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ABSTRACT 

This dissertation studies the impact of microstructure on macro-scale fracture parameters. 

Experimental and theoretical investigations of fracture toughness are carried out on a 

representative particulate composite material and reconciled by explicitly considering 

inclusions within the matrix. The reliability of any structure is a function of its resistance 

to fracture. Cracks resulting from stress concentrations are the major sources of fracture 

whether the material is classified as ductile, brittle, or quasi-brittle. The spatial distribution 

of inclusions in particulate composite materials, such as concrete and other heterogeneous 

materials, plays an important role in determining material fracture behavior due to the 

localized stress generated by the inclusion arrangement when cracks open. By 

controlling the spatial statistics of the inclusion microstructure in the matrix of a composite 

material, it is possible to control the amount or direction of crack development and may be 

possible to improve the material’s reliability. As steps towards this goal this dissertation 

investigates the discrepancy between the micro-scratch and macro-scale three-point 

bending test methods due to the presence of matrix inclusions, applies the theoretical 

equations for fracture toughness which consider inclusions in the case of micro-particles 

in cement, and investigates how spatial statistic descriptions may be used to capture the 

impact of inclusions in a simple closed-form approach. The results of this work allow us 

to move towards a forward design method to design particulate composite micro-structures 

for improved resilience to local damage without fracturing.    
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1.1 FRACTURE TOUGHNESS OF COMPOSITE MATERIALS  

As civil engineers, our major concern is the building of functional environments (i.e., buildings 

and infrastructure) which survive during and after any disruptive events [1]. To engineer such 

environments efficiently we must take a closer look at the materials we use [2]. Concrete, ceramic, 

and other quasi-brittle materials contain pre-existing cracks and complex material structure on 

various internal length-scales [3]. This is because the material is not homogeneous; concrete 

consists of aggregate “particles”, cement paste “mortar,” and interfacial transition zone, the 

“weakest link” [4]. Cracks occur because of inconsistencies of the material types that range from 

a brittle solid to soft gel. Cracks coalesce and propagate throughout the material structure for 

variety of reasons (mechanical loading, temperature changes, etc.) and can cause deterioration of 

infrastructure [5]. Based on the Federal Highway Administration inspection [6], bridge decks are 

more exposed to cracking and deterioration than other structures due to direct exposure to the 

service environments, causing aging which has become a safety concern [7]. A methodology is 

introduced in this dissertation to relate the macrostructure deformation to micro-crack growth and 

coalescence at the microstructure scale during the failure process in heterogeneous materials. 

Design of concrete structures during 1900-1930, was based on elastic no-tension analysis. Later 

on, specifically during 1940-1970, plastic limit analysis was introduced to the concrete design 

structures. It is expected that the introduction of fracture mechanics could be incorporated into the 

design of concrete structures, but this has yet to be implemented [1]. A key challenge to 

incorporating fracture mechanics into design is the lack of a simple forward-design equation for 

the composite material microstructures found in construction. Existing numerical models cannot 
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be specified by code as a design approach, and closed-form solutions are required which link to 

standardized material tests. In the past two decades, many computational methods for fracture 

analysis have been elaborated [8-11]. The effect of increasing volume fraction of inclusions on the 

fracture resistant of composite materials was studied by many researchers [12-14]. Most 

engineering materials are heterogeneous with complex microstructure. Therefore, considering 

material microstructure is an important factor in understanding the failure process that may occur 

at different length scales [15-17].  

1.2 MOTIVATION 

The reliability of any structure is a function of its resistance to fracture. While structures may be 

designed to control the generation of damage within the material, this thesis will take a closer look 

at designing the structure of the material on the microscale to discourage damage evolution. As 

such, the focus is on incorporating the effect of interactions between the stress field caused by 

inclusions within the material matrix and the stress concentration of a characteristic crack. By 

applying Linear Elastic Fracture Mechanics (LEFM) concepts in a cracked body of arbitrary shape 

subjected to Mode I loading, a theoretical formulation will be presented where statistically grouped 

particle packing scenarios and fracture response are linked. This effect is currently missing from 

fracture formulations. Studying the effect of inclusion statistics on the fracture resistance of a 

heterogeneous material can assist us with gaining insight and understanding on how the stress 

concentration can be reduced within the material, thus reducing the initiation of cracks [18]. In 

macro-scale models of the global behavior of heterogeneous materials, homogenized properties 

may be assumed, ignoring heterogeneity by averaging material properties [19]. However, this 

homogenization doesn’t give an accurate representation in scenarios when the stress 

concentrations initiated during failure are localized within the micro-structure. The properties and 
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the micro-scale spatial distribution of different phases in such material will determine the overall 

macroscopic behavior of the heterogeneous material. To explicitly address the correct fracture 

toughness of a composite, the individual components of the material should be considered. 

Fracture and failure is typically initiated at regions with weaker material properties, such as the 

interface between the matrix and inclusions [20]. To address this, a system of individual inclusions, 

cracks, and voids needs to be considered along with a methodology that relates the macrostructure 

deformation to micro-crack growth and changes in the stress field at the microstructure scale. 

Evaluating the fracture toughness of the system by using a micro- indent or scratch test probes 

these interactions while classical fracture tests determine the fracture response with stress 

distributed over a local region of the sample [1]. In this context, Figure 1.1 illustrates a summary 

of different materials tested using standard macro- and micro- tests.  The data shows a discrepancy 

in the material’s fracture toughness when using macro and micro-scale tests. Fracture toughness is 

classically defined as a material property [21], and as such should be independent of the length 

scale it is tested on. 

 
Figure 1.1. A summary of different materials tested using macro and micro tests 
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The data shows a discrepancy in the material’s fracture toughness when using macro and micro-

scale tests. This discrepancy of up to an order of magnitude reveals that either a reformulation of 

the fracture toughness equations derived from small scale tests is required or a redesign of standard 

tests to account for micro-scale behavior is needed.  

1.3 RESEARCH VISION AND OBJECTIVES 

The focus of this research is to address and provide a methodology to answer the following open 

questions: 

1. What type of test gives us the most representative fracture parameters for a random 

composite material?  

Figure 1.2 illustrates the methodology used to answer this question. We first built a model 

system that represents a disordered composite. Standard 3-point bending and scratch tests 

were conducted for comparison. Numerical and analytical investigations of the different 

populations of inclusions were generated to investigate the microstructure effect.  

2. Can we quantify the relation between the degree of randomness and the tendency to 

propagate the cracks using spatial statistics?  

The flowchart in Figure 1.3 shows the methodology used to answer this question using 

analytical and numerical methods. 

3. How well can closed-form LEFM equations, explicitly considering inclusions, pores, and 

micro-cracks, match experimental cement fracture?  

Figure 1.4 illustrates the methodology used to compare our results to an experimental study of 

the impact of injecting micro-particles into aged cement paste for sealing purposes and to 

improve the durability and sustainability of cement paste.  
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Figure 1.2. A roadmap for developing the answer for the first open question 
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Figure 1.3. A roadmap for developing the answer for the second open question 
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Figure 1.4.A roadmap for developing the answer for the third open question 

 

1.4 DISSERTATION OUTLINE 

This thesis introduces a methodology to consider material heterogeneity in a region in front of the 

crack tip experimentally, theretically, and numerically. This dissertation represents a compilation 

of four studies that combine to evaluate and quantify the influence of: a) the impact of inclusions 

on fracture toughness experiments b) the spatial statistics of matrix inclusions c) nanoparticle 

injection on fracture resistance of composite materials.  

Chapter 2: Literature review and background of previous and relevant work to this research 

starting with the mathematical study of inhomogeneity problems which attracted Eshelby.  
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Chapter 3: Selectively studies the impact of microstructure on macro-scale fracture toughness. 

This chapter presents an experimental and theoretical investigation of the fracture toughness of a 

representative composite material consisting of glass beads embedded in epoxy using micro-

scratching and conventional three-point bending tests. This chapter has been presented and 

published in the 9th International Conference on Fracture Mechanics of Concrete and Concrete 

Structures (Al Wakeel and Hubler 2016).  

Chapter 4: Investigates the discrepancy of fracture toughness values found in the previous 

chapter, which were derived from micro-scale and macro-scale tests. This discrepancy could be 

described by considering the effect of micro-structural defects in front of the crack tip in micro-

scratch tests that have not been explicitly modeled. This chapter has been submitted as an article 

for review by the Journal of the Mechanics and Physics of Solids. 

Chapter 5: Identify guidelines for selecting particles to seal cracks in aged class G cement, based 

on their impact on the mechanical behavior of the matrix. By incorporating particles, we can 

improve the durability and sustainability of cement, but the particle content must be selected to 

avoid further cracking. This chapter will be submitted for publication in the Journal of Construction 

and Building Materials.  

Chapter 6: Argue that the degree of spatial ordering, disordering and packing of the particles will 

affect the fracture toughness of the heterogeneous material. By exploring a set of simple systems 

of different particle packing configurations, we can quantify the packing effect on the material’s 

fracture toughness. This chapter will be submitted for publication in the Journal of Construction 

and Building Materials.  

Chapter 7: Summary and conclusions of this thesis are presented in this chapter. 
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2.1 LITERATURE REVIEW  

2.1.1 FRACTURE MECHANICS FUNDAMENTALS  

Fracture toughness is used to measure the resistance to extension of a crack. Inglis [29] (1913) 

introduced the first mathematical formulations of fracture mechanics by analyzing a plate 

containing an elliptical hole under uniform tensile stress; he noticed that the apex of the major axis 

had a maximum stress occurrence where the radius of curvature was minimum [30, 31]. In 1920 

Griffith [32] applied the concept of energy conservation to a glass plate containing a central crack, 

stating that the glass was not perfect and the existence of flaws with a sharp tip in the 

microstructure would increase the stress concentration in the body. He proposed that it would be 

possible to generate a macroscopic load displacement curve as the crack length increased from a 

length a to a+Δa.  Furthermore, Orowan (1952) and Irwin (1957) [33] extended Griffith’s work to 

metals: Irwin developed the energy release rate concept, while Orowan formulated a similar 

modification to Griffith’s theory independently [1]. Irwin’s colleagues brought attention to 

Westergaard’s paper [34] (published in 1939) long after it was published and that helped them 

further the findings of Orowan and Irwin.  Westergaard was able to define a constant named stress 

intensity factor through his analysis of the stress field and displacement ahead of a crack tip using 

the semi inverse technique. The semi inverse technique is based on the energy release rate used 

later by Irwin to define the stresses and displacements in his work [30]. The stress intensity factor, 

as defined by Westergaard, has a subscript that defines the mode of the loading (𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼). There 

are three different types of failure mode: mode I (opening), mode II (sliding) and mode III 

Chapter 2 LITERATURE REVIEW 
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(tearing), as shown in Figure 2.1. The opening mode (mode I) and shearing mode (mode II) can 

be categorized as in-plane problems, while the tearing mode (mode III) is an out-of-plane problem 

[30]. A material’s failure can also be due to mixed modes [30].  

 

    Figure 2.1. Types of fracture modes [30]   

Failure can occur based on fracture theory when the applied stress exceeds the material resistance 

to fracture. Krafft, Sullivan and Boyle [31] (1962) introduced the R-curve. R-curve is one of the 

measures of fracture toughness; it is a material property and does not depend on the cracked body 

geometry. They argued that each material has a distinctive R-curve at a particular thickness under 

a given loading rate and temperature, and has nothing to do with the initial crack length and 

specimen size and shape.  

 
Figure 2.2. Schematic R-curve concept (a) brittle material behavior (b) ductile material behavior [31] 

 
 

Figure 2.2 illustrates the R-curve concept; the material resistance versus the crack growth. For a 

brittle material, Figure 2.2 (a) shows when the applied stress is 𝜎1 the crack is stable. When the 
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applied stress is increased to 𝜎2,it will result in propagation of the crack in an unstable manner. 

However, the material resistant and will remain constant. The unstable crack growth will cause the 

material to fracture. This is not the case in the ductile material Figure 2.2 (b); when the stress 

reaches 𝜎2 the crack will grow a small amount. Upon further increasing the stress to 𝜎3, the crack 

length will continue to increase in a stable manner. When the stress reaches 𝜎4, the driving force 

is the tangent of the R curve. Finally, when the rate of the change in the driving force is equal to 

the slope of the R curve, unstable crack growth will be observed in the material. The circumstance 

of stable and unstable crack growth is illustrated below:  

𝜑 = R crack growth (2.1) 

𝑑𝜑

𝑑𝑎
 ≤ 

𝑑𝑅

𝑑𝑎
    stable crack growth                                                                                                     (2.2) 

𝑑𝜑

𝑑𝑎
 > 

𝑑𝑅

𝑑𝑎
     unstable crack growth         (2.3) 

                                                                                           

2.1.2 GOVERNING EQUATIONS FOR FRACTURE TOUGHNESS 

A stationary crack is considered, where the Cartesian coordinates 𝑥 and 𝑦 are centered at the crack 

tip. It is referred to as a singular problem since the stress at the tip tends to infinity [31]. For any 

two-dimensional problem (plane strain or plane stress), the stress field near the crack tip is 

dominated by the inverse square root singularity as given by the following equation [34]. 

𝜎𝑖𝑗 = 
𝐾𝐼

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) 

(2.4) 

where 𝐾𝐼 is the stress intensity factor, 𝑟 and 𝜃 are the polar coordinates whose origins are defined 

located at the crack tip and 𝑓𝑖𝑗  is a dimensionless shape function expressing the geometric 

parameters, 𝑓𝑖𝑗 is different for different failure modes as defined in Figure 2.1. σij is the component 
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of Cauchy stress tensor, in this study, the only component of the Cauchy stress that will be 

considered is 𝜎𝑥𝑥 since the induced damage will propagate in the direction of 𝑥 = +∞, 𝑑𝑦 = 0. 

The stress field equation in the neighborhood of a crack tip for opening in mode I in an isotropic 

linear, elastic material is [30]: 

𝜎𝑥𝑥 =  
𝐾𝐼

√2𝜋𝑟
  𝑐𝑜𝑠 (

𝜃

2
) (1 − 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

3𝜃

2
)) (2.5) 

Williams [35] included a term called uniform stress in the x-direction  (𝜎0𝑥  = 4𝐶12) which is 

parallel to the crack plane. 𝐶12  is an elastic constant used in the compliance matrix [35]. The 

matrix of coefficients contains nine elastic coefficients are summarized by the matrix below [35]: 

[
 
 
 
 
 
𝐶11

𝐶12

𝐶13

0
0
0

𝐶12

𝐶22

𝐶23

0
0
0

𝐶13

𝐶23

𝐶33

0
0
0

0
0
0

𝐶44

0
0

0
0
0
0

𝐶55

0

0
0
0
0
0

𝐶66]
 
 
 
 
 

 (2.6) 

By including the uniform stress term in a body containing a single crack for mode I failure, the 

stress field expression becomes: 

𝜎𝑥𝑥 =  
𝐾𝐼

√2𝜋𝑟 
  𝑐𝑜𝑠 (

𝜃

2
) (1 − 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

3𝜃

2
)) + 𝜎0𝑥 (2.7) 

This term will not be included in the analysis as Irwin showed that this stress has no influence on 

the stress intensity factor and contributes nothing to the crack opening stress, although it may 

slightly affect the size of plastic zone [31]. Rice [36] indicated that the consideration of the 𝜎0𝑥 

term can result in an accurate estimation for the crack tip plastic zone radius for a particular 

geometry.  Additionally, Rice [37] proposed the 𝐽-Integral concept given by the following equation 

to estimate the stresses acting around a moving crack tip: 

J = ∫ [W dy − Ti  
∂ui

∂x
 ds] = 0 (2.8) 
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where  W = strain energy density, 𝑇𝑖 i
 = Traction vector-outward normal acting to the contour ᴦ in 

Figure 2.3, ui = displacement vector, x, y = Cartesian coordinates (y is the axis perpendicular to 

the crack), ds = arc element along the ᴦ, ᴦ  = integration path surrounding the crack tip (anti-

clockwise).                                                

He began his analysis by considering a notched homogenous linear or non-linear elastic flat body 

restricted to two-dimensions (i.e. the stresses would be only the x and y directions). He defined 

the 𝐽-Integral by drawing a path counter-clockwise from the lower crack face to the upper crack 

face as shown in Figure 2.3. This path depends only on the crack tip singularity in the local field. 

Using Green’s theorem, he proved that this definition of the 𝐽-Integral is path independent (equal 

to zero) for any closed path. 

 
Figure 2.3. J-integral contour definition. Arbitrary path around a crack tip and coordinate definitions 

used in the integral formula. 

 

His introduction of the 𝐽-Integral has since become one of the best methods to calculate the stress 

intensity factor over any path around the crack tip. In this study the concept of 𝐽-Integral and 

LEFM is used to estimate the stress intensity near the crack tip considering notched two-

dimensional homogenous linear elastic body. However, the 𝐽-Integral is used to evaluate the 

energy release rate 𝒢 using the contour integral surrounding the crack tip [1]: 
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J = 𝒢 (2.9) 

where 𝒢 is the amount of the potential energy stored in the system which is released when the 

crack propagates.  Using the Griffith-Irwin relationship: 

𝐾𝑐 = √𝐸′𝒢  
 

 (2.10) 

We find that 

𝒢 =  
𝐾𝑐

2

𝐸
 

(2.11) 

𝐽 =  
𝐾𝑐

2

𝐸
 

(2.12) 

where 𝐸 is the material modulus of elasticity. 

2.1.3 LINEAR ELASTIC FRACTURE MECHANICS MODEL FOR SCRATCH TEST 

Linear Elastic Fracture Mechanics (LEFM) was applied in this dissertation to relate the internal 

forces to material fracture toughness. LEFM can be applied to any material when certain 

requirements are met [1]. These requirements indicate that the material is elastic excluding a very 

small region (a point) at the crack tip. Therefore, in this section we will present the mathematical 

calculations behind using LEFM.  Irwin [33] stated that the inelastic zone size can’t be zero; 

therefore, it must have finite size 𝑅𝑐 as shown Figure 2.4. To estimate the elastic distribution along 

the crack line, Irwin (1960) estimated the zone around the crack tip where the material shows 

yielding and hence no stress singularity exists. In this case at a distance 𝑅𝑐 from the crack tip the 

stress 𝜎𝑦𝑦 is greater than the yield stress 𝜎𝑦 as Figure 2.5 shows. The distance 𝑅𝑐 represents the 

plastic zone size, for mode I failure it can be estimated as follows [33]: 
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Figure 2.4. Size of plastic zone 

 

𝑅𝑐 =
1

2𝜋
(
𝐾𝐼𝐶

𝜎𝑦
)

2

≪ specimen dimension, Ds (2.13) 

 
Figure 2.5. Irwin estimation of plastic zone 

 

To calculate the plastic zone size, tension tests were performed to measure material yield stress. 

The specimens were cast in a dog-bone shape mold as illustrated in Figure 2.6 and tested at room 

temperature using an Instron testing machine. Type I standard specimen’s dimension was used per 

ASTM D638 [38]. The testing speed was 0.0416 mm/sec under displacement control mode. The 

calculated yield stress was 40, 40.1, 40.5 and 41 MPa for the polymer with 0%, 5%, 25% and 50% 

glass beads respectively. Then, the size of the plastic zone 𝑅𝑐 for each volume fraction was 
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calculated using equation 2.13 and was found to be: 0.4,0.37,0.27 and 0.21 mm. For LEFM to be 

applicable, 𝑅𝑐 should be smaller than the specimen’s dimension, 𝐷𝑠 . 

 
Figure 2.6. Tension test mold 

 

The results show that LEFM can be applied to this test since the size of the plastic zone 𝑅𝑐 is 

smaller than the smallest specimen dimension (𝐷𝑠=10 mm). In this study we conducted the scratch 

test with increasing depth as the probe is pushing into the material shown in Figure 2.7. 

 
Figure 2.7. Schematic of scratch test 

 

Using the equations derived in [39] this experimental setup allows us to fit the size effect curve 

for the material from each scratch. The characteristic size of the problem increases when as the 
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probe goes deeper into the material. Thus, each data point collected during the scratch test is one 

data point on the size effect curve, Figure 2.8.  Figure 2.8 represents the energetic size effect law 

which scales the material behavior limits of plasticity along the horizontal line and the descending 

line of slope (−1/2) for LEFM. To quantify the fracture properties of these materials from scratch 

testing, the force to probe-depth scaling is related to the size-effect analysis using the energetic 

size effect law [39] at the microscale.  

 
Figure 2.8. Microscratch data from Delrin and glass ceramic materials are shown on size effect curve [39] 

 

Baz𝑎̃nt’s size effect law is given by equation 2.14. 

𝜎𝑁 =
𝐵𝜎𝑦

√1 + 
𝑑
𝑑0

 
(2.14) 

 where  𝜎𝑁 is the nominal stress, 𝐵 is a coefficient, 𝜎𝑦 is the material yield strength, 𝑑 and 𝑑0 is 

the size and the critical size of the structure respectively.  The scratch test formulation of this 

equation dimensionlessly scales the strength and size axes of this relation to match the scratch 

probe geometry with depth. According to the results obtained by [39] for scratching of shale rock, 

nonlinear fracture mechanics show similar results to LEFM assumptions when obtaining fracture 
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toughness values from the scratch test data. In addition, nonlinear fracture mechanics does not 

explicitly address heterogeneity, only the average presence of microstructure, and thus results in 

the same discrepancy in fracture toughness when compared to the macroscale, which we are trying 

to address.  

In the determination of the fracture toughness in the theoretical model we consider a single mode 

of fracture, mode I failure. We assume that the sole contribution to the energy change comes from 

the stress in the x-direction as the probe moves on the specimen’s surface, letting the crack 

propagates horizontally.  However, the derivations presented in this work can be generalized to 

consider all three modes of failure. This is important for cases in which the ratio of vertical and 

horizontal forces in the scratch tests are far from what was used in the case considered here. Most 

scratch testing devices currently have a limited range in force sensing capability, and thus cannot 

measure outside of a range that is mode I dominated. However, future devices optimized for this 

testing method may be optimized and could produce mode II and III failure, as is typically seen in 

larger surface grinding and scratching applications (such as those seen in mining).  

We used Westergaard’s [34] equation to estimate the stress field in front of the crack tip and the 

𝐽-integral to evaluate the energy release rate under the conditions of plane strain, the Griffith- Irwin 

relation [32], which yields: 

𝒢 =
(1 − 𝑣2)𝐾𝐼

𝐸
 (2.15) 

where 𝒢 is the energy release rate, 𝐸 is the Young’s modulus of elasticity, 𝑣 is the Poisson’s ratio 

and 𝐾𝐼 is the mode I failure. Thus the 𝐽-integral provide the expression of the energy release rate: 

𝐽 =
(1 − 𝑣2)𝐾𝐼

𝐸
 (2.16) 
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With a more general solution, for the scratch test the energy release rate can be linked to mode I 

and mode II (Figure 2.9) as considered in [40-42] to evaluate the fracture resistance of the material 

using the following equation: 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝐼 + 𝐽𝐼𝐼 =
(1 − 𝑣2)

𝐸
 (𝐾𝐼

2 + 𝐾𝐼𝐼
2) (2.17) 

 
Figure 2.9. Possible consideration of mode I and II to evaluate material fracture toughness 

 

 

The 𝐽-integral can be obtained as a mixed mode I, II and III, through superposition. Figure 2.10 

illustrate the stresses that need to be considered to obtain the total 𝐽-integral using the following 

equation [43,44]: 

𝐽𝑇𝑜𝑡𝑎𝑙 = 𝐽𝐼 + 𝐽𝐼𝐼 + 𝐽𝐼𝐼𝐼 =
(1 − 𝑣2)

𝐸
 (𝐾𝐼

2 + 𝐾𝐼𝐼
2) +

1

2𝐺
𝐾𝐼𝐼𝐼

2 
(2.18) 

 
Figure 2.10. Crack tip stress field 
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The ratio of forces used in this dissertation cause 𝐽𝐼 to dominate this expression [5]. Future work 

can directly extend the application of the equations derived herin to other force ratios by 

superposition of the 𝐽-integral values given in equation 2.18. In this dissertation, scratch tests were 

done by increasing the vertical applied force as the probe moves across the specimen’s surface.  

Accordingly, the scratch depth increases as shown in Figure 2.7.  

The influence of friction between the probe and specimen’s surface has been investigated by Bard 

[45]. To illustrate the effect of friction, from the scratch data, experimental and analytical 

investigations were carried out on a 2D model of a cohesive material in mode I.  The coefficient 

of friction is defined using equation 2.19, which is the ratio between the friction force to the normal 

force as illustrated in the Figure 2.11. 

𝜇 =
𝐹𝑇

𝐹𝑣
 

(2.19) 

 
Figure 2.11. Graphical representation of the scratch test [45] 

 

𝐹𝑇 and 𝐹𝑣 are measured in the scratch test, based on the lower bound theory and a closed form 

solution from this study yields that there no influence of friction on the fracture toughness 

parameter. By comparing the lower bound yield design approach and FE methods, the influence 

of friction at the blade–material interface was investigated. A series of 20 scratch tests were 

performed on cement paste material and the effect of friction was molded by considering additional 
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degree of freedom 𝜃′. The maximum value of the scratch hardness was found when 𝜃′ was equal 

to zero and a higher friction coefficient did not increase the scratch hardness. 

Photo-elastic images [46] and Focused Ion Beam (FIB) imaging in Figure 2.12 shows that the 

propagation direction of surface contact-induced crack is lateral. Again, this suggested that mode 

I failure approximation is valid for the scratch test.  

 
Figure 2.12. Photo-elasticity of Lexan scratch with circular polarizer [46] 

 

2.1.4 IMPACT OF INTERACTION OF CRACK-INCLUSION ON FRACTURE TOUGHNESS 

 

For a material made of inclusions embedded in a matrix, the existence of inclusions affects the 

deformations in the neighboring material during loading and generates stress concentrations [30]. 

The stress field of the crack and inclusion interact and impact fracture toughness measures of the 

material. Remote inclusions dispersed within the matrix can also have an impact on the fracture 

toughness of the material in a homogenized sense. Eshelby [47] transferred the inhomogeneous 

inclusion to a homogenous one by considering an inclusion which has the same properties as the 
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matrix.  Others [48, 49] considered the explicit interactions between crack propagation and the 

inclusion-matrix. A study [50] was presented by several authors proposing that such an interaction 

yields stress shielding; reducing the stress intensity at the main crack tip. Their analysis considers 

the crack-inclusion problem using a global energy balance. It was found that for small inclusion 

sizes, crack growth required more energy because the energy release rate decreased as the inclusion 

size decreased for the same applied load. Also, higher crack speeds were found for weakly bounded 

inclusions compared to the strongly bonded case [51-54]. Most of these studies discuss the 

influence of the existence of one inclusion ahead of the crack tip but not the effect of the spatial 

distribution of more than one inclusion on the fracture toughness of the material. 

This work addresses the need to simultaneously consider the near-field and far-field interactions 

of inclusions on crack growth in heterogeneous materials. The focus of this work is to develop a 

formula that considers the effect of the inclusions ahead of the crack tip and then compare the 

results with those that have been calculated from the standard three-point bend and the scratch 

tests on the macroscale to gain insight into the source of difference between fracture toughness 

values measured on different scales. First we look at the 𝐽-integral for a close contour near the 

crack tip. Then we introduce an inclusion in front of the crack tip to develop an analytical relation 

for a crack interacting with inclusions. A simple representation of the fracture process zone is 

proposed to study the effect of the volume of inclusions and their mutual interaction on the energy 

release of the crack.  

2.1.5 SIMILAR WORK 

Recently, Akono et al.  [55-57] presented considerable work on using the scratch test to 

determination the fracture toughness. Akono [5] used the scratch test to measure forces and 

penetration depth by dragging an indenter probe along the surface material. In her work, she 
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proposed the following equation to calculate the fracture toughness [5] based on using the J-

integral in front of the crack tip: 

𝐾𝐶 =
𝐹𝑇

[2𝑝 𝐴𝐿𝐵]1/2
 

(2.20) 

where 𝐹𝑇 is the horizontal force,  𝑝 is a scratch probe parameter and 𝐴𝐿𝐵 is the horizontal projected 

load bearing contact area. This technique [5] was successfully applied on a wide range of materials 

including ceramics, polymers, metals, cementitious materials and rocks. Akono [5] proposed 

equation 2.20 based on a 𝐽-contour analysis using LEFM. They were able to link the scratching 

force and penetration depth with the fracture toughness by considering that in the scratch test the 

crack grows horizontally as the probe moves on the specimen surface as shown in Figure 2.13. 

The fracture toughness is derived as follows:  

                                              
Figure 2.13. Axisymmetric scratch probe geometry [5] 

 

𝜎𝑥𝑥 =
𝐹𝑇

𝐴
 

(2.21) 

 

𝐹𝑇 = ∫𝜎𝑥𝑥 ∗ 𝑛𝑥𝑑𝑠 
(2.22) 

Akono combined the stress equation (equation 2.21) with the energy density equation ( 𝒢 =

(
1

2
)  𝜅𝜎𝑥𝑥

2 /𝐸, to obtain the following equations [5]: 
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𝒢 =
𝜅

2𝑝𝐴𝐿𝐵𝐸
𝐹𝑇

2 
(2.23) 

 

𝒢 =
𝐾2

𝐸
 

(2.24) 

 

𝐾 =
𝐹𝑇

√2𝑝𝐴𝐿𝐵

 
(2.25) 

                          

where 𝒢  is the energy release rate, x is the scratch direction, 𝑝 is the perimeter of the probe, 𝐸 is 

the Young’s modulus,  𝜅 = 1 in plane stress and 𝐴𝐿𝐵  is the horizontal projected load bearing 

contact area shown in Figure 2.14. It can be calculated using the following equation [5]: 

𝐴𝐿𝐵 = 
2𝑏𝜖

𝜖 + 1
(
𝑑

𝑏
)

(1/𝜖)+1

 (2.26) 

where d is the scratch depth, 𝑏 is the proportionality factor and 𝜖 is the homogeneous function 

described in Table 2.1. 

 

Table 2.1 Typical values for the proportionality factor 𝑏 and the homogeneous function 𝜖 

 

 

 

The probe perimeter can be calculated using the following equation [5]: 

Probe type 𝐛 𝛜 
Spherical 2 1/(2R) 

Cone 1 cot θ 

Flat +∞ (1/Rϵ−1) 
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𝑝 = 𝛽 (
𝑑

𝑏
)
1/𝜖

 (2.27) 

where 𝑝  is the probe perimeter and 𝛽  is dimensionless parameter defined in the following 

equation: 

𝛽 = 2∫ √1 + (𝜖𝑑)2 (
𝑑

𝐵
)
−2/𝜖

𝑥2𝜖−2𝑑𝑥
1

0

 (2.28) 

 
Figure 2.14. Microscratch configuration showing the projected horizontal area 

 

 

In this work, scratch testing was performed by using a Rockwell diamond indenter shown in Figure 

2.15. The scratch probe parameters used in this test are listed in Table 2.2. 

Table 2.2. Scratch probe parameters 

Indenter parameters 

Type Rockwell 

Material Diamond 

Radius (μm) 200 

 

 
Figure 2.15. Rockwell diamond probe image 
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In her most recent work [55] Akono showed that, by combining the scratch and micro-indentation 

tests, we can accurately estimate the fracture toughness and the fracture energy. Those test results 

are essential for multi-scale modeling of the alkali-aggregate reaction. However, the formulation 

for energy release due to scratching applies the J-integral in front of the crack tip, and in doing so 

assumes a homogenous stress field in front of any crack tip that is generated. This ignores the local 

effect of the inclusions on this stress field. This work tests the validity of this assumption. Akono 

et al. [57] claimed that she accounted for the heterogeneity via the specimen preparation method 

and the test parameters. Her method is applied to gas shale system, and required to be combined 

with imaging technology. It wasn’t very clear how she considered material heterogeneity in her 

work applicable to other materials.  

Erwin et al. [22] studied the effect of increasing the filler content on the composite modulus. It has 

been found that the modulus and fracture parameters are improved with increasing volume fraction 

of the filler if the filler stiffer and stronger than the matrix. However, the quantification of the 

relevant microstructure in concrete introduces many experimental uncertainties. Many researchers 

have used a model composite system formed from epoxy resins filled with glass beads to evaluate 

the mechanical properties in terms of stress intensity fracture (𝐾𝐼) and the energy release rate (𝐺𝐼) 

[5, 14, 20, 22], but none have done so using scratch testing.  

2.1.6 ESTIMATING NEAR AND FAR FIELD REGIONS 

In this work, we introduced zones in which the local material microstructure is considered in 

determining near and far field contributions to the fracture toughness. These are different from the 

existing concept of a fracture processing zone. The zones considered here capture where the local 

arrangement of inclusions and stress shielding plays a role as shown in the Figure 2.16. 
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Figure 2.16. Zones in which the local arrangement of inclusions and stress shielding are considered 

2.2  BACKGROUND 

2.2.1 CONCRETE CRACKING 

Because of the “stable growth of large cracking zones”, concrete structures fail before maximum 

load is reached, which can produce large fractures [51]. By using mechanical analysis, we can 

model the crack zone ahead of the crack tip and study all the parameters that contribute to the 

initiation and growth of the cracks [1]. Concrete has existing micro cracks even before loading. 

This is due to the fact that the material is not homogeneous, temperature effect from hydration. To 

understand the fracture mechanisms in concrete materials, we need to scale down the concrete 

structure from the macroscale to microscopic interactions [18].   

The fracture of concrete or cement based materials is strongly related to their micro-structure. 

Macro-cracks are the result of the growing cracks that were originally initiated in the 

microstructure. As previously mentioned, concrete is a multi-phase material since it consists of: 

hydrated cement paste as a binder, aggregate as filler, and the interface transition zone at which 

the binder and the filler are linked.  When mixing water with cement powder the hydration process 
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starts.  The main hydration product is the calcium Silicate Hydrate (C-S-H). It occupies between 

50 - 60% of the solid volume in a completely hydrated cement paste. Therefore, C-S-H has a major 

role in determining the properties of cement paste and concrete material. In Portland cement paste, 

C-S-H is produced by the hydration of C2S and C3S as expressed in the equations below [5]. 

2C3S + 6H    →   C3S2H3 + 3CH (2.30) 

2C2S + 4H    →   C3S2H3 + CH (2.31) 

where: 𝐶3𝑆 is tri-calcium silicate (3CaO.SiO2), 𝐻is water molecule has the chemical formula (H2O) di-

hydrogen monoxide, 𝐶3𝑆2𝐻3 is Calcium Silicate Hydrates (3CaO.2SiO2. 3H2O), CH is calcium hydroxide 

Ca (OH) 2  and 𝐶2𝑆 is di-calcium silicate (2CaO.SiO2).  The exact structure of C-S-H is not well known, 

and is strongly affected by the calcium-to-silicate ratio. In general, C-S-H forms in layers on the surface of 

cement particles. The layers have a huge surface area and interlayer spaces, which make C-S-H a highly 

porous material. At later ages, the C-S-H structure becomes more stable as the calcium to silica ratio is 

reduced. A well-documented fact is that the strength has an inverse relationship with the porosity, which is 

mainly determined by the structures of C-S-H. Usually, the strength of the transition zone is determined by 

the presence of voids, and under the impact of loads the voids will be prone to form cracks that will 

propagate and link the voids in the C-S-H structure and produce a visible crack [4].    

 

 

                                                                                                             

 

 

 

 

Figure 2.17 Diagrammatic illustrative of transition zone, aggregate and bulk cement paste in concrete [4] 

https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Chemical_formula
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2.2.2 FINITE ELEMENT SIMULATION USING ABAQUS 

The Finite Element Method (FEM) is a commonly used and powerful technique for simulating 

mechanics of materials and structures. Numerical evaluations using the finite element method were 

carried out to determine the Stress Intensity Factor (SIF) by the well-known finite element software 

ABAQUS in this research.  The ABAQUS software has the ability to solve both linear and non-

linear problems, such as calculating the linear fracture parameter SIF using the domain integration 

method [58]. The ABAQUS software provides a procedure to calculate the 𝐽-integral parameter. 

For linear material response (as mentioned previously section 2.1.2),  𝐽-integral is related to the 

SIF as it measures the deformation intensity in front of the crack tip and the energy release 

associated with the crack extension. To perform 𝐽-contour analysis, several parameters need to be 

assigned such as crack tip, front and crack extension direction. Following ABAQUS guidelines, it 

is recommended that certain elements to be used around the crack tip / front, called singular 

elements. Singular elements are 2D biquadratic Lagrangian element (9 nodes) or 3D triquadratic 

Lagrangian (27-node). The benefit of these elements is that they contain the inverse square root of r 

everywhere within the element. For every FEM simulation, a convergence study needs to be 

conducted to ensure adequate mesh resolution for the stress field. For fracture problems, as the 

mesh size is reduced (number of elements increased), the change in the value of the SIF decreases 

[59-61]. 

2.2.3 FRACTURE TEST 

2.2.3.1 FRACTURE TOUGHNESS USING ASTM STANDARD THREE-POINT TEST 

Single Edge Notch Bend (SENB) geometry is typically used for fracture toughness assessment. A 

constant displacement load is applied above the centerline of the downward-facing notch while the 
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sample is supported equidistantly at both bottom edges. Specimen dimensions should be selected 

to satisfy ASTM 399 plane strain requirements [62].  The crack size to specimen width ratio is 

between 0.45 and 0.55 and a sharp crack is created by inserting a fresh razor blade into the notch. 

The fracture toughness can be determined using the ASTM 399 [62] standard formula for the three-

point bend geometry from the following equation: 

𝐾𝑐 = 𝑓 (
𝑎

𝑤
) 

3𝑃𝑆 √𝑎

2𝑡𝑊2
 

(2.32) 

where: 𝐾𝐶 is the critical stress intensity factor,  𝑃 is the load at failure, 𝑆 is the span length, 𝑎 is 

the crack length, 𝑊 is the specimen width, 𝑡 is the specimen width and 𝑓 (
𝑎

𝑤
) is a numerical factor 

for this specimen that can be calculated using the equation below [14]:  

𝑓 (
𝑎

𝑤
) = 1.93 − 3.07 (

𝑎

𝑤
) + 14.53 (

𝑎

𝑤
)
2

− 25.11 ∗ (
𝑎

𝑤
)
3

+ 25.80 (
𝑎

𝑤
)
4

 
(2.33) 

2.2.3.2 FRACTURE TOUGHNESS USING MICRO SCRATCH TEST 

The scratch test is a micro-scale test that can be used to evaluate the failure resistance of a material. 

It has been used extensively in geology and mining material characterization [63-65]. Scratching 

is performed by dragging a sharp Vickers indenter across the surface of the material under various 

loads [66]. Generally, the micro-scratch test has two advantages: there is no need to create a unique 

sample geometry and only a small sample is needed to run multiple tests. One of earliest uses of 

the scratch test was to measure material hardness [67]. Besides the hardness test, other studies have 

adopted this technique to determine the adhesion of coatings and the coefficient of friction [60]. 

Furthermore, the scratch test is used to account for the variation of crack depth below the scratch 

as a function of sliding velocity [61]. Recently Ulm & Akono used the scratch test to determine 
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the fracture toughness of different materials such as cement, shale and rock at a fine scale by 

assuming the probe drives a single crack in the material [5].  

2.2.4 BA𝐳̌ANT SIZE EFFECT 

The change in specimen response with increasing size is defined as the size effect. This effect has 

been shown to stem from the quasi-brittle and heterogeneous nature of some construction materials 

during fracture. Studies of the size effect started in the 1970’s, where the problem in modeling 

large structures like concrete dams and bridges for which there is a big difference in the scales 

between the real structure and lab tests. In larger size structures there is a higher probability of the 

existence of weak zones compared to the small size scale, which causes the energy dissipation to 

decrease as the sample size increases. There are two causes of this phenomenon. The first is due 

to the randomness in the material strength (statistics) and the second reason is due to energy release 

especially when the material has a damaged zone even before the maximum load is reached. In 

solid mechanics, when comparing the geometries of like structures of different sizes, the effect of 

characteristic structure length D and the nominal strength 𝜎𝑁 of the structure is known as: 

𝜎𝑁 = 𝐶𝑁
𝐹

𝑏𝐷
  or 𝜎𝑁 = 𝐶𝑁

𝐹

𝐷2 (2.34) 

where  𝜎𝑁 is the nominal strength, 𝐹  is the applied force, b is the thickness of a two dimensional 

structure, D can be the diagonal dimension and 𝐶𝑁 = arbitrary coefficient, which can be chosen 

to equal to 1. The coefficient 𝐶𝑁 is depends on the structure geometry. For example, for a simply 

supported beam with three-point bending test the formula for the maximum normal stress is: 

𝜎𝑁 =
3𝐹𝑆

2𝑏ℎ2 = 𝐶𝑁
𝐹

𝑏𝐷
 ; 𝐶𝑁 = 1.5

𝑆

ℎ
 (2.35) 
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where S is beam span, h is beam depth and D is the characteristic length. In this case, it is proper 

to say that 𝐶𝑁 depends on the span to depth ratio; without geometric similarities the results of the 

equations would be totally different. Thus, it is important to consider the size effect for varying 

structures [1]. 

2.2.5 SPATIAL STATISTIC MEASURES 

Quasi-brittle materials like concrete and other cementitious materials demonstrate a very high 

degree of statistical scatter in their microstructures. In this case, the nominal strength will be size 

dependent and the probability of failure of large scale structures is higher than that of small scale 

structures. Weibull incorporated the probability distribution into the fatigue failure of ceramics 

and introduced the power law for the statistical size effect [31]. His theory does not account for 

the material characteristic length.  A number of approaches can be used to describe the 

microstructure component within the material. A Radial Distribution Function (RDF) is a suitable 

tool that can be used to define how particles are packed radially in a system (defining the insight 

material structure) [68]. This is not the case in flexible solids, since flexible solids have fixed 

particles position that do not overlap. The most suitable way to define this system is by defining 

how packed the system is or we say jammed or unjammed system. A jammed system is a 

mechanically stable system with minimum overlaps, but not in its lowest energy state.  In a jammed 

system, there are two parameters can be used to determine how the system is jammed or unjammed, 

the translation and the bond orientation order. The translation parameter can be defined in the 

following equation [68]: 

𝑇 = |
∑ (𝑛𝑖 − 𝑛𝑖

𝑖𝑑𝑒𝑎𝑙)𝑁𝑖
𝑖=1

∑ (𝑛𝑖
𝐹𝐶𝐶𝑁𝑐

𝑖=1 − 𝑛𝑖
𝑖𝑑𝑒𝑎𝑙)

| 
(2.36) 
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where: 𝑛𝑖 is the average occupation number the spherical shell of width “t”, 𝑁𝐶 is the total number 

of shells, 𝑛𝑖
𝑖𝑑𝑒𝑎𝑙 is the shell occupation numbers for an ideal gas, FCC: face centered cube variant. 

 𝑛𝑖
𝐹𝐶𝐶  :is the shell occupation numbers for an open FCC crystal lattice= either 4 or8. T is equal to 

zero for ideal gas and equals to one for perfect FCC spatial ordering. The orientation order equation 

is [68]: 

𝑄6 = (
4𝜋

13
∑ |𝑌6𝑚

̅̅ ̅̅ ̅|2
6

𝑚=−6

)

1
2

 

(2.37) 

where: |𝑌6𝑚
̅̅ ̅̅ ̅| : denotes an average over all bonds, 𝑄6 = 0, for a disordered system 

2.2.6 RELATED EXISTING THEORIES 

2.2.6.1 THE NON-LOCAL MODEL 

Different but related theories reference a material’s microstructure, based on considering a global 

statistic of the inclusions [68]. We need to capture the effect of every single inclusion on the 

fracture toughness through knowing the location of every single inclusion. Specially, in concrete 

and cementitious materials [5] and because of their spatial varying components and the distributed 

cracks, the non-local damage model is a suitable model to capture the damage due to the interaction 

from the adjacent micro-cracks that will lead to the material’s failure. The other reason for 

considering non-local damage is that in concrete the macro- crack has non-negligible dimension 

and it is wider than the crack width. Certain parameters have to be determined such as the length 

parameter L or spatial parameter, which forms the constitutive models in driving the stress strain 

curve of the material [1]. As shown in Figure 2.17, the average strain along a representative volume 

centered at x will be considered for crack interaction.  
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Figure 2.18. Diagrammatic illustrative of micro strain profile and average strain along a representative 

volume of a body [1] 

 

2.2.6.2 THE STRONGEST BARRIER MODEL  

As shown in Figure 2.18, in this model we are engaging a variety of different phases based on the 

nature of these heterogeneous materials, each with its own crack growth resistance having gradient 

colors. The material in front of the crack tip is divided into small cells with specific crack growth 

resistance 𝑅 for each cell. The crack can grow and break the strong cell if the driving force 𝜑 is 

equal or greater than the crack growth resistance. The model relies on the probability of the crack 

being stopped by strong cells and their distributions. The limitation of this model is; it requires 

mode I type failure, to be combined with 𝑅 curve, long material containing long crack and a 



 

35 

 

homogenous modulus. It does not account for the spatial arrangement of the microstructure in the 

material [1]. 

  

 
Figure 2.19. Random stepped 𝑅 curve verses material’s crack growth resistant 𝜑 [1] 
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3.1 INTRODUCTION 

To selectively study the impact of microstructure on fracture toughness, this chapter presents an 

experimental and theoretical investigation of the fracture toughness of a representative composite 

material consisting of glass beads embedded in epoxy using micro-scratching and conventional 

three-point bending tests. Existing analysis formulas for micro-scratch data assume homogeneity 

near the indenter tip. This chapter finds that this assumption may need to be reconsidered. By 

controlling the volume fraction of glass beads (inclusions) in the matrix of the composite material, 

it is possible to control the crack development and reduce the stress concentration within the 

material during loading [5]. Thus, an increase in the fracture toughness of the composites and 

improved fracture properties is obtained. As mentioned in the previous chapter, Akono et al. [5] 

used the scratch test to calculate the fracture toughness of a wide range of materials. Her work 

ignores the local effect of the inclusions on this stress field. In this paper we will consider this 

effect, which would allow us to further pursue the question: How can we improve the micro-scratch 

analysis methods? Is it possible to control the amount, or direction, of crack development by 

controlling the special distribution of the glass beads in the matrix? 

------------------------------------------- 

1Adapted from Al wakeel, S. H., & Hubler, M. (2016). Experimental and theoretical investigation of the fracture 

behavior of glass beads/epoxy compositions using micro-scratching. Published in the 9th International Conference on 

Fracture Mechanics of Concrete and Concrete Structures University of California, Berkeley, CA.  

  

Chapter 3 
EXPERIMENTAL AND THEORETICAL INVESTIGA-

TION OF THE FRACTURE BEHAVIOR OF GLASS 

BEADS/EPOXY COMPOSITIONS USING MICRO-

SCRATCHING 1 
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3.2 EXPERIMENTAL WORK 

3.2.1 RAW MATERIALS AND COMPOSITES PREPARATION 

For all specimens, a hollow microsphere, 3M ScotchliteTM glass beads (soda-lime) S38 

microspheres have an average diameter of 40 μm, were used as the inclusions. The epoxy used as 

the binder consisted of the solid resin DGEBA (diglycidyl ether of bisphenol A) from Dow 

chemical Co. and the hardener DDS (4,4’-diaminodiphenylsulphone) from Sigma Aldrich 

Chemical Company. The physical properties of the epoxy “binder” and the glass bead “inclusions” 

are listed in Table 3.1.  

Table 3.1. Physical properties of the epoxy and the glass beads 

 

 

 

The fabrication of the composites was carried out using the following steps: (i) according to Ref. 

[12,22] the epoxy DER 661 was melted for an hour (ii)  the glass beads were mixed with different 

volume percentages ranging from 0% to 50% at a time (iii) the mixture was combined with 

stoichiometric amounts of the curing agent DDS (98%) for thirty minutes (mix proportions are  

listed in Table 3.2)  (iv) once uniform, the mixtures were cast in a pre-heated mold (v) finally, the 

specimens were placed in a convection oven for sixteen hours at 160°C when the temperature was 

increased to 200°C for two hours. Then the specimens were allowed to cool slowly in the oven to 

room temperature. 

 

 

 

 

 

Material type True density  

(g/cc) 

Young’s modulus 

(GPa) 

DER 661/DDS 1.204 2.8 

Glass beads S38 0.38 70 
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Table 3.2. Mix composition 

 
 
 
 
 

1Phr= Part per hundred of epoxide by weight 

 

3.2.2 MICRO SCRATCH TEST 

An Anton Paar micro-scratch tester with a capacity of 200N from was used to introduce a scratch 

in the specimen surface with a 200μm Rockwell diamond indenter as shown in Figure 3.1.  

 

 
Figure 3.1. Scratch test equipment from Anton Paar 

 

3.2.2.1 SPECIMEN SHAPE AND DIMENSIONS 

In this study four small Aluminum molds with inner groove (20 x 40 x 10.59) mm3 fabricated in 

Physics department’s machine shop at University of Colorado-Boulder were used for the scratch 

test as shown in Figure 3.2. The specimen dimensions were selected carefully to fit in the 

scratching test equipment.  

Component Composition  

DER 661 100 

DDS (98%) 12.2      (1phr) 

Glass beads 0%, 5%, 25%, 50% 
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Figure 3.2. (a) Specimen’s designed mold (b) Individual specimen’s dimensions (in mm) (c) Final mold 

fabrication 

 

Specimens with different glass beads created for the scratch test are shown in Figure 3.3. 

 

 
Figure 3.3.  Specimens with different glass beads used in the scratch test 



 

40 

 

3.2.2.2 IMAGING AND SCANNING TECHNIQUE 

Panoramic pictures of the surface were taken prior to performing any scratch as shown in Figure 

3.4 to catalogue the inclusion and pore distribution. The scratch test was performed in three stages 

staring with a pre-scan phase in which the specimen surface was investigated by the indenter tip 

with a minimum load of 0.05 N. 

 
Figure 3.4. Typical SEM image of surface composites for 50% specimen. The different circular inclusions 

represent sections of the spherical glass beads which have been cut and polished down at different 

distance from their centers 

 

During the second stage, a scratch is introduced on the specimen’s surface. At the same time, the 

vertical and the horizontal forces as well as the penetration depth were recorded as the probe was 

pushed into the material until a depth d was reached. The scratch is produced by the projected 

horizontal load bearing contact area, not by the probe tip, as shown in Figure 3.5. The scratch 

testing parameters used in this test are listed in Table 3.3. 

Table 3.3. Testing parameters used during the scratch test 

 

 

 

 

The scratch probe parameters used in this test are listed in Table 3.4. 

Scratch test parameters  

Minimum vertical load (N) 0.05 

Maximum vertical load (N) 0.5 

Loading rate (N/min) 0.9 

Speed (mm/min) 10 

Scratch length ( mm) 5 
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Table 3.4. Scratch probe parameters 

 

 

The last stage is the “panorama view phase”. In order to image the physical crack, a series of 

panoramic pictures were taken across the whole scratch to image the physical cracks on the 

residual groove after the sample cracked, Figure 3.5 shows a sample of the panorama image. 

 

 
Figure 3.5. Panorama image of a scratch for 50% inclusion specimen 

 

                                                 

The fracture toughness in terms of (𝐾𝐶), the stress intensity factor, was calculated according to the 

equation 2.25 developed by Akono et al [5]. The Panorama image of all the scratches are shown 

in Appendix A, section A.2. 

3.2.3 SCANNING OF SPECIMEN SURFACE  

Figure 3.6 represents the image segmentation by global thresholding using Otsu’s algorithm [25]. 

Spatial statistics were used to check for the quality of the inclusion arrangement. The location of 

the inclusions is determined by implementing plot digitizer software. Data were collected as x and 

y coordinates associated with the inclusion locations from the images by placing the curser on the 

inclusions.  

Indenter parameters  

Type  Rockwell 

Material Diamond 

Radius  (μm) 200 
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Figure 3.6. Segmented specimen’s surface, converting the scanned surface pictures to black and white 

color using Otsu’s algorithm for 50% glass beads 

 

3.2.4 THE ASTM STANDARD THREE-POINT TEST  

Three point bending tests on single-edge-notched specimens were conducted to determine the 

critical stress intensity factor 𝐾𝐶  using standard methods for comparison. The specimen 

dimensions that were used in this study were the same as the specimen’s dimensions used by Lee 

[12]. Per ASTM 399 section 91.4 [62], the width of the specimen W = 2 ∗ thickness B. The 

thickness used in this study, B, was measured with a caliper on the specimen, an average value of 

6.35 mm. Using the same method to measure the width W, an average value of 12.7 mm was 

found. A crack was created by inserting a razor blade into the specimen and measured to be equal 

to the thickness B [22].  The support span length S was measured to be equal to 50.8 mm. Figure 

3.7 illustrates the specimen dimensions and notch shape.  
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Figure 3.7. (a) Schematic representation of 3-pt specimen geometry used in this study; (b) 5% glass beads 

specimen 

 

These dimensions were selected carefully to satisfy plane strain conditions: 

𝐵, 𝑎,  (𝑊 − 𝑎) > (
𝐾𝐼𝐶

𝜎𝑦
)

2

 (3.1) 

where 𝐵 and 𝑎 are measured with an average value of 6.35 mm, W is measured with an average 

value of 12.7 mm, 𝐾𝐼𝐶 is the fracture toughness obtained from the three-point bending test and 𝜎𝑦 

is the calculated yield stress value from the tension test, 40, 40.1, 40.5 and 41 MPa for the polymer 

with 0%, 5%, 25% and 50% glass beads respectively. 
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3.2.5 THE ASTM STANDARD TENSILE TEST  

A tensile test was carried out to determine the polymer tensile strength, which will be used to 

satisfy equation 3.1. The specimens were cast in a dog-bone shape mold as is illustrated in Figure 

2.6 and were tested at room temperature using an Instron testing machine, shown in Figure 3.8. 

The Type I standard specimen’s dimension was used per ASTM D638 [38]. The testing speed was 

0.0416 mm/sec under displacement control mode using Instron machine.  

 
Figure 3.8. Specimen geometry for tensile test 

 

 

 

 
Figure 3.9. Tensile test for 50% glass beads specimen loaded in Instron machine 

 

After satisfying all the ASTM requirements, the three-point test was performed as illustrated in 

Figure 3.10. The load was applied by means of constant displacement at a cross head speed of 2.54 

mm/min. The stress intensity factor was calculated using equation 2.32. 
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(a)                                       (b) 

Figure 3.10. Three-point test for 50% glass beads (a) before test; (b) after test 

3.3 RESULTS AND DISCUSSION 

Modeling and testing was performed on resin composites with four different volume fractures of 

microspheres ranging from 0%, 5%, 25% and 50% to study the influence of the microstructure 

inclusion content on the fracture parameters of the composite material. A comparison with the 

observed trend was then investigated using conventional three-point bending test on pre-cracked 

specimens.   

3.3.1 FRACTURE TOUGHNESS USING MICRO SCRATCH 

Figures 3.11-3.14 display the relation between the vertical force and the penetration depth for the 

four specimens considered in this task. Some scratch curves have kink points where they transition 

from a smooth parabolic curve to a noisy linear trend. In particular, those points occurred in the 

specimens that contained a 5% volume fraction of glass beads.  
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Figure 3.11. The relation between the normal scratching force and the penetration depth for 50% 

specimen 

 

 

 
Figure 3.12. The relation between the normal scratching force and the penetration depth for 25% 

specimen 

 

 
Figure 3.13. The relation between the normal scratching force and the penetration depth for 5% 

specimen 
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Figure 3.14. The relation between the normal scratching force and the penetration depth for 0% 

specimen. 

 

Figure 3.15 shows the variation of the fracture toughness, as calculated using equation 2.21, for 

all the data the scratches with and without kink points, see Appendix A section A.1. Between 0% 

and 5% glass beads content, there is an increase in the fracture toughness value due to toughening 

mechanisms as the filler content increases. Beyond 5% glass bead content, the fracture toughness 

decreases due to microspheres de-bonding from the matrix. The de-bonding is accompanied by 

micro-cracks. If the directions of these cracks are parallel to the crack growth direction this would 

facilitate the crack propagation. Similar trends were found by Erwin et al. [22]. The most 

distinctive feature in Figure 3.15 is the significant decrease in the fracture toughness for inclusion 

content up to 50% compared to the neat epoxy resin. The reason behind that is the toughening 

mechanism is changing as the inclusion content is increased, which was explained by the particle 

spacing theory mentioned by Lee et al. [12] for glass beads embedded in epoxy resin composites. 

In this figure, we can notice that at 5% glass bead content the fracture toughness value is more 

scattered than for the other composites, greater variation in the arrangement of glass beads is 

possible at lower volume fractions.  
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Figure 3.15. Fracture toughness range for different glass beads content using scratch test 

 

3.3.2 FRACTURE TOUGHNESS FROM THREE-POINT TEST 

A conventional three-point bending test with single edge notched geometry was also used to 

determine the material fracture toughness. The variation of the fracture toughness with the glass 

bead content for the three-point test is shown in Figure 3.16. 

 
Figure 3.16. Fracture toughness range for different glass beads content using three-point test 

 

A large discrepancy was found between the data sets shown in Figures 3.15 and 3.16. The curve 

has the same trend; however, the scratch values were systematically lower than the three-point test 

values. It was conjectured that this discrepancy could be from the effect of microstructural defects 

and system arrangement, which is detected by the micro-scratch test by pushing the probe along 
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of the specimen surface. However, it is also present in the zero inclusion case, so that it may just 

derive from the difference between the natures of the two tests. In the case of the three-point test, 

we load the material until failure and allow crack stresses to redistribute throughout the specimen, 

while in the micro-scratch test, we regulate the loading locally and do not allow the whole sample 

structure to assist in redistributing the applied load. As a result, local material crushing phenomena 

are much more prevalent in the scratch test than three-point bending tests and we do not allow the 

structure to act as a whole. In this chapter we will investigate the effect of the microstructure and 

leave the second hypotheses for future work. 

3.3.3 INVESTIGATING THE MICROSTRUCTURE 

The individual scratch test measurements for different inclusion contents were plotted in Figure 

3.17. The increase in inclusion density as in curves (c) and (d) results in uniform and homogenous 

material behavior, with no kink or scatter in the plotted curves. There is a similar trend in the pure 

epoxy as indicated in curve (a). While a different trend can be noticed in (b), this implies that, in 

low concentrations of the inclusion, the behavior is changed because of the interaction with 

inclusions during the scratch test.  

 
0% glass beads 
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5% glass beads 

 
25% glass beads 

 
50% glass beads 

Figure 3.17. Horizontal scratching force versus horizontal distance for different glass beads content 

using scratch test 



 

51 

 

By augmenting linear elastic fracture mechanics analysis of the scratch data, the fracture toughness 

for different compositions of the glass beads embedded in epoxy resin was derived. The fracture  

toughness, 𝐾𝑐 for different compositions of the glass beads embedded in epoxy resin is presented 

in Figure 3.15. When considering the scatter in the results, no clear trend is observed. To test our 

hypothesis that the kink observed in some of the scratch data is due to the presence of the 

inclusions, we separated the data affected by the kink in Figure 3.15 to Figure 3.18 (a) and (b). 

After this separation, two clear trends are observed in the fracture response. Thus we propose that 

the kink is due to a change in boundary conditions when an inclusion is near the indentor tip. To 

confirm that such a change in boundary conditions could generate this effect, we will formulate a 

mathematical model considering this change and study the effect of probability of finding such an 

inclusion near the probe tip. See Appendix A, section A.3 for more details about the statistical 

analysis. 
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(a) (b) 

 

 

 

 

 

(c) (d) 
 
                                                                                               

Figure 3.18. (a) On the left is the fracture toughness range for different glass beads content with kink 

points, on the right is the average data with the deviation in the data (b) On the left is the fracture 

toughness range for different glass beads content without kink points, on the right is the average data 

with the deviation in the data 
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   3.3.4 EXPERIMENTAL AND NUMERICAL CONFIRMATION THAT KINK CURVES 

CAPTURE INCLUSIONS 

As has been shown in Figure 3.18 (a), the shape of the fracture energy as a function of inclusion 

volume is due to a change in the microstructure of the material near the indenter tip. This only 

holds true for the curves showing a kink, which is hypothesized to relate the presence of an 

inclusion in front of the crack tip. In order to confirm the effect of microstructure on the material 

behavior, a numerical investigation is presented using finite element analysis of a centrally cracked 

composite material containing a single inclusion located near the crack tip. The fracture toughness 

is determined using the displacement extrapolation method, which uses nodal displacements near 

the crack tip. The analysis in this investigation is carried on the microstructure level; therefore, the 

fracture toughness is calculated based on the LEFM assumption and the concepts of plane strain 

conditions for mode I failure. The element used in this analysis is two dimensional with eight or 

six nodes having two degrees of freedom at each node. The deformed configuration of the 

specimen used in this simulation is shown in Figure 3.19. 

 
Figure 3.19. The deformed configuration of the specimen with inclusions located in front of the crack tip 
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3.3.5 MATHEMATICAL SIMULATION 

We formulated the linear viscous behavior of glass beads embedded in epoxy resin composites 

during scratch testing. The standard linear solid (Zener model) [69] was used to interpret the 

experimental results and predict the behavior of the composite. 

 
Figure 3.20: Standard linear solid (Zener model) 

 

The following assumptions were made in modeling the behavior of the polymer: (a) The crack is 

a straight line and propagates along the x-axis, (b) two-dimensional representation of the model 

will be considered, (c) Cartesian coordinates will be used throughout the derivation.   

 
Figure 3.21. (a) Stress and displacement components in the Cartesian coordinate system 

(b) Using standard linear solid model to model the material behavior 
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A formulation of a visco-elastic stress strain constitutive relation was made of the material to 

mathematically simulate the behavior using the standard linear solid model illustrated in the Figure 

3.21. The following constitutive equation has been used to relate the strain to the stress. 

𝜀𝑡 = 
𝜎0

(𝐸1+𝐸2)
[1 − 𝑒

−
(𝐸1+𝐸2)𝑡

𝜂 ]  
(3.2) 

When the spring is connected to the dashpot in series, it yields a Maxwell model. A combination 

of the Maxwell model in parallel with a spring, as is illustrated in Figure 3.22, yields the model 

that we proposed to predict the shape of the compressive stress-strain curve [30].  If an inclusion 

is found far from the scratch probe the material is best represented with the spring moduli in the 

Zener model being identical, while very stiff and close inclusions will require unequal moduli.  

The observed transition point in the material response can be captured with this material model by 

changing the material stiffness to represent the various distances to the nearest inclusion as shown 

in Figure 3.22. Detailed derivation for equation 3.2 is provided in Appendix A, section A.4. 

 
Figure 3.22. Compression stress-strain curve describes by the model on the right side of the figure 
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3.3.6 RANDOM PROBABILITY DISTRIBUTION  

Random probability distributions were generated to test if the increase in noise is also due to the 

arrangement of the inclusions. Three different populations of random probability distribution of 

particles (pixels) were generated to calculate 𝑔(𝑟)  [68], the radial distribution function. This 

represents the probability of finding a nearby inclusion at any location in the sample. A random 

placement of inclusions was generated using MATLAB code to create sixty different fields of 

distributions of random pixels for each population. The populations were chosen to match the 

experimental test ranging from 5%, 25% and 50% volume fraction. Figure 3.23 illustrate the results 

of this analysis.  The commented MATLAB code is shown in Appendix A, section A.5. 

 

 

 

 

         

5 % Black Pixels 
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Figure 3.23. Three different populations have random probability distribution of particles (pixels) 5%, 

25% and 50% particles content. 

 

25 % Black Pixels 

50 % Black Pixels 
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Numerical distributions were generated and confirm that 5% inclusions will cause the highest 

scatter due to the spatial arrangement of inclusions. The figures show the radial distribution 

functions for three different random arrangements of beads. 

3.4 CONCLUSION  

The microstructure near the indentor tip has a predictable and consistent impact on the fracture 

toughness, based on the following observations: 

1. The fracture toughness changes in the experimental model system in which this is the only 

variable. 

2. The ‘kink’ trend observed in the model system can be reproduced with a viscoelastic model that 

considers the effect of the nearest inclusion to the indentor probe 

3. The trend in scatter with volume fraction of beads matches the probability of finding an 

inclusion near the indentor probe.  

As a result, we propose a new formulation is required to obtain agreement between scratch and 

three-point fracture parameters by updating the J-integral formulation found in Akono et al [5].to 

capture the effect of local inclusions on the stress field generated by the indenter.  
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Chapter 4 
FRACTURE TOUGHNESS DERIVED FROM THE 

MICRO-SCRATCH VERSUS 3-PT BENDING 2 

 

4.1 INTRODUCTION 

To gain insight into the discrepancy of fracture toughness found in the previous chapter derived 

from micro-scale and macro-scale tests we studied the effect of explicitly considering inclusions 

within the material matrix. We find that by analytically formulating the effect of the inclusions on 

the fracture resistance of a crack within a particle composite reduces the discrepancy of fracture 

toughness derived from different tests, and matches the trend of fracture toughness values as a 

function of particle volume fraction. An explicit fracture mechanics representation of the fracture 

process zone is proposed to study the effect of inclusions and their effect on the energy release of 

the crack both in the near field and the far field from the crack tip. The derived formulations match 

the experimental behavior of polymers containing glass inclusions tested using two different 

experimental approaches: one based on the standard three-point test single edge notch and the 

other on the micro-scratch test. Existing crack growth design considerations of random composites 

rely on numerical models, which employ an inverse design process. The results of this work allow 

us to move towards a forward design method to design particulate composite microstructures for 

improved fracture resistance. 

 

 

------------------------------------------- 

2Adapted from Al wakeel, S. H., & Hubler, M. (2017). Introducing heterogeneity into the micro-scratch test fracture 

toughness relation. Currently under review by the Journal of Experimental Mechanics. 
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4.2 EXISTING ANALYSIS OF MICROSTRUCTURE TEST  

As mentioned previously in chapter two section 2.1.6, we considered two zones where the local 

arrangement of inclusions and stress shielding plays a role and not necessary be a Fracture Process 

Zone (FPZ) in front of the crack tip.  In these zones, the crack is subjected to closure tractions, as 

first derived by Dugdale and Barenblatt [70, 71]. Both researchers extended LEFM and developed 

models by introducing a narrow zone of yielded material around crack tips. Wells observed that 

the crack faces shifted with plastic deformation—later leading to the development of the crack tip 

opening displacement concept [71]. Current fracture toughness formulations derived from micro-

scale test data do not explicitly account for the material microstructure and its statistical 

distribution although it assumes that the fracture starts within a scalable FPZ under external 

loading [30]. The influence of the microstructure, such as inclusion distribution and inclusion 

content on the failure mechanisms within the composite material and its fracture toughness, will 

be investigated in this work. The development of a method for fracture analysis in multi-scale 

materials that specifically considers the microstructure is important to the understanding of how 

materials fail; and it is a main research direction in materials science research [20].  

4.3 IMPACT OF INTERACTION OF CRACK-INCLUSION ON FRACTURE TOUGHNESS  

For a material made of stiff inclusions embedded in a matrix, the existence of inclusions affects 

the deformations in the neighboring matrix material during loading and generates stress 

concentrations [30]. The stress field of a crack and inclusion interact and impact fracture toughness 

measures of the material. Remote inclusions dispersed within the matrix can also have an impact 

on the fracture toughness of the material in a homogenized sense. A study [50] was presented by 

several authors proposing that such an interaction yields stress shielding; reducing the stress 

intensity at the main crack tip. Their analysis considers the crack-inclusion problem using a global 
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energy balance. It was found that for small inclusion sizes, the crack growth requires more energy 

because the energy release rate decreases as the inclusion size decreases for the same applied load. 

Also, higher crack speeds were found for weakly bounded inclusions compared to the strongly 

bonded case [72-74]. Most of these studies discuss the influence of the existence of one inclusion 

ahead of the crack tip in a general sense, but not applied to a particular fracture toughness test. 

The focus of this work is to develop a formula that considers the effect of the inclusions ahead of 

the crack tip in a scratch test and then compare the results with the ones that have been calculated 

from the standard three-point bend test to gain insight into the source of the difference between 

fracture toughness values measured on different scales. In particular, the fracture mechanics 

framework for micro-scale fracture toughness testing is updated to explicitly consider the effects 

of distributed cracks, voids, and inclusions. To selectively study the impact of microstructure, we 

introduce an inclusion in front of the crack tip to develop an analytical 𝐽-integral relation for a 

crack interacting with inclusions. Near-field and far-field interactions of the microstructure on the 

crack growth are accounted for separately. In the last part of this chapter, we show how the derived 

formulation captures the discrepancy between fracture toughness values derived from micro-

scratch tests and classical three-point bending tests.  

4.4 THEORETICAL DEVELOPMENT 

  4.4.1 𝑱-INTEGRAL FORMULATION FOR MICRO-SCRATCH TEST 

 

In 1968, Rice [37] began his development of the 𝐽 -integral by considering notched two-

dimensional homogenous linear and non-linear elastic bodies. Using Green’s theorem, he proved 

that this definition of the 𝐽-integral is path independent (equal to zero) for any closed path Γ as 

defined below: 
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 𝐽 = ∫ [W dy − Ti  
∂ui

∂x
 ds]

Γ
 (4.1) 

where W is the strain energy density,  Ti  are components of traction on the surface of the interior 

body cut by Γ  and ∂ui  are displacement components in the Cartesian coordinates x  and y .                                                                                                  

Recently, Akono and Ulm [76] and Akono et al. [77], estimated the energy release rate for the 

scratch test geometry using the 𝐽 -integral. With the resulting formulation, they presented a 

technique using a micro-scratch test carried out with a sharp blade pushed into the material surface 

under increasing load to estimate the energy release rate. This induces damage, including a 

horizontal crack which releases energy at the probe-material interface 𝑆: 

 

𝐺 =
1

p
 ∫ (ψNx − Ti

∂Ui

∂x
)  Ds

S

 

(4.2) 

where 𝑮 is the energy release rate, 𝒑 is the perimeter of the probe projected onto the scratch 

direction, 𝑺 is an integration path surrounding the crack tip, 𝝍 is the free energy and 𝒕𝒊 are the 

surface traction components. In Akono’s work, the assumption that the energy release rate is equal 

to the 𝑱 -integral value leads to calculate the fracture toughness though equation 2.12 [5].  

Throughout Akono’s work, the fracture toughness formula was derived assuming material 

homogeneity ahead of the probe during the scratch test by directly applying Rice’s formula. 

Additionally, it was assumed that the generated crack only propagates in the plane of the direction 

of motion. For the application of the 𝑱-integral that we are proposing, the existence of one or more 

inclusions ahead or around the crack tip is considered. Their presence will influence the potential 

energy during the fracture process since a different amount of energy is dissipated. The 𝑱-integral 

of a cracked material with an inclusion has been investigated by some researchers  [48, 73- 75 ]. 

The objective of this work is to calculate the stress intensity factor using a closed path surrounding 
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the crack tip with embedded inclusions. To selectively study the impact of microstructure on the 

micro-scale fracture parameter, our investigation considers the impact of the distribution of 

inclusions and voids in the matrix of the composite material.  

Let us consider a cracked specimen with an arbitrarily located inclusion as shown in Figure 4.1. A 

closed path counter is drawn clockwise from the lower crack face to the upper crack face which 

does not enclose the crack tip singularity in the local field. Only mode I loading will be considered 

here. 

  
Figure 4.1. Path definition for a cracked specimen with arbitrary an arbitrary located inclusion. 

 

                                                                                                                                                                                                   

The size and density of the inclusions in the material are such that at some point in the scratch 

process the path must be drawn with the arbitrary inclusion inside the contour integral. We can 

apply Rice’s formula to the bounded region in Figure 4.1, whose boundary consists of 𝛤1, 𝛤2, 𝛤3, 

𝛤4 and 𝛺,where 𝛺 is the boundary of the inclusion. It is assumed that we can find a closed path 

that excludes the singularity and never goes through the inclusion, then the total contour integral 

is equal to:  

∫[ ] = ∫[ ] + ∫[ ] − ∫[ ] + ∫[ ] + ∫[ ] = 0                                                           

 

(4.3) 
Ω 𝛤1 𝛤2 𝛤3 𝛤4 total 
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where  [ ] =  W dy − Ti  
∂ui

∂x
 ds    (4.4) 

 

The contribution of the two parts 𝜞𝟐 and 𝜞𝟒 to the 𝑱-iintegral is zero since the crack faces are stress 

free: 𝑻 = 𝟎  and 𝒅𝒚 = 𝟎. Contour 𝜞𝟏 is eliminated since the specimen surface is assumed to be 

stress free. In other words, the remaining parts are:  

∫[ ] = ∫[ ] − ∫[ ]  , thus (4.5) 

 

𝑱 = 𝑱𝜞𝟑
− 𝑱𝜴 with one inclusion (4.6) 

 

𝐽 = 𝐽𝛤3
− ∑ 𝐽𝛺𝐾

∞
𝐾=1   Considering multiple inclusions (4.7) 

Since the traction components are equal to zero near the specimen and crack surfaces (stress free) 

the only remaining term in Equation 2.8 is the strain energy density term 𝑾. Based on Equation 

4.7, it becomes clear that the presence of inclusions will cause a change in the 𝑱 -integral value. 

We evaluate this change explicitly for pores, distributed cracks, and inclusions in the near and far 

field next.  

4.4.2 FAR FIELD INTERACTION 

 
To evaluate the far field stress, we use the expression for the change in the potential energy 

proposed by Karchanov et al [72]. By doing so we can link the 𝐽-integral and the potential energy 

in the matrix. Our analysis accounts for the change in the potential energy due to the existence of 

inclusions, which is represented by: 

 

1

2
 𝜎: 𝜀(𝜎) = 

1

2
 𝜎:𝑀°: 𝜎 +  

1

2
 𝜎: 𝐻: 𝜎  = 𝑓0 + ∆ 𝑓 (4.8) 

Ω 𝛤3 total 
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where  𝑓0 is the potential of the matrix;  ∆𝑓 the change in the potential due to the introduction of 

the inclusion,  𝜎 is the applied stress; a colon denotes contraction over two indices; 𝜀 the strain due 

to inclusion volume 𝑀° is the compliance tensor of the matrix; and 𝐻 is the inclusion compliance 

tensor [72].  For an isotropic elastic material, the potential energy of the matrix without inclusions 

is appropriately presented as, 

𝑓0 =
1 + 𝑣𝑜

2𝐸0
𝜎𝑖𝑗𝜎𝑗𝑖 −

𝑣0

2𝐸0
(𝜎𝑘𝑘)

2 
(4.9) 

where, 𝐸0 is the composite modulus of elasticity calculated using the slope of linear portion of the 

stress-strain curve, the average modulus epoxy/glass beads was found to be 1850 MPa from 

detailed calculations is in Appendix B, section B.1  For plane strain requirements,  𝐸0 is replaced 

by (𝐸/(1 − 𝑣2)), 𝑣0 is Poisson’s ratio equals to 0.25 [78] and it is replaced by  (𝑣/(1 − 𝑣2)), σij 

is the component of Cauchy stress tensor and 𝜎𝑘𝑘is the sum of the stresses on the main diagonal 

of the stress tensor. The induced damage will propagate in the direction of 𝑥 = +∞, 𝑑𝑦 = 0 so 

that the only component of the Cauchy stress that will be considered is 𝜎𝑥𝑥 . The stress field 

equation in the neighborhood of a crack tip for opening in mode I in an isotropic linear, elastic 

material: 

𝜎𝑥𝑥 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) (1 − sin (

𝜃

2
) sin (

3𝜃

2
)) + 𝜎0𝑥         (4.10) 

where, (𝑟, 𝜃)  is any location where the stress is to be calculated, σox is a term corresponding to a 

uniform stress parallel to the crack [31]. This term will not be included in the analysis as Irwin 

showed that this stress has no influence on the stress intensity factor and contributes nothing to the 

crack opening stress, although it may slightly effect the size of any plastic zone [31].  

In terms of the elastic potential, the representation of the potential energy for the microstructure of 

a cracked solid material containing inclusions, pores and micro-cracks is given by: 

https://en.wikipedia.org/wiki/Main_diagonal


 

66 

 

𝑓 = 𝑓0𝑀𝑎𝑡𝑟𝑖𝑥
+ ∆𝑓𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 + ∆ 𝑓𝑃𝑜𝑟𝑒 + ∆𝑓𝑀𝑖𝑐𝑟𝑜𝑐𝑟𝑎𝑐𝑘  (4.11) 

The total potential energy will be the sum of all interacting microstructure components [45]. The 

elastic potential contribution from the matrix is given by equation 4.10. For a mixture of interacting 

inclusions, the change in the matrix potential is:         

∆𝑓𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 =
1

(1 − 𝑖)

1 − 𝑣2

2𝐸0
[𝑖[4𝑡𝑟𝜎. 𝜎 − (𝑡𝑟𝜎)2]] 

(4.12) 

where,  𝑖 is the inclusion volume fractions, values of 0%, 5%, 25% and 50% were used to match 

the experimental work. The change in potential due to pores is: 

∆𝒇𝒑𝒐𝒓𝒆 =
𝟏

(𝟏 − 𝒐)

𝟏

𝟐𝑬𝟎
[𝑶[𝟒𝒕𝒓𝝈. 𝝈 − (𝒕𝒓𝝈)𝟐]] 

(4.13) 

where 𝑂 is the porosity by volume, this value was calculated theoretically following the ASTM 

D2734 [79], it was found to be 0.05, 0.05, 0.04 and 0.03 for 0%, 5%, 25% and 50% respectively, 

detailed calculation is in Appendix B, section B.2. The change in potential due to micro-cracks is: 

∆𝑓𝑚𝑖𝑐𝑟𝑜−𝑐𝑟𝑎𝑐𝑘 =
8(1 − 𝑣2)

3𝐸0

1 −
𝑣0

4

1 −
𝑣0

2

𝜎. 𝜎: 𝛼 

(4.14) 

 
where 𝛼 is the crack density. The polymer crack density used in this work is equal to 0.15, based 

on using the same loading condition as in [72]. Crack density can be calculated using the following 

equation [80-84], after initiating damage using uniaxial tension specimen. The cracks were 

observed under an optical microscope, then the average number of microcracks were counted per 

unit volume.                  

𝛼 = 𝑁
𝑣̅

𝜂
 

(4.15) 

where, N is the number of the cracks per unit volume, 𝜂 is the crack aspect ratio, 𝜂 =
𝑎1

𝑎
, 𝑎1 is the 

crack length 𝑎 is the half axes of penny-shaped crack.  
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Substituting equations 4.9 and 4.12-4.14 into equation 4.1 leads to a new formula for a matrix with 

interacting inclusions, pores and micro-cracks in the following expression of the J-integral: 

 

𝐽 = 𝑓0 =
1 + 𝑣𝑜

2𝐸0
𝜎𝑖𝑗𝜎𝑗𝑖 −

𝑣0

2𝐸0

(𝜎𝑘𝑘)
2 + 

 

              
1

(1−𝑖)

1−𝑣2

2𝐸0
[𝑖[4𝑡𝑟𝜎. 𝜎 − (𝑡𝑟𝜎)2]] +  

                  
𝟏

(𝟏−𝒐)

𝟏

𝟐𝑬𝟎
[𝑂[4𝑡𝑟𝜎. 𝜎 − (𝑡𝑟𝜎)2]] +  

               
8(1−𝑣2)

3𝐸0

1−
𝑣0
4

1−
𝑣0
2

𝜎. 𝜎: 𝛼 
(4.15) 

where 𝑖 represents different volume fractions of inclusions,  𝑂 is the porosity by volume, and α is 

the crack density.  

4.4.3 NEAR FIELD INTERACTION 

Many researchers have presented a complex form of the Airy stress function to solve near crack 

tip problems, including Westergaard 1939 [34], Rice 1969 [36], Muskhelishvili 1953 [85], Paris 

and Sih 1965 [86], Goodier 1969 [87], and Eftis and Liebowitz 1972 [88]. To formulate the near 

field stress field of the evolving crack tip for the scratch problem, we use the Westergaard stress 

function for its ability to solve a wide range of crack problems analytically. In general, any choice 

of the stress function must satisfy the following biharmonic equation [34]:   

 

𝜕4Φ

𝜕4𝑥
+ 2

𝜕4Φ

𝜕2𝑥𝜕2𝑦
+

𝜕4Φ

𝜕4𝑦
= 0 

(4.16) 
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Figure 4.2. Definition of the coordinate axis in front of a crack tip with stress and displacement 

components in the Cartesian coordinate system. 

 

In this derivation, two-dimensional geometry is assumed. Cartesian coordinates are used and the 

crack is assumed to be a horizontal line deriving from the crack tip that propagates along the x-

axis throughout the scratch test. Figure 4.2 shows the displacement in the 𝑥  and 𝑦 directions, 

respectively. The corresponding stress components are 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦. These stress components 

must satisfy the governing compatibility equation     

 

Z(z) = ∑ Aj
∞
j=0 zj−

1

2  

 

(4.17) 

                                                                                                                                                                                     

The Westergaard stress function 𝑍(𝑧) [34] has been employed for a cracked material, assuming that 

the shear stress 𝜎𝑥𝑧  is equal to zero. For the leading terms 𝑗 = 0 and (𝑍 = 𝑟𝑒𝑖𝜃) where 𝑒𝑖𝜃 =

cos 𝜃 − 𝑖 sin 𝜃, we get the following set of equations: 

 

𝜎 = 𝜎𝑥𝑥 = 𝑅𝑒(𝑍(𝑧)) = 𝐴0𝑟
−

1
2 [𝑐𝑜𝑠(−

1

2
)𝛽 − (−

1

2
) 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛(−

3

2
)𝛽] 

 

                                  = 𝐴0𝑟
−

1

2 [𝑐𝑜𝑠(
𝛽

2
) − (

1

2
) 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛(

3𝛽

2
)] (4.18) 
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The coefficient  𝐴0 can be calculated after performing the tension test to determine the stresses in 

𝑥 and 𝑦 directions by using the equation below:    

𝐴0 = 
𝜎𝑥𝑥  (𝑟0.5 )

(𝑐𝑜𝑠 𝛽− 
1

2 
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛

3𝛽

2
) 
 

 (4.19) 

  

The location of the inclusion is defined by the angle 𝛽 with respect to the crack tip [49] as shown 

in the Figure 4.3. 

 
Figure 4.3. Two inclusions symmetrically located in front of the crack tip with respect to the crack plane 

 
 

Since we are dealing with material microstructure, in which the probability of an inclusion or void 

existing above or below the crack tip is equal, we can assume on average that 𝛽 = 0. A small value 

for 𝑟 specifies that the inclusion must be within the near-field stress region of the crack tip, thus, 

 

𝝈 = 𝝈𝒙𝒙 = 𝝈𝒚𝒚 = 𝑨𝟎𝒓
−𝟏/𝟐

            for 𝒚 = 𝟎 and 𝜷 = 𝟎                                                             

 

(4.20) 

To investigate the effect of inclusions near the crack tip on the fracture toughness we define a near-

field volume in front of the crack tip and investigate the effect of the inclusion in this volume on 
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the material fracture toughness. We assume that the Local Spherical Representation Volume 

(LSRV) is a symmetrical spherical domain of finite size located in front of the crack tip. A cut-off 

stress may be chosen to scale as a function of the microstructural feature size to capture the extent 

of the stress field interactions between the crack tip and feature.  

 
Figure 4.4. The normalized crack-tip stress as a function of the distance r in front of the crack tip and the 

LSRV. The LSRV is located at the head of the crack tip 
 

 

Using equation 4.20, the way the normalized crack-tip stress decays along 𝑦 = 0 is  illustrated in 

Figure 4.4. The volume of the LSRV is calculated using the standard formula for a sphere. Then 

the number of inclusions per unit volume can be determined by incorporating the volume fraction 

of inclusions in the LSRV region. The radius of the near-field region is chosen to be double the 

inclusion size to allow for some stress shielding. The near field crack inclusion interaction is 

considered within this volume. Throughout this analysis, the shape of the inclusion is assumed to 

be a spherical and arbitrarily distributed in this volume. Perfect bonding is assumed between the 

matrix and the inclusion, although an imperfect bond may be introduced. As presented by Li. et 
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al. [49], it is possible to calculate the change in stress intensity where the inclusion is symmetrically 

placed with respect to the crack plane by: 

 

∆𝐾𝑡𝑖𝑝 = 
1

2√2𝜋
  

𝐸0

1−𝑣2
 𝑟−3/2𝛺(𝑒𝛼,𝛾

𝑇 , 𝛽)𝑑𝐴                                                                             

 

(4.21) 

where 

 𝛺(𝑒𝛼,𝛾
𝑇 , 𝛽) = (𝑒11

𝑇 +  𝑒22
𝑇 ) 𝑐𝑜𝑠

3𝛽

2
+ 3𝑒12

𝑇 𝑐𝑜𝑠
5𝛽

2
 𝑠𝑖𝑛 𝛽 +

3

2
(𝑒22

𝑇 − 𝑒11
𝑇 ) 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛

5𝛽

2
 

 

(4.22) 

 

The terms e11
T , e22

T  and e12
T  represent unconstrained strains in the area located at (𝑟, 𝛽) as it is 

shown in Figure 4.3, their values were calculated using equation 4.22. The fracture toughness at 

the crack tip can then be calculated using the following expression [49]: 

𝐾𝑡𝑖𝑝 = 𝐾0 + ∆𝐾𝑡𝑖𝑝 (4.23) 

where 𝐾0 represents the stress intensity for the matrix without inclusions as given by standard 3-

pt bending equations and ∆𝐾𝑡𝑖𝑝  represents the variation of the stress intensity induced by the 

inclusion located within crack tip field as given by equation 4.21. An upper and lower limit of this 

equation can be calculated within the range of admissible 𝛽  angles, which represent possible 

inclusion configurations in the near field.  

4.5 STRESS INTENSITY FACTOR BASED ON FRACTURE TESTING  

To elucidate the formulas from previous section, we performed two different types of fracture 

toughness tests at different scales: the standard three-point bending and the micro-scratch tests on 

resin composites with four different volume fractures of microspheres ranging from 0%, 5%, 25% 

and 50%. These tests were described in Chapter 3 and their results will be utilized here.  
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4.5.1 COMPARISON WITH THEORETICAL FORMULATION   

The number of inclusions for each volume fraction of the mix (Table 4.1) was calculated based 

on, the percent of inclusion content, LSRV volume (1,206,372 μm3) and the inclusion volume 

(150796 μm3).  
Table 4.1 Number of inclusions based on percent content of inclusion, volume of inclusion and the LSRV 

volume 

Inclusion content (vol.%) Number of inclusion (inclusion) 

0% 0 

5% 1 

25% 2 

50% 4 

 

The strain values for equation 4.22 were calculated using the stress-strain relation for plane strain, 

equation 4.23, for each volume fraction of inclusions tested.  

{

𝜀11

𝜀22

𝜀12

} = 
1+𝑣

𝐸
 [
(1 − 𝑣) −𝑣 0

−𝑣 (1 − 𝑣) 0
0 0 1

] {

𝜎11

𝜎22

𝜎12

}    
(4.24) 

For calculating ∆𝐾𝑡𝑖𝑝 using equations 4.21, it was reported by Li. et al. [49]that the value of  𝛽 

should be less than 𝜋/3 . They investigated the crack-inclusion interaction of two circular 

inclusions symmetrically located with respect to the crack tip. If the spots were located within a 

120ᵒ fan in front of the tip (i.e. 𝛽 ˂ 𝜋/3) increases were observed in the stress intensity at the crack 

tip, while any location beyond this fan reduced the intensity. As the interest of this work is to 

investigate the near-tip intensity due to the interaction of crack-and-inclusion on the fracture 

toughness of the material, the 𝛽 value used in this analysis was less than 𝜋/3. Three different 

values for 𝛽  angles were used: 0, 𝜋/4  and 𝜋/6 , to probe the solution space. The term 𝛺  in 

equation 27 was calculated using the 𝛽  values mentioned above and the strain values from 

equation 30. The porosity was calculated to be 0.5% and the crack density as 0.15 based on data 

presented in [72]. 

Different scenarios are presented in Figure 4.5 in which we investigate the interaction of a crack 

and inclusions in a random system on the near tip intensity stress. ∆𝐾𝑡𝑖𝑝 was calculated based on 
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the probability of finding individual, two, and four inclusions within the selected 𝛽 range. For the 

individual inclusion case half the ∆𝐾𝑡𝑖𝑝 value was used, since the ∆𝐾𝑡𝑖𝑝 equation considers two 

spots symmetrically located with respect to the crack tip. In the case of four inclusions the 

∆𝐾𝑡𝑖𝑝 were multiplied by 2. The plot in  Figure 4.5 (a, b, c and d) illustrates the ∆𝐾𝑡𝑖𝑝 decay for 

one, two and four inclusions located within the LSRV region for 0%, 5%, 25% and 50%, volume 

fraction of inclusions. The x-axis represents the distance in front of the crack tip. The amount of 

energy released during the fracture process was determined by integrating the area under the 

curves. Then by dividing the area by 𝑟, we could calculate the fracture toughness. In Figure 4.5, 

the light gray represents a region between upper and lower bounds for the angle 𝛽 , the case when 

four inclusions are located in front of the crack tip while the medium and the dark gray are for two 

and one inclusion respectively.       
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Figure 4.5. ∆𝐾𝑡𝑖𝑝 𝑑𝑒𝑐𝑎𝑦 representation for different inclusion contents, where the dash lines, center lines 

and the dotted lines are representing the probability of finding four, two and one inclusion respectively in 

front of the crack tip 

                                                                

Figure. 4.6 summarizes the results of this work and shows that as we add microstructure details to 

the analytical fracture toughness relation, we capture the trends both in the macroscale 3pt bending 

tests and microscale scratch tests. The first line (Homogenization) applies the homogenous 

material behavior assumption using equation 4.9 (matrix only). This line is horizontal and serves 

as a reference point, since it shows no effect of changing the inclusion content when calculating 

the fracture toughness since we are only considering the matrix. The second line (Far field 

interaction) represents the matrix behavior augmented with the far field interaction for the mixture 

of interacting inclusions using equation 4.13. The third data set (3PB test) illustrates the fracture 

toughness assessment using macroscale tests: single-edge notched bend specimens loaded in three-
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point bend geometry. The fracture toughness was estimated using the ASTM standard relation. As 

the inclusion content increases, the fracture toughness decreases. This mechanism is influenced by 

the inter-particle spacing theory as explained by Lee and Yee. The increase in the inclusion content 

beyond the wetting capability of the epoxy will also introduce a stress concentration and will allow 

the inclusion to deboned from the matrix [12].  The fourth line (Near and Far field interaction) was 

constructed using the new formulation proposed here in equations 4.21-4.23 By using the new 

formulation, we could capture the effect of local inclusions on the stress field generated by the 

indenter as well as far field effects. A series of data sets representing the maximum and minimum 

limits of equation 4.22 were plotted using 𝛽 values of zero and 𝜋/4. These upper and lower limits 

represent possible inclusion configurations and are shown in Figure 4.6 as dashed lines. The last 

line (scratch data) is a series of data points representing the fracture toughness assessed using the 

formula for fracture toughness from scratch data, proposed by Akono et al. [5]. Akono’s formula, 

equation 2.21 here, ignores the effect of local inclusions on the stress field. It gives the lowest 

value and largest discrepancy to the macroscale scratch values. The new formulation proposed 

here adds to the 𝐽-integral formulation found in Akono et al. to capture the effect of local inclusions 

on the stress field generated by the indenter as well as far field effects.  
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Figure 4.6. Comparison between theoretical and experimental work. Plot illustrate the discrepancy 

between different methods 

                                                                       

The scratch data falls near the bounds of the new fracture toughness formulation, equations 4.21-

4.23, capturing the experimental trend. This agreement suggests we have analytically captured the 

missing microscale mechanisms, which are the significant source of the discrepancy between the 

fracture toughness derived from macroscale tests and microscale scratch tests. There is still a 

consistent discrepancy, though much smaller, which is independent of inclusion content and may 

be due to the following three reasons: 

1. We assume mode I failure for the crack propagation in the scratch test. In real tests when 

applying load, the crack surfaces move relative to each other. There is a possibility that the failure 

or the displacement will be due to mode I, mode II or mode III. Generally, it is possible to describe 

the crack tip stress correctly by considering all these failure modes as explained previously in 

chapter 2, section 2.1.3.  
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2. The arrangement of the micro-structure in front of the crack tip may be spatially ordered or 

jammed such that stable damage evolution or unstable reorganization of material is encouraged. 

This is not considered in any current formulation.  

3. Crack branching and coalescence is not explicitly modeled. Cracks will extend into the 

material if the strain energy release exceeds the energy rate needed to form a new surface. This 

depends on the ability of the particles to translate position and how much packing constraints exist 

are in the system.    

4.6 CONCLUSIONS  

Based on the results, it was concluded that increasing filler content led to an increase of the linear 

elastic energy release rate and a reduction in the material fracture toughness. The difference 

between material fracture toughness obtained from standard three-point tests and the micro-scratch 

test could be described mostly by the effect of microstructural defects in front of the crack tip in 

micro-scratch tests that have not been explicitly modeled. The micro-scratch test can detect the 

microstructure by pushing the probe along the specimen surface and does not allow the whole 

sample structure to assist in redistributing the applied load.  On the contrary, in the three-point test 

we load the material until failure and allow crack stresses to redistribute loading throughout the 

sample. Thus, local material crushing phenomena is much more prevalent in the scratch test than 

three-point bending tests and the local stress field is critical in the formulation of the fracture 

toughness from scratch data. Introducing a region in front of the crack tip to calculate the energy 

release rate during the fracture process and accounting for the heterogeneity of this region not only 

addresses the difference in fracture toughness measures, but gives a better understanding of how 

we can engineer the material to increase fracture toughness for failure on the material length scale. 
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Chapter 5 
EFFECT OF PARTICLE INJECTION ON THE 

FRACTURE TOUGHNESS OF CRACKED CEMENT 3 

 

5.1 MOTIVATION  

Based on the results of the previous chapter, a theoretical formulation exists accounting for the 

heterogeneity of the material in front of the crack-tip and its effect on the fracture toughness 

measure. In this chapter, this formulation will be applied to a real-life problem; injecting particles 

in a wellbore cracked class G cement paste for leak remediation. The goal of this study is to identify 

guidelines for selecting particles to seal cracks in aged cement paste class G based on their impact 

on the mechanical behavior of the matrix. By incorporating particles, we can improve the 

durability and sustainability of the cement paste but the particle content must be selected to avoid 

further cracking. To investigate this, silica particles were injected in a cracked class G wellbore 

cement paste cylinder to model leak remediation. A methodology was developed to determine the 

direct effect of the microstructure of the cement paste near an existing crack tip. The impact of 

surrounding cracks, pores, and stiff particles on the fracture toughness of the material was 

formulated analytically using an extension to the classical J-integral derived in chapter 4. Such a 

formulation allows us to perform a forward analysis in design, avoiding complex numerical models 

during the particle selection process of the particle repair technology. We find that the introduction 

of particles into aged cementitious materials for sealing purposes can cause new stress 

concentrations, which encourage further brittle cracking of the material. 

------------------------------------------- 

3Adapted from Al wakeel, S. et al. Effect of particles injection on the fracture toughness of cracked cement. will be 

submitted for publication in the Journal of Construction and Building Materials.  
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The mechanical behavior of the cement paste containing micro-particles was characterized by 

standard three-point bending tests. Both the experimental and analytical results agree that an 

optimum nanoparticle content can be found that extends the lifetime of the cement without 

encouraging further crack development in the material. 

5.2 INTRODUCTION 

Particles can be added to the cement to improve some properties such as low electrical resistivity, 

self-cleaning, self-sensing capabilities, high ductility. The size of such particles ranges from 1 to 

100 nm and the surface area is relatively high, shown in Figure 5.1 [90].  

 
Figure 5.1: Particle size and specific surface area related to construction materials [91]. 

 

5.3 ROLE OF PARTICLES IN REPAIRING WELLBORE DETERIORATION 

Due to the high surface area-to-volume ratio, particles can be used as a filler to seal the cracks and 

voids in the cracked concrete [91]. The purpose of injecting particles is to remediate cementing 

needs and improve durability, which is a vital factor in the long-term performance of the 

cementitious materials. Particles can reduce porosity and increase strength as they seal cracks and 

voids induced due to the environment or because of material aging [91]. In chapter 2 section 2.2.2, 
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we explained that the fracture resistance of concrete or any cementitious materials are strongly 

related to the C-S-H structure as it occupies more than 60% of the solid volume and generally the 

structure of C-S-H changes with time [4]. In this chapter, we will study the effect of adding 

particles to the wellbores cement class G to seal the cracks and voids as they can cause the leakage 

of CO2 gas. After injection underground, CO2 gas can move upward or sideways due to unbalanced 

subsurface pressures [92]. CO2 may leak from the interface of different materials, such as the 

interface of steel casing and cement, the interface between steel casing and cement plug, the voids 

inside the cement, the crack of steel casing, the crack of cement, and the interface of rock and 

cement, Figure 5.2, shows possible leakage pathways of the CO2 gas. It can leak between the 

cement and the casing, as in pathways a and b, or through the cement itself pathway c, or due to a 

fracture pathway e, or by pathway f which can be between the cement and formation. The 

cementing process can be divided into two types: primary cementing and remedial cementing. For 

both types of oil well cementing, cement slurry is poured into the bottom of the well and presses 

up into the gap between the steel casing and rock formation [93].  
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Figure 5.2. Possible leaking paths for CO2 as explained above in section 5.3 [94] 

 

5.4 PREDICTION OF CRACK GROWTH RESISTANCE WITH THE INJECTED AGED 

CEMENT  

With time, borehole cement can result in a more ductile material, due to the distributed micro-

cracks developed at the C-S-H structure. The existence of cracks within the material can result in 

stress relaxation and thus make the cement more ductile. In this work, we aim to select the optimal 

particles to seal crack networks without introducing new stress concentrations that will encourage 

embrittlement and further cracking within the material [95].  Jo [96] has suggested that adding 

silica particles at (53.67–63.9%) and (52.5–62.7%) at seven and twenty-eight to the cement mortar 

will improve cement compressive strength.   
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5.5 GLASS G CEMENT PROPERTIES / MATERIAL BACKGROUND 

Per API 10A specification for cements and materials for well cementing [97], there are six classes 

for oil well cement: A, B, C, D, G, and H. Each class can be subdivided into three grades: ordinary 

(O), moderate sulfate-resistant (MSR), and high sulfate-resistant (HSR). Cement class G and H 

have better performance when they are in contact with soil than the other cement classes. Other 

types of cements that can be used for oil well cement include Pozzolanic-Portland Cement, 

Gypsum Cement, Microfine Cement, Expanding Cements, Calcium Aluminate Cement, 

ThermaLockTM, Latex Cement, Resin or Plastic Cements, Sorel Cement, and EverCRETETM 

CO2, [98-100]. In the US, approximately 80% of all oil well projects adopt Class G and H cement. 

 

5.6 REPAIR TECHNOLOGY OF THE CRACKED SYSTEM 

To repair the leaking areas near the steel casing, we propose the particle injection technology to 

be descended in this section. Figure 5.3 illustrate the technology used in this manner, with two 

methods that can be used to configure the electrodes. The first way is place an electrode rod 

through one squeeze point and the other electrode is the steel casing. The second approach is to 

place two electrodes through the squeeze points. Two holes in the steel pipe, can be used as squeeze 

points. The particle solutions will be introduced through hollow metal rods that can also carry a 

positive or negative charge to the repair site. Those metal rods are connected to a DC power source 

and an anion and cation reservoir will connect to these rods outside of the borehole setup. The setup 

of the positive and negative rods will be such that the flow of particles in the same direction as 

gravity. The rod in the borehole wall system can allow for the discharge of particles in the cement 

alone or in both the cement and rock regions to repair leaks in both areas.  



 

83 

 

 
Figure 5.3. particle Injection Mechanism 

 

5.7 DETERMINE FRACTURE TOUGHNESS AND THEORY METHODS  

5.7.1 FRACTURE TOUGHNESS CALCULATION 

The formulation derived in chapter 4 will be employed to consider the microstructure defects of 

the aged borehole cement system with the introduction of nanoparticles, as represented in Figure 

5.4  

                              
Figure 5.4. A specimen with particles, pores and cracks arbitrary distributed in the matrix 

 
As discussed in chapter 4 this results in the following expression of the J-integral [54]:  
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where, 𝐸0 is the modulus of elasticity of the cement paste (21 GPa), 𝑣0 cement Poison’s ratio (0.2), 

𝑖 is the particles percent content by volume (0%, 5%, 25% and 50%), 𝑣 particle Poison’s ratio 

(0.17), 𝑂  is the cement paste porosity, per ASTM C830 [101], an experimental work was 

performed to calculate the porosity in each slice and the average value was found to be equal to 

0.4, the detailed calculation is in Appendix C, section C.1. 

5.7.2 COMPOSITE MODULUS 

In the present work, three existing models have been selected to estimate the composite modulus 

needed for equation 4.15. The following assumptions were made in order to calculate the 

composite modulus: perfect bonding between the matrix and the particles in a cracked sample and 

random dispersed in the matrix. The subscripts c, m and i stand for composite, matrix and particles, 

respectively. The properties of the composite material can be determined from properties of its 

constituents using the following models [27]. 

 

5.7.2.1 VOIGT MODEL (ROLE OF MIXTURE) 

The Voigt model gives the composite modulus, 𝐸𝑐, as: 

𝐸𝑐 = 𝐸𝑖 𝑉𝑖 +𝐸𝑝𝑉𝑝 + 𝐸𝑚 (𝑉𝑇 −𝑉𝑖 − 𝑉𝑃) (5.1) 
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where  𝐸𝑐 is the composite Young modulus, 𝐸𝑖 is the particle Young modulus (60 GPa),  𝑉𝑖 is the 

volume fraction (0%, 5%, 25% and 50%), 𝐸𝑝 is the pore Young modulus (which is equal to zero), 

𝑉𝑖 is the pore volume fraction, 𝐸𝑚 is the matrix Young modulus (21 GPa), 𝑣0 cement Poison’s 

ratio (0.2) and  𝑉𝑇 is the total specimen’s volume. 

5.7.2.2  HALPHIN-TSAI MODEL (SEMI EMPIRICAL MODEL) 

A simple semi-empirical equation was developed by Halphin and Tsai shown below: 

𝐸𝑐 = 𝐸𝑖 𝑉𝑖 + 𝐸𝑚 𝑉𝑚 (5.2) 

 

5.7.2.3 LEWIS AND NIELSON (ISO-STRESS MODEL) 

The Lewis and Nielson model give the composite modulus, 𝐸𝑐, as: 

 

𝐸𝑐 = 
𝐸𝑚(1 + 𝐴𝐵∅)

(1 − 1 + 𝐵𝜓∅)
 

(5.3) 

  
 
where A is a constant, which for randomly packed spheres takes the value of 1.15 [27],and B is a 

constant, with  B = 
(

𝐸𝑖
𝐸𝑚

−1)

(
𝐸𝑖
𝐸𝑚

+𝐴)
 ; ∅ = particle fraction volume, 𝜓 is a numerical  factor expressed by 𝜓 

= 1+ (
1−∅𝑚𝑎𝑥

∅𝑚𝑎𝑥
2 ) ∅, ∅𝑚𝑎𝑥 = matrix filler packing fraction = 0.625, is picked for prepared systems by 

using different methods like extraction, injection and compression [27]. 

The theoretical values of the composite Young’s modul are plotted in Figure 5.5. The plot shows 

that the composite Young’s modul increases with increasing volume fraction of the particles. This 

stems from the fact that the particles modulus is higher than the cement paste modulus.  
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Figure 5.5. Relation between the composite’s modulus and the particles volume fraction 

 

5.7.3 SAMPLE PREPARATION PROCEDURE  

Following up the procedure prescribed in the API Standard 10A [97], cement class G was mixed 

at a water-to-cement ratio of 0.44 without the usage of aggregate or additives. The specimens were 

cylinders with dimensions of 100 mm diameter and 200 mm height as shown in Figure 5.6. A 

Waring Blender Model 686CS was used to mix the cementitious material, which can be 

programmed to the speed of 4000±200 r/min for 15 seconds and 12000±500 r/min for 35 seconds. 

After mixing, the cylinders were placed in water within the first day of mixing, per API 10A 

Standard, the water temperature was 38°C. The samples were cured for 7 days before testing. A 

10 mm slice was removed from the top and bottom cylinder to produce a smooth surface. 
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Figure 5.6. Sample Cutting Size 

After cutting, the sample was immediately sealed. 

 

5.7.4  PARTICLES INJECTION TECHNOLOGY  

Particles were injected into the cementitious materials by using external current. This technology 

was performance according to the ASTM C1202 [102]. As illustrated in Figure 5.7, the cement 

cylinder was placed in the middle part of the chamber.  

 
Figure 5.7. Electro-migration chamber used for ionic exchange test 

The apparatus used here consisted of two compartments. Compartment 1 was called “the upstream 

chamber” filled with a sodium chloride solution, and it connects with the negative polarity. 
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Depending on the external current, the anions of solution in this compartment would be injected 

into the cementitious material. Compartment 2, was filled with a sodium hydroxide in all cases. 

The concentrations of sodium hydroxide and sodium chloride were 0.3N and 3% by mass, 

respectively. The size of the disc sample were 100× 50mm. The particle sizes and types were 

selected in this study are listed in Table 5.1. 

Table 5.1 Different particles Used in Injection Test 

particles Size Weight % Manufacturer 

SiO2 7 nm 30 Sigma® 

SiO2 22 nm 40 Sigma® 

Al2O3 50 µm 40 Sigma® 

 
The voltage magnitude used during the injection was 60V. The penetration is much lower with 

Class G cement than with regular concrete per ASTM C1202 [102]. The particles were injected 

from the surface close to the negative polarity. To simulated the underground environmental, the 

whole test unit was put into an incubator at 49 °C. Over forty percent of particles would generate 

severe crystal generation which would block the path of injection. In order to inject particles into 

the oil well cement, the apparatus was run for 12 hours 

5.7.5 EFFECT OF PARTICLE INJECTION ON THE FRACTURE TOUGHNESS OF CEMENT  

We have developed a sample preparation method and testing plan to experimentally verify the 

derived fracture toughness trends for the oil well cement. Single Edge Notch Bend (SENB) 

geometry was used for fracture toughness assessment. Specimen dimensions were selected to 

satisfy ASTM 399 plane strain requirements [62] as shown in Figure 5.8.A sharp crack was created 

by inserting a fresh razor blade into the notch. 
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Figure 5.8. Specimen geometry and dimensions 

 

The cylinder was sliced into 7 circular disks as shown in Figure 5.9. At least 3 cylinders with 

different size (7 μm, 22 μm and 50 μm) injected particles were cut into disks for analysis. 

 

 
Figure 5.9. Specimen slicing 

 
The challenge in this stage was how to construct specimens from a disk made of cement paste 

injected by particles such as nanosilica. The material is brittle and soft such that adding any 

pressure on the disks broke them. The decision was made to extract these specimens using water 

jet cutting. We were able to extract three pieces from each slice as shown in Figure 5.10. 

 
Figure 5.10. Disk with three specimens to be extracted and a sample that has been cut from the repaired 

cement using the water jet cutter. 
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5.7.5.1 THE ASTM STANDARD THREE-POINT TEST  

The standard three-point test were performed with the aid of an Instron testing machine. A constant 

displacement load was applied on the specimens. Then fracture toughness was determined using 

the standard formula for the three-point bend geometry from equations 2.32 and 2.33. 

 

5.8  RESULTS AND DISCUSSION  

5.8.1 STATISTICAL ANALYSIS USING ANOVA 

Analysis of variance “ANOVA” were performed on the data obtained from the tests. This method 

was used to analyze the data obtained from the 3p test, a statistical difference was found between 

the tested data, detailed calculations are listed in Appendix C, section C.2. Figure 5.11 shows the 

results of this analysis for the 𝑆𝑖𝑂2 particles. 

 

 
Figure 5.11. Relation between fracture toughness and slice location for cylinders injected with SiO2 

particles 
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As is illustrated in Figure 5.11, the fracture toughness value is decreasing from slice 2 (with no 

particles) to slide 7 (injected side of the cylinder).  

The following trends were obtained from the application of the different volume fractions of 

particles considered in the derived formula for the fracture toughness of the aged cement-

nanoparticle system.  

 
1. The relation between J-integral and crack density for a particles volume fraction of 5 % 

and porosity 4% is illustrated in Figure 5.12, shows that the fracture parameter 𝐽 will 

significantly increase as the crack density increases. That is expected since increasing the 

amount of cracks in the matrix will increase the potential energy in the system and its 

tendency to fracture. 

 

 
Figure 5.12. Relation between 𝐽 -integral and crack density values   

 

2. The relation between 𝐽 -integral and particles size for particles contained = 5%, porosity 

= 10% and crack density = 20%, is illustrated in  Figure 5.13 which shows the relation 

between the particle size and the J-integral value. It can be observed that changing the size 

of the particles has no significant influence on the fracture parameter. That makes sense 
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since the particles size is of order 10−9 m even when we consider particle agglomerate as 

shown in the last data point.  

 
 Figure 5.13. Relation between 𝐽- integral and particle size   

 
3. The relation between the 𝐽-integral and the particle volume fraction for porosity =4% and 

crack density = 20%, is illustrated in Figure 5.14, which shows that increasing the volume 

fraction of particles yields a decrease in the 𝐽–integral fracture parameter. The reason is 

that increasing the volume fraction of the particles will increase the brittleness of the 

concrete and it tendency to develop more cracks as becomes more brittle. 

0

50

100

150

200

250

300

350

400

450

8 9 10 11 12 13 14 15 16

J-
in

te
g
ra

l 
(M

P
a.

√
m

)

Particle size (*10 -9 m)

considering particles   

agglomerate 



 

93 

 

 
Figure 5.14. Relation between 𝐽 -integral and particles volume fraction 

 

The inspection of particles into the cracked oil well cement paste can fill the spaces and the cracks 

in the matrix and act as a seal in the material flow network. Adding the particles would also 

increase the brittleness of the concrete and its tendency to develop more cracks. By incorporating 

particles, we can improve the durability and sustainability of concrete but must select a particle 

content that avoid creating a more brittle material than the existing material. With the newly 

derived equation, we can now conduct this analysis.  

 

5.9  CONCLUSIONS  

Based on the results obtained from the analytical and experiment analysis, it was concluded that: 

1. The composites Young’s modulus increases with increasing volume fraction of the 

nanoparticles. This is related to the fact that the particles modulus is higher than the cement 

paste modulus.  

2. The fracture toughness value is decreasing from slice to another, this is due to the different in 

particle contained in different location within the same cylinder.  
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3. The fracture parameter J-integral significantly increases as the crack density increases. That is 

expected since increasing the amount of cracks in the matrix will increase the potential energy 

in the system and its tendency to fracture. 

4. It is observed that changing the size of the injected particles has no significant influence on the 

fracture parameter. That makes sense since the particle size of order 10−9 . 

5. Similar trend was found from the theoretical formulation and the three-point bending. 
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Chapter 6 
PARTICLE JAMMING EFFECT ON THE FRACTURE 

TOUGHNESS OF HETEROGENOUS MATERIAL 4 

 

6.1 MOTIVATION  

Based on the findings in chapter 4, and to explain the remaining discrepancy found between the 

scratch and three-point tests, in this chapter we study how the degree of spatial ordering of the 

particles will affect the fracture toughness of heterogeneous material [4]. For the spatial 

arrangement of the inclusion to be the cause of the fracture testing discrepancy, the following 

conjecture must be true: fracture toughness of a particle composite depends on a statistic of the 

particle arrangement, and not their exact locations. By applying LEFM in a cracked body of 

arbitrary shape subjected to mode I configuration, a theoretical formulation is presented where 

packing scenarios and fracture response are linked using order and jamming as quantifiers. The 

methodology presented in this work shows that incorporating the degree of randomness in particle 

packing in determining material fracture toughness will improve structure’s ability to withstand 

local damage without fracturing. This concept is generalized to capture a trend in fracture 

toughness with a single statistical variable; as mentioned in chapter 2, the translation parameter T 

used in this study, equation 2.36. In an ordered system, T is equal to one, such as the case of FCC 

while it equals zero for the case of ideal gas. The orientation order equation was discussed more 

thoroughly in chapter 2, equation 2.36 [68]. 

 

------------------------------------------- 

4Adapted from Al wakeel, S. et al. Particle jamming effect on the fracture toughness of heterogeneous material. will 

be submitted for publication in the Journal of Construction and Building Materials.  

 



 

96 

 

6.2  INTRODUCTION AND BACKGROUND RELEVANT TO PREVIOUS WORK 

6.2.1 MICROSTRUCTURE ARRANGEMENT AND PARTICLE PACKING  

The most suitable way to define the arrangement of inclusions in a system is by knowing how 

packed the system is, or we can say how jammed or unjammed the system is. The concept of 

jamming is used to determine the degree of particle packing within a system [103]. At a high 

density and when applying external load, the particles are in contact with each other and there is 

no free space available for them to move. In other words, the stress is supported by a network of 

particles and the close packing of these particles will lead the system to yield [103].  As an 

application of this problem we consider concrete and cementitious materials at multiple length 

scales: molecular to macroscale. These scales exhibit different structures each with degrees of 

randomness or order as characterized by a jamming phase diagram Figure 6.1 [4, 104]. The 

structure of the hardening cement paste is the core matter in multi-scale modeling of concrete, 

since it changes upon changing the cement hydration rate (different microstructure at different 

times). For example, the development of shear strength in the cement matrix has been tied to 

jamming of the hydration product. By incorporating information from the material structure, as 

well as the defects, we can better explain the fracturing and cracking of concrete or any composite 

material [103]. In this study, we will introduce a formula to predict the change in crack-tip SIF due 

to different particle packing arrangements and validate it numerically. 
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Figure 6.1.  Jamming phase diagram [105], concrete or cementitious material’s structure [4] 

 

6.2.2 ARRANGEMENT STATISTIC FOR FRACTURE PREDICTION 

To study the fracture behavior of a heterogonous material, it is important to investigate the impact 

of particle packing and arrangement on macro-scale fracture parameters. Within the framework of 

the LEFM, the concept of the fracture resistance using energy criteria was presented by Irwin and 

Kies [31]. In 1962, Krafft, Sullivan and Boyle [31] introduced the 𝑅 -curve. They argued that each 

material has a distinctive 𝑅  -curve at a particular thickness under a given loading rate and 

temperature, and has nothing to do with the initial crack length and specimen size and shape. This 

work aims to address the problem of a crack growing in a random medium formulated by Planas 

[1]. Concrete and cementitious materials are heterogeneous with highly complex random 

microstructure. In concrete the micro-cracks and voids formulation exist even before loading; 

generally, it is assumed micro-cracks are engaged from strain localization in front of the crack tip 

forming a zone known as the fracture process zone [9].  Spatial flaw and inclusion distributions 
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within this zone strongly affect crack growth. Let us represent the fracture process zone by drawing 

a small cube ahead the crack tip having gradient colors representing different crack growth 

resistance 𝑅 as it is shown in Figure 6.2. Since concrete is a quasi-brittle material the fracture 

process zone will stretch far from the crack tip and engage a variety of different phases in the 

concrete composite, each with its own crack growth resistance [31]. By assuming fracture mode I 

under fracture energy force 𝜑, the crack will grow as long as the fracture energy force 𝜑 is greater 

than the crack growth resistances 𝑅   along the crack track (𝜑 = 𝜑1). Assuming R will vary 

randomly in front of the crack tip based on the nature of these heterogeneous materials, the 

probability of crack growth is thus totally related to the probability of finding a weaker cube along 

the crack path, but the crack won’t run if there is a strong cube existing in front of the crack path 

[31]. This type of theory has been explored by Planas to describe the effect of arrangement on 

fracture resistance, but it can only account for a linear variation ahead of a crack tip, which is not 

realistic for a 3D stress field and doesn’t capture the effect material phases have on each other as 

the crack grows. A more accurate description of the microstructure is needed. 

 
Figure 6.2. Problem statement proposed by Planas [1] 

6.2.3 MICROSTRUCTURE RELATED THEORY: RADIAL DISTRIBUTION FUNCTION 

In order to understand the physical behavior and fracture of any material which consists of different 

regions, such as concrete, it is important to consider the microstructure information, including the 
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spatial distribution of phases in the material. A number of approaches can be used to describe the 

spatial distribution within the material [104]. The Radial Distribution Function (RDF) computes 

the possibility of finding a particle at a distance between 𝑟 and 𝑟 + ∆𝑟 from a reference particle. It 

is a normalized pair correlation function. It is used to define how the particles arranged inside 

material structure [104]: 

 

𝑔(𝑟) = 
𝑛(𝑟)

𝜌∗4∗𝜋∗𝑟2 ∗∆𝑟
                                        (6.1) 

 

where 𝑔(𝑟) is the radial distribution function, 𝑛(𝑟) is the number of particles in a shell of width 

∆𝑟 at a distance r, 𝜌 is the particle density 

 
Figure 6.3. Radial distribution function in two dimensional fluids [105] 

 

The RDF can be plotted versus the inter-particle separation distance r as shown in Figure 6.3. The 

probability of finding a particle at a distance equal to the particle diameter is zero while when 

increasing the distance r there is a high probability of finding particles. In other words, at short 

separation distance (less than the particle diameter) the RDF is zero while it is equal to 1 at large 
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value of r. This is the case if there is no long-range order in the system and the correlation is lost, 

ie. the system become more homogeneous [103], as illustrated in Figure 6.3. Flexible solids have 

fixed particles positions that do not overlap. The most suitable way to define this system is by 

defining how packed the system is or jammed. A jammed system is a mechanically stable system 

but not in its lowest energy state. The density of particle packing can be defined as a function of 

space occupied by the particles; the following formula represents the packing fraction [103]: 

∅ =
Aparticle

Abox
 =  

Vparticle

Vbox
      (6.2) 

Applying any external force on the jammed system may cause particle rearrangements if the 

system is packed but in a jammed state. In this case, the material turns into an amorphous solid 

and develops a yield stress [103]. To confirm the jamming effect, we will present a comparison 

between the theoretical formulation and the numerical analysis in the next section. 

6.3  FRACTURE FORMULATION  

6.3.1 LINEAR ELASTIC FRACTURE MECHANICS 

The fracture of the brittle material can be modelled by LEFM if the fracture process is small 

compared to the size of the structure [1]. The sharp drop of the stress strain curve characterizes the 

behavior of the quasi-brittle materials after the highest stress is reached as illustrated in Figure 6.4. 

Tension softening behavior can be elucidated by damage mechanics due to the initiation, growth 

and coalescences of microcracks [30]. Griffith was the first who assumed that preexisting cracks 

could be found in most quasi-brittle materials. He determined how crack size would change with 

the change in energy, ΔU [32]. LEFM will be implemented to study crack resistance in this study. 
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Figure 6.4. Crack propagation in concrete under axial tension [30] 

 

6.3.2  FRACTURE TOUGHNESS BASED ON FINITE ELEMENT ANALYSIS 

ABAQUS [58] has the capability to calculate the LEFM stress intensity factors parameter 𝐾𝐼 

within the ABAQUS postprocessor using the displacement extrapolation method. The SIF is 

determined by implementation of the concepts of plane strain conditions, the 𝐽-integral, and mode 

I failure. A study has been conducted to examine the sensitivity of the solution. Various levels of 

refinement were generated in the model domain using the mesh tool to ensure the convergence of 

the solution. As the mesh size is reduced (number of elements increased), the change in the value 

of the SIF decreases as shown in Figure 6.5. The mesh refinement study showed the influence of 

the number of elements in front of the crack tip on the SIF value.  
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Figure 6.5. A Convergence study of the fracture toughness as the number of elements increases 

 

The element size at convergence used in this study is 0.5 mm and the element shape is rectangular. 

Figure 6.6 shows the meshed element used in this analysis. 

 

 
Figure 6.6. Mesh size and shape used in this analysis 

 

A series of numerical simulations was conducted selecting different inclusion Young’s moduli (𝐸𝑖) 

for the embedded inclusion in front of the crack tip to evaluate the relation between the normalized 
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fracture toughness (𝐾𝐼/𝐾0) and the normalized modulus of elasticity (𝐸𝑖/𝐸0). 𝐸0 and 𝐸𝑖 represent 

the Young’s modulus for matrix and inclusion, respectively and  𝐾0  and 𝐾𝐼  are the fracture 

toughness without and with inclusion respectively. The results are presented in Figure 6.7 (b). As 

the value of the inclusion stiffness increases the stress intensity factor value decreases. A good 

agreement was found between the results of this analysis as presented in Figure 6.7 (a & b) and 

the experimental work presented by Papaioannou et al [106] as shown in Figure 6.7 (c). The same 

trend found from the theory for various ratios of Young’s modulus (Ei/E0)  presented by Li et al. 

[49] as illustrated in the Figure 6.7 (d).  
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(c) 

 
           (d) 

Figure 6.7. Comparison between numerical and theoretical formulations behavior of crack-inclusion 

interaction within crack tip field for mode I failure. The fracture toughness has different values based on 

different materials: (a) The average values of the fracture toughness from the scratch test for the curves 

showing a kink-current work. (b) Fracture toughness from numerical simulation-current work. (c) 

Numerical formulation for central cracked specimen by Papaioannou et al [106]. (d) Theoretical 

formulation for the impact of single inclusion located ahead of crack tip in 3PB specimen by Li et al [49]. 

 

6.3.3 NUMERICAL MODELING USING ABAQUS   

In chapter 4, we defined a volume in front of the crack tip and investigated the effect of the 

inclusion existence in this volume and their spatial statistic on the material fracture toughness. We 

assume that the LSRV is a symmetrical spherical domain of finite size located in front of the crack 

tip. Linear elastic inhomogeneous behavior is assumed.  Jamming can be introduced by changing 

the particle packing in the LSRV. For an accurate prediction of the material fracture, we accounted 
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for the statistical arrangement or packing of the particles in the LSRV. We will briefly consider 

three microstructure scenarios of dimensional bodies of heterogeneous material having a straight 

crack. The three bodies contain identical number of particles but different configurations or 

arrangement as shown in Figure 6.8. The left panel represents a system which contains a symmetric 

distribution of particles; the middle panel an asymmetric distribution; and the right panel shows a 

system that represents clumped or jammed particle geometry. The clumped particles consist of two 

particles that behave as a single rigid body. These clumped particles do not overlap and will not 

break apart regardless of the forces acting upon them. For the three different particle arrangements, 

attention was focused on investigating the variation of the stress intensity as a function of particle 

arrangement.   

 
 

Figure 6.8. 2D problem fluctuating particles arrangement: (a) ordered particles (b) randomly 

arrangement of particles (c) clumped particles 

6.3.4 THEORETICAL CONSIDERATION FOR PARTICLE ORIENTATION  

To capture the fracture behavior and the crack growing in a random material, an expression for the 

change in the potential energy proposed by Karchanov et al [54] will be used.  The location of the 

particle is defined by the angle β with respect to the crack tip as shown in Figure 6.9. Equations 

4.21-4.23, presented by Li et al [49] and explained in chapter 4, were used to calculate the change 

in the SIF where the inclusion is symmetrically placed with respect to the crack plane, is again 
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applied here to model the interaction of the stress field from the crack and any other microcracks 

or pores.   

 
Figure 6.9. Arbitrary particle shape located in front of a crack tip 

 

 
𝐾𝑡𝑖𝑝 = 𝐾0 + ∆𝐾𝑡𝑖𝑝 (6.3) 

                                                                                                                                                                                                                  

where 𝐾0 represents the stress intensity for the matrix with no particle and ∆𝐾𝑡𝑖𝑝 represents the 

variation of the stress intensity induced by a particle orientation within the crack tip field as given 

by the following equations [73]. The change in the stress intensity for an individual circular particle 

located at (𝑟, 𝛽) can be formulated by the equation below: 

 

∆𝐾𝑡𝑖𝑝 =
𝜋 𝐸 𝑒𝑇 𝑅2cos(

3 𝛽
2 )

6√2𝜋(1 − 𝑣)𝑟3/2
 

(6.4) 

 

where:   ∆𝐾𝑡𝑖𝑝  is the change in the stress intensity for individual circular particle,  𝐸  the moduli 

of the particle,  𝑅  particle radius and  𝑒𝑇  the strain at (𝑟, 𝛽). This relation was derived based on 

energy changes provided by the induced stresses considering a contour around the crack tip. 

The contribution of multiple particles to the stress intensity will be considered by integrating over 

particle volume and material volume: 
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∆𝐾𝑡𝑖𝑝 =
𝐸 𝑒𝑇 

6√2𝜋(1 − 𝑣)
∫ 𝜌(𝑅)

𝑅𝑐

0

𝑑𝑅 ∫
1

𝑟3/2
𝐴(𝑅)

[cos(
3𝜃

2
)]𝑑𝐴 

 

(6.5) 

 

where  𝜌(𝑅) represents the concentration of particles per unit volume and 𝐴(𝑅) is the material 

area around the crack tip [73]. We have chosen to consider the clumped particles as an elliptical 

particle as shown in Figure 6.10. The strain in the ∆𝐾𝑡𝑖𝑝 expression is expressed in terms of particle 

geometry and loading orientation as introduced by Kachanov et al [54]:  

𝜀 =
𝑃

𝐸
 
1

𝐴
 𝜋𝑎[𝑎 − (𝑎 + 𝑏) cos2𝛼] 

(6.6) 

where a, b are the axes of the elliptical particle and 𝛼 is the angle of the uniaxial loading P. 

 
Figure 6.10. (a) Clumped particle shape considered in the present work  

       (b) Clumped particle under uniaxial loading 
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Lastly, we can simulate the orientation effect of the clumped particles by combining the 

∆𝐾𝑡𝑖𝑝 equation for multi-particles and the above strain equation for different particle orientation as 

shown in Figure 6.11. 

 

 
Figure 6.11. Arbitrary particle shape located in front of a crack tip 

 

6.4 RESULTS AND DISCUSSIONS  

To allow for a direct forward design method, a key insight from this work shows the analytically 

formulated particle orientation effect in the crack near field on the fracture toughness of the 

composite material. Various particle configurations were simulated to verify the theory that the 

jamming and configuration systematically affect the fracture toughness irrelevant of the particular 

inclusion locations. A series of numerical simulations was conducted selecting 60 exclusive fields 

of ordered, random and clumped arrangements, MATLAB code is generated for this purpose, the 

commented MATLAB code is shown in Appendix D, section D.1. Figure 6.12 shows examples of 

different configurations that were considered in this study. More configurations are in Appendix 

D, section D.2. 
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                                                                                 (a) 

 
                                                                                  (b) 

Figure 6.12. (a) Stress field around the crack tip (b) Different particle arrangement, for more detailed 

configuration see appendix D 

 

As the interest of this study is to investigate the interaction between the SIF and the particle 

arrangement, a comparison was made between theoretical and numerical analysis summarized in 

Table 1. It can be noticed that the differences between numerical results and analytical results are 

in good agreement with less than 2% difference. 

Table 6.1. SIF values calculated using average of 60 fields numerical and theoretical analysis for each 

arrangement 

Arrangement 
Theory 2D ABAQUS 

∆𝐾𝑡𝑖𝑝 (MPa. √m) STDEV ∆𝐾𝑡𝑖𝑝 (MPa. √m) STDEV 

Ordered 0.235 0.0753 0.231 0.152 

Random 0.505 0.0603 0.490 0.207 

Jammed 0.7761 0.2204 0.761 0.387 

 
Since the above results are only for one parameter set, a parameter study for was conducted to 

determine the maximum effect the particle arrangement could have on this geometry. Different  
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particle sizes and modulus of materials were used to study the effect of changing these variables 

on ∆𝐾𝑡𝑖𝑝   for 60 arrangements. Summary of this study is listed in Table 6.2, using double and half 

values of particle size and double and half values of the modulus. As shown in Table 6.2, when 

doubling the particle size twice the difference in the ∆𝐾𝑡𝑖𝑝  value is observed between the ordered 

and the jammed arrangement than the ∆𝐾𝑡𝑖𝑝 value found in Table 6.1. This shows that while the 

effect of arrangement is proportionally smaller than other contributions to the fracture toughness 

for our experiment, it can be more prominent depending on the composite properties.  

 

Table 6.2. Summary of the variables considered for each arrangement used in this study 

Parameter study 
Arrangements 

Ordered Random Jammed 

Double 

particle size 

∆Ktip  (MPa√m) 0.464 1.374 2.343 

STDEV 0.029 0.067 0.056 

Half 

particle size 

∆Ktip  (MPa√m) 0.044 0.072 0.153 

STDEV 0.003 0.004 0.025 

Double 

modulus value 

∆Ktip  (MPa√m) 0.385 0.574 1.035 

STDEV 0.037 0.024 0.084 

Half  

particle value 

∆Ktip  (MPa√m) 0.079 0.164 0.202 

STDEV 0.007 0.027 0.013 

 

6.5 EXTEND FORMULA CONSIDERING SPATIAL ARRANGEMENT OF MICRO-

STRUCTURE 

To generalize the trend observed in section 6.4, namely that arrangement is linked to stress 

intensity of a material, we introduced the concept of translational order parameter T defined in 

equation 2.36, which measures the degree of spatial ordering. By using finite element analysis with 

the Abaqus software and through the displacement extrapolation method during post-processing 

based on nodal displacements near the crack tip, we developed a systematic study to test for a trend 
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in fracture toughness as a function of translation order of the inclusions within a composite 

material. A 3D model was generated to consider particle arrangement on the fracture toughness. 

Figure 6.13 shows the three-point bending simulation of the model used in this work.  

 
Figure 6.13. 3D geometry and boundary conditions used in this study 

 

As shown in Figure 6.13, particles were placed randomly in the LSRV in front of the crack tip to 

study the impact of particle arrangement on the SIF value. Numerous instances of randomly 

arranged inclusions with computed T parameters were tested in bending. With this we were able 

to generate the trend seen in Figure 6.14.  
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Figure 6.14. Randomly arranged inclusions with computed T parameters in front of a crack tip 

 

Figure 6.14 clearly demonstrates that the state of particle ordered represented by the T parameter 

will have impact on the SIF value. As the system approaches the ordered state, the value of SIF 

increases and this would encourage the cracks to initiate and propagate.  The difference in the SIF 

magnitude in Figure 6.14 makes sense since it matches the difference we were seeking in the 

remaining discrepancy between the scratch and 3p-tests shown in Figure 4.6 after addressing the 

near and far field microstructure interactions. As shown in the parameter study, a larger difference 

due to particle arrangement may be observed if different material parameters are considered.  

6.6 CONCLUSIONS 

By exploring a set of simple systems of different particles packing with the same volume fraction 

of particles, we quantified the packing effect on the material’s fracture toughness. Results shows 

that for accurate prediction of the stress intensity factor, it is necessary to account for the material 

microstructure including particle packing and orientation. Introducing jamming and unjamming 
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effects in the system, meaning that the system moves to its lowest energy, it becomes more stable 

and rigid. According to this definition, in an unjammed heterogeneous material with low volume 

fraction of particles and at a certain stage of stress, the particles are free to explore different 

arrangement within the system. This will encourage the crack to propagate. 

1. This chapter provides an evaluation of the SIF based on particle packing and arrangement 

near the crack tip in a heterogeneous material. 

2. A good agreement between the theoretical and the numerical analysis based on the SIF 

values was fond for different particle configurations.   

3. For an accurate calculation of the SIF, triangular singular elements were considered at the 

crack tip in the finite element analysis. 

4. As the mesh size is reduced, the change in the value of the SIF decreases. 

5. For different particle sizes selected to be embedded in front of the crack tip, the SIF value 

decreases as the particle size increases. 
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Chapter 7 
 

CONCLUSIONS AND SUMMARY 

 

7.1 SUMMARY 

This dissertation presents methodological contributions toward incorporating material 

heterogeneity in particulate composites via the degree of spatial ordering, disordering and packing 

of the inclusions in determining the fracture toughness of the heterogeneous material. In addition, 

the overreaching theme was to provide insight into the investigation of the effect of inclusions in 

front of a crack tip as given by their spatial statistics, arrangement and orientation on the fracture 

resistance value. Specifically, this research addresses the following contributions.  

7.2  METHODOLOGICAL CONTRIBUTIONS 

Each of the four chapters present a concept as summarized in the following sections: 

7.2.1 VERIFY FRACTURE TOUGHNESS MEASUREMENT DISCREPANCIES 

In chapter 3, heterogeneity was considered near the indenter tip. A study of the impact of 

microstructure on micro-scale fracture parameters was presented using an experimental and 

theoretical investigation of the fracture toughness of a representative composite material consisting 

of glass beads embedded in epoxy using micro-scratching and conventional three-point bending 

tests. A discrepancy was found between the fracture toughness obtained from standard three-point 

test and the micro-scratch test as described in chapter 4, is shown in Figure 7.1. Based on this 

finding and to capture the effect of local inclusion on the stress field generated by the indenter, the 

need for an updated J-integral formulation for micro-scale tests was clearly demonstrated due to 

the interactions of inclusions with the scratch probe. 
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Figure 7.1. Fracture toughness range for different glass beads content using scratch and three-point tests 

 

7.2.2 NEW FORMULATION FOR DATA ANALYSIS TO DESCRIBE DISCREPANCY   

In chapter 4, we proposed a new formulation required to obtain agreement between scratch and 

three-point fracture parameters by updating the 𝐽-integral formulation found in Akono et al [5]. by 

introducing the heterogeneity to capture the effect of local inclusions on the stress field generated 

by the indenter.  
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Figure 7.2. Comparison between theoretical and experimental work. Plot illustrates the discrepancy 

between different methods 

 

Chapter 4 addressed the following key points: 

 Introduces two regions in front of the crack tip to account for the heterogeneity (pores, 

cracks, and inclusions) of these regions to address the difference in fracture toughness 

measures. 

 Gave a better understanding of how we can engineer the material to increase fracture 

toughness for failure on the material length scale.  

 Further consideration of inclusion arrangement is needed.  

The derived formulations match the experimental behavior. Existing crack growth design 

considerations of random composites rely on numerical models that employ an inverse design 

process. The results of this work allow us to move towards a forward design method to design 

microstructures for improved fracture resistance.  
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7.2.3 APPLICATION: BOREHOLE CEMENT 

In chapter 5, the main finding was that the introduction of particles into aged cementitious 

materials for sealing purposes can cause new stress concentrations that encourage further brittle 

cracking of the material. The mechanical behavior of the cement containing particles was 

characterized by standard three-point bending tests. Both the experimental and analytical results 

agree that an optimum nanoparticle content can be found that extends the lifetime of the cement 

without encouraging further crack development in the material. This result is illustrated in Figure 

7.3. The images from the left to the right side of the figure shows the stages of cement samples 

behavior at different time periods. The first image shows newly mixed cement that has a 

considerable amount of voids. With aging, loading and other behaviors such as shrinkage the 

amount of the cracks will increase and that is illustrated in the second image. By adding particles 

into the network to seal leaks, as illustrated in the third image, it is expected that the cracks would 

be sealed but at the same time the fracture parameter 𝐽-integral will decreases with the time as 

illustrated in the curve in Figure 7.3. 

 

 
Figure 7.3. New, aged and fixed concrete behavior after adding particles 
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Based on the results obtained from the analytical and experiment analysis, it was concluded that: 

• The formulas derived in Chapter 4 can be applied to accurately predict trends in cement 

behavior.  

• By adding nanoparticles into the network to seal leaks, it is expected that the cracks would 

be sealed but at the same time the fracture parameter J integral will decreases with time. 

 

7.2.4 EXTEND FORMULA CONSIDERING SPATIAL ARRANGEMENT OF 

MICROSTRUCTURE 

In chapter 6, we introduced jamming and unjamming effects in the inclusion system to characterize 

fracture interaction with inclusions. We show that as the system moves to its lowest energy, it 

becomes more stable and rigid. Per this definition, in an unjammed heterogeneous material with 

low volume fraction of particles and at a certain stage of stress, the particles are free to explore 

different arrangement within the system. This will encourage cracks to propagate. The analysis 

was performed using theoretical and numerical analysis for the three-point bending specimen. 
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Figure 7.4. Considering particle jamming effect on the fracture toughness 

 

Based on the results obtained from the analytical and numerical analysis, it was concluded that: 

1. There is good agreement between the theoretical and the numerical analysis based on the 

SIF values for different particle configurations, so closed form equations can be used to 

make design considerations of inclusions. 

2. The translational order parameter can be used as a quantifier of inclusion arrangement to 

capture the trend of fracture toughness of a material.  

3. The remaining discrepancy in experimental results between micro- and macro-scale 

fracture tests could be attributed to the effect of inclusion arrangement. The difference 

between fracture toughness between ordered and random systems is exactly 0.5 MPa√𝑚. 
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Figure 7.5. Theoretical and numerical agreement based on the fracture toughness values 
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In this appendix, we show the related material mentioned in chapter 3. Including the raw data for 

the scratch test, the mathematical simulation used to interpret the experimental results and predict 

the behavior of the composite during the scratch test and the Matlab code used to generate random 

probability distributions for different population of particles (pixels) to calculate the radial 

distribution function.   

A.1 RAW DATA FOR THE SCRATCH TEST 

A.1.1 SUMMARY OF THE SCRATCH CURVES FOR SPECIMEN WITH 0% GLASS BEADS 

 
Scratch test was used to measure the horizontal force with the penetration depth by dragging a 

probe on the polymer surface as explained in chapter 3. Figure A.1 illustrate all the scratches that 

have been made on specimen with 0% glass beads. 

 
Figure A.1.1. Relation between Horizontal Scratching Force and the Penetration depth for specimen with 

0% glass beads using the scratch test 
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A.1.2 SUMMARY OF THE SCRATCH CURVES FOR SPECIMEN WITH 5% GLASS BEADS 

 

Figure A.2 illustrate all the scratches that have been made on specimen with 5% glass beads. 

 

 
Figure A.1.2. Relation between Horizontal Scratching Force and the Penetration depth for specimen with 

5% glass beads using the scratch test 

 

 

A.1.3 SUMMARY OF THE SCRATCH CURVES FOR SPECIMEN WITH 25% GLASS BEADS 

 

Figure A.3 illustrate all the scratches that have been made on specimen with 25% glass beads. 

 

 
Figure A.1.3. Relation between Horizontal Scratching Force and the Penetration depth for specimen with 

25% glass beads using the scratch test 
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A.1.4 SUMMARY OF THE SCRATCH CURVES FOR SPECIMEN WITH 50% GLASS BEADS 

 

Figure A.4 illustrate all the scratches that have been made on specimen with 50% glass beads. 

 
Figure A.1.4. Relation between Horizontal Scratching Force and the Penetration depth for specimen with 

50% glass beads using the scratch test 

 

A.2 PANORAMA IMAGES FOR THE SCRATCHES DURING THE SCRATCH TEST 

A.2.1 PANORAMA IMAGES OF ALL THE SCRATCHES FOR 50% INCLUSION SPECIMEN 

Scratch # 1 (50% glass beads) 

 
 

Scratch # 2 (50% glass beads) 
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Scratch # 3 (50% glass beads) 

 

Scratch # 4 (50% glass beads) 

 

Scratch # 5 (50% glass beads) 

 

Scratch # 6 (50% glass beads) 

 

Scratch # 7 (50% glass beads) 
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Scratch # 8 (50% glass beads) 

 

Scratch # 9 (50% glass beads) 

 

Scratch # 10 (50% glass beads) 

 

Scratch # 11 (50% glass beads) 

 

Scratch # 12 (50% glass beads) 
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Scratch # 13 (50% glass beads) 

 

Scratch # 14 (50% glass beads) 

 
 

A.2.2 PANORAMA IMAGES OF ALL THE SCRATCHES FOR 25% INCLUSION SPECIMEN 

Scratch # 1 (25% glass beads) 

 
 

Scratch # 2 (25% glass beads) 

 

Scratch # 3 (25% glass beads) 
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Scratch # 4 (25% glass beads) 

 
 

Scratch # 5 (25% glass beads) 

 

      

Scratch # 6 (25% glass beads) 

 
 

Scratch # 7 (25% glass beads) 

 

Scratch # 8 (25% glass beads) 

 

Scratch # 9 (25% glass beads) 
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Scratch # 10 (25% glass beads) 

 
 

 

Scratch # 11 (25% glass beads) 

 

Scratch # 12 (25% glass beads)

 
 

Scratch # 13 (25% glass beads) 

 

 

Scratch # 14 (25% glass beads) 
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A.2.3 PANORAMA IMAGES OF ALL THE SCRATCHES FOR 5% INCLUSION SPECIMEN 

Scratch #1 (5% glass beads) 

 
 

 

Scratch # 2 (5% glass beads) 

 
 

 

Scratch # 3 (5% glass beads) 

 
 

 

Scratch # 4 (5% glass beads) 

  
 

 

Scratch # 5 (5% glass beads) 
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Scratch # 6 (5% glass beads) 

 
 

 

Scratch # 7 (5% glass beads) 

 
 

               

Scratch # 8 (5% glass beads) 

 
 

 

Scratch # 9 (5% glass beads)

 
 

 

Scratch # 10 (5% glass beads) 
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Scratch # 11 (5% glass beads) 

 
 

 

Scratch # 12 (5% glass beads) 

 
 

 

 Scratch # 13 (5% glass beads) 

 
 

 

Scratch # 14 (5% glass beads) 

 
 

 

Scratch # 15 (5% glass beads) 
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A.2.4 PANORAMA IMAGES OF ALL THE SCRATCHES FOR 0% INCLUSION SPECIMEN 

Scratch #1 (0% glass beads) 

 
 

 

Scratch #2 (0% glass beads) 

 
 

 

Scratch # 3 (0% glass beads) 

 
 

 

Scratch # 4 (0% glass beads) 

 
 

 

Scratch # 5 (0% glass beads) 
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Scratch # 6 (0% glass beads) 

 
 

 

Scratch # 7 (0% glass beads)

 
 

 

Scratch # 8 (0% glass beads) 

 
 

 

Scratch # 9 (0% glass beads) 

 
 

 

Scratch # 10 (0% glass beads) 

 
 

 

Scratch # 11 (0% glass beads) 
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Scratch # 12 (0% glass beads) 

 
 

 

Scratch # 13 (0% glass beads)

 
 

 

Scratch # 14 (0% glass beads)

 
 

 

Scratch # 15 (0% glass beads)

 
 

 

Scratch # 16 (0% glass beads)

 
 

 

Scratch # 17 (0% glass beads)
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Scratch # 18 (0% glass beads)

 
 

 

Scratch # 19 (0% glass beads) 

 
 

A.3 STATISTICAL ANALYSIS ANOVA FOR THE DATA FROM EXPERIMENTAL WORK 
 

A.3.1 STATISTICAL ANALYSIS SUMMARY FOR THE THREE POINT-BENDING TEST 

 
Table A.3.1 Average data with the deviation in 3PB-test data 

 

 

 

 

 
Figure A.3.1.  Average data with the deviation in 3PB test data 
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A.3.2 STATISTICAL ANALYSIS SUMMARY FOR THE SCRATCH TEST 

 

 Table A.3.2 Average data with the deviation in scratch test data 

 

 

 

 

 

 
Figure A.3.2.  Average data with the deviation in scratch test data 

 

We separated the data affected by the kink in Figure A.3.2. to two figures one with kink point and 

one without kink point. 
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A.3.2.1 STATISTICAL ANALYSIS SUMMARY FOR THE SCRATCH TEST WITH KINK 

POINT 

 

Table A.3.2.1 Average data with the deviation in the scratch test data with kink point 

 

 

 

 

 
Figure A.3.2.1 Average data with the deviation in scratch test data with kink point 
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A.3.2.2 STATISTICAL ANALYSIS SUMMARY FOR THE SCRATCH TEST WITH 

WITHOUT KINK POINT 

 

 Table A.3.2.2 Average data with the deviation in the scratch test data with kink point 

 

 

 

 
Figure A.3.2.2 Average data with the deviation in scratch test data without kink point 
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A.4 MATHEMATICAL SIMULATION FOR POLYMER MODELING 

 

The aim of material modeling is to simulate mathematically the experimental behavior of a 

material. In this study, we demonstrate and formulate a linear viscous behavior of glass beads 

embedded in epoxy resin composites using scratching test. The proposed mathematical model 

allows us to interpret the experimental results data and predicate the behavior of the composite.  

 

From literature  
 
 
 
 
 

 
 
 
 

Two-Dimensional constitutive model  

 

This model expected to contribute to the developments that have been made  to predict the fracture 

behavior of polymers by considering the spatial location of inclusions to estimate the energy 

release rate using the 𝐽-integral [Rice]. 

The following assumptions are made in modeling the behavior of the polymer: 

1.The crack is a straight line and propagates along the x-axis. 

2.A two-dimensional representation of the model will be considered. 

3.The Cartesian coordinates will be used throughout the derivation.   

The visco-elastic material property is a mixture of simple two behaviors; elastic behavior which is 

a solid property and the viscous behavior is a fluid property. The total strain can be separated into 

elastic and viscous parts: 

𝜀𝑡𝑜𝑡𝑎𝑙  = 𝜀𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝜀𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (A.4.1) 

Author Model representation  

Shivakumar-2011 linear elastic or elastic-plastic static analysis 

Shivakumar-2013 linear elastic or elastic-plastic static analysis 

Thomas Wasik-2005 Linear elastic and isotropic 



 

148 

 

 

Because of the viscous effects, the viscous energy portion is not recovered when the external load 

removed, which can be considered as stationary energy is given by: 

𝑈1= 𝑢  (𝜀𝑣𝑖𝑠𝑐𝑜𝑢𝑠) (A.4.2) 

                                                                                                            

The elastic portion can be represents the energy per unit volume 𝜑𝑒𝑙𝑎𝑠𝑡𝑖𝑐, is given by: 

 

𝑈2= 𝜑𝑒𝑙𝑎𝑠𝑡𝑖𝑐  (𝜀𝑒𝑙𝑎𝑠𝑡𝑖𝑐) (A.4.3) 

 

                                      

The strain energy density is 𝑈0 can be expressed in terms of elastic and viscous one.  

𝑈0 =  𝑢  (𝜀𝑣𝑖𝑠𝑐𝑜𝑢𝑠) +  𝜑𝑒𝑙𝑎𝑠𝑡𝑖𝑐  (𝜀𝑒𝑙𝑎𝑠𝑡𝑖𝑐)  (A.4.4) 

 

               

Internal energy density 

 

 
Figure A.4.1. Stress and displacement components in the Cartesian coordinate system 

 

Figure A.4.1 shows the displacement in the x and y directions, respectively. The corresponding 

strain components are  εx , εy, γxy . For small displacements in the planner problem the strain 

displacement can be written as follows: 

εx=
∂ux

∂x
  ; εy=

∂uy

∂y
 ; γxy = 

∂ux

∂y
 + 

∂uy

∂x
 (A.4.5) 
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The above strain components must satisfy the compatibility governing equation: 

 
∂2εx

∂y2
  +  

∂2εy

∂x2
  =  

∂2γxy

∂y∂x
 

(A.4.6) 

     
                                                       

Formulation of isothermal viscoelastic stress strain constitutive relation  

The following series expansion is used to represent the strain energy density: 

𝜑(𝜀)
𝑒  = 

1

0!
 𝜑(𝜀0)

𝑒  +  
1

1!
 
𝜕𝜑(𝜀0)

𝑒

𝜕𝜀
:(𝜀 − 𝜀0) + 

1

2!
 (𝜀 − 𝜀0): 

𝜕2𝜑(𝜀0)
𝑒

𝜕𝜀⊗ 𝜕𝜀
:(𝜀 − 𝜀0)+ …………….. 

               = 𝜑(0)
𝑒  +  𝜎0:(𝜀 − 𝜀0) + 

1

2
 (𝜀 − 𝜀0): 

𝜕2𝜑(𝜀0)
𝑒

𝜕𝜀⊗ 𝜕𝜀
:(𝜀 − 𝜀0)+ …………….. 

               =  
1

2
 ε: 

𝜕2𝜑(𝜀0)
𝑒

𝜕𝜀⊗ 𝜕𝜀
:𝜀 

where: 𝐶𝑒 = fourth order elasticity tensor, represent the material elastic properties. The general 

stress-strain relation is known as Hooke's law:  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙 (A.4.8) 

 
where, 𝜎𝑖𝑗 : cauchy stresses (i,j = 1,2,3), 𝜀𝑘𝑙 : linear strains (k,l = 1,2,3), 𝐶𝑖𝑗𝑘𝑙: the standard elastic 

constants the six by six stiffness tensor. The stress component in the x-direction is: 

 

𝜎𝑥 = 
𝜕2𝑈

𝜕𝑦2
 

 

(A.4.9) 

 
As calculated equation A.4.7 can be written as: 

 

𝜑𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 
1

2
 𝜀𝑒𝑙𝑎𝑠𝑡𝑖𝑐 : 𝐶0 : 𝜀𝑒𝑙𝑎𝑠𝑡𝑖𝑐 

 

         =  
1

2
 ε: 𝐶𝑒:𝜀 (A.4.7) 
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The stress and strain vectors are symmetric,  𝜎  = 𝜎𝑇 and 𝜀 =𝜀𝑇, the elastic modulus tensor 𝐶0 must 

also possess a similar symmetry with respect to the first and second pairs of its indices 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 =𝐶𝑗𝑖𝑙𝑘 

 
Derivation of linear visco-elastic solid 

 

The material behavior was modeled as linear viscous model to simulate the experimental behavior. 

The constitutive model developed in this study is for epoxy resin composites. It consists of a 

combination of springs and a dashpot. When the spring is connected to dashpot in series yields a 

Maxwell model. A combination of the Maxwell model in parallel with a spring as its illustrated in 

Figure A.4.2, yields the model that we proposed for in this study to predict the shape of the 

compressive stress-strain curve.  

      

  

 
Figure A.4.2. Proposed model for the epoxy resin 

 

The spring represents the elastic part of a visco-elastic material which is represent time dependent 

deformation process: 

 

𝜎(𝑡) = 𝐸 𝜀(𝑡)   (A.4.10) 

 

 

          

where, E: is Young’s modulus of epoxy. 

The representation of the viscous component of the visco-elastic material can be done by 

presenting the dashpot in the model, the stress is proportion to time derivative of strain: 
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𝜎(𝑡) = η 𝜀′(𝑡) 

 

(A.4.11) 

where:  ε′ =
dε

dt
  , η: is fluid viscosity in the dashpot. When the spring and the dashpot are in series, 

the stress will be equal: 

 

𝜎(𝑡) = 𝜀 𝐸 + 𝜂𝜀′ 

 

(A.4.12) 

 

Model solving 

 

In “Maxwell model” the spring and the dashpot are in series, therefore, the stresses in the spring 

and the dashpot are equal and the strains are additive: 

 

𝜎𝑀𝑎𝑥𝑤𝑒𝑙𝑙 = 𝜎𝑠𝑝𝑟𝑖𝑛𝑔 = 𝜎𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (A.4.13) 

 

                                                                                               

𝜀𝑀𝑎𝑥𝑤𝑒𝑙𝑙=𝜀𝑠𝑝𝑟𝑖𝑛𝑔 + 𝜀𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (A.4.14) 

 

                                            

But, if the spring and the Maxwell model in parallel, the strains are equal and the stresses are 

additive:  

𝜀𝑡𝑜𝑡𝑎𝑙=𝜀𝑆𝑝𝑟𝑖𝑛𝑔 = 𝜀𝑀𝑎𝑥𝑤𝑒𝑙𝑙 (A.4.15) 

 

𝜎𝑡𝑜𝑡𝑎𝑙  = 𝜎𝑆𝑝𝑟𝑖𝑛𝑔 + 𝜎𝑀𝑎𝑥𝑤𝑒𝑙𝑙    (A.4.16) 

                                                                                                       

𝜎𝑡𝑜𝑡𝑎𝑙  = E1Ԑ + (E2Ԑ +η
dε

dt
 ) (A.4.17) 

The next step will be dividing the above equation by the viscosity η:    

 
σ

η
 = 

𝐸1

η
 Ԑ + 

𝐸2

𝜂
Ԑ + 

dε

dt
 (A.4.18) 

          

                                                                                                    

  
dε

dt
 =

σ

η
 - 

𝐸1

η
Ԑ - 

𝐸2

𝜂
 Ԑ (A.4.19) 
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Integrating both sides of the equation:  

 

 ∫𝑑𝑡 =∫
𝑑𝜀

𝜎0
𝜂

−
(𝐸1+𝐸2)

𝜂
𝜀
 (A.4.20) 

 

 

                                                      

𝜀𝑡 = 
𝜎0

(𝐸1+𝐸2)
 [1 − 𝑒

−
(𝐸1+𝐸2)𝑡

𝜂 ] 
(A.4.21) 

 

Among many kinds of DGERBA epoxides, DER 661 was used in this research because of high 

viscosity (the viscosity=η=400 MPa.s from Material Safety Data Sheet) to avoid the settlement of 

the glass beads to the bottom mold. The epoxy modulus of elasticity (E1 and E2) is given in Material 

Safety Data Sheet, which is equal to 2.8 GPa.   
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A.1 MATLAB CODE USED IN GENERATING RANDOM PARTICLE DISTRIBUTION 

 

In this section, we are presenting a commended MATLAB code used to generate sixty fields of 

three different populations of random pixels for each population.  The populations were chosen to 

match the experimental test ranging from 5%, 25% and 50%. The size of the image was chosen to 

be 100x100 pixels. 

clear all 
clc 

%************************************************************************** 

% ****************** Radial Distribution Function (RDF) ************************** 

% ******************        By Shahlaa Al Wakeel       ****************************** 

%************************************************************************** 

%************************************************************************** 

% Scriptfile name: GofR.m (Plot DRF of N particles in volume V) **********************  

%************************************************************************** 

% Puropse:                                                      

%                          This file is used to calculate the probability of finding particles  

%                             in a shell of delta r at a distance r from a reference point 

%          

%************************************************************************** 

%---------------------------------------------------------------------------------------------------------------  

%------------------------------ READING AND DISPLAY OF IMAGE ------------------------------ 

 

 PixelSize = 100; % creates a 100x100 matrix basically the image size 

 PartWeight = 0.25;    % weight of the black pixels 

 numImage = 60; 

 

 %create a matrix of zeros that will hold the histogram values for making the average on the final 

plot. 
 

g_rValues = zeros (numImage, ceil (sqrt (PixelSize^2 + PixelSize^2)));    

 for imagecount = 1: numImage 

    display (['Image number: ', num2str(imagecount)]) 

    imageName = [num2str(imagecount),'_', num2str(PartWeight*100),'%.jpeg']; 

    I = imread(imageName); 

    level = graythresh(I); % computes a global threshold (level) that can be used to convert an 

intensity image to a binary image with im2bw. 

    % level is a normalized intensity value that lies in the range [0, 1] 

    BW = im2bw (I, level); % convert the gray image to black and white, 

    d = size (BW); % sizes of each dimension of array BW in a vector 
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    k = 0; %index of the radial distance between the black pixels 

    blackcount = 0; %initial value for the number of black pixels  

       for followPixel = 1: (d (1) *d (2))-1 % followPixel is the particle of  

                                         interest - the one being compared 

           if BW(followPixel) == 0 %counting the number of black pixels 

              blackcount = blackcount + 1; 

              for leadPixel = (followPixel+1): d (1) *d (2)                                                 

                 if BW(leadPixel) == 0 % two conditions: if i particle and j  

                                   particle have same color and (&&) i 

                                   particle color is black 

          k = k + 1; 

          [y_i, x_i] =ind2sub([size(BW(:,:),1),size(BW(:,:),2)],followPixel);   

          [y_j, x_j] = ind2sub([size(BW(:,:),1),size(BW(:,:),2)],leadPixel);     

          r(k)= abs(round(sqrt( ((x_i-x_j)^2) + ((y_i-y_j)^2))));        

                     

                end 

            end 

        end 

   end 

    if BW(end,end) == 0 %checks the last pixel to see if it is also black 

        blackcount = blackcount + 1; 

end 

     

    %histogram for distribution: 

    figure (1); 

    edges = 1:(ceil(sqrt(length(BW)^2+length(BW)^2))); %this arranges the  

                         histogram values so each bar is for the next r value 

    h = histogram(r,edges); %to plot the histogram of the r values, separated 

                             on the x axis in the "edges" increments 

     

    if imagecount == 1  

       xmax = max(r)*1.1; 

       ymax = max(h.Values)*2;  

    end 

    figure (1); 

     

    %subplot (6,10, imagecount); 

    axis ([0, xmax,0, ymax]) 

    axis off %makes the axis numbers invisible in the subplot 

     

    %change color of the histogram bars, because it will be blue by default 

    h.FaceColor = [0,0,0]; %sets color to black (rgb values all 0) 

    nelements = h.Values; 

    centers = h.BinEdges(2:end); 

     

    %calculating and plotting the g(r) 
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    figure (2) 

    hold on 

    g_r = nelements/blackcount; 

    g_rValues(imagecount,(1:length(g_r))) = g_r; %saves the g(r) values in 

                                     the matrix for the final average plot 

    plot(centers,g_r);  

    xlabel('radial distance (in pixels)') 

    ylabel('g(r) probability') 
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 In this appendix, we show the related material mentioned in chapter 4. Including the calculation  

 of the polymer’s modulus of elasticity 𝐸0 the composites modulus.   

B.1  POLYMER MODULUS OF ELASTICITY CALCULATION 

Uniaxial tension test under a controlled rate of displacement rate of 5 mm/min was conducted at 

room temperature following the ASTM D638. The machine measures the load and the 

corresponding displacement through a computerized data acquisition system. From the collected 

data, the stress versus the strain responses was plotted, Figure B.1, and the elastic modulus was 

calculated using the slope of the linear portion of the stress versus the strain curve. The average 

modulus of epoxy/glass was found to be 1850 MPa. 

 

 
Figure B.1. Stress-strain curve showing the polymer behavior under uniaxial tension test 
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B.2 POLYMER DENSITY AND POROSITY CALCULATIONS 

Measured density (𝑴𝒅) 

The density was found by dividing the weight of the specimen by its volume. Specimen volume 

was calculated as 4.0x 2.0x 1.059=8.472 cm3. 

B.2.1. Polymer measured density calculations 

Vol. % glass 

beads 

Measured weight 

(g) 

Measured volume 

(cm3) 

Measured density 

(g/cm3) 

0% 10.2 8.472 1.2 

5% 9.34 8.472 1.16 

25% 8.35 8.472 0.99 

50% 5.98 8.472 0.79 

 

Theoretical density (𝑻𝒅) 

Per ASTM D2734, the theoretical density of a composite can be calculated using the following 

equation: 

Td=  
100

( 
𝑅

𝐷
  +   

𝑟

𝑑
  )
    

(B.2.1) 

 

where, T is the theoretical density, R is the percent weight of the resin in the composite, weight %, 

D is the resign density (1.204 g/cm3), r is the percent weight of the glass beads in the composite 

and d is the glass beads density (0.38 g/cm3). 
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Table B.2.2. Polymer’s theoretical density calculations 

Vol. %     glass 

beads 

% weight         

of the resin 

% weight 

of the hardener 

Total                 

% weight 

% weight of 

glass beads 

Theoretical 

density (g/ cm3) 

0% 0.891 0.109 1 0 1.15 

5% 0.877 0.107 0.984 0.016 1.11 

25% 0.807 0.098 0.905 0.095 0.96 

50% 0.678 0.082 0.76 0.24 0.77 

 

Void content  

Per ASTM D2734, the void content was calculated using the following equation: 

𝑉 = 100 (𝑇𝑑 − 𝑀𝑑)/𝑇𝑑 (B.2.2) 

where, 𝑉 is the void ratio, (𝑇𝑑) is the theoretical density (g/cm3) and (𝑀𝑑) is the measured density 

(g/cm3). 

Then the porosity, O, will be calculated using the following equation: 

𝑂 = 
𝑉

1 + 𝑉
 

(B.2.3) 

 

The results are listed in Table B.2.3 

 

 

 

 



 

159 

 

Table B.2.3. Polymer’s theoretical density calculations 

Vol. %     

glass beads 

Theoretical 

density (g/ cm3) 

Measured 

density (g/cm3) 

Void ratio % Porosity % 

0% 1.15 1.2 0.048 0.05 

5% 1.11 1.16 0.47 0.05 

25% 0.96 0.99 0.39 0.04 

50% 0.77 0.79 0.029 0.03 

 

 

 
Figure B.2. Polymer’s Theoretical and measured density for different glass beads content 
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In this appendix, we show the related material mentioned in chapter 5. Including the calculation 

of the porosity and composites modulus calculations.  Detailed ANOVA analysis is shown in 

section C.2. 

C.1 POROSITY CALCULATION FOR AGED INJECTED CEMENT WITH 𝑺𝒊𝑶𝟐 PARTICLES   

Following up the ASTM C830, calculations were performed to obtain the porosity value of the 

aged cement paste injected with 𝑆𝑖𝑂2 particles. The volume was calculated by subtracting the 

suspended weight from the saturated weight in grams divided by the water density (1gram/cm3): 

V in cm3 =
(W − S) in gram

water density in gram/cm3
    

(C.1.1) 

The porosity is obtained by subtracting the saturated weight from the dry weight divided by 

volume, as follows: 

P,% =
(W−D) in gram

V in cm3
 *100 (C.1.2) 

 

 

 

 

 

 

 

 

 

APPENDIX C  



 

161 

 

 

 Table C.1. Cement paste porosity calculation 

Slice # 

W 

Fully saturated 

weight (g) 

S 

Suspended 

weight (g) 

V 

Volume    

(cm3) 

D 

Dry weight 

(g) 

P 

Porosity 

(%) 

L1 19.7 9.5 10.2 15.6 40 

L2 19 9.2 9.8 15 41 

L3 20.2 9.8 10.4 15.9 41 

L4 20.6 9.9 10.7 16.2 41 

L5 18.3 8.8 9.5 14.4 41 

L6 22.2 10.7 11.5 17.4 42 

L7 20.2 9.7 10.5 15.8 42 

L8 16.8 8 8.8 13.2 42 

L9 15.5 7.5 8 12.2 42 

 

C.2 ANOVA ANALYSIS FOR AGED CEMENT PASTE  

 

 

 

 

 

 

 

 Slice #2 x-mean (x-man)2 

 0.793676 0.057571 0.003314 

 0.702409 -0.0337 0.001135 

 0.802918 0.066814 0.004464 

 0.82949 0.093385 0.008721 

 0.561465 -0.17464 0.030499 

 0.72667 -0.00943 8.9E-05 

sum 4.416627 

 
 

 0.048223 

mean 0.736105   
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 Slice #3 x-mean (x-man)2 

 0.620384 0.036584 0.001338374 

 0.625005 0.041205 0.001697845 

 0.62385 0.04005 0.001603973 

 0.569552 -0.01425 0.000203018 

 0.591502 0.007702 5.93185E-05 

 0.472509 -0.11129 0.012385858 

sum 3.502803 

 

  

mean 0.5838 
 

 0.017288387 

 Slice #4 x-mean (x-man)2 

 0.648111 0.037547 0.00141 

 0.564931 -0.04563 0.002082 

 0.584571 -0.02599 0.000676 

 0.815626 0.205062 0.04205 

 0.399726 -0.21084 0.044453 

 0.650421 0.039857 0.001589 

sum 3.663386  0.09226 

mean 0.610564   
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 Slice #5 x-mean (x-man)2 

 0.640024 0.058919 0.003471 

 0.650421 0.069317 0.004805 

 0.593813 0.012708 0.000161 

 0.4159 -0.1652 0.027293 

 0.605366 0.024261 0.000589 

 0.581105 0 0 

sum 3.486629  0.036319 

mean 0.581105   

 Slice #6 x-mean (x-man)2 

 0.58226 -0.09377 0.008793 

 0.622695 -0.05334 0.002845 

 0.708185 0.032155 0.001034 

 0.66313 -0.0129 0.000166 

 0.72667 0.05064 0.002564 

 0.753241 0.077211 0.005962 

sum 4.056181  0.021364 

mean 0.67603   
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 Total 

observations 

x-mean (x-man)2 

 0.793676 0.177817 0.031618715 

 0.702409 0.08655 0.007490828 

 0.802918 0.187059 0.034990974 

 0.82949 0.21363 0.045637835 

 0.561465 -0.05439 0.002958744 

 0.72667 0.11081 0.012278946 

 0.620384 0.004525 2.04742E-05 

 0.625005 0.009146 8.36484E-05 

 0.62385 0.007991 6.38508E-05 

 0.569552 -0.04631 0.002144374 

 0.591502 -0.02436 0.000593269 

 0.472509 -0.14335 0.020549432 

 0.648111 0.032252 0.00104016 

 0.564931 -0.05093 0.002593712 

 0.584571 -0.03129 0.000978988 

 0.815626 0.199767 0.039906775 

 0.399726 -0.21613 0.046713577 

 0.650421 0.034562 0.001194536 

 0.640024 0.024165 0.000583926 

 0.650421 0.034562 0.001194536 

 Slice #7 x-mean (x-man)2 

 0.62154 0.113987 0.012993 

 0.640024 0.132472 0.017549 

 0.60421 0.096658 0.009343 

 0.545291 0.037739 0.001424 

 0.293441 -0.21411 0.045844 

 0.340807 -0.16675 0.027804 

sum 3.045313  0.114957 

mean 0.507552   
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 0.593813 -0.02205 0.000486051 

 0.4159 -0.19996 0.039983741 

 0.605366 -0.01049 0.000110119 

 0.581105 -0.03475 0.001207883 

 0.58226 -0.0336 0.001128915 

 0.622695 0.006835 4.67226E-05 

 0.708185 0.092326 0.008524083 

 0.66313 0.04727 0.002234464 

 0.72667 0.11081 0.012278946 

 0.753241 0.137382 0.018873758 

 0.62154 0.00568 3.22637E-05 

 0.640024 0.024165 0.000583926 

 0.60421 -0.01165 0.0001357 

 0.545291 -0.07057 0.004979874 

 0.293441 -0.32242 0.103953885 

 0.340807 -0.27505 0.075653829 

    

mean 0.615859 SST 0.52285146 

 Total Sum of Squares (SST) 0.52285146 

Sum of Squares within Groups (SSW) 0.33040994 

Sum of squares between Groups (SST-SSW) 0.19244152 

 

 

 

 

 

 

 

 

 

Degree of freedom (DOF)  

Numerator (number of individual group -1) 5 

Denominator (number of observation- Numerator) 30 

Sum of squares between Groups/DOF 0.038488 

Sum of Squares within Groups/DOF 0.011014 

F-ratio  3.494596 

F (5,30) 3.494596 

Critical value from F- table 2.5336 

2.5336 ˂ 3.495  

reject null hypothesis  
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In this appendix, we show the related material mentioned in chapter 6, including a MATLAB code 

used to generate sixty fields of different particle arrangement and orientation. SIF calculations 

based on finite element analysis. 

D.1 MATLAB CODE USED IN GENERATING DIFFERENT PARTICLE ARRANGEMENTS 

AND ORIENTATIONS 

In this section, we are presenting a commended MATLAB code used to generate sixty different 

populations of particle arrangements and orientations. 

clear all 
clc 

%************************************************************************** 

% ****************Fracture toughness of different particles arrangements **************   

% ****************************and orientations ******************************** 

% ************************************************************************* 

% ********************       By Shahlaa Al Wakeel       **************************** 

%************************************************************************** 

%************************************************************************** 

% Scriptfile name: Partarrang.m *************************************************  

%************************************************************************** 

% Puropse:                                                      

%                          This file is used to calculate the fracture toughness of different particles  

%                           arrangement and orientations in front of crack tip of single edge notch  

%          

%************************************************************************** 

PartArea=2513.275; 
PartRadius=20; 
ZoneVolume=9650972.63; 
FirstIntegral_1=(PartArea*2)/ZoneVolume; 
E=70000; 
v=0.25; 
%parameters 
a = 0.00006; 
b = 0.00002; 

  
n=60; 

  
x1_angle = 90; %REFERENCE ANGLE FOR THE X AXIS OF THE PARTICAL (relative to 

vertical); 
%%%%%%%%%%%%%%%%%%%%%%%%%% Particle arrangements %%%%%%%%%%%%%%%%%%%%%%%%%% 

APPENDIX D  
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x2_angle = 0; % 0 deg -> vertical particle 
             % 90 deg -> horizontal particle 
             % -45 deg -> diagonal right (positive slope) 
             % +45 deg -> diagonal left (negative slope) 

  

   
for i=1:n 
%%%%%%%%%%%%%%%%%%%%%%%%%% Particle (1)  
PosArrang11(i) = randi(161)-1;%% O to 160 
PosArrang21(i) = randi(81)-1; 
%%%%%%%%%%%%%%%%%%%%%%%%%% Particle (2)  
PosArrang12(i) = randi(161)-1; 
PosArrang22(i) = randi(81)-1; 

  
 D = (((PosArrang12(i)-PosArrang11(i))^2  )+((PosArrang22(i)-

PosArrang21(i))^2))^0.5; %check 

 

 
while D < 2*PartRadius 

  
    PosArrang11(i) = randi(161)-1; 
    PosArrang21(i) = randi(81)-1; 
    %%%%%%%%%%%%%%%%%%%%%%%%%% Particle (2)  
    PosArrang12(i) = randi(161)-1; 
    PosArrang22(i) = randi(81)-1; 

  
    D = (( (PosArrang12(i)-PosArrang11(i) )^2)+((PosArrang22(i)-

PosArrang21(i))^2))^0.5; %check 
%     Dist(i) = D; 

     
end   

  
while ( (PosArrang11(i) == 80 && PosArrang21(i) == 0) ||  (PosArrang12(i) == 

80 && PosArrang22(i) == 0)) 
      PosArrang11(i) = randi(161)-1;%% O to 160 
    PosArrang21(i) = randi(81)-1; 
    %%%%%%%%%%%%%%%%%%%%%%%%%% Particle (2)  
    PosArrang12(i) = randi(161)-1; 
    PosArrang22(i) = randi(81)-1; 
end 
rArrang1(i)=sqrt((PosArrang11(i)-80)^2 + (PosArrang21(i))^2); 
theta1(i)=atan2(PosArrang21(i),PosArrang11(i)-80); 

  
rArrang2(i)=sqrt((PosArrang12(i)-80)^2 + (PosArrang22(i))^2); 
theta2(i)=atan2(PosArrang22(i),PosArrang12(i)-80); 

  

  
   SecondIntegral1 = 1/((rArrang1(i))^(3/2))*cos(3*theta1(i)/2); 
   SecondIntegral2 = 1/((rArrang2(i))^(3/2))*cos(3*theta2(i)/2); 

  
    S1=abs( SecondIntegral1 * 1.28e-8);  
    S2=abs( SecondIntegral2 * 1.28e-8); 

  



 

168 

 

   alpha1 = abs(x1_angle - theta1(i)); 
   alpha2 = abs(x2_angle - theta2(i)); 

    
   eps1 = 180/(70000*pi*a*b) * (pi*a *( a - (a+b)*cos(2*alpha1)));   
   eps2 = 180/(70000*pi*a*b) * (pi*a *( a - (a+b)*cos(2*alpha1)));  

     
   deltaK1(i)=((E*eps1)/(6*(sqrt(2*pi))*(1-

v)))*(FirstIntegral_1*0.000001)*S1; 
   deltaK2(i)=((E*eps2)/(6*(sqrt(2*pi))*(1-

v)))*(FirstIntegral_1*0.000001)*S2; 

  
end 
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D.2 SIF BASED ON FINITE ELEMENT ANALYSIS RESULTS CONSIDERING PARTICLE 

ARRANGEMENTS AND ORIENTATIONS  

 

D.2.1 Ordered arrangements 
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 D.2.2 Random arrangements 
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D.2.3 Jammed arrangements 
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