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blue line is NLO (momentum conservation), dashed red line is
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ᾱs = 0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Inclusive spectrum k2 dF2(x,Q2;y)
d2kdy

of (a) pions, (b) gluons as a func-

tion of k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.6 Inclusive hadron spectrum k2 dF2(x,Q2;y)
d2kdy

as a function of (a) y, (b)

Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.7 Nuclear Modification Factor as a function of k for (a)-(c) hadrons

at various A, y and Q2; (d) gluons. All calculations include the

NLO effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.8 Logarithmic derivative of NMF for dipole–nucleus scattering as a

function for k for (a),(b) gluons, (c),(d) hadrons. dipole size r,

total rapidity Y and nuclear wight A are indicated on each plot.

All calculations include the NLO effects. . . . . . . . . . . . . . 115



x

ABSTRACT

The properties of small-x QCD are studied in this dissertation. One of the most

interesting features of small-x physics is gluon saturation effect and to obtain direct evi-

dence of this effect has been of great theoretical and experimental interest. We focus on

deep inelastic scattering off heavy nucleus which may provide the first evidence of gluon

saturation. Our results might be put into test in future by Electron-Ion Collider(EIC).

We studied kT spectrum in gluon production and analyzed the result in different regimes

of nuclear matter, dilute nucleus and saturated nucleus included. We first studied diffrac-

tive gluon production in small-x DIS, which itself is an excellent probe to detect gluon

distribution inside nucleus. We then made an investigation on inclusive gluon production

in DIS and, specifically, tried to understand the contribution from momentum conserva-

tion.
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PART I

Theoretical foundations for small-x physics
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CHAPTER 1. QCD as a theory for strong interactions

1.1 QCD Lagrangian

Quantum chromodynamics is the theory of strong interactions. Specifically, QCD is

SU(3) local gauge theory [1, 13]. The QCD Lagrangian density reads [4, 5, 6, 7, 8],

LQCD =
∑
f

q̄fi (x)[iγµDµ −mf ]ijq
f
j (x)− 1

4
F a
µνF

aµν (1.1.1)

Where q̄f and qf are spinors of antiquark and quark of spin-1
2
. Covariant derivative

Dµ = ∂µ − igAµ = ∂µ − igtaAaµ (1.1.2)

while field strength tensor

Fµν =
i

g
[Dµ, Dν ] = taF a

µν (1.1.3)

It can be checked that

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν (1.1.4)

where ta are the fundamental representation matrices of generators of SU(3) group and

fabs stand for the structure constants of the SU(3) group.

1.2 Perturbative QCD

No exact solution to QCD has been found so far and it is thus often approached

perturbatively. Like QED, people often calculate the process order by order with respect
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i

j
µ a

µ

ρ

ν

a

b

c

k2
k1

k3

(a)Quark-gluon vertex (b) 3-gluon vertex

a b

c d

µ
ν

ρ
σ

p + k

p

b

c

aµ

(c)4-gluon vertex (d)Gluon-ghost vertex(in Lorentz gauge)

Figure 1.1 Vertices in QCD.

j p i b k a

ν µ

b k a

(a)Quark propagator (b)Gluon propagator (c)Ghost propagator

Figure 1.2 Propagators in QCD

to the coupling constant. The coupling constant of QCD reads [2, 3]

αs(Q
2) =

1

β2 ln(Q2/Λ2
QCD)

, (1.2.1)

where β2 =
11Nc−2Nf

12π
and ΛQCD is a non-perturbative scale of the order of 200MeV . In

fact, αs(M
2
z ) = 0.118± 0.011, where Mz = 91.2GeV is the mass of Z-boson [50].

One can see that αs decreases with growing energy scale, i.e., it becomes stronger at

larger distances. The crucial observation is that for sufficiently high Q2, αs(Q
2) serves

as the expansion parameter. Feynman rules are listed as follows [4]

1. Quark-gluon vertex: igγµ(ta)ji

2. 3-gluon vertex: −gfabc[gµρ(k1 − k3)ν + gµν(k2 − k1)ρ + gνρ(k3 − k2)µ]
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3. 4-gluon vertex:

−ig2[fabef cde(gµρgνσ−gµσgνρ)+facef bde(gµνgρσ−gµσgνρ)+fadef bce(gµνgρσ−gµρgνσ)]

4. Ghost-gluon vertex: gfabc(p+ k)µ

5. Quark propagator:
i(/p+mf )

p2−m2
f+iε

δij

6. Gluon propagator:
−id(k)

µν

k2+iε
δab,

where d
(k)
µν =

∑
λ=±

ελµ(k)ελ∗ν (k) In Feynman gauge d
(k)
µν = gµν while in the light-cone

gauge d
(k)
µν = gµν − ηµkν+ηνkµ

η·k

7. Ghost propagator: i
k2+iε

δab

8. Include a factor of −1 for each fermion loop

1.3 Light-cone perturbation theory

Equal-time quantization quantize the wave function into field operators at t = 0. The

Light-cone quantization differs from equal-time quantization in that the quantization

condition is imposed at the x+ = 0, where ∗

p+ = p0 + p3, p− = p− p3, p = p (1.3.3)

x+ = t+ x, x− = t− x, x = x (1.3.4)

Thus,

p · q = p0q0 − p1q1 − p2q2 − p3q3 =
1

2
(p+q− + p−q+)− p1q1 − p2q2. (1.3.5)

∗Note that throughout this dissertation we adopted the “bold” notation for the transverse components
of 4-vectors, i.e., for 4-vector

v ≡ (v0, v1, v2, v3), (1.3.1)

v ≡ (v1, v2) (1.3.2)
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µ µ µµ

k

l

k l

k

l
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i

i

j

j

i

jl
k
i

(a) Quark-gluon vertex

µ

ρ

ν

a

b

c

k2
k1

k3

a b

c d

µ
ν

ρ
σ

p + k

p

b

c

aµ

(b)3-gluon vertex (c)4-gluon vertex (d)Gluon-ghost vertex (in Lorentz gauge)

k k

(e)instantaneous propagators in light-cone perturbation theory

and

p · x = p0x0 − p1x1 − p2x2 − p3x3 =
1

2
(p+x− + p−x+)− p1x1 − p2x2. (1.3.6)

x+ plays the role as time and p− is the equivalence of energy in Light-Cone field theory

in comparison with covariant field theory.

The rules for light-cone perturbation theory is listed as follows [17],[18],[19],

1. Assign a momentum to each line such that kµ = (k+, k
2+m2

k+ ,k). All the particles

are on-shell
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2. include a factor of θ(k+) for each line.

3. For each vector boson line, include a factor of
d

(k)
µν

k+ . where d
(k)
µν =

∑
λ=±

ελµ(k)ελ∗ν (k) In

Feynman gauge d
(k)
µν = −gµν while in the light-cone gauge d

(k)
µν = −gµν + ηµkν+ηνkµ

η·k

4. Gluon-fermion vertices are

g ū(k)√
k+
γµ u(l)√

l+
(ta)ji, g ū(k)√

k+
γµ v(l)√

l+
(ta)ji, −g ū(k)√

k+
γµ u(l)√

l+
(ta)ji, −g ū(k)√

k+
γµ v(l)√

l+
(ta)ji

5. The trigluon vertex is −gfabc[gµρ(k1 − k3)ν + gµν(k2 − k1)ρ + gνρ(k3 − k2)µ]

The four-gluon vertex is g2[fabef cde(gµρgνσ − gµσgνρ) + facef bde(gµνgρσ − gµσgνρ) +

fadef bce(gµνgρσ − gµρgνσ)]

6. For each intermediate state, include an energy denominator 1∑
inc

k− −
∑
interm

k− + iε

where
∑
inc

k− is the sum of light-cone incoming energies, while
∑
interm

k− the sum of

light-cone intermediate energies.

7. In Feynman gauge, for each ghost line, include a factor − θ(k+)
k+ , the gluon-ghost

vertex is gfabc(p+ k)µ. There is no ghosts in light-cone gauge.

8. Fermion propagator has an instantaneous part γ+

2k+

Gluon propagator has an instantaneous part ηµην

k+2 in the light-cone gauge

9. Two consecutive instantaneous propagators gives zero.

10. Integrate 1
2(2π)3

∫ ∞
0

dk+

∫
d2k for each independent k’s and sum over all internal

spins are polarizations, as well as flavors.

11. Include a factor of −1 for any loop

Note that LCPT vertices do not conserve energy, as the Fock states considered are

only part of the scattering process, but it preserve the on-shellness of the particles, by

construction.
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CHAPTER 2. DGLAP evolution and parton model

2.1 Parton wave function and the parton distribution function

One can, in principle, study nucleus in arbitrary frame. However, physical interpreta-

tions vary in different frames and a good choice of frame will not only simplify calculation,

but also reveals more intuitive picture. Two frames are often used to describe nucleus.

• Rest frame of nucleus.

• Infinite momentum frame(IMF) or Bjorken frame: P+ →∞. The “+” component

of the nucleus is set to be much larger than any momentum scale in the system.

In studying nucleus, we will be working in the infinite momentum frame. Due to time

dilation, the lifetime of the partons is much larger than the typical fluctuation time

scale inside the nucleus and thus validating an unambiguous partonic description of the

nucleus contents. This is a clear advantage of IMF.

Starting from the light-cone wave function of the nucleus in Fock space [8]

Ψf
n({xi,ki};x,k;σ), (2.1.1)

which is multi-particle wave function for n-spectator partons in the Fock state of trans-

verse momentum ki and longitudinal momentum fraction xi, along with one measured

quark with transverse momentum k, longitudinal momentum fraction x and parton po-

larization σ.
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The parton distribution function is related to Ψf
n by [8]

qf (x,Q2) =
∑
n

1

x

∫
d2k

2(2π)3

1

Sn

∑
σ=±1

n∏
i=1

dxi
xi

d2ki
2(2π)3

|Ψf
n({xi,ki};x,k;σ)|2(2π)3δ2

(
k +

n∑
j=1

kj

)
δ

(
1− x−

n∑
i=1

xi

)
. (2.1.2)

The Gluon distribution can be defined in the same way as the quark distribution[8].

G(x,Q2) =
∑
n

1

x

∫
d2k

2(2π)3

1

Sn

∑
σ=±1

n∏
i=1

dxi
xi

d2ki
2(2π)3

|Ψn({xi,ki};x,k;σ)|2(2π)3δ2

(
k +

n∑
j=1

kj

)
δ

(
1− x−

n∑
i=1

xi

)
. (2.1.3)

Note that Sn = nGnqnQ̄ is the symmetry factor, where nG,nq and nQ̄ stand for, respec-

tively, the number of gluon, quark and anti-quark in the wave function.

The advantage of light cone approach over covariant approach lies in its clear space-

time picture at high energies. To be specific, processes with well-defined time sequence

disentangles, making great simplification to the physical picture and to calculations.

2.2 DGLAP evolution equation

One might have already noticed that the PDFs are Q2-dependent. However, the

definitions (2.1.2)(2.1.3) do not exhibit a manifesting Q2 dependence. In fact Q2 enters

as the upper bound for the transverse momenta of the partons and plays the role as

the quantification of the sharpness of the microscopic probes. The larger the Q2, the

better resolution the ‘microscope’ has, and the smaller the size of partons are detected.

Since no probe whatsoever can resolve infinitely small objects, Q2 has to be finite. The

perception of the parton numbers is actually varying with the sharpness of the probe,

and so do the PDFs which count the number of partons the probe can resolve. The probe

can respond only to the partons with transverse size larger than ∼ 1/Q, while completely

oblivious of the smaller ones. In short, a PDF is the record of number of partons with
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(a) (b)

f f

k, x k, x

Figure 2.1 Diagrammatical illustrations of (a) quark distribution function, (b) gluon
distribution function.

transverse momentum smaller or equal to 1/Q, with longitudinal momentum fraction x

of the nucleon/nucleus.

It would be very interesting to find exactly how PDFs evolve with Q2. If the high-

Q2 limit is taken, the problem simplifies to resumming over αs ln(Q2/Λ2
QCD), in which

αs ln(Q2/Λ2
QCD) ∼ 1. Noticing that even though the high Q2 leads to small coupling, i.e.,

αs � 1,the accompanying factor ln(Q2/Λ2
QCD)� 1 compensates for the smallness of the

coupling, rendering the terms with expansion parameter αs ln(Q2/Λ2
QCD) nonnegligible.

The logarithmic enhancement due to Q2 make it necessary to resum to all orders of the

parameter αs ln(Q2/Λ2
QCD).

Starting from a known parton distribution qf , if the resolution scale Q2 is increased,

the phase space available for producing new partons expanded. For simplicity, we con-

sider first the lowest order corrections to the quark distribution function.

Both real and virtual corrections contribute a power of αs. Actually for large Q2,

each αs is always accompanied by the ln(Q2/Λ2
QCD). A detailed calculation reveals

qfA(x,Q2) =
αsCF

2π

∫ Q2

dk2

k2

∫ 1

x

dz

z

1 + z2

1− z q
f (
x

z
,k2). (2.2.1)

Where the subscript A for quark distribution function denotes the contribution from real

gluon emission, shown in A of Fig. 2.2.

The contribution B and C can be calculated in the similar way. We refer the reader to
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k⊥, x

+

k⊥, x

+

A B C

C.C.

Figure 2.2 Lowest order corrections to quark distribution function. A is the real cor-
rection while B and C are virtual corrections. The solid line in the middle
represents the final state

[5] and [8] for details. Note that other diagrams are omitted because they are subleading

compared with αs ln(Q2/Λ2
QCD). Further calculations must be included to not only q →

qg splittings, but also, g → qq̄. Define flavor nonsinglet distribution function by

∆ff̄ (x,Q2) = qf (x,Q2)− q̄f (x,Q2). (2.2.2)

we get

Q2∂∆ff̄ (x,Q2)

∂Q2
=
αs(Q

2)

2π

∫ 1

x

dz

z
Pqq(z)∆ff̄

(x
z
,Q2

)
(2.2.3)

This evolution equation is self-contained as it treats only quark evolution. To study the

gluon evolution, we further define flavor singlet distribution function by

Σff̄ (x,Q2) =
∑
f

[qf (x,Q2) + q̄f (x,Q2)]. (2.2.4)

We then reach an evolution equation

Q2 ∂

∂Q2

 Σ(x,Q2)

G(x,Q2)

 =
αs(Q

2)

2π

∫ 1

x

dz

z

Pqq(z) PqG(z)

PGq(z) PGG(z)


 Σ(x

z
, Q2)

G(x
z
, Q2)

 (2.2.5)

(2.2.3) together with (2.2.5) constitutes Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) evolution equations [20],[21],[22],[23],[24].
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Splitting functions are listed as follows,

Pqq(z) = CF

[
1 + z2

(1− z)+

+
3

2
δ(1− z)

]
PGq(z) = CF

1 + (1− z)2

z

PqG(z) = Nf [z
2 + (1− z)2]

PGG(z) = 2Nc

[
z

(1− z)+

+
1− z
z

+ z(1− z)

]
+

11Nc − 2Nf

6
δ(1− z) (2.2.6)

Where we have introduced “+” notation [5],∫ 1

x

dz
1

(1− z)+

f(z) =

∫ 1

x

dz
1

1− z [f(z)− f(1)] + f(1) ln(1− x) (2.2.7)

The “+” treatment effectively remove the collinear singularities–singularities from the

events in which the emitted parton carries the emitter’s entire momentum.

2.3 General solution to DGLAP

Solutions to DGLAP equations are found in the moment space. Define

fω(Q2) ≡
∫ 1

0

dxxωf(x,Q2) (2.3.1)

to be the parton distribution in the moment space, where f(x,Q2) could be either for

gluon distribution function G, singlet quark distribution Σ (2.2.4) or nonsinglet quark

distribution function ∆ff̄ (2.2.2). The inverse of Mellin transformation reads

f(x,Q2) =

∫
γ

dω

2πi
x−ω−1fω(Q2) (2.3.2)

The contour γ runs to the right of all singularities in ω-space of fω(Q2) The advantage of

Mellin transformation is that it turns the original equations with integrals to algebraic

equations.

Q2∂∆ff̄
ω (Q2)

∂Q2
=
αs(Q

2)

2π
γqq(ω)∆ff̄

ω (Q2) (2.3.3)
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and

Q2 ∂

∂Q2

 Σω(Q2)

Gω(Q2)

 =
αs(Q

2)

2π

γqq(ω) γqG(ω)

γGq(ω) γGG(ω)


 Σω(Q2)

Gω(Q2)

 (2.3.4)

These are DGLAP equations in the moment space. where in (2.3.3) and (2.3.4), anoma-

lous dimension had been defined [8],

γij =

∫ 1

0

dzzωPij(z) (2.3.5)

where i, j = q,G. From (2.2.6), we get [25][26]

γqq(ω) = CF

[
3

2
+

1

(1 + ω)(2 + ω)
− 2ψ(ω + 2) + 2ψ(1)

]
γGq(ω) = CF

[
1

2 + ω
+

2

ω(1 + ω)

]
γqG(ω) = Nf

[
1

1 + ω
− 2

(2 + ω)(3 + ω)

]
γGG(ω) = 2Nc

[
1

ω(1 + ω)
+

1

(2 + ω)(3 + ω)
− ψ(ω + 2) + ψ(1)

]
+

11Nc − 2Nf

6
(2.3.6)

where ψ(ω) = Γ′(ω)/Γ(ω). Experiments can give at some specific value of Q2 = Q2
0 the

initial condition of ∆ff̄
ω (Q2), Σω(Q2), and Gω(Q2). Then the general solutions can be

derived formally from (2.3.3) and (2.3.4) [8]

∆ff̄
ω (Q2) = exp

{∫ Q2

Q2
0

dQ′2

Q′2
αs(Q

2)

2π
γqq(ω)

}
∆ff̄
ω (Q2

0), (2.3.7) Σω(Q2)

Gω(Q2)

 = exp


∫ Q2

Q2
0

αs(Q
2)

2π

γqq(ω) γqG(ω)

γGq(ω) γGG(ω)



 Σω(Q2

0)

Gω(Q2
0)

 (2.3.8)

(2.3.8) tells us one can, in principle, obtain PDFs for all Q2 � Λ2
QCD if experiments

measures PDFs at some value.

2.4 Solution to DGLAP equations in small-x limit

Finding the most general solutions to the DGLAP equations draws much attention[11,

12]. We will, however, throughout this dissertation, content ourselves only with the
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behavior of the evolution equation at small-x. We will see that the small-x tail reveals

some unique features.

At small-x, the z-integral is enhanced at z → 0 by PGq and PGG which behave as

1/z, while quark splitting functions are nonsingular. We therefore will neglect quark

evolution. Also, PGq affects the gluon evolution through Σ(x,Q2), it will be neglected as

well due to the lack of evolution of Σ(x,Q2) in (2.2.5). In consequence, at small-x limit,

the nucleus becomes a gluon-dominated phase. This remarkable feature will be revisited

in the discussions on small-x evolution in the following chapters.

Let us make a quantitative study on the DGLAP equations in this small-x limit.

In fact, a double logarithmic approximation (DLA) is applicable since both ln(Q2/Λ)

and ln(1/x) set in to enhance the small parameter αs, i.e., the resummation parameter

becomes αs ln(1/x) ln(Q2/Λ).

Q2∂G(x,Q2)

∂Q2
=
αs(Q

2)

2π

∫ 1

x

dz

z

2Nc

z
G
(x
z
,Q2

)
(2.4.1)

It can be reduced to

∂2xG(x,Q2)

∂ ln(1/x)∂ ln(Q2/Q2
0)

=
αs(Q

2)Nc

π
xG(x,Q2) (2.4.2)

It has the solution [8]

xG(x,Q2) ∼ exp

{
2

√
Nc

πβ2

ln
ln(Q2/Λ2

QCD)

ln(Q2
0/Λ

2
QCD)

ln
1

x

}
(2.4.3)

DGLAP studies the effects of Q2 evolution to parton distributions. The increase

of resolution power unveils finer internal structure of the nucleon/nucleus target. The

better the resolution, the smaller the partons the probe can tell, and smaller partons

which previously serve as dressings on larger partons at lower resolution gradually man-

ifest themselves along the path of evolution. In other words, large-Q2 evolution stepwise

uncovers partons previously hidden within a nucleon. Naively, the density inside the

nucleon should turn higher, however, the system become more dilute, as predicted by
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Figure 2.3 A schematic show about DGLAP evolution. The probed parton size turns
smaller with growing resolution power Q2.

DGLAP equation. This seems counter-intuitive, but let us recall that the Q is the mea-

sure of probe’s resolution power and therefore the smallest detectable parton size is 1/Q.

On the other hand, an ultrarelativistic proton/nucleus has negligible longitudinal di-

mension. This makes 1/Q the smallest resolvable transverse parton size. The interaction

cross section of the partons ∼ (αem/Q
2) while the total number of partons is G(x,Q2),

thus the total interaction cross section of the partons is (αem/Q
2)G(x,Q2). G(x,Q2)’s

weak dependence on Q2 makes the total interaction cross section of partons inside the

nucleus fall rapidly as ∼ 1/Q2. In other words, the nucleus becomes dilute, see Fig. 2.3

for an illustrative picture.

We will get back to this problem when we discuss the small-x evolution. DGLAP

predicts that Q2 evolution at small-x counts more gluons, but under no circumstances

should saturation effects occur inside the nucleus due to DGLAP evolution.
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CHAPTER 3. High energy evolution and the BFKL equation

The DGLAP equation deals with the evolution of resolution scale, i.e., it can be

viewed as a variant of RG equation along the line of Q2. How about the evolution

with respect to the x? Contrary to the Bjorken limit [34],[35], Regge-Gribov limit

[27],[28],[29],[30] study the behavior of parton evolution with growing center of mass

energy in fixed resolution power. It is often more convenient to use the variable y, called

rapidity, related to x by y = ln( 1
x
).

3.1 Two gluon exchange

High energy scattering event, each t-channeled particle with spin j contribute to the

cross section a factor

sj−1. (3.1.1)

Each quark exchange in the t-channel contributes a factor 1/s to the cross section, count-

ing in the quark contribution both in amplitude and its complex conjugate. In contrast,

one gluon exchange furnishes s0, i.e., no energy dependence. Therefore, quark contri-

butions in the t-channel are suppressed at high energies. Let us consider the simplest

case where a gluon is exchanged between two relativistic quarks moving in the opposite

direction.

Note that throughout the calculation any other momentum scales are assumed much

smaller than P+
1 and P−2 , where P1 and P2 are the momenta of two incoming quarks

moving relativistically in ”+” and ”−” directions, respectively.
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l
l

Figure 3.1 Interaction between two quarks through the change of one gluon.

l
l

l′

l′

f(l, l′, Y )

Figure 3.2 t-channel propagator

Born level quark-quark interaction has the following form [8]

σ0
qq→qq =

2α2
sCF
Nc

∫
d2l

(l2)2
(3.1.2)

3.2 BFKL evolution equation

At high energies, the resummation parameter is αs ln(1/x). The Born level result

obtained in (3.1.2) will be corrected to include high order longitudinal logarithms. t-

channel evolution become important. Let us incorporate the t-channel evolution into the

a Green’s function f(l, l′, Y )[10],

σqq→qq =
2α2

sCF
Nc

∫
d2l

(l2)2

d2l′

(l′2)2
f(l, l′, Y ) (3.2.1)

f(l, l′, Y ) encapsulates corrections to all orders with respect to the resummation param-

eter αsY . f(l, l′, Y ) must satisfy the result from Born level approximation as its initial
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(a) Real corrections (Lipatov vertex) (b) virtual corrections

Figure 3.3 Real and virtual corrections to lowest nontrivial order to Born approxima-
tion.

condition for Y evolution.

f(l, l′, Y = 0) = δ2(l− l′) (3.2.2)

Let us consider qq → qqG, which is the simplest next order correction to qq → qq. Let

us consider the following corrections.

Real corrections can be cast into one single effective vertex. Detailed calculation

shows that the real correction takes the form

fReal
1 (l, l′, Y ) =

αsNc

π2
Y

1

(l− l′)2
(3.2.3)

Also, virtual corrections get the form

fVirtual
1 (l, l′, Y ) = f0(l, l′, Y )Y (−αsNc

2π2
)

∫
d2q

l2

q2(q − l)2
(3.2.4)

As a result we get

f(l, l′, Y ) =f0(l, l′, Y ) +
αsNc

π2

∫ Y

0

dy

∫
d2q

(q − l)2

×
[
f0(q, l′, Y )− l2

2q2
f0(l, l′, Y )

]
+O(α2

s) (3.2.5)

The energy evolution comes in two parts, one coming from real gluon emission, one from

virtual correction. We will not going to the details, but the general outlines of that will

be given.
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∂
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Figure 3.4 Diagrammatical interpretation of BFKL equation.

Taking Derivative with respect to Y , we arrive at

∂f(l, l′, Y )

∂Y
=
αsNc

π2

∫
d2q

(q − l)2

[
f0(q, l′, Y )− l2

2q2
f0(l, l′, Y )

]
+O(α2

s). (3.2.6)

In fact, this equation actually applied to all orders of resummation parameter αsY . Read-

ers interested in the treatment of high orders in this evolution equations are referred to

[10], which presented a systematical treatment. Even though the details of this deriva-

tions are skipped, we will rederive this equation in a much simpler way from a different

perspective in Chap. 4.

∂f(l, l′, Y )

∂Y
=
αsNc

π2

∫
d2q

(q − l)2

[
f(q, l′, Y )− l2

2q2
f(l, l′, Y )

]
. (3.2.7)

This equation is known as Balitskii-Fadin-Kuraev-Lipatov(BFKL) equation. The dia-

grammatical interpretations is as follows The first term corresponds to the corrections

due to real gluon emissions while the second and third term virtual corrections.

3.3 Solutions to BFKL equation

The solution to BFKL equation is(taking into account initial condition)For details to

solving the equation, refer to [10].

f(l, l′, Y ) =
∞∑

n=−∞

∫ ∞
−∞

dν

2π2
exp

[
αsNc

π
χ(n, ν)

]
l−1+2iνl′

−1−2iν
ein(φ−φ′) (3.3.1)
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Figure 3.5 χ(0, 1
2
− iν)as a function of −iν

where

χ(n, ν) = 2ψ(1)− ψ(
1 + |n|

2
+ iν)− ψ(

1 + |n|
2
− iν) (3.3.2)

and

ψ(x) =
Γ′(x)

Γ(x)
(3.3.3)

No closed form of 3.3.1 can be found so far, yet it still sheds light to physics in its

asymptotic regions. Often saddle point expansion is applied in ν on the exact integral-

form solution. 3.3.1 can be rewritten as

f(l, l′, Y ) =
∞∑

n=−∞

∫ ∞
−∞

dν

2π2

1

ll′
exp

[
αsNc

π
χ(n, ν) + 2iν ln2(l2/l′

2
)

]
ein(φ−φ′) (3.3.4)

BFKL solution is often studied in Diffusion limit l ∼ l′,the two transverse momenta

are not too far off each other. The saddle points sits at ν = 0. Due to large Y and χ(n =

0, ν = 0) > χ(n = 0, ν > 0), we keep only the n = 0 term. χ(n = 0, ν) ≈ 4 ln 2−14ζ3)ν2,

we arrive at

f(l, l′, Y ) ≈ 1

2π2ll′

√
π

14ζ(3)ᾱsY
exp

{
(αP − 1)Y − ln2(l2/l′2)

14ζ(3)ᾱsY

}
(3.3.5)

where ᾱs = αsNc
π

and

αP − 1 =
4αsNc

π
ln 2. (3.3.6)

The subscript P stands for pomeron, a historical name denoting a collective gluon state in

the t-channel at high energy hadron collisions. αP −1 is called BFKL pomeron intercept
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[31],[32]. The lowest order two-gluon exchange model make this intercept zero, i.e., no

energy dependence of the cross section with center of mass energy, experimentally it was

found that [49, 50]

σexp ∼ s0.08. (3.3.7)

Our result shows

σBFKL ∼ sαP−1. (3.3.8)

It would be very illuminating to study BFKL equation in the Double Logarithmic

Approximation(DLA), as what has been done when we treat the DGLAP equation. One

might want to cross check whether the two equations converge in the limit of small-x and

large Q2. The large Q2 limit corresponds to the case if l� l′. Without lose of generality,

only n = 0 term in the series is retained. For n 6= 0 terms, they are suppressed by powers

of (l2/l′2)|n|. The saddle point sits at ν = i
2

and the χ(0, ν) ≈ − i
ν−i/2 , thus the saddle

point ν = i
2
− i
√

ᾱsNc
ln2(l2/l′2)

. We get

f(l, l′, Y ) =
1

2π3/2l2
(ᾱsY )1/4

ln3/4(l2/l′2)
exp

{
2

√
ᾱs ln2(l2/l′2)Y

}
(3.3.9)

It is easily seen that the exponents matches DGLAP in the DLA limit, the coefficients

are different, though. This difference is due to the fact that gluon distribution function

and t-channel Greens functions are two different quantities. To further illustrate how the

BFKL affects the gluon distribution function, we define unintegrated gluon distribution

function(UGDF)

φ(x,Q2) =
∂xG(x,Q2)

∂Q2
(3.3.10)

It can be equivalently redefined in the LLA as

φ(x, k2) =
αsCF
π

∫
d2l

l2
f(k, l, Y = ln(1/x)) (3.3.11)

This definition can be justified diagrammatically from 3.6. This redefinition essentially

absorbs the t-channel propagator into the wave function of the incoming quark. What
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φ(x,k2)

l l

f(l, l′, Y = ln(1/x))
Y = ln(1/x)

k k

Figure 3.6 Diagrammatical illustration of unintegrated gluon distribution function
(UGDF).

we would like to emphasize here this definition is, in fact, UV divergent. A single quark

cannot exist in nature, so a more realistic model of proton would remedy the problem.

From next section we would like to replace the quark by a more realistic model of

proton,i.e., onium wave function. The word onium refers to a color dipole. The size of

the dipole plays the role as UV cutoff for the incoming quark; moreover, the dipole wave

function serves as a good base to write down proton wave function. We will get back to

this problem in Chap. 4.

It can be seen that the φ(x,Q2) satisfies BFKL equations,too.

∂φ(x, k2)

∂ ln(1/x)
=
αsNc

π2

∫
d2q

(q − l)2

[
φ(x, q2)− l2

2q2
φ(x, k2)

]
. (3.3.12)

It has a similar solution

φ(x, k2) =

∫ ∞
−∞

dν

2π
Cν exp

[
αsNc

π
χ(0, ν)

]
k−1+2iνΛ−1−2iν (3.3.13)

Where Cν is to be determined by initial condition. We do have an initial condition for

t-channel Green’s function as a delta function. However, the initial condition for UGDF

has to be an input from outside. Gluon distribution at a given x has to be measured

before the application of evolution equation. Similar to the discussion of the diffusion
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Figure 3.7 A schematic show of the effects of BFKL evolution in a proton. The BFKL
evolution does not affect the size of the partons; the small-x evolution in-
crease the number of the partons.

approximation for BFKL solution, we concludes that

φ(x, k2) ∼
(

1

x

)αP−1

(3.3.14)

This is result of significant consequence.

The DGLAP equation shows that the nucleons become diluter with growing Q2. As

has been state above, BFKL and DGLAP has the same DLA behavior. However, we

bear in mind that they are studying different evolutions. In BFKL, Q2 is fixed, while

x is free to approach zero. If x nears zero, i.e., the gluons become softer, the number

follows a power law increase. However, the gluon size r ∼ 1/k, eventually the gluons

inside nucleus will occupy the entire space and begin overlapping each other, see Fig. 3.7

This phenomenon is known as gluon saturation at small-x.

BFKL predicts the growth of cross section with the energy, however, it is worthwhile

pointing out that solution to BFKL equation violates a fundamental property known

as unitarity–the probability for all possible final states must not be larger than unity.

However, the partial amplitudes at given impact parameter b as predicted by the BFKL

equation grows with energy faster than what is allowed by the unitary. Specifically, the

partial amplitude for any scattering process at impact parameter b must not exceed 1.

Let N(b) be the forward scattering amplitude for an arbitrary scattering process at

impact parameter b, then optical theorem dictates that

σtot =

∫
d2bN(b). (3.3.15)
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It can be shown that [54] that for the scattering for a point-like particle on a sphere of

radius R, σtot ≤ 2πR2 holds. Then N ≤ 1 must be satisfied.

Note that for N = 1, σtot reaches its upper bound 2πR2, i.e., the target becomes

completely absorptive(black) and black disk limit is achieved. ∗

BFKL predicts that the total cross section is unbounded by the black disk limit.

Therefore, the BFKL formalism is incomplete and some mechanism must come into play

to bring down the growth rate. We will see in the next chapter that the problem no

longer occur in the dipole approach.

∗ In this limit, elastic scattering and inelastic scattering each constitutes half of the total cross section.
It should be understood that since the target is complete black except at the edge, its geometric size
πR2 contributes to the inelastic cross section, as expected. The other half of the total cross section πR2

only comes from the scattering at edge of the target. The elastic contribution to the total cross section
is purely a quantum effect and may not be drawn from classical analogies.
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CHAPTER 4. Color dipole picture and small-x evolution

We studied the BFKL equation in the preceding chapter to characterize small-x

evolution. It predicts a power law growth of the gluon density inside proton which violates

unitary. It is natural to expect that higher-orders of BFKL small-x evolution would bring

down the growth. However, due to extreme complexity of higher order calculations,

no systematical way of resummation to all orders is known so far. As an alternative

approach, the present chapter treats the problem in the color dipole framework and one

would observe that the preservation of unitarity is inherent in this formalism.

A color dipole consists of quark and its anti-quark, and in the eikonal approximation

it has a simple form in the mixed representation (k+,x),where k+ stands for the “+”

momentum of the color dipole while x is the transverse separation between the quark and

anti-quark. In the eikonal approximation, the transverse coordinates of the quark(anti-

quark) remain unaffected either after the emission of secondary partons. This leads to the

factorization of one step of evolution from the existing onium wave functions, justifying

an iterative treatment on the small-x evolution that will be used below to derive the

evolution equation.

4.1 Classical dipole picture without energy evolution

4.1.1 Dipole-nucleon interaction

We discussed quark-quark interaction at high energies in Chap. 3. We have not

explicitly pointed out that the calculated cross section is not finite. Now, instead of
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x1

x2
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Figure 4.1 Dipole-dipole interaction.

considering quark-quark cross section, one would resort to a more realistic model for

high energy scatterings. Quarks are confined in the colorless hadrons and nuclei, and the

size of hadrons and nuclei offers natural IR cutoff to prevent the unlawful rapid growth

of the cross section. For the time being, let us concentrate on dipole-dipole interaction.

The dipole-dipole cross section in the Born level reads [62]

σdip+dip =
2α2

sCF
Nc

∫
d2l

(l2)2
(2− e−il·x1⊥ − eil·x1⊥)(2− e−il·x2⊥ − eil·x2⊥) (4.1.1)

It is a nontrivial result. It tells that dipole-dipole interactions are transverse.

Averaging over all the angular dependence, one gets

〈
σdip+dip

〉
=

4πα2
sCF
Nc

x2
<(ln(x>/x<) + 1) (4.1.2)

Our first approximation for dipole-nucleus interactions was modeled by lowest-order

dipole-dipole interaction

σdip+N =
2πα2

sCF
Nc

x2 ln(
1

x2Λ2
) (4.1.3)

In arriving at this formula, we made the assumption that the dipole size if perturbative,

while the nucleon makes x> ∼ 1/Λ.
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Quoting the result from last chapter, we have

φoniumLO (x, k2) =
αsCF
π

2

k2
, (4.1.4)

thus

xGonium
LO (x,Q2) =

αsCF
π

2 ln
Q2

Λ2
. (4.1.5)

As a result, one can cast the dipole-nucleus cross sections as

σdip+N ≈ αsπ
2

Nc

x2xGN(x,
1

x2
) (4.1.6)

4.1.2 Multiple rescatterings in dipole-nucleus interaction

The study on dipole-dipole interactions may serve as a qualitative description and

quantitative approximation on the cross section of the dipole-nucleon interaction. How-

ever, dipole-nucleus scattering deserves more considerations as multiple scatterings has

to be properly taken care of.

Let us consider the case where αs � 1 while α2
sA

1/3 ∼ 1. It is therefore, strictly

speaking, only applicable to heavy nuclei. The lifetime of the dipole fluctuation τ is

assumed much larger than the nucleus size.

We choose to work in the IMF where the dipole is fast moving in the “+” direction

while the nucleus is at rest. Denoting the dipole momentum by q, one may express the

coherent length of the dipole as lcoh ∼ 2/q−. Since x = q−/P−, where P stands for the

momentum of the nucleus and P− = m in nucleus rest frame, then q− = xm. Hence lcoh ∼

2/(xm). One crucial observation is that for sufficiently small x, lcoh � R –with R the

nucleus size– the dipole is interacting with the entire nucleus simultaneously. Further, we

will show that the transverse size of the dipole remains fixed throughout the interaction

with the nucleus if this condition is satisfied. Let δr be the change of transverse due to

interaction with the nucleus, then δr ≈ RkT/q
z. Here, kT denotes the typical relative

transverse momentum between the quark and antiquark acquired through interactions

with the nucleus and qz is the longitudinal momentum of the dipole. then δr/r =
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Figure 4.2 Diagrams that are suppressed

Figure 4.3 Multiple scatterings.

(2R/q+)(kT/r). For kT ∼ 1/r and note that k2
T ∼ q+q−, then δr/r ≈ 2Rq− = 2Rxm =

4R/lcoh. Therefore, small enough x would naturally leads to the diagonalization of the

scattering matrix, since the dipole does not change its size throughout the interaction.

Since Y = ln(1/x) = ln(P−/q−),this condition translates into Y � ln(1/mR). On the

other hand, in the spirit of classical approximation, no leading order Bremsstrahlung

should be evoked. It requires αsY � 1. As a result, classical approximation applies to

ln
1

mR
� Y � 1

αs
(4.1.7)

It can be shown [76, 77] that in the covariant gauge ∂µA
µ = 0, for high energy

scattering of a dipole off a heavy nucleus, the process in which two nucleons communicate

and cross are suppressed(see Fig. 4.2). As a result, the dipole scatters off the nucleons

in sequence of x+. Glauber’s assumption is realized in the covariant gauge of the gluons

and in the frame we are working in. Keeping in mind that the cross section is frame-

independent, we can paraphrase the above statement that covariant gauge is sufficient in
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achieving the independence assumption of the individual nucleons. The dipole-nucleus

scattering process now becomes easily tractable due to clear separation between any of

the two consecutive dipole-nucleon interactions. In the spirit of eikonal approximation

of the traversing dipole through the nucleus, the space-time picture of dipole-nucleus

interaction is reducible into uncorrelated dipole-nucleon interactions; summing over the

number of participating nucleons and taking into account symmetry factor, the S-matrix

actually exponentiates. Nucleus thickness function is defined as

T (b) =

∫
db+ρ(b), (4.1.8)

where ∫
d3bρ(b) = A, (4.1.9)

with A being the Atomic weight and ρ(b) nuclear profile function. The meaning of T (b)

is now clear, it records the number density of nucleons for given transverse coordinate b.

Let us consider the case where the dipole interacts with n nucleons of the entire nucleus.

The dipole-nucleon forward scattering amplitude is obtained from optical theorem

Ndip+n(b) =
1

2

dσdip+N

d2b
=

1

2

1

Sp
σdip+N (4.1.10)

where the Sp is the proton radius. The nucleus is modeled as being evenly distributed

inside nucleus and a dilute system as well,

S(b) =
A∑
n=1

1

n!
Sp(b) (4.1.11)

As a result

S(x, b, Y = 0) = exp

[
−σ

dip+N

2
T (b)

]
(4.1.12)

The relation between S-matrix and the forward scattering amplitude N is,

S = 1−N (4.1.13)

We eventually arrive at

N(x, b, Y = 0) = 1− exp

[
−αsπ

2

2Nc

T (b)x2xGN(x,
1

x2
)

]
(4.1.14)
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N

1/ΛQCD r
1/Qs

Figure 4.4 GGM formula (4.1.14) in two limits. For small dipole size r, N behaves as
r2; At large r, N saturates to unity. The characteristic scale distinguishing
small and large r is 1/Qs, where Qs is the saturation momentum. ΛQCD

denotes the border for perturbative calculations.

This is known as Glauber-Gribov-Mueller(GGM) model.

Defining saturation scale as the solution to the following equation

αsπ
2

2Nc

T (b)
1

Q2
s(b)

xGN(x,Q2
s(b)) = 1 (4.1.15)

We know that if x ∼ 1/Qs, multiple scattering become important for dipole-nucleus

scattering. One can see from this formula that the amplitude vanishes if the dipole

size tends to zero. This phenomenon is known as color transparency. Also it solves

unitarity problem and also naturally leads the black disk limit. GGM formula succeeded

in accommodating the two limits, see Fig. 4.4.

Saturation momentum scales as A1/3, thus the resummation parameter for GGM

formalism is αsA
1/3.

4.2 Mueller’s dipole model

The GGM model is energy-independent and would lose its predictive power at very

high energies. At very high energies, the coherence length of the emitted gluons from the
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Figure 4.5 Onium wave function in its initial state.

quark (antiquark) making up the dipole becomes so large that it does not distinguish the

x+ difference between the individual nucleons. This contradicts the foundation of the

GGM formulism–the independence assumption of the nucleons–and the gluons interacts

with the nucleons simultaneously.

The computation of the multiple scattering taking into account energy evolution was

not solved until large Nc limit[33] had been applied to QCD. In the large Nc limit, the

emission of one single gluon can be viewed as the splitting of color dipole into two dipoles.

The conservation of color is most easily illustrated in this limit. The greatest advantage

of the large Nc limit is that all the non-planar diagram are suppressed by 1
N2
c

only planar

diagrams contribute.

Let us transform the light-cone wave function into dipole picture

Ψ
(0)
σσ′(x10, z) =

∫
d2k

(2π)2
eik·x10Ψ

(0)
σσ′(k, z) (4.2.1)

where x10 is the dipole size, see Fig. 4.5 for the detailed notation. The dipole wave

function is normalized to unity.∫ 1

0

dz

z(1− z)

∫
d2x10

2(2π)

∑
σσ′

|Ψ(0)
σσ′(x10, z)|2 =

∫ 1

0

dz

z(1− z)

∫
d2k

2(2π)3

∑
σσ′

|Ψ(0)
σσ′(k, z)|2 = 1

(4.2.2)

Now let us consider the emission of on gluon from the dipole, and we choose light-cone
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Figure 4.6 Lowest order gluon emission from the initial onium state.

gauge A+ = 0. One reaches [8]

Ψ
(1)
σσ′(k1,k2, z1, z2) =

gtaθ(k+
2 )

k−2 + k+
1 (p− k1 − p2)− − p−∑

σ′′=±1

[
ūσ(k1)γ · ε∗λ(k2)uσ′′(k1 + k2)

k+ + k+
Ψ

(0)
σσ′(k1⊥ + k2⊥, z1 + z2)

− v̄σ′′(p− k1)γ · ε∗λ(k2)vσ′p− k1 − k2

p+ − k+
Ψ

(0)
σσ′(k1⊥, z1)] (4.2.3)

See Fig. 4.6 for Mueller’s notations, there the dashed vertical lines stand for energy

denominators in LCPT.

We assume the emitted gluon carries only very small momentum fraction of the

dipole, which translates to z2 � z1, 1 − z1. The very soft gluon momentum renders a

great simplifications to the energy denominator.

k−2 + k+
1 (p− k1 − p2) ≈ 1

k−2
=

k+
2

k2
2⊥

(4.2.4)

It can be shown that real emission of gluon Fig. 4.6 gives

∑
σ,σ′,λ,a

|Ψ(1)
σσ′(x10,x20, z1, z2)|2 =

4αsCF
π

x2
10

x2
20x

2
21

∑
σ,σ′

|Ψ(0)
σσ′(x10, z)|2 (4.2.5)

Here, x2 is the transverse coordinate of the emitted gluon and z2 its longitudinal mo-

mentum fraction of the original dipole. The phase space for gluon emission is∫ minz1,1−z1

z0

dz2

z2

∫
d2x2

4π
(4.2.6)
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Figure 4.7 Virtual corrections to the lowest order gluon emission.

where z0 is lower cutoff determined by the particular process and is not highly relevant

in the present discussion.

The probability of finding one gluon in the dipole wave function is therefore [61, 62, 63]∫ minz1,1−z1

z0

dz2

z2

∫
d2x2

4π

∑
σ,σ′,λ,a

|Ψ(1)
σσ′(x10,x20, z1, z2)|2 =

∫ minz1,1−z1

z0

dz2

z2

∫
d2x2

αsCF
π2

x2
10

x2
20x

2
21

∑
σ,σ′

|Ψ(0)
σσ′(x10, z)|2 (4.2.7)

An important observation of this equation is that the probability of gluon emission

completely factors out the wave function of the parent dipole. Specifically, the emission

probability for one gluon at x2 is equal to the probability if finding a dipole of size

x10 times the probability of the dipole to emit a gluon at x2 (see [8] for more detailed

explanations). This also justifies the reason why transverse coordinate representation is

preferred, as the emission of a gluon does not alter the trajectory of the original dipole.

In fact, gluon emission can be real, as explained above, or, it can be virtual, as shown in

Fig. 4.7. We will not elaborate in detail and we refer to interested readers to the original
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Figure 4.8 Gluon-dipole dualism
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work of Mueller [61, 62, 63]. Presented below are the general ideas of dipole model. A

single quark(or anti-quark) emits a parton, and this parton emits a softer parton, which

then emits another parton. The birth of each parton in the large Nc limit contributes to

the total number of dipoles by one, see Fig. 4.8. The iterative emission forms a cascade

of dipoles. Note that each step of emission is eikonal,i.e., The trajectory of the emitter

is unchanged. The dipole cloud grows until the desired rapidity is reached.

Since only planar diagrams are allowed, dipoles belonging to the same ancestry do

not interact; we can build our interaction of the original dipole with the target sheerly

by the superposition of the interactions of all its living descendants with the target. The

disentanglement inside the projectile is a major breakthrough in the path of simplification

to high energy QCD scattering. Nc corrections beyond the leading order is an unsolved

problem. However, numerical studies[131, 132, 133] suggest that high energy process

might not be far off the Nc limit.

4.3 Balitsky-Kovchegov evolution equation

GGM model serves as the initial condition as the dipole starts to evolve along the ra-

pidity. As the energy increases, evolution effects has to be taken into account. Following

Mueller’s dipole approach, the problem is cast in the transverse momentum space with

eikonalization of all the dipoles assumed and in the large Nc limit. We now explain the

general idea that leads to this evolution equation. Let us start with a single dipole. The

dipole can emit a gluon within a finite rapidity range. As is explained in Sec. 4.2 gluon

emission from a dipole is equivalent to the splitting of the parent color dipole to two

daughter color dipoles. The typical interaction time is much shorter than the dipole life-

time. The split dipole, upon interaction, becomes two real daughter dipoles. Otherwise,

the dipole will merge back to the parent dipole. This split and merge corresponds to a

virtual gluon. Both real and virtual gluons must be included within the dipole evolution.
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The S-matrix of dipole-nucleus interaction evolves with respect to Y upon dipole split-

ting and is iterative. Real gluon emission may occur either before or after the interaction

with the nucleus. For virtual gluons, the parent dipole interacts with the nucleus before

or after the lifecycle of virtual gluon emission and the subsequent absorpsion.

Each dipole interacts with the heavy nucleus target via two-gluon exchange in multi-

ple scattering in the classical limit, i.e., GGM formula describes the interaction between

each dipole with the heavy nucleus.

S0(rj, bj) = exp

[
−T (b)

σdip+A

2

]
(4.3.1)

is the two-gluon exchange forward scattering S-matrix element(GGM), where T (b) is the

nucleus thickness function satisfying∫
d2bT (b) = A (4.3.2)

We thus arrive at [8]

S(r10, b10) = 1 +
∞∑
n=1

1

n!

∫ n∏
j=1

d2bjd
2rj

Φ[n]({rk, bk}nk=1, Y )

Φ(0)(x10, b10)

n∏
l=1

S0(rl, bl) (4.3.3)

Note that in arriving at this, we follow the Kovchegov’s notations, in which

Φ[n]({rk, bk}nk=1, Y ) represents the wave function of n-dipoles; while Φ(0)(x10, b10) is the

initial dipole wave function. Readers interested in detailed derivations are referred to [8].

Noticing that 1 is included in the summation series since we are using the S-matrix

instead of N , as the non-interacting amplitudes also contribute its share.

Since

Φ[n+1]({rk, bk}nk=1 , Y ) =
ᾱsNc

2π2

∫
d2xj+1

xj+1

xj+1xj+1

Φ[n]({rk, bk}nk=1 , Y ) (4.3.4)

As a result, the evolution for wave functions gets the form

Φ[n+1]({rk, bk}n+1
k=1 , Y ) =

ᾱsNc

2π2

∫
d2rn+1

(rn)2

r2
n+1(r2

n − rn+1)2
Φ[n]({rk, bk}nk=1 , Y ) (4.3.5)
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Taking derivatives on both sides of 4.3.3 furnishes an evolution equation for S

∂

∂Y
S(x10, b, Y ) =

αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21[

S(x12, b+
x20

2
, Y )S(x20, b+

x21

2
, Y )− S(x10, b, Y )

]
(4.3.6)

Dipole-nucleus forward scattering amplitude relates to its S-matrix by N = 1 − S,

we conclude that

∂

∂Y
N(x10, b, Y ) =

αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

[N(x12, b+
x20

2
, Y ) +N(x20, b+

x21

2
, Y )−N(x10, b, Y )

−N(x12, b+
x20

2
, Y )N(x20, b+

x21

2
, Y )] (4.3.7)

This is Balitsky-Kovchegov(BK) equation [78, 76]. This evolution equation constitutes

the basis of our discussions in this dissertation. A few words about its resummation pa-

rameter:(i)It treats the small-x evolution in the leading logarithmic approximation(LLA)

which resums over αs ln(1/x); (ii)This formalism is applicable only in the large Nc limit;

(iii)Heavy nucleus is essential in arriving at BK equation, only terms enhanced by A1/3 are

included. Therefore, the resummation parameter for BK equation is αsA
1/3N2

c ln(1/x).

The general idea of BK equation can be explained as follows. The splitting of the

parent dipole into two daughter dipoles affects the way how the nucleus interacts with

the original dipole–the nucleus may interact with any of the two daughter dipoles, or, al-

ternatively, with the parent dipole if the dipole recombines into the parent dipole(virtual

corrections). These three possible processes together contribute. One can see that aside

from the linear evolution term similar to our discussion in BFKL equation, a quadratic

term emerges. It is the simultaneous interaction of the two daughter dipoles with the

nucleus. This quadratic term tells that the evolution of the two daughter dipoles are

actually not independent and, further, “-” sign implies that linear contributions must be

brought down by nonlinear term.
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4.3.1 Solution to the BK equation

No closed form of analytical solution has been found so far fitting all dipole sizes.

Still, the equation can be solved in asymptotics.

If one assumes the b-dependence of the forward scattering amplitude is weak in the

for scales of the order of dipole size x10, we may suppress its dependence as a first

approximation to help obtain analytical resolutions. This is true in the large-A limit.

b-dependence may be incorporated into models, as we will see later. Further, the fact

that nucleus is isotropic enables us to suppress the angular dependence of N [8],

∂

∂Y
N(x10, Y ) =

αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

[N(x12, Y ) +N(x20, Y )−N(x10, Y )

−N(x12, Y )N(x20, Y )]. (4.3.8)

4.3.1.1 Linear evolution

In the dilute region where the N � 1,the quadratic term vanishes and the equations

turns linear.

∂

∂Y
N(x10, Y ) =

αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

[N(x12, Y ) +N(x20, Y )−N(x10, Y )] (4.3.9)

It is the equivalence of BFKL equation in the coordinate space. Expanding the forward

scattering amplitude in the Mellin space, we get

N(r, Y ) =

∫ ∞
−∞

dνCν exp[ᾱsχ(0, ν)Y + (1 + 2iν) ln(rQs0)] (4.3.10)

We can apply the same approximations like what we have for BFKL equation in the

momentum space–diffusion approximation and double logarithmic approximation. Ob-

serving the fact that dipole transverse size and momentum are conjugate to each other.

Fig. 3.5 tells that the function χ(0, ν) is rather flat throughout the region −1
2
< −iν <

1
2

unless close to the boundaries. Therefore χ(0, ν) can be modeled near − i
2

by a simple

function while retaining its original form elsewhere.
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DLA corresponds to the region where rQs0 � 1. ln(rQs0) contributes a large loga-

rithm. Since χ behaves away from the vicinity of ν = 0 as χ(0, ν) ≈ 2
1−2ν

, one gets the

saddle point

νDLA =
−i
2

(1−
√

2ᾱsY

ln(1/rQs0)
). (4.3.11)

Saddle point approximation yields

N(r, Y ) = (rQs0)2CνDLA . (4.3.12)

The solution in DLA parallels the discussion on BFKL in this region. However, diffusion

approximation needs more elaboration. r . 1/Qs0 is the region of interest. Different

from the case in BFKL, we may not push it arbitrarily close to the boundary r = 1/Qs0 as

nonlinear term would come into play for large dipole sizes. r is assumed large compared

with DLA region, but still smaller than 1/Qs0. Define

φ(ν) = ᾱsχ(0, ν)Y + (1 + 2iν) ln(rQs0) (4.3.13)

Saddle point is the steepest descend of φ and is found with the equation

φ′(νsp) = ᾱsχ
′(0, νsp) + 2i ln(rQs0) = 0 (4.3.14)

Therefore in this approximation, we get

N(r, y) ∼ (rQs0)1+2iν exp ᾱsχ(0, νsp)Y (4.3.15)

We can see that the increase of dipole size and rapidity both contribute to the growth

of the forward amplitude. It is often of great interest to study when the nonlinear

effects become important, i.e.,N(r, Y ) ∼ 1. Define saturation scale by the solution of the

following equation [8],

N(r =
1

Qs(Y )
, Y ) = constant (4.3.16)

Qs(Y ) is the characteristic line in the (r, Y ) plane in which the dipole size r propagates

along rapidity Y to keep amplitude constant. Set N = 1 helps us qualitatively keep
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track of the demarcation in which the nonlinear term in BK equation has significant

contribution.

ᾱsχ(0, νsp)Y + (1 + 2iνsp) ln(
Qs0

QsY
) = 0 (4.3.17)

We get

Qs(Y ) = Qs0 exp[ᾱs
χ(0, νsp)

1 + 2iνsp
Y ] (4.3.18)

This saddle point can actually be explicitly solved if we combine (4.3.14) and (4.3.17).

One gets

χ′(0, νsp)

χ(0, νsp)
=

2i

1 + 2iνsp
(4.3.19)

Therefore [56]

ν0 = −0.1275i. (4.3.20)

We now arrive at

Qs(Y ) = Qs0 exp(2.44ᾱsY ). (4.3.21)

It is worthwhile studying the behavior of N(r, Y ) near the saturation region. Expressing

Y in terms of Qs and plugging back to 4.3.10, one arrives

N(r, Y ) ∼ (rQs0)1+2iνsp

(
Qs(Y )

Qs0

)(1+2iν0)χ(0,νsp)/χ(0,ν0)

(4.3.22)

Since only the region close to saturation is considered, we can approximate νsp by ν0.

We get

N(r, Y ) ∼ [rQs(Y )](1+2iν0) (4.3.23)

N is a function of a dimensionless variable rQs. This result is called extended geometric

scaling [151, 135].

4.3.1.2 Nonlinear region and geometric scaling

We now consider a case in which r � 1/Qs(Y ). Dipole size become sufficiently large

that N(r, Y ) nears unity.
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Set

S = 1−N, (4.3.24)

Neglecting quadratic terms of S as it is assumed small, one gets [146]

∂S(x10, Y )

∂Y
= − ᾱsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

S(x10, Y ). (4.3.25)

As what have done in solving BK equation, we have assumed an isotropic nucleus to

suppress angular dependence of dipoles. The UV divergence is remedied by imposing

1/Qs as the lower cutoff. We get

∂S(x10, Y )

∂Y
= −2ᾱs ln[x10Qs(Y )]S(x10, Y ) (4.3.26)

By introducing a new variable

ξ = ln[r2Q2
s(Y )], (4.3.27)

one gets

∂S

∂ξ
= − 1 + 2iν0

2ξ(0, ν0)
ξS. (4.3.28)

Solving this equation, one arrives at [146]

S(ξ) = S0 exp[
1 + 2iν0

2ξ(0, ν0)
ξ2]. (4.3.29)

Getting back to the convention for N leads to

N(ξ) = 1− S0 exp[
1 + 2iν0

2ξ(0, ν0)
ξ2]. (4.3.30)

This is Levin-Tuchin formula [146]. The sole dependence of N on the dimensionless

variable ξ is called geometric scaling. All the dependence of N on r and Y are encoded

in the variable ξ. Two important observations should be noted on the solution to BK

equation.

• In dilute regimes, the cross section grows as a power law with center of mass energy,

which is hinted by the famous pomeron intercept, even though the analytic result

is far larger than the experimental results.
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Figure 4.9 Phase diagram for different evolutions.

• The naturally occurring quadratic term preserves unitarity.

Let us close this chapter by a phase diagram that describes the applicability regimes

of different evolution equations.
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PART II

Phenomenological applications
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CHAPTER 5. Deep inelastic scattering

5.1 Basic concepts in DIS

Deep inelastic process is the high energy process in which a lepton scatters off a

nucleus/proton target via the emission of virtual photon by the incoming lepton. The

larger the momentum transfer of the lepton, the deeper the virtual photon probes inside

the target. The advantage of DIS over heavy ion collisions is that one will be able to

study the nucleus directly, provided that the energies scales are large enough to match

the required precision. Two distinctive energy scales come into play, the longitudinal

energies scales and the transverse scales. To get a closer look at the DIS, we first need

to introduce kinematic variables commonly used in DIS.

DIS is typically characterized with the following kinematic variables [9],[37]. Note

that they are all Lorentz invariants and has clear interpretations in particular frames.

• Collision energy squared s = (p+ k)2 = 4EpEe

• Squared energy transfer Q2 = −q2 = −(k − k′)2. t-channel DIS is often ap-

proximated as the tree level one-photon exchange and thus Q2 is equal to photon

virtuality.

• Bjorken variable xB = Q2

2p·q . In the IMF, it equals the momentum fraction of the

proton carried by the quark struck by the virtual photon. 0 < x < 1 for ep

collisions. From now on, we will use x throughout the dissertation.

• Inelasticity y = q·p
k·p . It is interpreted as the momentum fraction of the incoming
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Figure 5.1 Deep Inelastic Scattering.

lepton carried by the virtual photon measured in the rest frame of the proton.

0 < y < 1.

• Energy squared in the γ∗p system W 2 = (p + q)2 = M2 + Q2( 1
x
− 1), where M is

the proton mass.

• Energy lost by the incoming lepton ν = p·q
M

in proton rest frame.

Note that Q2 = xys, neglecting the lepton mass and proton mass at very high energies.

The DIS cross section for the process l + N → l′ + X(N stands for either a nucleon

or a nucleus) in the one photon exchange approximation can be cast into [37]

d2σ

dxdQ2
=

4πα2
em

xQ4

[(
1− y +

y2

2

)
F2(x,Q2)− y2

2
FL(x,Q2)

]
(5.1.1)

In fact, reduced cross section is more often used, which is defined as

σr =

(
d2σ

dxdQ2

)
xQ4

2πα2
em[1 + (1− y)2]

= F2(x,Q2)− y2

1 + (1− y)2
FL(x,Q2) (5.1.2)

The polarization vectors of the virtual photon may be written as [46]

ελT = (0, 0, ελ),

εL = (
q+

Q
,
Q

q+
,0), (5.1.3)
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which decompose the photon propagator into [8]

gµν −
qµqν
q2

= −
∑
λ=±1

ελT,µε
λ∗
T,ν + ελL,µε

λ∗
L,ν . (5.1.4)

Throughout this dissertation, we will be concentrating on the subprocess of DIS:

γ∗ + N → X. Structure functions are related to longitudinal photon cross section and

transverse photon cross section by

F2(x,Q2) =
Q2

4π2αem
σγ
∗A
tot =

Q2

4π2αem
(σγ

∗A
T + σγ

∗A
L )

2xF1(x,Q2) =
Q2

4π2αem
σγ
∗A
T (5.1.5)

The FL is related to F1 and F2 by

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2) =
Q2

4π2αem
σγ
∗A
L (5.1.6)

This is supposed to be zero for real photon, however, virtual photon contains longitudinal

polarization.

Bjoken first proposed that for fixed x, the structure functions is flat with respect to

Q2 [14]. In the 1960s, the prevailing picture about a proton is a continuum of charge

distribution. If the inside of proton is a continuum of distribution, the harder the scat-

tering is, the less charge would be probed. Then the structure function should fall with

increasing resolution scale. However, the SLAC-MIT experiment showed that the struc-

ture function within its energy scanning range does not vary with the momentum transfer

Q2.Instead, this phenomenon is best explained by naive parton model, proposed first by

Feynman. Feynman parton model states that proton builds on top of point-like parti-

cles, called partons. It is therefore insensitive to the resolution power of the external

electro-magnetic probe.

It turns out Bjorken scaling is not exact. The Feynman’s naive parton model is

the result of the active degrees of freedom at low energies. However, at high center

of mass energies
√
s(small-x), deviations from the Q2-scaling due to evolution become
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Figure 5.2 Bjorken scaling and its violation at small-x, from [14].

manifesting, as can be seen from Fig. 5.2. The theory explaining the deviations has

already been well established in Chap. 2, which calculates the quantum corrections to

the naive parton model. In this regard, naive parton model at high
√
s ceased to be

valid, and genuine QCD partons came into play.

Let’s take a look at the experimental results for these parton distribution functions.

We can see from Fig. 5.3 that gluon distribution dominates over quark contents at

very small-x. In other words, matter is made up glues other than blocks at small-x.

Both DGLAP and BFKL confirmed this trend.

5.2 Deep inelastic scattering at small-x in dipole approach

The process of γ∗A scattering has a very clear space-time separation in the light-cone

perturbation theory.

Assuming that the proton/nucleus of interest is studied at its rest frame, then the

center of mass energy
√
s = mq+. It is argued that in the IMF of the virtual photon, one
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Figure 5.3 Parton distribution function, from [37].

could make further simplification on DIS by safely factoring out the photonic contribution

from the rest of the strong interaction.

In this frame, the lowest order contribution comes from the splitting of the virtual

photon into qq̄ pair, which interacts with the target. The interaction time

x+
int ∼

1

p+
=

1

m
(5.2.1)

where m is the mass of the target; while the the lifetime for qq̄

∆x+
dip ∼

1
k2
T

zq+ +
k2
T

(1−z)q+ − −Q
2

q+

=

[
k2
T

z(1− z)
+Q2

]
1

q+
. (5.2.2)

Here kT is the transverse momentum of the quark, and z denotes + momentum fraction

of the photon carried by the quark.

Recalling that q+ is assumed much larger than any other momentum scales, we con-

clude

∆x+
dip � x+

int (5.2.3)
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Figure 5.4 Virtual photon wave function, the dashed like denote the energy denomina-
tor.

The interaction lifetime is instantaneous compared with the lifetime of the color dipole

qq̄. Therefore, the fluctuation can be viewed as being frozen. Further, the existence of

the virtual photon has its manifestation in the dipole-nucleus nucleus interactions only

in the energy denominator. More precisely

D = k−interm − q− ≈ k−interm (5.2.4)

Noticing that we have dropped q− = −Q2

q+ due to the large q+ assumption.

The intermediate states of the DIS bear no memory of the initial virtual photon state

and the QCD interactions completely disentangles from the QED processes at small-x

limit [47],

σγ
∗A = Φγ∗→qq̄(z,Q)⊗ σqq̄A. (5.2.5)

LCPT gives Fig. 5.4 [8]

Ψγ∗→qq̄
T,L (k, z) = eZf

z(1− z)

k2 +m2
f +Q2z(1− z)

ūσ(k)γ · ελT,Lvσ′(q − k), (5.2.6)

and it is transformed into dipole picture via

Ψγ∗→qq̄
T,L (x, z) =

∫
d2k

(2π)2
eik·xΨγ∗→qq̄

T,L (k, z) (5.2.7)

As a consequence

σγ
∗A = Φγ∗→qq̄(z,Q)⊗ σqq̄A (5.2.8)
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where

|Ψγ∗→qq̄
T (r, z)|2 =2Nc

∑
f

αemZ
2
f

π
z(1− z)

× {a2
f [K1(raf )]

2[z + (1− z)2] +m2
f [K0(raf )]

2} (5.2.9)

is the transverse wave function squared [8], with

a2
f = Q2z(1− z) +m2

f ; (5.2.10)

and

|Ψγ∗→qq̄
L (r, z)|2 = 2Nc

∑
f

αemZ
2
f

π
4Q2z3(1− z)3[K0(raf )]

2 (5.2.11)

is the transverse wave function squared [8].

Note that the dipole-nucleus cross section is independent of the momentum fraction

z. This can be justified in the eikonal approximation and LLA, as has been explained in

Chap. 4.

σγ
∗→qq̄
T,L (x,Q2) =

∫
d2r

4π

∫ 1

0

dz|Ψγ∗→qq̄
T,L (r, z)|2σqq̄Atot (r, Y ) (5.2.12)

This, in part, justifies the necessity of discussing in great length the dipole picture in

Chap. 4. The DIS off heavy the proton/nucleus now becomes qq̄p and qq̄A interaction.

5.3 Diffraction in DIS at small-x

So far, we have constrained the discussion to the total cross section of scattering pro-

cesses, which is related to the imaginary part of the forward elastic scattering amplitude

through optical theorem. The final states are summed over and no exclusive informa-

tion about the final states is available. We will see that diffractive particle production

serves as a powerful tool in extracting more exclusive information about the scattering

processes.

Diffraction in optics is due to the wave nature of the light. The electromagnetic wave

superimpose in space and if an aperture or object is located in its way, the partial waves
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Figure 5.5 Diffractive events of:(a) elastic event, (b) single diffractive dissociation, (c)
double diffractive dissociation, (d)central exclusive diffraction.

no long propagate uniformly in space, resulting in a redistribution of energy in space,

forming patterns of minima and maxima [8]:

I(θ)

I(θ = 0)
=

(2J1(θkR))2

x2
≈ 1−R2 (kθ)2

4
(5.3.1)

Where x = kR sin θ and R is the radius of the blocker.

This phenomenon in optics can actually find its close analogy in QCD.

Diffraction in hadronic interactions is the process in which there exists at least one

rapdity gap between two final states. No particles are detected between two rapidities.

The rapidity gap corresponds to zero quantum number collective gluon state [38, 40, 41,

42]–for historical reasons it is called pomeron[55].

Let us consider a hadron in the IMF while the target is at rest. If the interaction

eigenstates are the same with the eigenstates of the projectile hadron, then the projectile

would not change after the scattering, i.e., elastic scattering is ensured by construction.
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However, if interaction eigenstates are not the eigenstates of the hadrons, diffractive pat-

tens occur. Diffraction in QCD is analogous to diffraction in optics in a sense that there

is coherent superposition of waves of different phases, giving birth to a redistribution

of intensity measurable for detectors. To make our point clear, let us expand projectile

hadron state |h〉 on interacton eigenstates φi [45].

|h〉 =
∑
i

hi |ψi〉 (5.3.2)

|ψi〉 is the eigenstates for T -matrix,

ImT |ψi〉 = ti |ψi〉 . (5.3.3)

The normalization requires

〈h |h〉 =
∑
i

|ci|2 = 1 (5.3.4)

If we expand in The 2 → 2 cross section in the impact parameter space takes the

form([8, 45]),

σtot = 2

∫
d2bImA(s, b)

σel =

∫
d2b|A(s, b)|2 (5.3.5)

Where A(s, b) is the scattering amplitudes for 2 → 2 processes. We note that the

amplitude only have a negligible real part, we arrive at

dσtot
d2b

= 2 〈t〉 (5.3.6)

dσel
d2b

= 〈t〉2 (5.3.7)

Where

〈t〉 =
∑
i

|ci|2ti (5.3.8)

〈
t2
〉

=
∑
i

|ci|2t2i (5.3.9)
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Therefore, one reaches [45],

dσdiffinel

d2b
=
〈
t2
〉
− 〈t〉2 (5.3.10)

Inelastic diffraction per unit area for the projectile and target separated by impact pa-

rameter b is equal to the variance of the forward amplitudes weighed by its occurring

probability of the state |φk〉 in the projectile state |h〉. If we include elastic scattering

into the diffractive scattering

dσdiff

d2b
=
〈
t2
〉

(5.3.11)

Denoting

N = ImA (5.3.12)

and

σh1h2
el =

∫
d2bN2(b, Y ) (5.3.13)

σh1h2
tot = 2

∫
d2bN(b, Y ) (5.3.14)

At very high energies, black disk limit is approached, the target becomes totally absorp-

tive, i.e., N → 1. In the language of non-relativistic quantum mechanics, the projectile

are bound in the infinite potential well with area πR2, where R is the radius of the target.

The projectile hits the target and was completely absorbed except at the boundary. This

counts the total inelastic cross section πR2. Recalling that the inelastic diffractive scat-

tering is the variance of the amplitudes, for a nearly completely absorptive black disk,

it is zero for small-bs and nonzero only at the edge of the target. For strict black disk

limit, the inelastic diffraction vanishes. Therefore, one reaches the profound conclusion

that at sufficiently high energies, the inelastic cross section and elastic cross section in

hadron-hadron interactions each counts half of the total cross section.

σinel = σel =
1

2
σtot = πR2 (5.3.15)

For the purpose of this dissertation, it suffices to discuss in the framework of the DIS.

In fact, as explained in our aforementioned properties of DIS, fast moving virtual photon
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Figure 5.6 Diffractive deep inelastic scattering.

in the rest frame of the target is of hardronic nature, as can be seen from its fluctuation

into color dipole, the simplest colorless state. Therefore dipole picture treatment in

diffractive process in DIS is still applicable, similar to our discussion for total cross

section of DIS, though they have clear difference, to be explained.

σγ
∗A
tot =

∫
d2r

2π
d2b

∫ 1

0

dz|Ψγ∗→qq̄(r, z)|2N(r, b, Y ) (5.3.16)

Like before, we isolate the dipole-nucleus interaction from the initial virtual state,

which deldays into qq̄ long before the interaction, we get

σtot = 2

∫
d2bN(r, b, Y ) (5.3.17)

The elastic cross section is [39]

σel =

∫
d2bN2(r, b, Y ) (5.3.18)

Correspondingly

σγ
∗A
diff =

∫
d2r

4π
d2b

∫ 1

0

dz|Ψγ∗→qq̄(r, z)|2N2(r, b, Y ) (5.3.19)

It is diffractive, but not elastic, for γ∗A, as the virutual photon does not appear in

the final state. The dipole, will hadronize in the form of jets. Let us discuss still on the
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level of dipole instead of virtual photon which has been factored out of the interaction.

At very high energies, if the black disk limit is achieved, elastic scattering of dipole

off nucleus constitutes half of the total cross section, as stated in the general hadron

projectile case. At very high energies, N → 1 as predicted by BK equation. Therefore,

we conclude that

σqq̄Ael

σqq̄Atot

=

∫
d2bN2(b, Y )

2
∫
d2bN(b, Y )

=
1

2
(5.3.20)

It is purely quantum mechanical effect and does not have classical explanation. The

dipole interacts with the nucleus via gluon cascades, i.e., dipole clouds in the large Nc

limit, and after the interactions, they have half chance of going back into a dipole. The

dipole clouds bears memory of the initial dipole even after the interactions with the

nucleus.

5.4 Semi-inclusive process in DIS

To get more information from the scattering process, we often go further from inclu-

sive total DIS to semi-inclusive DIS, where, along with the measurement for the outgoing

leptons, one of the hadrons is measured. This unveils more information from scattering

process.

l + h→ l′ + h′ +X, (5.4.1)

where l′ and h′ are the outgoing lepton and hadrons, respectively. h′ is the final product

of the hadronization process starting from outgoing partons.

As stated above, the photon can be treated as hadronic. The fluctuation of photons

into hadronic contents have lifetime greatly larger than the typical interaction time of

its hadronic contents with the rest target.



55

l

l′

h

h′

X

Figure 5.7 Semi-inclusive DIS.

Figure 5.8 A schematic illustration for diffractive DIS event in HERA, picture excerpted
from [44].
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Figure 5.9 Diffractive DIS event diagram.

5.5 Semi-inclusive diffractive process in DIS

l +N → l′ +N ′ +X + [LRG] (5.5.1)

Where [LRG] stands for Large rapidity gap,see Fig. 5.9 and [43].

Here is the typical kinematic variables typically used in semi-inclusive DIS

t = (k − k′)2, M2
X = (k − k′ − q)2, M2

Y = k′
2
,

xIP =
(k − k′) · q
k · k′ =

M2
x +Q2 − t

W 2 +Q2 −M2
, β =

Q2

M2
x +Q2 − t =

x

xIP

(5.5.2)

xIP is the nucleus/proton momentum fraction carried by the Pomeron while β being the

momentum fraction of the pomeron carried by the parton struck by the virtual photon.

M is the mass of nucleus/proton.

Let us define a diffractive structure function [44]

dσ

dxdQ2d2xIPdt
=

4πα2
em

xQ2
[(1− y +

y2

2
)F

D(4)
2 − y2

2
F
D(4)
L ] (5.5.3)

where Fi, i = T, L, 2 are diffractive structure functions, and

F
D(3)
i (xIP, β,Q

2) =

∫ |t|max
|t|min

dtF
D(4)
i (xIP, β,Q

2), i = T, L, 2 (5.5.4)
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Figure 5.10 xL dependence, excerpted from [44].

are the t-integrated structure functions. Noting that

F2 = FT + FL. (5.5.5)

The definition of Fis run parallel with (5.1.5), except that we are now studying its

differential form.

The HERA ep collision records a 15% of the events are diffractive. First, the hadronic

final stateX has the same quantum number of the photon. Second, the outgoing hadronic

state X and the emerging proton are separated by a large rapidity gap, see Fig. 5.9.

Fig. 5.10 show the dependence of F
D(3)
2 with β vs the dependence on xB of F2. One

can see that the diffractive structure function is flat while F2 decay very fast for xB > 0.2.

There are two distinctive features that could be extracted from Fig. 5.11 (see [44] for

details), where in this figure xL is defined as the momentum fraction of the incoming

proton carried by the outgoing proton. First, the highest cross section dσdiff

dxL
exists at

xL ≈ 1. Also, the t-dependence peaks at t = 0 and exponentially suppressed away from

t = 0. These are typical behaviors of diffraction commonly seen in optics. It is a highly

nontrivial phenomenon. Thinking of the momentum transfer of the electron, Q2 can be

hundreds of GeV 2, while the momentum transfer of the proton t is close to zero. The
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Figure 5.12 Diffractive vs inclusive DIS in Q2 dependence, excerpted from [44].
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Figure 5.13 Diffraction in β vs inclusive in x, plots excerpted from [51] and [52].

sheer coexistence in a single event the very hard scale and soft scale does not come from

any classical analogy, but rather, it has its origin in the wave nature of the hadrons.

Fig. 5.12 shows the the comparison between F
D(3)
2 and inclusive DIS F2 with respect to

their Q2 dependences; Fig. 5.13 compares the β dependence of F
D(3)
2 and xB dependence

of F2.

Note that for β of all range, the diffractive structure function is logarithmically de-

pendent on Q2. This approximate Bjorken scaling behavior justifies a parton model

treatment of diffractive inclusive DIS. It grows with Q2 except for β ∼ 1. In compari-

son, F2 grows with Q2 for small xIP, where xB range from xB < 0.2; otherwise, it goes

down logarithmically. Violation of Bjorken scaling is well explained by DGLAP evolu-

tion equation. The growth of F2 at small xB indicates more gluons are detected. For

very small-xB, the proton become a gluon-dominated matter. Similarly for small βxB,

it should become gluon dominated: since xB ∼ 0.02, no matter what value β takes, βxB
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is very small [44].

Define Rapidity by

y = ln
E ′ + k′

E ′ − k′ (5.5.6)

At very high energies, it is related to pseudo-rapidity,

η = − ln

(
tan

θ

2

)
(5.5.7)

Where θ is the angle of the struck parton from the proton/nucleus remnant direction.

We can see that diffractive events are measured at very small angle from the beam

directions, therefore observing the diffractive patterns pose a great challenge to the

experimentalist as it calls for detectors at very forward directions.

Another important effect coming from saturation is the ratio for diffractive to total

cross section, at very high energy limit, diffractive events constitute half of the cross

section, fig 5.14 attested to this prediction well.

5.6 Deep Inelastic scattering off heavy nucleus

The kinematics of the DIS off heavy nucleus follows our discussion in DIS off proton.

However, p should be understood as the momentum for individual nucleons inside nu-

cleus, i.e.,p = P/A. Here P is the momentum of the nucleus and A is the atomic mass.

As a result, for Bjorken-x, instead of 0 < x < 1, we have 0 < x < A.

EMC effect [15, 16] is observed at x & 0.3 at the Bjorken-x. It compared the structure

function F2 for a nucleus to that for a deuteron, both normalized to a single nucleons.

EMC effect shows that A-dependence of structure function is nontrivial and a proper

explanation of EMC effect remains an unsolved question.

While EMC effect is important in its own right–our study is largely focused on pinning

down the saturation effect that occurs in the region of small-x–we would not go any

further in this dissertation on EMC effect.

A much broader range data for x shows where EMC effect attested to a great number
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Figure 5.14 Diffractive to total cross section in γ∗p,excerpted from [44, 85].
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Figure 5.15 EMC effect, from [15].

Figure 5.16 EMC effect and nuclear shadowing, from [16].
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of experiments at moderately small x region. Also another effect shows up at small-x.

The suppression of the ratio of cross section in DIS small-x is known as shadowing

region. As the name suggests, it is due to overlapping of the wave functions of the

nucleons in the longitudinal direction inside the nucleus that likely causes the reduction

of the ratio compared against that for a free nucleon. For Bjorken-x tuned smaller, in

the IMF of the nucleus, overlapping of the nucleons is no longer negligible. An intuitive

picture would be a nucleon, shaded by nucleons located before itself in the longitudinal

direction, interacts only partially with the projectile. In fact, at small enough x the

gluon density in each of the constituent nucleons inside nucleus becomes so large that

they start to interacts with gluons coming from other nucleons. The gluon distribution

cannot be the incoherent sum of the all the gluon distributions of each of the nucleons,

as the gluons from different nucleons become highly correlated. The large number of

nucleons inside nucleus makes possible a significant level of merging between the gluons

from different nucleons, resulting in gluon saturation.

5.7 DIS off heavy nucleus in small-x

We will explain in this section that the DIS experiment on heavy nuclei is the best

way to study gluon dynamics. At very high energy, the large number of nucleon overlaps

and they form a very strong gluonic field in the wave function nucleus, which is known as

Color Glass Condensate. A typical scale that describes the transition to this nonlinear

regime is saturation momentum Qs. In fact, this momentum scale goes way beyond

ΛQCD and makes possible perturbative calculations.

We can extract most useful information about the proton by DIS off a proton. Then

what are the necessities of DIS off heavy ions? As we have discussed in Chap. 4, the

saturation effect was hinted in HERA, RHIC and LHC data and it is expected that by

conducting measurements in Electron Ion Collider(EIC)[36], one can gain unprecedented
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precision. Naively, one might wish to measure gluon saturation effect in proton. This is

correct in principle, but the cost to collide electrons and protons to high enough energy

goes beyond reasonable budget. In fact, an ep collider capable of detecting the saturation

point must be of TeV scale. However, due to the A1/3 factor in the saturation scale, ∼ 100

GeV is sufficient in obtaining data with sufficient confidence level for the existence of

gluon saturation/CGC.

FA
2 is proportional to the quark distribution inside the nucleus,while FA

L proportional

to the gluon distribution. To quantify the effect of binding nucleons inside the nucleus

and nuclear environment on the parton distributions, it is instructive to define nuclear

modification factor [37]

R2 =
FA

2

AFN
2

, RL =
FA
L

AFN
L

. (5.7.1)

They compared the parton distribution in a heavy nucleus with that in a proton, ef-

fective measuring the nuclear effect on the parton distributions. Naively, if the parton

distributions are the simple summation of the distribution of A nucleus, they would be

equal to unity. However, as we see in Fig. 5.16, they behave nontrivially for a wide range

of x.

5.8 Measurement of diffractive events

Diffractive interactions occur if the electron probe in DIS interacts with the target

via the exchange of partons of zero net color, as we have seen in DIS events in HERA.

In HERA, diffractive events means the proton is intact and is separated by the large

rapidity gap with the hadronic state X. In eA collisions, another possibility comes

into play. First, like the ep case, the nucleus stays intact. Second, the nucleus breaks

up. Let us remind ourselves that diffraction in hadronic interactions is defined by the

large rapidity gap. It turns out that coherent diffractive cross section has the pattern

of maxima and minima, in analogy with what happens in optics. However, incoherent
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diffractions is characterized by a slowly decaying trend in t instead of wave-like pattern.

It is still pinned down by a rapidity gap, though, by definition.

Diffractive vector meson production e + A → e′ + A′ + V is the simplest exclusive

process of DIS diffraction [37]. The vector mesons have the same quantum number as the

photon and therefore the photon exchange zero quantum number with the nucleus, mak-

ing the process diffractive. In fact, the size of the vector mesons serves as a measurement

for saturation. The larger the size, the deeper into saturation region it probes. For small

vector mesons, like J/ψ, is not sensitive to saturation due to color transparency. This

feature is related to our discussion on the properties of dipole interactions with nucleus

in Chap. 4. The virtual photon fluctuates into a dipole, and dipole evolves into a dipole

cascade, with each daughter dipole interacting with the nucleus via two-gluon exchange.

After interactions with the nucleus, it is precisely the dipole cloud that recombines into

a dipole of the same size as the one after the photon dissociation, which subsequently

associates into a vector meson after the interaction. The typical size for the dipole size

squared r2 ∼ 1
Q2+M2

X
(see [37]). For smaller (heavier)vector mesons, the typical dipole

size is smaller, and stays relatively away from saturation region compared with larger

vector mesons.

This trend is illustrated in Fig. 5.17. One can see that J/ψ is relatively insentive

to saturation–the cross section under saturation and non-saturation model are closer–in

comparison with that for a ρ meson. For large Q2, one can see for each panel, both

modelled results drift away from the saturation regions and tend to unity.

Coherent diffraction is most useful in the obtaining the spatial distribution of quarks

and gluons. It is done by analyzing the t-dependence. In fact, the virtual photon

interacts with the nucleus via the exchange of partons with zero net color. The lowest

order of that is a two gluon exchange. By Fourier transforming the squared root of

the t-distribution, one can access the gluon distribution inside the nucleus (see [37]).

Incoherent diffractions, on the other hand, is the measure of the variance of fluctuation of
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the source. Experimentally, by detecting the neutron production [37], one can distinguish

the process of coherent and incoherent diffraction. Fig. 5.18 are two plots of cross section

for exclusive vector meson production in diffraction. Left panel is for J/ψ while right

one for φ mesons. As expected, larger vector mesons(φ meson) are better probes for

saturation. Further, we can explore from the figure, that diffractive pattern are different

for coherent and incoherent diffractions. Coherent diffractions is most concentrated at

very small angles, while incoherent ones survives much wider range in momentum tranfer,

i.e., angular distributions are wider than the coherent cases.

It is useful to measure the ratio of coherent diffractive to total cross section. In

Fig. 5.19, ratios of inclusive coherent diffractive cross section to total cross section

(dσdiff/dM
2
X)/σtot in eAu and ep are plotted against the diffractive mass variable M2

X ,

respectively. Left panel and right panel each predicts the EIC-stage I and EIC-state II.

Note that they differ in the value for Q2 and x. In each panel, saturation model and non-

saturation models are both presented in comparison for each ratio. The lower plot for

each panel is the double ratio [(dσdiff/dM
2
X)/σtot]eA/[(dσdiff/dM

2
X)/σtot]ep One can read

off the plots that two models are clearly distinguishable and future experiments would

likely make unambiguous selections, thus testing the correctness of gluon saturation.

Fig. 5.19 shows that nuclear effects are stronger at large Q2. The lower the Q2,
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the deeper the nucleus is in the saturation region, as predicted by DGLAP equations.

Therefore, saturation effects tend to bring down A-dependence in (dσdiff/dM
2
X)/σtot.

Another effect is that the diffractive to total cross section ratio indeed goes up with

decreasing Q2,i.e. deeper in saturation region, offering hints to the onset of black disk

limit.

5.9 Proton-nucleus(pA) scattering at small-x

It is interesting to discuss particle production in pA scattering. pA scattering cross

sections, similar to that for DIS, can be cast in the dipole model. It can be shown that pA

scattering bears close resemblance with γ∗A scattering, so that the formalism developed

for DIS at small-x–in the absence of direct experimental evidence from an Electron Ion

Collider expected to be built in future–may be tested by existing data for pA scattering.

The small-x limit can be studied in low-k region, extended geometric scaling region

and saturation region (see [8] and the references therein for detailed discussions). All

these regions show a suppression of nuclear modification factor under 1. Note that the

nuclear effect at very small-x caused suppression of cross section in the entire region

of k. At very small-x, gluon merge become predominant and gluon density saturates.

Since the nuclear modification factor measures the ratio of gluon density for a nucleus

in comparison with that of a nucleon, this suppression at small-x is in agreement of

saturation effect of enhanced by the nuclear weight A, see Chap. 4.

Fig. 5.20 show the experimental result for single inclusive hadron production in pPb

process at mid rapidity. We can see that it agrees qualitatively with our expectations.

At low-k, nuclear modifications factor is suppressed, and a Cronin peak is manifesting at

moderately high-k. Very high-k spectrum needs careful analysis since quantum evolution

must be accounted for and the numbers of produced partons are no longer conserved. On

the other hand, since experimental data is for mid-rapidity, we do not expect an overall
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suppression for all k range.
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PART III

Hadron production in DIS at small-x
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This part of the dissertation is primarily concentrated on my research work [160],[161].

It is structured as follows. First, I will discuss the properties of coherent and incoherent

diffractive gluon production in γ∗A at small-x. Then, I will study inclusive gluon pro-

duction in DIS at small-x, especially on the effect of NLO corrections to BK evolution

equation on the particle production spectrum.
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CHAPTER 6. Diffractive gluon production in DIS at small-x

6.1 Introduction

Diffraction is one of the most effective tools for investigating the structure of the

nuclear matter at low values of Bjorken variable x. Its hallmark is large rapidity gaps

(LRG) in rapidity distribution of the produced hadrons. At high energies, these gaps

correspond to scattering processes mediated by exchange of a collective gluon state with

vacuum quantum numbers, known as Pomeron. On the other hand, according to the

Pomerantchuk theorem, high energy asymptotic of QCD is driven by the Pomeron ex-

change (see e.g. [55]). Hence, measurements of diffractive structure functions at HERA

attracted a lot of interest. Indeed, diffractive physics at HERA yielded many exciting

results that heralded the dawn of the new QCD regime of gluon saturation/color glass

condensate (CGC) [56, 57, 58, 59, 78, 68, 70, 72, 74, 75].

A possible launch of Electron Ion Collider (EIC) will open new avenues in studying

the physics of diffraction in high energy nuclear physics. It will not only allow probing

lower x and measure dependence of diffractive processes on nuclear weight, but also

make possible studying less inclusive processes. One such process, diffractive hadron

production in DIS is the subject of this chapter. Our goal is to make predictions for

DIS on a nucleus at the EIC kinematic region based on the CGC theory. We argue

that diffractive hadron production is very sensitive to parameters of CGC and thus can

be very effective instrument in extracting properties of the nuclear matter at low x.

Gluon saturation effects on diffractive gluon production in DIS on proton at HERA have
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been discussed in [83, 82, 84, 85, 86, 95, 93, 87, 94]. A concise discussion of the gluon

saturation effects in semi-inclusive DIS on nuclei is given in [97, 98, 96].

This chapter is structured as follows. In Sec. 6.2 we review the formalism devel-

oped in our previous publications [99, 100, 101], which allows for the calculation of

coherent and incoherent diffractive gluon production in the regime of coherent scattering

lc � RA, where lc = 1/(MPx) is the coherence length in the nucleus rest frame. Co-

herent diffractive gluon production is the process γ∗ + A → X + h + [LRG] + A. The

corresponding cross section is given by Eqs. (6.2.1)–(6.2.3) and (6.2.6) below. For heavy

nuclei A1/3 ∼ 1/α2
s � 1 and at high energies this type of diffractive process dominates

over the incoherent diffraction, which is the process γ∗ + A → X + h + [LRG] + A

with A∗ being excited nucleus. Nevertheless, at EIC energies, cross sections for coherent

and incoherent diffraction processes are often comparable [101]. In pA collisions their

dependences on gluon rapidity y and transverse momentum k and on atomic weight A

are quite different. Therefore, as was pointed out in [101], it is important to separately

measure the contributions of these diffractive processes. In Sec. 8 we calculate these

contributions using the b-CGC model [143] for the color dipole scattering amplitude. As

in [100] we characterize the nuclear effect using the nuclear modification factor (NMF)

for diffractive processes defined in (7.7.1). The results of our numerical calculations are

presented in Fig. 6.2. The most interesting features of the NMF’s are (i) strong depen-

dence of coherent diffractive NMF on gluon rapidity y (or xIP ); (ii) near independence

of incoherent diffractive NMF on y and (iii) independence of both NMF’s on the photon

virtuality. This results are discussed in detail in Sec. 8.

Separation of coherent and incoherent diffractive contributions pose a great experi-

mental challenge because it requires measurements of very small scattering angles θ =

2
√
−t/W 2, where t is the moment transfer and W is the center-of-mass energy per nu-

cleon of γ∗A process. We address this problem in Sec. 6.4. Dependence of the coherent

cross section on momentum transfer t is given by (6.4.9). It is seen that it decreases as



74

1/|t|3 at |t| � 1/R2
A, where RA is the nuclear radius. On the other hand, incoherent

diffraction cross section decreases exponentially as e−|t|R
2
p/4, but at much larger momen-

tum transfers t > 1/R2
p as seen in (6.4.20). The results of the calculation are plotted

in Fig. 6.3. As expected coherent diffraction dominates at small momentum transfers

−t while the incoherent one at large −t. However, due to different functional form of

t-dependences, the two contributions become of the same order at about −t ∼ R−2
P and

remain comparable even at larger momentum transferes. The corresponding scattering

angle for W = 100 GeV is θ ≈ 0.13o and is very weakly dependent on the hadron trans-

verse momentum, xIP and photon virtuality Q2. It seems that such scattering angles are

within the experimental reach and hopefully the two contribution can be separated.

6.2 Diffractive gluon production

6.2.1 Dipole cross section

Consider diffractive production of a gluon of transverse momentum k at rapidity y.

Let the total rapidity interval be Y = ln(1/x), where x = Q2/W 2, Q2 is photon virtuality

and W the center-of-mass energy of γ∗N scattering. Cross section for diffractive gluon

production reads [88]

dσγ
∗A

diff (Q2, x, k, y)

d2k dy
=

∫
d2r

2π2
dzΦγ∗(Q, r, z)

dσqq̄Adiff (r, x, k, y)

d2k dy
, (6.2.1)

where

dσqq̄Adiff (r, x, k, y)

d2k dy
(6.2.2)

is the differential cross section for the diffractive gluon production by a qq̄ dipole (a.k.a.

onium) of transverse size r scattering off a nucleus. Eq. (6.2.1) generalizes the quasi-

classical result derived in [89, 90, 91]. Other kinematic variables that are often used

are β and xIP . They are defined as ln(1/β) = Y − y and ln(1/xIP ) = y, where Y − y

is the rapidity interval between the photon and the produced gluon. We work in the
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approximation αs ln(1/x) ∼ 1, αs ln(1/β) ∼ 1. Diffractive production in the region

β . 1 was addressed in [82, 92]. We assume that the produced gluon is at the edge of

the rapidity gap, so that the total rapidity gap in the process is y, see Fig. 6.1.

p

k y

q

Y

Figure 6.1 Diffractive production of a gluon with transverse momentum k and rapidity
y, which is also the rapidity gap of the process.

Virtual photon light-cone wave-function reads(c.f.(5.2.9),(5.2.9))

|Ψγ∗(Q, r, z)|2 = |Ψγ∗

T (Q, r, z)|2 + |Ψγ∗

L (Q, r, z)|2 (6.2.3)

|Ψγ∗

T (Q, r, z)|2 = 2Nc

∑
f

αfem

π
{a2K2

1(ra)[z2 + (1− z)2] +m2
fK

2
0(ra)} (6.2.4)

|Ψγ∗

L (Q, r, z)|2 = 2Nc

∑
f

αfem

π
4Q2z2(1− z)2K2

0(ra) (6.2.5)

where a2 = Q2z(1− z) +m2
f , α

2
em = e2z2

f/(4π), with zf being the quark electric charge.

6.2.2 Coherent and incoherent diffraction

We will consider two types of diffractive processes on nuclei – coherent and incoherent

diffraction. Recall that in Sec. 5.7 that coherent diffraction is a process in which the

nucleus stays intact. For the DIS subprocess dipole–nucleus scattering, it is elastic

process. At very high energies, such processes constitute half of the total dipole–nucleus

cross section, another half being the inelastic processes. Therefore, fractions of coherent

diffractive processes is expected to rise with energy. Experimental observation of this

diffractive processes is very challenging because it requires measurements at very small
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scattering angles, i.e. at very small momentum transfers t ∼ 1/R2
A. We discuss this in

detail in Sec. 6.4.

Incoherent diffraction means the nucleus decays into colorless remnants. This process

occurs at the nuclear edge where the partial scattering amplitude at a given impact

parameter is less than unity. Fraction of this contribution in the total inelastic cross

section decreases with energy and with nuclear weight. Importance of inelastic diffraction

stems from the fact that it measures fluctuation of the color glass condensate near its

quasi-classical mean-field value. Typical momentum transfer in this case is t ∼ 1/R2
p

which allows much easier experimental study. We will discuss coherent and incoherent

diffraction separately, assuming no experimental cuts on the minimal scattering angle.

These will be discussed in the next section Sec. 6.4.

The cross section for the coherent diffractive gluon production including the small-x

evolution was derived in [88, 99] and can be written as

dσcd(r, x,k, y)

d2k dy
=
αsCF
π2

1

(2π)2

∫
d2b

∫
d2r′ np(r, r

′, Y − y) |Icd(r′, x,k, y, b)|2 , (6.2.6)

where

Icd(x− y, x,k, y, b) =

∫
d2z

(
z − x
|z − x|2 −

z − y
|z − y|2

)
e−ik·z

×
{
−NA(z − x, b, y)−NA(z − y, b, y) +NA(x− y, b, y)

+NA(z − x, b, y)NA(z − y, b, y)

}
. (6.2.7)

Differential cross sections for coherent diffraction reads

dσid(r, x, k, y)

d2k dy
=
αsCF
π2

πR2
p

2(2π)2

∫
d2b

∫
d2r′ n(r, r′, Y − y) ρ TA(b) |IID(r′, x, k, y, b)|2 ,

(6.2.8)
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where

Iid(x− y, x, k, y, b) =

∫
d2z

(
z − x
|z − x|2 −

z − y
|z − y|2

)
e−ik·z

×
{

[1−NA(z − x, b, y)] [1−NA(z − y, b, y)] [Np(z − x, 0, y) +Np(z − y, 0, y)]

− [1−NA(x− y, b, y)]Np(x− y, 0, y)

}
. (6.2.9)

Here the dipole density n(r, r′, Y − y)d2r′ is the number of daughter dipoles of size r′

in the interval d2r′ produced by a parent dipole of size r at the relative rapidity Y − y

[61, 62, 63]. It satisfies the BFKL equation [113, 114](see Chap. 3) with the initial

condition

n(r, r′, 0) = δ(r − r′) . (6.2.10)

At the leading logarithmic order, the corresponding solution is [113, 114]

n(r, r′, y) =
1

2π2r′2

∫ ∞
−∞

dν e2ᾱsχ(ν)y
( r
r′

)1+2iν

(6.2.11)

with the eigevalue function χ given by

χ(ν) = ψ(1)− 1

2
ψ

(
1

2
− iν

)
− 1

2
ψ

(
1

2
+ iν

)
, (6.2.12)

where ψ(ν) = Γ′(ν)/Γ(ν). In the diffusion approximation to the leading order BFKL

equation [113, 114] it is given by:

n(r, r′, Y − y) =
1

2π2

1

rr′

√
π

14ζ(3)ᾱs (Y − y)
e(αP−1)(Y−y) e−

ln2 r
r′

14ζ(3)ᾱs (Y−y) . (6.2.13)

Nuclear modification factor RAB for coherent diffractive gluon production in the

quasi-classical approximation evolution is suppressed for large nuclei and large dipoles

as Rqq̄+A ∼ A1/3 exp{−r2Q2
s/4} (modulo logs) for dipole–nucleus scattering. We refer the

reader to [100] for detailed discussion on that. Effect of quantum evolution is twofold.

The smaller x of nucleus, i.e. the larger is rapidity of the produced gluon y, the stronger is

the coherence effect that makes growth of the diffractive cross section in dipole–nucleus

scattering slower than in dipole–proton one and, as a result, the nuclear modification
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factor gets an additional suppression in the γ∗ fragmentation region (forward rapidity).

On the other hand, at large Y − y, the dipole density (6.2.13) in the virtual photon γ∗

spreads to a wider range of sizes r′. Apparently, dipoles with sizes r′ � 2/Qs are not

suppressed at all. This effect leads to enhancement of the nuclear modification factor

in the backward rapidity. This leads to a strong energy dependence of the cross section

that we discuss in the next section.

6.3 Numerical calculations

A convenient way to express the nuclear effect on diffractive scattering is to introduce

the nuclear modification factor as a ratio of the diffractive cross sections in DIS on a

nucleus per nucleon and on a proton [100], also see Sec. 5.7:

Rcd/id =

dσγ
∗A

cd/id
(Q2,x,k,y)

d2k dy

A
dσγ
∗p

cd/id
(Q2,x,k,y)

d2k dy

. (6.3.1)

The cross section appearing in (6.3.1) are partonic cross sections (6.2.6) and (6.2.8)

convoluted with the LO pion fragmentation function given in [152].

We performed numerical calculations with the b-CGC model of the scattering am-

plitude N [143] with a modification: we treat the nuclei and proton profiles as step-

functions; the saturation scales are assumed to scale with A as Q2
s ∝ A1/3. The advan-

tage of this model is that (i) its form complies with the known analytical approximations

to the BK equation and (ii) its parameters are fitted to the small-x DIS data.

Our results are presented in Fig. 6.2 which exhibits dependence of the nuclear modifi-

cation factor for coherent (left column) and incoherent (right column) hadron production

on transverse momentum k. We assumed that the center-of-mass energy of the γ∗A col-

lision is W = 100 GeV per proton, which corresponds to the total rapidity interval

Y = 9.2.

In Fig. 6.2 (a,b) we show variation of the nuclear modification factor with the nuclear
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weight. We observe that Rcd increases with A. This is a signature behavior of higher

twist effects and, in particular, coherent diffraction. In view of the discussion at the

end of the previous section, we infer that the effective dipole size r′ produced in the

dipole evolution is r′ � 2/Qs, for otherwise the cross section would decrease for heavier

nuclei. As one can see in Fig. 6.2 (e,f), NMF has no significant Q2 dependence, and

hence no r dependence as well. Therefore, even at higher y, where evolution effects in

the nucleus as well as lack of evolution in γ∗ could have produced suppression of Rcd with

A, no such suppression is observed. We checked this statement up to the most forward

direction allowed by our model β = 0.1. Rid decreases with A already at midrapidity

y = 5 because the general property of incoherent diffraction is that it vanishes in the

limit A→∞ when all partial amplitudes turn black.

Rapidity dependence is displayed in Fig. 6.2 (c,d). Rcd rapidly decreases in the

forward direction, which is a cumulative effect of evolution in the nucleus and in the

virtual photon, whereas Rid is essentially rapidity independent. This effect has already

been noticed in pA case [101]. It arises because of different physical origins of the two

diffractive processes. Coherent diffraction corresponds to elastic scattering of a color

dipole on a nucleus, whereas incoherent diffraction is a part of inelastic scattering that

originates from the nuclear periphery due to variation of the nuclear density with impact

parameter. At low x central impact parameters of a heavy nucleus are black for a typical

dipole. Therefore, scattering amplitude of dipole on a heavy nucleus is very different

from an incoherent superposition of dipole-nucleon scattering amplitudes, hence strong

variation of the nuclear modification factor with energy/rapidity. On the other hand,

incoherent diffraction is non-zero only in the range of impact parameters comparable

with the proton radius. Therefore, energy/rapidity dependence of dipole-nucleus and

dipole-proton cross section is similar, though the geometry is quite different.

Finally, Fig. 6.2 (e,f) exhibits dependence on photon virtuality Q2, or perhaps better

to say no dependence at all. This can be interpreted as insensitivity of the diffractive cross



80

sections to the size of the parent dipole r. Indeed, as explained in [99], at k⊥ � Qs, Q

diffractive spectra depend only on k⊥. For example, cross section for coherent diffractive

gluon production in the asymptotic kinematic region Qs � 1/r � k reads (in the

double-logarithmic approximation)

dσqq̄A

d2k dy
=
αsCFSA
π5/2k2

N2(1/k, b, y)
1

(2ᾱs(Y − y) ln(rk))1/4
e2
√

2ᾱs(Y−y) ln(rk) . (6.3.2)

Clearly, r-dependence cancels out of the nuclear modification factor. Notice, however,

that the EIC kinematic region can hardly be classified as asymptotic, and one would

expect large corrections to (6.3.2). In fact, it is known that corrections to the double-

logarithmic approximation are phenomenologically significant (see e.g. [154, 86]). How-

ever, our numerical calculations imply that they cancel in this particular case. Unfortu-

nately, we are not able to extend this analysis to higher Q2’s without transgressing the

region of applicability of our model. It would be interesting to analytically investigate

the origin of this cancelation.

6.4 t-dependence

In this section we consider dependence of different diffraction channels on momentum

transfer
√−t. t-dependence translates into dependence on the scattering angle θ. While

the dominant contribution to the diffractive cross sections stems from scattering at small

angles, only angles larger than some cutoff angle θ0 are experimentally accessible. Our

goal in this section is to study the effect of cutoff angle on cross sections and nuclear

modification factor introduced in the previous section.

6.4.1 Coherent diffraction

Consider dipole–nucleus elastic scattering amplitude Γqq̄+A(s, b, {ba}), where b is the

dipole impact parameter and ba’s are positions of nucleons in the nucleus. Average over

the nucleon positions will be denoted as
〈
ΓdA(s, b)

〉
. Cross section for elastic dipole
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scattering is

σqq̄+Acd =

∫
d2b

∣∣〈Γqq̄+A(s, b)
〉∣∣2 . (6.4.1)

In this representation this is also the coherent diffraction cross section. Fourier image of

the dipole-nucleus elastic scattering amplitude carries information about the transferred

momentum ∆ such that t = −∆2 = ∆2:

〈
Γqq̄+A(s,∆)

〉
= 2

∫
d2b
〈
Γqq̄+A(s, b)

〉
eib·∆ . (6.4.2)

If only two-body forces are taken into account in a scattering process (which amounts to

neglecting correlations between nucleons), then we can express the scattering amplitude

on a nucleus as through the scattering amplitudes on individual nucleons as

Γqq̄+A(s, b, {ba}) = 1−
A∏
a=1

(
1− Γqq̄+N(s, b− ba)

)
. (6.4.3)

In this approximation averaging can be performed as

〈. . .〉 =
A∏
a=1

∫
d2ba

∫ ∞
−∞

dz ρA(ba, z) . . . =
A∏
a=1

∫
d2baρTA(ba) . . . (6.4.4)

where ρA(b, z) is the nuclear density at a given point in the nucleus and ρ is its average

over the nucleus volume.

Impact parameter profile of the dipole-nucleon amplitude is traditionally parameter-

ized as

Γqq̄+N(s, b) =
1

2
σqq̄+Ntot (s)

1

πR2
p

e−b
2/R2

p , (6.4.5)

where we neglected a small imaginary part of Γqq̄+N(s, b). In a heavy nucleus of radius

RA � Rp, nucleon can be approximated by a delta function in impact parameter space.

Thus, ∫
d2baΓ

qq̄+N(s, b− ba) ρTA(ba) ≈ ρΓqq̄+N(s, 0) ρTA(b) . (6.4.6)

Using (6.4.4),(6.4.5),(6.4.6) in (6.4.3) we derive for heavy nuclei

〈
Γqq̄+A(s, b)

〉
= 1− e− 1

2
σqq̄+Ntot (s)ρTA(b) (6.4.7)
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Finally, substituting (6.4.7) into (6.4.2) and (6.4.1) we derive

dσqq̄+Acd

dt
=

1

16π

∣∣∣∣2 ∫ d2b
(

1− e− 1
2
σqq̄+Ntot (s)ρTA(b)

)
eib·∆

∣∣∣∣2 . (6.4.8)

To estimate the t-dependence of the coherent cross section we use we can use a simple

model for the b distribution. Denote 1
2
σqq̄+Ntot (s)ρTA(b) = ΩS(b) and let the profile func-

tion S(b) be given be the step function S(b) = θ(RA− b). Neglecting contribution of the

nucleus diffusion reason is a reasonable approximation in the case of coherent diffraction

because the main contribution stems from b < RA impact parameters. Substituting into

(6.4.8) and (6.4.1) we get

dσqq̄+Acd

dt

1

σqq̄+Acd

=
J2

1 (RA

√−t)
|t| . (6.4.9)

Because (6.4.9) does not depend on Ω this formula also gives t-dependence of the diffrac-

tive coherent gluon production.

6.4.2 Incoherent diffraction

Coherent diffraction includes only events in which nucleus stays intact. However,

generally the nucleus can get excited and subsequently decay into colorless remnants.

Total diffractive cross section is given by

σqq̄+Adif =

∫
d2b

〈∣∣Γqq̄+A(s, b)
∣∣2〉 . (6.4.10)

The difference between (6.4.10) and (6.4.1) measures dispersion of the scattering ampli-

tude in the impact parameter space. The corresponding physical process is a part of

inelastic cross section is called incoherent diffraction:

σqq̄+Aid =

∫
d2b

〈∣∣Γqq̄+A(s, b)
∣∣2〉− ∣∣〈Γqq̄+A(s, b)

〉∣∣2 . (6.4.11)

Clearly, the incoherent diffraction stems from the region near the nucleus edge (‘diffusion

region’) since at b � RA the dipole-nucleon amplitudes are all close to the black limit,

while at b� RA they all vanish.
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To derive t−dependence of the incoherent diffraction cross section we define similarly

to (6.4.2)

Γqq̄+A(s,∆, {ba}) = 2

∫
d2bΓqq̄+A(s, b, {ba})eib·∆ . (6.4.12)

Then (6.4.10) reads:

dσdif

dt
=

1

16π

〈∣∣Γqq̄+A(s,∆, {ba})
∣∣2〉 (6.4.13)

=
1

4π

∫
d2b

∫
d2b′ei∆·(b−b

′) ×

×
〈[

1−
A∏
a=1

(
1− Γqq̄+N(s, b− ba)

)] [
1−

A∏
a=1

(
1− Γqq̄+N(s, b′ − ba)

)]†〉
=

1

4π

∫
d2b

∫
d2b′ei∆·(b−b

′)
[
1− e−

∑
a〈Γqq̄+A(s,b−ba)〉 − e−

∑
a〈Γqq̄+A(s,b′−ba)〉

+e−
∑
a〈Γqq̄+A(s,b−ba)〉+∑

a〈Γqq̄+A(s,b′−ba)〉−〈Γqq̄+A(s,b−ba)Γqq̄+A(s,b′−ba)〉] (6.4.14)

Subtracting the coherent diffraction part

dσcd

dt
=

1

4π

∫
d2b

∫
d2b′ei∆·(b−b

′)
(

1− e−
∑
a〈Γqq̄+A(s,b−ba)〉)(1− e−

∑
a〈Γqq̄+A(s,b′−ba)〉)

(6.4.15)

we end up with

dσid

dt
=

1

4π

∫
d2b

∫
d2b′ei∆·(b−b

′)
[
1− e−

∑
a〈Γqq̄+A(s,b−ba)Γqq̄+A(s,b′−ba)〉]

×e−
∑
a[〈Γqq̄+A(s,b−ba)〉+〈Γqq̄+A(s,b′−ba)〉−〈Γqq̄+A(s,b−ba)Γqq̄+A(s,b′−ba)〉] (6.4.16)

Since elastic cross section is small we expand as

dσid

dt
=

1

4π

∫
d2b

∫
d2b′ei∆·(b−b

′)e−
∑
a[〈Γqq̄+A(s,b−ba)〉+〈Γqq̄+A(s,b′−ba)〉]

×
∑
a

〈
Γqq̄+A(s, b− ba)Γqq̄+A(s, b′ − ba)

〉
(6.4.17)

=
1

4π

∫
d2ba

∣∣∣∣∫ d2b ei∆·be−ρTA(b)Γqq̄+A(s,0)Γqq̄+A(b− ba)
∣∣∣∣2 ρTA(ba) (6.4.18)

Since |b− ba| ∼ Rp � ba ∼ RA, we can get

dσid

dt
=

1

4π

∫
d2ba e

−2ρTA(ba)Γqq̄+A(s,0)

∣∣∣∣∫ d2b ei∆·bΓqq̄+A(b)

∣∣∣∣2 ρTA(ba) . (6.4.19)
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Using (6.4.5)

dσid

dt
=

1

4π

σqq̄+Ntot (s)

2
e−

1
2
tR2
p

∫
d2ba e

−2ρTA(ba)Γqq̄+A(s,0)ρTA(ba) =
R2
p

2
e−

1
4
|t|R2

p σid . (6.4.20)
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Figure 6.2 Nuclear modification factors for coherent (left column) and incoherent (right
column) diffractive hadron production at W = 100 GeV as a function at of
the hadron transverse momentum k. Shown are dependences on: (a),(b)
atomic number A, (c),(d) hadron rapidity y and (e),(f) photon virtuality
Q2.
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CHAPTER 7. Inclusive gluon production in DIS at small-x

7.1 Introduction

In the last decade we have learned a great deal about gluon saturation/color glass

condensate [56, 60, 57, 61, 62, 63, 64, 58, 65, 59, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,

78, 79, 80, 81] thanks to the relativistic dAu and AuAu program at RHIC. The future

DIS programs at EIC and LHeC promise to provide even more detailed information

about structure of the nuclear matter at low x. How successful that program will be

depends a lot on our ability to pinpoint the processes that are most sensitive to the

low-x regime. In this chapter we study one such process – inclusive hadron production

in eA scattering. It has been a subject of intense theoretical investigation over the past

decade [102, 103, 104, 105, 106, 107, 108, 109, 110, 111] and has proved to be a powerful

tool in dA collisions at RHIC. On the one hand, we expect that p(d)A and eA processes

have very much in common due to the Pomerantchuk theorem, that states that all high

energy scattering processes are mediated by exchange of a collective gluon state – known

as pomeron – that has vacuum quantum numbers. On the other hand, proton wave

function is characterized by a soft, non-perturbative scale, whereas the virtual photon

wave function can be calculated using the perturbation theory and is characterized by

virtuality Q2. A possibility to dial Q2 is a great advantage of DIS. Our main goal in

this chapter is to provide a thorough analysis of the inclusive hadron production in

various kinematic regions characterized by three dimensional scales: photon virtuality

Q2, hadron momentum kT and the saturation momentum Qs and to produce numerical
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predictions for both novel and well-known quantities that can be tested at EIC and/or

LHeC.

This chapter is organized as follows. In Sec. 7.2 we use the dipole model [112] to

relate the DIS γ∗A cross section to that of the color dipole qq̄ +A. The γ∗A differential

cross section can be expressed in a factorized form as a product of the light-cone wave

function of the virtual photon γ∗ and qq̄+A differential cross section. In Sec. 7.3 we review

the properties of the BFKL pomeron [113, 114] and the unintegrated gluon distribution

function at LO, particularly we emphasize the leading logarithmic asymptotics. These are

used in Sec. 7.4 to derive the asymptotic properties of gluon production in dipole–nucleus

scattering in various kinematic regions. In Sec. 7.5 the result is further generalized to

the case of LO gluon production in DIS.

The NLO corrections to the inclusive hadron production are rather complex. These

include NLO correction to the BFKL kernel [115, 116], [119, 121, 120, 122, 123, 124, 125,

126, 127, 128], running coupling corrections [129, 135, 136, 130, 131, 134, 132, 133] and

momentum conservation [137, 138, 139] corrections to BK [76, 77, 78, 79]. It has been

argued in [140] that momentum conservation is the most important phenomenological

effect beyond the LO. Therefore, in Sec. 7.6 we investigate the role of this effect on in-

clusive hadron production. In our calculations we rely on a phenomenological approach

suggested in [140, 141] where a modified BK (mBK) equation that satisfies energy con-

servation was derived. It was utilized in [142, 137] to calculate the NLO corrections to

the total DIS cross section. mBK equation serves as the basis for our NLO calculations.

First, we derive the dipole scattering amplitude in dilute and saturation regimes; the

corresponding expressions are given by (7.6.15) and (7.6.28) respectively. We argue that

the energy conservation effects decrease the energy dependence of the saturation mo-

mentum. These results are used for computation of dipole density in various asymptotic

regimes. Similarly to our analysis of LO case, we explore the NLO gluon production first

for dipole—nucleus process and then for DIS scattering.
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It is very instructive to know how the DIS on a heavy nucleus is different from

DIS on a proton at low x. Had the coherence length been short, of the order of the

proton radius, the hadron production in γ∗A would have been equal the incoherent sum

of A γ∗N processes. However, since the coherence length is larger than the nuclear

radius, the entire process is coherent. Because it is interesting to compare the coherent

and incoherent regimes, one introduces the nuclear modification factor (NMF) R that

calibrates the cross section in γ∗A with that of γ∗N rescaled by atomic weight A. Sec. 7.7

is devoted to the study of the properties of this quantity as a function of the hadron

transverse momentum, photon virtuality and atomic weight.

We expect that at EIC/LHeC kinematic region the low-x evolution effects start to play

an important role rendering the anomalous dimensions dependent on atomic weight. This

manifests itself in inclusive hadron production in dA collisions at RHIC as the transition

from the Cronin enhancement at mid-rapidity to suppression of the NMF at forward

rapidities even at kT > Qs. In order to evaluate how steep is the dependence of the

NMF on rapidity, we introduce a new observable J , defined as the logarithmic derivative

of R, viz. d lnR/dy. We demonstrate in Sec. 7.7 that at kT � Qs, J is proportional to

the difference of the anomalous dimensions of the gluon distribution in nucleus and in

proton. Without the low-x evolution one expect J to vanish. However, due to the low-x

evolution J acquires a finite negative value. Therefore, J can serve as a direct probe of

the effect of the slow-x evolution on the nuclear gluon distribution function.

The numerical computations are presented in Sec. 7.8. We use the bCGC model

[143] for the dipole-nucleus forward scattering amplitude, albeit with the simplified b-

dependence. In Fig. 7.5 we plot d2F2/d ln k2
T dy as a function of photon virtuality Q2

and hadron transverse momentum kT and rapidity y = ln(1/xIP).∗ In order to emphasize

the role played by the NLO effects we exhibit both LO and NLO results in each plot

∗We use the xIP notation borrowed from the diffractive DIS where it denotes the momentum fraction
carried by the pomeron. It does not have this simple interpretation in our case because the interaction
is inelastic.
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for the structure function. In Fig. 7.5 we see that the NLO calculation yields much

smaller cross section for inclusive hadron production than the LO one. Additionally,

its functional dependence on kT , Q2 and y is substantially weaker in NLO than in LO.

This is in accordance with our observation in Sec. 7.6 that NLO correction reduces the

anomalous dimension of the gluon distribution. Interestingly, most of the NLO effect

cancels in the NMF which appears to be a robust quantity in this respect. This indicates

that the momentum conservation effect factors out to a large extent from the inclusive

cross section.

The NMF shown in Fig. 7.7 displays a number of interesting features. First, the

NMF is strongly suppressed at small kT ’s but exhibits an enhancement toward higher

kT ’s where the Cronin effect (R > 1) is observed. This seems to be in contrast with pA

collisions [108] where the Cronin effect gives way to suppression of NMF at all kT ’s as

the hadron rapidity increases. This is the result of the linear evolution in the rapidity

interval between the virtual photon and the hadron. This evolution produces dipoles of

different sizes that scatter in the nucleus with different amplitudes. At small kT large

dipoles, on which the gluon saturation effects are stronger, dominate the cross section,

whereas at higher kT smaller dipoles contribute to the NMF enhancement. Second,

we observe a relatively weak A-dependence. This is also a result of the averaging over

different dipoles. Third, we note a peculiar Q2 dependence that is explained in Sec. 7.8.

To investigate the rapidity dependence in more detail we plot the logarithmic slope of

the nuclear modification factor J on Fig. 7.8 (for dipole-nucleus scattering). We see that

it is negative for the entire kinematic region indicating the graduate suppression of the

NMF towards large rapidities. This is in agreement with our arguments in Sec. 7.7. We

argue that J is directly proportional to the difference between the anomalous dimensions

of the gluon distribution function in the nucleus and in proton. Hence we believe that

measuring J is a great tool for exploring the low-x regime of QCD.
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7.2 From γ∗A to qq̄ + A scattering

The dominant contribution to the inclusive hadron production in DIS at small-x, at

rapidities away from the virtual photon and nucleus fragmentation regions, comes from

the fragmentation of fast s-channel gluons [60]. The cross section for inclusive production

of a gluon of transverse momentum k at rapidity y in deep inelastic scattering can be

represented as an integral in the configuration space [144]:

dσγ
∗A(k, y;Q)

d2kdy
=

1

2π2

∫
d2r

∫ 1

0

dzΦ(r, z, Q)
dσqq̄+A(k, y; r)

d2kdy
, (7.2.1)

where the virtual photon wave function Φ describes splitting of a photon of virtuality

Q2 into qq̄ color dipole. It is given by (5.2.9)and(5.2.11) The cross section for inclusive

gluon production in dipole–nucleus scattering reads [103]

dσqq̄+A(k, y; r)

d2kdy
=

2αsCF
π2

1

k2

∫
d2b

∫
d2r′e−ik·r

′
[∇2

r′NG(r′, b′, y)] [∇−2
r′ n(r, r′, Y − y)] ,

(7.2.2)

Here the dipole density n(r, r′, Y − y)d2r′ is the number of daughter dipoles of size r′ in

the interval d2r′ produced by a parent dipole of size r at the relative rapidity Y − y(see

(6.2.11)).

Let f(r, r′, y) be the particular solution of the two-dimensional Poisson equation

∇2
r′f(r, r′, y) = n(r, r′, y) . (7.2.3)

Employing (6.2.11) we derive the Mellin representation of f

f(r, r′, y) = ∇−2
r′ n(r, r′, y) =

1

2π2

∫ ∞
−∞

dν
1

(2iν + 1)2
e2ᾱsχ(ν)y

( r
r′

)1+2iν

. (7.2.4)

It is convenient to write (7.2.2) as a convolution in the momentum space. To this end

we introduce the Fourier-image of f with respect to the second argument:

f̃(r, q, y) =

∫
d2r′ e−iq·r

′
f(r, r′, y) =

r

πq

∫ ∞
−∞

dν e2ᾱsχ(ν)y
(rq

2

)2iν Γ
(

1
2
− iν

)
Γ
(

1
2

+ iν
)

(2iν + 1)2

(7.2.5)
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and the unintegrated gluon distribution function of the nucleus [60, 103]

ϕA(k, y) =
CF

αs(2π)3

∫
d2b

∫
d2r e−ik·r∇2

rNG(r, b, y) . (7.2.6)

NG(r, b, y) is the forward scattering amplitude of a gluon dipole r on the nucleus at

impact parameter b at the relative rapidity y. In the large-Nc approximation, it obeys

the BK equation [78, 76] and its properties are discussed in the next section. Using

(7.2.5) and (7.2.6) in (7.2.2) we get

dσqq̄+A(k, y; r)

d2kdy
=

4α2
s

πk2

∫
d2pϕA(p, y) f̃(r,k − p, Y − y) . (7.2.7)

7.3 Logarithmic approximations

7.3.1 Asymptotic expressions for f̃

It is worthwhile to list here the asymptotic formulae for f̃ in various kinematic regions

(we follow notations of [88, 99, 100] where more details can be found).

1. αsy � ln2 rq
2

. In this case the eigenfunction (6.2.12) can be expanded near its

minimum χ ≈ 2 ln 2 − 7ζ(3)ν2. Expression under the ν-integral in (7.2.4) has a

saddle point at

iνsp =
ln(2/rq)

14ζ(3)ᾱsy
. (7.3.1)

In this approximation integration over ν in (7.2.4) produces

f̃(r, q, y) =
r

q

1√
14πζ(3)ᾱs y

e(α
(0)
P −1)y e−

ln2 rq
2

14ζ(3)ᾱs y , (7.3.2)

with α
(0)
P − 1 = 4ᾱs ln 2.

2. rq < 2 and ln 2
rq
� αsy. In this region, the leading contribution to the ν-integral

stems from the pole at iν = 1/2. Approximating the eigenfunction as χ ≈ 1/(1−

2iν) and employing the saddle point method in (7.2.4) again yields

f̃(r, q, y) =
r2

8
√
π

1(
2ᾱsy ln 2

rq

)1/4
e

2
√

2ᾱsy ln 2
rq . (7.3.3)
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The saddle point is

2iνsp = 1−
√

2ᾱsy

ln 2
rq

. (7.3.4)

3. rq > 2 and ln rq
2
� αsy. Now, another pole in χ dominates, χ ≈ 1/(1 + 2iν) with

the result for f̃

f̃(r, q, y) =
1

2q2
√
π

1(
2ᾱsy ln rq

2

)1/4
e2
√

2ᾱsy ln rq
2 (7.3.5)

and for the saddle point

2iνsp = −1 +

√
2ᾱsy

ln rq
2

. (7.3.6)

7.3.2 Properties of ϕA

Unintegrated gluon distribution ϕA is defined by (7.2.6). NG(r, y, b) stands for the

forward elastic gluon dipole scattering amplitude. At large Nc, the gluon dipole is equiv-

alent to two qq̄ dipoles each of which scatters with amplitude N(r, y, b). Therefore,

NG(r, b, y) = 2N(r, b, y)−N2(r, b, y) (7.3.7)

The qq̄ scattering amplitude satisfies the BK equation [78, 76] and its properties are

well-known. Initial condition for the BK equation is the GGM formula [112] for the

forward scattering amplitude N of a qq̄ color dipole on the nucleus discussed in Chap. 4)

as the quasi-classical approximation of the scattering amplitude(c.f.(4.1.14)):

N(r, b, 0) = 1− e− 1
8
r2Q2

s0 . (7.3.8)

The gluon saturation momentum [56] at initial rapidity y = 0, which corresponds to the

Bjorken variable x0 such that y = ln x0

x
, is related to gluon distribution function xG at

x = x0 as

Q2
s0 =

4π2αsNc

N2
c − 1

ρ T (b)x0G(x0, 1/r
2) , (7.3.9)
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where ρ is the nuclear density, T (b) is the nuclear thickness function as a function of the

impact parameter b. The gluon distribution function at the leading order in αs, i.e. in

the two-gluon exchange approximation, reads

xG(x, 1/r2) =
αsCF
π

ln
1

r2Λ2
, (7.3.10)

with Λ being some non-perturbative momentum scale characterizing the nucleon’s wave

function. Using (7.3.8) in (7.3.7) we derive the initial condition for the gluon dipole

scattering amplitude

NG(r, b, 0) = 1− e− 1
4
r2Q2

s0 . (7.3.11)

Let us now list some properties of the amplitude NG, see [88, 108] for details.

1. At r � 1/Qs0 the BK equation reduces to the BFKL equation, which must be

solved with the initial condition N(r, b, 0) ≈ r2Q2
s0/4. Small dipoles scatter inde-

pendently, perforce NG ≈ 2N . Thus, in this region

NG(r, b, y) =

∫ ∞
−∞

dν e2ᾱsχ(ν)y (rQs0)1+2iν 1

8π

1 + (1− 2iν) ln Qs0
Λ

(1− 2iν)2
. (7.3.12)

2. In particular, if r � 1/Qs0 and ln 1
rQs0
� αsy the solution is

NG(r, b, y) =

√
π

8π

(ln 1
rQs0

)1/4

(2ᾱsy)3/4
r2Q2

s0

(
1 +

√
2ᾱsy

ln 1
rQs0

ln
Qs0

Λ

)
e

2
√

2ᾱsy ln 1
rQs0 .

(7.3.13)

3. For r � 1/Qs0 and αsy � ln2 1
rQs0

we have

NG(r, b, y) =
rQs0

4

ln Qs0
Λ√

14ζ(3)πᾱsy
e(αP−1)y e−

ln2(rQs0)
14ζ(3)ᾱsy (7.3.14)

4. The saturation region is characterized by the saturation momentum Qs(y). With

the double logarithmic accuracy it reads [145, 146, 147]

Qs(y) = Qs0e
2ᾱsy (7.3.15)
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In the saturation region r > 1/Qs, solution to the BK equation is [145, 146, 147]

N(r, b, y) = 1− S0e
− 1

8
ln2(r2Q2

s) , (7.3.16)

where S0 is a constant that can be determined by matching N from (7.3.16) with

that of (7.3.12) at r = 2/Qs(y). Consequently,

NG(r, b, y) = 1− S2
0e
− ln2(rQs) , (7.3.17)

where we utilized (7.3.7).

Eqs. (7.3.12)-(7.3.17) are derived with the logarithmic accuracy. We can calculate

ϕA given by (7.2.6) in the same approximation as

ϕA(k, y) ≈ CF
αs(2π)2

∫
d2b

∫ 1/k

0

dr
∂

∂r

(
r
∂

∂r
NG(r, b, y)

)
=

CF
αs(2π)2k

∫
d2b

∂

∂r
NG(r̂/k, b, y) .

(7.3.18)

We stress that this formula holds only in the asymptotic regions specified in 1-4 above;

still this is a very useful approximation as it captures the most essential features of the

unintegrated gluon distribution.

It is evident from (7.3.18), that in place of function NG(r, b, y) it is convenient to use

function ÑG(k, b, y) = NG(r̂/k, b, y), where r̂ = r/r. In particular, ∂NG(r̂/k, b, y)/∂r =

−k2∂ÑG(k, b, y)/∂k. Plugging (7.3.18) into (7.2.7) we obtain

dσqq̄+A(k, y; r)

d2kdy
=
αsCF
π3k2

∫
d2b

∫
d2p

∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,p− k, Y − y) . (7.3.19)

7.4 Properties of the dipole–nucleus cross section

To calculate the cross section for gluon production in dipole–nucleus scattering we

need to evaluate the integral over the transverse momentum p in the right-hand-side of

(7.3.19). It convenient to consider the inclusive cross section at a fixed impact parameter

b:

g(k, y, b; r) ≡ dσqq̄+A(k, y; r)

d2kdy d2b

(
αsCF
π3k2

)−1

=

∫
d2p

∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,p− k, Y − y) .

(7.4.1)
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When taking the p-integral with the logarithmic accuracy in various kinematic regions,

it is useful to keep in mind that (7.3.17), (7.3.12) imply that ∂ÑG/∂ ln(1/p) ∼ ln(Qs/p)

exp{− ln2(Qs/p)} if p� Qs and ∂ÑG/∂ ln(1/p) ∼ Q2
s/p

2 if p� Qs, while (7.3.3),(7.3.5)

indicate that f̃ ∼ 1/k2 if k � 1/r and f̃ ∼ r2, if k � 1/r.

1. k � Qs � 2/r. Due to the strong ordering of the relevant scales we have

g ≈ 2π

∫ k

Qs

dpp
∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,k, Y − y) . (7.4.2)

Using (7.3.12) we derive∫ k

Qs

dpp
∂ÑG(p, b, y)

∂ ln(1/p)
= k2

∫ ∞
−∞

dν e2ᾱsχ(ν)y

(
Qs0

k

)1+2iν
1

8π

1 + (1− 2iν) ln Qs0
Λ

(1− 2iν)2

1 + 2iν

1− 2iν

≈
√
π

8π

(ln k
Qs0

)3/4

(2ᾱsy)5/4
Q2
s0

(
1 +

√
2ᾱsy

ln k
Qs0

ln
Qs0

Λ

)
e

2
√

2ᾱsy ln k
Qs0 .

(7.4.3)

Thus, it follows upon substitution of (7.3.5) and (7.4.3) into (7.4.2) and then into

(7.3.19) that

dσqq̄+A(k, y; r)

d2kdy
=
αsCF
8π3k4

∫
d2bQ2

s0

(ln k
Qs0

)3/4

(2ᾱsy)5/4(2ᾱs(Y − y) ln kr
2

)1/4

×
(

1 +

√
2ᾱsy

ln k
Qs0

ln
Qs0

Λ

)
e2
√

2ᾱs(Y−y) ln kr
2 e

2
√

2ᾱsy ln k
Qs0 (7.4.4)

2. k � 2/r � Qs. Repeating the by now familiar procedure yields

g ≈ 2π

∫ k

Qs

dpp
∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,k, Y − y) (7.4.5)

We observe that the cross section in this case is exactly the same as (7.4.4).

3. Qs � k � 2/r:

g ≈ 2π

∫ Qs

k

dpp
∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,p, Y − y) (7.4.6)

With the help of (7.3.17) and (7.3.5) we get

g = 2rS2
0

∫ ∞
−∞

dν
1

1 + 2iν
e

2ᾱs(Y−y)
1+2iν

∫ Qs

k

dp e− ln2 Qs
p ln

Qs

p

(rp
2

)2iν

(7.4.7)
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Now, using τ = ln Qs
p

in place of p∫ Qs

k

dp e− ln2 Qs
p ln

Qs

p
p2iµ = Q2iµ+1

s

∫ ln(Qs/k)

0

dτ τ e−τ
2−τ(1+2iµ)

≈ Q2iµ+1
s

∫ ∞
0

dτ τ e−τ
2

=
1

2
Q2iµ+1
s . (7.4.8)

Putting everything together yields

dσqq̄+A(k, y; r)

d2kdy
=
ᾱsCFS

2
0

π5/2k2

∫
d2b

1

(ln rQs
2

)1/4(2ᾱs(Y − y))1/4
e2
√

2ᾱs(Y−y) ln rQs
2

(7.4.9)

4. Qs � 2/r � k:

g ≈ 2π

∫ Qs

2/r

dpp
∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,p, Y − y) (7.4.10)

This case is similar to the previous one except the the lower limit of the integral in

(7.4.7), k, is now replaced by 1/r. However, for very large Qs, the integral over p is

independent of the lower limit of integration as is clear from (7.4.8). We conclude

thereby that the cross section in this case coincides with (7.4.9).

5. 2/r � k � Qs:

g ≈ 2π

∫ k

Qs

dpp
∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,k, Y − y) + 2π

∫ 2/r

k

dpp
∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,p, Y − y)

(7.4.11)

The first of these integrals reads using (7.4.3) and (7.3.3)

2π

∫ k

Qs

dpp
∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,k, Y − y)

=
1

32

(ln k
Qs0

)3/4

(2ᾱsy)5/4

1 +
√

2ᾱsy

ln k
Qs0

ln Qs0
Λ(

2ᾱs(Y − y) ln 2
rQs0

)1/4
Q2
s0r

2 e
2
√

2ᾱsy ln k
Qs0 e

2
√

2ᾱs(Y−y) ln 2
rQs0

(7.4.12)

The second one is done by substituting (7.3.13) and the integral form (7.2.5) (it

is useful to note that ∂ÑG/∂ ln(1/p) ≈ 2ÑG) and then integrating over p in the
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leading log approximation (i.e. treating log p as a constant) followed by the saddle

point integral over ν. We have

2π

∫ 2/r

k

dpp
∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,p, Y − y)

=Q2
s0r

2

(ln k
Qs0

)1/4(ln 2
kr

)1/4

(
1 +

√
2ᾱsy

ln k
Qs0

ln Qs0
Λ

)
2(2ᾱsy)3/4(2ᾱs(Y − y))3/4

e
2
√

2ᾱsy ln k
Qs0 e2

√
2ᾱs(Y−y) ln 2

kr

(7.4.13)

Substitution of (7.4.12) and (7.4.13) into (7.3.19) gives for the cross section

dσqq̄+A(k, y; r)

d2kdy
=
αsCF
π3k2

∫
d2bQ2

s0r
2

(ln k
Qs0

)1/4(ln 2
kr

)1/4

(
1 +

√
2ᾱsy

ln k
Qs0

ln Qs0
Λ

)
2(2ᾱsy)3/4(2ᾱs(Y − y))3/4

× e2
√

2ᾱsy ln k
Qs0 e2

√
2ᾱs(Y−y) ln 2

kr

[
1 +

(ln k
Qs0

)1/2(2ᾱs(Y − y))1/2

(2ᾱsy)1/2(ln 2
kr

ln 2
rQs0

)1/4

]
(7.4.14)

6. 2/r � Qs � k:

g ≈ 2π

∫ 2/r

Qs

dpp
∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,p, Y − y) (7.4.15)

Repeating the steps leading to (7.4.13) and noting (7.3.15), we finally get

dσqq̄+A(k, y; r)

d2kdy
=
αsCF
π3k2

∫
d2bQ2

s0r
2

(ln 2
rQs0

)1/4 ln Qs0
Λ

25/2(2ᾱsy)3/4(2ᾱs(Y − y))3/4

× e4
√

2ᾱsye
2
√

2ᾱs(Y−y) ln 2
Qs0r (7.4.16)

Eqs. (7.4.4)–(7.4.16) represent the dipole–nucleus inclusive cross section in all kine-

matic regions.

7.5 Gluon production at the leading order in asymptotic

regions

The DIS inclusive cross section is obtained from the dipole–nucleus one using (7.2.1).

Integration over the dipole size r and momentum fraction z can be carried out for Q�
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Λ,m. In this case the largest contribution stems from the transversely polarized virtual

photon. Setting mf = 0 in (6.2.3) we write (7.2.1) as

dσγ
∗A(k, y;Q)

d2kdy
=
Nc

π2

∑
f

αfem

π

∫
d2r

∫ 1

0

dz Q2z(1− z)K2
1

(
rQ
√
z(1− z)

)
×
[
z2 + (1− z)2

] dσqq̄+A(k, y; r)

d2kdy
. (7.5.1)

At large Q the dominant contribution to the z-integral arises from z → 0, 1. This

corresponds to either quark or antiquark carrying most of the photon’s energy. These

limits are symmetric, therefore we can calculate the z-integral for z → 0 and multiply

the result by 2. Thus,

dσγ
∗A(k, y;Q)

d2kdy
≈ NcQ

2

π2

2αem

3

∫ ∞
4/Q2

dr2dσ
qq̄+A(k, y; r)

d2kdy
2

∫ ∞
0

dz z K2
1

(
rQ
√
z
)

=
8Nc

3π2Q2

2αem

3

∫ ∞
4/Q2

dr2

r4

dσqq̄+A(k, y; r)

d2kdy
, (7.5.2)

where we took into account only three light quarks. To set the low limit of integration

in (7.5.2) we noted that integrand in (7.5.1) peaks at rQ ∼ 1/
√
z(1− z) ≥ 2. Upon

substitution of (7.3.19) into (7.5.2) we get

dσγ
∗A(k, y;Q)

d2kdy
=

16αsαem

9π5

NcCF
Q2k2

∫
d2b

∫ ∞
4/Q2

dr2

r4

∫
d2p

∂ÑG(p, b, y)

∂ ln(1/p)
f̃(r,p− k, Y − y) .

(7.5.3)

To determine the cross section for gluon production in DIS it is convenient to do

integral over r before we integrate over ν in f̃ . We thus define an auxiliary function

d(Q, p, y) =

∫ ∞
4
Q2

dr2

r4
f̃(r,p, y) . (7.5.4)

Employing (7.2.5) in (7.5.4) we obtain the Mellin representation of d

d(Q, p, y) =
Q

2πp

∫ ∞
−∞

dνe2αsχ(ν)y

(
p

Q

)2iν Γ(1
2
− iν)

(1
2
− iν)Γ(1

2
+ iν)(2iν + 1)2

(7.5.5)

Inasmuch as we are interested only in asymptotic behavior of d, which we will derive

using the saddle-point approximation, we can write in view of (7.2.5)

d(Q, p, y) =
Q2

4
f̃(2/Q,p, y)

1
1
2
− iνsp

(7.5.6)
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where νsp is a saddle point given by one of the formulas (7.3.1),(7.3.4),(7.3.6). In partic-

ular, using (7.3.2), (7.3.3) and (7.3.5) in (7.5.6) yields

d(Q,p, y) =
Q

4p

1√
14πζ(3)ᾱs y

e(α
(0)
P −1)y e−

ln2 p
Q

14ζ(3)ᾱs y , αsy � ln2 p

Q
(7.5.7)

d(Q,p, y) =
1

4
√
π

(ln Q
Qs0

)1/2(
2ᾱsy)3/4(ln Q

p

)1/4
e

2
√

2ᾱsy ln Q
p , Q� p (7.5.8)

d(Q, q, y) =
Q2

8
√
πp2

1(
2ᾱsy ln p

Q

)1/4
e2
√

2ᾱsy ln p
Q , Q� p (7.5.9)

Inspecting (7.5.3),(7.5.4),(7.5.6),(7.3.19) and (7.4.1) we get

dσγ
∗A(k, y;Q)

d2kdy
=

4Ncαemκ

9π2

dσqq̄+A(k, y; 2/Q)

d2kdy
(7.5.10)

where we denoted by κ the logarithmic (or constant) factor (1/2− iνsp)−1. Explicitly,

κ = 2

(
ln max{k,Q}

min{k,Q}

2ᾱs(Y − y)

)1/2

, if k,Q� Qs ; κ = 1 , if k,Q� Qs , (7.5.11)

Eq. (7.5.10) together with the expressions of the inclusive dipole–nucleus cross section

derived in Sec. 7.5 provide the cross section for the inclusive gluon production in DIS at

the leading logarithmic approximation.

7.6 NLO BFKL effects: energy conservation

7.6.1 NLO BK effects

The NLO BFKL kernel [115, 116] does not seems be offer stable results, and it

is expected that higher order calculation might cure the problem. But given the ex-

treme complexity of NLO BFKL calculations, it seems to be a formidable task to obtain

higher-order results within the forseeablle future. However, it is found that momentum

conservation is the dominant contribution in higher orders [117, 118], or better to say, to

all orders. Recall that LO BFKL/BK equations are derived in the eikonel approxima-

tion. And each step of emission does alter the original trajectory of emitter. This is only
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good for very soft emissions in every step, in other words, LO BFKL/BK are valid for

infinitely large rapidity intervals between the dipole and the target nucleus. For finite

rapidity intervals, higher order effects are no longer negligible. Specifically, [117, 118]

proposed a resummation of collinear singlaritites to all orders to correct the problem of

NLO BFKL. Let us also recall that DGLAP equations is derived in the limit of large-Q2

and resums the collinar singularities. The combined effect is to pick up higher order

terms of BFKL/BK that satisfy momentum conservation. We will briefly explain why

the collinear singlarities correspond to momentum conservation.

Momentum conservations at small-x requires(quark contribution can be safely omit-

ted, see Chap. 2) ∫ 1

0

dxxG(x,Q2) = 1 (7.6.1)

Also recall that the anomalous dimension is defined in (2.3.6). Combined it with

DGLAP equation (2.2.5), one gets∫ 1

0

dx

∫ 1

x

dz

z
PGG(z)xG(

x

z
,Q2) (7.6.2)

A change of variable y = x/z would decouple the 2-dimensional integral,∫ 1

0

dyyG(y,Q2)

∫ 1

0

dzzPGG(z) = 0 (7.6.3)

Therefore

γ(1) = 0 (7.6.4)

This constraint is central in constructing a model for NLO BK equation.

7.6.2 Dipole scattering amplitude

As explained above, one of the most important NLO effects is the momentum con-

servation. BK equation modified to account for the energy conservation reads [140, 141]

∂N(r, b, y)

∂y
=
ᾱs
2π

(
1− ∂

∂y

)∫
d2r′

r2

r′2(r − r′)2
{N(r′, b, y) +N(r − r′, b, y)+

+N(r, b, y)−N(r′, b, y)N(r − r′, b, y)} . (7.6.5)
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In this section we discuss solution to this equation in dilute and saturation regimes.

7.6.2.1 Dilute regime

Consider first the dilute regime. It is advantageous to represent N as the double

Mellin transform

N(r, b, y) =

∫ i∞

−i∞

dω

2πi

∫ i∞

−i∞

dγ

2πi
N (γ, b, ω)

eωy+γξ−ξ

ω − 2ᾱsχ1(γ, ω)
, (7.6.6)

where we introduced a new dimensionless variable ξ = ln(1/r2Q2
s0). The anomalous

dimension γ is related to the Mellin variable ν that we have used so far as γ = 1/2− iν,

so that the LO BFKL eigenvalue function is χ(ν) = χ(i(γ − 1/2)), see (6.2.12). χ1(γ, ω)

denotes the NLO BFKL eigenvalue function. In the dilute regime the N2 term in the

r.h.s. of (7.6.5) can be neglected. Substituting (7.6.6) into (7.6.5) one arrives at the

following relation between the Mellin variables

ω = 2ᾱsχ1(γ, ω) = 2ᾱs(1− ω)χ (i(γ − 1/2)) , (7.6.7)

with the explicit solution for ω
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Figure 7.1 ω(ν) for (a) ᾱs = 0.3 and (b) ᾱs = 0.2. LO and NLO are represented by
dashed (red) and solid (blue) lines respectively. Notice the different ν ranges
of the two plots.

ω =
2ᾱsχ(ν)

1 + 2ᾱsχ(ν)
. (7.6.8)
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This solution is plotted in Fig. 7.1. ω diverges at ν = ν∗ satisfying 2ᾱsχ(ν∗) = −1. As

ᾱs → 0, ω approaches the LO expression while ν∗ → ±∞. At γ → 0, i.e. iν → 1/2,

χ ≈ 1/(1− 2iν) = 1/2γ and (7.6.8) yields

γ(ω) = ᾱs

(
1

ω
− 1

)
. (7.6.9)

This can be used as a model of anomalous dimension that takes into account the energy

conservation as suggested in [148, 149].

Integrating (7.6.6) over ω we obtain

N(r, b, y) =

∫ +∞

−∞
dν CA

ν e
ω(ν)y+γξ−ξ , (7.6.10)

with ω(ν) given by (7.6.8). Remembering that in the dilute regime (and Nc � 1)

NG = 2N , see (7.3.7), and using the same initial condition as in (7.3.12) we get

NG(r, b, y) =

∫ ∞
−∞

dν exp

{
2ᾱsχ(ν)y

1 + 2ᾱsχ(ν)

}
(rQs0)1+2iν 1

8π

1 + (1− 2iν) ln Qs0
Λ

(1− 2iν)2
. (7.6.11)

This integral can be taken in the double-logarithmic approximation (DLA), which cor-

responds to keeping only one of the poles of χ, namely χ(ν) = 1/(1 − 2iν). Denote

φ(ξ, y) =
2ᾱsχ(ν)y

1 + 2ᾱsχ(ν)
− (1/2 + iν)ξ . (7.6.12)

Then, in the DLA

φ(ξ, y) ≈ ᾱs
γ + ᾱs

y + γξ − ξ = 2
√
ᾱsyξ − ξ(1 + ᾱs) +

1

2
(γ − γ0)2 2ξ3/2

(ᾱsy)1/2
, (7.6.13)

where

γ0 =

√
ᾱsy

ξ
− ᾱs (7.6.14)

is the saddle point. Substituting (7.6.13) into (7.6.11) and integrating over the saddle

point gives

NG(r, b, y) =
1 + 2γ0 ln Qs0

Λ

32π1/2γ2
0

(ᾱsy)1/4

ln3/4 1
r2Q2

s

(r2Q2
s)

1+ᾱse
2
√
ᾱsy ln 1

r2Q2
s . (7.6.15)

The most important correction due to momentum conservation requirement is steeper

dependence of the scattering amplitude on r.
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7.6.2.2 Saturation momentum

To determine the saturation momentum, we need to find a set of lines in the y, ξ plane

along which the amplitude is constant. In the DLA approximation this is equivalent to

the requirement that the phase (7.6.13) be constant, i.e. 2
√
ᾱsyξ−ξ(1+ᾱs) = 0. Denoting

solution to this equation as ξs(y) we obtain

Q2
s = Q2

s0e
ξs = Q2

s0 e
4ᾱsy

(1+ᾱs)2 . (7.6.16)

Energy dependence of the saturation momentum becomes more gradual compared to the

LO.

A more accurate evaluation of the saturation momentum requires solving the following

two equations [135]:

φ =
2ᾱsχ(γ)y

1 + 2ᾱsχ(γ)
+ γξ − ξ = 0 (7.6.17a)

∂φ

∂γ
=

2ᾱsχ
′(γ)y

1 + 2ᾱsχ(γ)
− (2ᾱs)

2χ(γ)χ′(γ)y

(1 + 2ᾱsχ(γ))2
+ ξ = 0 . (7.6.17b)

The first one determines the line on y, ξ plane where the amplitude is stationary, while

the second one fixes the trajectory of the steepest descend [135]. Eliminating y and ξ

from these equations we end up with an equation for the saddle-point γsp:

χ′(γsp) +
1

1− γsp

χ(γsp) =
2ᾱsχ(γsp)χ′(γsp)

1 + 2ᾱsχ(γsp)
. (7.6.18)

Employing (6.2.12) we write

χ(γ) = ψ(1)− 1

2
ψ(γ)− 1

2
ψ(1− γ) , (7.6.19)

χ′(γ) = −1

2
ψ′(γ) +

1

2
ψ′(1− γ) . (7.6.20)

Saddle point in the LO is obtained as the solution to (7.6.18) in the ᾱs → 0 limit.

Hence, dropping the r.h.s. of (7.6.18) we obtain γsp = 0.37. In the NLO approximation

γsp depends on ᾱs as shown in Fig. 7.2(a). As ᾱs increases γsp decreases and becomes
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closer to the experimental data. For a given ᾱs (7.6.17) implies that

Q2
s = Q2

s0 exp

{
1

1− γsp

2ᾱsχ(γsp)y

1 + 2ᾱsχ(γsp)

}
≡ Q2

s0e
2ᾱsy h(ᾱs) , (7.6.21)

Particularly, at the LO h(ᾱs) = χ(γsp)

1−γsp
= 2.44 independently of ᾱs. In Fig. 7.2(b) we show

the NLO behavior of h as given by (7.6.21) and its DLA given by (7.6.16). Again we

observe that the NLO correction makes the energy dependence of the saturation scale

more gradual. This is understandable because the momentum conservation reduces the

phase space available for gluon emission.
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Figure 7.2 (a) Solution for the saddle point equation (7.6.18) γsp(ᾱs): solid blue line is
NLO (momentum conservation), dashed red line is LO. (b) Function h(ᾱs)
defined in (7.6.21): solid blue line is NLO, dotted (purple) is its DLA (7.6.16)
and dashed (red) is LO.

7.6.2.3 Saturation regime

In the saturation region, (7.6.5) reads

∂N(r, b, y)

∂y
= ᾱs

(
1− ∂

∂y

)∫ r2

2/Q2
s

dr′2

r′2
{N(r′, b, y)−N(r′, b, y)N(r, b, y)} (7.6.22)

We expect that the scattering amplitude will approach its unitarity limit as y → ∞.

Therefore, we are looking for a solution to (7.6.22) in the form

N = 1− S (7.6.23)
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where S � 1 is an element of the scattering-matrix of dipole r. Now

−∂S(r, y)

∂y
= ᾱs

(
1− ∂

∂y

){
ln(r2Q2

s)S(r, y)
}
. (7.6.24)

We are interested in the scaling solution viz. we are looking for a solution in the form

S(r, y) = S(τ(r, y)) where

τ = ln(r2Q2
s) = ln(r2Q2

s0) +
4ᾱsy

(1 + ᾱs)2
, (7.6.25)

and we used (7.6.16). Introducing a new parameter that determines rapidity dependence

of the saturation scale (in the DLA)

λ =
4ᾱs

(1 + ᾱs)2
(7.6.26)

we write (7.6.24) as

∂S

∂τ
(ᾱsλτ − λ) = ᾱs(τ − λ)S . (7.6.27)

It is easily integrated with the solution

S(τ) = S0e
τ
λ (1− ᾱsτ)

1
ᾱsλ
−1 , (7.6.28)

where S0 is an integration constant that is determined by matching with the solution in

the dilute regime. This is similar to the solution derived in [140]. Note, that (7.6.28) is

applicable only at 1 < τ ≤ 1/ᾱs. Solution (7.6.28) is exhibited in Fig. 7.3.

7.6.3 Dipole density

We proceed with the analysis of the NLO effects related to the energy conservation

in the dipole density. Using the result of the Sec. 7.6.2 we obtain in place of (7.2.5):

f̃(r, q, y) =
r

πq

∫ ν∗

−ν∗
dν exp

{
2ᾱsχ(ν)y

1 + 2ᾱsχ(ν)

} (rq
2

)2iν Γ
(

1
2
− iν

)
Γ
(

1
2

+ iν
)

(2iν + 1)2
, (7.6.29)

where ν∗ satisfy 1+2ᾱsχ(ν∗) = 0. Similarly to our discussion in Sec. 7.3.1, we would like

to find asymptotic expressions for f̃ in various kinematic regions. Since the integrand

in (7.6.29) is a steeply falling function of ν we can replace the limits of integration by

ν∗ = ±∞.
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Figure 7.3 Solution to the LO (dashed red line) and the modified (solid blue) BK equa-
tions deeply in the saturation region 1 < τ < 1/ᾱs. The initial condition is
S = 0.9 at τ = 1.

1. αsy � ln2 rq
2

. Expression in the exponent of (7.6.29) can be approximated as

2ᾱsχ(ν)y

1 + 2ᾱsχ(ν)
≈ (α

(0)
P − 1)y

α
(0)
P

− 14ζ(3)ᾱsy

[α
(0)
P ]2

ν2 . (7.6.30)

We see that the pomeron intercept became α
(1)
P = 2− 1/α

(0)
P , while the “diffusion

constant” has increased by 1/[α
(0)
P ]2, i.e. growth of f̃ with rapidity has slowed down,

while diffusion has speeded up. The later observation has profound implications on

diffractive gluon production (see [88, 99, 100] for in-depth discussion). For ᾱs = 0.4

the intercept is α
(1)
P = 1.5 (compare with α

(0)
P = 2.1), which is in better agreement

with the data. Eq. (7.3.2) is modified as follows

f̃(r, q, y) =
r

q

α
(0)
P√

14πζ(3)ᾱs y
e(α

(1)
P −1)y e−

[α
(0)
P

]2 ln2 rq
2

14ζ(3)ᾱs (Y−y) . (7.6.31)

2. rq < 2 and ln 2
rq
� αsy. Expanding χ ≈ 1/(1− 2iν) we find the saddle point at

2iν1 = 1 + 2ᾱs −
√

2ᾱsy

ln 2
rq

. (7.6.32)

Integration over the saddle-point and assuming ln 2
rq
� y/αs yields

f̃(r, q, y) =
r2

8
√
π

(rq/2)2ᾱs(
2ᾱsy ln 2

rq

)1/4 [
1−

√
2ᾱs

1
y

ln 2
rq

]e2
√

2ᾱsy ln 2
rq . (7.6.33)
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3. rq > 2 and αsy � ln rq
2
� y/αs. Now, another pole in χ dominates χ ≈ 1/(1+2iν)

with the result

f̃(r, q, y) =
1

2q2
√
π

(2/rq)2ᾱs(
2ᾱsy ln rq

2

)1/4
[
1−

√
2ᾱs

1
y

ln rq
2

]e2
√

2ᾱsy ln rq
2 . (7.6.34)

Note, that in both cases (7.6.33) and (7.6.34) the momentum dependence of the leading

twist is modified by an additional power 2ᾱs. This can have important consequences at

high Q2 and/or k. We are discussing this in more detail in Sec. 7.8.

7.7 Nuclear modification factor

The nuclear modification factor is defined as

Rγ∗A =

∫
d2b

dσγ∗A
d2k dy d2b

A
∫
d2b

dσγ∗p
d2k dy d2b

. (7.7.1)

In the logarithmic approximation (7.5.10) implies that the cross section for inclusive

gluon production in DIS on a heavy nucleus is simply proportional to the cross section

for inclusive gluon production by dipole of size r = 2/Q. Consequently, the nuclear

modification factor (7.7.1) can be approximated by

Rγ∗A ≈ Rqq̄+A

∣∣
r=2/Q

. (7.7.2)

In the same approximation, pA scattering can also be approximated as the qq̄ + A one

provided that we are interested in inclusive processes not too close in rapidity to the

proton or nucleus fragmentation region [100]. Atomic weightA and rapidity y dependence

of incluisve cross section in pA collisions at the leading logarithmic order was discussed

in great detail in [108] and we refer the interested reader to that paper. Here we will

focus on the logarithmic derivative of the nuclear modification factor defined as

J =
1

Rγ∗A

∂Rγ∗A

∂y
. (7.7.3)



109

Outside the saturation region this observable is proportional to the difference between

the anomalous dimension of the gluon distribution in the nucleus γA and the one in the

proton γp. If the coherence effects were negligible, the two anomalous dimensions would

have been identical. This is not the case according to the theory of gluon saturation. As

the result, the NMF is suppressed even at k > Qs. Thus J is especially sensitive probe

of the mechanism that leads to the suppression of the NMF for hadron production at

small x.

Let us relate J to the difference of anomalous dimensions γA − γp. It follows from

(7.7.1) that

J =
∂

∂y
lnRγ∗A =

∂

∂y
ln
dσγ

∗A

d2k dy
− ∂

∂y
ln
dσγ

∗p

d2k dy
. (7.7.4)

Using (7.7.2) and (7.3.19),(7.4.1) and assuming that the b-dependence factors out we

derive

∂

∂y
lnRγ∗A ≈

∂

∂y
ln gA

∣∣
b=0
− ∂

∂y
ln gp

∣∣
b=0

, (7.7.5)

where g is the inclusive qq̄ + A cross section modulo a constant factor, see Sec. 7.4.

We assigned superscripts A and p to g to indicate the two cases: A > 1 and A = 1

respectively. In the following we will omit the specification that g is taken at zero impact

parameter. Outside the saturation region we can employ the Mellin representation for

NG (7.3.12) and f̃ (7.2.5), substitute them into (7.4.1), take the LLA limit and obtain

up to a pre-exponential factor

gA ∝ Q0r exp

[
2ᾱsχ(ν0)(Y − y) + 2iν0 ln

rp

2
+ 2ᾱsχ(µA0 )y + 2iµA0 ln

Qs0

p

]
(7.7.6)

and analogously for gp. Here ν0, µA0 are the saddle points in the Mellin transform of

f̃ and ÑG respectively. The omitted pre-factor in (7.7.6) depends on momenta only

logarithmically. Momentum p stands for either Q or k depending on the kinematic

region of interest. It is straightforward to verify that gA and gp obey the equations

∂gA

∂y
= 2ᾱs[χ(µA0 )− χ(ν0)]gA ,

∂gp

∂y
= 2ᾱs[χ(µp0)− χ(ν0)]gp . (7.7.7)
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This is just the Mellin transform of the BFKL equation. Plugging (7.7.7) into (7.7.5) we

derive

J = 2ᾱs
[
χ(µA0 )− χ(µp0)

]
≈ 2ᾱsχ

′(γp0)
(
γA0 − γp0

)
. (7.7.8)

χ′(γ) is given by (7.6.20) and the saddle point γp0 satisfies (7.6.18).

Consider a few examples. Denote p = max{k, Q}. In the region ln p
Qs0
� ᾱsy we

have (see e.g. (7.3.4) and (7.3.13))

χ ≈ 1

1− 2iµ
=

1

2γ
(7.7.9)

with the saddle point

γA =
1

2
(1− 2iµA0 ) =

1

2

√
2ᾱsy

ln p
Λ

+ ln Λ
Qs0

≈ 1

2

√
2ᾱsy

ln p
Λ

(
1 +

ln Qs0
Λ

2 ln p
Λ

)
(7.7.10)

γp is obtained by setting Qs0 = Λ. We see that in this kinematic region γp < γA. By

dint of (7.7.9) χ′(γ) < 0 implying that J < 0. More precisely,

J = −ᾱs
ln Qs0

Λ√
2ᾱsy ln p

Λ

. (7.7.11)

In the saturation region ln p
Qs0
� ᾱsy, γA effectively tends to zero as the dipole scattering

amplitude saturates at unity. Therefore, in that region γA < γp, while χ ≈ 1
2(1−γ)

. Hence

χ′(γ) > 0 implying that again J < 0. Finally, in the diffusion region χ ≈ 2 ln 2− 7ζ(3)ν2

and we similarly obtain

J = − ln p
Λ

ln Qs0
Λ

7ζ(3)ᾱsy2
. (7.7.12)

Negativity of J in all kinematic regions signifies the decrease of the inclusive cross section

as a function of rapidity. The rate of the decrease depends on the absolute value of J .

7.8 Numerical analysis

The numerical calculation of the inclusive hadron production is performed using

Eqs. (7.2.1), (6.2.3),(7.2.7),(7.2.6). We employed the bGCG model [143] for the forward
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Figure 7.4 Comparison between the LO and NLO calculations of k2 dF2(x,Q2;y)
d2kdy

as a func-

tion of k at two values of coupling (a) ᾱs = 0.3 and (b) ᾱs = 0.15.

dipole–nucleus scattering amplitude. The bCGC model is reviewed in Appendix. Func-

tion f̃ is calculated using formula (7.6.29). The gluon spectrum is then convoluted with

the LO pion fragmentation function FG as follows

dσπ
d2k dy

=

∫ 1

zmin

dz

z2

dσG
d2k dy

(k/z)FG(z, k) . (7.8.1)

The fragmentation function is given in [152]. The total rapidity interval is taken to be

Y = 10, which is equivalent to x = e−Y = 4.5·10−5. The range of photon virtualities that

we consider is Q2 = 2− 37 GeV2. This kinematic region can be probed at the proposed

Large Hadron electron Collider and its low Q2 part at the Electron Ion Collider [153]. The

rapidity interval y from the nucleus to the produced gluon is related to xIP, a variable

used in differctive DIS, as xIP = e−y. We consider y in a narrow interval 5 ≤ y ≤ 7

allowed by our formalism. At larger x and/or xIP the validity of the leading logarithmic

approximation that we employ becomes uncertain.

The results of our calculations are shown in Figs.(7.4)–(7.8). The NLO calculation

shown in the figures refers to the part of the NLO terms that are responsible for mo-

mentum conservation. In Fig. 7.4,7.5 we plot the inclusive cross section normalized in

the same way as the structure function

dF2(x,Q2; y)

d2kdy
=

1

αem

Q2

4π2

dσγ∗A(x,Q2; y)

d2kdy
. (7.8.2)
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Figure 7.5 Inclusive spectrum k2 dF2(x,Q2;y)
d2kdy

of (a) pions, (b) gluons as a function of k.

We observe that inclusive gluon production at NLO is suppressed compared with the

LO case. This is because the anomalous dimension of dipole density at NLO is smaller

compared with that of LO, as can be seen in Fig. 7.2. This is expected since energy

conservation constrains the phase space available for hadron production. In Fig. 7.4

we demonstrate that the difference between the LO and NLO calculation is smaller at

smaller values of coupling.

We see in Fig. 7.5(b) that at small k, the gluon production cross section follows 1/k2

behavior. Indeed, 1/k2 comes from the Lipatov vertex, whereas the gluon distribution

in the nucleus is saturated and hence depends on momentum k only logarithmically.

This is seen in (7.2.7) where at small k the integral tends to a constant leaving the 1/k2

pre-factor in front. Modification of the gluon spectrum due to fragmentation can be

inferred by comparing Fig. 7.5(a) and (b).

The cross section grows with Q2 and xIP logarithmically; both dependences are much

steeper at the LO than in the NLO. We also note that momentum conservation correction

substantially reduces the cross section. However, the functional form of the k-spectrum

does not change in the kinematic region that we studied, as we checked explicitly. We

attribute this to that fact that the dominant contribution to the Mellin transform stems

from anomalous dimension γ ≈ 1/2 in both cases. We expect that at much larger Q

and k the NLO k-spectrum becomes steeper than those in LO due to additional factors
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Figure 7.6 Inclusive hadron spectrum k2 dF2(x,Q2;y)
d2kdy

as a function of (a) y, (b) Q2.

1/Q2ᾱs or 1/k2ᾱs . However, assumptions of our model restrict our calculation only to

the semi-hard values of transverse momenta.

The largest uncertainty in our numerical calculation of hadron spectrum comes from

the oversimplified treatment of nuclei geometry. Instead of integrating with a realistic

nuclear thickness T (b) we approximated the nuclear density by the step-function. Based

on our previous experience with this type of numerical calculations we expect that a

more accurate treatment of the nuclear density will only affect the overall normalization

of the cross section. From this perspective the ratios of the inclusive spectra should not

be much affected by this uncertainty.

Our calculation of the Nuclear Modification Factor (NMF) as a function of k for Au

(A = 197) and Ca (A = 40) is displayed in Fig. 7.7. The general feature of NMF is

suppression at low k and enhancement at larger k (the later is often referred to as the

Cronin effect [48]). This is in contrast with the hadron production in pA scattering where

the Cronin effect gives way to the suppression at all k’s provided that the hadron rapidity

y is large enough. The reason for this difference is that whereas pA scattering can be

approximated by dipole–nucleus scattering [100], γ∗A interaction is a superposition of

many dipole–nucleus scatterings with different dipole sizes r, see (7.2.2). At small k

NMF for dipoles of all sizes is suppressed [108] and therefore we observe suppression

of the resulting R for DIS. On the other hand, the fact that R > 1 at large k implies



114

0 2 4 6 8 10
0.4

0.6

0.8

1.0

1.2

1.4

kT HGeVL

R

y=7 Y=10 A=197

Q2
=36 GeV2

Q2
=4 GeV2

0 2 4 6 8 10
0.4

0.6

0.8

1.0

1.2

1.4

kT HGeVL

R

y=7 Y=10 A=40

Q2
=36 GeV2

Q2
=4 GeV2

(a) (b)

0 2 4 6 8 10
0.4

0.6

0.8

1.0

1.2

1.4

kT HGeVL

R

Q2
=36GeV2 Y=10 A=197

y=7

y=5

0 2 4 6 8 10
0.4

0.6

0.8

1.0

1.2

1.4

kT HGeVL

R

y=7 Y=10 A=197

Q2
=36 GeV2

Q2
=4 GeV2

(c) (d)

Figure 7.7 Nuclear Modification Factor as a function of k for (a)-(c) hadrons at various
A, y and Q2; (d) gluons. All calculations include the NLO effects.

that the inclusive cross section in that region is dominated by dipoles whose individual

scattering on the nucleus exhibits Cronin enhancement, i.e. they are not much effected

by the small-x evolution. Presence of such dipoles is ensured by evolution of the dipole

density n, which happens if Y − y � 1. Comparing Figs.7.7 (a)-(c) with (d) we note

that due to fragmentation, NMF of hadrons is much slower function of Q2, y and k than

NMF of gluons. Additonally, fragmentation shifts the value of the transverse momentum

at which NMF crosses unity towards lower k.

Another feature seen in Fig. 7.7 (especially (d)) is that suppression of NMF at low k

and its enhancement at high k increases with the photon virtuality Q2. To understand

the Q2 dependence of the NMF we note that a typical term in its twist expansion looks

like

R ∼
(

1

Q2

)n(γA−γp)

, (7.8.3)
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Figure 7.8 Logarithmic derivative of NMF for dipole–nucleus scattering as a function
for k for (a),(b) gluons, (c),(d) hadrons. dipole size r, total rapidity Y and
nuclear wight A are indicated on each plot. All calculations include the NLO
effects.

where n ≥ 1 is an integer number. It implies that

∂R

∂ lnQ2
≈ −n(γA − γp)R. (7.8.4)

At large k γA > γp thus ∂R
∂ lnQ2 < 0, whereas at small k γA < γp thus ∂R

∂ lnQ2 > 0. This is

indeed what we observe in Fig. 7.7. Dependence of NMF on y can be explained similarly.

Fig. 7.8 displays the logarithmic derivative of the NMF J defined in (7.7.3). As we

argued in Sec. 7.7 this quantity is proportional to the difference between the anomalous

dimensions of the gluon distribution function in nucleus and proton, see(7.7.8). Our

analysis in (7.7.11),(7.7.12) indicates that J is negative and decreases as the hadron

rapidity y increases, which is indeed seen in Fig. 7.8. Similar trend has been noticed in

pA collisions in [150]. We can also see the effect of fragmentation on J by comparing

Fig. 7.8(a),(b) with (c),(d). It is interesting that fragmentation completely erases the
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k dependence, while leaving the y dependence qualitatively similar. We think that

experimental investigation of J is of great interest as it emphasizes the difference between

the (linear) gluon evolution in a heavy nucleus and in proton.
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CHAPTER 8. Discussions

Chap. 6 studied coherent and incoherent diffractive gluon production in DIS off heavy

nuclei in the proposed kinematic region of Electron Ion Collider. Our approach is based

on the dipole model introduced in [112]. It allows representing cross sections for high

energy hadronic scattering as a convolution of hadronic light-cone wave-functions with

the multipole scattering amplitudes. In our case, virtual photon wave function is deter-

mined by the perturbative QED and is given by (6.2.3). dipole–nucleus interaction can

in turn be represented as a product of dipole density (6.2.13) in transverse coordinate

space, satisfying the BFKL equation [113, 114], and the imaginary part of dipole–nucleus

forward elastic scattering amplitude as displayed in (6.2.6),(6.2.8), satisfying QCD evo-

lution equations in the small-x region [78, 76]. These formulae are derived in the leading

logarithmic approximation αs ln(1/x) ∼ 1, αs ln(1/β) ∼ 1, which defines the kinematic

region where the results of our calculations are applicable. Note, that hard pertur-

bative factorization is generally broken at small-x, because scattering in this region is

characterized by small longitudinal momentum transfer (see e.g. [155]). At moderate x

and large Q2, our formulas reduce to the leading order hard perturbative QCD expres-

sions that can be cast in the factorized form using the diffractive parton distributions

[156, 157, 158, 159].

The main results of our calculations are displayed in Fig. 6.2 and Fig. 6.3. We found

that nuclear modification factor strongly varies with nuclear weight, and the functional

dependence on A is qualitatively different for coherent and incoherent processes. Sim-

ilarly to diffractive hadron production in pA collisions [101], nuclear effects in coherent
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diffractive DIS is strongly dependent on rapidity of produced hadron, whereas they are

almost absent in the case of incoherent diffraction. We also made a peculiar observation

that the nuclear modification factor for both diffractive channels is essentially indepen-

dent of the photon virtuality in the region 1 < Q2 < 25 GeV2. Finally, our study of

non-forward diffractive hadron production indicates feasibility of experimentally separa-

tion of coherent and incoherent diffractive contributions at EIC.

Chap. 7 is dedicated to the dicussion of the inclusive hadron production in DIS scat-

tering at small x. Still, our approach employed the dipole model [112]. We presented the

analytical formulae for the cross section in various kinematic regions and discussed the

role of the momentum conservation, which is perhaps the most important NLO correc-

tion. Modified BK equation proposed in [140, 141] enables us to derive the corresponding

correction to the pomeron intercept and found that it is numerically closer to the phe-

nomenological value than the LO result. We also computed the high energy asymptotics

of the forward elastic dipole–nucleus scattering amplitude.

Motivated by possible small-x DIS experiments with heavy nuclei [153] we performed

numerical calculations of the DIS inclusive cross section using the bCGC model [143].

The results are shown in Figs. 7.4–7.8. We noticed that the NLO effects generally tend

to reduce the cross section and make it weaker function of its arguments as compared

to the LO result. The nuclear modification factor exhibits suppression at low k and

enhancement at higher k even at the largest hadron rapidities that we can address in

our approach. To understand dependence of the NMF on rapidity better we introduced

the logarithmic derivative of NMF J and showed that it is proportional to the difference

between the anomalous dimension of the gluon distribution function in nucleus and

proton. Since this difference is non-vanishing only due to coherence effects, J provides

a direct measure of the effect of coherence on inclusive cross section. Figs. 7.7,7.8 show

dependence of NMF and J on the photon virtuality Q2, x and hadron rapidity y. We

believe that our results may be helpful for experimental investigation of DIS at small-x.
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Appendix: bCGC model

We performed the numerical calculations using the bCGC model of the forward dipole

scattering amplitude [143]. We treat the nuclei and proton profiles as step-functions; the

saturation scales are assumed to scale with A as Q2
s ∝ A1/3. The advantage of this model

– besides its compliance with the known analytical approximations to the BK equation

[151] – is that its parameters are fitted to the low x DIS data. The explicit form of the

scattering amplitude N is given by

N(r, 0, y) =

 N0

(
r2Q2

qs

4

)γ
, rQqs ≤ 2;

1− exp[−a ln2(brQqs)] , rQqs ≥ 2 ,
(8.0.1)

where Q2
qs is the the quark saturation scale related to the gluon saturation scale Q2

s –

which we have called simply the ‘saturation scale’ throughout the chapters – by Q2
qs =

(4/9)Q2
s. Its functional form is

Q2
qs = A1/3xλ0 e

λy sλ/2 GeV2 , (8.0.2)

where s is the square of the center-of-mass energy and y is rapidity with respect to the

central rapidity. The anomalous dimension is

γ = γs +
1

c λ (ln
√
s+ y)

ln

(
2

rQqs

)
. (8.0.3)

The gluon dipole scattering amplitude can be calculated using (7.3.7). Parameters γs =

0.628 and c = 9.9 follow from the BFKL dynamics [151], while N0 = 0.7 and λ = 0.28

are fitted to the DIS data. Constants a and b are uniquely fixed from by the requirement

of continuity of the amplitude and its first derivative.
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