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1

CHAPTER 1. Introduction

It is well known that rare earth intermetallic compounds have versatile, magnetic prop-

erties associated with the 4f electrons: a local moment associated with the Hund’s rule

ground state is formed in general, but a strongly correlated, hybridized state may also ap-

pear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb)

[Szytula and Leciejewicz, 1994, Hewson, 1993]. On the other hand, the conduction electrons in

rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths,

usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi

liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest

strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples

in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner

transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly

correlated electronic properties [Moriya, 1985]. For rare earth intermetallic compounds, such

systems provide an additional versatility and allow for the study of the behaviors of local mo-

ments and hybridized moments which are associated with 4f electron in a correlated conduction

electron background.

The dilute, rare-earth-bearing, intermetallic series RT2Zn20 (R = rare earth and T =

transition metal in and near the Fe, Co, and Ni columns) crystallize in a cubic, CeCr2Al20

structure (space group: Fd3̄m) in which the R and T ions occupy their own, single, unique

crystallographic site with cubic and trigonal point symmetry respectively, whereas the Zn ions

have three unique crystallographic sites (see Fig. 3.1) [Nasch et al., 1997]. Both R and T ions

are fully surrounded by shells consisting of the nearest neighbors (NNs) and the next nearest

neighbors (NNNs) of Zn, meaning that there are no R-R, T-T or R-T NNs and the shortest
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R-R spacing is ∼ 6 Å. These series of compounds provide multiple degrees of freedom to study

strongly correlated electronic states, for either f or d electrons, by allowing for controlled

substitutions on a number of unique crystallographic sites. Furthermore, with less than 5

atomic percent of rare earth, RT2Zn20 compounds provide an opportunity to study the rare

earth local moment as well as hybridizing rare earth ions close to the single ion limit, while

still preserving their periodicity.

The most conspicuous local moment magnetic behavior appears in GdFe2Zn20, which has

a remarkably high ferromagnetic (FM) ordering temperature of 86 K. In contrast, the isostruc-

tural GdCo2Zn20 orders antiferromagnetically at a more representative Néel temperature,

TN = 5.7 K, due to its very dilute nature and the large Gd ion spacing. Magnetization and

specific heat measurements on the non-local-moment-bearing Y analogues show that YFe2Zn20

has an enhanced, temperature-dependent susceptibility and large electronic specific heat coef-

ficient, and can be treated as an archetypical example of a nearly ferromagnetic Fermi liquid

(NFFL), whereas YCo2Zn20 manifests non-correlated normal metal behavior. These results

are consistent with the band structure calculations which show a larger density of states at the

Fermi level [N(EF )] for YFe2Zn20 and LuFe2Zn20 than for the Co analogues. The study of the

pseudo-ternary compounds, Y(FexCo1−x)2Zn20, reveals that by changing the band filling, this

conduction electron background can be tuned from the edge of the Stoner limit to being well

removed from it. Correspondingly, the magnetic ordering temperature of Gd(FexCo1−x)2Zn20

drops monotonically as x varies from 0 to 1. In light of these results, the anomalously high

FM ordering temperature of GdFe2Zn20 can be understood as the result of large Heisenberg

moments associated with the Hund’s rule ground state of Gd3+ embedded in a NFFL.

In order to expand our understanding of the magnetism of the RT2Zn20 series of compounds

beyond T = Fe and Co, the thermodynamic and transport properties of RT2Zn20 compounds

were examined for the T = Ru, Rh, Os, and Ir analogues. The R = Gd members were

thoroughly studied because they give the clearest indication of the strength and sign of the

magnetic interaction without any complications associated with crystalline electric field (CEF)

splitting of the Hund’s rule ground state multiplet. Ferromagnetic ordering of the local moment



3

Gd3+ sublattice was found with T being a member of the iron column (with enhanced FM

ordering temperature TC values for T = Fe and Ru) and lower temperature, antiferromagnetic

(AFM) ordering was found for the cobalt column members. Consistent with these results,

enhanced paramagnetism and a relatively large electronic specific heat coefficient was also

found in the T = Ru analogue of YT2Zn20.

The concept of Heisenberg moments embedded in a NFFL for GdFe2Zn20 motivated us to

study the pseudo-ternary series of compounds, GdxY1−xFe2Zn20, which can be used as a model

for studying the effects of titrating very dilute local moments into a NFFL. Given the unique

crystal structure of the RFe2Zn20 system, the dilution of Gd onto the Y site changes neither

the band filling nor all Zn local environment of either the Gd or Fe ions. Thermodynamic and

transport measurements revealed FM ordering of the Gd3+ local moment above 1.8 K for a

Gd concentration above x = 0.02. This persistence of the local moment ordering in the NFFL

was discussed within the framework of the so-called s-d model [Shimizu, 1981a], based on the

mean field approximation.

Further study of the RT2Zn20 series was focused on other rare earth ions associated with

well defined 4f local moments. With non-zero orbital angular momentum in its Hund’s rule

ground state, the 4f local moment will be affected by the CEF effect. A comparative study

of the thermodynamic and transport properties of the RFe2Zn20 and RCo2Zn20 showed the

nature of the magnetic ordering, as well as CEF induced magnetic anisotropy and specific heat

anomalies for R = Tb - Tm compounds. For the RCo2Zn20 series, only Gd and Tb members

manifest AFM ordering above 2 K, and the magnetic properties for R = Dy - Tm clearly

manifest features associated with single ion CEF effects on the R ions in the cubic symmetry

coordination. For the R = Tb - Tm members in the Co series, the CEF parameters can be

inferred by the fitting anisotropic magnetization and the specific heat data. In contrast, for the

RFe2Zn20 series, the well-defined local moment members (R = Gd - Tm) all manifest enhanced

FM ordering with TC values that roughly scale with the de Gennes factor. The R = Tb - Tm

members in the Fe series show moderate magnetic anisotropy in their ordered states, mainly

due to the CEF effect on the R ions, which is consistent with the magnetic anisotropy for the
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Co members.

Finally, in addition to these well-defined local-moment-bearing rare-earth compounds, a

more exotic low temperature ground state emerges in the six Yb-based compounds (YbT2Zn20

for T = Fe, Co, Ru, Rh, Os, and Ir) in which the Yb ions hybridize with conduction elec-

trons and manifest so-called heavy fermion behavior. These six strongly correlated Yb-based

intermetallic compounds not only effectively double the number of known Yb-based heavy

fermions, but also provide a route to studying how the degeneracy of the Yb ion at Kondo

temperature, TK, effects the low temperature-correlated state. Thermodynamic and transport

measurements show that all these six Yb compounds manifest a low temperature, Fermi liquid

state with the electronic specific heat coefficient γ > 500 mJ/mol K2. YbCo2Zn20, showing

extremely large γ value (� 8000 mJ/mol K2), has a substantially lower TK. For the other five

compounds, further analysis of the Kadowaki-Woods ratio, as well as the magnetic susceptibil-

ity and specific heat data by using the Coqblin-Schrieffer model, reveal that the Fermi liquid

states of these five compounds are indeed associated with different degeneracy of the Yb ion

for T = Fe, Ru and T = Rh, Os and Ir. The primary effect of changing TK/TCEF is to cause

a change in the coefficient of the low temperature, T 2 electrical resistivity.

This work will be presented as follows. A review of the physics of rare earth intermetallic

compounds, including magnetism and magnetic ordering for both local moment and itinerant

electronic system, the CEF effect on the 4f local moments, and heavy fermion physics, will be

presented in the next chapter. The crystal structure of RT2Zn20 will be introduced in chapter

3. The following chapter is dedicated to details of crystal growth of RT2Zn20 compounds from

Zn solution, as well as a review of the measurement techniques used in characterizing these

compounds. As an introduction to the magnetic properties of RT2Zn20 system, chapter 5

presents the magnetic properties of GdFe2Zn20 and GdCo2Zn20 as well as their Y analogous.

Chapter 6 expands the phase space including T = Ru, Rh, Os and Ir compounds. The study of

the thermodynamic and transport properties of GdxY1−xFe2Zn20 pseudo-ternary compounds

will be presented in the following chapter. Chapter 8 will be dedicated to a comparative study

of the magnetic properties of the RFe2Zn20 and RCo2Zn20 as R = Tb - Tm series. And finally, a
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study of the six Yb-based heavy fermion compounds (YbT2Zn20) will be introduced in chapter

9. Chapter 10 summarizes the results of this work and outlines some further paths of on going

or proposed investigation.

Before starting into the details of the research, it is important to note that this work repre-

sents collaborations between many people within the Ames Laboratory, Iowa State University,

and beyond. The work presented in chapters 5, 6, 7 and 9 was published, and the work in

chapter 8 will be submitted for publication. The co-authors of the papers associated with

chapters 5–8 include Ni Ni, S. L. Bud’ko and P. C. Canfield (Ames Laboratory and Depart-

ment of Physics, Iowa State University), participating in sample preparation, thermodynamic

and transport measurements and data analysis; G. D. Samolyuk (Ames Laboratory), con-

tributing in band structure calculations; A. Safa-Sefat (Ames Laboratory), Hyunjin Ko and

G. J. Miller (Ames Laboratory and Department of Chemistry, Iowa State University), con-

tributing in single crystal x-ray diffraction measurements; and K. Dennis (Ames Laboratory),

participating in energy dispersive spectra (EDS) measurements. The co-authors of the papers

associated with chapters 9 include M. S. Torikachvili (Ames Laboratory and Department of

Physics, San Diego State University), S. L. Bud’ko and P. C. Canfield (Ames Laboratory and

Department of Physics, Iowa State University), participating in thermodynamic and transport

measurements and data analysis; E. D. Mun (Ames Laboratory and Department of Physics,

Iowa State University), participating in data analysis; S. T. Hannahs (National High Magnetic

Field Laboratory), participating in low temperature transport measurements; and R. C. Black,

W. K. Neils and Dinesh Martien (Quantum Design Inc.), participating in low temperature spe-

cific heat measurements. As the first author of the papers associated with chapters 5–8 and

the second author of the paper associated with chapter 9, I dedicated in the sample synthe-

sis and characterization (powder x-ray diffraction and EDS measurements), thermodynamic

and transport measurements, and data analysis. I’d like to also thank J. Frederich and M.

Lampe (Ames Laboratory) for samples synthesis, and L. Tan (Ames Laboratory) Laue x-ray

measurements. All of my work was guided by S. L. Bud’ko and P. C. Canfield, and supported

by the Director for Energy Research, Office of Basic Energy Sciences. Ames Laboratory is
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CHAPTER 2. Overview of the magnetic properties of rare earth and

transition metal intermetallic compounds

It is well-known that the magnetic properties of rare earths and transition metals as well as

their intermetallic compounds are mainly determined by the unfilled d or 4f electronic shell.

However, the magnetism of 4f and d electrons in metals are described by two intrinsically

different models, the localized model and the itinerant electron models respectively, with di-

ametrically different starting points. In the localized electron model, each f electron remains

localized on an given atom. The intra-atomic electron-electron interactions are large and de-

termine the atomic magnetic moments on each atom; the exchange interactions between the

local moments determine the magnetic order. In the itinerant electron model, each electron is

itinerant and moves in the average field of the other electrons and ions. The weak electron-

electron interaction stabilizes ordered magnetic states characterized by different number of up-

and down-spin electrons. Although a unified picture of magnetism has been established by

the so-called spin fluctuation theory [Moriya, 1985], these two simple models are still generally

used in the analysis of the experimental results due to their relatively easy implementation. In

this chapter, these two models of magnetism are introduced in the first two sections.

Given their highly localized nature, the magnetic properties of rare earth intermetallic

compounds are also strongly affected by their local environment. The rare earth ions are

located in a crystalline lattice and the surrounding atoms and conduction electrons lead to an

electrostatic field, which is known as crystalline electric field (CEF). The CEF effect affects

the magnetic properties of the rare earth ions together with the magnetic interactions. The

related concepts and theories are introduced in the third section of this chapter. For some rare

earth elements (Ce, Yb or Eu), the 4f electrons may lose their local moment magnetism due
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to the hybridization with the conduction electrons. In some cases this anomaly leads to so-

called ‘heavy Fermion’ behaviors. The theories about the ‘heavy Fermion’ systems are briefly

reviewed in the final section of this chapter.

2.1 4f electron and local moment magnetism

In the local moment magnetism picture, the magnetic atoms manifest fixed local moments

due to their partially filled f shells. In a free atom, the quantum levels of each electron are

characterized by its spin angular momentum s, and orbital angular momentum l. The total

angular momentum of one electron j equals l+s. As for an atom as a whole, the total angular

momentum (J) is a good quantum number, which usually can be determined by the Russell-

Saunder scheme. In this scheme, the total orbital angular momentum L =
∑

i li and the total

spin momentum S =
∑

i si are also good quantum numbers. The total angular momentum

and the total magnetic moment are given by J = L + S and M = gJμBJ , respectively, where

gJ is the Landè factor and μB is the Bohr magneton.

As well-known examples, the rare earth elements with partially filled 4f electronic shells

usually manifest local moments magnetic behaviors. The rare earths are the seventeen elements

from lanthanum (atomic number Z = 57) to lutetium (Z = 71). Scandium and Yttrium are

often included because of their similar electronic structure. The Lanthanides correspond to

the filling of the 4f electronic shell from 0 to 14 electrons, whereas Sc and Y have empty 4f

shells and act as two more non-magnetic members of the family. In the free rare earth atoms,

the normal electronic configuration is: (Pd)46 4fn 5s2 5p6 5d1 6s2. Having one 5d electron,

the rare earth elements are at the beginning of the series of 5d transition elements and are

homologous to scandium and yttrium.

Figure 2.1 shows the radial extent of different shells for a free gadolinium atom. The 4f

shell has a small radial extent and is well shielded from outer perturbations by the full 5s

and 5p shells. Therefore the 4f electrons remain well localized on the atom in the solid state,

with negligible overlap between 4f wavefunctions centered on neighboring atoms. Thus the 4f

electronic configuration can be described as an atomic shell with well-defined energy levels.
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Figure 2.1 Radial extent of different shells in the free gadolinium ion
[Freeman, 1972]. The radius unit is 1 atomic unit = 0.529 Å.

In the metallic state, the 5d and 6s valence electrons are delocalized and form the conduction

electron band. Since the ionization energies of the 4f levels are slightly higher than those for

5d electrons, the rare earth atoms most frequently manifest the normal trivalent state in the

metallic state. Therefore, a normal rare earth metal can be described as a lattice of rare

earth ions with the 4fn configuration immersed in a band of s or d electronic character.

The properties governed by the valence electrons such as the bonding geometry and chemical

properties are expected to vary smoothly across the rare earth series. A series of compounds

can often be synthesized, which differ only in the choice of rare earth elements. This valuable

ability allows for systematic studies of the physics of rare earth intermetallic compounds. In

the series of isostructural compounds with only different rare earth elements in stable, trivalent

states, the ionic radii of the lanthanides always decrease from La to Lu across the lanthanide

period, which always leads to decreasing of the volumes of their unit cell. This is the so-called

lanthanide contraction and is due to the increased Coulomb attraction between the nuclei and

the 4f shell electrons across the lanthanide period. Particularly, with empty 4f shell, Y3+

usually manifest ionic radii size between Dy3+ and Ho3+.
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Sometimes, a 4f configuration with a 2+ or 4+ state will occur when the 4f shell is

close to particularly stable, empty, full or half-filled state. For instance, the metallic elements

europium and ytterbium are in divalent states with 4f7 and 4f14 configuration respectively.

The interesting physics due to the valence change and/or the hybridizing of 4f electron and

conduction electrons including the so-called heavy fermion physics will be discussed in section

2.4.

2.1.1 Hund’s rules

The Russel-Saunders rule results in the total angular momentum J with a quantum number

|L + S|, |L + S − 1|,· · · , |L − S|. For each J value, there is 2J + 1 degeneracy with Jz = J ,

J − 1,· · · ,−J . The three Hund’s rules can be used to determine the ground state electronic

configuration of the total angular momentum J for a partially filled shell.

• The ground state has the largest value of total spin S that is consistent with the exclusion

principle.

• For the maximum possible S value, the electrons are distributed between all possible

states in accordance with the exclusion principle, and such that the resulting L value is

maximum.

• For shells that are less than half-filled, the total angular momentum is given by J =

|L − S|. For shells that are more than half-filled, J = |L + S|.

Using these rules, the ground state of the electronic configuration for rare earth ion can be

determined. The calculated magnetic properties for the free, trivalent ions are shown in Table

2.1.

2.1.2 Magnetic moment and Curie law

In an applied magnetic field (H), the n-folder degenerate, ground state of the 4f electronic

configuration will be split to n levels with equal energy difference, which is the so-called Zeeman
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Table 2.1 Components of the orbital angular momentum, L; the spin an-
gular momentum, S; the total angular momentum, J ; the calcu-
lated values of the Landè factor, gJ = 1+ J(J+1)+S(S+1)−L(L+1)

2J(J+1) ;
saturated moment, μsat = gJJμB ; effective moment,
μeff = gJ [J(J + 1)]1/2μB; and de Gennes factor,
dG = (gJ − 1)2J(J + 1) for the trivalent rare earth ions.

4f R3+ L S J gJ μsat μeff dG

0 La 0 0 0 - - - -
1 Ce 3 1/2 5/2 6/7 2.14 2.54 0.18
2 Pr 5 1 4 4/5 3.20 3.58 0.80
3 Nd 6 3/2 9/2 8/11 3.27 3.62 1.84
4 Pm 6 2 4 3/5 2.40 2.68 3.20
5 Sm 5 5/2 5/2 2/7 0.71 0.84 4.46
6 Eu 3 3 0 - - - -
7 Gd 0 7/2 7/2 2 7.00 7.94 15.75
8 Tb 3 3 6 3/2 9.00 9.72 10.50
9 Dy 5 5/2 15/2 4/3 10.00 10.64 7.08
10 Ho 6 2 8 5/4 10.00 10.61 4.50
11 Er 6 3/2 15/2 6/5 9.00 9.58 2.55
12 Tm 5 1 6 7/6 7.00 7.56 1.17
13 Yb 3 1/2 7/2 8/7 4.00 4.54 0.32
14 Lu 0 0 0 - - - -

splitting. In the second-order perturbation theory, the magnetic field energy contribution to

the system will be the Zeeman term:

ΔEn(H) = μBH 〈n |L + 2S|n〉 = gJμBH 〈n |J |n〉 , (2.1)

where gJ is the Landè factor defined as:

gJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
. (2.2)

plus a Van Vleck paramagnetic term.

The Van Vleck paramagnetic term is related to the excited state and is typically small in

rare earth elements with partially filled 4f shell, except for Sm3+ and Eu3+ ions which have low

excited energy levels, or for singlet ground states (non-magnetic ground states) such as found

in crystalline electric field (CEF) split, non-Kramer’s ions (e.g. Pr3+). In general, the Van

Vleck paramagnetic term is ignorable and the magnetic field induced energy can be expressed
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as the interaction of the field with a magnetic moment (−µ · J),where

µ = −gJμBJ , (2.3)

This allows the saturated magnetization of the local moment in the absence of other energy

contributions such as the crystal electric field(CEF), to be expressed as:

μsat = |µ| = gJμBJ. (2.4)

The temperature dependence of the magnetization can be derived by using simple statistical

physics. The free energy of the system is given by:

F = −N

β
ln

∑
n

exp−βEn(H), (2.5)

where β = 1/kBT , N is the number of magnetic ions. The magnetization is the derivative of

the free energy with respect to magnetic field, given by:

M = − 1
V

∂F

∂H
= −N

V
gJμBJBJ(βgJμBJH), (2.6)

where V is the volume, BJ(x) is the well-known Brillouin function.

At high temperature (kBT � gJμBH), the molar susceptibility can be determined as:

χ =
∂M

∂H
= NA

(gJμB)2

3
J(J + 1)

kBT
=

C

T
, (2.7)

This variation of the susceptibility with respect to the inverse of temperature is known as

Curie’s law, where the Curie constant C can be written as a function of the effective moment

(μeff ):

C = NA
(gJμB)2

3
J(J + 1)

kB
= NA

μ2
effμ2

B

3kB
, (2.8)

.

Comparison of the experimental determinations of the effective moment and saturated

moment with the theoretical forms (summarized in Table 2.1) are useful in the analysis of new

rare earth compounds, since it allows the theoretical value to be compared to the measured

value. This comparison may be used to estimate the mass percentage of rare earth element

presenting in an unknown compound. Furthermore, if rare earth intermetallic compound
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manifests other magnetic properties (eg. the itinerant electronic magnetism) in addition to

that associated with the local moment 4f electrons, then such a comparison of the theoretical

values and the measured values can help us to identify the additional contribution.

2.1.3 Weiss Molecular field theory

The Curie’s law has been derived within the hypothesis of negligible interactions between

the magnetic moments, which is only strictly satisfied in few situations (eg. some paramag-

netic salt containing very dilute magnetic ions). For materials having non-negligible magnetic

interaction, a ferromagnetic(FM) or antiferromagnetic(AFM) ordered state may arise as the

low temperature ground state. Weiss’ molecular field theory provides a simple explanation for

the FM behavior of local moment systems. Weiss assumed that the magnetic interactions can

be taken into account by considering an effective field Heff acting on each local moment, in

addition to the external field H. Such an effective field arises from the thermal average of the

surrounding moments, and is proportional to their magnetization: Heff = αM , where α serves

as a coupling constant.

By using Eqn.2.6, the molar magnetization can be written as:

M = NAgJμBJBJ(x), (2.9)

where

x =
JgJμB

kBT
(H + αM). (2.10)

Combining these two equations, the magnetization at an arbitrary temperature and external

field can be found. Specifically, in zero external field (H = 0), the magnetization can have a

non-zero value when:

T < θC = NA

αμ2
effμ2

B

3kB
, (2.11)

which means that when the temperature is lower than θC, the system manifest spontaneous

magnetization, the hallmark of a FM state. Therefore, θC is the FM ordering temperature TC.
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Above TC, the system is in paramagnetic state. At sufficiently high temperature (kBT �
gJμBH and T > TC), the susceptibility can be expressed as the well-known Curie-Weiss law:

χ =
C

T − Cα
=

C

T − θC
. (2.12)

The paramagnetic Curie temperature θC is same as TC in Weiss’s molecular field theory.

2.1.4 Arrott plot

Weiss’s molecular field theory can be used to develop a criterion to determine the value

of TC for a local moment system by analysis of the isothermal magnetization data, which is

the so-called Arrott plot [Arrott, 1957]. (In general, an Arrott plot is also suitable for any

itinerant magnetic system based on the Landau theory.)

The difficulty in using Eqn. 2.12 to simply determine TC is that, by definition, the system

is FM if spontaneous magnetization exists within a single domain, and the susceptibility (χ) of

the system tends to be infinite at TC. Since the field dependent magnetization M(H) tends to

lose its linearity, even for a finite-small H, when the temperature approaches TC, it is difficult

to determine the divergent point of χ(T ) in experiment (and thereupon TC value) by analysis

the temperature dependent magnetization data M(T ) under a fixed applied field. Instead, the

Arrott plot provides a useful criterion for TC value by analysis of M(H) data sets at varied

temperature in the vicinity of TC.

Equation 2.9 and 2.10 can be written as:

M = M0BJ(
M0(H + αM)

NAkBT
), (2.13)

where M0 = NAgJμBJ is the spontaneous magnetization at zero temperature. This equation

can be rewritten as:
M0(H + αM)

NAkBT
= B−1

J (
M

M0
). (2.14)

The right-hand side of this equation can be expanded in a power series for values of M � M0

giving
M0(H + αM)

NAkBT
=

M

M0
+

1
3
(
M

M0
)3 +

1
5
(
M

M0
)5 + · · · . (2.15)
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Figure 2.2 Schematic diagram of the Arrott’s plot in the vicinity of TC.

This equation can be written as the form as:

H = a1M + a3M
3 + a5M

5 + · · · , (2.16)

where a1 = 1/χ = (NAkBT
M2

0
) − α. At TC, 1/χ = 0, therefore TC = αM2

0
NAkB

. Hence at TC

M0H

NAkBTC
=

1
3
(
M

M0
)3 +

1
5
(
M

M0
)5 + · · · . (2.17)

This equation shows the cubic relation between the field and magnetization since M � M0 in

general.

Figure 2.2 shows a schematic diagram of the isothermal magnetization in the vicinity of

TC for the data plotted as M2 with respect to H/M . In experiment, the values of H must

be modified by subtracting the demagnetizing field (see Chapter 4). The curves linearly cross

the origin point at TC. Experimentally, the data may show non-linear curves in Arrott plot

due to CEF effect or other complications [Yeung et al., 1986, Neumann and Ziebeck, 1995,

Brommer and Franse, 1990]. Nevertheless, the isothermal magnetization data crossing the

origin is a criteria of the FM ordering based on the mean field theory.
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2.1.5 RKKY interaction and de Gennes scaling

The magnetic interaction between the local moments occurs via various types of mecha-

nisms for different systems. The simplest example is known as direct exchange, which is arises

from the direct Coulomb interaction among electrons from the two ions. For rare earth in-

termetallic compounds, the overlap between the 4f -orbitals of neighboring rare earth sites is

usually small, which reduces the possibility of a direct exchange between the rare earth ions.

The primary interaction of the magnetic moments is via the polarization of the conduction

electrons, which is known as indirect exchange. Two mechanisms have been proposed in the

indirect exchange interaction for rare earth intermetallic compounds. In the first one, known

as RKKY (Ruderman-Kittel-Kasuya-Yosida) model, the magnetic coupling proceeds by means

of spin polarization of conduction electrons. In the second mechanism, the spin polarization

of the 5d electrons of the rare-earth atoms plays more important role.

The RKKY model was first proposed by Ruderman and Kittel [Ruderman and Kittel, 1954]

and later extended by Kasuya [Kasuya, 1956] and Yosida [Yosida, 1957]. In this model, the

exchange interaction energy between a conduction electron with spin s and a local moments

with spin S is:

ΔE = −2Jsfs · S, (2.18)

where Jsf is the exchange parameter.

For local moments submerged in a Fermi sea, the total exchange energy of the RKKY

interaction between two local moments at position Ri and Rj is given by:

E =
18πn2

EF
J2

sfSi · SjF (2kF |Ri − Rj|) (2.19)

where n is the average density of conduction electrons; EF is the Fermi energy; kF is the Fermi

wavevector; and F (x) = x cos x−sinx
x4 is a damped oscillatory function. This damped oscillatory

behavior of the exchange energy with respect to the values of 2kF |Ri − Rj|, indicates that the

magnetic ordering temperature usually drops with large R-R spacing and the ordering can be

FM or AFM type, dependent on the values of kF and Ri − Rj .
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By using the molecular field approximation [Szytula and Leciejewicz, 1994], the TC value

for ferromagnet can be expressed as:

TC = − 3πn2

kBEF
J2

sf (gJ − 1)2J(J + 1)
∑
i�=o

F (2kF Rio) (2.20)

where o is the central ion and Rio is the distance between the central ion and the neighboring

ith ion. This result is reminiscent to the one of Weiss’s molecular field theory (Eqn. 2.11),

but the term μ2
eff = g2

JJ(J + 1) in Eqn. 2.11 is replaced by the well-known de Gennes factor:

dG = (gJ −1)2J(J +1). This difference comes from the assumption that only spin momentum

contributes to the exchange interaction, which leads to the term of S(S+1) = (gJ −1)J(J +1),

according to the well-known Wigner-Eckart theorem in quantum mechanics.

In AFM materials, the Néel temperature (TN) can be derived in a similar manner by using

the molecular field approximation [Mattis, 1965]. Therefore, the magnetic ordering tempera-

tures are expected to scale with the de Gennes factor for isostructural rare earth intermetallic

compounds within the RKKY model.

The second mechanism, first proposed by Campbell [Campbell, 1972], successfully ex-

plained the magnetic properties of binary rare earth transition metal intermetallic compounds,

which manifest FM ordering without de Gennes scaling for isostructural compounds. In this

model, the 5d electrons of the rare earth component play an important rule. The 4f local

moments polarize the 5d electrons, and the later hybridize with the 3d electrons of transition

metal. The overall indirect interaction between the 4f local moments is always FM. This mech-

anism proposes a short range, tight binding interaction and treats d and s electrons entirely

separately, whereas the RKKY mechanism proposes a long range, free electron interaction and

does not distinguish d and s electrons.

2.2 d electron and Itinerant magnetism

In rare earth intermetallic compounds, the magnetism contributed from the conduction

electrons is usually weaker than the contribution from the unfilled 4f shells, except for some

3d-rich transition metal-rare earth binary or ternary compounds. However, understanding
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the susceptibility of the conduction electrons is important because they mediate the magnetic

interaction between the 4f local moments, and they may hybridize with the 4f electrons to

modify the local moment behavior in the cases of Ce and Yb based compounds. To approach

this experimentally, the La, Lu and Y isostructural compounds with empty or full 4f shell are

usually synthesized and the magnetic properties of the conduction electrons can be measured

without the ‘noise’ of the 4f , local moment magnetism.

In general, the local moment magnetism model is able to explain the magnetic properties of

insulators and metals associated with 4f electrons successfully, but not the magnetic properties

of conduction electrons. For example, the 3d transition metal elements (eg. Fe, Co and Ni)

and some of their compounds or alloy manifest strong magnetic signals associated with the

3d itinerant electrons. Fe, Co and Ni elements have a FM ground state with non-integral,

saturated moments equaling 2.21μB , 1.70μB and 0.60μB respectively. [Huang and Han, 1988]

These values of saturated moments are less than the values corresponding to their Hund’s

ground states, or even the spin-only contribution.

On the other hand, a band model is able to successfully explain some magnetic properties

of these conduction electron systems. It is well known that a non-interacting, conduction

electron system can be treated as a Fermi sea and manifests Pauli paramagnetic behavior. For

some d electron systems, the d electrons are more localized than normal s electrons, and the

interaction between d-d electrons must be considered. The simple Stoner theory explains the

ferromagnetism of d electron systems as the result of splitting between the spin-up and spin-

down band due to the interaction between conduction electrons. To understand this theory, it

is helpful to understand the paramagnetism of non-interaction conduction electron systems at

first.

2.2.1 Pauli paramagnetism

In metals free electron paramagnetism mainly comes from the spin contributed magnetic

moment of conduction electrons in an applied field. Since the conduction electrons are highly

degenerate and obey the Fermi-Dirac distribution, the Pauli principle must be considered. As
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Figure 2.3 Diagram of Pauli paramagnetism. (a): No applied field. (b):
No equilibrium state in an applied field H. (c): Equilibrium
state in H.

we shall see below, only the electrons within a small range of the top of the Fermi distribution

have a chance to flip spin in the applied field and contribute to the paramagnetic signal.

The expression for the paramagnetic susceptibility of a conduction electron gas at zero

temperature is readily calculated. Figure 2.3 (a) shows the distribution of the spin-up and spin-

down electrons with no applied magnetic field. The total density of states [N(E)] is equally

separated into the spin up and spin down parts. Below the Fermi energy (EF ), the shadow

part is fully filled by the conduction electrons, and the area of the shadow part represents the

number of the conduction electrons. Without an applied field, the numbers of the spin-up

and spin-down electrons are equal and the total magnetization is zero. In an applied field

H, the parallel and anti-parallel spin moment will gain additional energy −μBH and +μBH,

respectively. Therefore, the Fermi energy lever for the spin-up and spin-down electrons will

have the difference as 2μBH [Fig. 2.3 (b)]. Obviously, the electrons having higher EF (spin-

down part) in this hypothetical state will flow to the spin-up side so as to balance the Fermi

energy level. In the equilibrium state, part of spin down electrons flip, from anti-parallel to

parallel the magnetic field [Fig. 2.3 (c)]. The number of such electrons equals:

n =
1
2
μBHN(EF ) (2.21)

This leads to a magnetization that equals μ2
BHN(EF ) parallel to the applied field. Therefore,

the magnetic susceptibility, which is called the Pauli paramagnetic susceptibility, is:

χ = μ2
BN(EF ). (2.22)
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When T �= 0 K, the Pauli paramagnetic susceptibility will include a part from thermal

excitation:

χ = μ2
BN(EF )[1 − π2

12
(
kBT

EF
)2] (2.23)

Since kBT
EF

� 1, the Pauli paramagnetic susceptibility in this simple model is temperature

independent and proportional to the density of states at Fermi level. It should be noted,

though, that sharp features in the density of states (DOS) near EF (sharp compared to kBT )

can lead to some temperature dependencies.

2.2.2 Stoner theory

The above derivation of Pauli paramagnetism assumes no interaction between the con-

duction electrons other than the Pauli exclusion effect. For the transition metals, the d band

electrons, with their relatively large exchange interaction, mainly contribute the magnetization.

Due to the exchange interaction, the band can spontaneously split for spin-up and spin-down

electrons, which can lead to FM ordering.

The Stoner theory is based on the mean field approximation, which assumes an exchange

interaction between the d-band electrons that independent with their wave vectors. This

interaction causes an instability of the Fermi surface and then leads to a FM ground state. This

theory successfully explains the observed, non-integral, saturated moments for 3d transition

metal elements, but it is not able to explain the observed magnetic behavior of these itinerant

electron systems at finite temperature successfully, specifically for T ≥ TC. Nevertheless, the

Stoner theory is useful to describe the ground state of correlated, itinerant electron systems

and the study of it is the first step to understand the itinerant magnetism.

Diagrams illustrating the key ideas associated with the Stoner model at zero temperature

are shown in Fig. 2.4. Assuming the exchange energy I between the d-band electrons is

independent of their wave vectors, then the total exchange energy of the system with N

electrons and magnetization M (in unit of μB) is given by

Eex = IN↑N↓ =
1
4
IN2 − 1

4
IM2, (2.24)

N = N↑ + N↓,M = N↑ − N↓, (2.25)
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Figure 2.4 Diagram of Stoner theory. (a): Spin-up spin-down balance state
with an exchange interaction. (b): Non-equilibrium state. (c):
Ferromagnetic equilibrium state.

where Nσ is the number of electrons with spin σ.

As shown in Fig. 2.4 (a), when the number of the spin-up and spin-down electrons is equal,

the magnetization equals zero, the total exchange energy has the maximum value equaling

1
4IN2, and the kinetic energy of the electrons equals zero. If, on the other hand, we assume

that 1
2N(EF )(δE) electrons from the spin-down band are moved to the spin-up band [Fig. 2.4

(b)], then the kinetic energy increases by ΔE1

ΔE1 =
1
2
N(EF )(δE)2, (2.26)

and the total exchange energy will decrease by ΔE2

ΔE2 =
1
4
IM2 =

1
4
IN2(EF )(δE)2. (2.27)

The total energy difference then is

ΔE = ΔE1 − ΔE2 =
1
2
N(EF )[1 − IN(EF )

2
](δE)2. (2.28)

Therefore, as the spin-down electrons within the range δE of the Fermi level are moved to the

spin-up band, the energy difference is proportional to (δE)2.

When IN(EF )
2 > 1, ΔE < 0, the magnetic state is stable, and the system will manifest

spontaneous magnetization [Fig. 2.4 (c)]. The saturated moment of the system in FM ground

state may assume non-integral values, corresponding to the band filling. When IN(EF )
2 <

1, ΔE > 0, the non-magnetic state is stable, and the system will manifest paramagnetic

magnetization. The paramagnetic susceptibility χ can be derived as following.
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Assuming an applied field H is along the spin up direction, the parallel and anti-parallel

spin moment will gain additional energy IN↓ − μBH and IN↑ + μBH, respectively. The

difference

2δE = IN↑ + μBH − (IN↓ − μBH) = I(N↑ − N↓) + 2μBH = IN(EF )δE + 2μBH. (2.29)

Therefore, the energy range of field induced spin flip is

δE =
μBH

1 − IN(EF )
2

, (2.30)

and the total magnetic moment is

2μB
1
2
N(EF )δE = μ2

B

N(EF )

1 − IN(EF )
2

H, (2.31)

and the magnetic susceptibility is

χ = μ2
B

N(EF )

1 − IN(EF )
2

. (2.32)

Although ferromagnetism is not realized for IN(EF )
2 < 1, the Pauli paramagnetic susceptibility

(Eqn. 2.22) is enhanced by the factor 1

1− IN(EF )

2

. The factor

Z =
IN(EF )

2
. (2.33)

is known as Stoner enhancement factor and the condition

Z =
IN(EF )

2
= 1 (2.34)

is known as Stoner criteria.

Three 3d transition metal elements (Fe, Co and Ni), with high TC values are typically

characterized as strong itinerant FM materials, in which Z > 1. More interesting magnetic

behavior may appear when the system is close to the Stoner criteria. These systems, typically

characterized as nearly FM materials (Z < 1 but close to 1), such as elemental Pd or Pt, or as

weakly FM materials (Z > 1, both N↑(EF ) and N↓(EF ) �= 0), such as ZrZn2 or Sc3In with low

TC values, manifest strongly correlated, electronic behavior. In the view of the quantum phase

transition theory, these systems are close to a so-called, quantum critical point (QCP), meaning
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the paramagnetic to ferromagnetic phase transition can be tuned at zero temperature by some

parameters such as pressure, doping, or applied field. Such nearly FM systems and weakly

FM systems allow for studies of quantum criticality and possibly even novel superconducting

state.

2.3 Crystalline Electric field

When rare earth ions are placed within a crystalline lattice, the interaction with their

surroundings (neighboring atoms or conduction electrons) can be modeled as an electrostatic

field, which is known as crystalline electric field (CEF). As the 4f electrons are screened by

the full 5s and 5p shells (see Fig. 2.1), the CEF effect is relatively small compared with

the spin-orbital coupling and can be treated as a perturbation of the free ion 4f electronic

configuration. This perturbation lifts the Hund’s rule ground state degeneracy of the free ion.

Assuming that the CEF is produced by an array of point charges surrounding the central

free ion, or spatially extended charges that do not overlap with the electrons of the free ion,

the CEF potential, VCEF , must satisfy the Laplace equation:

∇2VCEF = 0. (2.35)

The solution of the Laplace equation can be expanded in terms of spherical harmonic function

Y m
n (θ, ϕ) as:

VCEF =
∞∑

n=0

n∑
m=−n

Am
n rnY m

n (θ, ϕ). (2.36)

For the 4f configuration with total angular momentum J , there are 2J +1 degenerate state

|JMi〉 before the perturbation associated with the CEF effect. Then the matrix elements due

the CEF energy has the form:

〈JMi |Am
n rnY m

n (θ, ϕ)| JMk〉 = Am
n 〈R |rn|R〉 〈Φi |Y m

n (θ, ϕ)|Φk〉 . (2.37)

The radial electron wave function |R〉 can be obtained from a non-relativistic or relativis-

tic Hartree-Fock calculation and is the same for all states of a given electron configuration.

The angle dependent, electron wave function |Φ〉 can be expanded in terms of spherical har-

monic functions up to the order of n = 3 for f electrons. Therefore, all of the terms of
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〈Φi |Y m
n (θ, ϕ)|Φk〉 with n > 6 will be vanished. Furthermore, all the terms with odd n will

vanish because the electronic charges are equivalent contained in the crystal. The number of

parameters can be further reduced by higher point symmetries associated with the R-site.

2.3.1 Steven’s equivalent operators

For the rare earth ions, the above calculation method is very difficult. But if only the

ground state J is considered, a much simpler method, associated with introducing the Steven’s

equivalent operators, [Stevens, 1952] may be applied. The main idea is to replace the spatial

coordinate operators xi, yi and zi in Eqn. 2.37 with the corresponding products of the angular

momentum operators Ĵx, Ĵy and Ĵz. It has been shown that the matrix elements of the

CEF Hamiltonian are proportional to a set of operators containing components of the angular

momentum J . In this representation, the CEF Hamiltonian can be expressed in general form

as:

HCEF =
∑
n,m

Am
n 〈rn〉 θnOm

n (2.38)

Where Om
n are Steven equivalent operators; θn is a multiplicative factor and often called αJ ,

βJ and γJ for n = 0, 2 and 4 respectively; Am
n are the CEF parameters. This CEF Hamiltonian

are also often written as:

HCEF =
∑
n,m

Bm
n Om

n , (2.39)

where Bm
n = Am

n 〈rn〉 θn. The energy splitting of the Hund’s rule multiplet and the correspond-

ing eigenfunctions can be calculated by applying the operators and diagonalizing the matrix

elements.

2.3.2 Cubic symmetry

The simplest example is the CEF Hamiltonian in cubic point symmetry group, which have

been well studied by Lea at el.[Lea et al., 1962]. In this case, the CEF Hamiltonian is reduced

by the high symmetry to:

HCEF = B0
4(O0

4 + 5O4
4) + B0

6(O0
6 − 21O4

6), (2.40)



25

where the fourfold axis in the cubic coordination has been chosen as the quantization axis.

In order to keep the eigenvalues in the same numerical range for all ratios of the fourth and

sixth degree terms, for all of the possible J values, this expression is written as:

HCEF = W [
x

F4
(O0

4 + 5O4
4) +

1 − |x|
F6

(O0
6 − 21O4

6)], (2.41)

where F4 and F6 are normalizing parameters depending on the J value; W and x, as two

unknown parameters represents the energy scale of CEF effect and the relative importance of

the 4th and 6th order terms, respectively.

In rare earth intermetallic compounds, the single-ion Hamiltonian for a well-defined, local

moment, associated with a R3+ ion, is assumed to be the sum of the CEF term, an exchange

interaction term and an external field term:

H = HCEF + Hexc + Hext. (2.42)

where Hext = gJμBJ · H . If the exchange interaction term is ignorable, thermodynamic

properties of rare earth ions can be easily calculated by diagonalizing the Hamiltonian of the

CEF term and the external field term.

As an example, Fig. 2.5 shows the calculated magnetization at 2 K and specific heat at zero

applied field for a well-defined, local moment associated with Yb3+ ion (J = 7/2) as x = 0.9

and W = 1. With the Yb3+ in a cubic point symmetry group, its Hund’s rule ground state is

split to two doublets (Γ6 and Γ7) and one quartet (Γ8), which have energy levels as shown in

Fig. 2.5 (c). The specific heat anomaly due to the CEF splitting, known as ‘Schottky anomaly’,

manifests itself as a broad peak with Cp ∼ T−2 exp(− 1
T ) below the maximum Cp and Cp ∼ T−2

above the maximum. It is worth noting that the magnetization at 2 K manifest a step-like

behavior for H//[100]. In large enough external field (Hex � HCEF ), the magnetization along

all three principle axes are close to the value of the saturated moment associated with the

Hund’s rule ground state (4μB).

In real systems, the exchange interaction is usually not small, and affects the magnetic

properties dramatically. Unfortunately, the exchange interaction Hamiltonian, Hexc, is difficult

to address even by using the simple, molecular field approximation. In order to analyze the
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Figure 2.5 Calculated results of CEF induced magnetic properties of a
well-defined, local moment associated with Yb3+ single ion in
cubic symmetry as x = 0.9 and W = 1. (a) Magnetization
versus applied field along the three principle axes at 2 K. (b)
Specific heat versus temperature at zero field. (c) The energy
splitting at zero field.
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CEF effect without this complication, dilution-compounds, containing RxY1−x or RxLu1−x,

are usually synthesized. As the magnetic rare earth ions are diluted to approach the single-ion

limit, the interaction is ignorable. Therefore, the CEF parameters can be determined by fitting

the zero field specific heat data and the magnetization data in varied applied field and varied

temperature.

In principle, the CEF parameters can also be calculated by a simple point-charge model.

In this model, the CEF is assumed to be mainly from the nearest neighbor ions with identified

charges. The results with the rare earth coordination being either a tetrahedron, octahedron or

cube have been given, for cubic point symmetry [Hutchings, 1964]. However, it is not unusual

that the calculated results based on the point charge model show as large as a one order

of magnitude difference compared with the experimental fitting results. Such difference may

partially come about as the result of the influence of the conduction electron screening on the

CEF.

2.4 Heavy fermion compounds

The term ‘heavy fermion’ are usually used to describe a subset of rare earth or actinide

intermetallic compounds containing multivalent f electron ions (like Ce, Yb and U) and man-

ifesting large electronic specific heat (γ). An arbitrary definition of a ‘heavy fermion’ system

given by Stewart [Stewart, 1984b] is that γ > 400 mJ/molfatom K2, although many rare earth

intermetallic compounds with lower γ values have also been characterized as heavy fermion

materials. Nevertheless, all the heavy fermion compounds manifest anomalous f electronic

behavior different from that observed for well-defined, local moment compounds. In ‘normal’

local moment, intermetallic compounds, the f band lie far below the Fermi level and the f

electrons are localized. The interaction between the f electrons and the conduction electrons

is a Heisenberg exchange interaction. This interaction leads to an intersite exchange interac-

tion between the local moments by means of conduction electrons polarization, which is the

so-called RKKY interaction and may be FM or AFM depending on the Fermi surface and the

local moments spacing. In ‘anomalous’ rare earth compounds, the f levels lie near the Fermi
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level and the hybridization between the conduction electrons and f electrons is significant.

This anomaly usually happens as the 4f shell of rare earth ion is close to empty, full or half

filled (like Ce, Yb or Eu ), since the empty, full and half filled 4f shell are more stable, leading

to the instability of 4f electronic configuration of the Ce3+, Yb3+ and Eu3+ ions. Compounds

containing these rare earths can, in the cases where they hybridize, be described as the so-called

‘Kondo lattice’ systems [Hewson, 1993], in which the hybridization with the conduction elec-

trons leads to an AFM exchange interaction between the f electrons and conduction electrons.

This AFM exchange interaction modifies the f electronic states in the region of the Fermi level

and leads to anomalous low temperature behavior. In heavy fermion systems, the f electrons

manifest local moment magnetic behaviors in the high temperature region, in the vicinity of

a characteristic temperature, the so-called Kondo temperature (TK), they start to lose their

local moment behavior, and at the temperatures well below TK the local moments are par-

tially or totally compensated, and the system manifests a highly correlated, high-effective-mass

electronic state.

2.4.1 Anderson Model

In order to understand the physics of heavy Fermion systems, it is necessary to start

from a basic question: how does, or when can, an unfilled d or f electron shell survive in a

metallic environment. Experimentally, when small amounts of transition metal elements are

dissolved in a non-magnetic metal, the resulting alloys display varied magnetic properties. For

example, local moment survives when Fe is dissolved in Cu, but not when Ni is dissolved in

Cu. The Anderson model [Anderson, 1961] explains the variety as the result of a hybridization

between the d or f electron of the impurity and the conduction electrons of the host. In this

model, the unfilled d or f electron shell forms a so-called virtual bound state (vbs) in the

conduction electron band of the host. The Hamiltonian for the Anderson model describes the

d (or f) electron of the impurity hybridized with the conduction electrons (s electrons) plus

the Coulomb interaction between the d electrons in the impurity ion. For the simplest non
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degenerate d orbital this gives:

H =
∑
σ

εdnd +
∑
k,σ

εkc
†
k,σck,σ + Und,↑nd,↓ +

∑
k,σ

(Vkc†d,σck,σ + V ∗
k c†k,σcd,σ). (2.43)

The first two terms represent the individual kinetic energies of d electrons and s electrons.

The third term gives the intra-atomic Coulomb repulsion of the lowest d orbitals of opposite

spin. The final term is the hybridization interaction between the s and d electrons. Finding

the solution of this Hamiltonian is a long and tedious task. Simple, intuitive diagrams shown

in Fig. 2.6 illustrate some of the more salient physics.

Figure 2.6 (a) shows that a localized d (or f) impurity is embedded in the conduction

electron host and the energy level of the d electron is lower than the Fermi level (EF ) of

conduction electrons. If only the kinetic energy of s electron and d electron are considered, the

d electron will form a bound state with the binding energy εd and a δ function anomaly in the

density of states. If the hybridization effect and the intra-atomic Coulomb effect are included,

the d electron will form virtual bound state (vbs) in each of the sub-bands, spin-up and spin-

down. The hybridization energy broadens the density of states for d electron with the width

2Δ = πVkV ∗
k N(EF ). The Coulomb energy causes an energy shift U between the spin-up level

and spin-down level. Figure 2.6 (b) shows the case |Vk| � |U |, where the spin-up vbs is fully

occupied and the spin-down vbs is empty. In this case a well-defined local moment is formed.

In the other extreme case |Vk| � |U |, the spin-up vbs is equally occupied as the spin-down

vbs [Fig. 2.6 (d)]. The d electron is effectively dissolved in the sea of conduction electrons

and the impurity lose its magnetism. In the intermediate case, |Vk| is comparable to |U |, the

spin-up and spin-down vbs are both partially, unsymmetrically occupied [Fig. 2.6 (c)]. The

local moment is partially compensated and may manifest any value. The strict mathematical

deviation leads that a local moment forms in the parameter regime U + εd > EF and εd < EF

in the Anderson model.

Another important conclusion of Anderson model is that the hybridization of the d elec-

tron and the conduction electron will lead to an AFM exchange interaction between the local

moment and conduction electrons in the local moment regime. Figure 2.7 shows the schematic

diagram of the vbs close to the Fermi level, which makes the hybridization or covalent mix-
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Figure 2.6 Schematic diagram of Anderson model. (a) d (or f) impurity
immersed in conduction electron host. (b) The formation of the
vbs. An occupied spin-up vbs with width 2Δ is attached be-
low the Fermi energy EF . A similar, but unoccupied vbs split
by energy U above EF occurs with spin-down sub-band. This
diagram illustrate formation of a local moment with large U .
(c) Partially occupied magnetic vbs with small U . The mag-
netic moment forming due to the different filling of the spin-up
and spin-down vbs can be any spin value. (d) The symmetric
case of equal spin-up and spin-down occupancies (U = 0) and
thereupon no net magnetic moment.
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Figure 2.7 Schematic diagram of the AFM exchange interaction formation
in Anderson model.

ing possible. Due to the hybridization, electrons will transfer from the occupied vbs to the

spin-up sub-band as well as from the spin-down sub-band to the empty vbs. This electronic

hop will induce a non-equilibrium state between the spin-up and spin-down sub-band, which

makes the up-spin electrons flow into the spin-down sub-band. The net result of this whole

process is to produce slightly more down-spin conduction electrons than up-spin conduction

electrons hopping from the vbs. That means that small amount of conduction electrons will be

polarized oppositely by the local moment due to their hybridization. This AFM coupling can

be described as the so called s-d exchange Hamiltonian and is indeed the origin of the Kondo

effect.

2.4.2 Single ion Kondo effect

A local minimum in the temperature dependent resistivity in certain dilute magnetic al-

loy [Wilson, 1953] (e.g. Cu, Ag, Au with unfilled, d-band, magnetic impurity such as Fe,

Mn, Mo) has been observed experimentally since 1930. Figure 2.8 shows the schematic dia-

gram of the resistivity minimum. After the lattice vibration contributed scattering resistance
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Figure 2.8 Schematic diagram of the resistivity Kondo minimum. The to-
tal resistivity equals the sum of phonon contribution (Rph) and
magnetic impurity contribution (Rim): R = Rph + Rim.

(Rph) is subtracted, the magnetic impurity contributed scattering resistance (Rim) increases

as temperature decrease. The experimental data show that Rim manifests a clear temperature

dependence:

Rim = a − b ln T, (2.44)

in the vicinity of the minimum, where a and b are temperature independent constants.

J. Kondo [Kondo, 1964] explained this resistivity minimum by using perturbation theory

on the s-d exchange Hamiltonian [Zener, 1951],

Hsd = − J

N

∑
k,k′

(S+c†k,↓ck′ ,↑ + S−c†k,↑ck′,↓ + Sz(c
†
k,↑ck′ ,↑ − c†k,↓ck′,↓)) (2.45)

where Sz and S± are the spin operators for a state of spin S. Kondo’s calculation shows that

the Rim have the form as:

Rim = R0[1 − 4JρF ln
kBT

D
], (2.46)

where J is exchange coupling constant, ρF is the average density of states at Fermi level per

electron, D is the half width of the conduction band. When J < 0, which means the s-d
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coupling is AFM, the impurity resistivity increases with respect to − ln T . Kondo’s calculation

successfully explain the minimum of temperature dependent resistivity in dilute magnetic al-

loys. However, the − ln T term diverges as T → 0, which is inconsistent with the experimental

observed finite resistivity at the base temperature.

In the calculations of thermodynamic properties, the perturbation theory lead to a divergent

susceptibility and specific heat at a finite temperature TK,

kBTK ∼ D exp− 1
2
JρF (2.47)

known as the Kondo temperature. [Hewson, 1993] Experimentally, the susceptibility mani-

fested Curie-Weiss behavior when T � TK, which is same as the result of the perturbation

theory, but clearly deviates from the Curie-Weiss law below TK [Fig. 2.9 (a)]. The specific

heat manifested a broad peak about TK, with the magnetic part of entropy associated with

the impurity equaling R ln(2S +1) for the magnetic impurity with spin S. These experimental

results indicated that the perturbation theory result was not applicable in the low temperature

limit (T � TK). The problem of finding a solution valid in the low temperature regime was

known as the ‘Kondo problem’.

Solving the Kondo problem led to important developments in the region of theoretic physics.

However, without any mathematic complication, the ground state of the impurity can be

intuitively known by the entropy associated with the impurity in the experiments. The result

R ln(2S +1) indicates that the ground state can only be a singlet, known as Kondo singlet, due

the compensation of the local moment by the anti-parallel conduction electrons. The Kondo

singlet ground state at T = 0 was firstly proved by Wilson by using renormalization group

theory [Wilson, 1975]. The exact solutions to the s-d model with S = 1
2 were discovered by

Andrei [Andrei, 1980] and Wiegmann [Wiegmann, 1980] by using the Bethe ansatz method.

2.4.3 Physical properties of heavy Fermions

Heavy Fermion systems, usually described as Kondo lattices, manifest some characteristics

different to dilute Kondo alloys. At first, unlike the pure, spin contributed magnetic moment

for the d electron impurity, the magnetic moment of the f electron associated with its Hund’s
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Figure 2.9 Low-temperature magnetic behavior of (a) susceptibility, (b)
resistivity and (c) specific heat of a diluted Kondo system.
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Figure 2.10 Doniach’s phase diagram.

rule ground state usually consists of spin and orbital contribution, leading to a large degeneracy.

For example, the Hund’s rule ground states for Ce3+ and Yb3+ have J = 5/2 and 7/2, leading

to degeneracies N = 6 and 8 respectively, some of which may have been lifted by the CEF

effect. Secondly, in a Kondo lattice, the f moments keep their periodicity, leading to T < TK

coherent, electronic behaviors. Indeed, a prominent signature of a Kondo lattice state is the

fact that, below TK, the resistivity starts to rapidly decreases below a ‘coherence temperature’

T ∗. Thirdly, the f moments in the heavy Fermion system are usually concentrated with a

small spacings of about 4 − 5 Å. For such concentrated impurities, the conduction electron

screening clouds overlap and the inter-impurity interaction must be important.

Due to these complications, the magnetic properties of heavy Fermion compounds may

show varied behaviors, dependent on varied systems as well as chemical or thermodynamic

conditions, such as substitution, pressure and applied magnetic field. For example, a competi-

tion is anticipated between long-range magnetic ordering of the uncompensated moments and

the low temperature Kondo screened state, as the value of JN(EF ) varies [Doniach, 1977].

As illustrated in Fig. 2.10, the exchange interaction between the magnetic moments is char-
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acterized by the RKKY temperature TRKKY ∝ J2N(EF ); the Kondo effect is characterized

by the Kondo temperature TK. When the parameter JN(EF ) increase, TK increases faster

than TRKKY, resulting in a local maximum in the ordering temperature TN, followed by a

drop in TN around a critical value JCN(EF ). This may lead to a quantum phase transition

at T = 0 K, with the possibility of tuning the parameter JN(EF ) via a number of control

parameters (chemical substitution, pressure, magnetic field). Experimentally, via tuning the

parameters, the ground state of a heavy Fermion compound may vary from magnetic ordering,

to non Fermi liquid (NFL) state in the vicinity of the quantum critical point (QCP), to an

enhanced electronic mass, Fermi liquid state. The NFL behaviors usually involves logarith-

mic divergence of the specific heat Cp/T ∼ − ln T , and linear temperature dependence of the

resistivity ρ ∼ T [Stewart, 2001, Stewart, 2006]. In the FL state, the resistivity manifests a

quadratic temperature dependent behavior, ρ = ρ0 + AT 2; the specific heat divided by tem-

perature follows Cp/T = γ + βT 2, the magnetic susceptibility also becomes independent of

temperature.

The so-called ‘Wilson ratio’ (WR) [Wilson, 1975] and ‘Kadowaki-Woods ratio’ (KWR)

[Kadowaki and Woods, 1986] are useful for establishing correlation between the resistivity,

specific heat and magnetic susceptibility in the FL state of heavy Fermion systems. In Landau’s

FL theory,
√

A ∼ m∗, γ ∼ m∗ and χ(T = 0) ∼ m∗, where m� is the effective mass of the quasi-

particle. The Wilson ratio and Kadowaki-Woods ratio are defined as:

WR =
π2k2

Bχ(T = 0)
g2
Jμ2

BγJ(J + 1)
(2.48)

KWR =
A

γ2
(2.49)

respectively. Experimentally, the Wilson ratio usually manifests values between 1 and 2 for

varied systems, whereas the calculated result of the Coqblin-Schrieffer model shows that WR =

N
N−1 [Hewson, 1993]. However, the Kadowaki-Woods ratio can manifest values from the order

of 10−5μΩcm(K mol/mJ)2 to the order of 10−7μΩcm(K mol/mJ)2 for varied heavy Fermion

systems [N Tsujii and Kosuge, 2003]. Tsujii et al. generalized the concept of a fixed Kadowaki-

Woods ratio to one dependent on the degeneracy of the f electronic configuration when the
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Figure 2.11 Rajan’s results of magnetic susceptibility and specific heat of
the Coqblin-Schrieffer model with J = 1/2, 1, . . . , 7/2.

system enters the Kondo screen state [Tsujii et al., 2005]. Their calculated result for the

Kadowaki-Woods ratio

KWR =
A

γ2
=

1 × 10−5

1/2N(N − 1)
μΩ cm(K mol/mJ)2 (2.50)

depends on the degeneracy N , which can be 2, 4, 6 and 8 for the Yb3+ ion due to the CEF

splitting of the Hund’s rule ground.

Although the heavy Fermion ground state is associated with many complications, theoret-

ical analysis based on a single ion Hamiltonian is still useful. The so-called Coqblin-Schrieffer

model [Coqblin and Schrieffer, 1969] describes an impurity with total angular momentum J

dissolved in a free-electron metal. This model is a generalization of the basic s-d model:

HCS =
∑
k,m

εkc†k,mck,m − 2J
∑
k,m

∑
k′,m′

c†
k′,m′ck,ma†mam′ (2.51)

where −J < m < J . The first term describes the kinetic energy and the second term describes

the interactions between electrons and impurity.

Rajan [Rajan, 1983] calculated magnetic susceptibility and specific heat by using the Bethe

Ansatz method on the Coqblin-Schrieffer model. Figure 2.11 shows the results for varied J
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values. The characteristic temperature

T0 =
NTK

2πωN
(2.52)

where ωN is Wilson number [Rasul and Hewson, 1984]. The broad peak appearing in the

temperature dependent susceptibility [2.11 (a)] is usually called as ‘Kondo peak’ and observed

in many heavy Fermion systems. By using Rajan’s results to fit the experimental data, the

Kondo temperature as well as degeneracy of the local moment, which may be lifted by CEF

effect, can be obtained.
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CHAPTER 3. Crystal structure of RT2Zn20 compounds

The RT2Zn20 series of compounds were discovered in polycrystalline form in 1997 by Nasch

et al. [Nasch et al., 1997]. These compounds assume the isostructural, cubic, CeCr2Al20 struc-

ture [Kripyakevich and Zarechnyuk, 1968, Thiede et al., 1998, Moze et al., 1998], in which the

R and T ions each occupy their own single, unique crystallographic site with cubic and trig-

onal point symmetry respectively, and the Zn ions have three unique crystallographic sites

(Fig. 3.1). The coordination polyhedra for R and T are fully comprised of Zn, meaning

that there are no R-R, T-T or R-T nearest neighbors and the shortest R-R spacing is ∼ 6

Å. The nearest-neighbor (NN) and next-nearest-neighbor (NNN) shells of the R are all Zn,

forming an all Zn Frank-Kasper-like polyhedron around, and isolating the site [Fig. 3.1 (b)].

RT2Zn20 compounds had been found to form for T = Fe, Ru, Co and Rh, but no thermo-

dynamic or transport property measurements were reported. We have extended the range of

known RT2Zn20 compounds to T = Os and Ir series, and been able to grow most of these

compounds in the single crystalline form. Furthermore, single crystals of six new, isostructural

Yb compounds (YbT2Zn20, T = Fe, Co, Ru, Rh, Os and Ir) were synthesized for the first time.

The results of the attempts to grow single crystals of RT2Zn20 systems are summarized in

Table 3.1. For T = Fe, only the heavy rare earth (R = Gd - Lu) and Yttrium compounds

can be synthesized. For T = Co, the successively grown compounds extend to include R =

Nd and Sm. All the rare earth elements are though to be able to form RT2Zn20 structure

with T = Ru, Rh, Os and Ir, expect for R = Eu. The physical properties of the isostructural,

T = Ni column compounds have not been well-studied and will also be presented in current

work. Only limited rare earth elements (R = Y, Dy - Tm and Lu) were found to form the

isostructural compounds with T = Ni and Pt. These results are consisted with the previous
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Figure 3.1 (a) The cubic unit cell of RT2Zn20. (b) The CN16 Frank-Kasper
polyhedron of rare earth ions.

study for T = Fe, Co, Ni, Ru and Rh [Nasch et al., 1997].

Figure 3.2 shows the lattice parameters for GdT2Zn20 and YT2Zn20 (T = Fe, Co, Ru, Rh,

Os and Ir) versus the Goldschmidt radius of the transition metal. The lattice parameters,

determined by the refinement of powder X-ray diffraction, increase as the transition metal

varies from 3d to 5d for both of GdT2Zn20 and YT2Zn20. The error bars, smaller than the

symbols in the plot, were estimated from the standard variation of multiple measurement

results on one batch of sample. In addition to the refinement of powder X-ray diffraction, the

crystallographic atomic site occupancies and positions were refined using single crystal X-ray

data on the crystals of GdFe2Zn20 and GdRu2Zn20. Shown in Table 3.2, both compounds were

found to be fully or very close to fully stoichiometric. The atomic site positions are very close to

the isostructural compounds reported before [Nasch et al., 1997]. It should be noted, though,

that the similar atomic number values for Zn and Fe made it difficult to resolve possible mixed

site occupancies.

Figure 3.3 shows the lattice constants for RFe2Zn20 (R = Y, Gd - Lu) and RCo2Zn20

(R = Y, Nd, Sm, Gd - Lu)compounds, obtained by using the Rietica Rietveld refinement
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Table 3.1 Summary of attempted growth of
RT2Zn20 compounds. +: single crystals
obtained; − phase failed to be obtained;
⊕: un-attempted but expected to be
obtained; �: un-attempted, not expected
to be obtained.

T Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Fe + − − − − − − + + + + + + + +
Co + − − − + + − + + + + + + + +
Ni + � − � � � − − − + + + + − +

Ru + + + + + + − + + + + + + + +
Rh + + + + + + − + + + + + + + +
Pd − � − � � � − − � � � � − − �

Os + + + ⊕ ⊕ + � + ⊕ ⊕ ⊕ ⊕ ⊕ + +
Ir + + + + + + − + + + + + + + +
Pt + � � � � � − − − + + + + − +

program, with respect to the effective radius of R3+ with CN = 9 [Shannon, 1976], since the

data is absent for larger CN. The variation of the lattice constant illustrates the well-known

lanthanide contraction for R = Gd - Lu with no evident deviation for R = Yb. However, the

relatively larger lattice constants for YFe2Zn20 and YCo2Zn20 may indicate that, with this

large CN, the effective ionic radii of Y3+ is different from the values for the small CN case.

Nevertheless, this deviation for Y3+ ions is not unprecedented in the isostructural compounds

RRu2Zn20 [Nasch et al., 1997] and RMn2InxZn20−x [Benbow and Latturner, 2006], as well as

the similar structure compound RCo2 [Villars and Calvert, 1996]. Additional single crystal

X-ray diffraction measurements were preformed on R = Gd, Tb, Er and Lu samples and

demonstrated full occupancy on all crystallographic sites (within the detection limits) and the

same lattice as the powder X-ray values.
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Figure 3.2 The lattice constants (a) of GdT2Zn20 and YT2Zn20 versus the
Goldschmidt radius of the transition metal (r) [Schubert, 1964].

Figure 3.3 The lattice constants (a) for RFe2Zn20 and RCo2Zn20 ver-
sus the radius of the trivalent rare earth ion with CN = 9
[Shannon, 1976]. The error bars were estimated from the stan-
dard variation of four times measurement results on one batch
of sample.
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Table 3.2 Atomic coordinates and refined site occu-
pancies for GdFe2Zn20 and GdRu2Zn20;
each of the unique crystallographic sites
were refined individually.

Atom Site Occupancy x y z

GdFe2Zn20

Gd 8a 1.013(12) 0.125 0.125 0.125
Fe 16b 1.01(2) 0.5 0.5 0.5
Zn1 96g 0.993(7) 0.0587(1) 0.0587(1) 0.3266(1)
Zn2 48f 0.997(9) 0.4893(1) 0.1250 0.1250
Zn3 16c 1.006(18) 0 0 0

GdRu2Zn20

Gd 8a 1.026(9) 0.125 0.125 0.125
Ru 16b 1.030(11) 0.5 0.5 0.5
Zn1 96g 0.988(5) 0.0589(1) 0.0589(1) 0.3260(1)
Zn2 48f 1.000(8) 0.4888(1) 0.1250 0.1250
Zn3 16c 0.962(15) 0 0 0
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CHAPTER 4. Experiment methods

4.1 Crystal Growth

Although polycrystalline samples can be used for preliminary measurements of the thermo-

dynamic and transport properties of novel materials, high quality, single crystals are essential

for any detailed analysis. The measurements on the single crystal materials can easily provide

the anisotropic information about the magnetic properties and electronic structure. Whereas

in polycrystalline materials, the random orientation of the microscopic grains can average out

any anisotropies in their properties. In addition, the quality of single crystals is generally su-

perior to polycrystalline materials, since the polycrystalline materials possess grain boundaries

at which impurities are often present.

Numerous techniques are presently employed for the growth of single crystals. Reviews of

many of these methods, including the Czochralski, Bridgeman and zone refining methods, can

be found in ref. [Pamplin, 1980] and the references therein. However, most of these method

require the composition of the melt to be equal or close to the desired product, which constrains

these methods to the synthesis of only congruently or near-congruently melting compounds.

Furthermore, the starting components must be heated above the melting temperature of the

target compound, which may easily be above the working range of available furnaces and

crucibles. Finally, the vapor pressures of the constituent elements may be appreciable at these

high temperatures.

One of the most versatile methods for growing single crystals which avoids many of the

above problems, is growth from high-temperature solutions, also known as flux growth. (see

[Fisk and Remeika, 1989, Canfield and Fisk, 1992, Canfield and Fisher, 2001]) At high tem-

perature, all of the constituent elements are dissolved in the flux. As the temperature of
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the melt decreases, the solubility of the target compounds decreases, forcing the desired com-

pound to precipitate (crystallize) out of the solution. One simple example of flux growth is the

growth of binary intermetallic compounds from a ‘self-flux’, for which a binary phase diagram

of the constituent elements presents as a very useful tool to determine the growth temperature

and concentrations. The growth of NdSb2 single crystals from Sb flux presents as a detailed

example [Myers, 1999]. The growth of ternary compounds is similar to the growth of binary

compounds. However, because the ternary phase diagram of the constituent elements is usually

absent, the growth attempt is typically based on an analysis of the binary phase diagrams of the

constituent elements, as well as on trial-and-error initial growths. As examples, more details

for the growth of ternary RAgSb2 and RAgGe compounds can be found in ref. [Myers, 1999]

and [Morosan, 2005] respectively.

Figure 4.1 Binary phase diagram of (a) Gd - Zn, (b) Fe - Zn.

The very Zn rich composition of the RT2Zn20 compounds and the low melting temperature

of Zn (420 ◦C) motivated us to grow the single crystals from excess Zn. With an absence of

the information about the ternary R-T-Zn systems, the analysis of the binary phase diagrams

of the constituent elements helps us to make informed guesses for the initial growth concentra-

tions and the temperatures. In order to illustrate the details of these growths, the growth of

GdFe2Zn20 single crystals is chosen as an example. Figure 4.1 shows the binary phase diagrams
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for Fe-Zn and Gd-Zn. Both of them show the melting point of Zn as the lowest eutectic point.

Also, at 1000 ◦C, the Fe and Gd can be dissolved into Zn at 20% and 5% levels respectively.

This analysis indicates that Zn is potentially viable for growing GdFe2Zn20. However, zinc was

not considered as an ideal flux due to its relative high vapor pressure. At 1000 ◦C, the vapor

pressure of zinc is higher than one atm, which would cause liquid zinc boil out in a container

open to air. If zinc is sealed in a small quartz ampule, the ampule will be damaged by the

pressure inside when the temperature is above 1150 ◦C since the quartz starts to be soften.

As shown below, taking the high vapor pressure of zinc into account, we employed several

strategies to mitigate vapor pressure related problems.

Figure 4.2 (a): Temperature profile for the growth of single crystals of
RFe2Zn20 from Zn flux. At about 90 hours, the ampule is re-
moved from the furnace and the remaining flux is decanted from
the crystallized material. (b): diagram of the ampule used for
crystal growth.

High purity, constituent elements with the concentration Gd:Fe:Zn = 2: 4: 96 were placed

inside a 2 ml alumina crucible, called the ‘growth crucible’ [Fig. 4.2 (b)]. Another crucible,

called the ‘catch crucible’, is filled about two-third full with quartz wool and placed, inverted,

on top of the growth crucible. The crucibles were subsequently sealed in a quartz ampule under

approximately 1/3 atmosphere of high purity argon. (This partial-pressure of argon produced a

pressure larger than one atmosphere at 1000 ◦C and helped to reduce the migration of Zn out of
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the growth crucible.) The quartz ampule was elevated in the furnace by about one inch to make

the top of the ampule closer to the heating elements, which produced a temperature gradient

from the top to the bottom. Such a temperature gradient helps make the zinc vapor liquefy

inside the growth crucible other than out of the crucible during the cooling down process and

therefore helps to reduce the zinc loss. The ampule was then heated up to 1000 ◦C, and slowly

cooled down to 600 ◦C, at which point the remaining liquid was decanted from the growth

crucible. This was done by quickly removing the ampule from the furnace and inserting it,

inverted, into a centrifuge. During the spin, the quartz wool in the catch crucible acted as a

strainer allowing the excess flux to flow to the bottom of the catch where is solidified, and held

separate any crystals that may have detached from the growth crucible.

It is worth noticing though, that for the local moments bearing members (R = Gd - Tm)

in Fe series, single crystals obtained from different ratios of starting element concentrations

manifest detectably different magnetic ordering temperatures. These differences, tentatively

associated with very subtle variations of element occupancy on the crystallographic sites, are

related to an extremely sensitivity to the small disorder for compounds with such a strongly

correlated conduction electron background. A detail discussion of this is presented in Appendix

A.

Similar procedures were used for growing other RT2Zn20 compounds with the transition

metal elements other than iron. For the T = Ru, Rh, Os or Ir, based on the analysis of the

respective binary phase diagrams with Zn, and the results of initial growth attempts, we found

that their solubility into Zn was much less than those of Fe and Co. Therefore, the growths of

these compounds were made with lower transition metal concentrations. For R not equaling

Yb, the initial concentration of starting elements (R:T:Zn) were 2: 4: 96 (T = Fe and Co), 1:

2: 97 (T = Ru, Rh), 1: 0.5: 98.5 (T = Os), and 0.75: 1.5: 97.75 (T = Ir). For R equaling Yb,

the initial concentration of Yb:T:Zn were 2: 4: 96 (T = Fe and Co), 2: 2: 96 (T = Ru, Rh),

1: 0.5: 98.5 (T = Os), and 0.75: 1.5: 97.75 (T = Ir). The ampules were heated up to 1000 ◦C

(T = Fe and Co), 1150 ◦C (T = Ru), 1100 ◦C (T = Rh), 1150 ◦C (T = Os and Ir), and cooled

down to 600 ◦C, 850 ◦C, 700 ◦C, 750 ◦C respectively, at which point the remaining liquid was
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Figure 4.3 Single crystal of YFe2Zn20, with approximate dimensions
1 × 1 × 1 cm3.

decanted. The cooling rates were 5 ◦C/hr (T = Fe, Co, Ru, Rh), 4 ◦C/hr (T = Os), and 2.5

◦C/hr (T = Ir).

Growths such as these often had only 2–3 nucleation sites per crucible and yielded crystals

with typical dimensions of 7 × 7 × 7 mm3 (Fig. 4.3) or larger except for the Os compounds,

which were significantly smaller (1–2 mm on one side). Residual flux and/or oxide slag on the

crystal surfaces was removed by using diluted acid (0.5 vol. % HCl in H2O for T = Fe, Co or

1 vol. % acetic acid in H2O for T = Ru, Rh, Os and Ir), submerged in an ultrasonic bath.

4.2 Measurement methods

4.2.1 X-ray diffraction measurements

4.2.1.1 Powder X-ray diffraction measurements

Powder X-ray diffraction patterns were taken at room temperature in a Rigaku Miniflex

powder diffractometer on pulverized single crystals to verify whether any impurity phases were

present in the samples and to determine the unit cell dimensions. A conventional tube source

was used to obtain the patterns in flat plate geometry using Cu Kα radiation. In order to
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reduce the measurements errors of the unit cell dimensions, silicon powder (a = 5.43088 Å)

was added to the pulverized samples and used as an internal standard. The mixed powder

was then attached on the low background, silicon (510) crystal holders. Typical measurements

consisted of scans of 2θ from 20◦ to 90◦, data being recorded every 0.01◦. The collected data

was subsequently analyzed using the Rietica, Rietveld refinement program.

4.2.1.2 Single Crystal X-ray diffraction measurements

Room temperature, single crystal X-ray analysis were performed by collaborators on se-

lected RT2Zn20 compounds by employing a STOE image plate diffractometer with Mo Kα radi-

ation and using the supplied STOE software [Stoe, 2002]. The data were adjusted for Lorentz

and polarization effects, and a numerical absorption correction was preformed. The struc-

tural solutions were refined by full-matrix least-squares refinement using Bruker SHELXTL

6.1 software package [Sheldrick and SHELXTL, 2000]. The atomic disorder in the crystals

was checked by refining site occupancies.

4.2.2 Magnetization measurement

Magnetic measurements were performed in a Quantum Design Magnetic Properties Mea-

surement System (MPMS) with superconducting quantum interface device (SQUID) magne-

tometers in applied field ≤ 55 kOe or 70 kOe and in the temperature range from 1.85 K to

375 K. Additional magnetization measurements under hydrostatic pressure were preformed

in a piston-cylinder clamp-type pressure cell, made out of non-magnetic Ni-Co alloy MP35N,

in the SQUID magnetometers. Pressure was generated in a Teflon capsule filled with 50:50

mixture of n-pentane and mineral oil. The pressure dependent, superconducting transition

temperature of 6-N purity Pb was employed to determine the pressure at low temperatures

[Eiling and Schilling, 1981]. The pressure cell design allows for the routine establishment of

pressures in excess of 8 kbar at low temperatures [Bud’ko et al., 2005].

In general, when making magnetization measurements on FM samples, some attention

must be paid to the effects of demagnetizing fields [Chikazumi and Graham, 1997]. However,
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this correction is small in the case of RT2Zn20 because of the diluted nature of the magnetic

moments. For example, in GdT2Zn20 compounds, considering that the magnetization is mainly

from the eight Gd3+ ions per unit cell, one estimates the maximum demagnetizing field as:

Dm = 4π
8 × 7 μB

(14 Å)3
= 2380 Oe. (4.1)

Experimentally, in the measurements of magnetization isotherms near TC to create Arrott

plots [Arrott, 1957] to be used in the determination of TC, the demagnetizing field can introduce

an error in this determination for plate-like shaped samples. To avoid this error, rod-like

samples were measured with the magnetic field applied along their long axis. This minimized

the demagnetization factor and thereby the demagnetizing field.

4.2.3 Resistivity measurement

Measurements of the electrical resistivity were made by using a standard AC, four-probe

technique. The samples were cut as bars, which typically had lengths of 2–3 mm, parallel to

the crystallographic [110] direction. Platinum wires were attached to the bars with Epotek

H20E silver epoxy, and cured at 120 ◦C for ∼ 50 minutes. In order to decrease the contact

resistances (most likely come from some remained epoxy), ∼ 100 mA current flowed though

the contacts to heat and vaporize the epoxy. Then the typical contact resistances were between

1 and 2 ohms. AC electrical resistivity measurements were taken on these bars with f = 16

Hz, I = 0.5–0.3 mA in Quantum Design Physical Properties Measurement System, PPMS-14

and PPMS-9 instrument (T = 1.85–310 K). The He-3 option of the Quantum Design PPMS-

14 and PPMS-9 units allowed us to extend the transport measurements down to T = 0.4 K

when necessary. For the six Yb compounds, (YbT2Zn20, T = Fe, Co, Ru, Rh, Os and Ir),

additional transport data (AC and/or triangular wave current) were taken for T down to 20

mK at the National High Magnetic Field Laboratory, Tallahassee, FL, using an Oxford dilution

refrigerator.
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4.2.4 Specific heat measurement

Temperature dependent specific heat measurements were performed using the heat capacity

option of the Quantum Design PPMS-14 and PPMS-9 instruments. Specific heat data was often

collected for temperature down to 2 K, but in some cases the He-3 option of the PPMS systems

was used to reach ∼ 0.4 K. A relaxation technique was used for the specific heat measurements,

in which the sample was brifly heated and then allowed to cool. The thermal response of the

samples was then fit over the entire temperature response using a model that accounts for the

thermal relaxation of both the sample and the sample platform. The samples were attached to

the heat capacity platform with Apiezon N grease. The thermal response of the platform and

grease was measured separately for the appropriate field and temperature ranges, to allow for

the subtraction of this component from the final measurement. For YbCo2Zn20, the specific

heat data for 50 mK≤ T ≤2 K were taken in a dilution refrigerator insert for the Quantum

Design PPMS system at Quantum Design Incorporated in San Diego.
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CHAPTER 5. Nearly ferromagnetic Fermi-liquid behavior in YFe2Zn20

and high-temperature ferromagnetism of GdFe2Zn20
∗

5.1 Introduction

The field of condensed-matter physics has been interested in the effects of electron corre-

lations from its inception [Moriya, 1985]. To this day, the properties of elemental Fe as well

as Pd continue to present problems that interest both experimentalists as well as theorists

[B Zellermann and Voitländer, 2004, Larson et al., 2004]. Materials such as Pd or Pt, that are

just under the Stoner limit (often referred to as NFFL), or materials just over the Stoner limit,

such as ZrZn2 or Sc3In on the ferromagnetic side, are of particular interest due their strongly

correlated electronic behaviors [Moriya, 1985]. Of even greater interest are new examples of

NFFLs that can be tuned with a greater degree of ease than the pure elements: that is, those

that can accommodate controlled substitutions on a number of unique crystallographic sites

in a manner that allows for (1) a tuning of the band filling/Fermi surface and (2) the in-

troduction of local-moment-bearing ions onto a unique crystallographic site. Such a versatile

system would open the field to a greater range of experimental studies of strongly correlated

electronic states as well as potentially allowing for more detailed studies of quantum criticality

and possibly even novel superconducting states.

In this chapter, I present the first results of an extensive study of the dilute, rare-earth-

bearing, intermetallic compounds RT2Zn20 (R = rare earth and T = transition metal in the

Fe, Co and Ni columns of the periodic table). For these series of compounds, although the

crystallography of this series was well detailed, so far, there have been no measurements of
∗after “Nearly ferromagnetic Fermi-liquid behaviour in YFe2Zn20 and high-temperature ferromagnetism of

GdFe2Zn20”, S. Jia, S. L. Bud’ko, G. D. Samolyuk and P. C. Canfield, Nat. Phys. 3 334-338 (2007).
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Figure 5.1 Temperature-dependent specific heat (blue), resistivity (red)
and low-field (H = 1000 Oe) magnetization divided by applied
field (black) for GdFe2Zn20 (a) and GdCo2Zn20 (b).

these compounds’ physical properties. This, to some extent, is not unexpected because the

limited data sets available on the isostructural RT2Al20 compounds indicated very low magnetic

ordering temperatures, consistent with the very low R concentrations [Thiede et al., 1998,

Moze et al., 1998]. In particular, I will focus on the magnetic properties of YFe2Zn20 and

GdFe2Zn20, as well as their Co analogues. I will show how YFe2Zn20 is an archetypical example

of a NFFL and how, by embedding Gd ions into this highly polarizable medium, GdFe2Zn20 has

a remarkably high ferromagnetic ordering temperature (TC) of 86 K, even though it contains

less than 5% atomic Gd and the Fe is not moment-bearing in the paramagnetic state.

5.2 Results and analysis

Figures 5.1 and 5.2 show temperature-dependent low-field magnetization, electrical resis-

tivity and specific heat data, as well as anisotropic M(H) data, for GdFe2Zn20 and GdCo2Zn20.

There are two conspicuous differences between the physical properties of these compounds: (1)

GdFe2Zn20 orders ferromagnetically, whereas GdCo2Zn20 orders antiferromagnetically and (2)

GeFe2Zn20 orders at a remarkably high temperature of TC = 86 K, whereas GdCo2Zn20 orders

at the more representative TN = 5.7 K. From Fig. 5.2 a, the high-temperature Curie constant

can be determined, giving effective moments (7.9μB and 8.2μB for T = Fe and T = Co re-
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Figure 5.2 Magnetic properties of GdFe2Zn20 and GdCo2Zn20: (a) H/M

as a function of temperature, (b) low temperature isothermal
along three principle axises of cubic structure.

spectively) consistent with the effective moment of the Hund’s rule ground state of Gd3+ ion

(7.94μB), indicating that, in the paramagnetic state, there is little or no contribution from the

transition metal. The saturated moment deduced from the data in Fig. 5.2 b is close to that

associated with Gd3+ (7μB); slightly lower for GdFe2Zn20 and slightly higher for GdCo2Zn20.

To better understand this conspicuous difference in ordering temperatures, band-structure

calculations were carried out by G. Samolyuk. Figure 5.3 shows the density of states as

a function of energy for both LuFe2Zn20 and LuCo2Zn20. The upper curve in each panel

shows the total density of states, whereas the lower curve shows the partial density of states

associated with the transition metal. It should be noted that the difference between LuFe2Zn20

and LuCo2Zn20 density of states can be rationalized in terms of the rigid band approximation,

with the Fermi level for LuCo2Zn20 being 0.3 eV higher than that for LuFe2Zn20, associated

with the two extra electrons per formula unit. As will be shown in Chapter 6, calculations done

on YFe2Zn20 and GdFe2Zn20 as well as on YCo2Zn20 and GdCo2Zn20 lead to similar density

of states curves and further analysis of the GdFe2Zn20 and GdCo2Zn20 band-structural results

leads to the prediction that for GdFe2Zn20 the ground state will be ferromagnetic(FM) with a

total saturated moment of approximately 6.5μB (with a small induced moment on Fe opposing
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Figure 5.3 Density of states as a function of energy for LuFe2Zn20 and
LuCo2Zn20: the upper curve shows total density, whereas the
lower curve shows the partial density of states associated with
Fe or Co.

the Gd moment) and for GdCo2Zn20 the saturated moment will be 7.25μB (with practically

no induced moment on Co). These results are consistent with the saturated values of the

magnetization seen in Fig. 5.2 (b).

These calculations indicate that the RFe2Zn20 compounds should manifest a higher elec-

tronic density of states at the Fermi level, N(EF ), than the RCo2Zn20 analogues and raise

the question of whether or not this is the primary reason for the remarkably high TC found

for GdFe2Zn20. In addition, they raise the question of how correlated the electronic state

is in these nominally nonmagnetic, Lu- and Y-based analogues. To address these questions,

two substitutional series were grown: Y(FexCo1−x)2Zn20 and Gd(FexCo1−x)2Zn20. In order to

check x, Energy Dispersive Spectra (EDS) measurements, a direct method to determine the

elements concentrations, and powder X-ray diffraction measurements were employed. Figure

5.4 presents EDS measurement results for the Gd series, and the lattice constants for both se-

ries. The linear variation of lattice constants with x for both series is compliant with Vegard’s

law, which is consistent with the results of EDS. Due to these results, the nominal x value is

used from this point onward.



56

Figure 5.4 Lattice constants of the series of Gd(FexCo1−x)2Zn20 (open cir-
cle) and Y(FexCo1−x)2Zn20 (solid triangle). Fe concentration
of Gd(FexCo1−x)2Zn20 series inferred from EDS measurements
(solid square).

Figure 5.5 (a)Temperature-dependent magnetic susceptibility and (b) low
temperature specific heat (plotted as Cp/T versus T 2) for
Y(FexCo1−x)2Zn20.
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Figure 5.6 (a): M/H of Gd(FexCo1−x)2Zn20 series versus temperature for
x = 1.00, 0.88, 0.75, 0.50, 0.25 and 0 from right to left. Note
data from two samples of x = 0.88 are shown. (b): Low tem-
perature (T = 1.85 K) magnetization versus applied field for
the series of Gd(FexCo1−x)2Zn20.

Figure 5.5 shows thermodynamic data taken on the Y(FexCo1−x)2Zn20 series. For x = 0,

the low-temperature, linear component of the specific heat (γ) is relatively small (19 mJ

mol−1K−2) and the susceptibility is weakly paramagnetic and essentially temperature inde-

pendent. As x is increased, there is a monotonic (but clearly super-linear) increase in the

samples paramagnetism as well as, for larger x values, an increase in the low-temperature γ

values. For YFe2Zn20 (x = 1), the value of γ has increased to over 250% of that for YCo2Zn20

and the susceptibility has become both large and temperature dependent.

Figure 5.6 shows the temperature-dependent low-field magnetization as well as low tem-

perature magnetization isotherms for Gd(FexCo1−x)2Zn20. For x ≥ 0.25, the ground state

becomes FM and the transition temperature increases monotonically (but again in a super-

linear fashion) with increasing x. The high-field, saturated magnetization decreases weakly, in

a monotonic fashion with increasing x. For x = 0.25, the magnetization is not a typical FM

one: the saturation appears ∼ 10 kOe, much larger than the estimated, maximum demagne-

tizing field. Such anomaly may indicate the existence of an antiferromagnetic component to

the long range order for 0 < x ≤ 0.25.
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Figure 5.7 Linear coefficient of the specific heat, γ, magnetic susceptibility
at based temperature (after core diamagnetism correction, sub-
tracting −2.3 × 10−4emu/mol) [Mulay and Boudreaux, 1976],
and Stoner enhancement factor, Z, as a function of x for
Y(FexCo1−x)2Zn20.

5.3 Discussion

Figures 5.7 and 5.8 demonstrate a clear correlation between x, the linear component of

the electronic specific heat, the enhanced magnetic susceptibility of the Y-based series and

the magnetic ordering temperature and the saturated magnetization of the Gd-based series.

This correlation can be more clearly seen if the relation between the linear component of

the specific heat and the low-temperature susceptibility of the Y-based series is placed in

the context of a NFFL: that is, if the Stoner enhancement parameter, Z, for each member

of the series can be determined [Ziman, 1979]. For such systems, the static susceptibility

[corrected for the core diamagnetism [Mulay and Boudreaux, 1976]] is χ = χ0/(1 − Z), where

χ0 = μBN(EF ) (see Eqn. 6.1 from Chapter 6). Given that the linear component of the

specific heat is given by χ0 = (πkB)2N(EF )/3, if both the low-temperature specific heat

and magnetic susceptibility can be measured, then the parameter Z can be deduced [Z =

1−(3μ2
B)/π2k2

B)(γ0/χ0)], where kB and μB are the Boltzmann constant and the Bohr magneton
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Figure 5.8 Magnetic ordering temperature for Gd(FexCo1−x)2Zn20 as a
function of x. Note that data from two samples of x = 0.88
are shown. Inset:saturated moment as a function of x.

respectively. The canonical example of such a system is elemental Pd for which, using data from

ref. [Knapp and Jones, 1972, B Zellermann and Voitländer, 2004], Z = 0.83. For YFe2Zn20,

Z = 0.89, a value that places it even closer to the Stoner limit than Pd. It should be noted

that the temperature-dependent susceptibility of YFe2Zn20 is also remarkably similar to that

of Pd [see ref. [B Zellermann and Voitländer, 2004] and references therein]. (Detail analysis

on the magnetic properties of YFe2Zn20 as well as LuFe2Zn20 will be presented in Chapter 8.)

The x dependence of the experimentally determined values of γ and χ(T = 0), as well as the

inferred value of Z, for the Y(FexCo1−x)2Zn20 series is plotted in Fig. 5.7. By choosing x,

Y(FexCo1−x)2Zn20 can be tuned from being exceptionally close to the Stoner limit to being well

removed from it. Corrections to these inferred Z values coming from the difference between

the measured electronic specific heat coefficient, γ, and the Sommerfeld coefficient, γ0, where

γ = γ0(1 + λ) only serves to slightly increase Z because λ, the electron mass enhancement

parameter, is positive definite. By comparing the γ0 inferred from the band structure to our
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measured values of γ, we can estimate λ = 0.85 and 0.22 for x = 1 and x = 0 respectively, and

this shifts Z to 0.94 for YFe2Zn20 and to 0.50 for YCo2Zn20.

When the non-magnetic Y ion is replaced by the large Heisenberg moment associated with

the S = 7/2 Gd3+ ion, as x is varied from zero to one in the Gd(FexCo1−x)2Zn20 series, the

Gd local moments will be in an increasingly polarizable matrix, one that is becoming a nearly

ferromagnetic Fermi liquid. This results in an increasingly strong coupling between the Gd

local moments as x is increased. Figure 5.8 shows the x dependence of magnetic ordering

temperature Tmag and μsat for the Gd(FexCo1−x)2Zn20. The value of Tmag increases in a

monotonic but highly nonlinear fashion in a manner reminiscent of the behavior associated

with the increasingly polarizability of Y(FexCo1−x)2Zn20 seen in Fig. 5.7. The saturated

moment extracted from the magnetization values, under 55 kOe applied field along the [111]

crystallographic direction, varies monotonically from the slightly enhanced value of 7.3 μB for

GdCo2Zn20 to the slightly deficient value of 6.5 μB for GdFe2Zn20.

One consequence of placing Gd ions into a matrix so close to the Stoner limit is an enhanced

sensitivity to small sample-to-sample variations. This is most clearly illustrated by the data for

the Gd(Fe0.88Co0.12)2Zn20 samples shown in Fig. 5.6 and 5.8. Although the samples have the

same nominal composition, there is a clear difference in their transition temperatures. However,

this difference is not too significant given the large dTC/dx slope seen in Fig. 5.8. On the

other hand, measurements on four separate samples of Gd(Fe0.25Co0.75)2Zn20 did not show

any significant variations in TC. Such sensitivity to the small disorder is not uncommon for

the strongly correlated electronic system, particularly for the ones close to the Stoner criteria.

For example, the different samples of ZrZn2, the canonical example of weak ferromagnet,

manifest ∼ 10% difference in their TC [see ref. [Seeger et al., 1995, Pfleiderer et al., 2001,

Yelland et al., 2005]].

5.4 Conclusion and Summary

YFe2Zn20 is archetypical example of a NFFL with a Stoner enhancement factors of Z ∼
0.88. The anomalously high FM ordering temperature (TC = 86 K) of GdFe2Zn20 can be
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understood as a result of embedding large, Heisenberg type moments associated with Gd3+

ions in this highly polarizable medium. In contrast, YCo2Zn20 manifests non-correlated, normal

metal behaviors and GdCo2Zn20 orders antiferromagnetically at TN = 5.7 K. By tuning the

band filling, the conduction electronic background of Y(FexCo1−x)2Zn20 can be tuned from the

edge of the Stoner limit to being well removed from it and the magnetic ordering temperature

of Gd(FexCo1−x)2Zn20 drops with a monotonic but highly nonlinear fashion.

The broader RT2Zn20 family of compounds offers an even larger phase space for the study

of correlated electron physics (for T = Fe and Ru as well as for R = Yb and Ce) and for the

study of local moment physics, all in the limit of a dilute, rare-earth-bearing, intermetallic

series. In this work , we study the local moment physics and the correlated electronic behavior

associated with the transition metal for T = Fe and Ru as well as R = Gd - Tm in the following

chapters. We will also study the effects of titrating very dilute local moments into a NFFL

by tuning the Gd3+ concentration in GdxY1−xFe2Zn20. Finally, the study of the correlated

electron physics associated with specific 4f electronic configuration (R = Yb) will be presented.
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CHAPTER 6. Variation of the magnetic ordering in GdT2Zn20 (T= Fe,

Ru, Os, Co, Rh and Ir) and its correlation with the electronic structure of

isostructural YT2Zn20
∗

6.1 Introduction

Magnetism of rare earth intermetallics, determined by the interaction between 4f local

moments and conduction electrons, especially the d-band conduction electrons of transition

metals, has been of interest to physicists for several decades [Franse and Radwanski, 1993,

Szytula and Leciejewicz, 1994]. As shown in Chapter 5, initial studies of the dilute, rare earth

bearing, intermetallic compounds, RT2Zn20 (R = rare earth, T = transition metal in Fe, Co or

neighboring groups), revealed varied, exotic magnetic properties. YFe2Zn20 is an archetypical

example of a NFFL with a Stoner enhancement factor of Z = 0.88 (where χT=0 = χPauli/(1−
Z)). By embedding large, Heisenberg type moments associated with Gd3+ ions in this highly

polarizable medium, GdFe2Zn20 manifests highly enhanced ferromagnetic (FM) order. On the

other hand, GdCo2Zn20 manifests ordinary, low temperature, antiferromagnetic (AFM) order

(TN = 5.7 K), correspondent to the ‘normal metal’ behavior of the conduction electron host,

YCo2Zn20.

In rare earth containing series of intermetallic compounds, R = Gd members give the clear-

est indication of the strength and sign of the magnetic interaction, without any complications

associated with crystalline electric field splitting of the Hund’s rule ground state multiplet. In

order to better understand the RT2Zn20 series of compounds, in this paper we examine the

thermodynamic and transport properties of six GdT2Zn20 (T = Fe, Ru, Os, Co, Rh and Ir)
∗after “Variation of the magnetic ordering in GdT2Zn20 (T= Fe, Ru, Os, Co, Rh and Ir) and its correlation

with the electronic structure of isostructural YT2Zn20”, S. Jia, N. Ni, G. D. Samolyuk, A. Safa-Sefat, K. Dennis,
Hyunjin Ko, G. J. Miller, S. L. Bud’ko, P. C. Canfield, Phys. Rev. B 77 104408-14 (2008).
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compounds as well as their R = Y analogues. We found FM transitions in the iron column

members (with enhanced TC values for T = Fe and Ru) and low temperature, AFM transi-

tions in the cobalt column members. Consistent with these results, we also found enhanced

paramagnetism in the T = Fe and Ru of YT2Zn20 analogues. For GdFe2Zn20 and GdRu2Zn20,

magnetization measurements under hydrostatic pressure indicated that their enhanced FM

transitions are not primarily associated with a steric effect. A model of Heisenberg moments

embedded in a NFFL can be proposed as a way to understand the enhanced FM transitions.

Band structure calculations were employed to explain that the remarkable differences in mag-

netic ordering for different transition metal members are a result of different d-band filling.

6.2 Results and analysis

6.2.1 GdT2Zn20(T = Fe, Co, Ru, Rh, Os and Ir)

Before discussing each of the GdT2Zn20 compounds separately, an overview of their temper-

ature and field dependent magnetization serves as a useful point of orientation. In Fig. 6.1 the

temperature dependent magnetization (M) divided by applied field (H) reveals the primary

difference between the Fe column members of this family and the Co column members. For

T = Fe, Ru and Os there is an apparent FM ordering (with remarkably high and moderately

high values of TC for T = Fe and Ru respectively), whereas for T = Co, Rh and Ir there is an

apparent, low temperature AFM ordering.

The nature of the ordering is further confirmed by the low temperature, magnetization

isotherms presented in Fig. 6.2. It should be noted that for each of the six GdT2Zn20 com-

pounds, the 1.85 K magnetization isotherms, measured with the applied field along [100], [110],

[111] crystallographic directions, were found to be isotropic to within less than 5 %. This mag-

netic isotropy is not unexpected in the Gd-based intermetallics, in which the magnetism is

mainly due to the pure spin contribution of the 4f shell of Gd3+. For T = Fe, Ru and Os

the magnetization is representative of a FM-ordered state with a rapid rise and saturation

of the ordered moment in a field of the order of the estimated demagnetizing field (magnetic

domain wall pinning being low in these single crystalline samples). For T = Co, Rh and Ir the
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Figure 6.1 Temperature dependent magnetization of GdT2Zn20, divided
by applied field H = 1000 Oe.
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Figure 6.2 Field dependent magnetization of GdT2Zn20 at 1.85 K.
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Figure 6.3 Applied field (H = 1000 Oe) divided by the magnetizations of
GdT2Zn20 as a function of temperature. The solid line repre-
sents the high-temperature CW fit for GdFe2Zn20.

field dependent magnetization data are consistent with AFM-ordered states that can be field

stabilized to fully saturated states in large enough applied fields. This fully saturated state

is observed for GdCo2Zn20 associated with a spin-flop transition near H = 31 kOe, whereas

the maximum magnetic field in the equipment used (55 kOe) could not saturate the magnetic

moment of the GdRh2Zn20 and GdIr2Zn20 samples. The field that can saturate the magnetic

moment of Gd3+ ions was estimated as 95 kOe and 75 kOe for GdRh2Zn20 and GdIr2Zn20

respectively, from the linear extrapolations of their M(H) data. These saturating field values

are proportional to the values of their paramagnetic Curie temperature, θC (Table 6.1), which

is not unexpected in the view of the molecular field approximation. The measured saturated

moments for T = Fe, Ru, Os and Co samples are clustered around the Hund’s rule ground

state value of Gd3+, 7 μB.

Figure 6.3 presents temperature dependent H/M data for the six Gd based compounds.

For this low magnetic field, H/M approximately equals inverse susceptibility [1/χ(T )] in the
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paramagnetic state. Except for GdFe2Zn20, the data sets of 1/χ(T ) of these compounds are

essentially linear and parallel to each other over the whole temperature range of the param-

agnetic state, manifesting Curie-Weiss (CW) behavior, χ(T ) = C/(T − θC), where C is Curie

constant and θC is paramagnetic Curie temperature. The same C value is extracted from the

parallel lines gives the same effective moments(μeff � 8 μB), close to the value of Hund’s

rule ground state of Gd3+(7.94 μB), without any apparent contribution from local moments

associated with the transition metal. This is consistent with the low temperature saturated

moments, being close to the theoretical value, μsat = 7 μB (Fig. 6.2). In contrast, 1/χ(T ) of

GdFe2Zn20 obeys a simple CW law only above ∼ 200 K and evidently deviates from it at lower

temperatures (see discussion below). Nevertheless, its high-temperature CW behavior yields

a μeff value close to the others. The sign of the θC values is consistent with their magnetic

ordering type, except for GdCo2Zn20, which manifests AFM order but a positive, albeit small,

θC (Table 6.1). This anomalous θC value for GdCo2Zn20 leads to a much larger susceptibility

near the Néel temperature, TN, than T = Rh and Ir members (Fig. 6.1).

GdFe2Zn20 is the most conspicuously anomalous in its behavior. Figure 6.4 presents a blow

up of the low field M/H data as well as the results of measurements of temperature dependent

specific heat (Cp) and electrical resistivity (ρ) in zero applied magnetic field. The specific heat

data manifest a clear anomaly at TC = 85 ± 1 K [inset of Fig. 6.4(b)]. The resistivity data,

although collected from a sample from different batch, show a clear break in slope (or maximum

in dρ/dT ) at TC = 84 ± 2 K. Determination of the ordering temperature from magnetization

data requires a more detailed analysis. Figure 6.5 presents a plot of M2 versus H/M [an Arrott

plot[Arrott, 1957]] from data collected on the same batch of sample used for Cp in the vicinity

of TC. The isotherm that most closely goes linearly through the origin is the one closest to

TC, giving a value 88 K. All of these measurements are consistent with transition temperature

near 86 K. It should be noted though, that TC values for different batch of samples can vary by

as much as ±3 K, even though the single-crystal X-ray measurements do not suggest evident

crystallographic difference.

GdRu2Zn20 also manifests a relatively high FM ordering temperature (Figs. 6.1, 6.2 and
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Figure 6.4 (a) Temperature dependent magnetization (M) of GdFe2Zn20

divided by applied field (H = 1000 Oe); (b) specific heat
(Cp); (c) resistivity (ρ)and its derivative respect to tempera-
ture (dρ/dT ). Inset in (b): detail of Cp data near TC. Inset in
(c) ρ over whole temperature range, 2 K - 300 K.
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Figure 6.5 Arrott plot for GdFe2Zn20.

6.6 a). Figures 6.6(b, c) present temperature dependent specific heat and electrical resistivity

measurements on GdRu2Zn20 in zero applied magnetic fields, both of which show clear evidence

of ordering with TC = 20 ± 1 K. Figure 6.7 shows that, similar to GdFe2Zn20, the TC of

GdRu2Zn20 can be inferred from an Arrott plot analysis. These measurements were performed

on samples from the same batch and the different methods for determining TC agree to within

±1 K.

GdOs2Zn20 appears to order ferromagnetically (Figs. 6.1, 6.2 and 6.8 a)at a TC value

as low as the Néel temperatures found for the Co column members of the GdT2Zn20 family

(see below). As shown in Fig. 6.8(b) and (c), the specific heat and resistivity data manifest

features consistent with a magnetic phase transition near 4 K. However, the Cp data, with a

broad shoulder above this temperature, does not manifest a standard λ-type of feature and may

indicate a distribution of TC values or multiple transitions. The Arrott plot for GdOs2Zn20,

although having non-linear, isothermal curves, is also consistent with a FM transition between

4 K and 4.5 K (Fig. 6.9). Such a non-linear feature in the isothermal curves is also found

in ref. [Brommer and Franse, 1990, Yeung et al., 1986], and may be associated with complex
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Figure 6.6 (a) Temperature dependent M/H for GdRu2Zn20

(H = 1000 Oe); (b) Cp; (c) ρ and dρ/dT . Inset in (c):
ρ over whole temperature range.
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Figure 6.7 Arrott plot for GdRu2Zn20.

magnetic phenomenon in the critical region, rather than one simple, clearly defined, Landau

type, 2nd order phase transition.

In contrast to the Fe column compounds, the Co column compounds all appear to or-

der antiferromagnetically with the values of TN between 4 and 7 K. Figures 6.10, 6.11 and

6.12 present the low temperature magnetic susceptibility, specific heat and electrical resistiv-

ity data for GdCo2Zn20, GdRh2Zn20 and GdIr2Zn20 respectively. In addition to these data,

d(χ(T )T )/dT [Fisher, 1962] and dρ/dT [Fisher and Langer, 1968] have been added to the sus-

ceptibility and resistivity plots respectively. GdCo2Zn20 and GdRh2Zn20 manifest clear λ-type

anomalies in their temperature dependent specific heat, with similar features appearing in their

dρ/dT and d(χ(T )T )/dT data. From these thermodynamic and transport data we infer TN

of 5.7 K and 7.6 K for GdCo2Zn20 and GdRh2Zn20 respectively. GdIr2Zn20 shows a some-

what broader feature at TN = 4 K and there may be a lower temperature transition near 2 K

indicated in the magnetization data, although this is not clearly supported by corresponding

features in either specific heat or resistivity data. A summary of the thermodynamic and

transport measurements on the six GdT2Zn20 compounds is presented in Table 6.1.
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Figure 6.8 (a) Temperature dependent M/H for GdOs2Zn20 (H = 1000
Oe); (b) Cp; (c) ρ and dρ/dT . Inset in (c): ρ over whole tem-
perature range.
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Figure 6.9 Arrott plot for GdOs2Zn20. The demagnetizing field Dm can
not be ignored for this low TC, and was estimated from the
geometric factor of the sample (D ∼ 0.03).

Table 6.1 Residual resistivity ratio, RRR = R(300K)
R(2K) ; paramagnetic Curie

temperature, θC and effective moment, μeff (from the CW fit of
χ(T ) from 100 K to 300 K, except for GdFe2Zn20; see text for
details); magnetic ordering temperature, Tmag; and saturated
moment at 55 kOe along [111] direction, μsat on GdT2Zn20 com-
pounds (T = Fe, Ru, Os, Co, Rh, Ir).

T Fe Ru Os Co Rh Ir
RRR 8.1 7.6 5 12.8 12.8 15.7
θC , K 46 23 3 3 -10 -8

μeff , μB 7.9 8.2 8.1 8.2 8.0 8.1
Tmag, K 86 20 4.2 5.7 7.7 4.2, 2.41

μsat, μB 6.5 7.25 6.9 7.3
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Figure 6.10 (a) Temperature dependent susceptibility (χ) and d(χT )/dT

of GdCo2Zn20; (b) Cp; (c) ρ and dρ/dT . Inset in (c): ρ over
whole temperature range.
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Figure 6.11 (a) Temperature dependent χ and d(χT )/dT of GdRh2Zn20;
(b) Cp; (c) ρ and dρ/dT . Inset in (c): ρ over whole temperature
range.
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Figure 6.12 (a) Temperature dependent χ and d(χT )/dT of GdIr2Zn20; (b)
Cp; (c) ρ and dρ/dT . Inset in (c): ρ over whole temperature
range.
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A logical question that comes to mind when comparing TC for the Fe column members

with the lattice parameter data shown in Fig. 3.2 is whether the drop in TC as the transition

metal moves down the column is associated with a steric effect. This can be addressed exper-

imentally by measurements of TC under hydrostatic pressure. Figure 6.13 presents low field

magnetization for GdFe2Zn20 and GdRu2Zn20 under pressures up to 7 kilobar. The application

of pressure suppresses the ferromagnetically ordered state in both compounds and the pres-

sure dependence of T10% (the temperature where the magnetization equals 10% of maximum

magnetization and used as a caliper of TC) of each compound is plotted in Fig. 6.14. The fact

that both compounds manifest a suppression of TC with increasing pressure indicates that the

difference between GdFe2Zn20 and GdRu2Zn20 is not primarily a steric one. Approximating

the bulk modulus of these compounds to be a generic 1Mbar, one can estimate that GdRu2Zn20

under 10 kbar hydrostatic pressure will have its lattice parameter reduced by 0.03 Å(25% of

the difference between the lattice parameter of GdFe2Zn20 and GdCo2Zn20). If the cause of

the TC suppression was purely steric, such a change in lattice parameter should (at the very

least) result in a dramatic increase in the TC values of GdRu2Zn20 rather than the gradual

suppression observed.

6.2.2 YT2Zn20(T = Fe, Co, Ru, Rh, Os and Ir)

In order to better understand the behavior of GdFe2Zn20 and GdRu2Zn20 with respect to

the rest of the GdT2Zn20 compounds, it is useful to examine the properties of the nonmagnetic

analogues: the YT2Zn20 compounds. The temperature dependent magnetization data (divided

by applied field) and the low temperature magnetization isotherms for these six compounds are

presented in Fig. 6.15 and Fig. 6.16, respectively. YFe2Zn20 and YRu2Zn20 have a greatly and

intermediately enhanced paramagnetic signals respectively, whereas the rest of the materials

manifest ordinary weak, either paramagnetic or diamagnetic, responses, as anticipated for

non-moment bearing intermetallic compounds.

Measurements of low temperature specific heat (plotted as Cp/T versus T 2 in Fig. 6.17)

1two magnetic transitions were found
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Figure 6.13 Magnetization of (a): GdFe2Zn20 and (b): GdRu2Zn20 in ap-
plied field (H = 1000 Oe) under different hydrostatic pressure.
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Figure 6.14 Pressure dependent T10% (inferred as TC) of GdFe2Zn20 and
GdRu2Zn20. The dash lines are the linear fits of the data.

Figure 6.15 Temperature dependent magnetization of YT2Zn20 under ap-
plied field H = 50 kOe.
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Figure 6.16 Field dependent magnetization of YT2Zn20 at 1.85 K.

Figure 6.17 Low temperature specific heat of YT2Zn20.
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also indicate a clear difference between YFe2Zn20, YRu2Zn20 and the other members of the

YT2Zn20 series: enhanced values of the electronic specific heat being found for T = Fe and

Ru. As shown in Chapter 5, YFe2Zn20 can be thought of as being close to the Stoner limit.

The simplest way to see this is to recall that, in this limit, whereas the Pauli paramagnetism is

enhanced by a factor (1 − Z)−1, the electronic specific heat is not [Ziman, 1979]. This means

that the term Z in the enhancement factor can then be inferred from the experimentally

determined, low temperature values of γ0 and χ0. In common units

Z = 1 − 1.37 × 10−2 γ0(J/molK2)
χ0−dia(emu/mol)

(6.1)

where χ0−dia equals χ0 with the core diamagnetism subtracted.

Giving the core diamagnetism values(−2.3 × 10−4emu/mol for YFe2Zn20 and YCo2Zn20,

−2.5×10−4emu/mol for YRu2Zn20 and YRh2Zn20, and −2.9×10−4emu/mol for YOs2Zn20 and

YIr2Zn20)[Mulay and Boudreaux, 1976], Z can be inferred to be 0.88 and 0.67 for YFe2Zn20

and YRu2Zn20 respectively (Table 6.2). For reference, this can be compared to Z = 0.83

and 0.57 for elemental Pd and Pt respectively†, which are thought to be canonical examples

of NFFLs. These enhanced Z values indicate that YRu2Zn20, and particular YFe2Zn20 are

extremely close to the Stoner limit (Z = 1). In contrast, the Z values of the rest of the members

are less than 0.5, which is comparable with the estimated value of the canonical example of

‘normal metal’, Cu, Z = 0.29 ‡. It is worth noticing that, during the estimation of the Z

values, the contribution from the Landau diamagnetism is ignored. Inversely proportional

to the square of the effective mass of the conduction electrons[Ashcroft and Mermin, 1976],

the Landau diamagnetic contribution becomes more significant for those members which have

smaller γ0 values. Thus, based on the thermodynamic measurements, the Pauli susceptibility

values, even after the core diamagnetism correction, are still under-estimated. Due to this

uncertainty, the Pauli susceptibility values after the core diamagnetism correction for YOs2Zn20

and YRh2Zn20, albeit positive, are still less than the un-enhanced values (Z = 0) corresponding

to their γ0.
†The values of γ0 and χ0−dia are from ref. [Knapp and Jones, 1972, B Zellermann and Voitländer, 2004].
‡The values of γ0 and χ0−dia are from ref. [Kittel, 1996] and [Mulay and Boudreaux, 1976] respectively.
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Table 6.2 Low temperature susceptibility, χ0; and the values after core
diamagnetism correction, χ0−dia; linear coefficient of the specific
heat, γ0; and the Stoner enhancement factor, Z on YT2Zn20

compounds (T = Fe, Ru, Os, Co, Rh, Ir).

T Fe Ru Os Co Rh Ir
χ0

1, 5.73 1.14 -0.256 0.212 -0.076 -0.034
χ0−dia, 5.96 1.39 0.034 0.442 0.174 0.256

γ0
2 53 34 12.4 18.3 16.4 14.1

θD, K 123 124 125 121 127 124
Z3 0.88 0.67 - 0.43 - 0.24

6.2.3 Electronic Structure

Band structure calculations, performed on the representative, non-local moment members,

YT2Zn20 (T = Fe, Co and Ru), as well as their local moment analogues, GdT2Zn20, can help

us to understand their diverse magnetic properties further. Figure 6.18 shows the result of

the total and partial density of states (DOS) for each element for YFe2Zn20. At the Fermi

level, EF , the total DOS manifests a sharp peak, leading to the relatively large DOS at Fermi

level (N(EF ), see Table 6.3), and therefore large band contributed electronic specific heat,

γband = 30.6 mJ/mol K2. This result is consistent with the experimentally measured electronic

specific heat, γ0 with a large mass enhanced factor, λ = 0.73, if one assumes γ0 = (1 +

λ)γband. The peak-shape DOS at EF is not unusual for the NFFL systems: similar calculation

results have been obtained for Pd [Shimizu et al., 1963], YCo2 [Tanaka and Harima, 1998] and

Ni3Ga [Hayden et al., 1986] by using similar techniques. The large peak at about −7 eV

corresponds to totally filled d-states of Zn atoms. Figure 6.18 also shows significant contribution

of Zn atoms’ electronic states to the total DOS in the whole energy spectrum, whereas the

Fe atoms’ electronic states are mostly localized in the vicinity of EF , although they are dilute

in this compound (1/10 of Zn). Table 6.3 shows that the partial DOS of Fe at EF is in

between the values for elemental Pd and Fe (before band splitting), the canonical elemental

1Taken as M(50 kOe)−M(30 kOe)
20 kOe

,in unit 10−3emu/mol
2in unit mJ/molK2

3Eqn. 6.1 is invalid for T = Os and Rh; see text
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Figure 6.18 The DOS of YFe2Zn20 (in St/eV cell) and partial DOS (in
St/eV cell). EF corresponds to zero energy. The red color
solid line on (a) corresponds to total DOS and blue dashed -
to Y atoms PDOS. The red color solid line on (b) corresponds
to PDOS of Zn and blue dashed - to Fe atoms PDOS.
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Figure 6.19 The DOS of YFe2Zn20 (a), YRu2Zn20 (b) and YCo2Zn20 (c)
near EF (in St/eV cell) shown by red solid line and PDOS of
Fe, Ru and Co atoms (blue dashed line) (in St/eV cell). EF is
shown by vertical lines. 518 and 522 corresponds to number of
valence electrons in the unit cell calculated in the rigid band
approximation from the DOS of YFe2Zn20.

examples of nearly ferromagnet and ‘strong’ ferromagnet systems. This result indicates that

YFe2Zn20 indeed may be even closer the Stoner criterion than Pd. The total DOS at EF

mainly corresponds to the hybridization of the 3d-band of Fe and p-band of Zn; the 4d-band

of Y, although hybridized with the other two, contributes significantly less (Fig.6.18).

The dominant effect of the d-band filling on the magnetic properties of YT2Zn20, manifests

itself clearer if one compares the electronic structure of the three YT2Zn20 compounds: T=

Fe, Co and Ru (Fig. 6.19). In Fig. 6.19, the total and Co-partial DOS of YCo2Zn20 manifests

a similar form as the YFe2Zn20 analogue, but with EF is shifted 0.3 eV higher due to adding

2 more valence electrons per formula unit. This similarity indicates that the difference in the

electronic structure of YFe2Zn20 and YCo2Zn20 can be considered in terms of the rigid band

approximation. On the other hand, the electronic structure of YRu2Zn20 has the same Fermi
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level position as YFe2Zn20 because of the same valence electron filling. However, its total, and

partial-Ru, DOS are lower than those for YFe2Zn20. This difference is not unexpected, since

the 4d band is usually broader than the 3d band in the electronic structure of intermetallics.

Calculated N(EF ) of YCo2Zn20 is half of the value of YFe2Zn20, whereas the value of YRu2Zn20

is slightly larger than YCo2Zn20 (Table 6.3).

The electronic structure calculation of the three GdT2Zn20 analogues, based on the treat-

ment of 4f electrons in core states, can help to understand the effect of submerging a Gd3+

local moment in these electronic backgrounds (Y analogues). Our calculations demonstrate

that, in the ordered state, Gd and the transition metal carries a magnetic moment (see Table

6.3). The magnetic moment of the Gd atoms are about 7.4 μB for FM ordered compounds and

7.3 μB for AFM ordered compounds, significantly smaller compared to elemental Gd result

[Perlov et al., 2000, I Turek and Blugel, 2003], 7.6 μB . The magnetic moment additional to

the Hund’s value (7 μB) comes from the polarization of Gd’s p and d states by magnetic 4f

electrons. The negative coupling between Gd and transition metals induces magnetic moments

on these atoms in direction opposite to the Gd magnetic moment. In agreement with the high

DOS of Fe atoms in YFe2Zn20, the induced magnetic moment on Fe atoms, −0.84 μB, is the

largest among all series. The smaller DOS of Ru atoms in YRu2Zn20 compound correlates with

a smaller induced magnetic moment on Ru in GdRu2Zn20: −0.04 μB. The induced magnetic

moment on Co is zero because of the compensation of interactions with Gd in AFM GdCo2Zn20.

The calculated total magnetic moment, 7.25 μB, 6.53 μB and 7.30 μB for GdT2Zn20 (T = Co,

Fe and Ru respectively), are in good agreement with the experimental values, 7.3 μB, 6.5 μB

and 7.25 μB (see Table 6.1). The DOS for GdFe2Zn20 [Fig. 6.20(a)] demonstrates a significant

splitting between occupied and empty 3d states of Fe, in agreement with sizable Fe magnetic

moments, whereas this splitting is almost negligible in case of Ru based compounds [Fig.

6.20(b)].
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Figure 6.20 The red solid line corresponds to DOS of FM-ordered
GdFe2Zn20 (a), FM-ordered GdRu2Zn20 (b) and AFM one
GdCo2Zn20 (c) near EF (in St/eV cell) and partial DOS of
Fe, Ru and Co atoms (blue dashed line) (in St/eV atom). EF

is shown by vertical lines. 518 and 522 corresponds to number
of valence electrons in the unit cell calculated in the rigid band
approximation from the DOS.
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Table 6.3 The calculated DOS in St/eV cell (N(EF )), averaged DOS per
one atom (N(EF )/Natoms), partial DOS at transition metal atom
(NT (EF )) and magnetic moment in μB for Gd and transition
metal, T, in GdT2Zn20 compounds.

Compound N(EF ) N(EF )/Natoms NT (EF ) Magnetic Moment
Gd T

Pt (elemental) 2.2 2.2 2.2
Pd (elemental) 2.6 2.6 2.6
Fe (elemental) 3.5 3.5 3.5
YCo2Zn20 16.32 0.35 1.28
YFe2Zn20 31.35 0.68 2.86
YRu2Zn20 18.72 0.41 1.0
GdCo2Zn20 14.92 7.25 0.00
GdFe2Zn20 17.95 7.37 -0.84
GdRu2Zn20 17.15 7.34 -0.04

6.3 Discussion

The band structure calculation indicates that, with same structure and similar lattice

parameters, the diverse magnetic properties of GdT2Zn20 and YT2Zn20 are mainly dependent

on the d-band conduction electrons from the transition metal site. The different d-band filling

of the Fe column members and the Co column members is associated with the different sign of

the magnetic coupling of Gd3+ local moments, and thereupon the different type of magnetic

ordering. Furthermore, the high and intermediately high N(EF ) of 3d and 4d sub-bands

of Fe and Ru, respectively, are associated with the strongly correlated electronic state of

YFe2Zn20 and YRu2Zn20, as well as the strong coupling between the Gd3+ local moments

in GdFe2Zn20 and GdRu2Zn20, and therefore the high magnetic ordering temperatures. The

negative induced moment on Fe site is not unexpected in intermetallic systems consisting of a

heavy rare earth and a more than half-filled 3d transition metal [Franse and Radwanski, 1993,

Brooks and Johansson, 1993], which can be understood in terms of the hybridization between

the 3d electronic wavefunction of transition metal and the 5d electronic wavefunction of the

rare earth [Campbell, 1972].
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In addition to the electronic structure calculations, the remarkable high-temperature FM

ordering of GdFe2Zn20 and GdRu2Zn20 can be understood in the conceptually simple context

of large Heisenberg moments, associated with the Gd3+ ion (S = 7/2), being embedded in

the NFFL associated with YFe2Zn20 and YRu2Zn20. This framework has been employed to

understand the anomalously high temperature FM ordering in some systems of local moments

in NFFL hosts, such as dilute Fe, Co, or Gd in Pd or Pt [Nieuwenhuys, 1975, Crangle, 1964],

or RCo2(R = Gd - Tm) [Duc and Goto, 1999, Duc and Brommer, 1999]. In these systems, the

itinerant electrons of the host (Pd, Pt or YCo2) are polarized by the local moments (Fe, Co

ions or R3+ ions), strongly couple them, and by doing so, result in high-temperature, local

moment ordering.

As shown in Chapter 5, substitutional series of Gd(FexCo1−x)2Zn20 and Y(FexCo1−x)2Zn20

provide the versatility to study the correlation between the local moments and the high po-

larizable host. When x is varied from 0 to 1, by tuning the d-band filling, the inferred values

of Z for the Y(FexCo1−x)2Zn20 series, representing to some extent the polarizability, increase

super-lineally from 0.43 to 0.88, giving rise to the highly nonlinear increase of the magnetic

ordering temperature for the Gd(FexCo1−x)2Zn20 series (see Figs. 5.7 and 5.8). This corre-

spondence between the Z values and the magnetic ordering temperatures is even consistent

with the TC value for GdRu2Zn20, although the itinerant electrons of the transition metal are

4d, not 3d. Given Z = 0.67 for YRu2Zn20, a similar Z-value of the host is between x = 0.5

and 0.75 for Y(FexCo1−x)2Zn20 (Fig. 5.7). The TC value of GdRu2Zn20 is also between the

TC values for x = 0.5 and 0.75 for Gd(FexCo1−x)2Zn20 (Fig. 5.8).

This conceptually simple framework can also help to understand the curious temperature

dependence of the 1/χ(T ) data for GdFe2Zn20. Figure 6.21(a) shows the temperature depen-

dent H/M in an applied field (H = 1000 Oe), with a dashed line representing the CW fit

above 250 K. As shown before, the fit gives the value of the effective moment (μeff = 7.9 μB),

comparable with the effective moment of 4f electrons of Gd3+ in Hund’s ground state. As T

is decreased, the electronic background that the Gd3+ ion is immersed in becomes increasingly

polarizable, leading to a temperature-dependent coupling that in turn leads to the nonlinearity
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Figure 6.21 (a): H/M (H = 1000 kOe) of GdFe2Zn20 as a function of tem-
perature. The dash line represents the Curie-Weiss fit above
250 K. (b): temperature varied θC . (c): temperature varied
μeff . (See text)
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Figure 6.22 (a): H/M (H = 1000 kOe) of Gd(FexCo1−x)2Zn20 as a func-
tion of temperature. (b): temperature varied θC . (See text)

of the 1/χ versus T data. If a constant μeff for Gd3+ is assumed, then a temperature-dependent

θC can be extracted from the 1/χ data. As shown in Fig. 6.21(b), θC is essentially constant

(∼ 45 K) above 275 K; then increases monotonically as temperature decrease, tracking χ(T )

of YFe2Zn20 (Fig. 6.15).

The correlation of the temperature dependent χ and the polarizability of electronic back-

ground can also be seen in the susceptibility of Gd(FexCo1−x)2Zn20 series. Figure 6.22(a)

presents temperature dependent H/M under the applied field H = 1000 Oe. Linear and paral-

lel to each other at high temperature region, the data sets start to deviate at lower temperature,
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especially for large x. Similar to discussed before, the temperature dependent θC values were

extracted with the assumption of invariant μeff . Figure 6.22(b) shows that θC varies strongly,

much weakly and negligibly as x = 1, 0.88 and ≤ 0.75, respectively. For each x, the variation

of θC tracks χ(T ) of the Y(FexCo1−x)2Zn20 series (Fig. 5.5).

An alternative method of analyzing the χ(T ) data (shown in Fig. 6.21 a) assumes that

some induced moment exists above TC and is aligned, dynamically and locally, anti-parallel to

the Gd moment (in essence forming a composite moment). Assuming an invariant θC , values

of C can be inferred from:

1/C ≈ d(T−θC
C )

dT
=

d( H
M )

dT
. (6.2)

Shown in Fig. 6.21(c), μeff manifests a monotonic decrease with decreasing temperature

down to 110 K, at which temperature it shows a minimum value 6.6 μB . From 100 K to TC,

μeff starts to rise in a highly nonlinear fashion. This rise of the μeff value is not unexpected in

the vicinity of TC in FM system, and could be due to the short range ordering or formation of

magnetic clusters of the local moments [Mydosh, 1993]. The decrease of μeff , in this scenario,

would be the result of the formation of magnetic droplets, consisting of the Gd+3 local moments

and the oppositely polarized electron cloud from the highly polarizable host. Such magnetic

droplets are not unprecedented in analogous systems, above TC. For example, the ‘giant

moment’ was observed in dilute Fe-Pd alloy [Clogston et al., 1962]; the deficient μeff of local

moments was also found in RCo2 series (R = Gd-Tm) [Stewart, 1984a] above TC. Giving that

the primary difference between these two alternative explanations is whether the itinerant

electrons are polarized above TC, measurements of Mössbauer spectra on the Fe sites at varied

temperature should resolve this piont.

6.4 Summary

The six GdT2Zn20 (T = Fe, Ru, Os, Co, Rh and Ir) compounds have magnetic properties

that differ dramatically between the Fe column and the Co column members. The Fe column

members order ferromagnetically with the enhanced transition temperatures for the T = Fe
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and Ru members, whereas the Co column members all manifest low-temperature, AFM order-

ing. In a related manner, the T = Fe and Ru members of YT2Zn20 family manifest typical

properties associated with NFFLs. Band structure calculation results for the T = Fe and Ru

members reveal that the large DOS at the Fermi level is correlated with the enhancement in the

their magnetic properties. The conceptually simple framework of the Heisenberg moments em-

bedded in the NFFL, was discussed to understand the enhanced transitions for GdFe2Zn20 and

GdRu2Zn20 and the curious temperature dependence of the 1/χ versus T data for GdFe2Zn20.
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CHAPTER 7. Magnetic properties of GdxY1−xFe2Zn20: dilute, large,

S-moments in a nearly ferromagnetic Fermi liquid ∗

7.1 Introduction

Materials that are just under the Stoner limit manifest large electronic specific heat and en-

hanced paramagnetism and are known as NFFLs [Moriya, 1985, Brommer and Franse, 1990].

Archetypical examples, such as Pd [Jamieson and Manchester, 1972], YCo2 [Lemaire, 1966],

TiBe2 [Matthias et al., 1978], and Ni3Ga [de Boer et al., 1967] have been studied for several

decades. In addition to the interesting, intrinsic properties of these compounds, the introduc-

tion of local moments into these highly polarizable hosts has lead to both experimental and

theoretic interest [Nieuwenhuys, 1975, Larkin and Mel’nikov, 1972, Maebashi et al., 2002]. In

such highly polarizable hosts, local moment impurities can manifest long range, ferromagnetic

order even for very low concentrations (0.5 at.% Fe in Pd [Mydosh et al., 1968] and 1 at.% Gd

in Pd [Crangle, 1964]).

As shown in Chapter 5 and 6, YFe2Zn20 was found to be a ternary example of a NFFL with

a Stoner parameter Z ∼ 0.9, as compared to Z ∼ 0.83 for Pd, indicating strongly correlated

electron behavior. When the large, S moment bearing, Gd3+ replaces the non-magnetic Y3+

ions, it was found that GdFe2Zn20 has a remarkably high ferromagnetic Curie temperature(TC)

of 86 K. Both of these compounds belong to the much larger, isostructural RT2Zn20 (R = rare

earth, T = transition metal such as Fe, Co, Ni, Ru, Rh, Os, Ir and Pt) [Nasch et al., 1997]

family, in which the R and T ions each occupy their own unique, single, crystallographic sites.

Motivated by these intriguing magnetic and structural properties, we focus, in this work, on
∗after “Magnetic properties of GdxY1−xFe2Zn20: dilute, large, S-moments in a nearly ferromagnetic Fermi

liquid”, S. Jia, N. Ni, S. L. Bud’ko, P. C. Canfield, Phys. Rev. B 76 184410 (2007).
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the pseudo-ternary series GdxY1−xFe2Zn20, which can be used as a model for studying the

effects of titrating very dilute local moments into a nearly ferromagnetic Fermi liquid. Given

that RFe2Zn20 is a dilute, rare earth bearing intermetallic, dilution of Gd onto the Y site (i)

changes the lattice parameter by less than 0.2 %, (ii) does not change the band filling, (iii)

does not change the all Zn local environment of either the Gd or Fe ions, and (iv) allows for

the dilution of Gd in the system to be studied down to x ≈ 0.005, i.e. down to approximately

200 p.p.m. Gd.

In this chapter, we report on the characterization of single crystals of GdxY1−xFe2Zn20 by

X-ray diffraction, Energy Dispersive X-ray Spectroscopy (EDS), magnetization, resistivity and

heat capacity measurements. These data reveal ferromagnetic order of the Gd3+ local moment

above 1.80 K for Gd concentration above x = 0.02. These results will be discussed within the

framework of the so-called s-d model [Shimizu, 1981a], based on the mean field approximation,

and used to explain the variation of TC across the series with respect to x.

7.2 Experimental Methods

As described in Chapter 4, single crystals of GdxY1−xFe2Zn20 were grown from a Zn-rich

self flux [Canfield and Fisk, 1992]. For x > 0.02, high purity elements were combined in a

molar ratio of (GdxY1−x)2Fe4Zn94. For x less than 0.02, a Y0.9Gd0.1 master alloy was made

via arc melting and appropriate amounts of this alloy were added to elemental Y. This was done

to reduce the uncertainties associated with weighing errors. The samples were characterized by

room temperature powder X-ray diffraction measurements [Fig. 7.1(a)]. The lattice constants

varied linearly for 0 ≤ x ≤ 1. This shift can be seen in the (117) peak position for selected x

values [see Fig. 7.1(b)]. EDS measurements were made in a JEOL model 5910lv-SEM with a

Vantage EDS system on representative samples.

DC magnetization was measured in a Quantum Design superconducting quantum interfer-

ence device (SQUID) magnetometer, in a variety of applied fields (H ≤ 55 kOe) and temper-

atures (1.85 K ≤ T ≤ 375 K). In some crystals, the magnetization with respect to magnetic

field measurements at 300 K showed a slight non-linearity with a small slope change around 3



95

Figure 7.1 (a): Powder X-ray diffraction pattern of GdFe2Zn20 with a Si
internal standard (using Cu Kα radiation) with main peaks
indexed. (b): The normalized intensity of the (117) peak of
GdxY1−xFe2Zn20 for representative x values, with the positions
calibrated by the nearby Si(002) peak.
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kOe (Fig. 7.2). This specific behavior is believed to be due to a small amount of ferromagnetic

impurity, possibly Fe or FeOx (2 × 10−5 μB/mol to 2 × 10−3 μB/mol) on the crystal. This

feature is most likely extrinsic because the extent of the slope change is sample-dependent:

some samples showing no feature at all. This feature is most clearly seen when two samples

from the same batch (one with feature, one without) are compared (Fig. 7.2, inset a) or even

subtracted from each other (Fig. 7.2, inset b). Given that this small, extrinsic ferromagnetic

contribution saturates by H ≈ 10 kOe (Fig. 7.2, inset b), the high temperature susceptibility

can be determined by χ(T ) = ΔM
ΔH =

M(H=50kOe)−M(H=20kOe)

30kOe . In this temperature region the

intrinsic magnetization is a linear function of applied magnetic field for 20 kOe ≤ H ≤ 50 kOe

(Fig. 7.2). At lower temperatures, closer to TC, the sample’s intrinsic magnetization become

large enough that we can measure χ(T ) directly as M/H for H = 1 kOe.

7.3 Experiments Results

The size of the cubic unit cell, as determined by powder X-ray diffraction measurements,

shows a linear dependence on x as it is varied from 0 to 1 (Fig. 7.3). The error bars of the

lattice constants were estimated from the standard deviation determined by measurements on

three samples from the same batch. These data are compliant with Vegard’s law and imply

that the nominal x is probably close to the actual x.

In order to check this further, EDS was used. This is a direct method of determining

x, although it loses some of its accuracy because of the low, total rare earth concentration

(< 5 at.%). Nevertheless, several representative members of the GdxY1−xFe2Zn20 series were

measured and the inferred x values are close to the nominal x values within the fairly large

error bars (Fig. 7.3).

Another way to estimate the concentration of gadolinium in the grown crystals is based on

the analysis of the high temperature magnetic susceptibility data, which can be expressed as:

χGdxY1−xFe2Zn20 = χGd3+ + χYFe2Zn20 (7.1)

Experimentally, χGd3+ obeys the Curie-Weiss law above 150 K (Fig. 7.4a), from which the

paramagnetic Curie temperature θC and Curie constants C can be extracted. The value of x
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Figure 7.2 Magnetization M with respect to applied field H for a sample
of Gd0.5Y0.5Fe2Zn20 at 150 K, 200 K and 300 K. The solid lines
are guides to the eye. Inset a: detailed magnetization of two
samples of Gd0.5Y0.5Fe2Zn20 at 300 K. The data set shown as
solid squares (same data as in main figure) has slope change
feature (indicated by an arrow); while the data set shown as
open circles does not. Inset b: the difference of the two data sets
reveals the saturation of ferromagnetic impurity above 5 kOe.
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Figure 7.3 Gd concentration inferred from EDS (solid squares with the er-
ror bars determined by statistic errors) and high temperature
magnetic susceptibility (solid circles). The open triangles repre-
sent lattice constants. The dash line is location where inferred
x equals nominal x and also represents a linear dependence of
the lattice parameter.
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can be inferred by fixing the effective moment of Gd3+ as 7.94 μB. These values of inferred x

are also plotted in Fig. 7.3. The agreement between each of these three different methods of

determining inferred x and the nominal x value is good and for the rest of this paper nominal

values will be used to estimate actual Gd content.

Another aspect of Fig. 7.4 that is noteworthy is that all χGd3+ data sets deviate from

their high temperature Curie-Weiss behaviors as the system approaches the magnetic ordering

temperature. Since high fields can shift and broaden the features associated with ferromag-

netism, at lower temperatures a field of 1 kOe was used (Fig. 7.4b). Whereas this deviation

cannot be associated with the formation of superparamagnetic clusters above TC (this would

cause a slope change toward the horizontal rather than toward the vertical), it can be under-

stood in terms of an increasing coupling between the Gd3+ local moments associated with the

strongly temperature dependent, polarizable electronic background of the YFe2Zn20 matrix

(see discussion below).

Figure 7.5 shows the temperature dependent magnetization in an external field H = 1000

Oe for the whole range of x values. Ferromagnetic ordering can be clearly seen below 90 K

for x = 1. The ordering temperature decreases monotonically as x decreases, although the

exact values of TC can not be unambiguously inferred from these plots. For x ≤ 0.035, it

becomes difficult to determine whether the compounds manifest ferromagnetism above the

base temperature (1.85 K) based on the M(T ) curves alone. Even at 1000 Oe, for x ≥ 0.25,

the low-temperature magnetization is just slightly below the Hund’s ground state value 7

μB/Gd at the base temperature (Fig. 7.5a). For x < 0.25 the low temperature, H = 1000 Oe,

magnetization decreases with decreasing x (Fig. 7.5b).

Field-dependent magnetization measurements were made for each sample at base temper-

ature (Fig. 7.6). For compounds with x ≥ 0.035, the magnetization rapidly saturates as the

magnetic field increases, consistent with a ferromagnetic ground state at 1.85 K. For x ≤ 0.01,

the M(H) curves vary more smoothly with H and are more consistent with a paramagnetic

state at 1.85 K. The x = 0.02 data are more ambiguous and require a still more detailed

analysis.
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Figure 7.4 1/χGd3+ vesus temperature for representative members of the
GdxY1−xFe2Zn20 series. Note: data is normalized to mole Gd
using x inferred from high-temperature data. From right-down
to left-up: x = 1, 0.75, 0.5, 0.25, 0.1, 0.05 and 0.035. (a): ob-
tained under high magnetic field. (b) Solid lines: obtained un-
der 1 kOe applied field; dash lines: under high magnetic field.



101

Figure 7.5 Temperature dependent magnetization of GdxY1−xFe2Zn20, H
= 1000 Oe, for (a) 1.0 ≥ x ≥ 0.175, (b) x ≤ 0.175.
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Figure 7.6 (a) and (b) Field dependent magnetization of GdxY1−xFe2Zn20

at 1.85 K. (c) Field dependent magnetization of
GdxY1−xFe2Zn20 at 1.85 K, normalized to Gd3+ content
(see text).The error bars were estimated by allowing for a
±0.02 variation of x.
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For H > 10 kOe the M(H) data for x ≤ 0.05 vary approximately linearly with H and have

slopes comparable to that of YFe2Zn20, x = 0 (Fig. 7.6b). For all x values the magnetization

can be thought of as a combination of the magnetization of Gd3+ ions and the highly polarizable

background. In order to extract the magnetization of the Gd3+ ions, a background of MYFe2Zn20

was subtracted from the M(H) data. The MGd(H) data are plotted in Fig. 7.6c normalized to

the nominal x values. For x ≥ 0.25 the saturated magnetization is essentially constant with a

value slightly less than 7 μB/Gd. For x < 0.25 there is an apparent decrease in the saturated

magnetization with decreasing x, but it should noted that the error bars, coming from the

estimated ±0.02 uncertainty of x, increase with decreasing x. These increasing error bars

make it unclear whether the saturated moment of the Gd impurities is constant or decreasing

in the small x limit.

A fuller analysis of M(H) data, particularly the analysis of magnetization isotherms known

as Arrott plots [Arrott, 1957], at a set of temperatures near TC has been found to be a useful,

and for x < 0.25 samples was actually the best method to determine TC. The method is based

on the mean field theory, in which M2 is linear in I/M with zero intercept at the critical

temperature TC, where I is the internal field, equal to the difference between the external,

applied field H and the demagnetizing field Dm. For an ellipsoid of GdxY1−xFe2Zn20, the

demagnetizing field equals [Chikazumi and Graham, 1997]:

Dm = 4πMD
N

a3NA
= 0.061MD (7.2)

where M is the magnetization (emu/mol), D is a geometric factor that can range from 1 to 0,

N is the number of formula units per cell (N = 8), a is the cubic lattice constant (∼ 14Å), and

NA is Avogadro number. Thus I/M , in units of kOe/μB , is:

I

M
=

H − Dm

M
=

H

M
− 0.34D. (7.3)

Using H, instead of I, in Arrott plots will shift the data along H/M axis in the positive

direction by 0.34D. That would experimentally introduce an error in the value of TC for a

flat shaped sample (D ∼ 1) of GdFe2Zn20. Nevertheless, even in this extreme case, this error

drops as x decreases due to reduction of the samples’ magnetization as Gd3+ is diluted out
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Figure 7.7 Arrott plots for representative members of the GdxY1−xFe2Zn20

series: x = (a) 0.5, (b) 0.035 and (c) 0.02.

(notice the different scale of the M axis for x < 0.05 in Fig. 7.7). Due to these concerns,

rod-like-shape samples were measured along their long axis for the magnetization isotherms

for samples with x > 0.5. This shape ensures D is minimized. Figures 7.7a and b show

TC = 57±0.5 K for x = 0.5 and TC = 4.5±0.5 K for x = 0.035 respectively. For x = 0.02, Fig.

7.7c shows TC = 1.85 K, a result that helps explain the difficulty experienced in determining

the base-temperature magnetic state based on the M(T ) and M(H) data discussed above.

The TC values determined for the Arrott plot analysis for all x are shown below in Fig. 7.13.

The temperature dependent electric resistivity data, ρ(T ) (measured in zero applied mag-

netic field), of the GdxY1−xFe2Zn20 compounds are shown, for representative x values, in Fig.
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Figure 7.8 Zero-field resistivity for current along the [110] direction. The
arrows represent TC determined from Arrott plot analyses.

7.8. For x ≥ 0.25, ρ(T ) curves show a kink at TC due to the loss of spin disorder scattering

below this temperature. In contrast, for x ≤ 0.175, no clear kink can be detected. TC values

deduced from the maximum of dρ/dT for x ≥ 0.25 (not shown here) are compatible with the

values obtained from the Arrott plots (see Fig. 7.13b below).

Further information can be extracted from the GdxY1−xFe2Zn20 ρ(T ) data by assuming

that the total resistivity of the compound can be written as:

ρ(T ) = ρ0 + ρph(T ) + ρmag(T ), (7.4)

where ρ0 is a temperature independent, impurity scattering term, ρph is the scattering from

phonons and ρmag is the scattering associated with the interaction between conduction elec-
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trons and magnetic degrees of freedom. In this series of pseudo-ternary compounds, the high

temperature (T � TC) phonon contribution, ρph, should be essentially invariant (due to the

very dilute nature of the R ions). The magnetic contribution to the resistivity, ρmag, will be the

combination of contributions from conduction electron scattered by (i) the 4f local moments

and (ii) the spin fluctuations of 3d electrons (from Fe sites), both of which should saturate in

the high temperature limit. Based on the analysis above, the high temperature resistivity of

the whole series should be similar (modulo an offset) and manifest similar slopes due to the

electron-phonon scattering. This is indeed the case: the data show linearity of ρ(T ) above 250

K with the slopes differing by less than 8%; less than the estimated dimension error (10%) of

these bar-like-shape samples.

The magnetic and disorder contributions to the resistivity can be estimated by (i) removing

the geometric error by normalizing the high temperature slope of all ρ(T ) plots to that of

YFe2Zn20 and then (ii) subtracting the ρY (T ) data from the ρ normalized data.

The normalized ρ is given as:

ρGdxnormalized = ρGdx ·
dρGdx

dT |275K
dρY
dT |275K

(7.5)

and

Δρ = ρGdxnormalized − ρY. (7.6)

The resulting Δρ will not only show the conduction electron scattering from the 4f local

moments, but will also include scattering associated with the interaction between the 4f local

moment and 3d electrons, especially near TC. The temperature dependent Δρ curves for the

GdxY1−xFe2Zn20 compounds are presented in Fig. 7.9. A pronounced upward cusp is centered

about TC for x ≥ 0.25. For x < 0.25 the loss of the spin disorder feature becomes harder (or

even impossible) to resolve, but the enhanced scattering above TC persists. The decrease of Δρ

with T below TC is a common in ferromagnetic systems and can be explained as the result of a

loss of spin disorder scattering of conduction electrons. On the other hand, the behavior of Δρ

above TC must come from a different conduction electron scattering process. A similar feature

in Δρ is found in RFe2Zn20 (R = Tb - Er) for T > TC (shown in Chapter 8), but not in the

isostructural GdCo2Zn20, which orders antiferromagnetically at a much lower temperature.
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Figure 7.9 Temperature variation of Δρ (see text). The arrows represent
TC determined from Arrott plot analysis of magnetization mea-
surements.
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Figure 7.10 Temperature variation of specific heat Cp of the
GdxY1−xFe2Zn20 series for x = 1, 0.75, 0.5 and 0. The
arrows represent TC determined from Arrott plot analyses.

The specific heat of the GdxY1−xFe2Zn20 compounds (Fig. 7.10) can be thought of as

the sum of the contributions from electronic, vibrational and magnetic degrees of freedom.

To remove the vibrational and electronic parts (at least approximately), the specific heat

of YFe2Zn20 and LuFe2Zn20 were used to estimate the background. The assumption that

YFe2Zn20 and LuFe2Zn20 closely approximate the non-magnetic Cp of the GdxY1−xFe2Zn20

series is supported by the fact that the difference between the measured Cp of YFe2Zn20,

LuFe2Zn20 and GdxY1−xFe2Zn20 in the temperature region 20 K higher than TC is on the

order of one percent. Since LuFe2Zn20 has a molar mass closer to that of GdFe2Zn20 than

YFe2Zn20, the combination of (x)CLuFe2Zn20 + (1− x)CYFe2Zn20 is thought to be even closer to

the non-magnetic background of CGdxY1−xFe2Zn20 .

Figure 7.11 shows

ΔC = CGdxY1−xFe2Zn20 (7.7)

− (x)CLuFe2Zn20 − (1 − x)CYFe2Zn20

for x ≥ 0.175 (a) and x ≤ 0.175 (b), where the arrows indicate the TC values determined from
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Figure 7.11 Temperature variation of ΔC. (a): From right to left,
x = 1, 0.75, 0.5, 0.25 and 0.175. (b): From right to left,
x = 0.175, 0.1, 0.05, 0.0375 and 0.02. The arrows represent TC

values determined from the Arrott analysis of magnetization
measurements.
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Figure 7.12 ΔC/x versus T/TC for representative x values.

the Arrott plot analyses. The magnetic ordering manifests itself as a broad feature in ΔC

with TC occurring at, or near, the position at the maximum slope. Figure 7.12 shows that

this feature persists, relatively unchanged in shape, down to x = 0.1. For values of x < 0.1

the feature broadens further, but is still distinct. This shape of ΔC is not unusual for Gd-

base intermetallics with ferromagnetic order; for example, a similar feature is seen in GdPtIn

[TC ∼ 68 K see[Morosan et al., 2005]]. It should be noted that this ΔC feature is distinct from

that associated with a spin-glass freezing: the maxima all occur at or below TC, whereas a spin

glass manifests a broad peak above the freezing temperature [Binder and Young, 1986].

The x dependence of the paramagnetic Curie temperature (θC), ferromagnetic ordering
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temperature (TC) and saturated moments per Gd (μSat) for each x are shown in Fig. 7.13a,

b and c respectively. The values of the magnetic entropy, estimated by SM =
∫

ΔC
T dT , are

shown in Fig. 7.13d. Both θC and TC decrease monotonically with x. At first glance, the

negative values of θC for x < 0.25 are unexpected and seem to be in contradiction with the

existence of ferromagnetic ground state. However, these are high-temperature, θC values and

ignore the increasingly strong, polarizable background associated with the near Stoner limit

conduction electrons at intermediate temperatures. Furthermore, as shown in Fig. 7.4b, this

low temperature effect becomes even more pronounced for small x. Although, as discussed

earlier, the uncertainty of x makes the x-variation of μSat ambiguous for small x, even the

large x members of the GdxY1−xFe2Zn20 series manifest reduced saturated moments. This

is attributed to the induced moment on the 3d electrons, which is anti-parallel to the Gd

moment. The magnetic entropy, shown in Fig. 7.13d, associated with the ordered state is

equal to, or slightly larger than, the magnetic entropy associated with the Hund’s ground state

of Gd3+(S = 7/2). This fact indicates that the main part of the magnetic specific heat of

the series of GdxY1−xFe2Zn20 is the contribution from the magnetic degrees of freedom of

the Gd3+ local moments. The contribution to the magnetic specific heat from the itinerant

electrons probably exists, but is, at most, comparable with the measurement uncertainty.

7.4 Analysis and Discussion

For rare earth bearing intermetallics, the interaction between 4f local moments is pri-

marily mediated by means of polarization of the conduction electrons. Regardless of the de-

tails of the mechanism involved in this interaction [Ruderman and Kittel, 1954, Kasuya, 1956,

Yosida, 1957, Campbell, 1972], we propose that the 3d electrons from Fe sites act as important

mediators of the Gd-Gd interaction in GdxY1−xFe2Zn20 system. In YFe2Zn20, the interaction

between 3d electrons is not sufficient to split the conduction band but is large enough to make

the compound exhibit strongly enhanced paramagnetism. When Y3+ ions are fully replaced

by Gd3+ ions, these 3d electrons are polarized by the Gd3+ local moments. The interaction

between 3d electrons assists in stabilizing the splitting of the conduction electron band and
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Figure 7.13 (a) Paramagnetic Curie temperature, θC , (b) ferromagnetic
ordering temperature, TC [The values of TC in (b) were de-
termined by Arrott plot analyses (black circle) and the resis-
tivity measurements(open circle).], (c) saturated moment per
Gd, μSat and (d) magnetic entropy, SM with respect to x for
the GdxY1−xFe2Zn20 series. The solid line in (d) represents
SM = xRln8 (R is gas constant), the magnetic entropy of
Gd3+ Hund’s ground state. The error bars are estimated as 1
% of the total entropy, S =

∫ TC

0
Cp

T dT .
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enhances the magnetic interaction between Gd3+ local moments, resulting in the remarkably

high, ferromagnetic transition temperature for GdFe2Zn20. This physical picture is consistent

with the results of the band structure calculation which predicts the Fe induced moment as

0.34μB/Fe in the ground state of GdFe2Zn20 (shown in Chapter 6).

In order to perform further analysis on the magnetic properties of GdxY1−xFe2Zn20, a com-

parison with the binary RCo2 (R = rare earth) intermetallics is useful. YCo2 and LuCo2 show

nearly ferromagnetic behavior while the series of compounds, (Gd-Tm)Co2, with 4f local mo-

ments manifest a ferromagnetic ground state [Duc and Brommer, 1999, Duc and Goto, 1999].

In addition to these magnetic similarities, the resemblance between the crystal structure of

RT2Zn20 and the so-called C-15 Laves structure of RCo2 [Gschneidner and Pecharsky, 2006]

is noticeable: both rare earth and transition metal ions occupy same unique, single crystallo-

graphic sites in the same space group: Fd3̄m. The unit cell of the RT2Zn20 compounds can

be thought of as an expansion of the C-15 Laves phase unit cell via the addition of a large

number(160) of Zn ions.

Well-studied for several decades, the series of (Gd-Tm)Co2 has been treated as an example

of 4f local moments embedded in a nearly ferromagnetic host: YCo2 or LuCo2. The so-called

s-d model has been employed by Bloch and Lemaire [Bloch and Lemaire, 1970] and Bloch et.

al. [Bloch et al., 1975] to explain their magnetic properties. This model was first introduced by

Takahashi and Shimizu [Takahashi and Shimizu, 1965] to understand the magnetic properties

of alloys of the nearly ferromagnetic transition metal, Pd, with dilute Fe or Co local moment

impurities. In this model, the polarization effect of the local moments on the itinerant elec-

trons is considered in terms of a molecular field. Motivated by the similarity of the magnetic

properties and the crystal structure of RFe2Zn20 and RCo2, we applied the s-d model to the

GdxY1−xFe2Zn20 series.

This model considers one magnetic system consisting of two types of spins: one local

moment, and the other one giving rise to an exchange-enhanced, paramagnetic susceptibility.

[Bloch and Lemaire, 1970] For GdxY1−xFe2Zn20 system, under an applied field H, for T > TC,
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the magnetization of the Gd local moments and the conduction electrons are:

MGd = (xCGd/T )(H + nGd−eMe) (7.8)

Me = χe,0(H + ne−eMe + nGd−eMGd) (7.9)

where CGd is the Curie constant of the Gd3+ local moments; nGd−e, ne−e are molecular-field

coefficient representing the interaction between itinerant electrons and Gd3+ local moments,

and itinerant electrons with themselves, respectively; χe,0 is the paramagnetic susceptibility

without exchange enhancement. The total magnetization of GdxY1−xFe2Zn20 is the sum of

MGd and Me. It should be noted that when x = 0, the total susceptibility reduces to the

exchange-enhanced susceptibility:

χe = χYFe2Zn20 =
Me

H
=

χe,0

1 − ne−eχe,0
(7.10)

which is simply the Stoner enhanced susceptibility of YFe2Zn20.

Assuming that the electronic structure of the conduction band and the position of the

Fermi level in the paramagnetic state are the same across the whole GdxY1−xFe2Zn20 series,

from Eqs. 7.8–7.10, one gets the total susceptibility of GdxY1−xFe2Zn20

χGdxY1−xFe2Zn20 =
xCGd

T − χYFe2Zn20n
2
Gd−exCGd

(7.11)

+
χYFe2Zn20(T + 2nGd−exCGd)
T − χYFe2Zn20n

2
Gd−exCGd

.

If one assumes the coupling between the pure spin moment (S = 7/2) of the Gd3+ and the

conduction electron spin σ (σ = 1/2) to be a Heisenberg exchange interaction, 2J0
�S · �σ, where

J0 is the exchange parameter, then the molecular field coefficient can be written as:

nGd−e = −J0/(2μ2
BN) (7.12)

where N is the number of rare earth ions per volume.

The GdxY1−xFe2Zn20 system will become ferromagnetic when χGdxY1−xFe2Zn20 diverges.

Thus,

TC = χYFe2Zn20(TC)n2
Gd−exCGd (7.13)

= xχYFe2Zn20(TC)
J2

0 S(S + 1)
3kBNμ2

B
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Figure 7.14 TC of GdxY1−xFe2Zn20 versus xχYFe2Zn20(TC). The solid line is
linear fit through the origin point (associated with no detected
TC for YFe2Zn20).

where kB is the Boltzmann constant.

Equation 7.13 reveals that TC depends on the product of x and χYFe2Zn20(TC), rather than

just x. This is consistent with Fig. 7.13b showing a nonlinear dependence of TC on x. Figure

7.14 shows that the values of TC depend linearly on the product xχYFe2Zn20(TC) across the

whole series. From Fig. 7.14 the slope equals 2.955± 0.0037× 104 K mol/emu and thus J0 can

be extracted as 3.96 ± 0.05 meV.

In addition to the magnetic ordering, this model can also explain the curious temperature

dependence of the 1/χ versus T data for the GdxY1−xFe2Zn20 series. Setting J0 = 3.96

meV, one obtains the temperature dependent, total susceptibility of GdxY1−xFe2Zn20. The

results of 1/χGdxY1−xFe2Zn20 for representative x values are shown as the solid lines in Fig.

7.15; whereas the dotted lines and the dash lines present the experimental results under 1

kOe and high magnetic field, representatively. These calculated results qualitatively reproduce

the experimental, temperature dependent susceptibilities, especially their deviation from the
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Figure 7.15 1/χ of GdxY1−xFe2Zn20 versus T for representative x values.
Dotted lines: measured under 1 kOe applied filed; dash lines:
obtained under high magnetic field; solid lines: calculated re-
sults. (See text)

Curie-Weiss law close to TC. It should be noted that the χ data in Fig. 7.15 is the full χ

without any subtraction of “non-magnetic” background. In this sense Fig. 7.15, and the s-d

model, appear to treat the magnetization data more fully than the simple assumption behind

Eqn. 7.1.

In addition to the thermodynamic properties discussed above, the feature in Δρ above TC

(Fig. 7.9) is also worth discussing further. The upward-pointing cusp at TC of Δρ(T ) is associ-

ated with the sign change of dΔρ/dT , from negative to positive as the temperature decreases.

This feature is absent from simple models of ρ(T ) [Craig et al., 1967, Fisher and Langer, 1968],

based on the models assuming a single lattice of magnetic ions and a single band of con-

duction electrons. This theoretical model is over-simplified for GdxY1−xFe2Zn20, a strongly

correlated electron system. Similar unusual upward cusps in Δρ(T ) at TC were found in

the electric transport measurements of RCo2 [Gratz et al., 1995]. They were explained by

invoking an increasing, non-uniform fluctuating f-d exchange interaction, which provides an
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increase of spin fluctuations of the 3d-electron subsystem as the temperature approaches TC

in the paramagnetic state, which in turn leads to increased conduction electron scattering.

Recently, a resistivity peak in ρ(T ) at TC has been found in diluted magnetic semiconductors

[Matsukura et al., 1998], and motivated further theoretical study beyond the simple model

[Timm et al., 2005]. On the other hand, as “good” metals, the GdxY1−xFe2Zn20 system (and

indeed the other RFe2Zn20 compounds. See Chapter 8) present another, clear example of this

interesting behavior.

7.5 Summary

We presented a set of data including magnetization, electrical transport and specific heat,

measured on flux-grown single crystals of GdxY1−xFe2Zn20. We found that the series order

ferromagnetically above 1.85 K for x ≥ 0.02. The variation of TC with respect to x, as

well as the curious temperature dependent magnetic susceptibilities, are well explained by a

modification of the s-d model based on molecular field approximation.
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CHAPTER 8. Magnetic properties of RFe2Zn20 and RCo2Zn20(R = Y, Nd,

Sm, Gd - Lu)

8.1 Introduction

Intermetallic compounds consisting of rare earth and transition metals, as well as met-

alloids, have versatile magnetic properties. [Szytula and Leciejewicz, 1994] Compounds with

itinerant d electrons are of particular interest when they are in the vicinity the Stoner tran-

sition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly cor-

related electronic properties.[Moriya, 1985] On the other hand, heavy rare earth ions man-

ifest magnetic versatility associated with the 4f electrons: null magnetism (Y3+ or Lu3+),

pure spin, local moment magnetism (Gd3+), potentially anisotropic, crystal electric field

(CEF) split, local moment magnetism (Tb3+ - Tm3+), and more exotic magnetism: Yb

ions may hybridize with conduction electrons and manifest so-called heavy fermion behav-

ior. Needless to say, series of examples that combine these interesting versatilities have at-

tracted the attention of physicists. For example, the binary RCo2 (R = rare earth) com-

pounds, with the nearly ferromagnetic (FM) end members YCo2 and LuCo2, and the lo-

cal moment, FM members (R = Pr, Nd, Gd - Tm), have been studied for more than 35

years[Franse and Radwanski, 1993, Duc and Goto, 1999, Duc and Brommer, 1999].

As shown in Chapter 5 - 7, the series of intermetallic compounds RT2Zn20 have varied

magnetic behavior. YFe2Zn20 and LuFe2Zn20 are archetypical examples of nearly ferromag-

netic Fermi liquid (NFFL) with Stoner enhancement factors of Z = 0.88 (where χT=0 =

χPauli/(1 − Z)). By embedding large, Heisenberg type moments associated with Gd3+ ions

in this highly polarizable medium, GdFe2Zn20 manifests highly enhanced FM order. On the

other hand, GdCo2Zn20 manifests ordinary, low temperature, antiferromagnetic (AFM) order,
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correspondent to the ‘normal metal’ behavior of the conduction electron host, YCo2Zn20. In

addition to these interesting, 3d electron and local moment properties, six related YbT2Zn20

compounds (T = Fe, Co, Ru, Rh, Os and Ir) show heavy fermion ground states, associated

with different Kondo temperatures (TK) and Yb ion degeneracies. (will be shown in Chapter

9).

Given the similarities and differences between the RFe2Zn20 and RCo2Zn20 (R = Gd, Y,

Lu) series, it becomes important to study all of the R = Y, Gd - Lu members in detail. A

comparative study of the RFe2Zn20 and RCo2Zn20 series will help to further understand the

magnetic interaction between the local moments by means of the strongly polarizable medium,

particularly with the crystal electronic field (CEF) effect associated with non-zero orbital

angular momentum. Furthermore, given the very similar CN-16 Frank-Kasper polyhedron

for R ions, as well as the less than 2% difference of lattice constants for the whole RT2Zn20

families, the study of the CEF effect on these local moment members will also help in the

understanding of the varied heavy fermion states of YbT2Zn20, which were thought to be

due to the competition between temperature scales associated with the CEF splitting and the

Kondo effect. (will be shown in chapter 9).

In this chapter, we present the results of magnetization, heat capacity and resistivity mea-

surements on RFe2Zn20 and RCo2Zn20 (R = Y, Nd, Sm, Gd - Lu) compounds. Compare

with the ‘normal metal’ behaviors for YCo2Zn20 and LuCo2Zn20, YFe2Zn20 and LuFe2Zn20,

manifest clear, NFFL behaviors associated with the spin fluctuation of the itinerant electrons.

For the RFe2Zn20 compounds (R = Gd - Tm), the well-defined local moment members all

manifest enhanced FM ordering with TC values that roughly scale with the de Gennes factor.

Their anomalous, temperature dependent susceptibility and resistivity can be explained as the

result of local moments embedded in a NFFL. In contrast, for the RCo2Zn20 series, only Gd

and Tb members manifest AFM ordering above 2 K, and the magnetic properties for R = Dy -

Tm clearly manifest features associated with single ion CEF effects on the R ions in the cubic

symmetry coordination. For the R = Tb - Tm members in the Co series, the CEF parameters

can be determined from the magnetic anisotropy and the specific heat data, and are roughly
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consistent with calculation results using the point charge model. For the Fe series, the R =

Tb - Tm members show moderate magnetic anisotropy in their ordered state, mainly due to

the CEF effect on the R ions, which is consistent with the magnetic anisotropy for the Co

members. These results, as well as the analysis on the heat capacity and resistivity, indicate

that the FM state emerges from the fully degenerate Hund’s rule ground state for RFe2Zn20

(R = Gd - Ho), whereas ErFe2Zn20 and TmFe2Zn20 manifests CEF splitting above their Curie

temperatures.

8.2 Experiments and Results

We start characterizing the compounds with the non-magnetic rare earth ions of the series:

Y(Lu)Fe2Zn20 and Y(Lu)Co2Zn20. Without any 4f electronic magnetism, these compounds

manifest the itinerant electronic magnetic properties associated with the conduction electron

background of each series. Next, we will introduce the two series of compounds with well-

defined 4f local moments: R = Gd - Tm. We will introduce the magnetization and specific

heat data for the Co series at first. Then an overview of the magnetic properties for the Fe

series will be presented next. After that, the magnetization, specific heat and resistivity data

will be presented for each Fe member separately. Finally, similar data for the R = Yb heavy

fermion compounds, YbFe2Zn20 and YbCo2Zn20 will be presented.

8.2.1 Y(Lu)Fe2Zn20 and Y(Lu)Co2Zn20

Temperature dependent magnetization data (divided by the applied field) for Y(Lu)Fe2Zn20

and Y(Lu)Co2Zn20 are shown in Fig. 8.1 (a). The Fe members manifest similar, strongly

enhanced, temperature-dependent paramagnetic signals, whereas the Co members manifest

temperature-independent Pauli paramagnetic signals. Low temperature features for the two

Fe compounds are shown in the inset of Fig. 8.1. In the applied field of 10 kOe, the magnetiza-

tion signals of both Fe members show a faint maximum below 10 K, whereas the high magnetic

field (50 kOe) suppresses the lowest temperature M/H values, as well as the maximum. In our

experience on the measurements of different batch of samples, these low temperature features
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Figure 8.1 (a) Temperature dependent magnetization M divided by the
applied field H for YFe2Zn20 and LuFe2Zn20 as well as their
Co analogues for H = 10 kOe and 50 kOe. Inset: a
blow-up plot at low temperature. (b) H/M for YFe2Zn20 and
LuFe2Zn20. The solid lines present the modified Curie-Weiss
[χ(T ) = C/(T − θC) + χ0] fit for the data above 100 K. Inset:
field dependent magnetization at 1.85 K.
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are moderately sample-dependent (different samples may show 20% different magnetization

signal and 2–3 K difference in the temperature of the maximum, Tmax). Nevertheless, the

maximum of the temperature dependent susceptibility, χ(T ), is a common feature in the NF-

FLs, such as Pd [Gerhardt et al., 1981], YCo2 and LuCo2 [Burzo et al., 1993], as well as TiBe2

[Gerhardt et al., 1983], although quantitative calculation of χ(T ) still presents a challenge even

for the simplest case of Pd [B Zellermann and Voitländer, 2004, Larson et al., 2004]. The field

suppression of the magnetization (and Tmax) at low temperature is not attributed to the pos-

sible existence of a paramagnetic impurity contribution (which would contribute more to the

value of M/H at lower temperature and lower field, and therefore suppress the maximum of

M/H in lower field), but, as discussed below, to the intrinsic variation of χ = dM/dH with

respect to H at different temperatures.

Figure 8.1 (b) shows that above a characteristic temperature (T ∗ ∼ 50 K), the susceptibility

of YFe2Zn20 and LuFe2Zn20 can be approximately fitted by a Curie-Weiss (CW) term [χ(T ) =

C/(T −θC)] plus a temperature-independent term (χ0). The values of effective moment (μeff ),

θC and χ0 are extracted as 1.0 μB/Fe, -16 K, 3.8× 10−4emu/mol and 1.1 μB/Fe, -33 K, 3.4×
10−4emu/mol for YFe2Zn20 and LuFe2Zn20, respectively. These values of μeff are significantly

larger than the estimated induced moment of Fe site in the FM ground state of GdFe2Zn20,

∼ 0.35μB/Fe. Such apparent CW-like behavior was also observed in other NFFL systems.

[Shimizu, 1961, Burzo et al., 1993] In the context of the spin fluctuation model [Moriya, 1985],

itinerant electronic systems can manifest CW-like behavior with a Curie constant related to the

local amplitude of the spin fluctuation. The magnetization data at the base temperature (1.85

K) show nearly linear dependent with the applied field [Inset in Fig. 8.1 (b)], which is distinct

from the Brillouin function type of magnetization curves associated with local moments.

In order to better understand the variation of the maximum in temperature dependent

M/H data for YFe2Zn20 and LuFe2Zn20, M(T ) and M(H) measurements were performed on

LuFe2Zn20 for varied applied field and temperature respectively. Figure 8.2 shows that the

magnetic field suppresses the values of M/H, as well as the maximum of M/H, which disap-

pears when H ≥ 20 kOe. Figure 8.3 shows ΔM/ΔH at varied temperature, which values were
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Figure 8.2 Temperature dependent M/H for LuFe2Zn20. From right to
left: H = 2 kOe, 5 kOe, 10 kOe, 20 kOe and 30 kOe.

Figure 8.3 ΔM/ΔH for LuFe2Zn20 at varied temperature.
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Figure 8.4 Low temperature specific heat data of YFe2Zn20 and LuFe2Zn20

(plotted as Cp/T versus T 2), as well as the Co analogues.

extracted from the M(H) data. For T ≥ 10 K, the values of ΔM/ΔH monotonically decrease

with increase H, whereas a local maximum appears around 20 kOe in the data sets as T ≤ 7 K.

This critical temperature (∼ 7 K) is close to the Tmax; the maximum of ΔM/ΔH (20 kOe)

is also close to the suppression field determined by Fig. 8.2. This curious, field dependent,

susceptibility at varied temperature is reminiscent to the one of TiBe2, albeit the amplitude

of local maximum in ΔM/ΔH is much smaller. [Gerhardt et al., 1983, Acker et al., 1981] In

the case of TiBe2, the reason of anomalous field-dependent magnetization is still not clear.

[Jeong et al., 2006]

Figure 8.4 presents the low temperature specific heat data for YFe2Zn20 and LuFe2Zn20, as

well, as for the Co analogues, plotted as Cp/T versus T 2. All four compounds manifest clear

Fermi liquid behavior (Cp = γT + βT 3). The similar β values (represented as the slopes of

the data sets in the plot, ∼ 1.2mJ/molK4) indicate the similar Debye temperatures for these

4 compounds (∼ 340 K), consistent with their similar molar mass, similar composition and

similar lattice parameters. On the other hand, the over 2.5 times larger values of electronic
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specific heat (γ) of the Fe members indicate a larger density of states at Fermi level [N(Ef )],

compared to the Co analogues (consistent with the band structure calculation results). The

values of the electronic specific heat can be employed to estimate the Stoner enhancement

factor, Z, in the context of the Stoner theory: that is, the static susceptibility is enhanced by

1
1−Z , whereas the electronic specific heat is not. The estimated Z values of YFe2Zn20 and

LuFe2Zn20 are 0.88, 0.89, respectively, comparable with the estimated values of the canonical

NFFL systems: Pd: 0.83, and YCo2: 0.75.†

The temperature dependent electrical resistivity data for YFe2Zn20 and LuFe2Zn20 are

larger than that for the Co analogues over the whole temperature range (Fig. 8.5). This is

not unexpected for a NFFL since the spin fluctuations will affect the scattering process of the

conduction electrons, which leads to an additional contribution to the resistivity. In order to

study the spin fluctuation contribution to the resistivity, the total electrical resistivity ρ(T ) is

assumed to be:

ρ(T ) = ρ0 + ρph(T ) + ρsf (T ), (8.1)

where the first, second and third terms represent residual, phonon and spin fluctuation scat-

tering, respectively. Assuming the phonon scattering contribution, ρph(T ), is essentially same

for the Fe and Co analogues, then, the spin fluctuation scattering contribution, ρsf (T ), can be

estimated as:

ρsf (T ) = (ρ − ρ0)Y/LuFe2Zn20
− (ρ − ρ0)Y/LuCo2Zn20

. (8.2)

Shown in Fig. 8.5b, ρsf (T ) for these two compounds increase with temperature and is close

to a saturated value (10 μΩcm) at 300 K, within the accuracy of the measurements.

The analysis of the low temperature resistivity data reveals a quadratic, standard Fermi

liquid, behavior [ρ(T ) = ρ0 + AT 2] for all 4 compounds (Fig. 8.6). The A values of the Fe

compounds are about 7 times larger than the two Co analogues. This result is consistent with

the 2.5 times larger γ values of the Fe compounds, in the context of the Fermi liquid theory,

meaning A is proportional to the square of the effective mass of the quasi-particles due to the
†The values of γ and χ for YCo2 are from ref. [Burzo et al., 1993, Ikeda et al., 1984]
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Figure 8.5 (a): Temperature dependent resistivity of YFe2Zn20 and
LuFe2Zn20, as well as their Co analogues. (b): estimated spin
fluctuation contribution to the resistivity for YFe2Zn20 and
LuFe2Zn20. The error bars were estimated as ±10% of the val-
ues of the resistivity for YCo2Zn20 and LuCo2Zn20 respectively.
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Figure 8.6 ρ versus T 2 for YFe2Zn20 and LuFe2Zn20, as well as their Co
analogues. The solid lines present the linear fit of the data sets
from 2 K to 9 K.

strong correlation effect, whereas γ is proportional to the effective mass. In the point of view of

spin fluctuation theory, nearly FM metals manifest Fermi liquid behaviors at low temperature

region with enhanced A values by spin fluctuations [Moriya, 1985].

8.2.2 RCo2Zn20 (R = Nd, Sm, Gd - Tm)

Before to discuss the heavy rare earth compounds (R = Gd - Yb), the results of thermody-

namic measurement on NdCo2Zn20 and SmCo2Zn20 are briefly presented. Figure 8.7 shows the

temperature magnetization data (divided by the applied field H = 1000 Oe) for NdCo2Zn20

and SmCo2Zn20. Neither of them manifest any sign of magnetic ordering above 2 K. The

temperature dependent H/M for NdCo2Zn20 shows a CW behavior [χ(T ) = C/(T − θC) + χ0]

with μeff = 3.7μB , θC = −2.3 K and χ0 = 6.8 × 10−4 emu/mol. The value of the effective

moment is close to the theoretical values for the Hund’s rule ground state of the 4f electrons

of Nd3+ ion (3.6μB). On the other hand, the magnetization of SmCo2Zn20 drop with increase

temperature, but in a distinctly non-CW manner. This behavior is not unexpected in Sm
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Figure 8.7 Temperature dependent magnetization of RCo2Zn20 (R = Nd
and Sm) compounds, divided by applied field H = 10000 Oe.
Inset: applied field (H = 10000 Oe) divided by the magnetiza-
tions of RCo2Zn20 (R = Nd and Sm) as a function of tempera-
ture.
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Figure 8.8 Temperature dependent specific heat for RCo2Zn20 (R = Nd,
Sm and Y).

containing compounds [Myers et al., 1999], and is most likely due to the thermal population

of the first excited Hund’s rule multiplet.

Specific heat data for NdCo2Zn20 and SmCo2Zn20 are shown in Fig. 8.8 along with data

for YCo2Zn20 for comparison. The low temperature upturn in the NdCo2Zn20 data below 2

K may be due to a lower temperature magnetic ordering or a Schottky anomaly due to the

CEF splitting. The specific heat data for SmCo2Zn20 manifest a broad peak around 4 K,

which is most likely due to the CEF splitting of the Hund’s rule ground state of Sm3+. Both

NdCo2Zn20 and SmCo2Zn20 data increase much faster above 10 K, and keep more than 10

J/mol K larger above 25 K (not shown here), compared with the data for the non-magnetic

analogue YCo2Zn20. On the other hand, the calculated results of the CEF splitting for the

Hund’s rule ground state of Nd3+ ion in a point charge model show the splitting energy levels

within 25 K (see Table 8.2). This large deference indicates that, at this point, the magnetic

part of Cp for NdCo2Zn20 and SmCo2Zn20 cannot be well estimated, since the Cp data of

YCo2Zn20 is not a good subtraction background and their Lanthanum analogues is absent.
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Figure 8.9 Temperature dependent magnetization of RCo2Zn20 (R = Gd -
Yb) compounds, divided by applied field H = 1000 Oe.

Temperature dependent magnetization data (divided by the applied field H = 1000 Oe)

for RCo2Zn20 (R = Gd - Yb) are presented in Fig. 8.9. In addition to the previously reported,

AFM ordered GdCo2Zn20 with the Neél temperature TN = 5.7± 0.1 K, TbCo2Zn20 also shows

AFM ordering with TN = 2.5 ± 0.1 K, which also clearly manifests itself in the specific heat

data (shown below in Fig. 8.11). The rest of the members (R = Dy - Yb) do not show magnetic

ordering above 2 K. Due to the relatively low density of state at Fermi level [N(EF )] for the Y

and Lu analogues and large R-R separation, such low temperature magnetic ordering for the

4f local moments coupled via the Ruderman-Kitter-Kasaya-Yosida (RKKY) interaction is not

unexpected.

Figure 8.10 shows the temperature dependent H/M for R = Gd - Tm and Yb members of

the RCo2Zn20 series. All the members, including YbCo2Zn20, manifest CW behavior [χ(T ) =

C/(T − θC) + χ0] with negligible small χ0 (≤ 2 × 10−3emu/mol) and the values of μeff close

to the theoretical values for the Hund’s ground state of the 4f electronic configurations; all

the values of θC are close to 0, consistent with the low magnetic ordering temperatures (Table

8.1).
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Figure 8.10 Applied field (H = 10000 Oe) divided by the magnetizations
of RCo2Zn20 (R = Gd - Yb) as a function of temperature.

Table 8.1 Paramagnetic Curie temperature, θC (with ±0.1 K errors) and
effective moment, μeff [from the CW fit of χ(T ) from 50 K to
300 K]; Neél temperature, TN for RCo2Zn20 compounds (R =
Nd, Gd - Yb).

Nd Gd Tb Dy Ho Er Tm Yb
θC , K -2.3 3.3 -2.6 -3.7 1.4 -2.1 -0.03 -5.2
μeff , μB 3.7 8.1 9.8 10.9 10.7 9.7 7.4 4.5
TN, K 5.7 2.5
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Figure 8.11 Temperature dependent specific heat for RCo2Zn20 (R = Gd -
Tm, Y and Lu), as well as Tb0.5Y0.5Co2Zn20. Inset: tempera-
ture dependent magnetic entropy for TbCo2Zn20. The dashed
line presents the entropy of the full Hund’s ground state of
Tb+3.
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The specific heat data for RCo2Zn20 (R = Gd - Tm , Y and Lu), as well as the pseudo-

ternary compound Tb0.5Y0.5Co2Zn20 are presented in Fig. 8.11. In addition to the previously

studied GdCo2Zn20, the specific heat data for TbCo2Zn20 manifests a λ-type of anomaly with

a peak position at 2.5 K, the AFM ordering temperature. In addition to this peak, the Cp

data also show a broad shoulder above 2.5 K, which is due to the CEF splitting above the

magnetic ordering temperature. This anomaly, associated with CEF splitting of the 4f elec-

tronic configuration of Tb3+, manifests itself more clearly in the Cp data for Tb0.5Y0.5Co2Zn20:

when TN is suppressed to well below 2 K, the Cp data show a Schottky anomaly with a peak

position ∼ 3 K. The magnetic part of entropy for TbCo2Zn20 is shown in the inset to Fig. 8.11.

Approximately 50 % of the total magnetic entropy is recovered by TN, and by 15 K the full

S = R ln 13 is recovered (R is gas constant). This is consistent with a very small, total CEF

splitting in the these compounds, associated with the highly symmetric environment of the R

ions. For the rest of the members, R = Dy - Tm, the specific data show broad, Schottky-type

of anomaly below 10 K, as shown in the insets of Fig. 8.14, 8.15, 8.16 and 8.17 (shown be-

low). The increasing tendency for DyCo2Zn20 below 2 K may indicate a magnetic ordering

below, whereas the increasing tendency for TmCo2Zn20 below 0.7 K may be due to a magnetic

ordering at very low temperature and/or a nuclear Schottky anomaly.

The released, magnetic part of entropy above 2 K (above 0.4 K for the TmCo2Zn20) are

shown in Fig. 8.12. For R = Dy - Tm, there is an obvious deficit of magnetic entropy com-

pared with the value associated with fully degenerated Hund’s ground state, which indicates

unaccounted entropy below 2 K (0.4 K for TmCo2Zn20) associated with low lying CEF levels

and magnetic ordering.

In order to better understand the magnetic properties for R = Tb - Tm members, the

CEF effect acting on the R ions is evaluated by thermodynamic measurements. The single-ion

Hamiltonian for the R3+ is assumed to be the sum of the CEF term, an exchange interaction

term and an external field term:

H = HCEF + Hexc + Hext. (8.3)

where Hext = gJμB
�J · �H, gJ is Lande factor, �J is the total angular momentum, and �H is the
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Figure 8.12 Normalized magnetic part of entropy for RCo2Zn20 (R = Dy
- Tm) as well as for Tb0.5Y0.5Co2Zn20 (in units of per mole
R3+). The error bars were estimated from the ±1 % of the
total entropy.

.

external magnetic field.

Since the rare earth ions are located in a cubic point symmetry, the CEF term, HCEF , can

be written as:

HCEF = B0
4(O0

4 + 5O4
4) + B0

6(O0
6 − 21O4

6). (8.4)

where Om
l operators are the well-known Stevens operators [Stevens, 1952], and B0

4 and B0
6 are

CEF parameters [Lea et al., 1962]. If one follows the work of Lea et al. [Lea et al., 1962], this

expression can be written as:

HCEF = W [
x

F4
(O0

4 + 5O4
4) +

1 − |x|
F6

(O0
6 − 21O4

6)]. (8.5)

where F4 and F6 are factors introduced by Lea et al. [Lea et al., 1962] and dependent with

J , W is the energy scale, and x represents the relative importance of the 4th and 6th order

terms.

Noticing that the possible magnetic ordering temperatures are below 2 K for RCo2Zn20 (R =

Dy - Tm), as well as for Tb0.5Y0.5Co2Zn20, the exchange interaction term will be approximated



135

Figure 8.13 Field dependent magnetization for Tb0.5Y0.5Co2Zn20 along
three principle axes. The solid lines present the fitting results.
Inset: magnetic part of specific heat. The solid and dashed line
present the experimental and calculated result respectively.

as zero, an approximation that will be better for R = Tm than for R = Dy. Thus, the CEF

parameters for different R ions were determined by fitting the magnetization at 2 K and the

temperature dependent specific heat data.

Figure 8.13–8.17 show the CEF fitting results of the magnetization at 2 K and the mag-

netic part of specific heat with the single ion Hamiltonian (ignoring the interaction term) for

Tb0.5Y0.5Co2Zn20 and RCo2Zn20 (R = Dy - Tm). The specific heat data for all members are

less than the one of YCo2Zn20 at high temperature range, which is likely due to the errors

associated with resolving the difference between the sample’s total Cp and the relatively large

nonmagnetic contribution. Therefore, the fittings of Cp were performed below 20 K. For R =

Dy - Tm, the experimental magnetization data were slightly less than the calculated results.

Such phenomena, more significant for R = Dy and Ho, are most likely due to the still relevant

AFM-type of interaction between the local moments. As shown in table 8.2, the inferred W

and x values for all 5 compounds are clustered in a narrow range: |W | < 0.1, |x| < 0.25.
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Figure 8.14 Field dependent magnetization for DyCo2Zn20 along three
principle axes. The solid lines present the fitting results. In-
set: magnetic part of specific heat. The solid and dashed line
present the experimental and calculated result respectively.
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Figure 8.15 Field dependent magnetization for HoCo2Zn20 along three
principle axes. The solid lines present the fitting results. In-
set: magnetic part of specific heat. The solid and dashed line
present the experimental and calculated result respectively.
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Figure 8.16 Field dependent magnetization for ErCo2Zn20 along three
principle axes. The solid lines present the fitting results. In-
set: magnetic part of specific heat. The solid and dashed line
present the experimental and calculated result respectively.
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Figure 8.17 Field dependent magnetization for TmCo2Zn20 along three
principle axes. The solid lines present the fitting results. In-
set: magnetic part of specific heat. The solid and dashed line
present the experimental and calculated result respectively.
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Table 8.2 Comparison of the CEF parameters of RCo2Zn20 compounds (R
=Nd, Tb - Yb), determined from magnetization measurements
to those calculated in a point charge model.

Nd Tb Dy Ho Er Tm Yb
W (K) exp. 0.084 -0.073 0.067 -0.077 0.07

cal. 0.28 0.026 -0.021 0.018 -0.025 0.044 -0.28
x exp. 0.2 0.1 0.22 -0.1 -0.15

cal. 0.26 -0.68 -0.41 0.23 -0.22 -0.41 -0.64
B0

4 (10−4 K) exp. 2.8 -1.2 2.5 1.3 1.75
cal. 12.2 -3.0 1.4 0.7 -0.9 -3.0 29.6

B0
6 (10−6 K) exp. 8.9 -4.7 3.8 -5 7.9

cal. 81.2 1.1 -0.9 1.0 -1.4 3.5 -81.4

This result, indicating small energy scales of the CEF effect and relatively large B0
6 terms, are

roughly consistent with the calculated results based on the point charge model (see Appendix

B). Furthermore, it should be noted that the signs of the B0
6 terms for the calculated results

are all consistent with the experimental ones; this is not the case for the B0
4 terms. This

behavior is not difficult to understand, as shown in the Appendix B, the contributions to the

CEF splitting are mainly from the CN-16 Frank-Kasper polyhedron formed by 4 NN and 12

NNN Zn neighbors. For the B0
4 term, the contributions cancel each other by the two sets of

neighbors, whereas the contributions for the B0
6 terms is the sum. Therefore, the B0

6 terms are

relatively large and the calculated results are more reliable.

8.2.3 RFe2Zn20 (R = Gd - Tm)

Before discussing each of the well-defined, local moment compounds in this series separately,

an overview of their temperature dependent magnetization data serves as a useful point of

orientation. Figure 8.18 shows M/H versus T (the applied field H = 1000 Oe) for R = Gd -

Tm members. In contrast to the Co series compounds, the Fe series compounds all manifest

FM ground states with enhanced TC values, which systematically decrease as R varies from

Gd to Tm. Such enhanced FM ordering has been explained as the result of local moments

embedded in the NFFL host, most clearly seen in YFe2Zn20 and LuFe2Zn20. This systematic
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Figure 8.18 Temperature dependent magnetization of RFe2Zn20 (R = Gd
- Tm), divided by applied field H = 1000 Oe.

variation of TC on R is not unexpected for such heavy rare earth compounds when the magnetic

interaction between the R ions are associated with the spin part of the Hund’s ground state of

4f electrons.

The temperature dependent H/M data, approximately equaling inverse susceptibilities

[1/χ(T )] in the paramagnetic state, for R = Gd - Tm, as well as for YbFe2Zn20, are shown

in Fig. 8.19. Similar to GdFe2Zn20 (see Chapter 6,7), the 1/χ(T ) data sets for R = Tb - Tm

follow the CW law [χ(T ) = C/(T − θC) + χ0] at high temperatures, and deviate from the law

when approaching their magnetic ordering. The effective moment (μeff ) and the paramagnetic

Curie temperature (θC) for these 6 compounds were listed in Table 8.3. All μeff values are close

to the theoretical value for the Hund’s ground state of the trivalent 4f electronic configuration.

8.2.3.1 TbFe2Zn20

Temperature dependent M/H, specific heat and resistivity data sets for TbFe2Zn20 are

shown in Fig. 8.20. The M(T )/H data are consistent with FM order below 60 K, and the
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Figure 8.19 Applied field (H = 1000 Oe) divided by the magnetizations of
RFe2Zn20 (R = Gd - Tm) as a function of temperature.

Table 8.3 Residual resistivity ratio, RRR = R(300K)/R(2K); paramag-
netic Curie temperature, θC (with ±0.5 K errors) and effective
moment, μeff (from the CW fit of χ(T ) from 100 K to 300 K,
except for GdFe2Zn20, which was fitted from 200 K to 375 K;
Curie temperature, TC; and saturated moment at 55 kOe along
the easy direction, μsat for RFe2Zn20 compounds (R = Gd - Yb).

Gd Tb Dy Ho Er Tm Yb
RRR 8.1 7.2 15.0 10.0 13.2 10.1 31.2
θC , K 46 30 20 9 0 -2 -23
μeff , μB 7.9 9.5 10.5 10.6 9.5 7.7 4.7
TC, K 86 58 46 28 17 5.5
μsat, μB 6.7 8.1 9.5 9.9 8.5 6.2
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Figure 8.20 (a) Temperature dependent M/H for TbFe2Zn20

(H = 1000 Oe); (b) Cp; (c) ρ and dρ/dT . Upper inset
: magnetic part of specific heat. Lower inset: magnetic
entropy SM .
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Figure 8.21 Arrott plot of magnetic isothermals for TbFe2Zn20.

magnetic phase transition manifests itself as a faint feature in Cp data, indicating TC = 56±3 K.

Such behavior associated with TC appears as a broad feature with TC occurring at the position

of the maximum slope of the magnetic part of specific heat (Fig. 8.20 upper inset). As shown

in the lower inset to Fig. 8.20 b, at TC, the magnetic entropy is close to the value for the full

degeneracy of the Hund’s ground state of Tb3+, R ln 13. As we shall see for the rest of the

local moment members (R = Dy - Tm), the released magnetic entropy at TC for the respective

rare earth ion, is close to the full degeneracy value for their Hund’s ground state, except for R

= Tm. The ρ(T ) data manifests a change in the slope, which could be seen even more clearly

on in the dρ/dT data, consistent with a TC = 56 ± 1 K.

Figure 8.21 presents a plot of M2 versus H/M (an Arrott plot) isotherms near TC. The

isotherm that most closely goes though the origin is the one closest to TC, giving for this case

a value of 58 K, consistent with the results of the Cp and ρ(T ) measurements. Figure 8.22

shows magnetization versus external field data along 3 different crystallographic directions:

[100], [110] and [111], at 2 K. All of these data sets are consistent with a low temperature FM

ground state with moderate anisotropy. The spontaneous longitudinal magnetic moment in
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Figure 8.22 Field dependent magnetization of TbFe2Zn20 along three prin-
ciple axes at 2 K. The three lines represent the calculated re-
sults based on molecular field approximation are all clustered
near 9 μB and appear as a single line. The dashed lines and
the values present the extrapolate of the magnetization curves
and the estimated spontaneous magnetic moments along three
directions.
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Figure 8.23 (a) Temperature dependent M/H for DyFe2Zn20

(H = 1000 Oe); (b) Cp; (c) ρ and dρ/dT . Upper inset:
magnetic part of Cp. Lower inset: magnetic entropy.

zero applied external field, estimated as the extrapolation of the magnetization curves back

to H = 0, yield M([110]) = 8.0μB , M([111]) = 6.6μB , and M([100]) = 5.7μB . The ratio of

them is very close to 1 :
√

2/3 :
√

1/2. Such behavior indicates that the spontaneous magnetic

moments along [111] and [100] directions can be understood as the projection of the one along

the easy axis, [110]. At 2 K, the saturated moment at 55 kOe along the easy axis, [110], is

8.1μB , 0.9μB less than the value associated with the Hund’s ground state.
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Figure 8.24 Arrott plot of magnetic isothermals for DyFe2Zn20.

8.2.3.2 DyFe2Zn20

The low field thermodynamic and transport properties of DyFe2Zn20 are shown in Fig. 8.23.

The temperature dependent magnetization data (Fig. 8.23 a) suggest a FM transition below

50 K. The specific heat data show a kink associated with magnetic ordering (Fig. 8.23 b), which

can be seen more clearly after the subtraction of the non-magnetic background (upper inset)

and indicates TC = 45 ± 1 K. This FM transition temperature is further confirmed by a weak

change in slope in ρ(T ) (associated with the low temperature loss of spin disorder scattering),

indicating TC = 45 ± 2 K. Given that the loss of spin disorder scattering in intermetallics

often scales with de Gennes parameter [Fournier and Gratz, 1993], the feature we find in ρ(T )

below TC becomes fainter and fainter as R progresses from Gd to Tm. These values of TC are

consistent with the result of the Arrott plot analysis, from which a value of TC = 45± 1 K can

be inferred(Fig. 8.24).

It is worth noticing that the specific heat data show a faint shoulder near 10 K, which

appears to be a broad peak after the background subtraction, and is coincident with a slope
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Figure 8.25 Field dependent magnetization of DyFe2Zn20 at 2 K along
three principle axes. The solid lines represent the calculated
result based on molecular field approximation (see data anal-
ysis part below). The dashed lines and the values present
the extrapolate of the magnetization curves and the estimated
spontaneous magnetic moments along 3 directions.

change feature in ρ(T ) data. As seen below, such anomaly below TC in Cp and ρ(T ) data

also appears for the members of R = Ho, Er and Tm. Those anomalies are likely due to the

magnetic excitation energy spectrum associated with the Hund’s rule multiplet of R3+ ions in

their FM states. (Further discussion will be presented below.)

The 2 K field dependent, magnetization isotherms for DyFe2Zn20 are shown in Fig. 8.25.

Compared to TbFe2Zn20, the magnetization curves for DyFe2Zn20 reveal a slightly more com-

plicated, anisotropic behavior. The magnetization along [100] direction manifests one meta-

magnetic phase transition near 12 kOe. Above this transition, the magnetization along [100]

direction is essentially the same as that for the field along the easy [111] axis. The spontaneous

longitudinal magnetization along the three directions, M([111]) = 9.1μB , M([110]) = 7.4μB ,

and M([100]) = 5.3μB , have a ratio very close to 1 :
√

1/2 :
√

1/3. These results indicate that

M([110]) and M([100]) can be seen as the projection of M([111]). The metamagnetic phase
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transition along [100] can be understood as the process of a classical spin reorientation in a

cubic symmetry coordination. As in the case for GdFe2Zn20 and TbFe2Zn20, the saturated

moment of DyFe2Zn20 at 55 kOe, 9.5μB , is slightly less than the value of the Hund’s ground

state value, 10μB .

8.2.3.3 HoFe2Zn20

Figure 8.26 presents the low field thermodynamic and transport data from measurements

on HoFe2Zn20. The anomalies associated with the FM transition in HoFe2Zn20 in the specific

heat and resistivity data are relatively weak. The specific heat anomaly can be associated with

TC ∼ 28 K, and the dρ/dT data show faint anomaly at this temperature (Fig. 8.26). The

TC value is determined as 28 ± 1 K from Cp data, as well as 29 ± 1 K from ρ(T ) data. This

determinate TC value is consistent with the result of the Arrott plot analysis (Fig. 8.27), which

gives TC = 28 ± 1 K.

The low temperature magnetic isotherms for HoFe2Zn20 manifest similar, but obviously

larger, anisotropy to the ones for TbFe2Zn20 (Fig. 8.28). The ratio of the spontaneous mag-

netization, M([110]) : M([111]) : M([100]) = 9.1μB : 7.0μB : 6.1μB is close to the ratio of

1 :
√

2/3 :
√

1/2. This ratio is consistent with the projection of the local moment from the

easy [110] axis onto the [111] and [100] axes. In the external field of 55 kOe, the magnetization

along the easy axis, [110], reaches the value of 9.9μB , very close to the value of the Hund’s

ground state, 10μB .

8.2.3.4 ErFe2Zn20

The low field thermodynamic and transport properties of ErFe2Zn20 are shown in Fig. 8.29.

The specific heat data show a kink near 18 K [Fig. 8.29 (b)], which can be seen more clearly

after the background subtraction (upper inset) and indicates TC = 18±1 K. The resistivity data

show no clear anomaly at this temperature.(Fig. 8.29) The released magnetic entropy reaches

21 J/mol K at TC, 90% of the one associated with the Hund’s ground state of Er3+, R ln 16

(Fig. 8.29 lower inset). Although ρ(T ) data manifest no anomaly at TC, we will see below that
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Figure 8.26 (a) Temperature dependent M/H for HoFe2Zn20

(H = 1000 Oe); (b) Cp; (c) ρ and dρ/dT . Upper inset:
magnetic part of Cp data. Lower inset: magnetic entropy.
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Figure 8.27 Arrott plot of magnetic isothermals for HoFe2Zn20.

the weak anomaly associated with magnetic ordering can be blow up after the background

[ρ(T ) for LuFe2Zn20]subtraction. The Arrott plot for ErFe2Zn20 (Fig. 8.30), although showing

non-linear, isothermal curves, demonstrates TC = 17±0.5 K with no ambiguity. The non-linear

feature is not unexpected for the 4f local moment systems associated with the CEF induced

anisotropy. [Neumann and Ziebeck, 1995]

The magnetic anisotropy of ErFe2Zn20 is reminiscent of that of DyFe2Zn20: both have the

same easy and hard magnetization orientations, [111] and [110] respectively, as well as the

metamagnetic transition along the [100] direction (Fig. 8.31). The ratio of the spontaneous

longitudinal magnetic moments, M([111]) : M([110]) : M([100]) = 7.4μB : 5.9μB : 4.2μB is

also close to the ratio of 1 :
√

2/3 :
√

1/3.

8.2.3.5 TmFe2Zn20

The low field magnetization, specific heat and resistivity data for TmFe2Zn20 are shown

in Fig. 8.32. The temperature dependent magnetization data suggest a FM transition below
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Figure 8.28 Field dependent magnetization of HoFe2Zn20 at 2 K along
three principle axes. The solid lines represent the calculated
result based on molecular field approximation (see data anal-
ysis part below). The dashed lines and the values present
the extrapolate of the magnetization curves and the estimated
spontaneous magnetic moments along 3 directions.
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Figure 8.29 (a) Temperature dependent M/H for ErFe2Zn20

(H = 1000 Oe); (b) Cp; (c) ρ and dρ/dT . Upper inset:
magnetic part of Cp data. Lower inset: magnetic entropy.
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Figure 8.30 Arrott plot of magnetic isothermals for ErFe2Zn20.

10 K (Fig. 8.32 a). However, the specific heat data for TmFe2Zn20 only manifest one broad

peak at 4.5 K (Fig. 8.32 b), which is less like the anomalies associated with TC for R = Gd

- Er, and more like a Schottky anomaly associated with a CEF splitting. The resistivity data

also show anomaly below 5 K (Fig. 8.32 c). However, at this point, it is difficult to determine

whether this anomaly is associated with the magnetic ordering or the CEF splitting of the

4f electrons of Tm3+ ions. As we can see below, after the subtraction of the nonmagnetic

background, the anomaly associated with the loss of the spin disorder scattering can be seen

more clearly.

For TmFe2Zn20, the Arrott plot analysis provides the reliable criterion for TC determina-

tion. Figure 8.33 shows that TC can be determined as 5.5 ± 0.5 K without any ambiguity. At

this temperature, the magnetic entropy is 15 J/mol K, only 70% of the value of fully released

entropy of Hund’s ground state of Tm3+, R ln 13 (Fig. 8.32 upper inset).

The low temperature magnetic isotherms for TmFe2Zn20 manifest the same easy and hard

axis as Tb and Ho members, [110] and [111], respectively (Fig. 8.34). The spontaneous
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Figure 8.31 Field dependent magnetization of ErFe2Zn20 at 2 K along three
principle axes. The solid lines represent the calculated result
based on molecular field approximation (see data analysis part
below). The dashed lines and the values present the extrap-
olate of the magnetization curves and the estimated sponta-
neous magnetic moments along 3 directions.
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Figure 8.32 (a) Temperature dependent M/H for TmFe2Zn20

(H = 1000 Oe); (b) Cp; (c) ρ and dρ/dT . Inset A:
magnetic part of Cp data. Inset B: magnetic entropy.
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Figure 8.33 Arrott plot of magnetic isothermals for TmFe2Zn20.

longitudinal magnetic moments along the three principle axes are all close to 4μB. Such a

result may be due to the relatively low value of TC, which makes the spontaneous magnetic

moment less anisotropic at 2 K. The saturated moment along the easy axis reaches 6.2μB at

55 kOe, 0.8μB less than the value of the Hund’s ground state, 7μB .

8.2.4 YbFe2Zn20 and YbCo2Zn20

Figure 8.35 shows temperature dependent susceptibility and resistivity data for YbFe2Zn20

and YbCo2Zn20. The susceptibility data for YbFe2Zn20 manifest a broad, Kondo-type peak

about 20 K, indicating a clear loss of local moment behavior, whereas the susceptibility for

YbCo2Zn20 shows CW behavior down to 1.8 K (Fig. 8.10), associated with the effective moment

value μeff = 4.5μB . Above ∼ 50 K, χ(T ) for YbFe2Zn20 manifests a CW behavior with an

effective moment of 4.7μB , close to the value of the Hund’s ground state of Yb3+, 4.5μB (see

Fig. 8.19). The resistivity data for YbFe2Zn20 show a broad shoulder about 30 K, whereas for

YbCo2Zn20, the resistivity data shows a Kondo resistance minimum about 50 K and a clear

coherent peak about 2 K. These apparently different behaviors for these two Yb-based heavy
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Figure 8.34 Field dependent magnetization of TmFe2Zn20 at 2 K along
three principle axes. The solid lines represent the calculated
result based on molecular field approximation (see data anal-
ysis part below). The dashed lines and the values present
the extrapolate of the magnetization curves and the estimated
spontaneous magnetic moments along 3 directions.
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Figure 8.35 Temperature dependent M/H (a) and resistivity (b) for
YbFe2Zn20 and YbCo2Zn20 (H = 1000 Oe).
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fermion compounds with same structure can be explained as the result of significantly different

Kondo temperatures: TK = 33 K and 1.5 K for Fe and Co compounds, respectively. Detail

analysis for these two compounds as well as YbT2Zn20 (T = Ru, Rh, Os and Ir) compounds

will be presented in Chapter 9.

8.3 Data Analysis and Discussion

As shown in Fig. 8.36 (a), the TC values of RFe2Zn20 compounds (R = Gd - Tm) scale

fairly well with the de Gennes factor, dG = (gJ − 1)2J(J + 1), which indicates a RKKY

interaction. All of the θC values for each compounds are smaller than their respective TC

values (for R = Er and Tm, the values of θC are even negative). These small θC values

are consistent with the deviation of χ(T ) from the CW law (Fig. 8.19). As observed in

the case of pseudo-ternary compounds GdxY1−xFe2Zn20, such deviation can be explained as a

result of increasing coupling between the local moments embedded in the strongly temperature

dependent, polarizable matrix, YFe2Zn20 or LuFe2Zn20. (See Chapter 7)

Previous studies show that the magnetization of GdFe2Zn20 at base temperature are nearly

isotropic with a deficient saturated moment (∼ 0.5μB less than the value of Hund’s rule ground

state of Gd3+). For R = Tb - Tm, the magnetization anisotropy at base temperature is

significant ,and correlates with the easy and hard axes of the respective RCo2Zn20 analogue.

Such behavior indicates the anisotropy of RFe2Zn20 (R = Tb - Tm) may mainly be due to the

CEF effect on the R3+ ions. The M(H) curves at 2 K manifest divided behavior for R = Tb,

Ho and Tm, compare with R = Dy and Er: for R = Tb, Ho and Tm, the magnetization process

are gradual along all 3 principal axes; for R = Dy and Er, the magnetization data along [100]

direction shows one metamagnetic transition. Both types of magnetization processes (gradual

increase and metamagnetic transition) are common for the FM ordered 4f local moments with

CEF anisotropy associated with the R in a cubic point symmetry, and can be understood in

terms of the purification of the CEF split 4f electronic wave function due to the Zeeman effect

of the external field, and the rotation of the local moment. [Pierre, 1982] Given that Tb3+ and

Tm3+, as well as Dy3+ and Er3+ ions have same total 4f electronic Hund’s rule ground state
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Figure 8.36 TC and θC (a), the maximum value on Δρ (b) with respect to
the de Gennes factor for RFe2Zn20 (R = Gd - Tm).
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quantum number (J = 6 and 15/2 respectively), the similar magnetic anisotropy indicates

similar CEF effect for the two sets of rare earth ions, respectively.

In order to better understand the magnetic anisotropy of RFe2Zn20 compounds (R = Tb -

Tm), the CEF effect acting on the R ions must to be considered. However, multiple difficulties

associated with the strongly polarizable back ground [Y(Lu)Fe2Zn20] as well as the strong mag-

netic interaction, make the determination of the CEF parameters hard. For example, in order

to reduce the magnetic interaction, the magnetic R3+ ions were placed into a dilute coordina-

tion, RxY1−xFe2Zn20 or RxLu1−xFe2Zn20. A FM ground state has been found even for very

dilute magnetic R concentration: it was found that Tb0.05Y0.95Fe2Zn20, Dy0.05Y0.95Fe2Zn20 as

well as Ho0.1Y0.9Fe2Zn20 manifest FM ordering above 2 K. For such small x, the background

subtraction (magnetization and/or specific heat of YFe2Zn20 or LuFe2Zn20), as well as the

uncertainty of x, make the fitting process unreliable.

On the other hand, due to the very similar R coordination and the lattice parameters for

Fe and Co series, the CEF parameters determined from RCo2Zn20 compounds should be close

to those for the RFe2Zn20 compounds, with respective R members. Figure 8.37 shows that

the anisotropy of the pseudo-ternary Fe compounds, Er0.1Y0.9Fe2Zn20 and Tm0.1Y0.9Fe2Zn20,

which still manifest a paramagnetic state at the base temperature, is close to the calculated

results from the determined CEF parameters of the respective Co compounds. The calculated

results also fairly well mimic the crossing behavior of the magnetization along [110] and [100]

directions for R = Er, as well as along the [111] and [100] directions for R = Tm. For all

three directions, the calculated results are slightly larger than the experimental ones, which

is most likely due to the ±0.02 uncertainty of the nominal x value. The larger magnetization

for Er0.1Y0.9Fe2Zn20 than the calculated results below 10 kOe is consistent with residual FM

interactions between the Er3+ local moments.

The magnetization along the three axes for the all Fe compounds were calculated based on

the molecular field approximation in a self-consistent manner. In the single-ion Hamiltonian

for the R3+ ions (Eqn. 8.3), with the molecular field approximation, the magnetic interaction
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Figure 8.37 Field dependent magnetization for Er0.1Y0.1Fe2Zn20 (a) and
Tm0.1Y0.1Fe2Zn20 (b) along three principle axes at 1.85 K. The
solid lines present the calculated magnetization by using the
single-ion Hamiltonian and the CEF coefficients determined
from the respective Co members.
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term is written as:

Hexc = gJμB
�J · �HM , (8.6)

where HM is the molecular field. It obeys the self-consistent condition:

HM = λgμB

〈
�J
〉

, (8.7)

〈
�J
〉

=
∑

0 Jn exp (−En/kBT )∑
0 exp (−En/kBT )

, (8.8)

where Jn and En are the eigenvalues and eigenenergies of the nth eigenfunction; λ is the

molecular field constant which can be obtained from the ordering temperature: λ = 3kBTC

μ2
eff

.

The calculated magnetizations were compared with the experimental results in Figs. 8.22,

8.25, 8.28, 8.31 and 8.34. All these calculated magnetization values are obviously larger than

the experimental results. This difference is probably due to (i) the molecular field approxi-

mation over-estimating the molecular field constant as well as the internal field, and (ii) the

induced moments from the Fe site aligning in an antiparallel manner with respect to the R3+

local moments (as in the case of GdFe2Zn20.

Figure 8.38 shows the magnetic part of specific heat as a function of T/TC for RFe2Zn20

(R = Gd - Tm). The magnetic ordering temperature (TC) of R = Gd - Er members manifests

itself as the position of maximum slope, with a decreasing sharpness as R varies from Gd to

Er. TmFe2Zn20 does not appear to have any anomaly in the CM data at TC. Below TC, the

data sets for R = Dy - Tm show a broad peak, which shifts closer to its TC as R varies from

Dy to Tm, whereas the data for GdFe2Zn20 show no explicit peak. If the broad peaks are

corresponding to the magnetic excitation energy spectrum associated with CEF effect, then

the relative positions of these peaks to TC, to some extend, indicate the ratio of the energy

scales of the CEF splitting (for a single ion) to the magnetic interaction. The shift of the

peak position as R varies from Dy to Tm indicates that the energy scale of the magnetic order

relatively decreases compared with the CEF splitting. Such phenomena is consistent with the

analysis on the magnetic part of entropy: as shown in the insets of Figs. 8.20, 8.23, 8.26, 8.29

and 8.32, Tb, Dy and Ho compounds manifest fully released SM at their TC; whereas Er and

Tm compounds still release part of SM above their TC, which indicates that, unlike R = Gd -
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Figure 8.38 Magnetic part of specific heat versus T/TC for RFe2Zn20 (R =
Gd - Tm).
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Figure 8.39 Single-ion CEF splitting energy levels for RCo2Zn20 (R = Tb
- Tm). The arrows present the TC values for RFe2Zn20 with
respective R.

Ho members, the CEF splitting for the 4f electronic configuration of the Tm3+ and Er3+ may

extend above magnetic ordering temperature.

Based on the assumption that the Fe and Co series manifest similar CEF splitting (for

a single R ion), the comparison between the magnetic ordering temperature and the CEF

splitting for different R ions is qualitatively diagrammatized in Fig. 8.39. The levels represent

the single ion, CEF splitting of the Hund’s ground state of 4f electronic configuration of R3+,

determined from RCo2Zn20 and the arrows represent the TC values of RFe2Zn20. The TC value

is comparable with the highest energy level of CEF splitting for R = Ho. For R = Er and Tm,

the TC values is about 1
2 and 1

5 of the highest CEF levels, respectively. This diagram, though

it cannot be used to determine the precise energy splitting of the RFe2Zn20 compounds (the

CEF levels have been strongly modulated and mixed by the interaction energy), is qualitatively

consistent with the specific measurements, and indicates that, at least for TmFe2Zn20, the CEF

energy splitting already happens well above its TC. In summary, is appears plausible that, due

to extremely similar liganal environments, equivalent members of the RFe2Zn20 and RCo2Zn20
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series have similar CEF splitting schemes.

Further insight can also be gained from a careful revisiting of the transport data. The total

resistivity of RFe2Zn20 (R = Gd - Yb) can be written as:

ρ(T ) = ρ0 + ρph(T ) + ρmag(T ), (8.9)

where ρmag is scattering associated with the 4f moments and the spin fluctuation of itinerant

electrons. As seen in Fig. 8.40 a, for the whole series above 250 K, the resistivity data sets

show essentially linear behavior with slopes differing by less than 12%, within the estimated

dimension error (±10%) of these bar-like-shape samples. These similar, high temperature

behaviors indicate that, in the high temperature limit, the magnetic scattering is saturated,

whereas the phonon scattering is essentially invariant for the whole series (due to the very

dilute nature of the R ions). Therefore, the magnetic contribution to the resistivity can be

estimated by (1) subtracting residue resistivity, ρ0 (2) normalizing the high temperature slope

of all ρ(T ) to that of LuFe2Zn20 and then (3) subtracting the ρLu(T ) − ρLu0 data from the

normalized data. The result is written as:

Δρ(T ) = (ρR − ρR0)
dρ|mathrmR

dT |275K
dρLu
dT |275K

− (ρLu − ρLu0). (8.10)

As shown before, the subtraction background ρLu(T ) already includes the scattering as-

sociated with the spin fluctuation of itinerant electrons. Thus, Δρ will not only include the

scattering from the 4f moments, but will also include scattering associated with the interac-

tion between the 4f moments and itinerant electrons. Figure 8.40 (b) and (c) show Δρ versus

temperature, as well as normalized temperature (T/TC) for R = Gd - Tm. For R = Gd -

Er, a pronounced upward cusp, whose height decreases from Gd to Er, is centered about TC,

whereas TmFe2Zn20 manifests a broad feature and only very weak anomaly around its TC (see

the blow-up inset of Fig. 8.40). As shown in Fig. 8.36 (b), the maximum values on the cusps for

different R scale with the de Gennes factor, which indicates that the decrease of Δρ with T be-

low TC is the result of a loss of spin disorder scattering of conduction electrons, associated with

the 4f local moment. However, as found in the pseudo-ternary compounds GdxY1−xFe2Zn20,
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Figure 8.40 (a): ρ versus T , (b): Δρ versus T , (c): Δρ versus T/TC for
RFe2Zn20 (R = Gd - Tm). Inset: the blow up Δρ data for
TmFe2Zn20. The arrow presents the FM ordering tempera-
ture.
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the decrease behavior of Δρ with increasing T above TC is more conspicuous and must come

from a different conduction electron scattering process [simple models of ρ(T ) due to magnetic

scattering cannot explain this anomaly [Craig et al., 1967, Fisher and Langer, 1968]]. Giving

that RT2Zn20 compounds only manifest this behavior when the local moments are embedded

in the highly polarizable background (GdCo2Zn20 does not show this behavior), this anomaly

is thought to be associated with the spin fluctuation of the 3d electrons. Also appearing in the

resistivity of RCo2 (R = Gd - Tm) [Gratz et al., 1995], the decreasing behavior of Δρ with

increasing T above TC has been explained as the result of the increase of the spin fluctuation

of 3d electrons, which is provided by the increasing, nonuniform fluctuating 4f -d electron ex-

change interaction, as the temperature approaches TC in the paramagnetic state. Since both

Y(Lu)Co2 and Y(Lu)Fe2Zn20 are classical examples of NFFLs, such an anomaly could be asso-

ciated with these strongly correlated electron systems. On the other hand, considering that the

Hund’s ground state of Tm3+ has been significantly split above FM ordering for TmFe2Zn20, it

is not unexpected that the conduction electron scattering process manifests a different behavior

associated with the CEF effect.

The nearly FM compounds: YFe2Zn20 and LuFe2Zn20 are also merit further discussion.

Shown in Fig. 8.1, the low field susceptibility (H = 10 kOe) manifests a maximum about

6 K and 8 K for YFe2Zn20 and LuFe2Zn20 respectively. Such a maximum in the temperature

dependent susceptibility also appears for other examples of nearly FM compounds. For ex-

ample, Pd manifests Tmax ∼ 70 K [Gerhardt et al., 1981]; YCo2 and LuCo2 manifests Tmax ∼
100 K[Burzo et al., 1993]; and TiBe2 manifests Tmax ∼ 10 K[Gerhardt et al., 1983]. Another

interesting phenomena in nearly FM materials is the so-called itinerant electron metamag-

netism (IEM), which is an applied magnetic field induced, first order, phase transition between

a paramagnetic state and spin polarized state [Wohlfarth and Rhodes, 1962]. Experimentally,

IEM has been observed for YCo2 and LuCo2 around 70 T. [Goto et al., 1989, Goto et al., 1990]

Within the framework of Landau theory, the maximum in temperature dependent susceptibil-

ity is thought to be related to IEM.[Shimizu, 1981b] The magnetic part of the free energy ΔF
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can be writen as the function of the magnetic moment M :

ΔF =
1
2
aM2 +

1
4
bM4 +

1
6
cM6 , (8.11)

where a, b and c are the Landau expansion coefficients.

As shown by Shimizu [Shimizu, 1981b], the condition for the existence of IEM is: a > 0,

b < 0, c > 0 and 3
16 < ac

b2 < 9
20 . Within the framework of the spin fluctuation theory, Yamada

[Yamada, 1993] generalized this work by introducing a temperature dependent function of the

mean square amplitude of spin fluctuations. These theoretical works demonstrated that the

existence of IEM is associated with the maximum in χ(T ) by means of the factor of ac
b2

, which

can be estimated as:
ac

b2
= [1 − χ(0)

χ(Tmax)
]−1. (8.12)

Furthermore, the IEM can only happen below Tmax. These results seem to be consistent with

the experimental results in various itinerant electronic systems. [Goto et al., 2001]

According to the Eqn. 8.12, the values of ac
b2 can be estimated as 310 and 72 for YFe2Zn20

and LuFe2Zn20 respectively (M/H ∼ χ(T ) at 10 kOe), which are much larger than the region

of the existence of IEM, indicating that IEM may not exist. Indeed, recent measurements

on a part of the LuFe2Zn20 sample used for the magnetization data in Fig. 8.1 in a pulse

magnetic field up to 55 T at 0.3 K, show no evidence of metamagnetic transition. In nearly

FM materials, no evidence of IEM appears for TiBe2,[Yamada and Terao, 1998], which also

manifests a relative low value of Tmax. From these points of view, Y(Lu)Fe2Zn20 and TiBe2

may represent the examples of NFFLs different from YCo2 and LuCo2.

This lack of an IEM sheds further light on the magnetic properties of the local moment

bearing, RFe2Zn20 (R = Gd - Tm) compounds. As shown before, all the members manifest

2nd order paramagnetic to ferromagnetic phase transitions. This behavior is different from

that seen in the RCo2 (R = Gd - Tm) system: the magnetic phase transitions of R = Dy - Tm

members for RCo2 are 1st order whereas R = Gd and Tb members have 2nd order transitions

[Duc and Brommer, 1999]. This difference is not difficult to explain in Landau theory: unlike

Y(Lu)Co2, the host of Y(Lu)Fe2Zn20 lack of ability to show IEM and therefore can not be
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induced to show metamagnetic transition by any molecular field associated with the 4f local

moments.

8.4 Summery

RFe2Zn20 and RCo2Zn20 (R = Gd - Lu, Y) demonstrate diverse magnetic properties. The

conspicuous differences are mainly associated with the conduction electron polarizability of

the host (non-magnetic) compounds. YFe2Zn20 and LuFe2Zn20 manifest similar,nearly fer-

romagnetic properties. When the 4f local moments are embedded in this highly polarizable

medium, RFe2Zn20 (R = Gd - Tm) series show highly enhanced FM ordering. In contrast,

YCo2Zn20 and LuCo2Zn20 manifest normal, Pauli paramagnetic behaviors. In a related man-

ner, GdCo2Zn20 and TbCo2Zn20 show low temperature AFM ordering, and the magnetic prop-

erties for RCo2Zn20 (R = Dy - Tm) are more strongly influenced by the CEF effect on the R

ions. CEF coefficients determined for the Co series are consistent with the properties of the

Fe series. On the other hand, YbFe2Zn20 and YbCo2Zn20 manifest different heavy Fermion

behaviors.
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CHAPTER 9. Thermodynamic and transport properties of YbT2Zn20 (T=

Fe, Ru, Os, Co, Rh and Ir) ∗

9.1 Introduction

Heavy fermion compounds have been recognized as premier examples of strongly corre-

lated electron behavior for several decades.[Hewson, 1993] Ce- and U-based heavy fermion

compounds have been well studied, and in recent years a small number of Yb-based heavy

fermions have been identified as well.[Stewart, 1984b, Stewart, 2001, Stewart, 2006] Unfortu-

nately, in part due to the somewhat unpredictable nature of 4f ion hybridization with the

conduction electrons, it has been difficult to find closely related (e.g., structurally) heavy

fermion compounds, other than of the ThCr2Si2 structure, especially Yb-based ones, that al-

low for systematic studies of the Yb ion degeneracy. Part of this difficulty is associated with

the fact that the 4f hybridization depends so strongly on the local environment of the rare

earth ion.

In this Chapter, I present thermodynamic and transport data on six strongly correlated

Yb-based intermetallic compounds found in the RT2Zn20 family for T = Fe, Co, Ru, Rh, Os,

and Ir. Containing less than 5 at. % of rare earth ions which still fully occupy one unique

crystallographic site, RT2Zn20 intermetallic compounds offer the possibility of investigating 4f

electronic magnetism in fully ordered compounds for relatively low rare earths concentration.

For the case of R = Yb or Ce, these materials offer the possibility of preserving low temperature,

coherent effects while more closely approximating the single ion, Kondo impurity limit. With

the specific heat coefficient values of γ > 400 mJ/mol K2, these six Yb compounds effectively
∗after “Six closely related YbT2Zn20 (T= Fe, Ru, Os, Co, Rh and Ir) heavy fermion compounds with large

local moment degeneracy”, M. S. Torikachvili, S. Jia, E. D. Mun, S. T. Hannahs, R. C. Black, W. K. Neils,
Dinech Martien, S. L. Bud’ko, P. C. Canfield, Proc. Natl. Acad. Sci. U. S. A. 104 9960 (2007).
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double the number of known Yb-based heavy fermions [Stewart, 1984b].

As shown in the previous chapters, the rare earth ion is coordinated by a CN16 Frank-

Kasper polyhedron consisted by Zn atoms in a cubic point symmetry. This near spherical

distribution of neighboring Zn atoms gives rise to a relatively low crystal electric field (CEF)

effect, which has been investigated for the isostructural, local moment members (R = Tb - Tm,

T = Co and Fe). In addition the isolated and dilute Yb and T sites promise a large degree

of similarity between the members of this isostructural group of Yb-based heavy fermions.

These compounds provide a route to studying how the degeneracy of the Yb ion at Kondo

temperature, TK, effects the low temperature-correlated state.

9.2 Result

Thermodynamic and transport data taken on the six YbT2Zn20 compounds are presented

in Figs. 9.1–9.3 and are summarized in Table 9.1. At first glance, the temperature depen-

dent magnetic susceptibility, electrical resistivity and specific heat for T = Fe, Ru, Rh, Os,

and Ir are qualitatively similar, whereas YCo2Zn20 manifests somewhat different magnetic

properties. Most conspicuously, instead of manifesting a clear loss of local moment behavior

at low temperature, the temperature-dependent susceptibility of YbCo2Zn20 continues to be

Curie-Weiss-like down to 2 K [Fig. 9.1 (a) Inset].

Focusing initially on the five, apparently similar, YbT2Zn20 compounds (T = Fe, Ru, Rh,

Os, Ir), Fig. 9.1 (b) demonstrates that each of these compounds appears to be an excellent

example of a Yb-based heavy fermion with electronic specific heat, γ, values ranging between

500 and 800 mJ/mole K2. These large γ values are consistent with a clear loss of local moment

behavior for each compound below 20 K. The modest rise in the Cp(T )/T data below 2 K is

most probably associated with a nuclear Schottky anomaly and, for this work, is simply ignored.

The low temperature magnetic susceptibility correlates well with the electronic specific heat

values leading to the Wilson ratio for these five compounds having values between 1.1 and 1.3

(see Table 9.1). The temperature-dependent electrical resistivity data (Fig. 9.2) for these five

compounds are also remarkably similar at high temperature and manifest clear T 2 temperature
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Figure 9.1 Low temperature thermodynamic properties of YbT2Zn20 com-
pounds (T = Fe, Ru, Rh, OS, Ir). (a) Magnetization (M)
divided by the applied field (H = 1000Oe. Inset: H/M for
YbCo2Zn20 and YbOs2Zn20. (b) Low temperature specific heat
(Cp) divided by temperature, as a function of T 2.

Figure 9.2 Temperature dependent electrical resistivity if YbT2Zn20 com-
pounds (T = Fe, Co, Ru, Rh, OS, Ir). Inset: Low temperature
resistivity as a function of T 2 for T = Fe, Ru, Rh, Os, Ir; note
separate axes for T = Os on top and right.
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Figure 9.3 Low temperature electrical resistivity and Cp/T of YbCo2Zn20

as a function of T 2.

dependencies at low temperatures (see Inset of Fig. 9.2). Although resistivity data were taken

down to 20 mK, no indications of either magnetic order or superconductivity were found for

any of the YbT2Zn20 compounds.

The thermodynamic and transport properties of YbCo2Zn20 are somewhat different from

the other five compounds. YbCo2Zn20 does not manifest the clear loss of local moment behavior

above 1.8 K, in the susceptibility data [see Fig. 9.1 (a) Inset] and the electrical resistivity

and the specific heat only manifest Fermi-liquid-like behavior associated with ρ ∼ AT 2 and

Cp(T )/T ∼ γ for T less than 0.2 K (Fig. 9.3). Although the higher temperature electrical

resistivity of YbCo2Zn20 is similar to the other five YbT2Zn20 compounds, it manifests a much

clearer example of a resistance minimum and lower temperature coherence peak about 2 K.

9.3 Data Analysis

The coefficient of the T 2 resistivity (A) is plotted as a function of the electric specific

heat (γ) for these six Yb compounds in their Fermi liquid state in a Kadowaki-Woods (KW)

[Kadowaki and Woods, 1986, Miyake et al., 1989] type plot along with other Yb-based com-
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pounds that manifest varying degrees of hybridization (Fig. 9.4). The extremely large A and

γ values for YbCo2Zn20 place its data point far away from the other five compounds and

near to the point associated with the exceptionally heavy Fermion, YbPtBi [Fisk et al., 1991,

Movshovich et al., 1994]. For the T = Fe, Ru, Rh, Os and Ir compounds, the A values vary

by as much as one order of magnitude, whereas the γ values vary relatively little. This gives

rise to a vertical spread of the KW data points, associated with the values of Kadowaki-Woods

ratio (KWR) ranging from 2 × 10−7 to 15 × 10−7 μΩmol2K2/mJ2.

Recent theoretical work [N Tsujii and Kosuge, 2003, Tsujii et al., 2005, Kontani, 2004] has

generalized the idea of a fixed KWR (∼ 1 × 10−5 μΩmol2K2/mJ2) to one that can vary by

over an order of magnitude, depending on the value of the degeneracy of the Yb ion when it

hybridizes. Fig. 9.4 shows, as solid lines, the KWR values for the four degeneracies possible for

the Kramers, Yb3+ ion. The low KWR values for YbFe2Zn20 and YbRu2Zn20 indicate that for

T = Fe, Ru the Yb ion has a significantly larger degeneracy upon entering the Kondo-screened

state than is the case for the T = Rh, Os, Ir compounds.

As shown in Chapter 3, the sole Yb site is surrounded by 16 Zn NNs and NNNs in a cubic

point symmetric coordination. Therefore, the Yb ion’s Hund’s rule ground state multiplet

(N = 8) will split to a quartet and two doublets states will a small total splitting by the

CEF effect. If, as Tsujii et al. suggested, the competition between the CEF splitting Δ

and the Kondo temperature TK is the primary factor giving rise to the varied values of the

KWR, then there should be some indication of this in other data as well. In the light of the

Coqblin-Schrieffer model [Coqblin and Schrieffer, 1969, Rajan, 1983], an examination of Fig.

9.1 indicates that the larger the ratio of the maximum susceptibility to the low temperature

susceptibility, the larger is the degeneracy of the Yb system at TK. The ratios of the maximum

susceptibility to the low temperature susceptibility for T = Fe and Ru are 1.12 and 1.11,

respectively, whereas the ratios for T = Rh, Os, and Ir are 1.06, 1.01, and 1.01, respectively.

These values are consistent with a difference in degeneracy of at least ΔN = 2 (see Fig. 9.4).

This analysis can be made even more thoroughly by performing a fit [Rajan, 1983] to

the magnetic susceptibility [χ(T )] and the magnetic part of specific heat (Cm) over a wide
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Figure 9.4 Loglog plot of A versus γ (KadowakiWoods plot) of six
new YbT2Zn20 heavy fermion compounds (T = Fe, Co,
Ru, Rh, Os, Ir) shown with representative data from
ref. [Tsujii et al., 2005] as well as data for YbBiPt
[Fisk et al., 1991, Movshovich et al., 1994], YbNi2B2C
[Avila et al., 2004b], YbPtIn [Morosan et al., 2006],YbAgGe
[Bud’ko et al., 2004], YbNiSi3 [Avila et al., 2004a], and
YbIr2Si2 [Hossain et al., 2005]. The solid lines for degeneracies
N = 2, 4, 6, and 8 are taken from ref. [Tsujii et al., 2005].
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Figure 9.5 Coqblin-Schrieffer analysis of magnetic susceptibility (a) and
specific heat data (after subtraction from the nonmagnetic ana-
logues, LuFe2Zn20) (b) for YbFe2Zn20. Data are shown as open
symbols and best fits to J = 1/2, 3/2, 5/2, 7/2 using formalism
described in ref. [Rajan, 1983] are shown in black, red, green,
and blue lines, respectively. TK values from these fits are � 36
K and � 38 K.

temperature range. This is shown in figs. 9.5 for YbFe2Zn20, the compound with the largest

degeneracy (N = 8) inferred from the KW plot (Fig. 9.4). Both χ(T ) and Cm data are

best fit by the J = 7/2 (N = 8) curve. These data are particularly compelling because the

height of the anomaly is not an adjustable parameter once N is chosen. This analysis further

confirms the degeneracy inferred from Fig. 9.4 and confirms that the low temperature, greatly

enhanced, electronic specific heat is due to Kondo screening of the large degenerate Yb ion.

Figures 9.6 presents similar data from YbRh2Zn20, one of the compounds that the KW

analysis predicts to have a lower degeneracy at TK. The susceptibility data are best fit by

J = 3/2. The maximum in the magnetic specific heat data falls between the J = 3/2 and

J = 5/2 values, indicating that the CEF splitting scheme will not allow the very simple type

of analysis on which ref. [Rajan, 1983] is premised: i.e., one that has the CEF levels either at

T � TK or T � TK. These data can be well fit, though, by the addition of a Schottky anomaly

associated with a T ≥ TK CEF level. The low temperature part of the specific heat data can

be well fit by assuming that a quadruplet is Kondo screened and that there is a doublet CEF
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Figure 9.6 Coqblin-Schrieffer analysis of magnetic susceptibility (left
panel) and specific heat data (after subtraction from the non-
magnetic analogues, LuRh2Zn20) (right panel) for YbRh2Zn20.
The Schottky contribution (ΔE1 = 40 K) is shown as a dashed
red line; the sum of Schottky and Rajan (J = 3/2) terms is
shown as a solid black line. TK values from these fits are � 20
K and � 15 K.

level located at 40 K. The sum of the Kondo screened quadruplet and the Schottky anomaly

associated with the 40 K doublet are shown as the solid line. Taken together, Figs. 9.4-9.6

indicate that the large electronic specific heat values shown in Fig. 9.1 are due to Kondo

screening and that the degeneracies for the YbT2Zn20 compounds are most probably N = 8

for T = Fe, Ru and N = 4 for T = Os, Co, Rh, Ir.

As the degeneracies of the Yb ions were inferred, by the analysis above, when they enter

the Kondo screening states (see Table 9.1), the values of their TK can be then inferred by

using TK = (R ln N)/γ, a rough estimation from magnetic entropy [Fisk et al., 1988], or by

using TK = (N − 1)π2RωN/3Nγ, the Bethe ansatz results of N-fold CoqblinSchrieffer model

[Hewson, 1993] where ωN is the so called Wilson number and that is a function of N as discussed

in ref. [Rasul and Hewson, 1984]. These expressions produce TK values that are within 5% of

each other for 2 ≤ N ≤ 8. It should also be noted that the TK value estimated by this method

is close to that found by fitting the thermodynamic data (see Fig. 9.5 and 9.6). As could be

anticipated, TK values for T = Fe and Ru are indeed larger than those found for T = Rh, Os,

Ir.
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9.4 Discussion

Given that the studies of the RT2Zn20 families in Chapter 5-8 have shown that T = Fe

and Ru compounds manifest anomalously high-temperature, local moment ordering due to the

fact that the Y and Lu host materials are close to the Stoner limit, it is noteworthy that for

the YbT2Zn20 materials it is the T = Fe and Ru compounds that appear to be significantly

different from the T = Rh, Os, and Ir compounds. Although we currently do not have enough

data to conclude that this Stoner enhancement of the host material (if it even persists in the

Yb based members) is responsible for the higher ratio of TK to the CEF splitting Δ , such an

enhancement certainly could be responsible for increased TK values. This question is the focus

of an ongoing study of pseudo ternary Yb(FexCo1−x)2Zn20 compounds.

Although at first glance the data for YbCo2Zn20 appear to be different from that of the other

members of this family, at low enough temperatures, it also appears to enter into a Fermi liquid

ground state and, as shown in Fig. 9.4, has an intermediate N value, similar to YbOs2Zn20.

YbCo2Zn20 has a substantially lower TK, and may be closer to a quantum critical point (QCP)

than the other, T = Fe, Ru, Rh, Os, Ir members of the family: i.e., small perturbations to

YbCo2Zn20 may lead to the onset of magnetic order, giving rise to a T = 0 phase transition

controlled by a non-thermal (magnetic field, pressure, doping) tuning parameter. If YbCo2Zn20

is simply closer to a QCP, then, given that the unit cell dimensions for YbCo2Zn20 are the

smallest of the family, this would imply that applications of modest pressure to other members

of the YbT2Zn20 family may lead to several new Yb-based compounds for the study of quantum

criticality. Most recently, a magnetic transition in YbCo2Zn20 has been observed under the

pressure larger than 1 GPa in electrical resistivity measurements. [Saiga et al., 2008]
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CHAPTER 10. Summary and Conclusion

The study of the RT2Zn20 system was part of an exploration of the magnetic properties of

large unit cell intermetallic compounds with dilute rare earth ions that are still fully occupying

a unique crystallographic site. Such compounds offer the possibility of studying local moment

as well as hybridizing rare earth closer to the single ion limit, but still preserving periodicity.

Single crystals of RT2Zn20 compounds were grown from Zn self-flux, and then identified by

the X-ray diffraction measurements. Thermodynamic and transport measurements indicated

that YFe2Zn20 is closer to the Stoner criteria than element Pd, the canonical example of a

nearly ferromagnetic Fermi liquid. As a result of local moments associated with Gd3+ being

embedded in this highly polarizable Fermi liquid, remarkably high-temperature ferromagnetic

ordering (TC = 86 K) was found for GdFe2Zn20. By tuning the transition metal site, the

pseudo-ternary compounds Y(FexCo1−x)2Zn20 could be tuned from the edge of the Stoner

limit to a ‘normal metal’ state. Dependent on the band filling, the magnetically ordered state

of Gd(FexCo1−x)2Zn20 range from high-temperature, ferromagnetic one to low-temperature,

antiferromagnetic one. This relation between the conduction electronic background and the

local moment ordering also manifests itself for the transition metal site is Ru, Rh, Os and Ir.

Ferromagnetic ordering of the local moment was found in GdT2Zn20 as T equaling the iron

column members (with enhanced TC values for T = Fe and Ru) and low temperature antiferro-

magnetic (AFM) ordering was found for the cobalt column members. Correspondingly, nearly

ferromagnetic behaviors were found for the T = Fe and Ru members in YT2Zn20 analogues.

So as to study the effects of T on R ions other than Gd, Y, and Lu, a thorough compound-

by compound study of the R = Tb - Tm members in RFe2Zn20 and RCo2Zn20 series was made.

For the RCo2Zn20 series, only Gd and Tb members manifest AFM ordering above 2 K, and
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the magnetic properties for R = Dy - Tm clearly manifest features associated with single ion

CEF effects on the R ions. In contrast, for the RFe2Zn20 series, the well-defined local moment

members (R = Gd - Tm) all manifest enhanced ferromagnetic ordering with TC values roughly

scaling with the de Gennes factor. The R = Tb - Tm members show moderate magnetic

anisotropy in their ordered state, mainly due to the CEF effect on the R ions.

As a model system of very dilute local moments in a NFFL, pseudo-ternary compounds

GdxY1−xFe2Zn20 were studied for varied Gd concentrations (x). Ferromagnetic ordering of the

local moments associated with Gd3+ ions was found above 1.80 K for x > 0.02. The measure-

ment results were discussed within the framework of the so-called s−d model[Shimizu, 1981a],

based on the mean field approximation, and used to explain the variation of TC across the

series with respect to x.

In addition to these local moment bearing compounds, six Yb compounds (YbT2Zn20 ,

T = Fe, Co, Ru. Rh, Os and Ir) proved to be heavy fermion compounds with electronic

specific heat coefficients γ > 500 mJ/mol K2. Thermodynamic and transport measurements

revealed that YbCo2Zn20 is close to the quantum critical point and has a substantially lower

TK � 1 K. The other five compounds manifest Fermi liquid states associated with different

degeneracy of the Yb ion for T = Fe, Ru and T = Rh, Os and Ir. Such differences are due to

the competition between the different TK values and the similar CEF splitting of the Yb ions

in these isostructural compounds.

Possessing a rich phase space that allows for tuning of the band filling, the local moment

concentration as well as the hybridized 4f electronic state, the RT2Zn20 family offer a model

system for the study of local moment magnetism, itinerant electronic magnetism, and heavy

Fermion physics. Future work should be devoted to investigating the pseudo-ternary Yb com-

pounds with varied transition metal doping. Such studies will help lead to an understanding

of how the hybridization of Yb’s 4f electrons takes place as they are submerged in varied

conduction electron backgrounds. Also, the study of the isostructural, RT2Zn20 (R = Dy - Lu,

T = Ni and Pt) compounds might further our understanding of the relation between the band

filling and local moment magnetic ordering.
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APPENDIX A. Sample dependent, magnetic transitions for TbFe2Zn20

Figure A.1 shows the magnetization (at H = 1000 Oe) and zero applied field resistivity

for three batches of TbFe2Zn20, which were synthesized from different initial molar ratios of

starting elements, Tb:Fe:Zn = 2:3:95, 2:4:94 and 2:5:93. The ferromagnetic ordering temper-

atures, determined as 52 ± 2 K, 56 ± 1 K and 67 ± 2 K for the three samples, increase as the

growth concentration of Fe increases. Similar features were also found for R = Gd and Er,

but the variation of the TC values are less than in the Tb case. Comparative, Single crystal

x-ray diffraction measurements performed on the samples, albeit inconclusive, indicated that

the crystallographic differences are mainly associated with subtle (at the edge of resolution)

variations of occupancy of the Fe site.[Ko et al., 2008] The main difficulty with x-ray diffrac-

tion measurements is related to the similar atomic number values for Zn and Fe. Recently,

two carefully prepared, pieces of TbFe2Zn20 samples with same geometric form and dimen-

sion, from the starting elements, Tb:Fe:Zn = 2:3:95 and 2:5:93, were used for single-crystal

neutron scattering.[Christianson, 2008] This measurement result found that the Fe site has

∼ 1% deficiency for the 2:3:95 sample. All these crystallographic measurements indicate the

sensitivity of the magnetic properties to the small disorder for RFe2Zn20 compounds, which is

not uncommon for the correlated electron systems (such as the NFFL background).
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Figure A.1 (a): Temperature dependent M/H for TbFe2Zn20

(H = 1000 Oe) from different initial growth molar ratio
of starting elements; (b) temperature dependent ρ in zero
applied field.
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APPENDIX B. Determination of CEF parameters of RT2Zn20 system by

point charge model

As shown in Fig. 3.1, the distance between the rare earth ion and NNs, as well as NNNs, is

close to 3 Å; whereas the distance with the next next nearest neighbors (NNNN, 6 Zn in 48f

site) is larger than 5 Å. Due to this isolated, cage-like coordinate of rare earth ions, the effect

of the ions other than the CN-16 Frank-Kasper polyhedron is neglected in the calculation of

the CEF coefficient, based on the point charge model.

The neighbors shell of rare earth ion in the C-15 Laves compounds (RNi2) forms the same

polyhedron, whose CEF coefficients have been calculated by B. Bleaney [Bleaney, 1963], based

on the point charge model. Therefore, one can directly cite the results:

B0
4 = −3

2

(
91e2Z1

726R5
1

− 7e2Z2

54R5
2

)〈
r4

〉 〈J‖β‖J〉 (B.1)

B0
6 =

9
16

(
− 8e2Z1

363R7
1

− 8e2Z2

81R7
2

)〈
r6

〉 〈J‖γ‖J〉 , (B.2)

where Z1e and Z2e is the charge of the NN and NNN ions (Z1 = Z2 = 2 for Zn2+), R1 and R2

is the distance between the R ion and the two sets of ions,
〈
r4

〉
and

〈
r6

〉
are the mean fourth

and sixth powers of the electronic radius for the 4f -electrons, and β and γ are the Steven multi-

plicative factors. Extracting the values of
〈
r4

〉
and

〈
r6

〉
from ref.[Freeman and Watson, 1962],

β and γ values from ref.[Lea et al., 1962], and R1 and R2 values from single crystal X-ray

diffraction result, one can calculate the B0
4 and B0

6 values.
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