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Garriga Font, Marti (M.S., SESM)

Micro-Crawlers in Confined Space: Volume Oscillating Hydrogels

Thesis directed by Prof. Franck Vernerey

Recent research has shown that certain polymer hydrogels with simple elongated geometries are

capable of moving in a crawling fashion, their motion mechanics inspired by small animals such as

earthworms and amoeboids. The focus of this master’s thesis is to study the motion capacity of

soft matter robots based on polymer hydrogels that undergo periodic inflation and deflation, cou-

pled with symmetry-breaking mechanisms in confined conditions representing a porous channel. A

mathematical model in the continuum mechanics frame that evaluates the time-history evolution

and motion capabilities of these gels has been developed.

The prime application of these robots is targeted drug delivery; their size, ranging from millimeters

to micrometers, and mechanical features which allow for large elastic deformations, make them

suitable candidates to carry drugs through porous media like the human body to specific locations,

such as tumor cells or damaged tissue, and upon gel degradation release the drug. Targeted drug

delivery has two significant advantages compared to current drug application: it allows for cus-

tomization based on individual patient cellular activity and diminishes side effects. An example of

the second advantage is traditional chemotherapy which kills cells that divide rapidly regardless of

if they are cancer cells or other cell types that exhibit this behavior in normal circumstances such

as bone marrow cells.

One of the main challenges of targeted drug delivery is ensuring that the robot moves successfully

from the insertion point to the destination point through human body porous system, hence the

motivation for this thesis.
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Chapter 1

Introduction

1.1 Objectives

The prime objective of this thesis is to support the development of micro-size hydrogels capable

of moving in porous medium. Their motion mechanism, inspired by limbless animals such as

earthworms, leukocytes and amoeba, is characterized by periodic inflation-deflation coupled with

symmetry-breaking mechanisms such as anisotropic friction. We shall break down the objective

into three tasks:

(1) Study the inflation-deflation mechanics of polymer gels.

(2) Formulate the motion mechanics of an inflating-deflating spherical hydrogel with anisotropic

friction in an axisymmetric channel in a continuum mechanics frame.

(3) Elaborate a MATLAB script that solves numerically the problem described in item (2).

1.2 Context and applications

Soft matter robots motility has been the subject of extensive research. Our focus is on bio-inspired

polymer gels of simple elongated geometries capable of moving in confined spaces just like earth-

worms and amoeboids whose flexible bodies exhibit a continuous interaction with their substrate

and have a symmetry-breaking mechanism allowing them to crawl. Earthworm motion is charac-

terized by peristaltic waves (radially symmetrical contraction and relaxation of muscles) traveling

throughout their bodies. The wave pushes the earthworm against the substrate, resulting in motion
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in the opposite direction of the wave.

Figure 1.1: Scheme of earthworm motion thanks to the peristatic wave. [1]

Another example of organisms that move in a crawling fashion are amoeboids. When confined in

channels they first react by spreading their bodies across it so that they increase the contact sur-

face. Then, they achieve motion because of alternating protrusions of opposite corners in a zig-zag

fashion as shown by Fig.1.2.
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Figure 1.2: Experimental results of amoeboid motion. Position of (A) front corners and (B) back

corners. [3]

The case of leukocyte (immune system cells, also known as white blood cells) motion is the one

that most interests us as its motion mechanics are fundamentally the same as that which we

want to achieve for our gels. Leukocyte bodies exhibit large flexibility, they can significantly

stretch, contract and adapt their bodies and mode of motion to their environment. When confined,

leukocytes achieve motion by protrusion of the leukocyte front, retracting the back of the cell and

tuning the adhesion with the substrate.

Figure 1.3: Schematic of leukocyte forward protrusion in confined conditions [7]

Different polymer gels that exhibit motility have already been synthesized. A well-studied case

is the polymer gel composed of a poly(N-isopropylacrylamide) network undergoing the Belousov-

Zhabotinsky chemical reaction which show motion in a variety of ways, such as crawling [4] and

peristaltic motion [5]. Other examples are photomobile gels [6]. PNIPAm polymer gels have also

shown significant potential to move in a crawling fashion. These gels have the same feature in
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common: they are capable of periodically inflating and deflating. If this feature is coupled with

a symmetry-breaking mechanism, crawling motion can be achieved. This mechanism shall be an

anisotropic surface such as a ridged one. Ridged surfaces have already been proved to allow for

motion of self-propelled particles [9], which strengthens our novel approach for particle motion.

Animals as fish and snake are characterized by a an anisotropic skin, this inspires our approach

which consists on an inflating-deflating gel coated with a scales. There is extensive research on

the properties of fish skin [10],[11], among them we shall highlight prevents buckling and wrinkling

instabilities which is in thin soft matter particles.

The prime application of these robots is targeted drug delivery; their size, ranging from millimeters

to micrometers, and mechanical features which allow for large elastic deformations, make them

suitable candidates to carry drugs through porous media like the human body to specific locations,

such as tumor cells or cartilage tissue, and upon degradation release the drug. It has already shown

significant potential in repairing tissue [2] and it has two significant advantages compared to cur-

rent drug application: it allows for individual customization based on patient cellular activity and

diminishes side effects. An example of the second advantage is traditional chemotherapy which kills

cells that divide rapidly regardless of if they are cancer cells or other cell types that exhibit this

behavior in normal circumstances, such as bone marrow cells which are responsible for production

of red blood cells.

One of the main challenges of targeted drug delivery is achieving successful travel of the robot from

the insertion point to the destination point through the human body porous system. While periodic

inflating-deflating gels have already been synthesized, introducing symmetry-breaking mechanics

that would allow those gels to move remains a challenge. Hence, the motivation of this thesis is

to help evaluate the motion capabilities of a wide range of gels featuring these characteristics. A

subsequent challenge will be to provide the gel with a sense of orientation towards the targeted

location, however this is not included in the scope of this thesis.



Chapter 2

Problem Definition

The main challenge of this project is to understand the motion mechanics of a periodically inflating-

deflating gel with anisotropic friction confined in a porous medium. Through it we hope we will

be able to evaluate its feasibility and help researchers improve their designs to maximize motion.

We will first study the mechanics of gel inflation and deflation, as the velocity of the volume cycles

and their swelling ratio is directly linked with the directional motion velocity of the gels. Secondly,

we will tackle the study of directional motion mechanics of confined gels.

To achieve the second goal we shall establish a model in a continuum mechanics frame that in-

cludes all the fundamental physical characteristics of the problem we are studying. We will now

enumerate the key assumptions to show the level of complexity and limitations of our model. We

will consider a single axisymmetric channel with a smoothly varying radius along a straight axial

coordinate which shall represent the porous media inside which the gel will move. The hydrogel

is idealized as a droplet encapsulated in an elastic membrane. We chose not to represent the gel

as a cross-linked network of elastic strings since it adds a high level of complexity that would not

allow for a semi-analytic solution; furthermore, it would difficult discerning how the different fea-

tures drive the behavior of our problem. The periodic inflation-deflation will be driven through

a pressure-controlled experiment; changing the difference in pressure between the inside and the

outside of the membrane will implicitly allow us to control its volume. The membrane constitutive

equation shall be represented by the hyperelastic model which is appropriate for materials that

undergo very large deformations.
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Regarding the idealization of the gel as a membrane, note that the volume of gels can be related

to the pressure difference (between the inside and outside of the gel) through the polymer-solvent

interaction parameter χ. Given the membrane difference in pressure and a specific χ, we can estab-

lish a correlation between both systems. Hence, we consider that in this case idealizing the gel as

a membrane is a reasonable hypothesis. As the membrane inflates it comes into contact with the

channel wall and it slips anisotropically, leading to a shift in the center of mass. The membrane-

wall interaction is idealized as a Maxwell model (each point of the membrane in contact with the

wall is connected to it through a spring and a dashpot in series). The spring stiffness coefficient

is assumed to be very large so that the related displacement is negligible. The slip coefficient is

anisotropic which results in our symmetry-breaking mechanism that allows for directional motion.

This can be achieved by coating the gel with scales that resemble fish or snake skin. Regarding the

angle of contact between wall and membrane, we will assume that the contact is non-wetting and

as such, the membrane and wall surface are tangential.

As a starting point, we will idealize the porous medium as a two-dimensional straight channel and

a linear elastic model. We will extract valuable information from this case that will help us un-

derstand the mechanics of the model we described in the previous paragraph that we will develop

after the first simpler one.



Chapter 3

Gel Inflation and deflation

3.1 Introduction

For a gel to move like a leukocyte does in confined conditions, it needs to be capable of peri-

odic swelling and shrinking. In the case of the PNIPAm gel, the gel can be either hydrophilic or

hyrophobic depending on its temperature. It is characterized by a lower critical solution temper-

ature (LCST), meaning that with a very small change in temperature it changes abruptly from

hydrophilic to hydrophobic or the other way around.

The swelling ratio and the speed of inflation and deflation of the system are linked to the speed

the system can achieve. Hence, both aspects shall be studied.

3.2 Spherical membrane

Gels inflation and deflation speed depends on how fast the solvent can flow from the outside of the

gel to the inside and the other way around. We will first characterize this feature for a membrane

and then for a gel.

3.2.1 Solvent flow governing equation

To estimate the time it takes for the system to swell, we shall formulate the equations of solvent

flow through a spherical membrane within the soft matter rheology frame. The flow of solvent

through a membrane is given as the difference between the membrane pressure and the osmotic
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pressure multiplied by the permeability of the membrane.

q = −κΓ([P − π]) (3.1)

We assume that there is no solute outside the membrane, hence the difference of the osmotic

pressure [π] can be written as πin.

[π] = −kbT
v

(ln(1− φ) + χφ2) (3.2)

Where φ is the volume ratio of solute, χ the solute-solvent interaction parameter, T the temperature,

kb the Boltzman constant and v the volume of a solvent particle. χ is defined by:

χ =
−z4 ε

2kbT
(3.3)

Where z is the coordinator number which represents the number of neighboring cells in the lattice

model (typically 8). 4ε is the effective interaction between the solute molecules in the solution,

if 4ε > 0 the system tends to phase separate between solute and solvent and so water tends to

leave the membrane. If 4ε > 0 the system tends to mix, and water flows in the membrane. The

PNIPAAm gel is characterized by a temperature-dependent effective interaction between solute

molecules, 4ε(T ). Within a small 4T , 4ε changes abruptly, and so the gel volume changes

drastically.

Regarding the difference in normal pressure, we shall apply the hyperelastic model to derive it

(Equation 6.22). For a stress-free spherical membrane the surface tension can be derived as:

γ = 2h0Gsh

(
1− 1

λ6

)
(3.4)

Where h0 is the initial membrane thickness, Gsh the shear modulus and λ the radial deformation

which is λ = R/R0. Remember that the Laplace law reads:

[P ] = Pin − Pout = γ
2

R
(3.5)

Hence, combining both equations we obtain:

[P ] =
4h0Gsh
R

(
1− 1

λ6

)
(3.6)
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We can rewrite this through R = λR0. Note that λ is the strain of the membrane in the in-plane

direction which matches with the strain of the radius (λ = C/C0 = (2πR)/(2πR0) = R/R0). Hence:

[P ] =
4h0Gsh
R0

(
R0

R
−
(
R0

R

)7
)

(3.7)

In the case of a membrane confined in a cylindrical channel, the pressure-strain relationship is given

by:

Pc =
4Gshh0

Rch

(
1− 1

λ6
cap

)
(3.8)

And so the flow per unit of area of a stress-free membrane:

q = −κΓ

(
4h0Gsh
R0

(
R0

R
−
(
R0

R

)7
)

+
kbT

v
(ln(1− φ) + χφ2)

)
(3.9)

For a confined membrane:

q = −κΓ

(
4Gshh0

Rch

(
1− 1

λ6
cap

)
+
kbT

v
(ln(1− φ) + χφ2)

)
(3.10)

The flow through the whole membrane:

Q = q4πR2 (3.11)

3.2.2 Nondimensionalization

To study what is the impact of each factor in the velocity of inflation and deflation of the membrane,

we will proceed to nondimensionalize its change in volume-time ratio.

Q =
dV

dt
= q4πR2 (3.12)

We shall nondimensionalize the volume, radius, and time variables.

R∗ =
R

R0
V ∗ =

V

V0
=
R3

R3
0

t∗ =
t

t̂
(3.13)

Which yields:

dV ∗

dt∗
=

t̂
4
3πR

3
0

q4πR2
0R
∗2 = t̂

3R∗
2

R0
q (3.14)
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In order to nondimensionalize q, we will apply Gsh = vckbT (where vc is the number of cross-linked

chains per unit volume) and φ = φ0

(
R0
R

)3
:

q = −κΓGsh

(
4t0
R0

(
1

R∗
−
(

1

R∗

)7
)

+
1

vcv

(
ln

(
1− φ0

R∗3

)
+ χ

φ2
0

R∗6

))
(3.15)

Then:

dV ∗

dt∗
= t̂
−3R∗

2
κΓGsh

R0

(
4t0
R0

(
1

R∗
−
(

1

R∗

)7
)

+
1

vcv

(
ln

(
1− φ0

R∗3

)
+ χ

φ2
0

R∗6

))
(3.16)

Hence we can conclude that the characteristic time t̂ is:

t̂ =
R0

κΓGsh
(3.17)

As t̂ increases it takes longer for the system to fully inflate and deflate.

For a confined membrane we will consider that the channel radius is proportional to the initial

membrane radius and so yields the same characteristic time.

3.2.3 Swelling ratio

To derive the final volume of a membrane, we simply need to impose q = 0 in the previously derived

solvent flow equation.

[P ] = [π] (3.18)

Our concern is to quantify the confinement of the membrane in the channel. Since confinement

is related to the area of contact between the channel wall and the membrane, we will show it is

directly linked with the capacity of the system to achieve directional motion. We will define the

confinement c as:

c =
Rs

Rch
− 1 (3.19)

Where Rs is the radius of a stress-free spherical membrane with the same volume as a confined

membrane in a channel of radius Rch.
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Figure 3.1: Impact of R∗ and membrane stiffness G∗sh on the confinement c a membrane can achieve.

R∗ is the ratio between initial membrane radius and channel radius R∗ = R0/Rch. The membrane

stiffness Gsh has been normalized with the membrane pressure G∗sh = Gshh0/(PcR0). Results show

that the confinement a membrane can achieve is mainly controlled by its stiffness. As it grows

softer, it is able to undergo larger confinements. If the initial position of the membrane is close to

the wall, the achieved confinement will also be larger; if the membrane radius is much smaller than

the channel it will never come into contact.

3.2.4 Inflating - deflating time characterization

A comprehensive set of numerical tests have been performed to validate t̂ and its dependency on

the membrane stiffness and the particle size. Note that the results in figure 3.2 are for a constant

change in applied pressure, as Gsh increases the change in volume will decrease.
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Figure 3.2: Impact of particle size and stiffness on a membrane inflation-deflation cycle time for a

constant change in applied pressure

Results are plotted in logarithmic scales for the characteristic time and the particle size. As we can

observe from the graphical results, as the membrane grows stiffer and smaller, the time it takes to

undergo a full inflation-deflation cycle decreases.

To better understand the mechanics of inflating and deflating the membrane, we shall plot the time

history of one cycle.
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Figure 3.3: Impact on the flow per unit area (bottom) and on the change in volume (mid) of the

change in pressure in a membrane (top), consequence of a step change in the interaction parameter

between solvent and solute

Note that pressure decreases and volume increases because the membrane is modeled with an

hyperelastic model which allows for softening. As we can see, the mechanics while confined or

in free swelling are fairly similar. Note that the flow per unit surface has been normalized as

q∗ = q/(GshκΓ).

3.3 Spherical polymer gel

3.3.1 Solvent flow governing equation derivation

The solvent flow through a polymer gel can be written as:

q(r) = −κΩ∇([P − π]) (3.20)

Where r is the radius coordinate of the spherical gel and κΩ the permeability of the bulk. Note

that the flow changes throughout the gel radial coordinate. In the case of a spherical membrane,
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the gradient is the derivative with respect to the radial coordinate. The mixing free energy of a

polymer gel is:

fmix =
kBT

v

(
φ

N
ln(φ) + (1− φ) ln(1− φ) + χφ(1− φ)

)
(3.21)

Assuming that the polymer chains are long (high N) the first term vanishes. We can obtain the

osmotic pressure through:

π = −fmix + φ
∂fmix

∂φ
(3.22)

Which yields the same osmotic pressure as for the membrane:

[π] = −kbT
v

(ln(1− φ) + χφ2) (3.23)

Note that the solute volume ratio φ varies according to the radial coordinate, φ(r).

To derive the pressure for the gel we will first write the deformations gradient in spherical coordi-

nates.

F =


λR 0 0

0 λθ 0

0 0 λφ

 =


∂r
∂R 0 0

0 r
R 0

0 0 r
R

 (3.24)

Where r is the current coordinate and R the reference coordinate of each point of the gel. The

elastic stored energy:

ψ =
Gsh

2

((
∂r

∂R

)2

+ 2
r2

R2
− 3

)
(3.25)

The nominal stress in radial direction:

PRR =
∂ψ

∂λR
=
∂ψ

∂R

(
∂λR
∂R

)−1

(3.26)

Hence:

PRR = Gsh

[
∂r

∂R

(
∂2r

∂R2
+ 2

r

R2

)
− 2

r2

R3

](
∂2r

∂R2

)−1

(3.27)

The reference area:

A0 = 4πR2 (3.28)

The current area:

A = 4πr2 (3.29)
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And so we can compute the Cauchy stress in radial direction.

σRR = PRR
A0

A
= Gsh

[
∂r

∂R

(
∂2r

∂R2
+ 2

r

R2

)
− 2

r2

R3

](
∂2r

∂R2

)−1
R2

r2
(3.30)

σRR is the pressure difference we need to plug in the equation for solvent flow through the gel.

q(r) = −κΩ
∂

∂R

(
Gsh

[
∂r

∂R

(
∂2r

∂R2
+ 2

r

R2

)
− 2

r2

R3

](
∂2r

∂R2

)−1
R2

r2
+
kbT

v
(ln(1− φ) + χφ2)

)
(3.31)

We can rewrite it as:

q(r) = −κΩGsh
∂

∂R

([
∂r

∂R

(
∂2r

∂R2
+ 2

r

R2

)
− 2

r2

R3

](
∂2r

∂R2

)−1
R2

r2
+

1

vcv
(ln(1− φ) + χφ2)

)
(3.32)

And the flow through the whole surface:

Q(r) = q(r)4πr2 (3.33)

3.3.2 Nondimensionalization

To study what is the impact of each factor in the velocity of inflation and deflation of the gel, we

will proceed to nondimensionalize its change in volume-time ratio.

Q(r) =
dV

dt
= q(r)4πr2 (3.34)

We shall nondimensionalize the volume, radius, and time variables.

r∗ =
r

R
V ∗ =

V

V0
=

r3

R3
t∗ =

t

t̂
(3.35)

Which yields:

dV ∗

dt∗
=

t̂
4
3πR

3
q4πR2r∗

2
= t̂

3r∗
2

R
q (3.36)

Before nondimensionalizing q, we will nondimensionalize the derivatives of r with respect to the

original configuration R.

∂r

∂R
=
∂(r∗R)

∂R
=
∂r∗

∂R
R+ r∗ (3.37)
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∂2r

∂R2
=

∂

∂R

(
∂r∗

∂R
R+ r∗

)
= 2

∂r∗

∂R
+
∂2r∗

∂R2
R (3.38)

q(r) = −κΩGsh
∂

∂R

([(
∂r∗

∂R
R+ r∗

)(
2
∂r∗

∂R
+
∂2r∗

∂R2
R+ 2

r∗

R

)
− 2

r∗2

R

]
·

·
(

2
∂r∗

∂R
+
∂2r∗

∂R2
R

)−1
1

r∗2
+

1

v2
(ln(1− φ) + χφ2)

)
(3.39)

Then:

dV ∗

dt∗
= −t̂3r

∗2κΩGsh
R

∂

∂R

([(
∂r∗

∂R
R+ r∗

)
·
(

2
∂r∗

∂R
+
∂2r∗

∂R2
R+ 2

r∗

R

)
− 2

r∗2

R

]
·

·
(

2
∂r∗

∂R
+
∂2r∗

∂R2
R

)−1
1

r∗2
+

1

vcv
(ln(1− φ) + χφ2)

)
(3.40)

Hence we can conclude that the characteristic time t̂ is:

t̂ =
R2

κΩGsh
(3.41)

Note that this is valid at a point in the gel bulk, and to find out how the total volume of the gel

varies the flow needs to be integrated throughout the whole bulk.

3.4 Characteristic time Keq membrane - gel

We can relate the characteristic swelling and shrinking time of a membrane and a gel through

the factor Keq.

Keq =
t̂gel

t̂membrane
=
κΓR

κΩ
(3.42)

Through this factor we can estimate how fast a gel will inflate and deflate based on the developed

model for a membrane. Regarding the swelling ratio, the behavior of the swelling ratio with respect

to membrane stiffness and initial confinement R∗ is fairly similar given that the mechanics of both

systems are very similar.



Chapter 4

Formulation for a 2D Straight Channel Encapsulating an Elastic Membrane

4.1 Description of the problem

In this chapter, our goal is to define a rather simple model that can help us understand the mechanics

of the motion of a swelling-deflating droplet covered by an elastic membrane in a porous medium.

For that, we will consider two straight parallel walls in a 2D domain confining a membrane with

linear elasticity. The mechanism through which the membrane stretches is an increment of the

difference in pressure between the droplet and the surrounding media. As the membrane swells, it

will come into contact with the wall. Because of the non-symmetry of the slippage between wall

and membrane, the membrane’s center of mass will move.

Figure 4.1: Membrane swelling scheme, initial configuration (left) and deformed configuration

(right)

As the membrane swells it will come into contact with the wall and as it carries on swelling the
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geometry will change to two circular caps and an expanding rectangle. Another assumption the

model includes is that the contact angle between wall and membrane is perfectly hydrophilic, hence

equal to 0 degrees. In other words the radius of the caps remain constant equal to half the distance

between walls.

4.2 Continuum mechanics formulation

We have chosen to formulate the equations of this system in a continuous mechanics frame. We

will separate the domain between the caps and the section of the membrane in contact with the

wall.

On the membrane caps we can apply the Laplace’s law and the constitutive equation to relate

pressure to the deformation of the membrane at the caps. Hence we can easily determine their

state

4P = γ
2

R
(4.1)

γ = Eh0ε (4.2)

where E is the Young modulus and h0 is the initial thickness of the membrane. Introducing the

constitutive equation into the Laplace’s law:

4P = Eh0ε
2

R
(4.3)

The contact forces between wall and membrane will be modeled through a Maxwell model: a

spring and a dashpot in series. The spring will account for the friction between membrane and wall

due to its roughness. Simultaneously the damper will account for the slippage between wall and

membrane. By setting different coefficients on the dashpot according to the direction of motion,

the membrane center of mass will shift in one direction, achieving motion.
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Figure 4.2: Scheme of the idealized mechanics of surface interaction wall-particle

We define X as the unstretched reference coordinates of the membrane. We can write the stretched

coordinates of the membrane at any time as a function of the initial state coordinates and the time:

x(X, t). Given the current and initial coordinates, the membrane displacement can be written as:

u(X, t) = x(X, t)−X (4.4)

This can be depicted through the following scheme:

Figure 4.3: Scheme with the reference coordinates X (top) and current x (bottom) at the membrane-

wall contact

A quantity in which we are particularly interested is the membrane-wall displacement, which we

can define as the difference between the current coordinates of the membrane and the coordinates

of the membrane at the time at which it comes into contact with the wall. We call this time instant

”deposition time”. This quantity can be formally written as:

uMW (X, t) = x(X, t)− x(X, td) (4.5)

To better understand the physical meaning of x(X, td) we can look at the next scheme:
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Figure 4.4: Scheme showing the reference and current configuration at time of deposition and

current time of point”a”

Given that the interaction between the wall and membrane is governed by the Maxwell model

previously stated, once the membrane gets into contact with the wall it will start experiencing slip

deformation. The anisotropy of this slippage will determine the motion of the body. Hence it is of

our interest to define the membrane-wall displacement which we will write as:

uMW (X, t) = x(X, t)−X +X − x(X, td) = u(X, t)− ud(X, td) (4.6)

Where:

ud(X, td) = x(X, td)−X (4.7)

ud is the displacement at time of deposition, in other words, the displacement of each point of

the membrane at the time it comes into contact with the wall. The membrane-wall displacement,

uMW , is directly related with the frictional forces between wall and membrane through application

of the Maxwell model:

Ffr(X, t) = kuMW
e (X, t) = µu̇MW

s (X, t) (4.8)

4.3 Derivation of the governing equation for the displacement of the mem-

brane in contact with the wall

Consider a free body diagram on a segment of the membrane segment in contact with the wall.
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Figure 4.5: Scheme of reference membrane configuration (a), current configuration (b) and free

body diagram of a section of a membrane in contact with the wall (c)

We shall establish equilibrium of forces, noting that we are assuming the problem to be quasi-static

so that the acceleration of the system is considered to be negligible; hence:

∑
Fx = 0 (4.9)

Which yields:

∂γ

∂x
− Ffr = 0 (4.10)

Where γ stands for the surface tension of the membrane and Ffr for the frictional forces. We will

assume that the the displacements are small enough so that we can write ∂γ
∂x ≈

∂γ
∂X . Resulting in:

∂γ

∂X
− Ffr = 0 (4.11)

Recall the linear stress-strain constitutive model:

γ(X, t) = Eh0
∂u

∂X
(4.12)

Plugging it in the derived equation:

Eh0
∂2u

∂X2
− Ffr = 0 (4.13)

Assuming that the velocity of the elastic displacement and of the displacement at deposition is

negligible compared to the slip velocity between wall and membrane:

u̇ = u̇MW + u̇d ≈ u̇MW (4.14)



22

And:

u̇MW = u̇MW
e + u̇MW

s ≈ u̇MW
s (4.15)

Hence:

Ffr = µu̇MW
s = µu̇ (4.16)

We can rewrite the governing equation as:

Eh0
∂2u

∂X2
− µu̇ = 0 (4.17)

Which we can rewrite as:

∂u

∂t
=
Eh0

µ

∂2u

∂X2
(4.18)

The derived governing equation is equivalent to the partial differential equation for the classic heat

transfer problem in the 1D case. We shall determine the proper initial and boundary conditions for

the derived partial differential equation. Given the pressure, we know the deformation at the caps

of the membrane through Laplace’s law and the constitutive stress-strain relationship. Hence, the

boundary conditions is set to enforce the continuity of deformations at both ends of the contact

length.

∂u

∂X
(Xend,+, t) = εcap

∂u

∂X
(Xend,−, t) = εcap (4.19)

We solved this problem using a pressure step-wise scheme. Consequently, for a given step ”i” the

initial condition is set as:

u(X, ti) = uMW (X, ti−1) + ud(X, ti) (4.20)

4.4 Derivation of the displacement at deposition time

Before solving the governing equation we need to derive an expression for the displacement at

deposition time u(X, td). We will do so by utilizing the Taylor’s expansion. For that we will

consider a piece of membrane as depicted by the following figure.
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Figure 4.6: Scheme of deposition of material at reference and current configuration

Given that we are solving in a pressure step-wise scheme let’s assume that in a given step 4X

is the newly deposited membrane material into the wall. From the previous step we know the

displacement at deposition from all the points that already were deposited and in particular of the

point ”a”, ud(Xa). We shall derive the displacement at contact time throughout 4X.

Recall the definition of ud(X, t):

ud(Xa) = xa(td)−Xa (4.21)

ud(Xb) = xb(td)−Xb (4.22)

As previously stated, we assumed an elastic constitutive model for the membrane deformation.

Through it we know the deformation at point ”a” which remains constant once the membrane

touches the wall in the non-slip case. We also know the deformation at the end of the deposited

amount of material, point ”b”, which is the deformation of the cap, obtained through Laplace’s

law.

Given that the coordinate in the unstretched configuration Xb is known, we solely need to derive

xb(td) which we will obtain through Taylor series:

xb(td) = xa(td) +

[
∂x

∂X

]
dX +

1

2

[
∂2x

∂X2

]
dX2 +H.O.T. (4.23)

We will ignore the higher order terms since we assumed linear deformations. As such, we will

substitute the derivatives using the definition of deformation ε = ∂u/∂X:

ε =
∂u

∂X
=
∂(x(X, t)−X)

∂X
=

∂x

∂X
− 1

∂x

∂X
= ε+ 1 (4.24)

Plugging it in Equation 18:

xb(td) = xa(td) + [1 + ε] dX +
1

2

[
∂ε

∂X

]
dX2 +H.O.T. (4.25)
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Given that the strain is linear, we can write:

ε(X) = ε(Xa) +
∂ε

∂X
(X −Xa) (4.26)

We also know the deformation at Xb which is the same as the deformation of the cap as previously

stated, and we will use it to find an estimate for ∂ε
∂X :

ε(X +4X) = ε(Xb) (4.27)

Which is also equal:

ε(X +4X) = ε(Xa) +
∂ε

∂X
(Xa)4X (4.28)

Hence:

∂ε

∂X
=
ε(Xb)− ε(Xa)

4X
(4.29)

And so we can find xb(td) by plugging the deformation and its derivative into the Taylor’s expansion

stated.

xb(td) = xa(td) + ε(Xb)dX +
1

2

(ε(Xb)− ε(Xa))

4X
dX2 (4.30)

4.5 Solution for basic cases

4.5.1 Stick case

In the case that there is no slip we have that uMW is zero at all points, hence u(X, t) = ud which

is known.

4.5.2 Free slip case

In the case where the whole membrane can slip freely, the equilibrium condition will be given by a

uniform deformation all through the membrane. Given that the deformation is known at the caps

through Laplace’s law, we can derive the displacement through the entire membrane.



Chapter 5

Elastic membrane motion in a straight channel: analysis and discussion

In this chapter we will analyze and discuss the results of the model defined in the previous chap-

ter.

5.1 Nondimensionalization

To assess the relative importance of the terms that govern the system and facilitate the scale-up

of the obtained results we will transform our variables so that we can work with dimensionless

parameters. We will normalize the governing equations:

P = εc
2Eh0

R
(5.1)

∂u

∂t
=
Eh0

µ

∂2u

∂X2
(5.2)

For that, we will establish the following dimensionless variables and numbers:

t∗ =
ṖR

Eh0
t u∗ =

u

R
X∗ =

X

R
P ∗ =

R

Eh0
P (5.3)

We shall show that t∗ is dimensionless:

[t∗] =

[
ṖR

Eh0
t

]
=

F

L2T
L
L

F
T = [−] (5.4)

Note that the dimensions of the slip coefficient are given by:

[µ] =

[
Ffr
u̇

]
=

F

L2

T

L
=
FT

L3
(5.5)
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The frictional forces dimensions are given by the previously stated equation:

∂γ

∂X
= Ffr

[
∂γ

∂X

]
=

F

L2
(5.6)

Introducing the dimensionless variables into the Laplace’s law yields:

ε =
R

2Eh0

Eh0

R
P ∗ (5.7)

Which can be rewritten as:

ε =
P ∗

2
(5.8)

And doing the same in the governing equation for the displacement of the membrane in contact

with the wall:

ṖR

Eh0
R
∂u∗

∂t∗
=
Eh0

µ

R

R2

∂2u∗

∂X∗2
(5.9)

Which can be rewritten as:

µṖR3

(Eh0)2

∂u∗

∂t∗
=

∂2u∗

∂X∗2
(5.10)

The derived non-dimensional factor controls the behavior of the system. If it increases, the amount

of slippage the membrane undergoes decreases. We will simplify this factor and call it µ∗:

µ∗ =
Ṗ µR3

(Eh0)2
(5.11)

Regarding the output variables:

u∗ =
u

R
=
uMW

R
+
v

R
= uMW ∗

+ v∗ (5.12)

5.2 Governing factor µ∗

An exhaustive number of computational tests have validated the consistency of the derived slip

driving coefficient µ∗. Results are summarized in figures 5.1 and 5.2.
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Figure 5.1: Results for an inflating membrane with different µ∗: pressure time history (top),

displacement at the end of the contact length (middle) and velocity (bottom graphic).

Figure 5.2: Impact of different µ∗ on the strains of an inflating membrane

In the case that the membrane does not slip on the wall, related to a high µ∗, the displacement of

the membrane is a consequence exclusively of the stretching of the caps that, over time, leads to

increasingly deformed material being deposited on the walls. Once a membrane portion deposits

on the wall, it cannot stretch further and, as a result, the strain profile of the membrane over the

wall is linear, matching the strain of the cap at both ends and the strain at the time the membrane

first comes into contact with the wall at the center. We can infer that the frictional forces, equal
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to the first space derivative of the strain multiplied by the Young modulus (Equation 4.13), have

a constant absolute value across the contact length with a sharp corner at the center and different

sign at each side, accounting for the direction of the force.

In the event that the membrane can slip freely on the wall (low µ∗), the nondimensionalized

displacement is a consequence of both the slippage and the deposition of stretched material from

the caps on the walls. As we can observe, the total displacement is nearly twice as the one in

the non-slip case (Figure 5.1). The strain of the membrane in contact with the wall matches at

any time the strain of the caps (bottom of Figure 5.2). Consequently, the frictional forces are nil

throughout the membrane-wall contact.

In the partial slip case (mid µ∗), the membrane in contact with the wall stretches over time;

however, it does not match the deformation at the caps at all times. The shape of the deformation

is somewhere between the linear profile of the non-slip case and the constant deformation at all

points given by the total-slip case. Once the pressure reaches the constant phase, the membrane in

contact with the wall stretches further over time, hence generating significant displacements and

relaxing the frictional forces.

5.3 Directional motion

To achieve directional motion we need the contact between wall and membrane to have anisotropic

features. In other words the derived slip factor µ∗ needs to be smaller in the forward, compared

to the backward direction (µ∗forward < µ∗backward). This could be achieved if the droplet membrane

had scales like the ones that fish or snakes have. That feature shall be represented in our model by

different slip coefficients according to the direction of motion.
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Figure 5.3: 3D graphical representation of the motion of a droplet undergoing 8 cycles of inflation-

deflation with anisotropic slippage.

As a result, during the inflation phase the droplet grows because of: 1) the stretching of the

membrane caps and 2) the slip of the portion of the membrane in contact with the wall. Hence the

membrane will grow further in the direction in which the µ∗ is smaller, leading to a shift in the

center of mass. During the deflation phase, the droplet shrinks due to the relaxation of the caps.

Simultaneously, the membrane wall will undergo further slip, resulting in the droplet shrinking

faster in the direction in which µ∗ is smaller, leading to further shift of the center of mass, as

Figure 5.3 depicts.
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Figure 5.4: Nondimensional pressure-time history (top) and evolution of the nondimensional center

of mass (bottom) of a membrane with anysotropic friction

The capacity of the designed hydrogel to move in a straight channel depends mainly on two factors:

1) The amount of inflation and deflation and the duration of the cycles, 2) the anisotropy of the

interaction between wall and body in both directions which is governed by the derived factor µ∗.

Optimal gel design needs to yield a low µ∗ in the forward direction and a high µ∗ in the other,

allowing it to crawl forward.

Other considerations that affect gel motion are the minimum and the maximum level of confinement

of the gel. A confinement that is too high will not allow the gel to slip and one that is too low will

leave the gel floating in an environment where viscous forces are dominant over inertial forces (low

Reynolds), resulting in the maximum inflation of the gel to be inadequate for deposition with the

wall.



Chapter 6

Formulation for a 3D Axisymmetric Domain and an Hyperelastic Membrane

6.1 Objectives

We wish to extend our problem to a 3D axisymmetric problem in which the material is described

through the hyperelastic material model. The formulation we will develop is applicable to any

channel shape in which the radius can be described as a function of the axial coordinate and for

bodies in which the stress-free ends have a spherical or nearly-spherical shape. The problem is

driven by the pressure difference between the inside and the outside of the droplet, and the channel

shape is assumed to be known.

To simulate and study the behavior of this system, we will need to derive their governing equations,

and these will depend on the deformation of the membrane. Hence the scheme to formulate the

problem will be as follows:

(1) Establish the kinematics so that for any given reference and current shape we can compute

the strain at each point of the membrane.

(2) Establish the relationship between strain and stress.

(3) Derive the governing equations.

The nature of the kinematics, relationship between strain and stress relationship and governing

equations is significantly different whether we are looking at a point of the membrane that is in

contact with the wall or at a point in the spherical caps that close the membrane at both ends.

Consequently. we will derive both parts separately.



32

6.1.1 Kinematics

The goal of this section is to find the strain throughout the membrane as a function of the mapping

between the reference and the current configuration. As we will show later, the strain and stresses

are constant throughout the spherical caps; therefore, it will be useful to first find the mapping of

the coordinates that separate the spherical caps from the membrane in contact with the wall.

In an axisymmetric domain, let us consider a closed membrane of initial shape Ω0 which is defined

according to a parametric curve R = R(Z) and a current shape Ω whose geometry is described

through z = f(Z) and r = f(Z). At any axial coordinate Z, we can define the tangent to the

membrane surface by the angle α0 in the initial configuration and α in the current. Both angles

can be described as a function of the radius through tan(α) = dR
dZ . We will consider a non-wetting

membrane, hence when it is in contact with the wall α matches the angle defined by the channel

surface.

For convenience, we will work with the arc parameter S in the reference configuration and s in

the current configuration. We can exchange the axial and arc parameter through Z(S) and z(s).

Similarly, we will write the radius of the membrane and the angle between membrane and axial

coordinate as a function of the arc parameter: R(S), r(s), α0(S) and α(s).

Figure 6.1: Scheme of the membrane confined in a channel in initial and current configuration
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We are defining s1 and s2 as the coordinates of the membrane in the current configuration that

separate the spherical caps from the channel. Both coordinates can be mapped back to the original

configuration S1 and S2 respectively. While the membrane is not in contact at the deformed

configuration, s1 and s2 match. As the membrane inflates on the channel walls, the reference

coordinates S1 and S2 grow further away one from the other.

The geometry of the membrane in the initial shape is described by R(S) while the geometry of

the current shape is described by s(S) and r(S), which is prescribed by the channel shape in the

contact area. The mapping between both states is fully described by the scalar-valued function

s(S) in [S1, S2] and the coordinates S1 and S2, assuming that the channel shape, r(S), is known as

well as the R(S).

S1, S2 and s(S) in [S1, S2] (6.1)

6.1.1.1 Spherical caps mapping

This section will be devoted to writing the strain in the caps as a function of the mapping of the

coordinates s1(S1) and s2(S2). A spherical cap in the reference configuration becomes a spherical

cap in the current configuration, but the center of the cap’s position changes; consequently, it is

not a purely isotropic deformation. We will assume that the distortion will have a small impact on

the stored elastic energy (derived further on) and so can be neglected. The coordinate system of

a sphere is given by a radial coordinate perpendicular to the membrane and two angular in-plane

coordinates (R,φ, θ). Enforcing incompressibility, we can express the deformation in the radial

direction as a function of the in-plane directions; hence the deformation gradient:

F(Si) =


1/λ2 0 0

0 λ 0

0 0 λ

 (6.2)

Given that the membrane inflates isotropically, the deformation and stress in φ and θ are the same

and equal at all points. To relate the mapping with the strain, we shall: 1) Compute the area of
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the spherical caps in the reference and in the deformed configuration, and 2) Compare both areas

to find the membrane strain in each spherical cap.

Figure 6.2: Scheme of spherical caps

Given the coordinates s1 and s2, corresponding to the sections that separate caps from the wall,

we can find, through the wall geometry, the radius of the caps r(z) as r(z1) and r(z2). Similarly,

we can obtain the angle of the membrane at the given points. Then, the area of the spherical caps

shall be computed as:

A(r, α) =
2πr2

sin
(
π
2 − α

) ( 1

sin
(
π
2 − α

) − 1

tan
(
π
2 − α

)) (6.3)

This formula is applicable for both the reference and the current configuration. Hence, A0 =

A(R,α0) and A = A(r, α). With the strain, we can relate the spherical caps in the current state

with the spherical caps at reference state. The Jacobian of the gradient of deformations of the

in-plane coordinates yield the change in area, which in our case is equal to λ2. Hence:

λ2 =
A(r, α)

A(R,α0)
(6.4)

The situation of interest is when the membrane is partially in contact with the surrounding channel,

which means that r and α are prescribed by the channel geometry, therefore a function of Z. As

previously mentioned, we assume a non-wetting surface so that the membrane is tangent to the

surface, hence tan(α) is equal to dR
dZ . Resulting in A = A(r(S), α(S)) = A(Z). All in all, the area

of the spherical caps in the current configuration, A, can be found as a function of S and along

the strain state of the caps we can obtain A0, the area of the caps in the reference configuration.
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Therefore, we can write the strain at the caps as a function of Z, λ1(S1) and λ2(S2) through

λ1(S1) = A(s1)/A(S1) and λ2(S1) = A(s2)/A(S2).

6.1.1.2 Membrane wall contact

Given the mapping of s1(S1) and s2(S2) and the strains at both caps, λ1 and λ2, we shall now

tackle the derivation of the strains for S1 > S > S2 at the current configuration.

The nature of the problem is characterized by two strains: the strain that is tangential to the

channel, λt, and the strain that is circular around the axis of symmetry, λθ. In the principal

directions (t, θ, n), the gradient of deformation is a diagonal matrix. We assume that the membrane

is incompressible, hence the Jacobian needs to be equal to one, and we can express the deformation

in the normal direction as a function of the other deformations.

F(S) =


λt 0 0

0 λθ 0

0 0 1
λtλθ

 (6.5)

The circular strain is constrained by the channel shape, hence we can express it through the length

of the circular perimeter in the current state and the related perimeter in the reference state.

λθ(S) =
Lθ
Lθ,0

=
2πr(s(S))

2πR(S)
=
r(s(S))

R(S)
= g(S, s(S)) in [S1, S2] (6.6)

Therefore, the circular strain λθ can be expressed as a function of the radius ratio mapping

g(S, s(S)).

Let us now look at the tangential strain and mapping of the axial coordinate.

Figure 6.3: Scheme of the mapping of a section between reference and current state
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The mapping of the axial coordinate z(Z) is given by the tangential stretching of the membrane

λt(S) through ds = dSλt(S).

ds

dS
= λt(S) (6.7)

Additionally, given that s1(S1) and s2(S2) are known, if we knew λt we could map each point

throughout the membrane-wall contact length as:

S = S1 +

∫ S

S1

ds = S1 +

∫ S

S1

λtdS (6.8)

With that, we have derived a relationship between the mapping and the strain. Given a reference

shape and a current shape, we can establish the relationship point to point through a strain function

λt. In the following sections, we will elaborate upon the meaning of λt and how we can obtain

it.

6.1.2 Coordinate system and principal directions

As the membrane inflates, it accommodates to the channel shape. Consequently, the principal

directions are the tangential, the normal, and the circular. The forces acting on the membrane will

be pressure normal to the channel, the surface tension and frictional forces parallel to it. Given that

the membrane is very thin, there are no shear forces acting throughout its thickness, and if there

were shear forces in the circular direction, the membrane would twist, breaking the axisymmetry.

Figure 6.4: Stress scheme in principal directions (left) and in axisymmetric coordinates (right)
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6.1.3 Strain and stress

In this section we will develop the relationship between strain and stress throughout the membrane.

Note that the strain for the spherical caps and for the membrane in contact with the wall have

been derived as a function of the mapping: λ1(S1) and λ2(S2) for the spherical caps, and λθ(g(S))

and λt(s(S)) for the membrane wall.

6.1.3.1 At the membrane-wall contact

As previously stated, the gradient of deformation in the principal directions (t, θ, n) is given by:

F(S) =


λt 0 0

0 λθ 0

0 0 1
λtλθ

 (6.9)

As shown in the previous section, the circular deformation can be expressed as a function of the

tangential deformation λθ(λt(S)). Hence, the gradient of deformation throughout the membrane

will be written as a function of the tangent deformation F(λt(S)) and, ultimately, of the axial

coordinate F(S).

The stored energy density function per unit of volume can then be computed:

Ψ =
Gsh

2
(tr(C)− 3) =

Gsh
2

(
λ2
t + λ2

θ +
1

λ2
tλ

2
θ

− 3

)
(6.10)

Where C is the right Cauchy-Green deformation tensor, equal to FTF. Now, we can compute the

tangential stress:

Ptt =
∂Ψ

∂λt

∣∣∣
λθ=ct

= Gsh

(
λt −

1

λ3
tλ

2
θ

)
(6.11)

The Cauchy in the tangential direction:

σtt =
A0

A
Ptt =

1

λθ
1

λtλθ

Ptt = Gsh

(
λ2
t −

1

λ2
tλ

2
θ

)
(6.12)

The stress on the other directions are not of interest for the problem we are solving. Given σtt, we

can compute the surface tension in the tangential direction as:
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γt = σttt = tGsh

(
λ2
t −

1

λ2
tλ

2
θ

)
(6.13)

Where t is the current thickness of the membrane, which we can write as:

t = t0
1

λtλθ
(6.14)

Hence, the tangential surface tension:

γt = t0Gsh

(
λt
λθ
− 1

λ3
tλ

3
θ

)
(6.15)

6.1.3.2 At the spherical caps

Let us now formulate the strain-stress relationship in the spherical caps of the membrane, given

the hyperelastic model. As previously stated, the strains are constant throughout the cap and the

gradient of deformation in the (R,φ, θ) coordinate system can be written as:

F(Si) =


1/λ2 0 0

0 λ 0

0 0 λ

 (6.16)

Given that the membrane inflates isotropically, the deformation and stress in φ and θ are the same.

For simplicity, we will call them in−plane since they are tangent to the sphere surface. The elastic

stored energy per unit of reference volume is then:

Ψ =
Gsh

2
(tr(C)− 3) =

Gsh
2

(
2λ2 +

1

λ4
− 3

)
(6.17)

The nominal stress in-plane is:

Pin−plane =
∂Ψ

∂λ
= 2Gsh

(
λ− 1

λ5

)
(6.18)

Then the Cauchy stress:

σin−plane =
A0

A
Pin−plane =

1
1
λ2
λ
Pin−plane = 2Gsh

(
λ2 − 1

λ4

)
(6.19)
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Where A0 is the reference area on which σin−plane actuates and A the current deformed area. The

current area is stretched in the radial direction by 1
λ2

and in the in-plane direction by λ.

Given σin−plane, we can compute the surface tension as we have previously done:

γin−plane = σin−planet = 2tGsh

(
λ2 − 1

λ4

)
(6.20)

Where t is the current membrane thickness, which we can write as a function of the reference

membrane thickness:

t = t0
1

λ2
(6.21)

Hence:

γin−plane = 2Gsht0

(
1− 1

λ6

)
(6.22)

6.2 Governing Equations

Now that we have written strain and stress in terms of the mapping unknowns S1, S2 and s(S) in

[S1, S2], we shall derive the governing equations for both the spherical caps and the membrane-wall.
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Figure 6.5: Stress scheme in principal directions (left) and in axisymmetric coordinates (right)

6.2.1 Spherical caps

Given that our problem is pressure driven, we shall apply Laplace’s Law at each of the spherical

caps:

4P = γi
2

rsph,i
(6.23)

Where 4P = Pint − Pext and the spherical radius is given by rsph,i = r(s(Si))

sin(π2−αi)
. Plugging in the

derived expressions for the stress and the radius for the spherical caps S1 and S2:

4P = γ(s(Si))
2 sin

(
π
2 − αi

)
r(s(Si))

= 4Gt0

(
1− 1

λ6
i

)
sin
(
π
2 − α(s(Si))

)
r(s(Si))

i = 1, 2 (6.24)

Introducing in the derived equations of the strains at the caps: λ2
i (Si) = A(s(Si))/A(Si):

4P = 4Gsht0

(
1− 1

(A(s(Si)/A(Si))3

)
sin
(
π
2 − α(s(Si))

)
r(s(Si))

i = 1, 2 (6.25)

Solving the equation and obtaining the coordinates S1 and S2 is very straight forward, and the

application of a root finding algorithm suffices.
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6.2.2 Membrane wall

Enforcing equilibrium of forces of a differential piece of membrane in contact with the wall as shown

in figure XX yields:

γ(s + ds)− γ(s)− Ffr(s)ds = 0 (6.26)

Which we can rewrite as:

Ffr(s) =
γ(s + ds)− γ(s)

ds
(6.27)

When ds→ 0:

Ffr =
∂γ

∂s
in [s(S1), s(S2)] (6.28)

Ffr =
∂γ

∂S

∂S

∂s
=

1

λt

∂γ

∂S
in [S1, S2] (6.29)

Recall that we have previously derived the stress as γt = σttt0, and σtt has been derived in terms

of the strains which in turn have been derived in terms of the mapping.

The interaction between wall and membrane is governed by the Maxwell model (a dashpot and a

spring in series, connecting wall with membrane). Prior to writing the explicit equation for the

interaction between wall and membrane, we shall remember that the difference between the current

and the reference configuration is the displacement of the body.

u = s− S (6.30)

Once the membrane gets into contact with the wall, it will start experiencing the interaction with

the wall and, in turn, elastic and slip deformation. Hence, it is of our interest to separate the

displacement previous and after the deposition of the membrane to the wall. We will write it as:

u(S, t) = uD(S, td) + uMW (S, t) (6.31)

Where uD is the displacement at time of deposition, equal to s(S, td) − S, and uMW is the dis-

placement due to the interaction between wall and membrane. We will prove that this definition



42

is consistent with the total displacement:

uMW (S, t) = s(S, t)− s(S, td) = s(S, t)− S + S − s(S, td) = u(S, t)− uD(S, td) (6.32)

The interaction between wall and membrane is taken as a Maxwell model. Hence the frictional

forces can be written as:

Ffr = µu̇MW
s (6.33)

Assuming that the velocity of the elastic displacement, u̇MW
e (due to the spring of the Maxwell

model which is characterized by a very high coefficient), and the velocity of the displacement at

contact, u̇D, are negligible in front of the slip velocity:

u̇ = u̇MW
s + u̇MW

e + u̇D ≈ u̇MW
s (6.34)

We can rewrite the previous equation as:

Ffr = µu̇ (6.35)

And so the governing equation:

µ
∂u

∂t
=

1

λt

∂γ

∂S
in [S1, S2] (6.36)

Where:

µ(S) =


µ+, if u̇(S) > 0

µ−, if u̇(S) < 0

(6.37)

We can rewrite the governing equation as:

µ
∂u

∂t
=
t0Gsh
λt

∂

∂S

(
λt
λθ
− 1

λ3
tλ

3
θ

)
in [S1, S2] (6.38)

µ

t0G

∂u

∂t
=

1

λt

∂

∂S

(
λt
λθ
− 1

λ3
tλ

3
θ

)
=

1

λtλθ

∂λt
∂S
− 1

λ2
θ

∂λθ
∂S

+ 3

(
1

λ5
tλ

3
θ

∂λt
∂S

+
1

λ4
tλ

4
θ

∂λθ
∂S

)
(6.39)

Rearranging the terms:

µ

t0Gsh

∂u

∂t
=

(
1

λtλθ
+

3

λ5
tλ

3
θ

)
∂λt
∂S

+

(
3

λ4
tλ

4
θ

− 1

λ2
θ

)
∂λθ
∂S

(6.40)
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µ

t0Gsh

∂u

∂t
=

(
λ4
tλ

2
θ + 3

λ5
tλ

3
θ

)
∂λt
∂S

+

(
3− λ4

tλ
2
θ

λ4
tλ

4
θ

)
∂λθ
∂S

(6.41)

Remember that the definition of the displacement is u = s − S. The initial configuration is

independent of time, hence ∂u
∂t is equal to ∂s

∂t . Recall also that:

λt =
∂s

∂S
in [S1, S2] (6.42)

λθ =
r(s)

R(S)
in [S1, S2] (6.43)

Hence:

µ

t0Gsh

∂s

∂t
=
R3

r3

(
∂S

∂s

)5
((

∂s

∂S

)4 r2

R2
+ 3

)
∂2s

∂S2
+
R4

r4

(
∂S

∂s

)4
(

3−
(
∂s

∂S

)4 r2

R2

)
∂λθ
∂S

(6.44)

With:

∂λθ
∂S

=
1

R(S)

∂r

∂s

∂s

∂S
− r(s)

R2(S)

∂R

∂S
(6.45)

To prove the presented equation for the derivative of λθ through variations calculus:

R(S) : S + δS → R(S) +
∂R

∂S
δS (6.46)

s(S) : S + δS → s(S) +
∂s

∂S
δS = s(S) + λt(S)δS (6.47)

r(s(S)) : S + δS → r(s(S)) +
∂r

∂S
δS = r(s(S)) +

∂r

∂s
λtδS (6.48)

Hence:

δλθ = δ

(
r(s)

R(S)

)
=
δr(s)R(S)− r(s)δR(S)

R2(S)
=
R(S)∂r∂sλt − r(s)

∂R
∂S

R2(S)
δS (6.49)

We can rewrite this as:

δλθ
δS

=
1

R(S)

∂r

∂s
λt − r(s)

1

R2(S)

∂R

∂S
(6.50)
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Returning to the governing equation; if we plug in the expression for δλθ
δS we obtain:

µ

t0Gsh

∂s

∂t
=
R3

r3

(
∂S

∂s

)5
((

∂s

∂S

)4 r2

R2
+ 3

)
∂2s

∂S2

+
R4

r4

(
∂S

∂s

)4
(

3−
(
∂s

∂S

)4 r2

R2

)(
1

R

∂r

∂s

∂s

∂S
− r

R2

∂R

∂S

)
(6.51)

We can rearrange the equation and obtain:

µ

t0Gsh

∂s

∂t
=
R

r

∂S

∂s

∂2s

∂S2
+ 3

R3

r3

(
∂S

∂s

)5 ∂2s

∂S2
+ 3

R3

r4

(
∂S

∂s

)3 ∂r

∂s

−3
R2

r3

(
∂S

∂s

)4 ∂R

∂S
− R

r2

∂r

∂s

∂s

∂S
+

1

r

∂R

∂S

(6.52)

Regarding the boundary conditions, they are given by the application of Laplace’s law at both S1

and S2:

∂s(Si)

∂S
= λi for i = 1, 2 (6.53)

The initial value is set as the initial configuration plus the displacement in the previous time step

and the displacement at time of deposition for the newly deposited material.

s(S, ti) = Si + ui−1 + uDi (6.54)

We shall decompose the governing equation as:
G(λt, ṡ)

∂s
∂t = H(λt)

∂λt
∂S + I(λt) with λt(Si) = λt,i and

∂s
∂S = λt, with s(Si) = uDi + Si and s(S, t0) = S

for i = 1, 2 (6.55)

Where:

H(λt) =
R

r
λ4
t + 3

R3

r3
I(λt) = 3

R3

r4

∂r

∂s
λ2
t − 3

R2

r3

∂R

∂S
λt −

R

r2

∂r

∂s
λ6
t +

1

r

∂R

∂S
λ5
t G(ṡ, λt) =

µλ5
t

t0Gsh

(6.56)
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6.2.3 Initial value: displacement at time of deposition ”uD”

As mentioned in the previous section, the initial displacement for the newly deposited material is

the displacement at time of deposition uD(S, td). In this section, we will derive it. We will assume

that in a given step, 4S is the newly-deposited membrane material. From the previous step, we

know the displacement at contact throughout the material that has already been deposited. Hence

we only need to derive uD for the newly deposited material. Consider this to be [Sa, Sb]. We will

utilize the Taylor’s expansion.

uD(Sb, td) = uD(Sa, td) +

[
∂s

∂S

]
dS +

1

2

[
∂2s

∂S2

]
dS2 +H.O.T. (6.57)

The strain at Sb is known from application of Laplace’s Law. We will ignore high order terms and

approximate the derivatives of the current configuration through the strain:

uD(Sb, td) = uD(Sa, td) + λt,SbdS +
1

2

λt,Sb − λt,Sa
4S

dS2 (6.58)

6.3 Numerical solution to the governing equation

We will solve the derived governing equation through the application of finite differences method,

more specifically the backward Euler method. Both time and space variables shall be discretized

and each derivative in the PDE approximated through finite difference.

Let ukj denote the approximate solution at Sj = j 4 S and tk = k 4 t. We will replace the time

derivative by a forward difference and the space derivatives by a centered difference. Note that

given that the domain in which we solve the PDE is [S1, S2] 4S = (S2 − S1)/(n+ 1).
G
(
λk+1
t,i , sk+1

j , skj

)
sk+1
j −skj
4t = H(λk+1

t,i )
λk+1
t,i+1−λ

k+1
t,i−1

24S + I(λk+1
t,i )

sk+1
j+1−s

k+1
j−1

24S = λk+1
t,i

(6.59)

The boundary conditions:

sk+1
2 − sk+1

1

4S
= λk+1

1 (6.60)
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sk+1
n − sk+1

n−1

4S
= λk+1

2 (6.61)

Regarding the initial value:

s(Sj , t1) = Sj j = 1, ..., n (6.62)

The proposed backward Euler scheme is set up so that the configuration at time instant tk+1 can

be obtained implicitly: sk+1
j for j = 1, ..., n. Given that our backward Euler formulation yields an

implicit set of equations, we applied a root-finding algorithm to solve it–specifically, the ”fsolve”

algorithm of MATLAB.



Chapter 7

Membrane Motion Model: Analysis and Discussion

In this chapter we will analyze and discuss the results of the model defined in the previous chap-

ter.

7.1 Convergence

To validate the precision of our simulations we will study how the time steps and element size

converge to a solution. The key output parameter whose convergence we will analyze is the shift

of the center of mass over an inflation-deflation cycle for a swelling ratio of about 2. Given that we

do not have an analytic solution for that problem, our approach will consist on looking at ratios

of differences between ûh (numerical solution for a small parameter h) computed for different h.

We will compare solutions where h is halved successively from which we will be able to derive the

order of convergence p. Schematically this can be represented as:

ûh − ûh/2
ûh/2 − ûh/4

= 2p +O(h) (7.1)

7.1.1 Time step convergence

Our governing equation is a partial differential equation in time and space, hence we will look at

the convergence of both fields. We shall start by looking at how changing the number of time steps

affects the precision of the solution.
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Figure 7.1: Error in the shift of the center of mass over an inflation-deflation cycle against number

of time steps for the full cycle in logarithmic scale

The order of convergence for the time steps has been calculated as 1.8. Beyond a step size of 1/200

the solution barely changes; hence, we will consider that this number of steps provide sufficient

precision.

7.1.2 Element size convergence

We shall study how the number of elements (in which we divide the contact length between wall

and membrane) affects the precision of the solution.

Figure 7.2: Error in the shift of center of mass over an inflation-deflation cycle against number of

elements in contact between wall and membrane in logarithmic scale
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In this case the solution order of convergence with element size is of about 1.5. Note that if we

keep halving our solution the computational cost increases very rapidly. We will consider that for

an element size of 1/50 the solution precision is satisfactory.

7.2 Nondimensionalization

As we previously did for the linear elasticity membrane confined in a straight channel, we shall

transform our variables so that we can work with dimensionless parameters. This will help us

assess the relative importance of the terms in the model equations and facilitate the scale-up of the

obtained results. Given that the governing equations for our current case are significantly complex,

the derived non-dimensional number would fail to allow us to understand the importance of terms

in a straight-forward and easily understandable way. Hence, instead of nondimensionalizing the

governing equations we shall adapt the previously derived slip factor ”µ∗” to our model.

For a membrane with a hyperelastic strain-stress constitutive equation with a channel whose ge-

ometry is described through R(s), the nondimensionalized variables we shall be written as:

t∗ =
ṖR0

Gshh0
t u∗ =

u

R0
S∗ =

S

R0
P ∗ =

R0

Gshh0
P (7.2)

Where R0 is the membrane radius at the reference configuration. Adapting the slip factor ”µ∗”

from the previous simple model to our case yields:

µ∗ =
Ṗ µR3

0

(Gshh0)2
(7.3)

We expect that if µ∗ increases, the system will undergo less slip, and if it decreases, more slip as is

shown in the elastic straight channel case.

7.3 µ∗mean and µ∗ratio

For the membrane to move, the contact needs to be characterized by a low µ∗ in the direction we

want the body to move and a high µ∗ in the opposite. Doing so will allow the gel to slip against

the wall in the forward direction and stick in the opposite.
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The interaction between wall and membrane can be summarized through two parameters: µ∗mean

and µ∗ratio.

µ∗mean =
µ∗forward + µ∗backward

2
(7.4)

µ∗ratio =
µ∗forward
µ∗backward

(7.5)

µ∗ratio accounts for the anisotropy so that if µ∗ratio = 1 the contact is isotropic and there is no

directional motion. µ∗mean tells us about the slippage the system undergoes. These ideas will be

developed later in this chapter.

7.4 Benchmark problems

To verify that the obtained solutions are correct we will look at a few benchmark problems for

which the solution is known. We will verify that the displacement and strain fields are correct by

comparing the numerical solution to the analytic.

7.4.0.1 High µ∗

In a case where there is no slip, as the membrane inflates a larger portion of the membrane comes

into contact with the wall, and each point that comes into contact with the wall is characterized

by a known deformation (thanks to Laplace’s law). Given that we are considering a stick case, the

membrane is not allowed to slip further once it comes into contact with the wall. All together, the

obtained displacement field is given by the derived displacement at time of deposition ”uD”.

For the case of a straight channel, the analytic solution for the displacement can be derived as:

u(S) = aS + bS2 (7.6)

λ =
du

dS
+ 1 = a+ 2bS + 1 (7.7)

With boundary conditions:

λ(S = 0) = λcontact (7.8)
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λ(S = Send,−, Send,+) = λcap (7.9)

Which yields:

λ(S) = λcontact + S
λcap − λcontact

Send
sign(S) (7.10)

And:

u(S) = (λcontact − 1)S +
λcap − λcontact

2Send
S2sign(S) (7.11)

For the case of an inclined channel, the analytic solution for the displacement can be derived as:

u(S) =


a(S − Sint) + b1(S − Sint)2, if S1 > S > Sint

a(S − Sint) + b2(S − Sint)2, if Sint < S < S2

(7.12)

Solving for a, b1, b2 using the known strain at the caps and at time of first contact with the wall:

u(S) =


(λcontact − 1)(S − Sint)− λcap,1−λcontact

2(S1−Sint) (S − Sint)2, if S1 > S > Sint

(λcontact − 1)(S − Sint)− λcap,2−λcontact
2(S2−Sint) (S − Sint)2, if Sint < S < S2

(7.13)
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Figure 7.3: Set of benchmark tests for a high µ∗. Pressure-time history (top left), scheme of the

membrane arc parameter S along the strains (top right), numerical and analytical strains and

displacements for a membrane inflating in a conical channel (A,B,C)
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7.4.1 Low µ∗ with straight walls

In the case where the membrane deforms freely when in contact with the wall, the strain all through

it will be the same given by Laplace’s law at the cap. Hence for the case of straight walls:

u(S) = (λcap − 1)S (7.14)
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Figure 7.4: Set of benchmark tests for a low µ∗. Pressure time history (top left), scheme of the

membrane arc parameter S along the strains (top right), numerical and analytical strains and

displacements for a membrane inflating in a straight channel (A,B,C)

7.4.2 Slip case inclined walls

In the case of inclined walls, when the membrane comes into contact with the wall it simply slips

so that it remains a sphere tangent to the wall. To confirm that the results are correct, we will

perform a set of tests with different wall inclination and maximum achieved pressure for which we
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can analytically find which is the position of the center of mass and compare to see if the results

match.

The analytic solution will be given by the equation governing the free inflation of an sphere with

a hyperelastic constitutive equation and the inclination of the wall. The free inflation equation is

given by:

PR0

4h0Gsh
=

1

λ
− 1

λ7
(7.15)

From this equation we obtain the strain λ and the radius is given by R = λR0. Given that this

benchmark test is performed on straight inclined walls, we can easily compute the position of the

center of mass:

Xcm =
R

sin(α)
− y0

tan(α)
(7.16)

Figure 7.5: Scheme of the shift of center of mass for a low µ∗ case
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Figure 7.6: Numerical and analytic position of the center of mass for a membrane inflating in an

inclined wall with slip conditions

7.5 Mid µ∗: Membrane relaxation

A relevant feature we shall investigate to further validate the model is the relaxation of the mem-

brane in contact with the wall over time. Figure 6.4 shows how the displacements behave according

to different µ∗ in a straight channel. For the case of a large µ∗ the displacements are limited to

the deformation of the caps, while in the case of a small µ∗, the membrane in contact with the

wall completely slips so that the deformation at the wall matches the one at the caps, allowing for

the largest possible displacements. In the case of a mid µ∗ the membrane will experience further

displacements during the constant pressure phase and the deformation field on the membrane-wall

contact will slowly evolve towards the cap deformation.
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Figure 7.7: Maximum displacement of a membrane (top) inflated in a straight channel through a

ramp pressure loading followed by a constant pressure phase in a straight channel. Strains at the

wall-membrane contact at different times for the mid µ∗ case (bottom).

7.6 Directional motion

The factors that drive gel motion shall be summarized as: 1) the anisotropy of the interaction

between wall and body in both directions which can be described through µ∗ratio 2) the amount of
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slip the body undergoes which is characterized through µ∗mean 3) The confinement of the body .

We shall write that the nondimensionalized velocity (displacement per cycle) is a function of:

v∗ = f(c, µ∗mean, µ
∗
ratio) (7.17)

7.6.1 µ∗ratio effect on directional motion

µ∗ratio governs the anisotropy of the system. The following picture depicts three cases of a

spherical body undergoing periodical inflation deflation. Note that the center of mass of the body

with µ∗ratio = 1 remains static while for the other cases it does not.

Figure 7.8: Effect of µ∗ratio on directional motion

Note that our numerical experiments are pressure driven, this limits our capacity of swelling since
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we cannot undergo softening. As a result the total motion per inflation-deflation cycle is small,

however we can clearly see the displacement of the body over a larger number of cycles.

The purple ring represents the location of zero slip velocities, we shall call this point ”anchor circle”,

we will develop this idea later in this chapter.

7.6.2 µ∗mean: rolling versus slippage

As the membrane inflates new material deposits into the wall. Each piece of the membrane is

stretched and then deposited. This rolling effect significantly decreases the amount of motion the

sphere can achieve compared to a system that does not experience rolling such as a cylindrical body

with axial inflation. The sphere spends a significant amount of energy in inflating and depositing

already stretched material, this material will not be able to undergo large slippage since it is already

stretched. Given that the rolling effect is symmetric it does not provide directional motion hence

diminishing the efficiency of the spherical geometry compared to the cylindrical.

µ∗mean shows the speed the membrane undergoes slip. For a low µ∗mean the membrane starts slipping

right after being deposited while for a high µ∗mean the membrane slips very slowly.

Figure 7.9: Effect of µ∗ratio on rolling and slippage, in color code the slip velocity
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7.6.3 Confinement effect on directional motion

The amount of inflation and deflation while the body is confined is represented by the parameter c,

already defined as c = Rs/Rch−1 (where Rs is the radius of the stress-free membrane with the same

volume as the confined membrane). The body can move because the interaction forces between the

channel and the body are not symmetric. Hence, maximizing the area of contact between channel

and body will allow for a greater motion.

7.6.4 Anchor circle

A key element in directional motion is the point of zero slip velocities. We shall call this point

(or circle in axisymmetric coordinates) the anchor. When the anchor circle is at the center of the

body the system slips symmetrically leading to no directional motion (see figure 7.9). Directional

motion is maximized when the circle of zero slip velocity is at the end of the contact between wall

and membrane during the inflation and at the opposite end during the deflation.

Figure 7.10: Anchor circle (purple) on an anisotropic system at different times of the inflation-

deflation cycle



Chapter 8

Empirical Testing: PNIPAm Gel Motion in Porous Media

8.1 Introduction

To study the feasibility of PNIPAm gel motion in porous media, we have performed a set of empirical

tests. These experiments were conceived as part of a high school science project. We collaborated

with a student, Anurag Golla, to help him produce a science project about gel motion for targeted

drug delivery which allowed us to outreach to the community.

Anurag presented the project in the INTEL ISEF (International Science and Engineeering Fair),

and ranked first in the Boulder regional competition, the Corden Pharma Boulder Valley Regional

Science Fair.

8.2 Experiment description

To study the feasibility of gel motion in porous media, we placed gels whose volume we could

control remotely inside channels with different geometries (straight and tortuous with different

wave length and amplitude) which had a ratchet on their surface providing anisotropic friction.

The ratchet would account for the coating the gel would have so that it could move; given that

the gel coating process is very challenging, we simply designed the channels with ratchets. The

channel’s tortuousness aims to represent the shape of a porous channel. These set of experiments

allowed us to study the effect of confinement, ratchet geometry and porous media geometry on the

speed of periodically inflating-deflating gels. Two types of tests were performed: passive (pressure

driven) and active (volume driven).
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8.3 Methodology

We synthesized PNIPAm monomer based gels of a cylindrical shape of about 1 cm length and 1 cm

radius. The channels were designed and printed with 3D Lulzbot printers using t-glase filament.

T-glase filament is a stiff material partially transparent which allowed us to see through and study

the motion mechanics of the gel.

Figure 8.1: Channel models schematics for 3D printing, straight with ratchet (top), undulating

(bottom)

Figure 8.2: Printing of a tortuous channel with t-glase filament in a Lulzbot printer

Volume of PNIPAm gels are controlled through their temperature. They are characterized by

a LCST (lower critcal solution temperature) near 32 celsius degrees around which their volume

changes drastically. Hence, we submerged the gel in water and used tea heaters (metallic rod re-

sistors) to control the temperature.
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We performed two types of tests: passive in which the motion of the gel was obtained through

a difference in pressure throughout the channel, and active in which the temperature was con-

trolled.

8.3.1 Passive test

We set up a circuit to test the passive motion of gels (see figure below). Pressure was controlled

by adding a known amount of water to one of the deposits. As a result, gels in the channel would

experience a directional pressure that would move them and we could quantify the time it takes

for them to go from one end of the channel to the other.

Figure 8.3: Passive test setup

This type of experiment is particularly useful to study the effect of confinement on gels. As the

gel is subjected to a larger confinement, the frictional forces increase and the speed the gel travels

through the channel decreases. Passive tests are also very useful in studying the anisotropy of the

ratchet. By measuring the velocity of the gel in both directions, we can compute the difference of

velocities and determine an optimal ratchet geometry.

One key advantage of the passive test over active is that the former is much faster and facilitates

easier data collection.
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8.3.2 Active test

The active tests were performed by submerging a channel inside a water deposit like the ones in

the previous figure. The water was heated up with a resistor and we let it cool down to room

temperature to achieve the volume oscillation. If we were to do this in the passive test setup, we

could potentially generate a gradient of temperatures through the channel, consequently distorting

the motion mechanism and the subsequent results.

Figure 8.4: Schematics of the active test setup

8.4 Active PNIPAm gel motion

To further illustrate the experiments we performed we shall include photographic documentation.

Figure 8.5 shows the gel inside the channel in different inflation states. Figure 8.6 shows the position

of the gel inside the channel after a number of inflation-deflation cycles. As we can observe for the

case of a isotropic surface the gel does not move while in the case of an anisotropic surface we can

clearly see a trend.
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Figure 8.5: Confined PNIPAm gel inflation-deflation. Contour lines of the gel in white. Photographs

and graphic production by Anurag Golla.

Figure 8.6: PNIPAm gel photographs showing motion in isotropic an anisotropic conditions. Pho-

tographs and graphic production by Anurag Golla.

8.5 Results

8.5.1 Confinement

The first feature we studied was the gel deformability through confinement tests. We placed

gels in straight channels of different diameters, because of the ability of PNIPAm gels to change

their volume, we were able to generate very confined conditions. The results show that as the
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confinement increases (gel diameter over channel diameter) the pressure necessary to move the

gel increases exponentially. The gel did exhibit a significant deformability while maintaining its

structural integrity; the added pressure necessary to move the gel when it was confined at 1,10 was

about twice of the necessary pressure to move it when gel and channel diameters match.

Note that gel deformability can be tuned through different cross-link density formulations. However,

a cross-link density that is too low would allow for greater deformability and would also decrease

the gel strength, and so its integrity. It is a trade-off case of deformability versus strength.

Figure 8.7: Confinement test: critical pressure necessary to move the gel in passive test. Points

are the empirical results and the line the exponential fit. Empirical results collection and graphic

production by Anurag Golla.

8.6 Ratchet design

A key aspect for gel motion is the capacity of the gel coating to generate anisotropic contact

interaction with the wall. To study this phenomena, we designed channels with a ratchet on its

inside surface.
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Figure 8.8: Gel speed in straight channels in both directions when subject to a difference in pressure.

D1 and D2 stand for both (and opposite) directions the gel can travel. Empirical results collection

and graphic production by Anurag Golla.

We also performed active tests to validate that the gels are able to move on their own. We placed

the gel in straight channels with different ratchet geometries and performed active tests. Through

increment and decrement of temperature, the gel volume oscillates, coupled with anisotropic friction

forces provided by the ratchets, the gel moves. We measured the velocity of the gel on different

ratchet geometry. The legend on the following figure (C1, C2, C3, C4) refers to the channel ratchet

geometry. The ratchet width is 0.4 cm for C1, 0.8 for C2 and 1.0 for C3 and C4. The ratchet

height is 0.08 cm for C1, C2 and C3 and 0.10 cm for C4. The control channel has no ratchet.
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Figure 8.9: Gel speed in straight channels in both directions when subject to a difference in pressure.

D1 and D2 stand for both (and opposite) directions the gel can travel. Empirical results collection

and graphic production by Anurag Golla.

Note that the error bar for C3 and C4 overlap significantly; hence, comparison between both is

not applicable. From this test, we can conclude that as the ratchet width decreases, the gel moves

faster.

8.7 Conclusions

The main goal of this side project was to outreach to the community some of the challenges targeted

drug delivery is facing. We were also able to learn that the PNIPAm gel shows potential as a drug

delivery vehicle. There are however a good number of differences between the system we designed

and studied and the one we wish to represent. Among those, the size is of a thousand orders of

magnitude different and the printed channel is made of a very stiff and non-sticky material.



Chapter 9

Viscoelastic Slip Coefficient Dependency on Normal Pressure

9.1 Introduction

Through empirical testing we have found that the viscoelastic slip coefficient of polymer gels in-

creases with the normal pressure to which they are subject. A synthesized cylindrical PNIPAm

monomer based gel is placed in straight tubes of different radius size to allow for different confine-

ments and, so, normal pressures.

The tube is submerged in water and a difference of pressure is applied through control of the hy-

draulic head. We measured speed of the gel and the pressure to which the gel is subject, and along

with the motion governing equation we derived the viscoelastic slip coefficient µ.

9.2 Shear modulus estimation

Given a cylindrical specimen subject to axial loading, the mapping is given by:

z = λZZ r = λRR (9.1)

Assume that both λ are constant values. Then the gradient of deformations in axisymmetrical

coordinates is given by:

F =


λR 0 0

0 λR 0

0 0 λZ

 (9.2)
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Applying conservation of volume det(F ) = 1 and so λR = 1√
λZ

. The strain energy:

ψ =
Gsh

2

(
λ2
Z +

2

λZ
− 3

)
(9.3)

And so, the nominal axial force:

PZZ =
∂ψ

∂λZ
= Gsh

(
λZ −

1

λ2
Z

)
(9.4)

Figure 9.1: Channel models schematics for 3D printing, straight with ratchet (top), undulating

(bottom)

Gel features: 1.2 cm diameter and 1.4 cm length when in rest and when fully swollen. We used

glass slides to perform a compression test and measured the deformation. For two glass slides, we

found a 14% compression of the body. Applying the hyperelastic equation, we obtained that the

shear modulus is Gsh = 1, 580 N/m2. Comparing with data on shear modulus for Acrylamide gels

[8], ours is very similar given its amount of monomer (8%) and bis-acrylamide (0.1%).

9.3 Slip coefficient - pressure relationship

Applying the hyperelastic model as we did to estimate the shear modulus, the strain energy in

terms of λR is:

ψ =
Gsh

2

(
2λ2

R +
1

λ4
R

− 3

)
(9.5)
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And so the nominal axial force:

PRR =
∂ψ

∂λR
= 2Gsh

(
λZ −

1

λ5
R

)
(9.6)

Current area in terms of reference area:

A = h2πR = λZh0πλRR0 =
A0

λR
(9.7)

Hence, the confinement pressure:

pc = PRR
A0

A
= 2Gsh

(
λ2
R −

1

λ4
R

)
(9.8)

Nondimensionalizing it, p∗c = pc
2Gsh

. Since the gel is confined λR = Rchannel
Rgel,rest

. Hence, we can easily

derive pc. To get a practical idea of how confined the gel is, we defined the confinement c, which is

directly related to the normal pressure to which the gel is subject.

c =
rgel − rchannel

rchannel
(9.9)

Figure 9.2: Relationship between confinement ”c” with confinement pressure pc for the polymer gel

To determine the total normal force applied to the channel walls we simply:

N = pcA = pc
A0

λR
(9.10)
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We can estimate the slip coefficient through the motion governing equation:

4P = µv (9.11)

Where 4P is the difference in pressure between both sides of the gel that push it forward, v is the

velocity the gel achieves and µ the viscoelastic slip coefficient.

Figure 9.3: Slip coefficient pressure dependency empirical results with test results (dots) and min-

imum least squares fitting (line). Empirical data collection by Anurag Golla.

Results clearly show that there is a dependency of µ on the normal pressure to which the gel is

subject. Hence, as a gel is subjected to higher confinement, it slips less.

9.4 Viscoelastic friction and slip model

Given the experimental results we can cast the formulation for the friction and slip of polymer gels.

FR ≤ µsFN ⇒ v = 0 (9.12)

FR > µsFN ⇒ v =
4P
µv(pc)

(9.13)

Where FR is the driving force pushing the body to move, µs is the static friction coefficient, FN

the normal force, P the confinement pressure and µv the viscoelastic slip coefficient (also found as
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just µ in this document) which we can write as µv = µv,0 + αpc.

Figure 9.4: Velocity of gels at different confinements undergoing a difference in pressure empirical

results. Empirical data collection by Anurag Golla.

Results show that as gels become more confined it takes a larger difference of pressure for them to

move and decreases how the velocities scale with the applied pressure due to the growth of the slip

coefficient

9.5 Implementation of a pressure depending slip coefficient to the numerical

model

As we have shown, gels show a stick-slip interaction when confined. In our numerical model the

driving force that allows the gel to move is not a difference in pressure between both ends of the

gel but the frictional forces between wall and membrane, which we defined as:

Ffr =
∂γ

∂s
(9.14)

For low confinement pressures, the normal force that drives the gel to stick to the channel is not

able to avoid the gel from slipping. In our implementation of the channel-membrane in our pressure
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depending slip coefficient µ(pc), we will consider that the confinement pressures are low enough

that the membrane will never be subject to stick conditions. Hence the equation FR ≤ µsFN will

not be implemented.

We can write the µ(Pc) equation as:

µ(Pc) = µ0 + Pc · α (9.15)

In the case of straight or conical channels Pc matches with the prescribed difference in pressure

between the inside and outside of the membrane. Parameter α is derived from the experimental

results and estimated at 15, 000 s/m. Let us nondimensionalize the equation.

µ∗ =
ṖcR

3
0

(Gshh0)2
µ P ∗c =

R0

GshR0
Pc (9.16)

µ∗ = µ∗0 + α∗P ∗c (9.17)

Where:

α∗ = α
ṖcR

2
0

Gshh0
(9.18)

After several simulations we have determined that for the range of pressures we are working with

in our model, the impact of a confinement pressure depending slip coefficient is very small and so

we neglected it.
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