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Quantifying the origin of air pollutants that have detrimental impacts on human health and

ecosystems is a necessary but challenging aspect of studying and mitigating our impact on the

environment. Using a 3-dimensional atmospheric chemical transport model, GEOS-Chem, and

its adjoint we investigate emission sources and transport mechanisms of air pollutants. Adjoint-

based source attribution enables quantification of the percent contribution of each emission source

and gas-phase chemical reaction to the air pollutants of interest. This thesis is a collection of three

studies conducted at different regional and temporal scales: 1) monthly average surface level nitrate

in Antarctica, 2) seasonality of nitrogen deposition in federal Class I areas in the US, and 3) daily

PM2.5 concentrations in Seoul metropolitan area, Korea.

The results of these studies highlight the various roles of gas and aerosol emissions in impact-

ing different aspects of the environment. Our results suggest that background levels of total nitrate

at the surface level in Antarctic in austral winter are sensitive to NOx emissions from mid-latitudes,

which is transported to Antarctica as total nitrate formed above continental source regions in the

free troposphere. In other seasons, more NOx is transported as a reservoir species (e.g., peroxy-

acetyl nitrate, PAN) through the free troposphere, transforming into total nitrate within a cone

of influence that extends to 35◦S and above 4 km altitude. From the second project, we find that

while it is effective to control emissions in the western US to reduce the area of regions in critical

loads (CL) exceedance, it can be more effective to control emissions in the eastern US to reduce the

magnitude of Nr deposition above the CL. In our final project, we find that average contributions

to the high PM2.5 episodes occurred in Seoul in May from 2009 to 2013 simulated by the model are

39% from the Shandong region, 16% from the Shanghai region, 14% from the Beijing region, and
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15% from South Korea. Anthropogenic SO2 emissions from South Korea are negligible with 90%

of the total contribution originating from China.

Findings from this study may guide 1) interpretation of nitrate records from Antarctic ice

cores, 2) setting protection plans for Class I areas, and 3) strategizing to meet PM2.5 air quality

standards for the Seoul metropolitan area.
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Chapter 1

Introduction

1.1 Research questions

Air pollution encompasses a broad range of scales in terms of both spatial and temporal

resolutions. From large scale problems such as inter-continental transport of air pollutants and

interactions of trace gases in the troposphere with constituents from the stratosphere, to small

scale problems such as living organisms’ exposure to toxic air pollutants in daily life. In this thesis,

we investigate emission sources and transport mechanisms for a wide array of air pollution problems.

Here we provide an introduction to the research questions and modeling tools used in three separate

studies, the first two of which are published [121, 119] and the last of which is currently undergoing

final revisions prior to submission to Environmental Pollution.

Nitrogen cycle in the environment plays important roles in changing nitrogen’s form in various

ways. In the biosphere, nitrogen is an essential constituent of proteins, and it is a key nutrient in

the hydrosphere and geosphere. The atmosphere is 78% elemental nitrogen (N2) by volume and

comprises an inexhaustible reservoir of this essential element [134]. However, what receives our

attention by altering the atmospheric environment and causing health problems is not this bulky

inert species but the trace amounts of NO, NO2, and HNO3 in the atmosphere. As shown in

Fig. 1.1, NOx is closely coupled with ozone (O3) chemistry, contributing to formation or depletion

of O3 depending on the atmospheric chemical composition. NOx is primarily removed from the

atmosphere after it is transformed into total nitrate (i.e., gas phase HNO3 and particulate NO−3 )

followed by wet and dry deposition. Nitrate makes up a substantial fraction of aerosols (suspended
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Figure 1.1: Schematic of major pathways of NOx oxidation in the atmosphere.

solid or liquid particle in the atmosphere), which are associated with environmental issues such as

visibility reduction, human health effects, and climate change.

One of the challenges in understanding large scale, long term impacts of climate change and

anthropogenic activity on atmospheric chemistry is explaining factors that drive trends in records

of nitrate, a terminal form of NOx oxidation. Ice core records from poles are often investigated to

provide insight about such trends. Sources of tropospheric NOx include anthropogenic emissions,

natural emissions such as soil and lightening, transport from the stratosphere, and re-emissions

from snow by photolysis. Also, there are several pathways of NOx oxidation (Fig. 1.1). Those

various sources and pathways complicate the source attribution of nitrate records from ice cores.

The annual variability of the flux of nitrate at the surface is observed to have minimum levels during

the austral winter, a first peak in August, and a second, larger, peak in the austral summer. The

mechanisms and sources driving these patterns are not well known, and had yet to be evaluated

with 3-dimensional atmospheric chemical transport models. Quantifying the sources contributing

to this observed variability is thus needed.

In addition to being a proxy for broader trends in atmospheric chemistry, nitrogen deposition

is itself a concern due to its cascading impact on the environment [65]. It is directly linked to the

supply of nutrition to the hydrosphere and geosphere [23, 64, 12]. When a receptor ecosystem is



3

exposed to nitrogen deposition exceeding its critical loads (CLs), significant harmful effects may

manifest [162]. Many parts of the world are currently subject to excessive reactive nitrogen (Nr)

deposition [189, 65, 61, 202, 51, 39], and this problem may continue to grow as anthropogenic

emissions of NH3 increase even though NOx emissions may be decreasing [54]. In the US, Nr

deposition currently exceeds CLs in many Class I areas and changes in ecosystems due to Nr

exceedances are evident [60, 21]. Consequently, the US Environmental Protection Agency (EPA)

is currently reviewing secondary national ambient air quality standards (welfare-based) for NO2

(and SO2, due to their inextricable relationship) to mitigate Nr deposition. Quantifying source

contribution of various emission sectors and sources of Nr deposition will help inform the process

of reviewing and possibly even setting such standards.

Another concern related to reactive nitrogen and other anthropogenically emitted atmo-

spheric constituents is their impact on air quality, particularly in mega-cities (having more than 10

millions of population) concentrated in East Asia. The Seoul metropolitan area (SMA) of South

Korea is one of the most densely populated mega-cites in the world. With the rapid economic and

industrial development in China, there is increasing attention on the degradation of air quality in

Korea. The Korean Ministry of Environment devised a Special Act legislation for improving air

quality in the SMA in 2003 (enacted in 2005). In the second master plan, formulated for the period

of 2015 - 2024, PM2.5 and O3 were added to the regulations. Both emission sources contained in the

SMA and long-range transport from China have been suggested as sources of air pollutants in SMA;

however, quantitative analysis of the relative contribution of local versus distant sources to PM2.5 in

Seoul are still limited. In order to investigate sources and mechanisms of high concentrations of air

pollutants in the SMA, there was an intensive ground-based and airborne measurement campaign

(KORUS-AQ) in May to June 2016. Prior to analyzing data obtained from the campaign, it is

valuable to have insights on trends and source distributions of PM2.5 in the region for this season.

Atmospheric chemical transport models (e.g., [16, 72]) provide a useful means of investigat-

ing this broad range of research questions, from depositional trends in Antarctica to air pollution

sources in the SMA. Given emissions inventories, these models utilize assimilated or forecast me-
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teorology to simulate transport and detailed chemical and physical air pollution transformations.

This is the main use of forward modeling. However, quantifying the contribution to air pollutant

concentrations from specific individual sources, sectors, and processes entails developing and us-

ing sophisticated source attribution and sensitivity models of air quality. In this thesis, we use a

3-dimensional atmospheric chemical transport model, GEOS-Chem, and its adjoint to investigate

three aforementioned research questions: 1) monthly average surface level nitrate in Antarctica, 2)

seasonality of nitrogen deposition in federal Class I areas in the US, and 3) daily PM2.5 concentra-

tions in Seoul metropolitan area, Korea. The adjoint-based source attribution method using the

GEOS-Chem model is described in the following section.

1.2 Methods

GEOS-Chem [16] and its adjoint [80] are utilized to estimate the contribution of different

sources to simulated values of deposition and air pollution. GEOS-Chem, a forward model, enables

calculation of the state of air pollutants (e.g., concentration, flux, deposition amount, etc.) by

solving Equation 1.1,

∂ci
∂t

+∇ · (uci)︸ ︷︷ ︸
advection

= (∇ ·K∇)ci︸ ︷︷ ︸
turbulent diffusion

+Ri(c1, c2, ..., ck)︸ ︷︷ ︸
reactions

+Ei(x, y, z, t)︸ ︷︷ ︸
emission

−Si(x, y, z, t)︸ ︷︷ ︸
sink

(1.1)

Here ci is the concentration of species i, u is the velocity vector, and K is the corresponding eddy

diffusivities. Model calculations are performed at a horizontal resolution of 2◦ × 2.5◦ or 0.5◦ ×

0.667◦ and 47 vertical layers up to 0.01 hPa using GEOS-5 (The Goddard Earth Observing System

Model, Version 5) meteorological fields. In Equation 1.1, the tropospheric chemical mechanism

(Ri) comprises 87 species and 307 reactions, and simple production and loss rates are applied for

24 species at the tropopause to account for stratospheric chemistry. The emissions (Ei) consists

of anthropogenic, biofuel, biogenic, biomass burning, lightning, ship, and aircraft emissions using

regional (Canada, Europe, US, Mexico, South East Asia, and North America) inventories as well

as global (EDGAR) inventories. The sink term (Si) includes wet and dry deposition. Model

specification and modifications for each study are described more in each Chapter.
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1.2.1 Adjoint modeling

The adjoint method is a tool for efficiently calculating the gradient (λp) of a cost function

(J) with respect to numerous model parameters (p) with minimal computational expense.

λp =
∂J (ci)

∂p
· p (1.2)

An adjoint model has two main applications: data assimilation and sensitivity analysis. These

applications differ in terms of how the cost function is defined, and how the gradients are used.

For data assimilation, the cost function measures the discrepancy between a dataset and the model

estimate, and the gradients from the adjoint are used to iteratively minimize the cost function.

For sensitivity analysis, the cost function is defined as a set of forward model estimates and the

gradient is found by running the forward and adjoint models only once. Considering the number of

grid cells and emission sources and sectors, this receptor-based sensitivity analysis using the adjoint

model is ∼106 times faster than source-based sensitivity analysis using a forward model.

This method was introduced in the early 1970s to solve inverse problems and for sensitivity

analysis across a variety of disciplines. In meteorology, adjoint modeling has been actively adopted

in many studies since the 1980s [55]. The first adjoint model of a 3-dimensional Eulerian chemical

transport model to include chemistry was presented by Elbern and Schmit in 1999 [53] followed by

several subsequent and applications (e.g., [219, 154, 76]). Still, these studies were limited to gas-

phase species or regional domains. The first adjoint of global chemical transport model equipped

with dynamics, full chemistry, aerosol thermodynamics, and heterogeneous chemistry was developed

in 2007 by Henze et al.[80]. This is the prototype of the model we use throughout this thesis with

additional updates. The study on annual variability of surface level nitrate flux in Antarctica is

the first study using adjoint sensitivity calculations with respect to climatological representation of

stratospheric production and loss rates of gaseous tracers. Cost functions quantifying total (wet and

dry) deposition of Nr species are first introduced in the study on Nr deposition in Class I areas in

the US. For the study of daily PM2.5 in the SMA, we implement an up-to-date emissions inventory

for East Asia. More about the use of the adjoint is described in each Chapter in detail.



Chapter 2

Investigating the sensitivity of surface-level nitrate seasonality in Antarctica to

primary sources using a global model

2.1 Introduction

TNIT (≡ NO−3 + HNO3) is an oxidation product of nitrogen oxides (NOx ≡ NO + NO2) in

the atmosphere associated with important environmental issues such as aerosol concentrations and

the oxidative capacity of the atmosphere. A significant fraction of NOx is sequestered as TNIT and

then removed from the atmosphere by wet and dry deposition, providing nitrogen to the surface

where it serves as a key ecosystem nutrient. Given its environmental importance, there are interests

in understanding past variability of atmospheric NOx. Numerous studies have reported seasonal

and historical variations in TNIT concentrations in Antarctica, yet the mechanisms and sources

driving these variations are still not well quantified.

As a proxy for historical variability of atmospheric NOx, ice cores from polar regions provide

chronologically preserved records of TNIT [237, 127, 141, 125, 90, 96, 238]. Greenland ice core NO−3

records show that the Northern Hemispheric NO−3 burden has doubled since the mid twentieth

century due to anthropogenic emissions [139]. In contrast, impacts of human activity on NO−3 are

not as prominent in Antarctic ice cores [141]. Aerosol measurements at the surface are also used

to constrain recent trends and seasonal variability of nitrate [193, 223, 231, 192, 97]. Antarctic

measurements consistently show minimum levels of TNIT in April – June, a small peak in August,

and a steady increase afterward until maximum levels are reached in November – January [193,

192, 96, 233].
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To interpret the significance of Antarctic ice-core and aerosol measurements, three important

types of processes that influence Antarctic surface-level TNIT must be considered. First, variations

in TNIT burden are impacted by long-range tropospheric transport of species emitted outside

Antarctica. Emissions of NOx include surface sources (fossil fuel, biofuel, soil exhalation, biomass

burning), lightning, and aircraft emissions. TNIT may be transported directly, as NOx or aerosol

nitrate, or as reservoir species such as peroxyacetyl nitrate (PAN). PAN is produced by chemical

reactions between hydrocarbons and NOx and has a highly temperature dependent lifetime (1 hr

at 298 K, 5 months at 250 K). Once it ascends to the free troposphere, it can be transported to the

polar regions and then decomposed upon descent into NOx by thermal decomposition or photolysis

[147, 90, 96].

Second, stratospheric influences in Antarctic TNIT include sedimentation of polar strato-

spheric clouds (PSCs) and HNO3-rich airmass mixing across the tropopause. One of the major

components of PSCs is HNO3 [29, 176]. The polar vortex provides a favorable environment for

PSCs to form and grow; subsequent sedimentation of PSCs is responsible for removal of gas-phase

HNO3 in winter from the Antarctic stratosphere, i.e., denitrification [58, 28]. Also, an enhanced

polar vortex can result in disappearance of the tropopause above Antarctica [188] leading to more

active airmass mixing between the stratosphere and troposphere [193, 223, 231].

Lastly, TNIT deposited on snow can recycle several times by re-emission to the atmosphere

by HNO3 evaporation or photochemical reduction into NOx [232, 192, 97]. This process, so called

post-depositional processing, has been suggested to cause observed TNIT maximum concentrations

in late spring and early summer [192, 97, 233].

The variety and complexity of these sources and mechanisms make it challenging to relate

observed Antarctic TNIT to atmospheric NOx [249, 185, 192, 239]. While local meteorology and

post-depositional processing influence the high TNIT concentrations in summer by active photo-

chemistry within Antarctica, the original source of TNIT for this recycling remains to be quantified

[239]. Specifically, it is of interest to determine the contribution of continental emissions versus

stratospheric input, the role of different types of natural versus anthropogenic emissions, and the
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chemical mechanisms by which TNIT is processed and transported to Antarctica in the troposphere.

Atmospheric chemical transport models provide a means of investigating the importance

of possible sources of Antarctic TNIT. Although there have been modeling studies investigating

atmospheric transport towards Antarctica [108, 203], most have been limited to non-reactive tracers

(e.g., black carbon, radon) and thus focused on transport of airmass and decay of tracers. A more

comprehensive modeling study, considering critical processes for reactive tracers such as chemical

reactions, emissions, and dry deposition, has been conducted for Antarctic CO [217]. However, due

to the complicated characteristics of NOx chemistry and transport, there has not to our knowledge

been a comprehensive modeling attempt at analyzing sources of Antarctic TNIT until now.

In this study, we use the global 3-D chemical transport model GEOS-Chem and its adjoint

to quantify sensitivities of surface level Antarctic TNIT to its precursor processes. These include

emissions, and production and loss of tracers resulting from tropospheric and stratospheric chem-

istry. In doing so, we evaluate the model by comparing the modeled seasonality with measurements

from previous studies, although we expect the model to underestimate austral summer observations

due to a lack of post-depositional processing in the model.

2.2 Model description

We use GEOS-Chem [16] version 8-02-04 with updates described below to estimate the TNIT

concentrations over Antarctica. GEOS-Chem is a global 3-D atmospheric chemical transport model

driven by meteorological input from the Goddard Earth Observing System (GEOS) of the NASA

Global Modeling and Assimilation Office (www.geos-chem.org). The version of the model employed

in this study uses GEOS-5 meteorological fields at 2◦ latitude × 2.5◦ longitude horizontal resolution,

with 47 vertical layers up to 0.01 hPa. The model’s tropospheric chemical mechanism consists of

more than 290 reactions and 90 gas and aerosol species. Aerosols are assumed to be externally

mixed. SO2−
4 -NO−3 -NH+

4 thermodynamic equilibrium is calculated using RPMARES [170], which

is based on the MARS-A routine of [17]. More comprehensive aerosol treatment including sea-salt

(Na+ and Cl−) and crustal ions (K+, Ca2+, and Mg2+) is available using another thermodynamic



9

scheme in the model, i.e., ISORROPIA, however, we use RPMARES due to the lack of an adjoint

of ISORROPIA until very recently [27]. Carbonaceous and size-resolved dust aerosols are based on

[36], [169], and [59]. Wet deposition includes sub-grid scavenging in convective updrafts, large scale

in-cloud rainout and below-cloud washout [128]. Dry deposition is calculated using a resistance-in-

series model [234, 227].

A new stratospheric chemistry scheme is implemented for this study. The standard version

8-02-04 of GEOS-Chem applies zonal mean production and loss rates to 23 gaseous species, as

archived from earlier 2-D models [16]. The new linearized stratospheric chemistry [156], updated

in the adjoint model as well for this study, uses monthly climatological 3-D production and loss

rates from the GMI (Global Modeling Initiative) Combo model (http://gmi.gsfc.nasa.gov) for 24

gaseous tracers above the tropopause, including CO, O3, NOx, and HNO3. These production and

loss rates only reflect gas-phase chemistry. Stratospheric O3 chemistry is treated using the Linoz

scheme [145, 129].

Figure 2.1 shows the monthly variation of NOx emissions summed over 15◦S – 90◦S from

the following emission inventories. EDGAR 3.2-FT2000 is used for fossil fuel combustion [164]

and GFED2 for biomass burning emissions [216]. Biofuel sources are based on Yevich et al.[242],

lightning is based on Murray et al.[156], and soil and aircraft emissions are described in Sauvage

et al.[191]. Fossil fuel combustion is fixed throughout the year, and the magnitude of biofuel and

aircraft emissions in this latitude range are negligibly small. Biomass burning has a maximum in

late winter and early spring (August and September). Lightning and soil emissions are higher from

spring to summer and lower from fall to winter.

We use the GEOS-Chem adjoint model [80] to evaluate the sensitivity of TNIT reaching the

surface level of Antarctica to precursor emissions and stratospheric production and loss rates. The

GEOS-Chem adjoint model has been used previously for source attribution [105, 225, 173, 172]

and data assimilation using remote sensing or in-situ observations [81, 104, 94, 230]. The adjoint,

a receptor-based sensitivity model, is a very efficient tool for quantifying the sensitivity of a scalar
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Figure 2.1: Monthly NOx emissions for 15◦S - 90◦S from March 2006 to February 2007.
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forward model estimate to numerous model parameters. The normalized sensitivity is defined as

λp ≡
∂J(ci)

∂p
· p

J (ci)
(2.1)

where ∂J(ci)
∂p is found from solution of the adjoint model. Here ci is the concentration of species

i and J(ci) is a scalar function of forward model estimates. In this study, J(ci) is defined as the

weekly average TNIT concentration evaluated in flux units over Antarctica at the surface level,

i.e., JTNIT . The flux unit here is the total mass of TNIT in the first level of the model per

surface area per hour. Considering that the surface area of Antarctica varies during the course of

a year as sea ice expands and melts [203], we determine Antarctica as the land or ice south of 60◦S

according to the GEOS-5 land-water indices. λp is the sensitivity of J(ci) with respect to the model

parameters (p). p in this study consists of emissions of all tracers from various sectors (e.g., fossil

fuel, lightning NOx, natural NH3, etc.), and stratospheric production and loss rates. In addition,

sensitivities with respect to reaction rates (i.e., kinetic reaction rates, deposition rates, photolysis

rates, and hydrolysis rates) are also calculated. We performed adjoint simulations for each month

from March 2006 to February 2007. JTNIT is evaluated over the final week of each month and

percent contributions are summed globally throughout the month.

2.3 Results

2.3.1 Seasonal variations of total nitrate

We first compare seasonal variations of surface level TNIT concentrations estimated from

GEOS-Chem with measurement studies in Fig. 2.2, with additional details on the measurements

provided in Table 2.1. From each of the yearly measurement studies, we extract and plot data

relevant to three key observed features: the fall minimum, the August peak, and the maximum

[193, 192, 96, 233]. Symbols are placed in the middle of the period that they represent. Given the

differences in the locations of these measurements, the species measured (NO−3 , HNO3, or TNIT),

and the area these measurements represent compared to the size of the model grid cell, we primarily

make qualitative comparisons between them and the model estimates.
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Figure 2.2: Modeled TNIT concentration from March 2006 to February 2007 with measurements
in symbols. The solid black line is the hourly TNIT concentration averaged over Antarctica (60◦S
- 90◦S, see text for details) and shadings indicate first and third quartiles. Two measurements are
indicated with values as they are too high to show on the same y-axis. NO−3 measurements are
converted to TNIT concentrations based on the partitioning in Jourdain et al.[98].
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Table 2.1: Surface air nitrate measurements from previous studies

Site (tracer) Minimum August peak Maximum Time

Mawson 1 (NO−
3 ) May (10 ng/m3) 33 ng/m3 Nov (58 ng/m3) 1987 - 1991

Neumayer 2 (NO−
3 ) Apr - May (13 ng/m3) 32 ng/m3 Nov (73 ng/m3) 1983 - 1996

Dumont d’Urville 2 (NO−
3 ) Apr - May (11 ng/m3) 20 ng/m3 Nov - Jan (41 ng/m3) 1991 - 1995

Dumont d’Urville 3 (NO−
3 ) Mar - Jun (14 ng/m3) 45 ng/m3 Nov - Dec (116 ng/m3) 2001

Dumont d’Urville 4 (NO−
3 ) Apr (12 ng/m3) 25 ng/m3 Nov - Dec (55 ng/m3) 2000 - 2001

Dumont d’Urville 4 (HNO3) Apr (5 ng/m3) 25 ng/m3 Dec (95 ng/m3) 2000 - 2001
Halley 5 (TNIT) Jun (2 pptv) 5 pptv Dec (8.5 pptv) 2004

Halley 6 (NO−
3 ) May (∼5 ng/m3) 50 ng/m3 Dec (200 ng/m3) 2001

1 Savoie et al.[193], 2 Wagenbach et al.[223], 3 Savarino et al.[192]
4Jourdain et al. [98], 5 Jones et al.[97], 6 Rankin et al.[180]

Measured concentrations show large variations from study to study. It is possible that differ-

ences are owing to variations in local conditions (e.g., meteorology, topography, post-depositional

processes) and measurement methods. We focus our analysis on TNIT rather than NO−3 and HNO3

separately, as thermodynamic partitioning between NO−3 and HNO3 in the model may be biased,

underestimating NO−3 due to lack of sea-salt and crustal ions. Considering a dataset that includes

both separately [98], NO−3 constitutes 67% of the minimum TNIT, 50% of the August TNIT peak,

and 34% of the maximum TNIT. Based on this observed partitioning we convert NO−3 measure-

ments to TNIT concentrations for the other studies shown in Fig. 2.2. Measured minima and

August peaks lie within the modeled first and third quartiles of simulated values over Antarctica.

As expected, the model considerably underestimates the maximum in November to January that

is thought to be due to post-depositional processing [192, 97, 233]. The model reasonably repre-

sents the magnitude of the August peak even though GEOS-Chem has no scheme describing PSC

formation and sedimentation. PSC sedimentation has been suggested as a source of the August

peak or the spring maximum [141, 223, 192]. It is still ambiguous from these results whether PSC

sedimentation has a small effect on the August peak or its impact on surface level TNIT appears

in spring not in August. This issue is considered further in Sec. 2.3.2.2.

The spatial distributions of modeled TNIT at the surface level are shown in Fig. 2.3. For all

seasons, East Antarctica has a higher mixing ratio than West Antarctica, and the mixing ratio in

the Northeast is higher than in the Southwest. As shown in Fig. 2.3, the spatial distribution of
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TNIT is similar to the boundary layer top pressure distribution which corresponds to topography

(lower pressure to higher topography). The effects of topography will cause spatial variations in ac-

cumulation rate, which is expected to impact TNIT concentrations via post-depositional processing

[183, 6].

2.3.2 Source attribution of total nitrate (TNIT)

To better understand the factors governing the abundance of TNIT, we comprehensively

diagnose the sensitivity of JTNIT to sources using the GEOS-Chem adjoint. Table 2.2 shows the

three sources with the largest percent contribution (λp × 100%) to JTNIT in each month, and

Fig. 2.4 shows the spatial distribution of sources to which JTNIT is sensitive. For example, in the

final week of March, the average TNIT flux to the Antarctic surface, i.e., JTNIT , is 3.7 µg/m2 hr.

Over the course of the entire month, NOx emissions from fossil fuel combustion contribute the most

to JTNIT , responsible for a 5.3% increase, and stratospheric loss of HNO3 is responsible for a 4.4%

decrease of JTNIT .
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Figure 2.3: Monthly average (a) surface level concentration of TNIT estimated by GEOS-Chem
and (b) boundary layer top pressure (62◦S - 90◦S).
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Table 2.2: Global contributions of emissions and stratospheric tracers to JTNIT

Month
MAM JJA SON DJF

3 4 5 6 7 8 9 10 11 12 1 2
J

(µg/m2 hr)
3.7 2.9 1.8 2.3 1.8 3.9 4.6 2.3 2.1 2.7 4.0 2.4

Pos
(%)

ffNOx

5.3
ffNOx

7.6
ffNOx

12.5
ffNOx

14.6
ffNOx

14.6
ffNOx

7.8
ffNOx

6.4
ffNOx

6.9
ffNOx

4.8
bbNOx

3.1
spNOx

3.0
liNOx

4.6
soNOx

5.1
soNOx

5.8
soNOx

9.4
soNOx

8.2
soNOx

5.1
liNOx

3.4
soNOx

3.6
soNOx

6.7
soNOx

3.7
soNOx

2.0
spHNO3

2.3
soNOx

2.8
spHNO3

4.1
liNOx

2.7
liNOx

3.2
liNOx

5.2
liNOx

2.9
soNOx

3.2
liNOx

3.3
naNH3

4.2
liNOx

3.5
ffNOx

1.9
bbNOx

2.1
spNOx

1.8

Neg
(%)

slHNO3

-4.4
slNOx

-2.0
slNOx

-1.0
-∗ -∗

slNOx

-1.4
slNOx

-1.7
slNOx

-1.1
slNOx

-2.6
slNOx

-2.0
slNOx

-3.4
slNOx

-2.1
slNOx

-4.0
slHNO3

-1.4
-∗ -∗ -∗ -∗ -∗ -∗

slHNO3

-1.2
slHNO3

-1.2
slHNO3

-2.5
slHNO3

-1.7
slHNO4

-1.8
slHNO4

-1.0
-∗ -∗ -∗ -∗ -∗ -∗ -∗ -∗

slHNO4

-1.0
-∗

- MAM: March April May, JJA: June July August, SON: September October November, DJF: December January February
- ff: fossil fuel combustion, li: lightning, na: natural, sl: stratospheric loss, so: soil, sp: stratospheric production
- ∗: <1.0 %

While the source contributions in Table 2.2 and Fig. 2.4 show the ultimate sectors and

locations of origin, they alone do not answer questions such as: which NOx reservoir species are most

responsible for transport to Antarctica, and what is the role of chemical reactions during transport?

To answer these questions we quantify the roles of different chemical mechanisms transforming NOx

by calculating sensitivities of JTNIT with respect to chemical reaction rate constants. Among 24

reactions directly producing HNO3, three reactions, (R1) – (R3), are found to contribute the most,

in agreement with [1],

NO2 + OH→ HNO3 (R1),

N2O5 + H2O→ 2HNO3 (R2),

NO3 + DMS→ HNO3 (R3),

where DMS is dimethylsulfide. Table 2.3 shows the globally integrated sensitivities with respect

to (R1) – (R3). The relative importance of each reaction varies by season and is affected by

a combination of emissions, chemistry, and meteorology. Although these are HNO3-producing

pathways, their contributions often exhibit negative values when more HNO3 is lost than added

to JTNIT . This occurs when the net HNO3 produced by a given pathway occurs too far from

Antarctica for the HNO3 to reach the continent prior to being removed from the atmosphere by
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Figure 2.4: Spatial distribution of source contributions to JTNIT (15◦S - 90◦S).
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deposition. Figures 2.5 and 2.6 map the horizontal and vertical distribution of each reaction’s

contribution to JTNIT . It is evident that when the reactions occur too far away from Antarctica, a

source of JTNIT is removed from the atmosphere. The lifetime of HNO3 is short, about 2 – 5 days

in the lower atmosphere, because it is readily removed near the surface by wet and dry deposition.

Meanwhile, when these reactions occur closer to Antarctica they positively contribute to JTNIT ,

showing that if the precursors involved in (R1) – (R3) reach certain latitudes the resulting HNO3

will be transported to Antarctica. There is a vertical transition above the mid-latitudes where

continental sources are emitted; if precursors ascend across this transition then the HNO3 they

form will be transported to Antarctica. The critical altitude appears to be ∼4 km, extending as

far north as 40◦S.
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Table 2.3: Global total contribution of major reactions forming HNO3 to JTNIT

Month
MAM JJA SON DJF

3 4 5 6 7 8 9 10 11 12 1 2
(R1) NO2 + OH → HNO3 (%) 1.4 -4.6 -6.3 -4.5 -7.8 -4.1 0.5 9.3 13.5 16.3 11.4 11.5
(R2) N2O5 + H2O → 2 HNO3 (%) 0.8 -0.2 -1.0 -1.0 -2.4 -0.6 0.8 0.4 -0.2 -0.1 -0.1 -0.6
(R3) NO3 + DMS → HNO3 (%) 0.3 -0.4 -0.8 -0.5 -0.6 -0.2 0.7 0.0 -0.4 -0.2 -0.1 -0.3

Surface level TNIT shows small positive sensitivities (less than 1%) to stratospheric produc-

tion of tracers in most months. However, additional calculations at the 4◦ latitude × 5◦ longitude

resolution show that long-term (6 month) integration of the adjoint sensitivities lead to positive

sensitivities that are twice as large as those from 1-month integration, with no significant increase

of sensitivities after 6 months. Thus, sensitivities to the stratospheric production from the month

long, 2◦ × 2.5◦ resolution analysis shown in Table 2.2 may be an underestimate. In contrast,

sensitivities with respect to emissions and stratospheric loss appear to converge within one month.

2.3.2.1 Background concentrations

The lowest JTNIT values of 1.8 µg/m2 hr appear May and July; During these months, the

sensitivities are consistently dominated by fossil fuel, and then soil and lighting NOx emissions with

negligible sensitivities to stratospheric loss (Table 2.2). We therefore consider the the modeled

minimum concentrations as extending from May through July. And these minimum levels are

regarded as background concentrations. The range of background concentrations across Antarctica

are in good agreement with observations (Fig. 2.2). Spatially, the origin of those sources are shown

in Fig. 2.4. Influential NOx emissions are distributed from 30◦S – 65◦S. Regarding emissions,

biomass burning is greater than lightning NOx in July, however lightning NOx is still the third

most influential source. NOx from biomass burning originates in lower latitudes between 10◦S –

30◦S and at the surface, whereas lightning NOx is produced in higher latitudes and altitudes where

it can be effectively transported to Antarctica.

Total influences of reactions producing HNO3 (R1– R3) are all negative from April to August

(Table 2.3). Due to a lack of sunlight from the end of March through the next six months, there is no
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local supply of OH radical in Antarctica. Thus, HNO3 produced by (R1) during the austral winter

is not produced locally in Antarctica but is imported from lower latitudes or the stratosphere.

Figure 2.6 shows that JTNIT is produced from precursors injected into the free troposphere at

latitudes as far north as 35◦S. O3 dry deposition (2.7% – 3.5%), NO+O3 → NO2+O2 (1.3% –

3.1%), and thermal decomposition of PAN (1.4% – 2.4%) are the most influential reactions during

May – July. JTNIT is positively sensitive to these reactions since they favor NO2, which may be

further oxidized to TNIT. Spatial distributions of these reactions are shown in Fig. 2.7 – 2.9. As

more O3 is removed near the surface by dry deposition, less NO2 is scavenged via NO2+O3 →

NO3+O2, and the chance for NO2 or PAN to be lofted above the critical altitude is enhanced. NO2

produced from NO+O3→ NO2+O2 over the continents near the surface also favors PAN formation.

The same reaction near the tropopause contributes to TNIT in Antarctica, which is affected by

high O3 concentrations from the stratosphere. If the reaction occurs at altitudes between the two

positively sensitive regions, the resulting NO2 does not add TNIT to Antarctica but deposits in

the Southern Ocean. Thermal decomposition of PAN is influential during austral fall and winter,

increasing with increasing temperature towards the troposphere from the stratosphere. It occurs

at altitudes lower than 6 km and photolysis of PAN occurs at higher altitudes, up to 12 km.

Considering that JTNIT is positively sensitive to PAN formation in the mid-latitudes (30◦S – 50◦S)

and that thermal decomposition occurs throughout the free troposphere (Fig. 2.8 and 2.9), we

conclude that PAN produced in the mid-latitudes and transported through the free troposphere

can be an effective source of TNIT over Antarctica.

2.3.2.2 Peak concentrations in August

Model estimates and measurements both show a peak in TNIT concentration in August. It is

interesting that the model shows high concentrations in August without a scheme describing PSC

formation and sedimentation, which has been suggested from measurement studies as being a major

source of the peak in August [141, 223, 192]. Decomposition of PAN has also been suggested as a

source of NOx during austral winter to early spring [192, 96]. In this study, thermal decomposition
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Figure 2.5: Spatial distribution of JTNIT sensitivities to reactions producing HNO3 (15◦S - 90◦S).
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of PAN is the most influential reaction in August, accounting for 2.9% of the positive sensitivity.

JTNIT in August is still most sensitive to fossil fuel combustion (7.8%), lightning (3.4%) and soil

(3.2%) NOx emissions from 30◦S – 65◦S. There is relatively less contribution from continental

sources compared to May – July. August marks a transition between the season when remote

influences dominate during winter and local reactions dominate during summer.

The sensitivity with respect to stratospheric production of NOx is 1.6%. Compared to the

0.4% – 0.6% contribution in May – July, this increased stratospheric NOx contribution shows that

stratospheric influence on the August peak is represented by the model. It is worth pointing out

that sensitivities with respect to stratospheric production and loss rates do not equate to the actual

fluxes from and to the stratosphere, just the amount by which current stratospheric chemistry

influences these fluxes. Thus, a small increase in the stratospheric production rate results in a

large increase in the surface level TNIT, since the HNO3 mixing ratio is significantly higher in the

stratosphere compared to the troposphere (Fig. 2.10). Stratospheric effects seen in GEOS-Chem

reflect the climatological production and loss of tracers by gas-phase chemistry in the stratosphere.

However, PSC formation and sedimentation is not included in the model. Thus, this stratospheric

influence is likely the effect of the polar vortex in conjunction with the lack of photolysis during the

austral winter. Noting that the model does not include PSC sedimentation nor the disappearance

of the tropopause, these estimates of stratospheric contributions are likely lower bounds.
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Figure 2.10: Monthly HNO3 vertical profiles averaged over Antarctica (70◦S - 90◦S). (a) GEOS-
Chem, (b) GMI, (c) Modified GEOS-Chem.

Although it is well known that PSCs are responsible for removal of gas-phase HNO3 in

the winter in the Antarctic stratosphere, i.e., denitrification [58, 28], whether the effect of PSC

sedimentation is detectable in surface level HNO3 concentrations is still not clear. Figure 2.10

shows vertical profiles of HNO3 from (a) GEOS-Chem and (b) GMI. The major difference between

these models is that GMI considers PSC formation and sedimentation whereas GEOS-Chem does

not. We therefore modified GEOS-Chem to have similar vertical profiles of HNO3 to that of GMI,

see Fig. 2.10 (c). This profile is achieved by enforced sedimentation of HNO3 at 14 km altitude,

adjacent to the tropopause, from HNO3 in the 15 – 25 km range during June to November. This

allows us to examine the effect of enhanced HNO3 mixing ratio in the lower stratosphere (∼ 140hPa)

on surface level HNO3 concentrations in GEOS-Chem. With this modification, surface level HNO3

increases from August through October as shown in Fig. 2.11, and more measurements of the

August peak fall in the range of model estimates with this modification. This result, which does

not include particles from PSCs, suggests that effects of PSCs on surface TNIT can be explained

largely by gas-phase convection in August. However, the impact in October is smaller than in

August and September, showing that the gas-phase convection is unlikely a factor controlling the

spring maximum.
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Figure 2.11: Same as Fig. 2.2 but showing impacts of enforced HNO3 enhancement in lower strato-
sphere in GEOS-Chem. From June to November 2006. Blue dash line is the mean and blue
solid lines are first and third quartiles of surface level TNIT concentrations calculated by modified
GEOS-Chem.
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2.3.2.3 Maximum concentrations

Modeled maximum TNIT concentrations appear at the end of September, however the con-

centration is only slightly higher than the August peak (Fig. 2.2). While measured concentrations at

the end of September are comparable to modeled concentrations, the model underestimates the ob-

served maximum concentration in November – January. Measured maximum TNIT concentrations

have been attributed to the combination of PSC sedimentation [223, 231, 192] and post-depositional

processing [192, 97]. Given that the model does not well represent the tropopause in winter, PSC

sedimentation, nor post-depositional processing, differences between modeled and measured TNIT

concentrations in November to January can be considered as an upper bound on contributions from

these mechanisms.

Regarding the sensitivities of modeled maximum TNIT, NOx emissions from fossil fuel, soil,

and lightning are the three most influential sources in September. As Antarctica starts to receive

more solar radiation in spring, photochemical reactions become active. JTNIT starts to indicate

positive sensitivities to (R1) – (R3) in September (Table 2.3). PAN photolysis is the most positively

influential reaction for the modeled maximum in September. From October to February, modeled

JTNIT is consistently affected the most by (R1) (9% – 11%) and PAN photolysis (6% – 12%),

indicating strong effects of active photolysis owing to extended daylight hours and enhanced high

surface albedo. Thus, implementation of post-depositional processing, also controlled by photolysis,

in the model will likely introduce more TNIT in these months. Comparing the two mechanisms

of PAN decomposition in the model, contributions from photolysis dominate compared to thermal

decomposition (Fig. 2.12). Global effects of PAN formation appear to be positive only when it is

formed in an area where transport to Antarctica is likely.

Another thing to consider is that GEOS-Chem does not include the heterogeneous chemistry

of the stratospheric ozone hole. Thus, O3 in the polar vortex over Antarctica in austral spring

during September to November is greatly overestimated, which will affect the NO+O3 → NO2+O2

pathway once O3 is transported to the troposphere. Therefore, JTNIT in September to November
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Figure 2.12: Annual variation of sensitivities of JTNIT to the PAN formation and decompositions.
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could be overestimated as a consequence of overestimated stratospheric O3 transported to the

troposphere.

2.4 Summary and conclusions

We have assessed sensitivities of surface level Antarctic TNIT to various emission sectors

in the troposphere and production and loss of tracers in the stratosphere throughout a year using

GEOS-Chem and its adjoint. Average annual minimum, August peak, and annual maximum TNIT

concentrations from measurement studies are compared with modeled TNIT concentrations across

Antarctica. Most seasonal minima from measurements lie within the first and third quartiles of

modeled background concentrations during May to July. The first and relatively small peak of

the year appearing in August, i.e., the August peak, is also captured by the model. The August

peak representation in the model is improved by inclusion of enhanced HNO3 mixing ratios in the

lower stratosphere to mimic the effects of PSC formation and sedimentation. The model is not

able to reproduce the maximum concentration of the year observed in November to January likely

due to a lack of post-depositional processing. We anticipate this underestimation to be resolved

with implementation of new snow chemistry and post-depositional processing [247] in future work.

In addition, while our results only include the gas-phase influences of PSCs in August, there is

still a possibility that PSC sedimentation influences surface level TNIT in early austral spring by

particulate deposition.

Sensitivity calculations show that the modeled background concentrations are mostly affected

by TNIT produced in the free troposphere over mid latitudes (30◦S – 65◦S) through the reaction

NO2 + OH → HNO3. NOx for the reaction is mainly supplied from fossil fuel combustion, soil,

lightning, and thermal decomposition and photolysis of PAN. It is evident from horizontal sensi-

tivity maps that surface level Antarctica receives more influences from outside Antarctica during

winter than summer. August is a transitional month; thus, the modeled August peak is comparably

affected by tropospheric and stratospheric sources. In summer, surface level TNIT is negatively

sensitive to stratospheric gas-phase chemistry that consumes NOx, HNO3, and HNO4 in the strato-
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sphere. Thus TNIT concentrations decrease in summer even though total emissions from south of

15◦S increase. Given that the model lacks post-depositional processing, photochemical decomposi-

tion of PAN accounts for the largest fraction of NOx supply for the HNO3 forming reaction during

the austral summer.



Chapter 3

Sources of nitrogen deposition in Federal Class I areas in the US

3.1 Introduction

Excessive deposition of reactive nitrogen (Nr) is of interest due to its cascading impact on

the environment [221]. The primary impacts of Nr deposition appear in terrestrial and aquatic

ecosystems as imbalanced nutrition [65], decreased biological diversity [189, 202, 39], eutrophication

[61, 51], and acidification [65, 204]. Each of these primary impacts lead to subsequent consequences

such as disturbances in ecosystems [65] and changes in greenhouse gas emissions and uptakes

[73, 181].

The potential impact of Nr deposition on ecosystems can be evaluated using critical loads

(CLs), a quantitative estimate of an exposure to one or more pollutants below which no significant

harmful effects occur over the long term [162]. The magnitude of the CL varies across different types

of receptors, e.g., alpine lakes, lichens in forests, alpine vegetation, etc. It can be estimated using

various methods [167], which include empirical studies [18], steady-state mass balance approach

[214], and dynamic modeling [222]. Pardo et al.[167] synthesized current research related to Nr

deposition and comprehensively assessed empirical CLs for major ecoregions across the US.

National Parks (Organic Act of 1916, 16 USC 1-4) and wilderness areas (Wilderness Act of

1964, 16 USC 1131-1136) in the US are required to be protected to conserve natural and historic

objects and the wildlife therein. Of these, Federal Class I areas are defined as those where visibility

is important (Clean Air Act Amendments of 1977, 40 CFR 81). In the US, current Nr deposition

exceeds CLs in many Class I areas. Fenn et al.[60] estimated that one-third of the land area of
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California vegetation types is in excess of the CL for Nr deposition. Bowman et al.[21] empirically

determined CLs for vegetation and soils in Rocky Mountain National Park and found ongoing

vegetation change due to excessive Nr deposition. Benedict et al.[13] found substantial exceedance

of CLs for Nr deposition in Grand Teton National Park. Ellis et al.[54] estimated that exceedances

will become more pervasive in the coming decades.

It is desired to reduce the number of regions in CL exceedance and the amount of excessive Nr

deposited above CLs. To reach this goal, it is necessary to understand the sources contributing to

Nr deposition, which include both natural and anthropogenic emissions of NOx and NH3. Chemical

transport models (CTM) can be used to study sources of Nr deposition. Zhang et al.[250] used a

3-D CTM, GEOS-Chem, to investigate the distribution, sources, and processes of Nr deposition

in the US. By toggling emissions on and off in consecutive model simulations, they found that

Nr deposition was dominated by contributions from domestic NOx and NH3 emissions, followed

by natural and foreign sources. While this approach provided estimates of the role of the total

emissions from these sectors throughout the US, refined estimates of source contributions from

specific locations can be calculated using the adjoint of a CTM, which is a computationally efficient

tool for such sensitivity analysis [81]. For example, Paulot et al.[175] used the adjoint method to

identify the sources and processes that control Nr deposition in biodiversity hotspots worldwide

and two US national parks (Cuyahoga and Rocky Mountain) and found that anthropogenic sources

dominate deposition at all continental sites and are mainly located with 1000 km of the hotspots

themselves.

The primary purpose of this study is to evaluate the origin of Nr that specifically impacts

Federal Class I areas throughout the US, identifying the source locations, species and sectors

that contribute to both total deposition and deposition above CLs. The results can thus be used

to identify how regionally specific emissions mitigation efforts will impact ecosystems in these

protected areas. To accomplish this goal, we evaluate source contributions to the deposition at the

collection of all Class I areas as well as eight specific regions: Voyageurs national park (VY), Smoky

Mountain national park (SM), Shenandoah national park (SD), Big Bend national park (BB), Rocky
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Figure 3.1: Composition of vegetation types of select Class I areas used in this study based on
Olson et al.[165].

Mountain national park (RM), Grand Teton national park (GT), Joshua Tree wilderness (JT), and

Sequoia national park (SQ). Following Ellis et al.[54], we use the lowest estimate of CL for these

areas from [167] which are based on CLs for lichens in most regions because lichen is among the

most sensitive bio-indicators of N in terrestrial ecosystems. These 8 focus areas are selected as

they have low CLs (VY, SM, SD, BB, JT: 3 kg N/ha/yr, RM, GT, SQ: 2.5 kg N/ha/yr) and are

thus most likely impacted by Nr deposition. We also choose this set of areas to highlight different

spatial distributions of sources and mechanisms governing Nr deposition in regions of the country

that are spatially disparate, are subject to a range of nitrogen emission profiles, encompass several

types of ecosystems (see Fig. 3.1), and are subject to Nr deposition at levels close to or above CLs.

The secondary purpose is to evaluate the impact of uncertainties in NH3 emissions on source

attribution of Nr deposition. NH3 emissions are known to have uncertainties of more than a factor

of two in total US emissions in some seasons [81, 174]. Thus, NH3 emissions inventories are often

updated through top-down approaches, using constraints provided through inverse modeling of wet

deposition measurements [69, 70, 250, 174] or, more recently, remote sending observations [257].

Here we consider constraints on NH3 emissions throughout the US from Zhu et al.[257] that were
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derived from 4D variational assimilation of NH3 remote sensing observations from the Thermal

Emissions Spectrometer (TES) aboard the Aura satellite [198]. We investigate the impacts of these

adjustments to NH3 emissions, relative to those from a national emissions inventory, on source

attribution of Nr deposition in 3 Class I areas (VY, SD, and RM). Another consideration is that

the air-surface exchange of NH3 emissions is actually bi-directional [159, 206], an aspect that has

recently begun to be implemented to air quality models [42, 8, 177, 256]. Zhu et al.[256] found

increased net NH3 emissions in July (5.9%) and decreased net NH3 emission in April (23.3%) and

October (13.9%) over the US when including the bi-directional flux of NH3 in the GEOS-Chem

model. As bi-directional flux of NH3 is not considered in our present work, this provides additional

motivation for studying the response of Nr source attribution to uncertainties in NH3 emissions.

The organization of this manuscript is as follows. Modeled seasonality of Nr deposition is

compared with measurement data in section 3.3.1. Sensitivity analysis using the adjoint model is

presented in section 3.3.2. In section 3.3.3, we examine the impacts of uncertainties in our model’s

NH3 emissions in the source attribution results. The paper concludes with summary and discussions

in section 3.4.

3.2 Methods

3.2.1 Measurement data

The National Trends Network (NTN) (http://nadp.sws.uiuc.edu) of the National Atmo-

spheric Deposition Program [157] provides weekly records of precipitation amount and chemical

properties (i.e., ion concentration, acidity, and conductance) at as many as 250 sites across the

US. Rainfall is recorded to the nearest 0.01 inch with a weighing-bucket rain gauge at each site.

Chemical properties are analyzed at the Central Analytical Laboratory [157]. Table 3.1 lists sites

used in this study. We use monthly aggregate wet deposition of NH+
4 and NO−3 for select sites.

However, no data are available for SQ in JJA. For GT, we use the average of Yellowstone and

Pinedale, WY, measurements because there are no wet deposition measurements made in 2010 in
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GT. For RM, there are three collocated monitoring sites, and we use the average of them.

The Clean Air Status and Trends Network (CASTNET, http://epa.gov/castnet) measures

ambient concentration of nitrogen and sulfur weekly at about 90 sites across the US and Canada.

More than 20 of these sites are within Class I areas. A 3-stage filter pack is used to measure nitrogen

concentrations. Dry deposition flux is then calculated using the dry deposition velocity estimated

by the Multi-Layer Model (MLM) [30]. For simplicity when discussing these values along with

other observations, we refer to these derived quantities as dry deposition measurements, although

we recognize here that dry deposition is not directly measured. We use monthly aggregate dry

deposition of NH+
4 , NO−3 , and HNO3 for select sites. Yellowstone and Pinedale, WY, measurements

are used for GT since there is no CASTNET site in GT.

3.2.2 GEOS-Chem model description

GEOS-Chem (www.geos-chem.org) is a 3-dimensional atmospheric CTM driven by meteoro-

logical input from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling

and Assimilation Office [16]. We use GEOS-Chem adjoint version 35 with a nested grid resolution

of 1/2◦ latitude × 2/3◦ longitude with 47 vertical layers up to 0.01 hPa [228, 35, 251] for the

modeling domain over the contiguous US (126W - 66W, 13N - 57N). The model includes detailed

tropospheric gas-phase chemistry of the O3-NOx-hydrocarbon system [86]. Aerosols are assumed

to be externally mixed and the thermodynamic equilibrium between gases and aerosol of NH3-

H2SO4-HNO3 is calculated using RPMARES [170]. Wet deposition includes sub-grid scavenging in

convective updrafts, large scale in-cloud rainout, and below-cloud washout [128]. Dry deposition

is calculated using a resistance-in-series model [234, 227]. Resistances are aerodynamic resistance,

quasi-laminar sublayer resistance, and bulk surface resistance. Bulk surface resistances are spec-

ified by different surface type, i.e., vegetation types [234]. We use vegetation types from Olson

et al.[165], shown in Fig. 3.1.

Anthropogenic emissions of NOx, SO2, and NH3 in GEOS-Chem are taken from the National

Emissions Inventory produced by the US EPA (EPA/NEI2008). Annual emissions of NOx and
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Table 3.1: NADP and CASTNET sites used for Nr deposition measurements.

Class I area name
NADP CASTNET

ID Location (lat, lon) ID Location (lat, lon)

Voyaguers (VY) MN32 (48.4, -92.8) VOY413 (48.4, -92.8)
Smoky Mountain (SM) TN11 (35.7, -83.6) GRS420 (35.6, -83.9)
Shenandoah (SD) VA28 (38.5, -78.4) SHN418 (38.5, -78.4)
Big Bend (BB) TX04 (29.3, -103.2) BBE401 (29.3, -103.2)

Rocky Mountain (RM)a
CO19 (40.4, -105.6) ROM206 (40.3, -105.5)
CO89 (40.3, -105.7) ROM406 (40.3, -105.5)
CO98 (40.3, -105.7) - -

Pinedale (GT) WY06 (42.9, -109.8) PND165 (42.9, -109.8)
Yellowstone (GT)b WY08 (44.9, -110.7) YEL408 (44.6, -110.4)
Joshua Tree (JT) CA67 (34.1, -116.4) JOT403 (34.1, -116.4)
Sequoia (SQ) CA75 (36.6, -118.4) SEK430 (36.5, -118.8)

aAverage of three collocated sites of NADP and 2 collocated sites of CASTET is used.
bAverage of Yellowstone and Pinedale is used.
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Table 3.2: NOx and NH3 emissions in the contiguous US in 2010.

Sectors Emissions (Tg N/yr)

NH3 Total 3.2
Livestock 2.7
Fertilizer 0.3
Natural 0.1

NOx Total 4.9
Surface 2.6
EGUsa 0.57
Non-EGU 0.38
Aircraft 0.13
Lightning 0.69
Soil 0.43

a Electric generating units

NH3 in the contiguous US in 2010 are shown in Table 3.2. Mobile emissions of NH3 are not

shown explicitly here, as they are <4% of the US total in the NEI2008, although this may be

an underestimate in urban areas [100]. Anthropogenic sources of NOx includes surface sources,

electric generating units (EGUs), and non-EGU industrial point sources. Surface sources of NOx

comprises on-road (diesel and gasoline exhaust from cars and trucks, 68.4%), non-road (off-road

vehicles, construction equipment, industrial, commercial, and agricultural engines, 17.2%), and non-

point (not otherwise included, e.g., residential heating, oil and gas development, 14.4%) sources.

Biomass burning emissions are taken from the 3-hour GFED3 inventory [151, 218]. NOx emissions

from aircraft are described in Wang et al.[227]. Natural emissions of NOx are from lightning [156]

and soil [243, 227]. Natural emissions of NH3 from soil, vegetation, and ocean sources are from the

GEIA inventory [20]. In section 3.3.3, we consider NH3 emissions constrained by remote sensing

observations from Zhu et al.[257], which we refer to as optimized NEI2005. Bidirectional NH3

exchange is not considered in this study.
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3.2.3 Nr deposition metrics in Federal Class I areas

Here we consider several metrics (cost functions) for quantifying Nr deposition and CL ex-

ceedances in Federal Class I areas. When considering strategies for reducing Nr deposition in Class I

areas, several possible questions of interest arise, such as: 1) How do emissions from different source

locations and sectors affect Nr deposition in specific individual Class I areas? 2) Which emissions

contribute the most to the spatial extent of all Class I regions in exceedance? and 3) What is the

amount by which emissions contribute to the severity of Nr deposition in Class I areas above CLs?

Each of these three questions corresponds to a unique approach to defining the cost function for

our sensitivity calculations. The cost functions in this study include the following constituents: the

sum of wet and dry deposition of NH3, NH+
4 , NO−3 , and HNO3, and dry deposition of NO2, PANs

(peroxyacetyl nitrate and higher peroxyacyl nitrates: peroxymethacroyl nitrate, peroxypropionyl

nitrate), alkyl nitrate, and N2O5. Although dry deposition of NO2, PANs, alkyl nitrate, and N2O5

are not part of the CL estimates by Pardo et al.[167], the sum of these species does not significantly

contribute to our modeled Nr deposition or comparison to these CLs.

We first consider a cost function formulated for source attribution of Nr deposition in an

individual Class I area. It is defined as the annual Nr deposition in a region [kg N/ha/yr],

Jp =
N∑
i=1

annDepiβi, (3.1)

where annDepi is the annual Nr deposition in grid cell i, βi is the fraction of grid cell i that is

contained within the Class I area, and N is number of grid cells for which βi is nonzero for an

individual Class I area. Sensitivities of this cost function provide a first order estimate of the

contribution of emissions to annual Nr deposition in a particular Class I area.

We next consider a cost function that is the sum of Nr deposition in all Class I areas in CL

exceedance, Ja [kg N/ha/yr], defined as

Ja =
L∑
i=1

annDepiβi, (3.2)

where L is the number of grid cells containing Federal Class I areas in which annual modeled Nr
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deposition has exceeded the CL values we use in this study and βi is the fraction of grid cell i

that is contained within each Class I area. This metric is proportional to the total area of Class I

regions in CL exceedance. Sensitivities of Ja with respect to emissions thus identify which emissions

contribute to the total spatial extent of Class I areas that have Nr deposition above their CL by

any amount.

Lastly, we consider a third cost function that is the sum of square of the difference of annual

Nr deposition and CL in all Class I areas in CL exceedance, Jc [(kg N/ha/yr)2], which defined as

Jc = 0.5
L∑
i=1

(annDepi - CLi)
2βi, (3.3)

where L and βi are same as Eq. 3.2 and CLi is the critical load in grid cell i. While both Eq. 3.2

and Eq. 3.3 include only regions where annual Nr deposition is higher than the CL, Eq. 3.3 is more

strongly related to the magnitude of the Nr deposition in exceedance (the factor of 0.5 is habitually

included for sensitivity calculations based on the first derivative of J). Sensitivities of Jc quantify

the contribution of emissions to the magnitude of Nr deposition above CL loads, which can then

guide analysis of mitigation efforts for reducing the most severe levels of Nr deposition.

3.2.4 GEOS-Chem adjoint model

The GEOS-Chem adjoint model [80] is a tool for receptor-based inverse modeling and sensi-

tivity analysis [106, 230, 257]. When it is used for a sensitivity analysis, gradients of the user defined

cost function with respect to all model parameters are calculated simultaneously, making the model

a very efficient tool for source attribution [225, 175, 116, 121]. Here we use the model to evaluate

the sensitivity of Nr deposition to emission sources, including for the first time all chemical species

of Nr present in the GEOS-Chem “full-chemistry” simulation, which considers NOx-Ox-HC-aerosol

chemisry.

Non-normalized sensitivities quantify the change in the cost function per change in kg emis-

sion. We thus refer to this type of sensitivity as an efficiency in that large non-normalized sensitiv-

ities indicate areas where reducing Nr emissions would have a very strong impact on Nr deposition
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in terms of the response of Nr deposition achieved per amount of emissions reduced (as opposed to

locations where reducing emissions would have little effect on Nr deposition in the areas of interest,

or locations where Nr emissions are just large in magnitude). These are defined as

λi,j ≡
∂J

∂Ei,j
, (3.4)

where J is any of the cost functions defined in Section 4.2.4, and λi,j is found from solution of

the adjoint model. Ei,j is the emission at grid cell i of species j. Details of the adjoint model

description and validation have been presented previously [80, 81]. We also consider the semi-

normalized sensitivity [kg N/ha/yr], defined as,

χi,j,k ≡ λi,j · Ei,j,k, (3.5)

where Ei,j,k is the emission at grid cell i of species j from sector k. This sensitivity linearly

approximates the contribution to the cost function of the emission in location i, of species j,

from sector k. While the adjoint model computes sensitivities with respect to all emissions (e.g.,

SO2, VOCs, etc.), here we focus our analysis on sensitivities with respect to emissions of NH3

and NOx from anthropogenic and natural sources, which are the largest. Sensitivity calculations

are performed monthly, including a one week spin-up for each month to capture the influence of

emissions from the end of the previous month.

3.3 Results

3.3.1 Evaluation of simulated Nr deposition

Figure 3.2 shows the spatial distribution of total, reduced, and oxidized annual Nr deposition

in the contiguous US in 2010 calculated with GEOS-Chem. Total Nr deposition consists of all

chemical species included in the cost function, reduced Nr deposition is the sum of wet and dry

deposition of NH3 and NH+
4 , and oxidized Nr deposition is total minus reduced. Total Nr deposition

ranges from 2 to 5 kg N/ha/yr in the West, except in some parts of California where is it >12 kg

N/ha/yr, and from 6 to 20 kg N/ha/yr in the East. Annual total Nr deposition over the contiguous
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Figure 3.2: GEOS-Chem modeled Nr deposition in 2010. Select Class I areas for case studies are
indicated by initials. Inset number is the annual contiguous US total Nr deposition.

US is 5.6 Tg N (3.2 oxidized, 2.4 reduced). Oxidized Nr is higher than reduced Nr overall, while

reduced Nr is higher in mid-California, Iowa, and eastern North Carolina.

The spatial distribution of reduced and oxidized Nr deposition is comparable with other

studies [250, 50, 196] yet a few differences and uncertainties are worth considering. Du et al.[50]

found greater wet deposition of NH+
4 compared to wet deposition of NO−3 over the contiguous US

except in the Northeast region. The larger fraction of reduced wet Nr deposition in their work may

be related to the year being analyzed (increased NH3 and decreased NOx emissions in their study

period of 2011- 2012 compared to ours in 2010) and to the overestimation of HNO3 in our study

that is discussed below.

Zhang et al.[250], using the same model we use but with the different emissions, found

that wet and dry HNO3 deposition is overestimated compared to observations when the model’s

isoprene nitrate is treated as HNO3, as in our simulation, rather than being treated separately as

organic nitrate. Further, comparison of modeled to measured HNO3 deposition in Zhang et al.[250]

required consideration of sub-grid concentration gradients near the surface. Simulated ambient

HNO3 concentrations are also overestimated [79], possibly owing to excessive N2O5 hydrolysis. This

suggests that oxidized Nr may be overestimated in our study. Schwede et al.[196] generated maps

of Nr deposition for multiple years, including 2010. These maps display localized hotspots in parts

of Colorado and Idaho that are not evident in our results. The high Nr deposition in these regions
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is attributed to dry deposition of reduced nitrogen [196], whereas in our result the contribution of

reduced nitrogen deposition is generally less than that of oxidized nitrogen deposition (Fig. 3.2),

possibly owing to the aforementioned overestimation of HNO3.

For the eight selected Class I areas, we compare seasonal average values from measurements

provided by NADP/NTN and CASTNET versus GEOS-Chem model estimates (Fig. 3.3). Total

modeled Nr deposition in each Class I area (Jp, which includes non-measured species) is also plotted

in Fig. 3.3 as blue diamonds to show the role of non-measured species. Seasonal averages are calcu-

lated from monthly values. Measured Nr correspond to the sum of modeled wet deposition of NH3,

NH+
4 , HNO3, and NO−3 , and dry deposition of NH+

4 , NO−3 , and HNO3. The squared correlation

coefficient (R2) of measured and modeled Nr is shown in each plot. For SQ, R2 is calculated with

spring, fall, and winter data. The model well reproduces the seasonality of measurements (R2 >

0.6) except at JT. For all sites, measurements and model estimates have maximum values in the

summer. Seasonally averaged measured Nr range from 0 to 0.6 kg N/ha/month (monthly value 0

to 1.3 kg N/ha/month), modeled Nr range from 0.0 to 1.2 kg N/ha/month (monthly value 0 to

1.3 kg N/ha/month) and Jp (modeled Nr including non-measured species) range from 0.1 to 1.3 kg

N/ha/month (monthly value 0 to 1.4 kg N/ha/month). Modeled Nr deposition is also higher than

the measured Nr in the spring and summer in SM and SD, likely owing to overestimated HNO3 as

discussed above. Additionally, our model grid-cell size (∼3350 km2) is larger than the largest Class

I area (BB, 2866 km2). Representational error may thus also contribute to the discrepancy between

the model and the measurement for regions with large emissions within grid cells containing the

Class I area (e.g., SM and SD). Lastly, comparison to dry deposition measurements warrants some

additional considerations. The MLM model used for deriving the CASTNET dry deposition values

is subject to uncertainty in estimating dry deposition velocities [195] because of a height depen-

dent non-physical component that can lead to overestimate of HNO3 deposition by 10-30% [194].

Additionally, Hicks et al.[83] found that measurements of HNO3 dry deposition in a clearing, such

as the CASTNET sites in SM and SD from which dry deposition measurements are derived, are

lower than measurements of dry deposition to the surrounding forest canopy. Thus, measured Nr
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deposition in Class I areas that have large forested areas (such as SM, SD, RM, GT, and SQ, see

Fig. 3.1) is likely underestimated.

Annual modeled Nr deposition in each Class I area (Jp) ranges from 2.2 to 10.7 kg N/ha/yr,

and is highest in SD and SM and lowest in BB. The dotted lines in Fig. 3.3 show the annual CLs

from [54] divided by twelve. Class I areas considered to be in CL exceedance on an annual basis

based on simulated values are VY, SM, SD, RM, GT, and SQ and those in exceedance based on

measurement are VY, SM, SD, RM, and SQ. Within California, annual Nr deposition in SQ is

about 70% larger than that in JT. This is influenced by the position of these parks relative to large

upwind anthropogenic sources, as well as different vegetation types of the two parks (Fig 3.1). JT

is 80% desert where very low Nr deposition is expected; in contrast, SQ has narrow conifers and

mediterranean scrub. The lowest annual Nr deposition in BB is explained, in part, by the large

fraction of desert (60%) and succulent and thorn scrub (18%); it is also far from large anthropogenic

sources.

Figure 3.4 shows the model speciation of Jp. Non-measured species are dry deposition of

NO2, PANs, alkyl nitrate, N2O5 (lumped as others in Fig. 3.4) and dry NH3. Non-measured

species account for 0.5% (winter, SM) to 55.6% (summer, SQ) of seasonally averaged Jp values in

the model. Dry deposition of NH3 accounts for 14% of contiguous US total annual Nr deposition.

The summer maximum of Jp is mainly driven by wet deposition of HNO3 (VY, SM, SD, BB, RM)

and dry deposition of HNO3 (VY, GT, JT, SQ). Dry deposition of NH3 is a major contributor in

SQ. Organics (PANs and alkyl nitrate) make only a small contribution (< 5%) to Nr deposition

in the model. While it is known that organics account for ∼30% of total Nr deposition [158, 43],

we expect organics to be underestimated in our model because only dry deposition is included for

these species and isoprene nitrate is not explicitly treated [250].
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Figure 3.3: Seasonal variation of Nr deposition in select Class I areas. Model values (open red
diamond) correspond to only those species that are measured (closed black circle). Cost function
values (Jp, open blue diamond) also include dry deposition of NH3, NO2, PANs, alkyl nitrate, and
N2O5. Bars indicate standard deviation of monthly averages in the season. R2 is squared correlation
coefficient for measured and modeled seasonal deposition. Dotted lines are for annual CLs divided
by twelve in each site. MAM: March April May, JJA: June July August, SON: September October
November, DJF: December January February.
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Figure 3.4: Stacked bar of modeled seasonal Nr deposition showing speciation. Others includes dry
deposition of NO2, PANs, alkyl nitrate, and N2O5. Blueish: oxidized N, reddish: reduced N, dark:
wet deposition, light: dry deposition.
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3.3.2 Source attribution using GEOS-Chem adjoint

3.3.2.1 Spatial and sectoral footprints of Nr deposition

The sensitivity of total annual Nr deposition (Jp) to emission sources is calculated by the

GEOS-Chem adjoint model. The results can be understood as the contribution of emissions in

each grid cell to the Nr deposition in each Class I area. Figure 3.5 shows spatial distributions

of the sensitivities of Nr deposition to NOx and NH3 emissions – the so called source footprint

(Eq. 3.5) – for each region. Inset numbers are the annual Nr deposition in each area from all

sources (Jp). Pie charts show the relative contributions to this value from specific emission sectors

(sectors contributing < 1% are not shown).

The source attribution results show significant variability in terms of the sectors contributing

to Nr deposition in different Class I areas. Livestock NH3 and surface source NOx, i.e., mobile

sources, are the major sources of Nr deposition, contributing more than 65% to SM, SD, RM, GT,

JT, and SQ. Livestock NH3 contributions are largest for SQ (54%) and smallest for BB (15%).

Mobile NOx is the major emission source for JT (63%), SM (40%) and SD (38%). Fertilizer NH3

is the third most important source of Nr deposition for VY (14%), GT (11%), and SQ (8%). In

contrast to the other sites, for BB the contribution of natural sources of Nr (the sum of natural

NH3, lightning and soil NOx equal to 47%) is comparable to that of anthropogenic contributions.

NOx from EGUs is the third most important source for RM (12%) and SD (9%). Lightning is a

considerable source not only for BB but for SM (9%). Aircraft emissions have a noticeable impact

only for JT (2%).

The results of the adjoint sensitivity calculations show that the spatial footprint of emissions

affecting different Class I regions can vary by several hundred kilometers. Even though NOx and

NH3, by themselves, have very short lifetimes (< 1 day), in the form of aerosol species they can

influence Nr deposition over quite large distances, which is reflected in the maps in Fig. 3.5. To

provide a quantitative means of evaluating the spatial extent of the footprint for each region, Fig. 3.6

shows cumulative contributions of annual average monthly Nr deposition by radial distance from
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BB (x4) 2.2 kg N/ha/yr

RM (x2) 4.0 kg N/ha/yr GT (x3) 3.3 kg N/ha/yr

JT (x3) 3.2 kg N/ha/yr SQ (x2) 5.7 kg N/ha/yr

NH3(ls)   NH3(fe)   NH3(na)   NOx(sf )   NOx(eg)   NOx(ne)   NOx(ac)   NOx(li)   NOx(so)

[kg N/ha/yr]

SM 10.4 kg N/ha/yr

VY (x2) 4.8 kg N/ha/yr SD 10.7 kg/N/ha/yr

Figure 3.5: Annual-averaged monthly footprint (χ) of Nr deposition in each Class I area and pie
chart of fractional contribution from emission sectors. ls: livestock, fe: fertilizer, na: natural,
sf: surface inventory, eg: electric generating units, ne: non-eg industrial stacks, ac: aircraft, li:
lightning, so: soil. Inset numbers are cost function (Jp), annual Nr deposition in each Class I area.
Site locations are shown with open circles. Footprint values are scaled for visibility with numbers
in parenthesis.
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each site. Blue and red lines indicate distances for which the cumulative influence is 50% and

90% of the total, respectively. For reference, the greatest distance within the contiguous US, from

Florida to Washington, is about 4500 km. It can be inferred from the shape of the plot that VY,

SM, and BB have broad source regions spreading ∼1500 km from the site. In contrast, JT and

SQ are mostly (90%) influenced by sources within 700 km (JT) and 400 km (SQ). Local sources

(within 50 km) contribute more than 20% of total Nr deposition for SD, while the rest are from

more distant regions spread across ∼1100 km. For RM and GT, there is a jump in the cumulative

distribution around 1200 km which is due to sources in California. Steep initial rises for JT and SQ

correspond to the influence of local urban centers (Los Angeles and San Francisco, respectively).

Additional analysis was performed for RM, given the prevalence of studies on Nr deposition

in this area [14, 132, 209]. Figure 3.7 shows the source distributions of oxidized and reduced Nr

deposition. Our results suggest that reduced Nr deposition originates primarily from east of the

park, while in contrast a large fraction of oxidized Nr deposition originates from west of that park.

This is consistent with the spatial distributions of the emissions of NH3 compared to those of NOx

surrounding the park. The high sensitivity of reduced Nr to sources west of RM in California and

Idaho agrees with other recent studies [14, 132, 209].

3.3.2.2 Efficiency of emission impacts on Nr deposition

For each Class I area, we also calculate non-normalized adjoint sensitivities as defined in

Eq. 3.4 using the cost function defined in Eq. 3.1. These provide estimates of the response of Nr

deposition (Jp) in each park per kg emissions of NH3-N, NOx-N, and SO2-S in each month. These

are a measure of transport efficiency of each species, largely determined by meteorology and aerosol

partitioning. Figure 3.8 shows a few select results with unique seasonal features in JJA and DJF.

In JT, there is a clear seasonal trend (Fig. 3.8 (a)). Nr deposition in the park is impacted

most efficiently by sources in the NW-SE direction during the summer and by sources in the NE-

SW direction in the winter, due to changes in wind patterns. In RM, Nr deposition is owing to the

sources from California during the summer, whereas the source footprints are much more localized
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during the winter (Fig. 3.8 (b)). While stronger winds (≥ 6 m/s) are actually more frequent in the

winter, larger NH3 emissions in the summer facilitate formation of NH4NO3 and thus long-range

Nr transport. In SD, NH3 emissions make a positive contribution to Nr deposition during the

summer, while emissions north of the park contribute negatively during the winter (Fig. 3.8 (c)).

These negative sensitivities occur because NH4NO3 formation is limited by NH3 in the winter in

SD. In these conditions, emissions of NH3 promote formation of NH4NO3. Since NH4NO3 has

a longer lifetime in the atmosphere than gas-phase NH3 or HNO3, formation of NH4NO3 causes

Nr to be transported further away, and thus less Nr deposits in the park. Thus, the deposition

of Nr in the park has a negative sensitivity with respect to NH3 emissions. This tradeoff is also

manifested by SO2 emissions having positive sensitivities during winter and negative sensitivities

during summer. In NH3 limited conditions (winter), increased SO2 emissions would tie up NH3 as

aerosol (NH4)2SO4 or NH4HSO4, leaving less NH3 available to form NH4NO3.

3.3.2.3 Analysis of all Class I areas in critical load exceedance

CL exceedance in Class I areas are shown in Fig. 3.9. In order to see the number of grid cells

in CL exceedance, the area of the regions are not reflected in this map; they are shown as filled

cells if the fraction that the region occupies in the cell is greater than zero (although fractional

grid cell areas, βi, are considered in the model simulations themselves). The West/East contrast

is clear. The number of cells in CL exceedance is larger in the West while the magnitude of the

CL exceedance is larger in the East. This is not surprising considering the spatial distribution of

Nr deposition (Fig. 3.2) and Class I areas. Among the 149 Class I areas in the contiguous US only

38 are located in the East. Figure 3.10 (a) shows the sensitivity of Ja to NOx and NH3 emissions.

This sensitivity indicates the regions where reducing emission will result in the largest decrease in

the extent of Class 1 areas in CL exceedance. Figure 3.10 (b) is the sensitivity of Jc to emissions.

This sensitivity shows the sources that are causing the largest values of Nr deposition, relative to

the CLs (i.e., excessive or severe values).

Comparison of the two types of sensitivity analysis suggests how different emissions control
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strategies might be considered to meet different objectives. Decreasing Nr emissions in California

and regions surrounding RM and SM would be useful for reducing both the extent of Class I areas

in CL exceedance (Fig. 3.10 (a)) and the amount of excessive Nr in Class I areas (Fig. 3.10 (b)).

Nr originating from Idaho, Utah, Washington, and Arizona contribute more to reduce the

extent of Class I areas in CL exceedance but less to the amount of excessive Nr in Class I areas,

as the Nr deposition in these regions is not as excessive as it is in other regions, as shown in

Fig. 3.9. Reducing Nr emissions from the tip of Florida would reduce the area of regions in CL

exceedance, while reductions to emissions in this area are not as beneficial for avoiding excessively

high deposition, as this region has the highest CL (5kg N/ha/yr) of those considered here. For

reduction of excessive Nr above the CL, sources with the largest impact are located in the East

(i.e., Tennessee, Alabama, and Georgia) and the San Joaquin Valley in California. Interestingly, the

distribution of contributions across sectors is similar for both Ja and Jc; surface NOx and livestock

NH3 are the major emission sectors contributing to both the extent and severity of CL exceedances.

3.3.3 Uncertainty caused by NH3 emissions

To evaluate the robustness of our source attribution analysis with respect to NH3 emissions

uncertainties we compare our base case results using NEI2008 emissions to sensitivity results using

NEI2005 NH3 emissions optimized using remote sensing observations [198] from [257]. This is of

interest not only because the magnitude of NH3 emissions may change the contribution of NH3 to

Nr deposition, but also because Nr deposition is sensitive to long-range transport of ammonium and

nitrate aerosol and NH3 abundance exerts a strong, nonlinear, influence on nitrate partitioning. As

shown in [257], in the optimized NEI2005 the overall NH3 emissions have increased compared to the

original NEI2005 inventory; emissions in California, the central US, and the Midwest are especially

enhanced. Figure 3.11 shows the NH3 emissions from the optimized NEI2005 and those used in this

study, NEI2008. The NEI2008 inventory has even larger NH3 emissions over the Midwest compared

to the optimized NEI2005 in all three months shown here. In July, NH3 emissions in the central US

(Kansas, Nebraska, eastern Colorado, and Texas) and Washington are higher with the optimized
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NEI2005.

Case studies are performed for VY, SD, and RM, whose Nr deposition footprint (Fig. 3.5) in-

cludes regions showing noticeable differences between the two NH3 emission inventories (Fig. 3.11).

The non-normalized sensitivity, λi,j , remains constant with the changes in emissions but the semi-

normalized sensitivity, χi,j,k, is perturbed by the differences in Ei,j,k. Figure 3.12 shows the sensi-

tivities of Jp (total modeled Nr deposition in individual Class I areas) to NH3 emissions for these

sites. Overall, when using NEI2008 the contribution of NH3 emissions to Jp is larger than when

using the optimized NEI2005 inventory in all cases. Differences in NH3 emissions clearly affect sen-

sitivities in VY. Differences in emissions between the two inventories in Minnesota and Iowa mainly

contribute to changes in the sensitivities for Nr deposition in VY. The source footprint for VY site

gradually accumulates to 90% of the total Nr deposition at a distance of 1700 km from VY (see

Fig. 3.5 and 3.6), which encompasses the regions in Iowa where the emissions have changed, which

are ∼840 km away. SD is not affected much by different NH3 inventories in July and October as up

to 50% of total Nr deposition is owing to sources within 250 km (Fig. 3.6). However, NEI2008 leads

to broader estimates of the source footprints in April. Local influences become more pronounced

for SD in the footprints estimated using the NEI2005 emissions. For the base case, Nr deposition

was found to have significant long range influences for RM. However, when using the optimized

NEI2005 emissions, where NH3 sources in eastern Colorado are estimated to be much larger, the

relative role of long-range influence from east of the park is reduced.

3.4 Discussion and conclusions

We used the GEOS-Chem CTM and its adjoint model for Nr deposition source attribution in

Federal Class I areas in the US. Among the eight selected Class I areas, Voyageurs, Smoky Mountain,

Shenandoah, Rocky Mountain, Grand Teton, and Sequoia are estimated to be in exceedance of

the most conservative estimates of CLs from [167]. Modeled Nr deposition is compared with

NADP/NTN [157] and CASTNET [30] measurements and other modeling studies [250, 196]. The

seasonality of measured species is generally well represented by the model (R2 > 0.6), except in



54

Joshua Tree. Modeled Nr deposition contains large contributions from wet HNO3 deposition which

is likely overestimated in the version of the model used here [250], leading to overestimates of Nr

deposition in Smoky Mountain and Shenandoah of up to 0.6 kg N/ha/month. Still, adequate model

performance in other seasons and locations suggests a considerable contribution of dry deposition

of NH3 in some locations and seasons, consistent with [196]. A significant fraction of Nr deposition

in the central mountain region (including Rocky Mountain National Park) is estimated to be in

the form of reduced nitrogen, similar to several other recent studies [14, 132, 209], although such

estimates are sensitive to model uncertainties in NH3 emissions and modeled NO−3 .

The spatial and sectoral distribution of annual Nr deposition sources are investigated using the

adjoint of GEOS-Chem. Quantifying the contribution of local versus long-range transport and the

contribution of different sectors to Nr deposition may serve as a guide for devising locally-tailored

strategies to reduce Nr deposition in different Class I areas. NH3 emissions from livestock and NOx

emissions from mobile sources are the major sectors that contribute to Nr deposition in all selected

Class I areas, except Big Bend where natural sources contribute comparably with anthropogenic

sources. Nr deposition in Joshua Tree and Sequoia, both located in California, tends to originate

from local (< 700 km) sources, whereas Nr deposition in the mountain regions (Grand Teton and

Rocky Mountain) are ∼50% from nearby sources (< 400 km) and the rest from sources as far away

as California (∼1300 km). For other parks (Voyageurs, Smoky Mountain, Shenandoah, and Big

Bend), sources are broadly distributed radially. Overall, these results suggest that mitigating Nr

deposition in many specific areas may require substantial consideration of interstate transport.

The efficiency of emissions to impact Nr deposition is evaluated at the per-kg emission level

for NH3-N, NOx-N, and SO2-S. This result represents the response of Nr deposition to additional

emissions, which is useful for consideration of the impact of future emission. As it is expected [54]

that NH3 emissions will increase and NOx emissions will decrease in the US in the coming decades,

the formation of ammonium nitrate will increasingly be limited by NOx. This will cause the

sensitivities of deposition that contains considerable contributions from ammonium nitrate, such

as Voyageurs and Grand Teton national parks, to be increasingly sensitivity to perturbations in
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NOx emissions, even though NH3 emissions will make larger contributions to total Nr deposition.

In Joshua Tree, NH3 emission efficiencies show distinct seasonality in terms of their locations.

The NW-SE impact is strongest in summer and the NE-SW impact is dominant in winter. In

Rocky Mountain, effective regions, where emissions from the region would contribute to more than

∼ ±1.0×10−8 kg N/ha/yr per kg N emission or ∼ ±1.0×10−9 kg N/ha/yr per kg S emission,

are broader in the summer even though stronger winds are more frequent in the winter (Fig. 3.8),

owing to larger NH3 sources in the summer. In Shenandoah, NH3 emissions to the north of the park

inhibit Nr deposition in the park during the winter. This response is interesting, and explainable

from consideration of aerosol partitioning and transport, although the absolute significance is not

that large owing to the small levels of deposition here in the winter.

Sources of Nr deposition in all Class I areas in CL exceedance throughout the US are studied

using two approaches: emissions contributing to the extent of the total area of Class I areas that are

in CL exceedance (Ja) and emissions contributing to the magnitude of the excessive Nr deposition

above CLs (Jc). Our result suggests that one of the largest source regions contributing to the

spatial extent of Class I regions in CL exceedance is California. On the other hand, Nr sources

in the Eastern US, i.e., Tennessee, Alabama, and Georgia, in addition to California, contribute

the most to excessive Nr above the CL in Class I areas. Thus, strategies for reducing the spatial

extent of ecological damage from excessive Nr deposition may differ from those aimed at reducing

its severity.

Lastly, case studies are performed for Voyageurs, Shenandoah, and Rocky Mountain national

parks using different NH3 emission inventories, which have large uncertainties, in order to evaluate

how sensitive our source footprint estimates are to underlying model emissions. We adopted NH3

emissions optimized using remote sensing observations [257] to compare with our results using the

NEI2008 inventory, which has greater NH3 emissions in the Midwest and California. Difference in

semi-normalized sensitivity is most apparent in April and July. Differences of NH3 emissions in

Minnesota and Iowa are mainly reflected in the source footprint for Voyageurs. Estimated local in-

fluences become more important for Shenandoah when using the optimized NEI2005 inventory. For
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Rocky Mountain, when using the optimized NEI2005 emissions, NH3 sources in eastern Colorado

are estimated to be much larger, but the role of long-range influences is reduced.

Overall, the results presented here provide useful information for considering how emissions

control strategies both regionally and nationally may impact Nr deposition in Federal Class I areas.

Future work may strive to apply such methods to higher resolution models, as model resolution

may impact the ability to resolve fine-scale features delineating specific sources or areas of influence

and complex topography in Class I areas. In addition, considering the role of bi-directional NH3

exchange [256], which can effectively extend the source footprint owing to reemission of NH3 from

NH3 rich soils, would be of interest. Lastly, as source attribution estimates for Nr deposition are

intrinsically sensitive to uncertainties in the balance of emissions between NH3 and NOx, even if

the total nitrogen emissions are correct, further effort should be made to improve knowledge of the

distributions and trends in NH3 and NOx emissions.
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Figure 3.6: Annual averaged monthly cumulative contribution as a function of distance from the
site. Vertical lines are for 50% (blue) and 90% (red) of total Nr deposition. Note that the change
in scale of the y-axis for SM and SD.
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Figure 3.7: Same as Fig. 3.5 but for oxidized and reduce Nr deposition in RM. Units for the pie
charts and colorbar are kg N/ha/yr. The sum of the oxidized and reduced Nr deposition is smaller
than the inset number in Fig. 3.5 because the number here excludes Nr from ”other species.”
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(c) Shenandoah national parks. Wind-roses for each site show fraction of wind frequencies based
on daily surface winds during the season.
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Figure 3.9: CL exceedance in Class I areas; color indicates magnitude of exceedance. The size of
Class I areas are not reflected. Grid cells containing Class I areas are shown as colored regardless
of the fraction of Class I areas. Bold line divides Western and Eastern US.

[kg N/ha/yr] [kg N/ha/yr]2

Ja = 3.6 [kg N/ha/yr] (x2 shown)

NH3(ls)   NH3(fe)   NH3(na)   NOx(sf )   NOx(eg)   NOx(ne)   NOx(ac)   NOx(li)   NOx(so)

Jc = 8.5 [kg N/ha/yr]2

(a) (b)

Figure 3.10: Same figure as Fig. 3.5 but with different cost functions. (a) Ja, the sum of Nr
deposition in all Class I areas in CL exceedance, (b) Jc, the sum of square of the difference of
annual Nr deposition and CL in all Class I areas in CL exceedance. Sensitivities of (a) are scaled
by ×2 to share the colorbar with (b).
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Figure 3.11: Sum of NH3 emissions from anthropogenic, natural, biomass burning, and biofuel
sources. Inset numbers are contiguous US total NH3 emissions in each month.
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Figure 3.12: Map of sensitivities of Jp to NH3 emissions for 3 selected Class I areas (VY, SD, and
RM) for two different NH3 emission inventories (optimized NEI2005 and default NEI2008) in each
month.



Chapter 4

PM2.5 source attribution for Seoul in May from 2009 to 2013 using

GEOS-Chem and its adjoint model

4.1 Introduction

Particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) is known to have

detrimental impacts on human health, causing increased respiratory disease and stroke related mor-

talities (e.g.[23, 64, 12]). The Seoul metropolitan area (Seoul, Incheon, and Geonggi) is one of the

most densely populated mega-cities worldwide, having more than 23 million residents (49% of na-

tional population) in about 12,000 km2 (12% of the Korean peninsula) [107]. Air quality standards

for PM2.5 have only recently been implemented in Seoul. The Korean Ministry of Environment

devised a Special Act legislation for improving air quality in the Seoul metropolitan area in 2003

(enacted in 2005). The first Seoul Metropolitan Air Quality Improvement Plan (2005 - 2014) aimed

at reducing PM10 and NO2 concentrations. In the second master plan, formulated for 2015 - 2024,

PM2.5 and O3 were added to the regulations. This plan includes PM2.5 standards of 50 µg/m3 for

24 hours, and 25 µg/m3 for a year. The goal of the second master plan is reducing annual PM2.5

from 27 µg/m3 in 2010 to 20 µg/m3 in the Seoul metropolitan area by 2024 [146].

In order to help monitor and enforce these air quality regulations, the National Institute of

Environmental Research (NIER) runs 7 sites over South Korea that provide intensive obciteser-

vations of ambient air quality. Intensive monitoring for the Seoul metropolitan area started in

2008 at a site in Bulgwang-dong, Seoul (37.5◦N, 126.6◦E). The data provided include wind speed,

temperature, relative humidity, concentrations of gaseous tracers (SO2, CO, NOx, O3), particulate
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matter (PM10, PM2.5), carbonaceous components (black carbon (BC), organic carbon (OC)), ion

components (SO2−
4 , NO−3 , Cl−, Na+, NH+

4 , K+, Mg2+, Ca2+), and heavy metals (Pb, Cd, Cr, Cu,

Mn, Fe, Ni, As, Be).

Although the continuous and intensive federal monitoring program began in 2008, there have

been several prior institutional studies of PM2.5 in Seoul. Both local emissions and long-range

transport from major industrial areas in China have been identified as sources of PM2.5 observed

in Seoul [82]. It has been found that major components of PM2.5 in Seoul are sulfate, nitrate,

and ammonium, and those secondary aerosols are likely transported with air parcels originated

from China [99, 102, 82]. Recently, [68] analyzed PM2.5 and PM10 measurements from ambient air

monitoring stations in Seoul between 2002 to 2009 and interpreted the observed temporal variations

of PM2.5 in terms of variability of local NOx emissions, secondary formations, and mixing height

variation.

However, quantitative analysis of the relative contribution of local versus distant sources to

PM2.5 in Seoul are still limited, possibly owing to a lack of consistent measurements and suitable

source-receptor models. Recent activities have lead to enhanced interest in PM2.5 source attribution

in Seoul, such as an intensive ground-based and airborne measurement campaign (KORUS-AQ) in

May to June, 2016. This season of the year shows high PM2.5 concentrations [120, 102]. Combina-

tions of local and remote sources and anthropogenic, natural, and dust storms have been suggested

as contributing sectors [37, 102].

In this study, we use the 3-dimensional atmospheric chemical transport model (CTM) GEOS-

Chem and its adjoint model to investigate trends and sources of PM2.5 in Seoul, Korea, from 2009

to 2013 in May. The model is evaluated using surface measurements, and several set of emission

inventories are considered to determine which best reproduce observed PM2.5 concentrations. High

PM2.5 concentration episodes that exceed 24 hr air quality standards are selected for emissions

source attribution. The spatial and sectoral distribution of emissions for high PM2.5 episodes are

determined. Findings from this study may guide interpretation of observations obtained in the

KORUS-AQ measurement campaign.
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4.2 Methods

4.2.1 Measurement data

We use speciated and total surface aerosol concentration measurements to evaluate the mod-

eled PM2.5 concentrations. The intensive monitoring site that provides both PM2.5 and compo-

nent measurements for the Seoul metropolitan area is located in Bulgwang-dong, Seoul (37.5◦N,

126.6◦E). Hourly concentrations of PM2.5 are measured using the β-ray attenuation method (BAM)

(BAM-1020, Met One, USA). SO2−
4 , NO−3 , and NH+

4 are measured by ambient ion monitor (AIM)

(URG-9000D, URG Corporation, USA) utilizing ion-chromatography. BC and OC are measured

by thermal-optical-transmittance (SOCEC, Sunset, USA) following the National Institute for Oc-

cupational Safety and Health of USA (NIOSH) protocol. PM2.5 measured by BAM pass through

a heating oven and are conditioned to maintain 35% relative humidity and are thus assumed to be

dry. AIM and SOCEC measure unconditioned aerosols, which may contain water.

4.2.2 GEOS-Chem model

GEOS-Chem (www.geos-chem.org) is a 3-dimensional atmospheric CTM driven by assimi-

lated meteorological input from the Goddard Earth Observing System (GEOS) of the NASA Global

Modeling and Assimilation Office [16]. We use the nested model configuration with a resolution of

0.5◦ latitude ×0.667◦ longitude with 47 vertical layers up to 0.01 hPa [35, 251] for a domain over

East Asia (100E - 150E, 20N - 50N). Boundary conditions are provided by two steps of one-way

nested simulations. A global simulation at 4◦ latitude × 5◦ longitude resolution provides bound-

ary conditions every 3 hours for the first nesting at 0.5◦ latitude ×0.667◦ longitude resolution over

larger East Asian domain (70E - 150E, 11S - 55N). Then these nested simulations provide boundary

(every hour) and initial conditions for the smaller East Asian domain (100E - 150E, 20N - 50N).

This smaller domain is used to minimize computational requirements of the adjoint model used for

source attribution.

GEOS-Chem includes detailed tropospheric gas-phase chemistry of the O3-NOx-hydrocarbon
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system [87]. Aerosols are assumed to be externally mixed, and the thermodynamic equilibrium

between gases and aerosol of K+-Ca2+-Mg2+-NH+
4 -Na+-SO2−

4 -NO−3 -Cl−-H2O is calculated using

ISORROPIA II [63, 179, 27]. We estimate PM2.5 as the sum of SO2−
4 , NO−3 , NH+

4 , BC, and 1.8×OC.

The conversion factor of 1.8 is used to convert OC to OM (organic matter) [213]. Wet deposition

includes sub-grid scavenging in convective updrafts, large scale in-cloud rainout, and below-cloud

washout [128]. Dry deposition is calculated using a resistance-in-series model [234, 227], which

includes aerodynamic resistance, quasi-laminar sublayer resistance, and bulk surface resistance.

Anthropogenic emissions will be described in the following section. Biomass burning emis-

sions are taken from the 3-hour GFED3 inventory [151, 218]. Natural emissions of NOx are from

lightning [156] and soil [243, 227]. Natural emissions of NH3 from soil, vegetation, and ocean sources

are from the GEIA inventory [20].

4.2.3 Anthropogenic emission inventories

4.2.3.1 Gaseous and carbonaceous emissions

Monthly total anthropogenic emissions used in this study are shown in Fig.4.1. As a default,

the model uses the Emissions Database for Global Atmospheric Research (EDGAR) inventory for

global anthropogenic emissions. For the East Asian region, the emissions are overwritten by the

Streets regional inventory for Intercontinental Chemical Transport Experiment-Phase B (INTEX-

B) [253] for SO2, NOx, and NH3. BC and OC emissions are from [19]. These inventories are

updated with a more recently developed anthropogenic emission inventories for the East Asian

region, NIER/KU-CREATE [241], for SO2, NOx, NH3, BC, and OC. With the replacement with

NIER/KU-CREATE emission inventory, NH3 emissions have finer resolution and show increased

emissions over Eastern China and western South Korea. SO2 emissions have also increased in

industrial regions in China. NOx emissions remains almost constant, excluding an increase in

Beijing. BC and OC have increased over China; however, their emissions largely decrease in South

Korea.
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0  3            6           9         12      [106 kg S]

0            5          10         15        20      [106 kg NO]

0           2.5            5          7.5         10      [105 kg BC]

0            2.5            5         7.5         10     [105 kg OC]

Default      NIER/KU-CREATE Default      NIER/KU-CREATE

NH3

SO2

NOx
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Figure 4.1: Monthly emissions in May used in modeling. (a) Default inventory and (b) KU-
CREATE inventory. See text for details.
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4.2.3.2 Diurnal variation of NH3 emissions

Diurnal variation is applied to the daily NH3 emissions. We refer readers to [258] for a

detailed description of the method; here we provide a brief explanation of the scheme. The diurnal

fraction of NH3 emissions are calculated using Eqs.4.1 and 4.2.

ENH3(t) =
HtENH3

24∑
i=1

Hi

(4.1)

Ht =
161500

TtRa
e

(− 10380
Tt

)
(4.2)

where ENH3(t) is the NH3 emission at time of day t, ENH3 is the daily average NH3 emission, H is

the Henry’s equilibrium constant, T is surface temperature (K), and Ra is aerodynamic resistance

of the surface. The impact of this scheme is that more NH3 is emitted at higher temperatures

and stronger winds. This scheme is adopted to adjust all NH3 emissions that are overestimated

during the nighttime and underestimated during the daytime [131], causing overall overestimation

of NO−3 . We recognize that this scheme was originally developed to account for diurnal variations

in livestock emissions [258]. For urban sites such as the Seoul metropolitan area, where sources of

NH3 other than livestock emission (e.g., transportation) may be significant, representation of NH3

diurnal profiles for other sectors, e.g., motor vehicles, should be developed; here the scheme for

livestock emissions is used as a proxy [131].

4.2.4 GEOS-Chem adjoint model and cost function

We use the GEOS-Chem adjoint [80] v35i for source attribution. The adjoint model is a tool

for efficiently calculating the gradient (i.e., sensitivity) of a scalar model response function with

respect to numerous model parameters, in our case emissions. This tool can be utilized in inverse

modeling (e.g.,[135, 85]) and sensitivity analyses (e.g.,[118, 119]). The normalized sensitivity is

defined as

λE ≡
∂J

∂E
· E
J

(4.3)
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where ∂J
∂E is found from solution of the adjoint model. Here, E is the emission of a PM2.5 precursor

in a single grid-cell, and J is a scalar function of forward model estimates called the cost function.

In this study, the cost function is the daily average PM2.5 concentration in the grid cell containing

the Seoul metropolitan area at times when both measured and modeled daily PM2.5 concentrations

exceed the daily air quality standard (50 µg/m3) during May from 2009 to 2013,

J ≡ 1

M

N∑
i=1

M∑
j=1

cij (4.4)

where cij is the daily average concentration of aerosol species i in day j, M is the number of days

when PM2.5 is higher than 50 µg/m3, and N is the number of tracers composing PM2.5 (SO2−
4 ,

NO−3 , NH+
4 , BC, OM). The definition of cost function used in this study is discussed more in

Section 4.3.3.

4.3 Results

4.3.1 Total and speciated PM2.5 measurements

Figure 4.2 shows the comparison between PM2.5 concentrations measured using BAM and

the tracer sum (TrcSum) of those species measured by AIM and carbonaceous species by SOCEC.

We define TrcSum the same way as we define modeled PM2.5 as the sum of SO2−
4 , NO−3 , NH+

4 , BC,

and 1.8×OC. The correlation coefficient and the normalized mean bias (NMB) are calculated as

NMB =

L∑
k=1

(TrcSumk −BAMk)

L∑
k=1

BAMk

for L days when both measurements are obtained, are also indicated in the figure. NMB estimates

the mean offset of one dataset from the other. It shows that TrcSum data agree well with PM2.5

measurements using BAM, within a 5% underestimation. Although TrcSum is the best measure-

ment for direct comparison between modeled and measured values, there are 41 days of missing

data out of 155 days in AIM and SOCEC measurements, whereas there are only 3 hours of missing

data among 3720 hourly data in BAM measurements. We thus use BAM data for selecting source

attribution cases.
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Figure 4.2: Daily averaged concentrations of PM2.5 in May during 2009 - 2013 measured by BAM
and TrcSum. See text for details.
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4.3.2 Forward model evaluation

We first compare modeled and measured PM2.5 concentrations for model evaluation. Fig-

ure 4.3 shows monthly average PM2.5 and component concentrations in May from 2009 to 2013 in

Seoul. With the default emission inventories (blue), nitrate, BC, and OC are overestimated by the

model, resulting in overestimation (NMB = 29%) of PM2.5 concentrations in all years except for

2009. Nitrate is overestimated during 2009 to 2012 (NMB = 36%), BC is constantly overestimated

(NMB = 254%), and OC is largely overestimated (NMB = 52%) in 2010, 2012, and 2013. Sul-

fate (NMB = -7%) and ammonium (NMB = -1%) estimates are in good agreement with observed

values, except for 2009 when they are noticeably underestimated.

To reduce the discrepancies between the model and the measurements, we first replace the

anthropogenic emission inventory for gaseous species (SO2, NOx, NH3) and carbonaceous species

(BC and OC) with NIER/KU-CREATE (Fig.4.1). We additionally applied diurnal variation to the

NH3 emission for better estimation of nitrate aerosols. Results including both updates are shown

in Fig. 4.3 as red lines. The correlation coefficient of measured and modeled PM2.5 concentrations

has increased from 0.38 using the default model to 0.68. Sulfate, nitrate, and ammonium estimates

are also improved in terms of their correlation coefficients. The absolute NMB for ammonium is

still small but has increased, possibly due to inaccurate representation of the diurnal profile of NH3

emissions from livestock applied to an anthropogenic sector as a whole. The magnitude of BC

estimates become closer to the measured values (NMB decreases from 254% to -28%). However,

carbonaceous species (BC, OC) still have low correlations and larger NMB compared to other

species. Modeled OC does not reproduce the annual variation, potentially due to missing sources

in the emission inventory in 2009 and 2011.

4.3.3 Source attribution of high PM2.5 episodes

The GEOS-Chem adjoint model is used to investigate source attribution for the high PM2.5

episodes, J . We define the high PM2.5 episodes as occurring when both modeled and measured
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Figure 4.3: Monthly average concentrations of PM2.5 and components in May from 2009 to 2013 in
Seoul. Green is the measured PM2.5 using β-ray absorption method, black is the sum of measured
SO2−

4 , NO−3 , NH+
4 , BC, and 1.8×OC, blue is the corresponding model estimates using default emis-

sions, and red is the model values using NIER/KU-CREATE emissions including diurnal variation
of NH3 emissions. Inset numbers are correlation coefficient between the measurements and each
model result, with NMB(%) in the parenthesis.
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concentrations exceed the daily air quality standard of 50 µg/m3 (Eqn. 4.4). Figure 4.4 shows

measured (BAM) and modeled daily PM2.5 concentrations in Seoul in May from 2009 to 2013. A

total of 10 episodes are identified, shown with yellow shading. There are five more observed peaks

(1 in 2011, 3 in 2012, 1 in 2013) that are not replicated by the model, which we do not include in

J .

We conducted adjoint calculations for each episode shown in Fig. 4.4 for three days prior

to the onset of the episode. Figure 4.5 shows the spatial distribution of the contributions to

the cost function from the five most influential emission sectors averaged over all high PM2.5

episodes. Regional contributions are summarized with pie charts; we consider the eight source

regions indicated by different colors in Fig. 4.5 (a): South Korea; North Korea; north of the

Korean peninsula; regions including Beijing, Shandong, and Shanghai; ocean in-between Korea

and China; and the rest of the domain. Contributions from the Shandong region have the highest

fractional contribution for each emission sector. Considering the total contribution from all sectors,

emissions from South Korea account for 15.1% of the PM2.5 peak episode concentration, whereas

the Shandong region accounts for 38.5%, the Shanghai region accounts for 15.7%, and the Beijing

region accounts for 13.6%. There are considerable contributions from local sources (i.e., South

Korea) for all sectors (> 6%) except for SO2 (2%). NH3 and NOx emissions from shipping also

have considerable contributions (7% and 10%).

4.4 Discussion and conclusions

An intensive ground-based and airborne collaborative (Korea and US) measurement cam-

paign, KORUS-AQ, was conducted in May to mid-June of 2016 in the Seoul metropolitan area.

To gain insight on the trends and sources of PM2.5 for the campaign season, we analyze total and

speciated PM2.5 concentrations from a surface measurement site in Bulgwang-dong, Seoul, in May

from 2009 to 2013. The measurement data is used to evaluate the 3-D atmospheric CTM, GEOS-

Chem, and the model’s emission inventory has updated with NIER-KU/CREATE for improved

representation of daily variation of PM2.5 concentrations. The GEOS-Chem adjoint model is used
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high PM2.5 episode. See text for details.
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Figure 4.5: Averaged sensitivities (normalized gradient) with respect to emissions sectors for high
PM2.5 episodes that exceed the Korean daily air quality standard (50 µg/m3) shown in Fig. 4.4.
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for regional and sectoral source attributions.

Monthly average measured PM2.5 concentration in May range from 28 (2010) to 45 (2013)

µg/m3, without a distinct increasing or decreasing annual trend. The mass concentration of PM2.5

is explained by the sum of sulfate, nitrate, ammonium, BC, and OC concentrations, leaving less

than 5% residual bias. However, the residual could be greater than 5% since the PM2.5 is measured

as dry aerosol while PM2.5 collected for species measurement are unconditioned and may contain

water.

From the comparison of measured and modeled total and speciated PM2.5, the GEOS-Chem

model tends to overestimate PM2.5 due to overestimated nitrate, BC, and OC concentrations with

the default emissions inventories. By replacing the emissions with those more recently developed

for the East Asian region, NIER-KU/CREATE, and applying diurnal variation to the NH3 emis-

sions, the model NMB has decreased from 29% to -10%. This underestimation is mainly owing to

discrepancies in OC estimates. Daily OC concentrations are consistently underestimated by the

model throughout May in 2009 and 2011, possibly due to the missing emission sources (e.g., forest

fire events) in the inventory. Also, secondary organic aerosols not included in the model estimates,

whereas is is included in the measured OC, which also likely contributes to the discrepancy.

Using the GEOS-Chem adjoint model, the dominant emission sources to the PM2.5 of Seoul

are identified by sector and region. High PM2.5 episodes that exceed 24h air quality standard,

(50 µg/m3), are most sensitive to anthropogenic NH3 emissions, and regionally most sensitive to

emissions from the Shandong region of China. The average contribution from all emission sectors

to the high PM2.5 episodes is 69% from Eastern China (39% from the Shandong region, 16% from

the Shanghai region, 14% from the Beijing region), and 15% from South Korea.

Our results imply that attainment of air quality standard for PM2.5 in the Seoul metropolitan

area depends on anthropogenic emissions control in Eastern China. A recent study using satellite

observations showed that there are decreasing trend of SO2 and NOx emissions in Eastern China

from 2013 to 2015 [110]. It would be interesting to compare our results to the output from KORUS-

AQ to see if there was improvement in PM2.5 in the Seoul metropolitan area.
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Conclusions

This thesis presents three studies using the GEOS-Chem model and its adjoint to investigate

sources and mechanisms of air pollutants encompassing a broad range of regional and temporal

scales. We first show the model can be used for understanding background concentrations of

surface level total nitrate in Antarctica. The model is able to calculate the sensitivities with

respect to not only emissions distributed in the surface level but also chemical reaction rates in

3-dimensional space. Our results suggest that the background concentrations of total nitrate at

the Antarctic surface in austral winter are most sensitive to NOx emissions from mid-latitudes.

Total nitrate is transported to Antarctica as nitric acid formed above continental source regions in

the free troposphere through the gas-phase reaction NO2 + OH → HNO3. In other seasons, NOx

is transported as a reservoir species such as PAN through the free troposphere, transforming into

total nitrate within a cone of influence that extends to 35◦ S and above 4 km altitude. In addition

to background concentrations, the annual variation of surface level nitrate measurements across

the Antarctic continent is characterized to have first peak concentration in August and annual

maximum values during austral summer. Sources such as stratospheric air mass intrusion in mid-

winter, polar stratospheric clouds sedimentation in early spring, and re-emission from snow in

summer have been suggested for the observed nitrate variability. In the absence of features like the

disappearance of the tropopause in mid-winter, which is responsible for active air mixing between

the troposphere and stratosphere, particulate deposition from polar stratospheric sedimentation,

and re-emission from snow by photolysis of deposited nitrate, our analysis is limited to the source
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attribution of background concentrations and to some extent of the peak in August. For future

work, it is encouraged to quantify the source contribution to the summer maximum values with

the recently implemented snow nitrate photolysis scheme to the model [246].

We then present a practical use of the model which may help guide the review of the SOx/NOx

secondary air quality standard in the US. We quantify the sources of reactive nitrogen deposition in

Class I areas in the US using three different cost functions implemented in a regional, high resolution

(0.5◦ × 0.667◦) version of GEOS-Chem adjoint. We find that while it is effective to control NH3

and NOx emissions in the western US to reduce the area of regions in critical loads exceedance, it

can be more effective to control NH3 and NOx emissions in the eastern US to reduce the magnitude

of nitrogen deposition above the critical loads. From case studies of specific Class I areas, NH3

and SO2 emissions are found to contribute negatively to nitrogen deposition in Class I areas in

some cases due to the longer atmospheric lifetime of nitrate aerosols compared to NOx. As the

US EPA is examining NOx and SOx compounds together in reviewing secondary (welfare-based)

national ambient air quality standards, future works to quantify how SO2 emissions contribute to

both nitrogen and sulfur deposition in sensitive and protected regions throughout the country will

be helpful.

In our final study, we use the adjoint model to review sources of PM2.5 concentrations in

the Seoul metropolitan area, Korea. Air quality standards for PM2.5 have only recently been

implemented in Seoul, with regulations started in 2015. After evaluating forward model estimates

using measurement data from an intensive monitoring site in Seoul in May from 2009 to 2013, the

relative contributions from emission sources are regionally quantified. Shandong region, China is

found to contribute the most to PM2.5 in Seoul. Total contribution from China is more than four

times the contribution form Korea. Results from this study suggest future studies investigating the

mechanisms of PM2.5 transport from Shandong are needed. This suggestion may be applied to the

data obtained from the KORUS-AQ measurement campaign.
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