, which defines
the magnetic quantization axis, and µ⊥, is the projection of µ

perpendicular to the plane of scattering. Polarization vectors
parallel and perpendicular to the plane are denoted by ǫ⊥ and
ǫ‖, with µ⊥ = (ǫ⊥ ·µ) = (ǫ′⊥ ·µ). Note k̂ = ǫ⊥× ǫ‖ and a similar
relation for the secondary beam.

ǫ′ · ǫ σ π
σ′ 1 0

π′ 0 k̂′ · k̂

(ǫ′ × ǫ) · µ σ π

σ′ 0 k̂ · µ̂
π′ −k̂′ · µ̂ (k̂′ × k̂) · µ̂

(ǫ′ · µ)(ǫ · µ) σ π
σ′ µ⊥

2 µ⊥(ǫ‖ · µ)
π′ µ⊥(ǫ′‖ · µ) (ǫ′‖ ·µ)(ǫ‖ ·µ)
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polarization suppression for charge scattering is realized.

Now let us start to illustrate the formation of satellite peaks in the reciprocal space.

The high order satellite peaks are related to the terms with high powers level of µ in

Eq. 3.6. We notice that µ in Eq. 3.6 is the function of the vector R which defines the

position of the magnetic atom. (ǫ′×ǫ)·µ(R) in Eq. 3.6 is the first order term of µ, which

generates magnetic scattering. Since the Bragg reflections are Fourier transforms of the

real space lattice in the reciprocal space, the total amplitude is
∑

R exp(iQ ·R)(ǫ′ × ǫ) ·

µ(R) for coherent scattering from an array of atoms, where Q is the scattering vector.

This expression can be simplified if the array of atoms are periodic. The scattering

amplitude is then of the form, (µ|ǫ′ × ǫ|)[exp{iR · (Q + τ )}+ exp{iR · (Q− τ )}] where

τ is the modulation wave vector. Bragg reflections occur when Q±τ = G where G is a

reciprocal vector for the magnetic lattice. If all terms in Eq. 3.6 are counted, dipole (E1)

resonant scattering can contribute to Bragg reflections at a charge peak position and

satellites positions with distances of τ and 2τ to the center of the main charge reflection.

Hill et al have pointed out that the quadrupole (E2) amplitude contains terms in µ from

zero up to fourth order and there are thirteen distinct contributions [HM96].

Symmetry Analysis

The Nobel laureate P. W. Anderson claimed that ”it is only slightly overstating

the case to say that physics is the study of symmetry.” [And72] Symmetry is often

studied in the theory of phase transitions since the phases involved in transitions often

possess different levels of symmetry. As a consequence, a symmetry-breaking process is

defined as the transition from the more symmetrical phase to a less symmetrical one.

For example, the ferromagnetic transition is a symmetry-breaking transition. In this

case, the symmetry is broken under reversal of the direction of electric currents and

magnetic field lines in the ferromagnetic phase, where magnetic domains containing
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aligned magnetic moments are formed. The relevant symmetry is named as ”up-down

symmetry” or ”time-reversal symmetry”. Here, by ”time-reversal” I mean that the

reverse transformation is applied to a time coordinate for the purpose of symmetry

analysis. Since the electric currents will reverse direction under the time coordinate

inversion, the term ”time-reversal symmetry” describes the invariance of the system

under such transformation.

When an effective spin Hamiltonian, H, is constructed for an ordered magnetic sys-

tem, knowledge of the magnetic structure of the system (the ordered arrangement of

the moments) is essential. The readers who are interested in magnetic crystallography

can go further reading with Opechowski’s “Magnetic Symmetry” [OG65] and Bertaut’s

paper [Ber68] for details.

In antiferromagnetic materials, the total magnetization is zero. However, this is

not necessarily achieved by a simple up and down pattern in one dimensional case.

Much more complicated structures can arise. A magnetic structure is fully described

by propagation vector(s) k, the vectors Skj associated with magnetic moments for each

magnetic atom j and propagation vector k, and a phase for each magnetic atom j, Φkj

(included in Skj). Here, we only discuss a specific case: the commensurate magnetic

structure with a single propagation vector, k = (0, 0, 0), where the magnetic structure

can be described within the crystallographic unit cell. The magnetic symmetry is the

combination of conventional crystallography plus the time reversal operator.

Before we go further in the discussion of magnetic symmetry, let us compare it with

the conventional crystallographic symmetry, which describes the invariance of atomic po-

sitions under the symmetry operations of the space group. The objects under the crystal-

lographic symmetry operations are atomic positions, which are scalars, while the objects

under the magnetic symmetry operations are magnetic moments with positions, which

are pseudovectors and change their signs under time inversion.1 The crystallographic

1a pseudovector (or axial vector) is a quantity that transforms like a vector under a proper rotation,
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structure is associated with conventional space group while the magnetic structure is

associated with a new set of symmetry elements, the so-called magnetic or Shubnikov

groups, which describe the invariance of magnetic structures. The invariance relevant to

a magnetic structure requires that the spin configuration is invariant under all symmetry

operations. New (primed) symmetry operations G′
k, where k is the propagation vector,

are formed from the combination of conventional crystallographic symmetry elements

Gk with the time-reversal operator R.

G′
k = GkR = RGk;R

2 = 1 (3.7)

The effective spin Hamiltonian should be invariant under the new set of symmetry

operations. The permutation of new symmetry elements will considerably enlarge the

number of possible Shubnikov groups.

A system, which is confined by the magnetic structure, requires that the effective

spin Hamiltonian is invariant under a Shubnikov group or, equivalently, invariant under

time reversal. Therefore, the spin Hamiltonian must have the terms in even order of

spins. For magnetic exchange interactions, we only take into account terms of order two

in the spins:

H = −2
∑

R,R′,i,j

Aij(R,R
′)Si(R)Sj(R

′) (i, j = x, y, z) (3.8)

Here, Si(R) is the i-component of a spin S localized at point R. Aij(R,R
′) is a 3 × 3

matrix which represents a tensor of rank two. All invariants of order 2 in the Hamiltonian

are products of two basis vectors belonging to the same representation.

In order to help readers to understand the magnetic symmetry discussed above, we

will introduce some relevant concepts in symmetry discussions and give the symmetry

analysis of the 8d sublattice belonging to the space group Pnma. The similar symmetry

analysis of the 4c sublattice can be found in the Bertaut’s publication [Ber68].

but gains an additional sign flip under an improper rotation (a transformation that can be expressed
as an inversion followed by a proper rotation). The conceptual opposite of a pseudovector is a (true)
vector or a polar vector.
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The Independent Symmetry Elements

Symmetry elements and atomic positions are specified for all space groups in the In-

ternational Tables for Crystallography. For instance, Gd5Ge4 belongs to the orthorhom-

bic space group Pnma. Gd atoms are located at three sublattices, one 4c and two 8d.

Sets of positions for atoms at the 8d site:

Position 1 : x, y, z

Position 2 : 1/2 − x,−y, 1/2 + z

Position 3 : −x, 1/2 + y,−z

Position 4 : 1/2 + x, 1/2 − y, 1/2 − z

Position 5 : −x,−y,−z

Position 6 : 1/2 + x, y, 1/2 − z

Position 7 : x, 1/2 − y, z

Position 8 : 1/2 − x, 1/2 + y, 1/2 + z

Let us go through and find out the independent symmetry elements for the 8d sublattice.

If a symmetry element is applied to a given point (x, y, z), other equivalent points are

generated. There is a minimal number of the symmetry elements which is necessary to

generate all the other equivalent points of the general position. Those in the minimal

set are termed as independent symmetry elements. The symmetry planes n, m and a

are one possible selection for a set of the independent symmetry elements defining the

space group Pnma. Another choice for the set of the independent symmetry elements

could be the 2-fold screw axis 2̃x at (x 1/4 1/4), the inversion center 1̄ at (0 0 0), and 2̃z

at (1/4 0 z), which are used in the following discussion.2 For instance 2̃x sends Position

2It may be seen that two successive operations 2̃x and 2̃z on the point (x, y, z), 2̃z(2̃x(x, y, z)), are
equivalent to the operation 2̃y(x, y, z), so that 2̃y is no longer independent and can be omitted.
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1 to Position 4, Position 2 to Position 3, Position 5 to Position 8, and Position 6 to

Position 7; 1̄ sends Position 1 to Position 5, Position 2 to Position 6, Position 3 to

Position 7, and Position 4 to Position 8; 2̃z sends Position 1 to Position 2, Position 3

to Position 4, Position 5 to Position 6, and Position 7 to Position 8. The arrangement

of the magnetic moments located at these positions should be also invariant under the

symmetry operations, which requires that the magnitudes of the magnetic moments are

same at all equivalent positions. Each component of the magnetic moments is subject

to the constraints set up by the symmetry operations.

Construction of Irreducible Representations

In this section, some terms in group theory are introduced. [FH91] The definition

of Group requires that a mathematical system obey a few simple rules. Then, group

theory seeks to illustrate all of the properties common to all systems that obey these

rules. In the study of group theory, representations are a very useful tool, since it

provides a “bridge” which connects the group theory with linear algebra. As a branch of

mathematics, group representation theory helps us understand the properties of abstract

groups via their representations, which is usually the linear transformations of vector

spaces. For the study of a vector space, the term “representation” is reserved for the

special case of linear representations, as the case is discussed here. “Irreducible” is a

term used in linear algebra, which describes the relationship between a vector space and

its subspaces. If a vector space V has a non-zero subspace fixed under the group action,

it is termed as reducible. Otherwise, it is said to be irreducible.

In order to construct the basis for each irreducible representation, it is most practical

to look for linear combinations of the spin vectors Sj.(j =1, 2, ..., 8 for the eight

equivalent positions at 8d site) These combinations should transform into themselves

with or without a change of sign under the symmetry operations 2̃x, 1̄, and 2̃z. A trivial
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linear combination is the vector sum

FB = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 (3.9)

which describes a ferromagnetic arrangement with all spins “pointing” up. The “+”

sign represents that the moment is along the spin up direction. Other combinations are

easily found by simple permutation inspection. The symmetry operations require four

“+” and four “−” signs in the sum. They are listed below:

GB = S1 − S2 + S3 − S4 + S5 − S6 + S7 − S8 (3.10)

CB = S1 − S2 − S3 + S4 + S5 − S6 − S7 + S8 (3.11)

AB = S1 + S2 − S3 − S4 + S5 + S6 − S7 − S8 (3.12)

P = S1 + S2 + S3 + S4 − S5 − S6 − S7 − S8 (3.13)

Q = S1 − S2 + S3 − S4 − S5 + S6 − S7 + S8 (3.14)

R = S1 − S2 − S3 + S4 − S5 + S6 + S7 − S8 (3.15)

L = S1 + S2 − S3 − S4 − S5 − S6 + S7 + S8 (3.16)

The “−” sign represents the moment is along the defined spin down direction. The

eight vectors FB, GB, CB, AB, P, Q, R, and L form the “basis of irreducible repre-

sentations”. (We use the symbols of the basis of irreducible representations same as in

Bertaut’s paper [Ber68].)



38

Transformation Properties

The transformation properties of the irreducible representations, which are formed

by the spin vectors Sj, can be deduced from applying the symmetry operations 2̃x, 1̄,

and 2̃z to the x-, y-, and z-components of the eight vectors FB, GB, CB, AB, P, Q,

R, and L. Due to the symmetry constraints, each component of the basis of irreducible

representations should transform into itself with, or without, a change of sign. Let us

consider, for instance, 2̃x operation on Cx:

2̃xCBx = 2̃x(S1x − S2x − S3x + S4x + S5x − S6x − S7x + S8x) (3.17)

= S4x − S3x − S2x + S1x + S8x − S7x − S6x + S5x = CBx (3.18)

the signs of the x-components of the spins do not change under the transformation.

However when 2̃x is acting on Cy, the y-components of the spins change sign:

2̃xCBy = 2̃x(S1y − S2y − S3y + S4y + S5y − S6y − S7y + S8y) (3.19)

= −S4y + S3y + S2y − S1y − S8y + S7y + S6y − S5y = −CBy (3.20)

Similar work is done for the transformation properties of the other vectors components

under the symmetry operations. Table 3.2 summarizes and lists the sign change for

each component of the basis vector under the operations 2̃x, 1̄, and 2̃z. The symmetry

constrains require the quantity of each magnetic component is same.

Invariants

An invariant means that the variable is unaffected by a designated operation or

transformation. Table 3.2 already contains the information needed for the construc-

tion of invariants. According to the group representation theory, the results are only

rearranged by picking out those components which transform in the same way. A set

of definite transformation properties is named as a “representation”. For instance, the
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Table 3.2 Transformation properties of the basis vectors for 8d site

Operations

2̃x 1̄ 2̃z

V ectors x y z x y z x y z
FB + − − + + + − − +
GB − + + + + + + + −
CB + − − + + + + + −
AB − + + + + + − − +
P + − − − − − − − +
Q − + + − − − + + −
R + − − − − − + + −
L − + + − − − − − +

Table 3.3 Transformation properties of the basis vectors

Magnetic groups Representations x y z
Pnma Γ1(+ + +) CBx GBy ABz

Pn′m′a Γ2(− + +) GBx CBy FBz

Pnm′a′ Γ3(+ + −) FBx ABy GBz

Pn′ma′ Γ4(− + −) ABx FBy CBz

Pn′m′a′ Γ5(+ − +) Rx Qy Lz

Pnma′ Γ6(−− +) Qx Ry Pz

Pn′ma Γ7(+ −−) Px Ly Qz

Pnm′a Γ8(−−−) Lx Py Rz

transformation properties of FBx under the operations 2̃x, 1̄, and 2̃z may be specified

by (+ − −) which means that FBx does not change sign under 2̃x, but does change

sign under 1̄ and 2̃z. By inspecting all combinations of the components of basis vectors

which are invariant under the transformations, there are eight possibilities or represen-

tations Γj(j = 1, 2, ..., 8). In Table 3.3, the vector components which belong to the same

representation are on the same line.

A similar analysis on the 4c site can be done for the transformation properties of the

basis vectors of the 4c site. The results for both 4c and 8d sites are summarized and

reorganized in Table 3.4, which will be used in later chapters.
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Table 3.4 The magnetic modes of the 4c and 8d Wyckoff sites for the 8 possible magnetic space groups of

the crystallographic space group Pnma associated with a magnetic unit cell that is the same

as the crystallographic unit cell (based on Reference 17 with a modified sequence of the atomic

positions according to Reference 18). The basis vectors (A, C, F , G for a 4c site, AB , CB ,

FB , GB , L, P , Q, R for an 8d site) are characterized by the sign sequence for the magnetic

moment components along the three crystallographic axes.

position Pn′ma Pnm′a Pnma′ Pn′m′a Pnm′a′ Pn′ma′ Pn′m′a′ Pnma

a b c a b c a b c a b c a b c a b c a b c a b c a b c

i 4c G G A A C F F C F A G C

1 x 1/4 z + + + + + + + + + + + +

2 1/2-x 3/4 1/2+z + + − − − + + − + − + −

3 -x 3/4 -z − − − − + + + + + − − +

4 1/2+x 1/4 1/2-z − − + + − + + − + + − −

i 8d P L Q L P R Q R P GB CB FB FB AB GB AB FB CB R Q L CB GB AB

1 x y z + + + + + + + + + + + + + + + + + + + + + + + +

2 1/2-x -y 1/2+z + + − + + − − − + − − + + + − + + − − − + − − +

3 -x 1/2+y -z + − + − + − + − + + − + + − + − + − − + − − + −

4 1/2+x 1/2-y 1/2-z + − − − + + − + + − + + + − − − + + + − − + − −

5 -x -y -z − − − − − − − − − + + + + + + + + + − − − + + +

6 1/2+x y 1/2-z − − + − − + + + − − − + + + − + + − + + − − − +

7 x 1/2-y z − + − + − + − + − + − + + − + − + − + − + − + −

8 1/2-x 1/2+y 1/2+z − + + + − − + − − − + + + − − − + + − + + + − −
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Application

The above discussion yields the results of symmetry analysis from pure mathemat-

ics. Now we try to discuss briefly how this symmetry analysis is relevant to the features

of a physical system. It was pointed out by Landau that, given any state of a sys-

tem, one may unequivocally say whether or not it possesses a given symmetry [LLP80].

Landau also suggested that the free energy of any system should obey two conditions:

that the free energy is analytic, and that it obeys the symmetry of the Hamiltonian

[LLP80]. Therefore, a phase transition from one phase into another possessing a differ-

ent symmetry must be described by the breaking of the analytical forms of the relevant

Hamiltonian. Since the Hamiltonian of the system is invariant under the symmetry

operations, an ordered structure can be the result of only a single irreducible repre-

sentation for a second-order phase transition (For example, the PM-AFM transition in

Gd5Ge4). As a consequence, the number of possible structures and the variables that

each involve are significantly reduced. Furthermore, the different terms in the exchange

Hamiltonian also are constrained by the symmetry requirements. The limitations will

help us to understand the features of the physical system. Since the Hamiltonian must

be even in the spin components (invariance under spin reversal), the invariants of order

two are simply constructed by pair multiplication of components which belong to the

same representation. For instance, in line of Γ1 in Table 3.3 the products C2
B,x, G

2
B,y,

A2
B,z, CB,xGB,y, GB,yAB,z, and CB,xAB,z are invariants, i.e. they do not change sign in

symmetry operations. The interesting question arises now: how is the magnetic coupling

between different sublattices? Only the vectors of different sublattices belonging to the

same representation may be coupled, since the spin Hamiltonian is invariant under the

symmetry operations. In the actual case, this means that only Cy at the 4c site may

couple with CB,x, GB,y, and AB,z at 8d site since they belong to the same representation,

Γ1 i.e. Pnma (see Table 3.4)
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In summary, symmetry analysis not only provides a very useful tool for the reduction

in the number of possible structures, but also helps us to understand them in terms of

the different terms in the exchange Hamiltonian. As one example, in zero field, all

three Gd sites in Gd5Ge4 were determined to be in the same magnetic space group

Pnm′a [TKK+05]. The occurrence of couplings belonging to the same representation,

indicates that the Hamiltonian contains significant terms of order two. In a spin-flop

transition, the ~S · ~H term in the Hamiltonian, which is induced by external field, should

be much smaller than other terms and acts as a perturbation to meet the requirement

that only quadratic terms dominate in the Hamiltonian. Similarly, the anisotropy term

in Hamiltonian in zero field should also act as a perturbation. The weak magnetic

uniaxial anisotropy in the antiferromagnet is necessary for a spin flop transition, which

is predicted by renormalization-group theory. [FN74, BA75, KNF76].

Multiple Diffraction

As discussed in Chapter 4, the (0 k 0) positions (k is odd) in reciprocal space, where

magnetic reflections were found in Gd5Ge4, are forbidden for normal charge scattering.

This separation between the magnetic and charge reflections provides the feasibility of

magnetic reflections measurements. However, the charge forbidden positions can be still

strongly contaminated by multiple charge diffraction [SJ89]. In order to improve the

magnetic signal to the charge background ratio, the contamination from multiple charge

diffraction has to be minimized. In this section, some background knowledge of multiple

diffraction is provided. The readers who are interested in multiple diffraction can do

further reading with Chang’s book [Cha84].
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Geometry Condition

Multiple diffraction is sometimes named as multiple-wave diffraction, N -beam diffrac-

tion or multiple scattering. Multiple diffraction (MD), in contrast to a simple Bragg (the

so-called two-beam incident and reflected) reflection, arises when an incident beam si-

multaneously satisfies the Bragg law for more than one set of lattice planes within a

single crystal, i.e. when more than two reciprocal-lattice points touch the surface of

Ewald sphere. The occurrence of MD depends on many geometrical factors: the lattice

constants, the space group to which the crystal belongs, the wavelength of the radiation,

and the experimental arrangement (such as the relative arrangement of the crystal with

respect to the incident radiation). One specific example from three-wave diffraction will

be given in the next section. [Cha84]

An Example from Three-Wave Diffraction

Three-wave diffraction is illustrated in reciprocal space in Fig. 3.3. When the crystal

is oriented in such a way that another reciprocal lattice point L is on the surface of

Ewald sphere, multiple diffraction can occur. The reflection KG is called the primary

reflection and the reflection KL is called the detoured (secondary) reflection. A third

reflection KG − KL, the coupling reflection, is required to bring the detoured reflection

back into the direction of the main reflection. In such a case, not only the primary

reflection but also the combined secondary and coupling reflections do a contribution to

the intensity observed in the detector. For an ideal single crystal, both G and L have

to be located on the surface of the Ewald sphere to achieve the third beam diffraction

condition, which can be affected by both incident-beam energy and azimuth angle φ.

( see the next section) For three-wave (O,G,L) diffraction, the three reciprocal lattice

points are coplanar, while the corresponding wave vectors may or may not be coplanar.

For an N -wave diffraction with N > 3, both the reciprocal lattice points and wave
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vectors may or may not be coplanar.

The general N -wave diffraction is more complex than three-wave diffraction. One

specific type of N -wave diffraction (N ≥ 3) is very interesting since its occurrence de-

pends only on crystal symmetry. It is called “systematic multiple diffraction”. [Cha84]

This type of N -wave diffraction (N ≥ 3) occurs when reciprocal lattice points are copla-

nar, but not wave vectors. In the other words, if the radius of the reflection circle on

the surface of the Ewald sphere is rs and the radius of the Ewald sphere is rE, rs < rE

must hold. All wavelengths, which keep rs < rE holds, make such MD occur. If rs = rE,

all the reciprocal lattice points and wave vectors are coplanar. There is only one spe-

cific wavelength allowed for the occurrence of MD. This diffraction is called “coplanar

coincidental diffraction” [Cha84].

The occurrence of all the N -wave diffractions with N ≥ 2, depends on the lattice

constants, the wavelength of incoming beam, and the crystal lattice symmetry. In order

to depict all geometrical factors in one picture, the number of reciprocal lattice points

including the origin of the lattice, which determines the number of diffracted beams in

multiple diffraction, needs to be identified. In principle, it is possible to derive general

conditions under which possible MD take place for a given lattice. However, it is difficult

in practice to deduce such conditions, since the variable position of the reflection circle in

a lattice provides a great variety of conditions under which MD occurs. It is also difficult

to construct graphically the Ewald sphere for a three-dimensional lattice. Nevertheless,

the cubic lattice should have the highest possibility of generating high order multiple

diffractions [Cha84]. Gd5Ge4 crystallizes in the Sm5Ge4-type orthorhombic structure

with the lattice constants a = 7.6838 Å, b = 14.7930 Å, and c = 7.7628 Å at T =

6 K.[PHGR03] The lattice constant a is very close to c and almost half of b. Each unit

cell can be viewed as stacking of upper block and lower block. Each block is a “quasi-

cubic”. Therefore, we may have a large density of MD in our XRMS experiments.
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Figure 3.3 Geometry of one specific example of multiple diffraction formed
by three wave vectors. C denotes the center of the Ewald sphere;
O is the origin of reciprocal lattice space. G and L are the
points on the surface of Ewald sphere. ψ is azimuthal angle.
KO, KG, and KL stand for incident, primary diffracted and
secondary diffracted wave vectors, respectively. When both G
and L are located on the surface of the Ewald sphere, a third
beam diffraction condition is satisfied, for which KG−KL is the
wave vector.



46

Azimuth and Wavelength Dependence

Let’s take the three-wave diffraction case described in Fig. 3.3. The Bragg condition

for the primary reflection is always satisfied as long as the reciprocal lattice points O

and G lie on the surface the Ewald sphere. One convenient way to achieve MD is to

rotate a crystal around the scattering vector Q, keeping the Bragg condition satisfied.

This is the so-called azimuth ψ rotation. If an additional reciprocal lattice point, say

L, is moved onto the surface of the Ewald sphere, then three-wave diffraction can take

place. If the rotation is continued, the point L is moved away from the surface of the

Ewald sphere and the three-wave diffraction disappears. If such azimuth rotation is

kept going, other reciprocal lattice points M , N ,... are moved onto and away from the

surface of the Ewald sphere one by another. Such phenomena that the different multiple

diffractions take place and then disappear were observed for resonant reflections from

Gd5Ge4 and are shown in Fig. 3.4. The second convenient way to achieve MD is to

change the wavelength of the incoming radiation while the reciprocal lattice points O

and G lie on the surface the Ewald sphere. If the wavelength decreases (increases), the

Ewald sphere enlarges (shrinks). No matter how the shell of the Ewald sphere moves,

the two points O and G stay on the surface, which ensures that the Bragg condition is

satisfied. If an additional reciprocal lattice point, L, is moved onto the surface of the

Ewald sphere, then three-wave diffraction can take place. The contour map of the energy

dispersion v.s. azimuth rotation is shown in Fig. 3.4. In both ways, the peak width of

a given multiple diffraction depends on how long the secondary reciprocal lattice points

take to traverse the shell of the Ewald sphere during the crystal rotation. The thickness

of the shell can be affected by the effective beam divergence, which depends on the

mosaic spread of the sample, the intrinsic diffraction width of a perfect crystal and the

geometry of the beam collimation.
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Figure 3.4 (a) Contour map of the intensity of Gd5Ge4 (5 0 0) reflection as a
function of energy and azimuth angle ψ at T = 8 K. Discontinu-
ities in the bands of multiple scattering across the energy range
are artifacts from steps in mesh scans and (b) Single energy scan
at the azimuth angle ψ = 59.9o, which is depicted as a horizontal
dashed line in (a). In (b), the vertical dashed line represents the
position of the Gd LII absorption edge. The maximum intensity
at E = 7.934 keV is a resonant signal, which is unchanged with
the azimuth rotation.
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Polarization Factors in Multiple Diffraction

The polarization factors in multiple diffraction have been discussed in some publica-

tions. [Cha84, She04, She05] Here we only discuss a specific example in three-wave reflec-

tion as shown in Fig. 3.5. Q = Q(hkl), QL = QL(hLkLlL), and QG = QG(hGkGlG) =

Q − QL are the diffraction vector of the primary two-wave reflection, the secondary,

and the coupling reflections, respectively. According to the usual definition of photon

polarization, all σ vectors are perpendicular to the scattering plane and all π vectors

lie in the scattering plane. The corresponding wave vector and the polarization vectors

σ, π forms a right-handed orthogonal axes system for each reflection. This is same as

the conventional choice of unit polarization vectors for two-wave diffraction. However,

this conventional way leads to an uncertainty in the directions of vectors σ and π due

to the fact that each corresponding wave-vector could change direction in each specific

three-wave multiple diffraction case. One convenient way to handle such uncertainty is

realized by the definition of polarization factors in the following rule: all σ vectors are

perpendicular to the diffraction vector Q and all π vectors lie parallel to the scattering

plane of the primary reflection, which is formed by the wave-vector KO of the incoming

beam and the wave-vector KG of the diffracted one. There are two advantages: the

system of unit polarization vectors is clearly associated with the azimuthal scan and the

incident beam polarization state is unchanged, which helps the analysis of large numbers

of multiple reflections.

For an easy analytical approach, we start with |QG| = |QL|, the same as for the case

discussed in Ref [She04]. We use the final results from this publication:

σO · σG = 1 (3.21)

σO · πG = σG · πO = σO · πL = σG · πL = 0 (3.22)

σL · πO = −σL · πG =
sin2 Θ(cos2 Θ − cos2 Σ)1/2

cos Θ(1 − cos Σ)
(3.23)
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σO · σL = σL · σG = sign(cos Σ)
cos Σ − cos2 Θ

cos Θ(1 − cos Σ)
(3.24)

πO · σL = πL · σG = −sign(cos Σ) cos Σ (3.25)

πO · σG = cos 2Σ (3.26)

The “sign” in the equations above is a function whose value is 1 when the variable

is positive and −1 when negative. In our experiments, the most commonly used polar-

ization geometry is the σ-π geometry. In the ideal situation, only photons in the πG

polarization state can pass through the polarization analyzer in the σ-π geometry, in

which the scattering plane for the sample is vertical but that for the analyzer is hori-

zontal. For Thompson scattering, the polarization factor is ǫ · ǫ′. If we assume that the

incident beam is 100% σ-polarized and the polarization analyzer only allows π-polarized

photons to pass through, we can use the equations above to get the polarization factor

for the route from secondary to coupling reflections in the specific case described above.

The polarization factor is square of

(ǫO · ǫL)(ǫL · ǫG) = (σO · ǫL)(ǫL · πG) (3.27)

= (σO · σL)(σL · πG) (3.28)

= −sign(cos Σ)
(cos Σ − cos2 Θ) sin2 Θ(cos2 Θ − cos2 Σ)1/2

cos2 Θ(1 − cos Σ)2
(3.29)

Thus generally, for σ-polarized incident beam, the scattered photons from multiple

diffraction can pass through the polarization analyzer in σ-π geometry, in which the

polarization analyzer suppresses the primary charge diffraction.

Application

Experimentally, the primary (Bragg) reflection may show a reduced or an enhanced

intensity change while MD take places. Such an increase or a decrease in the inten-

sity of a given two-beam reflection originates from the interaction among the diffracted
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Figure 3.5 Choice of unit polarization vectors σ and π for symmetrical con-
figuration. C denotes the center of the Ewald sphere; C’ denotes
the center of the optional circle; Q, QL, and QG represent scat-
tering vectors. The wave-vectors KO, KG, and KL lie in a section
of Ewald sphere.
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beams within the crystal. This kind of scattering power transfer has long been known.

However, structural crystallographers always try to avoid such drastic effect that mul-

tiple diffraction has on diffracted-beam intensities, which is the “killer” for structure

refinement. Synchrotron radiation has an advantages for MD topography as shown in

Fig. 3.4 (a), i.e. wavelength dispersion. Synchrotron radiation enables a diffracting

wavelength to be chosen that is optimal for the observation or elimination of multiple

diffraction. Such a wavelength might not be available with a conventional source. In

our XRMS experiment, we tried to minimize the MD contribution at the fixed resonant

energy through a judicious choice of azimuth angle. (see Fig. 3.4)
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CHAPTER 4. The Magnetic Structure of Gd5Ge4 in Zero

Field

Introduction

The Gd5(SixGe1−x)4 alloys have received attention recently because of their unusu-

ally strong magnetocaloric [PG97b, PG97d], magnetostrictive [MBAI00, MAI+98], and

magnetoresistive [MSGL+98, LPG99, LPGT00] properties when x ≤ 0.5. All of these

properties appear to be related to a first order magnetic transition accompanied by a

martensitic-like structural change [TPS+04].

One of the end members of this series of compounds, Gd5Ge4, crystallizes in the

Sm5Ge4-type orthorhombic structure with space group Pnma, and lattice constants

a = 7.6838 Å, b = 14.7930 Å and c = 7.7628 Å at T = 6 K [PHGR03]. The Gd ions are

located at one 4c Wyckoff site and two inequivalent 8d Wyckoff sites. They form two

Gd-rich slabs, separated by sheets of Ge as shown in Fig. 2.3 [LGP02]. Below the Néel

temperature, TN ∼ 127 K, a second-order transition occurs where the Gd moments order

antiferromagnetically. A first order magnetic transition from the antiferromagnetic phase

(AFM) to a ferromagnetic phase (FM) occurs in an applied magnetic field of 18 kOe

at T = 4.5 K [LGP02]. Alternatively, when Si is substituted for Ge in Gd5(SixGe1−x)4

up to x < 0.2, a similar AFM → FM first order transition occurs upon cooling in

zero field [PG97c]. In both cases, the magnetic transition occurs concomitantly with

a structural transition where the slabs shift relative to one another in the a direction

[PG97c, PHGR03]. From magnetization measurements and x-ray structural studies, it
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has been proposed that the Gd magnetic moments are ferromagnetically aligned within

the slabs, while the coupling between slabs can be antiferromagnetic or ferromagnetic.

This indicates the presence of strong magneto-elastic coupling.

Details of the microscopic magnetic structure of Gd5Ge4 or, in fact, any of the

Gd5(SixGe1−x)4 alloys have not been determined largely due to the large neutron ab-

sorption cross-section of naturally occurring Gd. The aim of the present measurement is

to elucidate the antiferromagnetic structure of Gd5Ge4 using X-ray Resonant Magnetic

Scattering (XRMS).

Experimental Details

Single crystals of Gd5Ge4 were grown using the Bridgman technique [SLPS05]. For

the XRMS measurements, single crystals were extracted from the ingot and prepared

with polished surfaces perpendicular to the crystallographic a- and b-axes, with a size

of approximately 2 mm × 2 mm. The temperature dependence of the magnetization

was measured with a SQUID magnetometer and is shown in Fig. 4.1. These data clearly

show an antiferromagnetic transition at TN = 127 K, and indicate that the magnetic

moment direction is likely mainly along the c-axis since the magnetization in c-direction,

χc, decreases to zero as temperature decreases to the base temperature. These results

are in agreement with previous magnetization measurements [LGL+04].

The XRMS experiment was performed on the 6ID-B beamline in the MUCAT sector

at the Advanced Photon Source at the Gd LII absorption edge (E = 7.934 keV). The

incident radiation was linearly polarized perpendicular to the vertical scattering plane (σ-

polarized) with a spatial cross-section of 1 mm (horizontal) × 0.2 mm (vertical). In this

configuration the resonant magnetic scattering, arising from electric dipole transitions

(E1, from the 2p-to-5d states), rotates the plane of linear polarization into the scattering

plane (π-polarization). In contrast, charge scattering does not change the polarization
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Figure 4.1 Magnetic susceptibility M/H of the Gd5Ge4 single crystal. The
temperature dependence of the susceptibility was measured on
heating of the zero-field cooled sample in a field of 100 Oe applied
parallel to the three crystallographic axes.



55

of the scattered photons (σ-σ scattering). Pyrolytic graphite PG (0 0 6) was used

as a polarization analyzer to suppress the charge background relative to the magnetic

scattering signal.

Based on the predictions [LGL+04] of the AFM structure described above, the (0 k

0) reflections (for k odd) are expected to be strong magnetic reflections and forbidden

for normal charge scattering. Therefore, the sample was mounted on the end of the

cold-finger of a displex cryogenic refrigerator with the crystallographic b-axis parallel

to the axis of the displex and set in the scattering plane. This configuration allows

the sample to be rotated around the scattering vector Q (parallel to the b-axis) while

keeping Q constant. In such an azimuth (ψ) mode, either the a-b or b-c planes can

be brought into coincidence with the scattering plane through a rotation of ψ. Since

the resonant E1 scattering is sensitive only to the component of the magnetic moment

within the scattering plane, with a cross section f ∝ ~k ′ ·~µ (~k ′ and ~µ are the wave vector

of the scattered photons and the magnetic moment, respectively), all three cartesian

components of the moment may be probed in this mode without remounting the sample

[DIG+97].

In this particular experiment the magnetic peak positions are forbidden for normal

charge scattering, but can be strongly contaminated by multiple charge scattering [SJ89].

However, the intensity of the multiple scattering is highly sensitive to both the incident

beam energy and the azimuth angle ψ. For example, in Fig. 3.4 (a) a contour map of

intensity in dependence on energy and azimuth angle is shown at the position of the

(5 0 0) reflection measured on the sample surface cut perpendicular to the a-axis. The

multiple scattering contribution at the resonant energy can be minimized through a judi-

cious choice of azimuth angle as shown in Figure 3.4 (b), where the resonant scattering

is well separated from the multiple scattering. We note that resonant scattering can

arise from anomalous charge scattering in addition to magnetic scattering [FSS92].
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using aluminum attenuator with 0.41 transmission. The dashed
line represents the position of the Gd LII absorption edge.



57

Magnetic Structure in Zero Field

With the sample at low temperature and oriented so that the b-c orthorhombic axes

are coincident with the scattering plane, a strong magnetic reflection was found at the

nominally forbidden (0 3 0) charge reflection position as illustrated in Fig. 4.2 (a). The

full-width-half-maximum of the magnetic peak measured in θ-scans (rocking curves) was

0.1◦, the same as that from charge scattering. In order to confirm that the scattered

intensity does indeed arise from resonant magnetic scattering, energy scans through the

Gd LII absorption edge were performed above and below the Néel temperature (See

Fig. 4.2 (b)). At T = 145 K, only charge scattering, arising from the tails of multiple

scattering peaks, was observed. At low temperature, however, there is clear evidence of

strong resonant scattering at the (0 3 0) magnetic peak position. Fig. 4.3 (a) displays

the temperature dependence of the integrated intensity of the (0 7 0) magnetic peak. A

Lorentzian peak shape was used to fit θ-scans through the reciprocal lattice points to

obtain the integrated intensities. The intensity decreases smoothly to zero as temper-

ature increases up to T = 125 K.. Magnetic reflections were found only at reciprocal

lattice points (0 k 0), where k is odd. Therefore, the magnetic unit cell is the same as

the crystallographic unit cell.

Having identified the location of the magnetic peaks and, therefore, the magnetic

unit cell, we now turn to the determination of the magnetic moment direction in the

antiferromagnetic structure. This was accomplished by azimuth scans through the (0

k 0) reflections. The (0 3 0) azimuth scan at T = 8 K is shown in Figure 4.4. The

integrated intensities of the magnetic peak are normalized by the intensity of the (0 4

0) charge peak (at the same azimuth angle) to reduce systematic errors. At an azimuth

angle ψ = 90◦, where the a-b plane is coincident with the scattering plane, the

integrated intensity is close to zero. We note that the intensity at ψ = 90◦ is close

to zero over the entire temperature range investigated in this experiment (from 8 K to
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Figure 4.3 (a) Integrated intensity of the (0 7 0) magnetic peak measured
upon heating the sample, at an azimuth angle of ψ = 30◦, using
an aluminum attenuator with 0.41 transmission. (b) Integrated
intensity of the (5 0 0) resonant peak measured during heating
at an azimuth angle of ψ = 60◦ without attenuator.
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140 K). This indicates that there is no contribution to the scattering at this reflection

from an a or b component of the magnetic moment. Two maxima are found at azimuth

values of ψ = 0◦ and 180◦ where the b-c plane is coincident with the scattering plane.

Therefore, only the c-component contributes to the magnetic resonant scattering at this

reflection.

The solid line in Fig. 4.4 represents the expected dependence, I = A sin2(ψ − ψc),

for the integrated intensity with ψc = (88.1 ± 1.8)◦. The small deviation of ψc from

90◦ results from a slight misalignment of the sample. The intensity at ψ = 0◦ deviates

from the calculated curve because of particularly strong contributions from multiple

scattering. Fig. 4.4 indicates that either there is no magnetic moment component along

a or b, or the intensity of the (0 3 0) magnetic peak is not sensitive to either the a or

the b magnetic moment components due to cancellations arising from the symmetry of

the magnetic order.

In order to determine the sensitivity of the magnetic reflections to different spatial

components of the magnetic moment, we must look into the details of the possible

magnetic space groups. For the Sm5Ge4-type structure with the crystallographic space

group Pnma, eight magnetic space groups are possible [Ber68, SP78], and are listed in

Table 3.4. Each magnetic space group yields relations among the components of the

magnetic moments along the three crystallographic axes described by modes. These

modes represent the sign sequence of the moment components of each ion, in each site,

along a particular direction.

In Table 4.1 the magnetic modes for the 4c and 8d Wyckoff sites are listed along

with the corresponding structure factors for magnetic diffraction. From here, we see

that only one mode, A, for the 4c site and two modes, R and AB, for the 8d sites can

contribute to the magnetic intensity of (0 k 0) reflections. Selected (0 k 0) reflections

were measured, and their integrated intensities are shown in Table 4.2. Since only a c

component contribution to the magnetic scattering was found for all (0 k 0) reflections,
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Table 4.1 Magnetic modes for the 4c and 8d Wyckoff sites, and their cor-
responding structure factors for the (h 0 0), (0 k 0) and (0 0 l)
reflections (h, k, l are odd). x4c, y4c, z4c and x8d, y8d, and z8d are
the atomic positions and µ4c

j and µ8d
j are the magnetic moment

components along the corresponding j-axis (j = a, b, c) at the 4c
site and the 8d sites respectively.)

mode (h 0 0) (0 k 0) (0 0 l)

A 0 iµ4c
j (−1)

k−1

2 −iµ4c
j sin 2πlz4c

C µ4c
j cos 2πhx4c 0 µ4c

j cos 2πlz4c

F 0 0 0
G −iµ4c

j sin 2πhx4c 0 0

AB 0 2µ8d
j cos 2πky8d 0

CB 0 0 0
FB 0 0 0
GB 2µ8d

j cos 2πhx8d 0 2µ8d
j cos 2πlz8d

L -2iµ8d
j sin 2πhx8d 0 0

P 0 0 0
Q 0 0 0
R 0 -2iµ8d

j sin 2πky8d -2iµ8d
j sin 2πlz8d
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only modes for the c-component must to be considered for (0 k 0) reflections. We note

that in general, all three Wyckoff sites need not be in the same magnetic space group

with the same corresponding modes [Ber68]. Considering all possible combinations, in

our case, there can be 17 different descriptions of the intensities for (0 k 0) reflections.

All cases were checked by comparing the measured integrated intensities of the (0 k 0)

reflections with the structure factors calculated from Table 4.1. For example, if all three

sites are described by the same magnetic space group Pnm′a, only the c-components in

the A mode at the 4c site and the R mode at the two 8d sites contribute to the intensity

of the magnetic (0 k 0) reflections according to:

I = A sin2(ψ − ψc)
cos2 θ

sin 2θ

∣∣∣(−1)
k−1

2 µ4c
c + 2µ8d1

c sin 2πky8d1 + 2µ8d2

c sin 2πky8d2)
∣∣∣
2

(4.1)

Here, A is the scaling factor, ψ is azimuth angle, and θ is half of the scattering

angle. Additionally, cos2 θ/ sin 2θ =

√
1−( kλ

2b
)2

kλ
2b

, where λ is the wavelength of the incident

photons, b is the lattice constant, and y8d1 = 0.1022 and y8d2 = 0.1168 for T = 6 K

[PHGR03].

For all 17 cases the calculated integrated intensity was fit to the measured data with

two dependent parameters µ8d1

c /µ4c
c and µ8d2

c /µ4c
c and an overall scaling factor A(µ4c

c )2.

The best fit to the data, shown in Table 4.2 corresponds to all three magnetic Gd sites

described by the same magnetic space group, Pnm′a. The resulting ratios µ8d1

c /µ4c
c =

0.98 ± 0.03 and µ8d2

c /µ4c
c = 0.99 ± 0.04 indicate equal magnetic moment components

along the c-axis at the three Wyckoff sites. An important result of this analysis is that

the absence of intensity at the (0 3 0) reciprocal lattice point at azimuth ψ = 90◦ does

not require the absence of a or b components of the magnetic moment but, rather, arises

from the magnetic space group symmetry. A second consequence of this analysis is that

no b-component of the magnetic moment is allowed for the 4c site (see Table 3.4).

Table 4.1 also provides us with a means of investigating whether there is a compo-
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Table 4.2 The measured and calculated (from Eqn. 4.1) values of the inte-
grated intensity of (0 k 0) reflections at T = 6 K.

k Measured intensity Calculated Intensity
3 0.123 ±0.002 0.123
5 0.0045±0.0003 0.00021
7 0.186 ±0.006 0.186
9 0.0028±0.0002 0.0029
11 0.0248±0.0008 0.0249
13 0.0221±0.0009 0.0221

nent of the magnetic moment along the a-axis through measurements of the magnetic

scattering at the (h 0 0) lattice points (h odd). At these reflections, only the compo-

nent of the moment along the a-axis contributes to the scattering according to modes G

and L in the magnetic space group Pnm′a. Because the a-component is parallel to the

scattering vector, Q, for (h 0 0) reflections, the integrated intensities are not dependent

upon the azimuth angle ψ. The (h 0 0) reflections with h = 1, 3, 5, and 7 were measured

at the Gd LII absorption edge. At T = 10 K, the resonant intensities are too weak to be

separated from multiple scattering, except at the (5 0 0) reflection as shown in Fig. 3.4.

Surprisingly, although weak resonant scattering was indeed observed for the (5 0 0) re-

flection, no temperature dependence of its intensity was observed, even above the Néel

temperature, as shown in Fig. 4.3 (b). Therefore, this resonant scattering does not arise

from magnetic scattering related to the magnetic order below TN. We believe this reso-

nant contribution arises from Templeton scattering [TT94, FSS92], perhaps originating

from long-range ordering of anisotropic charge distributions. Further investigations of

this feature are planned.

Any magnetic scattering signal at the (5 0 0) reflection must be very small. Fur-

thermore, no significant resonant scattering was found at the (1 0 0), (3 0 0), or (7 0 0)

positions. These results suggest that there is no a-component of the magnetic moments.
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Although we can not exclude small a-components for the magnetic moments on the

4c and 8d sites based on only four reflections, specific features of the crystallographic

structure may be used to obtain additional constrains on the a-components. For ex-

ample, in Tb5Ge4, there is no a-component of the moment at the 4c site while sizable

a-components were identified for both 8d sites [SP78, RMA+02]. This most likely arises

from the environment of the 4c sites in the structure. In both slabs shown in Fig. 2.3,

each Gd ion at the 4c site is located at the center of a deformed cube with 4 Gd ions

at the 8d1 site and 4 Gd ions at the 8d2 site at the corners [SP78]. This can result in a

near compensation of the a-component of the exchange field at the 4c sites by the sur-

rounding 8 Gd ions for the Pnm′a magnetic space group. If we assume that for Gd5Ge4

no a-component of the moment exists at the 4c site, then the upper limits for µ8d1

a and

µ8d2

a are determined to be 0.06µc and 0.05µc, respectively, from the constraints given by

the measured (h 0 0) reflections.

Unfortunately, the b-components of the magnetic moment contribute only to the

magnetic intensity of charge forbidden, off-specular (h k 0) and (0 k l) reflections.

Therefore, no direct information concerning the b-component can be obtained. For

the (h k 0) reflections, the magnetic structure factors arise from linear combinations of

the a- and b-components, while for the (0 k l) reflections both the b- and c-components

contribute. A complicating factor in the analysis of these reflections is that, in both

cases, the entanglement of magnetic components for two different crystallographic direc-

tions introduces magnetic domains whose populations strongly influence the intensity of

the magnetic reflections. While we have shown above that there is no b-component of

the magnetic moment at the 4c site, it is extremely difficult to unambiguously determine

the presence or absence of the magnetic components µ8d1

b and µ8d2

b with the limited num-

ber of accessible magnetic reflections. However, if we assume that the magnitudes of the

magnetic moment at all sites are the same, 1 the result that µ8d1

c /µ4c
c = 0.98 ± 0.03 and

1Resonant scattering at the L-edges of rare earths involves transitions from the 2p core states to the
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µ8d2

c /µ4c
c = 0.99± 0.04 (see above) allows us to postulate that the magnetic moments lie

primarily along the c-axis for all three sites.

Summarizing, this XRMS experiment on the Gd5Ge4 system has shown that, below

the Néel temperature, TN = 127 K, the antiferromagnetic order is described by a mag-

netic unit cell which is the same as the crystallographic unit cell. As proposed by Levin

et al.,[LGL+04]the magnetic moments are ferromagnetically aligned within the slabs,

while their stacking in the b-direction is antiferromagnetic. Furthermore, all Gd sites

order within the same magnetic space group, Pnm′a. The magnetic moments are pri-

marily aligned along the c-axis and the c-components of the magnetic moments at the 3

different sites are the same within the error. Within experimental error, no a-component

of the magnetic moments was detected. While a b-component of the moment at the 4c

site can be excluded by the symmetry of the space group, the presence of a b-component

of the moment at the 8d sites could not be unambiguously determined.

The Unusual Order Parameter in Gd5Ge4 in Zero Field

If we look at Fig. 4.3 (a) carefully, we see the concavity of the curve in the inter-

mediate temperature range. This feature is very unusual. The integrated intensity of

Bragg reflection is generally proportional to the square of sublattice magnetization, M .

If the sublattices magnetization follows the power law M ∝ (Tc − T )2β, then the plot

of the temperature dependence of the integrated intensity should be convex. Here, Tc

is the critical temperature and β is the critical exponent. (0 < β ≤ 1/2) Even if M

follows a mean field behavior, the plot of I v.s. T should be a straight line. In order to

explain the unusual temperature dependence, we need a second order parameter. For

unoccupied 5d states. The magnitude of the resonant scattering is largely determined by the matrix
element of the transitions which, in turn, depends upon the size of the exchange interaction between
the 4f and 5d electrons. Therefore, at least for Gd where the 4f-5d exchange interaction is large, the
resonant scattering signal is closely related to the size of the 4f moment. While theoretical calculations
show that the Gd moment at the 4c site is ∼ 1% larger than those at the two 8d sites,[PPGH07] the
accuracy of our results is not sufficient to confirm this small difference.
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example, tt was reported that there is a spin reorientation transition in Tb5Ge4 in zero

field [RMA+02]. It is a reasonable speculation that a similar spin reorientation transition

could occur in Gd5Ge4. Let us review first the spin reorientation transition in Tb5Ge4.

Spin Reorientation in Tb5Ge4 in Zero Field

The Bulk Measurements of Tb5Ge4

Single crystals of Tb5Ge4 for the magnetization and XRMS measurements were grown

using the Bridgman technique. The sample was extracted from the ingot, prepared with

cut surfaces perpendicular to the crystallographic axes with a size of approximately

2 mm×2 mm×2 mm. The temperature dependence of the magnetization of the Tb5Ge4

single crystal was measured with a Quantum Design SQUID magnetometer and is shown

in Fig. 4.5. The zero-field cooled M(T) curves measured along the three principal crys-

tallographic axes of Tb5Ge4 in a magnetic field, H = 1 kOe. These data clearly show

an antiferromagnetic transition at TN(Tb) = 92 K, and indicate that the magnetic mo-

ment direction is likely mainly along the c axis since χc decreases most closely to zero

as temperature decreases to the base temperature. The temperature dependence of the

reciprocal magnetic susceptibility (H/M) follows Curie-Weiss behavior above ∼ 160 K

(see inset of Fig. 4.5.) The different intercepts of the Curie-Weiss lines of the three

principal crystallographic axes represent the anisotropy in the paramagnetic state. The

difference is negligible between the a axis and the c axis in the paramagnetic state. The

b axis is the hard axis in the paramagnetic state. At lower temperature ∼ 55 K, a kink

in the magnetization curve of all three crystallographic axes, are clearly visible marked

with a dashed line in Fig. 4.5 , suggesting a further change in the magnetic structure.

The single crystal of Tb5Ge4 for the electrical resistivity measurements had the di-

mensions 1 mm × 2 mm × 2 mm. Electrical connections to the sample were made by

attaching thin platinum wires using silver paste. The dc electrical resistance measure-
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Figure 4.5 Magnetic susceptibility M/H of the Tb5Ge4 single crystal. The
temperature dependence of the susceptibility was measured on
heating of the zero-field cooled sample in a field of 1000 Oe
applied parallel to the three crystallographic axes.
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ments were carried out using a Quantum Design SQUID magnetometer equipped with

a probe for making four-point measurements. The measurements were performed at a

constant dc electrical current of 5 mA in a temperature range from 5 to 300 K in zero

magnetic field.

The temperature dependence of the electrical resistivity of Tb5Ge4, measured by S.

Jia on cooling between 5 and 300 K with current along b axis, is shown in Fig. 4.6. The

electrical resistivity exhibits the low-temperature metallic and the high-temperature

semiconductor-like behaviors, and shows a well-defined peak at 92 K. The change in

slope of the resistivity curve at ∼ 55 K, with the electrical current applied along b axis,

is same as the second characterized temperature found in magnetization measurement.

This also suggests a further change in the magnetic structure which changes the slope

of the resistivity curve in consequence.

The XRMS Measurements of Tb5Ge4

The XRMS experiment was performed on the 6ID-B beamline in the MUCAT sector

at the Advanced Photon Source at the Tb L3 absorption edge (E = 7.517 keV). The

incident radiation was linearly polarized perpendicular to the vertical scattering plane (σ-

polarized) with a spatial cross-section of 1 mm (horizontal) × 0.2 mm (vertical). In this

configuration the resonant magnetic scattering, arising from electric dipole transitions

(E1, from the 2p-to-5d states), rotates the plane of linear polarization into the scattering

plane (π-polarization). In contrast, charge scattering does not change the polarization

of the scattered photons (σ-σ scattering). Pyrolytic graphite PG (0 0 6) was used

as a polarization analyzer to suppress the charge background relative to the magnetic

scattering signal. the sample was mounted on the end of the cold-finger of a displex

cryogenic refrigerator with the crystallographic b-axis parallel to the axis of the displex

and set in the scattering plane. The multiple scattering contribution at the resonant

energy can be minimized through a judicious choice of azimuth angle.
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The sample was first cooled to 6 K. Reciprocal lattice scans, from (3 0 0) to (4 0 0),

from (4 0 0) to (4 1 0), and from (4 0 0) to (4 0 1), were done to search for any satellite

peak signaling a change in magnetic structure. Magnetic reflections were found only at

reciprocal lattice points (h k l), where h, k, and l are integers. Therefore, the magnetic

unit cell is same as crystallographic unit cell.

Fig. 4.7 shows the temperature dependence of the integrated intensity of the (0 7 0)

magnetic peak. A Lorentzian peak shape was used to fit θ-scans through the reciprocal

lattice points to obtain the integrated intensities. The intensity decreases to zero as

temperature increases up to TN(Tb) = 92 K. A kink found at Tsr(Tb) ∼ 55 K, is the

same temperature as the anomaly in the magnetization curves and the resistivity curve.

We also point out here that the temperature dependence of the integrated intensities

shown in Fig. 4.7 is different from that of the (0 1 0) magnetic reflection obtained from

the powder neutron scattering [RMA+02], which shows a smooth decrease in intensity,

without any noticeable inflection up to the Néel temperature.

Due to the geometry limitation, we could not measure enough magnetic reflections

to determine all three magnetic components at all three Tb sublattices. Here we use

the results of the magnetic structure analysis from the neutron scattering measurements

in Ref. [RMA+02]. Tb5Ge4 crystallizes in the Pnma orthorhombic space group. The

atomic arrangement in Tb5Ge4 is the same as in the isomorphic Sm5Ge4 [SJT67] and

Gd5Ge4 [PG97c] compounds. Both the crystallographic space group and precise atomic

arrangement remain unaltered upon cooling down to 6 K. The magnetic space group is

same as that of Gd5Ge4, Pnm
′a, below TN(Tb) = 92 K. Analysis of magnetic reflections

at base temperature leads to a complex canted-antiferromagnetic structure (T < Tsr),

which we note as low-temperature antiferromagnetic structure (i.e. LTAFM). The com-

ponents of the Tb magnetic moments are listed in Table 4.3. The magnetic moments

are essentially confined to the ac plane, the moments are mainly aligned along c axis.

The Tb ions at 4c site (Tb1) form an almost collinear sublattice, the angle with the c
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axis is about 10◦. The canting angles of Tb ions at the 8d1 (Tb2) and 8d2 (Tb3) sites,

with respect to c axis, are larger, 23◦ and 31◦, respectively. At 85 K (Tsr < T < TN),

the magnetic moments cant along all three orthorhombic directions. The Tb1, Tb2, and

Tb3 ions making canting angles with respect to c axis of 0◦, 7◦, and 27◦, respectively.

Therefore, a spin reorientation transition occurs on cooling at Tsr(Tb) = 55 K from the

high-temperature antiferromagnetic structure (HTAFM) to LTAFM.

Table 4.3 Components of the Tb magnetic moments for all of the studied
Tb5Ge4 compounds as determined form the Rietveld refinements
of the D2B neutron powder diffraction data. (From Table III in
Ref. [RMA+02])

µTb1(µB) µTb2(µB) µTb3(µB)
T (K) µx µy µz µx µy µz µx µy µz

85 0 0 4.57(9) 0.3(2) 0.2(2) 3.0(1) 1.3(2) 1.0(2) 3.3(1)
2 1.49(8) 0 8.3(1) 2.7(1) 1.5(1) 7.06(8) 4.1(1) 1.8(2) 7.49(9)

Spin Reorientation in Gd5Ge4 in Zero Field

The Bulk Measurements of Gd5Ge4

The single crystal of Gd5Ge4 for the electrical resistivity measurements had the di-

mensions 1 mm × 2 mm × 2 mm. Electrical connections to the sample were made by

attaching thin platinum wires using silver paste. The dc electrical resistance measure-

ments were carried out using a Quantum Design SQUID magnetometer equipped with

a probe for making four-point measurements. The measurements were performed at a

constant dc electrical current of 5 mA in a temperature range from 5 to 300 K in zero

magnetic field.

The temperature dependence of the electrical resistivity of Gd5Ge4, measured by S.

Jia on cooling between 5 and 300 K with currents along a and b axis, is shown in Fig. 4.8.

The measurement on heating was made after the sample was slowly ∼ 0.5 K/min cooled
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in the zero magnetic field. The electrical resistivity exhibits the low-temperature metallic

and the high-temperature semiconductor-like behaviors, and shows a well-defined peak

at 127 K. The result for single crystal measurement, with the electrical current applied

along a axis, is identical in shape to that measured on the polycrystalline sample reported

in Ref. [LPGM01].. The change in slope of the resistivity curve with the electrical

current applied along b axis at ∼ 75 K, suggests a possible transition. Recalling that

the magnetic moments modulate along b axis in Gd5Ge4 below the Néel temperature,

this possible transition may result from the orientation change of magnetic moments.

The XRMS Measurements of Gd5Ge4

The XRMS experiment was performed on the 6ID-B beamline in the MUCAT sector

at the Advanced Photon Source at the Gd L2 absorption edge (E = 7.934 keV). All

other experimental setup is same as we described that for Tb5Ge4. The single crystal of

Gd5Ge4 for the XRMS measurements had the dimensions 2 mm × 2 mm × 3 mm. The

sample was first cooled to 6 K. Reciprocal lattice scans, from (0 4.05 0) to (0 5.1 0), from

(−1.1 10 0) to (1.1 10 0), and from (0 10 − 1.1) to (0 10 1.1), were done to search for

any satellite peak signaling a change in magnetic structure. Magnetic reflections were

found only at reciprocal lattice points (h k l), where h, k, and l are integers. Therefore,

the magnetic unit cell is same as crystallographic unit cell.

Fig. 4.3 (a) shows the temperature dependence of the integrated intensity of the

(0 7 0) magnetic peak. A Lorentzian peak shape was used to fit θ-scans through the

reciprocal lattice points to obtain the integrated intensities. The intensity decreases

gradually to zero as temperature increases up to TN(Gd) = 125 K.

In general, the integrated intensity I ∝M2, where M is the magnitude of a magnetic

moment i.e. the order parameter in an antiferromagnet. In consequence, the tempera-

ture dependence of the integrated intensity should be a convex curve or a straight line

following the I(T ) ∝ (T − TN)2β relation below TN, where β is a critical exponent and
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0 < β ≤ 0.5. Therefore, one unusual character of the curve is the concavity. The sam-

ple was heated upto 100 K. Reciprocal lattice scans from (0 4.05 0) to (0 5.1 0) were

performed to investigate whether a new modulation appears in the resonant scattering

between Tsr(Gd) and TN(Gd), but no additional wave vector could be located. Magnetic

reflections were found only at reciprocal lattice points (0 k 0). Recalling Eq. 4.1, the

concavity could be related to a spin-reorientation transition which slightly changes the

c component of magnetic moments.

We can also derive the structure factor for (h 0 0) magnetic reflections based on the

magnetic space group of Gd5Ge4, Pnm
′a:

I = A
sin2 θ

sin 2θ

∣∣∣µ4c
a sin 2πhx4c + 2µ8d1

a sin 2πhx8d1 + 2µ8d2

a sin 2πhx8d2)
∣∣∣
2

(4.2)

Here, A is the scaling factor and θ is half of the scattering angle. h is odd. From

Eq. 4.2, we see that (h 0 0) magnetic reflections are sensitive to the a-components of

magnetic moments. Although weak resonant scattering was indeed observed for the

(5 0 0) reflection, no temperature dependence of its intensity was observed, even above

the Néel temperature, as shown in Fig. 4.3 (b). This resonant scattering does not arise

from magnetic scattering related to the magnetic order below TN, but from anomalous

charge scattering [TT94, FSS92]. Therefore, no change is observed in the a component

of magnetic moments below TN. If there is a spin-reorientation transition in Gd5Ge4,

the magnetic moments should change the orientation within bc plane.

For (0 0 l) magnetic reflections, the integrated intensity is contributed by the c com-

ponent of magnetic moments, as shown below:

I = A
sin2 θ

sin 2θ

∣∣∣µ4c
c sin 2πlz4c + 2µ8d1

c sin 2πlz8d1 + 2µ8d2

c sin 2πlz8d2)
∣∣∣
2

(4.3)

Unfortunately, the b-components of the magnetic moment contribute only to the mag-

netic intensity of charge forbidden, off-specular (h k 0) and (0 k l) reflections. For the

(h k 0) reflections, the magnetic structure factors arise from linear combinations of the
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Figure 4.9 Integrated intensity of the (0 10 −1) magnetic reflection mea-
sured upon heating the Gd5Ge4 sample.

a- and b-components, while for the (0 k l) reflections both the b- and c-components con-

tribute. We need large number of magnetic reflections measured to refine all parameters.

Only a few reflections were measured due to the geometry limitation. No information

concerning the b-component could be concluded directly.

Fig. 4.9 shows the temperature dependence of the integrated intensity of the (0 10 −1)

magnetic peak. The intensity decreases to zero as temperature increases up to T =

125 K. A kink found at Tsr(Gd) ∼ 75 K, is the same temperature as the anomaly in

the resistivity curve with the electrical current applied along b axis shown in Fig. 4.8.
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The data indicates that above Tsr(Gd), but still below TN(Gd), the magnetic moments

in Gd5Ge4 might change their direction like what happens in Tb5Ge4.

Table 4.4 The measured and calculated values of the integrated intensity
of Gd5Ge4 (0 k 0) reflections at T = 90 K.

k Measured intensity Calculated Intensity
3 0.0156(5) 0.01545
5 0.0016(4) 0.00002
7 0.030(2) 0.03035
9 0.0004(2) 0.00076
11 0.0019(1) 0.00280
13 0.0029(3) 0.00368

In order to determine the magnetic structure in both HTAFM phase and the LTAFM

phase in Gd5Ge4, the integrated intensities of (0 k 0) reflections were measured at

T = 6 K and T = 90 K. The data at T = 6 K are listed in Table 4.2. We recall the

conclusion from Chapter 4: the magnetic moments lie primarily along the c-axis for all

three sites and the magnitudes of the magnetic moment at all three Gd sites are the same

at T = 6 K within experimental error (µ8d1

c /µ4c
c = 0.98±0.03 and µ8d2

c /µ4c
c = 0.99±0.04

as shown in Table 4.5). The data at T = 90 K are listed in Table 4.4. Considering

all possible combinations of basis vectors at the three sites as shown in Table 3.4, the

best fit to the data, as shown in Table 4.4, corresponds to all three magnetic Gd sites

described by the same magnetic space group, Pnm′a. The fitting yields the ratios

µ8d1

c /µ4c
c = 0.71 ± 0.13 and µ8d2

c /µ4c
c = 0.91 ± 0.15 as shown in Table 4.5. We conclude

that, within error, µ8d1

c is smaller than µ4c
c at T = 90 K. We recall that the magnetic

moments along c axis are same size at the three Gd sites in the LTAFM phase and that

no a component of magnetic moments was observed in both the LTAFM and HTAFM

phases of Gd5Ge4. Due to the symmetry constrain, there is no b component of magnetic

moments at 4c site. If we assume that the magnitudes of the magnetic moment at all
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sites are the same in the both phases, 2 the spin-reorientation transition from LTAFM

to HTAFM in Gd5Ge4 then corresponds to magnetic moments at 8d1 and 8d2 sites tilt

slightly away from c direction.

Table 4.5 c-component of the Gd magnetic moments as determined from
(0 k 0) reflections at T = 6 K and T = 90 K.

k Measured intensity Calculated Intensity
T = 6 K T = 90 K

µ8d1

c /µ4c
c 0.98(3) 0.71(13)

µ8d2

c /µ4c
c 0.99(4) 0.91(15)

Discussion

Phase transitions are a common phenomenon encountered in nearly every branch of

physics [SW72]. Magnetism, in particular, is a rich field in this regard due to the vector

nature of the order parameter. Integral to this is the concept of magnetic anisotropy,

i.e., the difference in energy for various orientations of the magnetization with respect

to a sample. An understanding of spin reorientation transitions is an important source

of knowledge regarding magnetic anisotropy. This information is invaluable because

ab initio calculations of magnetic anisotropy energies in even the simplest systems are

difficult [TJEW95], and it is currently not feasible to predict, from first principles, the

behavior of complicated alloys and multilayered systems.

Tb5Ge4 possesses a same Sm5Ge4-type crystallographic structure and a same mag-

netic space group as Gd5Ge4 does. The difference in magnetic structure is that Tb5Ge4

2Resonant scattering at the L-edges of rare earths involves transitions from the 2p core states to the
unoccupied 5d states. The magnitude of the resonant scattering is largely determined by the matrix
element of the transitions which, in turn, depends upon the size of the exchange interaction between
the 4f and 5d electrons. Therefore, at least for Gd where the 4f-5d exchange interaction is large, the
resonant scattering signal is closely related to the size of the 4f moment. While theoretical calculations
show that the Gd moment at the 4c site is ∼ 1% larger than those at the two 8d sites [PPGH07], the
accuracy of our results is not sufficient to confirm this small difference.
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has a canted one but Gd5Ge4 has nearly a collinear one in LTAFM. The delicate com-

petition between the magneto-crystalline anisotropies (due to crystalline electric field

[CEF] effect and spin-orbit coupling) and the nearest-neighbor magnetic exchange in-

teractions may allow a canted antiferromagnetic structure in 3-dimensional sublattice in

Tb5Ge4.

In general, the spin-reorientation phenomena results from competing anisotropies in

the system. In rare earth compounds, potential sources of magnetic anisotropy include

contributions from single ion, dipolar, and exchange interactions. For most of the rare-

earth elements with finite orbital moments, the single-ion anisotropy due to the CEF

effect dominates the anisotropy of the magnetic ground state. However, the Gd-based

antiferromagnets usually have insignificant anisotropy because the CEF effect are absent

due to the half filled 4f-shells (L = 0). Therefore, the spin-reorientation transition

in Gd5Ge4 can’t arise from CEF effect. The dipolar interactions and the spin-orbit

coupling of the conduction electrons may play a dominant role in the determination of

preferred direction of magnetic moments in Gd5Ge4. As a result, the spin-reorientation

transition in both Gd5Ge4 and Tb5Ge4 may arise from the delicate competition between

the magnetic anisotropy from the spin-orbit coupling of the conduction electrons and

the dipolar interactions anisotropy.

Magnetic Structure of Gd5Si0.33Ge3.67 in Zero Field

Gd5(SixGe1−x)4 alloys have been extensively studied since the discovery of a gi-

ant magnetocaloric effect [PG97b, PG97d, PG97c, PG97a, PG98], whose origin lies

in the large entropy change associated with the first-order magnetostructural transi-

tion. In these alloys, strongly interacting magnetic and non-magnetic ions are arranged

in subnanometer-thick 2D slabs forming a 3D crystallographic frame-work. The in-

terslab interactions in these naturally occurring nanolayered magnetic materials may
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be controlled with a high precision by varying the stoichiometry i.e., the value of x.

When 0 ≤ x ≤ 0.2, a second-order PM-to-AFM transition occurs at the Néel temper-

ature (127 ∼ 134 K) [PG97c, MBAI00]. Upon further cooling, a reversible first-order

AFM-FM transition takes place, whose temperature TC ranges linearly as shown in

Fig. 2.1 [PG97d, PG97c]. The AFM-FM transition occurs simultaneously with a struc-

tural transition from a high-temperature Sm5Ge4-type orthorhombic [O(II)] phase to a

low-temperature Gd5Si4-type orthorhombic [O(I)] phase [MBAI00]. As this transition

shows a strong magnetoelastic coupling [CLB+04], it can be induced by the applica-

tion of moderate magnetic fields [MBAI00]. The magnetostructural character of the

transition can be understood through an examination of the layered crystal structure of

Gd5(SixGe1−x)4. For the O(I) phase, which is FM, 2D slabs are interconnected through

Ge(Si)-Ge(Si) covalent-like bonds [CPP+00]. The interslab bonds are broken when the

distance between all Ge(Si) atoms increases during the transformation to the O(II)

phase, leading to AFM ordering [HLH+07].

The nature of the AFM ordering related to the O(II) phase [LGP02, MAM+03]

is speculated to be similar to that of Gd5Ge4. However, in the case of Gd5Ge4, one

could guess that a first order AFM-FM transition would occur at 20 K from Fig. 2.1.

In fact, the magnetic ordering remains AFM with the O(II) structure after zero-field-

cooling (ZFC) down to ∼ 2 K [LGP02, LPGM01]. An XRMS investigation of the

magnetic structure of Gd5Si0.33Ge3.67, the small doped Si compound, was carried on to

see any interesting property around the discontinuity of the first order transition line

near Gd5Ge4 side on the phase diagram as shown in Fig. 2.1.

Magnetization

Single crystals of Gd5Si0.33Ge3.67 were grown using the Bridgman technique. The

sample for the magnetization measurement was extracted from the ingot with a size of

approximately 1 mm×1 mm×1 mm. The crystal was oriented by back-reflection Laue
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and the crystallographic directions assigned using x-ray diffraction two theta scans of

the single crystal. The temperature dependence of the magnetization was measured with

a low field of 100 Oe in a SQUID magnetometer and is shown in Fig. 4.10. These data

clearly show an antiferromagnetic transition at TN = 128 K as we expected. (see the

inset figure.) Upon further cooling, an AFM-FM transition occurs at TC ∼ 67 K. Then

the magnetization becomes saturated very quickly.

The field dependence of the magnetization was measured at T = 70 K as shown

in Fig. 4.11. The sample was cooled in zero field to 70 K (AFM state). Then the

external magnetic field was applied along a-axis. The field was ramped up from 0 Tesla

to 3 Tesla, and then back down to 0 Tesla. Next, the sample was cycled in an opposite

field direction. The AFM-FM transition occurs at Hcr ∼ 1 Tesla. This shows that,

the AFM-FM transition can also be induced by the application of moderate magnetic

fields. The magnetic moments reach the saturation value of ∼ 7.7µB, which agree with

the calculated values [PPGH07]. The two M(H) curves for increasing and decreasing

magnetic field applied in a direction are very close to each other, showing that the

field-induced AFM-FM transition has a small hysteresis.

Magnetic Structure in Zero Field

For the XRMS measurements, a single crystal was extracted from the ingot and

prepared with polished surfaces perpendicular to the crystallographic a- and b-axes, with

a size of approximately 2 mm × 2 mm × 2 mm. The XRMS experiment was performed

on the 6ID-B beamline in the MUCAT sector at the Advanced Photon Source at the

Gd L2 absorption edge (E = 7.934 keV). The incident radiation was linearly polarized

perpendicular to the vertical scattering plane (σ-polarized) with a spatial cross-section

of 1 mm (horizontal) × 0.2 mm (vertical). Pyrolytic graphite PG (0 0 6) was used

as a polarization analyzer to suppress the charge background relative to the magnetic

scattering signal. The sample was mounted on the end of the cold-finger of a displex
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cryogenic refrigerator with the crystallographic b-axis parallel to the axis of the displex

and set in the scattering plane. As discussed before, the multiple scattering contribution

at the resonant energy can be minimized through a judicious choice of azimuth angle.

The sample was first cooled to 80 K where the sample is antiferromagnetic. Recip-

rocal lattice scans along high symmetry direction (0 k 0) were done to search for any

satellite peak signalling a change in magnetic structure. Magnetic reflections were found

only at reciprocal lattice points (0 k 0), where k is odd. Then the sample was heated up

to 160 K, which is well above the Néel temperature, for a measurement of the tempera-

ture dependence of integrated intensities upon cooling. The (0 7 0) magnetic reflection

and (0 8 0) charge reflection were measured at each temperature. Fig. 4.12 shows the

temperature dependence of the integrated intensity of the (0 7 0) magnetic reflection.

A Lorentzian peak shape was used to fit θ-scans through the reciprocal lattice points to

obtain the integrated intensities. The intensity started to increase at TN(Gd) = 127 K.

A kink found at Tsr ∼ 84 K, is believed as a spin reorientation transition as discussed

before. The integrated intensity of (0 7 0) continued to increase until the temperature

reached 64.7 K. Then the magnetic reflection suddenly disappeared. The temperature

for the AFM-FM transition, TC = 64.7 K is consistent with that in the magnetization

measurement.

Fig. 4.12 shows the temperature dependence of the peak position of the rocking scans

of the (0 8 0) charge reflection. A Lorentzian peak shape was used to fit θ-scans through

the reciprocal lattice points to obtain the corrected position. There is a significant

change in the peak position at TC = 64.7 K. Therefore, the transition at TC = 64.7 K

involves a strong magnetostrictive effect. Below T = 62 K, no residual AFM signal is

observed. This is a complete transition from AFM state to FM state.

In order to determine the magnetic structure in the AFM phase in Gd5Si0.33Ge3.67,

the integrated intensities of (0 k 0) reflections were measured at T = 80 K. The data

at T = 80 K are listed in Table 4.6. Considering all possible combinations of basis
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Figure 4.12 Integrated intensity of the (0 7 0) magnetic reflection measured
upon heating the Gd5Ge4 sample. The data is normalized by
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Table 4.6 The measured and calculated values of the integrated intensity
of Gd5Si0.33Ge3.67( 0 k 0) reflections at T = 80 K.

k Measured intensity Calculated Intensity
3 0.0242(6). 0.0242
5 0.0004(2). 0.00001
7 0.0283(10) 0.0283
9 0.00062(10) 0.0002
11 0.00219(6). 0.00194
13 0.00304(10) 0.00280

vectors at the three sites as shown in Table 3.4, the best fit to the data, corresponds to

all three magnetic Gd sites described by the same magnetic space group, Pnm′a. The

fitting yields the ratios µ8d1

c /µ4c
c = 1.16±0.04 and µ8d2

c /µ4c
c = 1.01±0.06. The magnetic

structure of Gd5Si0.33Ge3.67 in the AFM phase is very similar to that of Gd5Ge4.

Discussion

It is well-known that the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) 4f-5d-4f

exchange interactions account for most of the magnetic phenomena observed in inter-

metallic lanthanide systems, and it is certainly important in the Gd5(SixGe1−x)4 system.

But RKKY may not be the only exchange interactions used to explain the mechanics of

the drastic change in magnetic properties arising from the magnetostructural transition

in Gd5(SixGe1−x)4 alloys. Levin et al [LPG00] firstly suggested that, beside the indi-

rect RKKY 4f-5d-4f exchange, the Gd-Ge(Si)-Gd superexchange through the interslab

covalent-like bonds also account for FM ordering in the O(I) structure.

There are some interesting theoretical findings, which help the understanding of

mechanics of the magnetostructural transformation, published after our experiments.

Paudyal et al have done the calculations for the total energy in Gd5Ge4 by using the tight-

binding linear muffin-tin orbital method within the exchange correlation parametrization
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in the density functional theory [PPGH07]. Their calculations reveal that the O(II)-type

Gd5Ge4 has an antiferromagnetic ground state, whose total energy is lower than that of

the ferromagnetic O(I)-type Gd5Ge4. This conclusion is in agreement with experiments.

a first-order phase transformation between AFM O(II) Gd5Ge4 and FM O(I) Gd5Ge4 can

be concluded from the behavior of the total energy versus shear perturbation [PPGH07].

While the interslab exchange coupling energy in the O(II) Gd5Ge4 is lower than that of

the O(I) Gd5Ge4, the FM 5d local exchange splitting of the Gd atoms in O(I) Gd5Ge4

is larger than in the O(II) Gd5Ge4 [PPGH07].

Haskel et al [HLH+07] applied X-ray magnetic circular dichroism (XMCD) measure-

ments and density functional theory (DFT) to study the electronic conduction states

in Gd5(SixGe1−x)4 materials through the first-order transition. The long-range RKKY

ferromagnetic interactions between the localized Gd 4f moments in neighbor slabs, is

transferred by the 4p band of the Ge atoms at interslab positions, which is hybridized

with Gd 5d spin-dependent conduction states. The magnetic polarization of electrons in

Gd 5d conduction band is transferred to the Ge sites through the orbital hybridization.

The Ge(Si) bond-breaking transition, which destroys 3D ferromagnetic order, act as a

trigger regulating the strength of interslab RKKY exchange coupling [HLH+07].
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CHAPTER 5. Spin-Flop Transition in Gd5Ge4

Introduction

Gadolinium-based magnetic compounds typically exhibit only weak magnetoelastic

effects [LR02]. However, strong magnetostriction has been observed in Gd5(SixGe1−x)4

alloys [MBAI00, MAI+98, CPP+00], where changes in the atomic positions and rear-

rangements of chemical bonds may be triggered by relatively weak applied magnetic

fields. The magnetostrictive, magnetocaloric [PG97b, PG97d] and magnetoresistive

[MSGL+98, LPG99, LPGT00] effects are related to a first order magnetic transition,

from either a paramagnetic or an antiferromagnetic phase to a ferromagnetic phase,

accompanied by a martensitic-like structural change [TPGP04].

There have been several recent studies of the magnetic properties of Gd5Ge4 single

crystals [LGL+04, TKK+05, OPG+06]. The compound crystallizes in the orthorhombic

space group Pnma, orders antiferromagnetically below 125 K, and remains antiferromag-

netic (AFM) down to 2 K in the absence of an applied magnetic field [LPGM01]. This

conclusion was supported by a diffraction study of the magnetic structure of a Gd5Ge4

single crystal performed using x-ray resonant magnetic scattering [TKK+05]. In zero

field, the magnetic unit cell is the same as the chemical unit cell. The magnetic order of

the Gd moments can be described by the magnetic space group Pnm′a with magnetic

moments aligned along the c axis. The magnetic moments are equal, within 4% relative

error, at the three different Gd sites (one 4c and two 8d sites). The magnetic structure

consists of ferromagnetic slabs (see Fig. 2.3) stacked antiferromagnetically along the b



90

direction.

A fully reversible spin-flop transition has been proposed based on magnetization

measurements of Gd5Ge4 [LGL+04]. In Fig. 5.1, we reproduce these measurements at

10 K for the sample used in the present experiments, with the field applied along the

c axis. The temperature dependence of the critical field for the spin-flop transition, Hsf ,

was reported by Z. W. Ouyang et al [OPG+06] (see Fig. 5.2). No similar transition was

found with the external field applied along either the a axis or b axis [LGL+04]. If the

magnetic field H is increased further at this temperature to values above 18 kOe, a first

order magneto-structural transition occurs from an antiferromagnet to a ferromagnet

[OPG+06].

Details of the magnetic structure of Gd5Ge4 in this spin-flop (SF) phase have not

yet been determined since naturally occurring Gd has a large neutron absorption cross

section. We have employed x-ray resonant magnetic scattering (XRMS) to study the

magnetic structure of the SF phase. In addition to the advantages offered by XRMS

for neutron absorbing samples, XRMS provides a means for measuring the magnetic

moment direction through polarization analysis of the scattered beam. Further, the

high angular resolution possible with synchrotron radiation provides a sensitive probe

of magnetostriction effects.

Our results show that for all three Gd atomic sites, the moments flop from their

zero-field alignment along the c axis, to the a axis, in fields larger than approximately

9 kOe applied along the c axis. No significant magnetoelastic distortion was observed

across the transition within experimental error. We have compared these results, along

with bulk magnetization measurements, to band-structure calculations of the magnetic

anisotropy energy in Gd5Ge4, finding good agreement.
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Experimental Details

Single crystals of Gd5Ge4 for the magnetization and XRMS measurements were ob-

tained from the Ames Laboratory Materials Preparation Center, which were grown using

the Bridgman technique. Appropriate quantities of gadolinium (99.996% metals basis)

and germanium (99.999%) were cleaned and arc melted several times under an argon

atmosphere. The buttons were then re-melted to ensure compositional homogeneity

throughout the ingot and the alloy drop cast into a copper mold. The as-cast ingot

was electron beam welded in a tungsten Bridgman style crucible for crystal growth. The

ingot was heated in a tungsten mesh resistance furnace under a pressure of 8.8×10−5 Pa

up to 1925◦C then withdrawn from the heat zone at a rate of 4 mm/hr. The as-grown

crystal was oriented by back-reflection Laue and the crystallographic directions assigned

using x-ray diffraction two theta scans of the single crystal. Samples were extracted

from the ingot, and prepared with a polished surface perpendicular to the b axis with a

size of approximately 2×2×3 mm3. The magnetization was measured using a Quantum

Design SQUID magnetometer.

The XRMS experiment was performed on the 4ID-D beamline at the Advanced Pho-

ton Source at an incident beam energy corresponding to the maximum in the resonant

dipole scattering cross-section at the Gd L2 absorption edge [TKK+05]. The scatter-

ing geometry is shown in Fig. 5.3. A photon polarized perpendicular to the plane of

scattering is said to exhibit σ polarization, while a photon polarized in the plane has

π polarization. The incident beam was linearly polarized in the horizontal scattering

plane (π-polarized) with a cross section of 0.22 mm (horizontal) × 0.1 mm (vertical).

The sample was mounted on the cold finger of a Helium flow VTI (Variable Temperature

Insert) with the b axis parallel to the scattering vector Q, and the c axis perpendicular

to the horizontal scattering plane. A vertical magnetic field was applied (perpendicular

to the scattering plane) using a superconducting 4-Tesla split-coil magnet. Pyrolytic
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Figure 5.3 The experimental arrangement consisting of the sample, ana-
lyzer and detector. k and k′ are the incident and scattered x-ray
wave vectors respectively. The magnetic field H was applied
along the vertical direction. The switch between π-σ geometry
(the detector arm in the horizontal plane) and π-π geometry (the
detector arm along the vertical direction) was accomplished by
a motor-driven analyzer angle, χan.

graphite (0 0 6) functioned as both a polarization analyzer and to suppress the charge

background in the measurement of the magnetic scattering signal.

The resonant scattering of interest, at the Gd L2 absorption edge, is due to electric

dipole transitions between the core 2p states and the 5d conduction bands. The 5d bands

are spin-polarized through the exchange interaction with the magnetic 4f electrons.

The π-π scattering geometry is realized when the scattering plane for the sample is

horizontal but that for the analyzer is vertical. In this geometry, the magnetic signal

is sensitive to the component of the ordered magnetic moment out of the scattering

plane, along the magnetic field direction (c axis in this case). The scattering amplitude,

f , is proportional to (k × k′) · µ (i.e. µcsin2θ) [HM96], where k, k′ and µ are the



95

wave vectors of the incident photons, scattered photons, and the magnetic moment,

respectively. The π-σ scattering geometry is realized when the scattering planes for

both the sample and the analyzer are horizontal. In this geometry, the magnetic signal

is sensitive to the components of the ordered magnetic moment within the ab scattering

plane perpendicular to the magnetic field direction. The scattering amplitude, f , is

proportional to k · µ (i.e. −µa cos θ + µb sin θ) [HM96]. The motor-driven analyzer

angle χan which rotates about the scattered beam direction, provides the freedom to

easily change between both scattering geometries (see Fig. 5.3). This allows all three

Cartesian components of each moment to be probed without remounting the sample.

For Gd5Ge4, normal charge scattering is forbidden at the positions of the (0 k 0)

reflections where k is odd. Unfortunately, these positions can be strongly contaminated

by multiple charge scattering. We can discriminate between the magnetic signal of

interest and multiple scattering because the latter is highly sensitive to both the incident

beam energy and the azimuth angle (see Fig. 3 in Ref. [TKK+05]). Hence, the multiple

scattering contribution at the resonant energy can be minimized through a judicious

choice of azimuth angle, where the resonant scattering is well separated from multiple

scattering. In this particular experiment, all of the Q-dependence measurements were

performed using an azimuthal angle, the angle between the external field direction and

c axis, of about ∼7◦. This angle was chosen to minimize multiple scattering at reciprocal

positions of different reflections. All other measurements were done with an azimuthal

angle less than 0.5◦.

Results and Discussion

In this section, we describe magnetization measurements on the sample used for

XRMS and confirm the magnetic structure of Gd5Ge4 in zero field by XRMS. We then

characterize the spin-flop transition in varying applied fields at selected temperatures.
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We determined the magnetic structure of Gd5Ge4 in the SF phase by measuring the

(0 k 0) magnetic Bragg reflections.

Magnetization Measurements

The magnetization M of the zero-field cooled single crystal, measured at T = 10 K,

is shown in Fig. 5.1. The sample was cooled in zero field to 10 K. The external magnetic

field was then applied along c axis. The field was ramped up from 0 kOe to 15 kOe,

and then back down to 0 kOe. Next, the sample was cycled through the opposite field

direction. TheM(H) curves coincide for increasing and decreasing magnetic field applied

in c direction, showing that the field-induced spin-flop transition is fully reversible and

non-hysteretic. These data clearly show a jump at Hsf = 8.8 kOe. The slope of the

magnetization curve below the critical field is the susceptibility χ‖ in the zero-field

antiferromagnetic (ZFAFM) phase. The dashed line, which passes through the origin,

represents the slope of the magnetization (i.e. the transverse susceptibility χ⊥) in the

SF phase. The transverse susceptibility is identical to measurements taken with the

field along the a and the b axes. The projections of the moments along the c axis

in the SF phase are ∼ 0.3µB/Gd at Hsf = 8.8 kOe. The magnetic anisotropy energy

(MAE) related to antiferromagnetic order can be calculated from the magnetization

measurement using Eani = 1/2(χ⊥ − χ‖)H
2
sf . Here we consider χ‖ and χ⊥ as constants

in both ZFAFM and SF phases as shown in Fig. 5.1 (χ‖ = 0.0024µB/Gd·kOe−1 and

χ⊥ = 0.0345µB/Gd·kOe−1). The difference of energies between moments perpendicular

to the c axis and moments along the c axis is about 7 µeV/Gd. These measurements

are in close agreement with previous magnetization studies [LGL+04, OPG+06] that

first suggested the existence of a spin-flop transition in this compound. While these

measurements provided no direct information regarding the arrangement of Gd moments

on the three inequivalent sites in the SF phase, it was speculated that all of the moments

undergo a ∼ 90◦ rotation from the c direction to the direction primarily along a axis
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Table 5.1 The measured and calculated values of the integrated intensity
of (0 k 0) reflections in π-π geometry at T = 9 K in zero field.
The calculated values are based upon the model presented in
Ref. [TKK+05]

k measured (arb. unit) calculated (arb. unit)
3 3.7(1) 3.4
5 1(1) 0.05
7 22.6(3) 22.6
9 0.5(5) 0.3
11 8.8(2) 9

[LGL+04].

Magnetic Structure in Zero Field

We first consider the XRMS measurements in the π-π scattering configuration, in

the absence of a magnetic field. As the sample was cooled below the Néel temperature,

TN = 125 K, resonant magnetic reflections were found at the charge forbidden (0 k 0)

positions (with k odd). The absorption edge energy was determined from an energy

scan through the (0 8 0) charge reflection as shown in Fig. 5.4 (a). In Fig. 5.4 (b), for

example, we show the scattered intensity at the (0 7 0) peak position as the incident

beam energy is tuned through the Gd L2 absorption edge both above and below the Néel

temperature. At T = 140 K, above the Néel temperature, only residual charge scattering

was observed arising from tails of multiple scattering peaks. Below TN = 125 K, the

peak found at E = 7.932 keV, just above the Gd L2 absorption edge, is the dipole

resonance. The peak found at E = 7.952 keV is assigned to multiple charge scattering

since its position and intensity is extremely sensitive to both the energy and azimuthal

angle.

Selected (0 k 0) reflections were measured in both the π-σ and π-π scattering ge-

ometries at T = 9 K in zero applied field. A Lorentzian peak was used to obtain the
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Figure 5.4 (a) Energy scan of the charge Bragg reflection, (0 8 0), across the
Gd L2 absorption edge. The dashed line indicates the inflection
point and is taken to be the absorption edge energy. (b) Energy
scans at the nominally charge forbidden (0 7 0) reflection across
the Gd L2 absorption edge in π-π geometry at T = 7 K (filled
circles) and T = 140 K (open circles). The peak approximately
0.002 keV above the absorption edge is the dipole resonance
while the sharp peak approximately 0.02 keV higher arises from
multiple charge scattering.
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integrated intensities of the rocking scans through the reciprocal lattice points. The re-

sults are shown in Table 5.1. The large errors for the (0 5 0) and (0 9 0) reflections arise

from contamination from the tails of multiple scattering. As described in the previous

section, magnetic reflections measured in the π-π scattering geometry, are sensitive to

the component of the magnetic moment along the c axis. The measured intensities are

consistent with the results of our previous scattering study [TKK+05]. Specifically, in

zero field, the magnetic space group is Pnm′a for all Gd atoms in Gd5Ge4 with the

magnetic moments directed along the c axis. While theoretical calculations show that

the Gd moment at the 4c site is ∼ 0.1µB larger than those at the two 8d sites [PPGH07],

the accuracy of our results is not sufficient to confirm this small difference. 1 We also

observed weak, but measurable magnetic reflections in the π-σ scattering geometry. This

arises from the small, but finite, projection of the magnetic moments into the scattering

plane because the c axis of the crystal was tilted 7◦ away from vertical direction in these

measurements.

Observation of the Spin-Flop Transition

Fig. 5.5 displays the magnetic field dependence of the integrated intensity of (0 7 0)

at T = 9 K, normalized to the (0 8 0) charge reflection. The sample was first cooled

in zero-field. The vertical magnetic field (along the c direction) was then ramped up

from 0 to 13 kOe. The spin-flop transition is evident in both scattering channels (π-π

and π-σ) at Hsf ∼ 9 kOe. This value for Hsf is consistent with the bulk magnetization

measurement on this sample (see Fig. 5.1). The ratio between the maximum integrated

intensities observed from π-π scattering geometry below the spin-flop transition and

the π-σ scattering geometry above the spin-flop transition is not equal to one but the

1The errors of fitting parameter from the integrated intensities listed in Table 5.1 are larger than
that from Table II in Ref. [TKK+05] because of the following two reasons: The (0 13 0) reflection is
not achievable due to the geometric limit from the magnet in this present study. Low-Q reflections are
much weaker in π-π scattering geometry than that in the σ-π scattering geometry.
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geometric factor, (sin 2θ/ cos θ)2 from the cross section for resonant magnetic scattering.

(see Table 3.1)

Fig. 5.6 displays the magnetic field dependence for the charge-normalized integrated

intensity of the (0 7 0) magnetic reflection at T = 80 K. The spin-flop field, Hsf ∼

10.4 kOe, increases only slightly with temperature, again consistent with the bulk mag-

netization measurements on a Gd5Ge4 single crystal (see Fig. 5.2). At both tempera-

tures, the full width half maximum (FWHM) of the (0 7 0) magnetic Bragg reflection,

measured in both scattering geometries, increases as the integrated intensity decreases in

the SF transition process. In contrast, the FWHM of the (0 8 0) charge Bragg reflection

remains constant (0.05◦) in both phases. The broader FWHM found in both transverse

and longitudinal scans of magnetic reflections indicates a reduced correlation length and

a decreased size of the magnetic domains.

Both above and below the spin-flop transition, scans along (0 k 0) were done to

search for any additional satellite reflection signaling a change in the magnetic struc-

ture. Magnetic reflections were found only at reciprocal lattice points (0 k 0), where

k is odd. No additional magnetic modulation vector develops in the transition, which

indicates that the magnetic unit cell remains the same as in the ZFAFM phase. The

magnetic (0 7 0) Bragg reflection changes from one polarization channel to the other in

the transition but keeps the magnetic structure factor same for both phases, which is

concluded from the intensity ratio from the two polarization channels. This indicates

that the magnetic moments only change direction, but not the magnitude.

The field dependence of longitudinal scans of the (0 8 0) charge reflections were

measured in reciprocal space at T = 9 K as shown in Fig. 5.7. Within experimental

error (∆k/k < 0.001, where k is the value of the scattering vector along b axis.), there

is no discontinuous change in the lattice parameter (peak position) at the SF transition.

Therefore, the SF transition is not a magneto-structural transition.

The Full Width Half Maximum (FWHM) of the (0 7 0) magnetic Bragg reflection,
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Figure 5.5 The (0 7 0) magnetic reflection measured with increasing mag-
netic field (along the c direction) in both π-π and π-σ geometries
at T = 9 K. Integrated intensity normalized by the (0 8 0) charge
reflection.
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Figure 5.6 The (0 7 0) magnetic reflection measured with increasing mag-
netic field (perpendicular to the scattering plane) in both π-π
and π-σ geometries at T = 80 K. Integrated intensity normalized
by the (0 8 0) charge reflection.
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measured in the both scattering geometries, increases as the integrated intensity de-

creases through the transition. In contrast, the FWHM of the (0 8 0) charge Bragg

reflection remains constant (0.05◦) in the both phases. When the external field along

c axis is ramped up at a fixed temperature to cross the phase boundary, the increasing

of FWHM of the magnetic reflections in the AFM phase represent the decreasing of the

size of the AFM domains. Similarly, the decreasing of FWHM of magnetic reflection in

the spin-flopped phase represents the increasing of AFM domains size as shown in π−π

geometry. A similar nucleation phenomena was found in the phase transition driven by

temperature with constant external field. Generally, a first-order transition from one

phase to another is characterized by a discontinuous jump in the order parameter, and

by an energy barrier between the two phases. Because of the barrier, there is a surface

tension associated with an interface between the two phases. A nucleus of the new equi-

librium phase gains bulk free energy but costs surface energy. For the nucleus to grow,

its radius must exceed a critical radius, Rc = 2σ/δf , where σ is the surface tension and

δf is the gain in bulk free energy density. The critical nucleus may form from ther-

modynamic fluctuations (homogeneous nucleation) or heterogeneous nucleation [CL00].

The non-hysteretic property of the spin-flop transition as shown in Fig. 5.1 indicates the

heterogeneous nucleation.

Magnetic Structure in the Spin-Flop Phase

In the SF phase, strong magnetic reflections appear in π-σ scattering geometry

and they disappear in π-π scattering geometry. Since the scattering amplitude, f ∝

−µa cos θ + µb sin θ, in π-σ geometry, the magnetic moments in the SF phase must be

within the ab scattering plane. There are eight possible magnetic space groups for

Gd5Ge4 (see Table I in Ref. [TKK+05]). From Table II in Ref. [TKK+05], it is easy to

see that only one basis vector, A, for the 4c site and two basis vectors, R and AB, for

the 8d sites can contribute to the magnetic intensity of (0 k 0) reflections. We also note
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Table 5.2 The measured and calculated values of the integrated intensity of
(0 k 0) reflections in π-σ geometry at T = 9 K with H = 10 kOe.
The calculated values are based on the magnetic space group
Pn′m′a′.

k measured (arb. unit) calculated (arb. unit)
3 31.2(5) 31.3
5 1(1) 0.4
7 44.2(7) 44.1
9 0.6(6) 1.1
11 7.1(2) 7.1

that, in the most general case, all three Gd sites need not have the symmetry required

by the same magnetic space group with corresponding basis vectors [Ber68]. The scat-

tering structure factor can be calculated for each possible representation (combination

of basis vectors) at the three sites. Therefore, the magnetic structure can be analyzed

by a Q-dependent measurement.

In order to determine the magnetic structure in the SF phase, the integrated inten-

sities of a series of (0 k 0) reflections were measured, in both π-σ and π-π scattering

geometries at T = 9 K with H = 10 kOe. The integrated intensities measured in π-σ

geometry are listed in Table 5.2. The large errors for the (0 5 0) and (0 9 0) reflec-

tions again arise from contamination by multiple charge scattering. As was true for the

zero-field data presented above, weak reflections were found in π-π geometry due to a

small but finite projection of the magnetic moments out of the scattering plane because

of the finite azimuth angle. Considering all possible combinations of basis vectors at

the three sites, the best fit to the data, as shown in Table 5.2, corresponds to all three

magnetic Gd sites described by the same magnetic space group, Pn′m′a′, with moments

aligned primarily along the a axis. The Gd moments have intraslab FM correlation

and interslab AFM correlation. The fitting yields the ratios µ8d1

a /µ4c
a = 0.95 ± 0.15 and

µ8d2

a /µ4c
a = 1.17 ± 0.18, where µ4c

a , µ8d1

a , and µ8d2

a are the magnetic moment components
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along a axis at the three sites, respectively. We conclude that, within the error limits,

the magnetic moments along a axis are equal at the three Gd sites. Recalling that the

magnetic moments along c axis are same size at the three Gd sites in the ZFAFM phase

[TKK+05], the spin-flop transition then corresponds to a simple ∼ 90◦ rotation of the

antiferromagnetically aligned moments at all three Gd sites from the c direction to the

direction primarily along a axis above Hsf as postulated by E. M. Levin et al [LGL+04].

In addition to the antiferromagnetic component, the system also has a ferromagnetic

component induced by the external field along c axis as shown in Fig. 5.1, which is not

measurable directly by XRMS. The spin-flop transition in Gd5Ge4 can be described by

the picture proposed by L. Néel seven decades ago [N3́6]. A magnetic field along the

easy axis can not change the magnetization of a local moment system unless it flops the

moments. However, if the moments flop to a configuration perpendicular to the applied

field, they can tilt along the magnetic field. In this way, the system gains Zeeman

energy. When the net energy gained is greater than the anisotropy energy, the spin-flop

transition occurs.

The temperature dependence of the integrated intensity of the (0 7 0) magnetic

reflection in the ZFAFM phase and the SF phase is shown in Fig. 5.8. The intensity

always decreases to zero as the temperature increases to TN = 125 K. When one curve

is scaled by the geometric factor from scattering cross sections, the two are identical.

This indicates that both phases have the same size of the magnetic moments, but are

different in the moment direction at each temperature. Similar behavior of the integrated

intensity in both phases also facilitates separation of the behavior when crossing the

phase boundary by analyzing the temperature dependence of the integrated intensity as

shown in Fig. 5.9. The transition temperature Tsf ∼42 K is the inflection point of the

curve. The width for the SF transition is ∼ 20 K and is consistent with Ref. [OPG+06]

The non-vanishing resonant signal in the ZFAFM phase, which was measured in π-σ

channel after the transition is complete, represents minor spin-flop domains coexisting
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Figure 5.8 Integrated intensity of the (0 7 0) magnetic reflection measured
when the sample was warmed up. The open circles represent the
measurement in the π-π scattering geometry in zero field. The
closed circles represent the measurement in the π-σ geometry
in a vertical magnetic field, H = 13 kOe (the spin-flop phase).
Both are normalized by the integrated intensity of the (0 8 0)
reflection measured in π-σ. For comparison, the data in π-π are
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with the major ZFAFM phase. In this minor phase, a smaller SF domain size is estimated

from the larger FWHMs of rocking scans and the longitudinal scans than those in the

ZFAFM phase. From Fig. 5.2, the measurement of temperature dependence with H =

10 kOe is close to the line representing the spin-flop transition in the high temperature

region in the phase diagram. Thermodynamically stable multidomain states exist in the

spin-flop region, owing to the phase coexistence at this first-order transition [BZR07].

Discussion

Magnetic Anisotropy Related to Antiferromagnetic Order

We know now that this field-induced phase transition is a pure SF transition at

all three Gd sites. In general, the weak uniaxial magnetic anisotropy is essential for

the SF transition. In rare earth compounds, potential sources of magnetic anisotropy

include contributions from single ion, dipolar, and exchange interactions. For most

of the rare-earth elements with finite orbital moments, the single-ion anisotropy due

to crystalline electric field (CEF) effects dominates the anisotropy of the magnetic

ground state. However, in gadolinium compounds, CEF effects are negligible due to

the half filled 4f-shells (L = 0). This is an ideal situation for studying the anisotropy

due solely to weak interactions. In Gd metal, both the dipolar interactions and the

spin-orbit interactions of the conduction electrons determine the magnetic anisotropy

[JM91, FDG87, GHFD89, KS00, CTSA+03, CTBE+05]. Investigations of the anisotropy

of magnetic interactions in some Gd compounds have been reported [RLD+03, GKG+05].

Here, we estimate the magnitude of magnetic anisotropy in the intermetallic compound

Gd5Ge4 based on band structure and magnetic dipole-dipole interactions calculations.

The results are compared with the magnetization measurements in light of the magnetic

structure determined by XRMS.

As the MAE is only about 10 µeV/Gd, we must consider both the dipolar interactions
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Figure 5.9 Integrated intensity of the (0 7 0) magnetic reflection measured
when the sample was warmed up in a vertical magnetic field,
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Table 5.3 The magnetic anisotropy energies for Gd5Ge4 from two differ-
ent interactions. The calculations were made for AFM compo-
nents along three crystallographic axes. The moments along a, b,
and c correspond to magnetic space groups Pn′m′a′, Pnma′, and
Pnm′a, respectively. The moment size is assumed as 7µB/Gd.
SO represents the spin-orbit interaction. Y.B. Lee calculated the
MAE from SO in 5d bands.

The direction of AFM components a b c
MAE from dipolar interactions (µeV/Gd) −222 438 −217
MAE from SO in 5d bands (µeV/Gd) 10 −10 0
Total (µeV/Gd) −212 428 −217

and the spin-orbit interactions of conduction electrons. The MAE associated with the

dipole-dipole interaction in Gd5Ge4 was numerically calculated with the assumption

that the local moment is 7µB/Gd and that the moments are aligned along the three

crystallographic directions and antiferromagnetically coupled between neighbored slabs

for each of the three cases. According to this simple model, the dipolar energies are

−222µeV/Gd, 438µeV/Gd, and −217µeV/Gd for moments along a axis, b axis, and

c axis, respectively, as shown in Table 5.3. The dipolar interaction clearly yields the

b axis to be the hard axis. The difference of MAEs between moments along a and c axes

is quite small.

We now turn to the magnetic anisotropy due to the spin-orbit coupling in the con-

duction band. The 4f moments polarize the conduction electrons via the exchange inter-

actions, which in turn transfer the magnetic anisotropy of the 5d conduction electrons

to the Gd 4f magnetic moments through the 4f-5d exchange interaction. The MAE was

calculated from first principles using the scalar relativistic [KH77], full potential linear

augmented plane wave (FP-LAPW) method [BSM+01] with the LDA+U [PW92]. The

U potential that was applied to properly treat the localized Gd 4f states was 6.7 eV

[SLP99]. The spin-orbit (SO) interaction was added in each self-consistent iteration by
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the second variation method. To obtain the self-consistent potential and the charge

density distribution, we used 35 k-points in an irreducible Brillouin zone (IBZ), 3.2 and

2.2 atomic units for the Gd and Ge muffin-tin radius (RMT), respectively, and about

4000 basis functions. (RMT × Kmax = 7.0; Kmax is the maximum value of the wave

vector in the wave functions.) The magnetic anisotropy is the total energy difference

between the magnetic moment configurations which have different SO strength. We em-

ployed 729 k-points in the IBZ to obtain an accurate total energy. The energy calculated

with moments along the c axis is 10 µeV/Gd higher than that along the b axis, and

10 µeV/Gd lower than that along the a axis as shown in Table 5.3. The SO coupling of

the conduction electrons yields a weak orthorhombic anisotropy.

If both the dipolar calculation and SO calculation are combined, the energy calculated

with moments along the c axis is 5 µeV/Gd lower than that along the a axis and

645 µeV/Gd lower than that along the b axis. The a and c axes define the “easy

plane”. The easy axis is the c axis for the antiferromagnetic ground state in zero field

according to this calculation. The moments in the SF phase prefer to align along the

a axis. The 5 µeV/Gd difference in MAEs between the ZFAFM phase and the SF phase

agree in magnitude with the experimental result, 7 µeV/Gd.

Conclusions

The XRMS experiments on Gd5Ge4 have shown that the antiferromagnetically aligned

moments at the three Gd sites flop from the c axis to a axis at T = 10 K with a crit-

ical field, Hsf = 9 kOe. The magnetic space group changes from Pnm′a to Pn′m′a′ at

all three sublattices. Both phases have intraslab FM correlations and interslab AFM

correlations. The magnetic correlation is unchanged in both phases below TN = 125 K.

We conclude that this field induced transition is a pure spin-flop transition, since the

antiferromagnetically ordered moments at the three Gd sites flop from the c direction to
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the a direction. A small ferromagnetic component along c axis is induced by the applied

field at the transition. Though Gd3+ ions have negligible single ion anisotropy, the easy

plane anisotropy of the ordered state in Gd5Ge4 originates from the dipolar interac-

tions, with the SO coupling of the conduction electrons providing a weak orthorhombic

anisotropy.
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CHAPTER 6. Short-Range Order in Gd5Ge4

Studies of the magnetization, heat capacity, and neutron scattering of R5(Si,Ge)4

indicate that magnetic short-range order (SRO) is retained above the Néel tempera-

ture. These results have recently been interpreted as evidence of a Griffiths phase based

on Small-Angle Neutron Scattering (SANS) measurements of polycrystalline Tb5Si2Ge2

[MAM+06]. A Griffiths phase is a nanoscale magnetic clustering phenomenon that is

driven by randomness in magnetic interactions that can be induced by chemical disorder

or competing magnetic interactions. Interestingly, a ferromagnetic (FM) Griffiths-like

phase has also been proposed to exist above the Néel transition in antiferromagnetic

(AFM) Gd5Ge4 based on the magnetization studies [OPKAG+06]. The nature of the

AFM ordering in Gd5Ge4, which consists of strongly FM coupling block layers that

have a weak AFM inter-block coupling, may play an important role. Before our XRMS

studies, diffraction studies of magnetic SRO in the proposed Griffiths phase in Gd5Ge4

had not been performed on single-crystal specimens. The Griffiths phase was expected

to be observed as diffuse magnetic peaks above the (FM or AFM) magnetic transition

temperature.

Magnetization Measurements

In Fig. 6.1, the magnetization curves were measured on a single crystal of Gd5Ge4 by

Ouyang et al [OPKAG+06]. The temperature dependence of the inverse susceptibility

(H/M) curve follows the Curie-Weiss behavior only above ∼240 K. A curved downturn

feature is present below this temperature. The H/M temperature dependence starts
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to deviate from linear behavior between TN and 160 K, which indicates that magnetic

short-range order may exist in this temperature range. The positive paramagnetic Curie

temperature implies dominant ferromagnetic interaction between magnetic ions. The

curve of inverse magnetic susceptibility along the b-axis exhibits the largest deviation

from Curie-Weiss behavior below 240 K. The one along c-axis shows the smallest devia-

tion. Therefore, the b-axis may plays a major role in defining short range ferromagnetic

(FM) correlations in this compound. Randomly occurring FM clustering formed by the

ferromagnetically ordered slabs in the long range ordered O(II)-type AFM Gd5Ge4 may

exist [RCC+06]. Therefore, the formation of the Griffiths-like phase above the Néel

temperature may result from the competition of the AFM and FM exchange interac-

tions that are present in a distinctly layered crystal structure of Gd5Ge4. We note that

the Curie temperature TC of any O(I)-Gd5SixGe4−x compound is always higher than

that of an interslab bond-deficient monoclinic [CPP+00, PG97c] or O(II) polymorphic

modification with the same stoichiometry [PSA+03]. Hence, random FM interactions

and clustering are likely to occur inside the magnetically disordered Gd5Ge4 slabs at

temperatures much higher than TN.

The Estimation of Scattering Intensity from Possible Short-Range Order

Above the magnetic critical temperature, magnetic long-range order is broken, which

is indicated by the disappearance of the magnetic Bragg reflections from diffraction

pattern with increasing temperature passing through the magnetic critical temperature.

Microscopically the magnetic moments at two different lattice points with long distance

become uncorrelated. The arrangement of moments becomes more or less random. If a

perfect randomness is achieved, the magnetic state is a paramagnet. However in some

cases, there is tendency for a local specific arrangement of magnetic moments due to

exchange interaction. Such magnetic state is called a magnetic short-range order.

The short-range correlation can be specified by the scattering effects produced. (see
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Figure 6.1 The field cooling inverse dc magnetic susceptibility of a single
crystal Gd5Ge4 measured along the a (a) , b (b) , and c axes (c)
in magnetic fields ranging from 0.01 to 5 kOe. Panel (d) illus-
trates log(H/M) vs log(T/TC − 1) for the three axes measured
in a 10 Oe magnetic field and the same for the 5 kOe data along
the b axis. (TC is the critical temperature) Thick solid lines in
(a)-(c) represent Curie-Weiss fits of the 5 kOe data. Solid lines
in (d) are linear fits of log(H/M) vs log(T/TC − 1) to establish
λ in χ(T ) ∝ (T − TC)−(1−λ), with the dashed vertical line indi-
cating the maximum slope of the curve for H‖b. Taken from
Ref. [OPKAG+06]
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Fig 6.3) If the magnetic moments arrangement is perfectly random, the scattered inten-

sity decreases gradually the scattering vector increases from zero due to the polarization

effect (The form factor is a constant). If short-range order exists, the curve of intensity

vs scattering vector should exhibit low broad maxima. These maxima are usually lo-

cated at the same positions in the reciprocal space as the sharp lines (Bragg reflections)

from the superlattice formed by long-range ordering.

The Gd5Ge4-type crystal can be considered as being built up of a set of parallel

layers. The forces acting within layers are greater than those acting between layers,

which provides the features of rigidity within the layer and relative motion between

layers. Such a picture is particularly useful since such layered crystals were often reported

having incomplete order by X-ray investigations. The incomplete order may be due to

the irregular sequence of layers, which result in changes of diffraction intensity and

broadening of the interference spots in the x-ray diffraction investigation. Such an x-ray

interference calculation was first investigated by Hendricks and Teller [HT42].

In our case, if the magnetic materials can be considered as being built up of a set of

parallel or antiparallel spin layers, the magnetic layer irregularities may also be mani-

fested by changes of intensities in the magnetic diffraction pattern by diffuse scattering.

Below the Néel temperature, Gd5Ge4 has a layer-ordered magnetic structure in which

the ferromagnetic slabs are stacked antiferromagnetically along the b direction with

magnetic moments along the c direction. The RKKY exchange interactions play a ma-

jor role in correlation between magnetic ions in each slab. It is a good assumption that

the intra-slab exchange interactions are larger than the inter-slab exchange interactions,

since the RKKY indirect exchange interaction can not be easily transferred through

broken Ge-Ge bonds [HLH+07].

Let us start the calculation based on the Hendricks-Teller model [HT42] for a par-

tially magnetic ordered layered system as shown in Figure 6.2:

1. The magnetic moments in each slab are strongly coupled to each other and aligned
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Figure 6.2 Ferromagnetic (left side, high probability when 0 < p < 0.5) and
antiferromagnetic (right side, high probability when 0.5 < p < 1)
correlations between neighboring slabs in the Hendricks-Teller
partial order.

ferromagnetically along the c-axis.

2. The total moment for each slab can take the value 1 or -1. (Ising-like)

3. The Griffiths phase-like AFM clustering is described by the probability, a variable

p (0 < p < 1), of the total moments of neighboring slabs aligning along the opposite

direction. When p = 1, neighboring slabs must order antiferromagnetically along b-axis

i.e. the sample has an AFM long-range order along the defined direction. When p = 0,

neighboring slabs must order ferromagnetically i.e. the sample has a FM long-range

order along the defined direction. When p = 0.5, neighboring slabs have 50% possibility

of aligning either ferromagnetically or antiferromagnetically.

For the purpose of calculations, layers will be treated as having form factors. The

layer form factor is analogous to the atom form factor. The layer form factor has been
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calculated by adding the scattering from the magnetic moments within the layers.

In Gd5Ge4, the magnetic structure factor from one slab is considered as the layer form

factor. Each slab contains ten Gd atoms: two at the 4c site, eight at two 8d sites. All

magnetic moments in the same slab point in the same direction. Let’s say the magnetic

moments in the first slab are along the positive direction of the c-axis. Then a random

number is generated to describe the magnetic coupling between the first and the second

slabs. If p = 0.75, then this random number has 75% chance to be −1 and 25% chance

to be 1. If the random number is generated to be 1, then the magnetic moments in the

first two neighboring slabs are parallelly aligned i.e. the magnetic moments in the second

slab (neighboring to the first slab) are also aligned along the positive direction of c-axis.

If the random number is generated to be −1, the magnetic moments in neighboring

slabs are antiparallel aligned. In the same way, we can generate the second random

number for describing the magnetic coupling between the second and third slabs, the

third random number for the third and fourth slabs, and so on. The p value is related to

the correlation length of the magnetic short-range order. For example, if p = 0.5 for the

slabs stacking along b-axis, the correlation length of the short-range order along b-axis

is about 7 Å, i.e. the dimension for a slab.

In order to get a approximate comparison of the intensity between the magnetic

short-range order and the magnetic Bragg diffraction, we start here with a preliminary

estimation of the intensity based on the simple model described above. Since the full

width at half maximum (FWHM) of charge Bragg reflections (0 k 0) is about 0.005 recip-

rocal lattice units, the dimension is about 200 unit cells i.e. 400 slabs. The probabilities

p = 1, 0.95, 0.05, 0 are used to generate about 400 random numbers of 1 and −1 to rep-

resent the magnetic correlations between neighboring slabs in dynamic clusters. Then,

the structure factor, f(q) for each p value is numerically calculated as the function of the

scattering vector, q = (0k0). The plot of the intensity, I = f(q)2 versus the scattering

vector, q = (0k0), is shown in Fig. 6.3. The data points (k, I) are generated with a step
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size 0.2. (k = 1, 1.2, 1.4, ...) For p = 1, i.e. the long-range antiferromagnetic ordered

system, the magnetic reflections appear at k = 1, 3, ..., odd integer positions in the recip-

rocal space. The structure is same as the magnetic structure observed at T = 10 K. For

p = 0, i.e. the long-range ferromagnetic order system, the magnetic reflections appear

at k = 2, 4, ..., even integer positions in the reciprocal space. For p = 0.95, i.e. the

short-range antiferromagnetic order system with a 0.95 probability of the antiparallel

neighbor-slab spins, the broad magnetic features appear near k = 1, 3, ..., odd integers

positions in the reciprocal space. For p = 0.05, i.e. the short-range ferromagnetic or-

der system with the 0.05 probability of the antiparallel neighbor-slab spins, the broad

magnetic features appear near k = 2, 4, ..., even integers positions in the reciprocal space.

The amplitudes of intensities of both the strongest magnetic Bragg reflection and

the short-range order, which is based on this simple model, are compared from the

calculation of structure factors. The ratio of both, IMax
p=0.5(SRO)/IMax

p=1 (0 7 0) is about

10−3, where IMax
p=0.5(SRO) is the maximal intensity of magnetic diffuse scattering when

k > 2 from the experimental limitation, and IMax
p=1 (0 7 0) is the amplitude of the magnetic

reflection (0 7 0).

In order to estimate the intensity from measurements, we have to consider the

FWHMs of the rocking scans on analyzers, since the analyzers with FWHMs from dif-

ferent rocking scans have different acceptance of scattered signals from the sample. The

diffuse signal from the sample is more divergent than Bragg diffractions. In the other

word, the FWHM of the rocking scans from the diffuse scattering is generally much

bigger than that of the Bragg diffractions from either the sample or the analyzer. We

note here that the FWHM of the rocking scans of (0 7 0), 0.05◦, is much smaller than

that of the pyrolytic graphite analyzer, 0.5◦. Therefore, the measured intensity of the

(0 7 0) reflection at Bragg condition is not influenced by the FWHM of the graphite

analyzer, while the measured diffuse intensity is strongly determined by the FWHM of

the graphite analyzer. The former intensity is the integrated intensity from the charac-



120

Table 6.1 Estimated intensity for magnetic short-range order using a py-
rolytic graphite analyzer. We take p = 0.5. IMax

1 is the mag-
netic diffuse scattering intensity from the model with magnetic
long-range order along two dimensions and short-range order
along the other dimension. IMax

2 is the intensity from the model
with magnetic long-range order along one dimension and short-
-range order along the other two dimensions. IMax

3 is the intensity
from the model with short-range order along all three dimensions.

IMax
1 IMax

2 IMax
3

Estimated intensity (counts/s) 1000 1 10−3

teristic of the sample while the latter is the integrated intensity from the characteristic

of the graphite analyzer. Hence, the ratio of both measured intensities would be:

Imeasure
p=0.5 (SRO)/Imeasure

p=1 (0 7 0) =
IMax
p=0.5(SRO) × FWHManalyzer

IMax
p=1 (0 7 0) × FWHMsample

= 10−2

We recall that the intensity of (0 7 0) magnetic reflection is experimentally about

105 counts/s as described in Chapter 4. Therefore, the count rate should be about

1000 counts/s from the simple model, in which the magnetic long-range order is along

a and c axes directions and magnetic short-range order is along b-axis.

The ratio, IMax
p=0.5(SRO)/IMax

p=1 (0 7 0) yields very important information. If the mag-

netic structure changes from the low symmetry (magnetic long-range order along all

three dimensions) to the high symmetry (magnetic long-range order along two dimen-

sions and short-range order along the other dimension), the scattering intensity decreases

by a factor of 10−3. If the magnetic SRO has to be described by short-range order along

two crystallographic directions (only one dimension is long-range ordered, the other two

dimensions are short-range ordered), the scattering intensity would decrease by factor

of 10−3 again.1 The count rate is estimated as 1 counts/s. Similarly, if the magnetic

short-range order is three dimensional in the system, the count rate is estimated as

1Here we don’t need to consider the influence of FWHMs, since the scans along the other two
dimensions are quite relaxed with the current experimental setup.
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10−3 counts/s. The estimations are list in Table 6.1.

The XRMS Experiment Setup

As is well known, the interaction between the electron spin and the electromagnetic

field gives rise to magnetic scattering of X-rays. A magnetic contribution to the quasi-

elastic scattering exists even in the paramagnetic state of materials, brought about by

exchange interactions. The magnetic short-range order effect, however, is generally very

weak and masked by the charge diffuse scattering which are always present. In order to

disclose the details about the magnetic short-range order, it is necessary to use strictly

monochromatic radiation and preferably single-crystal specimens. The possibility of

observing the magnetic diffuse scattering by a properly designed experiment is now

opened up by the last-generation high-brilliance synchrotron radiation sources, which

provide almost completely polarized X-ray beams.

The feasibility of an X-ray scattering experiment aiming at measuring the magnetic

contribution to the diffuse scattering was investigated and a possible experimental con-

figuration was proposed. For this process, the polarization of incoming and scattered

photons is either parallel or perpendicular to the scattering plane. Scattered photons

can have a polarization perpendicular to that of the incoming ones only when processes

other than Thomson scattering are present, such as magnetic resonant scattering. The

diffuse character of such a contribution makes its experimental determination much more

difficult since the collection of the scattered photons must take place over a relatively

large solid angle, simultaneously maintaining a good rejection of the Thomson scattering

brought about by atomic thermal motion.

The XRMS experiment was performed on the 6ID-B beamline in the MUCAT sector

at the Advanced Photon Source at the Gd L2 absorption edge (E = 7.934 keV). The

incident radiation was linearly polarized perpendicular to the vertical scattering plane (σ-

polarized) with a spatial cross-section of 1 mm (horizontal) × 0.2 mm (vertical). In this
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Figure 6.3 The intensity, I = f(q)2 v.s. the scattering vector, q = (0k0)
generated from 400 layers stacking along b axis based on the
Hendricks-Teller partial order model [HT42]. The model is de-
scribed in the text. The step size is k = 0.2 for data point
generation. The colors represent different probabilities: p = 1
(black), 0 (red), 0.05 (blue), and 0.95 (light blue). AFM is an-
tiferromagnetic. FM is ferromagnetic. LRO is long-range order.
SRO is short-range order.
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configuration, the resonant magnetic scattering arising from electric dipole transitions

(E1, from the 2p-to-5d states) changes the plane of linear polarization into the scattering

plane (π-polarization). In contrast, charge scattering does not change the polarization

of the scattered photons (σ-σ scattering). Pyrolytic graphite PG (0 0 6) was used

as a polarization analyzer to suppress the charge background relative to the magnetic

scattering signal. The mosaic spread of the analyzer is about 0.5◦.

The Gd5Ge4 sample was prepared with a polished surface perpendicular to the b axis

of approximately 2 × 2 mm2. The sample was mounted on the end of the cold-finger of

a displex cryogenic refrigerator with the crystallographic b-axis parallel to the axis of

the displex and set in the scattering plane. This configuration allows the sample to be

rotated around the scattering vector Q (parallel to the b-axis) while keeping Q constant.

XRMS Results

If a significant magnetic diffuse scattering signal is detected at 130 K above TN =

125 K, a difference between the count rates at 130 K and at 240 K should be observed.

At the latter temperature, Gd5Ge4 is a paramagnet. Both transverse and longitudinal

scans at 130 K and 240 K, respectively, show no significant difference. The PG (0 0 6)

analyzer has a relatively large energy acceptance. It is possible that the weak magnetic

diffuse signal is overwhelmed by fluorescence, which might be a dominant one over other

possible backgrounds.

By making an appropriate choice of analyzer crystal, which is oriented to diffract

the beam perpendicular to the scattering plane for the sample, the charge scattering

background can be effectively suppressed by roughly a factor of cos2(2θanalyzer) relative

to the dipole resonant magnetic scattering. In order to get a better signal to background

ratio, a different polarization analyzer was tested. A Ge(3 3 3) analyzer was chosen for

this purpose since 2θ(333) = 91.73◦ is close to 90◦ for the Gd L2 edge. In addition, the

relatively tight energy resolution of the Ge(3 3 3) analyzer, tuned for elastic scattering at
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Table 6.2 Estimated intensity for magnetic short-range order using a Ge an-
alyzer. We take p = 0.5. IMax

1 is the magnetic diffuse scattering
intensity from the model with magnetic long-range order along
two dimensions and short-range order along the other dimension.
IMax
2 is the intensity from the model with magnetic long-range

order along one dimension and short-range order along the other
two dimensions. IMax

3 is the intensity from the model with short-
-range order along all three dimensions.

IMax
1 IMax

2 IMax
3

Estimated intensity (counts/s) 100 0.1 10−4

E = 7.934 keV, does not pass the fluorescence radiation at lower energy, thereby reducing

this contribution to the background. However, on the other hand, the tight resolution

also narrows the angular acceptance for the magnetic diffuse and Bragg reflection signal.

In order to estimate the intensity from measurements, we note here that the FWHM of

the (3 3 3) Bragg diffraction from the Ge analyzer is about 0.007◦, which is much smaller

than the FWHMs of Bragg diffractions and the broad diffuse peak from the sample.

Therefore, both the measured intensity of the (0 7 0) reflection at the Bragg condition

and the measured diffuse intensity from the sample are determined by the FWHM of

the rocking scans from the Ge analyzer. Both measured intensities are proportional to

the integrated intensity from the characteristic of the Ge analyzer. Hence, the ratio of

both measured intensities would be:

Imeasure
p=0.5 (SRO)/Imeasure

p=1 (0 7 0) =
IMax
p=0.5(SRO)

IMax
p=1 (0 7 0)

= 10−3

The intensity of (0 7 0) magnetic reflection is experimentally about 105 counts/s with the

Ge analyzer. Therefore, the count rate should be about 100 counts/s for the magnetic

short-range order model as described above. We can do a similar estimation of the

intensity for the magnetic short-range order with different dimensionality as we did

before. The estimations are list in Table 6.2.

In Fig. 6.4, the reciprocal K scan started from (0 2 −0.2) to (0 9 −0.2), which is
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Figure 6.4 The longitudinal K scans, (0 K −0.2), of Gd5Ge4 at three dif-
ferent temperatures 6 K (black), 130 K (blue) and 240 K (red)
using the analyzer Ge(3 3 3). The counting time for each data
point is 20 seconds.
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far away from charge tails. The counting time is 20 seconds for each data point. No

significant difference was found between 6 K, 130 K and 240 K with small mosaic analyzer

Ge (3 3 3). In Fig. 6.5, the reciprocal L scan started from (0 7.35 −0.5) to (0 7.35 0.5).

Again, there is no significant difference was found between 130 K and 240 K. The count

rates of the background at temperatures above TN are about 0.5 counts/s. The error

bars for the count rates are about 0.15 counts/s, which is our sensitivity limit with a

counting time of 20 seconds for the detection of a magnetic diffuse signal. The count rate

for magnetic diffuse scattering then, is lower than 0.15 counts/s, if any. The reciprocal

L scan started from (0 8.65 −0.5) to (0 8.65 0.5) was also performed. The results are

shown in Fig. 6.6. No magnetic diffuse scattering signal was found in all measurements

performed. Though no detailed information about the magnetic SRO can be concluded,

the simple model with magnetic short-range order along b-axis and long-range order

along a and c axes, which we proposed earlier for the magnetic SRO in Gd5Ge4, is

excluded.
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Figure 6.5 The transverse L scans, (0 7.35 L), of Gd5Ge4 at three different
temperatures 6 K (black), 130 K (blue) and 240 K (red) using
analyzer Ge(3 3 3)



128

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0

2

4

6

8

 T = 6 K

 T = 130 K

 T = 240 K

In
te

n
s
it

y
 (

c
o

u
n

t/
s
)

L (r. l. u.)

Figure 6.6 The transverse L scans, (0 8.65 L), of Gd5Ge4 at three different
temperatures 6 K (black), 130 K (blue) and 240 K (red) using
analyzer Ge(3 3 3)
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CHAPTER 7. Summary

The XRMS experiment on the Gd5Ge4 system has shown that, below the Néel tem-

perature, TN = 127 K, the magnetic unit cell is the same as the chemical unit cell. From

azimuth scans and the Q dependence of the magnetic scattering, all three Gd sites in

the structure were determined to be in the same magnetic space group Pnm′a. The

magnetic moments are aligned along the c-axis and the c-components of the magnetic

moments at the three different sites are equal. The ferromagnetic slabs are stacked

antiferromagnetically along the b-direction.

We found an unusual order parameter curve in in Gd5Ge4. A spin-reorientation tran-

sition is a possibility in Gd5Ge4, which is similar to the Tb5Ge4 case. Tb5Ge4 possesses

the same Sm5Ge4-type crystallographic structure and the same magnetic space group as

Gd5Ge4 does. The difference in magnetic structure is that Tb5Ge4 has a canted one but

Gd5Ge4 has nearly a collinear one in the low temperature antiferromagnetic phase. The

competition between the magneto-crystalline anisotropy and the nearest-neighbor mag-

netic exchange interactions may allow a 3-dimensional canted antiferromagnetic struc-

ture in Tb5Ge4. The spin-reorientation transition in both Gd5Ge4 and Tb5Ge4 may arise

from the competition between the magnetic anisotropy from the spin-orbit coupling of

the conduction electrons and the dipolar interactions anisotropy.

The XRMS experiments on Gd5Ge4 with external field applied have shown that the

antiferromagnetically aligned moments at the three Gd sites flop from the c axis to

a axis at T = 10 K with a critical field, Hsf = 9 kOe, along the c-axis. The magnetic

space group changes from Pnm′a to Pn′m′a′ at all three sublattices. Both phases have
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intraslab FM correlations and interslab AFM correlations. The magnetic correlation is

unchanged in both phases below TN = 125 K. We conclude that this field induced tran-

sition is a pure spin-flop transition, since the antiferromagnetically ordered moments at

the three Gd sites flop from the c direction to the a direction. A small ferromagnetic

component along c axis is induced by the applied field at the transition. The metastable

region where both phases coexist on the phase diagram, and the nucleation phenomena

in the phase transition were found. No significant magnetostriction effects were observed

at the spin-flop transition. Though Gd3+ ions have negligible single ion anisotropy, the

easy plane anisotropy of the ordered state in Gd5Ge4 originates from the dipolar interac-

tions, with the SO coupling of the conduction electrons providing a weak orthorhombic

anisotropy.

Gd5Si0.33Ge3.67 changes from paramagnetic state to antiferromagnetic state at TN =

127 K and from antiferromagnetic state to ferromagnetic state at Tc = 66 K in zero field

on cooling. The magnetic structure of Gd5Si0.33Ge3.67 in the AFM phase is very similar

to that of Gd5Ge4. The first order transition from AFM → FM in doped Si compound,

which is induced by temperature in zero field, is similar to that in Gd5Ge4, which is

induced by an applied magnetic field of 18 kOe at T = 4.5 K.[LGP02] In both cases,

strong magneto-elastic coupling is present. The Gd rich slabs shift relative to one another

in the a direction at the transition,[PG97c, PHGR03] breaking the Ge(Si) bonds that

connect the slabs in the b direction with the concomitant destruction of FM ordering.

The breaking of Ge(Si) bonds between the sheared slabs weakens the magnetic interslab

coupling.[TPS+04] A large hybridization between Ge 4p orbitals and spin-polarized 5d

orbitals on Gd leads to a small net magnetization on Ge and a long-range Ruderman-

Kittel-Kasuya-Yosida (RKKY) indirect FM exchange coupling between 4f Gd moments

in adjacent Gd slabs.[HLH+07] This coupling is significantly weakened when the slabs

shear at the bond-breaking transition, resulting in destruction of FM order.

Studies of the magnetization of Gd5Ge4 indicate that magnetic short-range order
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(SRO) is retained above Néel temperature. However, our XRMS study could not find

any significant evidence of SRO. The reason could be that the magnetic diffuse signal is

below our sensitivity limit. Though no detailed information about the magnetic SRO can

be concluded, the simple model with magnetic short-range order along b-axis and long-

range order along a and c axes, which we proposed for the magnetic SRO in Gd5Ge4, is

excluded.
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[GGH+91] Doon Gibbs, G. Grübel, D. R. Harshman, E. D. Isaacs, D. B. McWhan,

D. Mills, and C. Vettier. Polarization and resonance studies of x-ray

magnetic scattering in holmium. Phys. Rev. B, 43(7):5663–5681, Mar

1991.

[GHFD89] D. J. W. Geldart, P. Hargraves, N. M. Fujiki, and R. A. Dunlap.

Anisotropy of the critical magnetic susceptibility of gadolinium. Phys.

Rev. Lett., 62(23):2728–2731, Jun 1989.



136

[GHI+88] Doon Gibbs, D. R. Harshman, E. D. Isaacs, D. B. McWhan, D. Mills, and

C. Vettier. Polarization and Resonance Properties of Magnetic X-Ray

Scattering in Holmium. Phys. Rev. Lett., 61:1241, 1988.

[GKG+05] W. Good, J. Kim, A. I. Goldman, D. Wermeille, P. C. Canfield, C. Cun-

ningham, Z. Islam, J. C. Lang, G. Srajer, and I. R. Fisher. Magnetic

structure of GdCo2Ge2. Phys. Rev. B, 71(22):224427, 2005.

[Gri69] Robert B. Griffiths. Nonanalytic Behavior Above the Critical Point in a

Random Ising Ferromagnet. Phys. Rev. Lett., 23(1):17–19, Jul 1969.

[HGM67] F. Holtzberg, R. J. Gambino, and T. R. McGuire. New ferromagnetic 5 :

4 compounds in the rare earth silicon and germanium systems. J. Phys.

Chem. Solids., 28:2283–2289, November 1967.

[HJS+04] M. Han, D. C. Jiles, J. E. Snyder, T. A. Lograsso, and D. L. Schlagel. Gi-

ant magnetostriction behavior at the Curie temperature of single crystal

Gd5(Si0.5Ge0.5)4. J. Appl. Phys., 95(11):6945–6947, 2004.

[HLH+07] D. Haskel, Y. B. Lee, B. N. Harmon, Z. Islam, J. C. Lang, G. Srajer,

Ya. Mudryk, Jr. Gschneidner, and V. K. Pecharsky. Role of Ge in Bridg-

ing Ferromagnetism in the Giant Magnetocaloric Gd5(Ge1−xSix)4 Alloys.

Phys. Rev. Lett., 98:247205, June 2007.

[HM96] J. P. Hill and D. F. McMorrow. X-ray resonant exchange scattering: Po-

lariztaion dependence and correlation function. Acta Cryst. A, 52(2):236,

1996.

[HMC+04] V. Hardy, S. Majumdar, S. J. Crowe, M. R. Lees, D. McK. Paul, L. Hervé,
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[N3́6] L. Néel. Magnetic properties of the metallic state and energy of interac-

tion between magnetic atoms. Annales de Physique, 5:232, 1936.

[NdVZ+03] M. Nazih, A. de Visser, L. Zhang, O. Tegus, and E. Brck. Thermal

expansion of the magnetorefrigerant Gd5(Si,Ge)4. Solid State Commu-

nications, 126:255–259, 2003.

[OG65] W. Opechowski and R. Guccione. Magnetic symmetry. Magnetism (GT

Rado and H. Shull, eds.), 2, 1965.

[OPG+06] Z. W. Ouyang, V. K. Pecharsky, K. A. Gschneidner, Jr., D. L. Schlagel,

and T. A. Lograsso. Magnetic anisotropy and magnetic phase diagram

of Gd5Ge4. Phys. Rev. B., 74(2):024401, 2006.

[OPKAG+06] Z. W. Ouyang, V. K. Pecharsky, Jr. K. A. Gschneidner, D. L. Schlagel,

and T. A. Lograsso. Short-range anisotropic ferromagnetic correlations

in the paramagnetic and antiferromagnetic phases of Gd5Ge4. Phys. Rev.

B, 74(9):094404, 2006.

[PG] V. K. Pecharsky and K. A. Gschneidner, Jr. Structure, magnetism and

thermodynamics of the novel rare earth based R5T4 intermetallics. un-

published.

[PG97a] V. K. Pecharsky and K. A. Gschneidner, Jr. Effect of Alloying on the

Giant Magnetocaloric Effect of Gd5Si2Ge2. J. Magn. Magn. Mater.,

167:L179 – L184, 1997.



142

[PG97b] V. K. Pecharsky and K. A. Gschneidner, Jr. Giant Magnetocaloric Effect

in Gd5Si2Ge2. Phys. Rev. Lett., 78:4494–4497, 1997.

[PG97c] V. K. Pecharsky and K. A. Gschneidner, Jr. Phase relationships and

crystallography in the pseudobinary system Gd5Si4-Gd5Ge4. J. Alloys

Compd., 260(1):98–106, 1997.

[PG97d] V. K. Pecharsky and K. A. Gschneidner, Jr. Tunable Magnetic Regenera-

tor Alloys with a Giant Magnetocaloric Effect for Magnetic Refrigeration

from 20 K to 290 K. Appl. Phys. Lett., 70:3299–3301, 1997.

[PG98] V. K. Pecharsky and K. A. Gschneidner, Jr. The Giant Magnetocaloric

Effect in Gd5(Ge1−xSix)4 Materials for Magnetic Refrigeration. Advances

in Cryogenic Engineering, 43:1729–1736, 1998.

[PHGR03] V. K. Pecharsky, A. P. Holm, K. A. Gschneidner, Jr., and R. Rink.

Massive Magnetic-Field-Induced Structural Transformation in Gd5Ge4

and the Nature of the Giant Magnetocaloric Effect. Phys. Rev. Lett.,

91(19):197204, Nov 2003.

[PPGH07] Durga Paudyal, V. K. Pecharsky, K. A. Gschneidner, Jr., and B. N.

Harmon. Magnetism of Gd5Ge4 from first principles. Phys. Rev. B,

75(9):094427, 2007.

[PSA+03] V. K. Pecharsky, G. D. Samolyuk, V. P. Antropov, A. O. Pecharsky, and

K. A. Gschneidner. The effect of varying the crystal structure on the mag-

netism, electronic structure and thermodynamics in the Gd5(SixGe1−x)4.

J. Solid State Chem., 171:57–68, February 2003.



143

[PW92] John P. Perdew and Yue Wang. Accurate and simple analytic represen-

tation of the electron-gas correlation energy. Phys. Rev. B, 45(23):13244–

13249, Jun 1992.

[RCC+06] S. B. Roy, M. K. Chattopadhyay, P. Chaddah, J. D. Moore, G. K.

Perkins, L. F. Cohen, Jr. K. A. Gschneidner, and V. K. Pecharsky.

Evidence of a magnetic glass state in the magnetocaloric material

gd5ge4. Physical Review B (Condensed Matter and Materials Physics),

74(1):012403, 2006.

[RLD+03] M. Rotter, M. Loewenhaupt, M. Doerr, A. Lindbaum, H. Sassik,

K. Ziebeck, and B. Beuneu. Dipole interaction and magnetic anisotropy

in gadolinium compounds. Phys. Rev. B, 68(14):144418, Oct 2003.

[RMA+02] C. Ritter, L. Morellon, P. A. Algarabel, C. Magen, and M. R. Ibarra.

Magnetic and structural phase diagram of Tb5(SixGe1−x)4 . Phys. Rev.

B, 65(9):094405, Feb 2002.

[SBC+02] J. B. Sousa, M. E. Braga, F. C. Correia, F. Carpinteiro, L. Morel-

lon, P. A. Algarabel, and M. R. Ibarra. Thermopower behavior in the

Gd5(Si0.1Ge0.9)4 magnetocaloric compound from 4 to 300 K. J. Appl.

Phys., 91:4457–4460, 2002.

[SBC+03] J. B. Sousa, M. E. Braga, F. C. Correia, F. Carpinteiro, L. Morellon,

P. A. Algarabel, and M. R. Ibarra. Anomalous behavior of the electrical

resistivity in the giant magnetocaloric compound Gd5(Si0.1Ge0.9)4. Phys.

Rev. B, 67:134416, 2003.

[She04] Sergey Sheludko. Polarization factors in the symmetrical case of three-

wave diffraction. Acta Crystallographica Section A, 60(3):281–282, May

2004.



144

[She05] Sergey Sheludko. Polarization factors in the general case of three-wave

diffraction. Acta Crystallographica Section A, 61(5):528–530, Sep 2005.

[SJ89] George H. Stout and Lyle H. Jensen. X-Ray Structure Determination: A

Practical Guide, 2nd Edition. Wiley-Interscience, 2 edition, April 1989.

[SJT67] G. S. Smith, Q. Johnson, and A. G. Tharp. Crystal structure of Sm5Ge4.

Acta Cryst., 22:269–272, 1967.

[SLP99] A. B. Shick, A. I. Liechtenstein, and W. E. Pickett. Implementation of

the LDA+U method using the full-potential linearized augmented plane-

wave basis. Phys. Rev. B, 60(15):10763–10769, Oct 1999.

[SLPS05] D. L. Schlagel, T. A. Lograsso, A. O. Pecharsky, and J. A. Sampaio.

Crystal growth of re-si-ge magnetocaloric materials. In H. Kvande, ed-

itor, Light Metals 2005, page 1177. The Minerals, Metals and Materials

Society, TMS, Warrendale, PA, 2005.

[SMAI00] J. Stankiewicz, L. Morellon, P. A. Algarabel, and M. R. Ibarra. Hall

effect in Gd5Si1.8Ge2.2. Phys. Rev. B, 61:12651–12653, 2000.

[SP78] Penelope Schobinger-Papamantellos. On the magnetic structure and

magnetic phase transitions of Tb5Ge4. A Neutron diffraction study. J.

Phys. Chem. Solids., 39:197–205, 1978.

[SS99] J. Szade and G. Skorek. Electronic structure and magnetism of

Gd5(Si,Ge)4 compounds. J. Magn. Magn. Mater., 196-197:699–700, 1999.

[STJ66] G. S. Smith, A. G. Tharp, and Q. Johnson. Crystallographic data on

new rare earth – germanium and silicon compounds. Nature (London),

210:1148–1149, 1966.



145

[STJ67] G. S. Smith, A. G. Tharp, and Q. Johnson. Rare earth-germanium and

-silicon compounds at 5:4 and 5:3 compositions. Acta Cryst., 22:940–943,

1967.

[SW72] H. Eugene Stanley and Victor K. Wong. Introduction to Phase Transi-

tions and Critical Phenomena. American Journal of Physics, 40(6):927–

928, 1972.

[TBBdB02] O. Tegus, E. Bruck, K. H. J. Buschow, and F. R. de Boer. Transition-

metal-based magnetic refrigerants for room-temperature applications.

Nature, 415:150–152, 2002.

[THH+94] T. R. Thurston, G. Helgesen, J. P. Hill, Doon Gibbs, B. D. Gaulin,

and P. J. Simpson. X-ray- and neutron-scattering measurements of two

length scales in the magnetic critical fluctuations of holmium. Phys. Rev.

B, 49:15730, June 1994.

[TJEW95] J. Trygg, B. Johansson, O. Eriksson, and J. M. Wills. Total Energy

Calculation of the Magnetocrystalline Anisotropy Energy in the Ferro-

magnetic 3d Metals. Phys. Rev. Lett., 75(15):2871–2874, Oct 1995.

[TKK+05] L. Tan, A. Kreyssig, J. W. Kim, A. I. Goldman, R. J. McQueeney,

D. Wermeille, B. Sieve, T. A. Lograsso, D. L. Schlagel, S. L. Budko,

V. K. Pecharsky, and K. A. Gschneidner, Jr. Magnetic structure of

Gd5Ge4. Phys. Rev. B, 71:214408, June 2005.

[TPGP04] H. Tang, V. K. Pecharsky, K. A. Gschneidner, Jr., and A. O. Pecharsky.

Interplay between reversible and irreversible magnetic phase transitions

in polycrystalline Gd5Ge4. Phys. Rev. B, 69:064410, 2004.



146

[TPS+04] H. Tang, V. K. Pecharsky, G. D. Samolyuk, M. Zou, K. A. Gschneidner,

Jr., V. P. Antropov, D. L. Schlagel, and T. A. Lograsso. Anisotropic

giant magnetoresistance in Gd5Ge2Si2. Phys. Rev. Lett., 93:237203/1–

237203/1, 2004.

[TSL+92] C. C. Tang, W. G. Stirling, G. H. Lander, Doon Gibbs, W. Herzog,

Paolo Carra, B. T. Thole, K. Mattenberger, and O. Vogt. Resonant

magnetic x-ray scattering in a series of uranium compounds. Phys. Rev.

B, 46(9):5287–5297, Sep 1992.

[TSP00] Luc Thomas, Mahesh G. Samant, and Stuart S. P. Parkin. Domain-

Wall Induced Coupling between Ferromagnetic Layers. Phys. Rev. Lett.,

84(8):1816–1819, Feb 2000.

[TT94] David H. Templeton and Lieselotte K. Templeton. Tetrahedral

anisotropy of x-ray anomalous scattering. Phys. Rev. B, 49(21):14850–

14853, Jun 1994.


	2008
	Investigations of the R5(Si(subscript x)Ge(subscript 1-x)4 intermetallic compounds by X-ray resonant magnetic scattering
	Lizhi Tan
	Recommended Citation


	Thesis.dvi

