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Hariri-Ardebili, Mohammad Amin (Ph.D. Civil Engineering)

Performance Based Earthquake Engineering of Concrete Dams

Thesis directed by Prof. Victor E. Saouma

The main objective of this thesis is to develop a framework for performance based earthquake

engineering (PBEE) of concrete dams. To pursue this goal, this study first develops an extended

and quantitative version of potential failure mode analysis (PFMA) for concrete dams. Different

failure modes are investigated for all types of concrete dams.

A Matlab-based code is developed for probabilistic performance assessment of concrete dams

(PPACD). This code is used for assessment of concrete dams within the context of PBEE. A

probabilistic seismic demand model (PSDM) is proposed for concrete dams based on cloud analysis

methodology. The outcome of PSDM is selection of optima intensity measure (IM) parameters for

gravity dams. Then, the sensitivity and uncertainty of dam-foundation system is quantified under

the mixed-mode fracture of zero-thickness interface joint element. Capacity and fragility curves are

derived for most sensitive random variables.

This research also examined the performance of the dam under incremental dynamic analysis

(IDA). First, the anatomy of a single-record IDA is studied and contrasted by framed structures.

Then, the collapse fragility curves are derived for single and multiple-component ground motions.

The impact of epistemic uncertainty is investigated in addition to the aleatoric one.

Finally, a multi-scale damage index (DI) is proposed for gravity dams which is a function

of crest displacement, crack ratio, and dissipated energy. Using this hybrid DI, a computationally

simple but effective methodology is proposed for progressive failure analysis of dams. In all cases,

first the methodology is discussed and then, a numerical example illustrates the details.
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Chapter 1

Introduction

1.1 Motivation

Dams are critical components of a nation’s infrastructure. They provide energy, flood pro-

tection, water storage for domestic, industrial, agricultural use and recreation. Yet, many dams

are aging and most were designed at a time with limited seismic field data, or technical knowledge.

Taking a simple binary approach Safe/Fail, as commonly done presently through a deterministic

application of safety codes (FERC-PFMA, 2005; USACE, 2007; CDA, 2007) is not only unrealis-

tic but could yield very expensive rehabilitation program. On the other hand, performance based

earthquake engineering (PBEE) (Porter, 2003), by now widely embraced for buildings, does provide

a new paradigm for dams, one where nonlinear time history analysis is performed and quantitative

failure assessment is necessary.

PBEE offers a step-by-step methodology for assessing structural safety. It requires both

a global probabilistic framework that integrates different steps of the methodology and detailed

analysis for each one. The Pacific Earthquake Engineering Research (PEER) Center has developed

a comprehensive framework for PBEE. During the past decade, many researchers developed and

extended different steps of the PEER PBEE for buildings and bridges. Yet, there is no sign of such

a research for concrete dams. Thus, each step of this methodology should be carefully executed.
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1.2 Objectives

The objective of this research is to extend the PBEE in different aspects for concrete dams.

For this purpose, some elements of conventional potential failure mode analysis is combined with

some others from PBEE for probabilistically safety assessment if dams.

The major objectives of this research are: 1) Develop an extended and quantitative version of

potential failure mode analysis for concrete dams, 2) Develop a Matlab-based computational tool for

probabilistic performance assessment of concrete dams, 3) Develop a probabilistic seismic demand

model for concrete dams considering the global failure, 4) Propose an optimal intensity measure pa-

rameter for concrete dams, 5) Perform the sensitivity analysis on dam-foundation system, quantify

the material (epistemic) uncertainties, determine tornado diagram, capacity and fragility curves,

6) Perform different structural analysis techniques on concrete dams. In particular: cloud analysis,

multiple strip analysis, incremental dynamic analysis, and endurance time analysis, 7) Determine

the collapse fragility curves of concrete dams though multiple-record incremental dynamic analysis,

8) Propose a multi-scale damage index for gravity dams as a function of crest displacement, crack

ratio, and dissipated energy, and 9) Propose a computationally simple but effective methodology

for progressive failure analysis of dams though damage index and endurance time analysis.

1.3 Outline

This thesis is a based on a compilation of research papers and reports. Some of these paper-

s/reports are co-authored, so the first part of each chapter shows all the authors and a journal in

which the manuscript is submitted.

Chapter 2 will review the general steps in PFMA and PBEE. In particular for PBEE, first the

basic definitions will be explained, then the PBEE predecessors will be reviewed. It will

be followed by comparison of first and second generation of PBEE. Moreover, application

of probabilistic methods in concrete dams will be categorized in different groups. Finally,

the dam safety decision-making guidelines will be compared based on different agencies
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recommendations.

Chapter 3 will review and revisit all the numerical methods for progressive failure analysis of

concrete dams. We will propose the concept of capacity functions for concrete dams and

will present a simple mathematical model for it.

Chapter 4 will present the computational tools developed and used during this research for prob-

abilistic performance assessment of concrete dams (PPACD). This includes a group of

Matlab-based scripts and functions which are used also Merlin finite element code for pro-

cessing the models. The interaction of all these scripts and their application in PBEE will

be explained.

Chapter 5 will explain a detailed nonlinear dynamic analysis for a gravity dam. First, the char-

acteristics of the dam and the finite element model will be presented. Then, probabilistic

seismic hazard analysis will be explained on this particular dam. The seismic hazard curves

and deaggregation plots will be extracted. Finally, using only one ground motion, a de-

tailed deterministic dynamic analysis will be performed. Both the smeared crack model

and zero-thickness interface joint element between dam and foundation will be considered.

Chapter 6 will represent the potential failure mode analysis for all three types of concrete dams, i.e.

gravity, arch, and buttress. First, the qualitative approach will be reviewed and then the

extended quantitative version will be proposed for both the linear and nonlinear systems.

Multiple strip analysis method will be used for assessment of a case study arch dam. A

large set of simulated engineering demand parameters will be generated for the dam and

the optimal scalar and vectorized intensity measure parameter will be quantified. Finally,

the results of linear and nonlinear system will be correlated.

Chapter 7 will quantify the sensitivity and uncertainty in dam-foundation system. First, the

theory of an advanced fracture mechanics based zero-thickness interface joint element will

be studied. Then, it will be applied for analysis of three problems: mode I and II fracture
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mechanics of idealized blocks subjected to displacement control pushover analysis, and

mixed-mode fracture analysis of a real gravity dam-foundation system. For each case,

the most sensitive random variables (RV) will be determined and the associated tornado

diagram will be plotted. Monte Carlo simulation with Latin Hypercube Sampling will be

used for uncertainty quantification of the sensitive RVs. The impact of correlation among

the RVs will be studied also. Finally, the capacity curve will be plotted for each case and

the associated fragility curve will be derived.

Chapter 8 will propose a probabilistic seismic demand model for gravity dams. First, all the

existing intensity measure parameters for structural systems will be summarized in seven

categories and a new one will be proposed for dams. Then, a cloud-based probabilistic

seismic demand analysis will be performed using 100 un-scaled ground motions. Using these

ground motions, an appropriate distributional model will be proposed for each intensity

measure. The most optimal intensity measure parameter will be determined considering the

parameters such as sufficiency, efficiency, proficiency, practicality, and hazard compatibility.

Finally, the fragility curves will be derived for the dam and the impact of different intensity

measure and engineering demand parameters will be investigated.

Chapter 9 will present collapse fragility curves for gravity dams. First, the background theory

of collapse fragility curves and different methods for fitting a lognormal cumulative distri-

bution function to the empirical data points will be reviewed. Transient analyses will be

performed based on incremental dynamic analysis (IDA) methodology. The Anatomy of

a single-record IDA will be studied in detail and contrasted with framed structures. The

optimal intensity measure parameter will be selected based on the minimum dispersion of

multiple-record IDA curves. Finally, the collapse fragility curves will be derived for the

dam.

Chapter 10 will propose a multi-scale damage index (DI) for gravity dams. The new DI will be

based on maximum crest displacement, energy dissipation in system and the ratio of the
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cracked segments. Then, a computationally simple but effective method will be proposed

for systematic progressive failure assessment of gravity dams based on endurance time

analysis. This method provides continuous performance of the dam in terms of DI and the

desired intensity measure parameter.

Chapter 11 will present the summary and conclusions of this research, as well as the future research

needs.



Chapter 2

Literature Review and Background Theory

This chapter is based on the following two references:

Hariri-Ardebili, M.A. and Saouma, V.E., Performance Based Seismic Design Guidelines for

Concrete Dams – Part 2: Background Information, Report prepared for Enerjisa, Turkey, Sep 2012.

Saouma, V.E., Porter, K., Nuss, L.K. and Hariri-Ardebili, M.A., Performance Based Seis-

mic Design Guidelines for Concrete Dams – Part 1: Main Report, Report prepared for Enerjisa,

Turkey, Sep 2012.

2.1 Introduction

Over the past years there have been two concomitant developments: 1) performance-based

earthquake engineering (PBEE) which is a proposed new paradigm for the seismic safety investi-

gation of building, and 2) potential failure mode analysis (PFMA) which is a generally accepted

methodology to assess dam safety. Though similar, and written by different communities, much

can be gained through an attempt to bring together those two paradigms. Figure 2.1 highlight the

similarities between the two approaches in general. Each one will discuss later in detail.

In the following sections, the general steps in each of them are explained. Whenever it is

required the differences between the dam safety assessment and the loss analysis in buildings are

highlighted. Some of the steps are explained in the subsequent chapters (as part of a submitted

paper) and thus, they will skipped in this chapter.
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Perform seismic hazard analysis at the facility site, produce
target response spectrum and select ground motions

Define the failure criteria (i.e. uncontrolled release of the
water)

Perform a set of nonlinear dynamic structural analyses and
determine the response of the facility

Define the initiator, and identify the potential failure modes
(i.e. sliding due to an earthquake)

Perform damage analysis on the facility and determine the
fragility curves in term of structural responses

Develop a sequence of events for a failure to transpire (event
tree and if needed fault tree)

Evaluate the repair efforts to determine repair costs,
operability, repair duration, and the potential for casualities

Select a path with the most likely chance to failure, perform
the structural analysis, and quantify the uncertainties

Quantify the risk and import the results on an f-N curve, and
final decision making

Performance Based Earthquake EngineeringPotential Failure Mode Analysis

Final decision making based on contribution of all the
previous steps

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 2.1: Comparison of general methodologies in PFMA and PBEE

2.2 Performance Based Earthquake Engineering

2.2.1 Basic Definitions

2.2.1.1 Performance-Based Engineering (PBE)

PBE is defined as consisting of the selection of design criteria, appropriate structural systems,

layout, proportioning, and detailing for a structure and its non-structural components and contents,

and the assurance and control of construction quality and long-term maintenance, such that at

specified levels of all the excitation and with defined levels of reliability, the structure or facility

will not be damaged beyond certain limit states. PBE is a process that begins with the first

concepts of a project and lasts throughout the life of the structure (Bertero and Bertero, 2002).

2.2.1.2 Performance-Based Earthquake Engineering (PBEE)

PBEE is defined as the application of PBE to the case that seismic hazard controls the

design. Therefore, PBEE involves the complete design, construction and control (monitoring) of

the maintenance and function of the structure to assure that the constructed structures will resist

the effects of earthquake ground motions with different severity within specified limiting levels of

damage (Bertero and V.V., 2000).
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2.2.1.3 Performance-Based Seismic Design (PBSD)

PBSD is the subset of activities of PBEE that focus on the design process. Therefore, it

includes identification of seismic hazards, selection of the performance levels and performance design

objectives, determination of site suitability, conceptual design, numerical preliminary design, final

design, acceptability checks during design, design review, specification of quality assurance during

the construction and of monitoring of the maintenance and occupancy (function) during the life of

the structure (Bertero and Bertero, 2002).

2.2.1.4 Performance-Based Assessment (PBA)

PBA is the implementation of the PBEE in quantitative evaluation of the performance of a

given structure (even an existing structure or a completed design of a new structure). PBA provides

stakeholders with information about the structure (usually expressed in probabilistic terms) that

facilitates informed decision making for risk management (Zareian and Krawinkler, 2009).

2.2.2 PBEE Predecessors

In the US, interest in PBSD initiated in the 1980s among engineers engaged in seismic retrofit

of existing buildings. Owners of existing buildings would not commit to investment in retrofit con-

struction unless they had an understanding of the probable performance of their buildings in future

earthquakes, decided that this performance was undesirable, and that acceptable performance could

be obtained at reasonable cost. Engineers quickly found that evaluations of buildings to the cur-

rent editions of the building code provided information on the building’s conformance to current

design practice but did not provide direct information on the way a building was likely to behave

in an earthquake. Thus, engineers began to develop rudimentary procedures for assessing the likely

earthquake performance of existing buildings so that they could evaluate whether collapse or other

life-threatening damage was likely, and if not to assess the severity and likely consequences of

damage that would occur (Hamburger et al., 2004).

Several documents were credited with laying the basis of PBE concepts. The following section
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describes each of these codes and documents in detail. It should be mentioned that all these

documents attempted to develop procedures that can be used as seismic provisions in building

codes.

2.2.2.1 ATC-13 (1985) and ATC-14 (1987)

In the mid-1980s, the Applied Technology Council (ATC) published several documents. The

ATC-13 report provided statistical data on the probable repair costs for buildings of different

types, based on the opinions of earthquake engineering experts (ATC-13, 1985). The ATC-14

report provided a standardized methodology for evaluating life safety hazards in buildings (ATC-

14, 1987).

2.2.2.2 SEAOC Vision 2000 (1995)

Based on Structural Engineers Association of California (SEAOC) Vision 2000 the first step

in PBEE is the definition and selection of the performance objectives (PO). A PO is a coupling of

expected performance levels with levels of seismic ground motions. A performance level represents

a distinct band in the spectrum of damage to the structural and non-structural components and

contents, and also considers the consequences of the damage to the occupants and functions of the

facility (Bertero and Bertero, 2002). Four discrete performance levels in this document are: 1) fully

operational, 2) operational, 3) life safety, and 4) near collapse in terms of damage to structural and

non-structural components and consequences to the occupants and functions carried on within the

facility as shown in figure 2.2 (SEAOC, 1995). Also SEAOC Vision 2000 describes various hazard

levels as: 1) frequent intensity level with a 50% exceedance probability in 30 years hazard level, 2)

the occasional intensity level with a 50% exceedance probability in 50 years, 3) the rare intensity

level with a 10% exceedance probability in 50 years, and 4) the very rare intensity level with a

10% exceedance probability in 100 years. It should be noted that the earthquake design levels were

shown as earthquake with specific return period in figure 2.2. The diagonal lines represent different

objectives in this figure correspond to different facility types.
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Figure 2.2: Recommended minimum seismic performance design objectives for buildings

2.2.2.3 ATC-40 (1996)

In 1996, the ATC published a document entitled: “Seismic Evaluation and Retrofit of Con-

crete Buildings”. in which the performance-based design refers to the methodology that structural

criteria are expressed in terms of achieving a performance objective. The document is limited to

concrete buildings and emphasizes the use of the capacity spectrum method (ATC-40, 1996).

2.2.2.4 FEMA 273 (1997) and FEMA 274 (1997)

In 1997, the Federal Emergency Management Agency (FEMA) published the National Earth-

quake Hazards Reduction Program (NEHRP) guidelines for the seismic rehabilitation of buildings

(FEMA, 1997b) and associated commentary documents (FEMA, 1997a). FEMA 273 document

presents a variety of performance objectives with associated probabilistic ground motions. Anal-

ysis and design methods for the multiple-level performance range from linear static to inelastic

time history analysis. The document defines performance levels for non-structural elements and

systems and proposes drift limits for various lateral-load-resisting structural systems at different

performance levels.
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2.2.2.5 FEMA 356 (2000)

FEMA 365 is one of the most comprehensive guidelines for PBEE entitled: “Prestandard

and Commentary for the Seismic Rehabilitation of Buildings”. FEMA 356 was written to provide

professional engineers nationwide a tool for designing seismic rehabilitation measures for existing

structures (FEMA, 2000). The document defines various target building performance levels and

earthquake hazard levels similar to those presented in SEAOC Vision 2000. The performance levels

and descriptions of corresponding physical damage are shown in Table 2.1.

Table 2.1: The range of damage of structural and non-structural components for various target
building performance levels (Table C1-2) (FEMA, 2000)

Performance
levels

Collapse prevention Life safety Immediate occu-
pancy

Operational

Overall dam-
age

Severe Moderate Light Very light

Structural
components

Little residual stiff-
ness and strength,
but load-bearing
columns and walls
function. Large
permanent drifts.
Some exits blocked.
Infills and unbraced
parapets failed or
at incipient failure.
Building is near
collapse.

Some residual
strength and stiff-
ness left in all
stories. Gravity-
load-bearing el-
ements function.
No out-of plane
failure of walls or
tipping of parapets.
Some permanent
drift. Damage to
partitions. Building
may be beyond
economical repair.

No permanent
drift. Structure
substantially retains
original strength
and stiffness. Minor
cracking of facades,
partitions, and
ceilings as well as
structural elements.
Elevators can be
restarted. Fire
protection operable.

No permanent
drift. Structure
substantially retains
original strength
and stiffness. Mi-
nor cracking of
facades, partitions,
and ceilings as well
as structural ele-
ments. All systems
important to nor-
mal operation are
functional.

Non-structural
components

Extensive damage. Falling hazards mit-
igated but many ar-
chitectural, mechan-
ical, and electrical
systems are dam-
aged.

Equipment and con-
tents are generally
secure, but may not
operate due to me-
chanical failure or
lack of utilities.

Negligible damage
occurs. Power and
other utilities are
available, possi-
bly from standby
sources.

2.2.2.6 Global Framework for PBEE

As mentioned before there are several conceptual frameworks for PBEE (SEAOC Vision 2000,

FEMA 273, ATC-40) which differ in details but not in concepts (Ghobarah, 2001). Figure 2.3 is

proposed by Krawinkler (1999) as a global framework which identifies processes, concepts, and

major issues that need to be addressed. The issues include seismological, geotechnical, structural,



12

architectural, and socio-economic considerations.
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Figure 2.3: Global framework for performance-based earthquake engineering

Some other authors were more emphasized on developing a deep understanding and appreci-

ation of the multi-disciplinary aspects of PBEE. They proposed that any new conceptual develop-

ments in existing researches (downstream nodal point at the figure 2.4) should be accompanied by

updating the upstream nodal point accordingly (Chandler and Lam, 2001).

2.2.3 First Generation of PBEE

All the documents discussed in previous section are categorized as part of the first generation

of PBEE which presents assessment and design procedures for buildings (Moehle and Deierlein,

2004). This procedure is also shown in figure 2.5 conceptually (Whittaker et al., 2003) and it

is assumed that a structure is loaded by earthquake-induced lateral forces that produce nonlin-

ear response in structural components. Relations were established between structural responses
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Figure 2.4: The disciplines contribute in global framework of performance-based earthquake engi-
neering

(inter-story drift ratio, inelastic member deformation, and member force) and performance-oriented

descriptions (such as immediate occupancy, life safety and collapse prevention, Table 2.1).

The first-generation of PBEE (also called as PBEE-1) represents a significant improvement

over past practice. It includes standard methods of defining performance in terms of quantified

performance levels that relate to calculated seismic response parameters and incorporate a formal

methodology for simulating building response to earthquake motions and assessing performance

capability based on the predicted magnitude of a series of structural response parameters (Ham-

burger et al., 2004). Considering all these developments also they had shortcomings which need to

be improved:

• PBEE-1 has evaluated performance on the basis of the demands and capacities of individual
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Figure 2.5: Conceptually description of first generation of PBEE

components, rather than global building behavior. So the weakest or the least ductile

elements in a structure were controlled the estimation of overall structural performance

(even if these elements had relatively little significance to the structure’s overall seismic

resistance).

• The reliability of PBEE-1 is questionable because many of the acceptance criteria contained

in the documents are based on the judgment of those who developed the method, rather

than laboratory data or other direct substantiating evidence.

• Considering that much of the losses experienced by structures in past earthquakes can be

attributed to the performance of non-structural components and systems, the procedures

that evaluate these elements in PBEE-1 are limited almost entirely to consideration of the

ability of them to remain structurally stable and do not address well either the damageabil-

ity or post-earthquake functionality of these components and systems comprised of these

components.
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• The reliability of the procedures in PBEE-1 and their ability to achieve the desired per-

formance has never been established and many engineers believe that the procedures are

excessively conservative and may not result in adequate performance capability. The stan-

dard performance levels do not directly address some primary stakeholder concerns, that is

probable repair costs and time of occupancy loss in the building, due to earthquake induced

damage.

• The basic process of performance-based engineering carries with it significant potential

liability as many building owners may perceive that the design professional has provided a

warranty on the design’s performance capability.

2.2.4 Second Generation of PBEE

2.2.4.1 PBEE Historical Development: Review

Although there are many research about the different aspects of PBEE (theoretical models

and case studies), only the fundamental ones are reviewed in this section. A detailed literature

review will provide for each specific topic in the next chapters.

• Czarnecki (1973): To the best of the author knowledge, this is the first analytical procedure

to estimate the seismic vulnerability of structures which is similar to the modern PBEE.

The work is mainly component based which begins with structural analysis of system

to estimate forces and deformations under a particular level of shaking. It follows with

damage and loss assessment of system. In this method, damage is estimated by ratio of the

absorbed energy in the building components to the maximum energy absorption capacity of

that component. This method is similar to the concept of “damage index”. The proposed

methodology is then applied to several tall buildings damaged by the 1971 San Fernando

earthquake. It is concluded that the method predicts the general trend of damage but

might come with considerable error for other specific case.
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• Kustu et al. (1982): They provided component damage function from laboratory tests

to calculate total damage to tall buildings. They used a component-based deterministic

approach which does not account for the record-to-record variability, structural response

(mostly story drift), component damageability, or repair costs. In this research, there is no

distinguish between the repair cost and replacement one.

• Porter (2000): He proposed a methodology to evaluate the assembly-based seismic vulner-

ability of buildings on a building-specific basis. In this method, the building is assumed as

a unique collection of standard assemblies with probabilistic fragility, repair costs, and re-

pair durations. This procedure relies on Monte Carlo approach to simulate ground motion,

structural response, assembly damage, repair costs and duration. Moreover, he presented a

decision-analysis approach within the context of assembly-based vulnerability methodology.

Finally, he presented different techniques to derive the empirical and theoretical assem-

bly fragilities (which are illustrated through the creation of structural and non-structural

fragility functions).

• Aslani and Miranda (2005): They proposed a component-based approach via using the eco-

nomic (annual) losses as a measure for seismic performance of the framed structures. This

procedure aims at computing the probability of exceedance of different types of engineering

demand parameters. The peak interstory drift ratio provides a way to estimate the damage

to (mainly) structural components, while the peak floor acceleration is (mainly) suitable

for estimating damage to acceleration-sensitive (non-structural) components. Epistemic

uncertainties are considered explicitly and propagated. They proposed loss disaggregation

as a way to identify the ground motion intensities, level of structural response and com-

ponents that primary contribute to damage and direct economic losses. Moreover, the

probability of collapse at different intensity levels is taken into account in loss estimation.

It is noteworthy that both collapse mechanisms are studied, i.e. 1) resulting from dynamic

instability, and 2) progressive collapse due to loss of vertical carrying capacity of critical
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members.

• Mitrani-Reiser (2007): She developed an analytical approach for PBEE and used to eval-

uate the performance of a new RC building. The method is capable of propagating the

uncertainties within the shaking intensity, the mechanical properties of the facility, and the

damageability and unit repair costs of the facility. This methodology estimates the direct

economic losses due to repair costs as well as indirect economic losses (due to building

downtime and human fatalities).

• Yang et al. (2009b): Within the context of PBEE, he proposed a procedure in order to

generate additional engineering demand parameters for a system that originally has limited

number of nonlinear transient analyses (numerical or experimental). In this method, first a

joint lognormal distribution is fitted to the structural response matrix. Then, the correlated

EDP vectors are generated using a computationally inexpensive procedure. This procedure

enables a Monte-Carlo type implementation of the PBEE framework.

• Lin (2012): She focused on ground motion selection and scaling that connects the first

two elements of PBEE (hazard and structural analyses). Any change in ground motion

intensity level changes the target distribution of ground motion parameters (e.g., magni-

tude and distance). Subsequently, the target response spectrum can be computed using a

single or multiple ground motion prediction models. She used the concept of conditional

spectrum (CS) to address properly the contributing uncertainties in ground motion selec-

tion process. The CS estimates the distribution (with mean and standard deviation) of

the response spectrum, conditioned on the occurrence of a target Sa value at the period of

interest. Utilizing the correlation of Sa across periods, the CS methodology eliminates the

conservatism from the Uniform Hazard Spectrum.
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2.2.4.2 PEER PBEE Framework

PBEE implies design, evaluation, and construction of engineered facilities whose performance

under common and extreme loads responds to the diverse needs and objectives of owners-users

and society. In 1997 the Pacific Earthquake Engineering Research Center (PEER) decided to

develop a more robust methodology for performance-based earthquake engineering, called as next

generation PBEE (also called as PBEE-2 or PEER PBEE). The PEER PBEE framework developed

by PEER facilitates direct calculation of the effects of uncertainty and randomness on each step in

the performance based procedure (Porter, 2003).

The general framework for PEER PBEE is shown in figure 2.6. It breaks the seismic perfor-

mance assessment into four primary steps: 1) ground motion hazard characterization, 2) structural

response analysis, 3) damage analysis, and 4) loss assessment (Haselton et al., 2008). The results

of each of these steps are represented as generalized variables, Intensity Measure (IM), Engineering

Demand Parameter (EDP), Damage Measure (DM), and Decision Variable (DV). This process can

be expressed in terms of a triple integral that is an application of the total probability theorem

(Porter, 2003):

g [DV|D] =

∫ ∫ ∫
p [DV|DM,D] p [DM|EDP,D] p [EDP|IM,D] g [IM|D] dIM.dEDP.dDM (2.1)

where p [X|Y] denotes the complementary cumulative distribution function of X conditioned on Y,

g [X|Y] denotes the mean annual occurrence rate of X given Y, and D denotes facility location,

structural, non-structural, and other features. Note that in future we omit conditioning on D for

simplicity.

IM: describes the characteristics of the earthquake ground motion quantitatively. This parameter

is expressed typically as a function of mean annual probability of exceedance, g [IM].

EDP: describes the response of the structural and the non-structural components and contents to

earthquake shaking. The products of this step are conditional probabilities, p [EDP|IM].

DM: describes the physical condition of structural and non-structural components. DMs include
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effective descriptions of damage to characterize the functionality, occupancy-ready, life

safety and necessary repairs of the building. The products of this step are conditional

probabilities, p [DM|EDP].

DV: serves to translate damage estimates into quantities that are useful to those tasked with mak-

ing risk-related decisions. Currently used DVs which are identified as decision metrics are

direct dollar losses, downtime (or restoration time) and deaths (casualties). The products

of this step are conditional probabilities, p [DV|DM].

Hazard analysis

Hazard model
g[IM|D]

Site hazard
g[IM|D]

Structural analysis

Structural model
p[EDP|IM,D]

Structural
response
g[EDP|D]

Damage analysis

Fragility model
p[DM|EDP,D]

Damage
response
g[DM|D]

Loss analysis

Loss model
p[DV|DM,D]

Loss response
g[DV|D]

Facility
definition

D

Facility
information Decision making

D is OK?

Figure 2.6: General framework of PEER PBEE methodology (Porter, 2003)

As mentioned before direct dollar losses, downtime and casualties are used as decision vari-

ables in PBEE-2 methodology for performance assessment of structures. ATC-58 (2012) uses three

types of performance assessments, i.e. 1) intensity-based, 2) scenario-based, and 3) time-based.

2.2.4.3 Intensity-Based Performance Assessments (IBPA)

This method evaluates a structure’s performance assuming that it is subjected to a specific

intensity of shaking. In the case of frame structures, shaking intensity is defined by 5% damped elas-

tic acceleration response spectra. This assessment usually is used when the structure is subjected

to the earthquake shaking with specific response spectrum (such as design response spectrum)

(ATC-58, 2012).
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2.2.4.4 Scenario-Based Performance Assessments (SBPA)

This method evaluate a structure’s performance assuming that it is subjected to the effects

of a specific magnitude earthquake occurring at a specific location relative to the structure site.

Scenario assessments may be useful for decision makers with structures located close to one or more

known active faults. Scenario-based assessments are very similar to intensity-based assessments

except that uncertainty in the earthquake intensity, given the scenario, is considered (ATC-58,

2012).

2.2.4.5 Time-Based Performance Assessments (TBPA)

This method evaluates a structure’s performance over a period of time considering all earth-

quakes that may occur in that period of time, and the probability that each will occur. Time-based

assessments consider uncertainty in the magnitude and location of future earthquakes as well as

the intensity of motion resulting from these earthquakes. Assessments based on a single year are

useful for cost-benefit evaluations used to decide between alternative performance criteria (ATC-58,

2012).

Figure 2.7 compares the step-by-step procedure for ground motion selection and scaling based

on the three above mentioned methods. It is noteworthy that in TBPA, the recommended values for

the parameters introduced in figure 2.7 are as follows: (Sa)min = 0.05 g and (Sa)max is associated

with annual frequency of exceedance of 0.00002/yr (that is, 1 occurrence in 50,000 years). Number

of intervals m usually is recommended to be 8.

2.3 Potential Failure Mode Analysis

A dam potential failure mode (PFM) is a chain of events leading to unsatisfactory perfor-

mance of the dam which could lead to uncontrolled release of the reservoir water (FERC-PFMA,

2005).
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Figure 2.7: Comparison of ground motion selection and scaling for IBPA, SBPA and TBPA

2.3.1 Initiating events

Failures of dams start with some initiating event that causes an adverse change in the struc-

ture. This thesis focuses on seismic events, but initiating events can occur from loads or changing

conditions during normal loading conditions such as flooding, human interaction, or landslides.
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During an earthquake, inertial forces on the structure might lead to overstressing and cracking of

the dam or concrete members in an appurtenant structure, or displacement of the foundation under

the dam could cause overstressing or misalignment of the dam, finally a long-duration seismic event

might cause a sliding instability.

Safety is assessed in terms of the probability of deaths due to uncontrolled release of water.

Since it is impossible to completely assure life safety, some low probability of deaths is deemed to be

tolerable, and since more deaths are generally less tolerable than fewer deaths, we offer acceptance

criteria that tolerate more earthquake-related deaths albeit with lower probability.

2.3.2 Potential Failure Modes

Identifying, fully describing, and evaluating site-specific potential failure modes and sequences

leading to failure are arguably the most important initial steps in conducting a structural analysis

of a dam, assessing the dam safety assessment, developing an instrumentation plan, budgeting

funds for modifications, and scheduling maintenance (FEMA-PFM, 2011). The process can clearly

show why certain activities are undertaken or why certain decisions are made. This process lays

out potential problems with a facility, develops the sequence of events required to adversely affect

the facility, and finally helps all involved to better understand the facility.

A facilitated multi-discipline team (rather than individual person) is best for developing po-

tential failure modes for a concrete dam since concrete dams are complex structures and synergy

develops within a group. A complete understanding of the structure would involve team mem-

bers with specialties in seismology, concrete construction, concrete materials, structural stability,

foundation materials, rock mechanics, foundation stability, and dam operations.

There are two basic methods of developing potential failure modes. The first method starts

with initiating events and then determines possible adverse effects. The second method identifies

potentially adverse effects and then determines possible mechanisms that could lead to it. Both

should be used to make sure all modes are captured.

After the potential failure modes are identified, they should be developed further by describing
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the sequence of events leading to failure that occur from an initiating event.

2.3.3 Categorize Identified PFMs

The identified PFMs should be categorized based on their importance. The importance of

the PFM is a function of what types of issues are deemed important to management, the client,

to society, etc. This could include statements concerning the potential loss of life, economic,

environmental, political, etc. The present thesis focus mainly on life safety, though they could be

extended using PBEE principles to repair costs and environment impacts.

After a PFM has been identified, described and screened, each one is categorized according

to the classification system shown in Table 2.2. This table gives definitions for categories to rank

potential failure mode analysis by FERC-PFMA (2005) and USBR-manual (2011). It does not

provide quantitative likelihood estimates for the identified PFMs.

2.4 Probabilistic Seismic Assessment of Concrete Dams

Although the application probabilistic methods in seismic safety and risk assessment of

framed structures (Rosenblueth, 1956), (Cornell, 1968), (Vanmarcke, 1977) and nuclear power

plants (Kennedy et al., 1980) has a half century history; however, it is relatively new in con-

crete dam engineering and to the best of the author knowledge, deArajo and Awruch (1998) is the

first solid research on this area (will be explained subsequently).

Different researchers adopted/used/improved part of probabilistic assessment methodologies

for concrete dam. Application of the probabilistic methods in concrete dam engineering can be

categorized into the following groups:

• Advanced failure mode analysis

• Advanced structural analysis

• Seismic fragility analysis

• Seismic damage correlation
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Table 2.2: Categories used to rank PFMs based on USBR-manual (2011) and FERC-PFMA (2005)

ID Code Identifier Definition

I

USBR-
USACE

Failure is in
progress or immi-
nent

The PFM has initiated and is in progress, in which
case emergency actions may be warranted, or the situ-
ation appears to be so dangerous, that increased mon-
itoring or other interim risk reduction actions may be
warranted while risk estimates and documentation are
being completed.

FERC Highlighted PFM Those PFMs of greatest significance considering need
for awareness, potential for occurrence, magnitude of
consequence and likelihood of adverse response are
highlighted.

II

USBR-
USACE

Failure mode is
credible

These PFMs are significant enough that they should
be carried forward into a risk analysis, but do not ap-
pear to require immediate action based on the available
information. Monitoring may be an appropriate risk
management activity.

FERC PFM consid-
ered but not
highlighted

These are judged to be of lesser significance consider-
ing need for awareness, potential for occurrence, magni-
tude of consequence and likelihood of adverse response.
They are still described and included with reasons for
and against the occurrence of the PFM.

III

USBR-
USACE

Insufficient infor-
mation to deter-
mine credibility of
failure mode

There is insufficient information to make a judgment on
whether these PFMs should be carried forward for risk
analysis. Increased monitoring may be an appropriate
interim risk management activity while information is
being collected.

FERC More information
or analyses are
needed in order to
classify

These PFMs to some degree lacked information to al-
low a confident judgment of significance and thus a dam
safety investigative action or analyses can be recom-
mended. Because action is required before resolution
the need for this action may also be highlighted.

IV

USBR-
USACE

Failure mode is
not credible

These PFMs are clearly so remote that the likelihood of
failure is negligible, and hence do not need to be carried
forward for risk estimates. However, they still need to
be documented along with the reasons they are consid-
ered to be negligible risk contributors. Monitoring is
likely not warranted for these PFMs.

FERC Failure mode
ruled out or is
considered not
viable

The candidate PFM is ruled out as a PFM because
the team discovers that the physical possibility for the
failure mode does not exist. Or the candidate PFM
is considered as not a viable one because it is found
to clearly be so remote as to be non-credible or not
reasonable to postulate based on information available
at this time.
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• Seismic reliability analysis

• Quantitative risk analysis

2.4.1 Advanced failure mode analysis

• deArajo and Awruch (1998): They proposed a methodology for probabilistic finite element

analysis of gravity dams. Both the concrete properties and seismic excitation were as-

sumed to be random variables. The seismic excitation was artificially generated using a

non-stationary stochastic process. On the other hand, the random concrete properties are

function of mean properties and the position vector on the structural domain. The position

vector itself is related to distance between each two point (usually center of elements), a

scale factor, and coefficient of variation of material property. They computed the safety

factors against sliding, concrete crushing at the toe and concrete cracking at the heel of

the dam for 50 simulations (Monte Carlo method). They also determined the cumulative

distribution of the safety factor against cracking at the heel and compared with the cu-

mulative distribution corresponding to a Gaussian variable. They reported that a good

agreement between two cumulative probabilities.

• Su et al. (2013): They proposed a probabilistic method to assess the lifetime performance

of the dams under deterioration. They determined the potential failure modes of the dam

and the influences of the correlations among them on series, parallel, or series-parallel struc-

ture were discussed. The limit state functions for failure modes derived. The progressive

deterioration of various random variables (describe the aging) was quantified. Finally, a

prediction model for remaining service life of the dam was proposed.

2.4.2 Advanced structural analysis

• Pan et al. (2015): They used an approximate incremental dynamic analysis (IDA) method

for seismic performance assessment of an arch dam. The used average response spectra of
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over 50 ground motions which already scaled to the target spectrum. Then, generated a

three-component artificial ground motion to match the target one. The generated signal is

used for single-record IDA of the dam-foundation system in different levels and the results

were presented in terms of displacement, concrete cracking and joint opening. They did

not verified this approximate IDA method with the conventional multiple-record IDA.

• Alembagheri and Ghaemian (2013b) and Alembagheri and Ghaemian (2013a): They per-

formed multiple-record IDA on both the gravity and arch dams. The system nonlinearity

was originated from concrete cracking and the effect of arch dam contraction joints was

neglected. They also applied the monotonic and cyclic pushover analysis on dam in order to

determine different limit states (e.g. yielding and ultimate points). Finally, they proposed

an energy-based damage index for capacity estimation of concrete dams.

• Hariri-Ardebili and Mirzabozorg (2014): They applied endurance time analysis (ETA)

method for seismic performance assessment of an arch dam. ETA provides a continuous

performance curve for the dam under different seismic excitation levels. They analyses

were performed for both the linear and nonlinear models and the results were correlated.

Furthermore, the results of ETA method verified with conventional time history analysis

(THA) at some discrete seismic excitation levels. They found that ETA and THA are

in good agreement and ETA can be used as an alternative method for IDA with less

computational efforts.

2.4.3 Seismic fragility analysis

• Tekie and Ellingwood (2003) and Tekie and Ellingwood (2002): Finite element method is

used for modeling the dam and foundation, while the Darbe’s approach (nodal masses in

series with dampers) is used for water simulation. Dam-foundation interface is modeled

by a Mohr-Coulomb friction law. The coupled system is analyzed using recorded ground

motions and a Monte Carlo method with Latin Hypercube sampling is used to reduce the
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computational efforts. The randomness in material property is originated from concrete

compressive strength, friction angle, cohesion and dilation angle of foundation rock. In

addition, the efficiency of vertical drains, the grout curtains and the effective uplift area

are also considered as random variables. They used a normal distribution for the concrete

compressive strength and a uniform distribution for all the other input variables.

Spectral accelerations of 0.3g, 0.5g, 0.7g, 0.9g, 1.0g, and 1.2g are used for the finite element

analyses. Twelve finite element analyses are performed for each spectral acceleration using

the selected ground motion records. They originally considered seven limit states, while

they used only four of them (LS4 to LS7) for developing the seismic fragility curves:

∗ LS1: Resultant outside the kern (rigid body analysis) or tension at the heel

∗ LS2: Resultant outside of middle half of base of dam

∗ LS3: Concrete material compressive failure (at the toe)

∗ LS4: Concrete material tensile failure (at the neck of the dam)

∗ LS5: Foundation material compressive failure (at the toe)

∗ LS6: Sliding at the dam-foundation interface

∗ LS7: Deflection of the top of the dam relative to the heel

• Lupoi and Callari (2011) and Lupoi and Callari (2012): They developed a probabilistically-

based methodology for seismic performance assessment of existing concrete gravity dams.

The procedure is capable of accounting for uncertainties both in material properties and

in external actions (ground motion and reservoir level) and also for multiple failure mech-

anisms. The dynamic interaction among the dam, foundation and reservoir is considered.

For the operational limit state, the following failure mechanisms are used:

∗ Excessive deformation of the dam body inducing service limitation for equipment and

installations.

∗ Cracking or sliding at dam base.



28

∗ Cracking at the dam neck.

∗ Cracking at the upstream face.

Four basic (material/structural) random variables are considered (as follows) and other

material properties and capacity models are developed based on them.

∗ Characteristic strength of concrete.

∗ Geological strength index of the rock mass.

∗ Error term in the drift capacity model.

∗ Error term in the capacity model for tensile strength at concrete-rock interface.

The transient analyses are performed for the combination of the ten selected ground motions

(all at PGA = 0.1g) and three different reservoir levels (leading to a total of 30 simulations).

Then, assuming a linear behavior, the dam response at higher seismic levels are obtained

by scaling up the results calculated for PGA = 0.1g. To evaluate the response gradients,

other sets of 30 analyses are required (for each basic random variable).

• Ghanaat et al. (2011), Ghanaat et al. (2012) and Ghanaat et al. (2015): They performed a

comprehensive analysis on different case studies of gravity dams (overflow and non-overflow

sections). Both the 2D and 3D models were investigated. The approach they employed is

similar to that used by Tekie and Ellingwood (2003). They mainly focused on sliding of the

dams either in based or at the neck area. They developed the fragility curves based on the

probability of the sliding failure. Both the lognormal and Weibull models are used. They

also compared the impact of epistemic plus aleatory uncertainties on the fragility curves

with respect to only epistemic one.

2.4.4 Seismic damage correlation

• Zhang et al. (2013b), Zhang et al. (2013a) and Zhang and Wang (2013): For a same case

study (2D model of a gravity dam), the authors investigated the correlation between the
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different characteristics of the input ground motions and the resulted damage. The concrete

damaged plasticity model including the strain hardening or softening behavior is applied in

nonlinear analysis. Westergaard added mass approach is used to apply the hydrodynamic

pressure in Zhang et al. (2013b), Zhang et al. (2013a), while the Lagrangian fluid-structure

model is used in Zhang and Wang (2013). They mainly focused on three features:

∗ Impact of mainshock-aftershock seismic sequences: Thirty mainshock-aftershock events

are used. They found that as-recorded sequences of ground motions have a significant

effect on the accumulated damage. Damage to the upper zone of the dam is more

sensitive to the aftershock. Moreover, the global damage index of the dam for seismic

sequences is 1.7 times than that for the first seismic event, on average.

∗ Impact of strong motion duration: Two sets of strong motion duration are used: 70%

and 90% of the Arias intensity. The originally selected 20 ground motions are trun-

cated based on these criteria and applied to the finite element model. The results show

that strong motion duration is positively correlated to the accumulated damage for

events with similar response spectrum, and has significant influence on the cumulative

damage.

∗ Impact of near-fault and far-fault ground motions: They applied 10 near-fault and

10 far-fault ground motions to the numerical model. They reported that the nonlin-

ear displacement time history of the dam crest under near-fault ground motions is

substantially different from that obtained from far-fault ground motions. Near-fault

ground motion has the potential to cause more severe damage to the dam. The upper

zone of dam is more vulnerable to near-fault ground motions.

• Hariri-Ardebili and Kianoush (2015): They analyzed an arch dam including massed foun-

dation with viscous boundary model and pressure-based fluid finite elements. A large set

of artificial ground motions are generated with different intensity levels and duration. Fi-

nally, 16 representative ground motions are selected and applied to the coupled system.
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The nonlinear response of the dam is correlated with the ground motion intensity level and

duration using over 12 intensity measure (IM) parameter. They found that increasing the

significant duration and the intensity level both lead to increasing the demand parameter.

In general, crest displacement has higher correlation with IM parameter than the joint

response and overstressed area ratio.

2.5 Dam Safety Decision-Making: Code Review

Risk management encompasses activities related to making risk-informed decisions, prior-

itizing evaluations of risk, prioritizing risk reduction activities, and making program decisions

associated with managing a portfolio of facilities. Risk management includes evaluating the envi-

ronmental, social, cultural, ethical, political, and legal considerations of all parts of the decision

process (USBR-manual, 2011), figure 2.8.

Failure mode
identification

(PFMA)

Risk Analysis

Risk Assessment

Dam Safety Risk Management

Decision Recommendation

Decision-Making
Risk Control

Risk reduction
measures

Recurring
activities

Periodic Re-
assessment

Risk
evaluation

Risk
estimation

Figure 2.8: Dam safety risk management

Risk assessment is “the process of deciding whether existing risks are tolerable and present

risk control measures are adequate and if not, whether alternative risk control measures are justified

or will be implemented. Risk assessment incorporates the risk analysis and risk evaluation phases”

(ANCOLD, 2003). Risk assessment encompasses activities including risk analyses and the decisions

resulting from individual risk analyses. This typically involves developing and evaluating poten-
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tial failure modes, coordinating supporting engineering studies, developing structural loads, risk

analysis, consequence analysis, and recommendations to support decisions. There is some overlap

between risk assessment and risk management as they are both integral in decision-making.

Several water resources-related regulators and government entities have developed tolerable

risk guidelines of various origins. These ranges from fairly broad qualitative guidelines like those

used by the UK Health and Safety Executive (HSE) to strict quantitative criteria, such as those

developed by Australian National Committee on Large Dams (ANCOLD) to be used by regulatory

agencies and dam owners. Tolerable risk means different things to different people and organiza-

tions. Some focus on economic risks to their company or organization (insurance, chemical, offshore

oil and gas, etc.) while others focus on loss of life (USBR-manual, 2011).

In order to evaluate tolerable risks using quantitative risk estimates, numeric tolerable risk

thresholds or guidelines have been developed by several agencies. Specifically related to dams, four

entities have extensive information that relate directly to tolerable risks for water resources facilities

- HSE, ANCOLD, and the New South Wales Dam Safety Committee (NSW DSC). In addition, the

Canadian Dam Association (CDA) and the U.S. Bureau of Reclamation (USBR) have developed

tolerable risk guidelines, which are similar.

First, the methodology used by USBR is reviewed in detail (Sec. 2.5.1). Recommendations

by other agencies will briefly reviewed later.

2.5.1 U.S. Bureau of Reclamation

Reclamation uses two guidelines to assess dam safety risk, 1) “Annualized Failure Proba-

bility”, which serves to fulfill the public trust responsibility associated with agency exposure as a

result of dam failures, and 2) “Annualized Life Loss”, where multiple fatalities are possible as the

result of dam failure (USBR-manual, 2011).

• Annualized Failure Probability: There is no such thing as a dam with zero chance of failure.

However, the probability of dam failure must be very low. Reclamation terms this measure

of risk Annualized Failure Probability, and uses a guideline of 1 in 10,000 per year for
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the accumulation of failure likelihoods from all PFMs that would result in life-threatening

unintentional release of the reservoir.

• Annualized Life Loss: Reclamation defines the risk as Annualized Life Loss, and uses a

guideline of 0.001 fatalities per year to address it. When the mean estimate is above

the guideline of 0.001 fatalities per year, there is generally greater need to take action to

reduce or better understand the risks. There is generally decreasing need to reduce or

better understand the risks when they are below this guideline value. The primary means

to portray risks is a risk curve that relates frequency f (mean number of events per year)

of N or more fatalities, as a function of N (f-N chart). Figure 2.9 illustrates the USBR’s

f-N risk chart.

It is important to notice the differences between the f-N and F-N charts:

• An f-N “event” chart is composed of individual f-N pairs. Each pair typically represents

one failure mode or the summation of selected failure modes. f represents the “annualized

failure probability” and N represents the expected life loss or number of fatalities.

• F-N chart is, in fact, a complementary cumulative distribution function to portray risk.

Horizontal axis shows the number of fatalities, N, and the vertical axis represents the

annual exceedance probability of causing “N” lives or greater.

2.5.2 UK Health and Safety Executive (UK-HSE)

The HSE proposes that F-N curves can be helpful for decision-making; however, it does

not specifically promote one for water resources structures. Instead it proposes figures 2.10 and

2.11 for individual and societal risk, respectively. They are inverted triangular in which the shape

indicates the amount of attention and risk limit on a particular situation (HSE, 2001). Except in

extraordinary circumstances, unacceptable risks must be reduced regardless of the cost of the risk

reduction measures.
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Figure 2.9: USBR risk guidelines (USBR-manual, 2011)
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Figure 2.10: HSE individual risk limits (HSE, 2001)

2.5.3 Australian National Committee on Large Dams (ANCOLD)

For individual risk, ANCOLD sets tolerable risk limits as: “For existing dams, an individual

risk to the person or group, which is most at risk, that is higher than 10−4 per annum is unacceptable,

except in exceptional circumstances; for new dams of major augmentations of existing dams, an

individual risk to the person or group, which is most at risk, that is higher than 10−5 per annum is

unacceptable, except in exceptional circumstances (ANCOLD, 2003).” In addition, ANCOLD sets
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Figure 2.11: HSE societal risk limits (HSE, 2001)

tolerable risk limits for societal risk based on figure 2.12.
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Figure 2.12: ANCOLD societal risk guidelines (ANCOLD, 2003)

2.5.4 New South Wales Dam Safety Committee (NSW DSC)

The NSW DSC guidelines are similar to that of ANCOLD with some differences. The first is

that they treat dams with the potential to cause more than 1000 fatalities differently. NSW DSC

social risk guidelines are shown in figure 2.13. The second exception is that they ignore the lower
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bound horizontal truncation of the societal risk limit of 10−5 used by ANCOLD and instead adopt

a more rigorous 10−6 limit for existing structures (NSW, 2006).
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Figure 2.13: NSW DCS societal risk guidelines (NSW, 2006)

2.5.5 Canadian Dam Association (CDA)

The CDA uses similar terminology and definitions to ANCOLD, HSE, and NSW DSC. This

guideline states: Individual risk relates to concerns of how individuals see the risk from a particular

hazard affecting them and their property. It is usually defined as the risk to a hypothetical member

of the public living in the zone that can be affected in the event that a hazard occurs. The criteria

for individual risk depend on such factors as whether or not the exposure is voluntary, whether the

individual derives benefits from accepting the risk, whether the individual has some control over the

risk, and whether the risk engenders particular dread (CDA, 2007).” CDA societal risk guidelines

are shown in figure 2.14.
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Chapter 3

Capacity Function for Concrete Dams

This chapter is based on:

Hariri-Ardebili, M.A. and Saouma, V.E., (2015), Capacity Functions for Concrete Dams:

Review and Revisit (under preparation for Bulletin of Earthquake Engineering)

3.1 Introduction

Safety of infrastructures (concrete dams in this paper) is affected by many events. A com-

prehensive safety evaluation methodology should takes into account all the possible ones. The final

decision making can be based on either the critical one or resultant of all events with their contri-

butions. Safety assessment can be performed within the concept of performance-based engineering

(PBE). This is a process that begins with the first concepts of a project and lasts throughout the

life of the structure Bertero and Bertero (2002).

PBE of buildings and infrastructure has been indirectly undertaken since the introduction

of strength for concrete structures design in the 1960s Whittaker et al. (2003). It was included

force-based analysis and design checking of components using:

∑
αi Li ≤ φC (3.1)

where αi is load factor, Li load effects (dead load, live load, ...), φ a capacity reduction factor and

C the component capacity.
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In concrete dams, “failure” refers to the uncontrolled release of the reservoir water. This

may or may not always be the case, and any other definitions are acceptable for failure based on

the purpose of the project (FERC-PFMA, 2005). The initiating events leads to failure of dam are

(Hariri-Ardebili et al., 2015): 1) hydrologic events such as flood and increasing flow through the

spillway; 2) static events such as reservoir water load, ice load, and equipment failure; 3) material

deterioration such as erosion, and alkali-aggregate reaction (AAR) in the concrete; 4) increased

seepage, clogging of drains, degradation of the grout curtain; 5) seismic events such as earthquake

load; and 6) other initiators such as human operating errors, fire, landslides into the reservoir,

vehicular impact, underwater explosion, sabotage, vandalism.

Considering only the most probable events, i.e. seismic, hydrologic, and material degra-

dation, the capacity of the dam should be evaluated within the context of PBE. This concept

is already developed for different events, e.g. performance-based earthquake engineering (PBEE)

(Porter, 2003), performance-based fire engineering (PBFE) (Wang et al., 2012), performance-based

hurricane engineering (PBHE) (Barbato et al., 2013), performance-based blast engineering (PBBE)

(Whittaker et al., 2003), and performance-based wind engineering (PBWE) (Ciampoli et al., 2011).

One of the common points among all of them is to evaluate the capacity of the structure subjected

to that specific event with varying amplitude. This helps to have the response of the system in

different structural levels (i.e. linear, nonlinear, collapse).

In this paper, the concept of “capacity function” is introduced for concrete dams and is

combined with the existing structural analysis techniques. Figure 3.1 shows the position of capacity

function inside the global framework for performance-based assessment of concrete dams.

First the general concept and the mathematical model is presented for capacity function.

Then different mechanics-, hydraulic- and earthquake-based structural analysis methodologies are

reviewed in detail. Finally, their application is concrete dam engineering is studied.
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Figure 3.1: Global framework for PBE of concrete dams

3.2 Capacity Functions

3.2.1 Fundamental Definitions

First, let us distinguish different terms related to the “capacity” of the structural system.

Capacity Curve : In its original definition, this refers to a nonlinear force-displacement curve

(Freeman, 1978). It is determined by statically loading the structure to calculate the roof

displacement vs. base shear. This curve also refers to pushover curve (Freeman, 1998).

In the lab, the load-displacement curve may be captures by set up either load control

or displacement control protocols, depending on the availability of the facilities. However,

using displacement control test, the post-failure can be captured. The conventional capacity

curve can also be plotted in term of dissipated energy, referred to energy-based capacity
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curve (DAmbrisi and Mezzi, 2014).

Capacity Diagram : This refers to the pseudo-acceleration vs. deformation spectrum ordinate

(Chopra and Goel, 1999). This is computed dividing the base shear by the effective modal

mass at the fundamental vibration mode and the top displacement by the mass participation

factor. It is also called capacity spectrum.

Capacity Function : This is defined as a relationship between an external (or internal) parameter

affects the capacity of the structure, referred as “stressor” (S), and “response” (R) of

the system in the macro level. In spite of the conventional capacity curve, the capacity

function is a more general concept and can generated by any of the initiators explained in

introduction and is not limited to only seismic action.

Stressor: can be 1) incrementally increasing monotonic, cyclic or time-dependent load

(or displacement, acceleration, pressure); 2) incrementally decreasing the resistance

parameter or degradation of the strength properties; and 3) discrete increasing/de-

creasing critical parameter in a system leads to failure. In PBEE, S is usually called

intensity measure (IM) parameter (Porter, 2003). However, in the present paper, S

has a more general definition and refers to any quantity that its variation (continuous

or discrete) may leads to progressive failure in the system and its final collapse.

Response: is a representative of the system behavior under the varying stressor. It is

represented either in an absolute sense or relative one. R can be 1) single damage

variable (DV) such as drift and energy dissipation, 2) combination of several DVs in

term of damage index (DI); and 3) any safety monitoring index (Wang et al., 2013a). In

the field of earthquake engineering, R is usually called engineering demand parameter

(EDP) (Vamvatsikos and Cornell, 2004).
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3.2.2 Mathematical model

Figure 3.2(a) shows a sample capacity function normalized in both axes for simplicity. Three

parts are detectable in this curve 1) linear, 2) nonlinear, and 3) asymptotic to horizon. The linear

part refers to the elastic behavior of the structure; the nonlinear part refers to a transient from elastic

to plastic (or any other nonlinear model); and the horizontal part represents the failure/collapse

of the system. Also, figure 3.2(b) shows the derivation of the vertical axis with respect to the

horizontal one ∂S
∂R . In the first part the slope is constant, in the last part it is zero, and in the

transient part the slope decreases regularly or in an irregular pattern. There are three important

assumptions/key-points in the ideal capacity functions:

(1) Some of the capacity estimation methods are capable of capturing the post-failure behavior

as will be discussed in section 3.3.5. It means that there is another part (forth part) in

capacity function which has a decreasing nature (linear or nonlinear pattern). However, in

the present study, we only consider the concrete dam behavior up to failure.

(2) Depends on the progressive failure methodology (section 3.3) used to derive the capacity

function, we may have only one, two or all three parts. Mathematically, the absence of

each part is modeled by considering very small variation for that part (Ri −→ 0).

(3) The capacity function shown in figure 3.2(a) and the subsequent mathematical representa-

tion in this section are idealized (and smoothed) one. In reality, single capacity curve has

not uniform trend (especially in nonlinear phase) mainly due to specific characteristics of

the model and analysis. However, it is a common practice to quantify the epistemic and

aleatory uncertainties and use the mean or median curve, which are smoother (Vamvatsikos

and Fragiadakis, 2010).
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Figure 3.2: A sample idealized capacity function (normalized form)

One can express the capacity function though analytical models. The analytical solution may

have the following general form in its simplest format:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
S1 = a.R+ b for 0 ≤ R < Re

S2 = fN (R) for Re ≤ R < Ru

S3 = c for R ≥ Ru

(3.2)

where a, b and c are constants; fN is a nonlinear function which represents the transition part; Re

and Ru are the limits for the elastic and ultimate responses. The following boundary conditions

also should be satisfied when the three parts are connected to form an unified function:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

fN (Re)− a.Re − b = 0 for R = Re

fN (Ru)− c = 0 for R = Ru

∂
∂SfN (Re)− a = 0 for R = Re

∂
∂SfN (Ru) = 0 for R = Ru

(3.3)

It is possible to find a closed-form solution for the nonlinear function, fN , by curve fitting

to data obtained from numerical analyses or experimental test. Figure 3.3(a) shows an attempt to

fit a three-part function to the original data points. The nonlinear least-square method is used for

curve fitting (MATLAB, 2013). The residuals of the fitting also is shown in figure 3.3(b). As seen,

the residuals are limited to 1% in this case. Also, all the residuals come from the second part of

the curve (nonlinear transient part). For this specific example, the following function is selected:

fN (R) = α1 + α2.
1− eα3.R+α4

1 + eα5.R+α6
, Re < R < Ru (3.4)
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where αi (i=1, 2, ..., 6) are the constants of the model obtained from nonlinear least-square curve

fitting.
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Figure 3.3: Fitting an analytical capacity function

Figure 3.4 shows some of the probable form of the Eq. 3.4. All have the increasing nature.

The first two ones have Concavity down and up, respectively; and the third one has an inflection

point. It should be noticed that fN is not limited to a specific form and can be represented in

other forms also. Recently, Pujades et al. (2014) showed that the nonlinear part of a conventional

capacity curve can be simulated by either cumulative lognormal or Beta functions.
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Figure 3.4: Different forms of the nonlinear function fN based on Eq. 3.4

As discussed above, the capacity functions are used to determine the capacity of the concrete

dam from linear phase to nonlinear and failure. Knowing the anatomy and general form of the

capacity functions, it is important to discuss on different failure analysis methodologies that the

capacity functions can be obtained.
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3.3 Numerical Modeling of Progressive Failure in Concrete Dams

In general, static mechanics-based, hydraulic-based, Quasi-static, pseudo-dynamic and dy-

namic methods can be used for capacity estimation. Selection of the appropriate method depends

on the application and desired level of accuracy. The methods for failure analysis and capacity

function derivation are summarized in this section.

3.3.1 Strength Reserve Factor (SRF)

This method is usually used to study the ultimate bearing resistance (capacity) of the dam

and its foundation. It is capable to emphasize the uncertainty and possible weakening effect of

material strength so as to study the strength reserve degree of a structure (Wei et al., 2008).

Let κSRF is the strength reserve factor (κSRF > 1.0), andMO is the original material property

of the dam with the capability of deterioration (tensile strength of concrete, modulus of elasticity,

cohesion, and ...). Then, strength reduction can be calculated as MO/κSRF . Then, in an iterative

procedure, the new properties are replaced with the previous ones. It is noteworthy that the loading

condition (static loads) is kept unchanged and the system is analyzed for the new conditions.

Gradually increasing κSRF leads to progressive failure from local to global scale and final failure

of the system. Consequently, R can be recorded for each of the analyses up to failure. κSRF vs.

R plot can be derived which is the capacity function indeed. Figure 3.5(a) shows this procedure

schematically.

3.3.2 Time-dependent Strength Degradation (TSD)

This method is usually deals with uncertainty in time-dependent problems. This phenomenon

is usually observed under special environmental conditions. Examples are alkali-aggregate reaction

(AAR), alkali-silica reaction (ASR) (Saouma et al., 2015), and creep (Bazant, Z.P., 1988). AAR,

creep and shrinkage are usually connected to each other. External manifestation (expansion) of

AAR may be hidden by creep and shrinkage (contraction). Figure 3.6 shows a strain variation in a
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Figure 3.5: Capacity estimation by mechanics-based methods

dam assuming that the elastic strain is εel = 0.0003, creep strain is εcrp = 0.001 and AAR strain is

ε∞AAR = 0.005. It is apparent that the external manifestation of AAR has been substantially delayed

by shrinkage/creep, and great care should be exercised in discerning shrinkage/creep contraction

strains from AAR expansion ones.

AAR is a chemical reaction leads to expansion of the gel, reduction in strength and stiffness

of the material, generating some micro-cracks and consequently, reducing the bearing capacity of

the dam concrete (Saouma et al., 2007).

TSD-AAR is used for assessing the capacity of the concrete dams affected by ARR during its

life time and define the remaining strength against the existing loads. The second author developed

a comprehensive uncoupled model for the incremental free volumetric AAR strain:

ε̇AAR
V (t, θ) = Γt

(
ft

′|wc, σI |CODmax

)
Γc

(
σ̄, fc

′)︸ ︷︷ ︸
Retardation

g(h)︸︷︷︸
Humidity

ξ̇ (t, θ)︸ ︷︷ ︸
Kinetics

ε∞|θ=θ0︸ ︷︷ ︸
Strain

(3.5)

• Retardation: Γt and Γc account for AAR reduction due to tensile cracking and the AAR
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Figure 3.6: AAR and creep interaction (Saouma, V., 2014)

volumetric expansion reduction under compressive stresses. ft
′ and fc

′ are the tensile and

compressive strength, respectively. σI is the first invariant of the stress tensor, σ̄ is the

combination of principal stresses. CODmax is the maximum crack opening displacement at

the Gauss point, and wc the maximum crack opening displacement on the tensile softening

curve.

• Humidity: g(h) is function of relative humidity, h. For most of the practical cases, g(h) −→

1.

• Kinetics: In the present paper, the AAR expansion evolution is modeled using thermodynamical-

based Larive (1997) model:

ξ (t, θ) =
1− e

− t
τc(θ)

1 + e
− t−τl(θ)

τc(θ)

(3.6)

where τl(θ) and τc(θ) are the temperature-dependent latency and characteristic times, re-

spectively.

• AAR strain: ε∞ is the maximum free volumetric expansion at the reference temperature

θ0.
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This AAR process results in time-dependent material deterioration:

M (t, θ)

M0
= 1− (1− βM ) ξ (t, θ) (3.7)

where M is either modulus of elasticity, E, or tensile strength, ft
′, M0 is the original material

property and βM is residual fractional value when strain tends to ε∞AAR.

The numerical formulation of AAR expansion and material degradation/cracking is already

applied in the finite element code “Merlin” by the second author. A sample application of the

proposed model on two concrete dams and a RC frame structure is discussed in Saouma et al.

(2007). Once the time-dependent material degradation is applied in the numerical model, the

system is analyzed under the current load condition in order to determine the capacity function.

Time history of the desired R is recorded. This procedure is shown in figure 3.5(b).

3.3.3 Hydro-pressure Overload Factor (HPOF)

This method mainly deals with the uncertainty of the applied load to determine the bearing

capability of the structure. It is also called triangle overloading method through a progressive

overloading of the upstream water pressure, which is assumed equivalent to the increase of water

density. Meantime, all other properties of the dam and foundation are kept unchanged (Li and

Ren, 2013).

Let κHPOF is the overload factor (κHPOF > 1.0), and P0 denotes the total hydrostatic load

at the normal reservoir level. Then, overloading can be calculated as κHPOF ×P0 (Liu et al., 2003).

In this method, the shape of the loading vector is the same for all increments. Therefore, the finite

element model can be overloaded by multiplying the mass density of water in overload factor, i.e.

κHPOF × ρw.

Hydro-pressure overload factor method is a suitable way to calibrate the the structural

physical-model experiments (Zhu et al., 2010) where the hydrostatic pressure is applied by servo-

controlled hydraulic jacks on the upstream face. This method usually needs a large κHPOF to leads

collapse of the system. Consequently, κHPOF vs. R plot can be derived for the system as shown in
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figure 3.7(a).
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Figure 3.7: Capacity estimation by hydraulic-based methods

3.3.4 Flood Overload Factor (FOF)

This method mainly deals with the uncertainty in potential flood on dam and the resultant

applied pressure to determine the capability of the structure. In this method, the dam is overloaded

by increasing the water head continuously. A sample application explained in (Comi et al., 2009).

This method is similar to HPOF; however, technically in FOF the applied load is more uniform

in height, while in HPOF, the main overloading is handled by the base of the dam. In 2D gravity

dams, both the HPOF and FOF methods may end up to a similar capacity functions, because the

gravity dam is only stands on its base. In 3D arch dams, the structure is supported both in base

and the abutments (support along the height). Thus, HPOF and FOF may lead to different failure

modes and consequently, different capacity functions.

First, a hydrologic hazard curve should be derived for the reservoir (Swain et al., 2004). It is
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a graph of peak flow (or volume or maximum reservoir elevation - El.) versus annual probability of

exceedance (APE). Then, the head of the water is increased based on a linear protocol. Let κFOF

is the flood overload factor (κFOF > 1.0), and H0 denotes the normal reservoir level. Then, flood

overloading is calculated for new water level as κFOF × H0. The shape of the loading vector in

FOF is different than HPOF. Figure 3.7(b) shows the step-by-step procedure.

3.3.5 Pushover-based Analysis (POA)

This method is mainly used to determine the load-displacement curve in the structural sys-

tems. In this method, the magnitude of applied load (or displacement) is increased incrementally

according to a predefined protocols up to the failure. Extracting the capacity curve is usually one

of the steps in POA. Different versions of the full POA for the frame structures investigated already

by Freeman (1978), Chopra and Goel (1999), Fajfar (2000), Chopra and Goel (2002), Antoniou

and Pinho (2004b), Casarotti and Pinho (2007) and Giorgi and Scotta (2013). These are different

classifications for POA. Classification based on the type of the load vector (varying quantity):

• Forced-based Pushover Analysis (FPA): In this method, a scaled force vector is applied

along the structure. In each step, the index point displacement is plotted vs. base shear.

• Displacement-based Pushover Analysis (DPA): In this method, a displacement vector is

applied incrementally to the structure and the corresponding base shear is recorded. Sub-

sequently, the base shear vs. max displacement is plotted for the structure (Antoniou and

Pinho, 2004b).

• Energy-based Pushover Analysis (EPA): In this method, the displacement is applied based

on the energy (area under the force-displacement curve) increments (Hernandez-Montes

et al., 2004). Figure 3.8(a) compares three above-mentioned POA methods for a sample

frame.

In the another classification, the POA is categorized based on the applied load distribution

pattern:
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• Conventional POA (CPOA): CPOA is the nonlinear incremental-iterative solution of the

equilibrium equation KU = P in a finite element formulation, where K, U and P are

nonlinear stiffness matrix, displacement and applied load vectors, respectively. In this

method, the lateral load can be a set of forces or displacements that have a necessarily

constant ratio throughout the analysis (fixed pattern) (Papanikolaou and Elnashai, 2005).

The critical parameters in CPOA are: 1) the lateral load nature, 2) load distribution

pattern along the height, 3) load magnitude, 4) number of applied load steps, 5) iterative

strategy, and 6) the convergence criteria.

• Adaptive POA (APOA): In APOA, the analysis starts by assuming an initial lateral load

distribution whereas the additional loads imposed in subsequent increments are calculated

from the previous load step (Antoniou and Pinho, 2004a). The applied load is updated

based on the instantaneous dynamic characteristics of the structure and a site-specific

spectrum. Figure 3.8(b) shows two capacity functions for CPOA and APOA and also the

load distributions in different levels of elastic, yielding, and collapse.
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Figure 3.8: Classification of the pushover-based capacity functions

The following subsections classify the POA based on the lateral load pattern distribution on

the concrete dams:
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3.3.5.1 Invariant single load vectors

This method which is recommended by FEMA (2000) includes two sets of lateral load distri-

butions:

(1) Load vector consists of a vertical distribution proportional to:

• Pseudo lateral load which is governed by f∗
i = mi(hi)

k at the height of the structure,

where, f∗
i is the lateral force, mi is the mass of the ith lumped mass, hi is the height of

the ith lumped mass above the datum and the exponent k=1 is used for the structures

with T1 ≤ 0.5 s (which is the case for most of the concrete gravity dams).

• Elastic first mode shape which is governed by f∗
i = miφi1 at the height of the structure.

In this load vector, φi1 is the fundamental mode shape component at the ith lumped

mass.

• Story shear distribution computed by response spectrum analysis in which f∗ is defined

by the lateral force back-calculated from the story shears determined by linear response

spectrum analysis of the structural system including at least 90% of the total mass.

For the gravity dams, the story shear is computed along the lift joints.

(2) Load vector consists of mass proportional uniform load pattern, f∗
i = mi, or adaptive load

patterns that changes as the structure is displaced. This distribution should be modified

from the original distribution by considering properties of the yielded structure.

3.3.5.2 Invariant multi-mode vectors

(1) Modal Pushover Analysis (MPOA): In MPOA, the seismic demand due to individual terms

in the modal expansion of the effective earthquake forces is determined by a POA using

the inertia force distribution for each mode. Combining these modal demands provides an

estimate of the total seismic demand on inelastic systems (Chopra and Goel, 2002). In
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MPOA, the lateral force distribution for the in each mode is expressed as:

fMPOA
n =

{φn}T [m] {i}
{φn}T [m] {φn}︸ ︷︷ ︸

Γn

[m] {φn}ω2
nDn︸ ︷︷ ︸
An

(3.8)

where fMPOA
n is the lateral force distribution in each mode, [m] is the mass matrix of

the structure, {φn} the corresponding mode shape, ωn the frequency and Dn the modal

displacement. Γn is the modal participation factor of the nth mode and {i} is the unit

vector.

(2) Modified Modal Pushover Analysis (MMPOA): The MMPOA is an extension of MPOA,

combines the elastic influence of higher modes with the inelastic response of a first mode

pushover analysis using modal combination rules. The procedure involves conducting a

nonlinear time history analysis of the first-mode SDOF system unless an inelastic response

spectrum is available for the target (design) ground motion (Chopra and Goel, 2002).

(3) Upper-bound Pushover Analysis (UBPOA): The UBPOA is based on utilizing a single load

vector obtained as the combination of the first mode shape and a factored second mode

shape. The spectral displacements corresponding to elastic first and second mode periods

are estimated from the elastic spectrum of the considered ground motion and the upper-

bound contribution of the second mode is established using modal participation factors

(Chopra and Goel, 2002).

3.3.5.3 Hybrid load vector

As it was mentioned already, the lateral load vector should be applied to the structural system

with the same (or as close as possible) pattern of the imposed seismic lateral loads in an earthquake

event. Despite of the conventional frame structures in which the load vector is mainly composes

by the inertia loads due to the frame self-weight, concrete dams experience one another load vector

due to the reservoir water pressure which is the hydrodynamic load. Thus, a hybrid load vector is

required to be applied incrementally.
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For concrete gravity dams, obviously there is a non-uniform mass distribution along the

height. Gravity dams usually have small vibration period and are known as first-mode predominant

structures. Figure 3.9 shows the variation of the natural period of a typical gravity dam as well as

some of the selected mode shapes based on finite element technique. Thus, assuming that dynamic

behavior of the gravity dam is mainly originated from its first vibration mode, the inertia load

vector can be represented as:

finr(z) = mc(z) φ1(z) (3.9)

where finr(z) is the lateral load vector due to inertia loads, mc(z) represents the mass distribution

along the height of the dam, φ1(z) is the normalized fundamental model shape of the dam, and

z is measured from the dam base. Considering the homogeneous concrete in dam body, the mass

distribution is proportional to the width of the dam along its height. Thus, for the equal increments

of the dam height mc(z) = ρcb(z), where ρc is the concrete mass density and b(z) is the height-

dependent dam width.
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Figure 3.9: Modal analysis of a typical gravity dam including major mode shapes

Subsequently, the hydrostatic pressure and total force are function of the water height and

represent as:

phst(z) = ρw g (Hw − z), fhst(z) =
1

2
ρw g (Hw − z)2 (3.10)

where ρw is the water mass density and Hw is the reservoir water height.

During an earthquake, the interaction between the dam and the reservoir creates additional

pressures on the upstream face of the dam. These hydrodynamic pressures may be approximated
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either by the Westergaard (1933) formula or Zangar (1953).

• Westergaard (1933) uses a parabolic approximation for the additional pressures due to

earthquake motion as:

pwhdy(z) =
7.99 αGM Kθ√
1− 7.75

(
Hw

1000T

)2√Hw(Hw − z) (3.11)

where αGM measures the intensity of the ground motion by the relation ag = αGMg, where

ag is the maximum horizontal acceleration. For the sloped upstream face, a correction

factor Kθ should be applied. For an angle of slope θ from the vertical, the correction factor

is Kθ = cos2 θ, and T is the period to characterize the ground seismic acceleration imposed

on the dam. In this relation units are in kilo-newton, meter, and seconds.

• Using an electric analog Zangar (1953) determined experimentally the hydrodynamic effect

of horizontal earthquake action on dams having upstream faces with either constant or

compound slopes. The pressure is given by:

pzhyd =
Cm

2

[
z

Hw

(
2− z

Hw

)
+

√
z

Hw

(
2− z

Hw

)]
︸ ︷︷ ︸

Cz

αGMρwHw (3.12)

where all the parameters are similar to Westergaard model and Cz is a coefficient with

the maximum value of Cm. Figure 3.10(a) shows the variation of Cm and Cz at the dam

base for different slopes of the upstream face. As seen, almost for all angles, the Cz is not

maximum at the base. Also, figure 3.10(b) represents the values of the empirical pressure

coefficient, Cz, with respect to the normalized height.

All the inertia, hydrostatic and hydrodynamic forces should be combined to form the final

lateral load vector on the dam. The total lateral load vector can be composes as:

fhybrid(z) = δ1finr(z) + δ2fhst(z) + δ3fhdy(z) (3.13)

where δi (i=1, 2, 3) is the weight proportional factors among the load vectors and should be

obtained for the considered dam by comparison of the total base shear of the dam for the full and
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Figure 3.10: Zangar (1953) pressure coefficient

empty reservoirs. There are some preliminary recommendations by Alembagheri and Ghaemian

(2013b) for a specific gravity dam (Pine-Flat dam).

It should be noticed that the hydrostatic force is independent of earthquake and is kept

unchanged during incrementally increasing the inertia and hydrodynamic loads. Another important

point in correct derivation of a capacity function for a dam-reservoir-foundation system based on

POA is to account for the uplift pressure at the dam-foundation interface. Uplift pressure decrease

the capacity of the dam. Note that the uplift is not affected by earthquake (its depends on the head

water and the crack length, lcr, at the dam-foundation interface). Figure 3.11 shows a flowchart

for applying a hybrid load vector on the coupled dam-reservoir-foundation system.

It is noteworthy that due to un-biased nature of the concrete dams, the computed lateral load

should be applied twice monotonically and in separate analyses, i.e. on the upstream face towards

the downstream direction, and on the downstream face towards the upstream direction. The final

function is the one with less capacity.

3.3.6 Cyclic Pushover Procedure (CPP)

In the POA, the loads are applied statically to the structure and thus strain rate is negligible.

However, when a concrete structure is subjected to cyclic loading, cumulative damage occurs under

repeated loads resulting in stiffness degradation and strength deterioration (Panyakapo, 2014). A

research shows that the monotonic loading provides greater strength than the cyclic loading for
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Figure 3.11: Algorithm for derivation of capacity function using hybrid load vector

RC frame structures (Koutromanos et al., 2011). Considering that the mass concrete structures

(concrete dams in general as brittle structures) follow the same rules, it is more appropriate to

apply a cyclic load to capture the capacity function. Similar to Eq. 3.8, a lateral force vector can

be derived for a CPP as suggested in (Panyakapo, 2014):

fCPP
n = λjΓn[m] {φn}An (3.14)

where fCPP
n is the lateral force distribution for cyclic pushover in each mode. j defines the sequence

numbers of peak displacement for the specified displacement history, and λj = (−1)j+1 is a factor

defines the direction of force.

Key point in successful implementation of CPP is to use the appropriate displacement time

history. Different displacement time histories were proposed for experimental studies which can be

distinguished in: 1) total number of cycles, 2) number of initiation cycles, 3) number of primary

cycles, 4) inclusion of trailing cycles, 5) inclusion of repeating cycles, 6) sequence of amplitudes of
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primary cycles, 7) reference parameter, and 8) loading symmetry (Filiatrault et al., 2008).

To the best of the authors knowledge, there is no specific recommendation for appropriate

selection of the cyclic loading protocol on the concrete dams; however there are some applications

as explained in Ghobarah and Ghaemian (1998) and Alembagheri and Ghaemian (2013b). In the

present paper, the following protocols are recommended for concrete dams:

Experimental Cyclic Test Protocol : Displacement histories can be categorized based on the

type of the structure as:

• Concrete structures: New Zealand protocol (Cheung et al., 1991)

• Steel structures: ATC-24 protocol (Council, 1992), SAC protocol (Clark et al., 1997).

• Wood structures: FCC protocol (Karacabeyli, 1998), ASTM E72 protocol (1995),

ASTM E564 protocols (1995), CEN protocol (1995), ISO protocol (1998), CUREE-

Caltech protocol (2000)

• Masonry structures: Sequential Phase Displacement (SPD) protocol

New Zealand protocol (Cheung et al., 1991) which is basically developed for concrete struc-

tures can be a good choose for concrete dams. Also, SPD can be used considering that the

cracking pattern of the masonry material is similar to mass concrete.

New Zealand protocol is based on a yield displacement, Δy, obtained by extrapolating the

displacement of the test specimen at 75% of the theoretical strength, Vi, measured during

the third cycle of the loading sequence (Δy = 1.33Δ0.75Vi). Although this protocol does

not need to preliminary monotonic test, theoretical strength of the test specimen should

be defined first. Displacement history for this protocol is shown in figure 3.12(a). The first

three cycles are load controlled. The first two cycles impose a lateral force corresponding to

50% of Vi. The first yield displacement is determined in the third cycle. The other cycles

are displacement controlled based on displacement ductility ratio (μΔ = Δ/Δy).

It is clear that the capacity function will have a cyclic nature in this method. The envelope
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Figure 3.12: Cyclic pushover procedure for New Zealand protocol

of this loop should be determined to obtain a capacity function similar to monotonic loading.

For this purpose, ASCE/SEI4106 (2007) criterion can be used which takes into account the

strength and stiffness deterioration. The capacity function is obtained using the points

given by the intersection of an unloading branch and the loading curve of the next load

cycle that goes to a higher level of displacement. Figure 3.12(b) shows the cyclic pushover

function and its envelope (capacity function) for a sample frame. The envelope curve may

be smoothed further to be used in conjunction with the analytical solution provided in

section 3.2.2.

Numerical Cyclic Loading Protocol : Filiatrault et al. (2008) proposed a numerical cyclic pro-

tocol which was resulted taking into account the general properties of all the experimental

protocols. This is two-step process including both the monotonic and cyclic analyses:

(1) Monotonic POA: Perform a preliminary POA and derive the capacity curve. Identify

the failure displacement, Δy. The expected failure displacement corresponds to a

fraction, αy, of the maximum base shear. αy is either calibrated based on the results

of IDA or approximately is 0.80 (Filiatrault et al., 2008).

(2) Cyclic POA: Perform a CPP as discussed in the previous case. The only difference is

a new displacement history. The new protocol includes 7 cycle groups and 3 cycles in

each one (totally 21 cycles). The amplitude for 7 groups are: μΔ = Δ/Δy = 0.1, 0.2,
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0.3, 0.4, 0.6, 0.8 and 1.0.

The control point (target point) for a frame structures is usually located at the center of

mass at the roof level. Due to special shape of the concrete dams (specially 3D model of arch

dams), the displacement distribution pattern is usually non-uniform both in height and in cross-

stream directions. The control point for concrete dams may highly affected by local failure modes

or partially failure of dam while it does not a representation of the global failure mode. So the

control point should be selected considering the global failure mode of the dam. It is possible to

track the capacity curve for more than one control point at the start of the assessment process,

while the final capacity curve should be chosen based on overall failure of the dam. For 2D model

of gravity dams with a standard body topology, the target point can be selected as the crest node

on upstream face, while the node located at the point of slope discontinuity on the downstream face

can be also candidate as target point. For 3D model of arch dam, further invitations are required

to reveal the location of the target point both in height and in cross-stream directions in the case

of symmetry ans un-symmetry typologies.

3.3.7 Equivalent Static Lateral Force (ESLF)

Response spectrum analysis (RSA) estimates the peak responses directly from the earthquake

design spectrum and usually is used for preliminary design and safety evaluation of concrete gravity

dams. In a series of publication, Fenves and Chopra (1984), Fenves and Chopra (1987), Løkke and

Chopra (2013) and Løkke and Chopra (2014) developed an analytical solution for RSA of gravity

dam-foundation-reservoir system using the ESLF. It is possible to adopt this equivalent lateral force

vector and apply it incrementally to the dam.

Considering only the fundamental vibration mode and neglecting the vertical component of

the ground motion, the dam alone can be subjected to ESLF acting on the upstream face as (Løkke

and Chopra, 2013):

fESLF(z) =
L̃1

M̃1

A
(
T̃1, ζ̃1

)
g

[
ws(z)φ1(z) + g p(z, T̃r)

]
(3.15)
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where φ1(z) is the horizontal component of displacement at the upstream face of the dam in the

fundamental mode supported on a rigid foundation with empty reservoir; ws(z) is weight per

unit height of the dam; g is the ground acceleration. The generalized mass, L̃1, and generalized

earthquake force coefficient, M̃1 are:

M̃1 = (Rr)
2 1

g

∫ Hs

0
ws(z) φ

2
1(z) dz

L̃1 =
1

g

(
wrH

2
w

2

)(
Hw

Hs

)2

Ap +
1

g

∫ Hs

0
ws(z) φ1(z) dz

(3.16)

where Hw and Hs are the height of water and dam in meter, respectively; wr is the unit weight

of the reservoir, Rr is the period lengthening ratio and depends on the wave reflection coefficient,

αw, Hw/Hs, and mass concrete modulus of elasticity in MPa, Es. Ap is the hydrodynamic force

coefficient corresponding to period ratio, Rw = 4Hw
Cw

1

T̃r
and αw (Figure 3.13). Cw is the velocity of

the pressure wave in the water.
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Figure 3.13: Standard values for Ap (Løkke and Chopra, 2013)

The fundamental period of the dam-reservoir, T̃r, dam-reservoir-foundation, T̃1, and the

damping ratio of the equivalent SDOF system of dam-reservoir-foundation, ζ̃1 are(Løkke and

Chopra, 2013):

T̃r = RrT1 , T1 = 0.38
Hs√
Es

T̃1 = RrRfT1

ζ̃1 =
1

Rr

1

(Rf )3
ζ1 + ζr + ζf

(3.17)

where T1 is the fundamental period of the dam body itself on rigid foundation, Rf is the the period-

lengthening ratio which depends on Ef/Es where Ef is the foundation modulus of elasticity, ζ1 is
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the viscous damping ratio of the dam body itself, ζr is the added damping due to dam-reservoir

interaction and reservoir bottom absorption, ζf is the added radiation and material damping due

to dam-foundation interaction, and the constant hysteretic damping factor for the foundation rock,

ηf . Figures 3.14 and 3.15 shows the standard values of Rr, ζr, Rf and ζf for concrete gravity dams.
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Figure 3.14: Standard contribution factors for dam-reservoir interaction (Løkke and Chopra, 2013)

A
(
T̃1, ζ̃1

)
is the pseudo-acceleration ordinate of the earthquake design spectrum, evaluated

at vibration period T̃1 and damping ratio ζ̃1 of the equivalent SDOF system representing the dam-

reservoir-foundation system. Note that in the incremental format of the ESLF, A
(
T̃1, ζ̃1

)
should

be increased incrementally.

The function p(z, T̃r) is the real valued component of the complex valued function representing
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2013)

the hydrodynamic pressure on the upstream face. g p(z, T̃r) can be computed based on figure 3.16

corresponding to the value of Rw, αw, and assumed Hw/Hs = 1. Finally, the result is multiplied

by (H/Hs)
2.

0.6 0.8 1 1.2
0

0.5
1

0

0.1

0.2

R
w

z/H
w

gp
(z

/H
w
) /

 w
H

w

(a) αw=0.50

0.6 0.8 1
0

0.5
1

0

0.1

0.2

R
w

z/H
w

gp
(z

/H
w
) /

 w
H

w

(b) αw=0.75

0.6 0.8 1 1.2
0

0.5
1

0

0.2

0.4

R
w

z/H
w

gp
(z

/H
w
) /

 w
H

w

(c) αw=0.90

Figure 3.16: Standard values of the hydrodynamic pressure for full reservoir (Løkke and Chopra,
2013)
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3.3.8 Incremental Dynamic Analysis (IDA)

3.3.8.1 Single-Record IDA (SR-IDA)

The seismic capacity function can be obtained using a real ground motion. In the SR-

IDA, single ground motion is used for nonlinear time history analysis of the coupled system. The

ground motion can be obtained from hazard analysis. However, this method is mainly used for the

structures (or their small scales models in lab) already damaged by a certain ground motion. The

examples are: 1967 Koynanagar earthquake for analysis of Koyna gravity dam (Hariri-Ardebili and

Saouma, 2014) and 1990 Manjil earthquake for analysis of Sefidrud buttress dam (Ghaemmaghami

and Ghaemian, 2008). An especial format of SR-IDA using the artificial accelerogram is reported

by Pan et al. (2015) for concrete arch dams.

Let ẍg be the “as-recorded” (un-scaled) acceleration time history (it may already filtered,

rotated, or baseline corrected). The elements of the vector are ẍg(ti), ti= 0, t1, tn−1. In order

to consider the stronger and weaker scenarios, the ground motion can be scaled uniformaly using

a scale factor λSF ∈ [0,+∞) (Vamvatsikos and Cornel, 2002). The scaled ground motion will be

ẍλ
g = λSF ẍg. Note that one of the following three methods (at least) may be used for scaling: 1) time

domain direct scaling of the acceleration time history, 2) scaling the elastic acceleration response

spectrum, and 3) frequency domain scaling by applying λSF to the all Fourier amplitudes while

keeping the phase unchanged. The scaled ground motion should be represented by a monotonic

scalable intensity measure (usually referred as Intensity Measure - IM) in the form of Eq. 3.18.

Note that IM in SR-IDA corresponds to load vector (Sec. 3.3.5) in POA and engineering quantity,

EQ, (Sec. 3.2.1) in general definition of capacity function.

IM = Ξ(ẍλ
g ) , IM ∈ [0,+∞) (3.18)

where Ξ is the any scalar monotonic representation of the scaled ground motion such as peak ground

acceleration (PGA), the 5% damped Spectral Acceleration at the first-mode period (Sa(T1, ξ =

5%)). A comprehensive list of ground motion IMs are summarized in (Riddell, 2007). The applica-

tion of optimal IMs in dam engineering can has already studied by Hariri-Ardebili and Kianoush
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(2015) and Hariri-Ardebili et al. (2015).

Having the scaled ground motions, the nonlinear time history analysis should perform in each

case. Let’s assume that the response of the nonlinear system to the scaled signal is rpλ where the

elements of the response vector are rpλ(ti), ti = 0, t1, tn−1. The response parameter, RP, can be

any general monitoring item in dams such as deformation, stress, uplift; or even DIs. It is usually of

interest to record the maximum absolute value of rpλ for each scaled ground motion, Eq. 3.19. In

the earthquake engineering language, the RP is refereed to engineering demand parameter (EDP).

EDP = Ω(rpλ) = max
{
Abs

(
rpλ(τ) : τ ∈ [0, tn−1]

)}
, EDP ∈ [0,+∞) (3.19)

where Ω is the maximum absolute function.

Single-IM SR-IDA (SIM-SR-IDA) : This is a plot of different pairs of (IM, EDP) from linear

elastic to nonlinear phase and the failure of the system. Them discrete points (which means

there are m nonlinear time history analyses) are then connected to each other using either

1) piecewise linear interpolation, 2) spline interpolation, or 3) Ramberg-Osgood equation

to form the capacity function.

Spline interpolation : The spline comes in m cubic polynomial pieces, m is the number

of convergent runs plus one for (0, 0) point, and is parameterized on a single non-

negative parameter, τ ∈ [0, τ1] ∪ ... ∪ [τn−1, τn]. For each value of the parameter τ ,

and depending on the interval [τi−1, τi] where it lies, one polynomial for IM and one

another for EDP can be derived (Vamvatsikos and Cornell, 2004):⎧⎪⎨⎪⎩
xi (τ) = (a1)xiτ

3 + (a2)xiτ
2 + (a3)xiτ + (a4)xi

yi (τ) = (a1)yiτ
3 + (a2)yiτ

2 + (a3)yiτ + (a4)yi

(3.20)

where τ ∈ [τi−1, τi] , i = 1, 2, ..., n.

Using above equation, it is possible to approximate EDP value at arbitrary level of
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IM and vice versa:

EDP = y
(
x−1 (IM)

)
IM = x

(
y−1 (EDP)

) (3.21)

Ramberg-Osgood (R-O) equation : Considering that the spline interpolation is cum-

bersome in some cases, the R-O equation can be used (Mander et al., 2007):

EDP

EDPc
=

IM

IMc
+

(
IM

IMc

)r

=
IM

K.EDPc

(
1 +

∣∣∣∣ IMIMc

∣∣∣∣r−1
)

(3.22)

where K is the initial slope of the IDA curve in the proportional range; IMc critical

IM that occurs at the onset of large EDPs that subsequently lead to collapse; EDPc =

IMc/K is the critical value of EDP, and r is the constant parameter.

In order to use the R-O equation, first the median IDA curve should be derived by

interpolation from the actual IDA data, and then the R-O equation should be fitted

to the observed median IDA curve. The value of the r parameter may be fixed to a

reasonable number and the other parameters K and IMc can be estimated using least

square analyses.

Anatomy of SIM-SR-IDA : For a simple frame structure four types of the capacity curves

are distinguishable, i.e. 1) capacity curve with fully softening response, 2) capacity curve

including some minor hardening, 3) capacity curve including severe hardening, and 4)

capacity curve with fully wavy behavior. In concrete gravity dams, only the first three

types can be observed, figure 9.5(b). Both the option (1) and (2) have the capability to be

represented in the form of Eqs. 3.2 and 3.3 explained in Sec. 3.2.2. However, due to highly

ground motion-dependent nature of the option (3), there is no analytical form for them.

Multi-IM SR-IDA (MIM-SR-IDA) : As mentioned previously, the capacity function based

on SIM-SR-IDA is a planer curve of IM vs. EDP. Choose of an appropriate IM parameter

is always challenging and differs by type of the structure. For the conventional frame

structures Sa(T1, ξ = 5%) usually is the best choice (Vamvatsikos and Cornel, 2005). For
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the concrete arch dam, Acceleration Spectrum Intensity (ASI) and PGA are the most

optimal ones (Hariri-Ardebili et al., 2015). Thus, it it helpful to have a three-dimensional

curve where the vertical axis is EDP and the horizontal axes are two IMs. Note that

similar to SIM-SR-IDA, in MIM-SR-IDA again one of the IMs is scaled and the other

one is computed externally using simple calculations on the scaled ground motion. Figure

3.17(b) shows a 3D capacity function as EDP-IM1-IM2. The projections of this curve also

are shown which represents the conventional SIM-SR-IDA as EDP-IM1 and EDP-IM2.
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Figure 3.17: Single-Record IDA capacity functions

3.3.8.2 Multi-Record IDA (MR-IDA)

MR-IDA is a collection of several, n, SR-IDA for a same structural system. The required

ground motion records are usually obtained from Probabilistic Seismic Hazard Analysis (PSHA) of

the site (McGuire, 1995). The number of required records usually varies considering the dispersion

among them. The order of n for the frame structures (with less computational effort) is about 30

(Vamvatsikos and Cornel, 2005), while for the concrete dams (with high computational effort) is

about 12 (Alembagheri and Ghaemian, 2013b). It is noteworthy that some approximate methods

are proposed in order to reduce the number of the required records to estimate the median response

of the structures (Azarbakht and Dolsek, 2007), (Azarbakht and Dolsek, 2011).

Single-IM MR-IDA (SIM-MR-IDA) : This is the most common format of IDA plot in the

IM-EDP coordinate system. Figure shows the raw data obtained from MR-IDA. Also this
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figure 3.18 shows the capacity functions resulted from n=40 ground motion based on piece-

wise linear interpolation and spline interpolation techniques discussed in Sec. 3.3.8.1 for

SR-IDA.
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Figure 3.18: Multi-Record IDA capacity functions with different interpolation techniques

Considering the record-to-record variety of the capacity functions in SIM-MR-IDA, they

should be summarized to some central values such as mean, median, 16% and 84% fractiles.

Two methods can be used: 1) first, find the parametric model for each SIM-SR-IDA (using

Eq. 3.2 or any other model), then find the statistics of the parameters; 2) use of the

non-parametric methods such as running mean, running median, LOESS or the smoothing

spline (Hastie, T.J. and Tibshirani, R.J., 1990), (Vamvatsikos and Cornel, 2002). The

resulted summarized capacity curves are usually smoother than the SIM-SR-IDA curve

(figure 9.5(b) and they can be easily fitted to the analytical model (Eq. 3.2).

Vector-IM MR-IDA (VIM-MR-IDA) : MR-IDA curves are plotted in< IMSC , IMNSC ,EDP >

coordinate, with one scalable and one non-scalable IM. The already proposed vector-valued

IMs for frame structures are:

• Vamvatsikos and Cornel (2005) proposed Sa (T1) as scalable component, while the

spectral ratio, Rsa (κ, T1), is the non-scalable one:

〈Sa (T1) , Rsa (κ, T1)〉 =
〈
Sa (T1) ,

Sa (κT1)

Sa (T1)

〉
(3.23)



68

where κ is a constant factor, usually 1.5.

• Baker and Cornell (2005) proposed Sa(T1) as scalable component and epsilon, ε as

scaling-independent one. It is found that 〈Sa (T1) , ε〉 is significantly superior to Sa(T1)

alone. ε is defined as the number of standard deviations by which an observed log-

arithmic spectral acceleration, lnSa(T ), differs from the mean logarithmic spectral

acceleration, lnSa(T ), of a ground-motion prediction equation.

• Bojorquez et al. (2012) proposed the following two vector-valued IMs:

〈Sa (T1) , RT1,T2〉 , RT1,T2 =
Sa(T2)

Sa(T1)

〈Sa (T1) , Np〉 , Np =

Sa

((∏Nm
i=1 Ti

)1/Nm
)

Sa(T1)

(3.24)

where Nm is the number of contributed modes.

Figure 3.19(a) shows the MR-IDA for Pine Flat dam. The next step is to summarize the

discrete 3D curve and generate a “surface” Vamvatsikos and Cornel (2005). The resulted

so-called IDA surface can then be used for 16%, 50% and 84% capacity lines for a specific

limit state.

Multi-IM MR-IDA (MIM-MR-IDA) : The IDA curves are plotted in < IMSC , IMSC ,EDP >

coordinate, with two scalable IMs. Bojorquez et al. (2012) used combination of Sa (T1)

with other scalar IMs in order to determine the optimal vector IM. 〈Sa (T1) , PGA〉 and

〈Sa (T1) , PGV 〉 were used as indicators of the peak responses of the structural system.

〈Sa (T1) , tsig〉 and 〈Sa (T1) , ID〉 were used as indicator of combination of peaks and cumu-

lative damage potential of ground motions. Figure 3.19(b) shows 3D MR-IDA curves where

Sa(T1) and ASI are two scalable IMs.

Multi-EDP MR-IDA (MEDP-MR-IDA) : The IDA curves are plotted in< EDP1,EDP2, IMSC >

coordinate, with two EDPs. This type of 3D plot is useful when the two EDPs have strong

dependency, i.e. joint opening and sliding in mixed-mode fracture mechanics problems,
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figure 3.19(c). The summarized curves can be shown in the format of “curved capacity

surfaces” (not shown here).
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Figure 3.19: Comparison of different 3D MR-IDA capacity functions

3.3.9 Cloud Analysis (CLA)

CLA is a numerical procedure in which first a structure is subjected to a set of (un-scaled

or as-recorded) ground motions and is analyzed numerically. If the ground motion records are

taken from a bin, they can represent an earthquake scenario defined by (Mbin, Rbin), the magnitude

and distance representative of the bin (Jalayer, 2003). Then from the results, EDP vs. IM are

determined and form the so-called cloud response. CLA method usually is used in conjunction with

probabilistic seismic demand analysis (PSDA) Shome (1999). It is well-accepted that the discrete

data points resulted from CLA have linear trend in the logarithmic scale implying a power curve

in the arithmetic scale (Padgett et al., 2008), (Jankovic and Stojadinovic, 2004), (Ramamoorthy
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et al., 2006).

ηEDP|IM(IM) = a.(IM)b

ln
(
ηEDP|IM(IM)

)
= b.ln(IM) + ln(a)

(3.25)

where ln(a) and b are the linear regression constants and ηEDP|IM is the median value of EDP given

IM.
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Figure 3.20: Cloud-based data power-form capacity function

3.3.10 Endurance Time Analysis (ETA)

ETA is a dynamic pushover procedure which is used to estimate the seismic performance of

structures when subjected to pre-designed intensifying excitation (Estekanchi et al., 2004). The

simulated acceleration functions are aimed to shake the structure from a low excitation level with a

structural response in the elastic range to a medium excitation level where the structure experiences

some nonlinearity and finally to a high excitation level, which causes the failure. All these responses

ranges are experienced in a single time history analysis.

The challenging part of this method is generation of endurance time acceleration functions

(ETAF). Different versions of ETAFs have been generated by (Nozari and Estekanchi, 2011) and

further optimized by (Mashayekhi and Estekanchi, 2013). The major steps for producing ETAFs

are:

• Generate a stationary random acceleration function, Z(t) (using δt = 0.01, Npnt = 211

node, and PGA= 1.0 g). Note that Npnt is optional.
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• Transfer the function to frequency domain, Z (iω) = F (Z(t)), where i is imaginary unit

and ω is frequency.

• Apply an appropriate filter function in order to resemble real ground motions Clough, R.W.

and Penzien, J. (1993):

A (iω) =
1 + 2iξ1

ω
ω1

1−
(

ω
ω1

)2
+ 2iξ1

ω
ω1

(
ω
ω2

)2
1−

(
ω
ω2

)2
+ 2iξ2

ω
ω2

Z (iω) (3.26)

where the first and second terms are low-pass and high-pass filter function, ω1 and ξ1 are

frequency and damping coefficients for the low-pass filter function, ω2 and ξ2 are frequency

and damping coefficients for the high-pass filter function, respectively.

• Use several cycles of step-wise modification on frequency content of the filtered acceleration

functions, A (iω), in order to make the resulting response spectrum compatible with target

one.

Anew (iω) = Aold (iω)
Strg
a (ω)

Sgen
a (ω)

(3.27)

where Anew (iω) is the modified frequency content which is replaced with the old one in

each cycle of modification. Strg
a (ω) is the target spectrum (code-base spectrum or from

probabilistic seismic hazard analysis), Sgen
a (ω) is the generated response spectrum.

• Modify the acceleration time history by a linear profile function, l(t) = t/ttrg, that make

resulting one intensifying at various time intervals. Note that ttrg is optional; however,

usually is considered to be 10 s.

• Modify both the acceleration and displacement response spectra by applying a linear profile

function. Unconstrained optimization technique in the time domain may be used as:

min
ag

F (ag) =
∫ Tmax

0

∫ tmax

0

{[
Sa(T, t)− t

ttrg
Strg
a (T )

]2
+ χ0

[
Sd(T, t)− t

ttrg

(
T
2π

)2
Strg
a (T )

]2}
(3.28)

where ag is ETAF being sought, χ0 weight parameter, tmax and Tmax are the maximum time

and period in optimization process, respectively. Figure 3.21(a) shows a sample ETAF.
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In order to retrieve a capacity function in the form of figure 3.2(a), first “ETA curve” should

be derived, figure 3.21(b). It is a diagram, whose vertical axis refer to the maximum absolute values

of EDP during the time interval from 0 to t, (see Eq. 3.29) and the horizontal axis is time.

Ω (EDP(t)) ≡ max {Abs (EDP(τ) : τ ∈ [0, t])} (3.29)

Finally, the “time” parameter is converted to IM (this can be easily done as there is a direct

relation between time and acceleration, figure 3.21(a)) and the EDP-IM coordinate is changed to

IM-EDP. The resulted step-wise capacity function can be smoothed later, figure 3.21(c). Note that

although this procedure is applicable only with single ETAF, in order to reduce the uncertainty (due

to random nature) of ETAFs, usually the mean of three is used (Hariri-Ardebili and Mirzabozorg,

2014) (Hariri-Ardebili and Saouma, 2014).
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Figure 3.21: ETA-based Capacity function generation
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3.4 Extended/Combined Capacity Functions

As explained in Sec. 3.3 and also shown in figure 3.1; seismic, hydrologic, and time dependent

material are three sources of uncertainties in capacity function derivation. One may either 1) extend

the capacity function, or 2) combine two capacity functions.

3.4.1 Extended Capacity Function

Extended capacity function refers to those previously explained in Sec. 3.3 considering one

more uncertainty source (which is usually material uncertainty). This procedure is explained for

two events.

• Seismic + Material uncertainty: There are different approaches for considering both the ma-

terial (epistemic) and seismic record-to-record (aleatory) uncertainties in analysis of struc-

tures (Padgett and DesRoches, 2007), (Liel et al., 2009), (Vamvatsikos and Fragiadakis,

2010), (Celik and Ellingwood, 2010), (Doľsek, 2012), (Celarec and Dolsek, 2013), and

(Kazantzi et al., 2014). However, one of the low computationally demanding methods

(with respect to Monte Carlo Simulation - MCS) is explained. This method accounts for

epistemic uncertainty along with MR-IDA. The original method is explained in (Dolsek,

2009) (Dolsek, 2011) and is called extended-IDA. Thus we call the capacity curves resulted

from this method as extended capacity functions.

∗ Perform sensitivity analysis on NRV random variable (RV) and select NV ar which are

most sensitive.

∗ Perform NSim sampling for each RV, where NSim is number of structural models.

∗ Construct XNSim×NV ar
which includes NSim realization for NV ar Rvs:

xj,i = F−1
i

(
πi(j)− 0.5

NSim

)
, i = 1, ..., NV ar, j = 1, ..., NSim (3.30)

where πi(1), ..., πi(NSim) is a random permutation of 1,...,NSim; F−1
i is the inverse of

the cumulative distribution function of the ith RV.
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∗ Modify the correlation matrix of X, C with respect to the target correlation matrix,

T. For this purpose, the Simulated Annealing method can be used (Voechovsk and

Novk, 2009) to minimized the norm E, which is a measure for difference between the

generated and the target correlation matrices.

∗ The optimized sample matrix YNSim×NV ar
has the arrays of X with the correlation

matrix close to T.
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Figure 3.22: IDA-based extended capacity function generation

Figure 3.22(a) shows an example of system with three sensitive RVs, NV ar=3, (M1, M2

and M3), where M2 and M3 are partially correlated. For each RV, NSim=100 realizations

are sampled. Note that all RVs follow the normal distribution.

Figure 3.22(b) showsNIDA = 1×20 = 20 curve resulted fromNGM = 20 ground motions and

NSim = 1 structural model. This set of capacity functions only account for the record-to-

record variability and approximately this method respires NAnlz = 20×10 = 200 nonlinear

transient analyses.
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Figure 3.22(c) shows NIDA = 100 × 20 = 2,000 curve resulted from NGM = 20 ground

motions and NSim = 100 structural models. This set of capacity functions account for

both the record-to-record variability and material uncertainty. This method approximately

respires NAnlz = 2000× 10 = 20,000 nonlinear transient analyses.

• AAR + Material uncertainty: In this condition the material uncertainty is considered along

with material degradation (e.g. AAR). First, the time-dependent RV (material property)

is sampled based on pre-defined distributional model, figure 3.23(a), at time t=0. Then,

the material uncertainty is propagated in strength reduction functions using Eq. 3.7, fig-

ure 3.23(b). Finally, the finite element analyses are performed using the time-dependent

uncertain material and the response are determined, figure 3.23(c). To be used within the

concept of PBE, the median, 16% and 84% fractiles should be extracted.
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Figure 3.23: Time-dependent strength degradation with material uncertainty
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3.4.2 Combined Capacity Function

Combined capacity functions deals with time-dependent seismic or hydrologic events. They

mainly accounts for the aging and deterioration effects on the capacity function (and later on

the fragility functions) of structures. Several studied showed the importance of the aging on the

probability of failure of structures specially on the harsh environment. Among them Ghosh and

Padgett (2010), Dong et al. (2013), Pitilakis et al. (2014), Guo et al. (2015).

Figure 3.24(a) shows a POA on a hypothetical system of dam with aging concrete. Original

pushover curves along with the bi-linear idealizations are shown. Both the yield displacement and

yield force reduce by increasing the time (again). Similar results were reported by Ghosh and

Padgett (2010) on time-dependent corrosion of RC column. They found that due to corrosion and

subsequent area loos of reinforcing steel, the load carrying capacity and yield curvature of the RC

columns undergo a significant reduction (about 20% in 50 years).

Figure 3.24(b) shows the median IDA capacity function for a deteriorating system. Nearly

identical conclusion can be drawn for the IDA-based capacity functions. Aging reduces both the

load carrying capacity and the collapse displacement. It also reduces the dispersion of the SR-IDA

curves. Thus the median and dispersion of the resulted fragility curves will reduce by aging.
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Chapter 4

Computational Tools and Numerical Simulations

4.1 Introduction

Finite element (FE) method is used for nonlinear analysis of dam-foundation-reservoir system.

The family of FE-based programs that are used in this study are:

• Pre-processor: The FE analysis requires the discretization of a structure into a mathemati-

cal representation. The discretized structure is then subjected to the governing differential

equation with essential (displacement) and natural (traction) boundary conditions. Ku-

moNoSu is a graphical front end to two programs, i.e. 1) T3D a mesh generator, and 2)

T3D2Merlin which enables definition of material, boundary conditions and loads.

• Processor: The discritized structure subjected to the essential and natural boundary con-

ditions is then transferred to the main processor (called Merlin) to be analyzed.

• Post-processor: Spider is a general purpose 3D post-processor for static and dynamic non-

linear FE analysis results. It is an OpenGL implementation under Windows.

Figure 4.1 shows the interaction among the three programs and the input/output file(s) for

each one. They can be summarized as:

• KumoNoSu uses: 1) .bd (includes all geometric information of model), 2).t3d (includes

all meshing information), and 3) .ctrl (includes material property, boundary condition,

loads, analysis information), and generates .inp (includes all the nodes, elements, material,
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loads, boundary condition, analysis information) for processor (Merlin). The generated FE

descritization can be saved in the form of .eps, .jpeg, and .EMF.

• Merlin uses .inp and generates: 1) .out (includes all the requested analysis results), 2)

.pst (includes post-processing data for regular FE analysis), .rtv (includes post-processing

data for Real Time View of a lengthy dynamic analysis), and 3) .eig (includes post-

processing data to display the results of an eigenvalue analysis).

• Spider uses one of .pst, .rtv, or .eig and display the results. Results can be saved in the

form of .eps, .jpeg, and .EMF.
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Figure 4.1: Interaction among KumoNoSu, Merlin and Spider

4.2 Probabilistic Performance Assessment of Concrete Dams (PPACD)

The group of programs in figure 4.1, are only able to perform a single deterministic analysis.

To be used within the context of the present thesis, this should be expanded to the probabilistic
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form. For this purpose, the Matlab-based algorithm called PPACD is developed which stands for

“Probabilistic Performance Assessment of Concrete Dams”. It includes many Matlab scripts and

functions facilitates the probabilistic assessment of structures. Figure 4.2 shows the general algo-

rithm of PPACD and interaction among different programs. This algorithm is applicable for any

types of structures (not only dam) and any probabilistic model (load, material, time). This algo-

rithm is briefly explained first. Next, its application in performance based earthquake engineering

(PBEE) will explore.

Major steps and features of PPACD are:

• Use KumoNoSu to build a initial finite element model based on information from physical

model. Hypothetical material property or load magnitude may be used in this step to

develop a deterministic test.inp.

• The generated test.inp file is then broken to different sub-blocks, i.e. Block-10.inp,

Block-20.inp, ...; each one includes a specific information about the FE model (e.g. anal-

ysis type, nodes, elements, material, loads, boundary condition).

• P0.m is used to determine the user-defined input parameters for FE model. This includes:

ground motions for dynamic analysis, material property and its distributional model for

uncertainty quantification, time-dependent aging and etc.

• P1.m uses all input blocks (i.e. Block-10.inp, ...) and input data from P0.m (Material.mat,

GroundMotion.mat, ...) to generate N new input files, test-N.inp which have the desired

probabilistic model.

• P2.m runs the Merlin N times and generates N test-N.pst and test-N.out (if requested

test-N.rtv and test-N.eig also) files. Each of the N test-N.pst can be separately read

by Spider and provide required graphical output.

• P3.m uses N test-N.out files (in the form of ASCII) and coverts them to test-N.mat files

(in the form of Binary).
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• P4.m further process the N test-N.mat files and generates N ext-test-N.mat files. This

step includes process of the results for a specific structure, define the limit states and etc.

• P5.m uses the N ext-test-N.mat files and applies the probabilistic operations on them

(e.g. different fractile, regression, probability of exceedance, ...). The final results can be

either represented quantitatively (tabulated or central values) or graphically. Currently,

PPACD uses one of the 1) Maltab, 2) ParaView, or 3) Ansys to show the contour plots on

the FE model.

4.3 PPACD for PBEE

Each of the general scripts, i.e. P0.m to P5.m are explained in the context of PBEE for

concrete dams.

4.3.1 P0.m

This script provides a set of appropriate ground motions to be used in dynamic analyses.

The general steps and feature are:

• Select the type of the performance assessment: 1) intensity-based performance assessment

(IBPA) assuming that the dam is subjected to a specific intensity of shaking (e.g. specific

target response spectrum), 2) scenario-based performance assessment (SBPA) assuming

that the dam is subjected to a specific < Rrup,Mw > scenario (earthquake intensity is

uncertain parameter), and 3) time-based performance assessment (TBPA) assuming the

uncertainty in Rrup, Mw and the intensity of motion.

• Select between the real (recorded) ground motions and the synthetic one(which is suitable

for dam sites that there is no enough recorded signals).

• In the case of real ground motions, either use the direct ground motion selection through

PEER online tool, or use a set of Matlab codes developed by Baker research group. In
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both cases, the selected ground motions are saved in the form of GMList.xlsx. The same

procedure should be performed for synthetic ground motions.

• The selected ground motions can be truncated (e.g. [5%, 95%] AI , or [5%, 75%] AI) using

GM Truncat.m.

4.3.2 P1.m

Figure 4.4 shows different types of uncertainty analysis can be performed though PPACD.

Four sources of uncertainty in performance assessment of concrete dams are:

• Mechanical (material): For an existing dam, this refers to uncertainty in determination of

material property and also different random variables (RV) in the constitutive model.

• Hydrologic: Refers to uncertainty in pool elevation. Should be quantified based on hydro-

logic hazard curve.

• Seismic: Refers to record-to-record variability of the input ground motions. Should be

quantified based on seismic hazard curve.

• Time: Refers to time-dependent degradation of the material, e.g. alkali-aggregate reaction

and creep.

1st degree uncertainty refers to incorporating only one of the four sources. Subsequently, 2nd, 3rd

and 4th degree uncertainty refer to simultaneous effect of two, three and four uncertainty source.

In the present thesis only the shaded uncertainty types in figure 4.4 are used.

Seismic analysis is performed in two steps: 1) static analysis with all the body forces and

hydrostatic one, and 2) through a “restart”, a dynamic analysis is initiated form the preceding

static one. Thus, two set of .inp and .out files will generate for each analysis. Hereafter, the

static input file corresponds to Nth analysis refers to test-N dyn1.inp and the dynamic one refers

to test-N dyn2.inp.
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Figure 4.3: General algorithm in P0.m

Figure 4.5 shows the general algorithm to generate input files for static analysis. Based on

figure 4.2, the initially generated input file should break into different sub-blocks as:

• Block-Sta-10.inp: title and definition
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Figure 4.4: Different types of uncertainties in PPACD

• Block-Sta-20.inp: control block, includes number of increments, ...

• Block-Sta-30.inp: element group, includes element types and material property

• Block-Sta-40.inp: mesh group, includes nodal mass and damping, master/slave crack

• Block-Sta-50.inp: analysis control, includes iterations, error, ...

• Block-Sta-60.inp: body forces

• Block-Sta-70.inp: uplift model

• Block-Sta-80.inp: displacement boundary condition

• Block-Sta-90.inp: hydrostatic pressure
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GenerateInputSta.m

test-N_dyn1.inp

Figure 4.5: General algorithm in P1Sta.m

In figure 4.5, RandomProperty.m generates N samples based on either crude Monte Carlo

Simulation (MCS) or Latin Hypercube Sampling (LHS). In both cases the correlated or uncorrelated

modes are possible. Sampling is based on predefined distributional model (e.g. normal, lognormal,

...) by user for each RV. Moreover the upper and lower bounds can be defined to truncate the

distributional model.

Figure 4.6(a) shows 500 samples for each of three RVs based on LHS. There is a weak

correlation between Mat1 and Mat2 and also Mat1 and Mat3; however, the correlation is strong

between Mat2 and Mat3. On the other hand, figure 7.3 shows an un-symmetry truncation of a

normal distribution in the range [18, 38] GPa.

Figure 4.7 shows the general algorithm to generate input files for dynamic analysis. Similar

to static analysis, figure 4.7, there are nine blocks define the test-N dyn2.inp; however, some of

them are empty in dynamic analysis (e.g. material, mesh) because they already defined though
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Figure 4.6: Sampling the material properties based on algorithm in figure 4.5

the static input file. User selects the type of dynamic analysis and a Groundmotion.mat file is

generated includes all the required seismic input with their specifications. Five types of analysis in

PPACD are:

• Single ground motion (SGM): only a single ground motion is used for the all N samples. If

N = 1, this results to single deterministic analysis, and if N = “large number” this is either

sensitivity or material uncertainty assessment.

• Cloud analysis (CLA), figure 4.8(a): N (un-scaled) ground motions are applied to N sam-

ples. If all the samples have same characteristics, this method only shows the record-to-

record variability. However, if samples are different, it accounts for epistemic uncertainty

also.

• Endurance time analysis (ETA), figure 4.8(b): Only three samples are required for three

acceleration functions.

• Multiple stripe analysis (MSA), figure 4.8(c): N ground motions are applied in m level

(n=N/m for each level).

• Incremental dynamic analysis (IDA), figure 4.8(d): n ground motions are incrementally

scaled in N/n levels and applied to dam.
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Figure 4.7: General algorithm in P1Dyn.m

At the end of this step, N input files are generated for dynamic analysis. Note that the

vibration characteristics of dam are treated separately though a modal analysis which provides the

period of the dam and effective mass in different directions. In the present research, the bounded

Rayleigh damping method (with constant mass and stiffness proportional damping coefficients

along with updated tangent stiffness matrix) is used. This procedure is summarized in figure 4.9.

Dependency of the Rayleigh coefficients to natural frequency and R parameter simultaneously under

a constant ξ is also show in this figure.

4.3.3 P2.m

Having the 2N input files (static + dynamic), P2Sta.m and P2Dyn.m are executed, sensa-

tionally. They run the Merlin (main processor) 2N times and generate test-N dyn1.out and

test-N dyn2.out. Note that test-N dyn1.out is used as part of input file for dynamic analysis.
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4.3.4 P3.m

P3Dyn.m converts N test-N dyn2.out ASCII files to test-Dyn-N.mat Binary files. P3Dyn.m

is computationally expensive especially for long duration ground motions with small time step. It

can be run on both PC and supercomputer (CU’s 184-teraflop Dell supercomputer called Janus is

used for some of the analyses; it is currently ranked 164 among the world’s top-500 supercomputer

sites).

4.3.5 P4.m

P4Dyn.m processes the raw data from N test-Dyn-N.mat files and generates N ext-test-Dyn-N.mat

files. In the context of PBEE, two major set of post-processing are required: 1) processing the

ground motion intensity measures (IM), and 2) processing the dam engineering demand parameter

(EDP). Figure 4.10 shows the seven category of IMs that are computed for any ground motion in

P4Dyn.m. For each category, there are several individual IMs that will be explained later.

One of the most important parts in nonlinear transient analysis is determination of local and

global failure. The function that decides on global safety/failure of cracked dam is GlobF.m. In the

present study, the global failure criterion is defined based on the combination of cracked length ratio

at the dam-foundation interface and the deformation of the index point (crest in gravity dams):

GlobF = f

(
Lcr

LT
,
umax

uult

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 No through crack; No global failure

1 Through crack; No global failure

2 Through crack; Global failure

(4.1)

where GlobF shows the global failure of the system. It depends on the cracked length, Lcr, total

dam base, LT , maximum absolute displacement, umax, of the index point at the increment where

LT = Lcr, and finally the ultimate absolute displacement of the index point which is defined by

the user (usually is a factor of umax). uult represents the condition in which beyond that point the

dam is assumed to be slides or overturns. In the present study this limit is considered to be uult =

2 umax. Figure 4.11 shows the three possible conditions for GlobF:
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Figure 4.10: Treatment of IMs in P4.m

• GlobF = 0: The ratio of the Lcr
LT

does not reach to 1.0. Displacement time history of the

index point is not important in this case. The “cut off” time for the analysis in this case

corresponds to “total time”, tcutoff = ttot.

• GlobF = 1: In this case, Lcr
LT

= 1.0 at time teff which is less than the total time of the ground

motion signal, ttot. First, the maximum absolute value of the index point’s displacement

up to teff should be found:

umax = max (abs (uindex(t))) , t ∈ [0, teff] (4.2)

The post-cracking displacement of the index point should be tracked again up to the end
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Figure 4.11: Global failure algorithm for nonlinear analysis with dam-foundation interface joint

of the analysis:

upost−cr = max (abs (uindex(t))) , t ∈ (teff, ttot] (4.3)

In this case, upost−cr is less than uult (upost−cr < uult), the dam is judged to be not failed

globally. The “cut off” time for the analysis in this case is the total time, tcutoff = ttot.

• GlobF = 2: In this case, Lcr
LT

= 1.0 at time teff. However, upost−cr ≥ uult. In this condition,

the dam is assumed to be globally failed. The “cut off” time for the analysis is the first

increment when upost−cr = uult and should be in teff < tcutoff ≤ ttot

The above mentioned global failure is still valid for the cases that the dam is cracked in

multiple locations as long as the base crack fails before the any other possible crack path within

the dam body (base crack is governing). Otherwise, the local failure criterion is defined as:

LoclF = f

((
Lcr

Lmin
T

)
max

,
umax

uult

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 No through crack; No local failure

1 Through crack; No local failure

2 Through crack; Local failure

(4.4)

where LoclF shows the local failure of the system. Note that local failure means damage in dam

body not the dam-foundation interface. It depends on the cracked length, Lcr, minimum probable
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crack path, Lmin
T , maximum absolute displacement, umax, and the ultimate absolute displacement,

uult. Note that among different crack paths the one should be selected which has the maximum

Lcr

Lmin
T

.

4.3.6 P5.m

P5.m uses N ext-test-Dyn-N.mat files and applies the probabilistic operations which depends

on the type of analysis:

• CLA:

∗ Determination of histograms and best fit to IM parameters

∗ Determination of optimal IM in terms of efficiency, sufficiency, proficiency, and prac-

ticality

∗ Determination of optimal vector IM

∗ Determination of fragility curves and surfaces

• IDA:

∗ Determination of capacity curves

∗ Summary of capacity curve into central values and fractiles

∗ Determination of optimal IM parameter

∗ Determination of fragility curves



Chapter 5

Deterministic Nonlinear Dynamic Assessment of a Gravity Dam

5.1 Introduction

Detained nonlinear seismic analysis of gravity dams is essential for performance-based earth-

quake engineering (PBEE). Whereas theory was described in the previous chapter, this one applies

the presented methodology to Pine Flat gravity dam. This includes: geometry, load, seismic hazard

analysis, modal and nonlinear structural analysis. Both the dam-foundation interface joint nonlin-

earity and the concrete cracking based on smeared crack approach are used. Failure modes in each

case are extracted for different seismic intensity levels and compared with the theoretical ones.

5.2 Dam Description

Pine Flat Dam is a concrete gravity dam on the Kings River of central California in the United

States. Situated about 32 km east of Fresno, at 36.8322N (Latitude) and -119.3261W (Longitude).

Figure 5.1 shows the site location of dam and it’s reservoir (Google, 2013). The height of the dam

is 121.92 m (400 ft) and its length in cross-stream direction is 560.83 m (1840 ft). The thickness of

the dam at the base and the crest level is 95.81 (314.4 ft) and 9.75 m (32 ft), respectively. Figure

8.4 shows the cross section of the tallest non-overflow monolith. The dam’s primary purpose is

flood control, with irrigation, power generation and recreation secondary in importance. The dam

was built by the U.S. Army Corps of Engineers (USACE) after a six-year controversy between

supporters of irrigation development and proponents of flood control. Construction began in 1947

and was completed in 1954 (wikipedia, 2015).
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Figure 5.1: General site location of Pine Flat Dam (Google, 2013)
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Figure 5.2: Tallest non-overflow monolith of Pine Flat Dam

5.3 Site Characteristics

The site conditions for Pine Flat Dam is estimated using the opensha application (Field

et al., 2003). For this purpose CGS/Wills site classification map is used. Figure 5.3(a) shows the
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estimated VS30 at the dam site. As seen, VS30 for the Pine Flat Dam is about 760 m/s. Moreover,

the values of Z1.0 and Z2.5 are obtained as 0.008886 km/s and 0.015554 km/s, respectively, using

USGS Bay area velocity model (Field et al., 2003).

Figure 5.3(b) shows the average shear wave velocity estimated by Allen and Wald (2007)

simplified procedure. As seen, VS30 categorize as Class B of USGS for the considered location.

Pine Flat Dam is situated on hard metamorphic (meta-volcanic) rock consisting primarily

of jointed amphibolite with scattered seams of calcite, quartz, and lesser occurrences of gypsum

(MWH-Global, 2003). No significant through-going fault zones are known to exist within the area

(California Division of Mines and Geology, 1966). Typically, rock at the dam site is hard, dark gray,

fine-grained, and brittle. Thin seams of gypsum and deeply weathered joints were encountered on

the right abutment during construction of Pine Flat Dam. Thus in overall, the dam site is considered

as rock with VS30 to be at least 760 m/s.

(a) OpenSHA online application (b) Simplified Allen and Wald (2007)
method

Figure 5.3: Estimated VS30 at the Pine Flat Dam site
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5.4 Hazard Analysis

Seismic hazard analysis of Pine Flat Dam site is performed based on the probabilistic ap-

proach, i.e. probabilistic seismic hazard analysis (PSHA). For this purpose, the OpenSHA Hazard

Curve Calculator (local) (www.opensha.org/apps) is used. Abrahamson and Silva (2008) atten-

uation relationship is used in this section. This model is capable to support the peak ground

acceleration (PGA), peak ground velocity (PGV), and spectral acceleration (Sa) as earthquake

intensity measures (IMs). The choice of this model is arbitrary here and any other well-establish

model can be used also. Although there are some differences between the hazard curve’s shape

using different attenuation relations, it is negligible for the sake of the current research.

Working Group on California Earthquake Probabilities (WGCEP, 2007) Uniform California

Earthquake Rupture Forecast (UCERF2) is used as earthquake rapture forecast model. Details

on this model which was basically developed for California area can be found in (on California

Earthquake Probabilities, 2008). Figure 5.4(a) shows the generated mean hazard curves for Pine

Flat Dam site considering Sa(T = 0.3s) as intensity measure and different forecast duration as

labeled. Note that T = 0.3 s is the fundamental period of the dam (this is fundamental period based

on numerical simulations without considering the reservoir and foundation interaction effects). As

seen, the probability of exceedance increases with duration.

Assuming 50-year as earthquake rapture forecast duration (the time interval is typically set

to 50 years because the hazard maps are usually represented in 50-year return period), the mean

hazard curve for different period of vibration of the considered structure are calculated as shown

in figure 5.4(b). As seen, the probability of exceedance increases vibration period up to T = 0.25s,

then it decreases with any increases in period. Specifically, the mean hazard curve for period of

T = 0.20s and T = 0.30s are the same. Also the differences of the mean hazard curves for period

range [0.20 s, 0.30 s] is negligible.

The calculated hazard curves can be represented in terms of the annual probability of ex-

ceedance (or return period) as shown in figure 5.5 for two major intensity measures, PGA and Sa,
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Figure 5.4: Mean hazard curves (probability of exceedance) for Pine Flat Dam

using the following relation (Cornell, 1968):

P [N ≥ 1, Y ≥ y∗] = 1− e−λy∗ .Δt (5.1)

where, P [N ≥ 1, Y ≥ y∗] is the probability of having at least one earthquake with Y ≥ y∗, λy∗

is annual number of events that produce the ground motion parameter Y ≥ y∗, and Δt is the

earthquake rapture forecast duration. In addition, the return period, TR, is
1

λy∗
.
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Figure 5.5: Comparison of mean hazard curves for Pine Flat Dam with different intensity measures

The next step is to develop the seismic hazard de-aggregation plots for the dam site to find
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out the contribution of the various earthquake sources with different magnitudes, Mw, and distance,

R, from the dam site. Figure 5.6 shows the seismic hazard de-aggregation plots for Pine Flat Dam

(Deaggregation, 2003) using two intensity measures, i.e. PGA and Sa(T = 0.3s). Also these plots

are extended for different return periods. The modal distance, magnitude, and inter-event term

can be found in each case. As seen, in overall, the dominant events at the site for both the PGA

and Sa(T ) are in magnitude range of 5.5 < Mw < 7.0 and in fault distance rage of 0 < R < 40 km.

Also it is required to develop the target response spectrum for different seismic hazard in-

tervals. In this section, the uniform hazard spectra (UHS) is used. Figure 5.7 shows the UHS

for horizontal and vertical directions. It is noteworthy that the vertical component of response

spectrum is estimated based on the horizontal component as discussed before.

5.5 Ground Motion Selection

Although PBEE requires probabilistic approach for ground motion selection and scaling, in

this chapter, the nonlinear response of the dam is studied only under a specific ground motion.

The detailed probabilistic seismic assessment is discussed in the future chapters.

The selected ground motion can be one of those obtained from PSHA or it can be the one

which is known to have induced severe damages to other dams. It is noteworthy that concrete dams

have for the most part performed well when subjected to earthquake. In a comprehensive paper,

Nuss et al. (2012) categorized data from the concrete dams that subjected to significant shaking.

Table 5.1 summarized the reported cases.

In this section the 1967 Koynanagar earthquake is used. This ground motion was led to

damage to Koyna gravity dam. Figure 5.8 shows the detailed time history characteristics of the

horizontal component. It is noteworthy that only horizontal component is used in this chapter (the

effect of vertical component is studied in a separate chapter).
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(a) PGA; R.P.=4975 years (b) PGA; R.P.=2475 years

(c) PGA; R.P.=975 years (d) Sa(T = 0.3sec); R.P.=4975 years

(e) Sa(T = 0.3sec); R.P.=2475 years (f) Sa(T = 0.3sec); R.P.=975 years

Figure 5.6: Seismic de-aggregation plots for Pine Flat Dam based on different intensity measure
parameters and return periods

5.6 Finite Element Model

The finite element code Merlin (Saouma et al., 2010) is used for analysis. The geometric

model is illustrated by figure 5.9. Different types of meshing is used for different types of analyses,
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Figure 5.7: Uniform seismic hazard spectra for Pine Flat Dam

Table 5.1: Concrete dams shaken by significant earthquake, adapted from Nuss et al. (2012)

ID Dam
(completed)

Type Height
(m)

Crest
(m)

Earthquake
(date)

R
(km)

Mag. PHGA
(g)

Notes

1 Lower Crystal
Springs (1890)

Gravity 47 183 San Francisco
(Apr 18, 1906)

0.4 8.3 0.52-0.68
(Est.)

Not the slightest
crack

2 Koyna (1963) Gravity 103 807 Koynanagar
(Dec 11, 1967)

3.0 6.5 0.5 Cracks in both faces

3 Williams (1895) Gravity 21 27 Loma Prieta
(Oct 17, 1989)

9.7 7.1 0.60
(Est.)

No damage

4 Bear Valley
(1912, 1988)

Gravity 28 110 Big Bear (Jun
29, 1992)

14.5 6.6 0.57 No structural dam-
age

5 Shih Kang
(1977)

Gravity 21.4 357 Chi Chi (Sep 21,
1999)

0 7.6 0.51 Vertical displ. of 9m,
concrete rapture

6 Mingtan (1990) Gravity 82 - Chi Chi (Sep 21,
1999)

12 7.6 0.4-0.5
(Est.)

No damage

7 Kasho (1989) Gravity 46.4 174 Western Tottori
(Oct 6, 2000)

3-8 7.3 0.54 Cracks in control
building

8 Takou (2007) Gravity 77 322 Tohoku (Mar 11,
2011)

109 9.0 0.38 Cracking of gate-
house

9 Miyatoko
(1993)

Gravity 157 - Tohoku (Mar 11,
2011)

135 9.0 0.32 No damage

10 Gibraltar
(1920)

Arch 52 183 Santa Barbara
(Jun 29, 1925)

- 6.3 ¿0.3
(Est.)

No damage

11 Pacoima (1929) Arch 113 180 San Fernando
(Feb 9, 1971)
Northridge (Jan
17, 1994)

5

18

6.6

6.8

0.6-0.8
(Est.)
0.53

Joint opening near
thrust block
2” Joint opening
between arch and
thrust block

12 Ambiesta
(1956)

Arch 59 145 Gemona-Friuli
(May 6, 1976)

20 6.5 0.36
(abut-
ment)

No damage

13 Rapel (1968) Arch 111 270 Santiago (Mar 3,
1985)
Maule (Feb 27,
2010)

45

232

7.8

8.8

0.31

0.302

Damage to spillway
and intake tower,
cracked pavement

14 Techi (1974) Arch 185 290 Chi-Chi (Sep 21,
1999)

85 7.6 0.5 Local cracking of
curb at crest

15 Shapai RCC
(2003)

Arch 132 250 Wenchuan (May
12, 2008)

32 8.0 0.25-0.5
(Est.)

No damage

16 Hsinfengkiang
(1959)

Buttress 105 440 Reservoir (May
19, 1962)

1.1 6.1 0.54 Horiz. cracks in top
of dam

17 Sefidrud (1962) Buttress 106 414 Manjil (Jun 21,
1990)

- 7.7 0.71
(Est.)

Horiz. cracks near
crest, minor displ. of
blocks

i.e. linear and nonlinear. 4-node and 3-node plain strain 2D elements are used for modeling the

dam body and the foundation. 2-node joint elements are used for modeling the discrete joints.
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Figure 5.8: Detailed time history characteristics of the Koyna ground motion

Applied loads to the system are: 1) self-weight, 2) hydrostatic pressure, 3) uplift, 4) seismic

loads. Hydrodynamic pressure is modeled based on Westergaard (Westergaard, 1933) added mass

approach on both the dam upstream face and the foundation. Nonlinear material properties for

the concrete (Cervenka and Papanikolaou, 2008), rock and joint elements (Cervenka et al., 1998)

are summarized in Tables 5.2, 5.3 and 5.4.

5.7 Modal Analysis

Finite element modal analysis is a critical preliminary component prior to nonlinear transient

analysis. This will assess the mesh by ensuring that the computed natural frequencies are consistent

with the ones measured in-situ or determined by other analyses.

As a reference model, the gravity dam is analyzed without the foundation support nor added
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Figure 5.9: Geometric model of dam and foundation in kumonosu

Table 5.2: Characteristics of mass concrete

Characteristics Symbol Unit Quantity

Mass density ρ kg/m3 2,250
Coefficient of thermal expansion αT 1/oC 9.5E-6
Modulus of elasticity E MPa 22,410
Poisson’s ratio ν - 0.20
Tensile strength f ′

t MPa 2.241
Compressive strength f ′

c MPa -22.41
Specific mode I fracture energy GI

F N/m 252
Compressive critical displacement wd m -0.0005
Return direction in Haig-Westergaard space βHW - 0
Factor for shape of Menetrey-Willam surface e - 0.55
Onset of nonlinearity in compression fc0 MPa -13.5
Plastic strain at compressive strength εcp - -0.001

Table 5.3: Characteristics of foundation rock

Characteristics Symbol Unit Quantity

Mass density ρ kg/m3 2,600
Modulus of elasticity E MPa 24,000
Poisson’s ratio ν - 0.25
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Table 5.4: Characteristics of dam-foundation joint

Characteristics Symbol Unit Quantity

Tangential (shear) stiffness Kt GPa 224.1
Normal stiffness Kn GPa 224.1
Tensile strength σt0 MPa 2.241
Cohesion c MPa 1.90
Friction angle ΦF Degree 38
Dilatancy angle ΦD Degree 20
Maximum aggregate size Gmax m 0.08
Specific mode I fracture energy GI

F N/m 252
Specific mode II fracture energy GII

F N/m 2520
Relative irreversible deformation γs - 0.3
Maximum displacement for dilatancy umax

D m 0.01
Tensile stress at break point (bilinear) s1 MPa 0.56
Crack opening displacement (COD) at break point (bilinear) sw1 m 1.12E-4
Cohesion at break point (bilinear) c1 MPa 0.375
Crack sliding displacement (CSD) at break point (bilinear) cw1 m 1.26E-3

mass due to hydrodynamic pressure. Table 5.5 shows the natural periods and also the effective

mass in each direction. As seen, considering only the first four modes covers about 95% of the total

mass in x direction. Also the most effective mode in y direction is the third one. The first period,

fundamental period, is 0.309 s. This is the exact value reported also by Løkke and Chopra (2013)

for the Pine Flat Dam without foundation and reservoir.

Table 5.5: Vibration characteristics of Pine Flat Dam

Mode Period [s] meff
x % meff

y % meff
rotz %

1 0.309 42.1 2.0 54.2
2 0.151 30.1 0.6 7.9
3 0.113 8.2 69.0 25.2
4 0.088 14.3 8.2 0.6
5 0.058 0.0 0.0 0.0
6 0.052 0.1 16.5 8.0
7 0.042 3.7 1.3 0.6
8 0.041 0.0 0.0 1.5
9 0.038 1.3 1.8 1.4
10 0.035 0.3 0.5 0.6

Finally, it is important to account for the foundation and reservoir effect in overall vibration

behavior of dams. In the present study, foundation is model as massless medium and the water is
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modeled by Westergaard added mass approach. Six models are prepared for the system:

• Model 1: Dam alone on rigid base

• Model 2: Dam on rigid base + water added mass

• Model 3: Dam + massless foundation (fixed B.C. for foundation)

• Model 4: Dam + massless foundation (fixed B.C. for foundation) + water added mass

• Model 5: Dam + massless foundation (roller B.C. for foundation)

• Model 6: Dam + massless foundation (roller B.C. for foundation) + water added mass

Figure 5.10 compares the vibration period of dam at different conditions. In general, reservoir

added mass increases the vibration period. Also considering the massless foundation increases the

period as it decreases the total stiffness of the system. In addition, assuming the roller support for

the foundation boundaries increases the vibration period almost in all modes.
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Figure 5.10: Comparison of the vibration period for different models of the Pine Flat Dam

5.8 Seismic Failure Modes

The major potential failure modes in gravity dams are due to overstressing, sliding along

cracked surfaces in the dam or planes of weakness within the foundation, and sliding accompanied by

rotation in the downstream direction (Ghanaat, 2004). All these failure modes can be resulted due



105

to cracking and consequently detaching whole or a part of the dam. Under severe ground shaking a

typical gravity dam section may suffer tensile cracks at the base and/or near the downstream slope

change discontinuity. The upper cracks usually initiate from the upstream or downstream face of

the dam and propagate horizontally or at an angle toward the opposite face. The consequence of

cracking, if extended through the dam section, may lead to sliding or rotational instability of the

separated block (Ghanaat, 2004). Based on an extensive literature survey, the following limit state

(LS) parameters which could lead to partial failure (in the sense that they are likely to result in

uncontrollable release of water, or major economic losses) are identified, figure 5.11:

• LS-1: Concrete cracking at the neck

• LS-2: Concrete or rock cracking at the dam-foundation interface

• LS-3: Damage cracking at the key points (slope discontinuity)

• LS-4: Deflection of the crest point beyond the ultimate displacement

• LS-5: Overturning of the dam around the heel

• LS-6: Sliding along dam-rock interface due to joint breaking

• LS-7: Sliding along lift joints (weak planes)

• LS-8: Damage cracking due to fault movement in the foundation

5.9 Structural Analysis; Joint Nonlinearity

This section nonlinearity stems only from the rock concrete joint, whereaas the concrete

is assumed to be linear elastic. This corresponds to LS-2, LS-5 and LS-6 as discussed already.

The concrete and rock are assumed to be linear elastic. Hydrodynamic pressure is modeled by

Westergaard added mass and the dynamic uplift is modeled inside the opened joints.

Koyna ground motion (figure 5.8) is used for the seismic analyses. The PGA of the horizontal

component is ∼ 0.5g. However, in order to capture the seismic potential failure modes in detail,
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Figure 5.11: Seismic potential failure modes of a typical gravity dam in term of limit states

the ground motion is scaled for lower and higher intensities also. Two linear scale factors are: 0.7

and 1.4. Consequently, we have three ground motion records and the PGA are: 0.3g, 0.5g and 0.7g.

The ground motion signal is applied at the foundation base (curve 13 in figure 5.9).

The results are reported for all three cases; however, it should be noted that in the case that

the dam is failed before ending the ground motion, the results are shown up to the failure time.

5.9.1 Acceleration

Figure 5.12(a) shows the applied horizontal acceleration at the base of the foundation. In

addition, figure 5.12(b) shows the recorded horizontal acceleration at the dam crest. As seen, in all

cases the acceleration is amplified at the crest and has a different pattern than the base one. The

amplification factor is ∼3 for the safe model (PGA = 0.3g) and ∼6 for a damaged modeled before

failure (PGA = 0.5g, 0.7g).
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(b) Amplified at the dam crest

Figure 5.12: Acceleration response; horizontal component only

5.9.2 Displacement in Dam

Figure 5.13 Shows the displacement time history of the dam crest. Although only the hor-

izontal acceleration is applied in these cases, both the horizontal and vertical displacement time

histories are generated. For the ground motion with PGA = 0.3g, the maximum displacement in

horizontal direction is almost twice of the vertical one. Both the cases with PGA = 0.5g and 0.7g

are failed at 4.41 and 4.28 s, respectively. These curves show that the dam slides (or overturns) at

the base more than the ultimate displacement.

In the seismic safety evaluation of concrete dam, not only the displacement time history of

the index point should be checked, but also the non-concurrent displacement envelope should be

evaluate for whole the dam body. Figure 5.14 shows the displacement envelope for the case with

PGA = 0.3g. Horizontal displacement has uniform distribution in height. On the other hand,

vertical displacement has almost uniform distribution along the base of the dam. This can be

attributed to the joint opening at the heel, while there is no opening/sliding at the toe.
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Figure 5.13: Time history of crest displacement
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Figure 5.14: Non-concurrent displacement envelope of dam under the ground motion with PGA =
0.3g

5.9.3 Stress in Dam

Time history of the first principal stress is shown in figure 5.15 for three critical points, i.e.

crest, heel, toe. Before failure (PGA = 0.3g), the crest point experiences mainly the tension, while

the toe is under compression. Heel experiences both the tensile and compressive stresses. When

the major part of the dam-foundation interface is cracked, most of the stresses are in the form of
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tension.
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(c) Dam toe

Figure 5.15: Time history of first principal stress

Figure 5.16 shows the non-concurrent stress envelope for the case with PGA = 0.3g. Maxi-

mum of first principal stress (S11), minimum of third principal stress (S33) and maximum of shear

stress (S31) are shown. As see, the most critical point is dam heel in term of tension and dam toe

in term of compression.

When the concrete is modeled based on linear elastic assumption, two simple criteria can

be used for estimation of the intensity of damage, i.e. uniaxial failure criterion and biaxial failure
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Figure 5.16: Non-concurrent principal stresses envelope of dam under the ground motion with PGA
= 0.3g

criterion. The uniaxial failure criterion can be represented as:

S11 ≥ f ′
t or S33 ≤ f ′

c (5.2)

The concrete biaxial failure envelope has been improved from that given originally by Kupfer

et al. (1969), also described in Wang and Hsu (2001). In addition, the linear variation of concrete

strength in the compression-tension zone is substituted by a quadratic curve as proposed by Chen

W.F. (1982). Different zones of performance as well as their mathematical relations are summarized

in figure 5.17. In the current example (for PGA = 0.3g), the heel of the dam violates both the

uniaxial and biaxial failure criteria.

5.9.4 Strain in Dam

Figure 5.18 shows the time history of the first principal strain only for the crest point. As

seen, the trend of strain variation matches well with that reported for the stress in figure 5.15(a).

However, many of the concrete failure criteria are originally developed based on principal stress

state, it should be noted that the actual cracking of a concrete element is based on the strain

exceedance from the critical value. Moreover, figure 5.19 shows the non-concurrent strain envelope

on the dam body for the case with PGA = 0.3g. In this case, not only the heel but also the toe of

the dam experience some tensile strains (E11).
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Figure 5.18: Time history of first principal strain at the crest point

5.9.5 Joint Response

Considering that in the present example the nonlinearity of the system is originated from

dam-foundation interface joint, the seismic response of the joint is investigated in detail.

Figure 5.20(a) shows the time history for ratio of the cracked length to the dam base. Based

on this figure, only 15% of the base is cracked at the end of the seismic analysis with ground motion

PGA = 0.3g. Under the both PGA = 0.5g and 0.7g the dam fully cracked; however, more intense

ground motion leads to early failure. As mention before, this curve can be used as a single variable
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Figure 5.19: Non-concurrent principal strains envelope of dam under the ground motion with PGA
= 0.3g
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(b) Joint opening in heel (blue line) and toe (red line)
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(c) Joint sliding in heel (blue line) and toe (red line)

Figure 5.20: Time history of joint displacement
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damage index for quantification of the damage in dam.

Figures 5.20(b) and 5.20(c) shows the time history of the crack opening and crack sliding for

two critical point, i.e. heel and toe. Based on this figure, for the case with PGA = 0.3g, there is

no joint opening and sliding at the toe; however, dam experiences 0.4 mm joint opening and 0.3

mm joint sliding at the heel. For the case with PGA = 0.5g, the heel experiences some large joint

openings (about 10 mm) about one second before failure; however the value of the joint sliding is

not considerable until failure. For the case with PGA = 0.7g, the heel has joint opening about

25 mm one second before failure. Consequently, it has up to 10 mm sliding half second before

failure. Note that the toe does not have any considerable joint opening and sliding before failure.

For the current example, any relatively large values in joint opening/sliding of the toe corresponds

to failure of the system.

Figure 5.21 shows the normal and tangential stresses on the interface joint at the heel and

toe. For the case with PGA = 0.3g, the normal stress at the heel fluctuates between 0 and -4

MPa (with some exceptions). The joint at this point is not capable of enduring any tensile stresses

after fracturing. This point can be tracked also based on figure 5.20(a). On the other hand, the

value of normal stress at the toe fluctuates around -2 MPa. Figure 5.21(b) shows the variation of

tangential stresses. For the case with PGA = 0.3g, the shear stress drops to zero after fracturing;

however, there are still some positive stress up to end of the analysis. For the cases with PGA =

0.5g and 0.7g, the joint experiences some very high stresses (normal or shear) about one second

before failure.

Figure 5.22 shows the time history of the joint safety factor. Global safety factor against

sliding for the joint is determined as:

SFFSglob =
FC +

∑
FN tanΦ∑
FT

(5.3)

where, FC , FN and FT are total cohesive, normal and shear forces, respectively. Φ is the fric-

tion angle. In addition, the average safety factor, SFFSave, for the joint is computed from those

determined at each Gauss point.
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(a) Normal stress in heel (blue line) and toe (red line)
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(b) Tangential stress in heel (blue line) and toe (red line)

Figure 5.21: Time history of joint stress

As seen, for the case with PGA = 0.3g, both the SFFSglob and SFFSave fluctuates around 5.

For the cases with PGA = 0.5g and 0.7g, the SFFSave decreases by cracking of the joint and finally

approaches to zero at the failure time.

5.10 Structural Analysis; Joint and Material Nonlinearity

Based on figure 5.11, the failure modes and limit states of the system is not limited to only

dam-foundation interface joint. Any other set of cracks specially at the neck area and also the

concrete of the heel and toe can be considered as failure mode.

For this purpose, the simultaneous effects of joint nonlinearity (due to pre-defined zero thick-

ness dam-foundation interface joint) and material nonlinearity (due to concrete cracking under the

smeared crack approach) are considered. This corresponds to LS-1, LS-2, LS-3, LS-5 and LS-6 as

discussed already. The foundation rock is still assumed to be linear elastic. Hydrodynamic pres-

sure is modeled by Westergaard added mass and the dynamic uplift is modeled inside the opened
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Figure 5.22: Time history of the safety factor in joint

joints/cracks.

Considering that the seismic response of the concrete dam including smeared crack model

is highly sensitive to the intensity of the applied ground motion, the previously selected ground

motion is scaled to six intensity levels, i.e. 0.2g, 0.3g, 0.4g, 0.5g, 0.6g and 0.7g. This method

corresponds to the incremental dynamic analysis (IDA) (Vamvatsikos and Cornel, 2002); however,

in the present chapter only the nonlinear dynamic analyses are performed and there is no specific

post processing on the results.

5.10.1 Displacement Response History

Figure 5.23 Shows the displacement time history of the dam crest. Only the horizontal

component is shown. The dam is survived for the cases with PGA = 0.2g, 0.3g and 0.4g; however,

it fails in the other cases. For the safe modeled, the maximum absolute crest displacement is

proportional to the seismic intensity. For the failed cases, increasing the intensity of the ground

motion, reduced the final failure time.
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Figure 5.23: Time history of crest horizontal displacement for the model with interface joint and
smeared crack

5.10.2 Joint Response History

Based on figure 5.24, in none of the cases the dam-foundation interface is fully cracked.

However, for the high intensity ground motions, i.e. PGA = 0.5g, 0.6g and 0.7g, another failure

mechanism (cracking of concrete based on smeared crack approach) leads to termination of the

analysis before ending the ground motion. Almost in all cases, increasing the seismic intensity

level, increases the base crack ratio.

Figures 5.25 and 5.26, shows the time history of the joint opening and joint sliding for the two

critical points, i.e. heel and toe. Based on these figure, the joint at the toe is always safe (there is

no opening and sliding in this point). The case with PGA = 0.3g shows higher opening/sliding that

the case with PGA = 0.4g. This may attributed to the different cracking mechanism of concrete

in these two cases. In all the cases with PGA = 0.5g, 0.6g and 0.7g, the heel experiences very high

opening and sliding responses.
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Figure 5.24: Time history of joint cracking
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Figure 5.25: Time history of joint opening in heel (blue line) and toe (red line)

5.10.3 Cracking of Concrete

This section studies the crack profile of the dam for different intensity scenarios. Figure 5.27

shows the initiation of the cracking and the final crack profile for the cases which remain safe, i.e.

PGA = 0.2g, 0.3g and 0.4g. As seen, in all cases cracking starts at the heel. This is the most

critical point of the dam and in all the previous cases, the interface joint opening first occurs in
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Figure 5.26: Time history of joint sliding in heel (blue line) and toe (red line)

this point. Then, cracking propagates at the dam base toward down stream. This is the crack path

which is also followed by the interface joint.

(a) PGA = 0.2g, Initiation t =
3.74 s

(b) PGA = 0.3g, Initiation t =
3.70 s

(c) PGA = 0.4g, Initiation t =
3.16 s

(d) PGA = 0.2g, Final t = 10.0
s

(e) PGA = 0.3g, Final t = 10.0 s (f) PGA = 0.4g, Final t = 10.0 s

Figure 5.27: Concrete dynamic cracking for the safe models

The ratio of the crack length to the base of the dam is 0.15, 0.25 and 0.30 for the cases with

PGA = 0.2g, 0.3g and 0.4g, respectively. Moreover, increasing the intensity of the ground motion,
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decreases the time of first crack in body. The contour plot in figure 5.27 shows the crack opening

at the considered time.

Figures 5.28, 5.29 and 5.30 shows the crack profiles at different times (from crack initiation

to termination of the analysis) for different seismic intensities. Again, in all cases the crack starts

at the heel of the dam and propagates toward downstream. Another set of crack starts at the neck

near the slope discontinuity and propagates toward upstream face. In all of these cases, the failure

occurs when at least one crack path generates near the neck area. Thus, the failure mode of the

dam with both interface joint and smeared crack model is cracking of the neck. These limit states

are already shown in figure 5.11 as LS-1, LS-2 and LS-3.

(a) t = 3.14 s (b) t = 3.98 s (c) t = 4.20 s (d) t = 5.48 s (e) t = 7.10 s

Figure 5.28: Concrete dynamic cracking for the case with PGA = 0.5g

(a) t = 2.74 s (b) t = 3.50 s (c) t = 3.68 s (d) t = 4.54 s (e) t = 4.84 s

Figure 5.29: Concrete dynamic cracking for the case with PGA = 0.6g

(a) t = 2.72 s (b) t = 2.94 s (c) t = 3.46 s (d) t = 4.22 s (e) t = 4.48 s

Figure 5.30: Concrete dynamic cracking for the case with PGA = 0.7g



Chapter 6

Quantified Potential Failure Mode Analysis of Concrete Dams

This chapter is based on the following two references:

Hariri-Ardebili, M.A., Saouma, V.E. and Porter, K.A., (2015), Quantification of Seismic

Potential Failure Modes in Concrete Dams (submitted to Earthquake Engineering and Structural

Dynamics)

6.1 Introduction

In its quadrennial report, American Society of Civil Engineers (2013) reports that the average

age of the 84,000 dams in the US is 52 years, that the nation’s dams are aging and the number of

high-hazard dams is on the rise. It is further reported that overall number of high-hazard dams

continues to increase, to nearly 14,000 in 2012, while those those considered deficient is estimated

at more than 4,000 (which includes 2,000 deficient high-hazard dams). As a result ASCE gave

a D+ assessment for the dam national infrastructure. Thus, it is not surprising that ASDSO

(2011) estimates that it will require an investment of $21 billion to repair these aging, yet critical,

high-hazard dams. Given the limited budget for repair and maintenance, national codes require

a quantitative assessment of a dam safety for prioritization purposes (FERC-Arch, 1999) (USBR-

manual, 2011) (ANCOLD, 2003) (CDA, 2007).

A potential failure mode (PFM) of a dam, in its general definition, is a chain of events leading

to unsatisfactory performance and uncontrolled release of reservoir water (FERC-PFMA, 2005).
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Correspondingly, a potential failure mode analysis (PFMA) is the exercise required to identify all

PFMs under all possible loading conditions (USBR-manual, 2011) and not only structural. This is

accomplished through multiple meetings of all those involved (closely or remotely) with the dam

operation.

Broadly speaking, one may perform a potential failure mode analysis either qualitatively

(based on site observations) or quantitatively (based on accompanying finite element analyses).

The former approach is the one advocated by both (FERC-PFMA, 2005) and (USBR-manual,

2011). On the other hand, there have been very few attempts to quantify the method, and to

the best of the authors’ knowledge this was done exclusively for linear elastic analysis by Ghanaat

(2004). The author of Ghanaat (2004) proposed a systematic approach to PFM identification in

terms of demand capacity ratios, cumulative inelastic duration, and percentage of over-stressed

area in dam body.

Other researchers have studied the failure modes of concrete dams without utilizing a sys-

tematic procedure. Instead a hybrid approach based on the specificity of the nonlinear model, the

analysis technique and post-processing of the data is used. Amongst those researchers, it is worth

mentioning a few. Tekie and Ellingwood (2003) developed fragility curves with several limit states;

Wei et al. (2008) proposed a strength reserve factor method; Feng et al. (2011) adopted a set of

innovative safety factors; Pan et al. (2014) relied on different fracture modeling approaches; Wang

et al. (2013a) used a safety monitoring index; Dewals et al. (2011) proposed a failure mode based

on malfunctions in a complex or a series of dams; Su et al. (2013) used correlated (sequential or

parallel) failure modes.

The present contribution is a natural extension of the previous work by the first two au-

thors (Hariri-Ardebili and Saouma, 2014) who proposed a multi-scale based damage index model

for concrete dams. It provides an essential link with the second generation of performance based

earthquake engineering (PBEE-2) offered in Porter (2003) and Applied Technology Council (2012).

Proposed is a hybrid model based on PFMA and PBEE-2 for the seismic and probabilistic perfor-

mance assessment of dams.
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First an extensive review of the PFM in concrete dams (along with case studies) is presented.

Then the proposed quantification of the PFM is addressed for both linear and nonlinear analysis. In

both cases multiple strip analysis (MSA) approach is used. This approach leads to some interesting

by-products: the probabilistic relationship between the linear and nonlinear analyses, and the

selection of most efficient intensity measure parameter. A detailed numerical example is presented

later.

6.2 State-of-the-Art Review on PFM

6.2.1 Fundamentals of PFMA

PFMA is characterized by three sequential steps: a) identification, b) description and c)

screening of PFMs (FEMA-PFM, 2011). Identification of PFMs is usually done in a team setting

with a diverse group of qualified people who collect and review all relevant background informa-

tion (such as geology, design, analysis, construction, concrete material, flood and seismic loading,

operation, safety evaluations and monitoring documentations). The second step fully describes the

identified PFM from initiation, to failure progress, and possibly leading to breach and uncontrolled

reservoir release. Typically, failure starts with some initiating event that causes an adverse change

in the structure. The initiator could be: a) hydrologic, b) seismic; c) aging; and d) human. The

final step (screening) defines the mechanism and magnitude of the breach and its impact. This

approach (with minor variations) is the one currently adopted by Reclamation and Corps of En-

gineers (USBR-manual, 2011, joint manual), and by the Federal Energy Regulatory Commission

(FERC) (FERC-PFMA, 2005).

6.2.2 Historical Seismic Damage in Concrete Dams

Since there have been few reported earthquake-induced failures or major damages in concrete

dams, this section will review some of the most important cases reported in the literature. They

can assist in the identification of PFM below.
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Koyna Dam (India) was a rubble concrete gravity dam of 853 m length and 103 m height. The

1967 Koyna earthquake induced horizontal cracks on both faces of the tallest non-overflow

blocks at the elevation of the downstream change of slope. However, the dam did not

breach and no flooding occurred. Subsequently, the dam was strengthened by the addition

of buttresses on the downstream face of the non-overflow blocks (Chopra and Chakrabarti,

1973). This observed performance clearly points to the type of overstressing failure that

could occur in a gravity dam.

Shih Kang Dam (Taiwan) was 21.4 m gravity dam and 357 m long. The dam was located directly

over a branch of the fault caused by the M7.6 Chi Chi earthquake on September 1999. The

fault rupture extended both upstream and downstream of the dam and caused extensive

damage to bays 16 to 18. The ground movement led to a vertical differential movement of

about 9 m in these bays. There was also a diagonal horizontal offset through the dam of

about 7 m, and the dam collapsed with uncontrolled release of water (Nuss et al., 2012).

Uh Dam (Japan) is a 14 m high concrete gravity dam. The dam is located about 1.0 km from

the epicenter of the 2,000 Western Tottori Earthquake (M7.3). The only damage to the

dam was cracking 10 mm to 30 mm wide on the spillway channel near the base of the

downstream face and there was no uncontrolled release of water (Nuss et al., 2012).

Pacoima Dam (USA) is a 111 m high arch dam with a crest length of 180 m. Abutment rock

movements and contraction joint opening were observed following the 1971 San Fernando

earthquake and the 1994 Northridge earthquake. In 1994, the contraction joint between

the arch dam and thrust block on the left abutment opened 5 cm at the crest level. The

opening continued downward, tapering to 0.64 cm 18.3 m below the crest level. Also a

crack diagonally crossed two lift joints and reached the abutment rock. Other contraction

joints did also moderately open (Ghanaat, 2004).

Hsinfengkiang Dam (China) is a 105 m buttress dam with 440 m crest length. The dam has 19
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diamond-head buttresses in the central portion with gravity section located on either side.

In 1962, the dam was shaken by a M6.1 earthquake located very close to the dam (it is

widely believed that it may have been triggered by the infill of the reservoir) resulting in

horizontal cracks (Shen et al., 1974).

Sefid-rud Dam (Iran) is a 106 m gravity buttress dam with 7 gravity monoliths and 23 massive

head buttress units. In 1990 it was damaged by M7.3 Manjil earthquake with the epicenter

at about 32 km however the fault rupture was much closer. The main damage to the central

monoliths was cracks at lift joints extending from the dam face through the buttress face

and web. These occurred close to the change in slope near the crest and resulted in a 2 cm

shear displacement. Although no catastrophic release of the reservoir did occur, the overall

stability of the dam was not perceived to be of major concern. Subsequently the dam was

repaired using epoxy-grouting for water tightness with post tensioning strands to restore

shear strength in the cracked sections (Ahmadi et al., 1992).

6.3 Critical Assessment of Existing Qualitative Approach

As earlier stated, current regulations are mainly qualitative. This approach starts with a

failure initiator and then determines its impact on the structure. Table 6.1 summarizes some of

most important initiator events as well as their impacts on concrete dams. Furthermore, figures

6.1(a) and 6.1(b) illustrate the initiators for gravity and arch dams respectively. Once all PFMs

have been determined, they must be ranked to identify the the most critical one which should be

described in great details.

The PFMs should be categorized in terms of the adverse factors that are likely to induce

failure modes. Each PFM is classified/categorized according to the classification system shown in

Table 6.2. Finally, figure 6.2 illustrates the key steps of a PFMA. It should be noted that it is

purely qualitative.

The next section will first introduce the tools used for the categorization of the above refer-
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Table 6.1: Summary of the important initiators and the resultant impacts, based on (USBR-manual,
2011)

Initiator Resulting Impacts

Increasing reservoir
level

Increases stress, causes cracks and sliding
Overtops the dam, causes to erosion and sliding

Increasing uplift pres-
sure

Reduces the frictional resistance and increases sliding

Seismic load Increases stress, causes cracks and sliding

Alkali-aggregate reac-
tion

Reduces the strength and load-carrying capacity of con-
crete
Expands the concrete and binds equipment

Human interaction Fails in spillway gate operation, causing the reservoir to
rise

Landslide Causes a large rock mass to move into the reservoir, caus-
ing large waves, causing overtoping

Leaching of foundation Reduces the bearing capacity, causes the dam settles

Cracking

Thermal induced cracking

Deterioration:
Loss of weight and strength

Sliding along
contact

Loss of bearing or sliding
due to erosion undercut

Sliding along discontinuityLoss of bearing strength

Cracking,
crushing,
or sliding

Cracking

Sliding along
lift joints

(a) Gravity dam, 2D, adopted from FEMA-PFM (2011)

Cracking along lift joints

Localized concrete cracking or crushingSliding and opening
along interface

Shear key failure

Concrete Deterioration
(AAR / ASR)

Loss of bearing strength

Sliding along
rock joints

Sliding and opening along
contraction joints

(b) Arch dam, 3D

Figure 6.1: PFMs as initiators in concrete dams

enced PFMs and then their applicability to both dams and foundations.
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Table 6.2: Categories of the identified PFMs adapted from USBR-manual (2011) and FERC-PFMA
(2005)

ID Code Identifier Definition

I

USBR-
USACE

Failure is in progress or
imminent

PFM initiated and in progress; emer-
gency actions warranted; increased
monitoring or other interim risk reduc-
tion actions may be warranted; risk es-
timates and documentation should be
completed.

FERC Highlighted PFM Some PFMs are of of great significance
with high potential for occurrence; con-
sequence and likelihood of adverse re-
sponse highlighted.

II

USBR-
USACE

Failure mode is credible PFMs consequential; additional risk
analysis required, no immediate action
needed; monitoring recommended.

FERC PFM considered but not
highlighted

PFM of some significance present; Ar-
guments for retaining or ignoring must
be made.

III

USBR-
USACE

Insufficient information
to determine credibility
of failure mode

Insufficient information; PFMs must
be carried; Increased monitoring rec-
ommended.

FERC More information or
analyses are needed in
order to classify

Additional information required.

IV

USBR-
USACE

Failure mode is not
credible

Likelihood of failure negligible; no
additional studies required; addi-
tional documentation needed; addi-
tional monitoring not required.

FERC Failure mode ruled out
or is considered not vi-
able

No viable PFM.

6.3.1 Tools

6.3.1.1 Event Tree

An event-tree analysis is a technique used to identify possible outcomes given the occurrence

of an initiating event. It is a commonly-used approach for understanding, analyzing and commu-

nicating dam safety risk and for supporting decision making, (Hartford and Baecher, 2004) and

(Bowles and McClelland, 2000).
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Determination of the concrete dam type (Gravity, Arch, RCC, Buttress)

Determination of the components (Main body, Gates, Spillways, …)

Designation of the Potential Failure Mode Analysis (PFMA) participants

Collection of background data on the dam for review by the core team

Site review including interviews with key owner personnel at the project

Comprehensive review of all of the background data by the core team

Definition of the failure criteria based on purpose and hazard of component

Determination of PFM for the case (Sliding, Overturning, Cracking, …)

Determination of the initiator (Hydrologic, Static, Seismic, …)

Determination of the failure progression and sequences of events

Determination of the resultant impact (How rapid, How large)

Developing of event tree to study more comparatively the case

Listing all the adverse and favorable factors

Categorization of each PFMs identified based on classification system

Record the major findings and understandings achieved as a result of the PFMA

Consideration of performance monitoring opportunities and/or risk reduction
measures for identified PFMs

Documentation of the PFMA and Performance Monitoring Requirements

Id
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Figure 6.2: Steps towards PFMA of concrete dams based on qualitative approach; adapted from
FERC-PFMA (2005) and USBR-manual (2011)
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In the event-tree analysis, each identified potential failure mode is decomposed into a sequence

of component events and conditions, and all must occur for the specified failure to occur. It depicts

the sequence or progression of events and conditions through a branching fashion, with one or

more paths leading to failure. Event trees consist of a set of linked nodes and branches with nodes

representing an uncertain event or condition while branches represent a possible outcome with

an assigned probability of occurrence. Event trees must start with an initiator and then proceed

through potential failure mode development. Probabilities of occurrence are assigned through

qualified judgment of experts who may have to rely on mechanics, numerical modeling, statistical

analysis, case histories, or judgment (FEMA-PFM, 2011).

A typical event tree for a dam is shown in figure 6.3. Since the structure is in essence a

system of inter-related components, each one of them with one or multiple failure modes, it is

modeled as either a series, parallel, or series-parallel one. Failure modes may be independent or

correlated. Assuming independent k modes, the total reliability probability of the dam in series

(P s
R) and parallel (P p

R) is given by (Huaizhi et al., 2013):

P s
R =

k∏
i=1

PR (Xi) (6.1)

P p
R = 1−

k∏
i=1

(1− PR (Xi)) (6.2)

where PR (Xi) is the reliability probability of the ith failure mode.

Considering each component failure mode independently is not appropriate, one should con-

sider the interaction of two or more components through correlation factors. For instance the failure

of a shear key may be precipitated by the failure of water stop which resulted in additional uplift

pressure along the joint. Those two component failure will thus be correlated. For a fully correlated

system, the failure probability in a series system (P s
F ) is equal to its weakest component, while for

a parallel one (P p
F ) it corresponds to the safest mode (Huaizhi et al., 2013). It is noteworthy that

PR + PF = 1.
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Figure 6.3: Event-tree for an independent three-component system indicating accident sequences;
P (XA|I) = P (XA), P (XB|XA, I) = P (XB), and P (XCi|XB, XA, I) = P (XCi)

6.3.1.2 Fault Tree

A fault tree analysis on the other hand is a technique by which conditions that contribute

to a specific undesired event are identified and organized in a logical manner with a pictorial

representation. Hartford and Baecher (2004) used it as a quantitative or qualitative technique

to deductively identify the conditions and factors that contribute to a specified undesired event.

Fault tree analysis can also be defined as a top-down approach to failure analysis starting with an

undesirable event called a top event, such as a failure or malfunction and then determining all the

ways it can happen. Figure 6.4 illustrates some of the failure modes of a gravity dam system using

a fault tree approach.
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or

and

Sliding along
concrete-rock

interface

Sliding along
concrete lift

joints
Overturning

and

Regional failure of
dam i

Failure of
appurtenant structures

Regional failure of
dam i+1

or

Global failure of
dam system

Intact
interface

Damaged
interface

Intact
interface

Damaged
interface

and

Sliding in
foundation

rock

Intact
interface

Damaged
interface

Overstressing
and cracking

Failure of
foundation

Destabilization
and buckling

Figure 6.4: Failure modes of a gravity dam using fault tree approach

6.3.2 Application to Dams

Having preciously described the necessary tools to perform a PFM study, this section will

address the detailed failure models of different types of concrete dams and foundations (Mills-Bria

et al., 2006).

6.3.2.1 Gravity Dams

Ghanaat (2004) reported three major potential failure modes in gravity dams, i.e. overstress-

ing, sliding (either along cracked surfaces in dam body or along the weak planes in dam-foundation

interface), and sliding accompanied by rotation in the downstream direction. The damage response

of a typical gravity dam due to earthquake ground motions is shown in figure 6.5(a). Different

damages will result from the cyclic excitation. Under upstream direction acceleration cracking may

occur at the heel of the dam, and for downstream acceleration, it is most likely to affect the slope

discontinuity specially when the pool level is low (USACE, 2007).

When a crack nucleates at the slope discontinuity it is subjected to a mixed mode loading
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condition (shear and normal stresses) that will cause the crack to propagate along an inclined

direction toward the heel; this was indeed observed in Koyna dam (Chopra and Chakrabarti,

1973). As a result of this cracking, sliding, rotational instability, or both may occur (Malla and

Wieland, 1999), as illustrated in figure 6.5(b).

High tensile
stress regions

Deformed
shape

GM

GM

(a) Typical crack pattern under cyclic motion

1 2

4 3

(b) Crack propagation process

Figure 6.5: Damage response of gravity dam under earthquake ground motion

6.3.2.2 Arch Dams

Though, by design, arch dams are thin walled hyperstatic structures composed of intersecting

arches and cantilevers, this added strength does not completely eliminate the likelihood of failure.

Those are: 1) excessive contraction joint opening combined with tensile cracking of the cantilevers

(and not in arches), 2) buckling, 3) crushing of concrete, and 4) global instability (Ghanaat, 2004).

Since contraction joints have practically no tensile resistance; henceforth, repeated cyclic loads

are likely to break the weak bond between the grout and the concrete. This, in turn, will relieve

arch tensile stresses but drastically increase those in the cantilevers (USACE, 2007), which may
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ultimately crack (possibly at the lift joints). Finally, the breakdown of the dam integrity may lead

to failure, as shown in figure 6.6(a). This process is illustrated by the progressive chain of localized

failures in Dez dam (subject of the subsequent case study in this paper), figure 6.6(b). However, it

should be noted that most of these effects can be mitigated by the presence of shear keys.

Partially-free block Joint opening
and sliding

Cracked
lift joints

Abutments

(a) Typical joint openings and cracking under cyclic
motion

1 2

4 3

(b) Crack propagation process

Figure 6.6: Damage response of arch dam under earthquake ground motion

In some cases, it is found more convenient to analyze the cantilever by itself. In this case one

can assume to have the adjacent contraction joints to be a) fully opened, or b) partially opened.

In the first case, a stability analysis could be performed to assess its integrity (FERC-Arch, 1999).

A numerical procedure for such a simplified analysis was recently undertaken by (Malla, 2013) and

(Hariri-Ardebili and Kianoush, 2014).

6.3.2.3 Buttress Dams

Buttress dams are reinforced concrete structures composed of an upstream water barrier

(flat slab, large domes, cylindrical arches, massive heads), and buttresses. Whereas hydrostatic

pressure is transferred to the foundation through the slab and buttresses (analogous to gravity

dams), resistance to lateral seismic forces (stream direction) is more akin to arch dams; it is a
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three-dimensional hyperstatic problem. On the other hand, buttress dams are very sensitive to

cross stream excitation.

Failure modes for such a dam include: 1) sliding of the weak planes (stream and cross stream),

2) racking (resulting from inelastic accumulated displacements) in cross-stream cases, 3) slab or

buttress localized failures (cracking or crushing), 4) buckling of buttress, as illustrated in figure 6.7.

Sliding at dam-
foundation interface

Cracking at lift joint

Racking due to cross-stream
ground motion component

Localized cracking
or crushing on slab

Cross-canyon
component

(a) Damage under two-component in-plane cyclic excitation (b) Progressive failure

Figure 6.7: Damage response of buttress dam under earthquake ground motion

6.3.2.4 Foundation-related PFMs

It is reported that about 70% of the concrete dam failures can be attributed to dam foundation

issues, (geological or geotechnical) (ICOLD, 1974). Whereas dams have generic PFM, foundation

failures modes are very specific to a dam. The major ones are tabulated in Table 6.3 (Boyer, 2006).

6.4 Proposed Quantitative Extensions

Finite element analysis of dams is either linear or nonlinear. It is suggested that the former

be undertaken for small dam heights in low seismicity regions. Nonlinear analysis on the other

hand should be undertaken for: a) high dams (> 100 m), b) those with large reservoir capacity

(> 1, 000 Mm3), 3) thin arch and buttressed dams. In either case, one needs a quantification of the

PFM (the previous section having addressed PFM in a qualitative manner) for the PBEE-2.

In the linear case quantification of the PFM have already been addressed by some and will
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Table 6.3: Common foundation-related PFMs for concrete dams

Initiator Foundation-related PFM

Static

Piping of foundation materials
Sliding stability of foundation materials
Sliding stability of reservoir rim materials
Irregular settlement/deformation of foundation materials
Dissolution of foundation materials
Landslide-induced waves

Hydrologic
Overtopping of dam leading to erosion of the foundation
Sliding stability of foundation/reservoir rim materials
Landslide-induced waves

Seismic
Deformation of foundation materials
Sliding stability of foundation/reservoir rim materials
Landslide-induced waves

be revisited next. Subsequently, this paper presents a quantification of the PFM for nonlinear

analysis.

6.4.1 Linear System

Quantification of PFM in linear analysis can be addressed through indices and corresponding

criteria. The indices are dam type independent whereas the criteria are not.

6.4.1.1 Indices

Indices are essentially metrics for damage, and the recommended ones are an extension of

those proposed by Ghanaat (2004) and later adopted by USACE (2007). Among the three original

criteria, two are extended and a fourth proposed as follows:

Demand capacity ratio (DCR): Originally formulated in terms of stresses it is hereby argued

that a more appropriate criteria would be a strain based one.

⎧⎪⎨⎪⎩
Stress DCRσ = σ

f ′
t

Strain DCRε = ε
εcr

(6.3)
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In either case, the compared stress or strain should correspond to the major principal one

for gravity dams (ε(1)), and the arch (εarch) or cantilever (εcant) quantities for arch dams.

Cumulative inelastic duration (CID): refers to the total duration of stress or strain excursions

above a stress (or strain) level associated with a certain DCR. In the context of a linear

elastic analysis, with dynamic elastic properties (Raphael, 1984), it is not surprising that

stress or strain based criteria are being violated. However, since stress redistribution (known

to occur in hyperstatic structures) is not accounted for (as they would be in a nonlinear

analysis), a single exceedance does not inevitably lead to failure. Accordingly, this criterion

establishes a heuristic rule simply counts the exceedance (stress or strain) duration during

the seismic excitation at two levels (1.0 ≤ DCR ≤ 2), as shown in figures 6.8.

Cumulative inelastic area (CIA): The previous index does not account for the magnitude of

the exceedance. This one seeks to account for it by measuring the sum of shaded areas

in figure 6.8. If a stress based index is adopted, then the CIA has units of FT/L2, which

actually corresponds to a dynamic viscosity.

Damage spatial distribution ratio (DSDR): Whereas previous criteria were evaluated point-

wise, this one seeks to measure the topological extent of computed damage (which may not

match the one stemming from a nonlinear analysis). Hence, the ratio of the overstressed

(or as stated above, overstrained) region to total dam area (cross-section area in gravity

dams and upstream or downstream faces in the case of arch dam) at the specific DCR is

the DSDR.

6.4.1.2 Criteria

To each of the preceding indices, one must specify limiting individual criteria. Those will

be addressed first. Then criteria for coupled indices will be presented. For individual criteria,

those shown in Table 6.4 are based on the authors’ judgment (Hariri-Ardebili et al., 2013) and the
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Figure 6.8: Calculation of the cumulative inelastic duration and area using stress/strain time
histories

proposed ones in the literature (USACE, 2007). As to CIAcr, it was derived from an assumption

of a hypothetical harmonic excitation with a DCR of 2.0, oscillation period of 0.25 s and limited

to 5 cycles. This would give 0.275 and given the approximate nature of the derivation is bracketed

by 0.2 and 0.4.

A more comprehensive approach must account for the combined criteria and their possible

coupling. This is accomplished by pairing the following indices: DCR-CID and DCR-DSDR, figure

6.9. In zone “A”, stresses or strains are below their critical values, the structure is safe, and there

is no need for further evaluation. Stresses or strains exceed their acceptable values in “B” and “C”.

Assessment through DSDR and CID is performed through “B” and “C” respectively. Finally, “D”

is unacceptable, as it is outside the failure surface. Linear analysis in zone “A” is enough, in “B”

and “C” is acceptable and in “D” is unacceptable.

6.4.2 Nonlinear System

Should a linear analysis of the dam indicate potential severe damage, as shown in figure 6.9,

one should perform a nonlinear structural analysis. Furthermore, should there be initial cracks

(thermal cracks, poor construction, previous earthquake, etc) a nonlinear analysis is always war-

ranted. There are a number of factors that should be considered in nonlinear structural analysis of
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Table 6.4: Proposed Index criteria

Index Quantity Note

Arch Gravity Buttressed
DCRcr [1, 2] (Hariri-Ardebili et al., 2013)
CIDcr 0.4 0.3 0.4 (USACE, 2007)
CIAcr [0.2, 0.4] Explanation in text
DSDRcr 20% 15% 15% (USACE, 2007)

DCR

CID DSDR

CIDcr DSDRcr

1

2

0
A

BC

D

Figure 6.9: Failure surface for concrete dams under linear analysis

concrete dams:

• Staged construction process (de Arajo and Awruch, 1998)

• Fluid structure interaction (Ghaemian and Ghobarah, 1998), (Bouaanani and Lu, 2009)

• Soil structure interaction (Saouma et al., 2011), (Hariri-Ardebili and Mirzabozorg, 2013),

• Fluid fracture interaction (Slowik and Saouma, 2000a) (Barpi and Valente, 2008)

• Environmental effects such as thermal loads (Mirzabozorg et al., 2014) and ice loads

(Bouaanani et al., 2009).

• Aging of concrete (Valliappan, S. and Chee, C., 2009), alkali-aggregate reaction (Saouma

et al., 2007), and creep (Serra et al., 2012)

• Concrete fracture and joint modeling (concrete-concrete and concrete-rock)(Puntel et al.,

2006)
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• Concrete cracking and crushing (Lee and Fenves, 1998)

• Spatial variation of the ground motion (Chopra and Wang, 2010),(Mirzabozorg et al., 2012)

Whereas sensitivity analyses should be performed to assess the relevance of the aforemen-

tioned sources of nonlinearities, the first two authors personal experience indicates that dam-

reservoir interaction, joints, and concrete cracking are predominant.

Because a nonlinear analysis attempts, in as much as possible, to capture the real response

of a dam, failure can not be as explicitly assessed as in the linear analysis (such as with reference

to figure 6.9). As such, the authors have introduced the notion of damage index (DI) in (Hariri-

Ardebili and Saouma, 2014), which will be used below.

6.4.2.1 Methodology

In the context of a nonlinear analysis, the structural capacity is captured by any of the

methods described below. Except for the first one (static analysis) the other three rely on a

nonlinear dynamic one. For those analyses, one must start with the identification of location

(with respect to a fault), geotechnical conditions (shear wave velocity) and structure type. From

these data, one selects (or generates) a set of ground motion acceleration time histories. From

the corresponding analysis one plots the intensity measure (IM) versus the engineering demand

parameter (EDP) (which corresponds to the demand parameter, DP defined in (Applied Technology

Council, 2012)). IM is a measure of the ground motion characteristic, typically the (peak or

spectral) ground acceleration. EDP corresponds to any force or deformation calculated during the

structural analysis that is relevant to the safety assessment, such as base shear or drift.

Pushover Analysis (POA): is a nonlinear static procedure that applies incrementally load or dis-

placement and has been extensively used in the structural analysis of buildings to estimate

structural response in lieu of the more expensive transient nonlinear analysis (Mwafy and

Elnashai, 2001). The underlying assumption behind POA is that it is capable of mobi-

lizing principal nonlinear modes of structural behavior up to collapse. The only reported
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Figure 6.10: Structural analysis based on four nonlinear methodologies

application of the POA to concrete dams is by Alembagheri and Ghaemian (2013b) where

the horizontal force is composed of hydrostatic and inertia ones. Figure 6.10(a) shows the

load vectors, and the corresponding intensity measure (in this case load vector magnitude).

Following the analysis, figure 6.10(b) shows the IM (load amplitude in this case) versus

EDP as well as the yield (triangle solid point) and ultimate (circle solid point) capacities

for the EDP.

Multiple-Strip Analysis (MSA): hinges on a deterministic number of ground motion intensity

levels m (or strips) (Cornell and Jalayer, 2002). Typically m = 3 corresponding to the

exceedance probabilities of 10% in 50-year, 5% in 50-year, and 2% in 50-year (Mackie and

Stojadinovic, 2005) and to each strip correspond n ground motions. In figure 6.10(a) the

MSA analysis has m = 3. There are two possibilities: a) selection of n different ground

motions scaled at m different levels; or b) selection of ni ground motions for each of the
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intensity levels with no scaling. Following the analysis, and for each m the usual IM versus

EDP results are first plotted. Then for each IM histograms are generated and the most

suitable probability distribution function (normal or log-normal) is selected, figure 6.10(b).

Subsequently, fragility curves could be derived (Baker, 2014).

Incremental Dynamic Analysis (IDA): considers n ground motions which will all be incremen-

tally scaled m times until failure occurs. a priori m is unknown and each ground motion n

will result in a corresponding failure at a different intensity level mi (Vamvatsikos and Cor-

nel, 2002), figure 6.10(a). Following the analysis, the IDA curve (figure 6.10(b)) connects

the resulting m demand parameters for each of the n ground motions. Each one of those

curve will be asymptotic to the corresponding failure. Capture of the overall response by

a single measurable quantity at a given IM (IM = imi) can be determined through the

corresponding probability distribution. Those curves can be used for the determination of

the fragility plots (Porter et al., 2007).

Endurance Time Analysis (ETA): The preceding two methods started with actual recorded

ground motion and required up to m× n analysis. This is computationally expensive and

thus may force the analysis to make greatly simplified assumption in their model. Such

assumptions may lead to erroneous conclusions. The ETA method starts with a synthetic

ground motion (Naeim and Lew, 1995) whose amplitude increases over time, as shown

in figure 6.10(a) (Estekanchi et al., 2007). The increasing amplitude in a single motion

substitutes for suites of ground motion times histories where each subsequent suite has a

higher amplitude. As before, n endurance time acceleration functions (ETAF) are used,

figure 6.10(a). The outcome of the analysis, figure 6.10(b), is n capacity curves in terms

of IM versus EDPs and their average which is used to reduce the uncertainty due to the

random nature of ETAFs (Hariri-Ardebili et al., 2014b). The resulting average curve is

analogous to the one of the POA or 50% fractile of IDA. This method was used by (Hariri-

Ardebili and Saouma, 2014) for gravity dams.
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6.4.2.2 Indices

DI for concrete dams include:

Deformation-based damage index (DIdef) in which the stability of the dam is judged based

on the maximum absolute displacement of the index point (usually crest), |Δmax| (Powell

and Allahabadi, 1988):

DIdef =
|Δmax| −Δy

Δu −Δy
, Δy ≤ |Δmax| ≤ Δu (6.4)

where Δy and Δu are the maximum displacement at the yield point and ultimate point,

respectively. DIdef ∈ [0 1] corresponding to [Δy Δu].

Crack-based damage index (DIcracking), in which the stability of the dam is judged based on

the length (for 2D models) or area (for 3D models) of the cracked region. For concrete

dams the DI is simply ⎧⎪⎨⎪⎩
Gravity dam DIcracking = LC

LT

Arch dam DIcracking = AC
AT

(6.5)

where the numerator corresponds to cracked length or surface area, and the denominator

to the total potential crack length in gravity dams and upstream/ downstream face in arch

dams.

Energy-based damage index (DIenergy) in which the stability of the dam is evaluated as the

ratio of the sum of the individual energies dissipated by the s cracks/joints, over the the

one measured at collapse (EH)u, (Bhattacharjee and Leger, 1993):

DIenergy =

∑s
i=1 (EH)i
(EH)u

(6.6)

Joint damage index (DI joint) will simply refer to the joint opening (DIopening) and sliding

(DIsliding) along construction joints.
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Hybrid damage index (DIhybrid) in which the stability of the dam is judged based on a weighted

average of DIcracking and DIenergy and the index point displacement, umax, (Hariri-Ardebili

and Saouma, 2014).

DIhybrid = f (LC , EH , umax) (6.7)

In summary, whereas for linear analysis the one starts by examining indices and then the

corresponding criteria, the nonlinear analysis will start with methodology followed by indices.

6.5 Dam Description and Modeling

As a numerical example a high arch dam is selected, analyzed linearly and non linearly, and

corresponding seismic PFMs quantitatively evaluated.

Dez (located in southwest Iran and commissioned in 1963), a double curvature (203.5 m high

and 240 m crest length) arch dam is considered. Its Lombardi slenderness coefficient (Fanelli and

Lombardi, 1997) is Cl = 12.28 corresponding Cl × H is 2,500, and the full reservoir capacity is

3,350 Mm3. The dam thus meets all three criteria for an above-average susceptibility to damage as

described in Hariri-Ardebili et al. (2015). The dam has sixteen contraction joints and a peripheral

joint separating the main body from the concrete saddle (Pulvino).

The finite element mesh composed of 792 and 3,770 solid elements for the dam and foundation

respectively, 956 joint elements and more than 30,000 nodes as shown in figure 6.11. Analysis

included dynamic fluid-structure interaction using an Eulerian-Lagrangian approach, and massless

foundation extending twice of the dam height (thus no need to include silent boundary conditions).

All analyses were performed with the finite element code ANSYS (2007) and more details can be

found in (Hariri-Ardebili and Kianoush, 2014). The material properties are summarized in Table

6.5.



143

(a) Dam body (b) Joint Modeling

Figure 6.11: Finite element model of Dez dam

Table 6.5: Material characteristics in Dez dam (Hariri-Ardebili and Kianoush, 2015)

Material/element Property Symbol (unit) Value

Concrete
(dam element)

Isotropic elasticity EC (GPa) 40
Mass density ρC (kg/m3) 2,400
Poisson’s ratio υC 0.2
Uniaxial tensile strength f ′

t (MPa) 3.4
Uniaxial compressive strength f ′

c (MPa) 35.0

Rock
(foundation element)

Saturated deformation modulus Esat
R (GPa) 13

Unsaturated deformation modulus Euns
R (GPa) 15

Mass density ρR (kg/m3) 2,450
Poisson’s ratio υR 0.25

Water
(fluid element)

Mass density ρF (kg/m3) 1,000
Sound speed in fluid C0 (m/s) 1,440
Wave reflection coefficient α0 0.70

Joint
(contact element)

Normal stiffness of vertical joint Kver
n (GPa/m) 240

Tangential stiffness of vertical joint Kver
t (GPa/m) 24

Normal stiffness of peripheral joint Kper
n (GPa/m) 210

Tangential stiffness of peripheral joint Kper
t (GPa/m) 16.8

6.6 Hazard Analysis

The previously discussed MSA approach is adopted with three seismic intensity levels (SIL),

m = 3, and nine ground motion for each (n = 9). SIL refers to qualitative representation of

the intensity against the quantitative representation using IM. It is common practice to select the

ground motions for two or three SILs (ICOLD, 2010) (del Consiglio dei Ministri, 2001) (Gosschalk

et al., 1994) (FERC-Arch, 1999). In the present paper, three SIL correspond to: design base level
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(DBL), maximum design level (MDL) and an intermediary one between the two. Those will be

labeled as 1, 3 and 2 for subsequent reference.

The annual rate of exceedance of the ground motion amplitude, λ, (inverse of return period

TR) for DBL and MDL are determined from a Poisson probability model (Cornell, 1968):

λ = −Ln (1− PE)

t
(6.8)

where PE is the occurrence (at least one) probability during life time t (generally assumed to be

100 years for dams). PE for ground motion is usually assumed to be in the ranges [20%, 64%] for

DBL and [10%, 20%] for MDL, (ICOLD, 1989). Consequently, the corresponding λ are 450 and

1,000 years for DBL and MDL, respectively (Eq. 6.8).

A probabilistic seismic hazard analysis (PSHA) leads to determination of: 1) Site charac-

teristics including shear wave velocity, magnitude of previously recorded earthquakes, size of the

rupture area, type of of fault, crustal rock damping characteristics, and rock properties; 2) Seis-

mic hazard curves showing the annual rate of exceedance in terms of intensity measure parameter

(McGuire, 1995), figure 6.12(a); and 3) Acceleration response spectra vs. period, figure 6.12(b).

For this site, the shear wave velocity exceeds 760 m/s, a threshold value in (Council, 2003)

for ground motion selection on rock sites. A critical damping ratio, ξ=5% is assumed for both

components of the ground motion.

6.7 Linear Structural Analysis

A linear elastic analysis is first conducted for each of the selected nine ground motions. By

observation, it is noted that GM03 is the most critical one (highest tensile stresses). For illustrative

purpose the CID for stress and strain is plotted in terms of both the DCR and SIL (figure 6.12(b))

in figure 6.14. Note that intermediary values for the SIL and DCR are interpolated. Figure 6.13(c)

shows the threshold value for both stress and strain interpretations.

From these figures, one concludes that for all DCR values, the corresponding CIDs are higher
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Figure 6.12: Quantification of site-specific seismic characteristics
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for stresses than strain. Also shown are the two regions (acceptable or unacceptable) consistent with

the failure surface diagram. Finally, since the unacceptable region is non-negligible, a nonlinear

analysis is likely to be needed.

Whereas the previous observations were based on GM03 only, a detailed analysis of the

complete set of the nine ground motions is now addressed. Shown in figure 6.14 are the mean

values of the CID and DSDR vs DCR. Based on this figure:

(1) In all cases a stressed-based interpretation leads to higher mean CID than for strain-based

one. This difference is reduced for higher DCR values.

(2) The mean CIDs remain in the acceptable region for level 1 and most of level 2; However

clearly level 3 is in the unacceptable region.

(3) For level 2, the mean CIDs corresponding to stresses are in the unacceptable zone, whereas

the strains are not.

(4) For mean DSDR it is clear that all three levels are in the acceptable region. However, as

will be shown later some of the individual ground motions do indeed puncture the dam

failure surface.
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Figure 6.14: Mean performance curves for the dam using linear elastic analysis
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6.8 Identification of Optimal IM Parameter

The outcome of WDM, i.e. MSA, IDA, and ETA should be plotted in IM-EDP coordinate

system. For the EDP, DSDR is perceived as being the most representative for dams as it captures

its global response. As to the IM, the options are many, the nearly optimal one will be identified.

6.8.1 Possible IM

In dam engineering the IM considered is in terms of the SIL’s (such as DBL and MDL)

(ICOLD, 2010) (del Consiglio dei Ministri, 2001) (Gosschalk et al., 1994) (FERC-Arch, 1999). On

the other hand, in PBEE-2 approach the IM can be one of the parameters listed in Eq. 6.9 and

can be directly computed from the ground motion acceleration time history.

IM =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Peak ground acceleration PGA = max (|a (t)|)

Peak ground velocity PGV = max (|v (t)|)

Root-mean-square of acceleration aRMS = ( 1
ttot

∫ ttot
0 a2

(
t
)
dt)1/2

Root-mean-square of velocity vRMS = ( 1
ttot

∫ ttot
0 v2

(
t
)
dt)1/2

Arias intensity IA = π
2g

∫ ttot
0 a2

(
t
)
dt

Specific energy density SED =
∫ ttot
0 v2

(
t
)
dt

Cumulative absolute velocity CAV =
∫ ttot
0 |a(t)|dt

Acceleration spectrum intensity ASI =
∫ 0.5
0.1 Sa (T, ξ) dT

Velocity spectrum intensity VSI =
∫ 2.5
0.1 Sv (T, ξ) dT

(6.9)

where a (t), v (t) are acceleration and velocity time histories; ttot total duration of ground motion,

Sa (T ) and Sv (T ) spectral acceleration and velocity at the period T , and ξ the damping ratio.

Figure 6.15 shows the histograms for each of the aforementioned IM parameters for m=3

seismic levels and n=9 ground motions listed in Table ??. In each case, data are fitted through

one of the following distributions: 1) normal, 2) lognormal, 3) exponential, and 4) Weibull and the

one with the best one selected. The Anderson-Darling (AD) test method (Anderson and Darling,
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1954) is favored over the better known Chi-square goodness of fit or the Kolmogorov-Smirnov (KS)

test because data came from a population with a specific distribution (Stephens, 1974).

The application of the AD method requires the conversion of the resulting statistic to a

uniform variable, p-value ∈ [0,1) (Marsaglia and Marsaglia, 2004). Hence, the larger p values for

a given distribution, the better the fit. Figure 6.15 shows the best distribution for each of the

selected IM and the corresponding p-values. One notes that in practically all cases, the lognormal

distribution is best (except for aRMS which is normal).

Figure 6.15: Distribution of IM parameter for selected ground motions

6.8.2 Selection of the Best IM

Using results from the linear analysis reported in section 6.7 regression analyses are performed

to identify the best IM(s). Regression analysis, with the same objective, have been previously
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addressed for framed structures in the context of PBEE-2. (Giovenale et al., 2004) emphasized

the importance of limiting the variation of the EDP for a given IM, i.e. results should fit in an

as narrow band as possible. On the other hand, Tothong and Luco (2007) emphasized the role of

efficiency, practicality, sufficiency, hazard compatibility, and proficiency.

Linear regression model describes a relationship between a dependent variable, EDP, and in-

dependent (explanatory) variable, IM. Linear format of trend-line is chosen in this research because

the data are obtained from linear analysis, EDP = â.IM+ b̂. This assumption is controlled later in

this section based on Akaike information criterion (AIC). Distribution of the residuals (EDPoriginal-

EDPfitted) over the IM values also should be checked. Residuals are useful for detecting outlying

EDPs and checking the linear regression assumptions with respect to the error term in the regres-

sion model. High-leverage data have smaller residuals because they shift the regression line/surface

closer to them. Finally, a 50% confidence interval for the fitted line (shaded area) is also provided.

Results of the regression analysis for each of the parameters identified in Eq. 6.9 are shown in

figure 6.16 along with the 50% confidence limit for the regression and the GOF is evaluated based

on R-squared and RMSE Eq. 6.10.⎧⎪⎪⎨⎪⎪⎩
R-squared =

∑n
i=1 βi(R̂i−R̄)

2

∑n
i=1 βi(Ri−R̄)

2

RMSE =

√∑n
i=1 βi(Ri−R̂i)

2

δ

(6.10)

where Ri, R̂i and R̄ are original, fitted and mean response values, and δ is the residual degrees of

freedom (differences between the number of response values and the number of fitted coefficients).

Obviously, a large value for R-squared (near to unity) and a small value for RMSE are indicator of

well-fitting.

Comparing all nine plots in figure 6.16 it is evident that for this particular dam the two best

IMs are the PGA and ASI as they have the largest R-squared value. Furthermore, the PGA is

essentially a differential quantity that capture a single peak value, and the ASI is essentially an

integrative one which captures the area under the acceleration response spectrum. Henceforth, the

cross correlation between those two IMs and their corresponding linear fit is shown in figure 6.17(a)
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Figure 6.16: Impact of IM parameter on the responses of linear system, DSDR = overstrain area

as a bi-variate surface. Using a vectorized IM did slightly improve the R-squared value to from a

previous maximum of 0.67 (ASI) to 0.69 and decreased the RMSE from 3.4 (ASI) to 3.33. Figure

6.17(b) shows the variation of the residuals (algebraic difference between actual data points and

the fitted surface).

One can also examine competing scalar and vector IMs as predictors of an EDP or damage

measure (such as DSDR) in light of the Akaike Information Criterion. For the reader unfamiliar

with AIC, for any statistical model, the AIC value is

AIC = 2K − 2Ln(L) (6.11)

where K is the number of parameters in the model and L is the maximized value of the likelihood
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Figure 6.17: Bi-variate surface fitting on the responses of linear system, DSDR = overstrain area

function for the model. When the sample size is finite, there is an alternative equation that corrects

AIC for sample size. The AICC value is given by

AICC = AIC +
2K(K + 1)

N −K − 1
(6.12)

where N denotes the sample size.

Especially when the sample size N is small or the number of parameters K is large, the

analyst considering two or more competing models should prefer the one with the minimum AICC

value. As Wikipedia says, “AIC (and by extension AICC) not only rewards GOF (measured here by

L0, but also includes a penalty that is an increasing function of the number of estimated parameters

(K).” Measuring the predictive power of a model by L or R-squared alone does not penalize the

model for overfitting with more parameters. AICC is therefore a more rigorous measure of the

information value of a model. Table 6.6 recaps AICC values of several IMs for their relationship

to DSDR. It suggests that the best among them for predicting DSDR is the 4th-order polynomial

on ASI. The advantage over the linear relationship between ASI and DSDR is slight though, and

there appears to be slight disadvantage in using the vector [PGA, ASI] intensity measure, which

has a higher AIC than ASI alone.

The foregoing does not consider any differences in uncertainty when one estimates ASI or
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Table 6.6: AICC values for competing IMs and the example dam

IM(s) Functional form AICC

ASI

Linear 144.14
2nd order polynomial 145.99
3rd order polynomial 147.40
4th order polynomial 143.27
5th order polynomial 144.38

PGA Linear 147.52

[PGA, ASI] vector 1st order (planar) 145.71

PGA using a ground motion prediction equation. That is, if one fixes magnitude and distance,

estimates ASI or PGA using a ground motion prediction equation, then estimates DSDR as a

function of ASI or PGA, the uncertainty in DSDR will be greater, the R-squared and L values

lower, and the AICC higher because of the added uncertainty in ASI or PGA. If the uncertainty in

ASI given magnitude and distance differs from the uncertainty in PGA given the same magnitude

and distance information, then the two IMs cannot be directly compared based solely on the value

of AICC conditioned on known, fixed values of ASI and PGA.

We found that AICC for a linear relationship between DSDR is slightly lower for ASI than for

PGA. However, uncertainty in ASI given magnitude and distance is slightly higher (0.6 according

to (Bradley, 2010)) than uncertainty in PGA given magnitude and distance (about 0.53 using

(Campbell and Bozorgnia, 2008)). The advantage in AICC of ASI versus PGA is thus offset at

least somewhat by the better ground motion prediction equations for PGA than for ASI. ASI has

not been the subject of as intense study through ground motion prediction equations as has PGA,

so it may be that better ground motion prediction equations for ASI will in the future reduce the

uncertainty in ASI given magnitude and distance.

The reader should bear in mind that these findings relate to this example dam only, not to

dams in general, so one cannot make a general conclusion about the best IM based on this analysis.

We can only say that for this dam, ASI, PGA, and a vector measure of the two are all approximately

equally good IMs. The differences are small enough that the analyst can be excused for choosing

among these IMs for other reasons than AICC or R-squared. We will be interested to see in future
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studies whether the vector proves generally superior for the reasons we have discussed.

6.9 Nonlinear Structural Analysis

From figure 6.14 it is clear that a nonlinear analysis of the dam for Level 3 and possibly 2 is

warranted. Results from such an analysis will be reported next.

Whereas lift joints were not modeled, contraction and peripheral ones were considered through

simple node-to-node contact elements. Material nonlinearity are modeled through the smeared

crack approach (Bazant and Lin, 1988). All other details are identical to the linear analysis case.

6.9.1 Joint Displacements Demand and Capacity

Results from the nonlinear analysis will be evaluated through the joint damage index (DI joint).

From each of the n = 9 analyses, the maximum joint opening and sliding displacement is recorded

in terms of height. The mean and standard deviation of these values are shown in figure 6.18. The

discontinuity in joint opening can be explained by the softening of the adjacent concrete as shown

in figure 6.20(b).

These joint displacements (demand parameter) should be examined with reference to the spe-

cific dam design and its ability to accommodate them without water leakage (capacity parameter).

6.9.2 Simulated EDP Correlation

The nonlinear analysis of a dam is a very complex and CPU intensive operation. Henceforth,

in the context of a PBEE-2 analysis one can either reduce the complexity of the model while

increasing the number of analyses (n), or vice-versa model as accurately the structure albeit with

a reduced n. In the present study n = 9. This dilemma can be circumvented by a palliative (Yang

et al., 2009c) that generates additional correlated EDPs. This procedure was recently adopted by

Applied Technology Council (2012, Appendix G) and can be summarized as:

(1) Select a specific SIL and perform n transient analysis.
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(a) Joint opening

(b) Joint sliding

Figure 6.18: Nonlinear behavior of dam in terms of joint movement

(2) Save the extreme EDPs in the Xn×k matrix, where k is the number of different EDPs.

(3) Compute Yn×k = ln Xn×k, which has the joint normal distribution.

(4) Compute the mean vector MY = (mean (Y))t.

(5) Compute the diagonal standard deviation matrix DY = diag (std (Y)).

(6) Compute the correlation coefficient matrix RYY = corrcoef (Y).

(7) Compute the covariance matrix ΣYY = DYRYYDY.

(8) Compute the lower-triangular decomposition LY = (chol (RYY))t.

(9) Generate a vector of uncorrelated standard normal random variables, U having zero mean
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and unit standard deviation.

(10) Perform a linear transformation and translation from U to Z as Z = DYLYU+MY.

(11) Transfer the generated joint normal logarithmic EDPs, Z to artificially generated EDPs as

W = exp (Z).

The three (k=3) EDP (joint opening, sliding, and cracking DI) associated with the n analysis

are first assembled in Xn×k. Then using the previously mentioned procedure, Nsim synthetic set

of k values are generated assuming that the components of X are correlated as in the n analyses

and that they are jointly lognormal (Cornell and Krawinkler, 2000).

Given the simplicity of the algorithm, a large value of Nsim was used as it would facilitate

data interpretation. Figure 6.19(a) shows the matrix plot of the simulated EDPs and the resulted

histograms (shown along the diagonal). The off-diagonal plots show the correlations between all

pairs of EDPs. The lognormal distribution results in a scatter of data within a cone which apex is

at the origin. Among the three possible pairs, it is clear that DIcracking vs. DIopening and DIcracking

vs. DIsliding have the smallest and largest dispersion respectively. This implies that as one would

expect extensive cracking will result in commensurate opening, whereas cracking is not necessarily

implied by shear sliding. As such, should one select a pair of EDPs to assess the probability of

failure, the best pair candidates would be the last one. The normalized joint probability density

function for DIcracking vs. DIsliding is shown in figure 6.19(b).

6.10 Linear and Nonlinear Analyses Correlation

Whereas a nonlinear analysis would ultimately best capture the response of a structure,

computational cost and complexity often are an impediment for the practicing engineer. It is not

uncommon to seek a correlation between the two which would ultimately allow the engineer to only

perform a linear elastic analysis (Chopra and Goel, 2002). This section will attempt to seek such

a relation for the considered dam.

In the current practice for seismic analysis of concrete dams, the IM is considered in terms
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Figure 6.19: Cross correlation between the simulated EDPs for nonlinear analysis at level 3

of the SILs (such as DBL and MDL) (ICOLD, 2010) (del Consiglio dei Ministri, 2001) (FERC-

Arch, 1999). Thus, the primary goal should be selecting a set of ground motion signals (xi(t), i =

1, 2, ..., n) all scaled to the predefined response spectra (x̃i(t), i = 1, 2, ..., n). These signals do not

have the same IM parameter necessarily, except that all are scaled to a certain response spectrum.

Let’s assume that the response of the linear and nonlinear systems to the scaled signals are rlei (t)

and rnli (t), i = 1, 2, ..., n. The response r can be any general monitoring item in dams such as

deformation, stress, uplift; or even the predefined damage index (DI). The extreme value of the

r for t ⊆ [0, ttot] is assumed to be R. Thus, the group of extreme responses under the applied

signals will be Rle
i and Rnl

i , i = 1, 2, ..., n for linear and nonlinear systems, respectively. From the

preceding analyses, the extreme responses Ri are identified, and then a probability distribution

(normal or lognormal) fitted for both the linear and nonlinear analyses. Then a relationship among

these quantities is sought

(μle
R, σ

le
R) = gm(μnl

R , σnl
R ) (6.13)

for a given hazard level m.

Figure 6.20 shows the selected R for linear and nonlinear analysis at level 3 where the shaded

area in 6.20(a) corresponds to DSDR (overstressed area) and in 6.20(b) to DIcracking. One notes the

good correlation among the two sets. Given the limited number of analysis (n = 9) in figure 6.20,
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the Nsim simulated ones (as previously mentioned) are used to generate figure 6.21 and a lognormal

distribution is fitted. The mean and standard deviation for the linear case are equal to 16.5 and

4.6, respectively, whereas for the nonlinear one they are equal to 8.6 and 4.1. Those two curves

have nearly the same standard deviation and are nearly parallel in the [0.1, 0.8] vertical range.

Hence, one could simplistically assume that outcome of a nonlinear analysis may be predicted from

a linear one by simply dividing the mean value of the overstressed area by ≈ 2. Alternatively, these

curves indicate that a linear elastic analysis has a safety factor of nearly two.
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Figure 6.20: Correlation between linear and nonlinear analyses for level-3 seismic intensity

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Damage measure parameter [%]

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Overstressed

Crack
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correspond to the simulated EDPs, solid ones to the fitted curve)
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6.11 Summary and Conclusion

Heavily borrowing from the PBEE-2 (buildings) and PFMA (dams) safety assessment pro-

cedures, a new hybrid one is presented.

First, safety assessment of various dam types are addressed qualitatively and then quantita-

tively, figure 6.22. Then, a failure surface for concrete dams based on a linear elastic analysis are

introduced. For the nonlinear analyses, a new set of damage indices specific to concrete dams are

proposed. The newly proposed methodology is a radical departure of currently established ones for

concrete dams, difference were duly highlighted, and the application is illustrated

1) select dam type; 2) identify PFMs; 3) site information; 4) describe the PFM

5) determined the initiator; 6) resultant impacts; 7) develop an event tree for the PFMs

8) develop a fault tree; 9) list the adverse and favorable factors; 10) categorizing the PFMs

1) develop a finite element model for dam-reservoir-foundation

Use another algorithm

2) select site-specific ground motions; 3) linear elastic structural analysis

4) compute the performance indices; 5) establish criteria

1) modify the finite element model for nonlinear analysis

Using the linear
system is adequate

2) select the structural analysis methodology; 3) nonlinear transient analysis

4) compute the damage indices; 5) seismic performance
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Figure 6.22: Summary of the proposed algorithm for quantitative PFMA



Chapter 7

Sensitivity and Uncertainty Quantification of Dam-Foundation System

This chapter is based on:

Hariri-Ardebili, M.A. and Saouma, V.E., (2015), Sensitivity and Uncertainty Quantification

of the Cohesive Crack Model (submitted to Engineering Fracture Mechanics)

7.1 Introduction

Zero thickness interface elements were first developed in the context of rock mechanics Good-

man, R.E. and Taylor, R.C. and Brekke, T.C. (1968). With the emergence of Hillerborg’s cohesive

crack model (Hillerborg et al., 1976) a new class of fracture mechanics-based interface elements

appeared (Lotfi and Shing, 1994) (Carol et al., 1997) (Cervenka et al., 1998) and (Cocchetti et al.,

2002). They are used in the context of the so-called discrete crack model (as opposed to smeared

crack model) in the finite element simulation of cracking. These finite elements will be collectively

referred to as cohesive crack models subsequently. Those elements were used in the context of

numerous applications in quasi-brittle materials (primarily concrete, but also rock, ceramics, stiff

soil) (Lopez et al., 2008) (Saouma, 2015), or through simplifications of these models in the context

of blast such as Cirak et al. (2005).

The cohesive elements would typically be formulated in terms of well over 10 parameters

(described below). A major challenge in their use is the selection of the parameters as only few can

be measured experimentally, and the remaining must be estimated. Hence, a critical question is
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how important is the accurate estimate of each of the model parameters. This can only be achieved

through sensitivity and uncertainty analyses.

Sources of uncertainty can in be traced to one of eight groups (Der-Kiureghian and Ditlevsen,

2009). Chief among them is the basic random variables (RVs), X = (X1, ..., Xn). The RVs in turn

can be categorized as aleatoric or epistemic (Der-Kiureghian and Ditlevsen, 2009). An aleatoric

uncertainty is presumed to be the intrinsic randomness of a phenomenon, while an epistemic one

is due to lack of knowledge. The basic qualifier refers to directly observable quantities such as

material properties (strength and stiffness), loads (earthquake magnitude and sea wave height),

environmental phenomenons (temperature, alkali-aggregate reaction), and geometric dimensions

(section size).

The focus of this paper is on the basic RVs, X, describing cohesive crack model. It should

be noted that for an existing structure, the RV’s are epistemic as they can be measured. However

for projected structures, they would be aleatoric.

This paper will perform a sensitivity analysis to assess the relative importance of each of

the RVs (all epistemic) resulting in a tornado diagram. For the most sensitive ones, uncertainty

quantification will be performed through Latin Hypercube Sampling (LHS) to determine capacity

and fragility curves. Finally, impact of correlations among the parameters is assessed.

The study is conducted by performing pushover analysis of a simple interface element under

mode I and II, and dynamic analysis of a dam with joint elements subjected to mixed-mode fracture.

This investigation leads to a probabilistic-based safety assessment of structures which responses is

primarily governed by cohesive cracking.

7.2 Background; Theory

7.2.1 Interface Joint Model

As mentioned earlier, there are a number of fracture mechanics based interface joint models;

however for the context of this paper Cervenka et al. (1998) is used. It should be noted that most
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of the existing models are essentially mere variation of the one used. For analysis purposes, the

computer code Merlin Saouma et al. (2010) is used.

The element constitutive model is defined with respect to a general fracture, figure 7.1(a),

and the corresponding failure surface, figure 7.1(b). The premises of the model are:

(1) Shear strength depends on the normal stress (Coulomb friction).

(2) Softening is present both in shear and tension, (Hillerborg extended).

(3) Residual shear strength due to the friction along the interface, which depends on the

compressive normal stress, (Coulomb).

(4) Reduction in strength, i.e. softening, is caused by crack formation.

(5) Zero normal and shear stiffness when the interface is totally destroyed.

(6) Under compressive normal stresses neither the shear and nor the normal stiffness decrease

to zero. In addition, should a compressive stress be introduced in the normal direction

following a full crack opening, two faces of the interface come to contact, and both tangential

and normal stiffness become nonzero (contact problem).

(7) Irreversible relative displacements are caused by broken segments of the interface material

and by friction between the two crack surfaces, (permanent plastic damage).

(8) Roughness of the interface causes opening displacements (i.e. dilatancy) when subjected

to sliding displacements.

(9) The dilatancy vanishes with increasing sliding or opening displacements.

The generalized failure surface is given by Carol et al. (1992)

F = (τ21 + τ22 )− 2 c tan(φf )(ft − σ)− tan2(φf )(σ
2 − f2

t ) = 0 (7.1)

where c is the cohesion, φf is the angle of friction, ft is the tensile strength of the interface, τ1 and

τ2 are the two tangential components of the interface traction vector, and finally σ is the normal
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traction component. The shape of the 2D failure function is shown in figure 7.1(b). The general

3D failure function is obtained by mere rotation around the σ-axis. Note that the residual shear

strength can be obtained by setting both c and ft equal to zero:

τ21 + τ22 = tan2(φf ) σ
2 (7.2)
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Figure 7.1: Zero-thickness interface joint element and corresponding failure surface

The evolution of the failure function is based on a softening parameter uieff which is the norm

of the inelastic displacement vector ui. The inelastic displacement vector is obtained by decompo-

sition of the displacement vector u into an elastic part ue and an inelastic part ui. The inelastic

part can subsequently be decomposed into plastic (irreversible) displacements up and fracturing

displacements uf . The plastic displacements are assumed to be caused by friction between crack

surfaces and the fracturing displacements by the formation of micro-cracks.

In the present study a bi-linear relationship is used for c(uieff) and σt(u
ieff), figure 7.1(c)

where GI
F and GII

F are mode I and II fracture energies. s1c, w1c and s1σ, w1σ are the coordinates of
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the break-point in the bi-linear softening laws for cohesion and tensile strength, respectively. The

critical opening and sliding corresponding to zero cohesion and tensile strength are denoted by wσ

and wc respectively, and they are determined from the condition that the area under the bi-linear

softening law must be equal to GI
F and GII

F respectively.

u = ue + ui

ui = up + uf

uieff = ||ui|| = (uix
2
+ uiy

2
+ uiz

2
)1/2

(7.3)

Stiffness degradation is modeled through a damage parameter, D ∈ 〈0, 1〉, which is a relative

measure of the fractured surface. Thus, D is related to the secant of the normal stiffness Kns in

the uni-axial case:

D =
Af

Ao
= 1− Kns

Kno
= 1− σt(u

ieff)

σt(uieff) + (1− γ)uieffKno
(7.4)

where Kno is the initial normal stiffness of the interface, Ao and Af are the total interface area

and the fractured area respectively, γ is the ratio of irreversible inelastic normal displacement to

the total value of inelastic displacement. For concrete, γ is usually assumed equal to 0.2 or 0.3

Dahlblom and Ottosen (1990).

7.2.2 Sensitivity and Uncertainty Quantification

7.2.2.1 Sensitivity Assessment

Sensitivity analysis determines the impact of a variation in an input parameter on output

results. Mathematically, this corresponds to the partial derivative of the output function (the finite

element model in this case) with respect to an input parameter at a given design point.

The procedure starts with the identification of the basic RVs, X = (X1, · · · , Xn), and their

corresponding distributional model (e.g. normal, lognormal). Then 2n+ 1 analyses are performed

Army Corps of Engineers (1992) using mean (Xmean
i ), minimum (Xmin

i ) and maximum (Xmax
i )

values of the RVs. The response can be mathematically expressed in terms of

Θ = f (X1, X2, · · · , Xi, · · · , Xn) (7.5)
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A reference response ΘRef is first computed in terms of the n RVs in S = {1, 2, ..., n} equal to their

mean values

ΘRef = f (Xmean
i ) , ∀ i ∈ S (7.6)

Then 2n analyses are performed, each corresponding to a given maximum or minimum of an RV,

while all others are set to their mean value:

Θmin
i = f

(
Xmin

i , Xmean
j

)
, i = RV, ∀j ∈ S ∧ j �= i

Θmax
i = f

(
Xmax

i , Xmean
j

)
, i = RV, ∀j ∈ S ∧ j �= i

(7.7)

The swing for each of the n RVs is computed next

Θswing
i =

∣∣Θmax
i −Θmin

i

∣∣ (7.8)

and are sorted in descending order to form the tornado diagram. Finally, the tornado diagram is

plotted and one has to arbitrarily decide what are the most sensitive RVs, figure 7.2.
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Figure 7.2: Sensitivity analysis using tornado diagram

7.2.2.2 Uncertainty Analysis

Uncertainty arises from the probabilistic nature of the input data resulting in a non-deterministic

outcome. It should be noted that the area under a normal distribution function plus and minus
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a standard deviation is 68% of the total area. Should one consider two standard deviations, then

the area increases to 95%. Furthermore, the normal distribution function being bounded by ±∞,

it is then desirable to truncate those limits into physically acceptable range when sampling occurs.

Truncating the distributional model requires adjustment of the curve so that the area under the

truncated one remains unchanged. For example, considering a normal distribution with mean of

ten and a standard deviation of three, should it be truncated to be bounded by [10 − 10
2 , 10 +

10
2 ]

then the original and truncated curves are shown in figure 7.3.
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Figure 7.3: Comparison of the normal distribution and the truncated one

Sampling of the distributional model is indeed a key element of an uncertainty analysis. By

far, the most widely used sampling method is the so-called Monte Carlo Simulation (MCS). Success

of the method hinges on a very large number of analysis as limited sampling may not include values

in the outer ranges of the distribution. As a palliative to this handicap, an improved sampling

method is achieved through the so-called Latin Hypercube Sampling Iman and Conover (1982).

LHS guarantees samples to be drawn over the whole range of the distribution and proceeds as

follows. Given a system with basic RVs, X = (X1, ..., Xn) and corresponding distributions D1,

..., Dn, first the range of each variable is split into m non-overlapping intervals of equal marginal

probability 1/m. Then sampling starts with the random selection of an interval followed by another

random selection of a point inside it. The procedure is repeated until all intervals have been

accessed, and none of them more than once. This procedure is repeated for each of the n RVs. It

should be noted that should there be a single RV, then one could evaluate each interval sequentially.
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However should there be two or more RVs, then the random access of the combination of interval

is essential. Figure 7.4 illustrated the LHS when two variables X1 and X2 are considered with D1

D2 being uniform and normal distribution respectively, and m is set to eight.
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Figure 7.4: Illustrative example of Latin hypercube sampling for X = (X1, X2)

So far, the RVs have been assumed to be uncorrelated. Yet at times they are, e.g. the

compressive strength and elastic modulus of concrete are related by E = 57, 000
√

f ′
c. However,

in the presence of correlated variables, the previously described algorithm for the LHS must be

refined.

Given a random vector X originally uncorrelated, we seek a transformation of X which would

have a correlation matrix C. Since C is positive definite and symmetric, it can be expressed as

C = PPT . Then the new row vector Y = XPT should have a correlation matrix M close to the

desired one C Iman and Conover (1982). The algorithm proceeds as follows:

(1) Construct an input matrix Rm×n defined by m LHS for each of the n RVs.

(2) Define a target correlation matrix as Cn×n where 0 < Cij < 1 which encapsulates the
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relationships between variables. It is often a subjective indicator.

(3) Compute the sample correlation matrix Tn×n of Rm×n by populating each cell of an n×n

matrix with a random number.

(4) Perform a Cholesky decomposition of the target correlation matrix Cn×n = PPT .

(5) Similarly decompose the sample correlation matrix Tn×n = QQT .

(6) Determine Sn×n using either C = STST or S = PQ−1.

(7) Generate an n×m matrix Rs1 whose columns represent n independent permutations of an

arbitrary set a(i), i = 1, 2, ...,m.

(8) Convert Rs1 to van der Waerden scores, Rs2 (Conover, W.J., 1980). The van der Waerden

scores is defined as Φ−1
(

i
m+1

)
, i = 1, 2, ...,m, where Φ−1 is the inverse of the standard

normal distribution.

(9) Re-construct the matrix R∗
n×n = Rs2S

T . Match up the rank pairing in R based on R∗.

7.2.3 Capacity and Fragility Curves

Capacity Curve: Results of structural analyses under the monotonically increased force or dis-

placement can be expressed in term of capacity curve. In he context of a static analysis,

this is a pushover curve, and in a seismic one it can be an Endurance Time Analysis (ETA)

Hariri-Ardebili et al. (2014b). The capacity curve has on its horizontal axis an engineering

demand parameter (EDP) (e.g. displacement, crack length ratio, joint opening) and on

the vertical one an intensity measure (IM) (e.g. PGA or Sa(T ) for dynamic analysis and

applied force or displacement in a pushover analysis). Capacity curve covers the full range

of response from linear to nonlinear and ultimately failure.

Fragility Curve: A fragility curve is the probability of failure (or other limit states - LS) of a

system as a function of IM (Baker, 2014). It is called seismic fragility curve if it is obtained
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from seismic analysis. A log-normal cumulative distribution function is usually used to

define it:

P [FRAC|IM = im] = Φ

(
ln(im)− ln(ηFRAC|IM)

βFRAC|IM

)
(7.9)

where Φ(.) is the standard normal cumulative distribution function, ηFRAC|IM median of

the fragility function βFRAC|IM the logarithmic standard deviation (also called dispersion).

The median and dispersion (logarithmic standard deviation) are given by

lnη̂FRAC|IM =
1

n

n∑
i=1

ln(IMi)

β̂FRAC|IM =

√√√√ 1

n− 1

n∑
i=1

(
ln

(
IMi

η̂FRAC|IM

))2
(7.10)

where n is the number of simulations.

7.3 Finite Element Simulations

7.3.1 Models

Three representative problems are selected to assess the sensitivity and uncertainty of the

cohesive crack model previously described.

• Mode I fracture: The response of a crack in pure mode I fracture subjected to monotonically

increased displacement (pushover analysis, POA).

• Mode II fracture: Similar to the preceding case, but the crack is subjected to a mode II

crack sliding displacement.

• Mixed-mode fracture: The dynamic response of a concrete dam-foundation joint is assessed

using ETA method.

The finite element models of the three case studies are shown in figure 7.5. The mode I fracture is

subjected to an imposed vertical displacement, while the mode II one is subjected to an imposed

shear displacement on the lower face of the upper block (while it is also subjected to imposed
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compressive traction). The mixed-mode fracture is simulated through the seismic response of a

rock-concrete joint, figure 7.5(c). Of particular relevance to this study is the varying uplift pressure

along the joint accompanying crack opening-sliding.
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(a) Mode I

Applied
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Fixed B.C.

Sl
id

in
g

Applied Traction

(b) Mode II

Sliding
Opening

Applied GM

(c) Mixed-mode

Figure 7.5: Investigated models

7.3.2 Materials

As earlier stated, only very few of the the parameters in the joint constitutive model can be

experimentally measured. Those include the tensile strength f ′
t , the cohesion c, the angle of friction

φf , and the fracture energy GI
F . For the present study, the fracture parameters shown in Table 7.1

are used. To each parameter a mean value and the coefficient of variation (COV) (which is the ratio

of standard deviation to mean) is assumed based on engineering judgment. In all the cases, normal

distributions are assumed and are truncated to [0.5 mean, 1.5 mean]. Indeed, since many of the

joint parameters have to be estimated by the analyst (primarily for reported laboratory tests and

subsequent analyses), the purpose of this paper is precisely to assess their impact on the results.



170

Table 7.1: Parameters defining the zero thickness joint element

Characteristics Symbol Unit Mean COV [Lower, Upper]

Tangential stiffness kt GPa 224 0.2 [112, 336]
Normal stiffness kn GPa 224 0.2 [112, 336]
Tensile strength f ′

t MPa 2.24 0.2 [1.12, 3.36]
Cohesion c MPa 1.90 0.2 [0.95, 2.85]
Friction angle φf Deg. 38 0.2 [19, 57]
Dilatancy angle φd Deg. 20 0.2 [10, 30]
Specific mode I fracture energy GI

F N/m 252 0.2 [126, 378]
Specific mode II fracture energy GII

F N/m 2520 0.2 [1260, 3780]
Relative irreversible deformation γ - 0.3 0.1 [0.15, 0.45]
Max. displacement for dilatancy uDmax m 0.01 0.1 [0.005, 0.015]
Tensile stress at break-point s1σ MPa 0.56 - -
COD at break-point w1σ m 1.12e-4 - -
Cohesion at break-point s1c MPa 0.475 - -
CSD at break-point w1c m 1.89E-3 - -

7.4 Results and discussion

7.4.1 Mode I Fracture

For mode I fracture, the incremental displacement is applied at the upper face of the upper

element. No in-plan movement is allowed. Figure 7.6 shows the evolution of mode I fracture for the

interface joint element. Along the joint opening, both the upper and lower elements show increase

in elastic strain in the direction of loading. The final plot shows the separation of the elements and

so there is no further stress on the joint element.

(a) Initiation (b) Softening (c) Fractured

Figure 7.6: Evolution of mode I fracture in the joint element
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7.4.1.1 Sensitivity Assessment

In the presence of 14 RVs, 2×14+1=35 displacement control POA are performed. In order to

investigate the sensitivity of the results to the variation of the particular RV, two sets of boundary

limits are considered (Eq. 7.7). First a low variation [0.75ηRVi , 1.25ηRVi ], and then a high variation

[0.50ηRVi , 1.50ηRVi ]. Note that ηRVi is the median of the ith RV which is equal to the mean for the

normal distributions.

Figure 7.7 shows the capacity curves from the 35 POA for the two models. Response is either

bi- or tri-linear. The first change in slope corresponds to fracture initiation and the second to

failure. As expected the narrower band, figure 7.7(a), exhibits smaller dispersion than the broader

one. The tornado diagram corresponding to these two analyses are shown in figure 7.8. It is worth
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Figure 7.7: Capacity curves for mode I fracture through 35 analyses

noting, that though this model has 14 parameters, only about half of them govern the response in

mode I. By far, the dominant effect is the tensile strength ft. This is to be anticipated given the

failure envelope in figure 7.1(b). In figure 7.8(b) the bar diagram corresponding to GI
F indicates

sensitivity to increases of the original GI
F and not to their decrease. Likewise for some of the other

eccentric values. Henceforth, in this case about half of the parameters may have to be assumed as

variables, the others can be fixed.
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(a) Bounded by (0.75, 1.25)ηRVi (b) Bounded by (0.50, 1.50)ηRVi

Figure 7.8: Tornado diagrams for the mode I fracture

7.4.1.2 Uncertainty Quantification

The sensitivity analysis having identified five most sensitive parameters: ft, G
I
F , kn, φf , and

c the uncertainties associated with them should be quantified. A total of m = 1, 000 analyses

are performed for each of the most sensitive parameters. Two cases are considered. First, 13

parameters are kept constant, and the one investigated is drawn randomly through a LHS, Table

7.1. In the second case, in each one of the 1,000 analysis 10 RVs are randomly selected.

Single RV: In this case all RV’s are kept constant, and one is randomly sampled. Results are

shown in figure 7.9. The first column plots the capacity curves for each of the five most

sensitive RVs. The median capacity curve (solid line) and the 16% and 84% fractiles (dashed

lines) are shown also. The corresponding dispersion (Eq. 7.10) are shown in the second

one, and finally the fragility curves (Eq. 7.9) in the third.

The dispersion of results vary from one RV to the other. For example most of the dispersion

for ft occurs post-fracture (as expected, Eq. 7.1), however the dispersion for kn occurs in

the linear ascending range, and disappears one separation of the surfaces occur.
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(c) Fragility curve, RV = ft
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(d) Capacity curves, RV = GI
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(f) Fragility curve, RV = GI
F

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

Joint opening [mm]

A
pp

lie
d 

di
sp

la
ce

m
en

t [
m

m
]

(g) Capacity curves, RV = kn
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(i) Fragility curve, RV = kn
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(j) Capacity curves, RV = φf
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(l) Fragility curve, RV = φf
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(m) Capacity curves, RV = c
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(o) Fragility curve, RV = c

Figure 7.9: Uncertainty quantification for single RVs under the mode I fracture

Each fragility plot includes the empirical data point (from the 1,000 analyses) as well as the

fitted log-normal distribution (Eq. 7.9). In some cases, such as for ft the fitted one follows

well the empirical data point over a broad range of applied displacements. On the other
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hand, when there is a very small dispersion (GI
F and kn) the resulting fragility curve is very

narrow. When the dispersion is bi-linear (φf and c), the fragility curve poorly matches the

empirical data points.

Multiple RVs: In this case only 10 of the RV are considered. They are all the material param-

eters (Table 7.1) except those defining the softening break points. Since multiple RVs are

concurrently selected, one can consider either one of two cases: uncorrelated or correlated

RVs. The correlation coefficients C are given in Table 7.2. It is important to note that

these correlation coefficients are arbitrarily assigned based on the physics of the model by

the authors. Results of the two sets of sampling (driven by LHS) are expressed in figures

Table 7.2: Correlation among the RVs of zero thickness joint element

kt kn f ′
t c φf φd GI

F GII
F γ uDmax

kt 1.0
kn 0.7 1.0
f ′
t 0.1 0.1 1.0
c 0.1 0.1 0.7 1.0
φf 0.3 0.3 0.3 0.7 1.0
φd 0.1 0.1 0.3 0.3 0.3 1.0
GI

F 0.1 0.1 0.7 0.5 0.3 0.1 1.0
GII

F 0.1 0.1 0.5 0.7 0.7 0.1 0.8 1.0
γ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

uDmax 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

7.10(a) and 7.10(b). In the presence of a zero correlation coefficient, the corresponding

cell indicates that samples are randomly distributed (disk). The diagonal plots are the

histograms of each RV (truncated normal distribution).

Figure 7.11 compares the uncertainty quantification with and without correlations. This

is to be contrasted with figure 7.9 where only one RV was randomly assigned. Note that

since all RVs are simultaneously randomly assigned, only one set of plots is needed. The

capacity functions are noted to be smoother than those in the previous case. Furthermore,

the dispersion for correlated RVs is nearly constant. In the un-correlated RVs, it peaks,

than descends. In this case the dispersion is nearly twice the one of the correlated RVS.
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Figure 7.10: Sampling of the RVs for mode I and II fracture mechanics (no scale)

Finally, the fragility curves of the correlated case better match the empirical data points

than in the uncorrelated one.
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(c) Fragility curve, Correlated RVs
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(f) Fragility curve, Uncorrelated RVs

Figure 7.11: Impact of RV correlation on the uncertainty quantification of the mode I fracture

Finally, figure 7.12 compares all the individual, correlated and un-correlated fragility curves

for mode I fracture. Considering the uncertainty in all RVs without any correlation leads to the

most wide fragility curve. In some cases, correlation decreases the dispersion even less than the

one for the individual RV.
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Figure 7.12: Comparison of different fragility curves for mode I fracture

7.4.2 Mode II Fracture

For mode II fracture mechanics, the incremental shear displacement is applied at the lower

face of the upper block. Special attention is required to prevent other forms of fracture (mode I
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and III). A continuous traction is applied on the top of the upper element to generate the friction

between two surfaces under sliding force. Figure 7.13 shows the evolution of mode II fracture for

the interface joint element. The lower element does not have any displacement profile. Considering

that the two surfaces are not perfectly rigid, there is some finite penetration of the upper element in

the lower one due to applied constant force on the top of the upper block. At the time of fracture,

there is a full separation between two parts.

(a) Initiation (b) Softening (c) Fractured

Figure 7.13: Evolution of mode II fracture in the joint element

7.4.2.1 Sensitivity Assessment

With identical material properties as those previously considered for the Mode I case, Table

7.1, Nsim =35 (14 variables, 2×14+1) displacement control POA are performed. Two plates are

in contact through the zero thickness interface element, a normal compressive traction is applied

on the top face, and imposed displacement imposed on the lower surface of the top plate. Again,

two sets of boundary limits are considered: a low variation [0.75ηRVi , 1.25ηRVi ], and then a high

variation [0.50ηRVi , 1.50ηRVi ]. Figure 7.14 shows the capacity curves resulted from POA for the

two bounded models. Contrarily to the Mode I case (figure 7.7) the transition from linear to sliding

to failure is much smoother. In the former case, the failure is indeed more brittle, whereas in this

case, the presence of friction dampens the response. As before, there is a higher variation in the

broad band.

Figure 7.15 shows the associated tornado diagram. Clearly, and as expected, cohesion c and

angle of friction φf are dominant. Surprisingly, in this pure mode II loading, GI
F and GII

F are

similar (but marginal) impact. Contrarily to Mode I, the bounds have no impact on the order of
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Figure 7.14: Capacity curves for the mode II fracture

the most sensitive variables, figure 7.8 vs. figure 7.15.

(a) Bounded to (0.75, 1.25)ηRVi (b) Bounded to (0.50, 1.50)ηRVi

Figure 7.15: Tornado diagrams for the mode II fracture

7.4.2.2 Uncertainty Quantification

The sensitivity analysis having identified the three most sensitive parameters: c, φf and GII
F

the uncertainties associated with them will be quantified next. Again, a total of m = 1, 000 analyses

are performed for each one of them. Two cases are considered. First, the 13 parameters are kept

constant, and the one investigated is drawn randomly through a LHS, Table 7.1. In the second
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case, in each one of the 1,000 analysis 10 RV are randomly selected.

Single RV: Figure 7.16 shows the variability in the capacity curves, and in all three cases the

curves are both smooth and nearly identical. The dispersion of the applied shear displace-

ment (here as IM) along the joint opening (as EDP) is nearly constant and approximately

10% at most.

Finally, the fragility curves (probability of fracture for different RVs), where fracture is

defined as the point where the slope of the capacity curve is about 2% the initial one. In

all thee cases the fragility curves have nearly identical median, η̂ =0.70; and the dispersion

β̂ are very close [0.08-0.10]. Finally, in all cases, the fitted fragility curve matches well with

the empirical data points.
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(a) Capacity curves, RV = c
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(c) Fragility curve, RV = c
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(d) Capacity curves, RV = φf

0 0.01 0.02 0.03 0.04
0

0.1

0.2

Joint sliding [mm]

D
is

pe
rs

io
n,

β

(e) Dispersion, RV = φf

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Applied displacement [mm]

P
ro

ba
bi

lit
y 

of
 fr

ac
tu

re η =0.7

β =0.079

Empirical data
Fitted curve

(f) Fragility curve, RV = φf
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(g) Capacity curves, RV = GII
F
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Figure 7.16: Uncertainty quantification for single RVs under the mode II fracture

Multiple RVs: Similar to the mode I, the correlated (Table 7.2) and uncorrelated RVs are inves-
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tigated for mode II. Figure 7.17 compares the uncertainty quantification with and without

correlation effect. In both cases, the capacity functions are quit similar, while there is a

discontinuity in the dispersion curve for the un-correlated condition. The median of the

two fragility curves are identical and the dispersion of un-correlated RVs is slightly higher

than the other one. This is due to the dominant role of φf and c in Mode II. Hence, and

contrarily to the Mode I case, having correlated RVs does not improve the fragility curve

(nearly identical dispersion).
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Figure 7.17: Impact of RV correlation on the uncertainty quantification of the mode II fracture

Finally, figure 7.18 compares all the individual, correlated and un-correlated fragility curves

for mode II fracture. Considering all the uncertainties together ends up with the wider fragility

curve compared to the individual ones. All the fragility curves pass the <∼0.7, ∼0.5> coordinate

on the IM - P [FRAC|IM] system.

7.4.3 Mixed-Mode Fracture

Having examined two highly idealized cases, attention is now turned to a mixed mode crack

propagation in a real structure: a concrete dam subjected to seismic loading, figure 7.5(c). In this
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Figure 7.18: Comparison of different fragility curves for mode II fracture

case response is governed by the one of the zero thickness interface elements between the concrete

and the rock. Variables associated with the joint have already been reported in Table 7.1 and Table

7.3 shows the RVs associated with concrete and rock. Four of them will be added to the list of 13

RVs: Ec, νc, ρc, and Ef for a complete assessment.

Table 7.3: Characteristics of concrete and rock

Characteristics Symbol Unit Mean COV [Lower, Upper]

Concrete modulus of elasticity Ec GPa 22.4 0.15 [15.6, 29.1]
Concrete Poisson’s ratio νc - 0.2 0.15 [0.14, 0.26]
Concrete tensile strength f ′

tc MPa 2.24 0.20 [1.12, 3.36]
Concrete mass density ρc kg/m3 2500 0.10 [2000, 3000]
Foundation modulus of elasticity Ef GPa 24.0 0.15 [16.8, 31.2]
Foundation Poisson’s ratio νf - 0.25 0.15 [0.18, 0.32]

7.4.3.1 Sensitivity Assessment

Sensitivity analysis will be performed for 12 RVs for the joint (uDmax and γ were left out in

light of their limited contribution), and the four elastic proprieties of the concrete and rock. Thus,

2× 16 + 1 = 33 observations are required.

In the spirit of this probabilistic-based fracture mechanics investigation, three separate ac-

celeration functions are considered within the framework of the so-called Endurance Time Analysis

(Hariri-Ardebili and Saouma, 2014). This method uses 3 dynamic analyses for each case and then

takes the mean response. Hence the original 33 models have to be analyzed three times each
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resulting in 99 nonlinear transient analyses. In this case, the boundary limit is [0.66ηRVi , 1.33ηRVi ].

The essence of the ETA procedure starts with the generation of an artificial acceleration

function in which the peak ground acceleration (PGA) and spectral acceleration Sa(T ) are nearly

linearly increasing with time Estekanchi et al. (2007). Hence, analysis proceeds until fracture

occurs. Figure 7.19(a) shows the EDP (in this case the crest displacement δ) in terms of the time.

Next, the maximum absolute value of the EDP is plotted versus time, resulting in the ETA curve,

figure 7.19(b). In the third step the axes are switched, and time is replaced by PGA Hariri-Ardebili

et al. (2014b), figure 7.19. Finally, the average of the three capacity curves is adopted.
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Figure 7.19: Steps toward deriving a continues capacity curve using ETA

Based on the mean response of the three analyses, the tornado diagram is determined in

figure 7.20. A major difference with the preceding two tornado diagrams (figure 7.8 and 7.15)

nearly all parameters are equally important. This implies that there are no redundant parameters

in the examined model.

7.4.3.2 Control the Sensitivity Analysis

The results of the sensitivity analysis are controlled using a real ground motion explicitly. For

this purpose single record incremental dynamic analysis technique is used. Analyses are performed

in two groups: 1) Constant boundary limitation for RVs, while the intensity of ground motion

is increased in 4 increments; 2) Constant ground motion intensity, while the variation of RVs is

changed in 3 levels. Each set of sensitivity assessment requires 2×NRV + 1 =33 and thus totally

Nanlz =198 nonlinear transient analyses. The 1967 Koynanagar earthquake caused significant
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Figure 7.20: Tornado diagram for the mixed-mode fracture

structural damage to the Koyna gravity dam is used to shake the coupled system.

Considering that the system is analyzed in discrete points, the safety or failure of the dam is

reported in each scenario, figure 7.21. The 6 studied packs are:

• Pack 1: Material variation (1± 0.33)ηRVi ; ground motion PGA = 0.062 g.

• Pack 2: Material variation (1± 0.33)ηRVi ; ground motion PGA = 0.125 g.

• Pack 3: Material variation (1± 0.33)ηRVi ; ground motion PGA = 0.250 g.

• Pack 4: Material variation (1± 0.33)ηRVi ; ground motion PGA = 0.500 g.

• Pack 5: Material variation (1± 0.17)ηRVi ; ground motion PGA = 0.125 g.

• Pack 6: Material variation (1± 0.66)ηRVi ; ground motion PGA = 0.125 g.

As expected, almost in all cases increasing the intensity of ground motion leads to more failed

cases. Also increasing the material variation increase the failure probability. This figure is in good

agreement with that reported in figure 7.20.
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Figure 7.21: Sensitivity of the mixed-mode fracture under deterministic ground motion; B = failed,
W = safe

7.4.3.3 Uncertainty Quantification

Since the preceding sensitivity analysis has determined that all RVs are nearly equally rele-

vant, the uncertainty quantification will retain them all. For each set of uncertainty, 100 simulations

are performed. The randomness in the target variable is sampled though LHS, Tables 7.1 and 7.3.

Contrarily to the sensitivity analysis, the ETA method is limited to a single acceleration function

in order to avoid aleatoric uncertainties to be mixed with epistemic ones. Again, two set of analyses

will be reported. In the first one RV is sampled at a time, in the second, all the RVs are sampled

simultaneously. Furthermore, whereas in the first two cases there was only a single LS which was

failure, in the case of a dam, four of them are identified. They correspond to crack length over the

total base. Four distinct ones are selected 10%, 30%, 60%, and 99% (Hariri-Ardebili and Saouma,

2014).

Single RV: It was determined that nearly all the fragility curves corresponding to a given LSi

(i = 1, 2, 3, 4) are identical. This confirms the results of sensitivity analysis in figure 7.20.

To better quantify the results, the median and dispersion are separately shown in figure
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7.22. It is noted that the median at LS=0.10 and LS=0.30 are almost identical for all

RVs. The median at LS=0.60 and LS=0.99 vary for different RVs yet have the same trend.

Another notable observation is that the dispersion of RV 1 = ρc is about twice the next

highest one. This can be explained by the fact that in the context of the seismic analysis,

proper evaluation of the mass is essential.

Multiple RV: Correlated and uncorrelated RVs when they are all modified simultaneously is

shown in figure 7.23. It is clear that in this process the range of capacity curves go from

nearly zero to a maximum. The former is induced by a random selection of unfavorable

RVs across the board. Examination of the damage index reveals that higher PGAs are

needed to trigger larger limit states. Results for correlated an uncorrelated values are

nearly identical. The fragility curves confirm the brittle nature of the problem, where

difference between LS=0.10 and 0.30 is small; however the one between 0.30 and 0.60 is

substantially larger. Accounting for correlation reduces the dispersion of fragility curves,

Table 7.4.
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Figure 7.22: Comparison of all RVs for four LSs under mixed-mode fracture condition

Table 7.4: Dispersions β of dam analyses

LS 0.10 0.30 0.60 0.99

Correlated 0.78 0.82 1.03 1.06
Un-correlated 0.85 0.91 1.21 1.12
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Figure 7.23: Impact of RV correlation on the uncertainty quantification of the mixed-mode fracture

7.5 Conclusions

This paper was an attempt to elucidate the importance of the fourteen parameters defin-

ing a fracture mechanics based zero thickness cohesive crack model. This is achieved within the

framework of a rigorous probabilistic approach.

Most of the results confirm what may be intuitively guessed, the procedure quantifies for the

first time their importance. Among the other unanticipated conclusions, one can mention:

(1) The bi- and tri-linear form of the capacity curve in mode I fracture vs. the smoothed curve

for Mode II fracture.

(2) Importance of the boundary variation, (1− e, 1+ e)ηRVi , for Mode I fracture, while it does

not affect the tornado diagram in Mode II fracture.

(3) Four completely different form of capacity curves in Mode I, while all curves in Mode II

are nearly identical.

(4) There is a discontinuity in dispersion curves of the Mode I, while they are uniform in Mode

II.
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(5) Better correlation of fitted fragility curve and the empirical data points in Mode II single

RVs than Mode I.

(6) Priority in using correlated RVs than to un-correlated one for Mode I and mixed-mode

fracture, while its effect is negligible in Mode II.

(7) Determining 5 most sensitive RVs in Mode I and 3 in Mode II; however, in mixed mode all

of the RVs are nearly important.



Chapter 8

Probabilistic Seismic Demand Model for Gravity Dams

This chapter is based on:

Hariri-Ardebili, M.A. and Saouma, V.E., (2015), Probabilistic Seismic Demand Model and

Optimal Intensity Measure for Concrete Dams (submitted to Structural Safety)

8.1 Introduction

In the context of performance-based earthquake engineering (PBEE) (Porter, 2003) ulti-

mately one seeks to determine the fragility curve (Porter et al., 2007) which is the conditional

probability statement of the likelihood that the structural system will exceed a damage state (DS)

or even a specified level of engineering demand parameter (EDP) given the intensity measure (IM).

The EDP is the outcome of a nonlinear transient finite element analysis performed on the basis of

an excitation governed by the IM.

Probabilistic seismic demand model (PSDM) is a conditional probability statement that

expresses the probability that a system (dam-foundation coupled system in the present paper) or any

of the structural components experiences a certain level of demand (D) for a given IM level, P[D ≥

d|IM] (Padgett et al., 2008). A PSDM is a result of probabilistic seismic demand analysis (PSDA),

which is the coupling of probabilistic seismic hazard analysis (PSHA) and nonlinear structural

analysis (Shome et al., 1998). A PSDA can be summarized in the following steps: 1) selection of a

set of ground motion records based on PSHA, 2) determination of the local and global EDPs for
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the structure, 3) preparation of nonlinear finite element model, 4) performing nonlinear transient

analyses, and 5) establishing a PSDM for the system.

The outcome of PSDA is a seismic fragility curves and selection of optimal IM parameter.

PSDA and PSDM supporting theories can be found in Shome (1999), Luco (2002) and Jalayer

(2003). Advanced IM and selection of optimal ones have been addressed by a number of researchers

Tothong and Luco (2007), Padgett et al. (2008), Baker and Cornell (2008). PSDM in turn has been

applied to steel moment-resisting frame (Barroso and Winterstein, 2002), reinforced-concrete frame

buildings (Jankovic and Stojadinovic, 2004), (Ramamoorthy et al., 2006), reinforced-concrete shear

wall (Tang and Zhang, 2011), highway bridges (Mackie and Stojadinovic, 2001), (Bisadi et al.,

2012), curved concrete bridges (Tondini and Stojadinovic, 2012), and un-anchored steel storage

tanks (Berahman and Behnamfar, 2009).

In the present paper, a probabilistic seismic demand model is proposed for concrete dams.

This approach is performed within the context of a cloud analysis (i.e. a multitude of probabilisti-

cally defined input data) (Jalayer, 2003). From such an analysis, optimal IM (in term of efficiency,

practicality, proficiency, sufficiency, and hazard compatibility) is selected for Pine Flat gravity dam,

and the seismic fragility curves built.

8.2 Theory; Background

Given the importance of a properly defined IM, this will be critically reviewed in this section.

Subsequently, the essence of cloud analysis within the context of PSDM will be addressed.

8.2.1 Time-Dependent Function IM

General formulas have been proposed to represent the intensity of a time-dependent function

(f(t), t ⊆ [0, ttot] where ttot refers to the total duration of the function Riddell (2007). For the

purpose of this study, f(t) is defined to be either: 1) a time-dependent ground motion characteristics

(such as acceleration, velocity and displacement), or 2) a frequency-dependent ground motion

characteristics (such as acceleration, velocity and displacement response spectra).
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The intensity measure relations for a raw function are given by Riddell (2007)

fpeak = max(|f(t)|)

fsum =

∫ t2

t1

f(t)dt

fabs
sum =

∫ t2

t1

|f(t)| dt

favg =
1

t2 − t1

∫ t2

t1

f(t)dt

(8.1)

where t1 and t2 refer to specific duration (t2 > t1).

For oscillatory f(t) we define

f sqr
sum =

∫ t2

t1

(f(t))2dt

f sqr
avg =

1

t2 − t1

∫ t2

t1

(f(t))2dt

(8.2)

When Eqs. 8.1 and 8.2 are integrated from t0 to ttot they yield a single scalar quantity (this is

generally the case when the full ground motion record is used). On the other hand, if integration is

carried between t0 and an arbitrary ti then a vector results. This is the case when artificial function,

e.g. endurance time acceleration function (ETAF) are used (Hariri-Ardebili et al., 2014b), figure

8.1.
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Figure 8.1: Different time-dependent representation of IM for a sample ETAF based on Eqs. 8.1
and 8.2
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8.2.2 Ground Motion Based IM

The first step in PBEE consists in the definition of ground motion IM. Since various authors

have proposed a variety of IM (mostly in the context of buildings) this section first reviews the

seven most important categories, and then select those most applicable to concrete dams.

8.2.2.1 Category I: Unscalable IMs

In this case, the IMs are independent from both the ground motion scaling methods and the

characteristics of the target structure. These are: earthquake magnitude, M , epicentral distance,

Repi, hypocentral distance, Rhypo, ground motion duration, ttot, and significant duration, tsig.

Significant duration is a measure of strong ground motion part and usually refers to a portion of

ground motion which includes about 90% of the energy. The most common form for tsig is:

tsig = t0.95IA − t0.05IA (8.3)

where IA refers to the Arias intensity of the ground motion record. tsig is also shown as D5−95.

Another intensity measure that seismologists often adopt is D5−75. It is similar to Eq. 8.3,

as it is assumed that D5−75 is a more accurate measure for the most significant part of the ground

motion.

8.2.2.2 Category II: Ground Motion Dependent Scalar IMs

Peak Values The most widely used IM is the peak ground acceleration (PGA). Not only is

used in hazard maps but attenuation relations are usually available in terms of PGA. Peak ground

velocity (PGV) and peak ground displacement (PGD) are other typical single-parameter scalar

IMs. Hao et al. (2005) found that PGV correlates to damage better than PGA (of Construction,

2000).

PGA = max (|ü(t)|)

PGV = max (|u̇(t)|)

PGD = max (|u(t)|)

(8.4)
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where ü(t), u̇(t), and u(t) refer to the acceleration, velocity and displacement time history of the

ground motion record, respectively.

Root-mean-square (.)rms of acceleration, aRMS , velocity, vRMS , and displacement, uRMS , are

used as a measure of effective F (t) acceleration (or velocity or displacement) of a ground motion

time-history

(..)RMS =

(
1

ttot

∫ ttot

0
((.)(t))2dt

)1/2

(8.5)

A set of intensity measures similar to Eq. 8.5, which do not account for the average values

(shown in the denominator of the previous equation) and neglecting the damping ratio was also

proposed (Nau and Hall, 1982)

ars =

⎛⎜⎜⎜⎝
∫ ttot

0
(ü(t))2dt︸ ︷︷ ︸
Ea

⎞⎟⎟⎟⎠
1/2

vrs =

⎛⎜⎜⎜⎝
∫ ttot

0
(u̇(t))2dt︸ ︷︷ ︸
Ev

⎞⎟⎟⎟⎠
1/2

urs =

⎛⎜⎜⎜⎝
∫ ttot

0
(u(t))2dt︸ ︷︷ ︸
Ed

⎞⎟⎟⎟⎠
1/2

(8.6)

Arias Intensity is a measure of dissipated energy per unit mass in an elasto-plastic system

(Arias A., 1970)

IA(ξ) =
cos−1ξ

g
√
1− ξ2

∫ ttot

0
(ü(t))2dt (8.7)

where ξ is the damping ratio of a structure and g the gravitational acceleration. In the standardized

form, IA with zero damping yields

IA =
π

2g

∫ ttot

0
(ü(t))2dt (8.8)

Destructiveness Potential Although the original (and standardized) IA accounts for the

ground motion peak and duration, the frequency characteristics are somehow neglected. Araya
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and Saragoni (1984) proposed a factor that measures the destructiveness potential, PD, or capacity

to induce structural damage.

PD =
IA
υ20

(8.9)

where υ0 is the number of zero-crossings occurrence of the ground motion record per unit time.

Specific Energy Density, SED, measures the total energy of the ground motion:

SED =

∫ ttot

0
(u̇(t))2dt (8.10)

Since SED is calculated from the velocity time history, the general trend of mean values is not as

smooth as the other parameters.

Cumulative Absolute Velocity, CAV , defined as the integral of the absolute value of the

acceleration time series (EPRI-NP-5930, 1988)

CAV =

∫ ttot

0
|ü(t)| dt (8.11)

CAV is the IM that best correlates with the onset of damage. However it should be noted that

CAV does not account for the mismatch of arrival time for different energy phases. This is the

case for large velocity pulse (Campbell and Bozorgnia, 2010). The Electrical Power Research

Institute (EPRI) introduced a standardized version of CAVSTD that prevents contribution of the

low-amplitude, non-damaging ground motions (EPRI-1014099, 2006)

CAVSTD =
N∑
i=1

(
H(PGAi − ümin)

∫ i

i−1
|a(t)| dt

)
, H(δ) =

⎧⎪⎨⎪⎩
0 δ < 0

1 δ ≥ 0

where N is the number of non-overlapping one-second time intervals, PGAi is the peak ground

acceleration (in term of g) in ith time interval (inclusive of the first and last points), ümin is an

acceleration threshold (user-defined, but usually taken as 0.025g) to exclude low amplitude motions

contributing to the sum, H(x) is the Heaviside step function.

Cumulative Absolute Displacement, CAD, is defined in a similar way to CAV (Mackie and

Stojadinovic, 2003)

CAD =

∫ ttot

0
|u̇(t)| dt (8.12)
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Sustained Values The absolute values of highest accelerations that sustained for 3 and 5

cycles in acceleration time history are defined as 3-cycle sustained and 5-cycle sustained maximum

accelerations, SMA, respectively. A similar concept is applicable to the velocity time history which

results in sustained maximum velocity, SMV (Nuttli, 1979).

8.2.2.3 Category III: Ground Motion Dependent Compound IMs

A generalization of the previously addressed scalar IM, is one which considers the IM to be

a vectorial quantity.

IMcom = Ccom (PGA)β1 (PGV)β2 (PGD)β3 (aRMS)
β4 (vRMS)

β5 (uRMS)
β6 (IA)

β7 (tsig)
β8 (8.13)

where βi, i = 1, ..., 8 are effectively weight coefficients associated with each of the IMs, and Ccom

a pre-multiplying factor.

Some of the most commonly representation for IMcom include the following:

Velocity to Acceleration Ratio is probably the most commonly used one and is expressed

in terms of PGV and PGA. It is the simplest method to categorize near-fault pulse-like ground

motions.

Iv/a = (PGA)−1 (PGV )+1

Iv2/a = (PGA)−1 (PGV )+2

(8.14)

Characteristic Intensity, IC , is defined by Park et al. (1985)

IC = (aRMS)
+3/2 (tsig)

+1/2 (8.15)

Riddell-Garcia Intensity proposed a set of compound IMs that minimize dispersion of hys-

teretic energy-dissipation spectra of inelastic systems (Riddell and Garcia, 2001)

Ia = (PGA)+1 (tsig)
+1/3

Iv = (PGV )+2/3 (tsig)
+1/3

Id = (PGD)+1 (tsig)
+1/3

(8.16)



195

Fajfar Intensity is a compound IM that takes into account the damage capacity of medium-

period structures (Fajfar et al., 1990)

IF = (PGV )+1 (tsig)
+1/4 (8.17)

Cosenza-Manfredi Intensity, ID, accounts for the number of plastic cycles or equivalently the

energy content of the earthquake (Cosenza and Manfredi, 1997). This is a dimensionless IM defined

by

ID =
2g

π
(PGA)−1 (PGV )−1 (IA)

+1 (8.18)

Shaking Intensity Rate, SIR, applicable for liquefaction-induced building settlements (Dashti

et al., 2009). It represents the rate of earthquake energy buildup:

SIR =
IA5−75

D5−75
(8.19)

where IA5−75 is the change in Arias intensity from 5 to 75% of its total value, and D5−75 is its

corresponding time duration.

8.2.2.4 Category VI: Structure-Independent Spectral IMs

Bounded Spectrum Intensities These IMs are determined from the ground motion response

spectra. In some cases, a specific period range is considered. Acceleration, ASI, velocity, V SI,

and displacement DSI spectrum intensities are defined by (Bradley, 2011):

ASI =

∫ 0.5

0.1
Sa (T, ξ = 5%) dT

V SI =

∫ 2.5

0.1
Sv (T, ξ = 5%) dT

DSI =

∫ 5.0

2.0
Sd (T, ξ = 5%) dT

(8.20)

where Sa, Sv and Sd are the acceleration, velocity, and displacement response spectral, T the

vibration period and ξ the damping ratio.

Housner Intensity, HI, is similar to V SI; however, the pseudo velocity spectrum, PSv, is

used instead of Sv (Housner, 1975):

HI =

∫ 2.5

0.1
PSv (T, ξ = 5%) dT (8.21)
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Effective Peak Values Effective peak acceleration, EPA, and effective peak velocity, EPV

first defined in ATC (1978) and modified in Kurama and Farrow (2003) as follows (note that the

factor 2.5 is an empirical value):

EPA =
1

2.5
×
∫ 0.5
0.1 Sa (T, ξ = 5%) dT

0.4

EPV =
1

2.5
×
∫ 1.2
0.8 Sv (T, ξ = 5%) dT

0.4

(8.22)

Improved Effective Peak Values Since the fixed period range for EPA and EPV does not

account for the ground motion frequency content, and since the dominant period, TP , of a response

spectrum implicitly accounts for the frequency characteristics of the ground motions, the following

expressions were proposed (Yang et al., 2009a)

IEPA =
1

2.5
×
∫ Ta

P+0.2
Ta
P−0.2 Sa (T, ξ = 5%) dT

0.4

IEPV =
1

2.5
×
∫ T v

P+0.2
T v
P−0.2 Sv (T, ξ = 5%) dT

0.4

(8.23)

where T a
P and T v

P are the periods where the spectral acceleration, Sa, and spectral velocity, Sv,

reach the maximum value, respectively.

8.2.2.5 Category V: Structure-Dependent Spectral IMs

This set of IM parameters are derived from response spectrum of the ground motion while

accounting for the natural periods of the target structure.

Single-Period Intensities are the most commonly used structure-dependent spectral IMs.

They are expressed in terms of Sa(T1, ξ = 5%), Sv(T1, ξ = 5%) and Sd(T1, ξ = 5%) in which T1 is

the first-natural period of the structure. Moreover, spectral acceleration of some specific modes are

of interest such as: Sa(T = TP , ξ = 5%), Sa(T = 0.2, ξ = 5%) and Sa(T = 1.0, ξ = 5%). Critical T

values are 0.2 and 1.0 s as they are often used in design codes.

Cordova Intensity A limitation of the previous case is the significant variability in the level

of structural response in a MDOF system (Shome et al., 1998). Sa(T1, ξ = 5%) does not account

for the higher-order vibration modes and so is not appropriate for structures sensitive to higher
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modes. Hence, an improved two-parameter scalar IM that accounts for the period lengthening is

given by (Cordova et al., 2001)

S∗
a = (Sa (T1, ξ))

1−α (Sa (c.T1, ξ))
α (8.24)

where c and α are two parameters to be calibrated; however, usually taken to be 2.0 and 0.5,

respectively.

Vamvatsikos Intensity Vamvatsikos and Cornel (2005) proposed an IM which considers the

participation of higher-order vibration modes as:

Sa = (Sa (Ta, ξ = 5%))1−α (Sa (Tb, ξ = 5%))α

Sa = (Sa (Ta, ξ = 5%))1−β−γ (Sa (Tb, ξ = 5%))β (Sa (Tc, ξ = 5%))γ
(8.25)

where Ta, Tb and Tc are arbitrary periods and α, β, γ ∈ [0, 1] are obtained by system identification

with β + γ ≤ 1.

Multiple-Period Intensities is primarily used for high-rise building structures (Zhou et al.,

2012) and accounts for both the higher-order modes and the effective mass at each mode. Consid-

ering the first two vibration modes, the combined intensity measures can be expressed as:

S1&2
a = (Sa (T1, ξ))

α′
(Sa (T2, ξ))

β′
, α′ =

meff
1

meff
1 +meff

2

, β′ =
meff

2

meff
1 +meff

2

(8.26)

where α′ and β′ are the ratios of effective mass and meff
i , i = 1, 2, 3 is the effective masses for the

ith mode.

Hariri-Saouma Intensity (Modified Multiple-period Intensity) In the case that multiple vibra-

tion modes contribute in the general vibration behavior of the structural system, the effects of the

all those modes can be considered in the combined spectral value-based IM:

S1−to−N
a =

N∑
i=1

(Sa (Ti, ξ))
αi , αi =

meff
i∑N

j=1m
eff
i

(8.27)

where N is the number of the effective modes, Ti is the period of the ith mode, and αi is the ratio

of effective masses. Note that in the case that N=1, S1−to−N
a yields to Sa (Ti, ξ).
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8.2.2.6 Category VI: Vector-Based IMs

Vector-based IMs are defined in terms of two or more parameters (Bojorquez et al., 2012).

Vamvatsikos Vector-Based Intensity uses a combination of a scalable and one scaling-independent

IM Vamvatsikos and Cornel (2005). The scalable component is Sa (T1, ξ), while the spectral ratio,

Rsa (κ, T1, ξ), is the non-scalable one.

〈Sa (T1, ξ) , Rsa (κ, T1, ξ)〉 =
〈
Sa (T1, ξ) ,

Sa (κT1, ξ)

Sa (T1, ξ)

〉
(8.28)

where κ is a constant factor, usually 1.5.

Baker Intensity has a scalable parameter given by Sa(T1) and a scaling independent one that

is typically the magnitude, Mw, distance, R, or epsilon, ε (Baker and Cornell, 2005). It is found

that 〈Sa (T1, ξ) , ε〉 is significantly superior to Sa(T1) alone. ε is defined as the number of standard

deviations by which an observed logarithmic spectral acceleration, lnSa(T ), differs from the mean

logarithmic spectral acceleration, lnSa(T ), of a ground-motion prediction equation.

Bojorquez Intensity uses a combination of Sa (T1, ξ) with other scalar IMs in order to deter-

mine the optimal vector IM Bojorquez et al. (2012). 〈Sa (T1, ξ) , PGA〉 and 〈Sa (T1, ξ) , PGV 〉 are

used as indicators of the peak responses of the structural system. 〈Sa (T1, ξ) , tsig〉 and 〈Sa (T1, ξ) , ID〉

are used as indicator of combination of peaks and cumulative damage potential of ground motions.

〈Sa (T1, ξ) , RT1,T2〉 , RT1,T2 =
Sa(T2)

Sa(T1)

〈Sa (T1, ξ) , Np〉 , Np =

Sa

((∏N
i=1 Ti

)1/N
, ξ

)
Sa(T1, ξ)

(8.29)

8.2.2.7 Category VII: IM for Multiple-Component Ground Motions

All the scalar or vector-based IMs parameters introduced so far were determined for a single-

component ground motion record. In multiple-component ground motions one determines an IM
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for each one of them. Subsequently those values are averaged (Kostinakis et al., 2015).

IMart =
1

2

2∑
i=1

IMi

IMgeo =

(
2∏

i=1

IMi

)1/2

IMsrss =

(
2∑

i=1

IM2
i

)1/2

IMmax = max(IMi), i = 1, 2

(8.30)

8.2.3 Cloud Analysis

Cloud analysis is a numerical procedure in which first a structure is subjected to a set of

(un-scaled or as-recorded) ground motions and is analyzed numerically. Then from the results,

EDP vs. IM are determined and form the so-called cloud response. Results are usually plotted

either on a arithmetic (figure 8.2(a)) or logarithmic (figure 8.2(b)) scale. In the logarithmic scale,

scatter data points are usually linear trend implying a power curve in the arithmetic scale.

ηEDP|IM(IM) = a.(IM)b (8.31)

ln
(
ηEDP|IM(IM)

)
= b.ln(IM) + ln(a) (8.32)

where ln(a) and b are the linear regression constants and ηEDP|IM is the median value of EDP given

IM.

Cloud analysis results can then be used to develop a PSDM (also known as fragility function)

which is a relationship between peak EDP and ground motion IM (Cornell et al., 2002).

P [EDP ≥ edp|IM] = 1− Φ

(
ln(edp)− ln(ηEDP|IM)

βEDP|IM

)
(8.33)

where Φ(.) is the standard normal cumulative distribution function and βEDP|IM the logarithmic

standard deviation (also called dispersion) of the EDP conditioned on the IM. This model assumes

that the conditional seismic demands has a lognormal distribution.

The logarithmic standard deviation is given by

βEDP|IM ∼=
√∑(

ln (edpi)− ln
(
a.IMb

))2
n− 2

(8.34)
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Figure 8.2: Results of cloud analysis

and will be subsequently used as a metric for optimal IM selection. n is the number of nonlinear

transient analyses resulting in figure 8.2. It should be recalled that

βEDP|IM = σln(EDP)|IM (8.35)

where the second terms is the corresponding standard deviation in the arithmetic scale.

Substituting Eq. 8.34 into 8.33 and expanding on the definition of Φ, the fragility function

can be rewritten as:

P [EDP ≥ edp|IM] = 1−
∫ edp

0

1√
2π . βEDP|IM . edp

exp

[
−1

2

(
ln(edp)− ln(ηEDP|IM)

βEDP|IM

)2
]
d edp

(8.36)

Should there be numerical failures in the set of n analysis, Eq. 8.33 has to be altered and an

alternative expression of the fragility function has been suggested (Jalayer et al., 2007).

P [EDP ≥ edp|IM] = P [EDP ≥ edp|IM,NLg] . (1− P [Lg|IM]) + P [Lg|IM] (8.37)

where P [Lg|IM] is the probability of having “very large” (Lg) EDP (such as about 10 mean) for

a given IM. P [EDP ≥ edp|IM,NLg] is the fragility function given “no very large” (NLg) EDP are

present:

P [EDP ≥ edp|IM,NLg] = 1− Φ

(
ln(edp)− ln(ηEDP|IM,NLg)

βEDP|IM,NLg

)
(8.38)
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where ηEDP|IM,NLg and βEDP|IM,NLg are median and logarithmic standard deviation of EDP given

IM and NLg.

8.2.4 Criteria for an Optimal IM

Selection of optimal IM parameter for building structures should be based on Padgett et al.

(2008), Tothong and Luco (2007):

Efficiency: Efficient IM parameter will reduce the EDP variability for a given IM (Giovenale et al.,

2004). In other words, efficiency will simply lower the dispersion, βEDP|IM (Eq. 8.34) with

respect to the estimated median for a set of nonlinear transient analyses. It is inversely

proportional to efficiency.

Practicality: is an indicator of the correlation between an IM and the EDP (Padgett et al., 2008).

Practicality can be measured by b in Eq. 8.32 (high values being indicative of increased

practicality).

Proficiency: is a composite measure of efficiency and practicality. A more proficient IM would

have lower modified dispersion, ζ (Padgett et al., 2008). Thus, substituting Eq. 8.32 into

8.33:

P [EDP ≥ edp|IM] = Φ

(
ln(IM)− ln(edp)−ln(a)

b

ζ

)
, ζ =

βEDP|IM
b

(8.39)

Sufficiency: A sufficient IM is one in which the conditional probability distribution of EDP (for a

given IM) is independent of seismic hazard parameters such asMw, Rrup, ε and Tp (Tothong

and Luco, 2007)

P [EDP ≥ edp|IM] ∼= P [EDP ≥ edp|IM, ε,Mw, Rrup, Tp] (8.40)

Sufficiency is quantified by the p-value which is the probability of rejecting the null hypoth-

esis and thus proves independency of IM from other seismic hazard characteristics (Mw,

Rrup, and ε). Higher p-value is a sign of sufficient IM. Numerically p-values are obtained
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from linear regression of the residuals, εEDP|IM:

εEDP|IM = aM + bM (Mw)

εEDP|IM = aR + bR(Rrup)

εEDP|IM = aε + bε(ε)

(8.41)

where ai and bi are the linear regression coefficients.

Hazard compatibility : Corresponds to the computational complexity in determining the hazard

curve for a candidate IM (Giovenale et al., 2004). Currently, hazard curves are available

in terms of PGA or Sa(T ), while the other IMs require more effort to be determined.

The first four criteria in PSDA can be holistically represented by figure 8.3.
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Figure 8.3: PSDM and criteria for optimal IM selection

8.3 Model and Ground motions

8.3.1 Dam Finite Element Model

Pine Flat Dam is a concrete gravity dam on the Kings River of central California in the

United States. Figure 8.4 shows the cross section of the tallest non-overflow monolith. The finite

element code Merlin (Saouma et al., 2010) is used for analysis. 4-node and 3-node plain strain 2D
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elements are used for modeling the dam body and the foundation. Nonlinearity stems from the use

of zero-thickness interface elements for modeling the discrete joints (Cervenka et al., 1998). Applied

loads to the system are: 1) self-weight, 2) hydrostatic pressure, 3) uplift which is automatically

updated with crack propagation, and 4) seismic loads. Hydrodynamic pressure is modeled based

on Westergaard (Westergaard, 1933) added mass approach on both the dam upstream face and the

foundation.
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Figure 8.4: Tallest non-overflow monolith of Pine Flat dam (Løkke and Chopra, 2014)

Considering that the dam vibration characteristics are used to determine the structure-

dependent IMs (Sec. 8.2.2.5), its natural periods are first extracted, figure 8.5.

8.3.2 Ground motion Characteristics

In order to investigate the seismic IM in concrete gravity dam, a large set of ground mo-

tions (n = 100) are selected. The unconditional (not dependent on structure natural periods)

ground motion selection is adopted Baker and Jayaram (2008) and obtained form a Matlab-based

code Jayaram et al. (2011). For smaller n, conditional mode would have been preferable. In the

unconditional ground motion selection, the means and covariances are determined based on the
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Figure 8.5: Mode shapes and natural period of dam

predefined target spectrum. A probabilistic seismic hazard analysis of Pine Flat Dam give:

• Site-to-source distance, 0 < R < 40 km

• Magnitude, 5.5 < Mw < 7.0

• Fault mechanism: Strike-slip

• Shear wave velocity, 360 m/s < VS30 < 1500 m/s
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Figure 8.6: Time- and frequency-dependent characteristics of the selected ground motions; mean
= green solid line, median = red solid line, 95% confidence interval = blue dashed line

Acceleration response spectra of the 100 ground motions, their mean, median and 95% con-

fident intervals are shown in figure 8.6(a). Arias intensity, IA, is the only IM parameter with the
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capability of showing the ground motion intensity time history. Thus, normalized IA is plotted in

terms of normalized time in figure 8.6(b), as well as the median and the 95% confidence intervals.

One may extract the exact IA at any time knowing the final IA value and the duration of motion.

For the sake of completeness, a further characteristic of the selected ground motion is shown in

figure 8.7. As in most cases, there is no statistical relationship between VS30 and M or Rhypo.
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Figure 8.7: Relationship among M , Rhypo, VS30

8.4 Results and Discussion

8.4.1 IM Distribution Models for Selected GMs

Sec. 8.2.2 defined seven broad categories of IMs; however, only the first five are considered.

This will result in C1S1N8, C2S8N17, C3S6N9, C4S4N7, C5S5N29 where Ci, Sj , and Nk refer to the

ith category that has defined, j subcategories (italicized previously) and k total cases. This results in

a total of 70 IMs being considered for the 100 ground motions selected in Sec. 8.3.2. For each one, a

histogram is plotted and the most appropriate distribution model is fitted to the observed/computed

data. The data are fitted through one of the following: 1) normal, 2) lognormal, 3) exponential, and

4) Weibull. The Anderson-Darling (AD) test (Anderson and Darling, 1954) is used to determine

the most appropriate distribution type in each case. The application of the AD method requires the

conversion of the resulting statistic to a uniform variable, p-value ∈ [0,1) (Marsaglia and Marsaglia,

2004). The larger p-values for a given distribution, the better the fit. In addition to the most proper
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distribution model, the second choice is also provided wherever is possible. Table 8.1 summarizes

the optimal distributional model for each IM category, in conjunction with figures 8.8 to 8.12.

Table 8.1: Summary of optimal IM distributional models

Cat. Fig. Optimal
Dist.

Observations

I 8.8 Varying The normal distribution is found to be the best fit for M ,
Weibull forD5−75, and lognormal distribution for the others.
The pdf for Weibull distribution is (MATLAB, 2013): y =

f (x|a, b) = ba−bxb−1e−(
x
a )

b

I(0,∞)(x)

II 8.9 LogN For some IMs, specially those which are displacement-
dependent, the fitting is relatively poor. In such cases, most
of the observations are located in a narrow bound. For the
rest of the models, normalized standard deviation vary be-
tween 0.5 and 0.6.

III 8.10 LogN The displacement-related compound IMs exhibit a relatively
poor fitting. Id and SIR shows relatively high lognormal
standard deviation.

VI 8.11 LogN In most cases, the standard deviation fluctuates around 0.6.
All the IM distribution follow an identical trend.

V 8.12 LogN Using the spectral acceleration at different periods does not
change the standard deviation. The contribution of the
higher modes shifts the model from lognormal to normal.
Incorporating the effective mass of the higher modes reduces
the standard deviation.
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Figure 8.9: Histograms and distributional models for ground motion dependent scalar IMs (Sec.
8.2.2.2)

8.4.2 Cloud Analysis

Out of the 100 analyses, 17 failed through large sliding (resulting from through cracks), and

none through overturning. Four EDP were considered: 1) Horizontal crest displacement, 2) Ratio

of crack length over total base length; 3) Crack mouth opening and 4) Sliding.

Cloud analysis results are shown in figure 8.13 where failure are shown as vertical lines. For

each one of the four considered EDPs, the maximum corresponding value recorded is arbitrarily

set as the critical one prior to failure. Those are

• Horizontal displacement: ulimx = 35 mm
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Figure 8.10: Histograms and distributional models for ground motion dependent compound scalar
IMs (Sec. 8.2.2.3)
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Figure 8.11: Histograms and distributional models for structure-independent spectral IMs (Sec.
8.2.2.4)

• Maximum crack length ratio Lcr/LT=1.0

• Maximum joint opening: Jnlim
O = 10 mm

• Maximum joint sliding: Jnlim
S = 10 mm
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Figure 8.12: Histograms and distributional models for structure-dependent spectral IMs (Sec.
8.2.2.5)

8.4.3 Optimal IM, (EDP = Displacement)

Given the 70 IM, a critical question arises: which is the most representative IM for the selected

GM and a given EDP. For argument sake, the displacement EDP is considered. Assessment is made

on the basis of the five criteria defined in Sec. 8.2.4. The optimal selection parameters for each IM

are tabulated in Table 8.2.

Practicality is assessed from b, Fig. 8.3(a) and Table 8.2.

For category I (unscalled IMs), b is negative for most cases (1 to 8). This is clearly unde-



210

0 20 40 60 80 100
0

10

20

30

Number of analysis

H
or

iz
on

ta
l d

is
pl

ac
em

en
t [

m
m

]

(a) Displacement

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of analysis

L cr
 / 

L T

(b) Joint cracking

0 20 40 60 80 100
0

2

4

6

8

Number of analysis

M
ax

. j
oi

nt
 o

pe
ni

ng
 [m

m
]

(c) Joint opening

0 20 40 60 80 100
0

2

4

6

8

Number of analysis

M
ax

. j
oi

nt
 s

lid
in

g 
[m

m
]

(d) Joint sliding

Figure 8.13: Results of cloud analysis, n =100

sirable as an increase in IM reduces the displacement. Maximum b corresponds to T accel
p .

For category II (ground motion-dependent scalar IMs), PGV, ars and SMV have the highest

b values. vRMS , vrs and CAV have also relatively high slope.

For category III (ground motion-dependent compound IMs), Fajfar IM, IF , has the highest

b value. Cosenza and Manfredi IM, ID, has negative slope.

For category IV (structure-independent spectral IMs), have nearly identical slopes. to-

gether. The highest ones correspond to ASI, VSI and EPA.

For category V (structure-dependent spectral IMs), those IMs related to a specific vibration

period of dam (Ti, 42-53) have a slope in the range of 0.55 - 0.85. Furthermore, in this

subgroup IM corresponding to spectral velocity at the first-mode (43) has larger slope than

the spectral acceleration (42); however, Sa(T1) and Sd(T1) are identical. Increasing the

period (45-53) reduces the b value. Thus, should one use a sinle period, it should be the
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first. For (62-70), corresponding to combined spectral acceleration including the effective

mass, b is about ten time greater than those corresponding to single spectral acceleration

(42-53). Note that for (60-61) corresponding to N5
p and N10

p b is negative.

Figure 8.14(a) shows the ln(IM)-ln(EDP) results for five spectral accelerations (T1 to T5).

Clearly there is not a distinct separation between the five IM. However, using the combined

spectral accelerations (S1−to−i
a ) hereby proposed by the authors, data points are much

crisper and accounting for higher modes result in a nearly vertical curve (more practicality),

figure 8.14(b).
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Figure 8.14: Comparison the practicality of the IMs from spectral acceleration

Efficiency is gauged by βEDP|IM, (the lower, the better).

For category I (unscalable IM) 0.53 ≤ βEDP|IM ≤ 0.57.

For category II (ground Motion Dependent Scalar IM) 0.32 ≤ βEDP|IM ≤ 0.56. Among all

IMs, PGV and SMV have the lowest βEDP|IM.

For category III (ground Motion-Dependent Compound IMs) 0.36 ≤ βEDP|IM ≤ 0.56. IF

has lowest βEDP|IM parameter.

For category IV (structure Independent Spectral IM) 0.32 ≤ βEDP|IM ≤ 0.53.

For category V (structure Dependent Spectral IM) 0.21 ≤ βEDP|IM ≤ 0.55. In this category,

Sa(T1) has the lowest dispersion among the other periods. Sv(T1) and Sd(T1) have also the



212

Table 8.2: Demand models and IM comparisons for displacement response

No. IM a b β ζ R2 p-value p-value
(M) (Rhypo)

Eq. 8.32 Eq. 8.32 Eq. 8.34 Eq. 8.39 - Eq. 8.41 Eq. 8.41
1 M 0.01 0.22 0.57 2.54 0.00 0.89 0.00
2 Rhypo 0.06 -0.35 0.53 -1.48 0.14 0.00 0.71
3 VS30 0.03 -0.11 0.57 -4.96 0.01 0.41 0.00
4 ttot 0.02 -0.02 0.57 -24.24 0.00 0.59 0.00
5 tsig 0.03 -0.21 0.55 -2.64 0.05 0.06 0.01
6 D5−75 0.02 -0.15 0.56 -3.75 0.04 0.04 0.01

7 Taccel
p 0.03 0.42 0.53 1.26 0.13 0.81 0.00

8 Tvel
p 0.02 0.01 0.57 44.74 0.00 0.64 0.00

9 PGA 0.07 0.66 0.43 0.65 0.42 0.00 0.38
10 PGV 0.19 0.85 0.32 0.38 0.67 0.93 0.61
11 PGD 0.05 0.27 0.53 1.94 0.13 0.04 0.00
12 aRMS 0.06 0.68 0.43 0.64 0.42 0.75 0.68
13 vRMS 0.30 0.64 0.43 0.68 0.41 0.01 0.00
14 uRMS 0.03 0.10 0.56 5.60 0.03 0.46 0.00
15 ars 0.02 0.84 0.39 0.47 0.52 0.84 0.66
16 vrs 0.11 0.70 0.42 0.61 0.44 0.00 0.00
17 urs 0.02 0.09 0.56 5.96 0.02 0.48 0.00
18 IA 0.04 0.42 0.39 0.94 0.52 0.84 0.66
19 PD 0.28 0.40 0.35 0.87 0.62 0.38 0.00
20 SED 0.11 0.35 0.42 1.22 0.44 0.00 0.00
21 CAV 0.01 0.64 0.46 0.72 0.34 0.03 0.00
22 CAVSTD 0.01 0.44 0.44 1.01 0.39 0.13 0.04
23 CAD 0.03 0.40 0.50 1.25 0.22 0.02 0.00
24 SMA 0.02 0.70 0.42 0.59 0.46 0.00 0.29
25 SMV 0.18 0.84 0.33 0.39 0.67 0.93 0.42
26 Iv/a 0.03 0.23 0.56 2.47 0.03 0.83 0.00

27 I
v2/a

0.19 0.42 0.44 1.04 0.40 0.15 0.00

28 IC 0.03 0.43 0.46 1.06 0.36 0.19 0.04
29 Ia 0.01 0.74 0.43 0.58 0.42 0.18 0.83
30 Iv 0.05 1.03 0.41 0.40 0.47 0.01 0.00
31 Id 0.03 0.18 0.55 3.02 0.07 0.13 0.00
32 IF 0.10 0.82 0.36 0.44 0.60 0.06 0.01
33 ID 0.03 -0.25 0.55 -2.20 0.05 0.13 0.00
34 SIR 0.05 0.29 0.43 1.48 0.44 0.00 0.18
35 ASI 0.02 0.84 0.32 0.39 0.67 0.00 0.06
36 V SI 0.06 0.84 0.34 0.41 0.64 0.74 0.48
37 DSI 0.04 0.31 0.53 1.74 0.13 0.10 0.00
38 EPA 0.13 0.84 0.32 0.39 0.67 0.00 0.06
39 EPV 0.14 0.66 0.40 0.60 0.52 0.83 0.01
40 IEPA 0.08 0.66 0.43 0.64 0.44 0.00 0.40
41 IEPV 0.14 0.72 0.35 0.49 0.62 0.84 0.07
42 Sa(T1) 0.09 0.84 0.21 0.24 0.87 0.93 0.46
43 Sv(T1) 0.12 0.86 0.22 0.26 0.85 0.32 0.77
44 Sd(T1) 1.15 0.84 0.21 0.25 0.87 0.93 0.46
45 Sa(T2) 0.07 0.80 0.29 0.36 0.74 0.13 0.87
46 Sa(T3) 0.06 0.76 0.32 0.42 0.68 0.06 0.79
47 Sa(T4) 0.05 0.67 0.38 0.57 0.55 0.03 0.68
48 Sa(T5) 0.04 0.66 0.37 0.56 0.57 0.02 0.96
49 Sa(T6) 0.04 0.67 0.39 0.58 0.53 0.00 0.59
50 Sa(T7) 0.04 0.68 0.38 0.56 0.55 0.00 0.42
51 Sa(T8) 0.04 0.67 0.38 0.57 0.54 0.00 0.34
52 Sa(T9) 0.04 0.65 0.40 0.61 0.52 0.00 0.37
53 Sa(T10) 0.04 0.62 0.41 0.65 0.48 0.00 0.49

54 Sa(T
accel
p ) 0.03 0.60 0.44 0.74 0.39 0.01 0.81

55 Sv(T
vel
p ) 0.07 0.81 0.33 0.40 0.67 0.56 0.21

56 Sa(T = 0.2s) 0.04 0.67 0.39 0.58 0.53 0.00 0.59
57 Sa(T = 1.0s) 0.08 0.53 0.45 0.85 0.37 0.82 0.00
58 S∗

a 0.12 0.81 0.31 0.38 0.70 0.74 0.01
59 S̄a 0.11 0.70 0.32 0.46 0.67 0.44 0.05

60 N5
p 0.02 -0.39 0.55 -1.43 0.06 0.99 0.00

61 N10
p 0.02 -0.29 0.55 -1.88 0.05 0.93 0.00

62 S1−to−2
a 0.19 1.74 0.22 0.12 0.85 0.37 0.98

63 S1−to−3
a 0.24 2.56 0.23 0.09 0.84 0.30 0.90

64 S1−to−4
a 0.25 3.46 0.24 0.07 0.83 0.14 0.80

65 S1−to−5
a 0.19 4.23 0.24 0.06 0.82 0.15 0.91

66 S1−to−6
a 0.13 4.99 0.24 0.05 0.82 0.15 0.99

67 S1−to−7
a 0.08 5.86 0.24 0.04 0.82 0.10 0.82

68 S1−to−8
a 0.04 6.63 0.24 0.04 0.82 0.11 0.86

69 S1−to−9
a 0.02 7.43 0.24 0.03 0.81 0.10 0.84

70 S1−to−10
a 0.01 8.23 0.25 0.03 0.81 0.09 0.81

same dispersion at T = T1. In the case of contribution of the higher modes with effective

mass, there is no meaningful change in the dispersion value (it is almost constant in the
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range of [0.22, 0.25]). It means that considering the higher modes does not change the

efficiency of the IM parameter. The βEDP|IM parameter for combined spectral accelerations

is a bit higher than that observed for Sa(T1) (which is 0.21); however, this differences are

negligible.

Figure 8.15 shows the practicality (in term of b) and efficiency (in term of βEDP|IM) for

three spectral parameters (i.e. acceleration, velocity, displacement) at different periods. As

shown, b is highest and βEDP|IM lowest at T = 0.44 s which corresponds to the fundamental

period confirming that this is indeed the optimal choice for IM. One also notes that the

spectral acceleration and displacement are nearly superimposed over the entire range. On

the other hand, the spectral velocity intersects those curves at the fundamental period.
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Figure 8.15: Comparison the efficiency and practicality of the spectral values versus the vibration
period

Proficiency As previously mentioned (Eq. 8.39), proficiency is a hybrid indicator in terms of

efficiency and practicality where a lower modified dispersion, ζEDP|IM, is indicative of higher

proficiency.

From Table 8.2, PGV has a lower ζEDP|IM than the one corresponding to PGA and both

are lower than PGD. Thus, among the IMs in category II, PGV is the best choose. Among

the IMs in category III, Iv has the lowest ζEDP|IM. Therefore, the velocity-dependent IMs

seems to be a good choice in this study. In category V, the three spectral accelerations at
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the first mode have nearly identical ζEDP|IM. For acceleration response spectrum, Sa(T ),

higher modes increase the modified dispersion. Finally, for combined spectral accelera-

tions, S1−to−N
a accounting for higher modes decreases ζEDP|IM and consequently increase

proficiency.

Goodness-of-fitting Goodness-of-fitting (GOF) is a well accepted indicator of data fitting. Table

8.2 shows that all IMs in category I have unacceptably small R-squared values [0.0-0.14].

For category II, PGV and SMV have higher R-squared (0.67). In category III, IF has the

highest value (0.60). In category IV, almost all of the IMs have relatively high R-squared

[0.44-0.67] except for DSI (0.13). In category V, Sa(T1), Sv(T1) and Sd(T1) have the

highest R-squared values [0.85-0.87]. Furthermore, it is noted that increasing the number

of modes, decreases the R-squared value. In the case of combined acceleration response

spectra, S1−to−N
a , all have nearly same R-squared value [0.81-0.85].

Sufficiency is quantified through the p-value and estimates from linear regression upon the resid-

uals with respect to Mw, Rrup, ε, Eq. 8.41. A higher p-value corresponds to a sufficient

IM. Whereas different significance levels can be adopted to reject the null hypothesis a 5%

significance level is used in this study.

Since most researchers use the PGA as IM, Table 8.2 reports the corresponding p-values

based on Mw and Rrup. Results confirm what is commonly known that is Rrup is preferable

over Mw (corresponding p-values being 0.38 and 0.0). As to PGD, p-value is smaller than

0.05 for both magnitude and distance. One can also note that in most cases p-values are

greater than 0.05 when Rhypo (rather than M) are considered.

When a variable number of modes can be considered (No. 45-53) an increase in number

corresponds with a decrease in p-value. This is also the case for the combined spectral

accelerations (No. 62-70). Figure 8.16 illustrates the sufficiency dependency of Sa(T1)

and S1−to−10
a on both earthquake magnitude and distance. In figure 8.16(a) Sa(T1) (p-

value=0.93) is more sufficient than S1−to−10
a (p-value=0.09). However, based on figure
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8.16(b) it is the other way around (p-values of 0.81 and 0.46).
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Figure 8.16: Linear regression of the displacement residuals

Based on the above extensive study, the following major conclusions can be drawn:

• None of the unscalable IMs (Category I) is suitable for probabilistic seismic analyses.

• Among the ground motion dependent scalar IM parameters (Category II), PGV is the best

option.

• Among the ground motion dependent compound IMs (Category III), IF has the efficiency,

practicality and proficiency but does not reject the null hypothesis for earthquake distance.

Overall, IF is the most suitable IM for this category.

• Among the structure-independent spectral IMs (Category IV), both the ASI and EPA lead

to similar condition.

• Among the structure-dependent spectral IMs (Category V) Sa(T1), Sv(T1) and Sd(T1) lead

to nearly identical condition. Among the acceleration response spectra, the fundamental

mode is by far better than higher modes. Combined acceleration response spectra, including

the effective mass, S1−to−N
a , are the most practical and proficient in whole set.
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8.4.4 Optimal IM; Impact of EDP

In so far, the optimal IM was sought for a single EDP (crest displacement). Next, the impact

of other EDPs is investigated. For concrete gravity dams, the major contender for an alternative

EDP are: crack length ratio 8.13(b), joint opening 8.13(c), and joint sliding 8.13(d). Given the 70

IMs considered in this study, only a selected few will be considered. Those are divided into two

groups:

Group 1: includes the optimal IMs determined in the previous section as well as other popularly

used ones: PGA, PGV, PGD, IF , ASI, Sa(T1), Sv(T1), Sd(T1).

Group 2: includes different combined spectral accelerations: S1−to−N
a , N ∈ [2, 10].

Practicality Nearly identical trends are found in figure 8.17(a). In all cases, crest displacement

and joint opening leads to higher b value than crack length ratio and joint sliding. All

IMs have nearly identical practicality except PGD (lower). For S1−to−N
a (figure 8.17(b)),

increasing the number of modes, increases the practicality in all EDPs. The ratio of different

bins corresponding to different responses remains nearly constant.

Efficiency Crest displacement leads to the lowest βEDP|IM (highest efficiency), figure 8.17(c) while

again, spectral parameters have higher efficiency. Similar trend is observed in group 2 IMs,

figure 8.17(d). The other three EDPs, i.e. crack length ratio, joint opening and joint sliding

have nearly identical βEDP|IM.

Proficiency Figure 8.17(e) shows the modified dispersion for the first group. It is evident that

PGD should not be used, while spectral parameters, i.e. Sa(T1), Sv(T1) and Sd(T1) con-

stitute the best options. In nearly all cases, displacement lead to higher proficiency. As to

the second group, figure 8.17(f), an increase in mode contribution decreases ζEDP|IM.

Sufficiency is difficult to assess as it is highly dependent on the type of EDP and the selected

seismic hazard parameter (M or Rhypo). PGA is a sufficient IM based on Rhypo for all
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Figure 8.17: Impact of different EDPs on the optimal IM
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EDPs; however, it is not qualified based on M and displacement (figures 8.17(g) and

8.17(i)). Sa(T1) is a sufficient IM based on all EDPs and Rhypo; however, based on M , it

is valid for displacement and joint opening.

In the second group, all IMs are sufficient based on Rhypo (figure 8.17(j)). Displacement

having the highest p-value (near unit in most cases) followed by joint opening. Using

M for regression analysis of residuals leads to high p-value for the joint opening (figure

8.17(h)). Increasing the contribution of higher modes, results in an increase of p-value for

joint opening and a decrease crest displacement.

8.4.5 Cloud-based Fragility Curves

8.4.5.1 Comparing fragility models assumptions

The cloud analysis, Sec. 8.2.3 is next used to determine the PSDM-based fragility curves.

The well established equation for the fragility curve is given by Eq. 8.33 which is generalized by

Eq. 8.37 to account for very large data point in the EDP (such as collapse or instability in the

numerical model) as illustrated by Fig. 8.13. Based on these equations, one can consider four

distinct cases (Sa(T1) is considered as the default IM):

Case 1: Probability of exceedance is determined from the complete data set using Eq. 8.33.

Case 2: The large data points are bounded to a user-defined limit (usually the largest non-collapse

data) and the probability of exceedance is determined from all the bounded data points

using Eq. 8.33.

Case 3: The large data points are not considered in calculation of the probability of exceedance

and Eq. 8.38 is used.

Case 4: Large and not large data points are considered separately using Eq. 8.37.

Figure 8.18 compares the previous four cases for two edp: 10 and 25 mm crest displacement

(as representatives of low and high limit states - LS). In both analyses, Case 1 results in large
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dispersion of IM. In figure 8.18(a), Case 3 and Case 4 lead to similar observations. Thus, P [Lg|IM]

does not play a critical role in the total probability of exceedance of the lower LS. On the other

hand, Case 4 has lower median than Case 3 for higher LS, figure 8.18(b). Finally, in all cases,

comparing Case 1 with Case 4 one notes the importance of the large data points.
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Figure 8.18: Comparison of fragility curves based on definitions

8.4.5.2 Impact of IM

Based on the results of PSDM (figure 8.13) and optimal IM (Table 8.2), the impact of other

IMs on fragility curve is examined next and results are shown in figure 8.19(a). In all cases, crest

displacement is the EDP and the limit value arbitrarily set to edp = 20 mm. Both PGA and

Sa(T2) generates wider curves than Sa(T1). In addition, S1−to−2
a is similar to the Sa(T1) shifted

by about 0.1 g. Figure 8.19(b) shows the contribution of the higher modes and the effective mass

on the fragility curves. Again, based on Table 8.2, S1−to−10
a was the most practical and proficient

IM parameter, on the other hand there is no considerable differences among the fragility curves.

Thus, the contribution of higher modes, appear to result in a simple shift of the curve. Finally, the

fragility curves based on S1−to−N
a are narrower than those based on other IM, thus dispersion is

limited.
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Figure 8.19: Comparison of fragility curves based on IM parameter

8.4.5.3 Single-IM fragility surface

In so far all results were shown for a specific EDP. The effect of the later along with the IM on

the P [EDP ≥ edp|IM], is shown in figure 8.20. This figure clearly shows as the the edp increases,

the effective range of IM increases too.
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Figure 8.20: Fragility surface for varying edp

8.4.5.4 Impact of EDP

From figure 8.17, crest displacement was determined to be the adequate EDP in most cases.

However, other EDPs could be used for fragility curves. For example, if the objective is to assess

the dam-foundation interface, joint opening/sliding should be used as EDP. An example of such

relevance is the effect of joint displacements on the conditions of the water-stops in arch dams.
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Figure 8.21 shows the fragility curves based on joint opening and sliding at the dam-rock

interface. Three different LS are considered: a) 2 mm: initiation of opening/sliding, b) 5 mm:

propagation of the opening/sliding, and c) 8 mm: near collapse condition. In all cases, joint sliding

has the highest probability of exceedance. However, the difference between crack opening and crack

sliding is reduced by increasing the LS.
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Figure 8.21: Comparison of fragility curves based on IM parameter

8.4.5.5 Fragility curves for damage index

One can define fragility curves in a more generic way in terms of damage index (DI). Those

were proposed for gravity dams (Hariri-Ardebili and Saouma, 2014) in terms of crack length LC ,

dissipated energy EH , and maximum drift umax. However, in the present study, only crack length

ratio is considered.

DI = f
(
LC , EH , umax

)
(8.42)

A fragility curve based on DI and a specific LS is:

P [DI ≥ LS|IM] = 1− Φ

(
ln(LS)− ln(ηDI|IM)

βDI|IM

)
(8.43)

where ηDI|IM is the median value of DI given IM and βDI|IM is the logarithmic standard deviation

of the DI conditioned on the IM.

Table 10.2 shows different proposed damage states (DS) for concrete dams. In the present

analysis, damage can only occurs at the dam-foundation joint. Figure 8.22(a) shows the fragility
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curves of the concrete dam in terms of the LS. The last curve (LS = 0.99) corresponds to the the

probability of failure (collapse). If the LS are not discrete values, the fragility contour is shown in

figure 8.22(b).

Table 8.3: Definition of the damage states for gravity dams (Hariri-Ardebili and Saouma, 2014)

Symbol DS DI range

DS1 Intact DI = 0.00

DS2 Slight 0.00 < DI ≤ 0.10

DS3 Moderate 0.10 < DI ≤ 0.30

DS4 Severe 0.30 < DI ≤ 0.60

DS5 Near collapse 0.60 < DI ≤ 0.99

DS6 Collapse DI = 1.00
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Figure 8.22: Comparison of fragility curves based on DI concept

8.5 Conclusions

PSDM in general and IM in particular are well established parameters used in the context of

PBEE as applied to buildings. This paper is a first attempt to extend the definition of those terms

to concrete dams toward a subsequent PBEE analysis.

First, over 70 scalar intensity measure parameters are mathematically identified (along with a

newly proposed one), then the optimal one (in term of efficiency, practicality, proficiency, sufficiency,

and hazard compatibility) is selected for Pine Flat dam.

Then, in the context of PSDM, different fragility curves and surfaces are determined for the
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dam. Aside from Ellingwood and Tekie (2001) and Tekie and Ellingwood (2003) this is probably

the first use of probabilistic seismic safety assessment of concrete dams.



Chapter 9

Collapse Fragility Curves for Gravity Dams

This chapter is based on:

Hariri-Ardebili, M.A. and Saouma, V.E., (2015), Collapse Fragility Curves for Concrete

Dams: A Comprehensive Study (submitted to Structural Engineering - ASCE)

9.1 Introduction

9.1.1 Probabilistic Safety Assessment of Dams

Dams are critical components of a nation’s infrastructure. Yet, many dams are aging and

most were designed at a time with limited seismic field data, or technical knowledge. Taking a

simple binary approach Safe/Fail, as commonly done presently through a deterministic application

of safety codes (USACE, 2007; CDA, 2007) is not only unrealistic but could yield very expensive

rehabilitation program. Probabilistic methods on the other hand have been early on used for

buildings (Cornell, 1968) and subsequently to nuclear power plants (Kennedy et al., 1980). More

recently, performance based earthquake engineering (PBEE) has been introduced for buildings

(Porter, 2003; Gunay and Mosalam, 2013). As to dams, the accepted procedure is based on the

so-called potential failure mode (PFM) identification (FERC-PFMA, 2005).

Inspired by the PBEE model some researchers selectively focused on one of its components

and applied it to concrete dam analysis. Those studies can be grouped as follows:
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Advanced Structural Analysis: Single-record incremental dynamic analysis (SR-IDA), also known

as capacity curve, of an arch dam by Pan et al. (2015); multiple-record incremental dynamic

analysis (MR-IDA) of gravity and arch dams by Alembagheri and Ghaemian (2013b); en-

durance time analysis (ETA) of a gravity dam by Hariri-Ardebili and Saouma (2014); and

multiple-strip analysis (MSA) of an arch dam by Hariri-Ardebili et al. (2015).

Seismic Fragility Analysis: Seismic fragility curves for gravity dams based on different limit

states (LS) by Ellingwood and Tekie (2001) and Tekie and Ellingwood (2003); fragility

curves incorporating the structural uncertainty in the form of series and parallel components

by Lupoi and Callari (2012); and cloud-based probabilistic seismic demand analysis (PSDA)

by Hariri-Ardebili and Saouma (2015a).

9.1.2 Vertical Ground Acceleration

Effects of vertical (V) ground motion component have been addressed either from 1) seismo-

logical point of view, and/or 2) Structural one.

Seismological Aspects: Vertical components of a ground acceleration are associated with P-

waves, while the horizontal (H) with the S-waves. Thus, the vertical component includes

higher frequencies. In addition, the arrival time interval, tV−H , (between PGAV and PGAH

where PGA stands for peak ground acceleration) affects the interaction between the ground

motion components (Collier and Elnashai, 2001). The interaction between the components

is maximum when tH−V is less than 0.5 s and it is zero when tH−V is more than 4.0 s.

The relative characteristics of the ground motion components is usually presented by V/H

ratio. Based on Lee and Mosalam (2014), it is a strong function of natural period, local

site condition, and source-to-site distance, and a relatively poor function of magnitude, and

fault mechanism.

Structural Aspects: Most of the research focused on the effects of ground motion’s vertical com-

ponent on reinforced concrete columns of highway bridges, Papazoglou and Elnashai (1996),
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Kim et al. (2011), and Button et al. (2002). It was concluded that the vertical component

has a major impact on the axial force demand of columns. The only accessible research on

impact of the vertical component on fragility curves is the work of Wang et al. (2013b).

They analyzed a representative model of multi-span continuous steel girder bridge with

liquefiable soil layers. Both the fragility curves and surfaces are derived. It was determined

that using scalar intensity measure (IM) from horizontal motion, peak ground velocity

(PGV) will be the optimal one. However, for engineering demand parameters (EDP) that

are mostly influenced by vertical components, the square-root-of-the-sum-of-squares of ver-

tical spectral accelerations at the first and second vertical modes is the optimal one. They

stated that the fragility curves that neglect the vertical component effect underestimate

the failure probability of the certain components.

9.2 PEER PBEE Background Theory

9.2.1 General Concepts of PBEE

The general framework for pacific earthquake engineering research center (PEER) PBEE (also

known as PBEE-2) has been laid by (Porter, 2003). It breaks the seismic performance assessment

into four primary steps: 1) ground motion hazard characterization, 2) structural response analysis,

3) damage analysis, and 4) loss assessment. The results of each of these steps are represented as

generalized variables, IM, EDP, damage measure (DM), and decision variable (DV). This process

can be expressed in terms of a triple integral that is an application of the total probability theorem:

g [DV|D] =
∫ ∫ ∫

p [DV|DM,D] p [DM|EDP,D] p [EDP|IM,D] g [IM|D] dIM.dEDP.dDM (9.1)

where p [X|Y] denotes the complementary cumulative distribution function of X conditioned on

Y, g [X|Y] denotes the mean annual occurrence rate of X given Y, and D denotes facility loca-

tion, structural, non-structural, and other features. The first three steps will be applied in the

subseuquent study of Pine Flat dam.
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9.2.2 Analytical Collapse Fragility Functions

A fragility function quantifies the probability of exceeding a particular level of damage (LS,

or structural collapse in the end) as a function of ground motion IM (Baker, 2014). It can be

categorized into three main groups (Lallemant et al., 2015): 1) empirical fragility curves derived

from post-earthquake damage data (Sabetta et al., 1998), 2) analytical fragility curves derived

from transient structural analysis (Shinozuka et al., 2000), and 3) heuristic fragility curves using

the expert opinion (Porter et al., 2007).

A lognormal cumulative distribution function (CDF) is usually used to quantify a fragility

function (Shinozuka et al., 2000). The collapse fragility curve is then defined as:

p [C|IM = im] = Φ

(
ln(im)− ln(η)

β

)
(9.2)

where Φ(.) is the standard normal cumulative distribution function and β the logarithmic standard

deviation (also called dispersion), and η median of the fragility function.

Note that the global collapse is treated separately in PEER PBEE framework (in spite of

the terms introduced in Eq. 9.1) since its probability does not change from a damageable group to

another (Gunay and Mosalam, 2013).

Application of Eq. 9.2 in structural analysis, requires calibration of the η and β parameters.

Fitting the fragility function to the analytical data point leads to estimation of η̂ and β̂. Among the

different models for fragility curve fitting (Lallemant et al., 2015) (Baker, 2014), three methods are

used in this paper: 1) method of moments (MM), 2) sum of squared error (SSE), and 3) maximum

likelihood estimation (MLE).

MM seeks η̂ and β̂ in a way that the resulting distribution (log-normal in this paper) has the

same moments (mean and standard deviation) as the data points:

η̂ = exp

(
1

n

n∑
i=1

ln(IMc
i )

)
, β̂ =

√∑n
i=1 (ln (IM

c
i )− ln (η̂))2

n− 1
(9.3)

where n is number of ground motions and superscript c refers to the onset of collapse. This

method is simple to implement, however, it has a major shortcoming: It requires a full scale IDA
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Vamvatsikos and Cornel (2002) and cannot be used for truncated IDA (Baker, 2014).

SSE seeks η̂ and β̂ in a way to minimize the sum of squared error between the observed

fractions of collapsed data and probabilities predicted by the fragility function (Baker, 2014):

{
η̂, β̂

}
= argmin

η̂,β̂

m∑
i=1

(
nc
i

ni
− Φ

(
ln(imi)− ln(η)

β

))2

(9.4)

where nc
i and ni are number of collapsed data and ground motions at level IM = imi, and m is the

number of IM levels. Note that
nc
i

ni
is the observed probability of collapse at level IM = imi.

MLE seeks η̂ and β̂ in a way to maximize a “likelihood” function which assumes the observa-

tion of each ground motion is either collapsed or safe and also is independent of the other ground

motions. The equivalent formula to be maximized is proposed by (Baker, 2014):{
η̂, β̂

}
= argmax

η̂,β̂

∑m
i=1

(
nc
i ln

(
Φ
(
ln(imi)−ln(η)

β

))
+ (ni − nc

i ) ln
(
1− Φ

(
ln(imi)−ln(η)

β

)))
(9.5)

9.3 Ground Motion Hazard Characterization

Probabilistic seismic hazard analysis (PSHA) is used for ground motion selection (horizontal

and vertical components). PEER ground motion database (PEER, 2014) is used in this study. It

considers fault mechanism, earthquake magnitude, site-to-source distance and local geological site

condition. Twenty one ground motion records listed in Table 9.1 are selected based on the following

conditions:

• Site-to-source distance, 1 < Rrup < 100 km

• Magnitude, 5.5 < Mw < 7.5

• Fault mechanism: Strike-slip

• Shear wave velocity, 600 m/s < VS30 < 1500 m/s; preferably VS30 ≈ 760m/s

• No pulse-like record

In this study shear wave velocity range is selected such that it accounts for the site class

B, 760m/s < VS30 < 1500m/s, and site class C, 360m/s < VS30 < 760m/s, of NEHRP site
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classification (Council, 2003). The unconditional ground motion selection methodology is used in

this study Baker (2010) in order to examine different IM parameters and select the optimal one.

This type of evaluation is refereed to scenario-based performance assessment (SBPA) (ATC-58,

2012) where only the intensity is uncertain while the ground motion magnitude and distance are

known. It is noteworthy that conditional selection of ground motions at the fundamental period

(T1) may reduce the dispersion in Sa(T1); however the objective of this study is to compare all the

possible IMs in a even-handed condition.

Table 9.1: List of the selected ground motion records

No. Earthquake Name Year Station Name M Rrup (km) VS30 (m/s) tsig (s)

1 Coyote Lake 1979 Gilroy Array #1 5.74 10.67 1428.14 6.8
2 Livermore-01 1980 Tracy - Sewage Treatm Plant 5.8 53.82 650.05 20.2
3 Morgan Hill 1984 Gilroy - Gavilan Coll. 6.19 14.84 729.65 8.6
4 Morgan Hill 1984 Gilroy Array #1 6.19 14.91 1428.14 9.5
5 Morgan Hill 1984 UCSC Lick Observatory 6.19 45.47 713.59 9.1
6 Landers 1992 Silent Valley - Poppet Flat 7.28 50.85 659.09 31.7
7 Landers 1992 Twentynine Palms 7.28 41.43 635.01 30.9
8 Big Bear-01 1992 Pear Blossom - Pallet Creek 6.46 95.94 624.01 27.1
9 Big Bear-01 1992 Silent Valley - Poppet Flat 6.46 35.41 659.09 13.3
10 Kobe 1995 Chihaya 6.9 49.91 609 12
11 Kobe 1995 Kobe University 6.9 0.92 1043 7
12 Kobe 1995 MZH 6.9 70.26 609 24.8
13 Kobe 1995 Nishi-Akashi 6.9 7.08 609 11.2
14 Kobe 1995 OKA 6.9 86.94 609 23
15 Kobe 1995 TOT 6.9 119.64 609 27.4
16 Duzce 1999 Lamont 1060 7.14 25.88 782 18.6
17 Duzce 1999 Lamont 531 7.14 8.03 638.39 14.9
18 Upland 1990 Ocean Floor SEMS III 5.63 71.73 659.6 47.7
19 Manjil 1990 Abbar 7.37 12.55 723.95 29.1
20 Hector Mine 1999 Anza - Pinyon Flat 7.13 89.98 724.89 23.3
21 Hector Mine 1999 Banning - Twin Pines Road 7.13 83.43 667.42 27.1

Figure 9.1 shows the horizontal and vertical components of 21 un-scaled acceleration response

spectra. The arithmetic and geometric mean are also shown. In addition, figure 9.1(c) shows the

V/H ratio as a function of period. As seen, the mean ratio is less than unit. For T = 0.1 s the V/H

ratio is close to unit; however, for T � [0.2, 0.8] this ratio decreases to about 0.6. On the other

hand, some of the individual ground motions shows a V/H ratio up to 3.0.

Table 9.2 lists 37 IM parameters taken from the 70 reported in (Hariri-Ardebili and Saouma,

2015a). It should be noted that IM corresponding to 33-37 have been proposed by the authors.
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Figure 9.1: Response spectra for 21 un-scaled ground motions (Gray: individual ground motions,
red: arithmetic mean, blue: geometric mean)

The V/H ratio of IMs are extracted for the ground motions listed in Table 9.1, and the mean,

median, [min, max], and [16%, 84%] fractiles are reported. In most cases, the V/H ratio for both

mean and median is less than one (30 out of 37 IMs in mean and 34 out of 37 IMs in median).

However, in most cases, the maximum V/H ratio or the 84% fractile exceeds unity, indicating the

predominance of the vertical component.

PGA and Sa(T1) are the two most widely used IMs. On the other hand, PGV and Sv(T1)

are two potential alternatives in multiple-component seismic analysis (Wang et al., 2013b). Figure

9.2(a) illustrates the V/H ratio of all 21 ground motions. Indeed, PGA has the highest mean and

median V/H ratio followed by PGV. On the other hand, Sa(T1) and Sv(T1) are nearly identical.

4 out of 21 ground motions have at least one IM with V/H ratio more than one (strong vertical

component).

Hariri-Ardebili and Saouma (2015a) have shown that combined spectral acceleration with

the higher modes and effective mass, S1−to−N
a is the optimal IMs for PSDA. Thus, the V/H ratio is
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examined for this family of IMs, figure 9.2(b). Contribution of higher modes pushes the V/H ratio

towards unity. For example, for S1−to−6
a the mean and median are both 0.95 and the [min, max]

is bracketed by [0.85, 1.10]. Thus, these IMs are likely to reduce the dispersion of the structural

analyses (as will be shown below).

Table 9.2: Processing the V/H ratio of selected IM parameters

No.Description IM Mathematical definition mean [min, max] median[16%, 84%]
1 Significant duration tsig t0.95IA

− t0.05IA
1.10 [0.73, 1.81] 1.11 [0.87, 1.31]

2 Seismological duration D5−75 t0.75IA
− t0.05IA

1.20 [0.52, 2.71] 1.11 [0.92, 1.51]

3 Predominant period (ac-
celeration)

Taccel
p - 0.68 [0.12, 1.61] 0.63 [0.34, 1.03]

4 Predominant period (ve-
locity)

Tvel
p - 3.10 [0.39, 14.0] 1.61 [0.60, 5.81]

5 Peak ground acceleration PGA max (|ü(t)|) 0.72 [0.13, 1.62] 0.76 [0.41, 0.99]
6 Peak ground velocity PGV max (|u̇(t)|) 0.61 [0.10, 1.21] 0.53 [0.41, 0.91]
7 Peak ground displacement PGD max (|u(t)|) 1.70 [0.1, 15.0] 0.72 [0.35, 1.80]

8 Root-mean-square of ac-
celeration

aRMS

√
1

ttot

∫ ttot
0 (ü(t))2dt 0.67 [0.18, 1.02] 0.70 [0.45, 0.89]

9 Root-mean-square of ve-
locity

vRMS

√
1

ttot

∫ ttot
0 (u̇(t))2dt 0.62 [0.18, 0.99] 0.63 [0.42, 0.78]

10 Root-mean-square of dis-
placement

uRMS

√
1

ttot

∫ ttot
0 (u(t))2dt 1.81 [0.09, 16] 0.67 [0.36, 2.01]

11 Arias intensity IA
π
2g

∫ ttot
0 (ü(t))2dt 0.49 [0.03, 1.01] 0.49 [0.21, 0.78]

12 Specific energy density SED
∫ ttot
0 (u̇(t))2dt 0.42 [0.03, 0.99] 0.40 [0.18, 0.62]

13 Cumulative absolute ve-
locity

CAV
∫ ttot
0 |ü(t)| dt 0.67 [0.20, 1.02] 0.68 [0.46, 90]

14 Cumulative absolute dis-
placement

CAD
∫ ttot
0 |u̇(t)| dt 0.66 [0.25, 1.12] 0.67 [0.42, 0.87]

15 Peak velocity to accelera-
tion ratio

Iv/a (PGA)−1 (PGV )+1 0.98 [0.23, 2.11] 0.94 [0.58, 1.21]

16 Characteristics intensity IC (aRMS)+3/2 (
tsig

)+1/2 0.58 [0.09, 1.00] 0.54 [0.34, 0.86]

17 Riddell Garcia accelera-
tion index

Ia (PGA)+1 (
tsig

)+1/3 0.73 [0.14, 1.53] 0.76 [0.43, 0.99]

18 Riddell Garcia velocity in-
dex

Iv (PGV )+2/3 (
tsig

)+1/3 0.72 [0.25, 1.11] 0.73 [0.55, 0.92]

19 Riddell Garcia displace-
ment index

Id (PGD)+1 (
tsig

)+1/3 1.71 [0.1, 14.0] 0.75 [0.38, 1.82]

20 Fajfar index IF (PGV )+1 (
tsig

)+1/4 0.62 [0.11, 1.12] 0.57 [0.41, 0.89]

21 Cosenza index ID
2g
π

(PGA)−1 (PGV )−1 (IA)+1 1.32 [0.43, 2.72] 0.96 [0.75, 2.21]

22 Shaking intensity rate SIR (IA5−75)(D5−75)
−1 0.47 [0.015, 0.94] 0.44 [0.11, 0.87]

23 Acceleration spectrum in-
tensity

ASI
∫ 0.5
0.1 Sa (T, ξ = 5%) dT 0.57 [0.16, 0.94] 0.55 [0.39, 0.76]

24 Velocity spectrum inten-
sity

V SI
∫ 2.5
0.1 Sv (T, ξ = 5%) dT 0.59 [0.09, 0.92] 0.56 [0.38, 0.83]

25 Displacement spectrum in-
tensity

DSI
∫ 5.0
2.0 Sd (T, ξ = 5%) dT 0.65 [0.29, 1.31] 0.57 [0.36, 0.94]

26 Effective peak acceleration EPA 1
2.5×0.4

× ∫ 0.5
0.1 Sa (T, ξ = 5%) dT 0.57 [0.16, 0.94] 0.55 [0.39, 0.76]

27 Effective peak velocity EPV 1
2.5×0.4

× ∫ 1.2
0.8 Sv (T, ξ = 5%) dT 0.59 [0.05, 1.12] 0.54 [0.38, 0.93]

28 First-mode spectral accel-
eration

Sa(T1) Sa(T1, ξ = 5%) 0.54 [0.11, 1.31] 0.49 [0.31, 0.78]

29 First-mode spectral veloc-
ity

Sv(T1) Sv(T1, ξ = 5%) 0.52 [0.13, 1.02] 0.49 [0.29, 0.79]

30 First-mode spectral dis-
placement

Sd(T1) Sd(T1, ξ = 5%) 0.54 [0.11, 1.31] 0.50 [0.30, 0.77]

31 Spectral acceleration at
predominant period

Sa(T
accel
p )- 0.65 [0.14, 1.31] 0.71 [0.34, 0.91]

32 Spectral velocity at pre-
dominant period

Sv(T
vel
p ) - 0.54 [0.06, 0.95] 0.53 [0.31, 0.76]

33 Combined (mode 1 to 2)
spectral acceleration

S1−to−2
a

∑2
i=1 (Sa (Ti, ξ))

αi , αi =
meff

i∑2
1 meff

i

0.72 [0.38, 1.01] 0.68 [0.58, 0.90]

34 Combined (mode 1 to 3)
spectral acceleration

S1−to−3
a

∑3
i=1 (Sa (Ti, ξ))

αi , αi =
meff

i∑3
1 meff

i

0.97 [0.80, 1.30] 0.95 [0.84, 1.10]

35 Combined (mode 1 to 4)
spectral acceleration

S1−to−4
a

∑4
i=1 (Sa (Ti, ξ))

αi , αi =
meff

i∑4
1 meff

i

0.95 [0.82, 1.10] 0.95 [0.86, 1.10]

36 Combined (mode 1 to 5)
spectral acceleration

S1−to−5
a

∑5
i=1 (Sa (Ti, ξ))

αi , αi =
meff

i∑5
1 meff

i

0.96 [0.86, 1.10] 0.96 [0.89, 1.10]

37 Combined (mode 1 to 6)
spectral acceleration

S1−to−6
a

∑6
i=1 (Sa (Ti, ξ))

αi , αi =
meff

i∑6
1 meff

i

0.95 [0.85, 1.10] 0.95 [0.90, 1.02]
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Figure 9.2: Detailed V/H ratio in the single ground motions

9.4 Transient Structural Analysis

As previously indicated the second step of the PBEE method is the structural analysis. This

will be performed for the 122 m high Pine Flat gravity dam. The finite element code Merlin

(Saouma et al., 2010) is used for analysis. 4-node and 3-node plain strain 2D elements are used

for modeling the dam body and the foundation. Nonlinearity stems from the use of zero-thickness

interface elements for modeling the discrete joints (Cervenka et al., 1998). Also smeared crack

model is used for simulation of concrete cracking. Applied loads are: 1) self-weight, 2) hydrostatic

pressure, 3) uplift which is automatically updated with crack propagation, and 4) seismic loads.

There are four analyses possibilities in the context of this study, those are shown in the

IM-EDP space in figure 9.3. First the single deterministic analysis (SDA) is performed for one

ground motion and one intensity level. Then the same ground motion can be extended to different

seismic intensities until failure occurs in the last point, single-record incremental dynamic analysis

(SR-IDA). Then the effect of multiple ground motions at a given seismic intensity are performed
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in the context of single strip analysis (SSA), and failure may or may not occur along any point

(depending on the selected IM magnitude). Finally, the effect of multiple ground motions at

multiple intensities is performed by an MR-IDA. Those analysis (with exception of the SSA) will

be reported sequentially below.

EDP

IM

SSA

SR
-ID

A

MR-IDA

SDA

F

F

F

F

F

F
F

F

F

Figure 9.3: Interaction among Analyses techniques

9.4.1 Single Deterministic Analysis

Impact of vertical ground motion on the dynamic response of Pine Flat is first assessed

through a single deterministic analysis. In this study, all the nonlinearity stems from the zero-

thickness interface joint. Ground motion record 1 from Table 9.1 is selected and the corresponding

PGAV

PGAH , PGV V

PGV H , and PGDV

PGDH are equal to 0.62, 0.66, and 0.59 respectively. PGAH and PGAV are

reached at t = 3.68 and 3.06 s respectively. Thus, tV−H is 0.62 s. IA of the horizontal component

is nearly twice the vertical one, however, in the time interval [1, 3] s, the vertical component has

higher intensities. SV
a (Ti)

SH
a (Ti)

ratio for the first five vibration periods of the system are 1.29, 0.79, 1.02,

0.88, and 0.73. Thus, at the fundamental period (T = 0.44 s) the vertical component has higher

spectral value.

Figures 9.4(a) and 9.4(b) show the displacement time histories at the index point (crest).

As can be noted, the vertical component of the ground acceleration has dramatically increased the
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displacement in both horizontal (+ 60%) and vertical (+ 50%) directions. It is noteworthy that

peak displacement due to “H only” and “H + V” occur at different times.

Figures 9.4(c) and 9.4(d) show the principal stresses. Again the combined “H + V” results

in higher stress than for “H only”. Accounting for the vertical component increased the (tensile)

S11 at crest by nearly 85%; however, the mean value of stress increases in the body is only 7%.

On the other hand, the S11 at the heel increased from 0.57 to 0.60 MPa due to vertical component

effect.

Figure 9.4(e) shows the normalized base crack length at the dam-foundation interface. In

this case the vertical component had no impact, however, inclusion of the vertical component leads

to an earlier joint fracture. Figures 9.4(f) and 9.4(g) show the total horizontal and vertical forces

acting on the interface joint. In both cases, including the vertical component increases the forces;

however, and as expected, the vertical component drastically increased the total normal force (by

nearly doubling it). Figures 9.4(h) and 9.4(i) show the time history of joint opening and sliding at

the heel. Again in both cases “H + V” lead to higher responses. Comparing these two figures with

figure 9.4(e) reveals that the joint opening/sliding starts at about 0.5-1.0 s after the second major

cracking at the base.

9.4.2 Single Record Incremental Dynamic Analyses

9.4.2.1 Anatomy of SR-IDA

One of the main challenges in a probabilistic based analysis, is the determination of the LS

or the performance level (PL) of a structure. This can be indeed achieved through a SR-IDA. This

paradigm starts with an initial record and its IM (both horizontal and vertical components). It is

first normalized such that the PGA is equal to one, and then multiple analyses are performed by

gradually scaling the record by a scale factor until failure occurs.

The SR-IDA of a steel frame (IM vs inter-story drift) is reported to have anyone of four

forms (Vamvatsikos and Cornel, 2002), figure 9.5(a): 1) Softening response, 2) limited hardening,
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Figure 9.4: Time history response of a deterministic analysis

3) severe hardening, and 4) wavy response.

In an attempt to determine the SR-IDA curves for gravity dams, all 21 records of Table 9.1

were subjected to the SR-IDA, and three forms were identified for the IM in terms of the EDP

(crest displacement) and four types for IM in terms of damage index - DI (crack ratio), figure 9.5(b)

and 9.5(c), respectively.

Whereas the softening response of the concrete dam is expected, the hardening one is enig-

matic. This is attributed to the fact that two scaled ground accelerations at a given time t may

result in damages in two different locations Vamvatsikos and Cornel (2002). In gravity dam, crack-

ing tend to initiate at the heel, and depending on the ground motion amplitude different cracking

patters may follow.

From the IDA curve, one can extract any desired LS or PL using the following rules:
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Figure 9.5: SR-IDA curves

EDP-based rule: (such as imposing a limitation on the crest displacement) starts by selecting the

EDP capacity, CEDP on the basis of experiments, theory, or engineering judgment, figure

9.6. The lowest corresponding IM is to be selected as the failure one.

IM-based rule: is where one seeks to determine the IM which will cause complete failure of the

structure. It is to be selected along the highest asymptotic value in the curve. Other

intermediary horizontal segments are indicative of localized failure, Fig. 9.6.

9.4.2.2 Multiple Component SR-IDA

In Sec. 9.4.1, differences between analysis with single and multiple components were ad-

dressed within the context of a SDA, figure 9.4. In this section, the differences caused by multiple

over single component in the context of SR-IDA figure 9.6 indicate that inclusion of the vertical

component reduces the IM failure capacity, CIM. Furthermore, for a given IM, the vertical dis-

placement is smaller than the horizontal one for both “H only” and “H + V”, and finally, “H + V”
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In the classical PBEE literature associated with buildings, it is shown that in an IDA a first

failure triggered by an IMj may be followed by a non-failure at IMj+1 and failure again at IMj+2.

The transition from j to j+1 has been labeled as “resurrection” (Vamvatsikos and Cornel, 2002). It

was determined that to capture such a phenomena in concrete dams one must model the concrete

nonlineariy (using smeared cracks) in addition to the discrete nonlinear rock/concrete interface.

This is shown in figure 9.8 and resurrection occurs only for “H + V” between IM 4 and 6 (9.8(p),

9.8(q) and 9.8(r)). Moreover, the overall failure is at lower amplitude in “H + V” than “H only”.
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Figure 9.8: Progressive failure under SR-IDA considering multiple-component effects (* means
failure)

9.4.3 Multiple Record Incremental Dynamic Analysis

With reference to figure 9.3 this last procedure relies on all 21 records tabulated in Table 9.1

and each one of them scaled incrementally.

Results are shown in figure 9.9(a) for both cases “H only” and “H + V” where the EDP

corresponds to the crest horizontal displacement and the IM to Sa(T1). Both the discrete data

points and a fitting spline are shown. Each one of the curves corresponding to a SR-IDA (as

investigated in the previous section) can not be used directly in a PBEE analysis. However, having

performed 21 analyses, one can determine the median, 16% and 84% fractiles, figure 9.9(b). As

expected “H + V” yield smaller IM capacities. Finally, figure 9.9(c) shows the dispersion of Sa(T1)
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given δH . For nearly all ranges of δH , “H + V” result in higher dispersion, i.e. spread between the

resulting SR-IDAs.
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Figure 9.9: MR-IDA curves for IM Corresponding to Spectral Acceleration

Whereas figure 9.9 had the IM corresponding to Sa(T1), it is important to assess the impact

of alternative IMs. Results of such investigation are shown in figure 9.10 for IM equal to the PGA,

ASI and S1−to−2
a , while the EDP is the horizontal crest displacement. Again, in all cases, the “H +

V” still has a lower IM capacity than “H only”, the dispersion for S1−to−2
a is smaller than the other

two (a desirable effect). For investigation of the other IMs listed in Table 9.2 results are shown in

Table 9.3. The following conclusions can be drawn:

• In most IM parameters, “H + V” leads to equal or higher dispersion than “H only”.

• Displacement-related IMs result in higher dispersion.

• In most cases, acceleration-related IMs are better than velocity-based ones.

• Spectral-related IMs lead to the lowest dispersion.
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• Lowest dispersion is achieved through combined spectral acceleration (33-37 in Table 9.2).

• Increasing the contribution of modes in the combined spectral accelerations result in a

reduction of the dispersion for “H only”, and a stable one for the “H + V” case. This can

be attributed to the predominantly horizontal vibration modes.
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Figure 9.10: Impact of IM on the MR-IDA curves and their summary

Table 9.3: Dispersion of MR-IDAs with different IMs given EDP collapse

IM “H only” “H + V” IM “H only” “H + V” IM “H only” “‘H + V”
PGA 0.26 0.27 PGV 0.57 0.55 PGD 1.13 1.13
aRMS 0.38 0.39 vRMS 0.72 0.72 uRMS 1.31 1.32
IA 0.45 0.45 SED 1.36 1.34 CAV 0.32 0.33
CAD 0.72 0.72 Iv/a 0.69 0.68 IC 0.56 0.59
Ia 0.26 0.29 Iv 0.43 0.43 Id 1.12 1.13
IF 0.59 0.59 ID 0.50 0.60 SIR 0.70 0.71
ASI 0.19 0.19 V SI 0.47 0.46 DSI 0.89 0.89
EPA 0.19 0.19 EPV 0.52 0.52 Sa(T1) 0.39 0.39
Sv(T1) 0.34 0.35 Sd(T1) 0.39 0.39 Sa(T

accel
p ) 0.27 0.27

Sv(T
vel
p ) 0.65 0.63 S1−to−2

a 0.17 0.18 S1−to−3
a 0.12 0.15

S1−to−4
a 0.08 0.15 S1−to−5

a 0.07 0.15 S1−to−6
a 0.06 0.15

The impact of IM was previously addressed on a single EDP (crest horizontal displacement).
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Figure 9.11: Dispersion of S1−to−N
a , given different EDPs

Next the impact of the EDP is considered for the maximum joint opening at the base, JnO, and

maximum joint sliding at the base, JnS . Figure 9.11 shows the magnitude of dispersion in terms

of the combined spectral acceleration, S1−to−N
a and range of selected EDP. Again, “H only” leads

to lower dispersion in all three EDPs and as in the previous study, increase in N decreases the

dispersion for “H only”.

9.5 Collapse Fragility Curves

Having determined the MR-IDA it is now possible to determine the collapse fragility curves.

With reference to figure 9.12, first the asymptotic value of the IM is tagged as the failure one.

Then a probability distribution function (PDF) is fitted through this data points (typically a log-

normal one), and the corresponding cumulative distribution function (CDF) determined (Eq. 9.2).

To determine the corresponding β and η all three previously mentioned methods (MM, SSE, and

MLE) are examined (Eqs. 9.3, 9.4 and 9.5). Finally, the fragility curves are plotted, figure 9.13
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Figure 9.12: Determination of collapse fragility curve from MR-IDA

(showing two different IMs). The worst fit was achieved through the simplest method (MM) as it

underestimated the probability of collapse for both IMs. This is consistent with the essence of this

simplified method which seeks to match the central parameters (median and standard deviation)

rather than the entire distribution as also determined in Lallemant et al. (2015).
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Figure 9.13: Comparison of different methods for collapse fragility curves

Figure 9.14 shows the impact of vertical ground motion component on the fragility curves.

Three IMs are used: Sa(T1), S
1−to−2
a and S1−to−4

a . In all cases, accounting for the vertical compo-

nent reduces the median of the probability of collapse by 22%, 13% and 8%. Also, as shown in the

tabulation of the dispersion for various IM (Table 9.3), Sa(T1) does not affects the dispersion; how-

ever, incorporating the higher modes increases the dispersion of “H + V” with respect to “H only”.

Note that incorporating the higher modes, reduces the goodness-of-fit of log-normal distribution to
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the data points.
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Figure 9.14: Vertical component effect on the collapse fragility curve with respect to IM

9.6 Discussion

9.6.1 Epistemic and Aleatory Uncertainties

In so far, the only variability was the record-to-record (aleatory uncertainty) while the ma-

terial properties were deemed to be deterministic. On the other hand, one could account for both

uncertainties (aleatory and epistimic) (Liel et al., 2009), (Vamvatsikos and Fragiadakis, 2010),

(Celik and Ellingwood, 2010), and (Celarec and Dolsek, 2013).

Figure 9.15(a) shows results of an uncertainty analysis under ETA (Hariri-Ardebili and

Saouma, 2015b) for the same Pine Flat dam. It shows the dispersion, βU , of capacity curves

at collapse for 12 single random variables (RV) and a correlated model. The twelve RVs are: RV1

= concrete mass density, RV2 = concrete modulus of elasticity, RV3 = concrete Poisson’s ratio,

RV4 = rock modulus of elasticity, RV5 = joint tangential stiffness, RV6 = joint normal stiffness,
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RV7 = joint tensile strength, RV8 = joint cohesion, RV9 = joint friction angle, RV10 = joint dila-

tancy angle, RV11 = joint specific mode I fracture energy, RV12 = joint specific mode II fracture

energy, Corr = uncertainty in all RVs with correlation.
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Figure 9.15: Impact of aleatory and epistimic uncertainty on collapse fragility curves

Ideally one would perform Monte Carlo simulation with direct sampling which accounts for

both uncertainties (Celarec and Dolsek, 2013), however this can be very computer intensive for the

nonlinear analysis of dams. An alternative and simplified method combines analytically the two

uncertainties through (Cornell et al., 2002):

βRU =
√

β2
R + β2

U (9.6)

where βR is the uncertainty associated with the record-to-record aleatory randomness (and previ-

ously determined in this paper). Hence, the originally determined fragility curves in terms of βR

are replaced with βRU . Major underlying assumptions in Eq. 9.6 are: 1) The two sources of un-

certainties are independent, and 2) Median values remain constant while the dispersion is altered.

Finally, it should be noted that some recent studies have shown that the epistemic uncertainty not

only increases dispersion but also affects the median response (Liel et al., 2009), (Vamvatsikos and

Fragiadakis, 2010) and (Doľsek, 2012).

The resulting collapse fragility curves with both uncertainties is shown in figure 9.15(b). Two

curves associated with two levels of material variation (COV = 0.1 and 0.2) are presented. As seen,

epistemic uncertainty increase the total dispersion and makes the curves wider. Note that the

results are presented only for horizontal excitation.



245

9.6.2 Impact of Reservoir Elevation

Impact of reservoir elevation is assessed next. First, ten natural periods of dam, dam plus

foundation, and dam plus foundation plus water are determined, figure9.16(a). Then, the corre-

sponding fragility curves for the full and empty dams are computed, figure 9.16(b). For this dam,

ηFull

ηEmpty is 0.75 and 0.78 for “H only” and “H + V” cases, respectively. βFull

βEmpty is 1.08 in both cases, i.e.

the dispersion is not affected. Note that PGA is used as IM to avoid dependency to the vibration

period.
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Figure 9.16: Impact of water level on collapse fragility curves

9.6.3 IDA vs. PSDA

MR-IDA is based on ground motion scaling to capture the structural behavior from linear

to collapse. The nature of scaled ground motion has been questioned if a larger scale factor is

used (Vamvatsikos and Cornel, 2002). On the other hand, probabilistic seismic demand analysis

(PSDA) uses a set of un-scaled ground motions to derive fragility curves Jalayer (2003). Hence, it

is important to compare those two approaches for dams.

Figure 9.17(a) shows a cloud-based PSDA using 100 un-scaled ground motions and the linear

regression (Hariri-Ardebili and Saouma, 2015a). These data are used to derive the median and

dispersion of fragility curves. Then, figure 9.17(b) compares the PSDA and MR-IDA at four LS

(corresponding to 10%, 30%, 60% and 99% of the crack ratio at base). At the collapse level (LS =

0.99%) PSDA has higher median than IDA whereas at LS = 0.60% they are almost identical, and
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for LS = 0.30% and 0.10% IDA has higher median. Increasing crack limit state in PSDA increases

the dispersion; however, this is less sensitive for the IDA. These findings are consistent with those

reported by (Zhang and Huo, 2009) and (Jalayer et al., 2014).
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Figure 9.17: Impact of ground motion scaling on the fragility curve

9.7 Conclusions

The probabilistic seismic response of an gravity dam is explored in the context of performance

based earthquake engineering. The effect of intensity measure was first addressed to determine the

optimal one. Then transient nonlinear analyses were performed through three methods of increasing

complexity culminating with the multiple record incremental dynamic analysis. Results of which

were subsequently used to determine the collapse fragility curves in which both aleatoric and

epistemic uncertainties were accounted for. Throughout the analyses, importance of the vertical

component of the ground motion was emphasized.



Chapter 10

Hybrid Damage Index for Gravity Dams

This chapter is based on:

Hariri-Ardebili, M.A. and Saouma, V.E., (2015), Quantitative failure metric for gravity

dams, Earthquake Engineering and Structural Dynamics, 44(3): 461-480.

10.1 Introduction

Dams are critical components of a nation’s infrastructure. They provide energy, flood pro-

tection, water storage for domestic, industrial, agricultural use and recreation. Yet, many dams

are aging and most were designed at a time with limited seismic field data, or technical knowledge.

Taking a simple binary approach Safe/Fail, as commonly done presently through a deterministic

application of safety codes (FERC-PFMA, 2005; USACE, 2007; CDA, 2007) is not only unrealistic

but could yield very expensive rehabilitation program. On the other hand, Performance Based

Earthquake Engineering (PBEE) (Gunay and Mosalam, 2013; Porter, 2003), by now widely em-

braced for buildings, does provide a new paradigm for dams, one where nonlinear time history

analysis is performed and quantitative failure assessment is necessary.

Indeed dams have historically provided a framework of applications for innovative numerical

methods, such as the finite difference one (Richardson, 1911) or the finite element method (Clough

and Wilson, 1962). Whereas linear elastic analysis prevailed for a long time (Basu, 2009) due

to limited computational capabilities, new advances in hardware has lead to innovative nonlinear
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transient analysis models (Omidi and Lotfi, 2013; Zhang et al., 2013a; Nayak and Maity, 2013).

Dam-foundation interaction and also modeling the far-end boundaries of the semi-infinite medium

were investigated by other researchers (Basu and Chopra, 2004; Saouma et al., 2011; Hariri-Ardebili

and Mirzabozorg, 2013).

Damage analysis is one of the four steps which is used in PEER (Pacific Earthquake Engi-

neering Research) PBEE. The relationship between these steps is shown in Fig. 10.1. During the

dynamic analysis, the structure undergo certain damage characteristics that are associated with

significant changes in its strength and behavior. Damage can be described qualitatively (Damage

State- DS) and quantitatively (Damage Index- DI). Various researchers proposed damage indices

with different applications for framed structures. Cumulative local damage indices such as: nor-

malized cumulative rotation (Banon and Veneziano, 1982), low cycle fatigue (Stephens, 1985),

damage index (Park and AH-S., 1985), and energy-based damage index (Kratzig et al., 1989).

Non-cumulative local damage indices such as: ductility ratio (Newmark, N.M. and Rosenblueth,

E., 1971), interstorey drift (Roufaiel and Meyer, 1981), slope ratio (Toussi and Yao, 1982), flexural

damage ratio (Roufaiel and Meyer, 1981), stiffness damage index (Ghobarah et al., 1999). Global

damage indices such as: maximum and final softening (Dipasquale and Cakmak, 1988). Finally,

damage spectra concept instead of the conventional damage index have been proposed (Bozorgnia

and Bertero, 2003).

Although much has been reported in terms of analytical procedures for concrete dams, little

attention has been given to result interpretations. Damage estimation methodology were first in-

troduced Ghanaat (2004) and later adopted in the USACE guideline (USACE, 2007). It proposes a

systematic method based on linear time history results in terms of local and global performance in-

dices. It uses several criteria such as Demand Capacity Ratio (DCR), cumulative inelastic duration

and the percentage of the overstressed area on dam body for evaluation of the seismic performance.

Considering that the cracking behavior of mass concrete is governed by the strain components,

the previously proposed stress-based methodology by USACE was expanded in term of the strain-

based methodology (Hariri-Ardebili et al., 2013). Displacement-based and energy-based damage
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indices for seismic assessment of gravity dams through a static pushover analysis and Incremental

Dynamic Analysis (IDA) have been proposed (Alembagheri and Ghaemian, 2013b) and criteria for

assessment of the accumulated damage in gravity dams in local and global space (Zhang et al.,

2013a). The seismic vulnerability of an arch dam using Endurance Time Analysis (ETA) technique

by comparing predicted crack profile from a nonlinear analysis with the overstressed area estimated

by a linear elastic one has also been investigated (Hariri-Ardebili and Mirzabozorg, 2014). The ca-

pacity of the dam at different seismic intensity levels was quantitatively estimated as shown in Fig.

10.2. This figure represents the percentage of the overstressed area on upstream face of an arch

dam as a function of DCR and Peak Ground Acceleration (PGA) of the applied excitation. Spatial

distribution of the overstressed are also shown for the case with DCR=1.0 and different PGAs. As

seen, the most vulnerable part of the dam is the upper central sections in vicinity of the crest.

Results of linear analyses were subsequently validated with nonlinear models.

Within the context of PBEE, Damage Measure (DM) refer to physically observable damage

states which can be subsequently related to repairs. Hence, the propensity for potential failure

modes of concrete dams should be quantified.

In the present paper, the nonlinear seismic behavior of a concrete gravity dam is evaluated

quantitatively using a multi-scale approach with different damage indices. The nonlinear behavior

of mass concrete is formulated through damage plastic model, while the Drucker-Prager elasto-

plastic model is adopted for crack simulation in the foundation rock. Potential failure modes for

a gravity dam under dynamic excitation are detected and the appropriate criteria introduced for

interpretation of the result.

10.2 Potential Failure Modes

10.2.1 Qualitative Observations

In the present study, three major potential failure modes of gravity dams are identified: a)

overstressing, b) sliding along cracks inside the dam or planes of weakness within the foundation,
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Figure 10.1: Framework of PEER PBEE methodology (Haselton et al., 2008)

Figure 10.2: Quantitative seismic assessment of an arch dam (Hariri-Ardebili and Mirzabozorg,
2014)

and c) sliding accompanied by overturning. Many studies have shown that under severe ground

shaking a typical gravity dam section may suffer tensile cracks at the base and/or near the upper

downstream face discontinuity (Pan et al., 2011; Zhang et al., 2013a; Alembagheri and Ghaemian,

2013b). The upper cracks usually initiate from the upstream or downstream face of the dam and

propagate horizontally or at an angle toward the opposite face. The consequence of cracking, if

extended through the dam section, may lead to sliding or rotational instability of the separated

block (Ghanaat, 2004). For earthquake motion in the upstream direction, the potential cracking

usually occurs at the heel of the dam at the maximum expected water levels. For earthquake motion
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in the downstream direction, the potential cracking usually occurs at the slope discontinuity under

the minimum expected water level conditions and near the toe of the dam. As earthquake motion

cycles swing toward the upstream direction, the potential cracking shifts to the upper part and the

base of the dam (USACE, 2007).

Figure 10.3 shows failure mechanism of concrete gravity dams under increasing intensity of

earthquake ground motions adapted from Leger (2007). As seen, under normal water level and

imposed ground motion, there are some critical locations in dam where cracking may start at

these locations. They are: (A) neck area at the change of downstream face slope; (B) along lift

joints at various elevations; (C) along dam-foundation interface at the toe and heel of dam; and

(D) horizontal, vertical or inclined cracking at the foundation in near-field of the dam. It should

be emphasized the main source of nonlinearity stems from the rock-concrete interface. Hence, in

practice there is no need to consider the far-field of the foundation in potential failure mode analysis

of dam body.

In the context of PBEE, it is essential that damage indices be defined for that interface.

Since brittle material (such as concrete and rock) are particularly sensitive to both the intensity

and duration of the dynamic loading (Zhang et al., 2013a), the damage level will be evaluated

within the dam through a cumulative damage index and for the dam-foundation system through

both the damaged area on dam body and near-field foundation rock.

10.2.2 Quantitative Analysis Techniques

Failure analysis of a structure under seismic excitation is inherently nonlinear, and one seeks

to determine the seismic excitation(s) which indeed trigger failure.

In its simplest form, such an analysis is deterministic. A ground motion is first selected (and

scaled) based on the response spectrum of dam site and is applied to the coupled dam-reservoir-

foundation system. This will provide a discrete damage index values (one DI corresponding to a

single analysis). Hence, determination of the exact value for onset of the nonlinear behavior which

precedes failure would require many analysis and results are highly ground motion-dependent.
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Figure 10.3: Potential failure mechanism of a typical gravity dam, critical locations and crack paths

Alternatively, a stochastic approach can be embraced. In this approach a set of p ground

motions are selected based on a hazard analysis of the dam site. Then, each of these ground motions

is incrementally scaled to q levels, thus a total of p× q nonlinear analyses are required to capture

the seismic response of the coupled system at different intensity levels and under various ground

motions (Vamvatsikos and Cornel, 2002). This method is refereed to incremental dynamic analysis.

Application of IDA method to concrete dams (Alembagheri and Ghaemian, 2013b). Although this

method provides a comprehensive assessment on the progressive failure analysis of concrete dam,

the large number of analyses precludes it as it is computationally expensive and nearly impossible

to undertake in practice.

Finally, an ETA can be undertaken. This method hinges on a set of e intensifying accelera-

tion function to be generated. These artificial seismic excitation, called endurance time acceleration

functions (ETAF) (Estekanchi et al., 2007) are generated such that their peak zero-period accel-

eration (PZA) and acceleration response spectrum remain linearly proportional to time. Hence,

adoption of ETAFs for the transient analysis of gravity dams will result in a continuous response

from linear elastic to the onset of nonlinear response, to crack initiation, to crack propagation, and

finally to dam failure. Therefore, the progressive failure analysis can be captured through a single
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analysis. Finally, because the artificial ground motions are generated through random numbers, it

is best to average analysis results obtained from at least three ETAFs (e = 3) (Hariri-Ardebili and

Mirzabozorg, 2014; Hariri-Ardebili et al., 2014a).

10.3 Damage Index in Reinforced Concrete Framed Structures

Given the lead taken by the building industry in spearheading PBEE (Porter, 2003; Gunay

and Mosalam, 2013), this section will start by reviewing work done in this field.

10.3.1 Damage Index vs. Damage Variable

In general, damage in concrete or reinforcement concrete can be attributed to irrecoverable

(inelastic) deformations. First one differentiates between damage variable (DV) and damage index.

Any structural response that can be used as an indicator of damage is designated DV. Examples

include: plastic deformation, energy dissipation, low cycle fatigue of element, and changes in vibra-

tional parameter of structure. On the other hand, damage index, is a quantity set to zero in the

absence of any damage and unity when failure or collapse occurs. A DI can be combination of one

or several DVs (Kappos, 1997). Figure 10.4(a) illustrates the DI as a function of only one DV. DI

is 0 at DV ≤ DV0 and its value is one at DV = DVu where the structure is failed. In fact, DV0

and DVu are the lower and upper boundaries (threshold) of the damage variable. Once the initial

and the end points are determined, an appropriate function should be derived between the damage

index and damage variable. The shape of this function should be defined based on experimental

tests. The general format of this function can be (Kappos, 1997):

DI =

(
DV −DV0

DV −DVu

)κ

(10.1)

where κ is an exponent related to the rate of the changes in damage index at different stages of the

damage variable.

If the DI is a function of more than one DV, e.g. two variables as DV 1 and DV 2, it can be
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shown that the DI function will be given by:

DI =

(
DV 1 −DV 1

0

DV 1 −DV 1
u

)κ1

×
(
DV 2 −DV 2

0

DV 2 −DV 2
u

)κ2

(10.2)

where κ1 and κ2 are the exponents associated with the rate of the changes of the respective damage

indices. Figures 10.4(b) and 10.4(c) show the relationship between the DI and two DVs where κ1

and κ2 are both larger than one or both smaller than one.
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Figure 10.4: Relationship between damage variable and damage index

10.3.2 Classification of Damage Index

As earlier stated, it is helpful to review and summarize the damage indices previously intro-

duced for reinforced concrete framed structures as they may inspire those to be adopted for dams.

Based on the summary shown in Table 10.1.



255

T
ab

le
1
0
.1
:
S
u
m
m
a
ry

o
f
th
e
m
o
st

im
p
o
rt
a
n
t
d
a
m
a
g
e
in
d
ic
es

ID
C
a
te
g
o
ry

F
o
rm

u
la

E
x
p
la
n
a
ti
o
n
s

1
D
ef
o
rm

a
ti
o
n
-b
a
se
d
,

n
o
n
-

cu
m
u
la
ti
v
e,

lo
ca
l

P
ow

el
l

a
n
d
A
ll
a
h
a
b
a
d
i
(1
9
8
8
)

D
I μ

=
Δ

m
a
x
−
Δ

y

Δ
m

o
n
−
Δ

y
=

μ
−
1

μ
m

o
n
−
1

Δ
m

a
x
=

m
a
im

u
m

d
ef
o
rm

a
ti
o
n

Δ
y
=

y
ie
ld

d
ef
o
rm

a
ti
o
n

Δ
m

o
n
=

m
a
x
im

u
m

d
ef
o
rm

a
ti
o
n
u
n
d
er

m
o
n
o
to
n
i-

ca
ll
y
in
cr
ea
si
n
g
la
te
ra
l
d
ef
o
rm

a
ti
o
n

μ
=

Δ
m

a
x
/
Δ

y

μ
m

o
n
=

Δ
m

o
n
/
Δ

y

2
D
ri
ft
-b
a
se
d
,

n
o
n
-

cu
m
u
la
ti
v
e,

g
lo
b
a
l

D
I Δ

=
Δ

t m
a
x

H
t

Δ
t m

a
x
=

m
a
x
im

u
m

d
ri
ft

a
t
th
e
ta
rg
et

p
o
in
t

H
t
=

co
rr
es
p
o
n
d
in
g
st
ru
ct
u
ra
l
h
ei
g
h
t

3
D
is
p
la
ce
m
en

t-
b
a
se
d
,
cu

m
u
-

la
ti
v
e
B
a
n
o
n
a
n
d
V
en

ez
ia
n
o

(1
9
8
2
)

D
I N

C
R
=

∑
n i
=

1
|(θ

m
a
x
) i

−
θ
y
|

θ
y

(θ
m

a
x
) i

=
m
a
x
im

u
m

ro
ta
ti
o
n
in

cy
cl
e
i

θ y
=

y
ie
ld

va
lu
e

n
=

n
u
m
b
er

o
f
cy
cl
es

4
F
o
rc
e-
b
a
se
d
,

cu
m
u
la
ti
v
e

W
a
n
g
a
n
d
S
h
a
h
(1
9
8
7
)

D
I D

=
1
−

F
y

F
m

a
x

F
y
=

fa
il
u
re

fo
rc
e
d
u
ri
n
g
a
lo
a
d
in
g
cy
cl
es

F
m

a
x
=

m
a
x
im

u
m

fo
rc
e
d
u
ri
n
g
p
re
v
io
u
s
cy
cl
e

5
H
y
st
er
et
ic

en
er
g
y
-b
a
se
d

C
o
se
n
za

a
n
d

M
a
n
fr
ed

i
(2
0
0
0
)

D
I E

H
=

E
H

E
H

m
o
n

E
H

=
n
o
n
-r
ec
ov
er
a
b
le

d
is
si
p
a
te
d

h
y
st
er
et
ic

en
-

er
g
y

E
H

m
o
n
=

h
y
st
er
et
ic

en
er
g
y
ca
p
a
ci
ty

o
f
th
e
st
ru
c-

tu
re

o
b
ta
in
ed

fr
o
m

p
u
sh
ov
er

a
n
a
ly
si
s

6
M
u
lt
i-
va
ri
a
b
le

P
a
rk
-A

n
g

P
a
rk

a
n
d
A
H
-S
.
(1
9
8
5
)

D
I P

−
A
=

Δ
m

a
x

Δ
m

o
n
+

β
E

H
F
y
Δ

m
o
n

F
y
=

y
ie
ld

st
re
n
g
th

β
≥

0
is
a
co
n
st
a
n
t
d
ep

en
d
s
o
n
th
e
st
ru
ct
u
ra
l
ch
a
r-

a
ct
er
is
ti
cs

a
n
d
h
is
to
ry

o
f
in
el
a
st
ic

re
sp

o
n
se

a
n
d
is

o
b
ta
in
ed

b
y
ex

p
er
im

en
ta
l
te
st

7
M
u
lt
i-
va
ri
a
b
le

m
o
d
ifi
ed

P
a
rk
-A

n
g

K
u
n
n
a
th

et
a
l.

(1
9
9
2
)

D
I
m

o
d
if

ie
d

P
−
A

=
ϕ
m

a
x
−
ϕ
y

ϕ
u
−
ϕ
y

+
β

∫ d
E

M
y
ϕ
u

ϕ
u
=

u
lt
im

a
te

cu
rv
a
tu
re

ϕ
y
=

cu
rv
a
tu
re

a
t
fa
il
u
re

p
o
in
t

ϕ
m

a
x
=

cu
rv
a
tu
re

co
rr
es
p
o
n
d
in
g
to

th
e
m
a
x
im

u
m

b
en

d
in
g
m
o
m
en
t

M
y
=

b
en

d
in
g
m
o
m
en

t
a
t
fa
il
u
re

d
E

=
in
cr
em

en
ta
l
d
is
si
p
a
te
d
h
y
st
er
et
ic

en
er
g
y

8
G
lo
b
a
l,
b
a
se
d
o
n
th
e
m
o
d
a
l

p
a
ra
m
et
er
s

o
f

th
e

st
ru
c-

tu
re

D
ip
a
sq
u
a
le

a
n
d

C
a
k
-

m
a
k
(1
9
8
8
),

D
ip
a
sq
u
a
le

a
n
d

C
a
k
m
a
k
(1
9
8
9
)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩D
I m

a
x
=

1
−

T
U

D
T
m

a
x

m
a
x
im

u
m

so
ft
en

in
g

D
I p

l
=

1
−

T
2 D

T
2 m

a
x

p
la
st
ic

so
ft
en

in
g

D
I F

=
1
−

T
2 U
D

T
2 D

fi
n
a
l
so
ft
en

in
g

T
U
D

=
p
er
io
d
o
f
th
e
u
n
d
a
m
a
g
ed

st
ru
ct
u
re

T
D

=
p
er
io
d
o
f
th
e
d
a
m
a
g
ed

st
ru
ct
u
re

T
m

a
x
=

n
a
tu
ra
l
p
er
io
d
co
rr
es
p
o
n
d
in
g
to

th
e
m
a
x
-

im
u
m

so
ft
en

in
g

9
D
a
m
a
g
e

sp
ec
tr
a

B
o
zo
rg
n
ia

a
n
d
B
er
te
ro

(2
0
0
3
)

⎧ ⎪ ⎨ ⎪ ⎩
D
I
1 B
−
B
=

[ (1
−
α
1
)(
μ
−
μ
e
)

(μ
m

o
n
−
1
)

] +
α
1

(
E

H
E

H
m

o
n

)

D
I
2 B
−
B
=

[ (1
−
α
2
)(
μ
−
μ
e
)

(μ
m

o
n
−
1
)

] +
α
2

√ (
E

H
E

H
m

o
n

)
μ
e
=

Δ
e
la

s
ti
c
/
Δ

y
=

el
a
st
ic

d
u
ct
il
it
y

μ
e
=

1
fo
r
in
el
a
st
ic

b
eh

av
io
r

μ
e
=

μ
if
th
e
re
sp

o
n
se

re
m
a
in
s
el
a
st
ic

0
≤

α
1
≤

1
a
n
d

0
≤

α
2
≤

1
a
re

tw
o
co
n
st
a
n
t

co
effi

ci
en

ts



256

Following is the summary of different classifications:

Local vs. Global: Local DI is an indicator of damage in an element, member, or limited part of

the structure. The global DI on the other hand captures damage state in an entire. The

global DI can be computed by weighted summation of the local DIs.

Single-variable vs. Multi-variable: As shown in Figure 10.4 the DI can be computed either

from a single variable or from a combination of several ones. Usually combined DI takes into

account different parameters and provides a more comprehensive indicator of the damage

progress.

Cumulative vs. Non-cumulative: A cumulative DI is capable of capturing the accumulation of

the damage during the transient analysis, whereas a non-cumulative one can only capture

the end state.

Deterministic vs. Stochastic: As all materials are heterogeneous, the DI may or may not cap-

ture this heterogeneity through stochastic or deterministic expressions.

Damage index vs. Damage spectrum: Damage spectrum represents variation of the damage

index versus the structural period for a series of single-degree-of-freedom systems subjected

to a ground motion record (Bozorgnia and Bertero, 2003).

Structural vs. Economical: Structural DI captures the damage in terms of structural parame-

ters. On the other hand, an economical DI would introduce concepts of cost such as the

ratio of repair cost to corresponding replacement cost.

10.4 Quantitative Failure Metric for Dams

10.4.1 Proposed Damage Index for Gravity Dams

Based on the summary of the damage indices reviewed in the previous section, a cumulative

multi-variable damage index is introduced for concrete gravity dams. This DI will handle local,
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intermediate, and global states. The controlling variables in the proposed damage index are crack

length LC , dissipated energy EH , and maximum drift umax.

DI = f
(
LC , EH , umax

)
(10.3)

The dam structural integrity will be assumed to reach unity (critical) when a thorough crack

(connecting upstream and downstream faces) occurs. Hence, a micro damage index for each of the

critical locations shown in Figure 10.3 is defined as the weighed ratio of cracked length over the

estimated total crack path:

DIji = βΔ × LC
i

LT
i

(10.4)

where DIji ∈ [0, 1] is a micro damage index where i and j refer to the ith crack path in the jth

critical location and j = A,B,C,D shown in Fig. 10.3. LC and LT are the cracked and total

lengths, respectively. βΔ is the controlling coefficient which is computed based on the index point’s

displacement.

It is noteworthy that the DI is a post-analysis quantity which is determined from the con-

trolling damage variables obtained from nonlinear analysis. Definition of the LT deserves special

attention. There are two possibilities, i.e. either the thorough crack pre-exists or the section is

initially partially cracked. In the former case, the length of LT is deterministic as it can be accu-

rately quantified. In the later, it is estimated based on Fig. 10.3 and accounting for the fact that

a crack will always propagate such that there is minimum energy dissipation. In those cases where

the crack abruptly changes its path, then Eq. 10.4 would lead to conservative results.

The case of a thorough crack across the concrete dam deserves special attention. Whereas at

first one may conclude that a thorough crack (upstream-downstream) is indeed synonymous with

failure, this is not necessarily the case. Indeed a thorough crack where the upper segment did not

overturn is indicative of severe damage but not failure. Conceptually, this is akin of a dam resting on

concrete foundation with a contact surface providing shear resistance through friction exclusively.

For example, the 109 m high Sefid-rud concrete buttress dam suffered thorough crack during the

devastating 1990 Manjil earthquake, and the dam was subsequently repaired and strengthened using
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epoxy grouting and post-tensioned anchors (Ghaemmaghami and Ghaemian, 2009). Examples of

seismic analysis of a dam with concrete thorough crack include (Ghaemmaghami and Ghaemian,

2008; Malla and Wieland, 1999). In both cases analysis starts with a fully developed crack from

upstream to downstream. Accordingly, a dam may have a thorough crack (L
C

LT = 1), yet there is no

(or minimal) sliding, umax, compared to what may be perceived as an unacceptable one uult, which

is selected based on the location of the index point and the type of the predicted failure. This is

addressed through the coefficient βΔ,

βΔ =

⎧⎪⎨⎪⎩
Γ |DR| < DRlimit

1.00 |DR| ≥ DRlimit

(10.5)

where 0.9 < Γ < 1.0 is the reduction factor, and the drift ratio (DR) is simply defined as

DR =
umax

Hdam
× 100% (10.6)

In reinforced concrete frames, the limit drift ratio is usually around 5% (ASCE/SEI 7, 2010).

Based on the authors experience it is estimated that for gravity dam this ratio should not exceed

� 0.1% (DR of 0.188% and 0.088% have been reported by Ellingwood and Tekie (2001) and Zhong

et al. (2011) respectively). It is determined by simply substracting the linear response from the

nonlinear one under near-collapse intensity earthquake.

Next, this DI is expanded based on the dissipated energy at the system during the damage

process. The dissipated energy due to inelastic action and damage, EH , can be evaluated (Uang

and Bertero, 1990):

EH = EI − EK − ED − EE (10.7)

where EI is the energy imparted to the system by the dynamic motion of the ground, EK the

stored kinetic energy, ED the energy dissipated by damping, and EE elastic strain energy. Those
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are given by

EI =

∫
UT

t ·M · dUg +

∫
S ·P · dU+

∫
fText · dU (10.8)

EK =
1

2
U̇T

t ·M · U̇t (10.9)

ED =

∫
U̇T

t ·C · dU (10.10)

EE =
1

2
UT

t ·Ke ·Ut (10.11)

where M, Ke and C are mass, elastic stiffness and damping matrices of the structure, respectively.

P and U are the vectors of hydraulic pressure and displacement. The subscripts t and g refer to

total and ground displacements, respectively. S is the coupling matrix of fluid-structure. fext is

vector of body forces.

The ratio of dissipated energy along a crack path with respect to total dissipated energy is:

ζji =
(EH)i
EH

(10.12)

where (EH)i is the dissipated energy along the discrete joint elements (if discrete cohesive cracks

are used) or inside surrounding solid elements (if a smeared crack model is adopted).

The previously defined micro DI and the dissipated energy can then be combined to define a

meta DI, corresponding to each critical location in Figure 10.3

DI
j
=

n∑
i=1

DIji × ζji (10.13)

where n is the total number of cracks.

Finally, one can define a macro DI for the entire dam or the dam-foundation coupled system

as:

DI =

D∑
j=A

DI
j

(10.14)

where m is the identifier of critical locations. The coupled system can be divided into four main

locations as shown in Figure 10.3 (for instance the dam would correspond to m = A,B,C, while

the foundation to m = D).
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Usually concrete dams are designed with relatively high safety factor against seismic excita-

tion; hence their performance is expected to be in the serviceability range. The performance of a

concrete gravity dam under the earthquake excitation can be categorized as one of six possibilities

(as shown also in Figure 10.5):

0 1DI DI

max limit
t tDR DR max limit

b bDR DR

max limit
t tDR DR

Type (I) Type (II) Type (III)

Type (IV) Type (V) Type (VI)

DI

1.00DI 1.00DI 1.00DI

max limit
b bDR DR max limitDR DR

Index point at 
the top (T)

Index point at 
the bottom (B)

max max max
t T Ou u u

Reference point (O)

max max max
b B Ou u u

max limitDR DR

Figure 10.5: Different cracking scenarios for gravity dams under earthquake excitation

Type (I): There is no thorough crack between the upstream and downstream faces. In this case

the micro, meta and macro DIs are computed from Eqs. 10.4, 10.13 and 10.14.

Type (II): There is one thorough crack at the critical locations A or B (Figure 10.3) but the

upper segment does not overturn. Maximum displacement of the index point (shown as a

circle) is less than the ultimate displacement (or |DR| < DRlimit). DI will be assigned a

value of Γ, and the dam will be considered to be damaged but not failed.

Type (III): There is one thorough crack at the critical locations C or D but the dam body has



261

no or limited displacement. Maximum displacement of the index point is less than the

ultimate displacement. Here, DI= Γ. The dam is considered to be severely damaged but

not failed. Damage type (III) is worse than type (II), as it may lead to larger flood in

downstream should there be full failure.

Type (IV): There is one thorough crack at critical locations A or B and the upper segment slides

or overturns freely with respect to the lower stable part. Maximum displacement of the

index point is excessive and so the instability coefficient is set to unit. Under this scenario

DI = 1.00. The dam is assumed to have failed (reach to limit).

Type (V): There is one thorough crack at critical locations C or D and the dam body slides

excessively. Maximum drift or rotation of the index point is excessive and hence DI= 1.00.

The dam is assumed to have failed (reach to limit).

Type (VI): There is more than one thorough crack and the cracked segments slide and overturn

with respect to each other. Maximum drift or rotation of the index point are excessive.

DI= 1.00 with catastrophic failure.

In summary, performance of a gravity dam can be quantitatively evaluated using those pro-

posed micro, meta and macro damage indices prior to full damage. Finally, damage severity and

judgment on failure can be assessed from the location of cracking and magnitude of the cracked

segment movement. It should be noted that the proposed DI is independent of the seismic analysis

model for crack propagation. The effects of hydrodynamic pressure, pore water pressure and ...

are implicitly taken into account and the dam stability during seismic analysis is controlled by Fig.

10.5. However, post-seismic stability of dam (in terms of stable or unstable crack) is not the subject

of this paper.

10.4.2 Proposed Progressive Failure Assessment Methodology

As stated in Section 10.2.2, the ETA subjects the dam to multiple equivalent acceleration

functions through the minimal number of analysis (Hariri-Ardebili et al., 2014b). Hence, this
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section will propose a methodology which combines ETA with the DI previously defined. The

ETAF generation methodology is succinctly described in Fig. 10.6 and the six steps proposed

methodology for progressive failure assessment in Fig. 10.7.
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Generation of a stationary random acceleration function, Z (t)

Filtering the frequency content of acceleration functions, Z(t), in order to
resemble real ground motions using the Fourier Transformation and

Clough and Penzin low- and high-pass filter functions:
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Modifying the frequency content of the filtered acceleration functions, A(iω), so
as to make the resulting response spectrum compatible with target spectrum.

Several cycles of stepwise modification are needed:

Adjusting acceleration functions by applying a linear profile function, l(t)=t/teq,
that make resulting accelerations intensify at various time intervals

Modifying ETAFs by applying a linear profile function to both acceleration and
displacement response spectra:

Unconstrained optimization technique in the time domain is used to satisfy the
above equations, as follows:

where ag is ETAF being sought, χₒ is weight parameter, tmax and Tmax are
maximum time and period in optimization process, respectively, and subscript c

refers to the target spectrum.
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Figure 10.6: Algorithm for ETAF generation

• Step 1: Generate a set of artificial acceleration functions with increased intensities where

the peak increases linearly with time. At any given time, we have

Saj (T ) �
tj
ti
Sai(T ) (10.15)
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Finite element model of the coupled system
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Figure 10.7: Proposed methodology for progressive failure assessment of concrete gravity dams

• Step 2: Prepare the finite element model for a nonlinear analysis. At a minimum, the

model should account for fluid-structure interaction (Zangar, 1953), rock-structure interac-

tion (Saouma et al., 2011), material nonlinearities in concrete (Lee and Fenves, 1998), and
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joint models (Cervenka et al., 1998). In addition, it may be desirable to account for both

rock nonlinearity and fluid-fracture interaction (Slowik and Saouma, 2000b).

• Step 3: Perform the nonlinear transient analysis until failure. From the analysis, extract

index point displacements, dissipated energies (Eq. 10.7), and crack profiles.

• Step 4: Plot the maximum drift ratios at index points in terms of time from

Ω (DR(t)) = max {Abs (DR(τ) : τ ∈ [0, t])} (10.16)

and the corresponding DI from Eq. 10.3. tfailure occurs when the drift ratio has exceeded

the ultimate one, and thus the corresponding damage index is one.

• Step 5: So far, the damage index has been expressed solely in terms of time. Yet, within

a context of PBEE, it may be desirable to express the DI in terms of more “palpable”

engineering quantities generically referred to as intensity measures (IM). The following

IM’s are related to transient results through the following equation

Ψ (IM(t)) = max {IM(τ) : τ ∈ [0, t]} (10.17)

where the IM are defined as follows

IM(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Peak zero-period acceleration PZA(t) = max
( | a(t) | )

Peak zero-period velocity PZV (t) = max
( | v(t) | )

Peak zero-period displacement PZD(t) = max
( | u(t) | )

Arias intensity IA(t) = π
2g

∫ ttot
0 a2

(
t
)
dt

Cumulative absolute velocity CAV (t) =
∫ ttot
0 |a(t)|dt

First mode spectral acceleration Sa(T1, ξ, t)

(10.18)

where a
(
t
)
, v
(
t
)
, u
(
t
)
are acceleration, velocity and displacement time histories, respec-

tively. ttot total duration of ground motion, T1 fundamental period of the system, and ξ

the critical damping ratio.
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• Step 6: In the final step, we first combine the results of steps 4 and 5 to generate a curve

of the damage index in terms of the selected intensity measure parameter. Incidentally, one

could generate a plot of the damage index in terms of two or more IM. Then, for final qual-

itative assessment and decision making it is desirable to identify a damage state. Following

a similar approach to the one espoused by the reinforced concrete seismic design commu-

nity (Ang, 1988) the damage states shown in Table 10.2 are proposed. The quantitative

numbers are based on the expert opinions of the authors who have extensive experience in

testing and analysis.

Table 10.2: Definition of the proposed damage states for gravity dams

Symbol Damage State Damage index range

DS1 Intact DI = 0.00

DS2 Slight 0.00 < DI ≤ 0.10

DS3 Moderate 0.10 < DI ≤ 0.30

DS4 Severe 0.30 < DI ≤ 0.60

DS5 Near collapse 0.60 < DI ≤ 0.99

DS6 Collapse DI = 1.00

10.5 Application to a Gravity Dam

10.5.1 Dam description

As a vehicle for the proposed method, Koyna dam (Figure 10.8(a)) is selected. Completed

in 1963, made of rubble concrete, this gravity dam is 853 m long and 103 m high, its thickness

at the base and the crest are the 70.2 m and 12.1 m, respectively for the central non-overflow

monoliths. The dam has 56 monoliths 15.24 m wide on average. While it is customary to model

gravity dams as 2D plane structures, for the sake of this investigation a 3D model (Figure 10.8(b))

of the non-overflow section is adopted and results are compared with the middle section of block

2D.

Table 10.3 summarizes the mechanical properties of concrete and rock. It should be noted that

the dynamic properties of mass concrete are different from the static ones due to rate dependence
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(b) 2D finite element model

Figure 10.8: Koyna concrete gravity dam

of mechanical and strength properties of material (USACE, 2007). Loading consists of gravity,

hydrostatic pressure and seismic excitation. Newmark-β method is adopted (contrarily to the

Hilber-Hughes-α method there is no numerical damping likely to affect the energy computation)

for the time integration, where the Mb=7.0 1967 recorded Koyna earthquake is considered. PGA

of the horizontal and vertical components are 0.47 g and 0.31 g, respectively. Furthermore, a set

of three ETAFs (Hariri-Ardebili and Mirzabozorg, 2014) is adopted to consider response of the

coupled system under low to high dynamic loading.

In the nonlinear analyses, plastic damage model originally developed by Fenves and Lee (Lee

and Fenves, 1998) is adopted for concrete, and the Drucker-Prager elasto-plastic model (Drucker and

Prager, 1952) is adopted for crack simulation in the foundation rock. This criterion is extensively

used for intact rocks and its application in the nonlinear foundation analysis of gravity dams was

investigated (?Chen et al., 2008; Wang et al., 2013a; Hariri-Ardebili, 2014). Fluid-structure dynamic

interaction is modeled based on the Eulerian-Lagrangian approach and the staggered solution is

used to solve the coupled equations of motion at each load step of the transient analysis. Massed

foundation model is used for rock medium while the infinite elements are implemented on the

foundation exterior surface to prevent wave reflection at the artificial boundaries. The application
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and accuracy of the used fluid-structure and rock-structure interaction models has been studied

before (Hariri-Ardebili and Mirzabozorg, 2013).

Analysis was performed with the ABAQUS finite element software (ABAQUS, 2007) and

displacement was adopted as a convergence criterion. The detached segment at the failure time is

capable of overturning. Thus, the convergence criterion is not necessarily achieved for the port-

failure crack analysis. Finite element model of the dam was compared with small scale shaking

table test performed by the US Army Corps of Engineers (Wilcoski et al., 2001). In both small scale

testing and numerical models, the crack initiates downstream on the sharp corner and propagates

diagonally down more or less orthogonally to the average downstream slope. This primary crack

is essentially horizontal (thus again orthogonal to) the upstream face. Following propagation of

the primary crack, secondary cracks propagated and the concrete spalls at different location of the

downstream and upstream faces.

Table 10.3: Mechanical properties of mass concrete and foundation rock

Characteristics Symbol Static value Dynamic value

Modulus of elasticity (concrete) Ec (GPA) 31.03 35.68
Mass density (concrete) ρc (kg/m

3) 2,643 2,643
Poisson’s ratio (concrete) νc 0.20 0.14
Tensile strength (concrete) ft (MPa) 2.4 3.6
Compressive strength (concrete) fc (MPa) 24.0 36.0
Fracture energy (concrete) Gf (N/m) - 200

Modulus of elasticity (rock) Er (GPA) 16.86 16.86
Mass density (rock) ρr (kg/m3) 2,700 2,700
Poisson’s ratio (rock) νr 0.18 0.18
Cohesion (rock) c (MPa) 0.6 0.6
Angle of fraction (rock) φ (deg.) 41 41

10.5.2 Results and Discussion

The damage response of a gravity dam is first investigated through scaled real ground motion.

Different discrete damage indices are computed and the seismic intensity level’s impact on DI are

investigated. Then, an endurance time analysis will be performed. Two finite element models are

considered:
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• Model (1): where both concrete and rock are assumed to be linear elastic. This model is

needed for reference.

• Model (2): where both concrete and rock are assumed nonlinear. The former is modeled

with the damage plastic approach, and the later using a simple Drucker-Prager elasto-

plastic model.

10.5.2.1 Scaled Time History Analysis

A static analysis including gravity and hydrostatic is first performed, and then through a

restart the dynamic analysis is performed with modified properties. The dam-reservoir-foundation

system is excited by a combination of the horizontal and vertical components. Time history of crest

displacements along stream direction is shown in Figure 10.9. The responses of the nonlinear models

prior to crack initiation at t = 2.62 s coincide with those obtained from the linear elastic analysis

suggesting that both the tensile and compressive stresses of the concrete and rock were below their

elastic limits. Cracking leads to the discontinuity of the curves among each other. Nonlinear model

fails at t = 3.98 s with the failure type (IV) because there is one thorough crack at the neck area

(Figure 10.10) and the upper cracked segment overturns freely because the displacement of the

index point (which is crest point in this case) approaches to very high values (Figure 10.9).
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Figure 10.9: Dam response under scaled ground motion

Figure 10.10 illustrates the crack propagation for nonlinear analysis. As expected, cracks

initiate at the point of slope discontinuity on the downstream face and extends across the width
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Figure 10.10: Crack propagation within the dam-foundation system under scaled ground motion

of the neck. Subsequently an upstream crack initiates at the neck and propagates horizontally to

eventually coalesce with the downstream one. Cracks also nucleate at the dam-foundation interface

and propagate from heel to toe. The final cracked length of the base is longer in nonlinear rock

model than in the linear one. Also assuming the elasto-plastic model for the rock leads to cracking of

the foundation near both the heel and the toe of the dam. Cracks propagate diagonally downward

and eventually become vertical. This is consistent with laboratory observations (Slowik et al.,

1998). The micro damage indices for the two critical locations at the end of failure are computed

as: DIA1 = 1.00 and DIC2 = 0.55.

Considering that there is at least one thorough crack in the dam and the cracked segment

overturns, the dam is considered to have failed. There is no need to compute the meta and macro

damage indices because they are assumed to be unity under this condition. Since the dam has

failed from the neck, flood damage should be separately assessed.

The analyses are repeated for lower seismic intensities by scaling the ground excitation by

a scalar scale factor, SF. The scaled ground motions are then applied to the coupled system and

the corresponding damage indices are computed as reported in Table 10.4. Except for the case

with SF=1.0, none of the models failed. Applying the ground motion with SF=0.7, reduce the

macro damage index to about 37%. The model remains fully in the elastic range when the ground

motion is applied with the scale factor of SF=0.3. Finally, the dam experiences a small damage

index under the ground motion with SF=0.5. Based on the numerical analyses and engineering

judgment, the onset of the nonlinear behavior can be assumed to occur at an intensity equal to
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40% of the original motion.

Table 10.4: Impact of seismic intensity level on the damage index

SF DI DI DI DS

1.0 DIA1 = 1.00, DIC2 = 0.55 DI = 1.00 DI = 1.00 Collapse

0.7 DIA1 = 0.68, DIC2 = 0.26 DI
A
= 0.17, DI

C
= 0.20 DI = 0.37 Severe

0.5 DIA1 = 0.14, DIC2 = 0.06 DI
A
= 0.04, DI

C
= 0.05 DI = 0.08 Slight

0.3 DI = 0.00 DI = 0.00 DI = 0.00 Intact

10.5.2.2 Endurance Time Analysis

Next, results of the three (e = 3) endurance time analyses (section 10.4.2) are presented.

First, index point displacements vs time are shown for both linear and nonlinear analyses, Fig.

10.11(a)-10.11(b). Identical responses are obtained between those two models up to t = 2.5 s,

t = 1.7 s, and t = 2.2 s for ETAF-1, ETAF-2, and ETAF-3, respectively. On the other hand, all

three nonlinear models reached its acceptable capacity (as defined above) at nearly the same time,

tfailure � 4.0 s. It should be noted that numerically, this may not necessarily correspond to failure

(typically a result of numerical instability). In all cases, limit acceptable capacities were caused by

excessive crest drift ratios Ω(DR(t)) exceeds DRlimit. In this example, DRlimit was taken as 0.1%,

Fig. 10.11(c).

Figure 10.12 illustrates the crack propagation for each of the three ETAFs. In all cases, limits

(as previously defined in Section 10.4.1) were triggered by first thorough crack. Again, these limits

were arbitrarily set to define what is acceptable, they may result in localized but not necessarily in

overall dam failure. Actual dam failure may subsequently occur should there be aftershocks (failure

type VI).

Figure 10.13 illustrates time history of the micro and macro damage indices as a result

of increased ETAF. From Figure 10.13(a) and 10.13(b) it is clear that nonlinearity (caused by

racking) starts around t = 2 s, that the micro DI at the neck first reaches the limit value, while the

corresponding one at the base is around 0.33. Also corresponding to a micro DI of 0.5 at the neck,
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Figure 10.11: Dam response under ETAF

there is a sharp discontinuity in the response caused by an increased compliance due to cracking.

Finally, Fig. 10.13(c) illustrates the evolution of the macro DI (defined by Eq. 10.13 and 10.14).

A Macro DI of 0.53 corresponds to the neck failure at t = 4 − ε s. Then at t = 4 s the ultimate

limit load is reached, and there is a corresponding sudden increase of the macro DI to 1.0.

Furthermore, and with reference to Fig. 10.7 one can convert the time to selected intensity

measure parameters (step 5) and then plot the damage index in terms of them (step 6). This

conversion and plot for the current analysis (for the neck area) is shown in Fig. 10.14. For

clarity, the damage index values are projected into two planes corresponding to intensity measure

parameters. The dam reaches its ultimate damage index values for a PZA ∼ 0.26 g and Sa(T1)

∼ 0.68 g. Finally, it should be emphasized that given a different ground motion, one could use

the average of these curves to estimate the damage index without the need to perform another

structural analysis.
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Figure 10.12: Progressive failure analysis of Koyna dam under the intensifying acceleration func-
tions

10.6 Conclusions

This paper proposed a metric to assess the damage in concrete gravity dams. The assessment

starts by qualitatively identifying the possible failure modes, and then proposes a multi-variable

cumulative damage index. The proposed damage index being multi-scale, starts with micro damage

to ultimately result in a single macro parameter.

A six steps methodology to perform such a study within the context of endurance time

analysis for progressive failure assessment of the dam is proposed.
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Figure 10.13: Time history of the computed damage indices
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Figure 10.14: Variation of the micro damage index at neck with respect to PZA and Sa(T1)

A case study is presented, and plots of damage index versus intensity measures are produced.

Finally, it should be pointed out that the proposed methodology fits squarely within the

paradigm of performance based earthquake engineering.



Chapter 11

Conclusions and Future Research Needs

11.1 Summary and Conclusions

The overarching objective of this study was to quantitatively safety assessment of concrete

dams using the elements provided by performance-based earthquake engineering (PBEE) and po-

tential failure mode analysis (PFMA). This is a thesis in the field of earthquake engineering heavily

borrowing the concepts of structural mechanics for nonlinear transient analysis of coupled dam-

reservoir-foundation system. This research addressed many important issues as summarized in the

following list:

• Proposing the concept of capacity function for concrete dams and a comprehensive review

on all the mechanics-, hydrologic- and seismic-based approaches to derive this function

(Chapter 3).

• Develop a Matlab-based computational tool for probabilistic performance assessment of

concrete dams (Chapter 4).

• A detailed nonlinear transient analysis of concrete gravity dams (Chapter 5).

• Develop an extended and quantitative version of PFMA for concrete dams (Chapter 6).

• Perform the sensitivity analysis on dam-foundation system, quantify the material (epis-

temic) uncertainties, determine tornado diagram, capacity and fragility curves (Chapter

7).
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• Develop a probabilistic seismic demand model for concrete dams considering the global

failure (Chapter 8).

• Propose an optimal intensity measure parameter for concrete dams (Chapter 8).

• Determine the collapse fragility curves of concrete dams though multiple-record incremental

dynamic analysis (Chapter 9).

• Perform different structural analysis techniques on concrete dams. In particular: cloud

analysis, multiple strip analysis, incremental dynamic analysis, and endurance time analysis

(Chapters 6, 8, 9 and 10).

• Propose a multi-scale damage index for gravity dams as a function of crest displacement,

crack ratio, and dissipated energy (Chapter 10).

• Propose a computationally simple but effective methodology for progressive failure analysis

of dams (Chapter 10).

Following is the detailed conclusions for each chapter:

Chapter 3 proposed the concept of capacity functions for concrete dams and tried to presents

a simple mathematical model for it. Capacity function was defined as a relationship between the

response and stressors (in terms of an external one such as hydraulic or seismic or an internal

one such as alkali silica reaction). Then, all the existing numerical methods for progressive failure

analysis of concrete dams were reviewed and revisited. Whenever it was possible, the differences

of these method, their advantageous and disadvantageous were presented. Finally, a combined and

extended capacity functions were explained for concrete dams.

Chapter 4 presented the computational tools developed and used during this research for

probabilistic performance assessment of concrete dams (PPACD). This includes a group of Matlab-

based scripts and functions which were used also Merlin finite element code for processing the

models. The interaction of all these scripts and their application in PBEE were explained.
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Chapter 6 compared different potential failure modes for all three types of concrete dams, i.e.

gravity, arch, and buttress. First, the qualitative approach was reviewed and then the extended

quantitative version proposed for both the linear and nonlinear systems. For the linear analyses,

different indices introduced and their limit states quantified.

Multiple strip analysis method used for assessment of a case study arch dam. A large set

of simulated engineering demand parameters generated for the dam and the optimal scalar and

vectorized intensity measure parameter quantified. Finally, the results of linear and nonlinear

system correlated.

Chapter 7 quantified the sensitivity and uncertainty in dam-foundation system. First, the

theory of an advanced fracture mechanics based zero-thickness interface joint element studied.

Then, it was applied for analysis of three problems: mode I and II fracture mechanics of idealized

blocks subjected to displacement control pushover analysis, and mixed-mode fracture analysis of a

real gravity dam-foundation system. For each case, the most sensitive random variables (RV) deter-

mined and the associated tornado diagram plotted. Monte Carlo simulation with Latin Hypercube

Sampling used for uncertainty quantification of the sensitive RVs. The impact of correlation among

the RVs studied also. Finally, the capacity curves plotted for each case and the associated fragility

curve derived. It was found that using the correlated RVs than to un-correlated ones for Mode I

and mixed-mode fracture is in priority, while its effect is negligible in Mode II.

Chapter 8 proposed a probabilistic seismic demand model for gravity dams. First, all the

existing intensity measure parameters for structural systems summarized in seven categories and a

new one proposed for dams. Then, a cloud-based probabilistic seismic demand analysis performed

using 100 un-scaled ground motions. Using these ground motions, an appropriate distributional

model proposed for each intensity measure. The most optimal intensity measure parameter deter-

mined considering the parameters such as sufficiency, efficiency, proficiency, practicality, and hazard

compatibility. Finally, the fragility curves derived for the dam and the impact of different intensity

measure and engineering demand parameters investigated.
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Chapter 9 presented collapse fragility curves for gravity dams. First, different methods for

fitting a lognormal cumulative distribution function to the empirical data points reviewed. Transient

analyses were performed based on incremental dynamic analysis (IDA) methodology. The Anatomy

of a single-record IDA was studied in detail and contrasted with framed structures. The optimal

intensity measure parameter selected based on the minimum dispersion of multiple-record IDA

curves. Finally, the collapse fragility curves derived for the dam.

The importance of the ground motion vertical component on the IDA curves and the resulted

collapse fragility curves investigated. It was found that vertical component decreases the IM capac-

ity of IDA curves. In addition, in most of the IM parameters, incorporating the vertical component

leads to equal or higher dispersion than horizontal component only.

Dispersion due to material uncertainty was added to the record-to-record variability and the

extended collapse fragility curves plotted. It was found that considering the epistemic uncertainty

increases total dispersion of the fragility curves.

Moreover, the impact of reservoir water level was studied on probability of collapse. It was

found that emptying the reservoir decreases the probability of collapse.

Chapter 10 proposed a multi-scale damage index (DI) for gravity dams. The new DI is based

on maximum crest displacement, energy dissipation in system and the ratio of the cracked segments.

Then, a computationally simple but effective method proposed for systematic progressive failure

assessment of gravity dams based on endurance time analysis. This method provides continuous

performance of the dam in terms of DI and the desired intensity measure parameter.

11.2 Future Research Needs

Following is the summary of future research need based on the findings of this thesis:

• This thesis only investigates the major potential failure modes of concrete dams; however,

for practical purposes, all the failure modes should be considered simultaneously. The

impact of correlation among the failure modes should be considered. Safety assessment can
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be performed for component-level and system-level separately.

• Performance base assessment of concrete dam-reservoir-foundation system is computation-

ally expensive. Especially for three-dimensional finite element models it is practically im-

possible to perform nonlinear transient analyses in conjunction with Latin Hypercube sam-

pling. To solve this problem, it is recommended to develop a mathematical equivalent model

for the dam-reservoir-foundation system (a multi-degree-of-freedom system) to estimate the

collapse response of the dam.

• In this thesis, the material uncertainty is quantified using an innovative method through

the endurance time analysis technique. It is recommended to compare this method with

the extended incremental dynamic analysis.

• Application, advantageous and disadvantageous of different uncertainty quantification tech-

niques, e.g. first-order second moment (FOSM) compared to Monte Calro simulation. In

addition, reliability analysis can be performed for parametric models of concrete dams and

the reliability index can be derived for different failure modes.

• The probabilistic seismic demand model proposed in this thesis was a two-dimensional

model and consequently the scalar optimal intensity measure parameter was introduced.

This can be extended for vectorized intensity measure parameters (linear or quadratic).

• Application of synthetic ground motions which are specifically generated to be used within

the context of the PBEE should be compared with respect to real ground motions.

• The IDA-based fragility curves studied in this thesis were collapse fragility curves; however,

to be used within the context of PBEE, the conditional probability of a specific damage

state should be presented with respect to engineering demand parameters.

• Loss analysis in terms of loss of money, loss of life and downtime should be performed for

concrete dams. This requires a comprehensive research on loss models for dams. Not only
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the main dam body but also the spillways, powerhouse and all other equipments should be

considered.
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Mechanics of Concrete Structures, pages 299–304. Elsevier.

Carol, I., Prat, P., and Lopez, C. (1997). Normal/shear cracking model: Application to discrete
crack analysis. ASCE Journal of Engineering Mechanics, 123(8).

Casarotti, C. and Pinho, R. (2007). An adaptive capacity spectrum method for assessment of
bridges subjected to earthquake action. Bulletin of Earthquake Engineering, 5:377–390.

CDA (2007). Dam safety guidelines. Technical report, Canadian Dam Association, Edmonton,
Alberta, Canada.



284

Celarec, D. and Dolsek, M. (2013). The impact of modelling uncertainties on the seismic perfor-
mance assessment of reinforced concrete frame buildings. Engineering Structures, 52:340–354.

Celik, O. and Ellingwood, B. (2010). Seismic fragilities for non-ductile reinforced concrete framesrole
of aleatoric and epistemic uncertainties. Structural Safety, 32:1–12.

Cervenka, J., Chandra, J., and Saouma, V. (1998). Mixed mode fracture of cementitious bimaterial
interfaces; part ii: Numerical simulation. Engineering Fracture Mechanics, 60(1):95–107.

Cervenka, J. and Papanikolaou, V. (2008). Three dimensional combined fracture-plastic material
model for concrete. International Journal of Plasticity, 24(12):2192–2220.

Chandler, A. and Lam, N. (2001). Performance-based design in earthquake engineering: A multi-
disciplinary review. Engineering Structures, 23:1525–1543.

Chen, S., Qiang, S., Shahrour, I., and Egger, P. (2008). Composite element analysis of gravity dam
on a complicated rock foundation. International Journal of Geomechanics, 8:275–284.

Chen W.F. (1982). Plasticity in reinforced concrete. McGraw-Hill Book Company, New York.

Cheung, P., Pauley, T., and Park, R. (1991). New zealand tests on full-scale reinforced con-
crete beam-column-slab sub-assemblages designed for earthquake resistance. In ACI Special
Publication SP-123, Design of Beam-Column Joints for Seismic Resistance, pages 1–37, Detroit,
MI, USA.

Chopra, A. and Chakrabarti, P. (1973). The koyna earthquake and the damage to koyna dam.
Bulletin of the Seismological Society of America, 63(2):381–397.

Chopra, A. and Goel, R. (1999). Capacity-demand-diagram methods based on inelastic design
spectrum. Earthquake Spectra, 15:637–656.

Chopra, A. and Goel, R. (2002). A modal pushover analysis procedure for estimating seismic
demands for buildings. Earthquake Engineering and Structural Dynamics, 31:561–582.

Chopra, A. and Wang, J. (2010). Earthquake response of arch dams to spatially varying ground
motion. Earthquake Engineering and Structural Dynamics, 39:887–906.

Ciampoli, M., Petrini, F., and Augusti, G. (2011). Performance-based wind engineering: towards
a general procedure. Structural Safety, 33(6):367–378.

Cirak, F., Ortiz, M., and Pandolfi, A. (2005). A cohesive approach to thin-shell fracture and
fragmentation. Computer Methods in Applied Mechanics and Engineering, 194(21):2604–2618.

Clark, P., Frank, K., Krawinkler, H., and Shaw, R. (1997). Protocol for fabrication, inspection, test-
ing and documentation of beam-column connection and other experimental specimens. Technical
Report SAC/BD-97/02, SAC Joint Venture, Sacramento, CA, USA.

Clough, R. and Wilson, E. (1962). Stress analysis of a gravity dam by the finite element method.
In Proceedings of the symposium on use of computers in civil engineering, Lisbon, Portugal.

Clough, R.W. and Penzien, J. (1993). Dynamics of Structures. McGraw-Hill Inc., London, UK.



285

Cocchetti, G., Maier, G., and Shen, X. (2002). Piecewise linear models for interfaces and mixed
mode cohesive cracks. 3:279–298.

Collier, C. and Elnashai, A. (2001). A procedure for combining vertical and horizontal seismic
action effects. Journal of Earthquake Engineering, 5:521–539.

Comi, C., Fedele, R., and Perego, U. (2009). A chemo-thermo-damage model for the analysis of
concrete dams affected by alkali-silica reaction. Mechanics of Materials, 41:210–230.

Conover, W.J. (1980). Practical nonparametric statistics, 2nd ed. Wiley, New York.

Cordova, P., Mehanny, S., Deierlein, G., and Cornell, C. (2001). Development of a two-parameter
seismic intensity measure and probabilistic assessment procedure. In Proceedings of the 2nd
US-Japan workshop on performance-based earthquake engineering methodology for RC building
structures, pages 187–206, Japan.

Cornell, A. and Jalayer, F. (2002). Factored nonlinear displacement demand estimation methods
for probability-based safety assessment. In Annual Meeting Research Digest No. 2002-7, A
publication of the Pacific Earthquake Engineering Research Center.

Cornell, A., Jalayer, F., and Hamburger, R. (2002). Probabilistic basis for 2000 sac federal emer-
gency management agency steel moment frame guidelines. Journal of Structural Engineering,
128:526–532.

Cornell, C. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of
America, 58:1583–1606.

Cornell, C. and Krawinkler, H. (2000). Progress and challenges in seismic performance assessment.
http://peer.berkeley.edu/news/2000spring/index.html.

Cosenza, E. and Manfredi, G. (1997). The improvement of the seismic-resistant design for existing
and new structures using damage criteria. In Fajfar, P. and Krawinkler, H., editors, Seismic
design methodologies for the next generation of codes, pages 119–130, Roterdam. Balkema.

Cosenza, E. and Manfredi, G. (2000). Damage indices and damage measures. Progress in Structural
Engineering and Materials, 2:50–59.

Council, A. T. (1992). Guidelines for cyclic seismic testing of components for steel structures.
Technical report, Applied Technology Council, Redwood City, CA, USA.

Council, B. S. S. (2003). Nehrp recommended provisions for seismic regulations for new build-
ings and other structures, part1: Provisions, fema 368. Technical report, Federal Emergency
Management Agency, Washington, DC.

Czarnecki, R. (1973). Earthquake damage to tall buildings, Optimum Seismic Protection and
Building Damage Statistics, Report No. 5. PhD thesis, Massachusetts Institute of Technology,
Cambridge, Departement of Civil Engineering.

Dahlblom, O. and Ottosen, N. S. (1990). Smeared crack analysis using a generalized fictitious crack
model. Journal of Engineering Mechanics, 116(1):55–76.

DAmbrisi, A. and Mezzi, M. (2014). An energy-based approach for nonlinear static analysis of
structures. Bulletin of Earthquake Engineering.



286

Dashti, S., Bray, J., Pestana, J., Riemer, M., and Wilson, D. (2009). Centrifuge testing to evaluate
and mitigate liquefaction-induced building settlement mechanisms. Journal of geotechnical and
geoenvironmental engineering, 136:918–929.

de Arajo, J. and Awruch, A. (1998). Cracking safety evaluation on gravity concrete dams during
the construction phase. Computers and Structures, 66:93–104.

Deaggregation, U. (2003). Psha interactive deaggregation tool, u.s. geological survey.

deArajo, J. and Awruch, A. (1998). Probabilistic finite element analysis of concrete gravity dams.
Advances in Engineering Software, 29:97–104.

del Consiglio dei Ministri, P. (2001). Guidelines for seismic safety reassessment of existing dams in
italy. Technical report, Dipartimento per I Servizi Tecnici Nazionali, Italy.

Der-Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? does it matter? Structural
Safety, 31:105–112.

Dewals, B., Erpicum, S., Detrembleur, S., Archambeau, P., and Pirotton, M. (2011). Failure of
dams arranged in series or in complex. Natural Hazards, 56:917–939.

Dipasquale, E. and Cakmak, A. (1988). Identification of the serviceability limit state and detec-
tion of seismic structural damage, report nceer-88-0022. Technical report, National Center for
Earthquake Engineering Research, State University of New York, Buffalo NY.

Dipasquale, E. and Cakmak, A. (1989). On the relation between local and global damage indices,
technical report nceer-89-0034. Technical report, National Center for Earthquake Engineering
Research, State University of New York, Buffalo NY.

Dolsek, M. (2009). Incremental dynamic analysis with consideration of modeling uncertainties.
Earthquake Engineering and Structural Dynamics, 38:805–825.

Dolsek, M. (2011). Estimation of seismic response parameters through extended incremental dy-
namic analysis. In Papadrakakis, M., Fragiadakis, M., and Lagaros, N. D., editors, Computational
Methods in Earthquake Engineering, volume 21 of Computational Methods in Applied Sciences,
pages 285–304. Springer Netherlands.
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