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Concrete mixture design is a multi-objective optimization problem that often 

involves the weighing of trade-offs between fresh-state properties, such as 

workability, flowability, and set time with hardened-state properties, such as 

strength, freeze thaw durability, and chloride durability. Substantial time and 

effort goes into designing, testing, and perfecting single mixture designs for optimal 

performance in some, but not all, of these properties. Additionally, considerations 

for mixture cost and environmental impacts, such as embodied energy, and 

embodied carbon are often included only as a secondary objective. The complex 

relationships between concrete mixture proportions and resulting constituent 

properties are investigated herein through two studies that explore mixture design 

tradeoffs. 

The first study presents the development, validation, and implementation of a 

1D numerical service-life prediction model for reinforced recycled aggregate 

concrete exposed to internal and external sources of chlorides. The model accounts 

for the inclusion of supplementary cementitious materials (SCMs), namely (a) fly 

ash, (b) slag, (c) silica fume, and (d) metakaolin, and recycled aggregates (i) with 

and (ii) without initial chloride contamination from previous in-service exposure. 

The model is used to predict time to corrosion-induced cracking for reinforced 

recycled aggregate concrete in five case-study applications, namely structures in a 

marine splash zone (Zone I), a marine spray zone (Zone II), within 800 km of 

coastline (Zone III), within 1.5 km of coastline (Zone IV), and parking structures at 
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locations greater than 1.5 km from the coastline (Zone V) in Los Angeles, California 

and Anchorage, Alaska. The effects of recycled aggregate size, replacement ratio, 

degree of aggregate pre-contamination with chloride from previous in-service 

exposure, water-to-cement (w/c) ratio, and SCMs on time-to-cracking of reinforced 

recycled aggregate concrete are elucidated herein. The potential for SCMs to 

improve the service life of recycled aggregate concrete is investigated by estimating 

theoretical additions required to meet a target service life of 50 years.  

Results indicate that, in addition to geographic location, temperature, and 

severity of chloride exposure, w/c ratio and aggregate replacement ratio exhibit the 

greatest impact on time to chloride-induced cracking in reinforced recycled 

aggregate concrete. Furthermore, initial aggregate chloride contamination and 

aggregate size impart minimal effects on expected service life. Finally, the results 

illustrate that the use of either fly ash or slag is most viable in achieving a 50-year 

service life for recycled aggregate concretes in chloride-laden environments. 

Broadening the work of the first study, the second study presents the 

development and implementation of a multi-objective concrete mixture design tool 

to evaluate tradeoffs of different mixture proportions on the physical, mechanical, 

and environmental performance of concrete. The model utilizes a multi-objective 

evolutionary algorithm (MOEA) that uses a search-based methodology to find a set 

of Pareto-optimal mixture designs. Mathematical relationships informing the 

MOEA consider the effect of cement content, water, supplementary cementitious 

materials (SCMs), namely (i) fly ash, (ii) silica fume, (iii) slag and (iv) metakaolin, 

sand, coarse aggregate, recycled aggregates, and air on fresh- and hardened-state 

properties, cost, and environmental impacts. Six objectives are used to determine 

optimality of mixtures: strength, workability, chloride induced corrosion resistance, 

embodied energy, embodied carbon, and cost. Objective properties are modeled 
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using a suite of empirical and numerical methods that consider multiple decisions 

in their formulation. As demonstrated herein, the model can produce a suite of 

optimal mixtures for three case study applications, namely (1) a cubic meter of 

concrete, (2) a tilt-up concrete wall, and (3) a concrete column. Up to 10 total design 

scenarios are investigated for each case study to illustrate the capabilities of the 

MOEA modeling methodology.  

Results indicate that a MOEA design approach can elucidate tradeoffs related 

to mixture proportions, transportation cost, constituent cost, and performance. 

Additionally, the results illustrate that multiple design constraints, including 

simultaneous consideration of durability and strength criteria, can be implemented 

in the model and produce a set of optimal, viable solutions. Finally, the need for 

additional refinement of the relationships that inform the MOEA optimization as 

well as additional objectives and decisions to approach a more holistic design 

procedure are discussed.  
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CHAPTER 1     INTRODUCTION 

 

Worldwide, concrete is the most common building material and the second 

most consumed material on Earth after water [1]. Subsequently, its production, use, 

and disposal have global environmental consequences. The production of cement 

alone is responsible for 5-8% of anthropogenic carbon dioxide emissions, which 

exacerbates effects related to global warming and climate change [2]. In addition, 

debris generated by the demolition of concrete structures is a large contributor to 

industrial waste streams. While using recycled concrete in low-performance 

applications is a common practice, the use of crushed recycled concrete as aggregate 

in new structural concrete remains uncommon, primarily due to a lack of confidence 

in mechanical properties [3], [4] and appropriate modeling tools to predict long-term 

performance. Often, the inclusion of recycled aggregates in a concrete mixture is 

justified as contributing to the sustainability of the mixture because it is considered 

a recycled component. Current mixture design methodologies, however, have no 

framework for determining if recycled aggregates (which reduce the physical and 

mechanical properties of concrete) are truly a sustainable edition to a mixture.  

In order to reduce the impact of concrete carbon emissions, which is 

attributable primarily due to the production of cement, many concrete producers 

replace portions of cement content with supplementary cementitious constituents 

(SCMs). SCMs such as fly ash and slag, byproducts form the burning of coal and 

manufacturing of steel, respectively, have been shown to reduce the environmental 

impacts of ordinary portland cement (OPC) concrete [5]–[7]. Additionally, SCMs 

have been shown to improve mechanical and durability properties of concrete with 
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increased replacement of cement [8]–[10]. Although utilized in many mixtures, the 

choice and quantity of SCMs is often determined solely based on impact on strength 

and constituent availability. Furthermore, the negative impacts of SCMs at high 

replacement percentages, namely on concrete workability, are not always 

considered in initial mixture proportioning and are often countered with high 

additions of chemical admixtures, i.e. superplasticizers, that can have high 

embodied impacts. 

While inclusion of recycled aggregates and SCMs have both positive and 

potentially negative consequences, there does not yet exist a holistic decision-

making framework for their inclusion and optimal proportioning in a concrete 

mixture. Tradition methods, like the American Concrete Institute’s (ACI) absolute 

volume method (AVM) addresses both of these constituents as a secondary 

consideration to the target design strength of a concrete mixture. Without 

incorporating the effect of recycled aggregates and SCMs on concrete performance, 

proper use of each constituent is limited to the experience of the concrete producer 

or structural engineer. A better understanding of the impacts of recycled 

aggregates, as well as a new mixture design methodology that holistically considers 

the intricate relationships between the type and proportions of constituent 

materials on concrete performance, would, for the first time in decades, advance 

concrete mixture design methodology.  

This thesis contains two independent studies on the modeling and design of 

concrete mixtures. The first, Chapter 2, is on the development, validation, and 

implementation of a 1D numerical service life prediction model for recycled 

aggregate concrete. The model utilizes the Crank-Nicolson finite difference method 

as a numerical solution to Fick’s Second Law of Diffusion to model chloride ion 
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ingress through 1D media. Time, temperature, and inclusion of SCMs and recycled 

aggregates (up to 100%) on the diffusivity of concrete are considered.  

The second, Chapter 3, presents the development and implementation of a 

novel multi-objective optimization tool for concrete mixture design. Optimal 

concrete mixtures are determined by a multi-objective evolutionary algorithm 

(MOEA) named Borg. Objectives in the model include cost, embodied energy, 

embodied carbon, strength, workability, and durability. The model utilizes 

empirical and statistical relationships to predict desired objectives while considers 

not only the inclusion of recycled aggregates and SCMs, but also the in situ 

sequesterable carbon. Optimal mixtures are considered to be those that minimize 

all objectives with the exception of strength and workability, which are maximized.  

 

The specific goals of the first study were to: 

 Develop a numerical 1D chloride diffusion model that accounts for increased 

diffusivity due to the incorporation of recycled aggregates; 

 Evaluate the importance of climate (i.e., geographic location) and exposure on 

the chloride resistance of recycled aggregate concrete; 

 Elucidate the impact of w/c ratio, initial recycled aggregate chloride 

contamination (from previous exposure), recycled aggregate replacement 

ratio, and aggregate size on the service-life of recycled aggregate concrete; 

 Analyze trade-offs between the use of SCMs, namely fly ash, silica fume, 

metakaolin, and slag, on recycled aggregate concrete service life; 

 Evaluate the capability of fly ash, silica fume, metakaolin and slag to achieve 

a desired (target) service life of 50 years for a recycled aggregate concrete 

exposed to a range of exposure conditions in two geographic locations.  
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The specific goals of the second study were to: 

 Develop a model capable of optimizing concrete mixture designs with regard 

to multiple performance objectives; 

 Calibrate the model with industry data and ensure reasonable, practical 

solutions; 

 Evaluate the model’s ability to produce solution sets for a variety of case 

study applications (e.g., cubic meter, tilt-up wall, column); 

 Elucidate Illustrate, for the first time, decision trade-offs in the design of 

sustainable and resilient concrete mixtures. 

 

 

  



5 

 

 

 

CHAPTER 2     NUMERICAL SERVICE LIFE MODELING OF CHLORIDE 

INDUCED CORROSION IN RECYCLED AGGREGATE CONCRETE 

 

2.1. INTRODUCTION 

Chloride-induced corrosion is one of the most common durability issues 

encountered by reinforced concrete structures. Laboratory and modeling studies 

have consistently shown that the chloride permeability of recycled aggregate 

concrete increases with aggregate replacement ratio due to increases in average 

pore size and total concrete porosity[11]–[15]. Other experimental studies have 

shown that chloride resistance can be further compromised by initial contamination 

of recycled aggregates from previous in-service exposure [16], [17]. 

To improve confidence in the long-term durability of both normal and 

recycled aggregate concrete, engineers require suitable modeling tools to estimate 

the service-life performance of concrete structures in chloride-laden environments. 

Despite being widely used, service-life prediction tools, such as Life-365 [18] and 

STADIUM® [19], do not yet account for the use of recycled aggregates. However, 

several researchers have proposed models to predict chloride transport in recycled 

aggregate concrete, including the authors, who previously proposed the first steady-

state model for chloride diffusion in both contaminated- and non-contaminated 

recycled aggregate concrete. Xiao, et al., [20]used the finite element method to 

conduct a parametric study that elucidated the effects of aggregate replacement 

ratio, shape, boundary conditions, and attached mortar on the effective diffusivity of 

recycled aggregate concrete. Ying, et al., [21] proposed a new model that described 

the effects of recycled aggregate distribution on chloride diffusion. Srubar [17] 
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proposed a steady-state 1D solution to Fick’s Second Law of Diffusion that 

accounted for pre-contamination of recycled aggregates. The model was based on 

dopant-diffusion principles in which a substrate is doped with concentrations of 

another constituent that diffuse throughout the bulk over time. Despite this 

modeling advance for contaminated recycled aggregate concrete, incapability of 

accounting for non-steady-state boundary conditions and time-dependent changes in 

the chloride diffusion coefficient is a limitation of the approach. 

2.1.1. Scope of work 

To address the limitations of the previously proposed steady-state chloride 

diffusion model for reinforced recycled aggregate concrete, this chapter presents the 

formulation, validation, and implementation of a 1D numerical finite difference 

solution to Fick’s Second Law of Diffusion that is used with a simplified cracking 

model to predict time to corrosion-induced cracking in contaminated and non-

contaminated recycled aggregate concrete. The model, which is based on the finite 

difference solution employed in Life-365 [18], accounts for non-steady-state chloride 

boundary conditions, recycled aggregate size, placement, replacement ratio, and 

initial degree of contamination, and effects of water-to-cement (w/c) ratio, time, 

temperature, and supplementary cementitious constituent (SCM) additions on the 

chloride diffusion coefficient. The numerical model is first validated with Life-365 

using normal aggregate concrete and is subsequently enhanced with the most 

current parametric relationships and implemented using a stochastic approach to 

estimate time to corrosion-induced cracking of recycled aggregate concrete in five 

case-study applications, namely structures in a marine splash zone (Zone I), a 

marine spray zone (Zone II), within 800 km of coastline (Zone III), within 1.5 km of 

coastline (Zone IV) and parking structures (Zone V) in Los Angeles, California and 

Anchorage, Alaska. In addition to elucidating the effects of key modeling 
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parameters, the amount and type of SCM required to meet a target service life of 50 

years in each case-study application is investigated herein. 

 

2.2. MODEL DEVELOPMENT 

The time to corrosion-induced cracking was estimated using a two-part 

damage model first proposed by Tuutti [22]. The model considers the total service 

life, ts, of reinforced recycled aggregate concrete the sum of two successive time 

periods, namely, time-to-corrosion-initiation, ti, which is governed by the diffusion of 

chlorides throughout the concrete media, and the time-to-corrosion-cracking, tc. In 

the following section the mathematics of the time-to-corrosion initiation model is 

described based on how it is utilized in the model. Additionally, the effects of 

water/cement ratio (w/c), SCM addition, time and temperature on the diffusion 

coefficient is covered. Boundary conditions that are considered to ramp up with time 

to a max concentration are defined and are the last section in Section 2.2 

pertaining to the time-to-corrosion initiation model. Next, the model and coefficients 

used to predict time to cracking are presented completing the definition of the time-

to-corrosion-cracking model used in this study. The final two sections discuss all of 

the modeling parameters used within the model and the procedural process by 

which all the modules discussed in Section 2.2 are implemented. 

2.2.1. Time-to-corrosion-initiation 

Time-to-corrosion-initiation is a function of the transport properties of the 

concrete, geometry, the boundary conditions that exist for a given environment and 

application, and the required concentration of chlorides to initiate the corrosion of 

the reinforcing steel (i.e., chloride threshold). Corrosion initiation is defined as the 

time that it takes for chlorides from the surrounding environment to penetrate the 

concrete cover and accumulate to a sufficient concentration at the reinforcement 
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surface to initiate corrosion. Chloride concentrations above the chloride threshold 

locally reduce the pH near the reinforcement, which results in depassivation of the 

protective oxide layer and subsequent corrosion of the steel reinforcement.  

Chloride transport can take place due to a number of mechanisms including 

(a) diffusion under the influence of a concentration gradient, (b) absorption due to 

capillary action, (c) migration in an electrical field, and (d) pressure-induced flow 

and wick action when water absorption and water vapor diffusion are combined 

[23]. Ionic diffusion of chloride is the primary mechanism of chloride transport and 

is considered the sole mechanism for the models discussed in this study. It has been 

shown that the relationship between chloride concentration, diffusion coefficient, 

and time in the random molecular motions of chloride ions in concrete can be 

described using Fick’s Second Law of Diffusion [24], a governing second-order 

partial differential equation that is used to characterize the diffusion process: 

 

 
Eq. 2-1 

where C is the chloride concentration (kg/m3), D is the apparent diffusion coefficient 

(m2/s), x is the depth from the exposed concrete surface (m), and t is time (s). 

A finite difference method is employed to numerically solve the diffusion 

equation and estimate time-to-corrosion initiation. The approach is based on the 

well-known Life-365 service-life prediction software [18], which utilizes the Crank-

Nicolson finite difference method to numerically solve the diffusion equation for 

normal aggregate concrete. The Crank-Nicolson approach is implemented here to 

account for limitations of the simple error function solution previously reported by 

Srubar [17], namely its inabilities to account for non-steady state boundary 

conditions and time-dependent changes in chloride diffusion coefficients. 
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According to the method, a 1D representation of the concrete cover depth is 

divided into a finite number of slices, s, and nodes, n, where n = s + 1 as illustrated 

in Figure 2-1. The chloride concentration at an arbitrary node, i, at a timestep of 

t+1 is calculated by the advection-dispersion equation: 

 

 Eq. 2-2 

where the dimensionless Courant-Friedrichs-Lewy (CFL) number: 

 

 

Eq. 2-3 

and where Dt,T is the diffusion coefficient (m2/s) at time, t, and temperature, T, dt is 

the timestep (s), dx is the length of each slice (m), uti is the chloride concentration 

(kg/m3) at the node at time, t. The left side of Eq. 2-2 represents unknown 

concentrations at a future timestep, where the right side of the equation represents 

known values at the current timestep. The surface chloride concentration and the 

time-dependent constituent properties (i.e., diffusion coefficient) of the concrete are 

calculated at the beginning (and held constant) during each timestep. 
 

 

Figure 2-1. Graphical Representation of the 1D numerical Approach 
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To numerically solve the diffusion equation, Eq. 2-2 can be rearranged into 

matrix form: 

 

 Eq. 2-4 

where A and B are dimensionless matrices corresponding to the dimensionless CFL 

number: 

 

   

 

Eq. 2-5 

Given that the chloride diffusivity of recycled aggregates (which primarily 

consist of old mortar) is not similar to the diffusivities of impermeable normal 

aggregates or new cement paste, the diffusion coefficients of recycled aggregates 

were modeled by setting the CFL number, r, in A and B that corresponded with the 

nodes representing the location of the recycled aggregates to a constant that more 

accurately represented the higher chloride diffusivity of recycled aggregates (Da = 

12.5 ± 2.0 x 10-12 m2/s). See Section 2.3 for a summary of modeling parameters. 

The U t matrix defines the chloride concentration of each node throughout the 

cover depth at the present timestep: 
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Eq. 2-6 

The node ut1 corresponds with the chloride concentration at the surface of the 

concrete, which was set at the start of each simulation and, subsequently, at the 

start of each iterative timestep according to the boundary condition models 

described in Section 2.1.5. Pre-contamination of recycled aggregates was modeled 

by setting initial chloride concentration of each node in U t that corresponded with 

the location of a randomly placed recycled aggregate equal to the degree of initial 

aggregate contamination (see Section 2.3). This procedure was performed only for 

the initial timestep, t = 0, allowing the initial chloride contamination to diffuse 

through the bulk. 

Using matrix inversion, Eq. 2-4 can be rearranged to solve for U t+1, a matrix 

of chloride concentrations for each individual slice at the next timestep: 

 

 

Eq. 2-7 

In the iterative numerical simulation, the U t+1 matrix thusly becomes the U t 

matrix for the following timestep, and only the first term in the matrix need be 

updated to reflect the change in the surface boundary condition prior to stepping 

through the next iteration. See Section 2.1.5 for boundary condition modeling. 

Since the Crank-Nicolson finite difference method accounts for both space 

and time, it is possible to included non-steady-state transport properties (i.e., 
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chloride diffusion coefficients) and boundary conditions. Therefore, the effects of (1) 

w/c ratio, (2) SCMs, (3) time, and (4) temperature on the bulk apparent diffusion 

coefficient, (5) time-dependent boundary conditions, and the potential for (6) initial 

contamination of recycled aggregates were included in the modeling methodology. 

Mathematical incorporation of each of these effects is discussed in the following 

sections. 

2.2.2. Effect of w/c ratio 

The w/c ratio is well known to impact chloride diffusion coefficients. Per the 

model proposed in Riding et al., [10], the effect of w/c ratio on the chloride diffusion 

coefficient was described by: 

 

 
Eq. 2-8 

where D28 is the 28-day diffusion coefficient (m2/s), and w/c is in decimal form. 

2.2.3. Effect of SCMs 

Previous research has shown that incorporating SCMs modifies many 

constituent properties of concrete, including chloride resistance. As proposed in [10], 

[25], three SCMs, namely silica fume (SF), fly ash (FA), and metakaolin (MK), were 

considered to affect D28 according to:  

 

 
Eq. 2-9 

 Eq. 2-10 

 Eq. 2-11 

where DSF, DFA, and DMK are the modified 28-day diffusion coefficients due to the 

addition of SF, FA, and MK, respectively. SF, FA, and MK are the percent 

replacement (in whole-number percent) of ordinary portland cement.  
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Additionally, two SCMs, namely FA and SG, alter the decay rate, m, of the 

diffusion coefficient when accounting for time (see Section 0) according to [19]: 

 

 
Eq. 2-12 

where FA and SG are again the whole-number percent replacement of ordinary 

portland cement by FA and SG, respectively.  

SCMs also impact fresh-state workability, set time, and early strength gain of 

concrete when used in excessive amounts [26], [27]. Thus, SCM additions in this 

model were limited to the replacement values listed in Table 2-1 that do not 

require corrective viscosity-modifying or set-accelerating admixtures. 

 

Table 2-1. Maximum replacement ratios of SCMs used in model implementation. 

Allowable Replacement of SCMs 

SCM   Max Replacement   Source 

Silica fume   10%   [26], [28] 

Fly ash   25%   [28], [29] 

Metakaolin   20%   [27], [30] 

Slag   50%   [31], [32] 

 

2.2.4. Effect of time 

The chloride diffusion coefficient is a time-dependent parameter that is well 

known to decrease with time. This reduction is due, in part, to continued cement 

hydration and densification of the concrete beyond the first 28 days, among other 

mechanisms (i.e., carbonation). At each timestep, the bulk diffusivity was 

recalculated according to the following relationship:   
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Eq. 2-13 

where Dt is the time-dependent diffusion coefficient, D28 is either the 28-day 

diffusion coefficient calculated by Eq. 2-8 (without SCM addition) or Eq. 2-9-11(with 

SCM addition), and the reference time, t28, is typically taken as 28 days. As 

discussed, previous work [10] suggests that the chloride diffusion coefficient 

eventually plateaus to a final value. The second term of Eq. 2-13 accounts for this 

plateau effect via Dult, which is the 100-year ultimate diffusion coefficient calculated 

by the first term in Eq. 2-13.  

2.2.5. Effect of temperature 

Temperature is an important consideration for a non-steady-state diffusion 

model as it can change the rate of concrete densification as well as the rate of 

chloride ion diffusion. To account for temperature-dependence of the chloride 

diffusion coefficient at each timestep, a simple Arrhenius relationship was 

implemented in this model [18]: 

 

 

Eq. 2-14 

where Dt,T is the time- and temperature-dependent diffusion coefficient (m2/s) at 

every node at each timestep throughout the cover depth, since temperature 

equilibrium was assumed to be reached immediately in comparison to chloride 

equilibrium, Ua is the activation energy (J/mol), R is the universal gas constant 

(8.3144 J/mol/K), T is the average monthly temperature for the location of interest 

(K), and Tr is the reference temperature equal to 20°C (294.15 K). 
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2.2.6. Chloride boundary condition modeling 

Time-dependent chloride boundary conditions were modeled identically to the 

bilinear ramp-up and plateau models implemented in Life-365. The ramp-up phase 

simulates chloride build-up due to cycles of wetting and drying at the concrete 

surface [18]. The slope of the ramp-up and the subsequent plateau of the chloride 

concentration at the concrete surface depend on both geographic location and 

exposure classification. Table 2-2 summarizes the boundary condition modeling 

parameters used in this study for each of the five exposure classifications. Given 

their similar coastal geographies, the boundary condition modeling parameters 

were identical for all exposure classifications in both geographic locations 

investigated in this study, namely Los Angeles, California (CA) and Anchorage, 

Alaska (AK). 

 

Table 2-2. Parameters for boundary condition modeling from Life-365. 

Zone Exposure Classification  Chloride Concentration 

 
 

 Ramp-up (years) Maximum (wt.%) 

I Marine Splash Zone  1 0.8 

II Marine Spray Zone  10 1 

III Within 800 m of Coastline  15 0.6 

IV Within 1.5 km of Coastline  30 0.6 

V Parking Structure  200 0.8 

 

2.2.7. Time to cracking 

Time-to-cracking is defined as the time from corrosion initiation to stress-

induced cracking of the concrete cover based on the time-dependent formation of 

oxidation products. Time-to-cracking was estimated using a model proposed by Liu 



16 

 

and Weyers [33], which has been used in many studies to predict the cracking in 

reinforced concrete structures in chloride-laden environments [34]–[36]. According 

to the model, tc, can be predicted according to: 

 

 

Eq. 2-15 

where Wcrit is the amount of corrosion products required to cause cracking and kp is 

the rate of rust production. Wcrit can be computed according to the following:  

 

 

Eq. 2-16 

where xc is the concrete cover depth, ρr and ρs are the density of rust and steel, 

respectively, f’t is the tensile strength of concrete (MPa), υ is Poisson’s ratio, tp is the 

thickness of the porous zone surrounding the steel reinforcement, db is the diameter 

of the reinforcement, and Eeff (MPa) is the effective elastic modulus of concrete 

modified by a creep coefficient, . 

 

 

Eq. 2-17 

The variables a and b are the inner and outer diameter of an idealized concrete 

cylinder of expansion (mm), respectively: 

 

 

Eq. 2-18 

 Eq. 2-19 

The amount of corroded steel, Wst, is equal to , where is the ratio 

of the molecular weight of steel and the molecular weight of rust products. The 
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values for depend on the type of corrosion products and typically vary between 

0.523-0.622 [33]. 

 

 
Eq. 2-20 

Finally, the rate of rust production is described: where icorr is the annual 

mean corrosion rate (A/m2). 

2.2.8. Modeling parameters 

Modeling parameters used in all numerical simulations are presented in 

Table 2-3. Means and standard deviations of all physical-based parameters were 

identified from lab or field measurements reported in literature. Deterministic 

parameters are shown as single values. Statistically distributed parameters are 

presented with a mean ± standard deviation. 
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Table 2-3. Fixed modeling parameters. 

Service-life modeling parameter   Value   Units   Refs. 

Time-to-corrosion-initiation              

Cover Thickness, xc   70 ± 5   mm    [37], [38] 

Recycled aggregate diffusion 

coefficient, Da 

  12.5 ± 2.0   kg/m3    [17], [20] 

Chloride threshold, cta   0.7 ± 0.05   kg/m3    [39]–[41] 

              

Time to corrosion cracking              

Tensile strength, f't   3.75 ± 0.5   MPa    [11] 

Modulus of elasticity, E   30 ± 3.0   GPa    [11] 

Phi (creep coefficient), ϕ   2   -    [33] 

Poisson's ratio, ν   0.18   -    [33], [42] 

Density of rust, ρr   3600   kg/m3    [33], [43] 

Density of steel, ρs   7850   kg/m3    [33], [43] 

Thickness of porous region, tp   12.5 ± 0.5   μm    [33], [44] 

Corrosion rate, icorr   2.5 ± 0.5   μA/cm3    [33], [43] 

Alpha, αb   0.523-

0.622 

  -    [33] 

Mild steel rebar diameter, db   9.5   mm     

a Lognormally distributed,              

b Uniformly distributed.             

 

Case study structures in two geographic locations were considered in this 

analysis. For each zone and location, four parameters (see Table 2-4) were varied to 

investigate the effects each had on the expected service life of recycled aggregate 
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concrete. Initially, a default value for each of the four parameters was set as a 

baseline that were chosen to be representative of intermediate conditions or values 

that would be common in practice. Systematic analyses were conducted by varying a 

single parameter per simulation while holding the rest to default values.  

 
Table 2-4. Variable modeling parameters. Default values were held constant in 

simulations where others were varied to elucidate effects on expected service-life of 
recycled aggregate concrete. 

Parameters 

 
Default 

Values 

 Investigated 

Values 

 

Units 
 

Refs.  

   

Water-to-Cement (w/c) Ratio  0.45  0.30 0.35 0.40 0.45  -  [45] 

Aggregate pre-contamination  2.0  1.00 1.50 2.00 2.50  kg/m3  [46] 

Aggregate diameter  9.5  9.50 12.7 19.0 25.4  mm  [47] 

Aggregate replacement ratio  0.5  0.30 0.50 0.70 1.00  -  [45] 

 

2.2.9. Numerical simulation procedure 

In the numerical simulation, first, geographic location and exposure zone 

were defined, which determined average monthly temperature profiles and 

parameters for the chloride boundary condition modeling (Table 2-2), respectively. 

This study explicitly investigated two locations, namely Los Angeles, CA and 

Anchorage, AK, whose average monthly temperature profiles are shown in  

Figure 2-2.  
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Figure 2-2. Average monthly temperature profiles for Los Angeles, CA and 

Anchorage, AK. 

 

Monte Carlo analysis was used to incorporate uncertainty to account for in-

field variation in concrete cover depth, chloride threshold, and constituent 

properties via a simple bootstrap method similarly employed in [37] in which 

modeling parameters that were statistically distributed were first sampled from 

assumed distributions for each simulation. A normal distribution was assumed for 

all parameters unless otherwise noted. Therefore, once geographic location and zone 

were defined, the fixed time-to-corrosion-initiation modeling parameters (Table 

2-2) were sampled from their respective statistical distributions, along with 

deterministic variables that were explicitly under investigation and directly defined 

by the user (Table 2-4). Aggregate placement was then randomly generated 

throughout the cover depth by (1) dividing the cover depth by maximum aggregate 

size into aggregate zones (to the nearest lower-bound integer) and (2) randomly 

placing an aggregate within each of those zones assuming a uniform distribution of 

placement while ensuring no aggregate overlap. A statistical test was used to 
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designate aggregates as normal or recycled aggregates, according to the 

replacement ratio explicitly defined by the user (Table 2-3). As discussed in 

Section 2.2.1, the CFL number for recycled aggregates was fixed for the entire 

simulation for those nodes that corresponded to the placement of recycled 

aggregates. Else, the chloride diffusion coefficient was used for each node 

throughout the cover depth, including those nodes corresponding to normal 

aggregates, as similarly employed by Life-365. 

The model then calculated the w/c- and SCM-modified baseline (D28) 

diffusion coefficient (Eq. 2-8-11). At each subsequent timestep, a new time- and 

temperature-dependent chloride diffusion coefficient was determined according to 

Eq. 2-13 and Eq. 2-14, respectively, and the new chloride distribution throughout 

the cover depth was calculated for the next timestep according to matrix inversion 

(Eq. 2-7). Timesteps were taken to be one-month increments, and the cover was 

discretized into 300 equal slices (s=300, n=301). After each timestep, if the 

concentration at the cover depth was greater than or equal to the randomly 

generated chloride threshold from Table 2-3, corrosion initiation was assumed to 

have occurred for that simulation, and the model would store this time as time-to-

corrosion-initiation, ti. 

Once time-to-corrosion-initiation was calculated, time-to-cracking, tc was 

computed directly using Eq. 2-15 with randomly sampled inputs from parameters 

listed in Table 2-3. Each computed service life, ts = ti + tc, was then stored and the 

stochastic process was repeated. By an analysis of variance, a total of 20,000 Monte 

Carlo simulations were required to yield statistically significant predictions for 

expected service life of recycled aggregate concrete. 
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2.3. RESULTS AND DISCUSSION 

Results in this chapter are broken into 8 subsections. The first section is 

devoted to the validation of the normal aggregate concrete model and the impact of 

the more updated empirical relationships, particularly those discussed in 2.2.3. 

climatic effects, namely, temperature are presented next. The proceeding four 

sections present results of the stochastic model used to identify impacts of the 

selected model parameters discussed in 2.2.8. Finally, the impact of fixed SCM 

replacement is considered follow by an investigation into the SCM replacement 

needed for recycled aggregate mix to attain a 50-year service life. 

2.3.1. Model validation 

The proposed numerical model was first validated via comparison with Life-

365 using normal aggregate concrete with the parameters listed in Table 2-5. 

Given that Life-365 has no stochastic capability, comparisons were made using 

deterministic values. For validation purposes, results were obtained for both a 

numerical model that employed an identical input for a constant decay factor (m = 

0.2) that is used in the current version of Life-365 [18] (Numerical Model A) and the 

numerical model proposed herein (Numerical Model B) that included the most 

recent relationships for m (Eq. 2-12), the diffusion coefficient plateau (Eq. 2-13), and 

the effects of w/c and SCMs on D28, as presented in Section 2.2. 

The results of the model comparisons are shown in Table 2-6. The results 

indicated that the numerical model was formulated identically to the numerical 

model used by Life-365. Minor differences (≤0.5%) between the results obtained by 

Numerical Model A and Life-365 were determined to be a result of Life-365 

accounting for leap years. The differences between Numerical Model B and Life-365 

are attributable to the updated mathematical relationships for m and chloride 

diffusion coefficients, which are, incidentally, less conservative than the equations 
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used in the current version of Life-365. Thus, the results obtained using Numerical 

Model B were used for the remainder of the analyses presented in this work. 

 

Table 2-5. Input parameters for model validation and comparison with Life-365. 

Thickness 

(mm) 

Cover Depth 

(mm) 
Location 

D28 

(m2/s) 

Chloride 

Threshold (%) 

500 70 mm Los Angeles, CA 1.1 x 10-11 0.05 

 

Table 2-6. Service-life prediction model validation and comparison with Life-365. 

Zone 
Life-365 

(Years) 

Numerical Model A 

(Years) 

Mode A 

Difference 

 Numerical Model B 

(Years) 

I 4.6 4.6 0.0%  5.8 

II 8.6 8.6 0.0%  10.4 

III 12.9 12.9 0.0%  15.7 

IV 18.2 18.3 0.5%  22.1 

V 45.1 45.3 0.4%  53 

 

2.3.2. Impact of climate 

To establish a normal aggregate concrete baseline, the effect of climate, 

namely average monthly temperature, on time-to-cracking of normal aggregate 

concrete (w/c=0.45) in all exposure classifications is elucidated by the results 

presented in Figure 2-3. Averaged data correspond to a 50% likelihood of corrosion-

induced cracking as determined by the stochastic approach implemented by the 

numerical simulation. For example, in Anchorage, AK in Zone IV, there is a 50% 

likelihood that normal aggregate concrete will exhibit corrosion-induced cracking in 
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30.2 years, while, in Los Angeles, CA there is an identical likelihood that cracking 

will occur in 19.9 years for normal aggregate concrete placed in the same zone. 

As anticipated, both location and chloride exposure conditions affect the 

expected service life of reinforced concrete. The service life of identical normal 

aggregate concretes exposed to the same boundary conditions is longer in colder 

climates (AK) than in warmer climates (CA) due to expected high temperature-

dependent increases in the chloride diffusion coefficient. Similarly, as expected, 

more aggressive chloride exposure conditions in Zones I and II result in a reduced 

anticipated service life of normal aggregate concrete in comparison to lower chloride 

exposure conditions of Zones III, IV, and V in both geographic locations. 

The results also illustrate that temperature-related increases in expected 

service life are more pronounced as chloride exposure conditions worsen. For 

instance, concrete placed in Zone I in Anchorage, AK exhibits a 65% increase in 

expected service life compared to the same concrete placed in Zone I in Los Angeles, 

CA. This temperature-related benefit decreases to 44% in Zone 5 exposure 

conditions, suggesting a more significant role of average temperature in extending 

the service life of concrete placed in high-exposure conditions. 
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Figure 2-3. Baseline analysis. Temperature effects on expected service life of 

normal aggregate concrete in five exposure classifications in Anchorage, AK and Los 

Angeles, CA. 

 

2.3.3. Impact of initial aggregate contamination 

The effect of initial aggregate contamination on the service-life of recycled 

aggregate concrete in chloride-laden environments is shown in Figure 2-4. The 

results were obtained from an analysis that used the default input parameters for 

recycled aggregate concrete listed in Table 2-4, namely a w/c = 0.45, aggregate 

replacement ratio of 0.5, and an aggregate diameter of 9.5 mm, and the initial 

aggregate contamination level was varied in the model by each of the incremental 

values in Table 2-4. Averaged data correspond to a 50% likelihood of corrosion-

induced cracking as determined by the stochastic approach implemented by the 

numerical simulation.  

As in previous work [17], the results indicate that, while all concretes exhibit 

reductions in service life from the normal aggregate baselines shown in Figure 2-4, 

increases in initial aggregate contamination from 1.0-2.5 kg/m3 result in little 
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variation in expected service life of recycled aggregate concrete. A 50% aggregate 

replacement and initial contamination decreased the service life of the recycled 

aggregate concretes by a maximum of 41% (in Los Angeles, CA) and a minimum of 

23% (in Anchorage, AK) compared to the baseline case (Figure 2-3) for the recycled 

aggregate concretes and ranges of initial aggregate contamination that investigated 

in this study. Within each location and exposure condition, the difference between 

the lowest and highest contamination values decreased the expected service life by 

a maximum of 3.6% in Los Angeles, CA and 11.5% in Anchorage, AK, respectively. 

These results, however, were not statistically significant. 

 

 

Figure 2-4. Effect of initial aggregate contamination (kg/m3) on expected service 

life of recycled aggregate concrete in five exposure classifications in Anchorage, AK 

and Los Angeles, CA. 

 

While these results are specific to a recycled aggregate concrete with a 50% 
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contamination is minor in comparison to location and exposure conditions. Srubar 

[17] found that the effect of aggregate pre-contamination on expected time to 

cracking was less exaggerated in the presence of more aggressive external chlorides. 

These results also ascertain that external boundary conditions have a greater effect 

on in-service durability than do residual aggregate chloride contamination. Such 

findings suggest that certain levels of aggregate chloride contamination may be 

permissible in the design of recycled aggregate concrete structures in chloride-laden 

environments. 

2.3.4. Impact of recycled aggregate size 

The effect of aggregate size on the anticipated service-life of recycled 

aggregate concrete is shown in Figure 2-5. The results were obtained from an 

analysis that used the default input parameters for recycled aggregate concrete 

listed in Table 2-4, including an aggregate replacement ratio of 50% and an initial 

aggregate contamination of 2.0 kg/m3, which was assumed to ensure that 

approximately the same number and type of contaminated aggregate would be in 

each simulation. Aggregate diameter was varied in the model by each of the 

incremental values listed in Table 2-4. Averaged data correspond to a 50% 

likelihood of corrosion-induced cracking as determined by the stochastic approach 

implemented by the numerical simulation.  
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Figure 2-5. Effect of aggregate diameter (mm) on expected service life of recycled 

aggregate concrete in five exposure classifications in Anchorage, AK and Los 

Angeles, CA. 

 

Similar to the effects of initial aggregate contamination, the results show 

that, despite initial reductions in expected service life compared to normal 

aggregate concrete, changes in aggregate diameter exhibit a negligible effect on the 

service life of contaminated recycled aggregate concrete. In contrast to the normal 

aggregate baseline case in Figure 2-3, the expected service life of recycled 

aggregate concretes decreased by a maximum of 42% and a minimum of 25%. 

However, this reduction was uniform across all exposure classifications and ranges 

of aggregate diameter investigated herein. The slight increase in service life 

observed for the 19 mm aggregates is due to the partitioning of the cover depth in 

the numerical model and a maximum placement of three instead of four aggregates 

in series. These findings further suggest that aggregate size does not impart a 

significant effect on the durability of recycled aggregate concrete structures, 

especially those in non-extreme chloride exposure conditions.   
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2.3.5. Impact of recycled aggregate replacement ratio 

The effect of aggregate replacement ratio on the anticipated service-life of 

recycled aggregate concrete is shown in Figure 2-6. The results were obtained from 

an analysis that used the default input parameters for recycled aggregate concrete 

listed in Table 2-4, including an initial aggregate contamination level of 2.0 kg/m3. 

Aggregate replacement ratios were varied in the model from 30-100% by the 

incremental values listed in Table 2-4. A 0% replacement was not investigated, 

since such an analysis already corresponded to the normal aggregate concrete 

baseline case presented in Figure 2-3. Averaged data correspond to a 50% 

likelihood of corrosion-induced cracking as determined by the stochastic approach 

implemented by the numerical simulation.  

 

 

Figure 2-6. Effect of recycled aggregate replacement ratio on expected service life 

of recycled aggregate concrete in five exposure classifications in Anchorage, AK and 

Los Angeles, CA. 
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As anticipated, the results show that an increase in aggregate replacement 

ratio corresponds with a decrease in anticipated service life. Compared to the 

baseline case (Figure 2-3), increasing the replacement ratio from 30% to 100% 

leads to a minimum and maximum reduction in expected service life of 18% (in Los 

Angeles, CA) and 68% (in Anchorage, AK), respectively. Within each exposure 

classification, the reductions are most pronounced in high-exposure conditions. For 

example, expected service life decreased 57% with increases in recycled aggregate 

replacement ratios from 30% to 100% in tidal zones (Zone I) in Anchorage, AK. In a 

low-exposure application (Zone V), expected service life of recycled aggregate 

concrete with identical recycled aggregate replacement ratios decreased only 22% in 

Los Angeles, CA. Previous research on the effect of recycled aggregate replacement 

ratio on mechanical and durability properties of concrete has indicated that at all 

levels of replacement are admissible, depending on the desired application, design 

life, and anticipated service life of recycled aggregate concrete [48], [49]. The results 

from this analysis further substantiate this conclusion, given the range (6.2-45.5 

years) of expected service life for recycled aggregate concrete. For some structural 

applications with design lives greater than 30 years, medium levels of pre-

contamination (2.0 kg/m3) and high aggregate replacement ratios may be acceptable 

in some applications where mild levels of surface chloride exposure are anticipated. 

However, further analyses would need to be conducted to reveal absolute limits of 

aggregate replacement ratios and initial contamination given specific design 

scenarios in certain geographic locations. 

2.3.6. Impact of w/c ratio 

Figure 2-7 shows the effects of w/c ratio on the expected service life of 

recycled aggregate concrete. Results were obtained from an analysis that also used 

the default input parameters for recycled aggregate concrete listed in Table 2-4, 
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including an aggregate replacement ratio of 50%, a constant aggregate diameter 

(9.5 mm), and an initial aggregate chloride contamination of 2.0 kg/m3. For this 

analysis, the w/c ratio was varied in the model by the incremental values listed in 

Table 2-4 to elucidate the effects of w/c ratio on expected service life. Averaged 

data correspond to a 50% likelihood of corrosion-induced cracking as determined by 

the stochastic approach implemented by the numerical simulation.  

As expected, an increase in w/c ratio results in a decrease in expected service 

life of recycled aggregate concrete in both locations across all exposure 

classifications investigated in this study. Increases in w/c ratio are well known to 

affect total porosity, chloride permeability, and, thus, expected service life of 

reinforced concrete in chloride-laden environments [11]–[13], [46], [50]. Increasing 

the w/c from 0.30 to 0.45 results in a minimum and maximum reduction in 

expected service life of 9% (in Los Angeles, CA) and 38% (in Anchorage, AK), 

respectively, in comparison to the normal aggregate concrete baseline case (see 

Figure 2-3). This result can be attributed to even higher porosities and lower 

chloride resistances expected of recycled aggregate concrete in comparison to 

normal aggregate concrete.  

Similar to increases in aggregate replacement ratio, the reductions in 

expected service life due to increases in w/c ratio are most pronounced in high-

exposure environments. For instance, Figure 2-7 illustrates that the expected 

service life of recycled aggregate concrete in Anchorage, AK decreases 29% and 22% 

in Zone I and Zone V, respectively, when w/c is varied from 0.30-0.45. Similar, yet 

less severe, reductions in Zone I (20%) and Zone V (18%) are observed for Los 

Angeles, CA. Together with the previously discussed results, these data suggest 

that, in addition to location, anticipated chloride exposure, and aggregate 

replacement ratio, w/c ratio remains an important durability parameter in 
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estimating the service life of recycled aggregate concrete in chloride-laden 

environments. 

 

 

Figure 2-7. Effect of w/c ratio expected service life of recycled aggregate concrete in 

five exposure classifications in Anchorage, AK and Los Angeles, CA. 
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for the comparative simulations and modeled according to the relationships 
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purposes so that no SCM would be near its maximum advisable replacement limit 

set forth in Table 2-1. Averaged data correspond to a 50% likelihood of corrosion-

induced cracking as determined by the stochastic approach implemented by the 

numerical simulation.  

 

Figure 2-8. Effect of 5% SCM replacement (by mass) on expected service life of 

recycled aggregate concrete five exposure classifications in comparison to the 

default case (DC). 

 

The results in Figure 2-8reiterate that the inclusion of recycled aggregates 

in the default case scenario (DC) reduce chloride resistance and, subsequently, 

expected service life in contrast to normal aggregate concrete (Figure 2-3). 

However, the results also indicate that additions of SCMs improve the performance 

of recycled aggregate concrete in chloride-laden environments compared to the 

recycled aggregate DC baseline. Extensive experimental research has previously 

shown that the inclusion of supplementary cementitious constituents (SCMs) 

improves concrete mechanical properties and resistance to chloride ingress [9], [10]. 
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These modeling results also substantiate that SCMs improve the expected service 

life of recycled aggregate concrete.  

 According to Figure 2-8, even with a moderate replacement (5%) of ordinary 

cement, SCMs can overcome the initial reduction in service life that was expected of 

recycled aggregate concrete and, in some cases, supersede the service life of non-

SCM normal aggregate concrete. For example, the expected service life of recycled 

aggregate concrete with 5% FA and 5% SF in Anchorage, AK exceed that of normal 

aggregate concrete (Figure 2-3) by 11-17% and 36-58%, respectively in Zones I-V. 

Similar, yet less substantial, increases in service life are observed for 5% 

replacements of FA and SF in all Zones in Los Angeles, CA.  

The results also illustrate that SF and FA are more effective than metakaolin 

and slag in extending the anticipated service life of recycled aggregate concrete in 

small additions. This result can be attributed to high silica contents and, hence, 

increased pozzolanic reactivity, of silica fume and fly ash in comparison to slag and 

metakaolin. The effect of the pozzolanic reaction, namely the reaction between 

soluble silica and calcium hydroxide that produces dense calcium-silicate-hydrate, 

on the bulk transport properties is taken into account in the modeling by the 

modifying the effective diffusion coefficients calculated according to Eq. 2-9-11. 

In addition, the data suggest that benefits of 5% SCM additions on the 

expected service life of recycled aggregate concrete are both location- and 

application-dependent. With 157% and 96% increases in expected service life over 

the recycled aggregate concrete DC scenario, the use of 5% SF resulted in the most 

benefit in Zone I and Zone II applications in Anchorage, AK and Los Angeles, CA, 

respectively. The use of 5% FA, however, resulted in a maximum of 87% and 61% 

increases in expected service life over the recycled aggregate concrete DC scenario 

in Zone I and Zone IV applications in Anchorage, AK and Los Angeles, CA, 
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respectively. Such results demonstrate the location- and application-dependencies of 

the effects that different SCMs have on the expected service life of recycled 

aggregate concrete. 

2.3.8. SCM addition for 50-year service life 

Previous experimental research has shown that the addition of SCMs in 

recycled aggregate concrete could result in concrete strength and durability 

performance equivalent to that of normal aggregate concrete [51], [52]. However, 

the exact replacements needed for equal performance is uncertain due to the high 

variability in recycled aggregate quality and SCM chemistries investigated by these 

studies.  

 To better estimate required SCM replacements for equivalent service life 

performance, the data shown in Table 2-7 are the result of a hypothetical analysis 

that used the default input parameters for recycled aggregate concrete (DC) listed 

in Table 2-4 to investigate the type and quantity of SCMs required to reach a 

target 50-year design life in the five case-study applications in both Los Angeles, CA 

and Anchorage, AK. The model was implemented deterministically (i.e., no 

statistical sampling) utilizing a fixed aggregate position based on the specified 

aggregate replacement ratio (50%), aggregate size (9.5 mm), degree of initial 

aggregate contamination (2.0 kg/m3), and w/c ratio (0.45).  

The data in Table 2-7 show the difference in performance among the four 

SCMs investigated herein. All values reported as N/A indicate that required SCM 

replacements exceeded 100% and were, thus, unattainable. The other values are 

hypothetical results that were not bound by the practical limitations listed in Table 

2-1. Lower values required for identical applications in Anchorage, AK in 

comparison to Los Angeles, CA are again indicative of the effect of geographic 

location and elevated temperatures on exacerbating chloride diffusivity. Thus, 
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higher SCM replacement percentages are required to meet the target design life for 

the same application in warmer climates. 

 

Table 2-7. Hypothetical type and quantity of SCM (%) replacements needed to 

reach target 50-year service life in five exposure classifications in Anchorage, AK 

and Los Angeles, CA. 

  SF FA SG MK 

Zone AK LA AK LA AK LA AK LA 

I N/A N/A 16   25   70   94   N/A N/A 

II N/A N/A 14   23   61   75   N/A N/A 

III 34   N/A 11   18   52   72   N/A N/A 

IV 12   N/A 9   14   41   61   N/A N/A 

V 1   3   3   7   6   21   5   26   

 

The results suggest that FA and SG, not SF or MK, are most beneficial in 

increasing the expected service life of the recycled aggregate concrete DC scenario 

to 50 years, especially in high-exposure environments. According to the results, a 

replacement of 16% and 25% FA would reach a target design life of 50 years in Zone 

I exposure classifications in Anchorage, AK and Los Angeles, CA, respectively. Both 

replacement percentages of FA are well within the practical limits set forth in 

Table 2-1. Similarly, the percent replacements for SG are within reason, especially 

for Zone III-V exposure classifications in Anchorage, AK. Neither MK nor SF were 

as effective at improving the service life of the recycled aggregate concrete 

investigated in this particular analysis using the default parameters listed in Table 

2-4. However, practical percent replacements of MK or SF could be achievable in 
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extending the service life of other recycled aggregate concretes in high-exposure 

environments with different design parameters. 

 

2.4. CONCLUSIONS 

This work presented the development, validation, and implementation of a 

1D numerical service-life model for reinforced recycled aggregate concrete, which 

overcomes limitations of current service-life prediction models, including inabilities 

to account for fluctuating boundary conditions, time- and temperature-dependent 

chloride diffusion coefficients, and pre-contaminated recycled aggregates. Using a 

probabilistic approach, the model was first validated with the service-life prediction 

software Life-365 and subsequently enhanced and employed to predict the time to 

corrosion-induced cracking of recycled aggregate concrete using aggregates (i) with 

and (ii) without initial chloride contamination from previous in-service exposure. 

Additionally, the impacts of location were investigated by temperature effects and 

variation of exposure conditions, namely structures located in a marine splash zone 

(Zone I), a marine spray zone (Zone II), within 800 km of coastline (Zone III), within 

1.5 km of coastline (Zone IV) and parking structures (Zone V) in Los Angeles, 

California and Anchorage, Alaska. The effects of (a) degree of initial aggregate 

contamination, (b) aggregate size, (c) aggregate replacement ratio, and (d) water-to-

cement (w/c) ratio were investigated, as were the effects of (e) including 

supplementary cementitious constituents (SCMs), namely fly ash, slag, silica fume 

and metakaolin, were included in the model formulation. 

The results from the subsequent analyses illustrate that, similar to normal 

aggregate concrete, exposure conditions, namely temperature and chloride 

exposure, exhibit the greatest impact on expected service life of recycled aggregate 

concrete. Results also show that increases in both aggregate replacement ratio and 
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w/c ratio decrease expected service life. However, aggregate size and initial 

aggregate contamination levels were not found to affect expected service life in the 

applications and exposure conditions investigated herein. In regard to SCMs it was 

found that silica fume exhibited the most noticeable effect at low-percent 

replacements, while practical additions of fly ash and slag were the most viable in 

achieving a desired service life of 50 years in all five exposure cases for the recycled 

aggregate concrete investigated in this study.  

The results indicate that moderate- to high-replacement ratios and some 

level of initial aggregate contamination may be permissible in the design of recycled 

aggregate concrete structures in chloride-laden environments and that the size of 

contaminated aggregates should not necessarily take priority as a durability design 

consideration. Analyzing the use of SCMs elucidated their importance, especially fly 

ash, if recycled aggregate concrete is to be used in applications with decades-long 

exposure to chlorides. Finally, the results indicate that recycled aggregate concrete 

appears to be best suited for cooler climates where service life can be prolonged 

simply through the retardation effect that lower temperatures have on chloride 

ingress. 

This chapter broadly indicates that the quality and quantity of constituents 

used in a concrete mixture greatly impact the durability of the resulting 

constituent. This chapter indicates that the key to ensuring a desired service life for 

concrete does not involve optimizing any one parameter. Instead, it eludes to the 

idea that, although some parameters have greater impacts than others, there is no 

ideal solution for all applications. Indeed, as Table 2-7 indicates there may be 

multiple acceptable, useful and potentially optimal solutions to a concrete with 

recycled aggregates. This potential for recycled aggregate use as well as other trade-

offs are explored in Chapter 3.   
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CHAPTER 3     DESIGN OPTIMIZATION OF SUSTAINABLE AND DURABLE 

CONCRETE MIXTURES 

 

Results of Chapter 2 indicated that concrete mixtures are highly susceptible 

to reduced durability performance with the inclusion of recycled aggregates. 

Additionally, location was shown to play a significant role in mixture design to 

ensure adequate durability. However, durability (i.e., anticipated service life) was 

the only factor in justifying the benefits of a non-recycled aggregate mixture over 

those with recycled aggregates. Considerations for cost, environmental impacts, 

strength, regional availability, and workability (among other important 

considerations) were not included. Without a holistic approach to evaluate the 

impact of concrete constituents on performance, a mixture design that optimally 

balances multiple competing design considerations is not achievable.  

Over the past century, useful mathematical relationships have been 

developed by previous researchers that link concrete mixture proportions to fresh- 

and hardened-state properties, such as strength, workability, and durability. 

Combining these relationships to design a single mixture enables a more holistic—

and optimal—design process than traditional mixture design methods (i.e., Absolute 

Volume Method).  

The design of optimal concrete mixtures inherently involves the resolution of 

conflicting performance goals, i.e. strength and cost, which leads to no single 

optimal design, but a suite of possible, equally viable, alternatives. Thus, the utility 

of an optimal mixture design tool lies in its ability to narrow the set of potential 

mixtures to only the most optimal choices, which can then be prioritized by the 
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designer according to individual preferences. Such a design process could not only 

save on time, but also increase the efficiency and diversity of concrete mixtures 

utilized by industry. 

 

3.1. INTRODUCTION 

While concrete mixture design optimization has been utilized for single 

objective problems, the implementation of comprehensive multi-objective models is 

new and unexplored. Existing models have optimized, at most, three variables 

(commonly referred to as objectives) at a time [53], [54]. Such models do not 

consider embodied impacts, such as embodied carbon and embodied energy, in 

conjunction with durability and performance objectives, such as chloride 

permeability, strength, cost, and workability. Work by Liu, et al., [55] conducted 

within a factorial design of experiments is one of the most holistic attempts at 

mixture design optimization, as it considered optimizing five objectives: strength, 

freeze thaw durability, embodied energy, embodied carbon, and chloride durability. 

However, due to the limited capabilities of experimental factorial design, only nine 

optimal concrete mixtures were produced, and no useful relationships were provided 

to aid in the development of addition optimal mixes without subsequent 

experimentation.  

Although there have been attempts at designing optimal concrete mixtures 

considering multiple criteria, existing methods, models, and mixes are either (a) not 

holistic in their approach or (b) limited in their applicable scope and thus not useful 

beyond a very limited application or data set.  Previous work on multi-objective 

optimal mixture design models, however, indicates the potential and desire for such 

work. By taking a holistic and unified approach this work aims to improve upon 
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previous concrete mixture design optimization methods and proposes an 

alternative, holistic framework to traditional mixture design methodologies. 

3.1.1. Scope of work 

To address the limitations of the previously proposed methodologies for 

multi-objective optimization of concrete mixtures, this chapter presents a new 

methodology that combines multi-objective evolutionary algorithm (MOEA)-based 

search with a set of property prediction models, namely existing empirical and 

numerical relationships that link concrete mixture proportions to strength, 

workability, chloride resistance, freeze-thaw resistance, and sequesterable carbon 

dioxide. The model, which operates within the Borg MOEA framework [56], is 

implemented in Python and follows a similar formulation to prior Borg applications 

[57], [58]. In a new application, Borg is demonstrated herein to produce a suite of 

optimized mixture design solutions that elucidate tradeoffs of competing objectives.  

The model defines six objective functions for strength, workability, cover 

depth (a chloride-induced corrosion durability parameter), embodied energy, 

embodied carbon, and cost that are used by the MOEA to evaluate optimal solution 

sets. Calibration of the modeling approach was performed by comparing results to 

industry data in order to ensure that solutions from the model are reasonable and 

realistic. Chloride transport is modeled via implementation of either a simplified 

error function solution [38] or the 1D numerical finite difference solution, as 

discussed in Chapter 2. Concrete mixture design solution sets are produced for 

three case study applications, namely a cubic meter of concrete, a tilt-up wall, and a 

column, which elucidate, for the first time, the complex tradeoffs that underpin the 

design and proportioning of concrete mixtures.  
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3.2. LITURATURE REVIEW 

A literature review was conducted to understand the current state of concrete 

mixture design as well as the history and progress made in concrete mixture design 

optimization. First, in Section 3.2.1, the current state and limitations of traditional 

mix design methodology are discussed. Subsequently, in Section 3.2.2, previous 

studies on optimal mix design are investigated. These include experimental 

(3.2.2.1), analytical (3.2.2.2), statistical (3.2.2.3) and semi-experimental (3.2.2.4) 

methods and their progress toward a holistic multi-objective concrete mixture 

design methodology. 

3.2.1. Concrete mixture design 

Conventional concrete mixture design first establishes performance 

requirements, which typically include strength, durability, fresh-state properties 

(i.e., workability) and any special requirements based on application and design 

(i.e., recycled content). The proportions of constituents (i.e., cement, fine aggregate, 

coarse aggregate, water) are subsequently chosen to ensure required performance. 

Workability is key for fresh-state performance, as it governs the mixture’s ability to 

be pumped, placed, and compacted. Similarly, compressive strength is often of 

primary concern for hardened-state performance of concrete mixtures [59]. While 

existing mixture design methodologies are different in how they approach informing 

their mixture design procedure, all utilize empirically derived relationships, charts, 

and graphs experiments. Economic cost is not addressed directly in current mixture 

design methodologies, but rather through the performance requirements and 

capability of the concrete batch facility to source constituents at a desired price. 

Although concrete is known to have significant environmental impacts [1], [60], 

[61], primarily as a result of cement production, existing mixture design methods do 

not consider detailed cost accounting of the energy or carbon of a mixture. This 
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section discusses the current state of concrete mixture design in the United States, 

as well as existing studies and methods for designing optimal concrete mixtures. 

3.2.1.1. Current State 

The first unified method of mixture design was established by the American 

Concrete Institute (ACI) Committee – 211 [62]. This method has helped to inform 

all other methods, such as the British Mixture design method and Bureau of Indian 

Standards method [63]. To this day in the United States, the primary guide is still 

produced by the Portland Cement Association (PCA) and ACI and constitutes two 

main methods. The first method, a prescriptive approach, prescribes allowable 

ranges of constituent proportions that can achieve set performance goals and takes 

two forms. One form is based on the estimation of a desired concrete weight per unit 

volume while the second form is based on calculation of an absolute volume of 

concrete ingredients (often called the absolute volume method, AVM). Conversely 

the second method, a performance-based approach, allows the designer to propose 

any proportioning that meets the performance goals. This approach requires 

experimental testing to provide data that ensure performance goals are met. Either 

method often relies on a time-intensive, trial-and-error approach, where mixtures 

must be tested following design and re-design, as necessary. This bottom-up 

approach leads to the design of a single acceptable mixture, rather than a truly 

optimal one that accounts for multiple design considerations. Throughout the past 

several decades. this lengthy, iterative methodology that governs the design and 

control of concrete mixtures in the United States has remained fundamentally 

unchanged [64], [65].  

3.2.1.2. Limitations of Existing Models 

As previously mentioned, most countries can trace their mixture design 

standards back to the ACI methodology. This common heritage has resulted in a 
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uniform and unchanged landscape of concrete mixture design. Thus, all standards 

and countries suffer from a similar problem when designing concrete mixtures – the 

inability to efficiently optimize multiple, often competing, performance objectives. 

The AVM, for example, has no provisions to advise increases in strength beyond 

what was prescribed by the structural engineer to ensure sufficient durability to 

chloride ingress and carbonation. Similarly, little information is provided in the 

mixture design methodologies to tie SCM addition to durability, strength, or 

workability. In general, a low water-to-cement ratio (w/c) acts as the indicator of 

strength and durability, while workability is tied to air content, aggregate 

gradation, and admixture additions [65]. Although relationships for many of these 

behaviors still need to be refined, current methods do not quantify or evaluate 

tradeoffs between competing properties (i.e., air content, strength). Rather, current 

methodologies prescribe bounds on mixture-component content, within which no 

problems are expected to arise for the designer (i.e., minimum w/c ratio, minimum 

air content). 

Although the accounting of embodied impacts (i.e., environmental costs) for 

constituents is a relatively new science [66], carbon and energy accounting is 

beginning to affect concrete mixture design. Given that concrete production is one of 

the most energy and resource-intensive processes in construction  and that concrete 

is the second most consumed constituent on Earth [1], it is increasingly vital for 

modern concrete mixture design methods to take environmental impacts into 

account. Environmental impacts in this study are measured in primary energy use 

[MJ/kg] and global warming potential in equivalent carbon-dioxide [kgCO2e/kg]. 

However, other environmental metrics and indicators, such as eutrophication 

potential, ozone depletion potential, smog potential and acidification potential, 
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specified by ISO standards [66], are increasingly used to evaluate environmental 

performances of products and processes. 

Traditional mixture design methodologies do little to address innovative and 

high performance mixture additives or design criteria. For example, no guidance is 

provided for including impacts of recycled aggregate (of any type) in the mixture 

process by ACI. Similar issues arise when using various admixtures not covered by 

the narrow selection that ACI includes in their mixture design process. Current 

methods also lack capability for designing new and increasingly prevalent forms of 

concrete. Mixtures that are designed to be self-consolidating or high-performance 

exist outside the data set used to inform the ACI design methods and, thus, cannot 

utilize the ACI prescriptive procedure in their mixture formulation. Rather, they 

must be designed following the performance-based, trial and error approach. These 

mixtures are designed through experimental optimization, since such 

computational optimization is not compatible with the linear and highly iterative 

process of the ACI method.  

3.2.2. Concrete mixture design optimization methods 

Although methods like those proposed by ACI and PCA are often used to 

design concrete mixtures, there are other tools that exist to aid design. Academia 

and industry have proposed a variety of amendments to (and replacements for) 

methods like the AVM [54], [67], [68], in acknowledgment of the limitations 

discussed previously. The literature reviewed in this section explicitly focuses on 

optimization techniques that have been proposed to best inform this work on 

designing concrete mixtures using a many-objective optimization approach.  

In general, concrete mixture design optimization methods can be separated 

into four classifications [69]: experimental, analytical, statistical and semi-

experimental. Each is further discussed in more detail. 
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3.2.2.1. Experimental Methods 

Experimental, or parametric, methods involve an extensive series of 

experimental tests. Mixture designs that are formulated using this parametric 

analysis approach are dependent on two main parameters: (1) the size and depth of 

the investigated sample size (number of cylinders tested, parameters varied, 

mixture design goal variation) and (2) the type, form, and availability of local 

constituents used in the mixture [70], [71]. Improper design of these parameters 

might cause the performance characterizations of these mixtures to not be 

generalizable to other design scenarios. Moreover, even though this method is time- 

and constituent-intensive it often leads to a limited set of optimal mixture designs 

[72], [73].  

3.2.2.2. Analytical 

Analytical optimization methods can be very efficient at modeling phenomena 

but are often complicated to derive and can oversimplify the behavior of a system. 

Analytical methods for application in concrete mixture design are based on 

fundamental elements of math (i.e., geometry) that aim to predict a mixture 

parameter or design a whole mixture without relying on existing data or 

relationships. Analytical methods often help in searching for an optimum concrete 

mixture. However, no single analytical model currently exists to generally optimize 

a concrete mixture. The intent of these methods is to cut down on the time required 

to investigate certain constituents or the whole design of a mixture by fully defining 

it. The particle packing method proposed by Golterman, et al., [74] is an example of 

an analytical concrete optimization method. The method optimizes the type, size, 

quantity, and gradation of aggregates in a mixture. Using detailed knowledge of 

both aggregate and cement particle size, specific weight, and mathematical 

relationships describing the distribution or “packing” of circular particles, an 
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optimal concrete mixture for strength and cement content can be designed via 

optimization of aggregate gradation. The optimization is achieved through a 

geometric modeling procedure which can be either prescriptive or numerical [75]. In 

the latter case, a computer model governed by geometric relationships alone can 

find the optimal distribution of aggregate size that results in a minimal amount of 

void space. By minimizing void space, the particle packing method designs a 

mixture with the lowest possible paste ratio, while improving strength compared to 

similar (w/c) mixtures [59]. Following optimal packing design, experimental 

optimization can be used to investigate and optimize remaining properties of 

interest. The optimal packing ratio can serve as a more informed starting point for 

experimental study and can be varied to support additional concrete functionality 

(i.e., inclusion of SCMs). 

3.2.2.3. Statistical 

Statistical methods rely on existing experimental data to inform optimal 

mixture design. In general, these methods consist of taking in large numbers of 

existing mixture design data that through regression analyses are used to define 

curves. Regression analysis most commonly takes the form of a multi-linear 

regression where all variables are assumed to be independently and linearly related 

to the properties being optimized. Typically, response surface methodologies are 

used to plot and visualize the tradeoffs and impacts of the various decision variables 

[75]–[80]. Additionally, multi-variable empirical relationships can be defined to help 

predict performance in alternative design methods. Such a technique has been used 

to optimize as many as five mixture parameters based on eight variables [80]. 

However, multiple regression analysis can be a poor prediction method when used 

on highly correlated variables, as is often the case for concrete (i.e. strength and 

durability). Additionally, utilizing linear regression methods within a multiple 
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regression framework can lead to overly simplified non-linear trends and again, 

poor predictions of variables. For these reasons, statistical concrete optimization 

models have been unable to optimize more than two variables simultaneously [76], 

but can be utilized to individually optimize more than two variables given the same 

data set.  

Use of a statistical method to produce an optimal mixture design is limited to 

the range and resolution of the experimental data used to inform the model. To help 

combat this limitation, several statistical mixture design models have employed 

Monte Carlo or augmented factorial design method to further increase the data 

range and resolution over that of the obtained experimental data [77], [78]. The 

same statistical tools can be used to create more complete response surface plots 

and empirical relationships. Response surfaces are made of up to a second order 

response regression function as seen in Muthukumar [79], where each regression 

can optimize for a single objective variable based on all independent variables. 

Using a desirability function, these responses can be combined to optimize the 

problem based on designer specified weights whose values are highest for what the 

designer considers the important performance objectives (i.e. strength) [81]. 

Current statistical concrete optimization approaches often focus on 

optimizing a mixture for a single application or set of constraints. These approaches 

include optimization of concrete using blends of metakaolin and fly ash [81], 

optimizing fly ash content in concrete [82], and optimizing admixture doses in 

pervious concrete [76]. Statistical model approaches have generated results that 

illustrate many of the trade-offs in concrete mixture formulation. Additionally, 

through tools such as multiple-regression analysis, statistical concrete optimization 

research has led to many concrete property prediction relationships that can be 

utilized by semi-experimental optimization methods. 
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3.2.2.4. Semi-Experimental  

Semi-experimental methods are a bridge between analytical methods and 

statistical methods. These methods combine empirical prediction models and 

experimental data sets with analytical techniques, such as artificial neural 

networks (ANN), genetic algorithms (GA), harmony search (HS), and others. In this 

set of methods, it is important to distinguish the prediction methods from those that 

can be used to optimize. Increasingly, ANNs have been used as prediction methods 

for various concrete properties [83]–[85]. The advantage of ANN over empirical 

relationships is that relationships between large numbers of predictor variables can 

be found without becoming too complex or suffering from over-fitting issues. 

However, ANNs do require large and diverse population sets to train them so they 

can predict properties over a large range of predictor variables [86]. Meanwhile, GA 

and HS are emerging tools for mixture design optimization that perform beyond 

existing, primarily statistical methods, through their use of a global optimization 

search. 

One of the first applications of one of these techniques to concrete mixture 

design was performed by Lim, who utilized a genetic algorithm to optimize the 

prediction of strength and slump of a concrete mixture with respect to seven 

decision variables [87]. The GA was informed by multiple regression models derived 

from a set of 181 experimentally tested mixtures with the final algorithm being 

compared against four of the before-mentioned mixtures to inform the model error. 

This error was then optimized further with the GA by increasing the algorithm’s 

population size.  

Following this early work many studies were conducted on alternative 

prediction techniques, namely neural networks, in combination with statistical 

optimization techniques [68], [88]–[90]. Additionally, Cheng, et al., [91] recently 
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attempted accurate prediction of mixture design parameters using a GA with an 

evolutionary support vector machine. In this work, the model was informed by over 

1030 sample mixture data points and focused on accurate prediction of strength and 

cost with consideration of eight decision variables. 

Although studies have attempted a comprehensive optimization of a mixture 

design for a single objective [59], [71], [75], [77], [79], [92]–[96] many have not 

moved beyond comprehensive characterization of a single objective to address 

multiple objectives. Nonetheless, one of the first studies to optimize a mixture 

design in a global solution space was conducted using a genetic algorithm [95]. The 

study focused on optimizing mixture strength with decision variables being cement 

content, fly ash, water, sand, coarse aggregate, and superplasticizer. An existing 

empirical equation that related all of the decision variables to the objective was 

utilized as the objective function. Additionally, constraints on ratios of constituents 

were provided based on statistical analysis of experimental data. The result of this 

study was a set of five optimal mixtures for five various strength targets. Similar 

studies have used either GA or HS to optimize single-objective mixtures, but never 

with more than eight decision variables or for objectives other than strength and 

cost [96].  

A multi-objective optimization approach was proposed by Lee [97] in 2012, 

which involved a HS algorithm. HS is a meta-heuristic algorithm that is modeled 

after theories in music and aims to find the perfect harmony of solutions given a 

problem formulation. The algorithm was used to optimize both strength and slump 

with regard to six decision parameters. Regressions used in [87] were utilized to 

correlate objectives and decisions to make the model highly comparable to the 

previous GA proposed by Lim [87]. The predictive capabilities of such a model were 
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tested against both a genetic algorithm and ANN and was found to be superior, 

concluding that optimization would be a more accurate modeling approach [97]. 

Although modern computational techniques such as ANN, GA, and HS have 

been found to accurately predict and optimize concrete mixtures, they have, so far, 

only been implemented on a small scale. The only optimizations beyond 2 objective 

variables are still statistically based. Methods utilizing more computationally 

intensive and global search-oriented approaches have only been applied to very 

specific mixture formulations and often do not include durability or embodied 

impacts with the exception of Kim, et al., [54]. 

A contributing factor to the lack of design consideration for embodied 

impacts, such as carbon and energy, is the relatively new, standardized 

methodology for accounting for such impacts. Constituents used in concrete are 

known to contribute to global CO2 production, energy use, and raw constituent 

depletion. However, the magnitude is not well understood. Organizations such as 

the International Standards Organization (ISO) and US Green Building Council 

(USGBC) have defined and encouraged the proliferation of environmental 

accounting throughout the building industry. Accounting is done through a process 

known as a life cycle assessment (LCA) and, for building materials and products, is 

commonly reported in terms of embodied energy and embodied carbon—two 

environmental metrics of interest in the work presented herein. 

 

3.3. METHODOLOGY 

 

3.3.1. Optimization approach 

For design optimization, this study utilizes a multi-objective evolutionary 

algorithm (MOEA). As previously discussed, concrete mixture design can be 
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holistically approached as a multi-objective design problem. A series of empirical 

and numerical relationships that predict fresh-state and hardened-state concrete 

properties of interest are embedded within the search process of the MOEA to 

evaluate the performance of candidate mixture designs—solutions to the 

optimization problem (multi-objective optimization problems by definition have 

multiple potential solutions). Through this integration of simulation models with 

the MOEA, the most complete models can be used, which provides high confidence 

in the solution set. Given the correlated and multi-variable nature of many concrete 

properties, MOEAs are a desirable optimization approach, particularly when 

considering large numbers of objectives and decisions. 

Multi-objective optimizations output a set of solutions known as the Pareto-

optimal set. Solutions are informed by models of the desired performance objectives 

whose inputs, known as decision variables, are used to calculate the value of the 

performance objects. A mathematical concept called ‘non-domination’ is used to 

define, based on a set of performance objectives, which solutions remain in the set. 

A solution is non-dominated if its performance in all objectives is not exceeded by 

any other feasible solution in all objectives. In other words, non-domination is a way 

to elucidate tradeoffs between different objective functions of the design problem 

within the realm of optimal solutions. For a two-objective minimization problem, 

the non-dominated set is the smallest values of the first objective that can be 

obtained for every level of the second objective. The term ‘Pareto-optimal’ indicates 

the best non-dominated set among all feasible solutions. Note, however, that finding 

the true Pareto-optimal solution set for a given problem is often computationally 

difficult, because it requires enumeration of every possible feasible solution to the 

problem. Therefore, studies using MOEAs find a set of solutions termed the Pareto-
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approximate set, which is the best-known approximation of the true Pareto optimal 

[98].  

This study aims to explore the many tradeoffs expected in concrete mixture 

design, while providing insight on potentially novel concrete mixture designs. In 

this study, models where chosen that allow for the variation of seven design 

parameters, or decisions, as summarized in Table 3-1. Six objectives are calculated 

using these decisions and are reported in Table 3-2, along with which decisions 

impact each objective. Additionally, two fixed design criteria are utilized – design 

service life and chloride exposure – which constrain the solution set to those 

mixtures that can meet the duration and exposure criteria based on the durability 

modeling. 

 

Table 3-1. Decision variables that inform the concrete mixture design 

Decision  

Lower 

Limit  

Upper 

Limit  Description 

cement   550   700   Cement Content (kg/m3) 

wc   0.25   0.75   Water to Cement ratio 

air   1   6   Air Content (% of volume) 

ca   55   75   Coarse aggregate ratio (% of volume) 

scm   0.5   4.49   SCM variable rounded to be 1, 2, 3 or 4 

replace   0   30   SCM replacement (% by weight of cement) 

rca   0   1   Recycled agg. replacement (% by weight of ca) 
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Table 3-2. Objective functions and those decisions that impact them 

Objective   Description   Affected by 

Strength   Maximize compressive strength (psi) 

at 28 days 

  cement, wc, air 

Cost   Minimize cost ($) of mixture 

constituents per functional unit 

  cement, ca, scm, 

replace, rca 

Cover   Minimize cover (m) needed to 

achieve a prescribed-fixed service life 

  wc, scm, replace, 

rca 

Workability   Maximize slump (cm) of fresh state 

mixture 

  cement, ca 

Embodied Energy   Minimize energy (MJ) per functional 

unit 

  cement, ca, scm, 

replace, rca 

Embodied Carbon   Minimize Global Warming Potential 

(kgCO2e) per functional unit  

  cement, ca, scm, 

replace, rca 

 

3.3.2. Borg multi-objective evolutionary algorithm 

Although MOEAs provide the potential of finding a high-quality Pareto 

optimal solution set, they are not always guaranteed to do so in a reasonable 

number of function evaluations. Given the limited use of MOEAs in concrete 

mixture design optimization and the ambition of this work to model multiple 

concrete mixture variables, avoiding potential failure of the MOEA algorithm was 

critical. Kasprzyk, et al., [58] and Reed, et al., [45] define the major failure modes of 

MOEAs as being related either to mathematical structure (over complex problem 

formulation) or search limiting user-chosen algorithm operators. With the goal of 

limiting the potential of these failures, the MOEA used in this study is the Borg 

MOEA [56]. It was chosen because of its capabilities as an auto-adaptive algorithm 
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which has led to superior performance relative to other state-of-the-art MOEAs [99], 

[100]. Auto-adaptivity means that Borg can combine existing MOEA algorithms and 

their search operators to avoid algorithm failure. Prior studies of algorithm 

performance such as [58], [99] have shown that these design characteristics help 

Borg exhibit effective performance on a wide variety of problems. .  

Borg also utilizes epsilon dominance [101], which allows the user to define 

the precision of each objective. Epsilons act to measure search progress and to 

ensure solution diversity and, thus, require meaningful choice based off 

understanding of the range over which objective values may vary [57]. In addition 

to tailored use of search operators, Borg is also adaptive in its use of population 

sizing [102]. As an additional means of ensuring adequate solution diversity, the 

Borg will inject new and diverse populations into the simulation set in an effort to 

fully explore the decision space. 

For this study the only user-controlled parameters of the Borg MOEA were 

the epsilon values and total number of function evaluations. Epsilons were 

determined based on the lowest desired precision and the assumed range of the 

objective function solutions. Applicable ranges vary based on the type of 

investigation, but, in general, epsilons were set per Table 3-3. Epsilons could be 

redefined after running the model, since objective ranges could be larger than 

expected and the solution set size was larger than desired. A similar epsilon 

tailoring approach was employed by Kollat and Reed [102]. In general, higher 

epsilon values lead to a reduction in solution set size. The operation of the Borg in 

this study is implemented with its default parameters [56] summarized in Table 

3-4. The only user-chosen parameter was the number of function evaluations, which 

was set to 100,000 following preliminary investigations that indicated that further 



56 

 

increase in function evaluations would result in negligible differences in solution 

performance. 

Table 3-3. Default epsilon inputs for the model 

Objective  Chosen Epsilon 

Cost  1 

EE  5 

Strength  100 

Cover  0.005 

EC  1 

Workability  1 
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Table 3-4 Borg parameters and values used 

Parameter   Chosen   Default 

Initial Population Size     100 

Maximum 

evaluations   100,000   N/A 

Injection rate       0.3 

SBX rate       1.0 

SBX distribution index     15.0 

PM rate       1ndecvar 

PM distribution 

index       20.0 

DE crossover rate       0.1 

DE step size       0.5 

UM rate       1ndecvar 

PCX number of parents     3.0 

PCX number of offspring   2.0 

PCX eta       0.1 

PCX zeta       0.1 

UNDX number of parents   3.0 

UNDX number of offspring   2.0 

UNDX eta       0.5 

UNDX zeta       0.4 

SPX number of parents     3.0 

SPX number of offspring   2.0 

SPX epsilon       0.5 
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3.4. MODEL DEVELOPMENT 

The relationships used to inform the objective functions used by the MOEA 

are presented in this section. ACIs absolute volume method (AVM) is utilized as the 

primary driver for determining mixture proportions. Empirical relationships from 

previous research are then implemented to inform the impact of the AVM mixture 

proportioning on the objectives of strength, slump, and, given an exposure, required 

cover depth. Additionally, the 1D numerical service life model presented in Chapter 

2 is utilized to provide a more comprehensive durability prediction capability. The 

specifics of the LCA conducted within each mixture design are discussed, along with 

(a) a novel methodology to account for sequesterable CO2 and (b) the default life 

cycle inventory (LCI) values used to calculated environmental impacts.  

3.4.1. Mixture proportioning by absolute volume method 

Given its ubiquity and ease of implementation, the ACI absolute volume 

method (AVM) was chosen as the technique for developing the mixture design 

proportioning in this study. Although alternative methods such as particle packing 

methodology could have been used, the intent of this study was to show a proof of 

concept to use MOEA to design concrete mixtures within a flexible framework that 

could add more mixture design steps beyond AVM in future work. None of the 

empirical relationships or tabulated values for the design variables commonly used 

in conjunction with the AVM was employed in this model. In contrast, the MOEA 

framework first selects values of cement content, w/c ratio and ca ratio that would 

then be used to inform the AVM proportioning. Then, the empirical relationships 

and numerical models presented in this section were utilized to include those 

properties traditionally determined from tables in the AVM. In general, the 

procedure of the AVM in this method takes the form illustrated in Figure 3-1. 

Inputs are given as single values chosen from the ranges in Table 3-1. The outputs 
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of this process form the mixture design for a single solution. They can be further 

converted to weights needed to make a cubic yard of said concrete mixture. 

All inputs to the absolute volume method are determined by the Borg MOEA 

algorithm and are within the bounds given to it as decision variables. After the 

absolute volume calculation is completed, the volume of each mixture constituent is 

then converted into a kg per cubic meter (kg/m3) and lb per cubic yard (lb/yd3) of 

constituent to constitute the final mixture design. Both units are used because the 

various empirical relationships and numerical models employed where developed in 

both imperial and metric units. 

 

 

Figure 3-1. Flow chart of AVM implementation in the model.  
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3.4.2. Empirical property prediction relationships 

As discussed, objectives are a function of the decision variables, whose values 

are chosen by the optimization algorithm in conjunction with the process of the 

absolute volume method. Equations and models of constituent properties, further 

referred to as prediction relationships, link the two and are what determine the 

precision and accuracy of the objectives for a given set of decisions. Without well-

constructed and validated prediction relationships, objective tradeoffs would likely 

not be representative of real world behavior. No perfect prediction relationships 

exist, but all those currently proposed have the potential to serve a function within 

this model if found to be of adequate quality. The following section presents the 

selection and definition of the objective prediction relationships utilized within this 

study. Empirical relationships are discussed that were used to predict (1) strength, 

(2) workability, (3) chloride diffusion via a simplified model, and (4) SCM addition 

impacts on chloride diffusion.  

3.4.2.1. Strength 

Previous research has shown strong correlations between w/c ratio, cement 

content, air content, and strength [103]–[105]. While other variables including SCM 

additions for fly ash and silica fume have also been shown to impact strength, fewer 

and less accurate prediction equations exist [104]. The relationship utilized in this 

study to predict mixture strength is a model proposed by Popovic [103]: 

 

  Eq. 3-1 

Where fc is the predicted 28-day strength, w/c is the water-to-cement ratio, c is the 

cement content (lb/yd3) and a is the air content (%). When compared to recent, more 

accwcf 0279.0000378.0/66.23

290,51
++
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complex relationships, this prediction relationship provided more accurate strength 

predictions based on industry data [104], [106]. 

3.4.2.2. Workability 

Workability can be measured in a variety of ways including slump, 

flowability, and pumpability. A vast amount of work has been devoted to predicting 

the rheological properties of fresh-state concrete [107]–[110]. Many of these 

investigations involve artificial neutral networks (ANN), which are not trivial to 

implement nor does this approach output an easy-to-use relationship [111]. Well-

documented regression-based empirical relationships exist to supplement the 

solutions from ANNs [83], [112]. The model used in this study is a modified form of 

that proposed by Hoang et al., [112] derived using the Least Squares Estimation 

method. The model considers impacts from all four of the main mixture constituents 

(i.e., cement, water, coarse aggregate, sand) as well as superplasticizer dosage: 

 

 Eq. 3-2 

where y is the slump of the concrete (cm), x1, x2, x3, x4, x5, x6 are the normalized 

contents of cement, natural sand, crushed sand, coarse aggregate, water and 

superplasticizer respectively. Normalization of the inputs is performed with respect 

to the data statistics (maximum and minimum) provided by Hoang with the 

development of the model. Normalization of input variables was necessary because 

Eq. 3-2 was specifically formulated to accept only normalized values of each input 

variable. Crushed sand and superplasticizer are not considered in the model 

formulation of this study and were thus ignored, leading to the modified version 

accepting only x1, x2, x4 and x5 as inputs.  

654321 18.100.339.756.2403.2747.1222.36 xxxxxxy 
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3.4.2.3. Simplified Chloride Diffusion 

A desire to include sophisticated chloride transport as an objective function 

within the optimization was countered by the known computational complexity of 

numerical approaches, such as those covered in Chapter 2. A simplified approach 

for calculating chloride concentration through a media with time was necessary to 

include within the model. Although a more precise, complete and computationally 

expensive model has been included in the model, the value of a computationally 

quick, approximation was such that it too was included in the model for use when 

accuracy in durability prediction was of secondary concern. A common, well-known 

steady-state solution to Fick’s Second Law of Diffusion for use in predicting chloride 

concentration through a media with time is the error function solution [38]: 

 

 Eq. 3-3 

where c(x,t) is the chloride concentration at a distance x from the concrete surface at 

time t (service life in this model), c0 is the chloride boundary condition (a fixed user 

input for all solutions) and Dc is the apparent diffusion coefficient for the concrete. 

In the simplified case, apparent diffusion coefficient is taken to be the value of the 

diffusion coefficient at 28 days regardless of the service life of the concrete.  

3.4.2.4. SCM impact on diffusion coefficient 

The apparent diffusion coefficient used in Eq. 3-3 is affected by w/c ratio and 

SCM addition according to the following: 
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 Eq. 3-4 

 Eq. 3-5 

 Eq. 3-6 

 Eq. 3-7 

where w/c is the water-to-cement ratio, SF, UFFA and MK are the replacement 

percentages of silica fume, fly ash and metakaolin respectively and D28, DSF, DUFFA 

and DMK are diffusion coefficients at 28 days for OPC silica fume, fly ash, and 

metakaolin. The 28 day diffusion coefficient modification for slag replacement was 

found by Riding, et al., [10] to be negligible, resulting in slag cement mixtures 

having the same 28-day diffusion coefficients as OPC when Eq. 3-3 is implemented.  

3.4.2.5. 1D diffusion model 

In addition to the simplified diffusion model in 3.4.2.3 a numerical 1D 

diffusion model with greater capability at addressing chloride concentration 

prediction was included. This was done to improve the model’s accuracy when 

durability prediction was of primary concern but comes at the cost of computational 

speed. The 1D diffusion model utilized in this study is based on that proposed and 

validated in Chapter 2. There are two primary differences between the model used 

for mixture design optimization and that used in Chapter 2. First, this model is of a 

deterministic form, requiring fixed inputs that are outlined in Table 3-5. Second, 

within the optimization model, service life is taken to be a user input. Therefore, the 

1D diffusion model was used to solve for a required cover depth given a chloride 

exposure condition rather than chloride concentration at a given lifetime.  
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Table 3-5. Deterministic 1D diffusion model parameters 

Service-life modeling parameter   Value   Units   Refs 

(Chapter 2) 

Time-to-corrosion-initiation              

Recycled aggregate diffusion 

coefficient, Da 

  12.5    kg/m3    [17], [20] 

Chloride threshold, ct   0.7    kg/m3    [39]–[41] 

              

Time to corrosion cracking              

Tensile strength, f't   3.75    MPa    [11] 

Modulus of elasticity, E   30    GPa    [11] 

Phi (creep coefficient), ϕ   2   -    [33] 

Poisson's ratio, ν   0.18   -    [33], [42] 

Density of rust, ρr   3600   kg/m3    [33], [43] 

Density of steel, ρs   7850   kg/m3    [33], [43] 

Thickness of porous region, tp   12.5    μm    [33], [44] 

Corrosion rate, icorr   2.5    μA/cm3    [33], [43] 

Alpha, α   0.622   -    [33] 

Mild steel rebar diameter, db   9.5   mm     

 

3.4.2.6.  Recycled aggregate modeling 

As with the model presented in Chapter 2, the application of the 1D model 

within this study includes a capability to model the effect of recycled aggregates. 

The placement of aggregates was made random within the entire depth of concrete. 

This was an improvement over the model utilized in Chapter 2, as it allowed 
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contaminated aggregates to be placed on either side of the reinforcing steel. 

Additionally, because failure was prescribed to occur at a specific time rather than 

concentration, aggregates could be placed within the whole cover. Aggregate 

placement was random and ensured no overlap. The same recycled aggregate 

diffusion coefficient employed in Chapter 2 was used herein, continuing the 

assumption that recycled mortar aggregates are used for mixture proportioning.  

3.4.3. Life Cycle and Life Cycle Cost Accounting 

The LCA conducted within the MOEA framework quantifies the embodied 

energy and embodied carbon of resulting mixture designs for each case study 

application. The environmental accounting is based on constituents chosen by the 

designer and proportions specified by the MOEA algorithm. In addition to the LCA 

outlined in this section, the economic cost accounting, further referred to as the life 

cycle cost accounting (LCCA), pertaining to the same goal and scope as the LCA, is 

discussed.  

All constituents used in this study are considered to be virgin unless 

otherwise noted (as with recycled aggregate). No constituents were considered to be 

byproducts, coproducts, or waste unless otherwise noted. All impacts are taken to be 

attributional and, thus, pertain only to the current state of conditions 

(manufacturing, economy, etc.) at the time of the study. The impacts metrics 

considered in the model are embodied energy (MJ), embodied carbon (kgCO2e), and 

cost ($). Impacts for the LCA and LCCA were calculated according to the following 

equations: 
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= ∗  Eq. 3-8 

where, EE is the embodied energy of a constituent, mc is the constituent’s mass and 

EECc is the Embodied energy coefficient specific to that constituent displayed in 

Table 3-6. Similarly, the impacts of embodied carbon and cost can be calculated as 

follows: 

 

= ∗  Eq. 3-9 

= ∗  Eq. 3-10 

where EC and Cost are the impact embodied carbon and cost respectively, mc is the 

constituent mass and ECCc and CostCc are the embodied energy and cost 

coefficients for the constituent respectively. Transportation impacts were calculated 

by a similar method to the constituent impacts above but required the addition 

product of transportation distance and generally took the following form: 

 

= ∗ ∗  Eq. 

3-11 

where TransImpact is either the embodied energy, carbon or cost, mc is the mass of 

the constituent being transported, TransImpactCoeffc is the transportation method 

impact coefficient for either embodied energy, carbon or cost and dc is the distance 

the constituent traveled. The coefficients utilized in this equation for both a truck 

and train transportation method are displayed in Table 3-6.  

3.4.3.1. Life Cycle Inventory 

Data collection for the inventory analysis came from a variety of sources. In 

general, data was derived via research and industry data varying from 



67 

 

manufacturer conducted LCAs and EPDs, to national company averages. Whenever 

possible, data was found that pertained to the United States. Researched and 

default values of impact coefficients for the life cycle accounting done in this study 

are presented in Table 3-6. These values are the default values for all model runs 

in this study. The transportation data is presented for both a truck and train, with 

the truck being considered the default transportation method. All data was 

considered to be complete based on its origin in scholarly research or manufacturer 

EPD. Through comparison with industry data, consistency of the mixture design 

tool to real-life data was ensured and is further discussed in 3.6.1. 

 

Table 3-6. Life cycle inventory coefficients used in this study 

Constituent   EECC 

(MJ/kg) 

  ECCC 

(kgCO2e/kg) 

  CostCc 

($/kg) 

  Refs. 

Cement   5.9   0.9   0.17    [65], [113]–[115] 

Fly Ash   0.1   0.01   0.065    [116], [117] 

Slag   1.6   0.146   0.106    [118], [119] 

Silica Fume   0.04   0.7   0.44    [113], [120] 

Metakaolin   2.08   0.6   0.36    [121] 

Coarse Aggregate   0.1   0.0061   0.021    [122], [123] 

Recycled Aggregate   0.1   0.003   0.01    [124], [125] 

Fine Aggregate   0.08   0.0076   0.025    [122], [123] 

Water   0.01   0.0001   0.005    [113]  

Transportation 

Truck 

  (MJ/kg-mi)   (kgCO2e/kg-mi)   ($/kg-mi)    

  0.0039   0.00115   0.005    [126]–[128] 

Train 
 0.00034  0.00032  0.0009  

 [126], [127], 

[129] 
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Transportation distances are well known to exhibit dominant impacts on the 

embodied energy and embodied carbon of a constituent. Each constituent utilized in 

the model was assigned a transportation variable whose value was informed by 

industry and literature research, reported in Table 3-7. Those constituents whose 

distance from a specific mixture location is highly regionally dependent, namely 

SCMs and recycled aggregates, were given representative values that can be 

changed when a precise mixing site and thus SCM sourcing distances are known. 

 

Table 3-7. Constituent sourcing distances  

Constituent   Distance 

(miles) 

  Source 

Cement   50   [130], [131] 

Fly Ash   100   -- 

Slag   100   -- 

Silica Fume   100   -- 

Metakaolin   100   -- 

Coarse Aggregate   50   [130], [131] 

Recycled Aggregate   100   [124] 

Fine Aggregate   75   [130], [131] 

Water   20   [130], [131] 

 

3.4.4. Case Study Functional Units 

Three case study applications were considered in this work: a cubic meter, a 

tilt-up wall, and a column whose details are reported in Table 3-8. Each case study 

was chosen to help illustrate the power of the MOEA approach and elucidate 
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multiple tradeoffs between competing objectives. The cubic meter was defined as a 

unit volume of concrete mixture, chosen to be one cubic meter. The results from the 

unit volume analysis were used to calibrate modeling results with industry data. No 

quality or duration was given to the cubic meter, resulting in mixture durability 

being ignored in the model. Unlike the cubic meter unit, the tilt-up wall was defined 

as, given a chloride exposure, a 1 m x 1 m x cover depth volume of concrete 

necessary to resist corrosion for a set number of years. In the final case study 

application, the column was defined as the volume of concrete required to support a 

1,000-kip load and, simultaneously, given a chloride exposure, resist corrosion for a 

set number of years. As an input parameter for the user to specify, service life can 

be any number of years. Therefore, for a given set of optimal mixtures, anticipated 

(design) service life of the model must be included as an input. 

 

Table 3-8. Case study applications (functional units) for model implementation 

Name   Quantity   Quality   Duration 

Cubic meter   One cubic meter of concrete   None   None 

Tilt-up wall   A meter by meter by cover 

concrete depth wall 

  Resist Corrosion 

   

Varies 

 

Column   12-foot-tall concrete column    Support 1000 kips 

and Resist corrosion   

Varies 

 

  

Given the nature of the problem formulation in this study, all concrete 

mixture components considered in the model are considered in this LCA. In general, 

given that the MOEA can select some constituents on its own, constituents included 

are cement, sand, coarse aggregates, water, and SCMs. For this study, a cradle to 

gate system boundary was assumed. The system boundary primarily considers 
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manufacturing (A1) of mixture constituents and transportation (A2) of mixture 

constituents to the batch plant. Transportation beyond the batching plant, where 

the mixture was made, is not included because it was considered to be independent 

of the mixture proportioning and manufacturing. Additionally, no stages beyond the 

batching plant are considered in this analysis with the exception of the inclusion of 

the use (B1) phase for the column case study, which can be turned on and off. 

Beyond this one exception, accounting for embodied impacts stops at the exit gate of 

the cement batch plant, prior to transportation to the construction site. Similarly, 

accounting for economic cost considers same the cradle to gate boundary with no 

considerations made for use-phase costs as they are too variable to estimate and do 

not universally correlate strongly with mixture design. 

3.4.5. Modeling of sequestered carbon 

Carbonation in concrete is often viewed only through the lens of durability 

[132]–[134] with concern placed on limiting the rate and quantity in concrete. 

Recently, carbonation has been shown to also be a non-trivial means of carbon 

dioxide sequestration in concrete members over their service life. Experimental 

papers have investigated the amount of carbon sequestered over 100 years [135] 

and the effects of blended cements on carbon sequestration [136]. A newly 

formulated model proposed by Souto-Martinez, et al., [137] utilizes existing 

relationships for carbonation depth as well as newly discovered experimental 

coefficients for various constituent impacts and carbonation potential. For 

implementation in this study, the calculated sequestered carbon for a solution 

mixture design was not set as its own objective as indicated by Table 3-2 but rather 

was subtracted from the embodied carbon objective value.  

The process of calculating sequestered carbon is discussed in three steps: the 

calculation of the carbon sequestration potential of the concrete paste, estimation of 
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the carbonation depth at the end of an object’s service life, and combination of these 

two to predict the total sequestered carbon of an exposed (i.e., unpainted, unsealed) 

concrete object over its service life. 

3.4.5.1. Sequestration potential of mixture paste 

Using cement and carbonation chemistry, Souto-Martinez, et al., [137] first 

linked cement type and SCM type and replacement percentage to the carbonation 

potential of the cement paste in a concrete mixture: 

 

 Eq. 3-12 

where Cm is the mass percentage of sequesterable carbon per kg of carbonated 

cement paste, y is the percent replacement of SCM specified by the Borg algorithm 

and α and β are the cement and SCM carbon sequestration potential coefficients 

respectively. The coefficients for α and β are presented in Table 3-9 and are a 

property of their respective constituents within the model. 

 

Table 3-9. Cement and SCM coefficients for carbon sequestration potential 

Cement Type      SCM Type    

Type I   0.165   Fly Ash (Class F)   0.55 

Type II   0.163   Fly Ash (Class C)   0.27 

Type III   0.166   Slag   0.38 

Type IV   0.135   Silica Fume   0.99 

Type V   0.161   Metakaolin   0.55 

White   0.203         

 

yCm  a
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3.4.5.2. Carbonation depth 

The model utilizes well known empirical relationship for predicting 

carbonation depth developed by the Portuguese National Laboratory [138]: 

 

 

Eq. 3-13 

where c is the environmental CO2 concentration, t is exposure time (the service life 

parameter within this study), k0 is equal to 3.0, k1 and n are exposure specific 

parameters outlined in Table 3-10, k2 is equal to 1.0 and R is the carbonation 

resistance coefficient calculated as: 

 

for cement Type I and II Eq. 3-14 

and 

for cement Type III-V and White Eq. 3-15 

For use in this study the exposure classification is specified as a user input 

when the sequestration model is called. The four exposure classifications proposed 

by Souto-Martinez, et al., [137] are also utilized in this model with XC1 indicating 

dry or permanently humid conditions, XC2 being humid, rarely dry, XC3 being 

moderately humid and XC4 being cyclically humid and dry exposure. 

 

Table 3-10. Exposure classification for sequestered carbon modeling 

Parameter   XC1   XC2   XC3   XC4 

k1   1   0.2   0.77   0.41 

n   0   0.183   0.02   0.085 
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3.4.5.3. Total sequestered carbon 

Carbonation was considered to act uniformly on all sides of the concrete 

elements considered in this study; however, this is not a requirement of the model 

as any geometry and configuration of boundary conditions can be accommodated by 

the model. Nonetheless, once the carbonation depth is calculated, the total volume 

of carbonated concrete can be computed: 

 

 Eq. 3-16 

where Vc is the carbonated volume, SA is the surface area of the concrete element 

and x is the previously calculated carbonation depth. It is noted that Vc cannot be 

larger than the volume of the object in question, so this constraint is mandated in 

the model implement for this study. From the total carbonated volume of concrete 

the mass of sequestered carbon within the object can be calculated as: 

 

 Eq. 3-17 

where ϕc is the degree of carbonation (default 1.0) and m is the total cement content 

of the in the concrete mixture.  

 

3.5. MODEL IMPLEMENTATION 

Optimization was performed for nine different mixture design scenarios, each 

varying between one and four model inputs or properties as summarized in Table 

3-11. One baseline Scenario is investigated for each of the three Cases: (1) a cubic 

meter of concrete, (2) a concrete tilt-up wall, and (3) a concrete column. Six 

Scenarios are investigated for (1) and (2), and two Scenarios are investigated for (3) 

in addition to the baseline. The Scenario numbers containing a ‘C’ pertain only to 

xSAVc 

 mVCC cmcs  
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the column functional unit. The choice of three case study applications was made to 

test the models ability to solve increasingly constrained problems.  

 

Table 3-11. Scenario definitions for use with each functional unit (Case) 

Scenario 

No.   Intent/context   Variables changed 

0   Baseline model with no variable change   N/A 

1   Coal power plants close and Fly Ash 

stock decreases 

  FA, $ 

2   Increase allocation accounting for Fly 

Ash impacts 

  FA, EEC, ECC 

3   Recycled Agg. is close and abundant   Recycled Agg. distance 

4   Distance for all SCM to appear in 

solution set 

  FA distance, SF distance, MK 

distance, SG distance 

5   Transportation is by train rather than 

truck 

  Transport $, EEC, ECC 

6   No admixtures are allowed so w/c must 

be increased to maintain workability 

  w/c lower bound  

1C  Interior column that should not be 

larger than 16” x 16”  

 Functional unit area 

constraint 

2C  Exterior bridge pier that should be 

larger than 36” x 36” 

 Functional unit area 

constraint 

 

To establish a baseline for every functional unit, a default model, Scenario 0, 

was utilized, whose parameters are defined in Table 3-12. Additionally, the 

modified variables used throughout each scenario are also presented in Table 3-12.  
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Table 3-12. Value change in variables for Scenario 1-6 

Variable of interest 
  Values   

Scenario 
  Scenario 0   Modified   

Fly ash $   0.065   0.44   1 

Fly ash EE   0.1   2   
2 

Fly ash EC   0.01   0.2   

Recycled agg. distance   100   10   3 

Fly ash distance   100   

variable 

  

4 
Silica fume distance   100     

Slag distance   100     

Metakaolin distance   100     

w/c lower bound   0.25   0.35   6 

 

Each functional unit requires unique parameters and inputs in addition to 

those presented in Section 3.4 and in Table 3-12. The cubic meter, tilt-up wall, and 

column functional units are individually discussed, including further justification 

and information for their utilization.  

3.5.1. Case 1: One Cubic Meter of Concrete 

Unlike the subsequent two functional units, the cubic meter of concrete case 

has quantity, but no quality or duration. As a result, any structural load or hazard 

(i.e., chloride resistance) is neglected in the objective functions. All other objectives 

are calculated as outlined in Section 3.4. The cubic meter unit is investigated 

under each of seven scenarios, namely Scenario 0 (baseline) and Scenarios 1-6 

outlined in Table 3-11. Results and discussion for the cubic meter investigations 

follow this section and begin in Section 3.6.2. 
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3.5.1.1. Inputs 

Epsilons (see Table 3-13) were chosen that would reduce the solution set to a 

more manageable number for clearer display of Case 1. 

 

Table 3-13. Epsilons for Case 1. 

Objective  Chosen Epsilon 

Cost  40 

EE  100 

Strength  100 

Cover  0.005 

EC  8 

Workability  4 

 

All objective function parameters and decision variables are based on the 

same inputs as specified in Section 3.4.3. Changes to the objective function 

parameters and decisions not covered in Table 3-12 for Case 1 are shown in Table 

3-14. Sequestered carbon and durability were not considered for the cubic meter 

unit and were thus turned off within the model. 

 

Table 3-14. Distances for Case 1, Scenario 4.  

Variable  Modified Value 

Fly ash distance  300 

Silica fume distance  150 

Slag distance  100 

Metakaolin distance  20 
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3.5.2. Case 2: Concrete Tilt-Up Wall 

The tilt-up wall case study explored in this model is defined as a square 

meter in surface area by a variable depth of cover required to resist chloride-

induced corrosion for a minimum specified design service life. Both the simplified 

and numerical 1D service life model was utilized. No accounting for sequestered 

carbon was included for this case study application. The tilt-up wall unit is 

investigated under each of the 7 scenarios, Scenario 0-6, as shown in Table 3-11. 

Results and discussion for the tilt-up wall investigations follow this section and 

begin in Section 3.6.3. 

3.5.2.1. Inputs 

The tilt-up wall, Case 2, utilized default epsilon values (Table 3-3). 

Implementation of the simplified and numerical 1D diffusion model utilized the 

exposure conditions and service life specified in Table 3-15. Initial recycled 

aggregate contamination for use with the 1D model is also included in Table 3-15 

and was required to be less than the corrosion initiation limit of the rebar (0.7) to 

prevent 100% aggregate replacement from resulting in an infinite, and thus 

unrealistic, cover depth. Additionally, all inputs for the numerical service life model 

were presented in Table 3-5. Exposure definitions for the numerical 1D model 

correspond to the classes specified in Chapter 2. The class can be specified as a 

user input integer from 1 to 5, with lower numbers being more extreme exposure 

conditions. 
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Table 3-15. Exposure condition variable values use in Case 2 

Variable 
  Model 

  Simplified units   Numerical 1D   units 

Exposure   5 kg/m2   3   Class 

Service Life  25 years  25  years 

Recycled agg. 

contamination   
N/A --   0.5   kg/m2 

 

3.5.3. Case 3: Concrete Column 

Two different column types are considered in this study, as described in 

Table 3-11. The column unit is investigated under each of three scenarios, namely 

Scenario 0, 1C, and 2C, also outlined in Table 3-11. Results and discussion for the 

column investigations follow this section and begin in Section 3.6.4. 

3.5.3.1. Inputs 

Epsilon values for the column investigations in this study utilized the default 

values in Table 3-3. Employing the numerical 1D diffusion and carbon 

sequestration models required additional variables to be specified for the model per 

Table 3-16. The same values of aggregate contamination were used as specified in 

Table 3-15. Additionally, the cement type was specified as Type I, with application 

in exposure category XC1 for use in the carbon sequestration model.  

 

 

 

 

 



79 

 

Table 3-16. Additional inputs used for Case 3. 

Variable 
  Column Type 

units 
  Baseline   Case 1C (interior)   Case 2C (exterior) 

Cl exposure   3   N/A   1 Class 

Service life   100   100   100 years 

CO2 exposure   300   800   300 ppm 

Load  1000  1000  1000 kips 

 

3.6. RESULTS AND DISCUSSION 

Results are presented and discussed in four parts. First, model calibration 

with industry data is discussed, along with a preliminary investigation into model 

sensitivity. Second, the results for Case 1 (Section 3.6.2), Case 2 (Section 3.6.3), 

and Case 3 (Section 3.6.4) are presented with respect to each scenario as outlined 

in Table 3-11.  

3.6.1. Model calibration with industry data 

First, the model was calibrated using a comparison with industry-acquired 

data provided by the National Ready Mixture Concrete Association (NRMCA) [131]. 

The calibration exercise utilized Case 1, a cubic meter of concrete, and the baseline 

scenario (Scenario 0). For calibration purposes, the workability functionality was 

disabled so that the optimization would only find solutions based on strength, cost, 

embodied energy, and embodied carbon. Cover depth was excluded due to the 

absence of a chloride hazard in Case 1. Additionally, functionality for replacement 

of coarse aggregate with recycled aggregates was disabled, as was accounting for 

sequestered carbon. 

The results of the Case 1 Scenario 0 model and data comparison are shown in 

Table 3-17 through Table 3-19. All outputs from the model were converted from 
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cubic meters to cubic yards for comparison. Statistical quantities where calculated 

from the set of Pareto-optimal solutions. The comparison with industry data is 

conducted to show that modeled optimal solutions lie within or near real-life data 

sets. The results indicate that the model outputs are comparable to industry data. 

All optimal mixture designs are of the same order of magnitude for each impact as 

those mixtures considered from industry. This calibration illustrates the ability of 

the model to report realistic mixture impacts. 

 

Table 3-17. Model cost comparison with industry data 

Cost 

    Data   Model      

    $/yd3   $/yd3   % Difference 

Lower Quartile   57.42   61.1   6.41% 

Average   57.23   59.61   4.16% 

Upper Quartile   56.39   57.27   1.56% 

 

Table 3-18. Model embodied energy comparison with industry data 

    EE     

    Data   Model      

    MJ/yd3   MJ/yd3   % Difference 

Minimum   1304   1281   1.76% 

Average   2211   1726   21.94% 

Maximum   3518   2259   35.79% 
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Table 3-19. Model embodied carbon comparison with industry data 

    EC     

    Data   Model      

    kgCO2/yd3   kgCO2/yd3   % Difference 

Minimum   143   212   48.25% 

Average   277   234   15.52% 

Maximum   477   298   37.53% 

 

While conducting the model calibration, interesting behavior of the model 

was discovered. When the model was first being developed, estimates of valid 

coefficients for the life cycle objectives, namely cost and embodied energy, were used 

as presented in Table 3-20. To calibrate the model, adjustments to many of the 

coefficients were made to match data found in literature (Table 3-6). As coefficients 

were individually altered, the model was run as an attempt at a pseudo-sensitivity 

analysis, which led to three initial insights into the model’s behavior. The three 

alterations were to (1) reduce the distance value of SCMs by a factor of 10 from 500 

to 50, (2) reduce the SCM replacement allowed from 30% to 0% and (3) lower the 

transportation cost coefficient by a factor of 50 to 0.0001 in order to match industry 

data. Each alteration was conducted independently of the others with the resulting 

solution field presented in Figure 3-3, Figure 3-4 and Figure 3-5 respectively, 

each utilize epsilons presented in Section 3.3.2. For reference, a plot of the 

modeling output using estimated coefficients is presented in Figure 3-2. Points on 

these plots correspond to individual mixture designs with shape corresponding to 

SCM type. More precisely triangles represent fly ash mixtures, circles silica fume, 

squares metakaolin and octagons slag. 
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Table 3-20. Estimated values of cost and energy impacts used during model 

development 

Constituent 
  Cost    

($/kg) 

  EEC    

(MJ/kg) 

  Distance 

(miles) 

Coarse Agg   0.012   0.1   50 

Fine Agg   0.02   0.08   75 

Cement   0.0985   5.9   20 

Water   0.005   0.01   20 

Slag   0.017   1.6   500 

Fly Ash   0.03   0.1   500 

Silica Fume   0.18   0.04   500 

Metakaolin   0.045   2.08   500 

    ($/kg-mi)   (MJ/kg-mi)     

Transportation   0.005   0.02   N/A 

 

2D figure plots are utilized in this section and present solution mixes using 

four objective variables. The cost of the mix and embodied energy (EE) are shown on 

the x and y axes respectively, while strength is shown as a color corresponding to 

the adjoining color bar and SCM type is conveyed through the shape of the solution 

point, with triangles corresponding to fly ash mixes, circles silica fume, squares 

metakaolin and stars slag. The unaltered solution set, Figure 3-2, is shown to 

contain a solution of every SCM and consists of two separate solution fields. This 

can be seen through the grouping and type of solutions on the plot. The first field is 

the large central region containing solutions that include every SCM type and the 

other is the smaller conjoined region to the right of the central region consisting 

entirely of silica fume solutions. 
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Figure 3-2. Solution field from Case 1 model using estimated coefficients during 

model development 

 

As anticipated every alteration led to a reduced cost of the mixture to varying 

degrees compared to Figure 3-2 with (1) and (2) having a <20% reduction while (3) 

led to a >80% reduction. The reduction in SCM travel distance (Figure 3-3) led to a 

26% reduction in solution field area and also cut the SCMs of metakaolin and slag 

from the solution field. The resulting shape of the solution field appears to exclude 

all solutions corresponding to high embodied energy and low cost and a spatial 

distinction between fly ash and silica fume solution sets is created. Similarly, 

limiting SCM replacement to ~0% replacement (Figure 3-4) led to 30% reduction in 

solution field area with a similar shape formed to that of (1). Any comparison on the 

SCM types found in this solution set is not possible, the symbols indicating a 

particular SCM type for each solution is just a fragment of the formulation of the 

model that insists the MOEA choose an SCM type regardless of replacement choice, 

thus as expected all SCMs appear in the solution set.  
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Figure 3-3. Solution field comparison for Case 1 model with estimated values (left) 

and reduced SCM distance (right) 

 

 

Figure 3-4. Solution field comparison for Case 1 model with estimated values (left) 

and zero SCM replacement (right) 

 

With the greatest relative coefficient reduction, by a factor of 50, the 

transportation cost reduction led not only to the largest reduction in number of 

solutions (>50%) but also discontinuity in cost between discrete solution groups by 

SCM type as seen in Figure 3-5. Additionally, the SCMs of metakaolin and slag 

that were found in Figure 3-2 were no longer present. These changes in the 
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solution space, while interesting, are primarily discussed to illustrate how simple 

input parameter changes can impact the solution field.  

 

 

Figure 3-5. Solution field for Case 1 model with estimated inputs (right) and 

updated, industry, cost coefficient (left) 

 

3.6.2. Case 1: Cubic Meter of Concrete 

3D plots and parallel axis plots are used throughout this section to better 

convey the tradeoffs for each case. The 3D plots report cost, embodied energy, 

embodied carbon, and strength, while the parallel axis plots present either all six of 

the objective functions or the 13 objective functions and decision variables. Parallel 

axis plots of the objective functions are oriented such that the lower end of the axis 

is preferable. Due to the lowest values being considered preferable the plots display 

negative values for strength and slump such that the preferred values of each (the 

largest) are at the bottom of the axis. Each scenario is covered individually in 

numerical order per Table 3-11 and compared to a baseline (3.6.2.1) and other 

cases, when applicable.  
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3.6.2.1. Case 1: Scenario 0 Baseline 

As discussed in Section 3.5, a Case 1 Scenario 0 was created as a baseline 

solution set and is reported in Figure 3-6. Points correspond to individual mixture 

designs with shape corresponding to SCM type. More precisely, triangles and circles 

represent mixtures with fly ash and silica fume, respectively. A parallel axis plot is 

provided in conjunction with the 3D Cartesian plot to clearly communicate those 

objectives not seen in the 3D plot, cover and slump. For all subsequent parallel axis 

plots the blue solution lines represent the baseline, Scenario 0, solution set. 

 

 

Figure 3-6. Case 1: Scenario 0 solution field and parallel axis plot. 

 

The results show a similar grouping of solutions by SCM type as seen in 

Figure 3-5. As expected, cover depth is fixed on the parallel axis plot of Figure 3-6, 

since cover depth was held constant at 0.06 meters. Strength exhibits highest 

variation in possible values. The two isolated solution groups are distinguished by 

SCM type with only fly ash and silica fume appearing as optimal choices. As 

indicated by color, both solution groups indicate that, in general, an increase in 

strength led to an increase in embodied energy and carbon. This relationship is also 

indicated in the parallel axis plot. Crossed lines in the parallel axis plots indicate 
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proportionality between two objectives if one objective is positive and the other 

negative. This result is expected any time the variables mutually increase in 

magnitude, due to the counter orientation of the embodied energy and strength 

axes. In this particular example, average fly ash solutions were found to be 30% less 

costly than the silica fume solutions and experienced an average lower value of 

embodied carbon but greater variance as seen in the 3D plot of Figure 3-6. 

Workability appears to be optimal around a few values as shown in the parallel axis 

plot. This behavior is likely the result of the algorithm finding local extrema in the 

workability prediction function that allow numerous combinations of mixture 

proportions to result in similar workability. The dominance of only a few 

workability values is further illustrated in Figure 3-7. 

 

 

Figure 3-7. Histogram showing the significant grouping of workability values for 

Case 1 Scenario 0  

 

3.6.2.2. Case 1: Scenario 1 

The solution field from Case 0, Scenario 1, which exemplifies a possible 

increase in the price of fly ash to equal that of silica fume, is shown in Figure 3-8. 
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A parallel axis plot of the objectives is also provided in Figure 3-8. In such plots, 

each line represents an individual mixture design and each axis an objective 

variable. The red solution lines are solutions from this Scenario while the blue are 

the baseline, Scenario 0. The solutions are plotted over one another to indicate 

trade-offs and further communicate contrast between Scenarios. 

 

 

Figure 3-8. Case 1: Scenario 1 solution field and parallel axis plot. 

 

For this particular case study example, results illustrate that, with an 

increased cost of fly ash, the field of possible solutions increases. This finding is 

demonstrated by the presence of all four SCMs in the solution set. Similar to the 

baseline case, solutions are distinctly grouped by SCM type in lines of constant cost 

as seen in the 3D plot of Figure 3-8. Additionally, slump appears to converge to 

four values, which is again attributable to consistent solution mix design quantities 

for cement, water, sand, and coarse aggregate. Changes in objective ranges and 

diversity are minimal, as only fly ash solutions experience increased cost. Similar 

grouping of slag solutions (stars) to the fly ash solutions seen previously in the 

baseline is attributed to similar coefficients for cost (Table 3-6) of the two 
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constituents. Most importantly, these results indicate that the model can account 

for future economic and production changes of an SCM.  

3.6.2.3. Case 1: Scenario 2 

The solution field resulting from an increase in embodied energy and carbon 

impacts by a factor of 20 for fly ash is shown Figure 3-9. Increasing the impact of 

fly ash by 20 times was done to allocate impacts from the burning of coal to fly ash 

such that the impact coefficients would be within the range of the other SCM 

impacts.  

 

 

Figure 3-9. Case 1: Scenario 2 solution field and parallel axis plot. 

 

Similar to the effects of increasing fly ash cost, the results show that 

potential mixture solution diversity is increased. Again, solutions are spatially 

separated by SCM type with metakaolin (squares) and slag (stars) appearing in the 

solution set. Fly ash solutions occupy the same region and distribution as in the 

base case while slag solutions, previously seen in Case 1 to be non-dominated at low 

cost, are reduced to a minimal region at the base of the fly ash solutions. As in Case 

1, this finding is attributable to the relatively similar cost of fly ash and slag which 

permits slag solutions to exist either when fly ash is more expensive or has greater 
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embodied impacts. As expected, metakaolin and silica fume solutions are 

unchanged from Scenario 1, as are the range and diversity of objectives. These 

findings further reinforce those of Scenario 1, where slump was also grouped at a 

few distinct values, indicating that only a few dominant mixture solutions exist. 

Even with a twenty-fold increase in embodied impacts fly ash did not lose 

preference in this solution set. This result indicates that the precise impact 

accounting, used to formulate LCI values, for fly ash is less impactful than more 

precise accounting for the other SCMs. Thus, variation in the data set and 

techniques used to define fly ash impacts is relatively unimportant for this specific 

model but could prove more impactful in other scenarios or case’s. 

3.6.2.4. Case 1: Scenario 3 

The impact of closer proximity to recycled aggregates on the solution field is 

shown in Figure 3-10. A parallel axis plot of both decisions and objectives is 

provided with each line representing an individual mixture design and each axis an 

objective or decision variable. This was done to clearly illustrate the range of 

recycled aggregates chosen by the model. Although the cost and environmental 

impacts of recycled aggregates were designated to be lower than normal aggregates 

(Table 3-6), their distance was specified as greater as they are less prevalent and 

processed differently. By decreasing the distance to be a fifth that of normal 

aggregate, recycled aggregate use in mixtures was anticipated to increase.  
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Figure 3-10. Case 1: Scenario 3 objective and decision parallel axis plot. 

 

Results indicate that the reduced distance of travel for recycled aggregates by 

90% results in the full available range of recycled aggregate replacement in 

potential mix design solutions. Additionally, coarse aggregate content is shown to 

often be chosen as the largest possible value. This aligns with the algorithm 

choosing to maximize recycled aggregate content, since recycled aggregates are only 

considered to replace coarse aggregates in this model. Although no four dominant 

mixture designs appear to exist on the decisions (right) side of Figure 3-10, an even 

more pronounced grouping of slump values is reported. This result further indicates 

the possibility that the MOEA algorithm may have found local extrema in the 

workability prediction relationship that allows diverse mixture designs to result in 

the same predicted slump. Figure 3-11 - 12 are provided to clearly indicate the 

diversity of mixture proportions, namely water and coarse aggregate in the above 

solutions although there is grouping of workability values similar to 3.6.2.1. These 

two mixture constituents were not chosen to be exhaustive, but rather, were chosen 

because they have the most beneficial effect on workability of all constituents. Thus, 

through the observed variability in these two constituents, it can be assumed that a 
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highly diverse set of mixtures produced the limited number of workability values 

seen in Figure 3-10. 

 

 

Figure 3-11. Histogram of Coarse Aggregate Content of Solution Mixtures in Case 

1 Scenario 3  

 

Figure 3-12. Histogram of Water Content of Solution Mixtures in Case 1 Scenario 3 

 

Compared to the baseline solution set, the mixtures containing recycled 

aggregates have lower cost by >7% with solutions being predominately below $75 in 

cost. Embodied energy and carbon impacts, although similar in maximum solution 

values, have reduced minimums by <10%. Although 100% replacement by recycled 
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aggregate is not specified for every mixture, very high recycle content mixes 

constitute a plurality with >30% of the mixtures containing 99% recycled aggregate 

or more. These results show that, without consideration for durability, use of 

recycled aggregates can be considered in the optimal solution set in this case study 

example, given they are more accessible than their virgin counterparts. 

Additionally, results indicate the importance of transportation costs and impacts 

when accounting for a low-impact constituent, such as recycled aggregates.  

3.6.2.5. Case 1: Scenario 4 

The solution field resulting from modifications to transportation distances for 

each SCM (see Table 3-14) is shown in Figure 3-13. Additionally, a parallel axis 

plot of the objectives is provided with each line representing an individual mixture 

design and each axis an objective variable. 

 

 

Figure 3-13. Case 1: Scenario 4 solution field and parallel axis plot. 

 

Distances used for each SCM indicate, as seen previously, that fly ash and 

silica fume are preferred to metakaolin and slag in Case 1. The preference is 

indicated, by the 200% increase in fly ash distance and 50% increase in silica fume 

distance needed to bring the other SCMs into the solution space.  The grouping of 
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slump values at nearly the same solution points to the previous scenarios is clear. 

Results indicate that solutions are grouped by SCM, although, as first noted in 

Scenario 2, slag and fly ash solutions are highly linked in this example and, thus, 

closely grouped in Figure 3-13. Although results show solution groupings similar to 

those in Scenario 1 and Scenario 2, the magnitudes and ranges of objectives, namely 

embodied energy and carbon are reduced, with each having reduced maximum 

solution values. Again, these results illustrate the significant impact of 

transportation on life cycle impacts.  

3.6.2.6. Case 1: Scenario 5 

The solution field resulting from a train as the means of transportation 

rather than a truck is displayed in Figure 3-14. Additionally, a parallel axis plot of 

the objectives is provided with each line representing an individual mixture design 

and each axis an objective function. A train was chosen as they are commonly used 

to transport bulk materials around the United States and to batch plants. 

 

 

Figure 3-14. Case 1: Scenario 5 solution set and parallel axis plot.  

 

As expected, results show that transportation coefficients have large impacts 

on the solution set output as first seen in Figure 3-5. The average value of the 
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range of objective functions decreased for cost, energy, and carbon by a 15%, 12% 

and 29% respectively with embodied carbon also experiencing a significant decrease 

in solution diversity compared with the baseline. While the overall reductions in 

magnitude of solutions are representative of the decrease in transportation cost 

alone, solution diversity reduction is considered to result from the dominant role 

that transportation plays in shaping the solution field of low-impact constituents 

similar to what the results in Figure 3-10 indicated. Additionally, embodied carbon 

impacts were heavily stratified by SCM type, with all silica fume solutions 

contributing on average 40 kg-CO2e (or 20%) more than fly ash solutions. This 

result is attributable to the increased contribution of constituent coefficients to total 

impacts as transportation impacts decrease. As shown in Figure 3-15, this scenario 

produced a high usage of recycled aggregate similar to section 3.6.2.4 with 20% of 

solutions having replacements over 90%. These results further reinforce the 

conclusion that low impact constituents are most impacted by transportation 

impacts and distances. 

 

 

Figure 3-15. Histogram of Recycled Aggregate Content in Solutions for Case 1 

Scenario 5 
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3.6.2.7. Case 1: Scenario 6 

The solution set resulting from an increase in the lower bound of the w/c ratio 

is presented in Figure 3-16. Additionally, a parallel axis plot of the objectives is 

provided, with each line representing an individual mixture design and each axis an 

objective function. 

 

 

Figure 3-16. Case 1: Scenario 6 solution set and parallel axis plot.  

 

Results indicate, as anticipated, that increasing the minimum allowable w/c 

ratio for the model reduces the resulting compressive strengths of mixture design 

solutions compared to the baseline model. Surprisingly, neither cost (< 2%) nor 

embodied carbon (slightly < 7%) are significantly affected. Conversely, maximum 

embodied energy values for each mixture are reduced by 400 MJ (14%), which 

parallels the 36% reduction in maximum compressive strength. Solution field 

ranges for the remaining objectives are not significantly altered from the baseline. 

This finding is attributable to the lack of accounting for durability, which is heavily 

influenced by w/c ratio. As with previous results, this case produces similar 

groupings of slumps at four dominant values and also exhibits an increased use of 

recycled aggregates, although not as pronounced as in Case 1, Scenario 3. The 
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presence of recycled aggregates implies that, without accounting for durability, low 

w/c ratio mixes could utilize recycled aggregates to effectively reduce their cost and 

embodied impacts.  

3.6.3. Case 2: Concrete Tilt-Up Wall 

Similar to Section 3.6.2, the results for the concrete tilt-up wall case study 

are documented with a combination of 3D and parallel axes plots. Both simplified 

and numerical 1D diffusion models are employed throughout this section, and their 

comparison is included when noted. In general, the numerical 1D diffusion model is 

the default case and used for the following cases, which are presented in order per 

Table 3-11. A baseline case (Scenario 0) is first discussed and utilized to compare 

with other case results. Due to the limited visual complexity of solution sets on the 

3D plots, results for Scenario 1 and Scenario 2 are presented with parallel axis plots 

containing both objective and decision variable axes, which necessitated the use of 

these more complete parallel axis plots throughout this section. Each case is covered 

individually in numerical order per Table 3-11 and compared to the baseline and 

other cases when applicable. 

3.6.3.1. Case 2: Scenario 0 Baseline 

Formulation of the base case solution was performed for both the simplified 

and numerical 1D diffusion model and is shown with 3D plots in Figure 3-17. 

Modeling parameters specified in Table 3-15 were used in the corresponding 

models. Additionally, a parallel axis pot of the objectives and decisions is provided 

with each line representing an individual mixture design and each axis an objective 

or decision variable. Throughout Case 2 investigations, the first seven axes are 

labeled for decisions (e.g., cement content, w/c ratio, air content) and the other six 

axes are labeled with objectives (e.g., cost, embodied energy, strength). These 
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parallel axis plots are plotted for both the simplified model and numerical 1D model 

(Figure 3-18).  

 

 

Figure 3-17. Case 2: Scenario 0 solution field using a simplified (left) or numerical 

(right) chloride diffusion model. 

 

The results in Figure 3-17 indicate that, regardless of chloride transport 

model, there is a linear relationship between cost, embodied energy, and embodied 

carbon. Contrary to the findings of the Case 1 (cubic meter) baseline (3.6.2.1), 

strength, cost, and embodied carbon appear to be inversely proportional to one 

another, such that an increase in strength will result in a decrease in cost, 

embodied energy, and embodied carbon. The linear relationship for Case 2 is true 

regardless of the diffusion model. This result is expected, as both diffusion models 

predict lower diffusion coefficients and, thus, lower cover depths for lower w/c 

ratios, which, in turn are responsible for higher strengths. With the only variable 

being cover depth required to resist corrosion for 100 years, the lower the cover, the 

lower the cost, embodied energy, and embodied carbon of the mixture used to create 

it. Results of the numerical 1D model indicate that solutions utilizing fly ash occupy 

a different range of cost, embodied energy, and embodied carbon than those of silica 
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fume, while the simplified model indicates that both occupy nearly the same range. 

This finding illustrates the greater impact that fly ash imparts on the diffusion 

coefficient with time, something not accounted for in the simplified model. 

Therefore, fly ash-containing can improve the performance of mixtures beyond the 

range of silica fume-containing mixtures. Additionally, cost, embodied energy, and 

embodied carbon are noted to be approximately 50% less for each metric compared 

to the simplified diffusion model, which is attributable to the known conservative 

cover calculation produced by the simplified approach. 
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Figure 3-18. Case 2 scenario 0 objective and decision parallel axis plots with 

simplified diffusion (top) and numerical 1D diffusion (bottom) 

 

The parallel axis plot results confirm many of the conclusions drawn from 

Figure 3-17. As expected, the cover for the numerical service life model is, on 

average, lower by 40% than the simplified model. Additionally, results show the 

exclusive choice of 30% SCM replacement and lack of recycled aggregate 

replacement, as seen previously with the cubic meter functional unit. This 

investigation illustrates the undesirability of recycled aggregates for their negative 

impact on durability, as found in Case 1. However, additional investigation is 
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needed to illustrate the distances, costs, and availability thresholds that would 

render recycled aggregates preferable in chloride-laden environments. 

The results in Figure 3-18 also indicate that slump is inversely proportional 

to the embodied energy, cover, embodied carbon, and cost, while again being directly 

proportional to strength. Similarly, from Case 1 to Case 2, the embodied energy 

and, by extension, cost and embodied carbon, are inversely proportional to strength, 

as discussed previously. Unlike Case 1 (cubic meter), the slump solutions no longer 

group at values and are instead spread fairly uniformly across the specified range. 

This result is attributable to the reduction in the choice of epsilon for the objective 

function of slump between Case 1 and Case 2. The grouping of solutions along the 

cover axis is indicative of the diffusion coefficient modifiers for fly ash and silica 

fume driving the cover calculation. Furthermore, the increased temporal 

degradation of diffusion coefficient due to fly ash inclusion considered in this model 

results in reduced cover over the silica fume solutions, as speculated in previous 

work by Srubar [17] and in Chapter 2. Unexpectedly, the results indicate that all 

w/c ratios can be used in optimal solutions. Although the majority of mixtures (61%) 

choose the lowest w/c ratio, those that do not end up with some of the highest 

slumps > 19 cm of the mixes. This result confirms the value of including workability 

relationships in the model, as this behavior would likely not be exhibited without 

such models. Since air is modeled to only impact the strength of the mixture, along 

with cement and w/c ratio, it is not surprising that the results contain air contents 

that vary throughout the specified range.  

3.6.3.2. Case 2: Scenario 1 

The solution field resulting from an increase in fly ash price, such that it is as 

expensive as silica fume, is shown in Figure 3-19. The numerical 1D diffusion 

model was utilized to produce these results. A parallel axis pot of the objectives and 
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decisions is provided with each line representing an individual mixture design and 

each axis an objective or decision variable. 

 

 

Figure 3-19. Case 2: Scenario 1 objective and decision parallel axis plot. 

 

Results indicate continuation of many of the trends witnessed in the tilt-up 

wall baseline with zero aggregate replacement, inversely proportional cost, energy, 

and carbon impacts on strength, a uniformly distributed slump, and wide ranges of 

w/c ratios. As expected, the increase in fly ash price resulted in the inclusion of 

additional SCMs in the solution set, namely metakaolin. As in Chapter 2 the 

absence of slag in the solution set is attributable to its minimal effects on the 

diffusion coefficient compared to the other SCMs in the relationships utilized to 

inform the model. Increased coarse aggregate ratios are also seen in the results but 

only for fly ash mixes. Most surprising of the results in Figure 3-19 is the single 

solution that contains the maximum cement content, w/c ratio, air content, and 

coarse aggregate ratio, which are conflicting decisions for objectives, such as 

strength and slump and yet are considered an optimal solution. Results such as this 
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indicate the valuable capability of the model to elucidate tradeoffs that might not be 

discovered in experimental work.  

3.6.3.3. Case 2: Scenario 2 

The solution set resulting from an increase in fly ash environmental impacts 

to the levels shown in Table 3-12 are presented in Figure 3-20. A 1D numerical 

model was utilized to produce these results. A parallel axis plot of the objectives and 

decisions is provided in which each line represents an individual mixture design 

and each axis corresponds to an objective or decision variable.  

 

 

Figure 3-20. Case 2: Scenario 2 objective and decision parallel axis plot. 

 

As expected the results are highly correlated to those of Case 1 with objective 

performance not significantly changed from the baseline and decisions including 

high diversity for cement content. Unlike in Figure 3-19 the change in fly ash 

embodied impacts does not result in a significant increase in coarse aggregate 

replacement. The comparison of this result and that of Scenario 1 indicates that the 

use of a lower cost constituent, coarse aggregate, as filler is not beneficial within the 

increase in embodied impacts investigation (Scenario 2) as in the increase in cost 
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investigation (Scenario 1). While in previous investigations the changes to fly ash 

cost and embodied impacts resulted in increased inclusion of SCMs in the solution 

field, this behavior is not evident in this scenario, as neither metakaolin nor slag 

are present in the results. Instead, fly ash and silica fume are only utilized in the 

mixtures. Cover is primarily grouped at two values, as seen in Scenario 0. 

3.6.3.4. Case 2: Scenario 3 

Specifying the recycled aggregate content to be 100% forced the model to 

produce solutions containing recycled aggregates. Results were produced utilizing 

the numerical 1D diffusion model utilizing the same distance coefficient specified in 

Table 3-12 and are presented in Figure 3-21 and Figure 3-22. On the 3D plot 

points correspond to individual mixture designs with shape corresponding to SCM 

type. More precisely, triangles represent fly ash mixtures and circles, silica fume. 

Additionally, a parallel axis pot of the objectives and decisions is provided with each 

line representing an individual mixture design and each axis an objective or 

decision variable. The first seven axes are labeled for decisions (cement content, w/c 

ratio, air content etc.) and the concluding six axes are labeled with objectives (cost, 

embodied energy, strength, etc.). The red line indicates the Scenario 3 solutions 

while the blue line are the baseline (Scenario 0) solutions. 
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Figure 3-21. Case 2: Scenario 3 solution field. 

 

 

Figure 3-22. Case 2: Scenario 3 objective and decision parallel plot. 

 

As expected the forcing of recycled aggregates at 100% replacement in all 

mixtures resulted in a much more extreme solution field than of the baseline. Cover 

was found to increase by more than 200% compared to Figure 3-18 with maximum 

covers reported at over .15m or 5.9 inches. This finding agrees with results 

presented in Chapter 2 that recycled aggregate replacement is a significant driver 

of chloride durability for concrete. Cost, embodied energy and carbon also increased 

by 200% over the baseline because of increased cover. The decrease in durability 
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that leads to an increased cover needed counteracts the savings that are assumed to 

come from the inclusion of recycled aggregates and is the justification for why 

recycled aggregates were not being utilized by the model previously. Reductions in 

strength are negligible compared to the baseline but could result from the higher 

density of solutions utilizing w/c ratios above 0.25. Air content and coarse aggregate 

content are both shown to be highly diverse with solutions occupying their full 

allowable range. Finally, slump values are noted to be lower on average by 7 cm 

with most solutions having slumps below 15cm or 5inches. The decrease in solution 

slump is contrary to previous solutions in Figure 3-10 that have shown 

insignificant change in slump with recycled aggregate addition.  

Results for the solution sets replacement percentage surprisingly indicate 

usage of SCM below the 30% replacement. The selection of lower than 30% 

replacement values in the optimal set could be a result of the model cutting SCM 

replacement to save costs in solutions were further replacement wouldn’t significant 

change cover depth. These results show the potential for the model to find solutions 

even when a decision variable, such as recycled aggregate replacement, is forced to 

a designer specified value. Furthermore, this investigation illustrates that the tool 

is capable of illustrating trade-offs for scenarios that would otherwise be unlikely to 

be investigated in experimental research. 

3.6.3.5. Case 2: Scenario 4  

Scenario 4 was excluded from these results as no feasible distance (>0 miles) 

for slag could be chosen such that it would appear in the solution field. Additionally, 

the distances required for metakaolin to be used in solutions required fly ash to be 

over 10,000 miles from the mixing site, which is more than three times the width of 

the United States. Given these two findings, Case 4 is considered to not be 

attainable for the tilt-up wall functional unit modeled with the inputs presented in 
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Table 3-15. Additional investigation of less harsh environments with longer service 

life may result in slag becoming a solution option with only exposure Case 4 and 5 

having the potential per the findings of Chapter 2 in Table 2-7. 

3.6.3.6. Case 2: Scenario 5 

Reduction in transportation costs and impacts, through the use of a freight 

train rather than truck on the mixture design for a tilt-up wall, is reported in 

Figure 3-23. Red solutions are those utilizing train transportation while blue are 

those utilizing truck transport. Again, the 1D diffusion model was utilized to 

produce the results. A parallel axis plot of the objectives and decisions is provided 

with each line representing an individual mixture design and each axis a variable.  

 

 

Figure 3-23. Case 2: Scenario 5 objective and decision parallel plot. 

 

From the results, many of the same behaviors as previously discussed are 

present. For example, results indicate, a fully utilized SCM replacement amongst 

solutions, even distribution of slump in solutions, and full diversity in solution air 

content. As with the previous investigation of utilizing reduced transportation 

impacts (Figure 3-14), the results indicate a universal reduction in cost, embodied 
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energy, and embodied carbon by >20% each. Furthermore, greater variation 

between the fly ash solution group and silica fume solution group are seen in the 

results (Figure 3-22) as were seen previously through this case investigation. The 

presence of grouped solutions, again indicates the greater impact transportation has 

on fly ash as compared to silica fume in the model.  

3.6.3.7. Case 2: Scenario 6 

Results from increasing the lower bound of w/c ratio for a tilt-up wall are 

presented in Figure 3-24 and Figure 3-25. On the 3D plots, points correspond to 

individual mixture designs with shape corresponding to SCM type. More precisely, 

triangles represent fly ash mixtures and circles silica fume. Additionally, a parallel 

axis pot of the objectives and decisions is provided with each line representing an 

individual mixture design and each axis an objective or decision variable. The first 

seven axes are labeled for decisions (cement content, w/c ratio, air content etc.) and 

the concluding six axes are labeled with objectives (cost, embodied energy, strength, 

etc.). 

 

 

Figure 3-24. Case 2: Scenario 6 solution field. 
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Figure 3-25. Case 2: Scenario 6 objective and decision parallel plot. 

 

Results reiterate that increasing the w/c ratio lower bound produces a weaker 

and less varied solution set. Compared to the baseline, maximum strength is 

reduced by 22%, and the two solution groups corresponding to fly ash and silica 

fume are more separated. Reductions are also present in embodied carbon and 

energy on the order of 5% and 7%, respectively, for their minimums. No significant 

changes are noted for either cover or slump which suggests lower water-to-cement 

ratios are countered by other variables that can improve these properties allowing 

the tool to specify mixtures for lower strengths that have similar properties to lower 

w/c ratio mixtures. The reduction in w/c ratio is shown, through the results, to also 

reduce the cement content of the solution sets. but has no impact on the potential 

air contents.  

3.6.4. Case 3: Axially Loaded Concrete Column 

Results for Case 3 are presented for three scenarios: Scenario 0, Scenario 1C 

and Scenario 2C. This section utilizes both 3D plots of solution sets and combined 

objective and decision parallel axis plots that follow the same conventions applied 

for plots of Case 1 and Case 2. 
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3.6.4.1. Case 3: Scenario 0 Baseline  

The baseline scenario for Case 3, the axially loaded concrete column, was 

created with the inputs in Table 3-16. The results are shown in Figure 3-26 and 

Figure 3-27. On the 3D plot, points correspond to individual mixture designs with 

shape corresponding to SCM type. More precisely, triangles represent fly ash 

mixtures, and circles represent silica fume. Each line in the parallel axis plot of the 

objectives and decisions represent an individual mixture design, and each axis 

represents an objective or decision variable.  

 

 
 

Figure 3-26. 3D plotted solutions for the baseline column 

 

Figure 3-27. Parallel plot of solution set for the baseline column 
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Results indicate the presence of slag in the solution set that is running a 

numerical diffusion model and has standard inputs. This baseline case is the only 

one in this study to find slag-containing mixture design solutions. This finding 

illustrates the capability of the model, together with improved service life analysis, 

to produce more diverse solution sets. The diversity of cement, w/c, and air content 

in the solution set is high, which follows trends observed in previous results. 

Although most solutions favor low coarse aggregate content with no recycled 

aggregate, a few mixture solutions utilize high values of both, which led to the 

lowest cost mixtures, but the highest cover (>100% from the median cover of the 

solutions). These results indicate the possibility of some mixtures to contain 

recycled aggregates (even in moderate chloride environments) if larger covers are 

considered acceptable. Additionally, as seen in previous investigations, those 

solutions that contain the highest possible contents of cement, w/c ratio, and air 

have the highest cost, embodied energy, and embodied carbon and the lowest 

strengths, but produce the highest slump mixtures. The presence of these solutions 

helps indicate conflict between workability and the other objectives, and again 

shows that the model can produce solutions that would intuitively not be considered 

optimal. However, if the need for a highly workable mixture was paramount than 

the model has and can provide mixtures for each scenario that consider such a 

possibility. 

3.6.4.2. Case 3: Scenario 1C – Interior column  

A 16” by 16” limitation on column size and utilization of the parameters in 

Table 3-16 resulted in the set of mixture design solutions shown in Figure 3-28. 

Application of a constant boundary condition for this case investigation resulted in 

cover being represented as a single point on the parallel axis plot. Red solution lines 
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indicate results from Scenario 1C while the blue lines are those from the baseline, 

Scenario 0. 

 

 

Figure 3-28. Solution set for the interior column 

 

As anticipated, limiting the column size resulted in a reduced solution space 

from the baseline. Strength is reported starting at 4,400 psi rather than 1,800 psi 

seen in the baseline, indicating that the column size constraint is indeed 

constraining solutions and preventing mixtures that would result in smaller 

columns from being chosen. Results also validate the application of the constraint, 

since the cost, embodied energy, and embodied carbon are all below the average 

result values from Scenario 0. As seen through other functional units in this study, 

the solutions consist exclusively of fly ash and silica fume SCM mixtures with 

replacements at, or near, 30%. Additionally, results contain similar high variability 

in cement content and air content, although w/c ratio diversity is depressed. Results 

show that only one mixture utilizes recycled aggregates, although no chloride 

exposure is considered. The presence of only one recycled aggregate containing 

solution parallels previous cases with no chloride exposure that had few or no 



113 

 

recycled aggregate containing solutions. Again, this mixture produces the lowest 

possible cost. Slump is reduced from previous results with the minimum value at 

3.8 cm or 1.5 inches, which is attributable to the reduced w/c ratio options. 

3.6.4.3. Case 3: Scenario 2C – Exterior bridge pier  

The results of the bridge pier designed to be larger than 36” by 36” and 

implemented in the harsh environment specified in Table 3-16 are presented in 

Figure 3-29. Solutions for Scenario 2C are plotted in blue without comparison to 

Scenario 0 solutions. 

 

 

Figure 3-29. Solution set for exterior bridge pier 

 

With such extreme constraints, the solution set is reduced from the baseline 

and constitutes only 16 solutions compared to 160. Results are only varied for 6 of 

the 13 variables with cement content, w/c ratio, air content, coarse aggregate 

content, SCM replacement, embodied energy and strength found to be nearly fixed 

for all solutions. SCM choices are restricted to silica fume and fly ash, as seen 

previously. However, the results do present viable ranges of recycled aggregate 

contents. These results are considered optimal, even though the bridge pier is in the 



114 

 

harshest chloride exposure environment considered in the model. Such results 

indicate that recycled aggregates may be more likely to be used by the model to 

explore a very confined solution space. Attributable to the varied use of recycled 

aggregates, cover varies by over 100% in these results and indicates, that in 

sufficiently large volumes of concrete, such as 36” by 36” pier, cover has little impact 

on the resulting volume of concrete and thus does not drive the optimization model. 

The fixed value of all solutions for embodied energy is surprising, given that these 

solutions do not share similar costs or embodied carbon.  
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3.7. CONCLUSIONS 

This study presented the development, calibration, and implementation of a 

multi-objective concrete mixture design optimization tool that leveraged the Borg 

MOEA algorithm to overcome existing limitations of optimized concrete mixture 

design. The model considers six diverse and conflicting objective functions, namely 

compressive strength, workability, cost, embodied energy, embodied carbon, and 

chloride diffusivity. These functions were defined by empirical, statistical, and 

numerical relationships that were used to predict the values of the six considered 

design performance criteria. Additionally, a novel 1D numerical diffusion model 

developed to predict chloride diffusion in recycled aggregate concrete and a new 

model for carbon sequestration were included in the objective function formulation. 

Utilizing an evolutionary algorithm search-based methodology that relies on epsilon 

dominance on-dominant Pareto-optimal mixture design solutions were obtained for 

ten scenarios, resulting in a total of 17 solution sets across three case study 

examples, namely a cubic meter of concrete, a concrete tilt-up wall, and an axially 

loaded concrete column. These cases addressed a continuum of economic, spatial, 

and practical design criteria with a goal of demonstrating the capabilities of the 

MOEA framework by elucidating the tradeoffs between objectives and decisions.  

Results confirm the suitability of the Borg MOEA algorithm for continued use 

with concrete mixture design optimization, due not only to the ease of 

implementation, but also to the diversity of solutions produced under conflict-

inducing application criteria. Through the three case study examples, variations in 

number and type of constraint and objective function definitions were evident in the 

resulting solution sets. Additionally, variation in input parameters resulted in 

solution set variation, illustrating interesting trade-offs. With the flexibility and 

computational speed of the Borg utilized in this study, additional objective and 
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decision inclusion in the problem formulation can be provided in the further. Such 

prospects further validate the prospect of MOEA use for concrete optimization. 

The results of seventeen scenario investigations illustrate the diversity and 

range of a solution set is proportional to the problem complexity, with the simplest 

application, Case 1, a cubic meter of concrete, producing the largest and most 

diverse solution fields.  Increasingly complicated Case 2, the concrete tilt-up wall, 

and Case 3, the axially loaded concrete column, resulted in reduced sizes of solution 

sets. The final scenario (Case 3), a bridge pier, resulted in a solution set that was 

reduced to 16 mixtures from 160 in the comparatively simplistic column model 

baseline. Results also illustrate that transportation coefficients and constituent 

coefficients interact based on their relative magnitude. If a constituent is defined 

with small values for its impact metrics of cost, embodied carbon, and embodied 

energy, then transportation is more likely to dominate the solution field of a 

mixture containing that constituent. Fly ash mixtures were shown to exhibit this 

behavior more frequently with global changes to transportation impact parameters 

most affecting their solution set. However, on average, solution sets were found to 

consist of approximately 80% material impacts and 20% transportation impacts, 

indicating that subsequent and compounding transportation manipulations result 

in reduced tradeoffs with each manipulation. In regard to the inclusion of recycled 

aggregates, results showed that the use of recycled aggregates in structural 

applications in high-chloride environments is viable. In these investigations, 

recycled aggregates produce low-cost concretes and were only viable solutions in 

applications not requiring chloride resistance or when readily available (closer and 

cheaper) than their virgin counter parts. This finding is in agreement with previous 

research [17] that showed how exposure, rather than contamination of aggregates 

or their replacement percentage, was the primary factor affecting performance. 
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The results from this study further indicate that all ranges of cement content, 

w/c ratio, and air content can exist in optimal solutions in most solution sets 

without strength or workability constraints. Even for those applications requiring 

moderate chloride durability, water to cement ratios as high as 80%, which reduce 

diffusion coefficients, can appear in the solution set. Additionally, mixtures 

containing high cement replacements were found herein to be preferred when low 

environmental impact solutions are desired. In these cases, in particular, the 

importance of SCMs in determining the variability of solutions chosen by the model 

is most evident. This finding is in agreement with current practice in concrete 

mixture formulation. Again, the functionality of the model for the investigated cases 

and the variability in results indicates not only the viability of the Borg MOEA for 

concrete mixture design, but also the ability of the current model formulation to 

holistically capture trends found in current mixture design and research.  
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CHAPTER 4     SUMMARY 

 

This thesis presented two studies that address the complexity of concrete 

mixture design, which is a multi-variable problem. Substantial time and effort goes 

into designing, testing, and perfecting single mixture designs for optimal 

performance in some, but not all, of these properties. This work showed that one 

constituent in particular, namely recycled aggregates, can have a drastic effect on 

concrete durability. Subsequently, a model was formulated to optimize concrete 

mixtures with considerations for mixture cost and embodied impacts, such as 

energy and carbon. By considering complex relationships between concrete mixture 

proportions and resulting constituent properties these two studies were used to help 

elucidate trade-offs and illustrate mixture design choices that may not have been 

considered by the current mixture designer. 

The first study presented the development, validation, and implementation of 

a 1D numerical service-life prediction model for reinforced recycled aggregate 

concrete exposed to internal and external sources of chlorides. The model accounted 

for the inclusion of supplementary cementitious constituents (SCMs), namely (a) fly 

ash, (b) slag, (c) silica fume, and (d) metakaolin, and recycled aggregates (i) with 

and (ii) without initial chloride contamination from previous in-service exposure. 

The model was used to predict time to corrosion-induced cracking for reinforced 

recycled aggregate concrete in five case-study applications, namely structures in a 

marine splash zone (Zone I), a marine spray zone (Zone II), within 800 km of 

coastline (Zone III), within 1.5 km of coastline (Zone IV), and parking structures at 

locations greater than 1.5 km from the coastline (Zone V) in Los Angeles, California 



119 

 

and Anchorage, Alaska. The effects of recycled aggregate size, replacement ratio, 

degree of aggregate pre-contamination with chloride from previous in-service 

exposure, water-to-cement (w/c) ratio, and SCMs on time-to-cracking of reinforced 

recycled aggregate concrete were elucidated herein. The potential for SCMs to 

improve the service life of recycled aggregate concrete was investigated by 

estimating additions required to meet a target service life of 50 years.  

Results indicate that, in addition to geographic location, temperature, and 

severity of exposure, w/c ratio and aggregate replacement ratio exhibited the 

greatest impact on time to chloride-induced cracking in reinforced recycled 

aggregate concrete. Furthermore, initial aggregate chloride contamination and 

aggregate size imparted minimal effects on expected service life. Finally, the results 

illustrate that the use of either fly ash or slag was most viable in achieving a 50-

year service life for recycled aggregate concretes in chloride-laden environments. 

Broadening the work of the first study, the second study presented the 

development and implementation of a multi-objective concrete mixture design tool 

capable of evaluating tradeoffs of different mixture proportions on concrete 

performance. The model was driven by a multi-objective evolutionary algorithm 

(MOEA) which uses a search-based methodology to find a set of Pareto-optimal 

mixture designs. Relationships informing the MOEA consider cement content, 

water, supplementary cementitious constituents (SCMs), namely (i) fly ash, (ii) 

silica fume, (iii) slag and (iv) metakaolin, sand, coarse aggregate, recycled 

aggregates, and air in the mixture. Six objectives functions were used to determine 

optimality of mixtures: strength, workability, chloride induced corrosion resistance, 

embodied energy, embodied carbon, and cost. Objective properties were modeled 

using a suite of empirical and numerical methods, which considered multiple 

decisions in their formulation. As demonstrated, the model can produce a suite of 
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optimal mixtures for three case study applications: a cubic meter of concrete, a tilt-

up concrete wall, and a concrete column. In total 17 scenarios were investigated to 

illustrate the capabilities of the modeling methodology.  

Results indicate that the model can elucidate tradeoffs related to SCM choice, 

recycled aggregate content, transportation cost, constituent cost, and application. 

Additionally, the results illustrate that practical, realistic design constraints, 

including a mixture of durability and strength criteria, can be implemented in the 

model and produce a set of viable, optimal, yet varied, solutions. Finally, the results 

obtained with this model suggest the need for continued refinement of the 

relationships that inform the optimization process, as well as the inclusion of 

additional objectives and decisions, to push the model even nearer to the goal of a 

comprehensive, holistic design methodology.  

 

4.1. RECOMMENDATIONS FOR FUTURE WORK 

Many practice constructions, such as a concrete wall, sidewalk, etc., can be 

simplified as a two-dimensional shape, which can be accurately modeled with the 

1D diffusion model. Currently the proposed model of Chapter 3 utilized two 1D 

diffusion models that were well suited for tasks such as those case investigations 

presented. However, although a column functional unit is included in this study the 

implementation of the 1D diffusion solution to predict durability for a 3D object 

results in an introduced solution error. A better approach to implement in the model 

would be to enhance the 1D diffusion model to a 2D model that could analyze 3D 

objects: beams, columns, foundations, etc. With the added dimension of analysis 

comes an increase in computational expense, as it would require, at minimum, an 

additional loop to solve for cover depth.  
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Mixtures in industry often include admixtures (which were excluded from the 

model formulation) to improve sub-par properties of a mixture design. 

Superplasticizers, for example, in particular are often utilized to improve 

workability for low w/c ratios (below 30%) as well as concretes including high SCM 

additions, which greatly reduce fresh state workability. While chemical 

superplasticizers often have significant embodied impacts, their inclusion can be 

beneficial when high workability and low w/c are desired. Currently this work does 

not address the contribution that admixtures can impart to a solution set. Rather, 

current implementation simply allows for bounds to be placed on w/c ratio, SCM 

replacement, and other decisions to allow for feasible solutions. 

Empirical relationships, while simple to implement, are limited in their 

scope. Consequently, models that employ such empirical relationships are limited 

by their shortcomings. Often, data sets for concrete mixtures exist that consider 

more input variables and prediction outputs than existing empirical relationships. 

To take advantage of these data, sets artificial neural networks (ANN) could be 

applied within the model and trained using experimental data to derive more 

complete relationships for desired properties. Through the combination of similar 

and complementary data sets, ANN could be more effectively utilized and gaps in 

previous methods could be better addressed. Alternatively, existing research has 

indicated the potential for inclusion of stochastic sampling techniques and ANN to 

simulate data sets to further inform additional neural network models ([77], [83], 

[106], [111]). Implementing a prediction methodology that accounts for all decision 

variables, or as many of them as the most complete method allows, will lead to a 

more holistic mixture design methodology than is currently possible. Such a method 

could most immediately be utilized to produce a relationship for strength that 

accounts for cement, w/c ratio, SCM type and replacement, aggregate gradation, 



122 

 

admixture addition, air content, and recycled aggregates, and would address one of 

the greatest limitations of the current modeling approach. 

Life cycle inventory (LCI) data, embodied carbon and embodied energy 

coefficients, inform two of the six objective functions. With such a large influence on 

the search procedure, high quality and accurate LCI data needs to be ensured 

within the model to produce practical trade-offs. Currently, no unified, 

comprehensive and public LCI database exists for use with this model. Additionally, 

United States specific LCI data is much more difficult to find than that of European 

or Canadian products. The model proposed in Chapter 3 utilizes data that took 

significant amounts of time to find and validate, ensuring confidence in results. If, 

more complete LCI databases were to be combined with the model then confidence 

in results would be much less time consuming to ensure. 
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APPENDIX – A: RECYCLED CONCRETE MODELING CODE 

 

 

A.1 MASTER 

 

 
% Nathan Stambaugh  
  
clc; clear; close all 
  
filepath = sprintf('%s%s',cd,'\'); 
mail = 'eralman@gmail.com'; 
password = 'yamatonds'; 
host = 'smtp.gmail.com'; 
port = '465'; 
  
setpref( 'Internet','E_mail', mail ); 
setpref( 'Internet', 'SMTP_Server', host ); 
setpref( 'Internet', 'SMTP_Username', mail ); 
setpref( 'Internet', 'SMTP_Password', password ); 
  
props = java.lang.System.getProperties; 
props.setProperty( 'mail.smtp.user', mail ); 
props.setProperty( 'mail.smtp.host', host ); 
props.setProperty( 'mail.smtp.port', port ); 
props.setProperty( 'mail.smtp.starttls.enable', 'true' ); 
props.setProperty( 'mail.smtp.debug', 'true' ); 
props.setProperty( 'mail.smtp.auth', 'true' ); 
props.setProperty( 'mail.smtp.socketFactory.port', port ); 
props.setProperty( 'mail.smtp.socketFactory.class', 'javax.net.ssl.SSLSocketFactory' ); 
props.setProperty( 'mail.smtp.socketFactory.fallback', 'false' ); 
  
%% Inputs that effect simulation speed and accuracy 
ns = 1; % number of Monte-Carlo simulations 
maxlife = 150; % max service life in years 
slices = 300; %Number of slices through the concrete 
  
%% INPUTS TO INVESTIGATE 
mix = 2; % 1 = OPC, 2 = SF, 3 = FA, 4 = SG; 5 = MK; 
City = 'LA'; % LA or AK 
number = 6.0; % number >= 6 means default values 
  
[mca,stdca,w2c,sigma,AR_Ratio] = SIMS(number); 
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% Overwrite values from above function 
% mca = 0; stdca = 0.0;% kg/m^3 initial contamination of agg 
sigmam = convlength(sigma,'in','m'); % diam of each aggregate (TRY: 3/8, 1/2, 1) 
  
concwt = 2350; % concrete weight (lb/m^3) 
DRMAint = 12.5e-12; % m^2/sec 
cover = convlength(2.5,'in','m'); % cover depth (TRY: 2, 2.5, 3) 
DiamReb = convlength(0.375,'in','m'); 
mci = 0.7; stdci = 0.05;%kg/m^3 Chloride threshold of rebar 
  
if City == 'LA'; 
% average temp in each month for Los Angles CA in (K) Jan-Dec 
Temp = [286.95;287.2;287.55;288.75;290.25;291.85;293.75;294.55;294.25;292.45;289.55;286.95]; 
elseif City == 'AK'; 
% average temp in each month for Anchorage AL in (K) Jan-Dec 
Temp = [264.8;266.8;270.1;275.7;282.0;286.2;287.8;287.0;282.3;274.5;267.9;265.9]; 
end 
Tref = 21; % (C) reference tempurature 
Tref = Tref+273.15; % Tref in (K) 
  
for q = 1:5 
Location = q; % Condition to be investigated 
% 1 = Marine Splash Zone; 2 = Marine Spray Zone; 3 = Within 800m of Coast 
% 4 = Within 1.5km of Coast; 5 = Further than 1.5 km from Coast 
% for w/c = 0.45 average for locations: 
% 1 ~ 5, 2 ~ 9, 3 ~ 13, 4 ~ 18, 5 ~ 45 
  
%% Calculations 
  
SL = maxlife*365; % days in max service life 
  
% days in each month from Jan-Dec 
months = [31;28;31;30;31;30;31;31;30;31;30;31]; 
  
% Transformation of tempurature vector from above 
t = repmat(months,maxlife,1); % builds an vector of each year by months 
t = cumsum(t,1); % adds each previous entry to the next cumulatively suming 
T = repmat(Temp,maxlife,1); % vector of tempuratures of length time 
% this array is Kelvin and the time goes till the max service life. 
  
% Converts the mean and standard deviation of the initiation limit into 
% lognormal values. 
varci = stdci^2;% kg/m^2 varriance of the chloride initiation threshold 
% below are values needed to create log normal distribtion 
muci = log((mci)/sqrt(1+varci/(mci^2))); 
sigci = sqrt(log(varci/(mci^2)+1)); 
  
depth = cover*2; % depth of analysis 
spacemin = cover/10; 
num_agg = floor(AR_Ratio*(cover-spacemin)/(sigmam)); % num agg in the cover depth 
x_s = ((cover/num_agg)- sigmam); % space each agg can be placed in 
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num_agg = 1:num_agg; 
dx = depth/slices; % slice thickness 
slice_c = round(cover/dx); % slices in cover thickness 
  
dt = 1; % step size of analysis in months 
  
%% Boundary Condition Generation 
[Max_conc,t2max,bc] = Boundary(maxlife,Location,concwt); 
  
%% Initial Diffusion Coefficents 
D28 = (2.17*10^-12)*exp(w2c/0.279); % m^2/sec 
  
%% Mix Design Function 
  
[D,DRAMT] = mixdesign(mix,t,T,D28,DRMAint,Tref,SL); 
  
%% Time to Cracking and Initiation Variables 
for i = 1:ns 
[Tc(i)] = Cracking(DiamReb,cover); 
    ci(i) = lognrnd(muci,sigci); 
    ca(i) = normrnd(mca,stdca); 
end 
  
%% Time to Failure  
  
[Tfail] = Time2Fail(ns,slices,t,dt,dx,D28,ci,ca,D,DRAMT,DRMAint,num_agg,slice_c,sigmam,Tc,bc); 
  
FileName = sprintf('%s Location %1.0f SCM %1.0f mca=%1.2f w2c=%1.2f sig=%1.2f 
ARR=%1.2f',City,Location,mix,mca,w2c,sigma,AR_Ratio); 
save(sprintf('%s%s',FileName,'.mat'),'Tfail'); 
%sendmail(mail,'hello from the otherside'); 
sendmail('eralman@gmail.com','Data','Dont Keep',{sprintf('%s%s%s',filepath,FileName,'.mat')}); 
end 
msgbox({'Operation Completed' '' 'IF YOU ARE READING THIS THEN PLEASE CLOSE OUT OF 
MATLAB AND THE COMPUTER IS ALL YOURS'},'User','warn'); 
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A.2 SIMS 

 

 
function [mca,stdca,w2c,sigma,AR_Ratio] = SIMS(number) 
% Default Values for all sims 
mca = 2; stdca = 0.01; w2c = 0.45; sigma = 0.375; AR_Ratio = 0.5; 
  
  
if number < 2; 
    % Initial Contamination 
    if number == 1.0; 
        mca = 1.0; stdca = 0.01; 
    elseif number == 1.1; 
        mca = 1.5; stdca = 0.01; 
    elseif number == 1.2; 
        mca = 2.0; stdca = 0.01; 
    elseif number ==1.3; 
        mca = 2.5; stdca = 0.01; 
    end 
  
elseif number < 3; 
    %Water Cement Ratio 
    if number == 2.0; 
        w2c = 0.3; 
    elseif number == 2.1; 
        w2c = 0.35; 
    elseif number == 2.2; 
        w2c = 0.40; 
    elseif number ==2.3; 
        w2c = 0.45; 
    end 
     
elseif number < 4; 
    % Aggregate Size 
    if number == 3.0; 
        sigma = 0.375; 
    elseif number == 3.1; 
        sigma = 0.5; 
    elseif number == 3.2; 
        sigma = 0.75; 
    elseif number == 3.3; 
        sigma = 1; 
    end 
     
elseif number < 5; 
    % Recycled Agg Replacement Ratio 
    if number == 4.0; 
        AR_Ratio = 0.3; 
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    elseif number == 4.1; 
        AR_Ratio = 0.5; 
    elseif number == 4.2; 
        AR_Ratio = 0.7; 
    elseif number == 4.3; 
        AR_Ratio = 1; 
    end 
     
elseif number < 6; 
    % No Recycled Aggregate 
    AR_Ratio =0; 
    sigma = 0; 
    w2c = 0.45; 
end    
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A.3 MIX DESIGN 

 

 
function [D,DRMAT] =  mixdesign(mix,t,Temp,D28,DRMA,Tref,SL) 
  
  
  
% The ultimate diffusion coefficent is found for 100 years of service 
U = 35000; 
R = 8.314462; 
SF = 5; % Fixed input for Silica Fume 
FA = 5; % Fixed input for Fly Ash 
SG = 5; % Fixed input for Slag 
MK = 5; % Fixed input for Metakoalin 
  
if mix == 1; % 100% OPC 
    m = 0.26; %Decay of diffusion coefficent 
    Dult = D28*(28/SL)^m; % m^2/sec; The ultimate diffusion coefficent 
    Dt = D28*(28./t).^m; 
    Dt(SL*12/365+1:length(Dt)) = Dult; 
    D = Dt.*exp((U/R)*(1/Tref-1./Temp)); % D(t,T) 
  
elseif mix == 2; % Silica Fume 
    m = 0.26; %Decay of diffusion coefficent 
    D_SF = 0.206+0.794*exp(-SF/2.51); 
    D28 = D28*D_SF; 
    Dult = D28*(28/SL)^m; % m^2/sec; The ultimate diffusion coefficent 
    Dt = D28*(28./t).^m; 
    Dt(SL*12/365+1:length(Dt)) = Dult; 
    D = Dt.*exp(U/R*(1/Tref-1./Temp)); % D(t,T) 
  
elseif mix == 3; % Fly Ash 
    m = 0.26+0.4*(FA/50); %Decay of diffusion coefficent 
    D_FA = 0.171+0.829*exp(-FA/6.07); 
    Dult = D28*(28/SL)^m; % m^2/sec; The ultimate diffusion coefficent 
    Dt = D28*(28./t).^m; 
    Dt = Dt.*D_FA; 
    Dt(SL*12/365+1:length(Dt)) = Dult; 
    D = Dt.*exp(U/R*(1/Tref-1./Temp)); % D(t,T) 
  
elseif mix == 4; % Slag 
    m = 0.26+0.4*(SG/70); %Decay of diffusion coefficent 
    Dult = D28*(28/SL)^m; % m^2/sec; The ultimate diffusion coefficent 
    Dt = D28*(28./t).^m; 
    Dt(SL*12/365+1:length(Dt)) = Dult; 
    D = Dt.*exp(U/R*(1/Tref-1./Temp)); % D(t,T) 
     
elseif mix == 5; % Metakaolin 
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    m = 0.26; 
    D_MK = 0.191+0.809*exp(-MK/6.12); 
    Dult = D28*(28/SL)^m; % m^2/sec; The ultimate diffusion coefficent 
    D28 = D28*D_MK; 
    Dt = D28*(28./t).^m; 
    Dt(SL*12/365+1:length(Dt)) = Dult; 
    D = Dt.*exp(U/R*(1/Tref-1./Temp)); % D(t,T) 
end 
  
% Recycled Aggregate Concrete Degredation 
DRMAT = DRMA*exp(U/R*(1/Tref-1./Temp)); % DRMA(T) 
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A.4 BOUNDARY 

 

 
function [Max_conc, t2max, bc] = Boundary(maxlife,Location,concwt) 
  
%% slopes for exposure conditions from Life 365 
if Location == 1; 
    Max_conc = concwt*.008; 
    t2max = 1; 
elseif Location == 2 
    Max_conc = concwt*.01; 
    t2max = 10; 
elseif Location == 3 
    Max_conc = concwt*0.006; 
    t2max = 15; 
elseif Location == 4 
    Max_conc = concwt*0.006; 
    t2max = 30; 
else 
    Max_conc = concwt*0.008; 
    t2max = 200; 
end 
  
%% the sloped portion of the boundary condition 
if Max_conc == 0 
    y = 0; 
else  
    y = linspace(0,Max_conc,t2max*12); 
end 
y = y.'; 
  
%% the constant portion of the boundary condition 
if maxlife <= t2max 
    yy = repmat(Max_conc, 1, 1); 
else 
    yy = repmat(Max_conc, abs((maxlife-t2max))*12,1); 
end 
bc = [y; yy]; 
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A.5 CRACKING 

 

 
function [Tc] = Cracking(DiamReb,cover) 
  
% all values below assumed for general concrete mix. 
fts.m = 544; fts.s = 72.5; % Tensile strength (psi) 
Em.m = 4350000; Em.s = 435000; % Modulus of elasticity (psi) 
tpr.m = 0.0005; tpr.s = 0.0002; % porous region thickness (ft) 
iCorr.m = 0.0015; iCorr.s = 0.0002; % Corrosion rate (A/ft^2) 
Phi = 2; % Creep coefficent of Concrete 
v = 0.28; % Poisson's Ratio 
rho_r = 225; % Density of rust 
rho_s = 490; % Density of steel 
alpha_l = 0.523; % lower bound on alpha 
alpha_h = 0.622; % upper bound on alpha 
DiamReb = convlength(DiamReb,'m','in'); 
cover = convlength(cover,'m','in'); 
  
ft = abs(normrnd(fts.m,fts.s)); 
E = abs(normrnd(Em.m,Em.s)); 
tp = abs(normrnd(tpr.m,tpr.s)); 
alpha = abs(alpha_l+(alpha_h-alpha_l)*rand); 
icorr = abs(normrnd(iCorr.m,iCorr.s)); 
  
E_eff = E/(1+Phi); 
a = (DiamReb+2*tp)/2; 
b = cover+a; 
tcrit = cover*ft/E_eff*((a^2+b^2)/(b^2-a^2)+v); 
Wporous = pi*rho_r*32.14*tp/12*(DiamReb/12); 
Wexpand = pi*rho_r*32.14*(DiamReb/12+2*tp/12)*tcrit/12; 
  
Wcrit = rho_s/(rho_s-alpha*rho_r)*(Wporous+Wexpand); 
kp = (1/alpha)*pi*DiamReb*icorr; 
Tc = (Wcrit^2)/(2*kp); 
  
end 
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A.6 TIME TO FAIL 

 

 
function [Tfail,Ti] = 
Time2Fail(ns,slices,t,dt,dx,D28,ci,ca,D,DRAMT,DRMAint,num_agg,slice_c,sigma,Tc,bc) 
Ti = zeros(1,ns); 
Tfail = zeros(1,ns); 
for i = 1:ns 
    r = zeros(numel(t),slices); 
    D_c = zeros(slices,slices); % Diffusion coefficient time t => slice s 
    flag = zeros(slices,1); % flag for agg locations 
    A = zeros(slices,slices); % A matrix 
    B = zeros(slices,slices); % B matrix 
    C = zeros(slices,1); % Concentration at time t+1 slice s 
    c = zeros(slices,1); % Concentration at time t slice s 
    UU = zeros(slices,numel(t)); 
    if num_agg > 0; 
        % start coordinate of each aggregate placed randomly 
        xagg_s = ceil(num_agg/num_agg(1)*((slice_c-
(numel(num_agg)*sigma/dx))/numel(num_agg))*ceil(20*rand())/20 + sigma*num_agg/dx - 
sigma*num_agg(1)/dx); 
        % end coordinate of each aggregate placed randomly 
        xagg_e = round(xagg_s+sigma/dx-1); 
        for a = 1:length(num_agg) 
            flag(xagg_s(a):(xagg_e(a)-1)) = 1; 
        end 
    end 
     
    % initial condiations and diffusion with time for the whole thickness 
    % of analysis 
    for j = 1:numel(t) 
        for s = 1:slices 
            if flag(s) == 1; 
                if j == 1; 
                    D_c(1,s) = DRMAint; 
                    c(s) = ca(i); 
                else 
                    D_c(j,s) = DRAMT(j); 
                end 
            else 
                if j == 1; 
                    D_c(1,s) = D28; 
                    c(s) = 0; 
                else 
                    D_c(j,s) = D(j); 
                end 
            end 
        end 
    end 
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    for j = 1:numel(t) 
        for k = 1:slices 
            r(j,k) = D_c(j,k)*60*60*24*30*(dt)/(2*(dx^2)); 
            if k == 1 || k == slices 
                A(k,k) = 1; 
                B(k,k) = 1; 
            else 
                A(k,k) = 1+2*r(j,k); A(k,k+1) = -r(j,k); A(k,k-1) = -r(j,k); 
                B(k,k) = 1-2*r(j,k); B(k,k+1) = r(j,k); B(k,k-1) = r(j,k); 
            end 
        end 
        c(1) = bc(j); 
        C = A\B*c; 
        UU(:,j) = c; 
        c = C; 
        if j == length(t); % reached max service life 
            Ti(i) = t(j)/365; % time to initiation in years 
            %fprintf('found a ti = %3.0f for number for sim = %5.0f \n',maxlife,i); 
            break 
        elseif c(slice_c) > ci(i); 
            Ti(i) = t(j)/365; 
            %fprintf('found a ti < %3.0f number for sim = %5.0f \n',maxlife,i); 
            break 
        end 
         
    end 
    Tfail(i) = Tc(i)+Ti(i); 
end 
end 
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APPENDIX – B: CONCRETE MIXTURE OPTIMIZATION CODE 

 

 

B.1 WRAPPER MODULE 

The wrapper module is responsible for connecting all other modules and is 

what calls the Borg algorithm through the use of a command initiated within a sub 

process. This script also contains the macro levers that control the model, such as 

service life, chloride exposure, functional unit type, service life model type. 

 

 
__author__ = 'nast1697' 
import time 
start = time.time() 
 
print("You started Case #1") 
 
# My Python files: 
from problemmodules import * 
from wrappermodules import * 
 
# Other Python modules 
import subprocess 
from collections import OrderedDict 
 
# USER-DEFINED PARAMETERS THAT DON'T CHANGE BETWEEN RUNS 
 
borgExecutableName = "borgPC.exe"  # NS - this has been edited from ./borgPC.exe to run on Nate's computers 
 
seed = 1 
nfe = 10000 
pythonName = "mix_for_borg_M3Mod1.py" 
 
# In the following dictionaries, we want to preserve the order we declare things in, 
# since we are going to be interfacing with a 'dumb' simulation model that expects 
# to see the variables in the same order every time. 
# http://stackoverflow.com/questions/1867861/python-dictionary-keep-keys-values-in-same-order-as-declared 
 
# List objectives here 
objectives = OrderedDict() 
objectives["cost"] = Objective("cost", 1.0) 
objectives["ee"] = Objective("ee", 5.0) 
objectives["strength"] = Objective("strength", 100.0) 
objectives["cover"] = Objective("cover", 0.005) 
# NS - added embodided carbon objective (Kg CO2e) 
objectives["ec"] = Objective("ec", 1.0) 
# NS - added workability objective (cm of slump) 
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objectives["workability"] = Objective("workability", 1.0) 
num_objectives = len(objectives) 
 
# List decisions here 
decisions = OrderedDict() 
decisions["cement"] = Decision("cement", 550.00, 700.00) 
decisions["wc"] = Decision("wc", 0.25, 0.75) 
decisions["air"] = Decision("air", 1.00, 6.00) 
decisions["ca"] = Decision("ca", 55.00, 75.00) 
# NS - added SCM numbers greater than 3.49 so slag can be an exclusive choice 
decisions["scm"] = Decision("scm", 0.50, 4.49) 
decisions["replace"] = Decision("replace", 0.00, 30.00) 
# NS - new decision of recycled aggregate content (% of total aggregate) 
decisions["rca"] = Decision("rca", 0.0, 1.00) 
num_decisions = len(decisions) 
 
# NS - This is needed because the number of constraints must be defined 
num_constraints = 1 
 
# case = "exterior_column" 
case = 5 
name = "Baseline_sequesteredC02" 
service_life = 25 
# NS - use chloride_exposure as 5.0, 7.0, etc when running the simple diffusion model. Otherwise use integer from 
1 - 5 
chloride_exposure = 3.0 
 
service_model = 1.0  # 0.0 = constant cover; 1.0 = 1D; all other = simplified 
functional_unit = 2.0  # 0.0 = m^3; 1.0 = Column; all other = 1D tilt-up wall 
 
filetype = ".csv" 
# NS - Created a function that will build the file name so it doesnt have to be edited each time 
resultFileName = result_file_name(name,service_life, chloride_exposure, service_model, functional_unit, 
filetype) 
 
pythonArgs = '{:.2f} {:.2f} {:.2f} {:.2f}'.format(service_life, chloride_exposure, service_model, functional_unit) 
 
# Builds the system command that will call the borgMOEA and run the mix_for_borg in a subprocess 
systemCommand = construct_system_command(borgExecutableName, resultFileName, seed, nfe, 
num_constraints, objectives, decisions, pythonName, pythonArgs) 
 
run_algorithm = 0 
if run_algorithm: 
    print "Running M^3 Model #1" 
    subprocess.call(systemCommand, shell=True) 
else: 
    print "Algorithm not running. Program assumes that baseline have already been created" 
 
# NS -  Function that can run the monte carlo sim if desired 
runMonte = 0  # NS - binary run variable 
monteName = "MonteCarlo" 
monteFiletype = ".csv" 
numSims = 1024 
 
monteCarloSim = monte_carlo_sim(runMonte, numSims, monteName, service_life, chloride_exposure, 
monteFiletype, 
                                num_objectives, decisions, num_decisions, num_constraints) 
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# NS - this parallel plotting plots all objectives and decisions (13 in total) 
plot1 = parallel_plot_all(resultFileName, objectives, decisions) 
 
plot = plotting_3D(resultFileName, objectives, decisions) 
 
end = time.time() 
print("All done in %0.7f seconds" % (end - start)) 
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B.2 MIX FOR BORG MODULE 

The Borg call module is responsible for communicating between the Borg and 

concrete modules. It also contains the property values for many of the constituents 

used in the model. 

 
 
__author__ = 'josephkasprzyk and nast1697' 
# My Python files: 
from concretemodules import * 
 
# Other Python modules 
from sys import * 
import argparse 
 
# https://docs.python.org/2/howto/argparse.html#id1 
parser = argparse.ArgumentParser(description='Process model parameters.') 
parser.add_argument("service_life", type=float, help="Service life for use in calculations") 
parser.add_argument("chloride_exposure", type=float, help="The chloride exposure") 
parser.add_argument("service_model", type=float, help = "The service life model choice") 
parser.add_argument("functional_unit", type=float, help = "The functional unit choice") 
args = parser.parse_args() 
service_life = args.service_life 
chloride_exposure = args.chloride_exposure 
serv_model = args.service_model 
func_unit = args.functional_unit 
 
while True: 
    # Read the next line from standard input 
    line = raw_input() 
 
    # Stop if the Borg MOEA is finished 
    if line == "": 
        break 
 
    # Parse the decision variables from the input 
    vars = map(float, line.split()) 
 
    # Evaluate the problem 
 
    # Decision variables: 
    # cement content, w_c_ratio, air_content, c_a_ratio_percent, r_slag, r_choice, r_scm_replace, r_agg_contnent 
 
    # Note that the upper and lower bounds in the comments below are just suggestions.  The real bounds 
    # are set in the call to borg.exe 
 
    cement_content = vars[0]            # range: 550 to 700 
    w_c_ratio = vars[1]                 # range: 0.25 to 0.75 
    air_content = vars[2]               # range: 1 to 3 
    c_a_ratio_percent = vars[3]         # range: 55 to 75 
    # r_slag = vars[4]                    # range: 0 to 50 
    r_scm_choice = int(round(vars[4]))  #range: 0.5 to 4.5, rounded to 1, 2, 3 or 4 
    r_scm_replace = vars[5]             # range: 0 to 30, 
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    r_agg_content = vars[6]             # range: 0 to 1 
 
    # NS - Added slag to the SCM list because it wass being used every mix otherwise 
    if r_scm_choice == 1: 
        r_fly_ash = r_scm_replace 
        r_silica_fume = 0.0 
        r_metakaolin = 0.0 
        r_slag = 0.0 
    elif r_scm_choice == 2: 
        r_fly_ash = 0.0 
        r_silica_fume = r_scm_replace 
        r_metakaolin = 0.0 
        r_slag = 0.0 
    elif r_scm_choice == 3: 
        r_fly_ash = 0.0 
        r_silica_fume = 0.0 
        r_metakaolin = r_scm_replace 
        r_slag = 0.0 
    elif r_scm_choice == 4: 
        r_fly_ash = 0.0 
        r_silica_fume = 0.0 
        r_metakaolin = 0.0 
        r_slag = r_scm_replace 
 
    # Arguments: Name, cost ($/kg-mi), embodied energy (MJ/kg-mi), embodied carbon (kgCO2e/kg-mi) 
    components = dict() 
    components["transportation"] = Component("transportation", 0.0000091, 0.00034, 0.00031) 
 
    # Arguments: Name, cost, embodied energy, embodied carbon, distance, specific gravity 
    constituents = dict() 
    constituents["coarse agg"] = Constituent("coarse aggregate", 0.021, 0.1, 0.0061, 50.0, 2.5) 
    # NS - Added recycled aggregate as a constituent 
    constituents["recycled agg"] = Constituent("recycled aggregate", 0.01, 0.05, 0.003, 10.0, 2.6) 
    constituents["fine agg"] = Constituent("fine aggregate", 0.023, 0.08, 0.0076, 75.0, 2.63) 
    constituents["cement"] = Constituent("cement", 0.17, 5.9, 0.9, 50.0, 3.15) 
    constituents["water"] = Constituent("water", 0.005, 0.01, 0.0001, 20.0, 1.0) 
 
    # Arguments: name, cost, embodied energy, embodied carbon, distance, specific gravity, replacement 
percentage, beta 
    scms = dict() 
    scms["slag"] = SCM("slag", 0.106, 1.6, 0.146, 100.0, 2.9, r_slag, 0.38) 
    # NS - used fly ash beta for class C because more prevalent 
    scms["fly ash"] = SCM("fly ash", 0.065, 0.1, 0.01, 100.0, 2.4, r_fly_ash, 0.27) 
    scms["silica fume"] = SCM("silica fume", 0.44, 0.04, 0.7, 100.0, 2.25, r_silica_fume, 0.99) 
    scms["metakaolin"] = SCM("metakaolin", 0.36, 2.08, 0.6, 100.0, 2.5, r_metakaolin, 0.55) 
 
    ## NS - SERVICE LIFE MODEL CALL!  
 
    # NS - Arguments: service life, chloride exposure, chloride rebar threshold, cover depth lower (m), cover depth 
upper (m), 
    # service life model (where 1.0 = 1D, 0.0 = no model, and all others is a steady state model) 
    # serv_model = 1.0 
    serv_param = ServiceLifeParameters(service_life, chloride_exposure, 0.7, 0.02, 0.2, serv_model) 
 
    # NS - This is the temperature vector for LA 
    temperature = [286.95, 287.2, 287.55, 288.75, 290.25, 291.85, 293.75, 294.55, 294.25, 292.45, 289.55, 286.95] 
 
    # NS - Arguments: number of number of slices (integer), time step (months, integer), diameter of rebar (in), 
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    # depth of analysis (m), recycled_agg replace (decimal), recylced_agg_diffusion (m^2/s), agg_contamination, 
agg_size (m) 
    d_rma = 12.5 * 10 ** -12 
 
    one_D_model_param = SLModel1D(250, 12, 0.75, 0.2, r_agg_content, d_rma, 0.5, 0.012) 
 
    ## NS - FUNCTIONAL UNIT CALL!  
    # NS - Arguments: name, monthly temperature (K), Exposure(1.0 - 5.0 integers) which is controlled in the 
Basecase script through the chloride_exposure 
    exposure_class = chloride_exposure 
    # Functional unit of 0.0 is m^3; 1.0 is a column, all others are a m by m tilt-up wall 
    # func_unit = 2.0 
    location_param = Site Location("LA", temperature, exposure_class, func_unit) 
 
    ## NS - SEQUESTRATION MODEL CALL!  
 
    # Alpha dictionary for sequestration model 
    alpha = dict() 
    alpha["Type I"] = 0.165 
    alpha["Type II"] = 0.163 
    alpha["Type III"] = 0.166 
    alpha["Type IV"] = 0.135 
    alpha["Type V"] = 0.161 
    alpha["Type White"] = 0.203 
 
    # Exposure dictionary for sequestration model 
    carbonexpo = dict() 
    carbonexpo["XC1"] = CarbonExpo(1.0, 0.0) 
    carbonexpo["XC2"] = CarbonExpo(0.2, 0.183) 
    carbonexpo["XC3"] = CarbonExpo(0.77, 0.02) 
    carbonexpo["XC4"] = CarbonExpo(0.41, 0.085) 
 
    # NS - Arguments: Cement Type (Type I, II, III, IV, V; White), Alpha Dictionary, CO2 Concentration (ppm), k0, 
k2, 
    # Exposure Coefficient Dictionary, Exposure class (XC1, XC2, XC3, XC4), degree of carbonation (0-1.0), model 
control (binary) 
    sequestration_param = CarbonSequestration("Type I", alpha, 300.0, 3.0, 1.0, carbonexpo, "XC1", 1.0, 0.0) 
 
    ## NS - MIX DESIGN MODEL CALL!  
 
    # Arguments: cement content, w/c ratio, air content percentage, c/a ratio percentage, 
    # python objects: components, constituents, scms, serv_param, stoc_model_param 
    mymix = MixDesign(cement_content, w_c_ratio, air_content, c_a_ratio_percent, components, constituents, 
scms, serv_param, one_D_model_param, location_param, sequestration_param) 
    mymix.calc_absolute_volume() 
 
    # NS - Because new functions were created to run the 1D service model they must be called by the borg to work 
    if serv_model == 1.0: 
        mymix.calc_cracking_time() 
        mymix.calc_boundary_condition() 
    if serv_model > 0.0: 
        mymix.diffusion_coefficient() 
 
    mymix.calc_agg_placement() 
    mymix.calc_service_life() 
    mymix.calc_func_unit() 
    mymix.calc_sequestered_carbon() 
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    # NS -  These objective constraints should be hard coded in the same order as the definitions of the objectives 
 
    objsconstrs = [mymix.func_vol_total_cost, mymix.func_vol_embodied_energy, (-
1.0)*mymix.compressive_strength, 
                   mymix.cover_depth, mymix.func_vol_embodied_carbon, (-1.0)*mymix.workability, 
mymix.strength_constr] 
 
    # Print objectives to standard output, flush to write immediately 
    print " ".join("%0.10f" % val for val in objsconstrs) 
    stdout.flush() 
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B.3 WRAPPER MODULES 

The wrapper modules consist of the class and function definitions required to 

produce a file name, call the Borg and call the parallel plotting script 

 
__author__ = 'joka0958 and nast1697' 
 
 
class Objective(object): 
    def __init__(self, name, epsilon): 
        self.name = name 
        self.epsilon = epsilon 
 
 
class Decision(object): 
    def __init__(self, name, lower, upper): 
        self.name = name 
        self.lower = lower 
        self.upper = upper 
 
 
# NS - Created function for the file name 
# NS - This can be and is used for both the monte-carlo and MOEA outputs 
 
 
def result_file_name(name, servlife, clexp, servmod, funcunit, filetype): 
    # This function is used to construct the output file names for the program 
    # Example: tradeoff_s25_c5.txt 
 
    # The first component is the desired file name 
    resultFileName = name 
 
    # The service life 
    resultFileName = resultFileName + "_sl%d" % servlife 
 
    # The chloride exposure 
    resultFileName = resultFileName + "_c%d" % clexp 
 
    # The service life model 
    resultFileName = resultFileName + "_slm%d" % servmod 
 
    # The functional unit 
    resultFileName = resultFileName + "_fu%d" % funcunit 
 
    # The file extension 
    resultFileName = resultFileName + filetype 
 
    return resultFileName 
 
 
def construct_system_command(borgExecutableName, resultFileName, seed, nfe, num_constraints, objectives, 
decisions, pythonName, pythonArgs): 
    # This function constructs the borg system command. 
    # Example: 
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    # ./borg.exe -f cost-ee-strength-cover_highmiles_coarse_sl25_balanced_miles.txt 
    # -s 1 -v 7 -o 4 -e 0.5,2,50,0.005 -n 100000 -l 550.0,0.25,1.0,55.0,0.0,0.5,1.0 
    # -u 700.0,0.75,6.0,75.0,15.0,3.49,30.0 python mix_for_borg_B1.py 
 
    # The first component is the borg executable name 
    systemCommand = borgExecutableName 
 
    # The next several components can be in any order, but we will prescribe the order 
 
    # The result filename 
    systemCommand = systemCommand + " -f " + resultFileName 
 
    # The seed 
    systemCommand = systemCommand + " -s %d" % seed 
 
    # The run duration 
    systemCommand = systemCommand + " -n %d " % nfe 
 
    # Constraints 
    systemCommand = systemCommand + " -c %d " % num_constraints 
 
    # Objectives (two parts) 
 
    # Objectives Part 1: The number of objectives 
    systemCommand = systemCommand + " -o %d " % int(len(objectives)) 
 
    # Objectives Part 2: The epsilons 
    systemCommand = systemCommand + " -e " 
 
    for key in objectives: 
        systemCommand = systemCommand + "%.6f," % objectives[key].epsilon 
 
    systemCommand = systemCommand[:-1].strip() #get rid of the last comma 
 
    # The decisions (three parts) 
 
    # Decisions Part 1: The number of decisions 
    systemCommand = systemCommand + " -v %d " % int(len(decisions)) 
 
    # Decisions Part 1: The lower bounds 
    systemCommand = systemCommand + " -l " 
 
    for key in decisions: 
        systemCommand = systemCommand + "%.6f," % decisions[key].lower 
 
    systemCommand = systemCommand[:-1].strip() #get rid of the last comma 
 
    # Decisions Part 2: The upper bounds 
    systemCommand = systemCommand + " -u " 
 
    for key in decisions: 
        systemCommand = systemCommand + "%.6f," % decisions[key].upper 
 
    systemCommand = systemCommand[:-1].strip() #get rid of the last comma 
 
    # Now the python part 
 
    systemCommand = systemCommand + " -- python " + pythonName + " " + pythonArgs 
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    return systemCommand 
 
def construct_parallel_command(plotCodeName, plotFileName, dataFileName, columns, numcolumns, 
precision, names, dataSetName, colorCode, minima, maxima, lineWidth): 
 
    # Program that will excecute this code 
    parallelCommand = "python " 
 
    # Name of the code that plots the figure (parallel.py) 
    parallelCommand = parallelCommand + plotCodeName 
 
    # Output plot file name 
    parallelCommand = parallelCommand + " " + plotFileName 
 
    # File name where data is stored 
    parallelCommand = parallelCommand + " " + dataFileName 
 
    # NS - The remaining components can be called in any order but as with the system command we will specify 
them 
    #Columns whose data will be plotted from the file specified above 
    parallelCommand = parallelCommand + " -C" + " %d-" %columns[0] + "%d" %columns[1] 
 
    # Specify how many parallel axes the plot will have 
    parallelCommand = parallelCommand + " -w %d" %numcolumns 
 
    # data precision values for each column of data (variable) to be plotted 
    parallelCommand = parallelCommand + " -p" 
 
    for i in range(len(precision)): 
        parallelCommand = parallelCommand + " %0.3f" %precision[i] 
 
    parallelCommand = parallelCommand + " -a" 
 
    # Axis name labels 
    for i in range(len(names)): 
        parallelCommand = parallelCommand + " %s" %names[i] 
 
    # Name of the data set read in 
    parallelCommand = parallelCommand + " -n " + dataSetName 
 
    # Color code for the data 
    parallelCommand = parallelCommand + " -c" 
 
    for i in range(len(colorCode)): 
        parallelCommand = parallelCommand + " %0.3f" %colorCode[i] 
 
    # mimimum axis values for each variable, if not specified then will fit data 
    parallelCommand = parallelCommand + " -m" 
 
    for i in range(len(minima)): 
        parallelCommand = parallelCommand + " %0.3f" %minima[i] 
 
    # maximum axis values for each variable, if not specified then will fit data 
    parallelCommand = parallelCommand + " -M" 
 
    for i in range(len(maxima)): 
        parallelCommand = parallelCommand + " %0.3f" %maxima[i] 
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    # Line weight for output variable lines 
    parallelCommand = parallelCommand + " -W %0.1f" %lineWidth[0] + " %0.1f" %lineWidth[1] 
 
    return parallelCommand 
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B.4 CONCRETE MODULES 

The concrete modules script is responsible for defining the classes of 

constituents and calculating all of the objectives. It contains the AVM function, 

service life function, functional unit function and sequestered carbon function 

amongst others. 

 
__author__ = 'josephkasprzyk and nast1697' 
 
# Other Python modules 
from math import exp 
from math import sqrt 
from scipy import special 
 
# NS - These imports are all needed for the 1D Stochastic Service Life model 
from numpy import linspace 
from numpy import ones 
from numpy import zeros 
from numpy import tile 
from numpy import cumsum 
from math import pi 
from numpy import matmul 
from numpy import linalg 
from numpy import where 
from numpy import concatenate 
from math import floor 
from math import ceil 
from numpy import random 
 
 
class Component(object): 
    # A component is going to be any item that is in the cost or embodied energy calculation 
    # including constituents (coarse agg, fine agg, cement, water, air), SCMs, and transport 
    # NS - adding embodied carbon to the lis of properties 
    def __init__(self, name, cost, embodied_energy, embodied_carbon): 
        self.name = name 
        self.cost = cost 
        self.embodied_energy = embodied_energy 
        self.embodied_carbon = embodied_carbon 
 
 
class Constituent(Component): 
    # Constituents also have a distance and specific gravity 
    def __init__(self, name, cost, embodied_energy, embodied_carbon, distance, specific_gravity): 
        Component.__init__(self, name, cost, embodied_energy, embodied_carbon) 
        self.distance = distance 
        self.specific_gravity = specific_gravity 
 
 
class SCM(Constituent): 
    # SCMs also have a replacement percentage and beta(sequestered carbon) 
    def __init__(self, name, cost, embodied_energy, embodied_carbon, distance, specific_gravity, 
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replacement_percentage, beta): 
        Constituent.__init__(self, name, cost, embodied_energy, embodied_carbon, distance, specific_gravity) 
        self.replacement_percentage = replacement_percentage 
        self.beta = beta 
 
    def __str__(self): 
        return "SCM %s with EE: %f, SG: %f" % (self.name, self.embodied_energy, self.specific_gravity) 
 
 
class ServiceLifeParameters(object): 
    def __init__(self, service_life, chloride_exposure, chloride_rebar_threshold, cover_depth_lower, 
cover_depth_upper, 
                 service_life_model): 
        self.service_life = service_life 
        self.chloride_exposure = chloride_exposure 
        self.chloride_rebar_threshold = chloride_rebar_threshold 
        self.cover_depth_lower = cover_depth_lower 
        self.cover_depth_upper = cover_depth_upper 
        # NS - create a service life model parameter that can call different service life model types e.g. 
        # 1D - 2D models 
        self.service_life_model = service_life_model 
 
# NS - Created a new class of variables for the Stocastic 1D service life model 
 
 
class SLModel1D(object): 
    def __init__(self, slices, delta_time, diam_rebar, depth, ar_ratio, d_rma, rec_agg_c, agg_size): 
        self.slices = slices 
        self.delta_time = delta_time 
        # NS - delta slice was removed because it is a function of cover depth and number of slices 
        # self.delta_slice = delta_slice 
        self.diam_rebar = diam_rebar 
        self.depth = depth 
        self.ar_ratio = ar_ratio 
        self.d_rma = d_rma 
        self.rec_agg_c = rec_agg_c 
        self.agg_size = agg_size 
 
 
# NS - Class for Location that can be used in service-life model 1D to determine temperature and exposure 
classification 
class SiteLocation(object): 
    def __init__(self, name, temperature, exposure_class, func_unit): 
        self.name = name 
        self.temperature = temperature 
        self.exposure_class = exposure_class 
        self.func_unit = func_unit 
 
 
class CarbonExpo(object): 
    def __init__(self, k1, n): 
        self.k1 = k1 
        self.n = n 
 
 
class CarbonSequestration(object): 
    def __init__(self, cement_type, alpha, carbon_conc, k0, k2, carbon_expo, exposure, degree_carbonation, 
model_control): 
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        self.cement_type = cement_type 
        self.alpha = alpha 
        self.carbon_conc = carbon_conc 
        self.k0 = k0 
        self.k2 = k2 
        self.carbon_expo = carbon_expo 
        self.exposure = exposure 
        self.degree_carbonation = degree_carbonation 
        self.model_control = model_control 
 
 
class MixDesign(object): 
    def __init__(self, cement_content, w_c_ratio, air_content_percent, c_a_ratio_percent, components, 
constituents, scms, 
                 service_life_parameters, model_1d, site_location, carbon_sequestration): 
        self.cement_content = cement_content 
        self.w_c_ratio = w_c_ratio 
        self.air_content_percent = air_content_percent 
        self.c_a_ratio_percent = c_a_ratio_percent 
        self.components = components 
        self.constituents = constituents 
        self.scms = scms 
        # This class of service_life_parameters is defined above 
        self.service_life_parameters = service_life_parameters 
        # This class of stocastic_model_1d parameters is defined above 
        self.model_1d = model_1d 
        self.site_location = site_location 
        self.carbon_sequestration = carbon_sequestration 
 
    def calc_absolute_volume(self): 
        # all calculations in this method assume a unit volume of 1 square yard 
 
        # WEIGHTS 
 
        # calculate weights of the SCMs 
        temp_weight = 0.0 
        for key in self.scms: 
            self.scms[key].abs_vol_weight = self.cement_content * self.scms[key].replacement_percentage / 100 
            temp_weight = temp_weight + self.scms[key].abs_vol_weight 
 
        # The weight of cement has been reduced by the SCMs 
        self.constituents["cement"].abs_vol_weight = self.cement_content - temp_weight 
 
        # The weight of water is determined by the w_c_ratio 
        self.constituents["water"].abs_vol_weight = self.cement_content * self.w_c_ratio 
 
        # VOLUMES 
 
        # The volumes here are expressed in cubic feet, but we are assuming a volume of 
        # 1 cubic yard, thus we need to multiply by 27 cubic feet per cubic yard: 
        volume_conversion = 27.0 
 
        # also we need the specific weight of water (lb per cubic ft), since the weights of constituents are 
        # expressed using specific gravity 
        specific_weight_water = 62.4 
 
        # volume of air 
        self.abs_vol_air = self.air_content_percent / 100.0 * volume_conversion 
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        # Now, to calculate the volume of the paste, we need to cycle through the SCMs and 
        # determine the volume of each. 
 
        temp_vol = 0.0 
        for key in self.scms: 
            self.scms[key].abs_vol_vol = self.scms[key].abs_vol_weight / (self.scms[key].specific_gravity * 
specific_weight_water) 
            temp_vol = temp_vol + self.scms[key].abs_vol_vol 
 
        # at the end of this loop, the temp_vol variable contains the volume of all the SCMs 
        # to this, we need to add the volume of air 
 
        self.constituents["cement"].abs_vol_vol = self.constituents["cement"].abs_vol_weight / 
(self.constituents["cement"].specific_gravity * specific_weight_water) 
        self.constituents["water"].abs_vol_vol = self.constituents["water"].abs_vol_weight / 
(self.constituents["water"].specific_gravity * specific_weight_water) 
 
        # paste is all scms plus cement, air, and water 
        self.abs_vol_paste = temp_vol + self.abs_vol_air + self.constituents["cement"].abs_vol_vol + 
self.constituents["water"].abs_vol_vol 
 
        # Finally, the volumes of aggregates are a function of the volume of the paste 
        # Recall that we are assuming our absolute volume calculations have a volume of 27 cubic feet... 
 
        self.constituents["coarse agg"].abs_vol_vol = (self.c_a_ratio_percent / 100.0) * (volume_conversion - 
self.abs_vol_paste) 
        self.constituents["coarse agg"].abs_vol_weight = ( 
            self.constituents["coarse agg"].abs_vol_vol * self.constituents["coarse agg"].specific_gravity * 
specific_weight_water * (1.0 - self.model_1d.ar_ratio) 
        ) 
        # NS - added accounting for recycled aggregates in the mix 
        self.constituents["recycled agg"].abs_vol_weight = ( 
            self.constituents["coarse agg"].abs_vol_vol * self.constituents["recycled agg"].specific_gravity * 
specific_weight_water * self.model_1d.ar_ratio 
        ) 
 
        self.constituents["fine agg"].abs_vol_vol = (1.0 - self.c_a_ratio_percent / 100.0) * (volume_conversion - 
self.abs_vol_paste) 
        self.constituents["fine agg"].abs_vol_weight = ( 
            self.constituents["fine agg"].abs_vol_vol * self.constituents["fine agg"].specific_gravity * 
specific_weight_water 
        ) 
 
        self.concrete_weight = 0.0 
        for key in self.constituents: 
            self.concrete_weight = self.concrete_weight + self.constituents[key].abs_vol_weight 
 
        for key in self.scms: 
            self.concrete_weight = self.concrete_weight + self.scms[key].abs_vol_weight 
 
        # NS - Adding workability as a part of the mix design. The workability is simply a calculated slump in cm 
         
 
        lbcyd_to_kg_cm = 0.593276421 
 
        cem_norm = ((self.cement_content * lbcyd_to_kg_cm) - 201.0) / (446.3 - 201.0) 
        sand_norm = ((self.constituents["fine agg"].abs_vol_weight * lbcyd_to_kg_cm) - 384.0) / (827.0 - 384.0) 
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        coarse_norm = ((self.constituents["coarse agg"].abs_vol_weight + self.constituents["recycled 
agg"].abs_vol_weight) * lbcyd_to_kg_cm - 1107.0) / (1218.0 - 1107.0) 
        water_norm = ((self.constituents["water"].abs_vol_weight * lbcyd_to_kg_cm) - 164.0) / (186.0 - 164.0) 
 
        self.workability = 36.22 - 12.47 * cem_norm - 27.03 * sand_norm - 7.39 * coarse_norm - 3.00 * water_norm 
 
        # New compressive strength calculation self. 
        self.compressive_strength = (13.352 * self.w_c_ratio ** (-1.081)) 
        if self.compressive_strength >= 2500: 
            # NS - why is this here? It servers no purpose 
            self.compressive_strength = self.compressive_strength_3day 
        else: 
            self.compressive_strength = ( 
            (51290.0) / (23.66 ** (self.w_c_ratio + 0.000378 * self.cement_content + 0.0279 * 
self.air_content_percent)) 
            ) 
 
        self.strength_constr = 0 
 
 
        # NS - included strength constrain to bound column solution field 
 
        if self.compressive_strength <= 0.0: 
            self.strength_constr = - 8000.0 / self.compressive_strength 
        else: 
            self.compressive_strength = self.compressive_strength 
 
    def calc_cracking_time(self): 
        # NS - The whole point of this function is to calculate the time till cracking for the 1D diffusion model 
        # NS - all of the following parameters are taken as the upper bound or mean of their distribution if 
designated 
        ft = 544  # Tensile strength (psi) -mean 
        E = 4350000  # Modulus of elasticity (psi) -mean 
        tp = 0.0005  # Porous region thickness (ft) -mean 
        alpha = 0.622  # Alpha -upper bound 
        icorr = 0.0015  # Corrosion rate (A/ft^2) -mean 
        phi = 2  # Creep coefficient of concrete 
        v = 0.28  # Poisson's Ratio 
        rho_r = 225  # Density of rust 
        rho_s = 490  # Density of steel 
 
        # This can be made iterative with the 1D model but wont change the time at all 
        cover_depth = 2.0 / 12.0  # Assume rough cover depth in ft 
 
        E_eff = E / (1 + phi) 
        a = (self.model_1d.diam_rebar + 2*tp / 12)/2 
        b = cover_depth + a 
        tcrit = cover_depth * ft / E_eff * ((a ** 2 + b ** 2)/(b ** 2 - a ** 2) + v) 
        # The 32.14 is the factor for gravitational acceleration in ft/sec^2 
        Wporous = pi * rho_r * 32.14 * tp / 12 * self.model_1d.diam_rebar / 12 
        Wexpand = pi * rho_r * 32.14 * tp / 12 * (self.model_1d.diam_rebar / 12 + 2 * tp / 12) * tcrit / 2 
 
        Wcrit = rho_s / (rho_s - alpha * rho_r) * (Wporous + Wexpand) 
        kp = (1 / alpha) * pi * self.model_1d.diam_rebar / 12 * icorr 
        self.time_to_crack = int((Wcrit ** 2) / (2 * kp)) 
 
    # NS - added a function that can generate boundary conditions 
    def calc_boundary_condition(self): 
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        # 5 different boundary condition cases 
        # NS - Build in the boundary conditions for the 1D diffusion model 
        # NS -  These boundary conditions are based on Life 365 
        max_concentration = 0.0 
        time_to_max = 200.0 
        if self.site_location.exposure_class == 1.0: 
            max_concentration = self.concrete_weight * 0.008 
            time_to_max = 1.0 
        elif self.site_location.exposure_class == 2.0: 
            max_concentration = self.concrete_weight * 0.01 
            time_to_max = 10.0 
        elif self.site_location.exposure_class == 3.0: 
            max_concentration = self.concrete_weight * 0.006 
            time_to_max = 15.0 
        elif self.site_location.exposure_class == 4.0: 
            max_concentration = self.concrete_weight * 0.006 
            time_to_max = 30.0 
        elif self.site_location.exposure_class == 5.0: 
            max_concentration = self.concrete_weight * 0.008 
            time_to_max = 200.0 
 
        # NS - build the boundary condition vector from the sloped and constant parts. 
        if int(self.service_life_parameters.service_life - self.time_to_crack) <= time_to_max: 
            self.boundary_condition = linspace(0, max_concentration, int(time_to_max * 12 
/self.model_1d.delta_time)) 
        else: 
            bc1 = linspace(0, max_concentration, int(time_to_max * 12 / self.model_1d.delta_time)) 
            bc2 = ones((int(self.service_life_parameters.service_life - time_to_max - self.time_to_crack) * 12 / 
self.model_1d.delta_time)) * max_concentration 
            self.boundary_condition = concatenate((bc1, bc2), axis=0) 
 
    # NS -  Diffusion Coefficient calculation function 
    def diffusion_coefficient(self): 
            self.d_28 = 2.17e-12 * exp(self.w_c_ratio / 0.279) 
            if self.scms["fly ash"].replacement_percentage > 0.0: 
                self.m = 0.26 + 0.4*(self.scms["fly ash"].replacement_percentage / 50.0) 
                self.d_ref = self.d_28 * (0.170 + 0.829 * exp(-1.0 * self.scms["fly ash"].replacement_percentage / 6.07)) 
            elif self.scms["silica fume"].replacement_percentage > 0.0: 
                self.m = 0.26 
                self.d_ref = self.d_28 * (0.206 + 0.794 * exp(-1.0 * self.scms["silica fume"].replacement_percentage / 
2.51)) 
            elif self.scms["metakaolin"].replacement_percentage > 0.0: 
                self.m = 0.26 
                self.d_ref = self.d_28 * (0.191 + 0.809 * exp(-1.0 * self.scms["metakaolin"].replacement_percentage / 
6.12)) 
            elif self.scms["slag"].replacement_percentage > 0.0: 
                self.m = 0.26 + 0.4 * (self.scms["slag"].replacement_percentage / 70.0) 
                self.d_ref = self.d_28 
            # NS - allow for NO SCM replacement in the model 
            else: 
                self.m = 0.26 
                self.d_ref = self.d_28 
 
    # NS - Random recycled aggregate placement function. Could also be used to place any type of aggregate in the 
analysis depth 
    def calc_agg_placement(self): 
        self.flag = zeros(shape=(self.model_1d.slices, 1)) 
        dx = self.model_1d.depth / float(self.model_1d.slices) 
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        # only run if there is a replacement ratio greater than 0 to prevent break 
        if self.model_1d.ar_ratio > 0.0: 
            num_agg = floor(self.model_1d.ar_ratio * self.model_1d.depth / self.model_1d.agg_size) # number of 
recycled agg in analysis 
 
            if num_agg > 0.0: 
                x_agg = (self.model_1d.depth / num_agg) 
                for i in range(0, int(num_agg)): 
                    # start coordinate for aggregate placement 
                    x_agg_s = int(floor(i * x_agg / dx) + ceil((ceil(100 * random.random()) / 100 * (x_agg - 
self.model_1d.agg_size)) / dx)) 
                    # end coordinate for aggregate placement 
                    x_agg_e = int(floor(x_agg_s + self.model_1d.agg_size / dx)) 
                    self.flag[x_agg_s:x_agg_e] = 1 
 
    def calc_service_life(self): 
 
        # NS - added line to run no diffusion model 
        if self.service_life_parameters.service_life_model == 0.0: 
            self.cover_depth = 0.06 
 
        # NS - 1D diffusion model 
        elif self.service_life_parameters.service_life_model == 1.0: 
            # all the months and their duration (days) 
            months = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] 
            temperature_new = zeros(shape=(1, len(months)/self.model_1d.delta_time)) 
            months_new = zeros(shape=(1, len(months) / self.model_1d.delta_time)) 
 
            for i in range(0, len(months) / self.model_1d.delta_time): 
                temperature_new[0, i] = sum(self.site_location.temperature[i * self.model_1d.delta_time : i * 
self.model_1d.delta_time + self.model_1d.delta_time]) / self.model_1d.delta_time 
                months_new[0, i] = sum(months[i * self.model_1d.delta_time : i * self.model_1d.delta_time + 
self.model_1d.delta_time]) 
 
            months = months_new 
            temperature = temperature_new 
 
            t = tile(months, int(self.service_life_parameters.service_life - self.time_to_crack)) 
            t = cumsum(t) 
            T = tile(temperature, int(self.service_life_parameters.service_life - self.time_to_crack)) 
 
            # slice size in the analysis 
            delta_x = self.model_1d.depth / float(self.model_1d.slices) 
 
            # Coefficients for the temperature impact on diffusion coefficient 
            U = 35000.0 
            R = 8.314462 
            T_ref = 21.0  # T_ref in degree C 
            T_ref = T_ref + 273.15  # T_ref in degree K 
 
            # NS - Preallocate all of the matrices used to do the 1D model 
            r = zeros(shape=(len(t), self.model_1d.slices)) 
            D_c = zeros(shape=(len(t), self.model_1d.slices))  # Diffusion coefficient at time, slice 
            A = zeros(shape=(self.model_1d.slices, self.model_1d.slices)) 
            B = zeros(shape=(self.model_1d.slices, self.model_1d.slices)) 
            c = zeros(shape=(self.model_1d.slices, 1))  # chloride level at slice 
 
            # NS - Calculate the diffusion coefficient with respect to time and temperature and set inital 
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contamination 
            for j in range(0, len(t)): 
                for s in range(0, self.model_1d.slices): 
                    if self.flag[s] == 1: 
                        if j == 0: 
                            D_c[j, s] = self.model_1d.d_rma  # set slices that are recycled aggregates to have their 
contamination and diffusion values 
                            c[s] = self.model_1d.rec_agg_c 
                        else: 
                            D_c[j, s] = self.model_1d.d_rma * exp((U/R) * (1 / T_ref - 1 / T[0, j])) 
                    else: 
                        if j == 0: 
                            D_c[j, s] = self.d_28 
                            c[s] = 0.0  # initial contamination is 0 (could be changed to account for recylced aggregates) 
                        else: 
                            D_c[j, s] = (self.d_ref * (28.0 / t[j]) ** self.m ) * exp((U/R) * (1 / T_ref - 1 / T[0, j])) 
 
            # NS - Actually run the 1D diffusion model calculation 
            for j in range(0, len(t)): 
                for s in range(0, self.model_1d.slices): 
                    r[j, s] = D_c[j, s]*60.0*60.0*24.0*30*self.model_1d.delta_time / (2.0 * delta_x ** 2.0) 
                    # force first and las entry to be unity 
                    if s == 0: 
                        A[s, s] = 1.0 
                        B[s, s] = 1.0 
                    elif s == (self.model_1d.slices - 1): 
                        A[s, s] = 1.0 
                        B[s, s] = 1.0 
                    else: 
                        A[s, s] = 1 + 2 * r[j, s] 
                        A[s, s+1] = -r[j, s] 
                        A[s, s-1] = -r[j, s] 
                        B[s, s] = 1 - 2 * r[j, s] 
                        B[s, s+1] = r[j, s] 
                        B[s, s-1] = r[j, s] 
 
                # NS - Apply the Boundary Conditions 
                c[0] = self.boundary_condition[j] 
                A_inv = linalg.inv(A) 
                C = matmul(matmul(A_inv, B), c) 
                c = C 
 
                # NS - When the 1D simulation has reached the service life find the corresponding cover needed 
                if j == len(t) - 1: 
                    temp = c - self.service_life_parameters.chloride_rebar_threshold 
                    # NS - add line to prevent the 1D model from breaking when contaminated agg prevent convergence 
                    if min(temp) > 0.0: 
                        new_cover = self.model_1d.depth 
                    else: 
                        # find the slice past the last slice that fails 
                        m = max(i for i in temp if i < 0) 
                        idx = where(temp == m) 
                        find = idx[0] 
                        new_cover = delta_x * find[0] 
 
            self.cover_depth = new_cover 
 
            # NS - Apply same cover depth constraints as below 
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            self.cover_constr = 0 
            if self.cover_depth < self.service_life_parameters.cover_depth_lower: 
                # print "Cover depth, %f, is too low!" % self.cover_depth 
                self.cover_constr = self.service_life_parameters.cover_depth_lower - self.cover_depth 
 
            if self.cover_depth > self.service_life_parameters.cover_depth_upper: 
                # print "Cover depth, %f, is too high!" % self.cover_depth 
                self.cover_constr = self.cover_depth - self.service_life_parameters.cover_depth_upper 
 
        else: 
            # A steady state version of the service life prediction 
 
            # Note that service life has to be in seconds.  Therefore we make this temporary variable: 
            year_into_seconds = 3.15569e7 
 
            self.cover_depth = ( 
                2.0 * sqrt(self.d_ref * self.service_life_parameters.service_life * year_into_seconds) * 
                special.erfinv( 
                    1.0 - self.service_life_parameters.chloride_rebar_threshold / 
self.service_life_parameters.chloride_exposure) 
            ) 
 
            self.cover_constr = 0 
            if self.cover_depth < self.service_life_parameters.cover_depth_lower: 
                # print "Cover depth, %f, is too low!" % self.cover_depth 
                self.cover_constr = self.service_life_parameters.cover_depth_lower - self.cover_depth 
 
            if self.cover_depth > self.service_life_parameters.cover_depth_upper: 
                # print "Cover depth, %f, is too high!" % self.cover_depth 
                self.cover_constr = self.cover_depth - self.service_life_parameters.cover_depth_upper 
 
    def calc_func_unit(self): 
        if self.site_location.func_unit == 0.0: 
            self.func_unit_vol = 1.0 * 1.0 * 1.0 
 
        # NS - added column functional unit that must resist 
        elif self.site_location.func_unit == 1.0: 
            load = 1000  # Column load (kip) 
            height = 12  # Column length (feet) 
            area_str = (load * 1000.0) / self.compressive_strength  # Strength condition area required (in^2) 
 
            # NS - Modulus of Elasticity calculated from AASHTO code 2007 (4th edition) 
            Wc = 0.140 + self.compressive_strength / 1000.0  # Density of concrete (kip/ft^3) 
            Emodulus = 33000.0 * Wc ** 1.5 * sqrt(self.compressive_strength / 1000.0)  # (ksi) 
 
            # NS - Other inputs for the Euler buckling equation (stability strength area: area_stb) 
            k = 1.0  # Assume effective length condition is fix-pin 
            area_stb = sqrt((12.0 * load * (k * height * 12.0) ** 2.0) / (pi ** 2.0 * Emodulus))  # (in^2) 
 
            self.column_constr = 0 
 
            # NS - Check to see which criteria governs 
            if area_stb > area_str: 
                self.surface_area = 4 * height * 12.0 * sqrt(area_stb) * 0.00064516 # Area (m^2) 
                self.func_unit_vol = height * 12.0 * area_stb * 0.00001639  # volume (m^3) 
                if area_stb < 0: 
                    self.column_constr = -1 + 256 / area_stb 
            else: 
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                self.surface_area = 4 * height * 12.0 * sqrt(area_str) * 0.00064516 # Area (m^2) 
                self.func_unit_vol = height * 12.0 * area_str * 0.00001639  # volume (m^3) 
                if area_str < 0: 
                    self.column_constr = - 1 + 256 / area_str 
 
        else: 
            # The functional unit volume is 1 m, by 1 m, by the cover depth in m 
            self.func_unit_vol = 1.0 * 1.0 * self.cover_depth 
 
        # Now consider how to calculate the mass of each component, within the functional unit, in kilograms: 
 
        # mass_func_unit / vol_func_unit = mass_abs_vol / vol_abs_vol 
        # mass_func_unit = vol_func_unit * mass_abs_vol / vol_abs_vol 
 
        # Units will get tricky here.  We actually had WEIGHT in the abs_vol calculation, not mass.  So we will 
        # just convert 
        # 
        # (func_unit_vol m ^ 3) * (abs_vol_weight lb) * (1 / 1 yd ^3) * (kg / 2.20462262 lb) * (1.30795062 yd ^ 3 / m 
^ 3) 
 
        kg_into_lb = 2.20462262 
        cy_into_cm = 1.30795062 
 
        # In a set of loops, calculate mass of SCMs and constituents, and start running totals for 
        # embodied energy and cost 
 
        temp_mass = 0.0 
        temp_mass_miles = 0.0 
        temp_ee = 0.0 
        # NS - added accounting for embodied carbon using the functional unit 
 
        temp_ec = 0.0 
        temp_cost = 0.0 
 
        for key in self.scms: 
            # self.scms[key].func_vol_mass = self.scms[key].abs_vol_weight * func_unit_vol * (1.0 / kg_into_lb) * 
cy_into_cm 
            self.scms[key].func_vol_mass = self.scms[key].abs_vol_weight * self.func_unit_vol * (1.0 / kg_into_lb) 
            temp_mass = temp_mass + self.scms[key].func_vol_mass 
            temp_mass_miles = temp_mass_miles + self.scms[key].func_vol_mass * self.scms[key].distance 
            temp_ee = temp_ee + self.scms[key].embodied_energy * self.scms[key].func_vol_mass 
            temp_ec = temp_ec + self.scms[key].embodied_carbon * self.scms[key].func_vol_mass 
            temp_cost = temp_cost + self.scms[key].cost * self.scms[key].func_vol_mass 
 
        for key in self.constituents: 
            # NS - takes the weight and volume of the mix in lb and m^3 and converts them to kg and m^3 
            self.constituents[key].func_vol_mass = self.constituents[key].abs_vol_weight * self.func_unit_vol * (1.0 / 
kg_into_lb) 
            temp_mass = temp_mass + self.constituents[key].func_vol_mass 
            temp_mass_miles = temp_mass_miles + self.constituents[key].func_vol_mass * 
self.constituents[key].distance 
            temp_ee = temp_ee + self.constituents[key].embodied_energy * self.constituents[key].func_vol_mass 
            temp_ec = temp_ec + self.constituents[key].embodied_carbon * self.constituents[key].func_vol_mass 
            temp_cost = temp_cost + self.constituents[key].cost * self.constituents[key].func_vol_mass 
 
        self.func_vol_total_mass = temp_mass 
        self.func_vol_total_mass_miles = temp_mass_miles 
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        # Now that we have the mass miles we can use it to finish out the EE and cost calc... 
        # high-range water-reducing mixture (HRWR) for low values of w/c ratio... 
        # the calculation below is per volume unit (must multiply by v_t below) 
        if self.w_c_ratio < 0.50: 
            ee_hrwr = (-540.0 / 0.15)*self.w_c_ratio + 1800 
            # NS - Adding embodied carbon impact for high-range water-reducing mixture here 
            ec_hrwr = 1.0*self.w_c_ratio 
        else: 
            ee_hrwr = 0.0 
            ec_hrwr = 0.0 
         
        self.hrwr_energy = ee_hrwr * self.func_unit_vol 
        self.hrwr_carbon = ec_hrwr * self.func_unit_vol 
 
        temp_ee = ( 
            temp_ee + self.func_vol_total_mass_miles * self.components["transportation"].embodied_energy 
            + self.hrwr_energy 
        ) 
        temp_ec = ( 
            temp_ec + self.func_vol_total_mass_miles * self.components["transportation"].embodied_carbon 
            + self.hrwr_carbon 
        ) 
        temp_cost = temp_cost + self.func_vol_total_mass_miles * self.components["transportation"].cost 
 
        self.func_vol_embodied_energy = temp_ee 
        self.func_vol_embodied_carbon = temp_ec 
        self.func_vol_total_cost = temp_cost 
 
    # NS - added accounting for sequestered carbon 
    def calc_sequestered_carbon(self): 
 
        # only calculate sequesterd carbon if model is the column 
        if self.carbon_sequestration.model_control == 1.0: 
            # NS - Carbon sequestration potential 
            cm = 0.0 
            flag = 0 
            for key in self.scms: 
                if self.scms[key].replacement_percentage > 0.0: 
                    cm = self.carbon_sequestration.alpha[self.carbon_sequestration.cement_type] - (self.scms[key].beta 
* self.scms[key].replacement_percentage / 100.0) 
                else: 
                    flag = flag + 1 
 
            if flag == 4:  # NS - if there are no SCMs then the cm is just alpha 
                cm = self.carbon_sequestration.alpha[self.carbon_sequestration.cement_type] 
 
            if cm < 0.0:  # NS - ensures that if a very high SCM replacement is used it wont make sequestered carbon 
negative 
                cm = 0.0 
 
            # NS - Carbonation depth calculation 
            k1 = self.carbon_sequestration.carbon_expo[self.carbon_sequestration.exposure].k1  # pulls proper k1 
from dict 
            n = self.carbon_sequestration.carbon_expo[self.carbon_sequestration.exposure].n  # pulls proper n from 
dict 
            if self.carbon_sequestration.cement_type == "Type I" or "Type II": 
                R = 0.0016 * (self.compressive_strength * 0.00689476) ** 3.106  # NS - Strength must be in MPa 
            else: 
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                R = 0.0018 * (self.compressive_strength * 0.00689476) ** 2.862 
 
            x = sqrt((2.0 * self.carbon_sequestration.carbon_conc / 516000.0 * 
self.service_life_parameters.service_life) / R) * \ 
                (sqrt(self.carbon_sequestration.k0 * k1 * self.carbon_sequestration.k2) * (1 / 
self.service_life_parameters.service_life) ** n) \ 
 
            # NS - Carbonated Volume 
            volume_c= self.surface_area * x 
            if volume_c > self.func_unit_vol: 
                volume_c = self.func_unit_vol 
 
            # NS - Carbon Sequestered 
 
            self.sequestered_carbon = self.carbon_sequestration.degree_carbonation * cm * volume_c * 
self.cement_content * 0.593276421  # cement weight in kg/m^3 
 
        else:  # If carbon sequestration is not considered... 
            self.sequestered_carbon = 0.0 
 
        self.func_vol_embodied_carbon = self.func_vol_embodied_carbon - self.sequestered_carbon 
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B.5 PROBLEM MODULES 

The problem modules script is responsible for plotting output data and 

running the monte-carlo simulation to verify the solution space if requested 

 
__author__ = 'nast1697' 
# My Python files: 
from wrappermodules import * 
from concretemodules import * 
 
# Other Python modules 
import numpy as np 
from pylab import * 
from mpl_toolkits.mplot3d import Axes3D 
 
# Parallel Plot modules 
import subprocess 
import pandas as pd 
from pandas.tools.plotting import parallel_coordinates 
import matplotlib.pyplot as plt 
# import seaborn # NS - this can just make plots grey scale and higher contrast 
 
def plotting_2D(resultFileName,objectives,decisions): 
    # NS - This plotting code will currently plot the mixes using flyash, silicafume and metakaolin. 
    # Read in the input files 
 
    print "Plotting in 2D, nothing to see here" 
 
    lines = [line.rstrip('\n') for line in open(resultFileName)] 
 
    # Remove the first 12 lines and the last two, because they have no data 
    # in them 
    lines = lines[12:(len(lines) - 2)] 
    fileData = [] 
    for line in lines: 
        myrow = [float(value) for value in line.split()] 
        fileData.append(myrow) 
 
    num_rows = len(fileData) 
    num_cols = len(decisions) + len(objectives) 
 
    for key in decisions: 
        decisions[key].data = np.empty(num_rows) 
 
    for key in objectives: 
        objectives[key].data = np.empty(num_rows) 
 
    for row_it in range(len(fileData)): 
        col_it = 0 
        for key in decisions: 
            # NS - used to debug the issues related to the hard coding of decisions in the mix_for_borg file 
            # print "Decision %s is column %i" % (key, col_it) 
            decisions[key].data[row_it] = fileData[row_it][col_it] 
            col_it = col_it + 1 
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        for key in objectives: 
            # NS - used to debug the issues related to the hard coding of objectives in the mix_for_borg file 
            # print "Objective %s is column %i" % (key, col_it) 
            if key == "strength": 
                objectives[key].data[row_it] = (-1.0) * fileData[row_it][col_it] 
            else: 
                objectives[key].data[row_it] = fileData[row_it][col_it] 
            col_it = col_it + 1 
 
    x = objectives["cost"].data 
    y = objectives["ee"].data 
    s = (100.0)*np.ones(num_rows) 
    # This is the variable for color which corresponds with strength 
    c = objectives["strength"].data 
    constituents = [round(val) for val in decisions["scm"].data] 
    # find the fly ash and silica fume values 
    fly_ash_indices = [i for i in range(num_rows) if constituents[i] == 1.0] 
    silica_fume_indices = [i for i in range(num_rows) if constituents[i] == 2.0] 
    metakoalin_indices = [i for i in range(num_rows) if constituents[i] == 3.0] 
    slag_indices = [i for i in range(num_rows) if constituents[i] == 4.0] 
    figure(resultFileName) 
    # NS - add if statements so colorbar isnt messed up due to no data of a certain type being in the plot 
    if len(fly_ash_indices) > 0: 
        scatter(x[fly_ash_indices], y[fly_ash_indices], s[fly_ash_indices], c[fly_ash_indices], marker='^', alpha=0.75) 
    if len(silica_fume_indices) > 0: 
        scatter(x[silica_fume_indices], y[silica_fume_indices], s[silica_fume_indices], c[silica_fume_indices], 
marker='o', 
         alpha=0.75) 
 
    # NS - Added a line to plot metakaolin as well 
    if len(metakoalin_indices) > 0: 
        scatter(x[metakoalin_indices], y[metakoalin_indices], s[metakoalin_indices], c[metakoalin_indices], 
marker='s', 
         alpha=0.75) 
 
    # NS - Added a line to plot slag as well 
    if len(slag_indices) > 0: 
        scatter(x[slag_indices], y[slag_indices], s[slag_indices], c[slag_indices], marker='8', 
         alpha=0.75) 
 
    title(resultFileName) 
    xlabel('Cost [$]') 
    ylabel('EE [MJ]') 
    colorbar().set_label('Strength [psi]') 
 
    show() 
    pass 
 
 
def plotting_3D(resultFileName,objectives,decisions): 
    # NS - This plotting code will currently plot the mixes using flyash, silicafume and metakaolin. 
    # Read in the input files 
 
    print "Plotting in 3D, nothing to see here" 
    fig = plt.figure(resultFileName) 
    ax = fig.add_subplot(111, projection='3d') 
    lines = [line.rstrip('\n') for line in open(resultFileName)] 
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    # Remove the first 12 lines and the last two, because they have no data 
    # in them 
    lines = lines[12:(len(lines) - 2)] 
    fileData = [] 
    for line in lines: 
        myrow = [float(value) for value in line.split()] 
        fileData.append(myrow) 
 
    num_rows = len(fileData) 
    num_cols = len(decisions) + len(objectives) 
 
    for key in decisions: 
        decisions[key].data = np.empty(num_rows) 
 
    for key in objectives: 
        objectives[key].data = np.empty(num_rows) 
 
    for row_it in range(len(fileData)): 
        col_it = 0 
        for key in decisions: 
            # NS - used to debug the issues related to the hard coding of decisions in the mix_for_borg file 
            # print "Decision %s is column %i" % (key, col_it) 
            decisions[key].data[row_it] = fileData[row_it][col_it] 
            col_it = col_it + 1 
 
        for key in objectives: 
            # NS - used to debug the issues related to the hard coding of objectives in the mix_for_borg file 
            # print "Objective %s is column %i" % (key, col_it) 
            if key == "strength": 
                objectives[key].data[row_it] = (-1.0) * fileData[row_it][col_it] 
            else: 
                objectives[key].data[row_it] = fileData[row_it][col_it] 
            col_it = col_it + 1 
 
    x = objectives["cost"].data 
    y = objectives["ee"].data 
    z = objectives["ec"].data 
    # Choose which direction to make the z axis 
    zdir = "z" 
    s = (100.0)*np.ones(num_rows) 
    # This is the variable for color which corresponds with strength 
    c = objectives["strength"].data 
    constituents = [round(val) for val in decisions["scm"].data] 
 
    # find the fly ash and silica fume values 
    fly_ash_indices = [i for i in range(num_rows) if constituents[i] == 1.0] 
    silica_fume_indices = [i for i in range(num_rows) if constituents[i] == 2.0] 
    metakoalin_indices = [i for i in range(num_rows) if constituents[i] == 3.0] 
    slag_indices = [i for i in range(num_rows) if constituents[i] == 4.0] 
    if len(fly_ash_indices) > 0: 
        p = ax.scatter(x[fly_ash_indices], y[fly_ash_indices], z[fly_ash_indices], zdir, s[fly_ash_indices], 
c[fly_ash_indices], marker='^') 
    if len(silica_fume_indices) > 0: 
        p = ax.scatter(x[silica_fume_indices], y[silica_fume_indices], z[silica_fume_indices], zdir, 
s[silica_fume_indices], c[silica_fume_indices], marker='o', 
         alpha=0.75) 
    if len(metakoalin_indices) > 0: 
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        p = ax.scatter(x[metakoalin_indices], y[metakoalin_indices], z[metakoalin_indices], zdir, 
s[metakoalin_indices], c[metakoalin_indices], marker='s', 
         alpha=0.75) 
    if len(slag_indices) > 0: 
        p = ax.scatter(x[slag_indices], y[slag_indices], z[slag_indices], zdir, s[slag_indices], c[slag_indices], 
marker='*', 
         alpha=0.75) 
 
    # ax.set_title(resultFileName) 
    ax.set_xlabel('Cost $') 
    ax.set_ylabel('EE [MJ]') 
    ax.set_zlabel('EC [kg CO2]') 
 
    plt.colorbar(p).set_label('Strength [psi]') 
    plt.show() 
    plt.savefig('3D_plot.jpg') 
    pass 
 
 
def parallel_plot_objectives(resultFileName, objectives, decisions): 
 
    print "Parallel Plotting in 3D, nothing to see here" 
    # NS - create new file that is only the data no additional information 
    plotdataName = "NoHeaders.txt" 
    file = open(plotdataName,"w") 
    lines = [line.rstrip('\n') for line in open(resultFileName)] 
 
    # Remove the first 12 lines and the last two, because they have no data 
    # in them 
    lines = lines[12:(len(lines) - 2)] 
 
    file.write("\n".join(lines)) 
    file.close() 
 
    # NS - inputs related to the parallel command construction function 
    plotCodeName = "parallel.py" 
    plotFileName = "parallelplot1" 
    # columns is written so only the columns with objective data will be pulled 
    col = (len(decisions), len(objectives) + len(decisions) - 1) 
    # col = (0, len(objectives) + len(decisions) - 1) 
    numcol = len(objectives) 
    # numcol = len(objectives) + len(decisions) 
    # currently 6 columns of data are being called thus 6 precisions must be provided 
    precision = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1) 
    # precision = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1,0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) 
    # names of the axes used on the plot 
    names = ("Cost", "EE", "Strength", "Cover", "EC", "Slump") 
    # names = ("Cement", "w/c", "air", "CAR", "SCM", "Replace", "RAC", "Cost", "EE", "Strength", "Cover", "EC", 
"Slump") 
    dataname = ("data") 
    # four variable color code 
    # color = (0.25, 0.5, 0.8, 0.5) # Light Blue 
    # color = (0.25, 0.4, 0.8, 0.9) # Deep Blue 
    color = (0.0, 0.28, 0.61, 0.2)  # Greyish blue 
    # color = (0, 0, 1, 0.38) 
    minima = (50, 1100, -12000, 0.0, 200, -22) # again there must be as many minima as columns 
    # minima = (0, 40, -12000, 0.0, 50, -22) 
    maxima = (100, 2200, -1000, 0.5, 300, -1) 
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    # maxima = (15, 130, -1000, 0.2, 90, -1) 
    linewidth = (0.7, 0.7) 
 
    parallelCommand = construct_parallel_command(plotCodeName, plotFileName, plotdataName, col, numcol, 
precision, names, dataname, color, minima, maxima, linewidth) 
 
    subprocess.call(parallelCommand) 
 
    # NS - Alternative parallel plotting that requires some data output data file manipulation to work well. 
    # data = pd.read_csv(resultFileName) 
 
    # parallel_coordinates(fileData, 'Name', color=['#225ea8', '#7acde9', '#9afff7', '#5a668a', '#3c445c', '#cbbdc0', 
'#38654b', '#415a44', '#a3e3aa', '#f3403f', '#f6706f', '#ffe0e1', '#ffe0c0' ], linewidth=5, alpha=.8) 
    # plt.ylabel('Direction of Preference $\\rightarrow$', fontsize=12) 
    # 
    # plt.savefig('parallel_plot.jpg') 
 
def parallel_plot_all(resultFileName, objectives, decisions): 
 
    print "Parallel Plotting in 3D, nothing to see here" 
    # NS - create new file that is only the data no additional information 
    plotdataName = "NoHeaders.txt" 
    file = open(plotdataName,"w") 
    lines = [line.rstrip('\n') for line in open(resultFileName)] 
 
    # Remove the first 12 lines and the last two, because they have no data 
    # in them 
    lines = lines[12:(len(lines) - 2)] 
 
    file.write("\n".join(lines)) 
    file.close() 
 
    # NS - inputs related to the parallel command construction function 
    plotCodeName = "parallel.py" 
    plotFileName = "parallelplot1" 
    # columns is written so only the columns with objective data will be pulled 
    col = (0, len(objectives) + len(decisions) - 1) 
    numcol = len(objectives) + len(decisions) 
    # currently 6 columns of data are being called thus 6 precisions must be provided 
    precision = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1,0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) 
    # names of the axes used on the plot 
    names = ("Cement", "w/c", "air", "CAR", "SCM", "Replace", "RAC", "Cost", "EE", "Strength", "Cover", "EC", 
"Slump") 
    dataname = ("data") 
    # four variable color code 
    # color = (0.25, 0.5, 0.8, 0.5) # Light Blue 
    # color = (0.25, 0.4, 0.8, 0.9) # Deep Blue 
    color = (0.0, 0.28, 0.61, 0.2)  # Greyish blue 
    # color = (0, 0, 1, 0.38) 
    # minima = (550, 0.25, 1, 55, 0, 0, 0, 65, 1600, -12000, 0.0, 260, -22) 
    minima = (550, 0.25, 1, 55, 0, 0, 0, 0, 25, -12000, 0.0, 0, -22) 
    # maxima = (700, 0.75, 6, 75, 5, 30, 1, 120, 3000, -1000, 0.5, 420, -1) 
    maxima = (700, 0.75, 6, 75, 5, 30, 1, 5, 80, -1000, 0.2, 15, -1) 
    linewidth = (0.7, 0.7) 
 
    parallelCommand = construct_parallel_command(plotCodeName, plotFileName, plotdataName, col, numcol, 
precision, names, dataname, color, minima, maxima, linewidth) 
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    subprocess.call(parallelCommand) 
 
 
def parallel_plot_decisions(resultFileName, objectives, decisions): 
 
    print "Parallel Plotting in 3D, nothing to see here" 
    # NS - create new file that is only the data no additional information 
    plotdataName = "NoHeaders.txt" 
    file = open(plotdataName,"w") 
    lines = [line.rstrip('\n') for line in open(resultFileName)] 
 
    # Remove the first 12 lines and the last two, because they have no data 
    # in them 
    lines = lines[12:(len(lines) - 2)] 
 
    file.write("\n".join(lines)) 
    file.close() 
 
    # NS - inputs related to the parallel command construction function 
    plotCodeName = "parallel.py" 
    plotFileName = "parallelplot1" 
    # columns is written so only the columns with objective data will be pulled 
    col = (0, len(decisions) - 1) 
    numcol = len(decisions) 
    # currently 6 columns of data are being called thus 6 precisions must be provided 
    precision = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) 
    # names of the axes used on the plot 
    names = ("Cement", "w/c", "air", "CAR", "SCM", "Replace", "RAC") 
    dataname = ("data") 
    # four variable color code 
    # color = (0.25, 0.5, 0.8, 0.5) # Light Blue 
    # color = (0.25, 0.4, 0.8, 0.9) # Deep Blue 
    color = (0.0, 0.28, 0.61, 0.2)  # Greyish blue 
    minima = (550, 0.25, 1, 55, 0, 0, 0) 
    maxima = (700, 0.75, 6, 75, 5, 30, 1) 
    linewidth = (0.7, 0.7) 
 
    parallelCommand = construct_parallel_command(plotCodeName, plotFileName, plotdataName, col, numcol, 
precision, names, dataname, color, minima, maxima, linewidth) 
 
    subprocess.call(parallelCommand) 
 
    # NS - Alternative parallel plotting that requires some data output data file manipulation to work well. 
    # data = pd.read_csv(resultFileName) 
 
    # parallel_coordinates(fileData, 'Name', color=['#225ea8', '#7acde9', '#9afff7', '#5a668a', '#3c445c', '#cbbdc0', 
'#38654b', '#415a44', '#a3e3aa', '#f3403f', '#f6706f', '#ffe0e1', '#ffe0c0' ], linewidth=5, alpha=.8) 
    # plt.ylabel('Direction of Preference $\\rightarrow$', fontsize=12) 
    # 
    # plt.savefig('parallel_plot.jpg') 
 
def monte_carlo_sim(runMonteCarlo, numSimulations, fileName, serviceLife, chlorideExposure, fileType, 
                    num_objectives,decisions,num_decisions,num_constraints): 
 
    # NS - This needs to be removed form here and placed in its own script (not concretemodules.py or 
wrappermodules.py) 
    # runMonteCarlo = 0 
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    if runMonteCarlo: 
 
        print "Beginning Monte Carlo run with %d simulations" % numSimulations 
 
        monte_carlo_objconstrs = np.empty([numSimulations, num_objectives + num_constraints]) 
        monte_carlo_decisions = np.empty([numSimulations, num_decisions]) 
 
        # list of lower and upper bounds of decisions.  The variables are: 
        # cement, wc, air, ca, slag, scm, replace 
 
        #lowers = [550.0, 0.25, 1.0, 55.0, 0.0, 0.5, 0.0] 
        #uppers = [700.0, 0.75, 3.0, 75.0, 50.0, 3.5, 30.0] 
 
        # Latin Hypercube Sampling adapted from: https://mathieu.fenniak.net/latin-hypercube-sampling/ 
        segmentSize = 1.0/float(numSimulations) 
 
        dec_it = 0 
        for key in decisions: 
 
            # Each variable must have its own latin hypercube sample.  Since we are creating 
            # an ensemble of samples, we need to make sure that each iteration gets a different 
            # segment position for each column of the ensemble.  So, instead of iterating over the range 
            # of segments in order, we permute the segments for each variable.  Of course, each variable 
            # also gets a different plotting position WITHIN that segment too. 
 
            thisVariablePermutation = np.random.permutation(numSimulations) 
 
            # print("Variable %d has permutation starting with %.6f" % (dec_it, thisVariablePermutation[0])) 
 
            for sim_it in range(numSimulations): 
                mySegment = thisVariablePermutation[sim_it] 
                segmentMin = (float(mySegment)+1.0)*segmentSize 
                point = segmentMin + (random.random()*segmentSize) 
                pointValue = point * (decisions[key].upper - decisions[key].lower) + decisions[key].lower 
                if key == "scm": 
                    # See what the rounding is going to do 
                    test_round = round(pointValue) 
 
                    # This is a hack to make sure you don't get weird constituents since perhaps python is 
                    # rounding stuff up when it's supposed to round it down, etc. 
                    if test_round == 4.0: 
                        test_round = 3.0 
                    elif test_round == 0.0: 
                        test_round = 1.0 
 
                    monte_carlo_decisions[sim_it][dec_it] = test_round 
 
                else: 
                    monte_carlo_decisions[sim_it][dec_it] = pointValue 
            dec_it = dec_it + 1 
 
        # Here are some important parameters for this particular Monte Carlo sampling.  You could technically 
        # run multiple Monte Carlo simulations by replicating this whole code block multiple times. 
 
        monte_carlo_filename = result_file_name(fileName, serviceLife, chlorideExposure, fileType) 
 



180 

 

        for i in range(numSimulations): 
 
            # Evaluate the problem 
 
            # Decision variables: 
            # cement content, w_c_ratio, air_content, c_a_ratio_percent, r_slag, r_choice, r_scm_replace 
 
            # The order MUST MATCH the order of the OrderedDict() variable, decisions, above 
 
            cement_content = monte_carlo_decisions[i][0] 
            w_c_ratio = monte_carlo_decisions[i][1] 
            air_content = monte_carlo_decisions[i][2] 
            c_a_ratio_percent = monte_carlo_decisions[i][3] 
            r_slag = monte_carlo_decisions[i][4] 
            r_scm_choice = monte_carlo_decisions[i][5] 
            r_scm_replace = monte_carlo_decisions[i][6] 
 
            if r_scm_choice == 1: 
                r_fly_ash = r_scm_replace 
                r_silica_fume = 0.0 
                r_metakaolin = 0.0 
            elif r_scm_choice == 2: 
                r_fly_ash = 0.0 
                r_silica_fume = r_scm_replace 
                r_metakaolin = 0.0 
            elif r_scm_choice == 3: 
                r_fly_ash = 0.0 
                r_silica_fume = 0.0 
                r_metakaolin = r_scm_replace 
            #else: 
                #print "Error, the SCM choice number is wrong!" 
 
            # There is another way to do this, of course.  Ideally, we would mimic exactly the script that is 
            # used to run Borg.  That way, someone could change only one file and it would be seamless. 
            # Instead, we are mimicking what is going on in mix_for_borg_B1.py, but the main issue is that 
            # there could be parameters that are different between them.  The solution is to create another 
            # subprocess and communicate with it interactively (subprocess.communicate()) 
 
            # Anyway: 
 
            # Arguments: Name, cost, embodied energy, embodied carbon 
            components = dict() 
            components["transportation"] = Component("transportation", 0.005, 0.02, 0.1) 
 
            # Arguments: Name, cost, embodied energy, embodied carbon, distance, specific gravity 
            constituents = dict() 
            constituents["coarse agg"] = Constituent("coarse aggregate", 0.012, 0.10, 0.0053,50.0, 2.5) 
            constituents["fine agg"] = Constituent("fine aggregate", 0.02, 0.08, 0.0051, 75.0, 2.63) 
            constituents["cement"] = Constituent("cement", 0.0985, 5.9, 0.852, 20.0, 3.15) 
            constituents["water"] = Constituent("water", 0.005, 0.01, 0.001, 20.0, 1.0) 
 
            # Arguments: name, cost, embodied energy, embodided carbon, distance, specific gravity, replacement 
percentage 
            scms = dict() 
            scms["slag"] = SCM("slag", 0.017, 1.6, 0.083, 500.0, 2.9, r_slag) 
            scms["fly ash"] = SCM("fly ash", 0.03, 0.1, 0.008, 500.0, 2.4, r_fly_ash) 
            scms["silica fume"] = SCM("silica fume", 0.18, 0.04, 0.15, 300.0, 2.25, r_silica_fume) 
            scms["metakaolin"] = SCM("metakaolin", 0.045, 2.08, 0.45, 800.0, 2.5, r_metakaolin) 
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            # Arguments: service life, chloride exposure, chloride rebar threshold, cover depth lower, cover depth 
upper 
            serv_param = ServiceLifeParameters(serviceLife, chlorideExposure, 0.7, 0.02, 0.2) 
 
            # Arguments: cement content, w/c ratio, air content percentage, c/a ratio percentage, 
            # python objects: components, constituents, scms, serv_param 
 
            mymix = MixDesign(cement_content, w_c_ratio, air_content, c_a_ratio_percent, components, 
constituents, scms, serv_param) 
            mymix.calc_absolute_volume() 
            mymix.calc_service_life() 
            mymix.calc_func_unit() 
 
            monte_carlo_objconstrs[i][0] = mymix.func_vol_total_cost 
            monte_carlo_objconstrs[i][1] = mymix.func_vol_embodied_energy 
            monte_carlo_objconstrs[i][2] = mymix.compressive_strength 
            monte_carlo_objconstrs[i][3] = mymix.cover_depth 
 
        print "The Monte Carlo simulation is over, generating .csv file" 
 
        nameHandle = open(monte_carlo_filename, 'w') 
 
        # Print the header line 
        nameHandle.write('cement, wc, air, ca, slag, scm, replace, cost, ee, compressive, cover \n') 
 
        for i in range(numSimulations): 
            for j in range(num_decisions): 
                nameHandle.write('%.6f' % monte_carlo_decisions[i][j] + ',') 
            for j in range(num_objectives): 
                nameHandle.write('%.6f' % monte_carlo_objconstrs[i][j]) 
                if j == 3: 
                    nameHandle.write(',,\n') 
                    #nameHandle.flush() 
                else: 
                    nameHandle.write(',') 
 
        nameHandle.close() 
    else: 
        print "You chose to not run the Monte Carlo hence it is not running" 
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