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Empirical Testing of an Energy Signal Tool: An Application of Building Energy 

Performance Monitoring  

Thesis directed by professor Gregor Henze 

There is a growing amount of data being collected from commercial buildings that 

quantifies their energy use. Very few facilities managers have the means to transform this 

data to determine how the building is performing compared to expectations. Performance 

benchmarking of buildings can be used to draw this comparison, but first a benchmark 

must be established. Many tools exist for equipment fault detection diagnostics (FDD), but 

FDD alarms do not indicate fault severity. Other tools exist for rapid peer-benchmarking of 

energy performance, but statistically meaningful comparison groups are small. An Energy 

Signal Tool is proposed as a way to self-benchmark performance and quantify fault 

severity. Being able to quantify performance of buildings in a portfolio can help an energy 

manager prioritize operational changes or maintenance based on which facilities need 

attention most.  

In this work, detailed building energy simulation modeling of a retail store is carried 

out with the OpenStudio / EnergyPlus software platform. Uncertainty analysis is used to 

enhance decision support with a probabilistic approach to energy consumption risk 

management. Expected model parameter distributions are characterized, and global 

sensitivity analysis is performed to quantify parameter significance. Latin Hypercube 

Sampling (LHS) batch simulation is used to sample from significant parameter 

distributions and generate expected ranges of energy consumption for four major building 

energy end-uses. The results of batch sampling form a probabilistic range that is used as 

the performance benchmark. 

This work then goes on to demonstrate how sub-metered data can be put into the 

context of these expected ranges and transformed into plain output for self-benchmarking 

and energy management decision support with utility theory. The refined concepts of the 

Energy Signal Tool were tested synthetically in ten different fault scenarios across three 

climate zones. The results of the testing were processed to illustrate the fault sensitivity of 

the tool, and to demonstrate how such a tool could be applied to prioritizing actions across 

a portfolio of buildings. This work builds upon the concepts for an “Energy Signal Tool” 

originally proposed by Henze et al., (2015), with the goal of making the tool suitable for 

industry application.  
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1 Introduction 

Buildings consumed 40% of total energy in the US in the year 2013 to provide 

comfortable indoor human environments and essential services (EIA, web). Green building 

standards such as LEED ® guide energy efficient design, but the energy savings predicted 

by the design models deviate significantly from actual building usage data (Frankel et al., 

2008). There are three possible reasons for this: inaccurate assumptions in the design 

energy model, improper execution of intended construction, and improper control of 

building systems. Building performance benchmarking can reveal “faulted” operational 

states; where actual energy use deviates from intended energy use. Establishing 

benchmark comparisons for a building portfolio can quantify the severity of these faults, 

and help an energy manager prioritize operational changes or maintenance based on which 

facilities need attention most (Hedrick et al., 2011) There are two primary classes of 

building performance benchmarking: peer comparison and self-benchmarking. This paper 

is focused on a tool for performing building self-benchmarking. 

Databases such as the DOE Commercial Building Energy Consumption Survey and 

EPA Energy Star Portfolio Manager are popularly used for peer benchmarking. They can 

provide a rapid assessment of building performance relative to somewhat similar 

buildings. However, they do not have adequate amounts of data for detailed performance 

assessments of individual buildings. When the multiple features that define a building 

(such as year built, size, hours of operation, type of HVAC system, etc.) are used to filter the 

“peer” group, the subset for comparison becomes quite small. With peer benchmarking, it is 

not possible to see efficiency gains when improvements in one end-use have been offset by 

another – possibly unrelated – end-use. 

The advantage of building self-benchmarking is the ability to measure building 

performance based on unique and accurate expectations at levels of both the whole 
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building and detailed end-usages. Building commissioning is the most rigorous method for 

self-benchmarking in terms of identifying deviation from correct building operation. Mills 

(2009) showed how building commissioning leads to proven savings in new and existing 

buildings. However, full building commissioning is an expensive activity. Facilities 

managers (FM) need a more economical option for identifying and prioritizing energy 

efficiency measures in their building portfolios.  

1.1 Motivation for an Energy Signal Tool (ESTool) 

Installing sub-metering infrastructure that monitors and records building energy 

end-uses can provide rich data for building energy self-benchmarking, and is a prevailing 

trend for commercial buildings (Guo et al., 2014). Having more monitored end-uses and 

smaller time intervals of data recording can bridge the gap between intended operation 

and observed actual operation (NSTC, 2011). One recommendation of the NSTC report was 

for sub-metering information feedback that is “tailored to intended users to effect 

operational and behavioral change” (NSTC, 2011. Introduction, Pg. x). The key is that sub-

metering itself does not reduce energy consumption – this data must be compared to some 

benchmark of expected performance. The challenge therein of applying this principle to 

energy management for a large set of buildings is that sub-metering data can be immense 

and inherently messy.  

Until recently, the use of building energy simulation tools with parameter sensitivity 

and uncertainty analysis has been mainly for building design optimization purposes, rather 

than optimizing building operation (see the work of Struck & Hensen, 2007; De Wit & 

Augenbroe, 2002; Brohus et al., 2009, Hopfe & Hensen, 2011). The rapid advancement in 

accessible computing power recently has opened the doors to using building energy 

simulation tools for operational verification. 
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1.1.1 Thesis Statement 

There are vast amounts of building energy data available to facilities managers (FM) 

right now to aid in tracking performance. However, FM lack the resources to analyze large 

sets of monitored energy use data, and there is no standard for the transformation of this 

data to a useable form (O’Donnell et al., 2013). Thus, facilities managers do not know if 

their buildings perform as they were intended to. Building simulation tools and computer 

processing power available now can allow for detailed energy modeling to be used as a 

means of benchmarking operational building performance in real-time.  

There is a need for a tool that can transform monitored data into a usable output. 

This output would help to identify faulted operational states, energy savings opportunities, 

and also quantify their significance. By acknowledging uncertainty in the model, decision 

support can be made more credible and accurate. Developing this tool based on open-

source energy modeling software commonly used for building design is the path to making 

this a reality for industry adoption. The first step in this work involved incorporating a 

meaningful range of uncertainty through parameter characterization and sensitivity 

analysis. Next, methods of calibrating an energy model to observed data for the purpose of 

establishing a realistic benchmark were investigated. Third, methods of distilling complex 

data streams into a simple action signal interface were explored. The action signal output 

was then tested and tuned for optimal functionality.  

1.2 Research Objectives 

The outline of this work was developed to meet the needs of a nationwide 

commercial big-box retailer (see section 1.3). The research was funded in part by a DOE 

Commercial Buildings Partnership grant through the National Renewable Energy 

Laboratory. The broad objective was to develop a way to implement the concepts for an 

Energy Signal Tool, proposed by Henze et al. (2015), using open-source detailed simulation 

modeling software. As such, it was hoped that the retail partner could replicate the effort 
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and use the re-designed ESTool to improve their current energy management strategies 

and get more out of their extensive energy sub-metering infrastructure. The tool would 

allow the facilities manager to assess the measured performance of each building relative 

to an expected range of its own performance on an ongoing basis. In this way, they would 

be able to prioritize maintenance and minor retrofit opportunities across the portfolio for 

energy efficiency and broader organizational goals. While the tool was designed around a 

big-box retail store case study, the intention is to show that it is broadly applicable to sets 

of commercial buildings managed under a single portfolio.  

Specific objectives of this research were as follows: 

 Document the process needed to create a self-benchmarking tool that uses 

OpenStudio, based on the conceptual design of Henze et al., (2015).  

 Make use of sub-metered energy use data for comparison of actual to expected 

performance. 

 Investigate a parameter sensitivity analysis process to screen model variables and 

rank their significance to the model. 

 Develop a structured logic to defining the risk tolerance thresholds for energy end-

use monitoring and corrective action. 

 Test the theory of the Energy Signal Tool in a realistic environment and adjust it as 

needed for optimum functionality. 

 Demonstrate portfolio level energy fault prioritization. 

1.3 Background of Project Development  

This work was funded as an operational assessment follow-up to the DOE-

sponsored Commercial Buildings Partnership (CBP) work that NREL has been involved 

with since 2008. The retail partner with whom the Energy Signal Tool concept was 

developed manages 1800 stores nationwide. In recent years, the retail business has seen 

degradations in profit margins, and investing in energy efficiency is one source of gains 
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they have been turning to. The retailerpartnered with NREL to design and construct a new 

high-efficiency store that opened in 2012.(Hirsch et al., 2014). This has placed the retail 

partner on track, at least from the standpoint of design, to becoming a leader in energy 

efficiency. However, through observing deficiencies in actual operation compared to 

expected energy performance of the store, the retailer believes there are opportunities to 

reduce energy consumption by additional 2 to 5% through more intelligent active energy 

management of all their facilities. However, they did not have a benchmark established to 

identify potential sources of this marginal gain in other stores. Thus, the idea for an Energy 

Signal Tool to track energy performance was born. 

1.3.1 Current Practices for Energy Diagnostics and Optimization at Retail Partner 

Operations and maintenance management (O&M) is needed periodically to keep 

HVAC, refrigeration and other building systems operating as intended. Apart from 

scheduled equipment replacements, equipment failures will occur randomly due to flaws 

and other environmental factors. At other times, the operation of control systems needs to 

be adjusted due to human error or changes in building use. The retail partner manages 

these issues at stores across the country from a central headquarters. There are no trained 

facilities experts located permanently in any of the individual stores or regions. Thus, all 

information regarding facility performance is gathered remotely through BMS interfaces, 

energy use data logging, and utility bills.  

A typical store maintenance call originates from a store manager who reports that 

the store or parts of the store have been too hot or too cold. According to conversations 

with the chief engineer, the retail partner currently prioritizes maintenance calls by letting 

them accumulate until the estimated value surpasses the cost of addressing them at any 

given store. Estimated value is usually based on equipment type and historical experience. 

When sufficient estimated value has accrued, they initiate corrective action at that location. 
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Any corrective action requires maintenance personnel or an engineering technician to visit 

the store. This incurs a cost whether or not the action results in a solution to the problem.  

The retail partner does conduct some active energy management of its portfolio. All 

new stores (over 1000 so far) include enough sub-metering infrastructure to capture major 

electricity and natural gas energy end–uses. A typical store has 22 unique data points in 

total, which are listed in Table 1 below. These points are minimally sufficient to capture the 

energy end-use from major categories such as heating, HVAC, plug loads, and lighting. 

However, it is impossible with this configuration to have perfect end-use separation at each 

point; some points capture combinations such as unit heaters and plug loads. The retail 

partner is aware that better planning of sub-metering infrastructure would make sub-

metering data more useful. 

Table 1: Typical sub-metered points at a big-box retail store 

 

POINT End Use UNITS Phases Metered Circuit(s) CT Location

1 TOTAL LOAD KW 3 MDS MDS

2 Sales Flr Plug Loads KW 1 HP-1 MDS

3 Misc Plug Loads KW 1 LD-2 HP-1

4 Sales Flr Lights KW 3 HL-1 & HL-2 MDS

5 Parking Lights KW 3 HL-4 HP-1

6 Refrigeration Compressors KW 1 RTCR-1 MDS

7 Refrigeration Cases KW 1 LP-12A & B HP-1

8 Refrigeration Walkin KW 1 LPE-3 LPE-1

9 Refr Door Heaters KW 3 LP-12A/cct 2,8 LP-12A

10 Dehumidification Unit 1 KW 1 DHU 1/cct 8 MDP

11 RTU 1 KW 1 cct1 HP-1

12 RTU 2 KW 1 cct2 HP-1

13 RTU 3 KW 1 cct7 HP-1

14 RTU 4 KW 1 cct8 HP-1

15 RTU 5 KW 1 cct13 HP-1

16 RTU 6 KW 1 cct14 HP-1

17 RTU 7 KW 1 cct1 MDP

18 RTU 8 KW 1 cct2 MDP

19 Dehumidification Unit 2 KW 1 cct19 HP-1

20 RTU 10 KW 1 cct20 HP-1

21 RTU 11 KW 1 cct7 MDP

22 Dehumidification Unit 3 KW 1 DHU 12/cct8 MDP

23 VAV Reheat KW 1 HL-3/cct26 HP-1
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The retail partner contracts a third-party energy management service to collect the 

data from the sub-metering equipment. This energy management data tracking service 

makes energy use data available for all stores in a single online portal. The data can be 

viewed as time series in graphical or tabular format. From conversations with the 

engineering team, it was gathered that they analyze this data by drawing comparisons of 

store energy use intensity (EUI), as well as other sub-metered end-uses, among stores of 

identical prototype within the same ASHRAE climate region. In this way, an attempt is 

made to identify which stores are performing the best, or which need attention the most. 

The challenge in this approach is determining where the performance advantages stem 

from so that actions to bring high-consumption stores to lower levels can be taken. Another 

challenge is accounting for unique qualities of each store that affect its energy consumption 

  Another strategy being implemented is the creation of spreadsheet meta-models 

that utilize the sub-metered data. These models predict “expected” energy consumption by 

observing past correlations between observed end-use consumption and weather data. 

Training a meta-model requires many points of hourly observed data correlated to 

environmental conditions. The idea is that if performance in one period deviates too much 

from the expectation generated by the model, then some problem may have arisen. The 

shortcoming they have encountered with this method is the need to re-tune the model for 

seasonal shifts, such as when dehumidification equipment is switched on. 

A different third-party service is contracted to do some synthesis of the energy use 

data with building vital statistics data received the BMS – including controls logic, sensor 

readings and setpoints. They deploy automated logic to look for combinations data 

anomalies that would indicate equipment faults. This is an example of what shall be termed 

traditional FDD. For example, with an issue such as stuck OA dampers, they might correlate 

unusual mixed air temperatures from BMS data with higher than expected heating or 

cooling energy use over a time period of a week or more. Other issues such as refrigeration 
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system operation and indoor environmental comfort are more urgent to deal with. These 

are monitored by tracking sensor readings directly from the BMS. The company has a 

policy of resolving any issues related to refrigeration systems within four hours to ensure 

grocery preservation. The Energy Signal Tool is not capable of being so sensitive as needed 

to address the importance of correcting comfort and inventory preservation issues within 

days or hours. Rather, the objective is to quantify the severity of faults in a way that allows 

for non-immediate responses to be prioritized intelligently. 

This understanding of operational context brought forth the role of the Energy 

Signal Tool as more of performance benchmarking tool than fault detection. Fault detection 

is better accomplished by looking at empirical evidence for specific pieces of equipment 

and comparing it to rule-based expectations. This way, root causes can be identified 

directly. Often though, FDD systems produce excessive alarms. This is where the ability of 

the Energy Signal Tool to quantify the severity of faults in terms of energy consumption 

deviation would be quite complementary to FDD. The benefits of performance 

benchmarking for the retail partner are discussed in Section 1.3.3 below. 

1.3.2 Current Practices for Optimizing Building Operation at Retail Partner 

The retail partner has been working to test and implement energy efficiency 

measures (EEMs) at stores for over twenty years. However, energy efficiency is a lower 

priority than the functions provided by the building systems. Therefore, EEM decisions are 

based on several criteria, in the following order of priority: 

 The impact on corporate branding, the “feeling“, or image within stores, as well as 

corporate sustainability. 

 The value to improving operational stability. This includes considerations of 

maintenance costs, product inventory stability, and customer comfort. 

 The internal rate of return of the EEM investment compared to other investments 

the company could be making (energy and maintenance cost savings).  
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 Energy efficiency resulting from improvements 

Apart from the CBP work, new equipment and controls strategies are typically 

tested one at a time in stores. Their energy performance is typically gauged on the basis of 

the test period of performance (either utility data or sub-metered energy use data) 

compared to a past period in a season with similar environmental conditions. The 

effectiveness of operational stability for an EEM is gauged by waiting to see how they 

perform in near-design conditions (in the outer tails of environmental conditions 

distributions). These conditions occur relatively infrequently, and since this is a top 

priority, the retailer often waits through a long test period before mass implementation. 

When optimization practices are finally validated, quantifying the potential impact and 

prioritizing the rollout among stores is an energy management challenge that currently has 

no methodical approach. This is currently done with rough rule-of-thumb guidelines.  

The retail partner has a corporate practice of making portfolio-wide rollouts of 

energy efficiency upgrades and control strategies to the extent that they are climate 

appropriate. This is in keeping with the philosophy of simplifying operations management 

across the portfolio as much as possible. In one example, they tried adjusting indoor 

thermostat setpoints. Lowering sales floor heating setpoints in all stores from 70⁰F to 68⁰F 

was successful. However, adjusting the cooling setpoint from 74⁰F to 75⁰F resulted in 

comfort complaints, and so the change was reversed. 

1.3.3 Benefits of an Energy Performance Benchmarking Tool for Retail Partner 

The Energy Signal Tool concept came about through discussions between NREL and 

energy management leadership at the retail partner. They have observed the need for a 

more proactive approach to energy management that would help energy managers to 

quantify the severity of energy faults across the portfolio of stores, rather than uncovering 

them slowly beneath mountains of data. The retailer is aiming to meet the operational 

targets for the CBP case study building, as well as to acheive a small marginal increase in 
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efficiency beyond the efforts from CBP (estimated at 2-5%, as noted above), so the tool 

must also be inexpensive to implement, requiring little additional infrastructure. One 

alternative considered was to install additional sensors and enter into an extended 

performance diagnostics contract with their third-party energy management service. This 

was deemed too costly for the marginal benefit available.  

Incorporating all company priorities into energy-related decision support of the tool 

has promise to further enhance the basis of decision making beyond just available energy 

savings. The research team decided to investigate detailed energy modeling in conjunction 

with a statistical tool that leverages an existing sub-metering infrastructure. A detailed 

energy modeling approach gives a far superior benchmark compared to spreadsheet meta-

modeling does. This comes from its level of detail and the ability to incorporate knowledge 

of the buildings. With a detailed energy model, it is possible to input seasonal fluctuations 

in schedules and changes in control strategy that help the model to match the patterns of 

actual operation. With a detailed simulation model, observed environmental factors act on 

all aspects of the building (envelope, equipment, controls, etc.), rather than being 

correlated to relatively few points of sub-metered equipment data available. As opposed to 

a spreadsheet based model, a detailed model can also be used to predict the effects of 

changes to the building, and does not have to be completely re-derived when changes are 

made (Coakley et al., 2014).  

This tool could supplement the FDD information on operational faults by providing 

information that quantifies their severity. For energy management, an Energy Signal Tool 

promises to help the company to prioritize actions rather than operating in a mode of 

reacting to problems as they arise. Beyond performance assessment, a side benefit of 

having the tool based on detailed energy models of each store would be the ability to test 

energy efficiency strategies virtually. Essentially, this would entail running the energy 

signal tool in reverse; making changes to a model and using the new output as the 
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“observed” consumption. Then, EEMs could be ranked by the signal output. It would make 

it simple to quantify the potential savings impact of a measure on each store, and rank 

stores in order of implementation priority. This would also result in the ability to test EEMs 

in design conditions where the limits of comfort and functionality are most likely 

encountered. It would eliminate the traditional waiting time of performance validation, and 

reduce the risk that adverse performance would affect comfort or inventory.  

1.3.4 Further Motivation: Results of CBP Comparison for Case Study Building 

The retail partner has worked with NREL to design new stores that conform to the 

50% Advanced Energy Design Guide for Big Box Retail standards created with ASHRAE 

(Bonnema et al., 2012). One such pilot store in Wisconsin, constructed in 2012, was 

expected to exceed ASHRAE 90.1-2004 energy performance standards by 52%. This store 

is the case study building used in the remainder of this report. It was equipped with 

extensive sub-metering equipment. A design energy model was also available for 

comparison of performance to predicted levels. In the first eight months of monitored 

operation at the store (August 2012 to April 2013), 34% energy savings were observed. 

This was much less than the model expectation of 52% (NREL, 2013a). See Figure 1 below 

for a breakdown of energy expectation and consumption by end-use. 

 

Figure 1: Comparison of actual savings to expected savings for the Wisconsin AEDG prototype  

Image source: NREL (2013a) 
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Figure 1 shows that most of the deviation in consumption was due to excess natural 

gas use, which had been 180% of the predicted amount in the first eight months of store 

operation. The advanced pilot store was performing worse than standard prototypes. 

Following this report in September of 2013, NREL conducted a follow-up commissioning 

investigation and found that there had been faulty controls in the outdoor air unit 

operation schedule. The unit had been turning on at 3 a.m. on a nightly basis, introducing 

unnecessary amounts of outdoor air into the building. Correcting this issue eliminated 

some, but not all, of the unexpected degradation in energy performance. After the HVAC 

controls issue was corrected, the store achieved a 44% increase in performance over the 

ASHRAE 90.1-2004 baseline (Hirsch et al., 2014). The expected baseline generated by the 

detailed energy model helped to demonstrate the existence of a problem. Acknowledging 

uncertainty in the baseline expectations, and then investigating some of the model 

uncertainties in operation, could have further validated the results. This evidence gave the 

retail partner insight into how beneficial uncertainty-based energy performance self-

benchmarking can be.  

2 Literature Review 

2.1.1 Parameter Uncertainty Analysis and Sensitivity Analysis 

Whole building energy models have thousands of input parameters that together 

characterize the usage patterns, operational strategy, and physical properties of a building 

and its systems. Even for existing buildings with extensive construction and operational 

documentation, some parameters such as outdoor air infiltration rate and system sizing 

factors cannot be specified with certainty. Many of these factors will also vary randomly 

over time. A single model is only the best guess representing a collection of guesses made 

for many unknown and un-measureable input parameters. Various combinations of 

parameter values in the model will result in a range of model outcomes. . UA is applicable in 
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the context of decision making based on simulation models, as it acknowledges the 

unknowns that go into establishing a baseline(de Wit, 2003). 

Prior to utilizing UA, uncertain model inputs must be characterized with probability 

density functions that describe the range of probable values for each. Dominguez (2009), 

MacDonald (2002), Corrado (2009), and de Wit (2003) all provide information on which to 

base assumptions regarding the distribution of parameter uncertainty. Many assumptions 

though are still at the discretion of the user. Struck and Hensen (2007) provide examples of 

making assumptions for uncertainty in un-measurable physical parameters. Struck and 

Hensen (2007) demonstrate that UA is useful for supporting multi-criteria decision support 

in building design. They note that the early design phase of a building project is 

characterized by great uncertainty in the path leading from there to the final outcome. They 

use Monte Carlo analysis to generate the complete range of building performance 

uncertainty as it varies with the value of all uncertain parameters.  

Studies of sensitivity analysis (SA) explore how model objective function outcome is 

affected by each model input parameter (Saltelli, 2000). Combining sensitivity analysis 

with UA can be used to quantify the impact that each uncertain parameter has on the model 

outcome. From here, model dimensionality (degrees of freedom) can be reduced by 

ignoring the effects of those uncertain parameters that have little impact on the model 

(Saltelli, 2000; Hopfe and Hensen, 2011). Burhenne (2013) notes that the uncertainty 

distributions of significant parameters must be examined carefully, and in this way, SA/UA 

can become an iterative process. Saltelli (2000) also notes that one of the primary reasons 

for performing SA is to determine which model variables merit additional research for 

improved estimation. 

Burhenne (2013) used Monte Carlo analysis to explore a range of possible design 

methods for achieving Passivhaus standard residential construction. Monte Carlo filtering 

of the results made it possible to uncover which building parameters had the greatest 
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influence on design outcome, and thus which were the best investment. Along with building 

design parameter uncertainty, Burhenne explored economic and energy price uncertainty. 

He found that combining cost-benefit analysis with the SA/UA process created a decision 

support system that drew upon information about how present design investments would 

translate to future return. 

Booth and Choudhary (2013) propose a framework of UA for assessing the potential 

impact of energy efficiency policy in UK housing. They use uncertainty assessment of 

parameters coupled with Bayesian inference to updates beliefs about parameter 

distributions. This is followed by an assessment of expected ranges of outcome for various 

retrofit measures that can be taken to maximize net present value. Their goal was to 

minimize the financial risk to the UK government by providing a range of expected 

outcomes that result from retrofit measures. With this information, the UK government can 

prioritize their spending based on the likely impact it is likely to have. 

2.1.2 Building Energy Performance Benchmarking and Decision Support 

Performance indicators (PI’s) are quantifiable indicators that adequately represent 

a particular performance requirement. Verification methods to evaluate whether PI’s have 

been met can include experiments, models, or tests; or a combination. Pati et al., (2006) 

argue that creating a common vocabulary of performance indicators can help to bring all of 

the disparate stakeholder needs together in the building design process for an optimal 

product. Similarly, defining operational performance indicators in a building can help bring 

diverse interests of energy management, maintenance, customer/employee satisfaction, 

and corporate strategies together.  

Energy use is one performance indicator. Hedrick et al., (2011) demonstrated an 

internal benchmarking system for energy use in restaurant portfolios. They were 

motivated by a study that found using the EPA ENERGY STAR portfolio manager was an 

insufficient way to compare energy use among restaurants. This is due to the multitude of 
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factors such as menu, kitchen appliances, and hours of operation that affect building energy 

use intensity. The study acted on the recommendation of creating a benchmarking system 

unique to each multi-use operator as the best way to evaluate performance. In the paper, 

the authors took a statistical approach to assessing performance. Regression models for 

expected performance were derived from best correlation of independent variables such as 

hours of operation, facility type, and observations in weather. This type of approach has the 

advantage of simplicity to the user, but may not be accurate if key independent variables 

such as local HDD and CDD are missing or inaccurate. It also had the disadvantage of only 

identifying poor performing stores on a qualitative basis; only revealing whether or not 

one particular store is an outlier in the data set. 

 In decision making with regards to optimizing building performance for energy, 

comfort, and other metrics the facilities manager has a tremendous amount of information 

to deal with. Modern BMS systems are capable of logging data being produced by hundreds 

of sensors in a single building. Energy sub-metering may track dozens of points, ranging 

from high-level end uses, such as total lighting energy, to very minute levels, such as 

individual refrigeration compressors. The facilities manager is largely unprepared to deal 

with this bombardment of information. O’Donnell et al., (2013) propose that data 

transformation is crucial to helping facility managers do their jobs well without having to 

rely on experts. The authors note that, despite the availability of extensive monitoring data, 

there is typically the crucial step of checking missing from the “plan, do, check, act” cycle. 

They demonstrate an automated, rule based methodology of transforming data from a wide 

array of information sources into a holistic performance assessment tool. This tool takes 

into account performance indicators of function, efficiency, thermal loads, performance and 

legislation. 

Doukas et al., (2009) proposed an intelligent decision support model for improving 

building energy performance. These authors built upon the work of others in response to 
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several high-level European energy efficiency directives. They identified the need for an 

energy management decision support tool that utilizes of the data collected by the BMS. 

They use this data as “experience data” to help train a model to recognize abnormal 

operation in various components tracked at the BMS. Standard indices derived based on 

energy efficiency standards, prevailing weather conditions, and indoor environmental 

conditions are used to prescribe a “normal” performance level. They propose forming a 

priority list for intervention based on comparison of measured building operation to the 

standard indices of performance. This method of ongoing performance assessment 

requires that the building have very robust BMS infrastructure. It also requires the 

derivation of benchmark indices for each unique case. In the five years since this 

publication, advances in computing power have made the use of detailed simulation for 

performance benchmarks more realistic. 

Costa et al., (2013) investigated ways of using calibrated building models to help 

facility managers determine when buildings have faults without the need to rely on 

external expertise. They found that data availability allows for easy application of manual 

fault detection and diagnostics, and concluded by stating the significance of developing an 

automated system of FDD. They provide some examples of creative data visualization 

options that would help the facility manager to identify faults. The authors state explicitly 

that work to automate the FDD process, and “integration of the FDD activity within an 

action management process” (Costa et al., 2013; Pg. 6), would greatly enhance their 

proposed methodology.   

Henze et al., (2015) have developed a conceptual prototype for an Energy Signal 

Tool for operational performance decision support. The authors developed the theory for a 

tool that alerts facilities managers of building consumption anomalies across a variety of 

monitored end-use categories. They show that sub-metered data and a range of uncertain 

operational expectations can merge with utility theory and be processed into the quick 
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visualization of a five-level traffic light. The resulting traffic light represents the action with 

the lowest probable cost thus acknowledging the fact that models will not perfectly reflect 

reality. The authors based their investigation on reduced order models developed in the 

Matlab environment to facilitate statistical processing of input and output data. They have 

also presented the idea that knowledge of parameter uncertainty can be updated over time 

using Bayesian inference, which may reduce the need for future model calibration (Pavlak 

et al., 2013).  

This thesis work builds upon the concepts for an Energy Signal Tool (ESTool) as 

proposed by Henze et al., (2015). In reference to this recent work, additional development 

effort went into transitioning the ESTool model platform to open-source building energy 

simulation software common to engineering practitioners. Efforts were also made to give a 

solid basis for parameter sensitivity analysis, and incorporating these results into risk 

management. There is little previous research on using SA in the context of risk tolerance. 

A reasoned and methodological approach is proposed for setting risk tolerance thresholds 

for each end-use. The application of utility theory is enhanced by accepting cost input from 

an ordinary user with several organizational objectives in mind. This is a novel approach to 

customizing a cost matrix. This work also proposes that the Energy Signal Tool is most 

useful in the realm of portfolio energy benchmarking and retrofit prioritization, rather than 

FDD. 

2.1.3 Energy Management and Performance Diagnosis Practices in Industry 

Chung (2011) distinguishes between two types of building energy use 

benchmarking systems:  those intended for public information, and those which generate 

results for internal use only. Public benchmarking systems, the author notes, are useful for 

promoting better energy performance in buildings with high interest in public image. 

Internal benchmarking, on the other hand, is most useful for internal decision making. One 

example of each type of benchmarking commonly found in industry is presented below. 
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Energy star portfolio manager 

  The US EPA offers vast sources of information on building performance assessment 

and benchmarking through their Energy Star program (www.energystar.gov, web) 

administered by the Environmental Protection Agency. The site reports a score of 1-100 

(100 being the best) as a metric of a building’s energy performance. The result is calculated 

based on a peer group of buildings, with similar location, construction, and operating 

characteristics. Rather than simply being a percentile rank within the peer group index, the 

Energy Star score is a product of “a statistical regression model that correlates the energy 

data to the property use details” (www.energystar.gov). The EPA Energy star system is the 

most rigorous peer benchmarking system of its kind in the United States (Gao and Malkawi, 

2014). It is commonly used for high-level performance assessments and portfolio managers 

to index building performance within a portfolio. 

While the Energy Star score is certainly a good starting point for assessing overall 

building energy performance, there are several big problems with using this information 

for active energy management or detailed assessment. First, the CBECS data 

(http://www.eia.gov/) used to build the statistical regression model is maintained in a 

notoriously out of date fashion. The most recent CBECS data available to date comes from a 

2003 survey; the results of which were not released until 2007 (eia.gov1). The CBECS peer 

comparison groups turn out to be rather small, if available at all. Thus, the aforementioned 

statistical regression model may be valid only for certain buildings types with high 

representation in the CBECS. For example, with the DOE Buildings Energy Data Book 

(http://buildingsdatabook.eren.doe.gov/), it is possible to select criteria matching a big-

box retail super-center in Denver, Colorado built in 1998 and create a peer group from the 

                                                        
1 At the time of writing an update to CBECS, with data from a 2012 survey, was expected in late 2015.  

2 Calibration of a model could only be completed to utility data because the sub-metered natural gas use was 

not available. Furthermore, the suite of software used permitted only monthly data calibration.  

3 A “measure” is a scripted method, as opposed to GUI or text-based, for altering elements of an OpenStudio 

http://www.energystar.gov/
http://www.energystar.gov/
http://www.eia.gov/
http://buildingsdatabook.eren.doe.gov/
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2003 CBECS dataset. With only these constraints (HDD>5500, CDD<2000, retail store, 

50,000 to 200,000 ft2, and built between 1990 – 2003) the sample size returned is four. In 

this case, it would not be possible to obtain an Energy Star score. To generate a more 

substantial peer group, one may search, as an example, for all buildings of type “Office”, 

built between 1990 and 2003, with sizes of between 25,000 and 100,000 square feet, and 

obtain a sample size of 49. This however neglects many distinguishing features of the 

building that are large factors in energy use, such as climate zone, hours of operation, plug 

load intensity, envelope composition, etc. 

Researchers presented a study in 2002 on using the EPA Energy Star Portfolio 

Manager benchmarking system to assess similar primary education facilities in the 

Northeast. (Hinge et al., 2002). They found that scores depended heavily on the amenities 

of the building (some schools did not have ventilation systems up to code), and the 

experience level of the facilities management personnel. In one case, a school that updated 

its ventilation system so that it was providing code minimum requirement saw its Portfolio 

Manager score drop from 36 to 16. This major update should have changed the peer group 

for comparison, but CBECS data is not detailed enough to allow this. In this case, a fair 

assessment of performance would have placed the energy consumption of the school below 

the expected amount before the ventilation update. This would be possible with self-

benchmarking. Gao and Malkawi (2014) state the need for a benchmarking method that is 

based on a multitude of features, and their work proposes a clustering method by which to 

classify buildings. 

Energy charting and metrics tool (ECAM) 

ECAM is a retro-commissioning tool, developed by PNNL, which seeks to leverage 

the large amounts of point measurement data collected by the BMS for a single building 

(Taasevigen and Koran, 2012). ECAM allows the user to input usage and occupancy 

schedules, as well as outdoor temperature. However, ECAM fails to include some factors 
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related to individual building performance, which can only be accounted for by a detailed 

simulation model. The ESTool is capable of taking information relating to occupancy, 

change in controls sequence, and equipment repairs/upgrades and generate forward-

looking energy use benchmark projections that require minimal user time, and minimal 

analysis skill, to process. ECAM has excellent data processing tools that allow the user to 

observe and compare energy use profiles. It can be used to set up performance trend 

comparisons (e.g., comparing cooling energy use across three different summers), but 

changes in external variables such as weather, occupancy and changing building use that 

influence cooling energy use make this of limited value under close scrutiny.  

The other major difference between ECAM and the ESTool is UA. Where ECAM 

makes comparisons on a point-to-point basis, the ESTool considers the likely range of 

expected outcomes, based on uncertain parameters, and reports how actual consumption 

compares to this. ECAM can be quite useful to help visualize large amounts of BMS data and 

to identify areas in a specific building where systems are not operating as they should be, 

but it does not give the user and indication of how urgent it may be to address these 

specific operational deficiencies. The ESTool can prioritize issues to address based on a 

probable range of expected cost compared to the operation-as-intended baseline. Another 

summary difference is that ECAM is excellent for making use of all BMS data collected for a 

building for purposes of performance issue diagnosis, whereas the ESTool gives a high-

level view of each building’s performance within a portfolio of buildings, and the quality of 

output depends on the user knowledge of the building. In this way, ECAM and ESTool may 

be complementary, ECAM can be used to gather information about individual buildings, 

and the ESTool can be implemented to compare and prioritize efforts at addressing the gaps 

between expected and observed energy use. Then, when significant gaps are identified, the 

user can go back to ECAM for those specific buildings and analyze specific systems and 

equipment in greater depth. 
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3 Methodology Overview 

This work took place over a 14-month period beginning in January of 2014. It was 

carried out under the supervision and guidance of thesis advisor Prof. Gregor Henze (CU-

Boulder/NREL joint appointment) and project engineer Dr. Adam Hirsch (NREL).  

As mentioned above, a big-box retail industry partner provided a case study 

building with which to carry out the investigation of the Energy Signal Tool. This building 

had been previously studied by the National Renewable Energy Lab (NREL, 2013a). A full 

energy audit was completed upon store opening in the summer of 2012 and a retro-

commissioning study was done in late summer of 2013. A detailed building energy model 

had been created in EnergyPlus based on the as-built construction documentation, as well 

as information about store operation gained from the audit.  

The retail partner provided the research team with access to an online database of 

utility information and hourly sub-metered data for the case study building. This had also 

been in place since the CBP work described above. At the initiation of this project, there 

was great enthusiasm and involvement from engineering management at the retail partner. 

There was even a vision to see this project through to a case study implementation at 

engineering headquarters.  

3.1 Scope of the Work  

Since the industry partner initiated the project and expressed early interest in 

working with the research team to test a working implementation, the author was fully 

committed to going through the process with data from an existing building. A realistic 

implementation of a self-benchmarking tool involves working to calibrate a detailed model 

to observed data. To this end, a significant amount of effort went into gathering data 
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describing the operation of the case study building and calibrating a model to match this 

data. This effort is described in Chapter 6. Unfortunately, it became evident in the eighth 

month of the project that industry partner was no longer available to commit resources to 

the project. Due to this unexpected change, there was insufficient information available to 

the author to properly investigate how the building operational intent corresponded to the 

operational data that was available. Additionally, it was discovered that the sub-metered 

energy data set was significantly flawed; this leaving still more uncertainty. Therefore, 

efforts were turned towards additional statistical procedures and robustness tests of the 

Energy Signal Tool theory. Results of this are found in Chapter 8. 

3.2 Methods and Tools Used 

3.2.1 Methods 

In general, project workflow was as follows: 

1. Gather input from the industry partner about building operational strategies and 

recent history of the case study building 

2. Complete a detailed model of case study building with OpenStudio 

3. Gather performance data for case study building, processing into model information 

4. Characterize parameter uncertainty 

5. Pre-screen parameters with local sensitivity analysis 

6. LHMC sampling for calibration to monthly utility data2 

7. Multivariate regression and global sensitivity analysis for parameter sensitivity 

quantification 

8. Cluster analysis of the calibrated models solution set to filter parameter values and 

select a representative model 

                                                        
2 Calibration of a model could only be completed to utility data because the sub-metered natural gas use was 

not available. Furthermore, the suite of software used permitted only monthly data calibration.  
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9. Decision tool development, including definition of risk tolerance thresholds, and 

incorporating user input into the cost matrix 

10. Test the tool on synthetic fault scenarios generated by modifying the representative 

model 

11. Classify signals displayed for skill in accurately identifying faults 

12. Investigating ideas for further development of a user-interface 

Figure 2 below gives a graphical overview of methods one through eight as listed above.  
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Figure 2: Workflow of model development, sensitivity analysis, and model reduction 

3.2.2 Tools 

It was decided to utilize OpenStudio, rather than EnergyPlus, for the detailed 

simulation component of the project. This would leverage the batch-simulation capabilities 

of the OpenStudio Analysis Spreadsheet and cloud computing power of OpenStudio server 
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(see Macumber et al., 2014i); both under development at NREL. The author had the great 

fortune to work with the NREL OpenStudio development team to transition the model over 

to OpenStudio format. This required writing both OpenStudio and EnergyPlus measures3 in 

Ruby script to create or modify objects that OpenStudio was not set up to handle 

(discussed in a later section). With the OpenStudio GUI, it was simple to further develop the 

model with additional data gathered such as sub-metered energy use, and building 

construction documentation.  

Information regarding parameter uncertainty was managed with the OpenStudio 

Analysis Spreadsheet. The Analysis Spreadsheet communicates with the OpenStudio Server 

package to set up and execute large batches of model runs. These are executed on the 

Amazon Web Services (AWS) cloud computing platform. In this way, a typical batch of 

1,000 model runs lasted about three hours at a cost of about $8.00. Results from batch 

simulations are conveniently output in R data-frame format. Because of this convenience, 

and for the extensive plotting and graphical display capabilities of the R environment, R 

was used to process data and generate results throughout this work. Figure 3 below gives 

an overview of the sequence of software tools used in the project. 

                                                        
3 A “measure” is a scripted method, as opposed to GUI or text-based, for altering elements of an OpenStudio 

model.  



 

26 
 

 

Figure 3: Workflow of software tools 

3.3 Case Study Building Information 

 

Figure 4: The case study building upon construction completion.  

(Photo by Rois Langner, NREL.) 
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The case study building is a single story, 133,000 ft2, big-box retail store located in 

suburban Wisconsin. It contains a large sales floor, a pharmacy area, a food vendor, a small 

kitchen, stocking areas, walk-in refrigerated storage, and a grocery area with refrigerated 

display cases. As mentioned above, the retail partner worked with NREL to incorporate 

multiple energy efficiency features across different building sub-systems in the design 

process in an attempt to achieve 50% energy savings compared to an ASHRAE 90.1-2004 

baseline. At the envelope level, this included walls with R-12.3 insulation and R-25 roof 

insulation. Due to the sensitive nature of detailed information, exact specifications and 

floor plans for the case study building cannot be shared in this report. 

Figure 5 below displays a high-level summary of energy use history, which spans 

over two years from when the store opened in July 2012, to the latest available data. Figure 

6 and Figure 7 show how energy use corresponded to weather conditions in the first two 

years. Data was collected from monthly utility billing summaries and normalized to 

calendar months. For the period of data corresponding to the calibrated model used 

throughout as the case study, the store had an energy use intensity (EUI) of 68.4 kBtu/ft2-

yr. This compares to an average of 76.1 kBtu/ft2-yr for retail buildings of similar size in the 

CBECS database (2003 survey) in the same climate zone4. The ASHRAE 90.1-2004 code 

minimum baseline model predicted the store would consume 111 kBtu/ft2-yr (NREL, 

2013a). 

                                                        
4 CBECS data source: http://buildingsdatabook.eren.doe.gov/CBECS.aspx [accessed: 02/13/15] Categories 

selected for Climate Zone - CDD <2000, HDD>7000; Building size – 50,000 to 200,000 ft2. The size of the 

CBECS survey sample set was seven buildings. The fact that this is a relatively small improvement in energy 

efficiency, despite being designed for superior energy performance, is most likely due to the extended service 

nature of the case study store; which contains small restaurant, extensive refrigeration equipment, and has 

relatively long operating hours. 
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Figure 5: Energy use history for case study building 

 

Figure 6: Plot of monthly electricity use vs. cooling degree-days observed 
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Figure 7: Plot of monthly natural gas use vs. heating degree-days observed 

As Figure 6 and Figure 7 above illustrate, the inconsistent operational strategies at 

the case study building have not generated energy use data with regular correlation to 

outdoor conditions. This is also partially due to energy use being dominated by internal 

loads, being approximately 58% of total energy consumption. Figure 8, below, gives a 

summary of energy consumption by end use at the case study store. 

 

Figure 8: Annual measured energy by end-use for the period 4/1/2013 to 3/31/2014 
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3.3.1 HVAC and Refrigeration Equipment 

Ten, single-zone, rooftop air-handling units (RTUs) with variable speed fans 

condition interior spaces of the store. One, multi-zone, system conditions the office and 

pharmacy area with VAV terminal boxes, electric reheat, and economizer mode. Each RTU 

contains packaged DX cooling and gas furnace heating. Three dedicated outdoor air units 

provide conditioned ventilation air to the store. These are equipped with energy recovery 

heat exchangers. The ventilation strategy is to supply a constant outdoor air quantity of 

0.08 cfm/ft2 to the entire store. The ventilation supply air temperature is reset seasonally; 

at 16°C in Winter, and 13°C in Summer. A dehumidification unit equipped with a desiccant 

wheel for evaporative condensing pre-cooling is used to keep indoor dew-point 

temperature below the desired control threshold of 12°C in the grocery area.  

The store has 31 refrigeration display cases split between two racks of rooftop 

compressors. Cases operate between -26°C (frozen meats) and +2°C (dairy). Medium 

temperature cases do not have doors installed, while low temperature cases do. All freezer 

cases are equipped with automatic defrost controls which stage on in ten-minute intervals 

to minimize demand. All display cases with doors contain anti-sweat heaters, which 

modulate based on the indoor ambient dew-point temperature. There are seven walk-in 

refrigeration and freezer storage units in the store. They supply inventory to the food 

service kitchen, and stock general inventory for the grocery area. 

Assumptions about infiltration had to be made for each zone of the store. This was 

one parameter of considerable uncertainty, as it is very difficult to measure, and can vary 

with a combination of sales volume, weather, and HVAC system modes. As described later 

on, parametric uncertainty was introduced into this variable with a multiplier sampled 

from a triangular distribution of +/- 40% variability. Figure 9 below shows the nominal 

modeled infiltration rates modeled for each zone. 
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Figure 9: Modeled infiltration rates by zone 

3.3.2 Schedules of Operation 

As mentioned above, the retail partner has remote control of all store BMS systems 

from a single central engineering headquarters. All system operation schedules are set 

from headquarters.  The store is open to the public between the hours of 8 a.m. and 10 p.m. 

Monday through Saturday, and 8 a.m. to 9 p.m. on Sundays. Employees are present 

between the hours of 6 a.m. and 11 p.m., seven days per week. Indoor temperatures are set 

down/up during hours when the store is closed to the public by 4°C for cooling, and 5°C for 

heating. There is a morning warm-up/cool down period one hour before store opening 

built into the thermostat schedules, shown in Figure 10 below. 
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Figure 10: Indoor temperature setpoints (main sales area). Thick lines indicate a float of 0.3°C. 

General interior lights are scheduled to be off during hours when no one is present, 

and on during all occupied hours. Refrigeration case lights are also shut off at night. Parking 

lot and other exterior lighting operates on an astronomical clock  to be on during all hours 

when employees are present.  

3.3.3 Lighting and Other Equipment Loads 

In designing the new store, emphasis was placed on minimizing internal loads. Low-

energy T-8 lighting fixtures were installed on the sales floor. Interior lighting power 

density is quite low, at 0.71 W/ft2 on the sales floor. All low and medium-temperature 

refrigerated cases and walk-ins have LED lighting installed. Checkout stations are equipped 

with a stand-by mode that shut off during hours when not in use. Timers control the sales 

floor plug loads to be off during hours when the store is closed to the public. This includes 

display case lighting. Occupancy sensors shut lights off automatically in walk-in 

refrigerators and restrooms. In Figure 11 below, profiles of general internal occupancy, 

lighting, and plug-load equipment operation in the store are given. There are also cooking 

loads from the food service, which consume a relatively small amount of natural gas. 
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Figure 11: Schedules of internal loads (assumed and measured) 

Even with the energy efficiency measures listed above, interior equipment loads are 

significant. Table 2 below summarizes interior equipment loads across all zones as 

measured in the store and modeled, including small stand-alone refrigeration cases. 

Table 2: Lighting and equipment electric power density 

Zone Name Total Equipment 

Power (kW) 

EPD 

(W/ft2) 

LPD 

(W/ft2) 

Grocery 4,050 0.26 0.68 

Kitchen 23,000 12.84 1.48 

Office 4,500 1.00 0.72 

Pharmacy 2,629 1.35 0.91 

Restroom 0 0.00 0.86 

Sales 1 6,747 0.15 0.71 

Sales 2 6,747 0.15 0.71 

Stockroom 8,136 0.50 1.37 

Vestibule 0 0.00 1.00 

Walk-in 

Refrigeration 0 0.00 0.82 
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Figure 12: Interior view of case study building. 

(Photo by Rois Langner, NREL.) 

3.3.4 Electrical Service and Submetering Equipment 

Four sub-system transformers step voltage down from a nominal 480V primary to a 

secondary of 208V for some sub-panels. Measured voltage at the main meter was reading 

between 480 and 490V before late-March, 2014, but then changed to between 460 and 

470V. This was due to corrective action by the utility. 

There are 88 unique energy sub-metering points at the building (not counting 

multiple phases of a single point). These points are metered with current transducers 

installed at panel, sub-panel, and equipment locations.  Although there is a great quantity of 

energy metering, the layout was optimized for FDD and not energy management. Because 

of this, the process of extracting end-use consumption values involved a great deal of data 

wrangling. With this effort, the sub-metered energy use data did prove to be quite useful 

for extracting information about building operation as discussed in the next section. A full 

summary of sub-metered points can be found in the appendix. 
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4 Methods of Detailed Simulation Modeling with OpenStudio 

4.1 Modeling Approach 

At the outset of this project, detailed building information had already been 

investigated and entered into an EnergyPlus simulation model. Efforts in this work went 

into transitioning this model to OpenStudio (OS). The OpenStudio platform provides a 

sophisticated graphical user interface (GUI) to the well-developed EnergyPlus simulation 

engine. As discussed in the next chapter, uncertainty analysis requires large amounts of 

model samples. OpenStudio offers the basic user access to cloud computing batch modeling 

capabilities needed to execute thousands of model runs. This is through the OpenStudio 

Analysis Spreadsheet, which pairs a sample generation interface with a cloud-computing 

API (Macumber et al.). The open-source software platform upon which OpenStudio is 

written also allows the user to share and create scripts for uncertainty analysis (called 

“measures”; discussed later on). Compared to the reduced-order grey-box modeling 

approach taken by Henze et al. (2015), a detailed simulation model platform such as 

OpenStudio is more realistic to implement in the energy management industry, and is 

easier to modify as changes occur in the building. These reasons, and the availability of 

colleagues who developed the software at NREL, solidified the decision to use OpenStudio 

for this study.  

When a simulation is run with OpenStudio, the model is processed and converted to 

an .idf file, which is then simulated with the compatible version of EnergyPlus. While 

EnergyPlus requires substantial training to use, the OpenStudio development team aims at 

making make OS a tool accessible to a less expert user group. It is conceivable that, within a 

few years, most facilities managers, energy managers, or third-party energy management 

consultants would be able to make small changes in an OpenStudio model that reflect 
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minor retrofits or operational control changes that have occurred in the building or are 

being tested for viability. OpenStudio was under development throughout the course of this 

project, with software updates released on a monthly basis.  

A SketchUp plugin was used to import building geometry and numerous other 

features form the original EnergyPlus model to a new OS model. Figure 13 below displays 

building geometry as modeled. Features that were copied in included building geometry, 

construction materials, schedules, thermal zones, occupancy, and internal loads 

information. This imported .idf content was visible in the OS GUI. For things that did not get 

copied in completely or accurately, there were three subsequent options for inclusion: 

1. Use the OpenStudio GUI to re-build components. 

2. Write scripted Ruby measures that act upon the OpenStudio model directly to 

modify existing components when a simulation is run. These are known as 

“OpenStudio Measures”. 

3. Write Ruby measures that inject additional components, not compatible with the 

OSM platform, in .idf language into the .idf file that results from the initial OSM 

processing stage. These are known as “EnergyPlus Measures”. 

 

Figure 13: View of modeled case study retail building rendered with OpenStudio plugin for SketchUp 

Measures are programmatic instructions (written in Ruby language) read by the OS 

application to make custom changes to a model. The online Building Component Library 

(BCL) for OpenStudio is a repository of hundreds of measures useful for creating a building 
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model (see Fleming et al., 2012ii). The BCL is sometimes useful for patching missing 

building elements. In this work, numerous unique elements required custom measures, not 

available in the online BCL, to re-build. During the conversion from .idf, HVAC systems did 

not get copied in. In this case, most systems were packaged DX – so they were fairly simple 

to rebuild in the GUI. One packaged unitary system had to be imported as an EnergyPlus 

object. OpenStudio automatically generates individual curves that describe operation and 

performance of cooling equipment. A measure was applied to map the old curve data from 

the EnergyPlus model to the new curve names generated by OpenStudio. 

Refrigeration systems did not get copied during the transition from EnergyPlus, 

butover either. OpenStudio was capable of modeling them with few exceptions. Several 

minor OS bugs in refrigeration system descriptions were encountered, which required 

custom measures to fix and model properly. Once again, OS automatically generates 

individual curves that describe operation and performance of refrigeration equipment. It is 

not possible to select other curves in the GUI, so these had to be assigned with another 

Ruby measure. Since OS generates a unique curve for each parameter of each piece of 

equipment, it was simple to write a measure that switched the names and handles of the 

.idf curves with the default curves generated by OS. In this way, the default curves were 

replaced with the original .idf curves.  

Other model objects, created with EnergyPlus, were not supported by the 

OpenStudio user interface at the time of model development. These required custom 

EnergyPlus Ruby measures to add them to the .idf file produced in the OS output. They 

included:  

 Outside Air zone mixing objects 

 Kitchen exhaust fan 

 Humidity controls 

 Packaged unitary system 
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 Dehumidification controls using desuperheater waste heat 

 Walk-in refrigeration systems 

 Various Energy Management System controls 

In the future, it is not expected that importing an EnergyPlus model will be so laborious, as 

OpenStudio content catches up. 

4.2 Sampling and Batch Simulation Methods 

Sampling is a process whereby a variety of model parameter combinations are 

tested for their impact on model outcome. Setting up the uncertainty analysis portion of the 

Energy Signal Tool was done through the Analysis Tool spreadsheet interface, which is 

under development at NREL (Ball and Long, 2014iii). The Analysis tool was used to set up 

parameter uncertainty distributions and simulate large batches of OpenStudio models. To 

use this tool, it is required to have measures (or arguments within a measure) written that 

are capable of perturbing parameter values over the range of uncertainty. A screenshot in 

Figure 14 below illustrates the user interface for parametric input. When combined with 

batch sampling, this will explore the effects of various parameter values on the building 

model and its end uses. Although many measures are available in the BCL, they had to be 

customized or new measures had to be created for this work. The Analysis Tool uses a 

Ruby-On-Rails automated program interface (API) to tap into AWS cloud computing 

servers and execute the batches of runs. The API is initiated through several command line 

arguments. 
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Figure 14: Screenshot of Analysis Spreadsheet parametric input 

The Analysis Spreadsheet has an MS Excel interface for inputs regarding cloud 

computing configuration, sampling algorithm, parameter uncertainty distribution and 

output reporting. Figure 15 below provides an example of spreadsheet configuration input. 

It has numerous sampling and model optimization algorithms built in. Those used for this 

work included “pre-flight” (for OAT parameter pre-screening) and “LHS” (for Latin 

hypercube sampling, which was used extensively throughout). On the “Setup” tab of the 

spreadsheet, the user may select the option of sampling “all variables” or “individual 

variables”. For the pre-flight algorithm, the option of sampling individual variables was 

utilized to isolate the effect of each variable on model outcome. For the LHS algorithm, the 

option of sampling all variables simultaneously was selected. This means that each sample 

generated was globally unique in that it is an assemblage of unique random values within 

the uncertainty range of each parameter. It is expected that a more advanced version of the 

Analysis Tool will be incorporated into the Parametric Analysis Tool in the near future as 

part of the standard OpenStudio GUI package. 



 

40 
 

 

Figure 15: Screenshot of Analysis Spreadsheet “setup” tab 

When a batch of simulations is initiated, the spreadsheet sequences them to run on 

the cloud-based web server with OpenStudio server code. The Ruby “gem“ to install and 

run the package is publically available online5.  

The model samples generated by the spreadsheet are sent out for execution to the 

Amazon Web Service Elastic Computing Cloud (AWS-EC2) service. The EC2 offers a virtual 

computing environment for large batches of EnergyPlus simulations to be processed in a 

much shorter amount of time than would be required at a desktop computer. Currently, 

normal users can call up to 64 cores of server power, which collectively decreases the 

amount of time required to run simulation batches by a factor of 50. The simulation is set 

up by selecting the server and worker instance types to be run with EC2. There are eight 

classes of servers and four classes of workers to choose from, each with a different level of 

processing power, memory storage, and EC2 pricing. Cloud server memory storage is just 

as important as cloud server count for effective batch simulation. During this work, it was 

                                                        
5 https://rubygems.org/gems/OpenStudio-analysis  

https://rubygems.org/gems/openstudio-analysis
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found that server memory limits and large SQL results output files are limiting factors to 

total batch size.  

There are several visualizations of data generated with batch simulation. These 

compare data points of parameter input to objective function output help the user to see 

the strength of correlation and possibly identify parameter multi-colinearities. Some 

examples of OS Server visualization are included in the appendix. 

4.3 Weather Data 

Independent of other factors, year-to-year fluctuations in weather can have a 

significant impact on energy consumption. Using an Actual Meteorological Year (AMY) 

weather file, rather than a Typical Meteorological Year (TMY) file, can reduce the amount of 

uncertainty in benchmark expectations. Wang et al. (2012iv) found that by taking historical 

data from 10-15 year timeframes in four climates, there was up to an 8% spread in building 

energy use. This amount of uncertainty is greater than risk tolerance thresholds used to 

generate energy signals. As the figures below illustrate, there were significant differences 

between a typical year and the actual year at the case study project site. In a real 

application of the Energy Signal Tool (as was planned at the outset of this project), the user 

would need updated AMY weather files for each application site. There are tools and 

methods available for creating such files from freely available data, but the process is quite 

complicated. Hourly observed solar radiation data is rarely available. Installing a weather 

station that can log hourly data for each Energy Signal Tool implementation site in a large 

portfolio would provide the best access to weather data. 

For this project, weather data for the nearest official weather station to the case 

study site, which is logged at the Timmermann Airport (station KMWC). An (AMY) of data 

was obtained from Weather Analytics for a fee. This came in directly as an EnergyPlus 

(.epw) formatted file, spanning the 12-month period from April 1, 2013 to March 31, 2014. 
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This is the period corresponding to the remainder of the work presented with the case 

study building.  

 

Figure 16: Comparison of AMY vs. TMY hourly outdoor dry-bulb temperatures 

As seen in Figure 17 below, the AMY period contained a significantly greater 

number of heating degree days than a TMY. The winter of 2013-2014 was a cold one in the 

upper Midwest region. 

 

Figure 17: Comparison of AMY vs. TMY heating degree days per month 
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Figure 18: TMY vs. AMY solar radiation and temperature 

The figure above illustrates how TMY expectations are for sunnier conditions during 

cold weather than were observed during the AMY period. From the figure below, it seems 

that times of low solar radiation are recorded in a slightly different manner for AMY data 

sets. 

 

Figure 19: Comparison of AMY vs. TMY hourly solar radiation data  
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4.4 Use of Sub-Metered Energy Data  

The benefits of having sub-metering equipment installed are in giving facilities 

managers a quantitative picture of how the building is performing, encouraging 

performance accountability, and providing a framework for tracking behavioral change 

(NIST, 2011). The case-study retail store is equipped with 88 points of sub-metering 

consisting of hardware measuring data from main panels distribution panels, sub-panels 

and down to the level of specific equipment, and even equipment components in some 

instances (VAV boxes, RTU compressors, RTU fans, Etc.). By installing a larger number of 

monitoring points in the case study store, the retail partner hoped to learn from their 

investment in the high-performance design. The greater than normal extent of this sub-

metering infrastructure made it possible to sum specific sub-metered points into category 

by end-use without much difficulty. Refer to the appendix for a full list of sub-metered data 

points and groupings. 

4.4.1 Sub-Metered Data Analysis and Preliminary Heuristic Calibration 

Sub-metered data from the case-study building were available through an online 

energy management application from as early as October of 2013 up to the present. There 

was a major retro commissioning effort of the data collection system between September 

and October of 2013. During this period, no data was collected, and several changes were 

made that effectively rendered previous data of poor comparison. Due to the scope of this 

work, the heuristic model calibration needed to take place before the entire years worth of 

sub-metered data was available. Therefore, data for the period October 2013 through April 

2014 was used to extract information pertaining to schedules of operation. The figure 

below shows that there is relatively little variance in the load profile for each hour. For the 

most part, operation is predictable. The extreme outliers represent days when the store 

was open for 24 hours, or was closed for a holiday. In this and other “box-plot” style 

visualizations, the blue shaded range represents the 25th to 75th percentile (interquartile) 
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range of observed data. The median of the data is represented by a black line within the 

shaded region. The “whiskers” bound the range encompassing 1.5x the interquartile range, 

and the outlying points are all those beyond. Boxplots with narrow blue regions represent 

distributions with less variation. Those with median values close to the geometric center of 

the shaded region have more normal distribution characteristic. 

 

Figure 20: Boxplot of electrical load profile as observed from 10/2013 to 4/2014 (170 days) 

The hours of 4 p.m. and 5 p.m. exhibit significantly more variation than most. It seems that 

this is partially because occupancy increases more in these hours during the holiday 

shopping period than others. Also, the shift from more occupancy at the 4 p.m. hour to the 

5 p.m. hour in the early spring is indicative of parking lot lights that operate on an 

astronomical clock. In Figure 21 below, building electricity load data for the hours of 4 p.m. 
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and 5 p.m. is given from the period 10/1/2013 to 4/6/2014.

 

Figure 21: Variation in total building electricity load  

Even after all physical information about the building is gathered and entered into 

the energy model, there is additional work in the heuristic calibration process. Processing 

sub-metered data into energy model load schedules can enhance the heuristic model 

calibration. The EnergyPlus feature ‘Schedule:File’ can be used to process sub-metered data 

into very accurate schedules for end-use implementationv. However, to reduce model 

complexity, the useful sub-metered data was analyzed and converted to typical day 

schedules. This was deemed appropriate for a facility with identical operation hours seven 

days per week. Of the sub-metered end uses, the following were identified as candidates for 

this method of schedule building. They are all cyclical on a diurnal basis, and have no 

variation due to interactions with environmental factors, or other systems in the building. 

 Stock/Receiving Lights 

 Office Area Lights 

 Sales Floor Lights 

 Parking Lights 
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 Sales Floor Plug Loads*6 

 Food Service Equipment Loads*7 

 Electric Water Heating Load*8 

For those items listed without an asterisk, the data presented itself as following a 

very predictable daily pattern, where the daily maximum was within close range of the 

maximum taken from the entire 170-day (4080 hour) data set. These end-uses exhibited 

little hourly variation. For these end-uses, the following formula was used to generate 

schedules: 

Equation 1: Hourly schedule derivation from sub-metered data 

                  
                

           
            

   
       

                        
           
            

   
    

 

 

Schedules for an energy model are built by normalizing the load at each hour to 

some maximum load, which is assigned a value of 100%. In the equation above, the mean 

load value from the observed data set is taken for each hour (170 samples of each hour) 

and divided by the maximum of those means. 

The sales floor plug loads exhibited significant seasonal variation, as shown in the 

following figure: 

                                                        
6 Plug loads did exhibit some seasonal variation due to seasonal displays. 

7 Kitchen equipment loads exhibited significant, random, daily variation of hourly load profile. 

8 Water heating loads exhibited significant, random, daily variation of hourly load profile. 
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Figure 22: Seasonal variation in retail store plug loads 

Sales floor plug loads are elevated for the winter holiday sales season, and are then 

reduced to a base value between March 1st and November 15th. The differences between 

holiday and non-holiday periods in the daily load frequency distribution are seen below in 

Figure 23. A difference of 5% is observed in the elevated median of the holiday period. Due 

to this noticeable variation, the sales floor plug load schedule was created by normalizing 

to the peak hour in the holiday season, adjusting all hours up or down accordingly. 
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Figure 23: Holiday vs. non-holiday plug load measurements taken between October 18, 2013 and April 5, 2014 

The food service plug loads and the water heating load exhibited enough hourly 

variation across the 170-day sampling period that simply taking the mean value at each 

hour would have been accurate from a total energy use standpoint, but would have 

neglected a significant portion of the peak load contribution. The water heater loads are 

distributed as follows, with relatively wide hourly variations across the 170-day period: 

 

Figure 24: Domestic hot water loads, recorded hourly over the 170-day monitoring period 
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Whereby the most likely hour for the daily peak domestic hot water load to occur is 

20:00 to 21:00, as verified by the figure above. The 0.995 quantile load for this hour was 

10.6 kW. Thus, this hour was assigned the peak load of 10.6 kW, and the other hours’ mean 

values were adjusted down by an equal share of the peak offset to create the typical daily 

profile schedule. The figure below shows the “average” load (average of all hours) 

compared to the “typical” load as modeled, including the typical daily peak. 

 

Figure 25: Final scheduled water heating loads compared to averages 

The kitchen equipment loads, which are comprised of food service equipment and 

various other plug loads, are distributed as follows in Figure 26: 
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Figure 26: Boxplots of kitchen plug loads from 170 days of hourly data 

From Figure 26, it can be concluded that the most likely peak occurs in the 09:00 to 

10:00 hour; likely when food preparation is underway. The 0.995 quantile of the 

distribution for this hour was 22.4 kW. Thus, this hour was assigned the peak load of 22.4 

kW, and the other hours’ mean values were adjusted down by an equal share of the peak 

offset to create the typical daily profile schedule. 

 

Figure 27: Final scheduled kitchen equipment loads compared to averages 
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The figure below shows a summary of daily electricity use distributions for the 

major loads for which information was extracted from the sub-metering data from the 170-

day data collection period. With the exception of the sales floor plug loads, all other loads 

examined show a very normal distribution of daily load; with the box plots being centered 

about the mean. Thus, it was valid to match the sum of daily load schedules equal to the 

daily mean in the model; except for the sales floor plug loads as described above. 

 

Figure 28: Distributions of daily loads from sub-metered end uses 

As discussed later on, it was important to note the normalcy of the load distributions for 

lighting and plug loads. This is illustrated in several figures in the appendix. Due to 

modeling limitations, it was not possible to include schedule uncertainty in the uncertainty 

analysis.  

4.4.2 Uncertainty in Sub-Metered Data 

Sub-metered data observations form the basis on which the Energy Signal Tool 

assists with decision making. As such, validation of data quality is paramount. Error in sub-

metered energy data can come from a variety of sources. This error can be grouped into 

four categories, and the extent of uncertainty will vary with the level of quality in the sub-

metering infrastructure.  
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Physical 

implementation 

uncertainty: 

 

 Is every piece of equipment included in the sub-metering 

infrastructure? 

 Are some sub-metering devices installed improperly? 

 Is there phase in-balance in the electrical distribution system 

that is not accounted for with sub-metering of only one of three 

phases?  

 

Front-end 

calculation 

uncertainty 

 

 Are conversions from current transducer to units of power being 

done properly? 

 Is the building power factor being accounted for in real time? 

 Was the right voltage accounted for, or is it being accounted for 

in real time? 

 

Back-end 

calculation 

uncertainty 

 

 Are sub-meter aggregation assumptions accurate? 

 Is there duplication in sub-meter aggregations? 

 

Building electrical 

system interference 

uncertainty 

 

 Has a change in building voltage or power factor impacted the 

front-end calculations? 

 Has a change in wiring or transformer infrastructure impacted 

the losses between the main meter and the sub-meters? 

 Has a change in wiring impacted phase balance? 

 Was power factor correction equipment installed? 
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For the case-study building, it was possible to deduce end-use data for the four 

major categories of HVAC, Lighting, Plug Loads and Refrigeration. This was done by taking 

combinations of sums from among the 88 sub-metered points available on the web-based 

energy management system. Also available were separate measurements of energy use 

taken at the building electrical service entrance. Comparing the sum of end-uses to the 

readings gathered from the main meter was done to check the assumption of accuracy in 

sub-metering equipment. Initially, it was expected that the sum of end-uses would be 

slightly less than the main metered amount due to secondary transformer losses and line 

losses in the building electrical distribution system. However, as evidenced in Figure 29 

below, the sum of end-uses was found to be predominantly greater than the main meter 

reading.  

                                                

 

Figure 29: The normal biased error distribution of sum of end use meters vs. main meter 

Error is assumed to be in reference to the main meter, which is a metered point 

located at the building electrical service entry. As seen in Figure 29 above, percent error is 

normally distributed around a mean value of +3.9%. This means that readings taken from 
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summing end-use meters are higher than the reading taken at the main meter by this 

amount.  

A small data correlation study was done in an attempt to identify the root cause of 

this error in one of the end-uses. To do this, the time series data set of hourly measurement 

error was compared to the concurrent magnitude of load in each end use. An assessment 

was made for the Pearson correlation coefficient of each pair. It was expected that as the 

load carrying the root cause of the error would have the highest correlation to the 

measurement error. 

Table 3: Correlation between end-use time series data and measurement error 

End-Use ρ 

HVAC  0.424 

Plug Load 0.342 

Refrigeration Load 0.301 

Lighting Load 0.443 

Correlation to measurement error was found to be strongest for the lighting end 

use. The discussion below provides further evidence found to validate this. 
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Figure 30 a,b: Visual correlation between lighting energy load and sub-meter error 

As illustrated in Figure 30 above, measurement error is always highest at night 

when most lighting and plug loads are off. Dominant loads at night are refrigeration, which 

increases refrigeration as a percentage of total end uses.  

As mentioned earlier, there had been a 4% service voltage drop at the building. An 

assumption of service voltage is important to the front-end calculations of sub-metered 

energy if it is not measured continuously. This service voltage step change did produce any 

noticeable change in the error observed between the main meter and sum of end-uses, as 

illustrated in Figure 31 below. Thus, the difference in voltage reading versus assumed 

voltage is not a factor contributing to error in the measurement. 
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Figure 31: Building service voltage and sub-meter measurement error 

After these investigations, a conversation with a facilities engineer working for the 

retail partner revealed the fact that all current transducer devices measuring end-use 

energy consumption are installed only on one out of three phases (Phase “A”). The 

exception to this is the interior lighting system, which has current transducers on all three 

phases. Thus, the positive error of sub-meter readings is a reflection of the phase imbalance 

on the electrical sub-panels being biased toward more loading on Phase A, on average, 

across all panels. The interior lighting system has a load of 80 kW, which is approximately 

33% of the total daytime running load of the building. When the interior lighting system is 

turned on, it dilutes this bias. When the interior lighting system is off, all three-phase sub-

metered loads are calculated by assuming phase balance – which is not accurate. Thus, this 

measurement error was found to be due to phase imbalance of the electrical systems being 

measured; placing it in the category of physical installation.   

Finally, according to facilities engineers, the measurement error tolerance for the 

type of current transducers installed in the case study building is +/- 5%. Thus, the mean 

measured error, although biased for the possible reasons listed above, is within this 

tolerance. There are higher quality sub-metering systems that are rated for measurement 

error between 0.05 and 3%, depending on cost and application (NIST, 2011). 
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In addition to measurement error caused by problems with the physical installation 

and phase imbalance, it is common to have gaps or unexplained shifts in sub-metering data. 

Often, it is possible to fill minor gaps with simple regression techniques. The root cause of 

pattern shifts can be ascertained most often by speaking with a facilities manager. As 

explained later on, some quite large gaps were identified in the data set. In addition to this, 

the sub-metered data seemed to suggest drastic shifts in operation of dehumidification 

equipment. After having utilized the “good” data as much as possible, and then losing 

contact with the case study sponsor, the author decided it was outside the scope of this 

work to attempt to reconcile sub-metered data for model calibration purposes. This also 

led to the decision to make primary testing of the Energy Signal Tool based on synthetic 

end-use data. Refer to subsequent sections for additional explanation of data validation 

tests.   

5 Parameter Uncertainty and Sensitivity Analysis 

Assessing the entire range of possible model outcomes due to the full range of 

parameter uncertainty is a computationally intensive task. Uncertainty analysis quantifies 

the uncertainty in model outcome due to the uncertainty that exists in the set of model 

input parameters (Saltelli et al., 2000). A sensitivity analysis can be used to reduce the 

subset of input parameters to that which have the biggest impact on energy use without 

impacting the overall magnitude of uncertainty propagation.  

5.1.1 Parameter Uncertainty Analysis 

Uncertainty is important to incorporate in the model because without it, the model 

would be simply a static representation of many point estimates, producing another single 

point estimate of the objective functions. By considering uncertainty in input parameters, 

the model is capable of providing a probabilistic range of the objective function. This makes 
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the model more useful to a decision maker concerned with building performance 

assessment.  

There are five main sources of uncertainty in energy simulation (de Wit, 2003vi) 

1. Specification uncertainty (whereby the building may be constructed differently from 

design specifications) 

2. Model uncertainty (the model is just a simplification of a real process; minimize 

with calibration) 

3. Model input uncertainty (some specifications are unknown; address with sensitivity 

analysis) 

4. Numerical uncertainty (model convergences on things such as system sizing may 

vary with iterations) 

5. Scenario uncertainty (user/occupant behavior, external factors such as weather) 

Sources (1), (3), and (5) above are addressed in this work with sensitivity analysis and will 

continue to propagate into the model results.  

Wang et al. (2012) studied the possible ranges of eight significant model/scenario 

parameters for their contribution to model uncertainty for a typical office building. They 

observed that the combined uncertainties produced an 85% spread in annual energy 

consumption in climate zone 5a. When taken individually, the lighting and plug load 

schedule parameters contributed the most uncertainty to the models. In combination, 

HVAC parameters contributed far greater uncertainty. This is due to the highly interactive 

nature of HVAC uncertainties in the systems comprising a building; which is revealed in 

Monte Carlo sample-based whole building energy analysis. There is thus a strong case for 

using detailed building energy analysis in the Energy Signal Tool. This can quantify 

operational uncertainty while accounting for the interactive effects of uncertain 

parameters. Other available tools, such as ECAM, are quite capable of tracking end-uses 

that do not change with interactive effects. To track lighting and plug load energy 
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consumption, for example, a facilities manager needs only to create an energy data 

verification tool that tracks when a certain set of rules is violated. For this reason, it is 

suggested that the Energy Signal Tool not be set up to track these independent end-uses.    

5.1.2 Parameter Uncertainty Characterization 

The characterization of parameter distributions is what ultimately determines the 

degree of expected variability in energy consumption, and thus impacts the sensitivity of 

the Energy Signal Tool. While best practice would involve conducting audits of multiple 

similar facilities and noting the observed range of operational parameter values, the 

purpose of this research was to demonstrate the extent to which sub-metering is useful on 

its own and this type of audit survey was outside of the scope. Burhenne (2013) describes 

four potential sources for information that can be referenced to characterize parameter 

uncertainty distributions: 

1. Physical bounds (whereby a uniform distribution is assumed lacking further 

information) 

2. Literature references 

3. Expert knowledge 

4. Measurements 

A combination of sources (1), (2), (3), and (4) were used to describe the probable 

range of distribution of each parameter in the work presented here. Many building 

parameters were deduced with high confidence during the initial building audit and 

through subsequent conversations with facility engineers. Others were not possible to 

deduce from any available knowledge of the building or its physical properties. To this end, 

a literature review provided some insight into parameter characterization with regard to 

best guess values and probable ranges. Notably missing from the literature are sources on 

the bounds and distributional characteristics of operational equipment, such as DX cooling 

equipment of a certain age, refrigeration capacity factors, temperature and flow 
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sensor/setpoint error, etc. Experience and judgment of the research team was applied to 

characterize these distributions and their bounds. The distributions of uncertain 

parameters will of course also depend heavily on idiosyncrasies of the particular building 

type. The following parameters’ uncertainty ranges were characterized with methods from 

the sources identified: 

 Infiltration (2013 ASHRAE Handbook of Fundamentalsvii, and Stein, 2012viii) 

 Wall and Ceiling conductivity (Dominguez, 2009ix) 

 Wall mass specific heat/thermal mass (MacDonald, 2002x) 

 Indoor temperature variations (Corrado, 2009) 

Initially, a list of 37 parameters was selected, for which certainty was deemed to be less 

than 100%, describing the building, its occupancy, its internal loads, setpoints, HVAC and 

refrigeration equipment and controls. Refer to the list of these in Figure 32. These 

distributions were given probability density curves that would best describe them 

(uniform or triangular, as limited by sampling interface). Following the lead of many 

sources (including: de Wit, 2003; Hopfe & Hensen, 2011; Burhenne, 2013) sampling was 

done from the PDFs’ central 95% confidence intervals. Refer to the appendix for a detailed 

description of each initial uncertain parameter and its distribution range. 

5.2 Sensitivity Analyses and Model Reduction 

5.2.1 The Importance of Model Reduction 

Coakley et al. (2014xi) point out the major flaw in using detailed building energy 

simulation models is that they are so detailed as to be over-parameterized and under-

determined. This is what makes the calibration process so challenging; there are thousands 

of knobs to turn which can potentially impact the outcome of the model. Testing all 

possible combinations requires a great deal of computational power (see Table 4 below). 

Eisenhower et al. (2012axii) demonstrated an analysis capable of assessing over 1000 

uncertain building parameters for optimization of design. This approach involved deriving 
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a meta-model of a building used a quasi-Monte Carlo parameter space search. Of the 1009 

parameters tested in sensitivity analysis, only 2% of these were found to be significant – 

those with total significance index of greater than 0.05. A meta-model approach, which is 

essentially a statistical fit of the parameters to a curve, can be useful for a static model in 

design optimization. However, it would need to be re-derived multiple times for a dynamic 

model of an operational building viewed in different time scales under different operating 

conditions. 

Table 4: Reducing degrees of freedom increases sampling effectiveness  

 

A more appropriate approach given the current computing power available for this 

work (which is far greater than was available10 years ago, and will have greatly improved 

again in another 10 years, see Burhenne, 2013xiii) was to selectively diminish the number of 

uncertain model parameters. Saltelli et al. (2008) recommend that for computationally 

expensive models with many uncertain input parameters, a combination of local pre-

screening and global sensitivity analysis be used to reduce the parameter space. De Wit and 

Augenbroe (2002) used the Morris method of sensitivity analysis to examine 89 model 

parameters under uncertainty. They isolated 13 that were significant to design decisions 

related to thermal comfort performance of an office building. Another study used stepwise 

regression and the standardized regression rank coefficient to find that eight most 

influential physical parameters appropriately characterize an office building model for the 

purposes of design decisions (Hopfe and Hensen, 2011). Corrado and Mechri (2009xiv) 

# Of 

Parameters

# Combinations; 

three sampling 
levels

50 7.18E+23

20 3.49E+09

15 1.43E+07

10 59,000

7 2,190
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found, using the Morris method, that only eight of the initial 104 input parameters were 

significant to characterizing the energy rating of a single family home. Bucking et al. (2014) 

found that of 26 variables examined for importance factor, only eight were influential for 

achieving a Net Zero Energy house design.  

In this work, the amount that the parameter space can be diminished is limited by 

the need for sufficient parameters to fully describe the expected distributions of energy 

end-uses. While ten or fewer parameters are sufficient to characterize whole building 

energy use, they would likely not be sufficient to describe the potential uncertainty in each 

energy end use. The goal of parameter reduction is to achieve a balance between 

computational efficiency and sufficient propagation of uncertainty in the distributions of 

expected consumption for each end use. If there is insufficient uncertainty in the model, the 

Energy Signal Tool will be over-sensitive to anomalies. 

The first step in model reduction, as noted by Saltelli et al. (2000), is the elimination 

of redundant parameters. This was done as part of the initial selection of the 37 potentially 

influential parameters. Examples of redundancy in uncertain model parameters includes: 

 Minimum outdoor air ratio, and infiltration rate 

 Wall/roof insulation thickness, and insulation R-value 

 Number of occupants, and heat gain per occupant (lacking CO2 controlled 

ventilation) 

5.2.2 Local sensitivity analysis parameter pre-screening 

From this list of potentially significant variables, a local sensitivity analysis was 

performed to identify those parameters that exhibited the most significant impact on the 

energy end use categories. The term local implies that each parameter is tested only at one 

location of the sample space. A “one at a time” (OAT) local sensitivity analysis will 

qualitatively rank the effects of individual parameters on the model. This is an acceptable 

method of parameter pre-screening which minimizes computational power (Saltelli et al., 
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2000). Saltelli notes that basic OAT methods are effective for the initial reduction of 

parameter dimensionality, but they are not sufficient for full reduction or quantitative 

parameter influence ranking. See section 5.3 for a discussion of secondary (global) 

sensitivity analysis. In other examples of OAT pre-screening, Eisenhower et al. (2012bxv) 

used the “significance index“ metric (SI), similar to the “importance factor” defined by 

Bucking et al. (2014xvi). To carry out an OAT analysis, model outcome is tested by varying 

one parameter at a time, while other parameters in the model remain constant (Saltelli et 

al., 2000xvii). In this work, the results of parameter pre-screening shall be characterized by 

the nomenclature SI (significance index). Results come from the following formula: 

For Parameter i relative to each end use, j; 

Equation 2: Pre-screening parameter significance index for local SA 

      
                

       
 

Where, Elow and Ehigh represent the energy use due to the extreme high and low values from 

the parameter distribution 95% confidence range for all parameters, p. The objective 

functions, j, which each parameter is tested on include the annual sums end use categories 

of the following model objective outcomes: 

 j1: Whole building energy use (WBE) 

j2: Natural Gas use (NGAS) 

j3: Fan, Heating, and Cooling Electricity Use (HVAC) 

j4: Refrigeration Energy Use (REFR) 

The results of parameter pre-screening are presented below in Figure 32 and Figure 

34. More detailed results can be found in the Appendix. A significance threshold is drawn at 

the 50th percentile. 
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Figure 32: Results of OAT parameter pre-screening for effect on total energy use (EUI) 
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The results of parameter pre-screening identified 20 model parameters with 

uncertainty ranges that propagated to greater than 0.2% significance in overall building 

energy use. It was possible to model uncertainty distributions in 18 of these9. Only nine of 

these contributed greater than 2% significance to overall building energy. Figure 34, below, 

gives results on the basis of uncertainty propagation to individual end-uses – showing how 

many parameters have greater than 1% significance to each end-use. There are between 

only four and as many as 13 parameters that contribute significantly to uncertainty 

(greater than 1%) in each end use (refer to Figure 33 below). Those four that were 

significant to refrigeration were ranked in the bottom ten in relation to any other end use. 

Providing enough uncertainty range for refrigeration energy was important justification for 

retaining all 18 parameters in the model for the Energy Signal Tool. 

 

Figure 33: Summary of number of parameters significant to each end-use 

                                                        
9 Due to technical limitations of the OpenStudio measure writing language, it was not possible to model 

uncertainty in lighting or plug load schedules. Furthermore, as determined through analysis of sub-metered 

data, lighting and plug load schedules exhibited normal distributions in their ranges of variation within any 

season; meaning that there will be little long-term aggregate effect on observed consumption. Schedules with 

seasonal variation were incorporated into the model. 
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Figure 34: Results of OAT parameter pre-screening with SI results for each energy end use  
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5.3 Global Sensitivity Analysis 

Like local sensitivity analysis, global sensitivity analysis seeks to quantify the 

relative significance that uncertainty within each parameter has on the model. Global SA is 

superior to local SA in that it acknowledges that the effects of a differential change in one 

set of parameter under certain model conditions could produce a different result under 

different global model conditions. Global SA is important for any non-linear model, and 

especially so for multivariate models.  The result of the global sensitivity analysis is 

intended to be a quantitative ranking of parameters’ influence; where a parameter is 

influential if its affect on the model objective outcome is proportionally larger than that of 

others (Bucking et al., 2014). Although no further reduction in the model parameter space 

was desired (for the reasons mentioned above related to end-use variance), global 

sensitivity analysis was used to assign the quantitative influence of each parameter on each 

end use. This is for later application to the Energy Signal Tool described in Section 7.3.1. 

Two methods of global sensitivity analysis were tested in this work, and these are 

described in the following sections. 

5.3.1 Global Sensitivity Analysis using the Chi Squared Statistic 

Reddy (2007) suggests combining the LHS process of sampling for model calibration 

fit with identifying significant model parameters. This can be done using the chi-squared 

(noted as χ2) metric of sensitivity. An initial batch of (as Reddy suggests) 1000 LHS 

sampled simulations are run, and total goodness of fit (GOF) criteria are computed for each 

model. From the sampled results that match this criteria, an analysis of the distributions of 

parameter values is performed. Generally, those parameters that exhibit more random 

distributions across the set of models which conform to GOF criteria will be weaker 

parameters. This non-random pattern test can be quantified using the chi-squared metric 

as follows: 
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Equation 3: Chi-Squared metric for calibrated solutions 

                                          

                                     
    

                  

   
  

 

   

 

Where Pobs,s and Pex are the observed and expected count of parameters found in the 

GOF solutions from each bin range of the input. The term “b” is the number of bins into 

which the sampled parameter values are discretized. This equation has been adapted and 

generalized slightly with the addition of the b term to incorporate parameter values coming 

from a continuous distribution, rather than discrete ranges as suggested by Reddy. For 

example, in a simple example where a parameter is assumed to be distributed in a uniform 

fashion with five bins, and there are 25 sample models which fit GOF criteria, a completely 

random observation would result in five instances of each parameter value within each bin.  

Where distributions of sampled parameters are non-uniform, determining the bin divisions 

is slightly more complicated. 

For any number of bins, the threshold value of each bin division is determined by 

setting the integral over the range equal to the inverse of the total number of bins, as 

follows: 

Equation 4: Parameter range bin boundaries for Chi-Squared metric 

      
 

     
       

 

     
 

    

    

        
 

     
 

   

         

 

    

     

 

Where f(x) describes the uncertain range of each parameter, and {B1, B2, …B-1} are values 

being solved for that make the above equations true, and form the bounds of the bin 

ranges. Pobs,b is found by counting the occurrences of variable values that fall in each bin: 

Equation 5: Probability observed in the calibration solution set for the Chi-Squared metric 
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Polly et al. (2013) also used the Chi-Squared metric to produce a ranked sensitivity 

analysis and isolate “strong” parameters from weak ones. They executed 2,400 model runs 

of a residential building and computed the Chi-Squared statistic from a subset of 73 models 

meeting monthly calibration requirements for GOF. 

The advantage of determining the expected number of observations using the 

modified integral bin approach when calibrating in parallel with sensitivity analysis is that 

the uncertainty distribution characteristics of each variable are preserved, and calibration 

sampling is more effective. Reddy suggests that three discrete values be used for each 

variable. This is quite limiting, and in this work, each variable will be classified based on 

five bins (using five divisions is consistent with a method used later on).  

 

 

Figure 35: Chi-Squared test results. Each color band is a bin, shown in order from Bin #1 to Bin#5. 
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Table 5: Chi-Squared test results 

 

The chi-squared metric is used in the following hypothesis formulation to assess the 

distribution of samples within the vector space of the potentially calibrated solutions: 

 H0: samples are randomly distributed and the parameter is weak 

 H1: samples are not randomly distributed and the parameter is strong 

Test Statistic: To ; Is abs(to) > t( α /2, n-2) ? For: 

 α = 0.01 (parameter is definitely strong) 

 α = 0.5 (parameter is stronger than half of parameters) 

If this is true, we reject the null hypothesis and declare the parameter to have strong 

influence on the calibrated solution. 
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Reddy (2007) states that any parameter with a chi-squared value of greater than 9.21 (α = 

0.01) is likely, with a 99% chance, to be a strong variable. The threshold division found in 

this work between strong and weak parameters (α = 0.5, 50th percentile of strength) is a 

chi-squared value of 16.  

The results presented in Table 5 above are not at all consistent with the results from 

earlier OAT pre-screening analysis. In fact, they are so strongly different as to de-merit 

their use. If the reason for non-randomness is convergence of a parameter value to a 

solution, then there are several reasons that a parameter distribution may exhibit this 

behavior. While the Chi-squared statistic may be valid as Reddy demonstrated with 

uniform parameter uncertainty distributions, it may not be valid in this case of non-

uniform continuous parameter distribution ranges. If, for example, the initial guess of the 

shape of a parameter distribution is quite close to the calibration results, then the Chi-

Squared test will declare the results to be random, when actually they simply reflect a good 

initial guess. Chi-Squared results may also be attributed to parameter correlation in the 

solution set. Figure 47 above shows there is some significant correlation between fan 

efficiency and actual cooling setpoint. If the results show a bias towards some value in the 

range of cooling setpoint, then the fan efficiency may follow (or vice versa). 

5.3.2 Multivariate Regression Sensitivity Analysis 

Saltelli et al. (2000) recommend utilizing a stepwise regression analysis to sort out 

the most significant parameters from the least significant. Similar to the chi-squared 

metric, this can also be achieved in parallel to LHS sampling for calibration. When there are 

multiple variables affecting the outcome of some model, the multiple regression method 

can be used to determine a linear model that is a function of all variables (Montgomery and 

Runger, 2010). This linear model attempts to show the relationship between model 

outcome and the value of each input variable. Per Montgomery and Runger (2010), the 

general form of a multivariate regression model is shown below: 
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Equation 6: General multivariate regression model form 

                         

Where; 

Y = objective function outcome (energy end-use) 

xj = the jth input variable 

βj = the expected range in response of Y for xj when all other parameters are held constant 

ε = error between linear approximation and true model 

This equation holds true for cases where model variables are independent; that is, 

when there are not interactive effects amongst variables on the model outcome.  Typically, 

the method of least squares (LSE) or ordinary least squares (OLS) regression is used to 

estimate the regression coefficients (βj) of the model. With the goal of minimizing the sum 

of squared error term (ε), least squares regression coefficients are estimated based on 

multiple samples (n) taken over all model variables (k). LSE is computed as follows 

according to Montgomery and Runger: 

Equation 7: Least squares error computation for regression fit 

        
                    

 

   

 

 

 

 

   

 

   

 

The stepwise regression method can be used to select regression coefficients based 

on a large sample of data containing variable values and true model outcome – like that 

produced with LHS sampling. Stepwise regression builds a linear model by successively 

adding variables in order of their F-statistic (significance) on the overall model to minimize 

LSE and optimize fit (Montgomery and Runger, 2010). A good fit is important to achieve in 

this method, but model fit is not the end goal of this analysis. Rather, the goal of 

multivariate regression can be stated as quantifying the value that each variable 

contributes to the overall model. The incremental change in the coefficient of 
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determination shows how closely related the changes in the key output indicators are 

related to changes in the assumed parameter value.  

In this work, the AIC (Akaike's information criterion) value is used to measure of 

overall goodness of fit of a model of variables to observed data. The AIC value essentially 

informs the user of how much information is lost from the model when any given 

parameter is removed (Akaike, 1974). During an AIC stepwise regression algorithm, model 

variables and coefficients are combined in succession of a decreasing AIC value assigned to 

each as it is added to the model. A lower model AIC value indicates better model quality. 

The AIC value, rather than the F-statistic, was selected based on the availability of a 

statistical processing package (described below). 

While a linear model will not replicate exactly a real process such as building 

operation, many researchers have shown this method to form adequate approximations. 

Hopfe and Hensen (2011) take a regression model construction approach to parameter 

sensitivity analysis. In their study, a stepwise regression is performed (following rank 

transformations), whereby each parameter added to the model gives a progressively 

higher R2 coefficient of determination value. The stepwise regression continues, adding 

parameters individually until the model R2 value cannot be further improved. Other 

authors have used multivariate stepwise regression techniques to identify significant 

building features used in developing statistical comparisons for building performance data 

to buildings in benchmarking databases. Sharp (1998) demonstrated the usefulness of OLS 

regression for narrowing from 75 possible categorical variables to six which are significant 

determining building EUI. Gao and Malkawi (2014) also utilized stepwise OLS regression 

for extracting significant features impacting building energy performance.  

In this work, a multivariate regression model was created for each end use based on 

the data generated by the 8422 LHS sample runs used for calibration. The building energy 

model has inherent non-linear relations between some inputs and objectives. Saltelli 
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(2000) recommends performing a rank transformation; whereby the values of each input 

and output variable are simply converted to ranked values (i.e., 1:8422) within their set. 

Following this substitution, the ‘stepAIC’ function in R (see ‘MASS’ package documentation; 

Venables and Ripley, 2002) was utilized to assess AIC value of the linear best fit. The 

stepAIC function finds an optimal linear model by minimizing the AIC value of the model 

containing all of the parameters with any significance to the objective function. Once this is 

done, the function provides the AIC value that the model would have if each parameter 

were to be removed from the linear regression model. The magnitude of the increase in the 

AIC value of the model without each parameter will be less for relatively weak parameters 

and greater for strong parameters. 

The relative difference in the AIC value (rather than R2 value) was used to quantify 

the significance of each parameter relative to the model output of each end use. As 

mentioned, both parameter value and objective function data existed for 8422 LHS sample 

runs. For each objective function (EUI, NGAS, HVAC, and REFR), a linear fit was calculated, 

and differential AIC values were calculated for all parameters in the linear model. For all 

objective functions, there were some parameters that had such weak influence on the 

model they were not included in the linear approximation. The relative significance of each 

parameter in the context of each end use was then calculated as follows: 

For all parameters, k and objective functions, j the regression significance is calculated as:  

Equation 8: Parameter significance index for global SA 

      
              

               
 

Where; 

AICk,j = The AIC value of the model for objective function j with parameter k 

removed 

AICall = The AIC value of the best fit model with all parameters (minimum AIC) 
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AICmax,j = The maximum AIC value of the model with any one parameter removed  

The rank transformation was found to improve results of the fit (lower coefficient of 

determination, R2) only for the refrigeration energy model. The EUI, HVAC, and Natural Gas 

models all produced better results without a rank transformation. Thus, the rank 

transformation method is used only for the refrigeration end use in this work. The 

following table gives a summary of this comparison. 

 

 

 

Table 6: Comparison of regression methods; with and without rank transformation of variables 

 

5.4 Final Parameter Significance Results from Global Sensitivity Analysis 

Parameter significance values were calculated for those parameters that were found 

to be significant to each end-use. For each end use, the parameter with the most 

significance had its SI value normalized to unity, such that all those with lesser significance 

are expressed as having a fractional SI value. Results are shown below in  

Table 7, with all rankings being in reference to ranking for parameter significance 

on whole building energy.  

 

 

R2 AIC R2 AIC

Total Energy Use 0.9016 118,824 0.9615 48,021

Natural Gas 0.9012 119,149 0.9579 47,328

HVAC (Cooling and fans) 0.9418 114,278 0.9866 12,975

Refrigeration 0.8215 123,590 0.7932 8,849

With rank 
transformation

Without rank 
transformationObjective:
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Table 7: Significance results of multivariate regression analysis, RS values shown 

 

Compared to the OAT pre-screening results, the results from global SA were 

expected to be slightly different, but not entirely so. This expectation held true. Figure 36, 

below, summarizes the comparison between results of OAT parameter screening and 

multivariate regression significance index calculations for each end-use10. For the end-uses 

of whole building energy, natural gas, and refrigeration results from the two methods were 

quite similar. The HVAC end-use exhibited the greatest differences, which is explained by 

the fact that the global analysis revealed more of the interactive effects between 

parameters affecting HVAC energy.  

                                                        
10 The global sensitivity results show that the model could have probably been reduced further than 18 

parameters. However, a significant amount of computational time and expense had already been invested in 

sampling with 18 parameters, and another round of sampling was impractical. 

Parameter REFR

Space infiltration reduction (%) 1.000 1.000 0.376 0.027

Gas Burner Eff (%) 0.652 0.711 0.000 0.000

Heating Setpoint (oC) 0.408 0.353 0.021 0.269

Wall/Roof Conductivity multiplier 0.302 0.282 0.079 0.033

Heating supply air temp (oC) 0.087 0.052 0.001 0.153

Heating sizing factor 0.095 0.076 0.223 0.002

HX Sensible Effectiveness (%) 0.157 0.169 0.001 0.003

Fan Pressure Rise (multiplier) 0.056 0.027 1.000 0.015

Minimum system outside air ratio 0.062 0.061 0.006 0.008

Rated roof absorptance 0.037 0.053 0.094 0.000

Refrig suction piping UA value 0.007 0.002 0.036 1.000

Condensing temp minimum, delta 0.003 0.000 0.001 0.467

Fan Efficiency (%) 0.005 0.006 0.555 0.001

DX Cool Coil COP 0.011 0.000 0.375 0.000

Anti-sweat energy multiplier 0.000 0.000 0.000 0.000

T-Stat float heat/cool (oC) 0.034 0.004 0.243 0.057

Operating walkin ref temp (oC) 0.002 0.000 0.022 0.139

Cooling Setpoint (oC) 0.010 0.000 0.053 0.000

WBE NGAS HVAC
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Figure 36: Significance index results for OAT and multivariate sensitivity analyses 

As Loonen and Hensen (2013) have found, the response of a model to parameter 

perturbations varies not only with the sampled space of the other parameters but also over 

time. Since this work proposes the development of a dynamic performance assurance tool, 

the process of global sensitivity analysis shall be repeated on an ongoing basis throughout 

the duration of performance tracking. That is, as building controls or other model input 

parameters may change, an updated global SA process is needed. For example, it may occur 

that more information comes to light regarding an uncertain parameter (i.e., packaged DX 

rooftop AHUs are tested for operational cooling COP), shifting or narrowing the probable 

range of values and thus changing the influence of the range of uncertainty of this variable. 

This will ensure that the most significant parameters to the model are factored into 

objective function probable frequency distributions. Acknowledging the need for ongoing 

global SA, reducing computational expense for each SA is paramount.  
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5.5 Model Reduction Process Validation 

It is important to make sure that model parameter reduction does not result in loss 

of descriptive information in the model. Model parameter reduction is valid to the 

threshold where it removing another parameter significnatly affects the distribution of 

expected energy consumption for any given end-use in any month. The process of model 

parameter reduction was validated at by comparing the distributions of a set of results 

from the model with larger parameter space with the set of results from the model with the 

new, smaller parameter space11. Reddy (2011) recommends a minimum of N*(k+2) model 

runs each; where k is the number of uncertain parameters, and N is the number of distinct 

values for each parameter. The target for N shall be 10 samples each. 

37 parameters = 10 39 = 390 runs 

18 parameters = 10 20 = 200 runs 

Figure 37, below, gives a comparison of all end-use distributions for both the 18 and 

37 parameter model. As evidenced visually by the minimal shifts in each end use, there 

appears to have been little information removed from the model by screening out the 19 

parameters with least significance. 

                                                        
11 It was discovered through this validation that the refrigeration energy end use was under-parameterized in both the 

36-parameter and 17-parameter models. This conclusion was drawn from the narrow range of 95% confidence interval in 

the expected energy distribution. In response, another parameter influential to refrigeration was added to the model. The 

consequence of an under-parameterized end-use would be a narrow distribution that would cause many false alarms 

from the Energy Signal Tool – see further discussion in Chapter 8. It would also not have been compatible with the 

minimum risk tolerance range of +/- 3% measurement error that is possible to obtain from energy metering equipment. 
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Figure 37: Comparison of the annual end-use distribution results from a 37-parameter model and 18-parameter 

model. Sample medians are shown with a vertical line. 

Each set of distributions of results, shown in Figure 37 above, can be compared with 

formal statistical methods that test for a difference in the mean values of two independent 

populations (Montgomery, 2007). In general, this test for difference in population means is 

formulated as: 

For population 1 being the results of the model with 37 uncertain parameters, and population 

2 being the results from the model with 18 uncertain parameters. The actual variance of the 

population is unknown, since it would not be possible to conduct Monte Carlo sampling if all 

model parameters are uncertain. 

Null Hypothesis:  

Ho: μ1- μ2 = 0 (both treatments of the model, with 37 or 18 uncertain parameters, 

should produce similar end-use results) 

Alternate Hypothesis: 

H1: μ1- μ2 ≠ 0 (reject the null hypothesis if the two means are different) 
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Confidence Level: 99% (α=0.01) 

Test Statistic:     
          

 
  
 

  
 
  
 

  
 

 

Where,  

 n1 = 380 

 n2 = 190 

Rejection Criteria: Reject Ho if zo > 2.326 (z0.01) 

Computations: 

 End Use:           
    

  n1 n2 zo P-value 

EUI 733.358 730.962 950.232 742.489 380 190 0.946 0.172 

NGAS 252.354 250.989 716.080 616.712 380 190 0.602 0.273 

HVAC 298.831 297.250 777.765 674.560 380 190 0.668 0.252 

REFR 126.424 126.194 1.199 0.840 380 190 2.639 0.004 

 

Test Conclusions: 

For the first three end-uses, there is strong evidence to accept Ho; that the distributions are 

very similar for the 37-parameter model and the 18-parameter model. For the refrigeration 

end-use, we reject Ho, because the p-value is less than the confidence level. This is 

explained by the fact the influence rankings in the one-at-a-time pre-screening process 

selected for those variables that had greatest effect on model EUI, and froze some of those 

that had most effect on refrigeration energy end use. This being concluded, the variance 

observed for refrigeration end-use consumption in both the 37-parameter model and the 

18-parameter model was of similarly small magnitude. Therefore, the model reduction 

shall be considered valid nonetheless. 
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5.5.1 The Case of an Under-parametrized End-Use 

In order to apply the Energy Signal Tool to an end-use of interest, there should be at 

least +/- 5% magnitude of the 95% confidence interval of expected energy use in any given 

month. Without this minimum amount of uncertainty, the Energy Signal Tool becomes un-

reliable – as the uncertainty in the values of energy measurement itself is no less than 

+/3% (NTSC 2011). When the uncertainty distribution is this narrow, the probability 

masses used to calculate the expected cost will spill over the boundary of the uncertainty 

range. This is discussed further in section 7.3. It may be that there are not sufficient 

uncertainties that affect an end-use even with the fully parameterirized model (to reach +/- 

5% deviation from median value), and no more reasonable uncertainty can be introduced. 

In this case, the end-use is not suitable for monitoring with the Energy signal tool, and 

would be better served by monitoring with rule-based FDD. 

In the process of model reduction validation, it was discovered that the refrigeration 

end-use was under-parameterized. Figure 38 shows that the refrigeration end use was 

under-parameterized since the absolute magnitude varied by less than +/- 5%, even with a 

fully parameterized model. Another uncertain parameter (describing refrigeration piping 

heat transfer) was discovered and added to the model. Figure 39 shows this improved 

variance for refrigeration end use. See further discussion in section on tuning. Similar 

figures showing expected end-use distribution for the other three end-uses are found in the 

appendix. 
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Figure 38: Refrigeration energy end use distributions and normality plots for full and pre-screened parameter 

set with 36 and 17 uncertain parameters 

 

Figure 39: Refrigeration energy end use distributions and normality plots for full and pre-screened parameter 

set with 37 and 18 uncertain parameters 
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6 Model Calibration Methodology 

The goal of model calibration is to obtain a detailed simulation model with output 

that most closely matches measured data from an operational building. This involves 

matching hourly or monthly simulated energy use to reported energy use from utility bills 

or sub-metered data. Typically, this measured data includes major category end-uses such 

as electricity, natural gas, steam, or district heating/cooling consumption. The process of 

model calibration involves the heuristic information gathering discussed previously, 

followed by trial-and-error tuning of uncertain parameters. The latter is discussed in this 

section. ASHRAE has published the best-practice standard for quantifying the quality of 

detailed building simulation calibration (ASHRAE-14, 2002). Reddy (2007a,b) has set forth 

a calibration process that includes additional metrics. Following these guidelines, one will 

result in obtaining multiple model solutions to calibration fit.  

A well-calibrated building energy model has the capacity to predict the impact of 

building energy efficiency measures or to predict the expected energy consumption of a 

building given a certain set of environmental conditions. Parker et al. (2012xviii) compared 

the savings from an actual airport retrofit project to predictions made from an energy 

model at various stages of calibrations. They demonstrated that there can be a huge gap 

between retrofit savings predictions generated by a well calibrated model vs. a model prior 

to calibration.  

For a testing study purely synthetic in nature, model calibration may be spurious; 

since test faults can be injected into any reasonable baseline model. After calibration of 

uncertain parameters, there is still uncertainty moving forward into future operational 

states. For the Energy Signal Tool presented in this work to be implemented in a building, 

calibration should be performed to produce a model that emulates measured data from the 

building in a state of correct operation. The calibrated model therefore represents a 

baseline of operation as intended against which to compare measured states of operation. 
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The purpose of going through the model calibration process in this work was to 

demonstrate and test the entire course of setting up the Energy Signal Tool, which includes 

extracting information from the results of a calibration process. It is also postulated that 

from the array of calibration solutions, a better idea of parameter distribution can be 

gathered. Since the Energy Signal Tool functions to assess building performance across a 

variety of discreet time periods, proper model calibration fit for each period is quite 

important. As discussed in a later section, this proves to be challenging for most buildings. 

The over-parameterized and under-determined nature of detailed simulation 

models makes the calibration process challenging. These challenges are diminished by the 

parameter screening methods presented above, and by using statistical sampling to 

methodically search through every dimension of model parameter space. To do this, 

statistical calibration methods have many advantages over traditional hand calibration 

methods. These advantages include a more thorough search over possible parameter value 

combinations, less active time required, and minimization of user bias over parameter 

values that comes naturally with experience. The main pitfall of statistical calibration is 

that the process can lead to combinations of parameter values that are not plausible 

(Reddy, 2007). It is not possible to check for this manually, but EnergyPlus will sometimes 

crash if a model is described improperly. In this work, there were occasional infeasible 

parametric combinations that caused EnergyPlus to crash. With the parameter uncertainty 

distributions as described in the following section, this occurred at a rate of 0.5% of total 

simulations on average. 

6.1.1 Latin Hypercube Sampling 

Latin Hypercube parameter sampling (LHS) is one method within the Monte Carlo 

family of random sampling techniques. In this work, LHS was used to generate model 

samples for batch simulation. The LHS algorithm has been shown to result in the model 

parameter space being sampled in an agreeably uniform manner within a modeled multi-
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dimensional parameter space with respect to computational power (Saltelli et al., 2000; 

Reddy, 2007; Burhenne, 2013).  

The algorithm for Latin-Hypercube sampling (LHS) works as follows (MacDonald, 

2009xix): 

1. For n samples, the distribution of each parameter is partitioned into n intervals 

of equal total probability 

2. A point within each of the parameters’ intervals is selected at random, to create a 

vector of parametric values comprising one model.  

3. Step two is repeated over the entire number of iterations chosen for the analysis 

until n vectors are generated.  

LHS leverages the assigned probability distributions as a stratification order for 

sampling, whereby more samples will be taken from the area of higher likelihood under the 

PDF curve. Therefore, LHS is not classified as a random sampling, but as stratified random 

sampling. According to the central limit theory of statistics, a greater size of random 

samples will inevitably result in a distribution of model outcomes that more closely 

matches reality. This is not true with LHS, because the sampling is actually quasi-random; 

in that not one combination of parameter values is repeated in the n vectors. Take for 

example the set of a uniform sequence of numbers from 1 to 10,000. If a random sample of 

size n=50 were to be taken from this set, the distribution would be much less than uniform 

from the range of 1 to 10,000. If the sample size were to be increased to n=500 and then 

n=5,000, the distribution of sampled values would get closer and closer to uniform. For LHS 

however, no matter the sample size, the sample distribution will match the sampled 

population (uniform in this case). Although the central limit theorem does not hold for LHS, 

increasing the sample size will yield a more robust set plausible solution models to choose 

from, since there will be more samples from the most likely ranges of each parameter.  
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Figure 40: Workflow diagram for integrated calibration 

6.2 Governing Equations for Calibration 

Model calibration metrics seek a model that produces energy use matching measured 

data and minimizes the magnitude of matching error, as well as the variation in error, 

across all time periods. Per Reddy (2011), the model prediction fit to the observed data can 

be evaluated with the following equations: 

Equation 9: Coefficient of variation in root mean squared error for calibration 
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Equation 10: Normalized mean bias error for calibration 

     
   

  
 

 

   
  

      
  

 

   

     

Where, 

 yi = data used to calibrate against (utility bills or sub-metered energy data) 

                                                                                      

                                                             

n = number of observation sets; i.e., the number of months in the simulation process 

The coefficient of variation of the root mean squared error (CVRMSE, Equation 9) 

describes the standard deviation of the residuals (modeled values less the observed values) 

weighted by dividing by the mean observed sample value. The normalized mean bias error 

(NMBE, Equation 10) describes the mean value of the residuals, normalized by dividing by 

the mean observed sample value. This is essentially the magnitude of the error with respect 

to the value being tested for. 

Table 5-2 of ASHRAE Guideline 14-2002 (ASHRAE, 2002), provides guidelines for 

acceptable baseline model uncertainly thresholds defined by NMBE and CVRMSE metrics. 

Table 8: ASHRAE Guideline 14 calibration metric thresholds 

Resolution of energy 

consumption history 

 

NMBE tolerance 

 

CVRMSE tolerance 

Hourly Calibration Data +/- 10% +/- 30% 

Monthly Calibration Data +/- 5% +/- 15% 

In this work, the model is calibrated to monthly utility bills, which have been 

normalized to calendar months. Some hourly sub-metered data was available, however the 

crucial component of gas usage is not being metered accurately. As a result, it was not 

possible to calibrate to hourly data. As mentioned previously, hourly sub-metered data was 
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used before calibration to the extent possible in defining load magnitudes and end-use 

schedules for lighting and plug loads.  

6.2.1 Calibration Goodness of Fit Metric  

A “Goodness of Fit” metric (GOF) is used in this work to determine which models are 

sufficiently calibrated by applying a weighting criteria to NMBE and CVRMSE that balances 

electricity and natural gas calibration results. Reddy (2011) gives the goodness-of-fit 

equations that quantify the closeness of the model to the actual building observed data for 

the dual objectives of matching end use fuels (electricity, gas, steam, etc.) consumed. Per 

the work of Henze and Harmer (2014), the different energy end-use metrics (electricity 

kWh, and gas therms) are combined with weighting ratios according to the percent cost to 

the owner of each during the calibration period, seen in Table 9 below. 

Table 9: Energy cost weighting factors for calibration metrics 

End Use 12-month 

cost 

% of Total Cost 

Electrical Energy $***** 87.3% 

Natural Gas $***** 12.7% 

Total $***** 100% 

*Costs are redacted for retail partner privacy 

The GOF weighting equations for NMBE and CVRSME are as follows: 

Equation 11: Goodness of fit for normalized mean bias error for calibration 

         
       
           

       
         

 

        
       

  
 

 
  

   

Equation 12: Goodness of fit coefficient of variation for calibration 

       
       
         

       
       

 

        
       

  
 

 
  

                

Where; 
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wtherms = weighting factor of gas usage associated with the annual gas cost percentage 

of total energy cost 

welec = weighting factor of electricity usage associated with the annual electricity cost 

percentage of total energy cost 

According to ASHRAE-14 2002, any unique parameter combination model solution 

is sufficiently calibrated to monthly utility data if GOFCV and GOFNMBE indices are less than 

15% and 5%, respectively.  

6.3 Model Calibration Algorithm: Objective Optimization 

The batch runs generated with the OpenStudio Analysis Tool and OpenStudio server 

are automatically assessed for their NMBE and CVRMSE (Equation 9 and Equation 10) fit to 

electricity and gas consumption. This is as compared to a 12-month period of calibration 

utility data, and is reported for each simulation run in the batch. Additional scripts were 

written to process these figures into GOF metrics presented in Equation 11 and Equation 

12. In this way, the large batch of runs was sorted into models with parameter 

combinations leading to results that did or did not meet ASHRAE-14 criteria for calibration 

fit. As discussed earlier, the total number of possible parameter combinations is nearly 

infinite. Larger simulation batches lead to a greater number of potential calibration 

solutions. 

Increasing the sampling size comes at great computational expense; this being 

especially true for complex building models simulated on the EnergyPlus simulation 

platform. For this work, a large enough set of possible solutions was desired so as to make 

possible a cluster analysis and parameter shift analysis described in a later section. A 

solution set no smaller than 100 unique calibrated solutions would suffice to produce a 

significant set of clusters of models grouped by similarity for uncertain parameter input 

values. For any bounded grid search statistical calibration problem, the percentage of 

calibrated solutions realized from a set of sample runs will depend on how close the initial 
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model is to the desired calibrated result, how well parameter ranges are selected, and how 

tightly they are bound. To achieve the desired quantity of unique calibrated solutions, LHS 

sample batches were run in larger and larger sizes. It was found that due to the memory 

limits of OpenStudio Server, and large file sizes (> 40mb) created by each sample run, only 

batches up to 2800 samples in size were possible. To work within this limitation it was 

necessary to combine several smaller batches of sample runs to achieve the necessary 

results. It turns out that this method of combining small batches also increased the number 

of unique calibrated solutions by a higher amount than projected with simply increasing 

the batch size. This is due to the nature of LHS sampling, as discussed above. A summary of 

results is given in Figure 41 and Table 10 below.  

 

Figure 41: The number of calibrated solutions showed little increase with increasing batch size.  

*112: this was a combination of all smaller batches 
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Table 10: Batch size vs. number of calibrated solutions 

Batch 

Size: 625 750 1133 1450 1667 2797 8422 

Calibrated  

Solutions: 13 10 21 19 23 26 112 

6.4 Model Calibration Results 

From among the large set of samples, calibration solutions were uncovered with the 

metrics described above. The LHS sampling calibration process yielded 112 out of 8422 

total samples that fell within the range of acceptability in terms of goodness of fit metrics. 

This fraction of total samples illustrates how difficult it is to match modeled data to 

observed data. Even after several hundred hours of effort were put into developing the 

detailed simulation model and expert judgment was applied to parameter uncertainty 

characterization, fewer than 2% of quasi-random samples resulted in a calibration solution. 

This is even more sobering when considering that calibration to ASHRAE-14 guidelines is 

based on annualized average error metrics, and a well calibrated model for an Energy 

Signal Tool should have consistent monthly, or better, weekly calibration fit to measured 

data. This will be discussed in more detail later on.  
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Figure 42: GOF results for primary calibration 

 

Figure 43: A closer look at calibrated solutions. Many distinct points indicate good sampling. 

Reddy (2011) recommends proceeding with all acceptable models to create an 

ensemble of models, which are then run in parallel to create a distribution of possible 

results. However, in the parameterized approach to uncertainty analysis, we shall proceed 

by the set of possible solutions for generating a “posterior” distribution of each significant 
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parameter range. This distribution range produced by parameter sampling will in fact be 

wider than what would be generated by an ensemble of model solutions. Being able to 

generate hundreds or thousands of samples is more statistically robust than using multiple 

“calibrated” models.   

6.4.1 Cluster Analysis Filtering for the Best Distribution 

The uncertain parameter values generated by quasi-random LHS sampling are what 

make the model samples for calibration unique. A cluster analysis can be used to uncover 

which parameter value groupings were most likely to lead to calibration solutions, and 

extract more probable parameter uncertainty distributions from the largest group. As 

sensitivity analysis demonstrated, there are fewer than ten parameters that contribute 

significantly to model outcome in terms of total electricity or natural gas use. There are 

several possible combinations of shifts in these key parameters that can lead to a 

calibration solution. For example, a model that initially under predicts natural gas use 

could be corrected by increasing the infiltration rate, or also by decreasing gas burner 

efficiency if both parameters are uncertain. Due to this, the set of calibrated solutions is 

likely to contain natural groupings of models that share traits of having similar predicted 

values for one or more significant parameters.  

Cluster groupings are not meant to contain identical models; rather, they are made 

up of models with close proximity in terms of parameter values. Some groups will be larger 

than others. Hierarchical clustering of the parameter values within the array of solution 

vectors is the method utilized in this work to identify the most plausible family of 

calibration solutions. It is proposed here that the largest group shall be considered most 

plausible set of solutions. The end goal of clustering calibrated solutions in this work is to 

extract information leading to an update of parameter uncertainty characterization. 

Clustering can be used to partition a data set of n models into groups based on their 

similarity in terms of a set of k characteristics. Gao and Malkawi (2014) demonstrated that 
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clustering methods can be used for determining reasonable grounds of similarity among 

buildings to conduct performance benchmarking comparisons. The authors developed 

clusters of buildings by type, and then grouped these according to seven characteristic 

features. They chose the centroid (medoid) of each cluster to the representative for each 

group of buildings. In this work, the medoid of the largest cluster is examined for each 

parameter to verify the technical plausibility of the solution set it represents. 

For calibrated building energy model solutions with a k-dimensional space of 

uncertainty, a combination of divisive hierarchical clustering and partitional clustering of 

the solutions’ parameter spaces on the basis of similarity is appropriate (Reddy, 2011). 

Hierarchical clustering is useful for visualization and validation that the set of calibrated 

solutions is comprised of unique samples. It was elected to include all 18 potentially 

significant parameters in the k-dimensional space for the clustering analysis to describe 

uncertainty in each monitored end use. The clustering process was initiated with the use of 

tree visualization (dendrogram) from the “hclust” function within the ‘cluster’ package in 

the R environment (Maechler et al., 2014). This algorithm makes use of the Euclidian 

distance metric for comparing the proximity of the parameter values of each calibrated 

model. A dendrogram visualization is constructed by starting with set of parameter values 

from individual models and moving upwards by grouping and connecting models with the 

closest distances between them. The completed dendrogram reveals a visualization of how 

many groups exist, their sizes, and what levels the vectors of parameter values 

representing each calibrated solution fit into (see example below in Figure 44).  

Partitional clustering was used to decompose the larger set of calibrated solutions 

into related groups. Partitioning Around Means (PAM) is a partitional clustering algorithm, 

which determines a centrally located representative in each cluster (Halkidi et al., 2001). 

CLARA (Clustering Large Applications) is an application of PAM on samples from a dataset 

(Halkidi et al., 2001). The function “clara”, within the package “cluster” in R, is used to 
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identify the medoids of each cluster (Maechler et al., 2014). A cluster medoid is the 

representative model of that cluster that has minimum dissimilarity to all other members 

of the cluster. Calling “clara” in R requires the user to input a quantity of significant 

clusters, nc, (identified visually from the dendrogram, and then checked for validity), and 

will then return a vector of nc cluster medoid (model tags). The largest cluster of models is 

taken, and the medoid of this cluster is inspected for plausibility. In small the example 

below, visual inspection revealed three main branches. The R function “clara” confirms the 

members of these branches, and finds that trajectory ‘4’ is the medoid of the largest cluster.  

 

 

Figure 44: A simple hierarchical clustering example results diagram produced in R.  

See appendix for a complete dendrogram of cluster results for the 112 calibrated solutions. 

The lines of natural division appear to separate the data into six crisp clusters. 

6.4.2 Cluster Validation 

The main challenge is processing the results of data clustering can be determining 

the optimal number of groups for the dataset. The partitional clustering algorithm results 

in clusters classified as “crisp“ clusters. Visualization of the clustering results is a crucial 

first step to validation of groupings. The optimal grouping of clusters is one that best fits 

“the inherent partitions of the data set“ (Halkidi et al., 2001).  As mentioned above, visual 

methods are used to identify the inherent partitions in the dendrogram results. According 
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to Halkidi et al.(2001), there are two basic criteria used in validating these visual selections 

of cluster partitions for crisp clustering: 

1. Compactness: is variance within each cluster minimized? 

2. Separation: are clusters spaced apart sufficiently? 

Where both of the above can be based on a parametric analysis of number of clusters. For 

purposes of simplification, the metric for assessing the first criterion in this paper was 

simply the dissimilarity of the members internal to each cluster. The mean value of 

dissimilarity was then taken for all clusters. Figure 46 below displays the results of this 

parametric analysis for compactness. Mean dissimilarity is calculated in Equation 13 as: 

Equation 13: Mean dissimilarity calculation for cluster partition analysis 

        
   

 
     

 
 
         
 
   

 

  

   

 

Where nc is the number of clusters, N is the number of elements in the cluster, and X and Y 

are two elements being compared. Halkidi et al.(2001) state that the optimal solution in the 

cluster compactness analysis is found at the hinge of the elbow between two slopes, as 

demonstrated in Figure 46 below.  

For measuring the second criteria, the Manhattan distance between representative 

models (medoids) of each cluster can be compared. A sensitivity analysis which compared 

the number of cluster divisions to the mean of the distances between all medoids of each 

cluster. This is accomplished with Equation 14 below. 

Equation 14: Mean distance between cluster medoids for cluster partition analysis 

                             
              

 
   
 

  

Where the function  
   

 
 describes the number of medoid distances compared from among 

all medoids. The optimal number of clusters will have the maximum mean distance 
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between them (Halkidi et al., 2001). The results were plotted for the set of 112 calibration 

solutions as follows in Figure 45: 

 

Figure 45: Cluster separation criteria metric revealing optimal number of clusters for medoids distance 

The very clear solution of six cluster divisions given above in Figure 45 agrees with 

the crisp visual results shown in the appendix, which means that the visual solution of six 

partitions is valid.  

 

Figure 46: Cluster compactness metric (~ variance analysis) results reveals decreasing dissimilarity and an 

optimal elbow minimum value. 
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 The Compactness analysis yielded an “elbow“ inflection point at  the cluster 

quantity (nc) of six. Thus, all validation tests confirmed the optimal number of clusters to 

be six. 

6.4.3 Testing for Parameter Correlation and Multicollinearity 

 

Figure 47: Plot of pair-wise parametric correlation among the parameters within the largest solution cluster 

The figure above explores all pairs of parameters for correlation. (The plot is 

mirrored for plotting simplicity) There exists a moderate amount of correlation amongst 

some variables from the potential solution set. For screening purposes, a rule of thumb can 

be used to identify potentially correlated parameters, where a Pearson correlation 

coefficient of greater than 0.7 indicates a potentially moderate to strongly correlated pair 

(Reddy, 2011). When parameters are found to be correlated in the larger set of sampling, it 

is important not to separate them into sets of uncertain and frozen variables when 

reducing parameter space with sensitivity analysis. This would fail to incorporate their 

structure into the further uncertainty analysis used by the Energy Signal Tool. In this work, 

no significant parameter pairs were found to have Pearson correlations greater than 0.7 
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Another meaningful visualization of parameter behavior is a scatter plot 

comparison of output variables to check for visual covariance or colinearity. The figure 

below shows a plot of those variable pairings which were found to have Pearson 

correlations of greater than 0.45, as evidenced above in Figure 47.  

In reference to the heat map of correlations (Figure 47 above), the figures plotted 

were:  

{2:1, 2:4, 2:5}; {3:4}; {4:16}; {7:12, 7:13, 7:15}; {12:13}; {13:15, 13:16}; {15:16} 

 

Figure 48: Scatter Plots of Parameters in largest solution cluster to examine for co-linearity 
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An examination of the above scatter plots does not show any especially prominent 

collinearities between variables. The distribution patterns are almost purely random; 

simply a translation of the sampled distribution for each parameter. There is some slight 

evidence in the relationship of the heat exchanger effectiveness and its impact on 

corresponding infiltration rate in the calibrated model solutions.  

6.4.4 Checking for Non-Linear Behavior in the Model  

Using data generated by a large number of LHS samples, and visualized in scatter 

plot diagrams, can reveal visual patterns in the relationships between input parameters 

and objective functions of interest. When samples are run by sampling parameters 

individually, a clear image of the effect of the entire range of this parameter on an objective 

function is visualized. This is similar to the OAT parameter prescreening test. The slope of 

the relationship is a rough indicator of how significant this variable is to the overall model. 

The advantage of the scatter plots is the ability to visualize non-linearities in the model 

output relative to some of the parameter uncertainty ranges. The disadvantage compared 

to the OAT SA process is a lack of ability to quantify parameter significance. Correlation 

plots of select parameters and end-uses can be found in the appendix. 

Comparing correlation of each parameter to objective results can be a way to 

understand the non-linear response of the model to range portions of certain parameters 

(Saltelli et al., 2000). It is important to note non-linear behavior of the model in response to 

certain ranges of parameter uncertainty. For example, refrigeration energy responds much 

more quickly to incremental changes at the high-range of minimum condensing 

temperature than at lower levels in the assumed range. Another example of note is that 

relationship between total energy use vs. heating system sizing factor exhibits two slopes – 

split at the assumed heating sizing factor of 120%. A lower than expected heating system 

sizing factor has a greater effect on the objective result. It is important to consider these 
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correlative relationships when drawing boundaries of “posterior” parameter distributions 

resulting from the calibrated solution sub-set. 

6.4.5 Parameter Distributions Arising from the Calibrated Solution Set 

The calibration process generates another set of parameter values; those which 

make up the models in the set of models meeting calibration criteria. From the vectors of 

parameters comprising each model, most probable distributions of parameter values can 

be derived. Bucking et al. (2014) demonstrated that more appropriately fitted PDFs, which 

characterize uncertain parameters, can be extracted from the set of results that 

demonstrate compliance with the building performance objectives. This allowed for the 

identification of parameter limits and most probable values. They used the following 

process: 

1. Initial characterization of parameters was done by identifying a probable range and 

a discrete number of sampling steps in that range 

2. Selecting the parameter combinations from the models that equaled or exceeded the 

objective of NZE performance 

3. Counting the number of occurrences of each discretized interval in each parameter 

4. Normalizing the sum of these counts to equal one and fitting with a kernel density 

function 

In a similar manner, the work presented here proposes the extraction of parameter 

distributions from the sub-set of the largest cluster of sufficiently calibrated model 

solutions. By assembling the sampled values of the parameters in these models, it is 

possible to update the prior assumptions of significant parameter distributions. 

Figure 49 and Figure 50 below illustrate the comparisons that can be made between 

prior assumed and posterior extracted parameter values. As discussed in Section 5.3.1 

above, the relative shift in the distributions has little significance other than to inform the 

user how good the initial distribution assumptions were. These updated distributions can 
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be used to generate the expected energy use distributions for each end use. This will be the 

new benchmark reference used by the Energy Signal Tool, given the tests described in the 

following section return satisfactory results. The first figure below gives a sample of what 

prior assumed (grey) and posterior observed (various colors) will look like. Vertical dashed 

lines show the static values in the representative (calibrated) model. 
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Figure 49: Posterior vs. prior parameter distributions, with posteriors from all models with acceptable calibration 

results, with representative model values in dotted line. 

Figure 50 below compares the distributions observed in the entire set of calibrated 

solutions to those found in only the largest cluster. In this case, there is quite close 
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agreement between the two, indicating that the largest cluster is also still a good 

representative of the entire set. 

 

Figure 50: Comparison of posteriors from all models with acceptable calibration results (dotted line), to just 

those posteriors within the largest solution cluster (solid line). 
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With these new distributions that arose from those models forming the calibration 

solutions, it was possible to take new LHS model samples and re-define the expected 

ranges of consumption for each end use. The comparison of expected annual consumption 

resulting from old and new uncertain parameter distributions is shown below in Figure 51. 

 

Figure 51: Comparison of the annual end-use distribution results from old parameter distributions and new 

parameter distributions derived from calibration solutions. Sample medians are shown with a vertical line. 

This comparison shows an upward shift in the expected ranges of distribution. This 

reflects the difference between the energy use predicted by the un-calibrated model and 

that measured in the calibration period utility bills. Visually, we can see that there is very 

little change in observed variance in the end uses. 

We can now examine the representative model (medoid of largest cluster) 

parameter values for reasonableness. A summary is given below in Table 11. 
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Table 11: Representative model parameter values and justifications 

 

We have therefore accepted the parameter distribution arising from the largest 

calibration solution cluster as the representative model to form the basis of the Energy 

Signal Tool. Since the Energy Signal Tool relies on an expected range of end use 

consumption rather than a single point, the representative model is more of a culmination 

marker to the calibration process than it is useful. Regardless of parameter starting values, 

Parameter

Final Calib.

Value

Initial Est.

value Units

Justification

T-Stat float heat/cool 0.3 0.278
⁰
C

Little change

Cooling Setpoint adjustment -1.08 0
⁰
C

Manual override down is 

common

Heating Setpoint adjustment 0.96 0
⁰C

Manual override up is common

HX Sensible Effectiveness 71.35 76 %

76% is rated at optimal test 

conditions

Fan Efficiency 45.5 45 %

Little change

Fan Pressure Rise Multiplier 1.17 1

Air supply path may not be 

installed according to plans

Roof absorptance mult 1.27 1

Roof has collected some dirt, 

which is normal over time

Wall conductivity mult 1.07 1

Little change

System airflow ratio minimum 45 30 %

*No great reason; distribution 

in Figure 37 above was random.

DX Cool Coil COP 3.62 4

DX COP could be reduced due to 

installation in hot area

Gas Burner Eff 78 80 %

Little change

Heating supply air temp design 15.8 16.7
⁰C

Slight error in duct temperature 

sensor

Anti-sweat energy to ref case mult 0.96 1

Little change

Condensing temp minimum, delta 0.44 0
⁰C

Little change

Refrigeration Suction Piping sum UA mult 1.12 1

Installed piping could be longer 

than specified on plans

Walkin operating temp, delta -1 0
⁰
C

Actual refrigeration 

temperatures are likely to be 

conservative

Infiltration Percentage 116.28 100 %

Infiltration is difficult to 

estimate

Heating Sizing Factor 1.35 1.2

Heating system sized based on 

uncertain loads
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the ESTool will still employ ongoing LHS sampling to produce consumption ranges, such as 

those in Figure 51 above. 
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Figure 52: Resultant dendrogram of large LHS sample set 
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7 Energy Signal Tool Development 

Facilities managers often make choices that affect energy use about how to operate 

their buildings. However, rather than waiting for utility bill analysis or feedback from 

building occupants, they need a more transparent view of how their actions affect energy 

use and building performance. Human understanding of vast amounts of complex metered 

data requires automated data simplification. The decision analysis component of the 

Energy Signal Tool transforms metered data and complex model output into a simplified 

visual output that supports energy-related decision making. This output cannot replace the 

judgment of the FM, but will greatly aid in a complex multiple criteria decision-making 

process. Comparing monitored data to a range of reasonable expectations will help the FM 

determine when corrective action (such as repair or commissioning) is cost effective.  

Typically, the model calibration process (as discussed in the previous section) is 

carried out using data from advance of the monitored period, which is known to be 

generated by a building operating as expected. The calibrated model is a valid 

representation of the building in its environment so long as it is run with actual weather 

data and is updated with any major changes to building equipment, operational strategies, 

or use schedules. As described previously, it is not the calibrated model itself but the 

parameter uncertainty distributions arising from the largest cluster of calibration solutions 

that are useful. However, the benchmark model must accurately describe the measured 

data from the building. Comparisons of modeled to measured data over the calibration 

period, assessed for each of the sub-periods (such as monthly or weekly spans) should yield 

no more than small errors for each end use. If these comparisons give bad results, the 

energy signals generated in some or all periods will undoubtedly be made with an 

underlying bias. If the benchmark model is not sufficiently calibrated, more information 

must be obtained to improve it. 
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7.1 Benchmark Model Validation 

The calibration process mentioned in the previous section is done to achieve a 

minimization in annual average monthly error, and variance in that monthly error. 

According to ASHRAE guideline14, variation in monthly error in fuel use modeled vs. 

predicted is allowed to average as much as 15%. This does not guarantee by any means 

that end-use error is minimized to these bounds. Even if it were, a 15% deviation would be 

a significant cost prediction error. It is desired that the Energy Signal Tool is capable of 

detecting faults which manifest in as little as 3 to 5% cost deviation in monitored end-uses. 

Therefore, it is necessary that the benchmark model be calibrated to higher standards than 

ASHRAE-14. With the calibration techniques available in this work, this was not a realistic 

goal.  A sufficiently calibrated model would ideally result in end-use observations falling 

within modeled end-use distributions to produce all green signals, indicating operation as 

expected (refer to sections 7.5 and 8.2 below).  

The following figures show the results of the representative model from the 

calibrated solution set as compared to the observed data with which the calibration was 

carried out. Particular attention should be paid to comparisons of monthly end-use 

predictions, and the magnitude of error relative to monthly observations. 
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Figure 53 a,b: Monthly natural gas and electricity calibration comparison before and after sampling 

Figure 53 shows that the calibration yielded slight improvement in bringing the 

model description closer to that suggested by the monthly utility data. Almost no change 

was affected in the electricity use profile, owing to the fact that the combination of the 

changes in the solution set parameters had little effect. 
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Figure 54: Monthly point comparison of measured and modeled total electricity use 

 

Figure 55: Monthly point comparison of measured and modeled natural gas energy use 
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Figure 56: Monthly point comparison of measured and modeled refrigeration energy use  

 

Figure 57: Comparison of modeled HVAC energy use to actual HVAC energy use over the calibration period 

Figure 55 and Figure 57 above especially show that the case study model is not 

acceptably calibrated to several end-uses of interest. Natural gas consumption has an error 

associated with some seasonal shift not modeled. HVAC energy use clearly has an error 

related to cooling or dehumidification energy. Great efforts were made by the author to 

manually correct the model, but with little success. Additionally, there was little incentive 
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to calibrate the model perfectly when it was discovered that the metered end-use data was 

severely flawed and the retail partner was unavailable to give input (this is discussed 

below). If any of the sub-metered data can be trusted, the root cause of the error in HVAC 

energy is in the modeling of the dehumidification system. In the way the physical model 

was configured in EnergyPlus/OpenStudio, it was not possible to model a desiccant system 

which produced this usage profile. 

The Energy Signal Tool is designed to report when a building is experiencing an 

energy-related fault. Therefore, benchmark model calibration should be done to data from 

a building that is free of major faults. Having relative errors that are consistently greater 

than a desired risk tolerance threshold is not acceptable. Although the Energy Signal Tool 

does not operate on a point-to-point basis, the results in the figures above would lead to an 

excessively skewed portrayal of the expected range as a context for observed consumption. 

This is because the entire probable range of consumption would be shifted in one direction 

(see Figure 59 below) and the mean expected consumption would not lie near the observed 

value. When a representative model fails the test of calibration acceptability, there are 

several possible courses of action to take: 

1. Test representative models from other calibration solution clusters for their point-

to-point comparisons with measured data. 

2. Modify (extend) the bounds of parameter uncertainty and re-do statistical 

calibration with the hope of discovering a new unique combination of parameter 

values that meet the validation criteria. 

3. Examine the comparison results to possibly uncover deficiencies in the model 

description. Collect missing information and re-do heuristic calibration. Then re-do 

statistical calibration. 

The conclusion drawn from the above evidence is that statistical calibration alone is 

not sufficient to generate a baseline model for use in the Energy Signal Tool. Indeed, Figure 



 

116 
 

53 a, b above shows little improvement in fit to the measured monthly utility data. 

Statistical calibration only samples the model space defined by a set of uncertain 

parameters. This process may likely fail to eliminate an underlying model bias stemming 

from errors in monthly energy end-use consumption. In this work, it was not possible to 

write scripts to sample for things like seasonal or monthly variation in schedules, behavior 

patterns, or building set points. Using statistical methods to search through schedule 

variation or other possibilities is unwise considering the over-parameterized and under-

determined nature of detailed building simulation models. To support an Energy Signal 

Tool in the form presented here, building stakeholders with additional knowledge must be 

involved in the model construction process. For example, operational schedules can be re-

examined for monthly variations in usage. Additional studies can be done to determine if 

there are any seasonal factors affecting infiltration rates, such as customer volume, door 

settings, or window opening habits. Depending on the building type, all of this additional 

calibration work may take more effort than it is worth. Clearly one who is presenting the 

opportunity for such work to a client would need some idea in advance of the savings 

potential.  

A decision was made to shift the focus of this work away from testing the Energy 

Signal Tool on the case study building in favor of more rigorous testing of the theory using 

synthetic data. A brief summary of the barriers in additional heuristic calibration steps 

needed to achieve a well-calibrated implementation of the Energy Signal Tool at the case 

study building is given below:  

1. There were periods of missing or clearly erroneous data reporting delivered by the 

energy tracking service. This may have been due to some of the factors noted above 

in the section covering sub-metering data uncertainty, but nothing could be verified. 

This included VAV reheat data, where it was possible to make a regression model to 
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fill the gaps. See appendix for details. With additional time to apply advanced data 

repair techniques, it might have been possible to fix these errors. 

2. Inconsistent operation of major equipment, especially the dehumidification unit and 

the VAV reheat, led to the inability to reconcile one year of data with the next. It is 

likely that manual overrides were applied to the BMS operational strategies. For 

example, Figure 58 below shows that the dehumidification unit (DHU) operation 

changed significantly from the end of July to the end of September. Meanwhile 

outdoor air conditions remained warm and humid consistently throughout this 

period – warranting continued store dehumidification. There exists no 12-month 

period in the observed data set where one can be certain of proper operation in the 

case-study building. 

 

Figure 58: Hourly sub-metered data clearly demonstrates inconsistent operational strategies of the 

dehumidification unit 

3. The retail partner was unavailable to answer questions about changes in operation 

strategy, or to verify proper installation of sub-metering equipment.  

4. While calibration was successful by ASHRAE Guideline 14 standards (see above), 

the inconsistencies in operation, and lack of understanding of operational intent 

made it virtually impossible to calibrate the model to within low threshold tolerance 



 

118 
 

limits for each end use on a monthly (let alone weekly!) basis. Refer to Figure 55, 

Figure 56, and Figure 57  above. 

It is reasonable to believe that these challenges are not unique to this work. Any 

project involving model-based performance assessment of a building could be faced with 

similar challenges of bad data, inconsistent operation, changes in facilities management, 

and lack of information. As we move into a time when sub-metering equipment is 

implemented with energy management in mind and the quality of data improves, some of 

these issues may diminish. However, these same problems are part of the justification 

behind the Energy Signal Tool concept. Due to uncertain performance risk variables, we 

will never be certain of how a building is supposed to operate, but a probabilistic range of 

expectations can offer some support as a lens to compare measured performance. 

7.2 Energy Signal Tool Input 

7.2.1 Overview 

The Energy Signal Tool reports the action that is most likely to result in the lowest 

cost to the user for a given scenario of building performance. Recommendations are made 

in five levels of possible actions based on over or under-consumption. Each recommended 

action level is bounded by risk tolerance thresholds. It is important to think carefully about 

these thresholds – how much excess or under consumption can be tolerated – as well as 

what organizational objectives can be correlated to each energy end-use being monitored. 

Each organization may have a different tolerance level for risk in energy use deviation, 

environmental comfort, and other factors. At any given facility, there may be different 

acceptable risk tolerance thresholds for each end-use. The following section is a discussion 

of how risk tolerance thresholds are rationalized. 
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7.3 Defining Risk Tolerance Thresholds  

This work addresses the issue of building energy diagnostics by incorporating a 

range of uncertainty in operation. Therefore, risk tolerance thresholds are defined on the 

basis of probability masses within an expected operational range. As described in the 

previous section, an expected (retrospective) range of energy consumption for each end 

use is generated by running batches of models with parameter values sampled from ranges 

of uncertainty. The probability masses are generated by placing an energy end use 

consumption observation in the context of the range of expected energy use, and then 

defining risk-tolerance thresholds at certain distribution quantiles on either side of the 

measured consumption point value. These thresholds shall receive the nomenclature M1 

and M2. They are applied to bound either side of the energy consumption observation in 

the context of the expected consumption PDF. This yields two levels of risk tolerance and 

five distinct probability masses, as illustrated in Figure 59 below. Table 1, below, shows 

how the nomenclature for risk tolerance threshold is applied to several pieces of the 

Energy Signal Tool, which are explained in this section. 

Table 1: Nomenclature for risk tolerance thresholds 

Risk 

nomenclature 

State space nomenclature Cost function 

nomenclature 

M1 yields Mlow slightly lower and Mhigh slightly higher than expected  (SL, SH) 

M2 yields Mvlow much lower and Mvhigh much higher than expected  (ML, MH) 
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Figure 59: Basic probability distribution of expected energy end-use consumption (adapted from Henze et al., 

2015) 

Figure 59 gives a graphical illustration of how the risk tolerance thresholds used to 

compare a measurement to an expected range of end-use consumption. The green region 

defines the probability range that the measured data is about the same, or acceptably close 

to the expected amount. This is bounded on the outer edges by Mlow and Mhigh. The green 

region probability mass is maximized when observed consumption falls at the most likely 

expected consumption. The yellow regions define the probability ranges where the 

measured data shall be considered slightly higher or slightly lower than model 

expectations. The outer bounds of this region are Mvlow and Mvhigh. Finally, the red region 

defines the probability range where the measured data shall be considered much higher or 

much lower than model expectations. The notation SL, SH, ML and MH are used in the cost 

matrix sections in place of Mlow, Mhigh, Mvlow and Mvhigh, respectively. 

The state space probability masses, P1 through P5, are determined by the values of 

M1 and M2 thresholds for each end use. State space probabilities are defined by the 

following: 
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P1 = Probability that observed energy use is much higher than expected 

P2 = Probability that observed energy use is slightly higher than expected 

P3 = Probability that observed energy use is about the same as expected 

P4 = Probability that observed energy use is slightly lower than expected 

P5 = Probability that observed energy use is much lower than expected 

As illustrated in Figure 59 above, state space probability masses “slide” in the PDF 

with the observed consumption. For example, when measured consumption is higher than 

the mean of the expected distribution, P1 and P2 will grow larger, while P4 and P5 will 

become smaller. The energy signal is not simply computed based on the size of probability 

masses. As discussed later, utility theory allows the vector of probability masses to be 

combined with a cost function that incorporates more information about facilities 

management priorities. 

Care must be taken in selecting the nominal M1 and M2 thresholds. As demonstrated 

in a later section, the ranges selected will determine how easily a deviation in observed 

energy end-use will trigger a signal to the energy manager alerting him or her that the 

building is slightly or greatly out of the expected range. Each end-use category may warrant 

a slightly different definition of threshold ranges. Some end-uses with more accurate sub-

metering equipment could have narrower tolerance bounds. In this work, nominal values 

of 10% for M1 and 20% for M2 are used, and justification for this is given in Chapter 8. After 

nominal values are established, the risk tolerance threshold is further modified for end-use 

controllability, seasonal variation, and minimums for measurement uncertainty. This 

process is outlined in Figure 60 below, and described in the subsequent sections. 
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Figure 60: Flowchart for developing risk tolerance thresholds 

7.3.1 Rule-based method to adjust the range of M1 and M2 for controllability 

The uncertain parameters affecting the outcomes of the end use consumption 

distribution can be classified generally into two categories. These categories differentiate 

between parameters that can be acted on by the facilities manager at reasonable cost 

(controllable), and those that cannot be acted upon, or can only be acted upon at the scale 

of a building retrofit (outside the realm of normal operation and maintenance; or, 

uncontrollable). Depending on which types of parameters are most significant to an end 

use, the facilities manager may have more or less tolerance for deviation from expected 

usage. For example, if the range of expected energy consumption for heating use is due 

primarily to a range in possible infiltration values, which in turn depend on outdoor 

conditions, then the facility manager may have a greater tolerance for deviation before they 
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feel corrective action is needed. The definitions for controllable and uncontrollable 

parameters are given below: 

Controllable Parameter: If the value of this type of parameter is different from 

expected it is indicative of a system fault that the facilities manager needs to, and is able to 

address directly. The parameters relate to function and operations of equipment and the 

building. 

Uncontrollable Parameter: When the value of this type of parameter is different 

from expected, it may be indicative of operation outside of normal range, but it is an 

abnormality that does not require maintenance or service attention. This parametric fault is 

not under the control of any building operator. These parameters can be physical traits of the 

building inherent to its construction, or characteristics of major equipment that change with 

age and cannot be fixed without a major investment which is outside the realm of energy 

management decision making. 

The values of M1 and M2 should reflect the percentage of uncontrollable variables 

acting upon (degree of uncontrollability for) each end use. In some cases, for example 

where it is known that uncontrollable variables such as customer volume are likely to 

affect end-use consumption on a regular or cyclical basis, the user may want to expand the 

green and yellow regions by increasing M1 and/or M2. In other cases, for example where it 

is known that only controllable variables such as set points or equipment efficiency are 

likely to affect end-use consumption on a regular basis, the user may want to shrink the 

green and yellow regions by decreasing M1 and/or M2. 

The following method is proposed to determine the degree of uncontrollability and 

controllability for each end use, and subsequently assign the most appropriate threshold 

percentage values of M1 and M2. From the global sensitivity analysis, parameter 

significance index (SI) values are obtained that quantify the relative influence that each 

uncertain variable has on the end-use objective function. A descriptor of controllable (“c”) 
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or uncontrollable (“u”) is assigned to each parameter. Table 12 below gives examples of 

variables that can be classified as controllable and uncontrollable.  

Table 12: Examples of “controllable” and “uncontrollable” model parameters 

 

The weighting of uncontrollable vs. controllable parameter significance is used to 

adjust risk tolerance thresholds. The following equation is used to determine the degree of 

controllability and uncontrollability of each end-use: 

Equation 15: Degree of controllability 

                            
          
       
     

         
   
      

 

Equation 16: Degree of un-controllability 

                              
          
       
     

         
   
      

 

Where SIparam is the significance of each parameter to each end use, as determined by global 

sensitivity analysis. And, M2, M1 are calculated as follows, where the nominal values of M1 

and M2 are set at 5% and 10%, respectively: 

Controllable Uncontrollable

HX sensible effectiveness Infiltration reduction 

Gas burner efficiency Wall conductivity mult

Roof absorptance mult Ref suction piping UA

Heating setpoint adjustment Fan pressure rise multiplier

Heating supply air temp design Fan Efficiency

T-Stat float heat/cool Heating sizing factor

DX Cool Coil COP Anti-sweat multiplier

Walkin operating temp, delta

System airflow ratio minimum

Condensing temp minimum, delta

Cooling setpoint adjustment

Significant Uncertain Parameters
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Equation 17: Inner risk tolerance threshold adjusted for end-use controllability 

           

 
       

   
  

Equation 18: Outer risk tolerance threshold adjusted for end-use controllability 

            

 
       

   
  

In a brief explanation of equations above: 

Standard M1, nom = 10% 

Standard M2, nom = 20% 

Expected value of 
 

   
  = 0.5 

Expected value of  
 

   
    

   
  = 0 

For an end use that is composed of a greater number of uncontrollable parameters, 

the risk margins will grow wider, up to a maximum value of 30% for M2. Table 13 below 

gives an example of calculating risk tolerance threshold values adjusted for controllability. 

Here, it is determined that whole building energy has a high degree of uncontrollability due 

to heavy influence from parameters such as infiltration, wall conductivity and heat 

exchanger effectiveness. 
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Table 13: Example of end-use sensitivity analysis results; controllable and uncontrollable uncertain parameters 

 

7.3.2 Adjustment of M1 and M2 for Seasonal Variation 

It is proposed that a second adjustment to M1 and M2 tolerance thresholds is needed 

to account for significant seasonal variation in expected energy consumption. This is 

common to some end-uses such as natural gas in climates with distinct seasonal changes in 

weather. The purpose of this adjustment is to shield the user from unnecessary signals 

during times of expected low seasonal consumption. This type of use is difficult to model, as 

well as low priority to act on. For example, the signal tool should not be as sensitive to an 

error in summer natural gas use, which may be very large in percentage but small in terms 

of magnitude. For the case study building, this rule is only applicable to the natural gas, and 

HVAC (fans, cooling, and heating electricity) end-uses – as shown in Figure 61 below. For 

other types of buildings, it could also apply to end uses such as cooling energy, heating 

Whole Building Energy Refrigeration

Variable μ* C/U? Variable μ* C/U?

Infiltration Reduction 1.000 u Ref Suction Piping UA 1.000 u

Gas Burner Eff 0.652 c Condensing temp minimum, delta 0.467 c

Heating Setpoint adjustment 0.408 c Heating Setpoint adjustment 0.269 c

Wall conductivity mult 0.302 u Heating supply air temp design 0.153 c

HX Sensible Effectiveness 0.157 u Walkin operating temp, delta 0.139 c

Heating Sizing Factor 0.095 u T-Stat float heat/cool 0.057 c

Heating supply air temp design 0.087 c Wall conductivity mult 0.033 u

System airflow ratio minimum 0.062 c Infiltration Reduction 0.027 u

Fan Pressure Rise Multiplier 0.056 u Fan Pressure Rise Multiplier 0.015 u

T-Stat float heat/cool 0.037 c System airflow ratio minimum 0.008 c

Roof absorptance mult 0.034 c HX Sensible Effectiveness 0.003 c

DX Cool Coil COP 0.011 c Heating Sizing Factor 0.002 u

Ref Suction Piping UA 0.007 u Fan Efficiency 0.001 u

Fan Efficiency 0.005 u

Condensing temp minimum, delta 0.003 c

Walkin operating temp, delta 0.002 c

Cooling Setpoint adjustment 0.001 c

Σ C: 1.298 Σ C: 1.096

Σ U: 1.623 Σ U: 1.077

M1 10.6% M1 10.0%

M2 21.1% M2 19.9%

where μ* is calculated with AIC regression coefficients



 

127 
 

electricity, refrigeration, and other seasonal processes that the user may wish to monitor as 

end-uses.  

 

Figure 61: Seasonal variation in end-use consumption for the case study building. The only major seasonal shift is 

found in Natural Gas use. 

A seasonal normalization factor for risk tolerance must, when used as a multiplier, 

have a shape that widens risk tolerance thresholds in non-critical seasons. Equation 19, 

below, describes a normalization factor curve, which varies with the ratio of the expected 

energy consumption of the period to the expected annual maximum of any period of equal 

length. This equation was derived to produce a curve that the author felt would best meet 

the needs of seasonal normalization, and would be applicable to any building. 

Equation 19: Seasonal threshold range normalization factor 

                   
     

     

  

   

 

Where, Xper is the annualized average amount of consumption expected in the period, 

compared to Xmax the annualized amount expected for any peak period of equal length 

throughout the year. It is important to base this factor on the expected use for any period. 

Basing the factor on the observed use would defeat the purpose of the tool by expanding 
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risk tolerance to what could encompass a major fault. Equation 19 produces the following 

logarithmic curve, in Figure 62 below, with minimum at 1 and maximum (where 

normalization factor will rise near vertically and asymptotically) to a maximum of close to 

2. The normalization factor, Fn, rises sharply as the ratio of 
    

    
 drops below ¼; where an 

expected periodic consumption so small would indicate a major seasonal shift. 

 

Figure 62: Example of seasonal normalization factor curve 

The curve of this normalizing factor was carefully shaped to add significant leniency 

to the modeled expected range of results for periods such as summer gas usage and for 

shoulder seasons. The risk tolerance threshold is altered very little for periods when 

expected consumption is at or near critical levels. Now, M1 and M2 are defined, finally, as 

follows: 

Equation 20: Risk tolerance probability mass thresholds corrected for seasonal variation 

                   

                   

7.3.3 Calculating the State Space Boundaries 

Once M1 and M2 are obtained, an additional computation is needed to determine the 

bounding values for the risk tolerance thresholds of each end use. The proposed method of 
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calculating these ranges is as follows, where Mlow and Mhigh are a function of the probability 

masses about the mean of the expected data: 

Equation 21: Defining the outer bounds of the probability range quantifying the probability of operation as 

expected 

                                                          

                                                            

Equation 22: Defining the outer bounds of the probability range quantifying the probability of operation slightly 

lower than expected. 

                                                            

                                                            

Where; 

 M1 = Inner risk tolerance threshold percentage, as calculated in the previous section 

M2 = Outer risk tolerance threshold percentage, as calculated in the previous section 

        Measured energy consumption data for an end-use summed over a given 

time period 

 data = the expected range of distribution for the energy end-use consumption over a 

given time period 

And, the “quantile” function (in R, base package) produces the quantile of sample (data) 

corresponding to the given probability of a quantity M1 or M2 above and below the median 

expected value. Mvlow, Mlow, Mhigh, and Mvhigh are the values of energy end-use magnitude that 

represent the risk tolerance thresholds. These are similar in function but different in 

definition from the values of E0(low,high) and E1 (low, high)  as defined by Henze et al.(2015). 

In other words, there is a conversion from probability mass to the end-use values 

that would bound it if Xmeas happened to equal the median expected value on the PDF. This 

is made even clearer by illustrating with a cumulative distribution function, as in Figure 63 
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below. In reference to Figure 63, Equation 21 describes the outer bounds of the green 

region, and Equation 22 describes the outer bounds of the yellow region. 

 

Figure 63: Sample output of PDF and CDF resulting from expected, measured data, and risk tolerance thresholds  

Thus, computing the Mlow, Mhigh, Mvlow, and Mvhigh values is done in reference to those 

distances bounding symmetrical distributions of probability masses about the mean value 

of expected consumption. This method incorporates the amount of expected uncertainty 

existing in the modeled end use calculation. The signal is thus generated based truly on the 

position of the measured value within the expected distribution. This way, the user will not 

fall into the trap of reserving too great of space for signals indicating “as expected”, or 

slightly above/below expected values for end-uses with low modeled uncertainty. The final 

resultant state space probability masses can be computed graphically by the differences 

between the CDF values of the risk tolerance thresholds, as shown at left in Figure 63. 
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7.3.4 Constraints of measurement uncertainty 

There is of course also some uncertainty in the sub-metered energy use 

measurement itself. Current transducers, used to monitor electricity consumption, have an 

accuracy of +/- 3% (for reasons discussed in an earlier section) of a real value obtained in a 

reading. To account for this, the width of the middle range of the signal output is defined by 

ensuring that, even for distributions with high kurtosis, the following is true: 

                   

                   

In other words, it must be allowed for the range of the yellow signal reading to 

encompass potential measurement error. Since a yellow signal indicates the bounds of 

questionable (but not definite) action, this provision does not significantly impact 

recommended action. With substantial improvement in sub-metering technology, this 

condition for minimum risk tolerance could be omitted if needed. 

7.4 Defining the Cost Matrix 

The signal displaying the recommended course of action is generated by multiplying 

a [5x1] vector containing the state space probabilities, {P} (as described in the previous 

section), with a [5x5] cost matrix. The cost matrix, {C}, defines the cost of taking each of the 

five possible actions given each of the five possible observed energy performance 

scenarios. 

In any energy management or maintenance scenario, the right approach to solving a 

problem is the approach that minimizes the marginal cost of operation. In facilities 

management for buildings, there are several components to the “marginal cost” of any end 

use, including: 

 Cost of energy 

 Variable cost of maintenance and service 



 

132 
 

 Value that the end use provides to the building function (e.g., thermal 

comfort) 

 Value the end use provides to company image or branding (e.g., lighting) 

 Value of the end use to providing inventory stability (e.g., refrigeration) 

The cost matrix is an opportunity to incorporate the energy cost and other cost 

considerations for each end use into the energy signal tool. For facilities management, the 

cost matrix can be characterized with two basic dimensions: the costs of having problems, 

and the costs of solutions to those problems. Table 14, below, illustrates the concept of the 

cost function for the energy signal tool. Bold cells in red indicate a false signal (more than 

one state space away from the matching signal).  

Table 14: Cost matrix definition 

  

Whereas the upper right and lower left regions of the cost matrix tend to contain 

signals classified as “false positive”, the upper left and lower right regions contain “true 

positive” signals. Any green signal, is considered a negative signal in that is calls for no 

action. Green signals at the left or right ends of the cost matrix will tend to be “false 

negative”, since the observed state is not the same as expected. A green signal in the middle 

of the cost matrix will tend to be a “true negative”. It can only be worded that signals tend 

to be classified a certain way because this cannot be determined outside the context of the 

entire scenario including the state space probabilities. The classification skill section of 

chapter 8 goes into more detail on this topic. 

Action 

Signal:
Much

Higher

Slightly

Higher

About

Same

Slightly

Lower

Much 

Lower

High Red C(RH, MH) C(RH, SH ) C(RH, S) C(RH, SL ) C(RH, ML)

High Yellow C(YH, MH) C(YH, SH ) C(YH, S) C(YH, SL ) C(YH, ML)

Green C(G, MH) C(G, SH ) C(G, S) C(G, SL) C(G, ML)

Low Yellow C(YL, MH) C(YL, SH ) C(YL, S) C(YL, SL) C(YL, ML)

Low Red C(RL, MH) C(RL, SH ) C(RL, S) C(RL, SL) C(RL, ML)

State Probability of Observed vs. Expected Energy:

   False High Signal 

   False Low Signal 
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                Observed Energy Probabilities → 

Action signals   

         ↓ 

                               

   

Table 14Error! Reference source not found., above, is a detailed look at the 

contents of the cost matrix. Where, [MH, SH, S, SL, ML] and [RH; YH; G; YL; YL; RL] are 

defined in Equation 25 and Table 14 above, respectively. The values in each cell of the cost 

matrix indicate the cost of taking false action, or no action, given the state observed. As an 

input to the Energy Signal Tool, the cost function captures the response that the facility 

manager would recommend for each unique scenario of observed over or under 

consumption. It compares how important it is to act to address high energy consumption, 

low energy consumption, and to take no action depending on what state is observed. For 

example, if natural gas used is observed to be much higher than expected, and if this is a 

significant operational expenditure and the cost to fix it is comparatively low, immediate 

action to address high gas use would be recommended.  

7.4.1 The Neutral Cost matrix 

Equation 24: The Neutral Cost Matrix 

 

 

 

 

Equation 24, above, shows the neutral cost matrix, or that which would be used in 

the absence of other information about cost considerations for the building end-use. The 

scalar quantities in the cost matrix penalize sending a signal for false action. The highest 

MLRLSLRLSRLSHRLMHRL

MLYLSLYLSYLSHYLMHYL

MLGSLGSGSHGMHG

MLYHSLYHSYHSHYHMHYH

MLRHSLRHSRHSHRHMHRH
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Equation 23: Detailed cost function 
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“costs” are associated with false signals as shown above in Table 14. For example, a cost 

value of 8 is assigned to displaying a “high red” signal when energy use is much lower than 

expected, or for showing a “low red” signal when energy use is much higher than expected. 

A cost of 0 is assigned to a decision to display the proper signal corresponding to the 

observed vs. expected energy use; since right action should minimize cost. Figure 59 above 

has shown that there is some probability of being in each state of observed consumption 

with respect to the expected range. The values in the cost function are highly subjective to 

end-use application, and are presented merely as scalar values in this work. This begs 

future quantitative research that would help improve signal prioritization (see section 7.6), 

By adding across each row of the cost matrix, the total probable cost (scalar) of each 

action is determined. Lacking information about the scenario, the total cost of taking action 

(row RH, or RL) will always be higher than not taking action, since taking action means the 

facilities manager is initiating a service call. By adding down each column of the cost matrix, 

the relative cost of each state is determined. Cost of states in lower than expected 

consumption are assumed to be the same as those states with higher than expected 

consumption because, in addition to energy cost considerations, there is inherent value 

assumed in systems operating as expected. In the example above of the neutral cost matrix, 

the cost values are assigned and distributed in a symmetric fashion, without a bias to a 

false high or false low signal. 

7.4.2 Secondary Cost Matrices 

Assigning a unique cost matrix to each end use adds some intelligence to the signal 

generation process. Secondary cost matrices will introduce some signal bias as appropriate. 

For example, actions to address lower than expected energy use for a refrigeration system 

would have a different priority level than actions to address low energy use for a cooling 

system in a cool climate. Therefore, to further ensure that the cost matrix meets the 
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operational and maintenance cost expectations of the facilities manager, the user provides 

an answer to two simple questions for each end use: 

1. Q: Is the ratio of  
                

               
  high or low?  

A: High, Low, N/A 

(high: chiller in warm climate; low: heating in warm climate) 

2. Q: Does a high or low energy consumption reading indicate especially serious 

problems relating to customer comfort, product stability or otherwise especially 

damaging to operation? 

A: High, Low, N/A 

(high: equipment sensitive to overuse; low: refrigeration or ventilation fans) 

The user may choose to answer each question with “High”, “Low”, or “N/A” (not 

applicable) which can be generally applied to any monitored end-use. By answering the 

questions, the user has the chance to modify the pre-defined cost matrix with their 

preferences about this end-use. This can help to incorporate knowledge of the relative 

maintenance and repair costs for each end use. If the response to both questions is “NA”, 

then the pre-defined cost matrix is left unchanged. If just one question is answered “High”/ 

“Low”, and the other is answered “NA” then the predefined matrix is changed less than if 

both questions are answered (see appendix for calculation examples). For example, 

answering the questions sequentially with “High, High” will result in a cost matrix that 

penalizes false signals (lower left and upper right corners) heavily, and that especially 

penalizes false low signals (columns [1,2]).  General examples of transforming the cost 

matrix are given in the figure below. 
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Figure 64: Examples of neutral and biased cost matrices  

The matrix on the left in Figure 64 above would be a result of answering “High, 

High” to the two questions above. The figure in the middle would be the result of answering 

“N/A, N/A”. The matrix on the right would be the result of answering “Low, Low”. The cost 

matrix definition process can be seen as a decision tree, where the user starts with a 

“neutral” cost matrix, and by answering the two questions above, will end with one of nine 

possible secondary cost matrices. Figure 65 below depicts this flow. 

 

Figure 65: Cost matrix decision tree 

The energy signal tool proceeds with secondary cost matrix as defined by the user. See 

appendix for additional calculation details and the full array of possible cost matrices. 
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7.5 Energy Signal Tool Output  

So far, we have described the background information needed for a data processing 

script that takes a dataset of expected (modeled) energy end-use consumption (“data”) and 

compares it to a measured point (“Xmeas”). The following section describes how this data is 

transformed into action signals that give a quick view of how a building is performing 

relative to expectations, and what (if any) action is recommended. The five state-space 

probabilities of Xmeas relative to the distribution of expected consumption were calculated 

as the probability masses bounded by the risk tolerance thresholds. The state probabilities 

form a vector as follows: 

Equation 25: State probabilities vector 

P= 

 
 
 
 
 
  
  
  
  
   
 
 
 
 

 

 
 
 
 
 
  
  
 
  
   

 
 
 
 

    

Where, P1, P2, P3, P4, P5 are defined above and illustrated in Figure 63. Expected energy use 

is a probabilistic range created by LHS sampling runs of the calibrated model over the 

range of each uncertain parameter. The cost matrix has been defined above. These three 

items encompass the required gathering of external data. The following steps illustrate 

how this external information is processed into a signal for decision support. 

7.5.1 Defining the Action Signal 

The traffic light as applied to giving signals on roadways has been refined to give 

drivers a quick understanding of what action to take when approaching a road intersection. 

If a traffic light had five levels, the added lower set of yellow and red signals could alert 

drivers of actions they need to take in abnormal traffic situations; such as emergency 

vehicle passage, construction, or inclement weather. Similarly, the extended traffic signal 

can be a way to visualize recommended responses to the state of building end-uses in 

terms of observed energy consumption versus the range of expected consumption.  
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Other types of visualizations, such as circular gauges similar to a speedometer, could 

also be appropriate for this application. One could imagine a gauge that is calibrated to an 

expected range of energy use, and has green, yellow, and red regions bounding the mean 

value that indicate thresholds of energy consumption outside the tolerance range for 

normal use. One such example in operation is the Energy Tracker dashboard implemented 

at the NREL Research Support Facility (Henze et al., 2014xx). 

It is quite clear that higher than expected energy consumption is a concern, but both 

high and low consumption have significance. For example, if refrigeration energy were to 

be observed at much lower than expected (low red) in a building, the facilities manager 

might be concerned about the stability of food products and would want to investigate the 

problem soon. Or, if HVAC energy were observed at slightly higher than expected (high 

yellow), a reasonable response would be to look in the maintenance database for any other 

recent complaints relating to HVAC in that store, and then decide what, if any, action to 

take. When used to prioritize retrofit measures across a portfolio of buildings, lower signals 

would indicate better returns on investment. In this case, an appropriate response would 

be to implement the retrofit measures in those buildings with the most severe low signals. 

7.5.2 Computing the Expected Cost Vector 

The facilities manager is interested in taking action that will minimize cost for the 

organization based on several criteria as discussed previously. Utility theory is used in the 
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Energy Signal Tool to advise the best action, given the scenario of measured observations, 

in the context of uncertain expectations for the scenario (Henze et al., 2015). Taking the dot 

product of the cost matrix and the state probability vector, yields a [5x1] vector, Ec.  This 

describes the expected cost of the five possible courses of action as defined above (per 

Henze et al., 2015). 

Equation 26: Expected cost vector 

                         = 

 
 
 
 
 
     
     

    
     
      

 
 
 
 

 

And,  

               

 

The expected cost vector reports probable costs as scalar values. The type of 

response to the current scenario (i.e., recent past observation) that minimizes expected 

cost should be recommended to the facilities manager. The five-level traffic light level is 

designed to align with the Ec vector. The light corresponding to the minimum term in the Ec 

vector is “illuminated” to signify that some action should be made after diagnosing the 

problem. For example, if the vector P is taken from the above illustration in Figure 63, and 

C from Equation 24 above (neutral cost matrix) is used for the cost matrix, then Ec and its 

corresponding signal would be calculated as follows: 
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Here, since the minimum term in the expected cost function is the first term in Ec 

(likely cost of issuing an RH signal) it will be best to give a “high red” signal. If, 

hypothetically, the state-space probabilities were to be distributed symmetrically (where 

the observed consumption falls right at the mean of expected), then the middle term would 

be minimized and a “green” signal would be produced. 
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Or, if the end-use were to warrant a cost matrix very heavily biased against a false 

low action signal, such as in the example below, we can see that it is possible to obtain a 

yellow signal even with a symmetrical state space probability vector12. 
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 In another example, if it is known to be especially expensive to call maintenance for 

a particular end use, a bias could be set that adds cost for higher level signals, and would 

thus only recommend definite action when the problem is quite urgent. The first example 

below shows how normally a red signal for definite action might be generated by higher 

than expected energy consumption with a neutral cost matrix.  

 

                                                        
12 Such a heavily biased cost matrix is not recommended, and is only shown for purposes of illustrating the 

impact of the cost matrix. 
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 The next case illustrates how adding a scalar bias to the upper and lower rows of the 

cost matrix changes this signal from one calling for immediate action to one calling for 

monitoring the problem. 

  

 

 

 

 

7.6 Signal Prioritization 

The facilities manager will undoubtedly have multiple signals (red and yellow) 

calling for action or monitoring across a large portfolio of buildings. Their job is to 

minimize the risk of operating buildings improperly and minimize the cost of resources 

used to address problems. Or, perhaps they wish to determine the best opportunity for 

implementing a minor energy efficiency retrofit. In either case, they need to be able to 

prioritize their actions according to the expected cost / benefit. There are two methods 

proposed here to do this: prioritization based on signal urgency, and prioritization based 

on measured deviation from expected cost. 

Taking the dot product of the cost matrix and the state probability vector, yields a 

[5x1] vector, Ec.  This describes the expected cost of the five possible courses of action as 

defined above (per Henze et al., 2015). 
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Equation 26 above) over the minimum term. This ratio effectively indicates the 

strength of, or confidence in, the recommended course of action. In other words, this ratio 

expresses the risk of the recommended action versus the risk in taking no action or taking 

the wrong action. 

The primary benefit of incorporating uncertainty in decision support is the ability to 

quantify the urgency of responding to a situation (Henze et. al., 2015). Measured 

consumption that falls near the outer tails of the expected use distribution is likely require 

more urgent action. If costs are defined carefully, the expected cost vector can be used to 

rank and prioritize actions according to urgency. Taking the dot product of the cost matrix 

and the state space probability vector yields a [5x1] vector, Ec (per Henze et al., 2015). The 

quantitative urgency of an action can be determined by taking the ratio of the maximum 

term in the expected cost vector (Ec, see Equation 26 above) over the minimum term. This 

ratio effectively indicates the strength of, or confidence in, the recommended course of 

action.  

Equation 27: Signal Strength Ratio 

   
                 

                 
 

Since the expected cost vector is made up of scalar values, the signal strength ratio is 

valid within each end-use category to prioritize signals from across the entire portfolio. The 

signal ratio values are scalars themselves; heavily influenced by those values used in the 

cost matrix – also just scalar representatives. An urgent signal for action to fix a problem 

with the heating system may have more energy cost associated with it, but may not be as 

important as a signal to fix refrigeration equipment.  

It is up to the facilities management to decide how to prioritize action among 

multiple end-uses, and reporting energy cost deviation ranges can help with this. Energy 

cost deviation is one possible way to rank faults in order of priority. The expected energy 
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use distribution range can be used to define an expected range of cost deviation. Equation 

28 below describes how cost deviation is calculated. 

Equation 28: Probable range of cost deviation 

                              
                

      

Where; 

       95% confidence interval for the range of deviation of observed from expected 

cost 

            Unit cost of energy in $/kWh or $/Therm, etc. 

        Measured energy use 

                                               

                                             

This range expresses the 95% confidence interval estimate of the monetary value of 

cost deviation of each end use when comparing the observed consumption to the expected 

range of consumption. Positive values indicate how much money is potentially being spent 

in excess. It can be seen that the signal priority ration is highest when the 95% confidence 

interval has either all negative or all positive monetary values. Throughout the remainder 

of this report, mean cost deviation is referenced. This is computed simply by taking the 

arithmetic mean of the resultant cost bounds computed in Equation 28 above. 

7.7 Sample Outputs from Developer interface 

The figures below give outputs from the R environment user interface developed in 

this work. As described in the next section, all synthetic faults were tested and processed in 

this environment. This is the functioning interface at the moment, and its use requires 

some skill with R and data set manipulation. This does not fulfill the vision for the final 

ESTool interface (as proposed conceptually in Figure 68 and Figure 69 below), but is the 

closest working approximation given the programming skills of this researcher.   
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7.7.1 Signal Output 

The signal output shows recommended actions for each end-use, as calculated by 

the minimum of the expected cost matrix. The numbers below each signal indicate the 

signal strength ratio (indicating the level of urgency), and second the 95% confidence 

interval of expected cost deviation, as calculated above in Equation 28.  

 

Figure 66: Sample outputs of end-use signals for the month of October and the last week in October. The fault 

tested was an increase in the thermostat float range 

7.7.2  PDF Output 

The second meaningful output of the ESTool R environment user-interface are 

Probability Density Function graphics for each end-use, at each time period. These PDFs 

help the user to visualize the state-space probability masses, as well as the position of the 

observed consumption within the expected distribution range. At the top of each PDF, the 
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calculated risk tolerance thresholds (M1 and M2) are given. At the right of each graph, a 

legend displays the sizes of the probability mass regions for each of the five state spaces. 

These regions are shaded in appropriate colors. A vertical blue line shows the position of 

the observed data (Xmeas). Sometimes, Xmeas may fall completely outside of the expected 

distribution range. This just means that a red signal will definitely be generated for this 

period. The signal strength ratio will be infinite as a result of some state space probabilities 

having mass of zero. In the remainder of this work, any signal priority ratios with infinite 

value were changed to a value of 6000, which is still greater than any others observed for 

purposes of ranking. 
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Figure 67a,b: Sample PDFs graphic outputs for the month of October and the last week in October. These 

correspond with the signal visualization output in Figure 66 above. 

7.7.3 Conceptual User Interface 

The vision for the Energy Signal Tool is that it is something that a portfolio energy 

manager could look to on a weekly or monthly basis for decision support. It would be an 

improved way to obtain an overview of building performance assessment. Performance 

information is summarized succinctly, rather than having to dig through mountains of sub-

metering data to extract it. With input from the retail partner, a concept for a building 

portfolio management user interface to the Energy Signal Tool was developed. This 

interface would contain basic information about each building, display visual signal output, 

as well as give prioritization metrics. Such an interface could be coded so that it would be 

available online in HTML format to allow for remote access at multiple locations. The 

following figures show one type of view that would display only mean deviation from 

expected energy cost, and another that would give full results of the energy signal.  

The detailed modeling of the unique qualities of each building, as well as actual 

weather data, allows the Energy Signal Tool to produce self-benchmarked results. Unlike 
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peer benchmarking, any sub-set of self-benchmarked results is a relevant basis on which to 

compare building performance. This is a much more customized and credible decision-

making platform than the EPA Portfolio Manager can provide. With the ESTool, 

maintenance or retrofit prioritization can be done directly from any comparison. The user 

interface would allow the energy manager multiple ways to sort and filter performance 

assessment results. Filtering would produce sub-sets for comparison, and sorting would 

help indicate action priority. For example, a user might be interested in filtering to view 

only buildings of a certain store prototype (model), and then sort those by action signal 

priority ratio. This would give the energy manager a quick view of top priorities to address 

based on overall organization goals. Or, the user could filter buildings by climate zone, and 

sort by deviation from expected cost of natural gas use. This would give the energy 

manager a quick view of best opportunities for energy cost savings. Displaying building 

energy use intensity (EUI) in the user interface; this can help the energy manager track 

building performance relative to broad energy performance targets, such as the AIA 2030 

challenge13 or other sustainable building operation standards. 

                                                        
13 The Architecture 2030 challenge proposes that continuous improvements in building design and operation 

be made such that by the year 2030, buildings will not need to rely on any fossil fuel or GHG emitting sources 

to operate. This can only happen from a combination of increased renewable energy penetration and better 

building energy efficiency. A building portfolio manager with on-site renewable energy generation could 

track both energy generation at each building and energy consumption, and report these as net EUI. 
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Figure 68: Conceptual ESTool user interface; view of full-signal output information 
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Figure 69: Conceptual ESTool user interface; view of cost only output information
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8 Testing and Tuning the Energy Signal Tool with Synthetic Faults 

As noted above, the many anomalies found in the sub-metered data made model 

calibration impractical. In addition to these issues, the research team lost all contact with 

the project sponsor as of October, 2014; which meant that unexpected changes in 

operational strategy could not be investigated.  

The combination of these problems led to there being insufficient information with 

which to complete a model that accurately characterized a fault-free building. It was 

decided that using a more stable source of building performance data, such as synthetic 

data, would be best for testing and tuning of the ESTool and the associated theory. Benefits 

of testing the ESTool on synthetic faults in an ideal data collection scenario include the 

following: 

 Isolates the fault detection capabilities from the unknowns that exist in the building 

model  

 Tests the sensitivity if the tool on a wide variety of typical building faults, rather 

than waiting for faults to arise 

 Tests the new theory developed for defining customized risk tolerance thresholds 

for each end use 

 Tests the new cost matrix definition methodology, and could lead to refinement of 

this methodology with examination of preliminary results 

 Can test signal prioritization (ranking) algorithm against known, ranked, cost 

deviations 

 Can help gain clarity in understanding how the secondary effects of faults can affect 

end-use energy signals. 

Testing of the Energy Signal Tool with synthetic fault data was undertaken to 

answer the following questions: 
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1. Does a test of the base-case model with no faults yield all green lights over various 

time periods throughout the year?  

2. Which faults are significant enough for the Energy Signal Tool to display an action 

signal?  

3. When an action signal is displayed for a faulted case, how consistently does it 

correspond to the end use associated with the root cause of the problem?  

4. How closely correlated are the ranks of signal priority ratio and magnitude of the 

mean expected cost deviation across all faulted cases?  

8.1 Synthetic Testing Methodology 

Ten faults common to commercial buildings were applied to the model in 

OpenStudio or EnergyPlus, and the model was run with actual weather (for the period 

04/01/13 to 03/31/14) to generate one year of hourly end-use results of “observed” data. 

Conversations with retail partner facilities management, as well as general knowledge of 

common building faults, led to the creation of a list of faults. “Expected” data (or 

conditional end-use probability distributions) were generated by sampling the ranges of 

the uncertain parameters in the fault-free baseline model. Just as in reality, a signal can be 

generated by placing the “observed” end-use consumption in the context of the expected 

range of consumption for a given time period.  

The following are the details of the process to test and refine the theory of the 

energy signal tool. 
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1. Create as expected energy model based on apparent design and operational intent 
2. Incorporate probable ranges of uncertainty into the parameters – no faults 
3. Determine significant parameters to each end use (done already with regression) 
4. Demonstrate the definition of risk tolerance thresholds with adjustments for end-

use controllability and seasonal normalization.  
5. Demonstrate the proper definition of cost matrices using the questions and 

established matrices for each end use being monitored (NGAS, REFR, HVAC, WBE) 
6. Compute expected range of performance for nine time periods (Year, January, April, 

July, October, and the last week in each of these months) by perturbing uncertain 
parameters, with 1000 LHS simulation samples for each time period. 

7. Test the point estimate of the “as expected” model by treating this output as 
“observed” consumption. The as expected model should yield all green signals. Tune 
the base model, the signal tool, and its inputs appropriately so that signals are green 
for the base model. 

8. Inject the following ten typical faults into the model and save models separately:  
a. Outside air dampers stuck open (= 3x normal OA) 
b. Economizer broken (no economizer) 
c. Fans broken (belts snapped – 2 fans off) 
d. Refrigeration compressors operating at low efficiency 
e. Scheduling of operation errors (AHUs turn on at 3 a.m. instead of 7 a.m.) 
f. Thermostat setbacks not working (in all zones) 
g. Cooling set point overrides, set down an extra 1.8 ⁰C  (in all zones) 
h. Heat recovery is being bypassed 
i. Humidity controls fail or are shut off 
j. Temperature sensor float increases from 0.278 ⁰C to 1.5 ⁰C 

9. Use these faulted models as measured data points for all four end uses and put these 
in the context of expected consumption to calculated state-space probabilities. 

10. Generate signals for week/month/year in each scenario. 
a. Compute signal priorities – rank signals. 
b. Compare signal priorities to expected consumption deviation ranks. 

11. High level analysis of the results. 
a. What was the skill of the signal?  
b. Were there secondary effects which made for noisy signal generation? 
c. Did priorities match with cost deviation ranks? 

8.2 Tuning the ESTool with the As-Expected Energy Model Benchmark 

To begin the synthetic testing process, the signal was first generated based on 

“measured” data coming from a completely fault-free building (which is also the base 

model for all fault injections). It was expected that the base model would produce end-use 

results near the mean of expected consumption distributions, thus yielding all “green” light 

action signal results. This was not the case at first. This led to iterations in defining the 
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“base” model until all signals gave “green” light results for all time periods and end uses. 

This iterative tool tuning approach is described below. 

Table 15: Initial results of Baseline model signals for baseline performance compared baseline expectations 

Iteration #1: Base model with all uncertain parameters set to likely values and 

nominal risk tolerance thresholds (M1, M2) set to (0.05, 0.10) 

  WBE NGAS HVAC REFR 

Year Signal Low Low high   

Month 1 Signal Low Low   high 

Month 7 signal low Low high low 

 

The initial model run yielded a large number of false signals, as seen in Table 15 

above. It is a problem to have all parameter values set to expected values, because they 

have combined effects of influencing the building to consume much less natural gas than 

the mean of the expected distribution range. These parameters, specifically were: 

1. Gas burner efficiency (can be lower but not higher than rated) 

2. Air-to-air heat recovery effectiveness (can be lower but not higher than rated)  

3. Minimum airflow rate (likely to be higher than intended, not lower) 
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The parameter distributions were characterized as being nearly right triangles, and 

it was only a matter of adjusting the baseline mode to represent a building as it is likely to 

operate, rather than a building under ideal operation. Therefore, the next iteration utilized 

a base model with uncertain parameter values selected at the mean value within the 

characterized distribution.  

 

Figure 70: Examples of parameter distribution ranges and the difference between expected and mean values 

Table 16: Baseline signals after second iteration of tool calibration 

Iteration 2: Parameter values set to median values 

    WBE NGAS HVAC REFR 

Year Signal high high     

Month 1 Signal high high   high 

Month 7 signal high high high low 

 

This had an effect on the signal results, and this parameter adjustment process was 

repeated several times more. Even a model with parameters set to mean values will exhibit 

end-use result bias resulting from parameter interactions. This became a manual 

optimization problem; with  the lesson being that gathering as much descriptor data as 

possible before tuning the ESTool is paramount.  

The next step in tuning the tool was to re-examine the cost matrices for each end 

use to adjust the signal bias. The natural gas end-use cost matrix had too strong of a bias for 

showing a signal calling for action in response to a “higher consumption than expected” 
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state. It was also determined that there had been a slight error in interpreting the 

minimum tolerance thresholds of 3% - which should have been a minimum of 3% of the 

“measured” values, not 3% probability mass. (The purpose of this minimum threshold was 

to account for normally occurring measurement error). The refrigeration end-use PDF had 

state space boundaries that had been too tightly constrained. Correcting this calculation 

error made excellent improvements to this end. 

Table 17: Baseline signals after third iteration of tool calibration 

Iteration 3: Cost matrices adjusted and minimum tolerance corrected to 3% 

  WBE NGAS HVAC REFR 

Year Signal high high     

Month 1 Signal high high   high 

Month 7 signal high high high low 

 

This still resulted in a large number of action signals. A great deal of time had 

already been invested in adjusting uncertain parameter values in an attempt to obtain all 

green signals, without success. The next step was to calibrate the tolerance range of the 

tool; that is, raise the values of the M1 and M2 risk tolerance thresholds until all signals for 

each time period were green. Henze et al. (2015) had arbitrarily defined nominal risk 

tolerance threshold values of 5% and 10%. Adjusting M1 up to 10%, and M2 up to 20% 

achieved the goal of eliminating false alarms14. In other experiments, the user could still 

begin with lower nominal values for risk tolerance thresholds and test these first. 

                                                        
14 Recall that M1 and M2 are later modified to reflect the degree of controllability of the parameters that 

influence each end use, and also modified further for any needed seasonal normalization factor (natural gas). 
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Table 18: Baseline signals after fourth tuning iteration 

Iteration 4: M1, M2 set up to (0.10, 0.20) 

    WBE NGAS HVAC REFR 

Year Signal       *SR = 12 

Month 1 Signal       *SR =19 

Month 7 signal       *SR = 54 

 

This iteration produced all green lights; the baseline model was now operating 

within its innermost expected range for all end-uses. However, the consumption bounds of 

the extended risk tolerance thresholds are near the limits of the refrigeration energy 

distribution for all time periods. This resulted in green lights for the refrigeration end use, 

but with high signal ratios. The signal ratio is meant to be a rank-able indicator of signal 

severity to allow for prioritizing action within each signal type. It is the ratio of the largest 

to smallest term in the expected cost matrix: essentially showing the skewness of the 

tolerance thresholds superimposed upon the expected energy consumption range. Any 

value above ten is a high signal priority ratio. The high signal ratios associated with green 

signals (see  
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Table 18, above) indicated a problem with the scale of the minimum threshold 

regions as it compared to the overall magnitude of expected operation. It was concluded 

that the range of expected operation, which was between +/- 2.5 to 4% in magnitude for 

each time period, was too narrow. To correct this, another uncertain parameter was 

uncovered and added to the model (heat loss in the refrigeration gas cycle). This parameter 

addition widened the range of expected refrigeration energy use (also refer back to section 

2.5). 

 

Table 19: Baseline signals and signal priority ratios after the fifth round of tool calibration 

Iteration 5: Parameter added to refrigeration end use 

    WBE NGAS HVAC REFR 

Year Signal   SR = 1.7  SR = 2.1  SR = 2.2 SR = 3.2 

Month 1 Signal   SR =2.1  SR = 1.9   SR = 1.8 SR =3.6 

Month 7 signal  SR = 2   SR = 2.2  SR = 2.5 SR = 2.9 

 

Finally, parameter uncertainty and seasonal normalization factors could be applied 

to each end use.  

Table 20: Baseline model tolerance levels (yellow or green signal) for each end use after final tool calibration 

 

Table 20, above, gives the final magnitudes of tolerance interval for each end-use of 

the tool for the application of testing synthetic faults with the baseline model. These values 

were calculated including adjustments for controllability and seasonal variation in each 

Period: M1 M2 M1 M2 M1 M2 M1 M2

Year 0.106 0.211 0.106 0.212 0.124 0.247 0.1 0.199

Month 1 0.106 0.211 0.106 0.212 0.141 0.282 0.1 0.199

Month 4 0.106 0.211 0.127 0.254 0.152 0.304 0.1 0.199

Month 7 0.106 0.211 0.169 0.339 0.124 0.247 0.1 0.199

Month 10 0.106 0.211 0.137 0.273 0.146 0.292 0.1 0.199

Whole Building Energy Natural Gas HVAC 

(Cool + Fans + Elec Heat)

Refrigeration
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end use. These values of M1 and M2 were carried through into all the fault testing cases for 

climate zone 6a. Risk tolerance thresholds are unique for each building and location the 

Energy Signal Tool is applied to. 

8.3 Fault Testing Results 

Table 21 below gives a summary description of the faults tested. The nine test 

periods (Year, Month 1, Month 4, Month 7, Month 10, Week 4 [Jan 22-28], Week 17[Apr 23-

29], Week 30 [Jul 23-29], Week 43 [Oct 22-28]) were selected to be exemplary of the four 

seasons in the Wisconsin climate. The testing included adjustments to the M1 and M2 

thresholds for parameter controllability and seasonal variation. The results showed that 

the tool is quite capable of recognizing eight out of the ten faults tested. The results also 

demonstrate the value in separating action signals by end use, rather than just examining 

whole building energy. However, the signals generated often point to the secondary effects 

of the fault rather than pointing directly to the primary end use which contains the root 

cause of the fault. See especially fault J. 

Table 21: Fault testing descriptions and modeling assumptions 

 

 

Fault Description Modeling Assumptions

a OA dampers stuck open (50% OA) 50% OA instead of 17% OA for DOAS System

b Economizer broken (no ecomomizer) No economizer operation - "Office" AHU only

c Fans broken (belts snapped) "Sales1" AHU and "Restroom" AHU fans off

d Refrigeration compressors broken Refrigeration rack "A" UA suction piping to 600 W/k

e Controls scheduling errors: AHUs All AHUs turn on at 3am instead of 7am

f Thermostat setbacks not working No night setback for heating thermostats

g Cooling setpoint overrides Cooling thermostat setpoint is set down 3oF

h Heat recovery is being bypassed Delete air-to-air heat exchanger on one AHU

i Humidity controls fail or are shut off EMS code for humidity control is disabled

j Thermostat float temp increase Increase float to 1.5 oC for all zones
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Comments: There was some noise in the base case, giving false signals in 3 of the 36 

periods. A green signal means that the observed energy consumption is quite close to the 

mean of the expected consumption distribution. A model composed of parameters set to 

their mean values is not guaranteed to produce this result. In fact, there were some 

adjustments made to the parameter input values, within the given uncertainty ranges, in an 

attempt to meet the expected consumption for the maximum number of periods. This is 

important for the base case, since the signal results of all other faults will carry any bias 

produced by comparing the as-expected building to the probable distribution range of 

output. This process was time consuming. In a real building modeling scenario, there would 

be the same, necessary, challenge of matching the output of the base model to every period 

in the calibration period. As discussed above, this requires more than statistical parameter 

perturbation; it requires gathering more information from the facilities stakeholders. 

 

 

Comments: Signals show strong indications of faults, as expected. A signal ratio of 

“Inf” signifies the measured value is completely outside the expected range generating by 

sampling. HVAC (Cooling, fans, VAV reheat) energy is affected most during peak heating or 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 signal

Month 7 

signal

week 30

 signal

Month 10

 signal

week 43

 signalWhole 

Buildng 

Energy 1.9 1.5 1.4 1.9 2.3 4.1 6.2 2.2 low ; 2.1

Natural Gas 1.5 1.4 1.4 1.7 1.5 2.1 2.1 1.7 low ; 2.2

HVAC 1.6 1.7 1.9 2 2.1 1.6 1.7 2 2

Refrigeration 4.8 4 3.4 4.3 4.5 4.2 3.9 4.7 high ; 5.2

Base: As expected base building

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 signal

Month 7 

signal

week 30

 signal

Month 10

 signal

week 43

 signal

Whole 

Building 

Energy high ; inf high ; inf high ; 1700 high ; inf high ; inf high ; 3.6 high ; 4.9 high ; inf high ; inf

Natural Gas high ; inf high ; inf high ; 1200 high ; inf high ; inf 2.2 high ; 3.9 high ; inf high ; inf

HVAC high ; 17 high ; 580 high ; 1700 high ; 3.1 2.1 high ; 5.1 high ; 5.8 high ; 2.5 high ; 3.3

Refrigeration 4.8 low ; 14 low ; 17 high ; 4.4 high ; 5 4.1 high ; 5.1 high ; 4 high ; 4.3

Fault A: OA Dampers Stuck Open

(50% OA instead of 17% OA)
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peak cooling periods. Signals are not as strong in shoulder seasons, when OA is close to 

supply air temperature in this climate. Refrigeration gives a strong low signal in heating 

season because the heating system is not sized for this additional load, thus the indoor air 

temperature drops significantly, reducing the load on the refrigerators. It is clear that 

action should be taken right away. 

 

Comments: The economizer would provide free cooling given the right set of 

outdoor air conditions. Only one AHU in the building operates with an economizer. This 

climate zone also has relatively few hours of outdoor air conditions during which 

economizer mode would activate. Thus, there is little change in energy use and it is 

permissible that action signals are not generated. It is certainly not expected that there are 

action signals during months when cooling demand is low (month 1, parts of months 4 and 

10). The facility manager would be better off waiting for more issues to arise than to take 

action here.  

 

 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 signal

Month 7 

signal

week 30

 signal

Month 10

 signal

week 43

 signal

Whole 

Buildng 

Energy 1.9 1.5 1.4 1.9 2.3 4.2 6 2.2 low ; 2.1

Natural Gas 1.5 1.4 1.4 1.7 1.5 2.1 2.2 1.6 low ; 2.3

HVAC 1.6 1.7 1.9 2 2.2 1.6 high ; 2 2 1.9

Refrigeration 4.8 4 3.4 4.3 4.5 4.2 4 4.6 high ; 5.2

Fault B: Economizer broken 

(no ecomomizer for one AHU)

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 signal

Month 7 

signal

week 30

 signal

Month 10

 signal

week 43

 signal

Whole 

Buildng 

Energy low ; 1300 low ; 430 low ; 580 low ; 350 low ; 73 low ; 5.4 low ; 6.3 low ; 85 low ; 3500

Natural Gas low ; 2600 low ; 690 low ; 700 low ; 120 low ; 30 2.2 low ; 3.8 low ; 32 low ; 870

HVAC low ; 91 low ; 4.5 low ; 3.8 low ; 210 low ; 580 low ; 120 low ; 270 low ; 4500 low ; 250

Refrigeration 4.8 4.1 3.4 3.9 4.5 4.2 3.9 4.7 high ; 4.8

Fault C: Fans broken (belts snapped)

(Sales1 AHU and Restroom AHU fans off)
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Comments: One major and one minor AHU have fans that are disabled. It was also 

assumed that outdoor airflow to the zones served by these two AHUs was eliminated. Fan 

energy is a relatively small component of total HVAC energy, even in shoulder seasons. A 

change in outdoor air flow rate is much more significant than fan energy, thus a signal is 

stronger for the natural gas end-use in the heating season. This fault has strong, consistent 

signals, and merits action. 

 

 

Comments: The increased refrigeration energy use is a larger component of whole 

building energy during the cooling months; thus, this end use begins to affect whole 

building energy use in July. A continuous signal of “Inf” for the refrigeration energy use is a 

rightful call to immediate action. 

 

Comments: This operational error would have all systems running as if the store 

were occupied 4 hours earlier than intended. This includes thermostat adjustments, but 

does not affect outdoor air quantity, since this is already delivered at a constant rate. 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 signal

Month 7 

signal

week 30

 signal

Month 10

 signal

week 43

 signal

Whole 

Buildng 

Energy 2.1 high ; 1.6 high ; 1.5 1.9 high ; 2.9 high ; 4.1 high ; 4.9 high ; 2.8 1.7

Natural Gas 1.5 1.4 1.4 1.7 1.5 2.1 2.2 1.6 low ; 2.3

HVAC 1.6 1.7 1.9 2 2.2 1.6 1.7 2 1.9

Refrigeration high ; Inf high ; Inf high ; Inf high ; Inf high ; Inf high ; Inf high ; Inf high ; Inf high ; Inf

Fault D: Refrigeration compressors broken

(Refrigeration Suction UA up by 300% on two racks)

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 15 high ; 11 high ; 8.6 high ; 17 high ; 52 high ; 17 high ; 12 high ; 28 high ; 11

Natural Gas high ; 9.3 high ; 7.9 high ; 6 high ; 9.6 high ; 26 high ;7.3 high ; 3.6 high ; 13 high ; 5.2

HVAC high ; 39 high ; 39 high ; 37 high ; 32 high ; 17 high ; 47 high ; 28 high ; 15 high ; 24

Refrigeration high ; 4.9 high ; 4 high ; 4.1 high ; 3.9 high ; 3.9 3.8 high ; 4.4 high ; 3.8 high ; 14

Fault E: Scheduling of operation errors: 

(All AHUs turn on at 3am instead of 7am)
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Signals across the year were in the quite high. The presence of heating and cooling related 

signals indicates simultaneous heating and cooling was expected. This fault had been 

present in the case study building, as discussed in a previous section, and was only 

discovered through a retro-commissioning effort. The consistent signals generated in all 

months by the Energy Signal Tool would have prompted action to correct this problem 

sooner than actually occurred.  

 

 

Comments:  Strong signals were generated for every month of the year. Once again, 

the presence of heating and cooling related signals indicates simultaneous heating and 

cooling was expected. This fault would be detected very quickly. 

 

 

Comments: This fault would have a high ratio of savings to action cost. The energy 

signal tool was quick to send a strong signal detecting cooling setpoint overrides. This 

confirms that the store has winter cooling. 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 200 high ; 74 high ; 43 high ; 170 high ; 270 high ; 29 high ; 13 high ; 230 high ; 94

Natural Gas high ; 95 high ; 48 high ; 26 high ; 83 high ; 130 high ; 7.9 high ; 5.5 high ; 140 high ; 33

HVAC high ; 76 high ; 80 high ; 66 high ; 33 high ; 20 high ; 120 high ; 28 high ; 17 high ; 41

Refrigeration 3.9 high ; 4.6 high ; 5.7 3.7 3.7 3.7 3.9 4 high ; 13

Fault F: Thermostat setbacks not working :

(no night setbacks or setups)

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 5.6 high ; 3.8 high ; 4 high ; 2.9 high ; 4.1 high ; 180 high ; 500 high ; 5.3 high ; 1.9

Natural Gas high ; 2.8 high ; 3.2 high ; 3.1 high ; 2 high ; 2.2 high ; 52 high ; 10 high ;  2.6 1.6

HVAC high ; 370 high ; 18 high ; 13 high ; 32 high ; 23 high ; 2500high ; Inf high ; 43 high ; 21

Refrigeration 4.2 3.7 3 3.6 3.7 low ; 4.4 4.2 4.1 high ; 3.6

Fault G: Cooling setpoint overrides:

(Cooling T;stats set down 1.8oC)
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Comments: The AHUs with heat recovery have them because they are economical 

and impactful on the energy consumption of the building. These results show an expected 

sharp increase in natural gas use when lacking a major heat recovery element. This is 

especially true in months when OA-Indoor temperature difference dominates the heating 

load (shoulder seasons). This fault would result in needed action after a short monitoring 

period. 

 

 

Comments: Humidity control is a huge load on the cooling system during warm 

months. Without it, HVAC energy use drops significantly. Without humidity controls, space 

humidity levels are allowed to drift up, which puts a greater load on the refrigerated cases. 

Examining the end-use signals in this case might lead to confusion that the root cause lies 

partially in the refrigeration system. However, when multiple time periods are considered 

and the energy manager observes that refrigeration energy use increases only in the 

warmest months, it would be quite clear that the refrigeration fault is due to an interactive 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 signal

Month 7 

signal

week 30

 signal

Month 10

 signal

week 43

 signal

Whole 

Buildng 

Energy high ; 62 high ; 23 high ; 11 high ; 1700high ; 580 3.8 high ; 4.3 high ; 870 high ; 500

Natural Gas high ; 160 high ; 26 high ; 11 high ; Inf high ; Inf high ; 2.6 high ; 3 high ; Inf high ; 870

HVAC high ; 1.9 high ; 2.4 high ; 2.5 1.9 2.1 high ; 1.8 high ; 2.1 1.8 1.8

Refrigeration 4.6 3.9 3.4 high ; 4 high  ; 4.6 4.1 high ; 4.9 4.3 high ; 6

Fault H: Heat recovery is being bypassed:

(Delete Air;to;Air HX on one AHU)

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 signal

Month 7 

signal

week 30

 signal

Month 10

 signal

week 43

 signal

Whole 

Buildng 

Energy low ; 2.4 1.5 1.5 1.9 2.3 low ; 56 low ; 6.3 low ; 3 low ; 2.1

Natural Gas low ; 1.9 1.4 1.4 1.7 1.5 low ; 51 low ; 140 low ; 2.3 low ; 2.3

HVAC low ; 24 1.7 1.8 2 2.1 low ; Inf low ; 71 low ; 26 2

Refrigeration high ; 4.9 3.9 high ; 3.5 4.2 4.4 high ; 6.6 high ; 55 high ; 4.5 high ; 5.2

Fault I:Humidity controls fail or are shut off:

(EMS code for humidity Control is disabled)
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effect between systems. This fault is a case for having distinct signals by end use; especially 

at the level of the entire year. The signal priority for action on whole building energy is 

quite low, but only because the SR values for HVAC and refrigeration are strongly opposing 

each other. It was certainly not expected that humidity control failure would be a fault in 

the periods of month1, week 4, or week 43 according to the AMY weather data (see 

appendix). Many false positive signals for the natural gas end use (being too low) indicate 

that overcooling of the building was an expected side effect of dehumidification. 

 

 

Comments: A higher tolerable range in indoor temperature float would decrease 

heating and cooling energy. Conversely, the refrigeration systems are overworked as the 

cases go through unnecessary temperature swings that engage added defrost energy. Thus, 

opposite end-use signals are generated. Once again, this fault is a great case for breaking 

the building energy signal into end-use components. The priority of combined whole 

building energy action is comparatively low due to the combination of energy increase in 

one end use and energy decrease in another. With only whole building energy metering, 

this fault might have been placed low in priority. 

8.4 Signal Classification Skill Metric 

Classification skill tests the aptitude of the Energy Signal Tool as an application of 

fault diagnostics. An advantage of using synthetically generated fault data is that the 

accuracy of signal classification can be assessed easily. This application has five possible 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 signal

Month 7 

signal

week 30

 signal

Month 10

 signal

week 43

 signal

Whole 

Buildng 

Energy 2 1.5 high ; 1.6 1.9 low ; 3.3 low ; 4.2 low ; 4.2 low ; 2.7 low ; 2.2

Natural Gas low ; 1.5 1.5 high ; 1.6 1.7 low ; 3.2 low  ; 2.8 low ; 4.3 low ; 2.2 low ; 2.4

HVAC low ; 5 1.8 1.8 low ; 2.9 low ; 6.3 low ; 36 low ; 11 low ; 5.5 low ; 2.5

Refrigeration 4.6 3.8 high ; 3.6 high ; 4 high ; 4.1 4.1 high ; 4.4 4 high ; 10

Fault J:Thermostat Float temp increase:

(Increase float to 1.5 oC for all zones)
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classifications for the energy signal, as explained above. Rather than assessing the skill of 

the tool here based on the signal magnitude, classification skill shall be based on whether 

or not a signal corresponds to a fault. Florita (2014) proposed a way to classify each signal 

in one of the following four categories, based on known conditions from the synthetically 

generated faults: 

 TP: True positive; a signal is given and it corresponds to the root cause end-use fault 

 FP: False positive; a signal is given which does not correspond to the root cause 

 TN: True negative; no action is prescribed, and the end-use is not faulted 

 FN: False negative; no action is prescribed, when actually the end-use is faulted 

From the enumeration of these classification categories, two useful metrics arise: 

1. Frequency of Detection (FOD); what percentage of faults are identified? 

2. False Alarm Ratio (FAR); what percentage of signals call for un-needed action? 

Where, 

Equation 29: Frequency of detection 

     
  

     
 

Equation 30: False alarm ratio 

    
  

        
 

In this work, skill metrics shall be applied to all four end uses of whole building 

energy, natural gas, HVAC, and refrigeration as described previously. In terms of fault 

detection capability, FOD is significant for its measure of sensitivity to faults. A false 

negative signal may be produced when the range of risk tolerance is wide enough to absorb 

the anomaly generated by a fault. A false negative in whole building energy may be 

produced when two end-uses see opposite changes in energy consumption and cancel out. 

To a lesser degree, false negatives may also be a product of the fault having effects on 

components of the building which negate each other. FOD is not applicable in the case of a 
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fault-free building. FAR is essentially estimating the percentage of spurious actions 

prescribed by the tool. For fault detection in facilities management, this can be compared to 

the percentage of maintenance calls that result in no further action. In some cases, this 

comes in the form of actions prescribed for too many end-uses; which is why FP is 

expressed as a ratio compared to all true signals. 

This skill metric was assessed in each of the nine time periods, for each of the fault 

testing cases. The following is an example of how skill metrics would be tallied for each end 

use in each period of analysis. Since the example is of an outdoor air quantity fault, true 

positive signals for action are expected in all end uses except refrigeration. Outdoor air 

quantities are related equally to HVAC and natural gas end-use energy. Any action taken on 

systems related to refrigeration would certainly not address the root cause of the problem. 

Additionally, this fault is expected to generate signals in all months of the year. 

 

Figure 71: Example of classification skill calculation 

In this case, since it is known in advance what the signals should be, the results of 

the ESTool shall be compared to known truth values for signals. For several faults, as noted 

above in the signal commentary for each, it was not reasonable to expect an action signal 

for certain months of the year. These faults do not affect the operational energy in some 

seasons, depending on climate. To summarize, these were: 

Fault B, Economizer Control: only during cooling season 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 signal

Month 7 

signal

week 30

 signal

Month 10

 signal

week 43

 signal

Whole 

Building high - inf high - inf high - inf high - inf high - inf high - 13 high - 260 high - inf high - inf

Natural Gas high - inf high - inf high - inf high - inf high - inf high - 28 high - inf high - inf high - inf

HVAC high - 15 high - 308 high - 436 2.8 2.6 high - 10 high - 7.7 2.7 2.5

Refrigeration 4 low - 24 low - 27 3.5 high - 3.7 3.8 high - 4.2 3.9 high - 4.3 Σ:
TP 3 3 3 2 2 3 3 2 2 23

FP 0 1 1 0 1 0 1 0 1 5

TN 1 0 0 1 0 1 0 1 0 4

FN 0 0 1 1 0 0 1 1 4

Fault A: OA Dampers Stuck Open

(50% OA instead of 17% OA)
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Fault G, Cooling T-stat set points: only during cooling season 

Fault H, Heat exchanger failure: only in seasons with outdoor/indoor air temperature 

differences greater than 5 ⁰C 

Fault I, Humidity Control: only during cooling season 

Accordingly, there were seasons with no false negative classification possibilities for 

faults with significant seasonality, such as those listed above. If there is no chance of 

observing a fault in certain seasons, then its skill should not be penalized for lack of 

detection in these seasons. Thus the denominator for the FOD metric was less than other 

faults. The exception for fault H did not apply to the case study location, but could apply to 

a climate with extended periods of mild weather. Care was taken to address this for each 

climate zone. 

8.4.1 Summary of Skill Testing Results 

Testing results for the skill metric are given below when nominal values of M1 and 

M2 are set to 0.1 and 0.2, respectively. All metrics should be compared to those of the base 

case, since there was a small bias of false alarms in the base model already – as discussed 

above. 

Table 22: Testing results summary giving classification skill metrics with [M1, M2] = [0.1, 0.2] 

 

All faults except fault “B” had a high frequency of detection. While there may be false 

alarms as a result of monitoring multiple end-uses, this is better than having a single 

indicator of whole building performance that is diluted by opposing changes in energy 

consumption. False alarms were mainly due to interactive effects that occur naturally in a 

building. For example, when humidity controls are disabled, it is normal that refrigeration 

energy use increases. However, acting directly on refrigeration systems in the building 

Climate

Zone 6a BASE Fault A Fault B Fault C Fault D Fault E Fault F Fault G Fault H Fault I Fault J

FOD N/A 0.85 0.11 0.96 0.83 1.00 1.00 0.90 0.81 0.67 0.74

FAR 0.08 0.16 0.11 0.03 0.03 0.22 0.08 0.28 0.13 0.38 0.17



 

168 
 

would certainly not identify the root cause of the problem, and would be a waste of money 

to hire a refrigeration systems technician. Therefore, this signal is classified as false 

positive. Refer to the appendix for complete tallies of skill metrics for all faults. 

8.5 Applying the Energy Signal Tool in Different Climate Zones 

Testing the Energy Signal Tool with the same base model, and identical faults but 

located in other climate zones is a way to test the robustness of the tool for widespread, 

rapid deployment across a building portfolio. The case study building is located in climate 

zone 6a (cold). The two alternate testing locations were selected for diversity of climate to 

be in Portland (zone 4c, mixed marine) and Atlanta (zone 3a, warm, moist). In the figure 

below, the location of the case-study building is shown with a black star, and the two 

alternate testing locations are shown with red stars. For each new test location, a recent 

typical meteorological year (TMY3) file was used to simulate an annual weather cycle. 

 

Figure 72: ASHRAE Climate Zones and test locations 

 (image source: http://www.achrnews.com/ ) 

Other than using different weather files, the modeling process for the two new 

climate zones was identical to that in the case study building location. The same physical 

model and schedules were used. All HVAC systems including cooling coils, heating burners, 

 

 

 

http://www.achrnews.com/
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and fans were auto sized to meet loads. Identical rates of ventilation airflow were used. An 

NREL design support document made a similar analysis on big-box retail store design 

across these climate zones (Bonnema et. al., 2013). The authors used auto sizing of HVAC 

equipment, and changed only the wall insulation level for best practice for different 

buildings. That insulation level required for climate zone 6a is slightly greater than that 

required for climate zones 3a and 4c; thus, it was left unchanged in this work to allow for 

more direct comparison of signal results. For other types of buildings, other parameters 

such as window type would change by climate zone as well, and could impact the 

parameter significance rankings. In this case however, fenestration is a very minimal 

component of the building and was left untouched. The table below shows the difference in 

end-use energy consumption profile for the same building in the three different climates. 

Table 23: Summary of energy end use by climate zone 

 

To begin the testing process in the new climate zones, a new global sensitivity 

analysis was carried out to identify which parameters were most significant to each end 

use by climate zone. A summary of these findings, as compared to those of the original case 

study location is given below. Original parameter distribution assumptions (rather than the 

End-Use: 3a 4c 6a

Heating (Elec) 0.02 0.03 0.53

Cooling 4.43 1.94 2.08

Interior Lighting 15.70 15.70 15.70

Exterior Lighting 1.46 1.61 2.24

Interior Equipment 8.49 8.49 8.49

Fans 2.42 2.36 2.42

Refrigeration 12.62 11.75 12.20

Nat Gas 6.82 12.35 23.10

Total: 52.0 54.2 66.8

Annual Energy Use by Climate Zone

(kBtu/sq ft-yr)
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updated distribution ranges generated from the calibration process15) were used to 

generate expected results for the new climate zones. Then, tuning of base case assumptions 

for parameter values was done produce no false positives for the “Base“ case across the 

four representative months used in the study. Finally, the faulted scenarios from before 

were simulated in each climate zone. 

8.5.1 Summary of Energy Signal Differences by Climate Zone 

When in the context of different climates, there are several underpinnings to the 

Energy Signal Tool processor that change. Those include: 

 Seasonal normalization factors due to seasonal variation in end-use magnitude 

 Parameter significance for each end use, and the impact on end-use controllability 

 Fault impact due to weather 

 Answers to cost matrix input questions 

As discussed earlier, seasonal normalization factors are used to dampen signals for 

periods when annualized consumption is much below the expected annual maximum. They 

have the greatest effect in climates with extremes, such as the upper-Midwest region and 

climate zone 6a. In climate zones 3a and 4c, there is less of a need for seasonal 

normalization of risk tolerance. The exception to this is the increased spread in monthly 

HVAC energy in climate zone 3a, due to very high summer cooling loads. 

In each climate zone, a multivariate regression analysis revealed distinct results for 

the global parameter sensitivity analysis. A summary of these results is given in Figure 73 

a,b below. 

                                                        
15 There was no data against which to calibrate the models of the new climate zones. As illustrated in the 

previous section, the use of original vs. updated parameter uncertainty distributions did not alter the end-use 

consumption variance significantly. Thus it remains a fair comparison among the different climate zones. 
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Figure 73 a,b: Comparison of parameter significance index by climate zone. Key given below. 
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Table 24: Key of parameter names in figure above 

 

There were numerous parameters with minor differences and several with notable 

major differences among significance indices among the distinct climate zones. Gas burner 

efficiency (par #2) is of course more significant in colder climate zones. The sensible 

effectiveness of the air-to-air heat recovery device (par #7) was found to be much less 

significant in the cold climate. This is due to the fact that the plate heat exchanger operates 

with a frost prevention threshold of 1.7 ⁰C. There are many more hours above this level, 

but below the heating balance point in climates 4c and 3a than occur in 6a. Fan pressure 

rise (par #8) was more significant in climate zones 4c and 3a mainly due to the larger 

percentage of total energy it comprises. Refrigeration minimum condensing  temperature 

(par #12) was found to be more significant in the warmer climate zones in proportion to 

the number of annual hours with warm outdoor air temperatures.  

The differences in parameter significance for each climate zone resulted in a new 

ratio of controllable to uncontrollable parameter composition for each end use (see 

previous section). Those results are summarized in the table below: 

Par #: Description:
1 Space infiltration reduction (%)
2 Gas Burner Eff (%)
3 Heating Setpoint (oC)
4 Wall/Roof Conductivity multiplier
5 Heating supply air temp (oC)
6 Heating sizing factor
7 HX Sensible Effectiveness (%)
8 Fan Pressure Rise (multiplier)
9 Minimum system outside air ratio

10 Rated roof absorptance
11 Refrig suction piping UA value
12 Condensing temp minimum, delta
13 Fan Efficiency (%)
14 DX Cool Coil COP
15 Anti-sweat energy multiplier
16 T-Stat float heat/cool (

o
C)

17 Operating walkin ref temp (
o
C)

18 Cooling Setpoint (
o
C)
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Table 25: Summary of end-use controllability ratios for each climate zone 

 

In Table 25 above, the sum of scaled parameter influence factors controllability and 

uncontrollable parameters comprising each end-use is given. Once again, these values are 

obtained by normalizing the SI values of each parameter, obtained by the multivariate 

regression global sensitivity analysis, to the maximum in each end-use, and then summing 

values separately for parameters classified as controllable or uncontrollable to the facilities 

manager. The function U/(U+C) expresses the degree of uncontrollability the facilities 

manager has over affecting each end use. End-uses with a higher degree of 

uncontrollability are given more room for risk tolerance, since there are less likely to be 

effective actions that can be taken to address problems with unexpected energy 

consumption. The building in climate zone 4c has a notably higher degree of 

uncontrollability for HVAC and refrigeration end-uses. This is due to the mild outdoor 

temperatures in this climate that reduce the significance of controllable parameters such as 

cooling COP and refrigeration condensing temperature. 

The cost matrices were slightly different for some of the end-uses across the three 

climate zones. For example, where cooling energy has a high ratio of maintenance to 

operational cost in climate zone 6a, the reverse is true in climate zone 3a. Conversely, the 

Whole

Building 

Energy

Natural

Gas HVAC Refrigeration

CLIMATE 3A

Σ C: 1.974 1.987 1.179 0.960

Σ U: 2.615 1.881 2.981 1.170

U/(U+C) 0.570 0.486 0.717 0.549

CLIMATE 4C

Σ C: 1.611 1.771 0.300 0.245

Σ U: 1.920 1.837 2.291 1.141

U/(U+C) 0.544 0.509 0.884 0.824

CLIMATE 6A

Σ C: 1.298 1.235 0.817 1.096

Σ U: 1.623 1.562 2.270 1.077

U/(U+C) 0.556 0.558 0.735 0.496
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cost to maintain natural gas heating equipment is low compared to its use in the cold 

climate. Answers to question 2 are identical for all climate zones, representing consistent 

organizational goals at all stores.  Table 26 below gives the expected answers provided by 

facilities management to the two cost matrix definition questions. 

Table 26: Answers to cost matrix definition questions for three climate zones 

 

The following figures illustrate the seasonal variation in the major end uses of the 

buildings in each climate zone. Note that climate zone 6a exhibits the greatest variation in 

monthly natural gas use. Climate zone 3a exhibits the greatest variation in monthly HVAC, 

as well as refrigeration energy use. Recall from the previous section that a normalization 

factor is applied to dampen the tendency for generating an action signal in off-peak end use 

consumption periods. 

 

 

Questions about End Uses:
Climate

Whole Bldg

Energy

Natural

Gas HVAC Refrigeration

Climate 3a low high low high

Climate 4c low neutral neutral high

Climate 6a low low neutral high

Climate 3a neutral neutral low low

Climate 4c neutral neutral low low

Climate 6a neutral neutral low low

1. Is the ratio of (cost to maintain) / 

(cost to operate) high or low? 

2. Does high or low energy in this end-

use indicate a serious problem relating 

to operation, comfort, or product 

stability?   
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Figure 74 a, b, c: Monthly energy end-use for each climate zone 

The combination of different ratios uncontrollability and seasonal end-use variation 

result in a new set of adjusted M1 and M2 risk tolerance threshold values for the end uses of 

each climate zone. Figure 75 below gives values of M1 for each case (where M2 is always 

equal to M1∗2). 
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Figure 75 a, b, c, d: Comparison of inner risk tolerance threshold values (M1) for end-uses in each climate zone 
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The figures above illustrate several differences between adjusted risk tolerance 

thresholds for each climate zone. First, the colder climates have greater annual variation in 

risk tolerance for natural gas use due to seasonal normalization. For the HVAC energy 

signals, the risk tolerance threshold values are generally lower in the more extreme 

climates (3a and 6a), while magnitude of seasonal variation is similar. Overall, it can be 

concluded that the Energy Signal Tool is expected to be more sensitive for climate zones 3a 

and 6a than for the mild climate zone 4c. In other words, it is likely that the FOD metric will 

be lowest for climate zone 4c. 

The exceptions to allowing false negative signal classification noted above also apply 

to several periods for the new climate zones. That is, it is completely unreasonable to 

expect the Energy Signal Tool to detect certain faults with significant seasonality. In 

addition to the exceptions mentioned for the case study location, it is expected that heat 

exchanger failure with not generate a signal in expanded periods of mild weather. The table 

below gives a summary of these exceptions in reference to the fault testing periods and 

weather data plots in the appendix. 

Table 27: Exceptions to possible signals for rule-based fault classification 

Fault: Climate 3a Climate 4c Climate 6a 
Fault B – 
Economizer 

(HVAC) 

- Month 1, Wk 4, Wk 43 Month 1, Wk 4, Wk 43 

Fault G – Cool T-
stat 

(HVAC) 

- Month 1, Wk 4, Wk 43 Month 1, Wk 4, Wk 43 

Fault H – HX 
Failure 

(HVAC or natural 
gas) 

Wk 43 Wk 17, Month 10, Wk 43 - 

Fault I – RH Control 
(HVAC) 

Wk 4 Month 1, Wk 4, Wk 43 Month 1, Wk 4, Wk 43 

8.5.2 Results of Energy Signal Tool Testing on Different Climate Zones 

All ten faults were modeled for the two additional climate zones in the same manner 

as done for the case study location. This generated two additional sets of synthetic fault 
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data. Parameter values in the baseline model were adjusted to minimize baseline FAR 

across all monitoring periods. The Energy Signal Tool was then applied to each of these 

cases. Complete results of signal output can be found in the appendix. Skill metrics were 

assessed for the two additional climate zones, taking into account the signal exceptions 

noted in Table 27 above. The table below gives a summary of skill metrics. 

Table 28: Summary of classification skill metrics for three climate zones 

 

The signal tool was more sensitive to schedule-related faults in model representing 

the cold climate zone. This is due to a more constant need for indoor conditioning. As 

expected, the tool was more sensitive to detecting faults with the humidification system in 

the warm moist climate zones. The heat exchanger bypass fault was detected most often in 

the mild climate 4a, since the heat recovery device will often make the difference between 

using additional air conditioning or none at all. The signal tool was not sufficiently sensitive 

to detecting a fault in the economizer of one air-handling unit in the store. It also had a low 

frequency of detection for schedule-related faults in the mild climate 4c. This can be 

attributed to the reduced need for environmental conditioning during the nighttime hours 

of this climate. See the appendix for a complete print of fault testing signal generation 

results for each time period. 

Climate

Zone 3a BASE Fault A Fault B Fault C Fault D Fault E Fault F Fault G Fault H Fault I Fault J

FOD N/A 0.81 0.11 0.81 0.93 0.70 0.81 0.94 0.74 0.94 0.74

FAR 0.14 0.06 0.20 0.13 0.11 0.04 0.03 0.40 0.06 0.46 0.07

Climate

Zone 4c BASE Fault A Fault B Fault C Fault D Fault E Fault F Fault G Fault H Fault I Fault J

FOD N/A 0.78 0.08 0.86 0.94 0.56 0.60 1.00 0.90 0.79 0.70

FAR 0.14 0.00 0.16 0.38 0.09 0.08 0.11 0.47 0.00 0.24 0.00

Climate

Zone 6a BASE Fault A Fault B Fault C Fault D Fault E Fault F Fault G Fault H Fault I Fault J

FOD N/A 0.85 0.11 0.96 0.83 1.00 1.00 0.90 0.81 0.67 0.74

FAR 0.08 0.16 0.11 0.03 0.03 0.22 0.08 0.28 0.13 0.38 0.17



 

179 
 

8.5.3 Sensitivity Ananlysis for Improving Skill 

It was expected that the frequency of detection would be greater for some faults 

than others. Indeed, one of the main purposes of the tool is to set risk tolerance thresholds 

and prioritize actions based on organizational goals. However, to investigate the question 

of how sensitive the energy signal tool would have to be in order to identify each fault, a 

small sensitivity analysis was performed. For each scenario where FOD had been less than 

66%, the values of M1 and M2 were reduced from their nominal values of 0.1 and 0.2, 

respectively, until the point where the FOD of the fault scenario increased to a passing 

score of 66% or greater. 

Table 29: Sensitivity analysis results summary for improving skill 

 

The skill metrics were not improved for any of the faults. In the case of fault B, a 

single economizer on a small air handling unit is not significant to any end-use. Faults E and 

F did not produce noticeable changes in the HVAC energy in any time period. This may be 

because fans on cycle on an infrequent basis at night to meet loads in an empty building. In 

addition, climate zone 4c is quite mild, meaning that little conditioning is needed. In all of 

these cases, reducing the tolerance threshold for risk was detrimental in that it increased 

the false alarm ratio. Higher quality sub-metering equipment, with lower standard 

measurement error, would be required to monitor for faults such as these. 

FOD FAR FOD FAR M1 M2

Fault B,

Climate 6a 0.11 0.11 0.22 0.28 0.03 0.06

Fault E,

Climate 4c 0.58 0.04 0.58 0.11 0.05 0.1

Fault F, 

Climate 4c 0.60 0.11 0.63 0.14 0.05 0.1

Initial Skill: 

(M 1 =0.1, M 2  = 0.2) Improved Skill

Final Risk 

Thresholds

Fault:
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8.6 Portfolio Level Analysis: Ranking Faults by Signal Priority Ratio 

The ten distinct faults across three climate zones can collectively be thought of as 30 

unique buildings in three climate zones. This amount of data is sufficient to explore the 

portfolio maintenance prioritization support that the Energy Signal Tool provides. Rather 

than displaying 30 sets of traffic lights, we can leverage the quantitative output of the 

ESTool for comparison of how the data processing algorithms prioritize actions in response 

to faults. The two quantitative outputs of the Energy Signal Tool are: Signal Priority Ratio 

(how strong the signal is based on both energy cost and subjective costs, Equation 27) and 

Mean Cost Deviation (mean of 95 percentile cost difference between expected and 

observed, Equation 28). When prioritizing in terms of the Signal Ratio, it is only valid to 

make comparisons among signals of the same end-use. The Signal Ratio is just a scalar, not 

a quantity whose magnitude has any direct meaning other than making rankings of actions 

to take for one end use; which can be made across multiple buildings. All cost deviations 

have been converted to absolute value for ease of comparison. 

The following figures show the results of the top 15 faults by end use. They are 

ranked in ascending order of priority according to Signal Ratio (shown at right), while a 

comparison of deviation from mean expected cost is shown at left. Both scales have been 

transformed by the logarithmic function to encompass a better view of the entire range of 

signal strength and cost deviation values. Not surprisingly, the outdoor air damper fault 

(Fault A) produced a cost deviation in climate 6a that ranked higher than any other fault for 

the first three end-uses. Fan malfunction (Fault C) exhibited the most variability in terms of 

action urgency across the three climate zones. This can be explained by the fact that in the 

mild climate 4c, the main function of the fan is to provide ventilation air to the building – 

rather than heating or cooling. Meanwhile, the fans serve in large part to provide heating to 

climate 6a (highest priority in natural gas end-use of the three), and provide cooling to 

climate 3a.  
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Figure 76: Top 15 faults in yearly whole-building energy end-use, in ascending signal priority ratio 

 

Figure 77: Top 15 faults in yearly natural gas energy end-use, in ascending signal priority ratio 
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Figure 78: Top 15 faults in yearly HVAC energy end-use, in ascending signal priority ratio 

 

Figure 79: Top 15 faults in yearly refrigeration energy end-use, in ascending signal priority ratio 

See the appendix for tables of all 30 faults as observed in months 1, 4, 7, and 10 for each 

end use. It should be noted that in these tables, all deviations in energy cost have been 

annualized (multiplied by 12 for periods of one month) and are expressed in absolute 

value. 

The following figures compare the mean expected cost deviation to the signal 

priority ratio for all faults across all climate zones. In order to show what correlation 
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relationships exist between the two, both quantities have been transformed into respective 

ranks for each time period. Ranks are made in descending order, and are then re-defined as 

priorities in ascending order; i.e., the lowest ranks are the top priorities. Thus, the points in 

the lower left corner of each graph represent the most severe faults. The ranks of the two 

quantities are not necessarily expected to match. This is due to the differences inherent to 

each of the fault prioritization metrics; the cost deviation value prioritizes based only on 

energy cost, while the signal ratio prioritizes based on energy cost, action cost, and the 

other organizational objectives built into the cost matrix. Across the portfolio of buildings, 

there are also different cost deviation magnitudes caused by any given fault in a given time 

period. For example, the cost deviation of fault “D“ in climate zone 3a will be greater than 

that of fault “D“ in climate zone 6a in the month of April. 

 

Figure 80: Comparison of whole building energy signal priority ratio to mean cost deviation for synthetic 

“portfolio” results 
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Figure 81: Comparison of natural gas energy signal priority ratio to mean cost deviation for synthetic “portfolio” 

results 

Of all the end use signals, the rank of signal priority ratio is most closely correlated 

to the cost deviation rank for whole building energy use, as observed in Figure 80 above. 

The correlation of cost to signal priority for natural gas energy is more scattered – 

especially in “Month 7” and “Year”. This can be attributed to the cost matrix definitions for 

each climate zone shown in Table 26 above. By saying that the signal should be sensitive to 

the fact that the ratio of cost of maintaining vs. the operating natural gas equipment is 

relatively high in climate zone 3a, any given cost deviation in natural gas use will have a 

lower signal priority ratio. Conversely, since the cost to maintain vs. the cost to operate is 

low for climate zone 6a, this signal will be relatively strong for any given cost deviation. 

Thus, the scattering of points in Figure 81 is a result of three distinct cost matrices for 

natural gas use. 
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Figure 82: Comparison of HVAC energy signal priority ratio to mean cost deviation for synthetic “portfolio” 

results  

 

Figure 83: Comparison of refrigeration energy signal priority ratio to mean cost deviation for synthetic 

“portfolio” results 

Figure 82 above shows that portfolio signal priority rankings are closely correlated 
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becomes less weakens due to an increasing ratio of potential maintenance cost to potential 

energy savings. For the refrigeration end-use this correlation falls apart even sooner, due to 

the generally low cost deviation in refrigeration energy end-use for any fault (refer to 

Figure 79 above).
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Figure 84 a, b, c, d: Signal priority ratio rank and cost deviation rank comparison decomposed by climate zone  
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Figure 84 above displays a decomposition of the cost/signal strength ratio by 

climate zone. This reveals more about how the risk tolerance threshold adjustment for 

controllability, as well as the cost matrix definition questions shape the signals. In the 

lower right corner, three distinct patterns of cost/signal ratio for refrigeration energy end 

use signals can be observed. Recall that in climate zone 4c, it was determined that energy 

use due to refrigeration was less controllable than other climate zones (refer to Table 25 

above). This has caused the signals to be weaker for any given cost deviation compared to 

the other climate zones. 

The clear divisions by climate zone in the rank comparisons in the upper-right 

graph of Figure 84 above illustrate the different weighting of natural gas energy cost in 

each climate zone. Indeed, this energy use varies most among climate zones. For a given 

cost deviation rank level, faults in zone 3a are most likely to get a higher signal priority 

ranking. This preference was built into the cost matrix by answering question #1 “high” for 

climate 3a, “N/A” for climate 4c, and “low” for climate 6a (refer to Table 26 above).  
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9 Conclusions and Extensions to Further Work 

9.1 Summary and Conclusions 

Through some initial work with a big-box retail industry partner, as well as 

additional literature review, the original concept (Henze et al., 2015) of how to apply the 

Energy Signal Tool has been refined. The additional statistical processing theory 

introduced in this work has rendered the Energy Signal Tool capable of being deployed 

rapidly in a variety of locations. Expanding the possibilities for the cost matrix has promise 

to incorporate additional organizational goals into the Energy Signal Tool decision support. 

Rather than being best suited for single building fault detection, a case has been made for 

broadening the application of the ESTool to portfolio energy management and retrofit 

prioritization. The greatest power in this self-benchmarking tool lies in the ability to 

quickly assess whole-building and end-use performance to identify areas with potential for 

both energy savings and achieving broader organizational goals. The Energy Signal Tool 

may not be especially useful for identifying the root causes of faults with multiple building 

systems interactions. It was proved to be useful for quantifying fault severity with a 

sophisticated context of uncertainty analysis. The Energy Signal Tool is useful for directing 

facilities management attention to those buildings in a portfolio that merit further attention 

to diagnose specific faults. 

Uncertainty analysis with Latin Hypercube Monte Carlo sampling was used to 

perturb significant parameters and generate expected ranges of consumption for each 

monitored end-use. Given that sufficient knowledge goes into creating the benchmark 

model and uncertainty is minimal, these expected ranges can represent the probable range 

in fault-free operation. It was shown that the concepts of the Energy Signal Tool can be 
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used with the OpenStudio detailed modeling platform to prioritize energy related faults in 

building portfolio. It was possible to illustrate this with synthetic data, but not with data 

from the case study building. Working with real building data and attempting to calibrate a 

model to it revealed just how difficult and complex these tasks can be. It can be concluded 

from the model calibration exercise that methods of calibrating to whole-building energy 

use data are not sufficient to develop a tool that monitors disaggregated end-uses within 

the building. 

It may also be possible to improve the method of modeling the benchmark with an 

alternative approach to model calibration. One idea for such an approach was discovered 

late in the writing of this work. Subbarao et al. (2014) have proposed what they term an 

“actuarial” framework of assessing building retrofit energy savings. These authors show 

how data from “neighborhoods” of similar buildings within a portfolio can be used to 

generate PDFs of pre-retrofit energy consumption. When some pre and post-retrofit data is 

available from several buildings in the neighborhood, savings for a single building can be 

estimated in the form of a PDF through a convolution of pre and post retrofit savings 

differences. As discussed earlier, it is often necessary to expand the ranges of categorical 

variables to generate a sufficiently large set of buildings for peer comparison. The 

neighborhood methodology uses simulation to correct for differences in a loosely related 

peer group of buildings. The authors cite one example of correcting a peer group of similar 

buildings situated in slightly different locations within a weather neighborhood. Since the 

correlation of building EUI to weather conditions will be similar for peer buildings within 

this neighborhood, the expected EUI of a building in one location can be normalized to 

what would be expected in another nearby, but not identical, location. The authors note 

that it is much more difficult to correct for differences in building characteristics within an 

expanded peer group. This would involve identifying the important characteristics that 

determine energy use. Unless the dimensionality of expanded peer group differences is 
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small enough to be accounted for with available measurements, this would probably 

involve generating data with large simulation batches. Nevertheless, the approach of 

creating an expanded and normalized peer group for performance assessment may have 

promise. 

 Monte Carlo sampling of a model with 18 parameters for calibration requires at 

least 8000 (the number used in this work) samples, if not more. Generating and modeling 

this number of samples has a duration of a least 14 hours, at a cost of at least $40. This 

would currently be a challenge to implement in a real building application of the tool, when 

the benchmark would need to be recalibrated to account for any major change, and global 

SA would need to be updated for ESTool input. Other forms of global sensitivity analysis, 

such as the Morris method (as mentioned in section 5.2.1, would be more computationally 

efficient when possible to implement. Reducing computational time for model calibration 

efforts would require new methods such as meta-modeling (see Eisenhower et al., 2012), 

and optimization to arrive at calibration solutions sooner. 

The Energy Signal Tool is intended to be applied with facilities manager 

involvement. It was unreasonable to expect the uncertainty in a limited number of physical 

building parameters to generate a wide enough range of possibilities to bridge the gap 

between a model developed with little client stakeholder involvement and one that can be 

used for precise decision support. Thorough heuristic model calibration is crucial for the 

benchmark model be validated for use in the ESTool. Facilities manager involvement is 

paramount to this. The additional knowledge needed would have required resources that 

were not available to the researcher or the industry partner. While this involvement was 

not available from the retail partner for this work, it is still conceivable that an organization 

would see the value in sufficient stakeholder involvement to make implementing the 

ESTool a reality.  
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Thourough testing of the refined ESTool concepts was done with synthetic fault 

scenarios in place of applying it directly to the case study building. Synthetic fault testing 

helped to show how sensitive the tool is to detecting faults. It proved the Energy Signal 

Tool had advantages over other methods of performance benchmarking; which use whole-

building energy consumption data alone. It also demonstrated the shortcomings of the tool 

in pointing to specific end-uses for root causes of faults. For many of the typical faults 

tested, (e.g., thermostat set point changes, scheduling errors, fan malfunction) signals were 

generated in many time periods across multiple end-uses. While this is valid, it does not 

help with deciding which building system(s) require corrective action to address the 

problem. With a more extensive and well-grouped sub-metering infrastructure, it would be 

possible to incorporate more monitored end-uses in the Energy Signal Tool, and then 

develop a set of rules based on consumption patterns to better identify root causes. It is 

concluded that it would be simpler to rely on traditional FDD techniques to identify specific 

root causes of faults. 

9.2 Extensions to Future Work 

The biggest challenge to overcome before the Energy Signal Tool cam be 

implemented remains calibrating the benchmark model. As mentioned, it is not so much 

the single representative model as is the importance of having minimal bias in the end-use 

distributions. A far greater parameter set may be needed to achieve a model that produces 

all “green” signals when compared to the observed data that went into calibrating it. The 

work that can be done to achieve this includes developing better measures to investigate 

all possible uncertain parameters, including full schedule manipulation, and developing 

algorithms to calibrate the model to each end-use desired to monitor. This will involve 

working extensively with OpenStudio server calibration measures and possibly 

optimization routines. Standards for a  statistical  process apart from following ASHRAE -

14 guidelines must be established to achieve proper model calibration for the ESTool. 
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For this tool to be broadly applied to an entire building portfolio, such as the 

commercial big-box retailer partner for this work, an automated process of generating and 

keeping up to date a large set of building models is needed. NREL has been developing a 

project called COFEE (Customer Optimization for Energy Efficiency; see Eber, 2014) to 

enable a major electric utility company to generate baseline models of thousands of 

customer buildings. The software behind COFEE leverages Google images along with the 

existing database of customer information to rapidly generate a baseline Open Studio 

model of each building.  The goal of COFEE is to enable the utility to increase the efficiency 

of its demand side management program by targeting the customers with the highest 

model-predicted potential to benefit from DSM incentives. It is very conceivable that a 

program such as COFEE could be used by corporations who manage a large portfolio of 

buildings to generate models and keep then up to date. This could be done through an 

interface that pulls in information that the organization already keeps track of (building 

inventory, area, occupancy, installed systems). The challenge here is organizing this stream 

of information and creating a dynamic repository of models and model results to draw 

information from. 

Portfolio managers have had access to other, more functional based, fault detection 

diagnostic (FDD) infrastructure for many years. Traditional FDD is based on the 

infrastructure of the building management system. It has come to include features that 

incorporate system measurements such as loop temperatures and rates of energy 

consumption. This can amount to giving the facilities manager an essentially binary signal 

of whether or not the building systems are operating to meet functional requirements such 

as safety and comfort. If a fault is detected in function, an alarm is sent to the facilities 

manager that alerts exactly what component needs to be addressed. If FDD were to be 

integrated with something such as the Energy Signal Tool the result would be a single tool 

more valuable than the two would be apart from one another. This way, signals could be 
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prioritized based on energy cost as well as their importance to the vital functions of the 

building by examining FDD information for correlation to energy end use consumption. 

Future work in binding the Energy Signal Tool to FDD capabilities would be quite valuable. 

Other future work should attempt to integrate a larger set of, and more varied types 

of uncertain parameters into the pre-screening process. Unknowns such as controls 

scheduling, hours of use and hours of occupancy are additional parameters that can have 

an effect on the model but could not be incorporated in this work due to technical 

limitations of premature software used. With more advanced Ruby measures, it might be 

possible to perform model calibrations, including schedule parameters, on the basis of 

matching the model to hourly (rather than monthly) data. It is also conceivable that a list of 

potentially significant parameters based on building type, primary systems, envelope 

characteristics, and monitored end-uses could be automatically generated for each building 

type – given a sufficiently large library of measures to draw from. This would allow a user 

without much knowledge of which parameters are potentially significant to make a 

reasonable characterization of uncertainty in the model. 

In practice, the benchmark model for an Energy Signal Tool would need to be kept 

dynamically in tune with any operational or equipment changes to the building. When the 

ESTool identifies a fault in the building, feedback from the facilities manager who has made 

an inspection of the fault is needed to inform the energy manager whether the fault was 

fixed, could be ignored, or if the fault was not observed at all. Depending where the 

responsibility to maintain a baseline model may fall (on the customer or on the energy 

performance assessment service provider), it may be advantageous to integrate the 

benchmark modeling process with the BMS. As described in Chapter 2, there is the 

potential for a synergistic existence of both traditional FDD and the ESTool; the former can 

pinpoint faults’ locations, and the latter can quantify their severity. Currently, any link 

between the ESTool and BMS-based FDD capabilities would need to be made with direct 
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human involvement. Future work could be done to develop hardware and software links 

between the BMS, FDD, and the ESTool. Perhaps this dynamic interface could also allow for 

notification of parameter updates from the BMS.  

Future work is needed to link the energy efficiency opportunities identified by the 

tool to broader organizational risks and opportunities. Energy is far from the largest 

expense that an organization has; that is usually compensation for their employees. Thus, 

the greatest opportunity for identifying areas where organizational performance could be 

improved is in employee productiveness and well-being. Some organizations, such as a big-

box retailers, use their buildings for the majority of customer interactions. In these cases, 

an important cost consideration might be customer satisfaction and variables that affect 

sales volume. Eventually, this additional information could be part of the cost matrix input. 

Currently, the cost matrix is made up on scalar values that are highly subjective in nature. 

In reality, developing the cost matrix for each end use should take into consideration 

measured data for things like actual equipment maintenance costs, utility rates, value of 

inventory, and sales volume or worker productivity. Uncertainty would also be a 

component of the cost function, and could be derived from empirical data. Additional 

research is needed to uncover the quantitative correlations that exist between energy use 

and other organizational priorities.  

It proved very difficult to produce an EnergyPlus model that described the energy 

use of an existing building to the level of accuracy needed for an Energy Signal Tool. Rather 

than using detailed simulation modeling, it might be possible instead to create baseline 

models using a data-based emulator. Using Gaussian processes, it is possible to build an 

emulator much akin to numerical regression techniques. The emulator would create a 

multivariate model which takes information about environmental conditions and predicts 

end-use energy consumption based on past history of consumption. This would reduce 

computational time required for generating expected end use distributions on the order of 
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99.99%. This would make it more realistic, given current computing power limitations, to 

use the tool for performance assessment. The process of calibrating such a model to 

operational data of disaggregated end-uses would be purely mathematical, and thus much 

easier. The disadvantage to using the numerical emulator is that it might not be valid for 

predicting monthly end use during seasonal shifts. Another drawback of using 

mathematical models would be the inability to test retrofit scenarios before are 

implemented, and to model controls specifically as intended. However, if several are 

implemented in a portfolio and performance data is available, the model would certainly be 

capable of learning from this data and projecting the impact onto the entire portfolio. 

Perhaps data-based emulators will be the future of detailed energy modeling. 
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11 Appendices 

11.1 Appendix A: Sub-metered points and additional data 

List of sub-metered points at case-study store 

 

POINT CHANNEL NAME UNITS Phase Metered Load

1 TOTAL LOAD KW a MDS

2 TOTAL LOAD KW b MDS

3 TOTAL LOAD KW c MDS

4 HP-1 KW a HP-1

5 MDP KW a MDP-1

6 LD-1 KW a MDP-2

7 HL-1 KW a HL-1 

8 HL-1 KW b HL-1 

9 HL-1 KW c HL-1 

10 HL-2 KW a HL-2

11 HL-2 KW b HL-2

12 HL-2 KW c HL-2

13 Generator KW a,a HLE-1,LPE-1

14 Generator KW b,b HLE-1,LPE-1

15 Generator KW c,c HLE-1,LPE-1

16 LPE-2 KW a LPE-2

17 LP-1 KW a LP-1

18 LP-4 KW a LP-4

19 RTCR-1 KW a RTCR-1

20 RTU-10 KW a RTU-10

21 RTU-7 KW a RTU-7

22 RTU-8 KW a RTU-8

23 RTU-12 KW a RTU-12

24 RTU-12 Supply Fan KW a RTU-12 Supply Fan

25 DHU-13 KW a DHU-13

26 DHU-13 KW b DHU-13

27 DHU-13 KW c DHU-13

28 DHU-13 - Reactivation Fan KW a DHU-13 - Reactivation Fan

29 DHU-13 - Process Air Blower KW a DHU-13 - Process Air Blower

30 DHU-13 - Compressor 1 KW a DHU-13 - Compressor 1

31 DHU-13 - Compressor 2 KW a DHU-13 - Compressor 2

32 DHU-13 - Compressor 3 KW a DHU-13 - Compressor 3

33 DHU-13 - Compressor 4 KW a DHU-13 - Compressor 4

34 DHU-13 - Condensor Fan 1 KW a DHU-13 - Condensor Fan 1

35 DHU-13 - Condensor Fan 2 KW a DHU-13 - Condensor Fan 2

36 DHU-13 - Condensor Fan 3 KW a DHU-13 - Condensor Fan 3
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37 LD-2 KW a LD-2

38 HL-3 KW a HL-3

39 HL-3 KW b HL-3

40 HL-3 KW c HL-3

41 UPS-1 KW a UPS-1

42 Parking Lights KW a HL-4

43 Parking Lights KW b HL-4

44 Parking Lights KW c HL-4

45 RTU 1 KW a RTU 1

46 RTU 2 KW a RTU 2

47 RTU 3 KW a RTU 3

48 RTU 4 KW a RTU 4

49 RTU 5 KW a RTU 5

50 RTU 6 KW a RTU 6

51 RTU 9 KW a RTU 9

52 RTU 11 KW a RTU 11

53 RTU-ERV-1 KW a RTU-ERV-1

54 LP-3 KW a LP-3

55 LP-5 KW a LP-5

56 LP-6 KW a LP-6

57 LP-7 KW a LP-7

58 LP-8 KW a LP-8

59 LP-9 KW a LP-9

60 LP-10A KW a LP-10A

61 LP-10B KW a LP-10B

62 LP-11 KW a LP-11

63 LP-12A KW a LP-12A

64 LP-12B KW a LP-12B

65 LPE-3 KW a LPE-3

66 Door Htrs KW a LP-12A/cct 2,8

67 Door Htrs KW b LP-12A/cct 4

68 Door Htrs KW c LP-12A/cct 6

69 CU-1 KW a CU-1

70 CU-2 KW a CU-2

71 CU-3 KW a CU-3
72 CU-4 KW a CU-4

73 VAV-5-1 KW VAV-5-1

74 VAV-5-2 KW VAV-5-2

75 VAV-5-3 KW VAV-5-3

76 VAV-5-5 KW a VAV-5-5

77 VAV-5-6 KW a VAV-5-6

78 VAV-5-7 KW VAV-5-7

79 VAV-5-9 KW VAV-5-9
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80 VAV-11-1 KW VAV-11-1

81 WH-1 KW a WH-1

82 WH-2 KW WH-2

83 WH-3 KW WH-3

84 WH-4 KW WH-4

85 RTU-5 Supply Fan KW a RTU-5 Supply Fan

86 RTU-9 Supply Fan KW a RTU-9 Supply Fan

87 RTU-9 - Compressor 1 KW a RTU-9 - Compressor 1

88 RTU-9 - Compressor 2 KW a RTU-9 - Compressor 2

89 RTU-9 - Compressor 3 KW a RTU-9 - Compressor 3

90 RTU-9 - Compressor 4 KW a RTU-9 - Compressor 4

91 RTU-11 Supply Fan KW a RTU-11 Supply Fan

92 RTU-11 - Compressor 1 KW a RTU-11 - Compressor 1

93 RTU-11 - Compressor 2 KW a RTU-11 - Compressor 2

94 RTU-11 - Compressor 3 KW a RTU-11 - Compressor 3

95 RTU-11 - Compressor 4 KW a RTU-11 - Compressor 4

96 RTU-11 Power Exhaust Fan KW a RTU-11 Power Exhaust Fan

97 RTU-11 - Condensor Fan 1 KW a RTU-11 - Condensor Fan 1

98 RTU-11 - Condensor Fan 2 KW a RTU-11 - Condensor Fan 2

99 RTU-11 - Condensor Fan 3 KW a RTU-11 - Condensor Fan 3

100 RTU-11 - Condensor Fan 4 KW a RTU-11 - Condensor Fan 4

101 PRV-1 KW a PRV-1

102 LP-2 KW a LP-2

103 UH-1 KW a UH-1

104 Checklane Coolers KW a Checklane Coolers

105 Checklane Coolers KW b Checklane Coolers

106 Checklane Coolers KW c Checklane Coolers

107 BG-1 KW a COMPACTOR

108 BG-2 KW a BALER

Virtual Points

109 Generator KW a,a HLE-1,LPE-1,2

110 Generator KW b,b HLE-1,LPE-1,2

111 Generator KW c,c HLE-1,LPE-1,2

112 Sales Floor Lights KW a,a HL-1, HL-2

113 Sales Floor Lights KW b,b HL-1, HL-2

114 Sales Floor Lights KW c,c HL-1, HL-2
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Additional energy sub-meter data 

 

Figure 85: Lighting and Plug Load Daily Energy Distributions across the 170-day data collection period 

 

Figure 86: Q-Q plots for quantifying the normalcy of the two load distributions 

Parameter 

(weather 

independent) 

Observed 

median value of 

Daily kWh 

Stdev. Of 

daily kWh 

95% Tolerance Interval about 

Median* for Daily kWh 

Plug Loads – non 

holiday 

562.5 41.1 484.7 <  X < 645.6 kWh/day (+/- %) 

Plug Loads – 

holiday season 

591.9 58.2 477.74 < X < 705.97 kWh/day (+/- ) 
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Lighting Energy 1132.23 107.58 921.4 < X < 1343.1 kWh/day (+/- 18.6%) 

*Assuming the data follows a normal distribution, centered about the median 

This data was not used for the model calibration since it was recorded accurately by the 

sub-metering equipment and is a benchmark to be calibrated against.
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11.2  Appendix B: Parameter Characterization and Pre-Screening 

 

Table 30: Justification for parameter uncertainty choices 
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Table 31: List of screened model parameters and results of OAT Pre-Screening 

 

 

Parameter Description (units):
μ / Initial

value min max SI Elec SI NG SI HVAC SI Ref SI WBE
Rank 

Elec

Rank 

NG
Rank EUI

Space infiltration reduction (%) 0 -40% +40% 2.6% 60.4% 25.3% 0.2% 17.5% 4 1 1

Rated Gas Burner Eff (%) 80 60 81 0.0% 28.6% 0.0% 0.0% 8.9% 32 2 2

Heating Setpoint (oC) 15-20 -2 2 1.1% 15.7% 7.0% 1.2% 6.0% 7 3 3

Space light load multiplier various -18.6% ;+18.6% 13.2% 13.2% 78.5% 0.2% 5.7% 1 5 4

Wall/Roof Conductivity multiplier various -20% +20% 0.7% 13.5% 7.7% 0.5% 4.9% 10 4 5

Heating supply air temp (oC) 16.7 14.7 18.7 0.3% 10.6% 0.3% 1.4% 3.5% 13 6 6

Space plug load multiplier various -18.2% +18.2% 6.7% 6.0% 47.7% 0.2% 2.9% 2 9 7

Heating sizing factor 1.2 1.1 1.4 0.3% 7.0% 2.1% 0.4% 2.5% 14 7 8

HX Sensible Effectiveness (%) 76 60 76 0.1% 6.4% 1.5% 0.2% 2.1% 19 8 9

Fan Pressure Rise (multiplier) various -30% +30% 4.4% 4.0% 34.3% 0.1% 1.9% 3 11 10

Minimum system outside air ratio 0.3 0.3 0.5 0.1% 4.8% 1.6% 0.2% 1.5% 18 10 11

Rated roof absorptance 0.3 0.3 0.7 0.2% 3.5% 2.2% 0.0% 0.9% 15 12 12

Refrig suction piping UA value various -25% +25% 1.2% 0.0% 17.5% 10.4% 0.8% 6 31 13

Delta in minimum ref. condensing temp (oC) 21-24 -3 +3 1.1% 0.0% 0.3% 4.0% 0.7% 8 30 14

Fan Efficiency (%) 45 35 48 1.5% 1.2% 14.0% 0.0% 0.7% 5 13 15

Rated Cool Coil COP 4 3.5 4.1 0.9% 0.0% 7.9% 0.0% 0.6% 9 31 16

Anti-sweat energy multiplier various 0.5 1 0.2% 0.6% 0.2% 0.5% 0.3% 17 15 17

Max heat/cool point - tstat float (oC) 0.278 0.2 0.8 0.4% 0.1% 4.9% 0.5% 0.3% 12 22 18

Operating walkin ref temp (oC) 0 -3 +1 0.4% 0.1% 1.7% 0.9% 0.2% 11 21 19

Cooling Setpoint (oC) 23-27 -2 2 0.2% 0.3% 1.8% 0.0% 0.2% 16 18 20

Space thermal mass multiplier various -30% +30% 0.1% 0.8% 0.4% 0.1% 0.2% 21 14 21

System cycling run time (secs) 1800 1200 2400 0.0% 0.5% 0.1% 0.0% 0.2% 27 16 22

Wall Specific Heat multiplier various -29% +29% 0.0% 0.4% 0.3% 0.1% 0.1% 26 17 23

Operating ref case temp (oC) various -2 +3 0.0% 0.2% 0.4% 0.3% 0.1% 25 19 24

Cooling sizing factor 1.2 1.1 1.4 0.1% 0.2% 1.5% 0.4% 0.1% 24 20 25

Supply fan medium flow (flow ratio) 0.8 0.7 0.9 0.1% 0.1% 0.7% 0.0% 0.1% 20 25 26

Suply fan minimum flow (flow ratio) 0.4 0.3 0.5 0.1% 0.0% 0.6% 0.0% 0.1% 22 27 27

Economizer mode OA temp high limit (oC) 18.3 16.3 20.3 0.1% 0.0% 0.3% 0.1% 0.0% 23 26 28

Building Occupancy ( total people) 160 48 480 0.0% 0.1% 0.6% 0.2% 0.0% 29 23 29

Economizer mode OA temp low limit (oC) 10 8 12 0.0% 0.1% 0.4% 0.2% 0.0% 28 24 30

Cooling supply air temp (oC) 12.8 10.8 14.8 0.0% 0.0% 0.0% 0.0% 0.0% 30 28 31

Ratio Evap rate and Latent Cap 1.5 1 2 0.0% 0.0% 0.0% 0.0% 0.0% 31 29 32

Fan motor Efficiency (%) 90 75 93 0.0% 0.0% 0.0% 0.0% 0.0% 32 31 33

Zone Mixing flow rate (m3/sec) 2 0.5 3.5 0.0% 0.0% 0.0% 0.0% 0.0% 32 31 33

Fraction of anti-sweat energy to case load 0.85 0.7 1 0.0% 0.0% 0.0% 0.0% 0.0% 32 31 33

Condenser fans min flow (%) 20 20 50 0.0% 0.0% 0.0% 0.0% 0.0% 32 31 33

Ref case rated runtime fraction 95 70 95 0.0% 0.0% 0.0% 0.0% 0.0% 32 31 33
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Figure 87: Parameter significance ratios obtained by using the regression method 
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11.3 Appendix C: Full Results of Global Sensitivity Analysis 

Table 32: Comparison of OAT and Multivariate Regression Scaled Parameter Significance Ratios 

MV OAT MV OAT MV OAT MV OAT

Space infiltration reduction (%) 1.000 1.000 1.000 1.000 0.376 0.739 0.027 0.018

Gas Burner Eff (%) 0.652 0.509 0.711 0.473 0.000 0.000 0.000 0.000

Heating Setpoint (oC) 0.408 0.341 0.353 0.260 0.021 0.205 0.269 0.115

Wall/Roof Conductivity multiplier 0.302 0.281 0.282 0.223 0.079 0.226 0.033 0.052

Heating supply air temp (oC) 0.087 0.202 0.052 0.175 0.001 0.009 0.153 0.132

Heating sizing factor 0.095 0.141 0.076 0.115 0.223 0.062 0.002 0.034

HX Sensible Effectiveness (%) 0.157 0.120 0.169 0.107 0.001 0.043 0.003 0.016

Fan Pressure Rise (multiplier) 0.056 0.107 0.027 0.067 1.000 1.000 0.015 0.011

Minimum system outside air ratio 0.062 0.084 0.061 0.079 0.006 0.046 0.008 0.018

Rated roof absorptance 0.037 0.051 0.053 0.058 0.094 0.064 0.000 0.001

Refrig suction piping UA value 0.007 0.047 0.002 0.000 0.036 0.510 1.000 1.000

Condensing temp minimum, delta 0.003 0.042 0.000 0.000 0.001 0.008 0.467 0.383

Fan Efficiency (%) 0.005 0.037 0.006 0.019 0.555 0.408 0.001 0.000

DX Cool Coil COP 0.011 0.034 0.000 0.000 0.375 0.232 0.000 0.000

Anti-sweat energy multiplier 0.000 0.018 0.000 0.010 0.000 0.007 0.000 0.048

T-Stat float heat/cool (oC) 0.034 0.016 0.004 0.002 0.243 0.142 0.057 0.053

Operating walkin ref temp (oC) 0.002 0.014 0.000 0.002 0.022 0.051 0.139 0.082

Cooling Setpoint (oC) 0.010 0.012 0.000 0.005 0.053 0.053 0.000 0.004

WBE NGAS HVAC REFR

Parameter
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11.4 Appendix D: Calibration Validation Results by End Use 
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11.5 Appendix E: Calibration Statistics 

The following plots show the quantity and uniqueness of the calibrated solutions generated by performing LHS sampling in 

various batch sizes. Due to the quasi-random nature of the LHS sampling algorithm, runs made with identical batch sizes 

produced identical or nearly identical results.  Due to this, and to the practical limits on sample size as discussed above, 

additional unique solutions were achieved in the final large sample set by varying the sample size to avoid common multiples, 
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and concatenating these results into one large data set.   

 

Figure 88: Calibration statistics for 625 monte carlo sample size 
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Figure 89: Calibration statistics for 750 monte carlo sample size 
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Figure 90: : Calibration statistics for 1133 monte carlo sample size 
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Figure 91: Calibration statistics for 1450 monte carlo sample size 
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Figure 92: Calibration statistics for 1667 monte carlo sample size 
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Figure 93: Calibration statistics for 2797monte carlo sample size 
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Figure 94: Calibration statistics for agglomerated batches 
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Figure 95: Final results of clustering analysis for the set of model calibration solutions, showing six natural crisp divisions. 
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11.6 Appendix F: Regression Statistics 

 

Figure 96: EUI, ranked 
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Figure 97: EUI, Un-ranked 
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Figure 98:Refrigeration, Ranked 
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Figure 99: Refrigeration, Un-ranked 
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Figure 100: Significance index values for all end-uses. Case Study building 
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Table 33: Parameter significance values for climate zones 6a, 4c, and 3a 

6a 4c 3a 6a 4c 3a 6a 4c 3a 6a 4c 3a

Space infiltration reduction (%) 1.000 1.000 1.000 1.000 1.000 1.000 0.376 0.393 0.662 0.027 0.116 0.042

Gas Burner Eff (%) 0.652 0.315 0.223 0.711 0.375 0.319 NA NA NA NA NA NA

Heating Setpoint (oC) 0.408 0.170 0.525 0.353 0.195 0.509 0.021 0.002 0.277 0.269 0.033 0.033

Wall/Roof Conductivity multiplier 0.302 0.385 0.410 0.282 0.410 0.399 0.079 0.062 0.246 0.033 0.004 0.025

Heating supply air temp (oC) 0.087 0.150 0.121 0.052 0.179 0.171 0.001 0.000 0.003 0.153 NA NA

Heating sizing factor 0.095 0.040 0.290 0.076 0.001 0.114 0.223 0.202 0.446 0.002 0.021 0.102

HX Sensible Effectiveness (%) 0.157 0.646 0.513 0.169 0.704 0.646 0.001 0.000 0.000 0.003 0.001 0.001

Fan Pressure Rise (multiplier) 0.056 0.194 0.442 0.027 0.329 0.288 1.000 1.000 1.000 0.015 NA NA

Minimum system outside air ratio 0.062 0.006 0.001 0.061 0.006 0.003 0.006 0.002 0.000 0.008 NA NA

Rated roof absorptance 0.037 0.178 0.068 0.053 0.236 0.221 0.094 0.003 0.106 NA NA NA

Refrig suction piping UA value 0.007 0.259 0.344 0.002 0.001 0.000 0.036 0.082 0.082 1.000 1.000 1.000

Condensing temp minimum, delta 0.003 0.002 0.135 NA NA NA 0.001 0.000 0.000 0.467 0.087 0.774

Fan Efficiency (%) 0.005 0.043 0.129 0.006 0.096 0.080 0.555 0.552 0.545 0.001 0.000 0.000

DX Cool Coil COP 0.011 0.019 0.096 NA NA NA 0.375 0.089 0.278 0.000 NA 0.000

Anti-sweat energy multiplier 0.000 NA NA NA NA NA 0.000 0.000 0.000 0.000 NA 0.000

T-Stat float heat/cool (oC) 0.034 0.117 0.208 0.004 0.076 0.118 0.243 0.180 0.270 0.057 0.067 0.062

Operating walkin ref temp (oC) 0.002 0.007 0.011 NA NA NA 0.022 0.009 0.010 0.139 0.056 0.079

Cooling Setpoint (oC) 0.010 NA 0.074 0.000 0.000 0.001 0.053 0.015 0.234 0.000 0.000 0.011

REFR
Parameter

WBE NGAS HVAC
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11.7 Appendix G: LHS Sampling Correlation Plots 

 

The following plots were generated from the case-study building model annual simulation sampling. Total energy is shown, on 

the X-axis, as correlated to various input parameters, described on the Y-axis of each plot. 
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11.8 Appendix H: VAV Data Synthesis 
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11.9 Appendix I: Cost Matrix Detailed Explainations 

The cost function is the input going into the signal tool that captures the response that the 

facility manager would recommend for each unique scenario. For example, natural gas used 

is observed as much higher than expected – since this a significant operational expenditure, 

immediate action to address high gas use would be recommended. A unique cost matrix 

has been developed for each end use, capturing the utilization, maintenance cost and 

relative importance  

When assigning costs to signals for a particular end-use, the user can consider: 

1. Does the end use have relatively high cost to repair compared to its cost to operate? 
a. If so, then the magnitude of cost for showing any false “red” signal should be 

penalized more, since a red signal will place this system high on the list of 
action items. That is, action should only be taken if probability of faults is 
quite high. 

Examples: Cooling systems in a cool climate, heating systems in a warm climate 

b. If not, then the magnitude of the cost for showing a false low signal is 
penalized more; and a false high signal penalized less, since maintenance is 
inexpensive relative to the potential cost of operating at more than expected 
energy use. Also, the cost for showing a false green signal with high 
consumption is penalized more; since doing nothing may be nearly as bad as 
taking the wrong action. 

2. Would an observed reading that is higher (or lower) than expected correspond to a 
problem in the building that has indirect costs associated with customer comfort or 
product stability? 

a. If higher energy use observation corresponds to problem, then penalize false 
low signals more heavily. 

Examples:  

b. If a lower energy use observation corresponds to problem, then penalize 
false high signals more heavily. 

Examples: Grocery freezer and refrigeration systems, cooling systems in a warm 

climate, ventilation systems 
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Secondary Cost Matrices: 

 

Figure 101: The neutral cost matrix 

 

Figure 102: The secondary cost matrices 

The final cost matrix is found via a calculation taking into account the answers to the two 

questions by the following formula, which gives equal weighting to the answers from both 

questions: 

       
     

 
 

NEUTRAL

MH SH S SL ML Σ Action Cost:

RH 0 2 4 6 8 20

YH 2 0 2 4 6 14

G 4 2 0 2 4 12

YL 6 4 2 0 2 14

RL 8 6 4 2 0 20

Σ State Cost: 20 14 12 14 20

1- low MH SH S SL ML Σ Action Cost: 1 - high MH SH S SL ML Σ Action Cost:

RH 0 2 4 5 6 17 RH 0 2 4 7 12 25

YH 2 0 2 4 5 13 YH 2 0 2 5 7 16

G 4 2 0 2 4 12 G 4 2 0 2 4 12

YL 5 4 2 0 2 13 YL 7 5 2 0 2 16

RL 6 5 4 2 0 17 RL 12 7 4 2 0 25

Σ State Cost: 17 13 12 13 17 Σ State Cost: 25 16 12 16 25

2 - low MH SH S SL ML Σ Action Cost: 2 - high MH SH S SL ML Σ Action Cost:

RH 0 2 4 7 10 23 RH 0 2 4 5 6 17

YH 2 0 2 4 7 15 YH 2 0 2 4 5 13

G 3.5 2 0 2.5 4.5 12.5 G 4 2 0 2 4 12

YL 5 4 2 0 2.5 13.5 YL 6 4 2 0 2 14

RL 6 5 4 2 0 17 RL 8 6 4 2 0 20

Σ State Cost: 16.5 13 12 15.5 24 Σ State Cost: 20 14 12 13 17

Q 1: Cost ratio maintain/operate?

Q 2: Does high or low consumption indicate a serious non-energy fault?
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Where, C1 and C2 are the respective cost matrices associated with the answers to questions 

one and two, as posed above. If either of those questions is answered with “N/A”, then CFinal 

will be calculated with  the neutral cost matrix substituted for the cost matrix 

corresponding to this question. If the answer to both questions is “N/A”, then CFinal will 

simply be the neutral cost matrix. Cost matrices corresponding to these answers are found 

below. In some cases, the user may wish to modify these to reflect better information about 

energy management priorities. 

 

Table 34: All possible final cost matrices based on the answers to the two questions 

When setting up the Energy Signal Tool for the case study building, answers were provided 

to the two cost matrix definition questions for each end use: 

2 N/A, Low MH SH S SL ML Σ Action Cost: 3 N/A, High MH SH S SL ML Σ Action Cost:

RH 0 2 4 6.5 9 21.5 RH 0 2 4 5.5 7 18.5

YH 2 0 2 4 6.5 14.5 YH 2 0 2 4 5.5 13.5

G 3.75 2 0 2.25 4.25 12.25 G 4 2 0 2 4 12

YL 5.5 4 2 0 2.25 13.75 YL 6 4 2 0 2 14

RL 7 5.5 4 2 0 18.5 RL 8 6 4 2 0 20

Σ State Cost: 18.25 13.5 12 14.75 22 Σ State Cost: 20 14 12 13.5 18.5

4 Low, N/A MH SH S SL ML Σ Action Cost: 5 Low, Low MH SH S SL ML Σ Action Cost:

RH 0 2 4 5.5 7 18.5 RH 0 2 4 6 8 20

YH 2 0 2 4 5.5 13.5 YH 2 0 2 4 6 14

G 4 2 0 2 4 12 G 3.75 2 0 2.25 4.25 12.25

YL 5.5 4 2 0 2 13.5 YL 5 4 2 0 2.25 13.25

RL 7 5.5 4 2 0 18.5 RL 6 5 4 2 0 17

Σ State Cost: 18.5 13.5 12 13.5 18.5 Σ State Cost: 16.75 13 12 14.25 20.5

6 Low, High MH SH S SL ML Σ Action Cost: 7 High, Neut MH SH S SL ML Σ Action Cost:

RH 0 2 4 5 6 17 RH 0 2 4 6.5 10 22.5

YH 2 0 2 4 5 13 YH 2 0 2 4.5 6.5 15

G 4 2 0 2 4 12 G 4 2 0 2 4 12

YL 5.5 4 2 0 2 13.5 YL 6.5 4.5 2 0 2 15

RL 7 5.5 4 2 0 18.5 RL 10 6.5 4 2 0 22.5

Σ State Cost: 18.5 13.5 12 13 17 Σ State Cost: 22.5 15 12 15 22.5

8 High, Low MH SH S SL ML Σ Action Cost: 9 High, High MH SH S SL ML Σ Action Cost:

RH 0 2 4 7 11 24 RH 0 2 4 6 9 21

YH 2 0 2 4.5 7 15.5 YH 2 0 2 4.5 6 14.5

G 3.75 2 0 2.25 4.25 12.25 G 4 2 0 2 4 12

YL 6 4.5 2 0 2.25 14.75 YL 6.5 4.5 2 0 2 15

RL 9 6 4 2 0 21 RL 10 6.5 4 2 0 22.5

Σ State Cost: 20.75 14.5 12 15.75 24.5 Σ State Cost: 22.5 15 12 14.5 21

The Eight Possible Final Cost Matrices:
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Whole building energy  

1. ratio 
          

            
=Low  

Justification: When considering the processes of the entire building, annual energy 

costs generally far outweigh annual maintenance costs. 

2. Is either high or low usage indicative of other problem? = N/A 
Justification: Neither extreme is a definite indicator of a serious problem at the 

whole building level. 

Natural Gas  

1. ratio 
          

            
 = Low  

Justification: Natural gas equipment is mainly gas burners for heating, which have 

low maintenance costs and high fuel costs. 

2. Is either high or low usage indicative of other problem? = N/A 
Justification: Neither extreme is a definite indicator of a serious non-energy 

problem for natural gas use. Very low natural gas use that compromises heating 

would be indicated early on by comfort complaints. 

HVAC 

1. ratio 
          

            
 = N/A 

Justification: The HVAC end use is comprised of cooling, fan, and some electric 

reheat energy. Fans function throughout the year, and have a relatively low cost to 

maintain. The cooling system, being in a cool climate of Wisconsin, has relatively 

little utility and high maintenance costs. The two effectively cancel out. 

2. Is either high or low usage indicative of other problem? = Low 
Justification: Lower than expected HVAC energy usage would most likely be 

indicative of a fan failure and loss of ventilation air, which may go unnoticed by 

store occupants. 

Refrigeration 

1. ratio 
          

            
 = High 
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Justification: The refrigeration end use is small relative to the sum of all other 

building systems in this retail store, and service calls require a high level of 

expertise. This answer might be different for a grocery store rather than big-box 

retail. 

2. Is either high or low usage indicative of other problem? = Low 
Justification: Lower than expected Refrigeration energy use could indicate 

compressor failure. This would also probably be noticed in refrigeration case 

temperature monitoring. 
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11.10 Appendix J: Weather Data Summary for Fault Testing Locations 

 

 

WHOLE 

BUILDING 

ENERGY Month 1 Month 4 Month 7 Month 10 Year

Climate 3a 0.107 0.107 0.107 0.107 0.107

Climate 4c 0.104 0.104 0.104 0.104 0.104

Climate 6a 0.106 0.106 0.106 0.106 0.106

NATURAL GAS Month 1 Month 4 Month 7 Month 10 Year

Climate 3a 0.099 0.118 0.158 0.127 0.099

Climate 4c 0.101 0.121 0.161 0.130 0.101

Climate 6a 0.106 0.106 0.127 0.169 0.137

HVAC Month 1 Month 4 Month 7 Month 10 Year

Climate 3a 0.139 0.150 0.122 0.144 0.122

Climate 4c 0.157 0.170 0.138 0.163 0.138

Climate 6a 0.124 0.141 0.152 0.124 0.146

REFRIGERATION Month 1 Month 4 Month 7 Month 10 Year

Climate 3a 0.105 0.105 0.105 0.105 0.105

Climate 4c 0.132 0.132 0.132 0.132 0.132

Climate 6a 0.100 0.100 0.100 0.100 0.100
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11.11 Appendix K: Detailed Fault Testing with Skill Metric Results 

CLIMATE ZONE 6A (CASE STUDY LOCATION) 

 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 SignalWhole 

Buildng 

Energy 1.9 1.5 1.4 1.9 2.3 4.1 6.2 2.2 low ; 2.1

Natural Gas 1.5 1.4 1.4 1.7 1.5 2.1 2.1 1.7 low ; 2.2

HVAC 1.6 1.7 1.9 2 2.1 1.6 1.7 2 2

Refrigeration 4.8 4 3.4 4.3 4.5 4.2 3.9 4.7 high ; 5.2 Σ:
TP 0

FP 3 3

TN 4 4 4 4 4 4 4 4 1 33

FN 0

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Building 

Energy high ; inf high ; inf high ; 1700 high ; inf high ; inf high ; 3.6 high ; 4.9 high ; inf high ; inf

Natural Gas high ; inf high ; inf high ; 1200 high ; inf high ; inf 2.2 high ; 3.9 high ; inf high ; inf

HVAC high ; 17 high ; 580 high ; 1700 high ; 3.1 2.1 high ; 5.1 high ; 5.8 high ; 2.5 high ; 3.3

Refrigeration 4.8 low ; 14 low ; 17 high ; 4.4 high ; 5 4.1 high ; 5.1 high ; 4 high ; 4.3 Σ:
TP 3 3 3 2 2 3 3 2 2 23

FP 0 1 1 0 1 0 1 0 1 5

TN 1 0 0 1 0 1 0 1 0 4

FN 0 0 1 1 0 0 1 1 4

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy 1.9 1.5 1.4 1.9 2.3 4.2 6 2.2 low ; 2.1

Natural Gas 1.5 1.4 1.4 1.7 1.5 2.1 2.2 1.6 low ; 2.3

HVAC 1.6 1.7 1.9 2 2.2 1.6 high ; 2 2 1.9

Refrigeration 4.8 4 3.4 4.3 4.5 4.2 4 4.6 high ; 5.2 Σ:

TP 1 1

FP 3 3

TN 3 3 3 3 3 3 3 3 24

FN 1 1 1 1 1 1 1 1 8

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy low ; 1300 low ; 430 low ; 580 low ; 350 low ; 73 low ; 5.4 low ; 6.3 low ; 85 low ; 3500

Natural Gas low ; 2600 low ; 690 low ; 700 low ; 120 low ; 30 2.2 low ; 3.8 low ; 32 low ; 870

HVAC low ; 91 low ; 4.5 low ; 3.8 low ; 210 low ; 580 low ; 120 low ; 270 low ; 4500 low ; 250

Refrigeration 4.8 4.1 3.4 3.9 4.5 4.2 3.9 4.7 high ; 4.8 Σ:

TP 3 3 3 3 3 2 3 3 3 26

FP 1 1

TN 1 1 1 1 1 1 1 1 8

FN 1 1

Base: As expected base building

Fault A: OA Dampers Stuck Open

(50% OA instead of 17% OA)

Fault B: Economizer broken 

(no ecomomizer for one AHU)

Fault C: Fans broken (belts snapped)

(Sales1 AHU and Restroom AHU fans off)
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End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy low ; 1300 low ; 430 low ; 580 low ; 350 low ; 73 low ; 5.4 low ; 6.3 low ; 85 low ; 3500

Natural Gas low ; 2600 low ; 690 low ; 700 low ; 120 low ; 30 2.2 low ; 3.8 low ; 32 low ; 870

HVAC low ; 91 low ; 4.5 low ; 3.8 low ; 210 low ; 580 low ; 120 low ; 270 low ; 4500 low ; 250

Refrigeration 4.8 4.1 3.4 3.9 4.5 4.2 3.9 4.7 high ; 4.8 Σ:

TP 3 3 3 3 3 2 3 3 3 26

FP 1 1

TN 1 1 1 1 1 1 1 1 8

FN 1 1

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy 2.1 high ; 1.6 high ; 1.5 1.9 high ; 2.9 high ; 4.1 high ; 4.9 high ; 2.8 1.7

Natural Gas 1.5 1.4 1.4 1.7 1.5 2.1 2.2 1.6 low ; 2.3

HVAC 1.6 1.7 1.9 2 2.2 1.6 1.7 2 1.9

Refrigeration high ; Inf high ; Inf high ; Inf high ; Inf high ; Inf high ; Inf high ; Inf high ; Inf high ; Inf Σ:

TP 1 2 2 1 2 2 2 2 1 15

FP 1 1

TN 2 2 2 2 2 2 2 2 1 17

FN 1 1 1 3

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 15 high ; 11 high ; 8.6 high ; 17 high ; 52 high ; 17 high ; 12 high ; 28 high ; 11

Natural Gas high ; 9.3 high ; 7.9 high ; 6 high ; 9.6 high ; 26 high ;7.3 high ; 3.6 high ; 13 high ; 5.2

HVAC high ; 39 high ; 39 high ; 37 high ; 32 high ; 17 high ; 47 high ; 28 high ; 15 high ; 24

Refrigeration high ; 4.9 high ; 4 high ; 4.1 high ; 3.9 high ; 3.9 3.8 high ; 4.4 high ; 3.8 high ; 14 Σ:

TP 3 3 3 3 3 3 3 3 3 27

FP 1 1 1 1 1 1 1 1 8

TN 1 1

FN 0

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 200 high ; 74 high ; 43 high ; 170 high ; 270 high ; 29 high ; 13 high ; 230 high ; 94

Natural Gas high ; 95 high ; 48 high ; 26 high ; 83 high ; 130 high ; 7.9 high ; 5.5 high ; 140 high ; 33

HVAC high ; 76 high ; 80 high ; 66 high ; 33 high ; 20 high ; 120 high ; 28 high ; 17 high ; 41

Refrigeration 3.9 high ; 4.6 high ; 5.7 3.7 3.7 3.7 3.9 4 high ; 13 Σ:

TP 3 3 3 3 3 3 3 3 3 27

FP 1 1 1 3

TN 1 1 1 1 1 1 6

FN 0

Fault F: Thermostat setbacks not working :

(no night setbacks or setups)

Fault E: Scheduling of operation errors: 

(All AHUs turn on at 3am instead of 7am)

Fault C: Fans broken (belts snapped)

(Sales1 AHU and Restroom AHU fans off)

Fault D: Refrigeration compressors broken

(Refrigeration Suction UA up by 300% on two racks)
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End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 5.6 high ; 3.8 high ; 4 high ; 2.9 high ; 4.1 high ; 180 high ; 500 high ; 5.3 high ; 1.9

Natural Gas high ; 2.8 high ; 3.2 high ; 3.1 high ; 2 high ; 2.2 high ; 52 high ; 10 high ;  2.6 1.6

HVAC high ; 370 high ; 18 high ; 13 high ; 32 high ; 23 high ; 2500high ; Inf high ; 43 high ; 21

Refrigeration 4.2 3.7 3 3.6 3.7 low ; 4.4 4.2 4.1 high ; 3.6 Σ:

TP 2 2 2 2 2 2 2 2 2 18

FP 1 1 1 1 1 2 1 1 1 10

TN 1 1 1 1 1 1 1 1 8

FN 2 2

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 62 high ; 23 high ; 11 high ; 1700high ; 580 3.8 high ; 4.3 high ; 870 high ; 500

Natural Gas high ; 160 high ; 26 high ; 11 high ; Inf high ; Inf high ; 2.6 high ; 3 high ; Inf high ; 870

HVAC high ; 1.9 high ; 2.4 high ; 2.5 1.9 2.1 high ; 1.8 high ; 2.1 1.8 1.8

Refrigeration 4.6 3.9 3.4 high ; 4 high  ; 4.6 4.1 high ; 4.9 4.3 high ; 6 Σ:

TP 3 3 3 2 2 2 3 2 2 22

FP 1 1 1 1 4

TN 1 1 1 1 1 5

FN 1 1 1 1 1 5

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy low ; 2.4 1.5 1.5 1.9 2.3 low ; 56 low ; 6.3 low ; 3 low ; 2.1

Natural Gas low ; 1.9 1.4 1.4 1.7 1.5 low ; 51 low ; 140 low ; 2.3 low ; 2.3

HVAC low ; 24 1.7 1.8 2 2.1 low ; Inf low ; 71 low ; 26 2

Refrigeration high ; 4.9 3.9 high ; 3.5 4.2 4.4 high ; 6.6 high ; 55 high ; 4.5 high ; 5.2 Σ:
TP 2 2 2 2 8

FP 2 1 2 2 2 3 12

TN 4 3 2 2 1 12

FN 2 2 4

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy 2 1.5 high ; 1.6 1.9 low ; 3.3 low ; 4.2 low ; 4.2 low ; 2.7 low ; 2.2

Natural Gas low ; 1.5 1.5 high ; 1.6 1.7 low ; 3.2 low  ; 2.8 low ; 4.3 low ; 2.2 low ; 2.4

HVAC low ; 5 1.8 1.8 low ; 2.9 low ; 6.3 low ; 36 low ; 11 low ; 5.5 low ; 2.5

Refrigeration 4.6 3.8 high ; 3.6 high ; 4 high ; 4.1 4.1 high ; 4.4 4 high ; 10 Σ:

TP 2 2 1 3 3 3 3 3 20

FP 1 1 1 1 1 5

TN 1 1 1 1 4

FN 1 3 1 2 7

Fault G: Cooling setpoint overrides:

(Cooling T;stats set down 1.8oC)

Fault H: Heat recovery is being bypassed:

(Delete Air;to;Air HX on one AHU)

Fault I:Humidity controls fail or are shut off:

(EMS code for humidity Control is disabled)

Fault J:Thermostat Float temp increase:

(Increase float to 1.5 oC for all zones)
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CLIMATE ZONE 4C (PORTLAND) 

 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 SignalWhole 

Buildng 

Energy 2 1.8 low ; 2.3 1.8 high ; 2.1 3.5 3.5 2.1 1.7

Natural Gas 1.5 1.7 low ; 2.3 1.7 high ; 2.2 2.4 low ; 2.7 1.9 1.7

HVAC 1.9 2.2 2.2 2.3 2.2 2 1.8 2 2.1

Refrigeration 4.3 3.8 3.7 4 3.8 4.1 3.9 4 3.9 Σ:

TP 0

FP 2 2 1 5

TN 4 4 2 4 2 4 3 4 4 31

FN 0

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Building 

Energy high ; inf high ; inf high ; inf high ; inf high ; inf high ; 3.3 3.6 high ; inf high ; inf

Natural Gas high ; inf high ; inf high ; inf high ; inf high ; inf high ; 3.4 low ; 4.1 high ; inf high ; inf

HVAC 1.9 high ; 2.5 high ; 4.1 2.1 2 high ; 1.9 high ; 3.3 2 1.9

Refrigeration 4.3 3.7 3.6 4.2 4.1 4.1 4 4.4 4 Σ:

TP 2 3 3 2 2 3 2 2 2 21

FP 0 0 0 0 0 0 0 0 0 0

TN 1 1 1 1 1 1 1 1 1 9

FN 1 0 1 1 0 1 1 1 6

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy 2 1.8 low ; 2.3 1.8 high ; 2.1 3.5 3.5 2.1 1.7

Natural Gas 1.5 1.7 low ; 2.3 1.7 high ; 2.2 2.4 low ; 2.8 1.9 1.7

HVAC 1.9 2.2 2.2 2.3 2.2 1.9 1.8 2 2.1

Refrigeration 4.3 3.8 3.7 4 3.8 4.1 3.9 4 3.9 Σ:
TP 1 1

FP 2 1 1 4

TN 2 4 2 2 1 2 1 2 4 20

FN 2 2 1 2 2 2 11

Base: As expected base building

Fault A: OA Dampers Stuck Open

(50% OA instead of 17% OA)

Fault B: Economizer broken 

(no ecomomizer for one AHU)
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End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy low ; 2.2 high ; 2.8 1.5 high ; 4.1 high ; 40 low ; 7.5 low ; 3.4 2 high ; 4.3

Natural Gas high ; 7 high ; 6.4 high ; 1.8 high ; 18 high ; 800 low ; 3.8 low ; 5.3 high ; 3.2 high ; 13

HVAC low ; 21 low ; 10 low ; 9.3 low ; 13 low ; 11 low ; 28 low ; 3.9 low ; 15 low ; 12

Refrigeration 4.3 3.8 3.7 4.2 4.3 3.3 4.2 4.5 4.2 Σ:

TP 2 1 1 1 1 2 2 1 1 12

FP 1 2 1 2 2 1 1 1 2 13

TN 1 1 1 1 1 1 1 1 1 9

FN 1 1 2

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 2.3 1.5 low ; 1.6 high ; 2.4 high ; 3.3 high ; 3.8 high ; 3.2 high ; 2.8 high ; 2.2

Natural Gas 1.5 1.7 low ; 2.3 1.7 high ; 2.2 2.4 high ; 2.7 1.9 1.7

HVAC 1.9 2.2 2.2 2.3 2.2 2 1.8 2 2.1

Refrigeration high ; Inf high ; 4500 high ; 4500 high ; Inf high ; Inf high ; 1100 high ; 2200 high ; Inf high ; Inf Σ:

TP 2 1 2 2 2 2 2 2 2 17

FP 1 1 1 3

TN 2 2 1 2 1 2 1 2 2 15

FN 1 1

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 3.6 high ; 4 high ; 2.6 high ; 5 high ; 9.9 3.4 3.3 high ; 5 high ; 4.9

Natural Gas high ; 7.3 high ; 5.4 high ; 3 high ; 8.5 high ; 18 high ; 3 low ; 3.2 high ; 8.2 high ; 6.9

HVAC 2 1.9 1.9 2.3 2.3 1.8 1.9 2.1 2.2

Refrigeration 4 3.7 3.5 4 3.8 4.1 4 4.1 3.9 Σ:

TP 2 2 2 2 2 1 2 2 15

FP 1 1

TN 1 1 1 1 1 1 1 1 1 9

FN 1 1 1 1 1 2 2 1 1 11

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 11 high ; 25 high ; 13 high ; 11 high ; 26 3.6 3.4 high ; 6.4 high ; 7.1

Natural Gas high ; 47 high ; 57 high ; 21 high ; 25 high ; 79 high ; 2.8 low ; 2.6 high ; 14 high ; 12

HVAC 1.8 2 2 2.1 2 2 1.7 2.1 2.2

Refrigeration 4.3 3.7 3.8 4 3.9 4.2 3.9 4.3 4.2 Σ:

TP 2 2 2 2 2 1 2 2 15

FP 1 1 1 3

TN 1 1 1 1 1 1 1 1 1 9

FN 1 1 1 1 1 2 1 1 1 10

Fault E: Scheduling of operation errors: 

(All AHUs turn on at 3am instead of 7am)

Fault F: Thermostat setbacks not working :

(no night setbacks or setups)

Fault C: Fans broken (belts snapped)

(Sales1 AHU and Restroom AHU fans off)

Fault D: Refrigeration compressors broken

(Refrigeration Suction UA up by 300% on two racks)



 

271 
 

 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 2.8 1.5 low ; 1.7 high ; 2.7 high ; 4.2 high ; 31 high ; 21 high ; 3.4 high ; 2.3

Natural Gas high ; 2.8 1.5 low ; 1.7 high ; 3.3 high ; 4.8 high ; 210 high ; 21 high ; 2.1 high ; 2.6

HVAC high ; 4.5 2.1 2.1 high ;2.6 high ; 2.4 high ; 26 high ; 62 high ; 2.7 2.1

Refrigeration low ; 4.4 low ; 4.4 low ; 4.1 low ; 4.5 3.9 low ; 4 low ; 3.6 low ; 4 4 Σ:

TP 2 2 2 2 2 2 12

FP 2 1 3 2 1 2 2 2 2 17

TN 3 1 1 2 7

FN 0

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 17 high ; 10 high ; 5.8 high ; 130 high ; 270 high ; 3.3 3.2 high ; 120 high ; 84

Natural Gas high ; 86 high ; 17 high ; 8.1 high ; 660 high ; 1000 high ; 5.2 2.1 high ; 670 high ; 190

HVAC 1.7 2.1 2 2.2 2.2 1.6 1.9 2 2

Refrigeration 4.2 3.6 3.5 4.2 4.1 4.1 4 4.4 4.1 Σ:

TP 2 2 2 2 2 2 2 2 2 18

FP 0

TN 2 2 2 2 2 1 1 2 2 16

FN 1 1 2

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy low ; 2.9 low ; 1.8 low ; 2.3 2 1.9 low ; 51 low ; 17 low ; 2.5 1.9

Natural Gas low ; 2.1 1.7 low ; 2.3 1.7 1.8 low ; 59 low ; 150 low ; 2.4 1.8

HVAC low ; 8.1 2.2 2.2 low ; 3.1 2.5 low ; 750 low ; 55 low ; 3.6 low ; 2.8

Refrigeration 4 3.7 3.7 4.2 4 high ; 5.5 high ; 14 3.9 4 Σ:
TP 2 1 1 2 2 2 1 11

FP 1 2 2 2 1 8

TN 1 3 2 2 2 1 3 14

FN 1 2 3

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy 2.2 1.6 low ; 2.0 low ; 2.2 1.8 low ; 4.5 low ; 11 low ; 2.7 low ; 2.2

Natural Gas 1.5 high ; 1.7 low ; 1.9 1.8 1.8 low  ; 2.7 low ; 17 low ; 2.3 1.9

HVAC low ; 6 low ; 3 low ; 3 low ; 4.4 low ; 5 low ; 19 low ; 16 low ; 4.7 low ; 4.6

Refrigeration 4.3 3.7 3.6 4.1 3.9 4.1 4 4.3 3.8 Σ:

TP 1 1 3 2 1 3 3 3 2 19

FP 0

TN 1 1 1 1 1 1 1 1 1 9

FN 2 2 1 2 1 8

Fault I:Humidity controls fail or are shut off:

(EMS code for humidity Control is disabled)

Fault J:Thermostat Float temp increase:

(Increase float to 1.5 oC for all zones)

Fault G: Cooling setpoint overrides:

(Cooling T;stats set down 1.8oC)

Fault H: Heat recovery is being bypassed:

(Delete Air;to;Air HX on one AHU)
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CLIMATE ZONE 3A (ATLANTA) 

 

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 SignalWhole 

Buildng 

Energy 2.4 1.7 low ; 2.5 1.9 3.5 3 2.8 3.2 high ; 2.7

Natural Gas 1.7 1.9 low ; 3.2 1.7 2.1 3.7 3.9 1.8 high ; 2.6

HVAC 1.4 1.6 1.7 2 1.6 1.5 1.4 1.7 high ; 1.9

Refrigeration 3.7 4 3.5 4.3 3.9 3 2.6 3.9 4.3 Σ:

TP 0

FP 2 3 5

TN 4 4 2 4 4 4 4 4 1 31

FN 0

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Building 

Energy high ; 150 high ; inf high ; inf high ; 6.2 high ; 12 3 2.7 high ; 120 high ; inf

Natural Gas high ; inf high ; inf high ; inf high ; 180 high ; 240 low ; 5.7 low ; 5.1 high ; inf high ; inf

HVAC high ; 1.9 high ; 4.4 high ; 3.2 1.8 1.8 high ; 1.6 high ; 1.8 1.7 high ; 3.9

Refrigeration 3.7 3.5 high ; 4.5 3.9 4 3 2.4 high ; 4 3.6 Σ:

TP 3 3 3 2 2 2 2 2 3 22

FP 0 0 1 0 0 0 0 1 0 2

TN 1 1 0 1 1 1 1 0 1 7

FN 0 0 0 1 1 1 1 1 0 5

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy 2.4 1.7 low ; 2.6 3.7 3.5 3 2.8 3.1 high ; 2.7

Natural Gas 1.7 1.9 low ; 3.3 2.1 2.1 3.9 3.9 1.9 high ; 2.6

HVAC 1.4 1.6 1.7 1.7 1.6 1.5 1.5 1.7 high ; 1.9

Refrigeration 3.6 4 high ; 3.7 3.9 3.9 3 2.6 3.9 4.3 Σ:

TP 2 2

FP 3 1 4

TN 2 2 0 2 2 2 2 2 14

FN 2 2 1 2 2 2 2 2 1 16

Base: As expected base building

Fault A: OA Dampers Stuck Open

(50% OA instead of 17% OA)

Fault B: Economizer broken 

(no ecomomizer for one AHU)
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End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy 2.5 high ; 2.9 1.6 low ; 4,5 low ; 7.5 low ; 3.6 low ; 3.4 low ; 3.5 low ; 3

Natural Gas high ; 7.1 high ; 6.5 high ; 2.1 low ; 3.1 low ; 6.7 3.7 3.9 2 2.1

HVAC low ; 7.9 low ; 7.3 low ; 9.4 low ; 8.4 low ; 9.8 low ; 4.4 low ; 3.7 low ; 15 low ; 11

Refrigeration 3.8 3.9 3.6 3.9 4.1 3.3 2.9 4.1 4.5 Σ:

TP 1 1 1 3 3 2 2 2 2 17

FP 1 2 1 4

TN 1 1 1 1 1 2 2 1 1 11

FN 1 1 1 1 4

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 2.8 1.5 low ; 1.9 high ; 3.5 high ; 2.9 2.8 2.6 high ; 3.6 high ; 5.1

Natural Gas 1.7 1.9 low ; 3.2 2.1 2.1 3.7 3.9 1.8 high ; 2.6

HVAC 1.4 1.6 1.7 1.7 1.6 1.5 1.4 1.7 high ; 1.9

Refrigeration high ; 1500 high ; 2200 high ; Inf high ; 4500high ; Inf high ; 48 high ; 30 high ; Inf high ; Inf Σ:

TP 2 1 1 2 2 1 1 2 2 14

FP 2 2 4

TN 2 2 1 2 2 3 3 2 0 17

FN 1 0 1

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 3.7 high ; 5 high ; 2.6 3.2 high ; 3.6 2.9 2.6 high ; 3.6 high ; 7.6

Natural Gas high ; 9.5 high ; 7.5 high ; 2.9 high ; 5.3 high ; 7.1 high ; 3.1 2.2 high ; 5.7 high ; 17

HVAC high ; 1.8 1.7 1.7 1.8 1.8 high ; 2.4 high ; 2 1.6 high ; 1.8

Refrigeration 3.7 4 high ; 3.8 3.9 3.8 3 2.5 4 4.4 Σ:

TP 3 3 2 1 2 2 1 2 3 19

FP 1 1

TN 1 1 1 1 1 1 1 1 8

FN 1 2 1 1 2 1 8

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 9.9 high ; 46 high ; 23 high ; 3.6 high ; 3.7 high ; 3.5 2.6 high ; 3.6 high ; 9.1

Natural Gas high ; 55 high ; 120 high ; 37 high ; 9 high ; 7.3 high ; 3.2 2.2 high ; 7.7 high ; 26

HVAC high ; 2.9 high ; 1.9 high ; 1.7 1.8 high ; 2 high ; 6.7 high ; 3.4 1.7 1.7

Refrigeration 3.8 3.9 high ; 4 4 4 3.2 2.5 4.1 4.1 Σ:

TP 3 3 3 2 3 3 1 2 2 22

FP 1 1

TN 1 1 1 1 1 1 1 1 8

FN 1 2 1 1 5

Fault E: Scheduling of operation errors: 

(All AHUs turn on at 3am instead of 7am)

Fault F: Thermostat setbacks not working :

(no night setbacks or setups)

Fault C: Fans broken (belts snapped)

(Sales1 AHU and Restroom AHU fans off)

Fault D: Refrigeration compressors broken

(Refrigeration Suction UA up by 300% on two racks)
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End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 3.3 1.5 low ; 1.8 high ; 9.2 high ; 10 high ; 3 high ; 3.5 high ; 12 high ; 10

Natural Gas high ; 4.3 1.8 low ; 2.3 high ; 15 high ; 18 high ; 14 high ; 5.8 high ; 16 high ; 16

HVAC high ; 5.4 high ; 2.2 high ; 1.9 high ; 21 high ; 11 high ; 2 high ; 7.2 high ; 13 high ; 5.7

Refrigeration low ; 4.1 low ; 4.7 3.4 low ; 4 4 low ; 3.9 low ; 3.7 4.2 4.1 Σ:

TP 2 1 1 2 2 2 2 2 2 16

FP 2 1 2 2 1 2 2 1 1 14

TN 1 1 1 1 1 5

FN 1 1

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy high ; 7.8 high ; 20 high ; 6.7 high ; 3.9 high ; 4.4 2.9 2.8 high ; 12 high ; 1200

Natural Gas high ; 74 high ; 43 high ; 10 high ; 22 high ; 22 3.9 2.9 high ; 140 high ; Inf

HVAC 1.5 1.6 1.6 1.7 1.7 1.4 1.5 1.6 high ; 2.6

Refrigeration 3.7 3.8 high ; 3.9 3.9 4 2.9 2.4 high ; 4 3.9 Σ:

TP 2 2 2 2 2 0 0 2 2 14

FP 1 1 2

TN 2 2 1 2 2 2 2 1 1 15

FN 2 2 1 5

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy low ; 5 low ; 1.6 low ; 2.8 low ; 10 low ; 9.6 low ; 29 low ; 28 low ; 10 low ; 3.1

Natural Gas low ; 3.1 2 low ; 3.6 low ; 41 low ; 32 low ; 5.1 low ; 5.6 low ; 16 low ; 3.4

HVAC low ; 60 1.9 1.7 low ; 11 low ; 11 low ; 1000 low ; 990 low ; 74 low ; 3.8

Refrigeration high ; 4.3 3.6 high ; 3.7 high ; 4 high ; 4.8 high ; 4.3 high ; 4.3 high ; 9.5 high ; 4.6 Σ:
TP 2 1 1 2 2 2 2 2 2 16

FP 2 2 2 2 2 2 2 2 16

TN 2 1 3

FN 1 1

End Use Year Signal

Month 1 

Signal

Week 4

Signal

Month 4 

Signal

Week 17

 Signal

Month 7 

Signal

Week 30

 Signal

Month 10

 Signal

Week 43

 Signal

Whole 

Buildng 

Energy low ; 2.8 1.5 1.5 low ; 4.2 low ; 5.8 low ; 5.6 low ; 7.4 low ; 3,5 2.5

Natural Gas 1.9 1.7 1.8 low ; 7.6 low ; 20 low  ; 5.7 low ; 5.3 low ; 3.8 2.3

HVAC low ; 7.7 low ; 2.1 low ; 2.2 low ; 5.2 low ; 3.9 low ; 17 low ; 23 low ; 4.5 low ; 2.5

Refrigeration 3.7 3.6 high ; 4.7 3.6 4 2.8 2.4 high ; 4 3.8 Σ:

TP 2 1 1 3 3 3 3 3 1 20

FP 1 1 2

TN 1 1 1 1 1 1 1 7

FN 1 2 2 2 7

Fault I:Humidity controls fail or are shut off:

(EMS code for humidity Control is disabled)

Fault J:Thermostat Float temp increase:

(Increase float to 1.5 oC for all zones)

Fault G: Cooling setpoint overrides:

(Cooling T;stats set down 1.8oC)

Fault H: Heat recovery is being bypassed:

(Delete Air;to;Air HX on one AHU)
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Table 35 

 

Location

95% Conf.

Cost Dev

(mean)

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev

(mean)

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev

(mean)

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev 

(mean)

Signal 

Priority 

Ratio

Climate 4c, Fault A 25086.5 6000 Climate 4c, Fault A 10648.5 6000 Climate 6a, Fault A 7002.5 430 Climate 4c, Fault D 3654.5 6000

Climate 6a, Fault A 42951 6000 Climate 3a, Fault A 6387 6000 Climate 6a, Fault G 6889 370 Climate 6a, Fault D 4742 6000

Climate 6a, Fault H 27176.5 370 Climate 6a, Fault A 18619 6000 Climate 6a, Fault F 5703.5 76 Climate 3a, Fault D 3818.5 1500

Climate 6a, Fault F 24198.5 200 Climate 6a, Fault H 11458 310 Climate 3a, Fault I 5978 60 Climate 6a, Fault I 1363 5.2

Climate 3a, Fault A 16870.5 150 Climate 6a, Fault F 9678 95 Climate 6a, Fault E 5117 39 Climate 4c, Fault G 854.5 4.4

Climate 6a, Fault C 15969.5 18 Climate 4c, Fault H 5382.5 85 Climate 6a, Fault H 4754 28 Climate 4c, Fault A 250 4.3

Climate 4c, Fault H 12465.5 17 Climate 3a, Fault H 3397.5 74 Climate 4c, Fault C 4248 21 Climate 4c, Fault B 63.5 4.3

Climate 6a, Fault E 15787.5 15 Climate 3a, Fault F 3277 55 Climate 6a, Fault B 4341 20 Climate 4c, Fault C 378.5 4.3

Climate 4c, Fault F 10858 11 Climate 4c, Fault F 4942.5 47 Climate 6a, Fault D 4309 19 Climate 4c, Fault E 85 4.3

Climate 3a, Fault F 9701.5 9.9 Climate 6a, Fault C 8084 35 Climate 4c, Fault I 3268 8.1 Climate 4c, Fault F 459.5 4.3

Climate 3a, Fault H 8860 7.8 Climate 3a, Fault E 2018 9.5 Climate 3a, Fault C 3728 7.9 Climate 4c, Fault J 256.5 4.3

Climate 6a, Fault D 10244.5 5.6 Climate 6a, Fault E 5701 9.3 Climate 3a, Fault J 3695.5 7.7 Climate 3a, Fault I 1191.5 4.3

Climate 6a, Fault G 10265.5 5.6 Climate 4c, Fault E 3058.5 8.8 Climate 4c, Fault J 2845 6 Climate 6a, Fault A 237.5 4.3

Climate 3a, Fault I 6867.5 5 Climate 3a, Fault C 1767 7.1 Climate 3a, Fault G 3064.5 5.4 Climate 4c, Fault H 178.5 4.2

Climate 4c, Fault E 6817.5 4.2 Climate 4c, Fault C 2780.5 7 Climate 6a, Fault J 2601 5.1 Climate 6a, Fault G 322.5 4.2

Climate 3a, Fault E 5965 3.7 Climate 3a, Fault G 1291 4.3 Climate 4c, Fault G 2251 4.5 Climate 3a, Fault G 874.5 4.1

Climate 3a, Fault G 5283.5 3.3 Climate 3a, Fault I 1158 3.1 Climate 3a, Fault F 1982 2.9 Climate 6a, Fault C 458.5 4.1

Climate 6a, Fault B 7154.5 3.3 Climate 4c, Fault G 1513.5 2.8 Climate 6a, Fault I 1233 2.1 Climate 6a, Fault J 790.5 4.1

Climate 4c, Fault I 4905 2.9 Climate 6a, Fault G 2701.5 2.8 Climate 4c, Fault A 545 1.9 Climate 4c, Fault I 584.5 4

Climate 4c, Fault G 4886.5 2.8 Climate 4c, Fault I 1273.5 2.1 Climate 4c, Fault B 535 1.9 Climate 6a, Fault E 737 4

Climate 3a, Fault D 3184 2.8 Climate 6a, Fault B 1759 2 Climate 4c, Fault D 565 1.9 Climate 6a, Fault H 773 4

Climate 3a, Fault J 3705 2.8 Climate 6a, Fault D 1759 2 Climate 3a, Fault A 1235 1.9 Climate 6a, Fault B 637 3.9

Climate 3a, Fault C 808 2.5 Climate 3a, Fault J 377 1.9 Climate 4c, Fault E 365.5 1.8 Climate 6a, Fault F 639 3.9

Climate 6a, Fault J 5431.5 2.5 Climate 6a, Fault J 1502 1.9 Climate 4c, Fault F 262.5 1.8 Climate 3a, Fault C 323.5 3.8

Climate 3a, Fault B 354.5 2.4 Climate 3a, Fault B 208 1.7 Climate 3a, Fault E 1014 1.8 Climate 3a, Fault F 175 3.8

Climate 4c, Fault D 2773 2.3 Climate 3a, Fault D 188 1.7 Climate 4c, Fault H 184 1.7 Climate 3a, Fault A 254.5 3.7

Climate 4c, Fault C 2634.5 2.2 Climate 6a, Fault I 791 1.6 Climate 6a, Fault C 264 1.7 Climate 3a, Fault E 2.5 3.7

Climate 4c, Fault J 2400 2.2 Climate 4c, Fault B 54.5 1.5 Climate 3a, Fault H 351 1.5 Climate 3a, Fault H 201 3.7

Climate 4c, Fault B 366.5 2 Climate 4c, Fault D 54.5 1.5 Climate 3a, Fault B 68 1.4 Climate 3a, Fault J 340.5 3.7

Climate 6a, Fault I 3391.5 2 Climate 4c, Fault J 204.5 1.5 Climate 3a, Fault D 20.5 1.4 Climate 3a, Fault B 14.5 3.6

Whole Building Energy Natural Gas HVAC Refrigeration

YEARLY faults, sorted by descending signal priority ratio
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Table 36 

 

Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio

Climate 4c, Fault A 41784 6000 Climate 4c, Fault A 20520 6000 Climate 6a, Fault A 11088 6000 Climate 6a, Fault D 4398 6000

Climate 3a, Fault A 46302 6000 Climate 3a, Fault A 22602 6000 Climate 6a, Fault F 6732 80 Climate 4c, Fault D 3546 4500

Climate 6a, Fault A 69222 6000 Climate 6a, Fault A 38394 6000 Climate 6a, Fault E 5988 39 Climate 3a, Fault D 3336 2200

Climate 6a, Fault H 40524 96 Climate 3a, Fault F 10788 120 Climate 6a, Fault H 5670 29 Climate 6a, Fault A 1272 7.1

Climate 6a, Fault F 39012 74 Climate 6a, Fault H 22206 67 Climate 6a, Fault G 5136 18 Climate 3a, Fault G 924 4.7

Climate 3a, Fault F 21702 46 Climate 4c, Fault F 9366 57 Climate 6a, Fault I 4680 13 Climate 6a, Fault F 1110 4.6

Climate 6a, Fault C 32592 26 Climate 6a, Fault F 20742 48 Climate 6a, Fault B 4578 12 Climate 4c, Fault G 924 4.4

Climate 4c, Fault F 18414 25 Climate 3a, Fault H 9126 43 Climate 6a, Fault D 4578 12 Climate 6a, Fault E 882 4.2

Climate 3a, Fault H 18222 20 Climate 6a, Fault C 21054 41 Climate 6a, Fault J 4500 12 Climate 3a, Fault B 252 4

Climate 6a, Fault E 23298 11 Climate 4c, Fault H 7302 17 Climate 4c, Fault C 3522 10 Climate 3a, Fault E 228 4

Climate 4c, Fault H 14352 10 Climate 6a, Fault E 11538 7.9 Climate 3a, Fault C 3144 7.3 Climate 4c, Fault E 222 3.9

Climate 3a, Fault E 10776 5 Climate 3a, Fault E 5256 7.5 Climate 3a, Fault A 2616 4.4 Climate 3a, Fault C 426 3.9

Climate 6a, Fault D 14052 4.4 Climate 3a, Fault C 4902 6.5 Climate 6a, Fault C 2466 3.3 Climate 3a, Fault F 372 3.9

Climate 4c, Fault E 9060 4.1 Climate 4c, Fault C 4848 6.4 Climate 4c, Fault J 1530 3 Climate 6a, Fault J 756 3.9

Climate 6a, Fault G 12540 3.8 Climate 4c, Fault E 4572 5.7 Climate 4c, Fault A 1356 2.5 Climate 4c, Fault B 138 3.8

Climate 6a, Fault I 12408 3.8 Climate 6a, Fault G 5730 3.2 Climate 4c, Fault B 504 2.2 Climate 4c, Fault C 534 3.8

Climate 6a, Fault J 12360 3.8 Climate 6a, Fault J 5478 3.1 Climate 4c, Fault D 504 2.2 Climate 3a, Fault H 108 3.8

Climate 6a, Fault B 11748 3.6 Climate 6a, Fault I 5454 3 Climate 4c, Fault I 618 2.2 Climate 6a, Fault H 714 3.8

Climate 3a, Fault C 7128 2.9 Climate 6a, Fault B 5106 2.9 Climate 3a, Fault G 1392 2.2 Climate 6a, Fault I 714 3.8

Climate 4c, Fault C 6618 2.8 Climate 6a, Fault D 5106 2.9 Climate 4c, Fault G 828 2.1 Climate 4c, Fault A 294 3.7

Climate 4c, Fault B 3096 1.8 Climate 3a, Fault I 1728 2 Climate 4c, Fault H 300 2.1 Climate 4c, Fault F 594 3.7

Climate 4c, Fault I 3348 1.8 Climate 3a, Fault B 1254 1.9 Climate 3a, Fault J 924 2.1 Climate 4c, Fault I 78 3.7

Climate 3a, Fault I 3684 1.8 Climate 3a, Fault D 1206 1.9 Climate 4c, Fault F 432 2 Climate 4c, Fault J 210 3.7

Climate 3a, Fault B 2418 1.7 Climate 3a, Fault G 90 1.8 Climate 4c, Fault E 198 1.9 Climate 6a, Fault B 666 3.7

Climate 4c, Fault J 624 1.6 Climate 4c, Fault B 1350 1.7 Climate 3a, Fault F 984 1.9 Climate 6a, Fault G 282 3.7

Climate 4c, Fault D 366 1.5 Climate 4c, Fault D 1350 1.7 Climate 3a, Fault I 600 1.9 Climate 4c, Fault H 150 3.6

Climate 4c, Fault G 42 1.5 Climate 4c, Fault I 1458 1.7 Climate 3a, Fault E 696 1.7 Climate 3a, Fault I 36 3.6

Climate 3a, Fault D 294 1.5 Climate 4c, Fault J 786 1.7 Climate 3a, Fault B 84 1.6 Climate 3a, Fault J 144 3.6

Climate 3a, Fault G 684 1.5 Climate 3a, Fault J 114 1.7 Climate 3a, Fault D 72 1.6 Climate 3a, Fault A 24 3.5

Climate 3a, Fault J 636 1.5 Climate 4c, Fault G 30 1.5 Climate 3a, Fault H 396 1.6 Climate 6a, Fault C 522 3.5

MONTH 1 faults, sorted by descending signal priority ratio
Whole Building Energy Natural Gas HVAC Refrigeration
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Table 37 

 

Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio

Climate 4c, Fault A 27108 6000 Climate 4c, Fault A 11520 6000 Climate 6a, Fault A 4788 36 Climate 4c, Fault D 3600 6000

Climate 6a, Fault A 52410 6000 Climate 6a, Fault A 23838 6000 Climate 6a, Fault F 4716 33 Climate 6a, Fault D 4758 6000

Climate 6a, Fault H 31242 3500 Climate 6a, Fault H 13722 6000 Climate 6a, Fault G 4680 32 Climate 3a, Fault D 3762 4500

Climate 6a, Fault F 23634 170 Climate 4c, Fault H 7392 660 Climate 6a, Fault E 4326 22 Climate 6a, Fault A 1254 5

Climate 4c, Fault H 17268 130 Climate 3a, Fault A 2112 180 Climate 3a, Fault G 4704 21 Climate 6a, Fault H 1074 4.6

Climate 6a, Fault C 15000 17 Climate 6a, Fault F 9786 83 Climate 4c, Fault C 3750 13 Climate 6a, Fault J 1074 4.6

Climate 6a, Fault E 15732 17 Climate 3a, Fault I 1680 41 Climate 6a, Fault H 3744 12 Climate 4c, Fault G 888 4.5

Climate 4c, Fault F 10716 11 Climate 4c, Fault F 4860 25 Climate 3a, Fault I 4002 11 Climate 4c, Fault E 204 4.3

Climate 3a, Fault I 7170 10 Climate 3a, Fault H 1464 22 Climate 6a, Fault B 3456 9.6 Climate 4c, Fault A 264 4.2

Climate 3a, Fault G 7092 9.2 Climate 4c, Fault C 4344 18 Climate 6a, Fault D 3456 9.5 Climate 4c, Fault C 480 4.2

Climate 3a, Fault A 6138 6.2 Climate 6a, Fault C 7560 16 Climate 6a, Fault I 3342 8.9 Climate 4c, Fault H 240 4.2

Climate 4c, Fault E 8292 6.1 Climate 3a, Fault G 1308 15 Climate 3a, Fault C 3726 8.4 Climate 4c, Fault I 216 4.2

Climate 3a, Fault C 5412 4.5 Climate 4c, Fault E 3660 11 Climate 3a, Fault J 2970 5.2 Climate 4c, Fault J 336 4.1

Climate 3a, Fault J 5208 4.2 Climate 6a, Fault E 5862 9.6 Climate 6a, Fault J 2580 5 Climate 4c, Fault B 48 4

Climate 4c, Fault C 6504 4.1 Climate 3a, Fault F 1086 9 Climate 4c, Fault J 2382 4.4 Climate 4c, Fault F 612 4

Climate 3a, Fault H 4074 3.9 Climate 3a, Fault J 1014 7.6 Climate 4c, Fault I 1500 3.1 Climate 3a, Fault F 246 4

Climate 6a, Fault D 7878 3.8 Climate 3a, Fault E 840 5.3 Climate 4c, Fault G 1170 2.6 Climate 3a, Fault G 786 4

Climate 3a, Fault B 690 3.7 Climate 4c, Fault G 1860 3.3 Climate 4c, Fault B 480 2.3 Climate 3a, Fault I 918 4

Climate 3a, Fault F 3234 3.6 Climate 3a, Fault C 594 3.1 Climate 4c, Fault D 486 2.3 Climate 6a, Fault E 816 4

Climate 3a, Fault D 2934 3.5 Climate 3a, Fault B 228 2.1 Climate 4c, Fault H 318 2.2 Climate 6a, Fault I 822 4

Climate 3a, Fault E 2340 3.2 Climate 3a, Fault D 234 2.1 Climate 4c, Fault A 138 2.1 Climate 3a, Fault A 234 3.9

Climate 6a, Fault G 6414 2.9 Climate 6a, Fault G 1398 2 Climate 4c, Fault E 168 2.1 Climate 3a, Fault B 30 3.9

Climate 4c, Fault G 4680 2.7 Climate 4c, Fault J 696 1.8 Climate 4c, Fault F 186 2.1 Climate 3a, Fault C 414 3.9

Climate 4c, Fault D 3576 2.4 Climate 6a, Fault B 786 1.8 Climate 6a, Fault C 414 2 Climate 3a, Fault E 54 3.9

Climate 6a, Fault B 4896 2.3 Climate 6a, Fault D 786 1.8 Climate 3a, Fault A 546 1.8 Climate 3a, Fault H 198 3.9

Climate 4c, Fault J 3348 2.2 Climate 4c, Fault B 324 1.7 Climate 3a, Fault E 234 1.8 Climate 6a, Fault B 780 3.9

Climate 6a, Fault I 4704 2.2 Climate 4c, Fault D 324 1.7 Climate 3a, Fault F 714 1.8 Climate 3a, Fault J 168 3.8

Climate 6a, Fault J 4368 2.1 Climate 4c, Fault I 468 1.7 Climate 3a, Fault B 132 1.7 Climate 6a, Fault C 432 3.7

Climate 4c, Fault I 2136 2 Climate 6a, Fault I 720 1.7 Climate 3a, Fault D 114 1.7 Climate 6a, Fault F 474 3.7

Climate 4c, Fault B 372 1.8 Climate 6a, Fault J 744 1.7 Climate 3a, Fault H 138 1.7 Climate 6a, Fault G 42 3.6

MONTH 4 faults, sorted by descending signal priority ratio
Whole Building Energy Natural Gas HVAC Refrigeration
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Table 38 

 

Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio

Climate 6a, Fault G 15366 180 Climate 4c, Fault G 2412 210 Climate 6a, Fault G 11202 3500 Climate 6a, Fault D 4668 6000

Climate 4c, Fault I 11064 51 Climate 4c, Fault I 2004 59 Climate 3a, Fault I 13026 1000 Climate 4c, Fault D 3936 1100

Climate 6a, Fault D 11982 39 Climate 6a, Fault G 1872 52 Climate 4c, Fault I 7914 750 Climate 3a, Fault D 3972 48

Climate 4c, Fault G 10638 31 Climate 3a, Fault G 522 14 Climate 6a, Fault F 8118 120 Climate 6a, Fault I 2256 8.8

Climate 3a, Fault I 12456 29 Climate 6a, Fault I 1632 10 Climate 6a, Fault A 8010 110 Climate 4c, Fault I 1740 5.5

Climate 6a, Fault F 11322 29 Climate 6a, Fault F 1008 7.9 Climate 6a, Fault E 6876 47 Climate 6a, Fault G 1044 4.4

Climate 6a, Fault A 10386 20 Climate 6a, Fault E 960 7.3 Climate 6a, Fault H 6348 34 Climate 3a, Fault I 1890 4.3

Climate 6a, Fault E 10110 17 Climate 3a, Fault A 852 5.7 Climate 4c, Fault C 5310 28 Climate 4c, Fault C 60 4.2

Climate 6a, Fault H 9222 12 Climate 3a, Fault J 858 5.7 Climate 4c, Fault G 5472 26 Climate 4c, Fault F 84 4.2

Climate 4c, Fault C 6930 7.5 Climate 6a, Fault H 792 5.5 Climate 6a, Fault B 5814 22 Climate 4c, Fault A 312 4.1

Climate 6a, Fault B 7662 6.9 Climate 4c, Fault H 1200 5.2 Climate 6a, Fault D 5748 21 Climate 4c, Fault B 12 4.1

Climate 3a, Fault J 8262 5.6 Climate 3a, Fault I 828 5.1 Climate 4c, Fault J 4830 19 Climate 4c, Fault E 216 4.1

Climate 4c, Fault J 5592 4.5 Climate 6a, Fault A 612 4.2 Climate 3a, Fault J 6978 17 Climate 4c, Fault H 300 4.1

Climate 4c, Fault D 4332 3.8 Climate 3a, Fault B 690 3.9 Climate 3a, Fault F 5610 6.7 Climate 4c, Fault J 180 4.1

Climate 4c, Fault E 1266 3.6 Climate 3a, Fault H 690 3.9 Climate 6a, Fault I 3192 4.8 Climate 4c, Fault G 792 4

Climate 4c, Fault F 936 3.6 Climate 4c, Fault C 696 3.8 Climate 3a, Fault C 3990 4.4 Climate 3a, Fault G 1230 3.9

Climate 3a, Fault C 5868 3.6 Climate 3a, Fault C 678 3.7 Climate 3a, Fault E 2778 2.4 Climate 6a, Fault A 372 3.9

Climate 4c, Fault B 612 3.5 Climate 3a, Fault D 672 3.7 Climate 4c, Fault E 834 2.1 Climate 6a, Fault C 36 3.8

Climate 3a, Fault F 4938 3.5 Climate 4c, Fault A 876 3.4 Climate 4c, Fault D 582 2 Climate 6a, Fault E 288 3.8

Climate 6a, Fault I 4446 3.5 Climate 6a, Fault B 468 3.3 Climate 4c, Fault F 720 2 Climate 6a, Fault H 348 3.8

Climate 4c, Fault A 3402 3.3 Climate 6a, Fault D 468 3.3 Climate 3a, Fault G 2262 2 Climate 6a, Fault J 264 3.8

Climate 4c, Fault H 3426 3.3 Climate 3a, Fault F 246 3.2 Climate 4c, Fault A 894 1.9 Climate 6a, Fault B 144 3.7

Climate 6a, Fault C 474 3.2 Climate 3a, Fault E 258 3.1 Climate 4c, Fault B 486 1.9 Climate 6a, Fault F 180 3.7

Climate 6a, Fault J 1266 3.2 Climate 4c, Fault E 732 3 Climate 6a, Fault J 942 1.9 Climate 3a, Fault C 828 3.3

Climate 3a, Fault A 84 3 Climate 4c, Fault F 672 2.8 Climate 6a, Fault C 318 1.7 Climate 3a, Fault F 564 3.2

Climate 3a, Fault B 1632 3 Climate 4c, Fault J 438 2.7 Climate 4c, Fault H 66 1.6 Climate 3a, Fault A 420 3

Climate 3a, Fault G 3012 3 Climate 4c, Fault B 420 2.4 Climate 3a, Fault A 1122 1.6 Climate 3a, Fault B 168 3

Climate 3a, Fault E 2418 2.9 Climate 4c, Fault D 432 2.4 Climate 3a, Fault B 294 1.5 Climate 3a, Fault E 264 3

Climate 3a, Fault H 684 2.9 Climate 6a, Fault C 54 2.1 Climate 3a, Fault D 210 1.5 Climate 3a, Fault H 336 2.9

Climate 3a, Fault D 2562 2.8 Climate 6a, Fault J 228 1.9 Climate 3a, Fault H 174 1.4 Climate 3a, Fault J 192 2.8

Whole Building Energy Natural Gas HVAC Refrigeration

MONTH 7 faults, sorted by descending signal priority ratio
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Table 39 

 

 

Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio Location

95% Conf.

Cost Dev, μ

Signal 

Priority 

Ratio

Climate 4c, Fault A 25056 6000 Climate 4c, Fault A 10158 6000 Climate 3a, Fault I 5508 74 Climate 4c, Fault D 3786 6000

Climate 6a, Fault A 42246 6000 Climate 3a, Fault A 4530 6000 Climate 6a, Fault G 4932 43 Climate 3a, Fault D 4464 6000

Climate 6a, Fault H 26010 3500 Climate 6a, Fault A 16794 6000 Climate 6a, Fault A 4428 25 Climate 6a, Fault D 4998 6000

Climate 6a, Fault F 21042 230 Climate 6a, Fault H 9882 6000 Climate 6a, Fault F 4056 17 Climate 3a, Fault I 1974 9.5

Climate 4c, Fault H 16398 120 Climate 4c, Fault H 6672 670 Climate 4c, Fault C 4026 15 Climate 6a, Fault I 1254 4.9

Climate 3a, Fault A 13116 120 Climate 3a, Fault H 2982 140 Climate 3a, Fault C 4128 15 Climate 4c, Fault C 234 4.5

Climate 6a, Fault E 15024 28 Climate 6a, Fault F 7620 140 Climate 6a, Fault E 3900 15 Climate 6a, Fault A 1026 4.5

Climate 3a, Fault G 8766 12 Climate 3a, Fault G 1926 16 Climate 3a, Fault G 4146 13 Climate 4c, Fault A 270 4.4

Climate 3a, Fault H 8886 12 Climate 3a, Fault I 1974 16 Climate 6a, Fault H 3552 11 Climate 4c, Fault E 72 4.4

Climate 3a, Fault I 8016 10 Climate 4c, Fault F 3576 14 Climate 6a, Fault B 3336 8.9 Climate 4c, Fault H 234 4.4

Climate 6a, Fault C 9570 7.6 Climate 6a, Fault E 4878 13 Climate 6a, Fault D 3288 8.7 Climate 6a, Fault J 1002 4.4

Climate 4c, Fault F 7800 6.4 Climate 4c, Fault E 3192 10 Climate 3a, Fault J 2628 4.5 Climate 4c, Fault F 432 4.3

Climate 6a, Fault D 9468 6.4 Climate 6a, Fault C 4206 7.8 Climate 4c, Fault J 2490 4.4 Climate 4c, Fault J 420 4.3

Climate 4c, Fault E 7620 6 Climate 3a, Fault F 1410 7.7 Climate 4c, Fault I 2094 3.6 Climate 3a, Fault G 282 4.2

Climate 6a, Fault G 8466 5.3 Climate 3a, Fault E 1212 5.7 Climate 6a, Fault J 1944 3.4 Climate 6a, Fault H 870 4.2

Climate 3a, Fault F 4626 3.8 Climate 4c, Fault G 1908 4.1 Climate 4c, Fault G 1338 2.7 Climate 3a, Fault C 156 4.1

Climate 3a, Fault D 4134 3.6 Climate 3a, Fault J 1098 3.8 Climate 6a, Fault C 1104 2.4 Climate 3a, Fault F 324 4.1

Climate 3a, Fault E 4140 3.6 Climate 4c, Fault C 1560 3.2 Climate 4c, Fault F 522 2.1 Climate 6a, Fault G 102 4.1

Climate 3a, Fault C 4116 3.5 Climate 6a, Fault G 1842 2.6 Climate 4c, Fault A 378 2 Climate 4c, Fault B 24 4

Climate 3a, Fault J 4134 3.5 Climate 4c, Fault I 1308 2.4 Climate 4c, Fault B 294 2 Climate 4c, Fault G 750 4

Climate 4c, Fault G 5196 3.4 Climate 4c, Fault J 1200 2.3 Climate 4c, Fault D 294 2 Climate 3a, Fault A 912 4

Climate 6a, Fault B 5934 3.2 Climate 6a, Fault B 996 2.1 Climate 4c, Fault H 102 2 Climate 3a, Fault E 606 4

Climate 3a, Fault B 438 3.1 Climate 6a, Fault D 996 2.1 Climate 6a, Fault I 804 2 Climate 3a, Fault H 894 4

Climate 4c, Fault D 4068 2.8 Climate 3a, Fault C 258 2 Climate 4c, Fault E 78 1.9 Climate 3a, Fault J 888 4

Climate 4c, Fault J 4662 2.7 Climate 4c, Fault B 354 1.9 Climate 3a, Fault A 612 1.7 Climate 6a, Fault C 456 4

Climate 4c, Fault I 4404 2.6 Climate 4c, Fault D 354 1.9 Climate 3a, Fault B 144 1.7 Climate 6a, Fault F 456 4

Climate 4c, Fault B 684 2.1 Climate 3a, Fault B 126 1.9 Climate 3a, Fault D 90 1.7 Climate 4c, Fault I 600 3.9

Climate 4c, Fault C 24 2 Climate 3a, Fault D 114 1.8 Climate 3a, Fault F 516 1.7 Climate 3a, Fault B 648 3.9

Climate 6a, Fault J 1830 2 Climate 6a, Fault I 498 1.7 Climate 3a, Fault E 252 1.6 Climate 6a, Fault B 720 3.8

Climate 6a, Fault I 954 1.9 Climate 6a, Fault J 432 1.7 Climate 3a, Fault H 264 1.6 Climate 6a, Fault E 702 3.8

MONTH 10 faults, sorted by descending signal priority ratio
Whole Building Energy Natural Gas HVAC Refrigeration
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11.12 Appendix L: Additional Figures Describing ESTool Implementation 

 

Figure 103: Present and future workflow visualization for a working Energy Signal Tool 
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