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ABSTRACT 

Radar-rainfall uncertainty quantification has been recognized as an intricate 

problem due to the complexity of the multi-dimensional error structure, which is also 

associated with space and time scale.  The error structure is usually characterized by two 

moments of the error distribution: bias and error variance.  Despite numerous efforts to 

investigate radar-rainfall uncertainties, many questions remain unanswered.  This 

dissertation uses two statistical descriptions (mean and variance) of the error distribution 

to highlight and describe some of the remaining gaps in representing radar-rainfall 

uncertainties.  The four central issues addressed in this dissertation include: 

1. Investigation of radar relative bias caused by radar calibration. 

2. Statistical modeling of range-dependent error arising from the radar beam 

geometry structure. 

3. Scale-dependent variability of radar-rainfall and rain gauge error covariance. 

4. Scale-dependence of radar-rainfall error variance. 

The first two issues describe systematic features of main error sources of radar-

rainfall.  The other two are associated with quantifying radar error variance using the 

error variance separation (EVS) method, which considers the spatial sampling mismatch 

between radar and rain gauge data.   

This study captures the main systematic features (systematic bias arising from 

radar calibration and range-dependent errors) of radar measurements without using 

ground reference data and the error variance structure with respect to the spatio-temporal 

transformation of the measurements for further applications to hydrologic fields.  Such 

consideration of radar-rainfall uncertainties represented by error mean and variance can 

enhance the characterization of the uncertainty structure and yield a better understanding 

of the physical process of precipitation. 
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 “The process of scientific discovery is, in effect, a continual flight from wonder.” 
Albert Einstein 
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ABSTRACT 

Radar-rainfall uncertainty quantification has been recognized as an intricate 

problem due to the complexity of the multi-dimensional error structure, which is also 

associated with space and time scale.  The error structure is usually characterized by two 

moments of the error distribution: bias and error variance.  Despite numerous efforts to 

investigate radar-rainfall uncertainties, many questions remain unanswered.  This 

dissertation uses two statistical descriptions (mean and variance) of the error distribution 

to highlight and describe some of the remaining gaps in representing radar-rainfall 

uncertainties.  The four central issues addressed in this dissertation include: 

1. Investigation of radar relative bias caused by radar calibration. 

2. Statistical modeling of range-dependent error arising from the radar beam 

geometry structure. 

3. Scale-dependent variability of radar-rainfall and rain gauge error covariance. 

4. Scale-dependence of radar-rainfall error variance. 

The first two issues describe systematic features of main error sources of radar-

rainfall.  The other two are associated with quantifying radar error variance using the 

error variance separation (EVS) method, which considers the spatial sampling mismatch 

between radar and rain gauge data.   

This study captures the main systematic features (systematic bias arising from 

radar calibration and range-dependent errors) of radar measurements without using 

ground reference data and the error variance structure with respect to the spatio-temporal 

transformation of the measurements for further applications to hydrologic fields.  Such 

consideration of radar-rainfall uncertainties represented by error mean and variance can 

enhance the characterization of the uncertainty structure and yield a better understanding 

of the physical process of precipitation.
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CHAPTER I 

INTRODUCTION 

I.1  Motivation and Problem Statement 

For several decades, floods in the United States have led to increasingly 

significant human and economic losses despite extensive and steady flood and risk 

management efforts (Pielke et al. 2002).  The term “flood” is defined as “a body of water 

which rises to overflow land which is not normally submerged” (Ward 1990).  While the 

definition includes all probable circumstances which are not associated with precipitation 

and relevant atmospheric processes (e.g., coastal flooding caused by tectonic activities of 

the ocean floor), most catastrophic events have resulted from heavy rainfall and the 

subsequent responses of the land surface (e.g., Smith et al. 2000; Ogden et al. 2000; 

Smith et al. 2001; Delrieu et al. 2005).  The increase in flood frequency that we have seen 

over the past few decades could be attributable to climate change (e.g., Whetton et al. 

1993; Hamburger 1997; Milly et al. 2002; Trenberth et al. 2003) or to urbanization and 

land-use changes (e.g., Kerwin and Verrengia 1997).    

Rainfall information is vital to monitoring extreme hydrologic events and to 

planning and managing water resource systems and related environmental applications.  

Since quantitative rainfall information is used as an initial condition, input, or reference 

for hydrologic modeling and forecasting (e.g., Habib et al. 2008; Collier 2009; Germann 

et al. 2009; Villarini et al. 2009, 2010), accurate observation of rainfall is required to 

predict the critical aspects of hydrologic processes.  As a conventional method to measure 

rainfall amounts, rain gauges have been used extensively to provide direct rainfall 

measurements on the ground.  Although rain gauges can accurately capture the rainfall 

phenomenon in some circumstances, the use of these measurements is often restricted 

due to their relatively small areal coverage (usually represented by the 30 cm diameter of 

their orifice; e.g., Brock et al. 1995; Ciach 2003) as compared to the spatial scale of 
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rainfall variability.  The reliability of their areal approximation for hydrologic 

applications is primarily affected by their network density and configuration (e.g., 

Rodríguez-Iturbe and Mejía 1974; Seed and Austin 1990; Kitchen and Blackall 1992; 

Morrissey et al. 1995). 

Weather radar offers spatially extended rainfall information, which cannot be 

presented by the point measurements of rain gauges, with fairly high space and time 

resolution (about 250-m and 5-minutes; e.g., Fulton et al. 1998; Torres and Curtis 2007).  

Weather radar measures the power of electromagnetic waves backscattered from 

raindrops, called reflectivity (mm6/mm3).  The transformation of the measured reflectivity 

into rainfall intensity or rate (mm/h) involves an empirical reflectivity-rainfall (Z-R) 

relationship derived from the observation of raindrop size distributions (DSD; e.g., 

Marshall and Palmer 1948; Battan 1973; Ulbrich 1983; Tokay et al. 2001; Nzeukou et al. 

2004).  The accuracy of this estimated rainfall information is often affected by numerous 

uncertainty sources (see e.g., Villarini and Krajewski 2010).  Alternatively, satellite 

rainfall estimates (e.g., Hsu et al. 1997; Vicente et al. 1998; Rossow and Schiffer 1999; 

Sorroshian et al. 2000; Ba and Gruber 2001; Kuligowski 2002; Vicente et al. 2002; 

Huffman et al. 2007) can complement some of the shortcomings in radar-rainfall 

estimates (e.g., spatial inconsistency arising from calibration differences among radars; 

terrain blockage).  However, the use of the satellite estimates is limited due to the lack of 

robust relation between measured radiance and rainfall rate and of the accuracy of the 

subsequent estimation (e.g., Scofield and Kuligowski 2003). 

The uncertainties of radar measurements and rainfall estimation are associated 

with the measuring device and strategy, estimation parameters, and assumptions about 

representing the precipitation processes.  Most uncertainty sources have been extensively 

investigated and are fairly well-understood in the literature, and numerous algorithms 

have been developed to remedy the negative effects of those sources.  The quality 

(accuracy) of the radar-rainfall estimates is typically dependent on those corrective 
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algorithms and the parameter setting (e.g., Z-R relation and threshold values) which is 

related to atmospheric conditions.  The uncertainty structure of radar-rainfall estimates 

may be varied according to selected data processing procedures and corrective algorithms 

associated with atmospheric conditions, rainfall regime, site locations, etc.  However, 

there are common aspects of radar-rainfall uncertainties, which are not algorithm- and 

site-dependent but are related to fundamental and systematic elements of uncertainty 

sources.  The combined effects of other uncertainty sources can be effectively described 

(e.g., Ciach et al. 2007) and adjusted using the radar-gauge comparison (e.g., Steiner et al. 

1999). 

Radar-rainfall uncertainty quantification has been recognized as an intricate 

problem due to the multi-dimensional structure of the error distribution.  The error 

structure has usually been characterized in the literature using two simple moments of the 

distribution, error mean (bias) and error variance.  The error structure is also associated 

with the space and time scale that represents the radar sampling domain.  Therefore, the 

purpose of this dissertation is to describe some of the remaining gaps in representing 

radar-rainfall uncertainties using two moment factors (mean and variance) of the error 

distribution.  The approach in this dissertation captures the main systematic features of 

radar measurement (i.e., uncertainties arising from radar calibration and beam geometry) 

without using ground reference data and considers the error variance structure with 

respect to the spatio-temporal transformation of the measurements for further applications 

to hydrologic fields.  Such consideration of radar-rainfall uncertainties represented by 

error mean and variance can enhance the characterization of the uncertainty structure and 

yield a better understanding of the physical process of precipitation. 

I.2  Outline and Contents 

The four central issues addressed in this dissertation include: 

1. Investigation of radar relative bias caused by radar calibration. 
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2. Statistical modeling of range-dependent error arising from the radar beam 

geometry structure. 

3. Scale-dependent variability of radar-rainfall and rain gauge error covariance. 

4. Scale-dependence of radar-rainfall error variance. 

The first two issues describe systematic features of main error sources of radar-

rainfall.  The other two are associated with quantifying radar error variance using the 

error variance separation (EVS) method (Ciach and Krajewski 1999), which considers the 

spatial sampling mismatch between radar and rain gauge data.  The key assumption of the 

EVS is that the covariance between the radar-rainfall and rain gauge data errors in 

representing radar sampling domain is negligible.  Therefore, the scale-dependent validity 

of the assumption is explored for the given time and space scales that most hydrologic 

models use.  The scale-dependent variability of radar-rainfall error variance is then 

considered. 

Chapter II provides a literature review on the uncertainty components of radar-

rainfall estimates which are investigated in this dissertation and explains the  basic 

principle of radar measurement and the rainfall estimation procedure. 

Chapter III investigates calibration-caused differences in measuring radar 

reflectivity for common meteorological targets which are observed by different individual 

radars.  A methodology to consider temporal and spatial coincidence of radar sampling 

volumes illuminated by different radars is developed.  The method also considers 

probable contamination of reflectivity data arising from anomalous beam propagation.  

The most significant aspect of this approach is to maintain volume data spatial structure 

and their information because the biases might be smoothed or distorted by spatial 

interpolation or grid conversion.  An eight-year Level II data set (which includes a recent 

upgrade of data resolution: super-resolution) from the Des Moines and Davenport WSR-

88Ds in Iowa is used. 
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Chapter IV details an approach for deriving a statistical model of the range-

dependent error (RDE) in radar-rainfall estimates that is developed by parameterizing the 

structure of the non-uniform vertical profile of radar reflectivity (VPR).  The proposed 

VPR models are characterized by several climatological parameters that describe 

dominant atmospheric conditions related to the vertical reflectivity variation.  The model 

parameters can be optimally estimated by minimizing the sum of squared differences 

between the modeled and observed systematic effect of the VPR, or they can be obtained 

from simulated meteorological data.  No rain gauge data are used in the model 

development.  The approach is illustrated using four years of radar volume scan data 

from the Tulsa WSR-88D in Oklahoma.  The three lowest antenna elevation angle data 

are used to demonstrate the model’s performance for cold (November to April) and warm 

(May to October) seasons.  The mean and standard deviation of the modeled RDE against 

rain gauge data from the Oklahoma Mesonet network are evaluated. 

In Chapter V, the scale-dependent validity of the zero-covariance assumption of 

the EVS method (see e.g., Ciach and Krajewski 1999; Ciach et al. 2003) is extensively 

tested, and the EVS method to characterize the scale-dependence of radar-rainfall 

uncertainty is applied in Chapter VI.  The testing is based on empirical data and covers a 

range of temporal scales from 0.25 to 24 hours and from 1 to 32 km for spatial scales.  A 

two-year data set, exclusive of winter months from two high quality and high density rain 

gauge networks (the Environmental Verification and Analysis Center (EVAC) PicoNet 

and the U. S. Department of Agriculture (USDA) Agricultural Research Service (ARS) 

Micronet which are covered by the Oklahoma City WSR-88D), is used.  A random 

resampling procedure is used to describe the statistical significance of the inference on 

the hypothesis test of the assumption, which offers helpful insight into the scale-related 

applications of the EVS method. 

Chapter VI explores the scale effects of radar-rainfall accumulation fields 

generated using the new super-resolution Level II radar reflectivity data acquired from 
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the Des Moines and Davenport WSR-88Ds in Iowa.  Eleven months (May 2008 through 

August 2009, exclusive of winter months) of high density rain gauge network data in 

Ames and Iowa City are used to describe the uncertainty structure of radar-rainfall and 

rain gauge representativeness with respect to temporal (0.25 and 1 hour) and spatial 

scales (0.5, 1, 2, 4, and 8 km).  The availability of increased resolution (super-resolution) 

also offers an opportunity to systematically explore radar-rainfall uncertainty over an 

extended range of smaller scales. 

Appendix A describes Hydro-NEXRAD radar-rainfall estimation algorithms and 

their modular components since the Hydro-NEXRAD system has been used as a main 

tool to generate radar-rainfall products used in this dissertation.  A variety of customized 

modules implemented in Hydro-NEXRAD perform radar-reflectivity data processing, 

produce radar-rainfall maps with user-requested space and time resolution, and combine 

data for basins covered by multiple radars.  System users can select rainfall estimation 

algorithms that range from simple (“Quick Look”) to complex and computation-intensive 

(“Hi-Fi”).  The “Pseudo NWS PPS” option allows a close comparison with the algorithm 

used operationally by the US National Weather Service.  The “Custom” algorithm 

enables expert users to specify values for many of the parameters in the algorithm 

modules according to their experience and expectations.  The Hydro-NEXRAD system, 

with its rainfall-estimation algorithms, can be used by both novice and expert users who 

require rainfall estimates as references or as input to their hydrologic modeling and 

forecasting applications. 
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CHAPTER II 

LITERATURE REVIEW 

This chapter offers an extensive review of the uncertainty components of radar-

rainfall estimates that will be investigated in this dissertation.  The basic principle of 

radar measurement and rainfall estimation procedure is also briefly introduced in the first 

section. 

II.1  Radar Equation and Rainfall Estimation 

Since the theory and principles of radar observations are presented in many 

textbooks (e.g., Battan 1973; Sauvaugot 1992; Doviak and Zrinc 1993; Rinehart 1997), 

here we briefly describe and summarize fundamental aspects of the radar equation and 

the quantitative transformation of radar measurements into rainfall amounts. 

Weather radar measures the strength of the returned energy/power that is back-

scattered from meteorological targets.  The amount of energy received back by the radar 

(Pr) for an individual point target is represented using the backscattering cross-section 

area (σ) and several radar parameters: 

2 2

3 464
t

r

Pg
P

r

 



  

(1) 

where Pt is the transmitted power; g is the antenna gain; λ is the wave length of the radar; 

and r is the distance from the radar.  The backscattering cross-section area is defined not 

only by the physical geometry of the target (i.e., size and shape) but also by the wave 

length.  For the meteorological targets (rain drops or cloud particles), most hydrometeors 

can be assumed to be spheres.  If a sphere is relatively large with respect to the wave 

length, the backscattering cross-section area is identical to the geometric area (πD2/4).  

On the other hand, if a sphere is small with respect to the wave length, the scattering 

process is dominated by the Rayleigh region where the backscattering cross-section area 

is proportional to the sixth power of the diameter of a sphere (Battan, 1973): 
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where D denotes the diameter of a sphere and |K|2 is related to the refraction index in the 

atmosphere. 

To integrate equation (1) for distributed targets that fill a radar sampling volume, 

the total backscattering cross-section area (σt) is determined by the sampling volume (V) 

and the backscattering cross-section areas within a unit volume: 

t i
vol

V  
  

(3) 

where σi is the individual cross-section area over a unit volume.   

Substituting the individual backscattering area σ in equation (1) for the total 

backscattering area σt, the radar equation for the radar sampling volume can be obtained 

as follows: 

2

1
2r

C K z
P

r
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(4) 

where C1 is a constant associated with the transmitted power, antenna gain, horizontal 

and vertical beam widths, pulse length, wave length, and attenuation; z is the radar 

reflectivity factor represented by drop size distribution within a sampling volume: 

6 6

0

( )i i
i
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

  
  

(5) 

The drop size distribution is typically defined as a function, N(D), which 

represents the density of raindrops as a function of diameter.  The most common 

distributions assumed for precipitation estimation are exponential (Marshall and Palmer 

1948), gamma modified (Ulbrich 1983), or log-normal (e.g., Feingold and Levin 1986; 

Sauvageot and Lacaux 1995).  Since the reflectivity factor is determined by the number 

of raindrops and their size (diameter), the range of the reflectivity factor is very extensive 

depending on the rainfall type (e.g., from 0.001 mm6/m3 for fog to 3.6×107 mm6/m3 for a 
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hailstorm; Rinehart 1997).  In practice, it is convenient to use a relatively narrow range of 

the reflectivity values (Z) with the dBZ unit defined using the logarithmic transformation: 

10 6 3
10log

1 /

z
Z

mm m

 
  

    
(6) 

Rainfall rate can be also derived from the raindrop size distribution: 

3

0

( ) ( )
6

R D N D v D dD
 

 
  

(7) 

where v denotes the terminal velocity of raindrops.  Because both radar reflectivity and 

rainfall rate are acquired from the raindrop size distribution in equations (5) and (7), for 

rainfall estimation the Z-R relation (typically the power-law relation) can be derived 

based on the observed raindrop size distribution using statistical methods (for example, 

regression between two variables): 

bZ aR   (8) 

II.2  Radar Calibration 

To use radar measurements quantitatively, the observation system should be well-

calibrated and reliable.  As directly defining the sensitivity of all system elements (e.g., 

antenna gain, beam width, pulse length, etc) is difficult and cumbersome, a representative 

parameter which simplifies all combined effects of the system elements is typically used 

for the radar calibration: 

2
2 rz C P r   (9) 

where C2 denotes radar constant that corresponds to the reciprocal of C1|K|2 in equation 

(4).  The logarithmic transformation of equation (9) using the definition of equation (6) is 

as follows: 

     210log 10log 20logrZ C P r  
  (10) 
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where 10log[C2] denotes the radar calibration factor (bias) that indicates the systematic 

shifting of reflectivity measurements.  The empirically detected shifting is represented in 

the literature (e.g., Ulbrich and Lee 1999; Ulbrich and Miller 2001; Anagnostou et al. 

2001; Williams et al. 2005) as a few dB.  In the following literature review, we focus on 

the method for detecting and quantifying the radar calibration bias. 

As a general calibration technique, known targets detected by the radar system 

have been used.  Atlas and Mossop (1960) used a 24-inch sphere attached to a rubber 

balloon and calibrated two radars in the United Kingdom.  The backscattering cross-

section area for the reference reflectivity was calculated by the geometric cross-section of 

the sphere.  Some ground clutter that arises from obstacles on the ground (for example, 

radio towers and mountains) can be used to monitor the radar system’s stability (e.g., 

Rinehart 1978; Delrieu et al. 1997; Silberstein et al. 2008).  Rinehart (1978) used ground 

returns from numerous point targets observed within the stable reflectivity range (1 dB) 

and found the calibration bias of 7.7 dB with a standard deviation of 8.7 dB using the US 

National Hail Research Experiment’s 10 cm radar.  Silberstein et al. (2008) used the 

ground clutter map information generated by the lowest elevation angle scan of the 

Kwajalein radar (KPOL; Kwajalein, Republic of the Marshall Islands) and found a 

calibration shift detected by plotting the daily probability density function (PDF) and 

cumulative distribution function (CDF) of the clutter field reflectivity.  Delrieu et al. 

(1997) tested the feasibility of using mountainous returns to quantify the attenuation 

effects of the X-band weather radar in France. 

Other ground-based devices can be used to check the consistency of radar 

measurements.  To investigate Z-R parameter variation, Ulbrich and Lee (1999) 

compared radar reflectivity factors measured by the Greer WSR-88D (KGSP) in South 

Carolina with disdrometer observations for the same five storms.  The authors concluded 

that the measurement discrepancies between two different devices can be explained by 

the radar calibration offset (radar systematically underestimated at least 3.5 dB) as well as 
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the Z-R parameter variation.  Two years later, Ulbrich and Miller (2001) showed that a 

good agreement between the same radar (KGSP) and disdrometer measurements can be 

achieved after adjusting the calibration offset of the radar-measured reflectivity.  

Williams et al. (2005) used two vertically pointing profiling radars which were absolutely 

calibrated by a collocated disdrometer and found that the Melbourne WSR-88D (KMLB) 

in Florida overestimated by about 0.7 dBZ with the standard deviation of 2.4 dBZ. 

In the case of the Tropical Rainfall Measuring Mission (TRMM; Simpson et al. 

1996), the reflectivity measured by the space-based precipitation radar (PR) has been 

extensively validated using ground-based weather radars (GR) (e.g., Bolen and 

Chandrasekar 2000; Anagnostou et al. 2001; Bolen and Chandrasekar 2003; Marks et al. 

2009; Wang and Wolff 2009).  Anagnostou et al. (2001) developed a methodology to 

match two coincident measurements from the different (space- and ground-based) 

platforms.  The authors used space-based TRMM PR and ground-based 14 WSR-88D 

and 3 experimental radars and argued that the systematic reflectivity difference exceeding 

1 to 1.5 dB was attributed to the calibration bias of the ground-based radar.  Marks et al. 

(2009) and Wang and Wolff (2009) observed sporadic offsets of ground radar calibration 

by comparing PR and GR reflectivities, although their primary purpose on the 

comparison studies is to correct significant attenuation effects of the Ku band PR (e.g., 

Bolen and Chandrasekar 2000; Wang and Wolff 2009). 

Another approach using collocated ground-based radars was performed by 

Brandes et al. (1999).  The authors used two collocated radars in Colorado and another 

pair in Kansas and compared radar observations indirectly using rain gauge data by radar 

bias factor defined as the ratio between gauge and radar estimates.  However, there have 

been few studies that describe the different sampling volume geometry (e.g., Bolen and 

Chandrasekar 2003) used from two different ground-based radars and that directly 

compare the coincidentally measured reflectivity difference to identify a sporadic jump in 

the observed time series of reflectivity. 
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II.3  Range-Dependent Error 

Reflectivity data collected from regions far from the radar site represent a biased 

view of the near-ground precipitation.  Range-dependent biases, radar sampling volume 

augmentation, and beam degradation with respect to the increase of distance from the 

radar usually yield a significant underestimation in rainfall amounts (e.g., Kitchen and 

Jackson 1993; Smith et al. 1996).  The systematic aspect of this misrepresentation has 

been identified and can be corrected to some extent.  Such range effect correction can be 

applied to the reflectivity data classified as meteorological echoes.  The correction 

procedures account for the bright band, i.e., the enhanced reflectivity value associated 

with the melting snow (Austin and Bemis 1950; Kitchen et al. 1994; Fabry and Zawadzki 

1995; Gourley and Calvert 2003; Zhang et al. 2008) and/or the systematic weakening of 

the radar echo with height (e.g., Fabry et al. 1992; Kitchen et al. 1994; Joss and Lee 1995; 

Andrieu and Creutin 1995; Vignal et al. 1999; Seo et al. 2000; Vignal and Krajewski 

2001; Chumchean et al. 2004). 

For the radar beam interception of the freezing level, Austin and Bemis (1950) 

presented radar observations at the bright band and showed that the enhanced returns 

were caused by the melting of snowflakes, not by any particle (i.e., raindrops).  Fabry and 

Zawadzki (1995) used vertically pointing X-band radar and wind profiler data and 

demonstrated that the radar reflectivity ratio of the bright band peak to rainfall varied by 

8-16 dB depending on rainfall rate (mm/h).  Other approaches found in the literature to 

detect the presence of the melting layer and to correct its effects were mostly performed 

using the radar data volume (three-dimensional) structure (e.g., Smith 1986; Hardaker et 

al. 1995; Kitchen et al. 1994; Smyth and Illingworth 1998; Sánchez-Diezma et al. 2000; 

Gourley and Calvert 2003; Zhang et al. 2008; Zhang and Qi 2010). 

The systematic error arising from the non-uniform vertical profile of radar 

reflectivity (VPR) is related to changes in the shape and size distribution of hydrometeors 

and their phase transition.  Certain features of the VPR, when combined with the 
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geometric effects of radar beam “viewing” of the atmosphere, result in systematic errors 

whose magnitude depends on the distance from the radar (e.g., Koistinen 1991; Kitchen 

and Jackson 1993; Smith et al. 1996; Bellon et al. 2005).  This mechanism is fairly well 

understood, and corrective algorithms have been developed and tested (e.g., Andrieu and 

Creutin 1995; Joss and Lee 1995; Vignal et al. 1999; Vignal and Krajewski 2001; Seo et 

al., 2000).  Andrieu and Creutin (1995) proposed a method to determine the VPR using 

different radar elevation angle data.  The inverse solution method was used to retrieve the 

observed ratio of reflectivities between two elevation angles, assuming that the VPR is 

homogeneous over the area of radar domain.  Vignal et al. (1999) argued that the use of 

locally-discretized VPR to consider the spatial variability of rainfall process resulted in 

better performance in correcting the systematic range-dependent biases, rather than using 

the climatological VPR.  Vignal and Krajewski (2001) tested and evaluated the two 

methods (the mean and local VPR profiles) using two-year radar (Tulsa WSR-88D in 

Oklahoma: KINX) and collocated rain gauge data.  The authors concluded that both 

methods significantly reduced range-dependent errors (the latter showed better 

performance).  They also indicated that the former could lead to an inappropriate 

correction, and the latter was very computation-intensive.  As a modeling effort, Tabary 

(2007) conceptualized the VPR structure identified by four parameters, which are 

“freezing-level height,” “bright band peak,” “bright band thickness,” and “decreasing rate 

above the freezing-level height.”  Some VPR methods were devoted to bright band 

identification and correction.  Smith (1986) developed an algorithm to detect the melting 

layer and to derive parameters regarding the bright band height and intensity.  Hardaker 

et al. (1994) proposed a dynamic microphysical model to obtain the VPR and vertical 

attenuation profile (VAP) and deduced relations between peak intensity for the bright 

band and rainfall rate.  Kitchen et al. (1994) also used the parameterized VPR and 

iteratively calculated weighting of the profile by the radar-beam power profile. 
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II.4  Scale-Dependent Uncertainty of Rainfall Estimates 

This section reviews the uncertainty of rainfall estimates resulting from the 

temporal and spatial sampling procedure.  Since few studies have systematically 

investigated the scale-dependent properties of rainfall estimates, we extensively review 

all scale issues related to rainfall estimates based on common knowledge that averaging a 

physical process with a longer (in time) or larger (in space) scale reduces the process’ 

random errors. 

It is well-known that the error of rainfall estimates is strongly associated with the 

scale used (e.g., Anagnostou et al. 1998; Jordan et al. 2000;  Habib et al. 2001; 

McCollum et al. 2002; Seo and Breidenbach 2002; Ciach 2003; Gebremichael and 

Krajewski 2004; Gebremichael and Krajewski 2005; Villarini et al. 2008).  Here, 

temporal scale is related to rainfall accumulation time, and spatial scale corresponds to 

the grid/pixel size that is employed in the modeling or forecasting procedure.  For the 

temporal dependence of rainfall sampling, Jordan et al. (2000) found that a shorter time 

scale of sampling strategy reduced the sampling error, but the improvement was 

dependent on the dispersion of rain fields.  The authors also demonstrated that the longer 

time span of accumulation resulted in the decreased error over the same spatial scale of a 

specific area.  Villarini et al. (2008) used a dense rain gauge network that is located in 

England and also reported that the uncertainty arising from the temporal rainfall sampling 

increased with the longer sampling interval, which could be characterized by a scaling 

law.  Furthermore, the authors concluded that the uncertainty of rainfall decreased with 

longer temporal and larger spatial scales.  In general, rain gauge measurements to 

represent a specific spatial scale of areal rainfall display significant uncertainty due to the 

sparse distribution of the network and the small coverage of the gauge orifice (e.g., Seed 

and Austin 1990; Kitchen and Blackall 1992; Habib and Krajewski 2002). 

While the variability of drop size distribution (DSD) is a crucial factor that 

impacts the rainfall variability, few efforts to describe the time and space scale-
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dependence of DSD have been made.  Lee and Zawadzki (2005) used five-year 

disdrometer data and explored the scale-dependence of DSD and the resulting rainfall 

estimation.  The authors concluded that the use of a climatological Z-R relationship 

significantly decreased random errors in instantaneous rain rate estimation, implying that 

the longer integration time of DSDs lead to a reduction in rainfall estimation uncertainty.  

Moreover, Morin et al. (2003) investigated the scale-dependence of the parameters in the 

power-law Z-R and found that the optimal Z-R parameters systematically change with 

respect to space-time scale. 
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CHAPTER III 

INVESTIGATING RADAR RELATIVE CALIBRATION BIASES 

BASED ON A FOUR-DIMENSIONAL REFLECTIVITY 

COMPARISON  

III.1  Introduction 

A well-calibrated and reliable observation system is an essential prerequisite for 

quantitative rainfall estimation and its application to hydrologic fields.  Using radar 

measurements, instead of sparsely distributed rain gauges, to describe the main aspects of 

rainfall fields yields higher resolution information in space and time.  However, radar 

calibration uncertainty (i.e., calibration offset) might affect the accuracy of rainfall 

estimates (e.g., Houze et al. 2004) due to the lack of information about the absolute 

calibration procedures and schedule.  This calibration bias may present the most 

significant practical challenge when multiple radar data are considered for a hydrologic 

unit represented by a basin or watershed that cannot be covered by a single radar (e.g., 

Smith et al. 1996; Brandes et al. 1998; Baeck and Smith 1998).  For the US WSR-88D 

weather radars, their measurements might be affected by different calibration biases and 

different strength of range-dependent biases since the operation of the radars is not 

synchronized (cross-calibrated).  The range-dependent bias issue will be discussed in the 

next chapter.  

Despite numerous efforts to detect and define ground radar calibration biases 

using other observational systems/platforms, some were limited to the relatively small 

spatial extent (e.g., Ulbrich and Lee 1999; Ulbrich and Miller 2001; Williams et al. 2005) 

and specific locations.  Although recent studies (e.g., Anagnostou et al. 2001; Marks et al. 

2009; Wang and Wolff 2009) have attempted to cover a fairly extensive spatial domain 

using the TRMM PR (space-based radar) known as a consistently- and well-calibrated 

system (Kozu et al. 2000; Kawanishi et al. 2000), the use of those data suffers from a 
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different sampling geometry, with ground-based radar and attenuation issues (e.g., Bolen 

and Chandrasekar 2000) arising from the high frequency (13.8 GHz) used. 

This chapter develops a methodology that matches the collocated and coincident 

sampling volumes from two different ground-based radars and compares the observed 

reflectivity values.  This method may be effective to detect and quantify the relative 

calibration biases between ground-based radars.  The proposed method does not require 

any rain gauge observations (e.g., Brandes 1999) as reference data. 

III.2  Data Sources 

For reflectivity data comparison between two ground-based radars, eight years 

(2003 through 2010) of Level II radar volume data were collected from the Des Moines 

and Davenport WSR-88D radars (KDMX and KDVN, respectively) in Iowa.  This period 

includes the recent resolution change of Level II data and can be divided into two periods 

of the legacy-resolution (2003through May 2008) and super-resolution (June 2008 

through 2010) data.  The new super-resolution data (Torres and Curtis 2007) provide 

enhanced resolution of 0.5° in azimuth and 250 m in range compared to the legacy-

resolution data of 1.0° by 1 km.  The distance between the two radars is about 260 km, 

and the difference in elevation between two radar sites is about 70 m.  Figure III.1 shows 

the locations of the KDVN and KDMX radars, and each range ring in Figure III.1 

represents every 100 km distance centered on both radars.  Since the radar beam 

propagation under non-standard atmospheric conditions might considerably affect 

reflectivity measurement values, information on the anomalous propagation (AP) for 

every radar volume data was constructed using an adaptation of the algorithm by Steiner 

and Smith (2002).  Radar volume data consist of about nine elevation angle data, but only 

the lowest three elevation angle data are compared to obtain measurement values near the 

ground. 
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III.3  Methodology 

To investigate the calibration-related measurement differences in the absence of 

any operational information, we use volume data match-up that considers temporal and 

spatial coincidence in the hope that this can show relative biases in common target 

locations.  Most importantly, this approach is able to maintain volume data spatial 

structure and information because the biases might be smoothed or distorted by spatial 

interpolation or grid projection. 

First, temporal coincidence should be satisfied to match two radar beams from 

different radars.  One can obtain an observation time for every elevation angle data and 

the corresponding velocity of radar rotation.  The time for horizontal observations (rays) 

in a certain elevation angle can be obtained from volume scan information.  An adaptable 

parameter, which represents a tolerance in time separation between two radar ray 

observations, for this match-up is highly dependent on storm velocity.  Thirty seconds is 

used for this parameter.  This highly-required temporal tolerance allows coincidence of 

common targets, which is separately measured, within the horizontal extent (1 km) of the 

radar sampling volume used for the legacy-resolution data. 

For spatial match-up, one needs to account for horizontal locations represented in 

spherical coordinates and vertical heights of radar sampling volumes.  Since radar 

geographic coordinates and the spherical coordinates of radar observations are known, 

the spherical coordinates that represent the center (C2 in the upper panel of Figure III.2) 

of a sampling volume from one radar can be easily transformed with respect to the other 

radar.  The differences (dr, dѲ, and dh in Figure III.2) in azimuth, range, and height 

between two sampling volumes explain how close two radar sampling volumes are and 

how well those are matched.  These three adaptable parameters can be described by the 

proportion over radar beam width, sampling bin size, and vertical beam width to consider 

the variability associated with radar sampling volume due to beam spreading.  A 3% 

tolerance limit for all three spatial parameters is used. 
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Although two center points of radar sampling volumes are sufficiently close and 

satisfy the tolerance limits defined above, the size of the sampling volumes might differ 

depending on the distance from both radars.  Therefore, a matching zone of the volumes 

should be confined to near range (within 3 km in this study) from the equidistance line 

between radars.  This conditional requirement for the equidistance zone may reduce the 

concern of range dependent biases for this match-up methodology. 

The main assumption of this methodology is radar beam propagation under the 

standard atmospheric condition.  Although non-precipitation echoes classified at the 

matching zone defined above are removed, there is still the possibility that radar 

reflectivity measurements affected by the effect of anomalous propagation (AP) in the 

vicinity of the radar can exist.  Therefore, two-dimensional AP clutter maps generated 

using an adaptation of the algorithm by Steiner and Smith (2002) are used to remove the 

cases that cause assumption violation. 

The smaller sampling volume of the super-resolution data may reduce concerns 

about volume mismatch based on the spatial matching procedure discussed above and 

decrease the uncertainty of radar measurement differences.  Different matching 

tolerances for the super-resolution data from those for the legacy-resolution data should 

be selected.  For example, time separation tolerance for super-resolution should be 

smaller than that for legacy-resolution because the required time for a storm to pass over 

a grid pixel (super-resolution) at a certain range is definitely shorter.  Therefore, 

sensitivity analysis is performed with respect to parameters related to both temporal and 

spatial tolerances. 

III.4  Reflectivity Comparison 

The large sample statistics are based on four-dimensional matchups of volume 

data collected from the KDMX and KDVN radars from 2003 through 2010.  The results 

are organized by the period of radar volume data resolution (legacy- and super-
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resolution), as applying different tolerance values might affect the sample size and 

statistical properties of the obtained samples. 

III.4.1  Legacy-Resolution 

The legacy-resolution period for the reflectivity comparison is defined as 2003 

through May 2008, since the radar Level II data format changed in early May and June of 

2008 for the KDMX and KDVN radars, respectively.  The legacy-resolution data for the 

KDVN and the super-resolution data for the KDMX coexist from early May through 

early June of 2008.  This transition period was excluded from the comparison analysis 

due to the complexity and difficulty of matching the different size of radar sampling 

volumes. 

To match sampling volumes from two radars, four adaptable parameters (30 

seconds for time separation and 97% agreement for azimuth, range, and height 

tolerances, respectively) were applied, and 5,278 matched pairs were obtained over the 

legacy-resolution data period.  Figure III.3 shows the number of matched pairs (sample) 

obtained by month.  The amount of Level II volume data collected from 2006 through 

2008 was greater than for the other three years; Figure III.3 shows the annual difference 

in the sample size of matched pairs by year.  The greater number of samples obtained in 

the rainy season (i.e., May through September) can be explained because the volume scan 

strategy uses a shorter scan interval in rain mode (5-6 minutes; e.g., Fulton et al. 1998) 

than in no-rain mode (about 10 minutes). 

Figure III.4 illustrates the scatter plots of the obtained samples.  Overall, the 

matched samples are highly scattered and show large variability of reflectivity that may 

be explained by reflectivity mismatch.  To reduce the possibility of including mismatch 

cases arising from anomalous beam propagation, we used two-dimensional AP clutter 

maps generated using every volume scan data over the entire period.  Since certain 

atmospheric conditions (e.g., temperature inversion) at the vicinity of radar can be a 
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source of anomalous beam propagation, the AP fraction was computed for the range of 

20-30 km from the radar using the AP clutter maps.  The range within 20 km was not 

considered in order to exclude ground clutter which occurs due to the effect of radar side-

lobes.  

We computed the AP fraction for all matched cases obtained in Figure III.4.  

Figure III.5 shows the variation of the standard deviation of reflectivity difference with 

respect to the computed AP fraction for the samples in Figure III.4.  Figure III.5 presents 

the individual (bottom panel) and accumulated sample size (middle panel) for each AP 

fraction range.  The accumulated sample size is denoted by the conditional sample size 

for the given range of the AP fraction which is smaller than a specific AP fraction value.  

Overall, the standard deviation of reflectivity difference (top panel) shows that the 

variability of the difference increases with a higher AP fraction.  For the standard 

deviation computed using accumulated samples, the variability linearly increases with the 

AP fraction in the range of 0-0.3 and changes little after an AP fraction value of 0.4.  This 

indicates that the critical value (threshold) to eliminate AP cases from matched samples 

should be smaller than 0.4. 

We used 0.2 as a threshold for the AP fraction and removed cases which have AP 

fraction values greater than 0.2.  Since the two radars are in different geographic 

locations (260 km distance) and atmospheric conditions for beam propagation are 

different at each radar location, anomalous beam propagation from both radars were 

considered.  Figure III.6 shows the scatter plots after eliminating anomalous radar beam 

propagation cases from matched samples (Figure III.4).  Comparing Figure III.6 with 

Figure III.4, the scatter and variability of reflectivity differences are significantly reduced 

after the AP case elimination, but considerable reduction of sample size is also evident.  

To provide quantitative information on the comparison, annual statistics (i.e., sample size, 

correlation, mean, and standard deviation of reflectivity differences) are presented in 
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Table III.1 for “Before” vs. “After” the consideration of AP propagation.  The difference 

is defined as KDMX-KDVN in dB. 

The annual mean values of reflectivity difference in Table III.1 indicate that the 

relative calibration bias changed slightly from year to year.  For example, there was 

approximately a 1.5 dB change in mean difference values between 2006 and 2007.  While 

Figure III.6 demonstrates that the KDMX radar was hotter (on average) than the KDVN 

until 2006, the situation was changed in 2007.  A 1 dB difference in 2007 may result in a 

significant difference in rainfall estimation for strong convective storm cases.  For 

example, at the rainfall range higher than 50 mm/hr (corresponding to 49 dBZ in radar 

reflectivity), a 1 dB difference causes at least a 14 mm/hr difference in recorded rainfall 

intensity. 

III.4.2  Super-Resolution 

Due to the smaller sampling volume than that of legacy-resolution, one might 

consider using enhanced tolerance for time separation to obtain the coincidence of 

common meteorological targets within the smaller horizontal extent (250 m).  Since the 

smaller sampling volume may provide a chance to reduce the uncertainty arising from 

volume mismatch using the same spatial tolerances used for legacy-resolution, the 

sensitivity of temporal and spatial tolerances is investigated here with regard to the 

statistical properties of matched samples.  Based on the parameter (tolerance) sensitivity 

analysis, the reasonable range of temporal and spatial tolerances should be applied for 

super-resolution reflectivity data comparison. 

Sensitivity analysis was performed with the variation of the matching parameters 

related to time separation and spatial agreement.  For the spatial agreement, we 

considered all three-dimensional components of radar sampling volume, which are 

tolerances in azimuth, range, and vertical directions.  The maximum range of 60 seconds 

for time separation and 90% agreement for spatial tolerance (all three components have at 
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least 90% agreement) were used, and we obtained a large (about 670,000) matched 

sample data set.  From this obtained sample data, we eliminated AP cases defined as 

more than 20% AP contamination at the range of 20-30 km from both radars, reducing 

the sample to about 68,000 over a two year super-resolution data period. 

The statistical features of the variation of time separation and spatial agreement is 

represented using sample size (the number of matched pairs obtained), correlation 

coefficient, and standard deviation of reflectivity differences.  Figure III.7 shows the 

contour map for the number of matched pairs with the variation of tolerances.  The 

representative values of spatial agreement (vertical axis in Figure III.7) were estimated 

using the mean of three spatial tolerance (azimuth, range, and vertical height) values.  

Figure III.7 shows that the sample size increases with longer time separation and lower 

(poor) spatial agreement, as expected.  It seems that the sample number becomes 

sensitive to the variation in time separation as the spatial agreement value decreases.  

This implies that the sample size does not change much at higher values of spatial 

agreement (for example, 99% agreement) with the change of time separation.   

Figure III.8 illustrates the distribution of the correlation coefficient between 

paired reflectivity values of temporal and spatial consideration.  In Figure III.8, a 

remarkable feature is that time separation is a dominant factor for the correlation 

variation at the strict range of tolerances (i.e., within 5 second separation and higher than 

97% spatial agreement).  For a lower correlation pattern at a longer time separation and 

lower spatial agreement, it is likely that mismatch cases are related to the irregular 

distribution of correlation.  Figure III.9 shows the distribution of variability of reflectivity 

differences represented by standard deviation (in dB).  A similar aspect to correlation 

distribution (in Figure III.8) is observed in the upper-left corner of the contour map 

(Figure III.9).  Since the standard deviation value is greater than 3 dB even in a very strict 

tolerance range, Figure III.9 shows the large variability of reflectivity differences. 
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Figure III.10 shows the scatter plots of the obtained super-resolution samples 

using 10 seconds for temporal separation and 97% spatial agreement.  For the temporal 

separation parameter, although results from sensitivity analysis (Figure III.8 and Figure 

III.9) show that a temporal separation of smaller than 5 seconds can offer better statistical 

agreement between reflectivity data observed from different radars, the smaller parameter 

significantly reduces the number of matched pairs.  Therefore, the reflectivity matching 

method using parameters of 10 seconds and 97% for the super-resolution data was 

applied as a compromise between statistical agreement of reflectivity differences and 

obtained sample size.  Overall, the samples are highly scattered and show large 

variability of reflectivity differences that might be explained by reflectivity mismatch 

(left panel in Figure III.10).  AP cases were also eliminated, resulting in the scatter and 

variability of reflectivity differences being significantly reduced (right panel in Figure 

III.10).  Table III.2 presents quantitative information on the comparison. 

The mean difference values in Table III.2 reveal that reflectivity values of the 

KDVN radar were consistently greater than that of the KDMX radar from 2008 to May 

2010.  The observed difference from the legacy-resolution data in 2008 also showed that 

the KDVN radar was hotter (Table III.1).  However, super-resolution shows much higher 

variability in reflectivity differences than legacy-resolution, although we obtained greater 

sample sizes. 

III.5  Relative Bias 

This section performs a statistical consistency test (two-sample t-test; Moore 2003) 

for the change of reflectivity differences over time.  The reflectivity difference statistics 

values (mean, standard deviation, and sample size) used in the two-sample t-test were 

estimated month by month to provide statistical significance based on a reasonable 

sample size.  The null-hypothesis for the test (two-sided) is that the mean reflectivity 

differences between the current month and the previous period are consistent.  Due to the 
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small sample size (there is no matched sample for several months), the legacy-resolution 

period was not included in this analysis. 

Figure III.11 illustrates sample size, difference mean and standard deviation for 

individual and accumulated months, and break points of the consistency in reflectivity 

difference over the 24 months of the super-resolution period (June 2008 through May 

2010).  Since monthly mean difference and standard deviation (the middle panel in 

Figure III.11) seem fairly variable, we accumulated samples that were consistent.  

Consistent samples of consecutive months, thus, are accumulated, and the new statistics 

values (mean, standard deviation, and sample size) for the accumulated months are 

computed to perform the two-sample t-test.  In the next step in this analysis, the test 

compares the statistics values for the accumulated months with those of the individual 

following month.  As shown in Figure III.11, two break moments over 24 months were 

observed.  At those moments (between October and November 2008; February and 

March 2010), the statistical consistency (null hypothesis) was violated because the 

monthly mean of reflectivity differences was abruptly changed for various reasons (for 

example, radar calibration).  However, we have not verified that the observed change of 

reflectivity differences was caused by radar calibration due to lack of information on 

calibration procedures and schedule for both radars. 

III.6  Conclusions and Discussion 

A methodology that matches and pairs the collocated and coincident sampling 

volumes from two different ground-based radars was developed in the hope that the 

reflectivity comparison that is based on well-matched radar sampling volumes can show 

relative biases for common meteorological targets.  We considered temporal separation 

and three-dimensional spatial agreement (in azimuth, range, and vertical height) of 

sampling volumes from two different radars. 
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We collected around 8years of radar volume scan data which contain the recent 

upgrade of data resolution (called super-resolution) from the KDVN and KDMX radars 

in Iowa.  Since the proposed method assumes radar beam propagation under the standard 

atmospheric condition, anomalous propagation cases were eliminated from the matched 

data sample using an adaptation of the algorithm by Steiner and Smith (2002).  After the 

AP elimination, matched reflectivity data samples for both legacy- and super-resolution 

showed better statistical agreement between two radars. 

Since radar sampling volume of the super-resolution data is eight times smaller 

than that of legacy-resolution (see e.g., Torres and Curtis 2007; Seo and Krajewski 2010), 

different tolerances for the volume matching should be used.  For example, when 

considering storm velocity and terminal velocity of rain drops within smaller sampling 

volumes of super-resolution, the same time separation parameter of legacy-resolution (i.e., 

30 seconds) might lead to a temporal mismatch of sampling volumes.  Sensitivity 

analysis of statistical properties of matched reflectivity data was performed with regard to 

the variation of temporal and spatial tolerances.  The analysis showed that a stricter 

tolerance range in time and space provides better statistical agreement of matched 

reflectivity data, but results in an extremely small number of samples.  As a compromise, 

10 seconds for time separation and 97% for spatial agreement parameters were used for 

the super-resolution data matching. 

The scatter plots (Figure III.6 and Figure III.10) of matched samples for both 

legacy- and super-resolution show high variability of reflectivity differences.  They show 

somewhat clear systematic differences annually, but high variability.  Due to the small 

sample size obtained from the legacy-resolution data, we only used the super-resolution 

data to statistically test the temporal consistency of reflectivity differences.  From the 

two-sample t-test, we found two inconsistent moments of reflectivity differences 

characterized by monthly statistics (sample size, mean, and standard deviation).  These 

two break points could be related to calibration procedures for one of the radars (KDVN 
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and KDMX).  However, we could not confirm what caused the observed change of 

reflectivity difference due to the lack of operational information on calibration 

procedures and the schedule for both radars. 
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Table III.1  Comparison of annual statistics values of reflectivity over the legacy-
resolution period. 

Year 
Sample size Correlation Mean of 

differences 
Standard deviation 

of differences 

Before After Before After Before After Before After 

2003    721   163 0.90 0.92  0.21  0.01 4.32 3.23 

2004    648   159 0.90 0.93  0.92  0.96 4.27 3.29 

2005    888   119 0.89 0.91  0.50  0.23 4.65 3.48 

2006 1,113    78 0.82 0.94 -0.41  0.46 5.84 3.55 

2007 1,182    45 0.85 0.93  0.05 -1.17 5.63 2.92 

2008    726   112 0.93 0.95 -1.05 -0.95 3.56 2.48 
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Table III.2  Comparison of annual statistics values of reflectivity over the super-
resolution period. 

Year 
Sample size Correlation Mean of 

differences 
Standard deviation 

of differences 

Before After Before After Before After Before After 

2008 1,484   528 0.77 0.78 -1.79 -1.94 7.37 6.59 

2009 2,330   941 0.85 0.84 -2.62 -2.73 5.90 6.03 

2010    850   402 0.84 0.87 -1.85 -1.56 5.63 5.04 
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Figure III.1  Locations of the KDMX and KDVN radars.  Circles represent every 100 km 
range from the individual radars. 
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Figure III.2  Spatial match-up of two radar sampling volumes in the horizontal plane (top 
panel) and in the vertical height (bottom panel). 
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Figure III.3  Number of the matched volume pairs over the legacy-resolution data period 
of 2003 through May 2008.  Each column represents the number of the 
matched pairs with respect to the corresponding month. 
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Figure III.4  Scatter plots of reflectivity values of the matched pairs for the legacy-
resolution data period. 
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Figure III.5  Individual sample size (bottom panel), accumulated sample size (middle 
panel), and standard deviation of reflectivity difference (top panel) with 
respect to the computed AP fraction.  Accumulated sample size represents 
conditional sample size for a given range of AP fraction which is smaller than 
a specific AP fraction value.  The light gray squares and dark gray dots in the 
top panel show the standard deviation from individual and accumulated 
samples with respect to the AP fraction. 
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Figure III.6  Scatter plots of reflectivity values of the matched pairs after eliminating 
anomalous radar beam propagation cases (legacy-resolution period). 
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Figure III.7  Contour map for the number of matched pairs with respect to the variation 
between time separation and spatial agreement. 
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Figure III.8  Contour map for the correlation coefficient of matched pairs with respect to 
the variation between time separation and spatial agreement. 
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Figure III.9  Contour map for reflectivity difference variability (standard deviation) of 
matched pairs with respect to the variation between time separation and 
spatial agreement. 
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Figure III.10  Scatter plots of reflectivity values of the matched pairs before (left panel) 
and after (right panel) eliminating anomalous radar beam propagation cases 
(super-resolution period). 
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Figure III.11  Sample size, reflectivity difference mean and standard deviation for 
individual months, and the result of the statistical consistency test for 
accumulated months.  Accumulation is defined as sample aggregation of 
consecutive months whose statistical properties are consistent. 
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CHAPTER IV 

MODELING OF RANGE DEPENDENT ERROR USING VERTICAL 

PROFILE OF REFLECTIVITY* 

IV.1  Introduction 

Radar estimates of rainfall are subject to significant uncertainty.  Error sources are 

numerous and have been discussed extensively in the literature for over three decades 

(see Villarini and Krajewski (2010a) for a recent review).  A rigorous quantitative 

description of the estimation uncertainty remains an elusive goal of hydrometeorological 

research (e.g., Krajewski and Smith 2002), although some progress has been achieved 

over the past several years (e.g., Ciach and Krajewski 1999; Ciach et al. 2000; Bellon et 

al. 2005; Ciach et al. 2007; Habib et al. 2008; Germann et al. 2009; Villarini and 

Krajewski 2009, 2010b; Kirstetter et al. 2010). 

In this chapter, we focus on the systematic error arising from the non-uniform 

vertical profile of radar reflectivity (VPR), which is related to changes in the shape and 

size distribution of hydrometeors as well as to their phase transition.  Certain features of 

the VPR, when combined with the geometric effects of radar beam “viewing” of the 

atmosphere, result in systematic errors, whose magnitude depend on the distance from the 

radar (e.g., Koistinen 1991; Kitchen and Jackson 1993; Smith et al. 1996; Bellon et al. 

2005).  This mechanism is fairly well understood, and corrective algorithms have been 

developed and tested (e.g., Andrieu and Creutin 1995; Vignal et al. 1999; Vignal and 

Krajewski 2001; Seo et al. 2000; Zhang et al. 2008; Villarini and Krajewski 2010a).  

However, there are still many operational radar systems that do not employ a range 

correction (e.g., Goundenhoofdt and Delobbe 2008).  Since there is no operational VPR 

                                                 
* Adapted version of Krajewski, W.F., B. Vignal, B.-C. Seo, and G. Villarini, Statistical 

model of the range dependent error in radar-rainfall estimates due to the vertical profile of 
reflectivity, submitted to Journal of Hydrology, 2010. 
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correction procedure in the radar-rainfall products of the U.S. national network of 

Weather Surveillance Radar-1988 Doppler (WSR-88D; e.g., Crum and Alberty 1993; 

Crum et al. 1998), we hope that this simple method could represent a possible way of 

addressing this issue. 

The objective in this chapter is to develop a simple, two-moment (mean and 

variance/standard deviation) description of the range-dependent error (RDE) that focuses 

on the vertical non-uniformity of the VPR as the targeted source of uncertainty.  Such a 

description would be useful in all applications in which radar-rainfall estimates 

(uncorrected for range effects) are used as the initial conditions in forecasting models, 

input to hydrologic models, or ground reference values for evaluation of space-based 

systems (e.g., Habib et al. 2008; Collier 2009; Germann et al. 2009; Villarini et al. 2009, 

2010b).  In this respect, the model contributes to the objectives of the Prediction for 

Ungauged Basins international initiative (Sivapalan et al. 2003). 

IV.2  Problem Formulation 

The VPR effect on radar-rainfall errors is associated with several factors.  While 

the VPR structure depends on seasonal and regional rainfall regimes, radar-rainfall 

estimates at a certain distance from the radar are affected by the range-dependent error 

(e.g., Kitchen and Jackson 1993; Kitchen et al. 1994; Joss and Lee 1995; Andrieu and 

Creutin 1995; Smith et al. 1996; Vignal et al. 1999; Seo et al. 2000; Vignal and 

Krajewski 2001; Chumchean et al. 2004).  This error depends on the height above the 

ground with relation to radar’s antenna elevation angles as well as the distance from the 

radar.  Therefore, if the dominant systematic features of the VPR can be described, its 

effect on radar-rainfall uncertainty can be captured since the estimated element’s location 

is known. 

The radar-rainfall uncertainty that arises from the non-uniform vertical structure 

of reflectivity can be described as a function of two main factors: radar range and antenna 
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elevation angle.  Therefore, radar-rainfall estimates at a given distance D from the radar 

and altitude can be written as: 

),()(),(  DIDRBDR VPRtrueest    (1) 

where Rest(D,α) denotes the radar-rainfall values at the distance D from the radar and an 

antenna elevation angle ; Rtrue(D) represents the true ground level rainfall for the same 

location.  The reflectivity values Z are converted into rainfall rates using a power law 

relation known as the Z-R relationship (e.g., Battan 1973).  In equation (1), two factors 

that account for the difference between true rainfall values and their estimates are “VPR 

influence,” IVPR (e.g., Andrieu and Creutin 1995; Vignal et al. 1999), and the 

multiplicative bias B which arises from all other sources of uncertainties not related to 

VPR effects.  Their product defines multiplicative systematic discrepancy between radar-

rainfall and true rainfall.  Following Andrieu and Creutin (1995) and Vignal et al. (1999), 

the VPR influence can be described as: 
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where Z(h) denotes the VPR which is defined as the ratio between reflectivity measured 

at an altitude h and at the reference altitude (namely, ground); H¯ and H+ are the 

corresponding lower and upper altitudes of the radar beam bounds at distance D; and f2 is 

the one-dimensional (and dimensionless) power distribution of the radar beam at altitude 

h, which depends on the beam width θ0 (also known as antenna pattern function).  The 

coefficient β is defined as 1/b, where b is the exponent of the power-law Z-R relationship. 

From equation (1), the RDE of radar-rainfall estimates in a multiplicative form is: 
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The RDE in equation (3) should only be defined for non-zero true rainfall.  This is 

just one possible way of modeling the RDE, and alternative model formulations could be 
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employed (e.g., additive model; see Villarini and Krajewski (2010b) for a recent 

discussion). 

RDE is a random variable, and we assume that its realizations can be obtained in 

time and that the RDE at a given radar range is log-normally distributed, so that it can be 

fully characterized by the first and second-order statistics (mean and variance/standard 

deviation) of the distribution.  In the next section, the validity of the log-normality 

assumption is demonstrated by analyzing the VPR influence using the Tulsa WSR-88D 

(KINX), Oklahoma.  Additionally, since the normal distribution is commonly assumed to 

represent statistical properties of unknown variables, the statistical forms of the mean and 

variance for both normal and log-normal distributions are derived: 
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        ln ( , ) ln ln ( , )VPRE RDE D E B E I D    (5a) 

        ln ( , ) ln ln ( , )VPRV RDE D V B V I D    (5b) 

where E{·} and V{·} denote expectation and variance operators of random variables.  

Assuming that B and IVPR(D,α) are independent, equations (4) and (5) represent two 

central statistics of the normal and the log-normal distribution, respectively.  The “no 

correlation” assumption between B and IVPR(D,α) is defensible if the main source of the 

bias B is radar miscalibration.  Before the details of the proposed approach are discussed, 

we briefly describe the radar and rain gauge data used to demonstrate its soundness. 
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IV.3  Data Sources 

IV.3.1  Radar Data 

Four-year (2000 through 2003) data from the WSR-88D radar in Tulsa, Oklahoma 

(KINX) were collected.  As different rainfall regimes significantly affect the VPR 

structure and the resulting RDE, the radar data were divided into a warm season (May to 

October) that was dominated by mid-latitude convective systems (e.g., Houze et al. 1990; 

Houze 1993), and a cold season (November to April) that was dominated by widespread 

stratiform precipitation systems.  The data consist of time series of volume scans 

containing a typical time-interval between two volume scans of 5 or 6 minutes when in 

precipitation mode (Fulton et al. 1998).  Each volume scan is usually composed of nine 

scans recorded at elevation angles from 0.47º to 19.50º.  To compute radar-rainfall 

estimates, we used the Hydro-NEXRAD algorithm (Krajewski et al. 2010; Kruger et al. 

2010; Seo et al. 2010) off-line and produced the estimates independently from the lowest 

three elevation angles (0.47 º, 1.48º, and 2.40º).  Since the elevation angles could slightly 

change in each volume scan depending on the Volume Coverage Pattern (VCP), the 

distribution of the lowest three elevation angles over the data period was considered, and 

three typical (numeric) values (0.47 º, 1.48º, and 2.40º) were selected for further analysis.  

Moreover, the use of three elevation angles illustrates an option in cases where the lower 

elevation data are blocked in a given direction, as is often the case in mountainous 

regions (e.g., Joss and Lee 1995; Germann et al. 2006).  To convert radar measurements 

into rainfall intensities, the WSR-88D default relationship Z=300R1.4 (Fulton et al. 1998; 

Villarini and Krajewski 2010b) and a rain/no-rain reflectivity threshold of 10 dBZ were 

used.  Since ground clutter and anomalous propagation (AP) conditions might strongly 

affect the accuracy of radar-rainfall estimation, the method proposed by Steiner and 

Smith (2002) and implemented in Hydro-NEXRAD was applied to the collected radar 

data set (see Villarini and Krajewski (2010b) for an evaluation of this algorithm). 
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IV.3.2  Rain Gauge Data 

For an independent evaluation using rain gauge data, we used data from the 

Oklahoma Mesonet rain gauge network (Brock et al. 1995) for the same period as the 

radar data, and selected 54 rain gauges within a 200-km radius of the KINX radar (Figure 

IV.1).  The Oklahoma Climatological Survey performed basic quality control for these 

data (e.g., Shafer et al. 2000).  The same data set was used by Ciach et al. (2007). 

IV.4  VPR Model 

IV.4.1  Model Parameterization 

As discussed in the literature (e.g., Andrieu et al. 1995; Vignal et al. 1999; Vignal 

and Krajewski 2001; Tabary 2007), the generic shape of the VPR is schematically shown 

in Figure IV.3.  This shape can be divided conceptually into three regions: (1) a sub-

cloud region, where the VPR value (i.e., in terms of reflectivity ratio) can be assumed to 

be 1; (2) the bright band region, where the melting ice and snow lead to a significant 

enhancement of radar reflectivity (Austin and Bemis 1950; Kitchen et al. 1994; Fabry and 

Zawadzki 1995; Gourley and Calvert 2003; Zhang et al. 2008); and (3) an above cloud 

region, where radar reflectivity decreases approximately linearly with height.  The above 

ground height of the bright band region is closely related to the freezing level.  The 

melting layer thickness is relatively small, around 500 m.  The maximum enhancement of 

the reflectivity is a complicated function of the in-clouds thermodynamic and 

microphysical processes that determine the size distribution of the hydrometeors.  

Melting particles are composed of varied densities coated with water, and thus appear 

much larger to the radar than the equivalent spherical volume of water. 

The characteristic “bump” can be modeled with a double-exponential shape (as in 

Gaussian distribution): 
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where Zmax represents the maximum reflectivity ratio increment and is related to the 

maximum enhancement of the reflectivity associated with the melting ice particles; hbb is 

the bright band altitude (where the ratio is the largest but is not necessarily in the middle 

of the melting layer); and ebb represents the vertical extension of the reflectivity 

enhancement relevant to the distribution of hbb and the typical extension of the bright 

band. 

Above the bright band altitude, the decreasing ratio with increasing altitude can 

be assumed to be linear (e.g., Joss and Lee, 1995) based on the normalized reflectivity 

unit (dB), and the linear aspect can be formulated as follows: 
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where slop is the decreasing slope (dB/km) above hbb.  Therefore, the final form of the 

conceptual VPR is expressed by combining equations (6) and (7): 
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where δh is defined as δh = 0 if h<hbb, and δh = 1 otherwise. 

IV.4.2  VPR Computation 

To estimate VPR using three-dimensional radar volume data, hourly radar-rainfall 

fields and hourly VPRs were computed.  Although considering spatial non-homogeneity 

of the VPRs may better represent the actual structure of the reflectivity profile (e.g., 

Vignal and Krajewski 2001), such approach might significantly decrease the sample size.  

Therefore, we use spatially-averaged VPRs and assumed that the vertical structure was 

homogeneous over the radar domain. 
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Since the accuracy of the estimated VPR decreases as distance from the radar site 

increases (e.g., Vignal et al. 1999), the VPR data set while restricting the range to 60 - 90 

km from the radar and using all elevation angle data was computed (we mostly used six 

elevation angles due to a significant vertical gap between the sixth and seventh elevation; 

Figure IV.2).  Approximately 1,020 and 9,580 hours of hourly VPR data for the cold and 

the warm season were obtained, respectively.  The average hourly VPR obtained from 

our record for both cold and warm seasons is shown in Figure IV.3.  While the average 

VPR for the cold season shows a maximum reflectivity enhancement at an altitude of 

about 2.1 km, the VPR for the warm season indicates a slightly reduced enhancement 

close to an altitude of 3.3 km.  The reflectivity enhancement is associated with the 

average height of the layer with melting ice particles, which causes a “climatological” 

bright band.  The relatively wide range of reflectivity enhancement in the warm season 

indicates that some stratiform precipitation cases were likely included in the data.  The 

decreasing reflectivity above the melting layer is indicative of the sparse existence of 

clouds with increasing altitude. 

IV.4.3  Time-Averaged VPR Influence 

To compute the VPR influence in equation (2) for a given distance and elevation 

angle, the one-dimensional antenna power distribution function was represented as a 

Gaussian distribution with 3 dB radar beamwidth.  The empirical distribution of the VPR 

influence can then be computed using the obtained VPR data.  For example, Figure IV.4 

shows the distribution of the VPR influence for the warm season and the second elevation 

angle (1.48°) at 100 km and 150 km range.  At a range of 100 km and for the second 

elevation angle, the altitude of the radar beam main axis corresponds to the height of the 

maximum reflectivity enhancement (about 3.3 km; Figure IV.3).  The altitude of the 

beam axis at 150 km is above the enhancement of the vertical range (about 5.3 km) in a 

region not affected by bright band.  The log-normal distribution shows a good agreement 
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between the theoretical and the empirical distributions.  Based on these examples, the 

distribution of the VPR influence and the RDE can be assumed to be log-normal.  This is 

also in agreement with numerous other studies on the multiplicative bias (so-called the 

mean field bias), which assumed that the bias is log-normally distributed (e.g., Smith and 

Krajewski 1991; Anagnostou et al. 1998; Anagnostou and Krajewski 1999; Seo et al. 

1999). 

At a given distance D, the time-averaged RDE is derived from the time-averaged 

multiplicative bias and the time-averaged VPR influence, as in equations (4a) and (5a).  

The time-averaged VPR influence is directly computed using the VPR data set.  Figure 

IV.5 illustrates the evolution of the time-averaged VPR influence as a function of radar 

range for both seasons and both normal and log-normal distributions.  For normal 

distribution, if the VPR influence is equal to 1, the VPR has no effect on radar-rainfall 

estimates; on the other hand, if the VPR influence is greater (smaller) than 1, the rainfall 

amounts are over- (under-) estimated.  For log-normal distribution, the critical value of 

the VPR influence corresponds to 0.  The results shown in Figure IV.5 are consistent with 

those in Fabry et al. (1992). 

IV.4.4  Parameter Estimation 

The four parameters (hbb, ebb, Zmax, and slop) in equation (8) using the least square 

method were estimated by minimizing the sum of squared differences between the 

empirical VPR influence in Figure IV.5 and the derived VPR influence from the 

proposed VPR model.  The sum of squared differences (||r||2) is formulated as follows: 
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where IEVPR and IMVPR denote the empirical and modeled VPR influence, and nt is the 

total hours of the collected hourly VPRs (the number of hourly VPRs).  For log-normal 

distribution, the empirical and modeled IVPR terms can be replaced with ln[IVPR]. 

Table IV.1 summarizes the estimated parameter values for different elevation 

angles, rainfall regimes (i.e., seasons), and statistical distribution assumption on the VPR 

influence at a given radar range.  The fitting statistic characterized by the Root Mean 

Square Difference (RMSD) is also provided.  For comparison purposes, the RMSD 

values that were computed using a constant VPR influence (no range effect) are also 

presented in parenthesis.  While the fitted values of hbb, ebb, and Zmax are comparable 

among elevation angles regardless of season, the slop values for the lowest angle are 

smaller than those for other angles.  The slop parameter represents the linear decrease of 

the VPR above the melting layer and is not well observed by the lowest elevation angle. 

Despite the fact that Table IV.1 shows different parameter values among elevation 

angles as the result of the fitting procedure, the unique VPR model with the same four 

parameters should be used for practical applications where the empirical information on 

the VPR is not available.  Therefore, a parameter sensitivity analysis is preformed to 

explore the impact of the parameter error on estimating the VPR influence and present 

the results in Section IV.7. 

IV.5  Mean of the RDE 

To show that our VPR model can capture the main features of the RDE (equation 

(3)), we evaluate our results against independent rain gauge data (assumed here to 
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represent the true rainfall).  The data is independent in the sense that no rain gauge data 

were used in the model development.  The RDE is computed by pairing co-located hourly 

polar-based radar-rainfall estimates and rain gauge data.  We assume that rain gauge 

measurements represent a good approximation of the areal rainfall (the largest polar pixel 

has an area of approximately 1×3.5 km2 at 200 km from the radar).  Since the spatial 

variability of rainfall at such scales and at the hourly time scale is relatively small (e.g., 

Krajewski et al. 2003; Ciach and Krajewski 2006; Villarini et al. 2008; Villarini and 

Krajewski 2008), this assumption should not significantly affect our results. 

In the estimation of the multiplicative bias using hourly data, only radar-gauge 

pairs for which the rain gauge rainfall accumulation was greater than 0.5 mm were 

selected.  The use of this threshold does not critically affect our results due to the large 

sample size.  Since Figure IV.5 shows no range effect within 50 km from the radar at the 

lowest elevation angle (regardless of climatic rainfall regimes and the VPR influence 

distribution assumption), data from nine rain gauges located within 50 km of the radar 

were used to compute the multiplicative bias terms in equations (4) and (5).  The 

expectation values of the bias in equation (4a) are 0.78 and 0.93 for the cold and warm 

seasons, and those in equation (5a) are -0.60 and -0.35, respectively. 

Figure IV.6 and Figure IV.7 show the comparison of the RDE derived from our 

VPR model with the observed RDE computed using radar-gauge pairs for both normal 

and log-normal cases.  The visual agreement is rather good considering the simplicity of 

our model.  To quantify this agreement, the RMSD and the average difference (AD) 

(Table IV.2) were used.  For reference, the same metrics are provided for the case of 

VPR influence terms that are constant over the radar range and equal to 1 for equation (4a) 

and 0 for equation (5a).  In general, our modeled RDE shows a good agreement with the 

observed RDE.  The AD and RMSD in Table IV.2 show the enhanced performance of 

our model compared to the no range effect condition, implying that our model describes 

the fundamental features of radar-rainfall better than the case that does not account for 
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the radar range effect.  For example, the modeling effect is characterized by 72% and 80% 

improvement from the second and the third elevation data for the warm season of the log-

normal distribution, while the improvement obtained from the same elevation angles and 

season but for the normal distribution is 64% and 74%, respectively. 

A relatively weak performance in terms of these metrics for the lowest elevation 

angle for the normal distribution case is noticed.  This may be due to the fact that the 

mean of normal distribution might not effectively represent some data points on the long 

tail of log-normal distribution.  This fact can be demonstrated using the metrics (Table 

IV.2) estimated from log-normal distribution.  Another disagreement can be seen at the 

far range of the third elevation data in Figure IV.7 (bottom-left panel).  For the cold 

season, the observed RDE of the third elevation data pairs (radar-gauge) at far range is 

likely to be affected by the relatively small sample size (Figure IV.8, bottom-left panel).  

Since the same problem is visible in the RDE variance, this issue will be discussed in the 

following section.  

IV.6  Variance of the RDE 

In this section, a similar procedure is used to model the RDE variance.  At a given 

distance D, the variance of the RDE is derived from the expectation and the variance of 

the bias and the VPR influence, as in equations (4b) and (5b).  For the resulting 

presentation of the analysis, the variance term is represented by the standard deviation, 

which provides a better sense of the physical quantity of the variable.  Figure IV.9 

illustrates the time-averaged evolution of the standard deviation of the VPR influence 

regarding radar range for both seasons and for both normal and log-normal distributions.  

Therefore, we offer a VPR standard deviation model to describe the main aspects of VPR 

variation at a given altitude. 
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IV.6.1  VPR Standard Deviation Model and Parameter 

Estimation 

The structure of the VPR standard deviation for a given altitude is shown in 

Figure IV.10.  It is difficult to define a single model to describe the VPR standard 

deviation for both distributions.  Therefore, we develop separate models for each 

distribution, i.e. we model the coefficient of variation for normal distribution and the 

standard deviation for log-normal distribution.  In this way, we intend to focus on the 

linear dependence observed in Figure IV.10 (upper-left and lower-right panels), between 

the coefficient of variation/standard deviation and altitude. 

For normal distribution, the model is characterized by five parameters that 

describe three transition altitudes of variation (hb, ht1, and ht2) and two slope factors 

(slop1 and slop2): 

( ) 0CV h                                                    if bh h  

 ( ) 1 bCV h slop h h                                  if bh h  and 1th h  

 1( ) 1 t bCV h slop h h                                 if 1th h  and 2th h  

   1 2( ) 1 2t b tCV h slop h h slop h h          if  2th h , (10) 

where CV denotes the coefficient of variation of the VPR, and hb represents the beginning 

altitude of variation identified by the reflectivity sampling range (60 - 90 km in this study) 

to construct the VPR data.  The coefficient of variation increases linearly with slop1 at 

the altitude range between hb and ht1 and with slop2 above ht2.  At the altitude range 

between ht1 and ht2, the coefficient of variation remains constant due to its minute 

variations within the bright band layer. 

For log-normal distribution, the comparable model is characterized by four 

parameters that describe two transition altitudes of variation (hb and ht1) and two slope 

factors (slop1 and slop2): 
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( ) 0V h                                                      if bh h  

 ( ) 1 bV h slop h h                                    if bh h  and 1th h  

   1 1( ) 1 2t b tV h slop h h slop h h            if  1th h , (11) 

where V denotes the variance of the VPR.  As the constant standard deviation zone is not 

detectable around the bright band altitude (Figure IV.10, lower-right panel), there is no 

constant region of standard deviation in this case. 

All parameters in equations (10) and (11) are estimated using the same least 

square method previously presented in equation (9), but the expectation term and 

modeled VPR influence need to be replaced with the standard deviation term and 

modeled standard deviation of the VPR influence.  Table IV.3 presents the estimated 

parameter values concerning elevation angles, seasons, and both distributions.  As a 

reference, the RMSD values computed assuming no variation were presented in 

parenthesis.  The parameter values for the lowest elevation angle seem somewhat 

different from those for other elevation angles.  This may imply that the whole feature of 

the VPR standard deviation is better described by higher elevation data due to the limited 

altitude range provided by the lowest elevation data (Figure IV.2).  The parameter values 

between the second and the third elevation are very close with the exception of the warm 

season and log-normal distribution.  Results of the parameter sensitivity analysis are 

presented in Section IV.7. 

IV.6.2  Evaluation 

As in the time-averaged RDE, the VPR standard deviation model is evaluated 

with respect to the rain gauge data.  The variance values of the bias in equation (4b) are 

0.49 and 0.97 for the cold and warm seasons, and those in equation (5b) are 0.90 and 0.66, 

respectively.  Figure IV.11 and Figure IV.12 illustrate the comparison of the modeled 

RDE standard deviation with the one observed using radar-gauge pairs for the assumption 
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of normal and log-normal distributions.  The observed scatter in Figure IV.11 is likely 

caused by the normal distribution assumption that cannot describe data points on a long 

tail of log-normal distribution, and this was confirmed using an extreme data point at 50 

km range of the lowest elevation for the cold season (in Figure IV.11, top-left panel).  

The disagreement at the far range of the third elevation observed in the cold season 

(Figure IV.12, bottom-left panel) is likely related to the relatively small sample size of 

radar-gauge pairs in Figure IV.8 (bottom-left panel). 

The RMSD and the AD are also used to quantitatively represent the agreement 

between the modeled and the observed standard deviation (Table IV.4).  The no-VPR 

case is defined as having no variation of the VPR influence over radar range (the variance 

values of the VPR influence in equations (4b) and (5b) are assumed as zero).  Based on 

these metrics, our models show better performance than the no-VPR case.  For example, 

the modeling effect of the VPR standard deviation is characterized by 42% and 55% 

improvement from the second and the third elevations for the warm season and log-

normal distribution.  The improvement obtained from the same elevation angles and 

season and normal distribution is relatively small (15% and 4%, respectively). 

IV.7  Sensitivity Analysis of Model Parameters 

IV.7.1  VPR Model 

The estimated parameter values for different elevation angles show little 

difference (Table IV.1) while the differences for some specific parameters might be 

considerable.  In addition, as the model parameters were physically defined, some 

parameter values can be directly inferred from observed or simulated meteorological data 

(e.g., temperature soundings or numerical weather predictions).  Thus, the impact of VPR 

model parameter variation on the VPR influence is investigated, and the effect of the 

incorrect use of the parameter values is identified. 



56 
 

 
 

The VPR influence using three fixed parameters (Table IV.1) and one variable 

parameter was simulated.  We repeated the same procedure for all four parameters of the 

VPR model.  Figure IV.13 and Figure IV.14 show the sensitivity of the VPR influence 

for given changes of the parameters.  We only show the results for the cold season, but 

the warm one showed similar behavior.  Based on Figure IV.13 and Figure IV.14, it is 

likely that hbb is the most significant parameter for both distributions, and slop also seems 

considerable at the second and the third elevation angles for log-normal distribution, as 

shown in Figure IV.14. 

To explore the simultaneous effect of possible errors in the parameter estimation, 

a Monte Carlo simulation was performed.  The optimal parameter values of the VPR 

model were perturbed with Gaussian random noise with zero mean and standard 

deviation that is 20% of the optimal values for all parameters.  1,000 realizations of the 

parameter set for the different elevation angles, seasons, and distributions were generated.  

As an example, the RMSD distributions and their 95th percentiles for the cold season are 

shown in Figure IV.15.  For the normal distribution assumption, the 95th percentiles with 

respect to elevation angles do not significantly change.  Conversely, those percentiles for 

log-normal distribution are considerably affected by the elevation change, implying that 

the VPR influence is sensitive to the inherent errors of the parameters.  In addition, the 

analysis of the percentiles allows the comparison with respect to the RMSD values for 

no-VPR case (Table IV.1 and Figure IV.15).  While the percentile values (0.22 for both 

distributions) for the lowest elevation angle are greater than the RMSD values (0.18 and 

0.16 for the normal and the log-normal) of no-VPR case, all percentile values for the 

second and the third elevation angles are even smaller than the corresponding RMSD 

values in Table IV.1.  This indicates that the parameter error may significantly affect the 

VPR influence derived from the lowest elevation data, but may not considerable for the 

two higher elevation data.  Although the data for the lowest elevation are not significantly 
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affected by the VPR effect (Figure IV.8), the use of incorrect model parameters seems to 

introduce a distorted estimation of the VPR effect. 

IV.7.2  VPR Standard Deviation Model 

A sensitivity experiment similar to the one described in the previous section was 

performed.  For two parameters that represent no variation of the VPR, ht1 and ht2 in 

equation (9), the impact of the altitude difference (ht2-ht1) on the standard deviation of the 

VPR influence was investigated instead of using individual variation of the parameters.  

Figure IV.16 and Figure IV.17 represent parameter sensitivity in terms of the RMSD 

between the simulated values using the models and the estimated values using the VPR 

data.  Both figures refer to the cold season, since the results for the warm one were very 

similar.  It is likely that the slope parameters are the most significant factors in the 

characterization of the standard deviation of the VPR influence. Especially, slop2 seems a 

governing factor for log-normal distribution. 

The same perturbation experiment using the Gaussian random noise was also 

performed.  The RMSD distribution and 95th percentiles for different elevation angles 

and distributions are presented in Figure IV.18.  Since the values of all percentiles in 

Figure IV.18 are smaller than the values of no-VPR case, the models appear to be robust 

for the inherent errors of their parameters. 

IV.8  Conclusions 

A method to describe the range-dependent error (RDE), one of the most 

significant sources of uncertainty in radar-rainfall estimates was developed.  To derive 

the RDE and its uncertainty information (variance/standard deviation), simple parametric 

models to represent the VPR structure with respect to the altitude associated with the 

radar elevation angle were proposed.  These models can be described in terms of 

climatological parameters, which, in this study, were optimally estimated with respect to 

the derived VPR influence from four years of radar data from Tulsa WSR-88D radar. 
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Two parameters that represent the climatological bright band altitude and the 

vertical extension of the bright band are relevant to the shape of the VPR influence.  The 

other two parameters that indicate the linearly decreasing slope of the reflectivity above 

the bright band and the maximum reflectivity ratio increment at the bright band 

determine the amplitude of the VPR influence.  The RDE is then obtained from the VPR 

influence using the VPR model and the multiplicative bias factor.  The standard deviation 

model of the VPR contains several parameters depending on the distributional 

assumption.  The different distribution assumption leads to the different models.  The 

models for normal and log-normal distributions are characterized by the coefficient of 

variation and the standard deviation of the VPR at a given altitude, respectively.  Both 

models are commonly described by one or two parameters related to the bright band 

altitude and two parameters related to the increasing VPR standard deviation with altitude.  

The VPR influence and its standard deviation derived from corresponding models and the 

multiplicative bias factors (mean and variance) are used to estimate the standard 

deviation of the RDE.  The obtained RDE and its standard deviation were evaluated with 

respect to radar-rainfall data from the lowest three elevation angles and rain gauge data 

from the Oklahoma Mesonet network. 

The estimated parameter values for the cold and warm seasons clearly showed 

different climatological regimes in terms of the bright band altitude and the reflectivity 

decreasing in rate with altitude.  In regards to the elevation angles, the parameters for the 

lowest angle seemed somewhat different from those for other angles despite the fact that 

the parameter values among elevation angles should be in a consistent range.  This may 

imply that the VPR structure is better described by the second and the third elevation data 

since the altitude range provided by the lowest elevation data is limited. 

While real scanning radar data and an optimization procedure were used to obtain 

the VPR shape, implying the existence of radar as the necessary basis for model 

development, one can use the same model formulation for design studies before 
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deploying radar.  Based on the definition of the parameters, values can be inferred using 

observed or simulated meteorological data (e.g., vertically-pointed scanning radar data, 

temperature soundings, or numerical weather predictions).  In that case, estimation of 

empirical information on the VPR using archives of three-dimensional reflectivity 

volume data is not necessary.  For example, the bright band altitude known as the most 

sensitive parameter (see Section IV.7) and the linearly decreasing slope in the VPR 

model can be acquired from the zero-degree altitude (so-called zero-isotherm) and cloud 

top height provided by the numerical weather predictions (e.g., Benjamin et al. 2004).    

For other less sensitive parameters (the bright band vertical extension, the maximum 

enhancement), some typical values (e.g., optimally estimated values in this study) could 

be assumed since those parameters are complicated functions of microphysical processes.  

In another approach, using a vertically-pointed scanning radar, all parameters related to 

the VPR structure can be directly obtained. 

The RDE and the standard deviation derived from the developed models show a 

good agreement with the observed RDE and its standard deviation, implying that the 

VPR is the dominant source of the range-dependent bias and that our models successfully 

describe the primary aspects of VPR structure and its influence on the RDE. 

The derived error from the models can be affected by the assumption on the 

statistical distribution of the VPR influence at a given radar range.  Accordingly, the 

normal distribution assumption sometime leads to significant disagreement with the 

observed data due to the data points on the long tail of log-normal distribution. The 

scatter around our modeled RDE and standard deviation could be attributed to the 

representativeness of our sampled VPR data and/or unidentified sources of uncertainty 

either in radar data or rain gauge data. 
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Table IV.1  Estimated parameter values of the VPR model for different elevation angles, rainfall regimes (i.e., seasons), and statistical 
distribution assumption.  

 Normal Log-normal 

Cold season Warm season Cold season Warm season 

Elevation 1-st 2-nd 3-rd 1-st 2-nd 3-rd 1-st 2-nd 3-rd 1-st 2-nd 3-rd 

hbb 2.42 2.51 2.50 3.51 3.86 3.90 2.44 2.62 2.71 3.45 3.90 3.90

ebb 0.83 0.98 1.02 1.40 1.73 1.81 0.85 1.16 1.30 1.38 1.77 1.80

Zmax 0.94 0.86 0.83 0.81 0.83 0.81 0.80 0.64 0.54 0.73 0.74 0.72

slop 1.51 1.94 1.95 0.70 1.90 2.02 1.98 2.85 3.03 0.90 2.70 2.73

RMSD 
*100 

0.88 1.86 2.04 0.73 1.38 1.47 0.87 2.48 4.14 0.66 1.53 1.64

(18.49) (43.92) (59.55) (20.83) (32.39) (51.25) (15.65) (95.72) (186.50) (15.99) (54.04) (131.17)
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Table IV.2  Evaluation of the modeled RDE characterized by two statistics (AD and RMSD) for different elevation angles, rainfall 
regimes (i.e., seasons), and statistical distribution assumption. 

 Normal Log-normal 

Cold season Warm season Cold season Warm season 

Elevation 1-st 2-nd 3-rd 1-st 2-nd 3-rd 1-st 2-nd 3-rd 1-st 2-nd 3-rd 

AD 
*100 

-8.41 -2.35 3.08 -21.55 -8.29 -0.64 -5.02 12.41 12.66 -11.72 7.82 17.26

(-17.97) (11.78) (37.49) (-37.64) (-10.12) (20.94) (-12.10) (70.14) (156.40) (-25.28) (23.75) (100.00)

RMSD 
*100 

13.35 11.47 9.59 31.7 13.58 13.85 13.49 24.05 36.03 18.94 18.54 28.92

(25.54) (42.53) (53.21) (51.72) (38.07) (52.44) (25.79) (117.76) (196.92) (34.69) (67.22) (145.07)
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Table IV.3  Estimated parameter values of the VPR standard deviation model for different elevation angles, rainfall regimes (i.e., 
seasons), and statistical distribution assumption. 

 Normal Log-normal 

Cold season Warm season Cold season Warm season 

Elevation 1-st 2-nd 3-rd 1-st 2-nd 3-rd 1-st 2-nd 3-rd 1-st 2-nd 3-rd 

hb 0.68 0.87 0.95 0.75 0.76 0.78 0.68 0.90 0.96 0.77 0.67 0.96

ht1 1.59 1.84 1.82 2.57 3.84 3.77 1.53 1.34 1.35 2.16 4.54 2.00

ht2 1.80 3.42 3.45 2.61 4.18 4.04 - - - - - -

slop1 0.33 0.42 0.48 0.13 0.13 0.13 0.28 0.37 0.40 0.13 0.10 0.15

slop2 0.08 0.35 0.39 0.10 0.24 0.24 0.08 0.15 0.17 0.08 0.16 0.12

RMSD 
*100 

1.07 2.18 2.47 0.35 1.77 2.26 0.74 2.49 3.55 0.20 1.60 4.15

(31.51) (40.73) (40.50) (25.00) (39.34) (38.46) (24.58) (59.89) (95.20) (16.45) (42.63) (65.07)
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Table IV.4  Evaluation of the modeled RDE standard deviation characterized by two statistics (AD and RMSD) for different elevation 
angles, rainfall regimes (i.e., seasons), and statistical distribution assumption. 

 Normal Log-normal 

Cold season Warm season Cold season Warm season 

Elevation 1-st 2-nd 3-rd 1-st 2-nd 3-rd 1-st 2-nd 3-rd 1-st 2-nd 3-rd 

AD 
*100 

-12.30 -8.78 -0.79 -12.16 -16.27 -13.27 -3.61 -3.15 8.05 -4.35 -15.62 -19.43

(-28.08) (-14.21) (8.11) (-33.91) (-35.02) (-11.05) (-7.05) (-21.16) (-31.60) (-6.14) (-26.40) (-42.67)

RMSD 
*100 

36.18 28.65 26.05 41.58 48.46 54.42 13.48 10.98 24.46 9.44 19.60 21.74

(45.05) (43.49) (44.92) (64.38) (57.13) (56.59) (17.04) (25.70) (35.74) (11.72) (33.82) (47.83)
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Figure IV.1  Location of the Oklahoma Mesonet rain gauges used, and of the Tulsa 
WSR-88D (KINX) radar site (Oklahoma).  The circular domain indicates 100 
and 200 km range from the radar site.  
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Figure IV.2  Radar beam geometry with respect to elevation angles. 
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Figure IV.3  Hourly VPRs averaged over the sample hours for the cold and warm 
seasons.  The “normalized reflectivity” is defined as 10log[VPR]. 
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Figure IV.4  The empirical probability density functions of the VPR influence at 100 km 
(upper panel) and 150 km (lower panel) for an elevation angle of 1.48°.  The 
solid lines represent the fitted log-normal distribution. 

  



68 
 

 
 

 

Figure IV.5  Time-averaged VPR influence of the lowest three elevation angles for the 
normal (upper panel) and the log-normal (lower panel) distributions and the 
two seasons. 
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Figure IV.6  Comparison of the RDE derived from the VPR model (solid lines) with the 
observed RDE using radar-gauge pairs (dots) for the normal distribution. 
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Figure IV.7  Same as Figure IV.6 but for the log-normal distribution. 
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Figure IV.8  Sample size used in the time-averaged mean and the standard deviation of 
the RDE analysis. 

 

  



72 
 

 
 

 

Figure IV.9  Standard deviation of the VPR influence of the lowest three elevation angles 
for the normal (upper panel) and the log-normal (lower panel) distributions, 
and two seasons. 
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Figure IV.10  Coefficient of variation and standard deviation of VPR with respect to 
altitude for the normal and the log-normal distribution. 
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Figure IV.11  Comparison of the standard deviation of the RDE derived from the 
standard deviation model (solid lines) with the observed standard deviation 
using radar-gauge pairs (dots) for the normal distribution. 
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Figure IV.12  Same as Figure IV.11 but for the log-normal distribution. 
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Figure IV.13  Impact of the VPR parameter variation on the VPR influence for the cold 
season. The VPR influence at a given distance was assumed to be normally 
distributed. 

 

 

  



77 
 

 
 

 

Figure IV.14  Same as Figure IV.13 but assuming the VPR influence at a given distance 
to be log-normally distributed. 
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Figure IV.15  Simulated RMSD distribution of the VPR influence generated using the 
Gaussian random noise for the optimal VPR parameters.  P0.95 values 
represent 95th percentile of the distribution.  For the third elevation and the 
log-normal distribution (bottom-right panel), no-VPR value (1.87) is out of 
the given range. 
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Figure IV.16  Impact of the standard deviation model parameter variation on the standard 
deviation of the VPR influence for the cold season. The VPR influence at a 
given distance was assumed to be normally distributed. 
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Figure IV.17  Same as Figure IV.16 but assuming the VPR influence at a given distance 
to be log-normally distributed. 
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Figure IV.18  Simulated RMSD distribution of the standard deviation of the VPR 
influence generated using the Gaussian random noise for the optimal standard 
deviation parameters.  P0.95 values represent 95th percentiles of the 
distribution. 
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CHAPTER V 

SCALE-DEPENDENT VARIABILITY OF RADAR-RAINFALL AND 

RAIN GAUGE ERROR COVARIANCE* 

V.1  Introduction 

Quantitative precipitation information is crucial for monitoring the variability of 

hydrologic cycles and water resources as well as for environmental applications.  For 

optimal decision making and risk management, hydrologic modeling and forecasting 

often require not only accurate estimations of surface precipitation quantities but also 

characterization of their uncertainty structure (see e.g., Ogden and Julien 1993; Singh 

1997; Carpenter and Georgakakos 2004; Villarini et al. 2010).  Weather radars provide 

rainfall maps with high spatial and temporal resolution, but researchers still lack a 

complete description of their uncertainty. 

Several studies document quantification and modeling of different aspects of 

radar-rainfall uncertainties (e.g. Habib et al. 2004; Ciach et al. 2007; Villarini et al. 2008) 

and our knowledge of the statistical structure of the errors is increasing (see Villarini and 

Krajewski 2010 for a recent review).  In this chapter, we take a step “back” to one of the 

earliest approaches pioneered by Ciach and Krajewski (1999), i.e. the error variance 

separation (EVS) method.  The EVS method provides the most fundamental aspect of 

radar-rainfall uncertainty, i.e., the error variance.  It has been used, investigated, and 

elaborated by Anagnostou et al. (1999), Young et al. (2000), Ciach et al. (2003), Zhang et 

al. (2007), and Mandapaka et al. (2009).  Krajewski et al. (2000) used it to evaluate 

satellite rainfall estimation products.  However, the reliability of the EVS method 

depends on factors such as rain gauge data quality and sample size as well as the key 

                                                 
* Adapted version of Seo, B.-C., and W.F. Krajewski, Investigation of the scale-

dependent variability of radar-rainfall and rain gauge error covariance, Advances in Water 
Resources, 2010 (in press). 
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assumption that the covariance between the radar-rainfall error and the error of rain 

gauges in representing rainfall at the spatial scale of radar-rainfall resolution is negligible.  

This assumption is referred to as zero-covariance hypothesis.  Ciach and Krajewski 

(1999) provide an extensive qualitative discussion of this hypothesis, but it lacks 

empirical support.  Such support is difficult to obtain, as it requires a very high-density 

rain gauge network that can be used for accurate approximation of true rainfall.  Ciach et 

al. (2003) empirically investigated the validity of the zero-covariance hypothesis in 

Oklahoma, but only at a scale of 2434 km2 (about 800 km2) as the data available at that 

time limited smaller scale considerations. They showed that the hypothesis might not be 

valid at such scale even though radar-rainfall uncertainty could be represented better by 

the EVS method than by simply disregarding the gauge representativeness errors.  

However, most hydrologic interest is in the smaller scales at the resolution of common 

radar-rainfall products (i.e. 1 to 4 km).  Evaluation of the zero-covariance hypothesis at 

such scales is absent in the literature. 

In this chapter, we discuss the validity of the zero-covariance hypothesis at the 

range of spatial and temporal scales from 1 to 32 km and from 15 minutes to 1 day.  Our 

approach is empirical and is based on data from two experimental rain gauge networks.  

To characterize the error structure of the estimated areal rainfall, the reference data that 

represent rainfall quantities over a collocated area are essential.  Using ground 

measurements as the true areal reference is often restricted due to random and systematic 

local measurement errors (e.g., Nešpor and Sevruk 1999; Habib et al. 2001a,b; Ciach 

2003) and poor representativeness (point-area approximation; see e.g., Seed and Austin 

1990; Kitchen and Blackall 1992; Morrissey et al. 1995).  The method to account for the 

inaccurate areal estimation of point measurements has been investigated in Morrissey et 

al. (1995) and Habib et al. (2004).  In this study, we rely on multiple rain gauges 

averaged to represent areal reference rainfall at a given scale. 
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As the errors of gauge- or radar-rainfall estimates tend to be scale dependent (e.g., 

Habib et al. 2001b; Ciach 2003; Gebremichael and Krajewski 2004; Gebremichael and 

Krajewski 2005; Villarini et al. 2008), this study explores the scale-dependent validity of 

the zero-covariance hypothesis.  We use rain gauge data from two high density and high 

quality networks: the Environmental Verification and Analysis Center (EVAC) PicoNet 

and the U. S. Department of Agriculture (USDA) Agricultural Research Service (ARS) 

Micronet (Starjs et al. 1996) which are covered by the Oklahoma City WSR-88D (KTLX) 

in Oklahoma.  Our radar-rainfall estimates are obtained using algorithms of the Hydro-

NEXRAD system (Krajewski et al. 2010; Kruger et al. 2010; Seo et al. 2010) with six 

respective temporal (15-min, 1, 3, 6, 12, and 24-h) and spatial (1, 2, 4, 8, 16, and 32 km) 

scales. To assess the statistical significance of the results based on a hypothesis test, a 

random resampling procedure that can provide uncertainty information, i.e., statistical 

distributions and related statistics on the estimated variables is used. 

This chapter is structured as follows.  In the following section, the EVS method 

and the central variables needed to assess the zero-covariance hypothesis are briefly 

described.  Section V.3 illustrates the data sources (gauge- and radar-rainfall data) and 

grid system setup with respect to spatial scale.  In Section V.4, the results of the 

hypothesis test as well as scale-dependent property of the central variables outlined in 

Section V.2 are presented.  In Section V.5, we summarize and discuss main findings and 

limitations of this study. 

V.2  EVS and Zero-Covariance Hypothesis 

The basic concept of the EVS method is to decompose the variance of radar and 

rain gauge (R-G) differences into radar- and gauge-rainfall error variance.  The variance 

of differences can be obtained from the collocated and coincident pairs of R-G rainfall 

data accumulated over a specific time span.  Radar-rainfall uncertainty can then be 

quantified after estimating the uncertainty of point-area approximation.  Since a detailed 
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derivation and formulation of the EVS method can be found in Ciach and Krajewski 

(1999), we briefly describe its resulting equations and discuss a key assumption related to 

the zero-covariance hypothesis here. 

For a given time scale of rainfall accumulations, the variance of R-G difference 

can be partitioned into individual error variances and a covariance term as follows: 

       GTRTGTRTGR RRRRCovRRVarRRVarRRVar  ,2  (1a) 

or, in short 

       GRGRRG EECovEVarEVarDVar ,2  (1b) 

where RR, RG, and RT are random variables denoting radar-rainfall estimates over a 

specific area, point (gauge) rainfall measurements within the same area, and true area-

averaged rainfall, respectively.  The difference between radar and rain gauge estimates is 

denoted as DRG.  The errors are defined as difference between true and estimated values, 

are expressed as ER, and EG in (1b).  The variance and covariance operators of random 

variables are represented as Var[·] and Cov[·,·].  Thus, the error variance of radar-rainfall 

estimates can be derived by subtracting the error variance of point measurements from 

the summation of the R-G difference variance and the covariance between radar and rain 

gauge errors: 

       GRGRGR EECovEVarDVarEVar ,2  (2) 

If we assume that the covariance term in (2) is negligible, which implies the two 

error components are independent or uncorrelated or that the covariance term is 

sufficiently small relative to the radar-rainfall error variance, the radar-rainfall error 

variance can be readily obtained by the remaining two variance terms.  If the spatial 

correlation structure over the rainfall fields is known, the variance of the rain gauge 

representativeness error can be acquired by estimating the point measurement variance 

and the variance reduction factor (VRF) for an arbitrary spatial arrangement of gauges 

(e.g. Morrissey et al. 1995). 
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Ciach et al. (2003) assessed the zero-covariance hypothesis using “the relative 

covariance” factor represented by the proportion of the covariance and the radar error 

variance terms as in (3) below.  If the covariance term is sufficiently less than the radar 

error variance, the relative covariance is close to zero. This implies that the covariance is 

negligible and thus verifies the hypothesis.  The relative covariance factor can be divided 

into two constituting variables: the correlation between radar and gauge errors (hereafter, 

the error correlation) and the square root of error variance ratio (hereafter, the error 

variance ratio): 

 
 
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GR EVar

EVar
EECorr   (3) 

where Corr[·,·] denotes correlation between two random variables.  In this chapter, we 

evaluate the relative covariance factor as in Ciach et al. (2003) and quantify the 

uncertainty (variance/standard deviation) of the factor with respect to temporal and 

spatial scales.  We also present the effects of the error correlation and the error variance 

ratio for the consequential relative covariance. 

V.3  Data Sources and Grid System  

To explore the scale-dependent variability of the hypothesis, we assess the 

relative covariance with respect to various space and time scales.  In this study, we use 

six rainfall accumulation scales (15-min, 1, 3, 6, 12, and 24-h) and six spatial scales (1, 2, 

4, 8, 16, and 32 km).  The largest spatial scale (32 km) is comparable to the spatial extent 

investigated by Ciach et al. (2003).  The grid system designed to include a reasonable 

number of rain gauges within a pixel has a basis in HRAP (Hydrologic Rainfall Analysis 

Project) projection used in the NEXRAD system (see Fulton et al. 1998; Reed and 
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Maidment 1999).  The use of the HRAP projection provides a consistent spatial basis for 

different gauge networks and related scales and facilitates radar-rainfall map generation 

using Hydro-NEXRAD algorithms (Krajewski et al. 2010; Seo at el. 2010). 

Ideally, to obtain reliable and unbiased estimates over all scales in the EVS 

application, large R-G samples collected from high quality and high density rain gauge 

networks should be used.  We collected April through October data for two years, 2001 

and 2002, from the EVAC PicoNet and the ARS Micronet rain gauge networks.  Both 

networks are located in Oklahoma and are covered by the Oklahoma City WSR-88D 

(KTLX) weather radar, as shown in Figure V.1.  More detail for the rain gauge networks, 

the corresponding radar-rainfall products, and related grid system setup is described 

following this section. 

V.3.1  The EVAC PicoNet 

The EVAC at the University of Oklahoma deployed a very dense rain gauge 

network of PicoNet in 2001 (Ciach and Krajewski 2006) and operated it through 2004.  

The network consists of 25 stations within 3×3 km2 area of Will Rogers International 

Airport in Oklahoma City, which is located about 30 km northwest from the KTLX radar 

site (Figure V.1).  The 25 stations form an almost regular grid with a spacing of about 

600 m.  As the average distance between any two neighboring sites is less than 1 km, 

several gauges are positioned within 1 km2 scale; so this network provides a unique 

opportunity to explore the variability of rainfall on a very small scale.  The network 

configuration also enables the estimation of the true area-averaged rainfall for the 

smallest scale (i.e., 1 km2) in this study.  All of the stations used double tipping-bucket 

rain gauges, with one (at the central location) using five identical gauges to indicate the 

possible effects of the local random errors (e.g., Ciach 2003).  The double gauge type 

offers data quality control by comparing data from the two rain gauges, and the tip 

resolution of 0.254 mm (0.01 in.) does not much affect rainfall accumulation process with 



88 
 

 
 

respect to the temporal scales (15-min to 1 day) used in this study.  For more detailed 

information on rain gauge data processing and its quality control, refer to Ciach and 

Krajewski (2006). 

Since the full spatial coverage of the PicoNet network is much smaller than the 

larger scales (e.g., 8, 16 and 32 km) presented in this study, the PicoNet data was used 

only for the smaller grid spacing (1, 2, and 4 km).  As illustrated in Figure V.2, we 

designed a simple grid system for the PicoNet network to effectively position rain gauges 

within specific scale pixels.  The 1 and 2 km grid boxes in Figure V.2 are all sub-pixels 

of a 4 km grid, and all 25 gauges are included within the 4 km scale.  In the 2 km grids 

(Figure V.2; middle panel), the gauges in the two lower pixels seem to be clustered at 

corners, implying that the accuracy of area-averaged rainfall might be compromised.  We 

included these pixels in the analysis because the computed VRF values that account for 

the areal approximation uncertainty were within a reasonable range.  We will discuss this 

further in Section V.3.3. 

For the true area-averaged rainfall, we computed the simple average of the 

corresponding rain gauge data within each gird box.  As six of the 1 km grid boxes do not 

contain multi-gauges, those grid-gauge pairs were excluded from the analysis.  Therefore, 

all 25 rain gauges were used to compute the true area-averaged rainfall for 2 and 4 km 

grid spacing, but 19 rain gauges were selected for the variance computation of R-G 

differences and radar and gauge errors.  The gray-colored grids as shown in Figure V.2 

represent the selected grid-gauge pairs used for each scale. 

V.3.2  The ARS Micronet 

In 1994, the ARS deployed a dense network of rain gauges to monitor the 

atmospheric and soil conditions of the Little Washita River watershed in Oklahoma 

(Starjs et al. 1996).  The network, known as Oklahoma Micronet, is located about 70-110 

km southwest of the KTLX radar site, as shown in Figure V.1.  The 42 weather stations 
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are equipped with a tipping-bucket rain gauges of the same type as the stations operated 

by the Oklahoma Climatological Survey (Brock et al. 1995) and used in the PicoNet.  

The average distance between two neighboring stations is approximately 5 km (e.g., 

Ciach et al. 2003; Habib et al. 2004; Ciach et al. 2007).  The highest temporal resolution 

of the precipitation data for those stations is 5 minutes (for more detailed information on 

data accuracy implications, see Ciach 2003).  As for the quality control of the ARS 

Micronet data used in this study, Ciach et al. (2007) developed and implemented a 

procedure similar to that of Shafer et al. (2000). 

Due to the relatively sparser density of the ARS Micronet when compared to the 

PicoNet, we used this network data only for the larger grid spacings of 8, 16, and 32 km.  

The larger scale grid presented in Figure V.3 was designed using the same HRAP 

projection (Reed and Maidment 1999) as for the smaller scales.  To consider the accuracy 

of the true area-averaged rainfall, we first selected two 16 km grid boxes where gauges 

are relatively densely spaced.  All the sub-pixels of the two 16 km boxes were considered 

as 8 km grids, but one of the pixels was excluded due to its having only a single rain 

gauge.  Thus, we used 20 rain gauges for the true area-averaged rainfall estimation but 

only 19 rain gauges for the variance computation of the EVS method.  As for the largest 

scale (32 km), we constructed a new grid box to improve the accuracy of the true rainfall 

estimation because any combination of the four 16 km grids could not provide the 

sufficient degree of accuracy in terms of the variance reduction of rain gauge 

representativeness.  Therefore, we used 35 rain gauges for the largest gird.  The gray-

colored boxes in Figure V.3 show selected grid-gauge pairs for each scale. 

V.3.3  True Area-Averaged Rainfall Estimation 

Reliable approximation of the true area-averaged rainfall is required to obtain 

radar-rainfall estimation and rain gauge representativeness errors in equations (1) and (2).  

The true rainfall values were computed using the simple average of the corresponding 
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rain gauge measurements within a given pixel.  In general, the accuracy of the true 

rainfall approximation is related to rain gauge density and configuration, namely the 

number of rain gauges and their locations within the given spatial domain of interest.  

The VRF (e.g., Morrissey et al. 1995; Krajewski et al. 2000; Villarini et al. 2008), 

defined as a ratio of the error variance of point-area approximation and the variance of 

the point process, can be used to assess the areal estimation accuracy: 

    VRFRVarEVar GG    (4) 

As derived in Morrissey et al. (1995), VRF for a given area can be calculated 

according to 
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where N denotes the number of rain gauges in the averaging area, and M denotes the 

number of computational grid points in the area.  The term ρ(dij) represents the spatial 

correlation for a given distance between i and j grid locations, and δ(i) is “an indicator 

variable” (Morrissey et al. 1995) identifying whether any rain gauge exists in the grid i.  

Based on (4), the smaller VRF value implies a better estimation of the areal rainfall, i.e. 

the higher the number of gauges, the smaller the VRF.  Furthermore, gauges covering the 

entire domain with a roughly uniform distribution give rise to smaller VRF when 

compared with the same number of clustered gauges, especially if the clustering is in a 

corner of the domain. 

Due to the different scales covered by the two rain gauge networks used in this 

study, the spatial correlation functions were estimated separately using the procedure 

presented in Seo and Krajewski (2010).  The three-parameter exponential correlation 

function is characterized by nugget, correlation distance, and shape factors (for more 

details on the role of these parameters, see e.g., Krajewski et al. 2000; Villarini et al. 

2008).  Figure V.4 shows the estimated correlation functions for both rain gauge 
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networks with respect to three typical temporal scales (15-min, hourly, and daily) used in 

hydrologic applications.  Consistent with the earlier studies that used the same rain gauge 

networks, the correlation functions for the EVAC PicoNet and the ARS Micronet, shown 

in Figure V.4, are very similar to those obtained by Ciach and Krajewski (2006) and 

Ciach et al. (2007), respectively. 

Figure V.5 presents the VRF values computed using single- and multi-gauge 

configurations with respect to each corresponding scale.  The single-gauge VRF tends to 

systematically increase as spatial scale gets larger, implying that the error variance of 

gauge representativeness can be characterized by a simple scaling law with respect to 

spatial scale.  On the other hand, the multi-gauge VRF is also affected by the gauge 

density and configuration (see gray-colored boxes and corresponding gauges shown in 

Figure V.2 and Figure V.3) and thus does not show a systematic behavior with scale.  

Even though the VRF value of the 8 km scale looks greater than that of other scales in the 

same gauge network, the value is the best estimate for the scale using the given 

configuration of rain gauges.  Since the average inter-gauge distance of the ARS 

Micronet is much farther (there is a relatively lower density and a weaker correlation 

between rain gauge stations), the multi-gauge VRF values of the network (for 8, 16, and 

32 km scale) are greater than those of the other network (for 1, 2, and 4 km scale).  In 

addition, the decreasing rate of the EVAC PicoNet correlation at a very small scale (i.e., 

within 1 km) tends to be weakened by the impact of a shape factor greater than 1.0, as 

shown in Figure V.4 (top panel).  Figure V.5 demonstrates that the VRF values for multi-

gauges are at least 85% (at 8 km scale) smaller than those for single-gauge.  

Consequently, using a setup of multi-gauges tends to significantly reduce the uncertainty 

of point measurements, which gives sufficient credence to the use of the estimated true 

rainfall values. 
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V.3.4  Radar-Rainfall Data 

To acquire radar-rainfall data for all temporal and spatial scales required in this 

study, an extensive radar data processing tool is necessary.  The Precipitation Processing 

System (Fulton et al. 1998) of the U.S. National Weather Service (NWS) provides radar-

rainfall products with hourly and approximately 4 km (i.e., HRAP) resolutions.  Since our 

purpose is exploring the radar-rainfall error variability across scales, we used the Hydro-

NEXRAD system (Krajewski et al. 2010; Kruger et al. 2010; Seo et al. 2010) that 

delivers products with user-selectable temporal and spatial resolutions.  The Hydro-

NEXRAD system offers three rainfall accumulation (15-min, hourly, and daily) and four 

spatial (S-HRAP at quarter resolution of HRAP, HRAP, 1’ Lat/Lon, and 0.125° Lat/Lon) 

scales for the final product (radar reflectivity, rainfall rate, and rainfall accumulation 

maps) (see Krajewski et al. 2010; Seo et al. 2010).  As additional spatial scale products 

(i.e., 2, 8, 16, and 32 km) are needed, we modified some of the Hydro-NEXRAD 

algorithms and used them off-line.  For these additional grid scales, we used the same 

origin coordinates and projection method for the HRAP grid as described in Reed and 

Maidment (1999).  While the Hydro-NEXRAD grid transformation algorithms for 

smaller scale (S-HRAP, HRAP and Lat/Lon) use the nearest neighborhood scheme to 

assign radar-collected polar-based values onto the projected domain, we used the 

weighted averaging method to mitigate this shortcoming related to the radar-rainfall error 

variance reported by Seo and Krajewski (2010). 

Therefore, we collected two years of Level-II radar volume data in 2001 and 2002 

and processed the data with the “Hi-Fi” algorithm option (e.g., Krajewski et al. 2010; Seo 

et al. 2010; Mandapaka et al. 2009) of the modified Hydro-NEXRAD system.  The Hi-Fi 

algorithm uses all Hydro-NEXRAD capabilities that can mitigate negative effects of 

radar data error sources (e.g., Zawadzki 1982; Austin 1987; Smith et al. 1996; Fabry et al. 

1994).  These include anomalous propagation echo detection, range correction, and 

advection correction.  In addition, the algorithm uses the NEXRAD Z-R relationship (Z = 
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300R1.4; see Fulton et al. 1998) and two reflectivity threshold values (10 and 53 dBZ) to 

define effective minimum rainfall and hail contamination, respectively. 

V.4  Results 

In this section, we evaluate the relative covariance factor of (3) with respect to the 

temporal and spatial scales to demonstrate how the factor varies with respect to scale and 

whether the zero-covariance assumption in the EVS method is reasonable.  The relative 

covariance can be partitioned into two variables: the error correlation and the error 

variance ratio in (3).  Therefore, we characterize statistical properties of the two 

individual components and their scale-dependent variability. 

We used a random resampling procedure to quantify the sampling properties of 

the relative covariance, the error correlation, and the error variance ratio.  Assuming the 

homogeneity of rainfall process over the same scale, we pooled the R-G data set with 

respect to scale and repeatedly randomly sampled 1,000 times with the sample size of 

individual rain gauge data (about 30,000).  First, we ascertained that the error 

distributions (i.e., radar-rainfall and rain gauge errors) attained from the resampling 

procedure were approximately Gaussian.  Regarding the statistical distribution of the 

relative covariance, we computed a 95% confidence interval using the Gaussian and the 

empirical cumulative distribution function (ECDF; see Kaplan and Meier 1958).  The 

confidence intervals of both distributions were almost identical, which implies that the 

difference between the two distributions does not significantly affect a critical decision 

on the hypothesis test.  Therefore, assuming Gaussian distribution for the objective 

variables seems reasonable for the following analysis.  We first present the results on the 

hypothesis test as assessed by the relative covariance.  We then illustrate the scale-

dependent variability of the relative covariance and its constituting variables (the error 

correlation and the error variance ratio). 
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V.4.1  Hypothesis Test 

As stated above, the probability distribution of the relative covariance obtained 

using resampled data sets is approximately Gaussian.  Thus, the error bounds of the 

relative covariance are defined as a two standard deviation range on both sides of the 

mean, which corresponds to the 95% confidence interval.  Figure V.6 shows the 

estimated relative covariance values (dots) for individual gauges and the 95% confidence 

interval (light gray bands) estimated using the resampling procedure with respect to 

temporal and spatial scale.  Concerning the temporal scale in Figure V.6, we only show 

the results for 15-min, hourly, and daily scales, as those are frequently used in hydrologic 

applications.  For the spatial scale, data for the 19 rain gauges from the PicoNet (1, 2, and 

4 km) and the ARS Micronet (8 and 16 km) are presented, respectively.  Despite the fact 

that the domain of the 32 km scale contains 35 rain gauges (Figure V.3, bottom panel), 

we only show 14 common gauges with the 8 and 16 km scales (Figure V.6, top panel).  

However, the confidence interval for the 32 km scale was estimated using all 35 rain 

gauge data. 

As illustrated in Figure V.6, the individual relative covariance values at smaller 

scale (e.g., 1 km) are very close to zero.  The confidence interval includes zero, implying 

that the zero-covariance hypothesis is acceptable.  On the other hand, at larger scales 

there are more “violations” of the hypothesis, with the individual relative covariance 

values being far from zero and not included within the confidence interval.  Relatively 

greater absolute values of the relative covariance at larger spatial scales suggest that the 

numerator in (3), the error covariance, cannot be disregarded in the EVS method.  Based 

on (2), negative values of the error covariance, for example, indicate that the zero-

covariance assumption may lead to an overestimation of the radar-rainfall error variance.  

The width of the confidence interval (the variability of the relative covariance) also tends 

to increase as the spatial scale increases and the temporal scale decreases.  When we 

compare our results with those of Ciach et al. (2003), who used a comparable grid 
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spacing (32 km), our estimated values and the confidence interval seem to be little 

smaller, although the decreasing tendency of the values with a longer time scale is 

consistent.  This difference may arise from the use of different data sets and radar-rainfall 

products/algorithms. 

V.4.2  Scale-Dependent Variability 

Here we present statistics values of the relative covariance, the error correlation, 

and the error variance ratio estimated from the random resampling conducted in the 

previous section.  Since the distribution of all variables is approximately Gaussian, the 

mean and standard deviation values of all three variables with respect to temporal and 

spatial scales are presented in Table V.1, Table V.2, and Table V.3.  Figure V.7 illustrates 

the scale-dependent tendency of those statistics.  For the relative covariance, the mean 

values on all scales are very close to zero, which was already demonstrated by Ciach and 

Krajewski (1999) using a mathematical derivation.  This scale-independent zero-

covariance originates in the scale-independent zero-correlation between radar and gauge 

errors, as seen in Figure V.7 (middle panel), although the error variance ratio rapidly 

increases with larger spatial scale.  The variability of the relative covariance can be 

characterized by an approximately six-times greater standard deviation at the largest (32 

km) grid spacing than at the smallest (1 km) based on hourly scale.  For a temporal 

characterization of the variability, we see an approximately eleven-times greater standard 

deviation between the shortest (15-min) and the longest (daily) time spans using 4 km 

grid spacing.  It is likely that the variance of the relative covariance is both temporally 

and spatially dependent on scale. 

As the standard deviation of the error correlation does not seem to systematically 

change with scale (Figure V.7, middle panel), no obvious spatial-dependence is 

noticeable in the data sets used in this study.  Therefore, the systematic behavior of the 

variability, shown in Figure V.8, seems to be mostly contributed by the error variance 
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ratio whose variability also shows scale-dependence, as presented in Figure V.9.  Figure 

V.8 and Figure V.9 represent the scaling behavior of the standard deviation of the relative 

covariance and the mean and standard deviation of the variance ratio, which is 

characterized by a simple power-law.  While the mean values in Figure V.9 (left panel) 

show definite linear dependence on log-log unit, the standard deviation in Figure V.9 

(right panel) shows two scale groups that are classified according to rain gauge networks.  

The different intercept and slope values (interpreted by the multiplier and exponent of the 

power-law equation shown in Figure V.9) of the two groups indicate that inferred 

standard deviation values using another group of data might be quite different.  This 

difference may imply a certain scaling-break or it may appear due to the different degree 

of the areal estimation accuracy, as discussed in Section V.3.3.  As the areal estimation 

accuracy depends on the rain gauge density and configuration, the accuracy for the larger 

scale is relatively low due to the farther inter-station distances of the ARS Micronet 

network.  The rain gauge density is an obvious way to classify spatial scale groups: 

smaller (ranging from 2.38 to 1.56 km-2 for 1, 2, and 4 km scale) and larger (0.04 to 0.03 

km-2 for 8, 16, and 32 km scale) scales.  Therefore, the variability of the error variance 

ratio computed using the errors of radar and rain gauge estimation could be affected by 

the inherent nature of the rain gauge network.  Another possibility that could cause scale 

clustering is different storm events coincidently being observed at different geographic 

locations (the two networks). 

Figure V.10 and Figure V.11 present the temporal dependence of the variables.  It 

is likely that the variance of the relative covariance in Figure V.10 linearly decreases on 

log-log unit as accumulation time span increases.  Figure V.11 also shows that the 

systematic behavior of the variance ratio can be characterized by a simple scaling law 

with respect to temporal scale.  However, no obvious scaling-break, as seen in Figure V.9, 

is observed.   
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V.5  Conclusions and Discussion 

We performed the hypothesis test on the zero-covariance assumption in the EVS 

method and presented results on the validity of the assumption and the scale-dependent 

properties of the statistical factors that constitute the assumption.  A random resampling 

procedure was used to describe the statistical significance of the inference on the 

hypothesis.  As various resolutions of satellite- or radar-based precipitation data can be 

used according to the purpose of numerous hydrologic applications, the major findings in 

this chapter may provide useful guidance for deriving uncertainty information on rainfall 

estimates. 

We showed that the zero-covariance hypothesis is valid for smaller scale, but 

might be violated for larger scale due to large variability of the covariance.  The 

variability of the governing factor (the relative covariance) in the hypothesis becomes 

larger with smaller temporal and larger spatial scale.  In general, radar-rainfall errors are 

associated with measurement principles, estimation algorithms (e.g., Fulton et al. 1998; 

Krajewski et al. 2010), and several parameters (e.g., Z-R parameters) while gauge 

representativeness errors only involve the spatial variability of rainfall if instrumental 

errors are negligible.  Based on this fact, “no linear dependence (no correlation)” between 

radar and gauge errors has been intuitively assumed in the EVS method, but the 

empirical-based approach of this study showed that a more cautious application of the 

EVS method is required, especially when using rainfall estimates with shorter time span 

and larger grid spacing. 

Regarding the scale-dependent variability of the relative covariance, it is likely 

that the variability of the error variance ratio described by the proportion of radar and 

gauge error variances plays a significant role, because no apparent dependence of the 

error correlation on scale is recognizable.  Consequently, both temporal and spatial 

variability can be characterized by simple scaling behavior identified as a power-law.  

The linear dependence on log-log unit for the error variance ratio may be better 
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interpreted if two scale groups are classified.  However, this unknown scaling-break was 

not observed with respect to temporal scale.  Therefore, the different scale property 

between smaller (1, 2, and 4 km) and larger spatial scale (8, 16, and 32 km) might be 

caused by the different configuration of the rain gauge networks and the following areal 

estimation accuracy, as shown in Figure V.5.  The areal estimation of the true rainfall is a 

crucial procedure for radar and gauge error estimation in this study.  It is possible that the 

best way to obtain credible quality of the true area-averaged rainfall is to maintain a 

consistent magnitude of the VRF values (discussed in Section V.3.3) regardless of spatial 

scale.  However, acquiring the same accuracy of areal estimation at larger scale (e.g., 32 

km) as at smaller scale (1 km) seems very difficult due to the limitation of currently 

viable gauge data resources. 
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Table V.1  Estimated mean and standard deviation values of the relative covariance with respect to temporal and spatial scales. 

Scale 
(km) 

15-min 1-h 3-h 6-h 12-h 24-h 

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

1 -0.001 0.050 0.000 0.025 -0.001 0.015 0.000 0.010 0.000 0.007 0.000 0.004

2 -0.002 0.071 -0.001 0.043 -0.001 0.026 0.000 0.017 0.000 0.011 0.000 0.007

4 0.003 0.114 0.003 0.066 0.000 0.038 -0.001 0.027 0.000 0.018 0.000 0.010

8 0.001 0.133 -0.003 0.074 0.001 0.046 -0.001 0.033 0.001 0.024 -0.001 0.016

16 0.002 0.194 0.006 0.120 0.003 0.068 0.001 0.046 0.002 0.032 -0.001 0.021

32 0.002 0.250 -0.006 0.142 -0.001 0.083 -0.002 0.069 0.000 0.046 0.000 0.029
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Table V.2  Estimated mean and standard deviation values of the error correlation with respect to temporal and spatial scales. 

Scale 
(km) 

15-min 1-h 3-h 6-h 12-h 24-h 

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

1 -0.003  0.115  0.001 0.066 -0.002 0.044 -0.001 0.031 0.001 0.025 -0.001 0.018 

2 -0.004  0.106  -0.002 0.072 -0.003 0.051 0.000 0.036 -0.001 0.026 0.000 0.020 

4 0.002  0.094  0.002 0.063 0.000 0.044 -0.001 0.034 -0.001 0.025 0.000 0.017 

8 0.001  0.089  -0.002 0.061 0.001 0.044 -0.001 0.034 0.001 0.027 -0.001 0.020 

16 0.001  0.083  0.003 0.064 0.001 0.042 0.000 0.032 0.001 0.024 -0.001 0.018 

32 0.002  0.068  -0.002 0.048 -0.001 0.034 -0.001 0.032 0.000 0.023 0.000 0.017 
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Table V.3  Estimated mean and standard deviation values of the error variance ratio with respect to temporal and spatial scales. 

Scale 
(km) 

15-min 1-h 3-h 6-h 12-h 24-h 

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

1 0.215  0.036  0.189 0.022 0.164 0.012 0.148 0.008 0.134 0.006 0.112 0.004 

2 0.338  0.052  0.299 0.034 0.255 0.018 0.230 0.013 0.210 0.009 0.169 0.005 

4 0.606  0.088  0.521 0.054 0.436 0.029 0.392 0.020 0.356 0.013 0.279 0.009 

8 0.753  0.085  0.605 0.049 0.521 0.027 0.482 0.019 0.445 0.013 0.397 0.009 

16 1.162  0.129  0.940 0.075 0.795 0.040 0.723 0.029 0.664 0.020 0.583 0.013 

32 1.860  0.220  1.466 0.119 1.223 0.061 1.104 0.042 1.003 0.027 0.863 0.019 
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Figure V.1  Locations and rain gauge configuration of the EVAC PicoNet and the ARS 
Micronet networks.  The circular domain centered on the Oklahoma City 
WSR-88D (KTLX) shows the 230 km range of the radar umbrella. 
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Figure V.2  Grid boxes of 1, 2, and 4 km scales and corresponding rain gauge pairs for 
the EVAC PicoNet network.  19 gauges were used for the 1 km scale, and all 
25 gauges were used for 2 and 4 km scales.  Subgrid lines in the network 
domain represent 1km spacing. 
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Figure V.3  Grid boxes of 8, 16, and 32 km scales and corresponding rain gauge pairs for 
the ARS Micronet network.  19, 20, and 35 gauges were used for 8, 16, and 32 
km scales. Subgrid lines in the network domain represent 8 km spacing. 
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Figure V.4  Estimated spatial correlations using three-parameter exponential function 
with respect to temporal scale (15-min, hourly, and daily).   
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Figure V.5  Variance reduction factor estimation from single- and multi-gauge 
configuration with respect to temporal and spatial scale. 
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Figure V.6  Estimated relative covariance values (dots) for individual gauges and the 95% 
confidence interval (±2σ) of the relative covariance (light gray bands) with 
respect to temporal and spatial scales.  The distribution of the variable 
estimated using the resampling procedure is assumed as Gaussian. 
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Figure V.7  Scale-variant property of the relative covariance, the error correlation, and 
the error variance ratio.  The error bar represents a standard deviation range on 
both sides of the mean value. 
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Figure V.8  Standard deviation of the relative covariance with respect to spatial scale. 
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Figure V.9  Mean and standard deviation of the error variance ratio with respect to spatial 
scale. 
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Figure V.10  Standard deviation of the relative covariance with respect to temporal scale. 
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Figure V.11  Mean and standard deviation of the error variance ratio with respect to 
temporal scale. 
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CHAPTER VI 

SCALE DEPENDENCE OF RADAR-RAINFALL UNCERTAINTY* 

VI.1  Introduction 

In summer of 2008, the WSR-88D weather radars of the national NEXRAD 

network began providing enhanced resolution radar-reflectivity observations.  These new 

Level II data are referred to as super-resolution (Torres and Curtis 2007).  While the 

legacy-resolution of the Level II data is 1° in azimuth and 1 km in range, the super-

resolution data have grid spacing that is reduced to 0.5° in azimuth and to 250 m in range.  

However, the current algorithm used by the National Weather Service to produce nation-

wide radar-rainfall maps (Fulton et al. 1998) does not exploit this new capability, largely 

because of the anticipated arrival of dual polarization (dual-polarization rain rate products 

will be provided on a 250-m by 1º polar grid; Istok et al. 2009). 

This resolution upgrade was motivated by the needs of severe weather detection 

and monitoring, and its effects have not yet incorporated in hydrologic (rainfall) products. 

Although the super-resolution data may capture small scale features of rainfall processes, 

NEXRAD’s Precipitation Processing System (PPS) still operates based on the so-called 

recombined (legacy-resolution) data.  In this chapter, we explore the use of super 

resolution data in rainfall estimation that is motivated by hydrologic applications.  There 

are many physically-based distributed hydrologic models that operate on grid sizes of 1 

km2 or smaller, but the readily available NEXRAD radar-rainfall maps are only hourly 

accumulations provided on an approximately 4×4 km2 grid (Fulton et al. 1998).  The 

availability of increased resolution also offers an opportunity to systematically explore 

radar-rainfall uncertainty over an extended range of smaller scales. 

                                                 
* Adapted version of Seo. B.-C., and W.F. Krajewski, Scale dependence of radar rainfall 

uncertainty: Initial evaluation of NEXRAD’s new super-resolution data for hydrologic 
applications, Journal of Hydrometeorology, 11, 1191-1198, 2010. 
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We use eleven-months long data sets from two research grade rain gauge 

networks in Iowa to estimate the error variance of the super-resolution based rainfall 

maps and report the results at five spatial and two temporal scales.  We use the error 

variance separation method of Ciach and Krajewski (1999) as the main analysis tool.  In 

Section VI.2, we briefly describe the rain gauge and radar data sets used and the error 

variance estimation methodology.  In Section VI.3, we provide the results and discuss 

them in the context of earlier studies of radar-rainfall uncertainty (Ciach et al. 2007).  

Finally, Section VI.4 concludes and summarizes main findings and limitations. 

VI.2  Data and Methodology 

Our research group operates two high quality, high density rain gauge networks in 

Iowa.  The larger network, centered on the Iowa City Municipal Airport (Figure VI.1), is 

comprised of over 30 sites.  In the latest years, only 19 sites were operational.  The 

network is located between 80 and 120 km from the Davenport WSR-88D (KDVN).  At 

each site, there are two tipping bucket gauges, a data logger, and a cell phone, all 

powered by a battery that is charged by a solar panel (Figure VI.1).  The average inter-

gauge spacing of the network is about 5 km.  Time-of-tip data (see Ciach 2003) are 

recorded on-site and transmitted to a database server every 15 minutes.  This automatic 

process performs data quality control by comparing data from the two rain gauges and 

makes rainfall products (accumulations) at multiple time scales from 5 minutes to daily.  

These are stored in a relational database and made available to researchers over the 

Internet using a browser-based interface. 

The second network is located just south of Ames, Iowa, in support of a NASA-

funded study of remote sensing of soil moisture.  That network is a cluster of seven sites 

(Figure VI.1) that are equipped identically to the Iowa City network.  The cluster is about 

30 km north of the Des Moines WSR-88D (KDMX).  Both networks collect rainfall data 

only and are not deployed during the winter months. 



115 
 

 

For our radar data sets, we used the super-resolution Level II reflectivity data of 

the KDMX and KDVN radars.  The radars have started collecting reflectivity data in 

super-resolution from May and June 2008, respectively.  The data included in this chapter 

extend from the dates the radars switched to the new mode through August 2009, thus 

including the rainfall events that led to extreme flooding in Eastern Iowa but excluding 

winter months from November 2008 through March 2009. 

Since the PPS does not support super-resolution data, we used another 

community-based algorithm to study the scale effect of radar-rainfall uncertainty.  To 

convert the reflectivity data to rainfall accumulation maps, we used the Hydro-NEXRAD 

system developed to support hydrologic research (Vasiloff et al. 2007; Krajewski et al. 

2010; Kruger et al. 2010; Seo et al. 2010).  We modified the Hydro-NEXRAD algorithms 

for the new super-resolution data processing and used them off-line (i.e., super-resolution 

based products are currently not available via Hydro-NEXRAD).  The algorithms process 

super-resolution reflectivity data and produce rainfall accumulations using NEXRAD Z-R 

relationship (Z=300R1.4; see Fulton et al. 1998) at 15-minute and 1-hour scales on fixed 

polar grid spacing (0.5° in azimuth and 250 m in range).  The polar grid products are then 

transformed to various spatial scales using the HRAP grid projection (Reed and 

Maidment 1999) with spacing of approximately 0.5, 1, 2, 4, and 8 km grids. We then 

applied the nearest neighborhood and weighted averaging grid transformation 

(interpolation) schemes and attempted to mimic the recombination algorithm that 

transforms super-resolution reflectivity data into legacy-resolution before feeding such 

data into the Hydro-NEXRAD rainfall algorithms.  This is to show how the averaging in 

the volume scan data affects the uncertainty of the final products. 

To assess the super-resolution products, we performed a rain gauge comparison 

with the super-resolution rainfall estimates as well as another products, i.e., recombined 

Digital Precipitation Array (DPA) provided by NOAA/NCDC and commonly used by 

hydrologic users.  The grid system of the DPA radar-rainfall products is the 4×4 km2 
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HRAP.  To compare the DPA with the super-resolution products averaged to the HRAP 

scale, we used the corresponding rain gauge data for gauges located in the respective 

HRAP grid. 

The time span of this hourly comparison is also from the commencement of 

super-resolution through the end of August 2009.  As described in Table VI.1, the 

statistical properties of the radar-rainfall products were characterized by the correlation 

coefficient, the multiplicative bias, and the root mean square error (RMSE).  The 

statistics values were computed using 14 radar-gauge pairs for KDVN-Iowa City network 

and only 1 radar-gauge pair for KDMX-Ames network.  The gauge mean and standard 

deviation values are 0.18 and 1.26 for Iowa City network and 0.16 and 1.19 for Ames 

network.  Based on these three statistics, the scatter plots of Figure VI.2, and the two-

sample t-test (Moore 2003), the super-resolution tends to be consistent with the DPA.  

The null-hypothesis for the test (two-sided) is that the mean differences between both 

radar-rainfall and rain gauge rainfall are the same.  The p-value (0.18) demonstrates that 

both products are statistically consistent with a 95 % confidence interval.  However, 

statistics values in Table VI.1 show little difference (especially bias), which may be 

caused by the discrepancy of polar grids between super-resolution and legacy-resolution 

or that of rainfall algorithms i.e., the hybrid scan structure at near range from the radar 

between PPS and Hydro-NEXRAD (for more detail, see Fulton et al. 1998 and Seo et al. 

2010).  Overall, the hourly comparison results illustrate that the super-resolution 

estimates computed by the Hydro-NEXRAD algorithm are compatible with the DPA, 

which gives credence to the remaining part of this study. 

The error variance separation method (Ciach and Krajewski 1999) requires use of 

the spatial correlation function of rainfall at the appropriate temporal scale, i.e., in our 

case at the 15-minute and hourly scales.  The spatial correlation function describes spatial 

dependence of rainfall processes, which significantly affects the variance reduction 

(Morrissey et al., 1995) of point-to-area estimation error.  Its estimation is difficult due to 
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the bias that arises from the high skewness of rainfall variables.  Due to the bias problem 

of the traditional estimator, i.e., Pearson’s product-moment correlation coefficient (see 

e.g., Stedinger 1981), Habib et al. (2001) proposed a transformation procedure for log-

normally distributed rainfall data.  In addition, the sample correlation might be 

considerably affected by abnormal values beyond the overall pattern of a sample 

distribution (e.g., outliers) so that use of another estimator to represent spatial processes, 

a variogram (or semi-variogram), is usually preferred (Cressie 1993).  We did not apply 

the procedure of Habib et al. (2001) since the empirical distribution of the rainfall data 

showed no significant thick tail in the range of extreme rainfall values, implying that our 

rainfall data are not log-normally distributed (see also Ciach and Krajewski 2006).  Thus, 

we estimated the spatial correlation structure of rain fields using a covariance function 

derived from the variogram (Schabenberger and Gotway 2005), assuming the intrinsic 

hypothesis and second-order stationary process.  Because our smaller rain gauge network 

cannot provide the necessary correlation information for the scales (i.e., 2, 4, and 8 km) 

larger than its domain, a three-parameter exponential function represented by nugget, 

correlation distance, and shape factors (for more information on these parameters, see 

Journel and Huijbregts 1978; Krajewski et al. 2000) was estimated using the larger 

network some 150 km due East in Iowa City. 

On the other hand, we use rain gauge data from the smaller network and radar-

rainfall estimates from the KDMX for the error variance analysis.  Using this pair of 

radar-gauge data can prevent one of the significant radar-rainfall error sources, namely 

the range-dependent error, reported by Smith et al. (1996).  Since anomalous propagation 

(AP) might be a major error source in the warm and cold seasons at near range around the 

radar, we also removed it using an adaptation of the algorithm by Steiner and Smith 

(2002). 

Given the spatial correlation structure and radar-gauge differences, the error 

variances are separated based on (1) two temporal (15-minute and hourly) and five spatial 
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(0.5, 1, 2, 4, and 8 km) scales, (2) super-resolution and recombination to legacy- 

resolution, and (3) the nearest neighborhood and the averaging schemes for the spatial 

transformation of rainfall fields. 

VI.3  Results 

In this section, we present the results related to the spatial correlation functions 

and the uncertainty structure of gauge representativeness and super-resolution rainfall 

estimates with respect to scale. 

For respective temporal accumulation scales (15-minutes and hourly), spatial 

correlation functions are characterized by the nugget effect (0.97 and 1.00), correlation 

distance (21 and 36 km), and the shape factor (1.05 and 1.11).  While hourly data show 

relatively stronger spatial dependence based on all three parameters, as expected, 15-

minute data represent higher variability of the spatial process.  This implies that a longer 

time span of data integration reduces the spatial variability of rainfall process.  In 

addition, spatial dependence described by the aforementioned correlation distances seems 

stronger than in other areas (Florida; Habib et al. 2001 and Oklahoma; Ciach and 

Krajewski 2006) in the U. S. where hurricane and more convective systems are major 

sources of the rainfall process.  To compute the variance reduction of point-to-area 

estimation error, the distance range of interest in the estimated functions is about 11 km, 

considering the largest grid of 8 km. 

Table VI.2 presents the error variance with respect to scale, represented by 

relative error standard deviation that is normalized by the mean of the rain gauge 

measurements. No rain events, determined based on rain gauge observations, were 

excluded for the analysis.  Also, the 0.5 km rainfall maps for recombined data were not 

produced due to the larger grid spacing of legacy-resolution.  Overall, both rain gauge 

representativeness error and radar-rainfall error seem to change systematically with 

respect to spatial scale.  As grid spacing is smaller, the uncertainty of gauge 
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representativeness decreases and that of radar-rainfall increases.  Also, a shorter sampling 

scale over time results in higher uncertainties at all spatial scales.  In terms of the spatial 

transformation, the averaging shows lower variance at all scales.  This property tends to 

be more significant at shorter time and larger spatial scales (i.e., 15-minute and 8 km), 

where more polar pixel values are averaged over a corresponding projected grid.  

However, improvement due to the use of an averaging scheme over a computationally 

faster nearest–neighbor scheme seems to matter little at the smallest scale (i.e., 3 % 

reduction at 0.5 km and 1-hour scale).  For the comparison between super-resolution and 

recombination, the uncertainty of super-resolution is slightly lower at smaller scales (1 

and 2 km). 

Figure VI.3 clearly illustrates the structure of both uncertainties for the averaging 

scheme.  Both uncertainties show an interesting aspect of scaling behavior with respect to 

spatial scale.  Linear behavior in log-log units implies power-law dependence on scale.  

In addition, the super-resolution estimates at the smallest scale (0.5 km) are 

approximately three times (at the 15-minute scale) and two times (at the hourly scale) 

more uncertain than at the largest scale (8 km).  These uncertainty differences between 

scales may have implications for error propagation through distributed hydrologic models 

that require high resolution rainfall input.  Considering the most common hydrologic 

radar-rainfall resolution (4 km and hourly accumulations), the super-resolution estimates 

are characterized by 70 % uncertainty of the hourly mean value of rainfall. 

In addition to the analysis of additive error presented above, we also quantify the 

super-resolution uncertainty represented by multiplicative errors conditioned on rainfall 

magnitude (at 4 km and hourly scale) similarly to Ciach et al. (2007).  For this analysis, 

we used hourly-4 km products derived from super-resolution data and assumed no 

“deterministic distortion” (see Ciach et al. 2007) for our data because the rain gauge 

locations for the Ames network are sufficiently close to the radar (implying that the 

distortion should not be significant), and it is hard to estimate the distortion function with 
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the relatively small sample size of our data.  The uncertainty described by conditional 

error standard deviation for the warm (April, May, and October) and hot (June through 

September) season is presented in Figure VI.4.  The functional structure of super-

resolution uncertainty is similar to that reported by Ciach et al. (2007), but super-

resolution shows lower radar-rainfall uncertainty.  The lower uncertainty could be due to 

using super-resolution, or it might be caused by our smaller sample size (one year versus 

six years used by Ciach et al. 2007) and/or sampling locations closer to the radar in this 

approach. 

VI.4  Conclusions and Discussion 

We report scale effects for the uncertainties of the radar-rainfall estimates 

obtained using the new super-resolution data from the NEXRAD radars.  Since the super-

resolution based rainfall maps are not operationally available from federal agencies, this 

early effort provides unique information on the potential advantages of the new data.  The 

findings in this chapter are summarized as follows: 

(1) The hourly comparison between the super-resolution and the DPA data 

demonstrates statistical consistency. 

(2) Super-resolution shows slightly lower uncertainty at smaller scales.  This 

indicates that using super-resolution data for hydrologic applications that require higher 

resolution input may mitigate the uncertainty of rainfall input.  However, it is likely that 

the improvement is relatively small for the magnitude of uncertainty itself. 

(3) Using the averaging scheme for spatial grid transformation reduces radar-

rainfall uncertainty regardless of scale.  As the scale becomes larger, the uncertainty 

decreases more significantly.  However, the nearest neighborhood scheme may be an 

alternative to higher resolution data since uncertainty differences between the two 

schemes severely decrease as spatial scale becomes smaller. 
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(4) There is a systematic uncertainty behavior of the radar-rainfall and the gauge 

representativeness with respect to scale.  They all show a simple scaling law.  The radar-

rainfall uncertainty is characterized by an almost three times greater standard error at 

higher resolutions (15-minute and 0.5 km scale) than at lower resolutions (1-hour and 8 

km).  This result may imply that the error of radar-rainfall propagates through distributed 

hydrologic models that require high resolution rainfall input. 

Since super-resolution data have only been collected in the past year, the results 

and conclusions are valid for this limited period of data.  In the future, extending data sets 

will be necessary to comprehensively evaluate super-resolution data and to fully 

understand the benefit of using super-resolution data and the statistical structure of the 

uncertainty.  In addition, addressing the uncertainty of spatial correlation estimation and 

its propagation to the variance reduction for point-to-area estimation error may enhance 

comprehension of the uncertainty structure of involved rainfall data.  Finally, in the 

present study we ignored the possibility of radar and rain gauge error being correlated 

(see e.g., Ciach and Krajewski 1999; Ciach et al. 2003); however, this seems justifiable 

based on the results of scale-dependent properties of the error covariance in the previous 

chapter. 
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Table VI.1  Values of statistics for hourly gauge data comparison with super-resolution 
and DPA estimates based on HRAP scale. 

Statistics KDVN-Iowa City network KDMX-Ames network 

Super DPA Super DPA 

Correlation 0.87 0.88 0.95 0.96 

Bias 0.78 0.67 1.20 1.07 

RMSE 0.64 0.61 0.39 0.37 
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Table VI.2  Relative error standard deviation (mm/mm) normalized by the mean value of 
ground measurements with respect to scale 

Temporal 
scale 

Spatial 
scale 
(km) 

Radar-rainfall 
Rain gauge 

representativeness 
Super-resolution Recombination 

Nearest Averaging Nearest Averaging 

15-min 

0.5 1.78 1.70 – – 0.24 

1.0 1.75 1.59 1.71 1.60 0.36 

2.0 1.66 1.45 1.61 1.44 0.44 

4.0 1.41 1.00 1.40 0.99 0.65 

8.0 1.37 0.63 1.31 0.56 1.07 

1-hour 

0.5 1.16 1.13 – – 0.12 

1.0 1.14 1.06 1.12 1.07 0.18 

2.0 1.09 0.98 1.07 1.00 0.23 

4.0 0.91 0.71 0.91 0.70 0.35 

8.0 0.91 0.52 0.88 0.48 0.61 
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Figure VI.1  Two rain gauge networks used in Iowa and the structure of tipping bucket 
gauges.  The grid cells seen in both networks represent 1 km spacing. 
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Figure VI.2  Scatter plots of hourly gauge comparison with super-resolution (left) and 
DPA (right) estimates for KDVN-Iowa City network (upper) and KDMX-
Ames network (lower) radar-gauge pairs.  For rain gauges within the same 
HRAP grid, involved rain gauge data were averaged. 
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Figure VI.3  Relative error standard deviation (normalized by the mean of rain gauge 
measurements) of super-resolution estimates and gauge representativeness 
with respect to spatial scale. 
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Figure VI.4  Multiplicative error standard deviation conditioned on rainfall magnitude 
empirically estimated from 4 km and hourly super-resolution estimates.  The 
solid lines were presented from Table 4 of Ciach et al. (2007). 
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CHAPTER VII 

CONCLUSIONS AND DISCUSSION 

This dissertation addresses four problems related to the quantification of radar-

rainfall uncertainty represented by two statistical descriptions (error mean and variance).  

We collected and processed several years of radar Level II volume data and produced 

radar-rainfall estimates using the Hydro-NEXRAD algorithms (see Appendix A; 

Krajewski et al. 2010; Seo et al. 2010).  Rain gauge data were also used to evaluate the 

model developed in this study and to estimate radar-rainfall error.  Since all four 

uncertainty issues highlighted in this dissertation provide their own conclusions, we will 

briefly summarize and discuss our main findings. 

In Chapter III, a methodology to compare reflectivity data observed from two 

different ground-based radars was proposed in the hope that comparing well-matched 

(collocated and coincident) radar sampling volumes can show relative biases for common 

meteorological targets.  While spatial and temporal interpolation was not performed to 

prevent any distortion arising from the averaging scheme, we considered temporal 

separation and three-dimensional spatial agreement of two different sampling volumes 

based on the original polar coordinates of radar observation.  Since the proposed method 

assumes radar beam propagation under the standard atmospheric condition, we 

eliminated anomalous propagation cases.  The reflectivity comparison results show some 

systematic differences year by year, but the variability of those differences is fairly large 

due to the sensitive nature of radar reflectivity measurement.  We performed a statistical 

test to check the inconsistency of reflectivity differences for consecutive periods.  

However, the results were not verified using operational information on radar calibration. 

In Chapter IV, we developed a method to describe the range-dependent error 

(RDE), one of the most significant sources of uncertainty in radar-rainfall estimates.  To 

derive the RDE and its uncertainty information (variance/standard deviation), we 
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proposed two models to represent the VPR structure with respect to the altitude 

associated with the lowest three radar elevation angles.  These models are described in 

terms of climatological parameters, which were optimally estimated with respect to the 

derived VPR influence from four years of radar data collected by the Tulsa WSR-88D 

radar.  The RDE and its standard deviation derived from the developed models show a 

good agreement with the observed RDE and standard deviation, implying that the VPR is 

the dominant source of the range-dependent bias and that our models successfully 

describe the primary aspects of VPR structure and its influence on the RDE. 

While we used real scanning radar data and an optimization procedure to obtain 

the VPR shape, implying the existence of radar as the necessary bases for the model 

development, one can use the same model formulation for design studies before a radar is 

actually deployed.  Based on the physical definition of the parameters, their values can be 

inferred using observed or simulated meteorological data (e.g., temperature soundings or 

numerical weather predictions).  In that case, estimation of the empirical information on 

the VPR using archives of three-dimensional reflectivity volume data is not necessary.   

In Chapter V, we performed the hypothesis test on the zero-covariance 

assumption in the EVS method and present the results on the validity of the assumption 

and the scale-dependent properties of the statistical factors that constitute the assumption.  

The random resampling procedure was used to describe the statistical significance of the 

inference on the hypothesis.  We showed that the zero-covariance hypothesis is valid for 

smaller scale but might be violated for larger scale due to large variability of the 

covariance.  The variability of the governing factor (the relative covariance) in the 

hypothesis becomes larger with smaller temporal and larger spatial scales.  In general, 

radar-rainfall errors are associated with measurement principles, estimation algorithms 

(e.g., Fulton et al. 1998; Krajewski et al. 2010), and several parameters (e.g., Z-R 

parameters) while gauge representativeness errors only involve the spatial variability of 

rainfall if instrumental errors are negligible.  Consequently, no linear dependence (no 
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correlation) between radar and gauge errors has been intuitively assumed in the EVS, but 

the empirical-based approach of this study showed that more cautious application of the 

EVS is required, especially when using rainfall estimates with a shorter time span and 

larger grid spacing. 

In Chapter VI, we reported scale effects for the uncertainties of the radar-rainfall 

estimates obtained using the new super-resolution data from the NEXRAD radars.  

Super-resolution showed slightly lower uncertainty at smaller scales, which indicates that 

using super-resolution data for hydrologic applications that require higher resolution 

input may mitigate the uncertainty of rainfall input.  However, it is likely that the 

improvement is relatively small when compared to the magnitude of uncertainty itself. 

The radar-rainfall and gauge representativeness exhibited systematic uncertainty 

with respect to scale.  They all showed a simple scaling law.  The radar-rainfall 

uncertainty is characterized by an almost three times greater standard error at higher 

resolutions (15-minute and 0.5 km scale) than at lower resolutions (1-hour and 8 km).  

This result may imply that the error of radar-rainfall propagates through distributed 

hydrologic models that require high resolution rainfall input. 

Since our results are obtained from several limited geographic areas and periods 

which were used in this dissertation, the conclusions may vary depending on regional 

climatology and availability of radar and rain gauge data.  However, we expect that the 

main features of the radar-rainfall uncertainty structure found in this study would be 

consistent regardless of study area and data period. 
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APPENDIX A 

RADAR-RAINFALL ESTIMATION ALGORITHMS OF HYDRO-

NEXRAD* 

A.1  Introduction 

This chapter focuses on radar-rainfall estimation algorithms and their modular 

components used in the Hydro-NEXRAD software system (Krajewski et al. 2010; Kruger 

et al. 2010).  In this context, a “module” is defined as an individual executable 

component for processing data and an “algorithm” denotes an appropriate combination of 

modules used to produce radar-rainfall estimates, that is, the main products of the system. 

The creation of the system was motivated by the need to increase the use of NEXRAD 

data in hydrologic research.  Accessing and processing the basic data, known as Level II 

data, is cumbersome and requires substantial experience and expertise so many 

researchers limit themselves to the readily available hourly rainfall accumulation maps, 

with approximately 4  4 km2 spatial resolution, provided by the National Weather 

Service (NWS).  However, use of Level II data allows for the creation of products with 

higher spatial and temporal resolution, thus expanding the range of applications.  Hydro-

NEXRAD provides hydrologic users who lack weather radar experience with data access 

to create such customized products quickly and conveniently. 

The creation of Hydro-NEXRAD required the development of a number of data-

processing modules and implementation of the algorithms documented in the literature.  

In this appendix, we categorize them as follows: (1) processing radar reflectivity data; (2) 

converting reflectivity to rainfall; and (3) merging data from multiple radars.  All of these 

categories have received considerable attention in the literature (e.g. Battan 1973; 

                                                 
* Adapted version of Seo, B.-C., W.F. Krajewski, A. Kruger, P. Domaszczynski, J.A. 

Smith, and M. Steiner, Radar-rainfall estimation algorithms of Hydro-NEXRAD, Journal of 
Hydroinformatics, 2010 (in press). 
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Zawadzki 1982; Austin 1987; Rosenfeld et al. 1994; Smith et al. 1996; Zhang et al. 

2005).  The objective is not to propose a new set of radar-rainfall estimation algorithms.  

Rather, it is to document how we define different Hydro-NEXRAD system modules, 

discuss how they are organized together in the system, and document their advantages 

and shortcomings.  Some of these modules include our modifications and improvements, 

but our focus here is on describing radar-rainfall estimation algorithms that produce 

rainfall maps delivered to users.  A future study will comprehensively detail the Hydro-

NEXRAD algorithms’ performance. 

A.1.1  Processing Reflectivity Data 

Radar collects three-dimensional (3D) reflectivity data in a polar coordinate 

system which is referred to as a full volume scan (e.g. Battan 1973; Doviak and Zrnic 

1993).  Radar reflectivity data are contaminated by numerous error sources (e.g. 

Zawadzki 1982; Austin 1987; Smith et al. 1996) and require careful processing prior to 

their use in quantitative precipitation estimation (QPE).  As radar echo may originate 

from both atmospheric and ground-based targets, reflectivity data requires classification.  

While ground clutter due to side lobes’ interactions with the terrain near the radar site is 

rather straightforward, the detection and elimination of echoes that arise due to 

anomalous propagation (AP) conditions in the atmosphere (e.g. Battan 1973) are more 

difficult to automate.  Numerous approaches addressing this problem have been proposed 

in the literature (e.g. Moszkowicz et al. 1994; Grecu and Krajewski 2000; Kessinger et al. 

2003; Ellis et al. 2003; Berenguer et al. 2006; Cho et al. 2006; Lakshmanan et al. 2007).  

In Hydro-NEXRAD, we adapt Steiner and Smith’s (2002) approach, which works by 

analyzing the vertical and horizontal echo structure in a 3D vicinity of a given pixel. 

Reflectivity data collected from regions far from the radar site represent a biased 

view of the near-ground precipitation.  The systematic aspect of this misrepresentation 

can be corrected to some extent.  Such range effect correction can be applied to the 
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reflectivity data classified as meteorological echoes.  The correction procedures account 

for the bright band, that is, enhanced reflectivity value associated with the melting snow 

(Austin and Bemis 1950; Kitchen et al. 1994; Fabry and Zawadzki 1995; Gourley and 

Calvert 2003; Zhang et al. 2008) and/or the systematic weakening of the radar echo with 

height (e.g. Kitchen et al. 1994; Joss and Lee 1995; Andrieu and Creutin 1995; Vignal et 

al. 1999; Seo et al. 2000; Vignal and Krajewski 2001; Chumchean et al. 2004).  In 

Hydro-NEXRAD, we implemented a range-correction module originally proposed by 

Vignal et al. (1999) and adapted to WSR-88D (radars used in the NEXRAD system) data 

by Vignal and Krajewski (2001). 

As volume scan data are inconvenient to analyze and convert into rainfall 

products, one can construct two-dimensional (2D) reflectivity maps (e.g. Battan 1973; 

Fulton et al. 1998) as simple single scans for a given radar antenna elevation angle 

(known as a plan position indicator (PPI)) or a combination of data from different 

antenna elevation angle scans (known as a hybrid scan).  Both options are available in 

Hydro-NEXRAD. 

A.1.2  Converting Reflectivity to Rainfall 

A Z–R (power-law relationship) relationship must be applied to convert radar 

reflectivity data to rainfall rate.  This relationship can be derived from the raindrop size 

distribution (DSD) approach or the comparison of radar rainfall and rain gauge data.  

Typically, its functional form assumes a power-law equation (e.g. Battan 1973), but it can 

also be provided as a look-up table (e.g. Rosenfeld et al. 1994) acquired by statistically 

matching rain gauge and radar reflectivity data. 

Significant rainfall accumulation errors that arise from the temporal gaps of radar 

sampling can be corrected by accounting for the estimated storm movement (e.g. Fabry et 

al. 1994; Liu and Krajewski 1996).  In Hydro-NEXRAD, Fabry et al.’s (1994) method is 
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used.  Reflectivity thresholds are used to distinguish rain from no-rain and to mitigate the 

effect of hail contamination on rainfall estimates. 

A.1.3  Merging Data from Multiple Radars 

Certain limitations that might arise from using single radar data (i.e. beam 

blockage, limited coverage, and vertical gaps between elevation angles) can be mitigated 

by combining (merging) data from two or more radars.  One primary consideration in 

multiple radar data merging is whether to combine reflectivity or the converted rainfall 

maps to better represent rainfall over a specific area of interest.  As WSR-88D radars are 

not synchronized, constructing reflectivity data mosaics requires temporal 

synchronization and spatial transformation techniques (e.g. Zhang et al. 2005; 

Lakshmanan et al. 2006; Langston et al. 2007).  On the other hand, rainfall data mosaics 

(e.g. Baldwin and Mitchell 1997; Fulton et al. 1998) have been obtained primarily by 

using hourly rainfall accumulations and the HRAP (Hydrologic Rainfall Analysis Project; 

see Reed and Maidment 1999) projection grid.  However, radar data inconsistency due to 

calibration differences (e.g. Anagnostou et al. 2001; Gourley et al. 2003; Zhang et al. 

2005) among WSR-88D radars pose the most significant challenge.  Depending on the 

spatial interpolation scheme used in merging radar data, these differences can be clearly 

visible (for more detail, see Zhang et al. 2005).  In Hydro-NEXRAD, we implemented 

both reflectivity and rainfall data merging options (called data- and product-based 

merging, respectively).  The latter option accommodates a weighting function that 

describes the uncertainty of estimated rainfall amounts (see Ciach et al. 2007). 

This appendix is structured as follows: Section A.2 delineates the overall modular 

architecture of the system.  We first describe single radar data processing and rainfall 

estimation and distinguish data ingest and three major steps for modular components: 

reflectivity data processing, rainfall product generation and geo-referencing.  Several 

modules are involved in these steps, and they may or may not be invoked.  We discuss 
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radar-rainfall estimation algorithms in Section A.3, using the operational NWS WSR-

88D rainfall estimation algorithm called the Precipitation Processing System (PPS) 

(Fulton et al. 1998) as a springboard.  Subsequently, Section A.4 introduces two options 

for merging data from multiple radars.  Finally, Section A.5 summarizes and discusses 

the Hydro-NEXRAD system’s advantages and potential benefits and delineates its 

limitations. 

A.2  Modular Architecture of the System 

A.2.1  Overview 

The Hydro-NEXRAD system’s functionality is achieved by processing data 

archived in the Hydro-NEXRAD databases.  The main database tracks the data ingest and 

status.  This database, populated while volume scan data are ingested, is complemented 

by the metadata information (see Kruger et al. 2010) stored in a different relational 

database.  These procedures, illustrated in Figure A.1, are defined as “data ingest”.  

During the data ingest step, Hydro-NEXRAD automated utilities convert raw data files to 

an efficient data format – an ASCII Run Length Encoding (RLE; see Kruger and 

Krajewski 1997) – after verifying readability, completeness and self-consistency of the 

files.  Metadata are also computed at this stage (Kruger et al. 2010).  Data ingest takes 

place prior to making data available to Hydro-NEXRAD users.  Once populated with data, 

the Hydro-NEXRAD system becomes available to users, and the converted and database-

indexed files become available for further processing in Hydro-NEXRAD.  While users 

order the available data and derived products, the process of data ingest continues 

independently, thus increasing the size of the dataset that is available for future use.  Data 

ingest in the Hydro-NEXRAD system was halted in 2008 when the federal agencies that 

operate the NEXRAD system switched data acquisition to the super-resolution mode 

(Istok et al. 2009). 
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Construction of the available products involves volume scan data processing to 

provide reflectivity and/or rainfall products, as shown in Figure A.2.  The optional 

modules for reflectivity data processing remove data contaminated by ground clutter and 

anomalous propagation of the radar beam.  This is referred to as data quality control. 

Other modules correct for range-dependent biases using an azimuth-dependent vertical 

reflectivity profile.  The available reflectivity maps are constructed using a hybrid scan or 

a scan of the elevation angle data.  The hybrid scan module assigns reflectivity values for 

each azimuth and range bin from the several lowest elevation angles by a range-

dependent weighting function (kernel).  

The rainfall rate module converts the quality-controlled reflectivity (dBZ) to 

rainfall intensity (mm/h) using a power-law relationship (Z–R).  If rainfall accumulation 

maps are selected as a final product, the next step is to accumulate consecutive rainfall 

rate maps over specific time duration, ranging from 15 min to daily.  The accumulation 

module mimics real-time processing and optionally corrects radar accumulation errors 

that occur as a result of an intermittent temporal sampling problem by applying an 

advection correction procedure (Fabry et al. 1994). 

Finally, grid conversion (geo-referencing) and product packaging modules are 

used to increase the utility of the generated products for hydrologic research and 

applications.  Below, we briefly describe the main aspects of each step involved in the 

preparation of rainfall products available via the Hydro-NEXRAD system. 

A.2.2  Data Ingest 

The Hydro-NEXRAD system has acquired Level II reflectivity data from the 

NOAA National Climatic Data Center (NCDC) archive and/or the Unidata Local Data 

Manager (LDM) real-time feed.  The process consists of quality control checks on raw 

data files, conversion of the file format, the indexing of both raw and converted 

reflectivity data, and the computation and storage of metadata.  A small percentage of 
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raw Level II data files is corrupted during data collection and/or transmission (Kelleher et 

al. 2007), rendering them impossible to read and/or interpret correctly.  In Hydro-

NEXRAD, we have automated several consistency checks to ensure that all files 

available for product generation can be read and interpreted correctly.  Their header 

information is consistent with the file content. 

The process is fully automated and implemented through “crawlers”, defined as 

programs that continuously check volume data intervals, control the data (verified as 

good and consistent), and perform metadata calculations (for more detail, see Kruger et al. 

2010).  Radar data and accompanying metadata stored in the Hydro-NEXRAD system 

databases create the basis for generating rainfall products that can be customized to user 

specification.  The following describes the available data processing steps, which can be 

included during the product ordering process.  Product ordering takes place via an 

internet browser based Graphical User Interface (GUI; see Krajewski et al. 2010).  

Selections made via the GUI constitute a set of job order commands and are interpreted 

by the Hydro-NEXRAD software into a sequential execution of a number of modular 

executables.  Each unique organization of modules used represents a separate radar-

rainfall estimation algorithm of the Hydro-NEXRAD system. 

A.2.3  Reflectivity Data Processing 

A.2.3.1  Anomalous Propagation (AP) Identification 

The approach proposed by Steiner and Smith (2002) is applied to classify the 

volume scan radar reflectivity data into precipitation and non-precipitation echoes.  While 

the non-precipitation echo may include ground clutter as well as non-meteorological 

targets (e.g. airplanes, birds, etc.), the method searches for precipitation-like echo 

structures.  The procedure constructs a 3D structure using reflectivity volume data and 

estimates “the likelihood of atmospheric conditions” indicative of AP occurrence by 

evaluating such decision factors as “the vertical extent of radar echoes”, “their spatial 
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variability”, and “the vertical gradient of intensity”.  The final classification map is 

obtained on a 2D polar grid.  All pixels above a pixel classified as a non-precipitation 

echo at the lowest elevation angle are also classified as such.  A 2D polar grid binary 

mask is constructed and used in subsequent modules. 

A.2.3.2  Hybrid Scan 

Reflectivity products include the entire 3D volume scan or a 2D reflectivity map.  

To construct a reflectivity map, depending on a user’s preference, the module can simply 

use one of the elevation angle (EA) data or produce an amalgam of several lowest 

elevation angle data, called a hybrid scan.  Prior to applying the procedure, all volume 

scan reflectivity data are remapped onto a fixed polar grid with resolution of 1° by 1 km 

in radial azimuth and range, respectively.  To construct a hybrid scan, a CAPPI (Constant 

Altitude Plan Position Indicator) option uses a Gaussian or a log-normal kernel to assign 

the weight contribution of measured reflectivity at each elevation angle.  The weight 

values acquired from a kernel function for a given range are normalized to total 1.  Both 

kernel functions defined by a CAPPI height parameter (corresponding to the mean and 

the mode for the Gaussian and the log-normal distribution, respectively) alleviate the 

reflectivity or rainfall map discontinuity problem that frequently occurs between 

transition zones of elevation angles. 

Figure A.3 illustrates radar beam altitudes of the lowest four elevations and 

compares weight contributions among elevation angles for both kernels.  Since data from 

lower elevation angles can often be contaminated with ground clutter, different kernel 

weightings can lead to the suppression or enhancement of false echoes.  Preliminary 

analysis revealed that the log-normal distribution performs better than the Gaussian by 

assigning lower weights to lower elevation angles; thus, it has been selected as the default 

option in the Hydro-NEXRAD system.  



139 
 

 

As an example case, Figure A.4 shows that sharp boundaries can be observed in 

the PPS-produced reflectivity and rainfall maps (left panel) where elevation angles switch.  

In Hydro-NEXRAD, these sharp boundaries can be removed by using the CAPPI option 

that uses a smoothing kernel, as seen in Figure A.4 (right panel).  For completeness and 

comparison, we also include an option to use the hybrid scan defined in Fulton et al. 

(1998).  This allowed the comparison of the discussed effects with respect to the NWS 

products. 

A.2.3.3  Range Effect Correction 

Range-dependent biases, radar sampling volume augmentation, and beam 

degradation with respect to the increase of distance from the radar usually yield a 

significant underestimation in rainfall amounts.  This effect can be mitigated by using a 

vertical profile of reflectivity (VPR, e.g. see Kitchen et al. 1994; Joss and Lee 1995; 

Andrieu and Creutin 1995; Vignal et al. 1999; Vignal and Krajewski 2001) obtained from 

a 3D reflectivity structure.  In Hydro-NEXRAD, the modified VPR method of Vignal and 

Krajewski (2001) aggregates every volume of data within a 1 hour duration from the 

current time stamp to estimate hourly azimuth-dependent VPRs.  The hourly VPRs are 

also updated every 5–10 min whenever a new volume of data is acquired.  This hourly 

estimation of VPRs enables a real-time operational approach.  As demonstrated in the 

literature, the VPR correction often effectively mitigates radar measurement errors 

caused by a bright band as well as by radar beam degradation due to cloud overshooting 

(e.g. Kitchen et al. 1994; Vignal et al. 1999; Zhang et al. 2008). 

A.2.4  Rainfall Products Generation 

Generation of rainfall products invokes several modules that include rainfall rate 

and rainfall accumulation calculation.  In this section, we describe major modules of the 

single radar data processing.   
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A.2.4.1  Z–R Relationship 

Radar reflectivity, Z (mm6/mm3), is related to the power of electromagnetic waves 

backscattered from raindrops.  Rainfall intensity or rate, R (mm/h), from reflectivity 

measurements is determined by an empirical reflectivity-rainfall (Z–R) relationship, 

which one can model using a power-law (Z = aRb) relationship (Marshall and Palmer 

1948; Krajewski and Smith 2002).  In Hydro-NEXRAD, a user can not only select from 

three common Z–R relationships: “NEXRAD” with a = 300 and b = 1.4 (Fulton et al. 

1998), “Tropical” with a = 250 and b = 1.2 (Rosenfeld et al. 1993), and “Marshall–

Palmer” with a = 200 and b = 1.6 (Marshall and Palmer 1948), but one can also specify 

custom values for the two variables (a and b) of the power relationship. 

A.2.4.2  Hail Correction 

Occasionally, hail cores in thunderstorms may lead to unreasonable rainfall 

intensity after using the empirical Z–R power-law conversion.  The “hail cap” threshold 

applied in the module defines the maximum instantaneous rainfall intensity.  The typical 

threshold value for NEXRAD was defined as 104 mm/h corresponding to 53 dBZ (Fulton 

et al. 1998).  This is a default value in Hydro-NEXRAD, but it is also an adaptable 

parameter that users can specify at different values. 

A.2.4.3  Advection Correction 

The impact of rainfall accumulation errors caused by the temporal sampling span 

of rain fields might be even more significant than that of other error sources.  The 

procedure applied in Hydro-NEXRAD is based on the approach proposed by Fabry et al. 

(1994).  For every two consecutive reflectivity maps converted to the Cartesian domain, 

velocity vectors are computed using a cross-correlation method.  Considering the short 

time interval (5–10 min) between the maps, the assumptions that the velocity of 

precipitation fields is constant and that the linear intensity changes are both reasonable. 

Once the conditions that describe the existence of precipitation fields and non-zero 
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velocity vectors are detected, velocity vectors can be used to produce interpolated 

intermediate reflectivity maps.  The default configuration allows the generation of 

precipitation fields with one minute intervals.  Such high temporal resolution can provide 

enhanced accuracy of rainfall estimation.  Users can select whether or not advection 

correction should be applied, as it significantly increases the amount of time required for 

data processing and delivery. 

A.2.4.4  Rainfall Accumulation 

The integration of successive rainfall rate maps over a specific time interval, such 

as 15 min or 1 hour, is applied to accumulate rainfall amounts over a 1° by 1 km 

resolution, polar grid system.  The module totals rainfall amounts of all periods (a period 

is defined as two successive rainfall rate maps over 5–10 minutes) within the 

accumulation interval requested by a user.  If the proportion of a missing time period 

exceeds 10% of the user-requested accumulation interval, no accumulation product is 

produced.  At the user’s request, daily (or 24 hour) rainfall totals can be produced based 

on hourly accumulation maps.  Daily accumulation starts at 1200 UTC (Coordinated 

Universal Time) as a default parameter.  

A.2.5  Geo-Referencing 

User-defined rainfall products requested for a single radar are prepared using the 

fixed 2D polar grid centered on the radar.  In the final step of the product generation, the 

radar-centered products are remapped to a projected grid for the subsequent hydrologic 

applications.  When ordering data for the United States Geologic Survey (USGS) 

Hydrologic Unit (HU; see e.g. Seaber et al. 1987) selected by the user, the final product is 

provided for a Lat/Lon box that completely includes the unit when the unit is completely 

covered by a single radar umbrella.  Units that are small compared to the entire radar 

umbrella (as is the case for most eight digit HU Codes), require processing of the volume 

scan data for a limited sector only, thereby significantly reducing the processing time. 
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Since different hydrologic applications require various resolution precipitation 

data, Hydro-NEXRAD provides several options for a final product grid selection.  A 

short description of available grid formats follows.  The NWS developed a polar 

stereographic projection called HRAP (Hydrologic Rainfall Analysis Project) for their 

official radar-rainfall products (see e.g. Fulton et al. 1998).  HRAP is a quasi-rectangular 

grid that has a nominal grid spacing of 4 × 4 km2.  Based on the HRAP projection (Reed 

and Maidment 1999), we have developed the S-HRAP (for Super HRAP) as a finer 

HRAP grid with a nominal resolution of 1 × 1 km2.  It uses the same projection as HRAP 

but with 4 × 4 times higher resolution.  Hydro-NEXRAD also provides products at the 

Land Data Assimilation System (LDAS) grid (Mitchell et al. 1999), that is, a 1/8 degree 

of latitude and longitude grid, commonly used by the satellite remote sensing community.  

In addition, a Lat/Lon geographic grid with 0.3 m x 0.3 m (1' × 1') resolution is offered to 

avoid distortion caused by map projections.  When multiple radar products are desired, 

the 0.3 m x 0.3 m (1' × 1') grid is used for merging radar reflectivity or rainfall onto a 

common grid. 

A.3  Rainfall Processing Algorithms 

Hydro-NEXRAD uses the aforementioned modules to produce rainfall products 

according to user-specified algorithms.  Hydro-NEXRAD has one customizable and three 

predefined (Quick Look, Hi-Fi, and Pseudo NWS PPS; Fulton et al. 1998) algorithms, as 

presented in Figure A.5.  The Quick Look is the fastest algorithm, implying that no AP, 

range or advection correction for reflectivity processing is applied.  Conversely, all 

corrections are performed in the Hi-Fi algorithm to mitigate the negative effects of 

corresponding error sources as a consequence, significantly more processing time is 

needed. 

The pseudo NWS PPS algortithm is the Hydro-NEXRAD implementation of the 

NWS PPS algorithm (Fulton et al. 1998).  We refer to it as “pseudo” because it does not 
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reproduce exactly the same official NWS products.  It uses the hybrid scan constructed 

by the nearest angle data to 1 km above the radar altitude.  The differences between the 

“official” PPS and the Hydro-NEXRAD pseudo PPS stem from the lack of the stand 

alone source code available outside of the NEXRAD agencies.  The known differences 

include terrain maps used on radar beam blockage map construction and the AP detection 

procedure.  The PPS AP procedure uses Doppler information not included in the Hydro-

NEXRAD database.  

The customizable algorithm enables expert users to select options that they 

consider the best for their specific application.  These include reflectivity versus rainfall 

rate relationship, hybrid scan height, and mix-and-match choice of corrective algorithms 

for AP detection, advection, and range effect. 

A.4  Multiple Radar Merging Options 

When a user selects a basin that is covered by more than one radar, merging of 

data from multiple radar may be invoked.  Multiple radar data merging in Hydro-

NEXRAD involves two options: (1) data-based merging, and (2) product-based merging.  

The merging procedures related to module sequence and data feed at each step are 

illustrated in Figure A.6.  We provide both of these options as it is difficult to say a priori 

which approach leads to better final results.  Following the principle of correct averaging 

order for non-linear operations (such as radar-rainfall estimation), option (2) should be 

better.  However, some studies (e.g. Ciach et al. 1997) indicate that the difference is 

negligible.  Also, for optimal estimation of the final product, proper averaging would 

require knowledge of the range dependent structure of uncertainties of the averaged 

quantities.  Such knowledge is generally unavailable. 

A.4.1  Data-Based Merging 

The merging procedure based on radar volume data performs reflectivity data 

processing according to a user-requested algorithm for all radars involved in a user-
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specified hydrologic unit, produces data every 5 min to synchronize the temporal scale 

between individual radar data to be merged, and finally combines data onto a common 

grid, as shown in Figure A.6.  Reflectivity values for a given location are assigned by a 

weighting function that describes their contributions with respect to the distance from 

available radars.  This single reflectivity field is then converted to rainfall amounts 

according to the user-requested algorithm. 

A.4.1.1  Common Grid 

The WSR-88D radars collect their raw observations based on a spherical 

coordinate system represented by the range, azimuth, and elevation angle plane.  Since 

single radar data cannot be combined using this local spherical coordinate, a common 

framework is needed to merge the individual datasets.  Earlier studies (e.g. Zhang et al. 

2005; Lakshmanan et al. 2006; Langston et al. 2007) used a polar-to-Cartesian coordinate 

translation to merge multi-radar data.  In Hydro-NEXRAD, we define 0.3 m x 0.3 m (1' × 

1') geographic coordinates as a reference common grid to avoid distortions related to 

Cartesian grids, especially at large-scale domains.  The advantage of using geographic 

coordinates is that product maps can be easily transformed into other grid formats such as 

LDAS, HRAP, and S-HRAP that are provided in the Hydro-NEXRAD system. 

A.4.1.2  Temporal Synchronization 

As WSR-88D radars are not operationally synchronized, reflectivity data from 

multiple radars require temporal synchronization, as shown in Figure A.7 (top panel), 

before they can be combined.  An exponentially decaying weighting function (Langston 

et al. 2007) is used to consider temporal variations of multiple radar data.  The time 

interval of consecutive volume scans is dependent on the Volume Coverage Pattern 

(VCP) and ranges from 4 to 10 min.  Therefore, one should consider a proper parameter 

value for longer scan strategies because temporal weight may go to zero for some 

parameter values when the time interval is close to 10 min.  We use 5 min as the time 
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scale parameter value to temporally synchronize multiple radar volume data acquired at 

different times.  The weight values obtained from the double exponential function are 

normalized to total 1. 

A.4.1.3  Spatial Merging 

Due to radar beam spreading and differences in reflectivity from multiple radar 

data, it is reasonable to allow values from closer ranges to have more weight than those 

from farther ranges in order to reduce radar beam overshooting problems, as shown in 

Figure A.7 (bottom panel).  Although using a weighting function is not an optimal 

solution when dealing with calibration differences among radars, it can lessen the effect 

of the differences and serves as an alternative to the nearest neighborhood method (Zhang 

et al. 2005).  A “steep weighting function (rapidly decreasing weight)” with respect to 

distance is necessary since increasing the sampling volume at far ranges might smooth 

the structure of severe storms (Zhang et al. 2005).  We also use the double exponentially 

decaying weighting function (Langston et al. 2007) to spatially combine multiple radar 

data.  We use 25 km as the length scale parameter value. 

 Figure A.8 shows an example case of individual radar (top and middle panels) 

and merged (bottom panel) reflectivity maps for Middle and Lower Iowa River 

watersheds monitored by Des Moines and Davenport WSR-88D radars (KDMX and 

KDVN, respectively).  Since the distance from radars plays a significant role when 

combining reflectivity values from individual radars, distance ranges (each circle 

represents a 50 km range) from both radars are illustrated in Figure A.8.  The merged 

reflectivity structure demonstrates that reflectivity values in the merged plane are more 

affected by closer radar because of the use of the steep weighting function. 

A.4.2  Product-Based Merging 

Most of the current multi-sensor approaches (e.g. Zhang et al. 2005; Seo et al. 

2005; Lakshmanan et al. 2006; Langston et al. 2007) produce only deterministic 
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precipitation fields. It is indisputable that rainfall estimates from remote sensors are 

highly variable due to the lack of understanding of the relevant physical processes in a 

specific domain of time and space and the observation system itself.  However, those 

multi-sensed products do not provide any quantitative information about the uncertainty 

of rainfall products. 

When product-based merging is implemented in Hydro-NEXRAD, reflectivity 

data from multiple radars are all converted to rainfall accumulations using a user-

specified algorithm, as described in the previous section.  A user-specified algorithm is 

connected with proper components (modules) of the system, which are radar reflectivity 

quality control and processing, rainfall rate conversion, and rainfall accumulation, as 

shown in Figure A.6.  This is repeated for all radars involved.  These products are then 

converted onto a common Lat/Lon grid and combined into the final product using a 

weighting function that describes the uncertainty of estimated rainfall amounts (Ciach et 

al. 2007).  Finally, the merged product given on the common Lat/Lon grid can be 

converted to other grid formats (i.e. LDAS, HRAP, and S-HRAP) for subsequent 

hydrologic research and applications. 

Individual (upper panel) and two merged (lower panel) rainfall maps for the same 

event as shown in Figure A.8 are presented in Figure A.9.  The map from the product-

based merging indicates that rainfall strength tends to be lower than in individual maps 

because the overall bias factor (less than 1.0 for the hot season) is eliminated before 

combining individual maps using the uncertainty component defined by the distance 

zones (for more detail, see Ciach et al. 2007).  In addition, the rainfall map of data-based 

merging produced from merged reflectivity maps shows little difference from that of the 

product-based merging. 
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A.5  Summary and Discussion 

In this appendix, we presented modules and algorithms used for Level II 

NEXRAD data processing for rainfall estimation used in this thesis.  The novelty of the 

Hydro-NEXRAD system is not in the algorithms used but in the overall structure and 

organization of the service it provides to the hydrologic research community. 

The Hydro-NEXRAD system allows users to focus on specification of rainfall 

product requirements, without being burdened by radar-specific, technical issues.  Proper 

assessment of many of these issues requires considerable expertise and experience in the 

physics of radar observational process, radar hardware issues, radar data processing, and 

estimation (i.e., uncertainty) issues.  Since expecting all users to have such expertise is 

unreasonable, Hydro-NEXRAD shields users whose focus is on hydrologic processes 

from the details of radar-rainfall estimation.  At the same time, expert users may specify 

many of the parameters according to their own knowledge, experiences, and expectations.  

Still, there are many choices and decisions that we have made in the implementation of 

the algorithms described herein that, while not fundamental, might affect the final 

products. 

Based on the preliminary comparisons we have performed (e.g. Seo and 

Krajewski 2010), as well as the feedback we have received from the system users (e.g. 

Villarini and Krajewski 2010), the products generated by the system are similar in 

accuracy and precision to other products (e.g. Fulton et al. 1998) available for the same 

(or similar) space and time resolution.  While we cannot say the same for products at 

other resolutions (since they are not generally available from the NEXRAD agencies or 

other sources), the fact that we use a consistent set of algorithms to produce them makes 

us believe that these high-resolution products are as adequate.   

There are many advantages of the Hydro-NEXRAD modular structure.  Users 

representing different research and engineering communities can custom specify rainfall 

products that satisfy their specific purposes.  One of the most important advantages of the 
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Hydro-NEXRAD system is the repeatability of results.  Two users who specify the same 

algorithms in Hydro-NEXRAD will obtain exactly the same results.  This is in contrast to 

the current practice where it is difficult to reproduce exactly the results published by 

others (e.g. Fulton et al. 1998).  The Hydro-NEXRAD system has a modular design, and 

it is relatively easy to add more options as modules to the system.  For example, one 

could add different AP detection, range correction, or advection correction algorithms.  

Therefore, Hydro-NEXRAD has the potential to serve as a community resource for the 

future development of radar-based rainfall estimation. 

Perhaps the most significant practical challenge for the multiple radar data 

merging is the fact that the WSR-88D radars are not cross calibrated, and there is lack of 

information on the absolute calibration procedures and schedule.  At this point, all 

Hydro-NEXRAD products are radar-based only.  Merging of Hydro-NEXRAD products 

with rainfall data from other sources (e.g. rain gauges and satellites) has not been in the 

scope of the presented effort.  While there are many methods documented in the literature 

for merging radar and rain gauge data (e.g. Krajewski 1987; Creutin et al. 1988; Seo 

1998; Todini 2001; Velasco-Forero et al. 2009), the main obstacle in their 

implementation is the generally poor quality of the rain gauge data.  Also, the abundance 

of the networks operated by many different organizations poses a challenge to the 

uniformity of the data quality. 
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Figure A.1  Hydro-NEXRAD data ingest procedures. 
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Figure A.2  Modular architecture of the Hydro-NEXRAD system. 
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Figure A.3  Radar beam altitudes of the lowest four elevation angles and their 
contribution to the construction of a CAPPI by kernel weights. Two kernels 
(Gaussian and log-normal) are provided as an example for a 1.5 km CAPPI 
height above the radar altitude. The log-normal kernel decreases rapidly in the 
altitudes near the ground so that the weight contribution of the lowest radar 
elevation angle in log-normal kernel is relatively much smaller than in the 
Gaussian kernel. 
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Figure A.4  Hybrid scan reflectivity maps (upper) at 0856 UTC 02 October 1998 and 1-
hour rainfall maps (lower) ending at 0900 UTC 02 October 1998 from the 
Oklahoma City WSR-88D (KTLX), OH. The CAPPI hybrid scan (right) 
removes a discontinuity problem, while the hybrid scan in the PPS (left) 
shows several rings at transition zones of elevation angles.  
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Figure A.5  Hydro-NEXRAD radar-rainfall algorithm combinations: Custom, Quick 
Look, Hi-Fi, and pseudo NWS PPS. For power-law Z–R, “ND”, “MP”, “TL”, 
and “CM” represent “NEXRAD”, “Marshall–Palmer”, “Tropical”, and 
“Custom”, respectively. 

 



154 
 

 

 

Figure A.6  Processing procedures of multiple radar merging options in Hydro-
NEXRAD: data- and product-based merging. 
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Figure A.7  A schematic showing temporal synchronization and spatial merging of 
multiple radar data merging. 
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Figure A.8  Individual (top and middle) and merged (bottom) reflectivity maps at 0130 
UTC 26 July 2006 from the KDMX and the KDVN. Each circle represents a 
50 km range from the radars. 
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Figure A.9  Individual (upper) and merged (lower) 1 hour rainfall maps at 0200 UTC 26 
July 2006 from the KDMX and the KDVN. 
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