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de Roucy, Gaspard (MSc., Civil, Environmental and Architectural Engineering)

On the role of cell distribution in hydrolytically degradable hydrogels for tissue engineering

Thesis directed by Prof. Franck Vernerey

Degradable hydrogels have recently become prominent materials in the field of tissue en-

gineering. They can be submitted to two degradation process: hydrolytic and enzymatic. For

hydrolytically degradable systems, results seem to differ between samples. Yet the reasons for such

a phenomenon have not been clearly understood. The objective of this thesis is to establish a

multiscale model for such hydrogels. With the hypothesis that cross-linking density varies within a

cell-seeded hydrogel, the present thesis aims to interpret experimental results to model and predict

their behavior. First, a three-dimensional cell distribution is generated based on the analysis of

experimental microscopy images. Then, a finite difference and a finite element analysis are set to

reproduce the behavior of a degrading hydrogel in time at both microscale (cells are singled out)

and macroscale (cells are not distinct, the distribution is defined by cell density) using hexahedron

elements.
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Chapter 1

Introduction

Biological tissues in the human body are prone to degrade during their lifetime as a result

of phenomenons such as aging, injuries or degenerative diseases. This type of issue can lead to

considerable disabilities and decrease one’s life quality. Despite the capacity of modern medicine to

provide a solution by replacing damaged tissues with artificial prosthesis, such an operation requires

heavy surgery and long rehabilitation while not completely easing the discomfort for the patient.

Therefore an efficient way to tackle this problem is found in tissue engineering. The objective of the

procedure is to provide a cell-seeded scaffold by injecting a protective medium with encapsulated

cells. The polymer scaffold plays an important role supporting physiological loads while the cartilage

cells, or chondrocytes, secrete the extracellular matrix to synthesize new and functional tissue. For

this application, hydrogels have proven to be promising alternatives. Really, they permit cell

encapsulation [20] and their properties are easily controlled[26]. With a structure close to those of

biological tissues [1], they represent a good candidate for tissue engineering applications.

In the case of cartilage tissue regeneration, chondrocytes are encapsulated in a cross-linked

polymer scaffold. They synthesize an extracellular matrix (ECM) which diffuses through the gel

and deposits as a solid phase [6][10]. The newly deposited ECM constitutes the functional cartilage

tissue. Despite their encouraging properties, hydrogels are limited by the tight polymer network

necessary to achieve a high load-bearing capacity. Due to the size of ECM molecules, a decrease

in cross-linking density is necessary to allow their diffusion [20][3]. Therefore cross-links are made

sensitive to hydrolysis by the solvent to allow a degradation of the gel. The hydrolytic degradation
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process allows tissue growth but also leads to a decrease in the load-bearing capacity of the system

and endangers its susainability. In order to ensure successful tissue growth, it is necessary to

analyze the behavior of a cell-seeded hydrogel in time. Consequently, there is a need for models

conducting an analysis of favorable conditions and design parameters for effective hydrogels [13].

The necessary condition for system efficiency is to balance the degradation of cross-links with the

growth of new tissue [12][14], to minimize the decreasing tendency of the modulus before the new

deposited ECM can successfully resist external loads.

The systems studied in this thesis, illustrated in figure 1.1, consist of a mixture of cells and

hydrogel. At the microscopic scale, the cells are distinct and their boundaries are well defined and

observable. At the macroscopic scale, cells are too small to be singled out but their distribution

is given by the local cell density. When a hydrogel is subject to hydrolytic degradation only, the

cross-linking density decreases homogeneously everywhere in the medium. If the gel completely

degrades before the new ECM molecules produced by cells can connect with each other, the new

tissue will not be strong enough to ensure the mechanical integrity of the system. This leads to

the assumption that cell distribution might be a deciding condition in the case of hydrolytically

degradable hydrogels, by influencing the connectivity of deposited ECM. Therefore systems of

various cell distributions must be analyzed. In these configurations, a macroscopic cell density

will be fixed but their distribution will be heterogeneous within the gel, resulting in regions of low

or high cell density at the micro-scale. With such a configuration, a hydrogel must be analyzed

at two distinct scales: micro-structure (mechanical properties of the gel in a cell cluster or a low

cell density volume) and macro-structure, which consists of a full sample with a fixed average cell

density. The main objective of this thesis is to find potential parameters describing the influence

of cell distribution from a fine analysis of experimental results. Therefore it would be interesting

to come up with a model that could describe the key parameters of cell distribution at both scales.

However, the objective of the model is not only to study connectivity, but to compute the mechanical

properties of the gel at every step of the degradation process. This way, ECM connectivity and

compressive modulus can be related, resulting in a quantitative description of gel sustainability
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Figure 1.1: Microscale: cells are clearly distinct in the gel and their geometry must be taken into
account in the model.
Macroscale: Cells are too small compared to the volume of gel considered in the system to be
singled out. Their distribution is represented by mapping the local cell density at every material
point
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instead of an ”all or nothing” behavior which only depends on connectivity.

A limitation for the model resides in the fact that hydrolytic degradation is a global process,

bringing the entire gel to dissolve due to a lack of cross-links. This behavior is called reverse

gelation. As a consequence, the entire medium has to collapse before allowing tissue growth, which

does not allow tissue growth within the scaffold. Nevertheless, even for non-degradable hydrogels,

experimental data shows a diffusion of ECM in the near-surroundings of chondrocytes. Additionally,

an increase of cell density significantly lowers the initial modulus of a cell-seeded hydrogel. Such

observations lead to making the assertion that cells have an influence on polymerization, and

decrease the cross-linking density in their nearby region. Following this assumption, connectivity

is expected to happen faster for regions of high cell density, since ECM diffusion and deposition

are supposed to be allowed at early time steps, before the polymer network loses its mechanical

integrity. Consequently, a second hypothesis can be made: cell distribution influences the result

of tissue regeneration in hydrolytically degradable hydrogels. This aspect presents an interest to

the field of tissue engineering since previous studies have focused on the cell environment (scaffold

composition, nutrients present in the gel, enzymatic degradation...) but have very often supposed

a homogeneous distribution of cells and focused on the micro-scale.

In the first section, the present thesis focuses on the processes of degradation, diffusion and

deposition. Their implementation in the model are described and the hypothesis concerning the

influence of cells on polymerization is illustrated and quantified. An influence parameter will be

introduced to characterize the importance of the influence. The framework for the finite element

mechanical analysis is also explained. Then, section 3 tackles the issue of the cell distribution

analysis. Clustered cell distributions are defined, and their identification in experimental results

is clarified. Finally, the last section is built around the analysis and discussion around the results

obtained for microscopic and macroscopic results. The link between both scales is also described to

clarify the homogenization process necessary to evaluate mechanical properties at the macro-scale.



Chapter 2

Growth Model

Cartilage tissue growth mechanism consists in a deposition of new extracellular matrix (ECM)

produced by the chondrocytes. However it is not strong enough to support any external loading

during its production. Hydrogels in tissue engineering act as scaffolds to support mechanical loads

while the extracellular matrix is produced by cells, diffusing and depositing to form new tissue.

However the hydrogel mesh size is usually too small compared to the size of ECM molecules to

allow their diffusion. That is to say that the pores of the polymer network are too narrow to allow

the diffusion of ECM molecules. Therefore the production of new tissue is limited to the direct

surroundings of cells, and does not lead to satisfying results. As a consequence, it is necessary to

introduce a degradation process to the polymer network which, by cleaving cross-links and enlarging

the pores of the hydrogel, results in a larger mesh size. Then, ECM molecules are able to diffuse

through the hydrogel. The issue is that while the gel degrades, its load-bearing capacities decrease

as well, until only the solvent and soluble polymer chains resulting from degradation remain. In

this model, we focus on bulk degradation following a generic base catalyzed ester hydrolysis for a

pH of 7.4 in the media, and make a hypothesis on the variation of polymer cross-linking density

around cells.

2.1 Macromer synthesis and chondrocyte encapsulation

Before analyzing the repartition of a cell-seeded hydrogel, it is important to remind the

experimental process behind their formation. The entirety of the experimental work on which this
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thesis is based was conducted by Dr. Stephanie Bryant’s group from the Chemical and Biological

Efgineering department at the University of Colorado. The macromers of 8-arm PEG-caprolactone

functionalized with norbornene were synthesized in a two step process unsing protocols adapted

from Bryant, et al. Briefly, 8-arm PEG-hexaglycerol (20 kDa, JenKem Technology, Allen, TX)

was reacted with 1.5 molar excess -caprolactone using tin(II) ethylhexanoate as the ring opening

catalyst. The reaction was carried out at 140C for 6 h under vacuum. The intermediate product

PEG8arm-CAP was recovered by precipitation in ice-cold diethyl ether. PEG8arm -CAP was

reacted overnight at room temperature under argon with N,N-diisopropylcarbodiimide (10 molar

excess), 4-dimethylaminopyridine (1 molar excess), pyridine (10 molar excess) and 5-norbornene-2-

carboxylic acid (10 molar excess) ifn dichloromethane. The final product, PEG8arm -CAP-NB, was

purified through filtration over activated carbon and precipitated in diethyl ether. The precipitate

was dried and dissolved in a minimal amount of chloroform. The solution was washed twice in

a glycine buffer (0.05 M NaCl, 0.05 M NaOH, and 0.05 M glycine) and once in a brine solution.

The purified product was recovered via precipitation in diethyl ether, lyophilized, and confirmed

by 1H nuclear magnetic resonance spectroscopy. The number of caprolactones per PEG arm was

determined to be 1.26 by comparing the peak area for the methylene protons in the caprolactone (

= 2.25-2.4 ppm) to the peak area of the methylene protons in PEG ( = 3.25-3.9 ppm). Norbornene

conjugation was determined to be 64.5

2.2 Cross-link degradation and reverse gelation

Experimental results from viability images and mechanical tests have shown a quick depo-

sition of ECM in the close periphery of the cells in most cases. Additionally, the initial modulus

of the hydrogel greatly decreases when the cell density increases as shown in table 2.1. It could

be assumed that since chondrocytes represent soft insertions in the gel, the apparent decrease in

modulus is only caused by their mechanical properties. However early simulations from the model

considering a homogeneous gel with soft inclusions as cells did not match such an important drop

in initial modulus. These results suggest that the presence of cells in the gel influences the poly-
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Table 2.1: Influence of macroscopic cell density on the initial modulus

0 mill/mL 50 mill/mL 100 mill/mL 150 mill/mL

46.5 kPa 23.3 kPa 13.6 kPa 8.5 kPa

merization reaction, leading to an uneven cross-linking density in the initial system.

The cell influence is implemented in the model by using areas of lower initial cross-linking

density ρ0
x. Since the chondrocytes are not connected to the hydrogel, the initial cross-linking

density is considered to be null on their boundaries. Then, a realistic function must be built to

establish the evolution of the cross-linking density between cell boundary and the bulk of the gel.

Experiments show that cells seem to attract and consume some of the free chains during polymer-

ization, therefore a diffusion profile would be the most accurate to model this phenomenon. As a

consequence, the evolution of the cross-linking density profile around a chondrocyte is computed

using the following equation, and illustrated in figure 2.1:

ρx(X) = ρ0
x(1− exp(−X −R

l
)) (2.1)

l =
R−Rd
ln(0.01)

(2.2)

where X is the distance from the cell, R is the cell radius, Rd is the influence radius of the cell.

The influence radius of a cell is defined as the distance between the center of a cell and the bulk

of the gel. That is to say that around each chondrocyte, the initial cross-linking density varies

as described in equation (2.1) in a sphere of radius Rd, and that ρx(Rd) = ρ0
x. It is expressed in

the model as a multiple of the cell radius. Additionaly, l is a length quantity found by matching

ρx(X = Rd) with 99% of ρ0
x, hence the logarithmic term in its definition.

The influence radius parameter aims to quantify the influence of cells on polymerization and

therefore the initial cross-linking density profile. It will possibly be a key parameter in the model,
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Figure 2.1: The equation used to describe the cros-slinking density as a function of the distance
from the cell is illustrated on the left graph. Illustrations aim to highlight the interpretation of the
Rd influence parameter in a three dimensional system.

X R

Rd XR
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since it is fundamental to our first hypothesis. With the definition of the cell influence parameter

Rd on the initial cross-linking density and its role in the model defined, the degradation process is

still to be implemented. For tissue engineering application, a hydrogel must be designed to act as

a scaffold for the chondrocytes while they synthesize ECM and before the growth mechanism has

achieved sustainable mechanical properties. Consequently, it must have a satisfying load-bearing

capacity. Since the stiffness of a hydrogel is strongly related to its cross-linking density, the mesh

of the polymer network must be tight enough. As a result, its mesh size is too thin to allow the

diffusion of extracellular matrix and the production of new tissue is compromised.

To overcome this problem, hydrogels are designed with degradable cross-links. The degra-

dation process is made possible by synthesizing a gel which cross-links are sensitive to hydrolysis.

Cross-links will react with the solvent and be cleaved, leading to a progressive and homogeneous

decrease of cross-linking density in time for the bulk of the gel. Resulting from hydrolytic degrada-

tion, the mesh size of the polymer network increases as cross-links are cleaved, allowing diffusion

and deposition of new ECM in the gel. For the degradation process, first order kinetics reactions

are considered[18] where the cross-linking density in time follows the equation:


Dρx
Dt

= −kρx

ρx(x, 0) = ρ0
x

(2.3)

where k is the constant degradation rate. Therefore, the following function gives the evolution of

the cross-linking density in time:

ρx(x, t) = ρ0
x(x)e−kt (2.4)

Following this equation, ρx decreases in time until it reaches a critical value, at which a minority

of regions in the gel are still cross-linked but the connectivity between each of them is not ensured
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anymore. At this point the last branches of the hydrogel dissolve and its mass is lost[20], as is its

mechanical integrity. This phenomenon is called reverse gelation, and must be part of the model

for the diffusion study in order to capture the real behavior of a degrading system. The model

considers ECM molecules to be too large to diffuse before the gel in their surrounding area reaches

reverse gelation.

2.3 Diffusion equations

Once the hydrolytic degradation of cross-links is implemented, on the second main process

of tissue growth must be set: the diffusion and deposition of ECM particles in the hydrogel. In

the model, cells are considered as constant sources of extracellular matrix. Since it is assumed that

cross-linking density decreases around cells, reverse gelation will be reached faster in such regions.

Therefore the diffusion of ECM is made possible at early times, leading to the synthesis of new

tissue before the complete loss of load-bearing capacity in the bulk of the gel.

To implement this phenomenon, a finite difference approach must be used. That is to say

the considered space is discretized in a given number of material points. Every point is attributed

with an initial cross-link density and an initial concentration of ECM. Then, at each time step, a

diffusion equation following Fick’s laws is solved to evaluate the quantity of ECM diffusing from one

point to its direct neighbors. This equation is ruled by one main diffusion coefficient D∗. However,

as long as the cross-linking density is high, the ECM molecules are too big too diffuse and deposit,

therefore a critical cross-linking density ρx,crit is set, corresponding to the level at which reverse

gelation is reached. As long as ρx is greater than ρx,crit , the diffusion coefficient D∗ is null. We

solve this problem at different areas of our entire volume. We use the following diffusion equation:



∂C
∂t = D∇2C − γC

C(xgel, 0) = 0

C(xcell, 0) = 1

C(xcell, t) = 1

(2.5)
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where xgel are the points of the gel distinct from cells, xcell are the cell boundaries, C is the ECM

concentration, γ is the deposition rate of fluid ECM turning into a solid phase C∗, and D is the

diffusivity, which depends on the cross-linking density:


D = 0 if ρx < ρx,crit

D = D∗ if ρx > ρx,crit

(2.6)

Therefore at each time step, the ECM concentration increases in regions reached by reverse gela-

tion; however the fluid ECM diffusing in these free regions does not form a solid cartilage tissue

with mechanical integrity. Before becoming a solid phase with its own mechanical properties, it

deposits in the gel, with a constant deposition rate γ. To ensure the stability condition in the finite

difference analysis, the length of a time step ∆t is set as:

∆t =
1

6

∆x2

D∗
(2.7)

By the end of this process, the model can run several simulations in a short amount of time to

compute the time evolution of cross-linking density, ECM diffusion and tissue growth for different

systems. However the composition of the gel is not sufficient to estimate its load-bearing capacity,

and the mechanical analysis is a necessary step to complete the model.

2.4 Constitutive relations

Then a mechanical analysis of the system must be conducted to compute its macroscopic

properties. To keep the computations as simple as possible, a linear, static finite element analysis

is implemented. At every time step, the composition of the system is extracted from the diffusion

problem results, and only the solid phase is considered. Supposing that the gel has linear elastic
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properties [19], a planar compression is applied in a given direction and resulting stresses in the

hydrogel are computed, to finally average the results over the macroscopic system.

To agree with the assumptions made for the model, it is important to remain in the linear

elastic range of deformations. For biological tissues, a ten percent compression seems to be a rea-

sonable choice to stay in the range of small strains [23] and ensure the validity of the method. The

axial strain λ̄ is applied in uniaxial stress condition, which leads to a stretch of 1√
λ̄

in the two other

directions according to the incompressibility conditions. The resulting deformation gradient F is:

F =


λ̄ 0 0

0 1√
λ̄

0

0 0 1√
λ̄

 (2.8)

Now, we have to solve for the following equations with Dirichlet boundary conditions:


εij = 1

2( ui
∂xj

+
∂uj

∂xi
)

σij = Cijklεkl ; Cijkl = λδijδkl + µ(δikδjl + δilδjk)

∂σij
∂xi

+ bj = 0

(2.9)


ux(x = 0) = 0 ; ux(x = L) = (λ̄− 1)L

uy(y = 0) = 0 ; uy(y = L) = ( 1√
λ̄
− 1)L

uz(z = 0) = 0 ; uz(z = L) = ( 1√
λ̄
− 1)L

(2.10)

where λ and µ are the Lame constants, and b is the body force vector caused by the deformation.

Then, after introducing a test function v which must be null on the boundaries, the principle of

virtual work states that: ∫
Ω
σij δεij dΩ −

∫
Ω
bi δvi dΩ = 0 (2.11)

which gives:
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∫
Ω
Cijkl

uk
∂xl

∂δvi
∂xj

dΩ −
∫

Ω
bi δvi dΩ = 0 (2.12)

A linear finite element analysis is implemented using 8-node hexahedral elements. At each

node i, the shape functions are defined as:

Ni =
1

8
(1 + ξ ξi)(1 + η ηi)(1 + µµi) (2.13)

Using the shape functions, the jacobian and strain-displacement matrices J and B can be calculated:

J =


xi
∂Ni
∂ξ yi

∂Ni
∂ξ zi

∂Ni
∂ξ

xi
∂Ni
∂η yi

∂Ni
∂η zi

∂Ni
∂η

xi
∂Ni
∂µ yi

∂Ni
∂µ zi

∂Ni
∂µ

 (2.14)

B =



∂N
∂x 0 0

0 ∂N
∂y 0

0 0 ∂N
∂z

∂N
∂y

∂N
∂x 0

0 ∂N
∂z

∂N
∂y

∂N
∂z 0 ∂N

∂x


(2.15)

Then, the element stiffness matrix K(e) is obtained by integrating:

K(e) =

∫ 1

−1

∫ 1

−1

∫ 1

−1
BT C(e) B det(J) dξ dη dµ (2.16)

which, by using a Gaussian quadrature with 2x2x2 integration points, can be estimated as:

K(e) =

p∑
i=1

p∑
i=1

p∑
i=1

BT
ijk C(e) Bijk det(Jijk)wiwj wk (2.17)
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where p is the number of Gauss points in a given direction (p=2 in this case), w are the Gauss

weights, and C(e) is the element stress-strain matrix. For every element, C(e) depends on the

cross-linking density and deposited ECM concentration at the time of the computation. To obtain

the stiffness of the polymer network, the modulus of every material point must be computed as

a function of the cross-linking density ρx with an expression coming from the elastic energy of a gel:

G =
ρxRT

νp
(2.18)

E = 2G(1 + ν) (2.19)

whereG is the shear modulus, E is the Young’s modulus, R is the gas constant, T is the temperature,

νp is the molar volume of polymer, and ν is the Poisson’s ratio. According to experimental results,

cells have a Young’s modulus of 1kPa [9]. However, an equation defining the stiffness of a solid

ECM phase have not been defined yet. Therefore it will be computed as a linear function of the

deposited ECM concentration C∗. The coefficient of this function will be a parameter of the model,

set later to approach experimental values to estimate the ECM stiffness.

After assembling the global stiffness matrix with the components from every element, we can

compute the displacement vector u by solving:

u = K−1 f (2.20)

This finite element analysis will be used twice in the process. First at the microscopic scale,

it is necessary to obtain the Young’s modulus of a material point for a given cell density. To do

so, the previous analysis is applied to systems with a given cell density f and influence radius Rd.

Then, E can be mapped as a function of these two parameters. At the macroscopic scale, the

mapping from the previous step will be used to give each material point its corresponding stiffness

and compute the overall modulus of the gel to get its mechanical properties at the macro-scale.
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For the finite element analysis, an optimal mesh (number of elements in each direction) must

be found to optimize the accuracy of the results and the computational cost of each simulation. To

do so, several simulations were ran for a simple system, varying the number of elements for each

simulation. They showed that a mesh of 15x15x15 elements leads to accurate results while keeping

an acceptable computational cost at the microscopic scale. As a result, such systems seem optimal

and the mesh can be set for the model.

Results of this analysis are illustrated further in chapter 4 at both scales. Figure 2.2 here

presents a direct exemple of application of the displacement computations implemented in the

model. the figure illustrates the material points in their initial coordinates and the displacements

caused by the axial compression and incompressibility condition. For clarity purposes, the mesh

size used in this example is coarse but the ones used in the model are refined as stated in the

prevous paragraph.
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Figure 2.2: Nodal displacements in the system after a ten percent axial compression



Chapter 3

Cell distribution analysis

The main objective of this model is to find what the optimal conditions on cell distribution

and Rd parameter would be for a hydrolytically degradable hydrogel in order to obtain satisfying

tissue growth. Initially, hydrogels with a homogeneous cell distribution might seem to be the best

starting point. However according to the main hypothesis of the model, the influence of cells

on polymerization would be much more efficient if combined with a clustered system in order to

provide tissue connectivity at early times of the degradation process. To analyze this phenomenon,

the model must include a random generation of macroscopic cell distributions which will be based

on experimental results. Therefore realistic systems will be reproduced to evaluate the influence

of the model parameters. Then, user defined cell distributions will be implemented to study the

influence of clusters on tissue growth.

3.1 Cluster identification from microscopy

After obtaining samples of experimental images for viability results at day zero, the distri-

bution of cells right after polymerization can be analyzed. It is easily noticeable that cells are not

homogeneously distributed, and are gathered in small, close-range groups that we will define as

clusters. To reproduce realistic results, the cluster distribution must be analyzed in details. The

study will be performed for three different macroscopic cell densities (50, 100 and 150 million cells

per mL). For each of them, five samples will be analyzed to account for the fact that cell distri-

bution is not uniform at the macroscopic scale. The results will then be averaged to get cluster
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parameters corresponding to a given density.

The first step to initiate the cluster analysis is to translate the experimental images to nu-

merical data which will be usable to determine the parameters ruling the cell distribution. An

automatic routine was written, which automatically loads any sample image to return its distri-

bution properties. As shown in figure 3.1(a), this process follows multiple steps using the image

processing toolbox from Matlab. First, the color composition of every pixel in the image is ex-

tracted and all non-green components are filtered (dead cells and part of the background noise).

Then, every remaining green pixel is set at the same level in order to convert the image into a

binary file. Binary images can be analyzed using the image analysis tools, however it still need a

few last corrections before running the final analysis. Since some regions of the sample are highly

populated, several groups of cells are seen as single large elements instead of distinct cells. To

segment such regions and separate the cells when possible, a watershed transform is applied, which

identifies the circular shapes and sets them as single cells. Finally the analysis can be conducted,

to identify every element of the binary image and return an array giving their respective centroid

coordinates and area. Nevertheless, it appears in figure 3.1(b) that some regions have not been

segemented enough. To tackle this issue, a post-processing subroutine was built. First, the average

cell area is computed for the sample. Then, the area of every element in the sample is compared

to this average value, and divided in the corresponding number of cells if the area is too large.

Once the image analysis is complete, a numerical reproduction of any microscopy sample can be

produced automatically, in order to determine its distribution parameters.

Once the numerical data corresponding to every sample is available, it can be used to conduct

the cluster analysis. This analysis is a keystone to produce conclusive results. Really, according

to the initial hypothesis cell distribution might have a considerable influence on tissue growth in

hydrolytically degradable gels. However being able to numerically reproduce experimental samples

is not enough to model a wide range of cell distributions and study their influence. The following

steps of the model aim to determine clear parameters ruling cell and cluster distribution in order

to generate as many as needed. But first, the notion of cell cluster must be defined. Clusters are



19

Figure 3.1: Cell distribution analysis : from histology to numerical reproduction
(a) Experimental samples were converted to binary images after filtering the background noise to
retrieve the coordinates and area of every cell
(b) Identification and segmentation of high cell density regions
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tight group of cells within a certain distance of each other. They will be identified as the regions

of high cell density in the sample. In order to single them out and have better quantitative data

to analyze the cell distribution, results from the image processing are used to map the cell density

throughout the sample. To do so, the numerical representation of the cell distribution is finely

meshed, and the local cell density is evaluated at every material point as illustrated in figure 3.2.

It is now possible to use the cell density mapping, to quantitatively estimate the cell distribution

within the sample. To simplify the model, and ease the implementation of randomly generated

systems, clusters are estimated as spherical multivariate normal distributions of cells. First, it is

necessary to estimate the quantity of clusters by locating their center, and compute the average

spacing between clusters. To do so, the previous results on cell density were processed to determine

the location of local maxima in the sample, which are assumed to be cluster centers. Then, the

average cluster spacing is assessed by identifying the average minimal distances between each cluster

and its closest neighbors; and computing their mean.

Every cluster present in the sample was isolated as shown in figure 3.2. In a first iteration,

the cluster is considered to have a radius equal to the average cluster spacing. Using this estimate,

its cell population is identified, and the maximum density, covariance matrix and cluster radius are

evaluated. These computations are then reiterated with the refined radius to obtain the final pa-

rameters for the bivariate cell distribution within a given cluster. By repeating these computations

for every cluster, it is also possible to compute the total number of cells included in clusters, and

the background noise of the distribution, which corresponds to single cells, located in low density

regions.

Finally, by averaging the results over all samples, the cluster analysis routine returns an array

of results containing, for all macroscopic cell densities: the total number of cells, total number of

clusters, average spacing between clusters, average cluster radius, cluster covariance matrix with its

eigenvalues, average peak cell density within clusters, and average background noise. For the range

of samples currently available, the results are presented in appendix A. Such parameters define

precisely the overall cell distribution within a sample, at the macroscopic scale and microscopic
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Figure 3.2: Cell density mapping for cluster identification - Cell density is computed at every
material point of the sample, and clusters, defined as the most populated regions, are identified at
local maxima (black dots). Then, every cluster is isolated to identify its population and match a
bivariatel normal distribution.
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scale. However, in order to process randomly generated data sets they must be interpolated to

three dimensional systems.

3.2 Random generation of 3D macroscopic systems

In order to transfer the previous parameters into a three-dimensional system, it is necessary

to establish an efficient approach to generalize the data extracted from two-dimensional viability

images. It is indicated that a sample represents a slice of 170x170µm2 for a thickness of 10µm.

Therefore the quantity of cells N in the 3D system is obtained by multiplying with the number of

slices that must be superposed for a cubic sample:

N3D =
L

τ
N2D (3.1)

where L is the length of the sample (170µm) and τ is its thickness (10µm). In the two dimensional

data, the number of clusters and the average cell population of a cluster were also calculated; from

which the ratio of cells that are included in a cluster N∗ can be deducted. This quantity is assumed

to be the same in three dimensions, which results in the following equation:

N∗3D =
N∗2D
N2D

N3D (3.2)

This way, it is determined that N∗ cells will be allocated in clusters. However, there are still cells

that do not belong to any cluster. These single cells are randomly distributed over the entire vol-

ume. Since it might intersect with some clusters, it was decided to consider only a given percentage

η (90% in the current model) of the cluster population and distribute the rest as single cells in

Nsingle to correct the distribution; resulting in the following quantities:

N∗3D = η
N∗2D
N2D

N3D ; Nsingle = N3D −N∗3D (3.3)
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Now that the distribution of cells in the clusters is determined, the shape and number of clusters

must also be extrapolated in the three dimensional macroscopic system. Clusters are considered to

be a multivariate normal distribution of cells. Therefore, they are characterized by two quantities:

their mean and their covariance matrix. The mean of each cluster represents its coordinates in the

system, and is consequently not important since they will be randomized for system generation.

However, the covariance matrix is necessary since it rules the shape and orientation of a cluster. For

each cell density, a two-dimensional average covariance matrix V was extracted from the numerical

data. It includes the clusters’ dimensions on the diagonal terms and their orientation in space

on the other terms. Since the orientation is random, we only consider that the eigenvalues of the

covariance matrix, a1 and a2, are of interest for the analysis. Consequently, only diagonal terms

are used to expand this matrix to a 3D model, and the third dimension eigenvalue is expressed as

a function of the previous ones: a3 = i a1 + j a2 where i and j are two random quantities included

between 0 and 1. To avoid cases of unrealistic flat clusters, i and j cannot be both null at the same

time. Therefore, the new covariance matrix can be written as:

V =


a1 0 0

0 a2 0

0 0 i a1 + j a2

 (3.4)

Combining the quantities defining the shape of a 3D cluster and the average number of cells in

one 2D cluster, the number of cells in a 3D cluster N can be evaluated. First, since the values

computed in 2D are averaged, they are assumed to be corresponding to the middle section of the

cluster, in a slice of 10 µm thickness as shown in figure 3.3. Now, the number of slices required

to fill the entire cluster with a rotation around the principal axis must be determined. Since the

thickness of one slice as well as the dimensions a2 and a3 are known, this quantity can be computed

using the perimeter of the ellipse a2 by a3 and the thickness of a slice:
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Figure 3.3: Three dimensional generalization of cluster distribution - The cluster data derived from
experimental images was exploited to create three dimensional systems.

Microscopy 3D system generation Cell density mapping
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N3D =
2π

√
a22+a23

2

2 ∗ τ
N2D (3.5)

Finally, the amount of clusters n for a random 3D distribution for each cell density can be quantified:

n3D =
N∗3D
N3D

(3.6)

Now, all the necessary quantities to generate a 3D clustered cell distribution have been

evaluated to match reality as precisely as possible, as shown in figure 3.3. This way, the model

parameters can be matched with experiments to ensure an optimal accuracy in final results. In

order to study the influence of cluster distribution parameters on the hydrogel properties, user

defined systems with custom cell distributions will be set. By varying the number of clusters n

and the density of each cluster a, the performance of each system will be mapped to illustrate

the difference between completely homogeneously distributed gels and cluster based heterogeneous

cell distribution; which are expected to be more effective for hydrolytically degradable hydrogels.

Figure 3.4 illustrates such systems, varying from homogeneous to heterogeneous, and from isolated

clusters to a larger cluster distribution.
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Figure 3.4: Influence of varying cluster parameters - n gives the number of cluster, and a quantifies
the eigenvalues of the covariance matrix characterizing each cluster. That is to say that a small
value for a implies compact clusters with a high cell density in the center while a higher value will
lead to homogeneous system with very spread clusters.

n

a



Chapter 4

Results and Interpretations

After completing the model to generate random cell and cluster distributions, it can be used

to analyze the evolution of the mechanical properties of different microscopic and macroscopic

systems. Several systems will be generated with varying cell density, cell influence radius Rd, and

the cluster parameters a and n defined at the end of the previous section. The final objective will

be to identify optimal sets of conditions for these parameters in order to obtain a high macroscopic

modulus while minimizing its decrease during degradation.

4.1 Influence of cell distribution on a microscopic system

The Young’s modulus of material points being unknown in the macroscopic system, it is

necessary to study the behavior of microscopic cell distributions prior to clustered systems. To

achieve this preliminary objective, a Poisson distribution seemed adapted to generate random cell

distributions, making sure that no cells are overlapping, every new system corresponding to a fixed

cell density f . For one cell distribution, the polymerization influence ratio Rd is varied from zero

to ten times the cell radius, and compared to the average distance between cells dcells(f). This new

parameter will be used instead of Rd to determine the optimal influence radius depending on local

cell density. For more accuracy, several simulations were ran for each combination of Rd and f .

The microscopic model solves for the degradation and diffusion problems and computes the

evolution of the gel modulus in time. Therefore the average cross-linking density and ECM concen-

tration are also computed in time. The results are illustrated in figure 4.1 for a given cell volume
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Figure 4.1: Evolution of a microscopic system properties in time - The graphs presented on the
left of the figure correspond to simulations for a cell volume fraction f = 0.2, a degradation rate
k = 60, diffusivity D∗ = 0.9, a deposition rate γ = 0.5, a critical cross-linking density at reverse
gelation ρcritical = 0.05 and an ECM stiffness of 40kPa. The simulations which results are shown
all have the same microscopic cell distribution, with varying Rd.
The surface on the right side illustrates the mapping of the Young’s modulus as a function of
cross-linking density and deposited ECM concentration. This surface results from all different
combination of f (0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.35) and Rd (0, 2, 5 and 10). The
surface map was extrapolated from all the simulations, and is not fully covered because the model
states that ECM and cross-links cannot coexist at a given material point.
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fraction of twenty percent and different values of Rd. The cross-linking density profile follows a first

order kinetics equation, and globally decreases when Rd increases. This phenomenon is expected

since the influence on polymerization reduces the initial cross-linking density around cells.

Concerning the evolution of the ECM concentration profile, the fact that ECM molecules

start to diffuse at a material point only after its reverse gelation has been reached explains the

earlier development of new tissue when Rd increases, as well as the stagnation of the system in the

case where cross-linking density is not influenced by the cells (Rd = 0).

The Young’s modulus profile for different values of Rd follows a combination of ECM and

cross-linking density profiles with respect to their stiffnesses, which is an expected behavior. On the

one hand, the higher Rd is, the lower is the initial modulus due to a low polymerization around cells.

On the other hand, the drop in modulus is much smaller because ECM diffusion and deposition are

eased by the earlier reverse gelation surrounding cells. However, a quick drop in modulus could be

expected due to the influence of Rd when an entire slice of the gel sample loses connectivity before

ECM is deposited due to the percolation of regions that reached reverse gelation. Percolation, in

this case, is the phenomenon that we observe when regions of reverse gelation connect with each

other, and compromise the mechanical integrity of the gel. It was studied using a special case

and an unrealistic behavior which only aims to highlight the effect of percolation for degrading

areas. A hydrolytically degradable cell seeded system with no ECM production was simulated at

the micro-scale. In this simulation, we try to accentuate the potential effect of percolation, which

does not appear clearly on the graphs from figure 4.1. To do so, the stiffness of a material point is

set to only depend on whether it reached reverse gelation or not. With such a configuration, a quick

drop in modulus was indeed observable at the time of percolation. Therefore it can be assumed

that the drop in modulus due to the rupture in polymer connectivity is present, but negligible at

the micro-scale compared to the constant bulk degradation.

Once the microscopic model is set and enough results have been computed, a relation can

be investigated between the modulus of the gel and the initial parameters, as well as with the gel

composition (ρx and C∗). To begin, a mapping of E, ρx and C∗ as a function of Rd and f was



30

established at every time step. Using these maps, it was possible to observe every microscopic result

as a combination of average modulus, cross-linking density and ECM concentration. As shown in

figure 4.1, all results are situated on the same planar surface, which can lead a simple, bi-linear

equation corresponding to:

Emicro = kpρx + kECMC
∗ (4.1)

where kp represents the polymer stiffness and kECM the extracellular matrix stiffness. It is impor-

tant to note that kECM is unknown, therefore it is also a parameter that can be modified. In this

case, it was fixed by the user. The final macroscopic results will be processed for different values

of kECM to investigate its influence. Such a relation implies that using a finite element analysis for

microscopic systems is not required anymore. Really, only the degradation and diffusion problems

need to be solved and the modulus can be computed from equation (4.1). This equation was also

implemented in the macroscopic model to compute the modulus at every point in time. Addition-

ally, it is possible to run many more simulations with bigger ranges for the cell density and Rd

parameter, while greatly lowering the computational cost.

4.2 Influence of a clustered distribution on a macroscopic system

Once microscopic simulations have given representative data, the macro-scale model can be

implemented with a time dependence. The generation of clustered systems, with an experimental

distribution or custom cluster parameters, was established previously. It was seen that a mapping

of cell density in the system is necessary to implement a mechanical simulation and compute the

evolution of the gel in time.

Using results from the macro-scale the properties of every material point in time can be

established from their cell density. First, it is necessary to solve for degradation and diffusion. Since

cells are not singled in macroscopic systems, this problem is directly taken from the microscopy.
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It is simply done by matching local parameters with f and Rd in the microscopic data, and using

the corresponding simulation to obtain the evolution of ρx and [ECM ] in time. Most microscopic

simulations were solved without mechanical loading to save computer power, therefore the modulus

is not necessarily known with this method. However, it can be computed using equation (4.1) at

every material point. Once the mechanical properties of every material point and their evolution

in time are known, a ten percent uni-axial stress in compression is applied, similarly as with the

microscopic system. The overall modulus of the gel is then computed through a finite element

analysis, using linear elasticity. Results for a macroscopic system with cluster parameters taken

from experimental results, a cell density of 150 million cells per milliliter and an Rd of ten times

the radius of a cell are shown in figure 4.2. The upper image, showing the system as a cell

density mapping illustrates well the apparent cluster distribution, which leads to heterogeneity for

the cross-linking degradation, as well as the tissue growth. In this case, the influence of cells on

polymerization was set to a high value of Rd. Therefore the initial cross-linking density is low and

ECM can diffuse and deposit even during the first time steps. However, even though the modulus

does not experience a drop thanks to the fast deposition of new tissue, its initial value remains quite

low. This phenomenon lets us assume that there might be combinations of cluster parameters and

Rd to reach an optimal evolution in time. The optimal evolution in time is defined by a high initial

modulus, and a low drop before tissue growth. It is shown in figure 4.2 that it does not necessarily

correspond to a high value of Rd since it lowers quite considerably the initial modulus of the gel.

Macroscopic results can also give a lead to identify the realistic values of Rd parameter by

matching initial results from simulations with the experimental initial modulus for each cell density.

Such a study is necessary to fully simulate systems close to experiments in the model. Figure 4.3

shows the influence of Rd on the initial modulus. As shown on the figure, the value of Rd matching

experimental results varies with the macroscopic cell density. This observation can be explained

by the fact that even if Rd quantifies the influence of a single cell on its surrounding cross-links, it

does not take into account the fact that cells are closer to each other when their density increases.

Therefore the closer the cells are, the bigger the effect of Rd can be expected since the cell influence
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Figure 4.2: Evolution of a macroscopic system properties in time

DEGRADATION

DEPOSITION

Figure 4.3: Identification of Rd for experimental results
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areas will overlap. Consequently, the influence on polymerization might change when there is an

overlapping effect.

The overlapping phenomenon of cell influence radius can be evaluated by defining a new pa-

rameter d, which relates Rd to the distance between cells for a given cell density at the micro-scale.

It is defined by the following equation:

d =
2RdRcell
dcells

(4.2)

where dcells is the average distance between cells for the given cell density. The new d parameter

and its influence can easily be illustrated for a microscopic system as shown in figure 4.4. The

figure illustrates in detail the influence of Rd on two microscopic systems with different cell volume

fractions. The graphs on the left side of the figure expose the average cross-linking density profile

between two cells for both systems and different values of Rd, x being the normalized distance

between two distinct cell boundaries. They show that for a higher cell density, the overlapping

between regions influenced by cells will differ, leading to different cross-linking densities even though

the value of Rd is constant. Finally, the right part of the figure illustrates the effect of both Rd and

d on the initial modulus. The results are plotted as the ratio of E0 for a positive value of Rd over

E0 for an Rd of zero, corresponding to the case where cells have no influence on polymerization.

It exhibits that for the same value of Rd, the modulus decreases considerably more for a high cell

density system. On the opposite, the initial modulus seem to follow the same profile with respect

to d for both cell densities. It seems to explain the variation between macroscopic systems, for

which Rd will have a greater influence at high cell densisties. However local cell density greatly

varies inside a macroscopic systems, and a global d parameter cannot be precisely defined for such

systems even though it seems to explain the previous observations.

Such results seem to confirm the hypothesis established earlier, which supposed that cells

have a considerable effect on polymerization, leading to lower initial modulus and better growth
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Figure 4.4: Influence of d parameter on microscopic systems
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for a hydrolytically degradable hydrogel. However, the hypothesis that cell distribution, especially

in clustered systems, greatly influences the viability of a cell-seeded hydrogel and its mechanical

properties remains to be confirmed.

4.3 Final results and effect of cluster parameters on mechanical properties

In order to study the influence of cluster parameters for a given combination of Rd and

macroscopic cell density F , several simulations were ran with user defined cell distributions. For

each simulation, three results are considered to evaluate the viability. They are illustrated in figure

4.3. The initial modulus must be high enough to support mechanical loads at early time steps and

during the degradation phase, the drop in modulus must be minimized and the ending modulus

must be maximized. These quantities must be compared to a critical value of the modulus, at which

the integrity of the gel is compromised and its load-bearing capacity is too weak. Therefore, an

optimized system will simply be defined as a system for which the modulus always remains above

the Ecritical value. For several combinations of macroscopic cell density, Rd parameter and ECM

stiffness, the minimum and maximum moduli were mapped as a function of cluster distribution

parameters a and n. As defined previously in section 3.2, n represents the number of clusters is the

system, and a is the average eigenvalue of the cluster covariance matrix. That is to say that clusters

are very spread and homogeneous when a is large, or small and dense when it is smaller as illustrated

in three dimensions in figure 3.4. Figure 4.6 illustrates such results for a specific combination, and

aims to observe which cell distributions are best to optimize tissue growth and the mechanical

properties of the medium over time by crossing the different diagrams of the resulting figure. The

effects of varying cluster parameters on initial cell density and ECM deposition are also illustrated

for different systems. For clarity purposes, figure 4.6 only displays results for a given combination

of design parameters, several simulations were ran for F=50, 100 and 150 million cells per mL,

Rd=0, 2, 5 and 10 times the cell radius (from cell boundary) and kECM=40 and 100. Therefore

results such as tables C.1 and C.2 can easily be computed by the model for various simulations,

and might result in slighlty different optimal cluster parameters. Additionally, the model can be
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Figure 4.5: Quantities used to evaluate the efficiency of a cell distribution
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Figure 4.6: Mapping of minimum and maximum modulus as a function of cluster distribution
parameters for a user defined combination of macroscopic cell density, Rd and ECM stiffness. A
red region is set, representing combinations leading to a modulus lower than the critical value of
10 kPa.
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used to cover bigger ranges for n, a and kECM parameters set by the user.

On figure 4.6, it is possible to observe an expected behavior from the gel, as well as the influ-

ence of the cell influence parameter Rd. Figure 4.6-(a) shows a red area on the minimum modulus

diagram. The red area underlines all cluster parameter combinations which lead to a modulus be-

low the critical value of 10 kPa during the growth process. In that event, the corresponding cluster

distribution of cells is not viable since it provokes a drop in modulus too important to bear physio-

logical loads at all times during growth. Now, by focusing on the coordinates of such combinations,

it appears that such regions range from a high number of very dense clusters to a medium number

of highly spread clusters. In the case of numerous dense clusters, the distribution approaches a case

of single cells spread around the entire gel, which is almost equivalent to a homogeneous distribu-

tion. Similarly, a large quantity of clusters that have a low density (which implies that the cluster

population are spread in space) will lead to a system close to a homogeneous distribution since

clusters intersect with each other. Consequently, it seems that homogeneous distribution are not

conclusive in this case. On the countary, regions below that line will have clustered heterogeneous

distributions as described earlier, and keep a reasonably strong modulus at the critical stage of

growth between the end of degradation and the beginning of ECM tissue connectivity. For clarity

purposes, the scale is set to be the same for the minimum and maximum modulus diagram. As a

consequence, the minimum modulus diagram seems uniform as all valus are in a close range between

10kPa and 12kPa. However it is not the case as shown in the results presented in appendix C.

Furthermore, figure 4.6-(b) exposes the same combinations, for a weaker influence of cells on

polymerization. In this case, ECM can only diffuse close to the chondrocytes which leads to a slower

deposition of connected tissue compared to the degradation process. Such initial conditions might

seem beneficial, reducing the infuence of cells on polymerization to ensure a high initial modulus,

but still allowing diffusion before the gel degrades completely. However, it is easily observable

that there is not enough growth before the gel reaches reverse gelation leading to a clear modulus

drops at the critical point of degradation. This phenomenon demonstrate this importance of both

diagrams on the figure: higher values for maximum modulus might not necessary be beneficial.
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The diagrams must be combined to avoid dropping the modulus below the critical value while

maximising the modulus of the gel during tissue growth.



Chapter 5

Conclusion

As a summary, we introduced a model which aims to investigate the conditions favorable to

tissue growth in hydrolytically degradable hydrogels, and give possible solutions for such a problem.

This intention came from the observations in experimental results that successful results seem to

vary for hydrogels with bulk degradation. Consequently, obtaining quantitative data from a numer-

ical model could help significantly in the search of possible explanations. Two important hypothesis

were assumed based on experiments and represent a keystone of the model. The first one, based

on measurements of initial modulus while changing the cell concentration, stated that cells have

an influence on polymerization during the synthesis of a cell-seeded hydrogel. Therefore, regions

of low cross-linking density are supposed to be present around chondrocytes, which facilitates the

early diffusion of ECM molecules prior to complete degradation of the medium. From the first

hypothesis, the second assumption we made supposed that since growth can happen surrounding

cells at early time steps, the cell distribution might be a key parameter to understand the behavior

of hydrolytically degradable gels. This model presents interesting features because it emphasizes

the fact that having heterogeneity in cell distributions could be beneficial to achieve successful

growth.

The influence of cells on the initial cross-linking density profile was implemented in the model

by introducing an influence radius parameter Rd, expressed as a function of the cell radius. Then,

a function was built to express the evolution of cross-links around the cells as a diffusion profile

based on experimental observations. Once clearly defined, the polymer network degradation and
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ECM diffusion/deposition could be implemented with a simple finite difference method, following

first order kinetics and Fick’s laws of diffusion. Finally, the evolution of a hydrogel with a user

defined density of encapsulated cells was simulated at the microscopic scale. Cells are randomly

distributed following a Poisson distribution, and their influence on the local cross-linking density

was implemented. However, the chemical composition of the system is not enough to derive its

mechanical properties; thus the necessity for a finite element method computing the modulus of

the gel over time. In this model, a simple linear elastic approach was used to simplify the problem,

which in our case focuses on cell distribution and influence more than that of material properties.

However, improvements could be applied in later projects to improve the mechanical model used in

the current state. The simulations resulted in tables mapping the evolution of Young’s modulus in

microscopic volumes as a function of cross-linking density, and the influence of Rd on the mechanical

performance and tissue growth in time.

In the interest of modelling macroscopic systems from the new data, we analyzed cell distri-

bution in experimental samples to set parameters ruling the level of heterogeneity in the system.

From this analysis, two types of simulations were used: realistic and user defined. Realistic simu-

lations simply used a cell distribution similar to the one observed in experimental samples. User

defined simulations are based on the distribution parameter definitions extracted from experimental

sample, but their values are set by the user. In macroscopic systems, each material point corre-

sponds to a distinct microscopic system with its own cell density. Therefore their time dependant

properties can be extracted from microscopic data, and a homogenization process is used to obtain

the evolution of a macroscopic system over time.

From the final results, tables and diagrams were created to illustrate the viability of a system

based on its initial state (cell density, cell influence radius, cluster parameters). The tendency

seems to encourage our main hypothesis that heterogeneity helps creating a connected network

of deposited ECM resulting in successful tissue growth. To conclude, it can be noted that these

diagrams and tables can bring assistance to experimentalists. The model could be used to predict or

optimize the behavior of hydrolytically degradable hydrogels in which they encapsulate stem cells to
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trigger the growth of biological tissues. Additionally, in view of a patient based procedure, a model

such as the one developed in this thesis could be interesting. Using a large database of optimal

conditions for a given combination of cell distribution, a personalized gel could be investigated by

studying the patient’s cells and finding the design parameters necessary to produce an efficient

hydrogel.
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Appendix A

Cluster distribution parameters extracted from experimental image analysis

Table A shows the numerical values of the cluster parameters previously listed in chapter 3,

and figures A.1, A.2 and A.3 illustrate the experimental microscopy images from which they were

extracted. The average covariance matrix are 2x2 symmetric diagonal matrices, therefore only the

diagonal term is shown in the tables.

Table A.1: Cell distribution parameter extracted from microscopy images - Distance parameters
were computed for a sample with normalized dimensions of 1x1

50mill/mL ncells nclusters spacing radius covariance densitymax noise

491 25 0.14 0.051 0.0015 0.08 146

100mill/mL ncells nclusters spacing radius covariance densitymax noise

910 22 0.15 0.057 0.0019 0.14 307

150mill/mL ncells nclusters spacing radius covariance densitymax noise

782 21 0.15 0.057 0.0019 0.12 279
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Figure A.1: Microscopy images for a cell density of 50 million cells/mL
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Figure A.2: Microscopy images for a cell density of 100 million cells/mL
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Figure A.3: Microscopy images for a cell density of 150 million cells/mL
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Appendix B

Equivalence between Rd and d parameter

The table B exhibited in this appendix shows the relation between the parameters d, Rd and

f . d is important to evaluate the cross-linking density profile at the micro-scale, as it takes into

account the average distance between cells. However, this parameter does not transfer to macro-

scopic heterogeneous systems since the local cell density differs considerably within the system.

Consequently, it is not possible to obtain a characteristic value of d at the macro-scale.

Table B.1: Values of d parameter for various combinations of Rd and microscopic cell densities

Rd \f 0 0.03 0.05 0.1 0.15 0.2 0.25 0.3 0.35

1 0 0.35 0.54 0.7 0.79 0.84 0.87 0.89 0.91
2 0 0.7 1.09 1.4 1.57 1.68 1.73 1.79 1.82
4 0 1.41 2.18 2.8 3.15 3.36 3.46 3.58 3.63
5 0 1.76 2.72 3.5 3.93 4.2 4.33 4.47 4.54
7 0 2.47 3.81 4.91 5.5 5.88 6.06 6.26 6.35

10 0 3.52 5.44 7.01 7.86 8.4 8.65 8.94 9.08
12 0 4.23 6.53 8.41 9.44 10.08 10.39 10.73 10.89
15 0 5.29 8.16 10.51 11.8 12.6 12.98 13.41 13.62
18 0 6.34 9.79 12.62 14.15 15.12 15.58 16.1 16.34
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Appendix C

Numerical values of the influence of cluster distribution parameters

Tables C and C shows the numerical values illustrated in figure 4.6. These results aim to help

experimentalists in the design of viable cell-seeded hydrogels submitted to hydrolytic degradation.
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Table C.1: Influence of cluster parameters on minimum modulus

Rd 10 n \a 0.0005 0.001 0.002 0.005 0.01

10 11.42 9.43 9.03 11.03 10.95
25 11.40 10.62 10.76 10.21 8.81
50 10.85 10.59 10.63 10.58 9.94

100 10.19 10.15 10.24 10.90 10.09
250 10.48 10.25 10.01 10.26 10.06
500 10.10 10.18 10.11 9.87 9.84

1000 10.23 10.06 9.83 9.94 9.82

Rd 2 n \a 0.0005 0.001 0.002 0.005 0.01

10 7.50 6.65 6.57 7.54 7.79
25 7.51 7.14 7.31 6.95 6.36
50 7.34 7.14 7.13 7.06 6.73

100 6.88 6.94 7.02 7.38 7.19
250 7.05 7.02 6.95 7.07 6.91
500 6.95 6.96 6.99 6.84 6.82

1000 7.09 6.90 6.79 6.82 6.78

Table C.2: Influence of cluster parameters on maximum modulus

Rd 10 n \a 0.0005 0.001 0.002 0.005 0.01

10 15.84 17.94 18.82 15.06 16.94
25 16.24 16.27 15.45 16.51 17.79
50 15.41 16.09 16.12 17.09 18.43

100 16.94 16.30 15.91 15.53 14.38
250 16.49 15.97 15.34 15.44 16.08
500 15.75 16.04 15.43 15.84 15.92

1000 15.01 16.09 16.16 16.35 16.20

Rd 2 n \a 0.0005 0.001 0.002 0.005 0.01

10 30.31 32.89 33.12 30.19 28.76
25 30.37 31.53 30.82 32.01 33.63
50 30.64 31.37 31.34 31.70 32.82

100 32.18 31.97 31.67 30.62 30.79
250 31.63 31.66 31.72 31.40 31.93
500 31.76 31.80 31.60 32.08 32.14

1000 31.24 31.96 32.27 32.20 32.27
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