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ABSTRACT

Performance-based earthquake engineering (PBEE) provides a framework to
guantitatively assess the seismic risks to buildings and explicitly consider building seismic
performance in the design process. This thesis utilizes PBEE to enhance the understanding of the
seismic performance of RC frame buildings by: (1) estimating the performance of buildings
retrofit to standardized levels using existing retrofit design documents; (2) quantifying
improvements in seismic performance possible through retrofit design; (and 3) evaluating the

vulnerability of reinforced-concrete (RC) buildings to vertical ground shaking.

To evaluate the performance of retrofit RC frame buildings, a set of 3-, 6-, and 9 story RC
frame buildings is designed to the Uniform Building Code of 1967 (International Conference of
Building Officials, 1967). 1967 buildings are then retrofit to ASCE 41 standards (ASCE, 2013). The
performance of each building is evaluated using a rigorous PBEE framework developed by the
Pacific Earthquake Engineering Research (PEER) Center and damage observations are compared

with ASCE 41 estimated damage levels. In many cases, retrofit buildings perform better than ASCE



41 performance definitions. In other cases, the performance of retrofit buildings appears to be

consistent the ASCE 41’s stated performance goal.

Subsequently, improvements in seismic performance from retrofitting are quantified
though the identification of dimensionless indicators of retrofit effectiveness. Here,
improvements in performance - i.e. retrofit effectiveness - are defined as reductions in collapse
risk (quantified by the mean annual frequency of collapse) and earthquake-induced repair costs.
The results demonstrate that a combination of strength-based and ductility-based indicators best
describes improvements in mean annual frequency of collapse from seismic retrofitting.
However, strength-based indicators (particularly those that relate strength capacity to the

spectral demand) are correlated with reductions in earthquake-induced repair costs.

Finally, the vulnerability of ductile and nonducitle RC buildings to vertical ground shaking
is quantified using PBEE methods. Building geometries include symmetric layouts and layouts
that contain cantilever overhangs. Results show that the performance of buildings containing
cantilevered sections is more impacted by vertical ground shaking than the performance of
buildings with symmetric layouts. Furthermore, nonductile buildings are found to be more

severely impacted by vertical ground shaking than ductile buildings.
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1 INTRODUCTION

Performance-based earthquake engineering (PBEE) differs from traditional, prescriptive
design, such as load-and-resistance factor design (LRFD), in that PBEE evaluates structural
performance at the system level, whereas prescriptive methods like LRFD primarily define
performance at the component level. PBEE includes desired performance directly in the design
process, thereby providing engineers with a framework to create designs that meet the needs
and expectations of stakeholders, including clients, insurers, and governing jurisdictions. As
developed by researchers in the past 15 years, PBEE is comprised of four phases: hazard analysis,
structural analysis, damage analysis, and loss analysis. PBEE quantifies seismic hazard, building
vulnerabilities, and expected losses probabilistically, facilitating risk-informed decision making
(Porter, 2003). This dissertation assess the seismic risk of reinforced concrete (RC) buildings,
specifically those that have been seismically retrofit, and when vertical ground shaking is included
in the hazard analysis. These research topics are addressed through the use of advanced
nonlinear modeling techniques and robust simulation methods. Results and recommendations
are presented herein that aim to advance the current state of practice with respect to PBEE,

especially applied to RC buildings.

In addition to this introductory chapter, this dissertation has four additional chapters.
Chapters 2 and 3 are written as stand-alone works that are intended for publication. However,
both chapters are based upon results from a common set of buildings. Therefore, referencing
exists between sections concerning building design and modeling in chapters 2 and 3. Chapter 4

is an article that has been published in Earthquake Engineering and Structural Dynamics. Chapter
1



5 presents conclusions, limitations, and future work relevant to all previous chapters. Due to the
format of this thesis, some content in introductory and background sections from different

chapters may be repetitive.

Chapter 2 quantifies the performance obtained from retrofitting a set of buildings RC
frame buildings to a standardized level. The performance is computed through a rigorous PBEE
framework, and compared to approximate damage definitions for the standardized design
performance level. ASCE 41-13 is the most widely used standard for seismic retrofit and is based
upon the FEMA 356 (FEMA and ASCE, 2000) and FEMA 273 (Applied Technology Council, 1997)
documents, which were the first documents to standardize PBEE for use in practice (Pekelnicky
& Poland, 2012; Sattar & Hulsey, 2015; Porter, 2003). During an ASCE 41 evaluation and/or
retrofit, a Performance Level (PL) is selected that best describes the desired global performance
of a building. POs are defined by ASCE 41 at the system level, and include information such as
the overall damage estimates, damage estimates for structural components, and damage
estimates for nonstructural components conditioned on the design level earthquake. Despite the
selection of a global performance objective, ASCE 41 calculations related to demand, capacity,
and acceptance are carried out on a component-by-component basis. Furthermore, non-
compliance with the selected global PO occurs when one or more components fail and global

performance of the building is only assessed to obtain component demands.

To investigate retrofit buildings designed according to this standard, a set of 3-, 6-, and 9-
story buildings is designed to the Uniform Building Code of 1967 (International Conference of

Building Officials, 1967). These buildings exhibit deficiencies such as shear-critical columns, weak-

2



column to strong-beam arrangements, and overall weakness. The 1967 buildings are then retrofit
according to ASCE 41 to comply with four distinct performance levels using steel or concrete
jackets or fiber-reinforced polymer (FRP) wraps. Following the PBEE framework, the performance
of the retrofitted buildings is assessed in terms of earthquake-induced repair costs, where a loss
analysis is conducted in accordance with FEMA P-58 (FEMA, 2012). Significant variation in the
performance of buildings retrofit to the same performance level is observed. In many cases, the
performance of retrofit buildings is shown to be better than the damage estimates provided by
ASCE 41 Section 2-3 and Table C2-3. However, the performance of some buildings match the
ASCE 41 estimated damage levels, and none of the studied buildings perform worse than the
ASCE 41 approximation This study provides a first step in estimating economic losses for a large

set of RC frame buildings retrofit to ASCE 41 levels.

Chapter 3 steps away from standardized PBEE evaluation, seeking to identify
characteristics of retrofit buildings — quantified through dimensionless retrofit indicators — that
correspond with improvements in seismic performance. The same set of buildings developed in
chapter 2 is leveraged in chapter 3. Retrofit indicators are intended to be simple measures that
provide information on the benefits in collapse capacity and economic loss achievable through
seismic retrofit. The considered retrofit indicators include improvement in strength and ductility
through retrofitting, and design parameters that are indicative of deficiencies in 1967 buildings.
The relationships between retrofit indicators and Decision Variables (DV) are evaluated. DVs
considered in this study are mean annual frequency of collapse and annualized earthquake-

induced repair cost. A combination of strength-based and ductility based indicators is found



effective when the DV is mean annual frequency of collapse. Strength-based indicators,
particularly those that contain estimates of both seismic capacity and demand, are most related
to improvements in annual repair cost though retrofitting. This research shows that a weak
correlation exists between mean annual frequency of collapse and annualized repair costs (p =
0.38). This is an important finding because it suggests that retrofit designs that specifically focus
on reducing mean annual frequency of collapse, or collapse risk, do not always mitigate
earthquake induced repair costs. Therefore, it is important for resilient designs to consider both

DVs independently in the design process.

Chapter 4 uses PBEE to evaluate the seismic vulnerability of RC structures when vertical
ground motions are included as part of the hazard. This chapter quantifies ground motion
parameters that are capable of predicting trends in building collapse due to vertical shaking,
identifies the types of buildings that are most likely affected by strong vertical ground motions,
and investigates the relationship between element level responses and structural collapse under
multi-directional shaking. To do so, two sets of incremental dynamic analyses (IDA) are run on
five nonlinear building models of varying height, geometry, and design era. The first IDA is run
using the horizontal component alone; the second IDA applies the vertical and horizontal motions
simultaneously. When ground motion parameters are considered independently, acceleration-
based measures of the vertical shaking best predict trends in building collapse associated with
vertical shaking. When multiple parameters are considered, Housner intensity (Sl), computed as
a ratio between the Housner intensity of the vertical (Sly) and horizontal (Sls) components of a

record (Slv/Slu), predicts the significance of vertical shaking for collapse. The building with



extensive structural cantilevered members is the most influenced by vertical ground shaking, but
all frame structures (with either flexural and shear-critical columns) are impacted. In addition,
the load effect from vertical ground motions is found to be significantly larger than the nominal

value used in U.S. building design.



2 LINKING ELEMENT-BASED EVALUATION AND RETROFIT STRATEGIES TO

GLOBAL STRUCTURAL PERFORMANCE FOR RC FRAME BUILDINGS

2.1 Introduction

Performance-based earthquake engineering (PBEE) has emerged as a preferred method
for seismic design and building rehabilitation. As opposed to load-and-resistance-factor design
(LRFD) and other design strategies, PBEE explicitly defines a seismic performance objective based
on the importance and occupancy of the structure and quantifies the future seismic risk for
comparison with this objective. This approach allows the designer more control in terms of
identifying an efficient design solution and risk mitigation strategy, providing meaningful metrics
by which to assess the structure and design alternatives (Maison, Kasai, & Deierlein, 2009; Porter,

2003).

In the U.S., the most widely used and accepted standard employing PBEE for seismic
evaluation and retrofit of reinforced-concrete (RC) buildings is ASCE/SEI 41-13 (ASCE, 2013),
hereafter referred to as ASCE 41 (Sattar & Hulsey, 2015; Pekelnicky & Poland, 2012). ASCE 41
grew out of the FEMA 356 (FEMA and ASCE, 2000) and FEMA 273 (Applied Technology Council,
1997) documents, published in 2000 and 1997 respectively, which represented a first systematic
effort to develop methods for PBEE that could be used in practice. ASCE 41 evaluates structural
performance by comparing seismic demands to acceptance criteria (AC) for each element in the
structure. The acceptance criteria depend on component ductility and strength. AC have been

derived from experimental testing and analysis procedures based on principles of structural
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dynamics, however, expert judgment is used when research is not available (Maison, Kasai, &
Deierlein, 2009). AC are provided for many existing components, and have been updated over
the three cycles of ASCE 41 publication. If ASCE 41 does not provide acceptance criteria for a
building component, the analysist must prove the component behaves in a manner that complies

with the selected performance level based on judgment.

The lack of data on the performance of retrofitted buildings during large scale seismic
events in the U.S. drives us to study the performance of buildings retrofitted to standardized
levels analytically. Furthermore, there has been a growing move toward evaluating design
standards, to ensure they produce intended results. For example, the FEMA P-695 project
concluded that modern-code designed buildings have less than 10% probability of collapse given
the maximum considered earthquake (FEMA, 2009). Explicit definition of performance standards
in this way aids in the development of code provisions for new structural systems and future code

modifications.

In this study, 3, 6, and 9-story buildings are designed to the Uniform Building Code of 1967
(International Conference of Building Officials, 1967). Although nonductile RC frame buildings are
only one category of existing building, they are potentially vulnerable, frequently considered as
high risk or high priority candidates for retrofit, and often subject to ASCE 41 type analyses. A
small set of 1967 buildings is analyzed, however the deficiencies contained in this buildings set
such as shear critical columns, weak-column to strong-beam arrangements, and overall weakness
are deficiencies that are commonly found in RC frame buildings constructed during this time.

Each building is retrofit to meet ASCE 41 Collapse Prevention (CP), Life Safety (LS), and Immediate
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Occupancy (l0) performance levels. In addition, multiple retrofit techniques are considered for
each performance level: column jacketing using steel or concrete jackets, and wrapping columns
in fiber-reinforced-polymer (FRP) wraps. These three local retrofit strategies are selected for this
study because they improve structural characteristics, such as strength and ductility, with little
impact to the architectural design of the structure. To assess the retrofit structures, structural
responses, seismic-induced damage, and economic losses are estimated by nonlinear models and
the FEMA P-58 methodology (FEMA, 2012). Structural performance metrics and estimated losses
are then compared to the qualitative descriptions of the ASCE 41 Performance Levels (PL). This
comparison serves to benchmark ASCE 41 PLs against analytical building responses, and provides
a direct comparison between element-based retrofit strategies and anticipated global-level

performance benefits.

2.2 Overview of ASCE 41 Evaluation and Retrofit Processes

ASCE 41 may be used for seismic evaluation and/or seismic retrofit. It is common for an
ASCE 41 retrofit design to be performed if it is first shown that a building does not comply with a
chosen PL during an ASCE 41 evaluation. A description of both processes and their similarities

and differences is provided below.

2.2.1 ASCE 41 Evaluation Process

Unlike more traditional evaluation procedures, ASCE 41 is “performance based”, and the
first steps in an ASCE 41 evaluation is to select a performance objective, and then define building

performance levels. Performance objectives link the seismic hazard level with structural and



nonstructural performance. Certain ASCE 41 objectives requires that performance be evaluated

at two hazard levels, with two distinct performance objectives (see Table 2-1).

Building performance levels are a combination of structural and nonstructural
performance levels and represent discrete damage states a building could experience during an
earthquake (ASCE, 2013). While building performance is a combination of the performance of
the structural system and nonstructural system and contents, these are considered separately in
an ASCE 41 evaluation with unique structural and nonstructural performance levels (FEMA,

1997).

The three main structural performance levels are Collapse Prevention (CP), Life Safety
(LS), and Immediate Occupancy (I0); these are listed in order of increasing seismic resistance.
According to the ASCE 41 Section 2.3, at the CP level, the structure is severely damaged and any
additional deformation may cause instability leading to collapse. At the LS level, a moderate
amount of damage has occurred, the structure’s stiffness and strength have been reduced, but
it retains significant deformation capacity. At the 10 level, a limited amount of damage has
occurred and the structure retains a significant amount of its initial strength and stiffness. Figure
2-1 presents an example of the ASCE 41 structural performance levels as they relate to the force-
deformation response of ductile and nonductile structures. More detailed definitions of the
structural performance levels are presented in subsequent sections. Four nonstructural

performance levels are defined: Operational, Position Retention, Life Safety, and Not Considered.
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Figure 2-1 — ASCE 41 structural performance levels as they relate to structural deformation demands for
(a) ductile structures and (b) nonductile structures

Next, the site seismic hazard is evaluated. In most cases the selected building
performance objective dictates the level of shaking used in the analysis. For example, the Basic
Performance Objective for Existing Buildings (BPOE) requires that the building be analyzed under
two hazard levels: the BSE-1E motion (ground motion with probability of occurrence of 20% in

50 years at the site) and the BSE-2E motion (probability of occurrence of 5% in 50 years).

Three tiers of evaluation are permitted within ASCE 41. Tier 1 is a screening procedure in
which the building is analyzed using a series of checklists that cover both structural and
nonstructural components. Tier 1 procedures are meant to be easy to calculate, and therefore
do not require the use of a computer model. Tier 2 procedures evaluate the potential deficiencies
identified in Tier 1 in more detail by computing their demands and comparing them to capacities

using acceptance criteria.

Tier 3 is a systematic calculation-based evaluation procedure. Tier 3 evaluations analyze
the entire building in its current state. Deformation demands are computed using either linear
static, linear dynamic, nonlinear static, or nonlinear dynamic procedures. The selection of an

appropriate analysis procedure is based upon the structural geometry and building
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characteristics. For example, static methods are not recommended for taller buildings where
higher mode effects are important. In general, static procedures are intended to be more
conservative than dynamic procedures and linear procedures are more conservative than
nonlinear procedures. Computed demands are then compared against acceptance criteria for
each building component; RC column and beam demands are typically quantified in terms of
deformations. For a building to comply with an ASCE 41 performance level, all elements must
satisfy these prescriptive acceptance criteria. The component limit states and modeling criteria
have been developed based on test data, and several of the tables with modeling parameters
and acceptance criteria for various components have been updated and improved in recent
years, e.g. Elwood, et al. (2007). The remainder of this paper will consider the Tier 3 evaluation
procedure because it is the least conservative procedure, and the one most commonly used in

practice.

Historically, seismic retrofit of most building types (including RC frames) has been
voluntary, leaving the engineer to decide which type of evaluation is performed. Often, this
choice is dictated by economic limitations. Recently, Los Angeles passed a mandatory retrofit
ordinance for older RC buildings (City of Los Angeles, 2015). ASCE 41 is listed as an accepted
evaluation method, where buildings are required to meet or exceed requirements for the Basic
Safety Objective to avoid triggering retrofit requirements. Tier 1, 2, and 3 evaluations are

permitted, leaving the decision up to the engineer (SEAOSC, under review).

11



2.2.2 ASCE 41 Retrofit Process

The ASCE 41 retrofit process has many similarities with the evaluation process. First, a
performance objective is set, building performance levels are defined, and the site hazard is

analyzed. These steps are conducted as they are described in the section above.

During an ASCE 41 retrofit, only Tier 2 and Tier 3 procedures are permitted. Tier 2
procedures retrofit the deficiencies identified in a Tier 2 evaluation until they are shown to
comply with the desired performance objective. As with the Tier 3 evaluation, the Tier 3 retrofit
process is a systematic procedure that considers all elements in the structure. First, a preliminary
retrofit scheme is selected and designed. The structural system is then analyzed through the
same evaluation procedures, but with the building now including the retrofit measures. The
retrofit scheme is modified until all building components are shown to comply with the desired

performance objective.

2.3 Previous Studies that Evaluate the Performance Obtained from Designing to

ASCE 41 Levels

Multiple studies have been conducted on particular aspects or sections of ASCE 41. What
follows is a selection of studies that specifically examine analytical models or laboratory tests
related to ASCE 41’s building performance levels. Studies that evaluate the performance of
buildings retrofit to ASCE 41 standards are important because of the limited number of
observations of performance of buildings designed to ASCE 41 during large earthquakes. In
addition, there is an inherent level of uncertainty in the ASCE 41 performance levels because of
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the limited data from tests — which are themselves component or subassembly based - and post-
earthquake reconnaissance is available for calibration. Therefore, it is difficult to show that
buildings designed to unique performance levels behave in the manners described by ASCE 41

during design level shaking.

Maison, Kasai, and Deierlein (2009) performed an ASCE 41 evaluation of a full-scale 4-
story welded steel moment frame building that was shaken to collapse on the E-Defense shake
table. The building was evaluated for the CP performance level using linear and nonlinear
procedures. ASCE 41 had mixed results when predicting the response of the laboratory test.
However, the predictions generally fell on the conservative side, predicting collapse at lower
intensities than were observed in the experiment. In terms of evaluation, the ASCE 41 linear
dynamic procedure, nonlinear static procedure, and nonlinear dynamic procedures showed that
the building failed the CP acceptance criteria when it was essentially linear-elastic. Therefore, the
ASCE 41 CP performance level was shown to be very conservative, essentially predicting a
collapse capacity of half that observed in the experiment. However, the same study found ASCE
41 to be an effective retrofit design tool because it correctly identified the deficient members

that lead to collapse, therefore targeting the correct members for retrofit.

More recently, Sattar and Hulsey (2015) assessed the performance of a new, 4-story
special RC frame building designed to ASCE 7 (ASCE, 2010) — the design standard for new
buildings— using ASCE 41. The CP performance level was evaluated using a Tier 3 analysis. The
assessment showed that the CP performance level for the new building was not met when the

linear static procedure was used. However, the building was found to comply with the CP level
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when the nonlinear dynamic procedure was used. This study indicates that the linear procedures
in ASCE 41 are more conservative than the nonlinear procedures, due to their more simplified
analysis techniques, and that the CP performance in ASCE 41 does not align with the performance

level assumed in ASCE 7, i.e. is conservative in comparison to new design.

Harris and Speicher (2015) are also comparing seismic performance of an ASCE 7 code-
compliant buildings and their performance as quantified using ASCE 41 analysis procedures.
While Sattar and Hulsey (2015) focused on RC moment frames, Harris and Speicher (2015)
investigated special steel moment frames, special concentrically-braced steel frames, and
eccentrically-braced steel frames; a study of buckling-restrained braced frames is ongoing. It is
difficult to link ASCE 7 with ASCE 41 because ASCE 41 component acceptance criteria are defined
on a different basis than the seismic performance objective of ASCE 7, which aims to achieve less
than 1% probability of collapse in 50 years (Luco, et al., 2007). Due to this inconsistency in the
performance objectives of each document, the new steel buildings designed to ASCE 7 were
shown to have difficulty satisfying the Basic Safety Objective in ASCE 41 (Harris & Speicher, 2015;
Harris & Speicher, 2015). The authors propose that in order to link ASCE 41 with ASCE 7, future
efforts should focus on what percentage of components needs to fail the CP criteria to achieve

performance equivalent to that of modern buildings.

Results from the above studies suggest that some ASCE 41 evaluation methods are quite
conservative. This conservatism stems in part from the element-based philosophy implemented
in ASCE 41, in which the structure is said not to comply with a performance level if a single

primary structural element does not satisfy the acceptance criteria. Some researchers believe
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that, this “if one element fails, they all fail” approach is not representative of system level
behavior as it neglects the effects of redundancy and load redistribution (Searer, Paret, &

Freeman, 2008). In some ways, the idea of prescriptive, element-based acceptance criteria

muddies the concept of performance-based engineering .

While most previous studies have focused on assessing ASCE 41 evaluation procedures,
little work has been done to study the performance obtained from designing to ASCE 41 retrofit
procedures. Complying with a performance objective does not necessarily mean an efficient
retrofit design is achieved, where efficiency can be measured in terms of cost or seismic
resistance of the structural system. In some cases, the cost of retrofitting to meet a desired
performance objective may not be proportional to the benefit achieved. Pekelnicky and Poland
(2012) argue that improving building performance by mitigating the most glaring deficiencies is
more cost-effective. To address this issue, ASCE 41 allows existing buildings to be evaluated and
retrofit to a seismic hazard with a return period lower than 5% in 50 years. However, evaluations
are typically performed at two hazard levels, as shown in Table 2-1, where the larger hazard often

governs the design.
2.4 Building Designs

In this study, a set of 3, 6, and 9-story, 5-bay, RC space frame buildings are designed to
the 1967 Uniform Building Code (UBC). Frame geometries are shown in Figure 2-2; each space
frame building has six such seismic resisting frames in each direction. Each 1967 building is then

retrofit with concrete jacketing, steel jacketing, or fiber-reinforced polymer (FRP) to meet a
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specified Basic Performance Objectives for Existing buildings (BPOE) defined in Table 2-1. Details

of each retrofit design are presented below.
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5 Bays @ 25 ft each
Figure 2-2 - Typical building elevation

RC space frame buildings are chosen for this study because they are common systems
with design characteristics (i.e. strength and ductility) similar to other structural building types
located in high seismic regions and are often retrofit due to their high seismic vulnerability.
Heights of 3, 6, and 9-stories are chosen to represent low, mid, and high-rise RC fame buildings,
while 5 bays are chosen based on the median number of bays for pre-1967 RC frames in the
dataset of Los Angeles pre-1980 buildings compiled by The University of California, Berkeley and
released by the Los Angeles Times (Lin Il, Xia, & Smith, 2014). All buildings are located at a

southern California site at 33.996°N, -118.162°W.

Table 2-1 - Performance Objectives used for seismic evaluation and retrofit

Performance Structural Nonstructural Hazard Level
Objective Performance Level Performance Level
BPOE for Risk cp Not Considered BSE-2E (5% /50 yrs)
Category | &1l LS Life Safety BSE-1E (20% /50 yrs)
LS Not Considered BSE-2E (5% /50 yrs)
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BPOE for Risk 10 Position Retention BSE-1E (20% /50 yrs)
Category IV

For simplicity, retrofit designs will henceforth be referred to by the structural
performance level they satisfy. For example, a building that is said to comply with CP also has a
nonstructural performance level that is not considered and is analyzed at the BSE-2E hazard level.
Two LS structural PLs exist, which depend on the structure’s risk category, as shown in Table 2-1.
However, all pre-1967 buildings in this study comply with LS structural performance at the BSE-
1E level before retrofit and therefore results for design level are not presented this study (a more

detailed explanation is presented in subsequent sections).
2.4.1 1967 Buildings

A set of RC frame buildings is designed in accordance with loads in 1967 UBC
(International Conference of Building Officials, 1967) and specifications in ACl 318-63 (ACI
Committee 318, 1963). Loading is typical of an office building with a tar and gravel topping on
the roof. For design purposes, internal element forces are calculated using beam equations as
per 1967 UBC and the portal frame method, both typical of design practice during the 1960s. All
elements are designed using Working Stress Design, the common design method in 1967, and
transverse reinforcement consist of hooped, tied bars. The seismic design is based on the site in
guestion and corresponds to Zone 3 in the 1967 UBC (the highest zone at that time). The buildings
so-designed exhibit a number of common deficiency types. The considered building deficiencies
include weak-first-stories, shear-critical columns, weak-column-strong-beam arrangements, and

inadequate base shear strengths (i.e. overall weakness), as described in Table 2-2.
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Table 2-2 - 1967 building properties

# # Vo/Val M/ Mp?2 Te? W Vu? Ductility® 7 Deficiencies®
Stories Bays 7" ®" (sec) (kips) (kips) V" Hstrength

3 5 1.00 1.10 0.71 284 459 3.21 5.09 SC, WCSB, IS

6 5 1.10 1.02 0.99 577 744 2.68 4.54 SC, WCSB, IS

9 5 1.66 0.98 0.78 2507 2577 2.89 2.29 SC, WCSB

1- Vv, is the maximum flexural capacity limited shear demand. V, is the member shear capacity. V,/Vais
calculated for each column and represents the expected failure mode. If V,,/V,< 0.6 expected failure
mode is flexure, 0.6 < V,/V,<1.1 failure mode is flexure-shear, and V,/V,> 1.1 member is expected to
fail in shear. The building V,/V,is the average column V,/V,in the building weighted by axial load carried
by each column.

2. Mo/M, is the summation of the column expected flexural strengths over the summation of the beam
expected flexural strengths in a story. The building M,/M, is the average story M,/ M,.

3. T.is the effective period as per Eqn. 7-27 of ASCE 41, calculated from pushover

4 -V, is the effective building yield strength as per Fig. 7-3 of ASCE 41, calculated from pushover
5 -V, is the ultimate building strength
6 - Ductility is the building ductility capacity as per Eqn. 6-6 of FEMA P695, calculated from pushover
7 - See Equation 3-2
8 . SC = Shear-critical Columns
WCSB = Weak-Column-Strong-Beam arrangements - M/M,, > 1.2 at any joint
IS = Inadequate Strength (overall) - Ustrength > 4

2.4.2 Retrofit Buildings

1967 buildings are subjected to an ASCE 41 Tier 3 evaluation and are then retrofit with
concrete jacketing (Conc. J), steel jacketing (Steel J.), or fiber-reinforced polymer (FRP) wraps to
meet the defined performance objectives shown in Table 2-1. Design parameters of the retrofit
buildings are shown in Table 2-3. ASCE 41’s Nonlinear Static Procedure (NSP) is used during the
evaluation and retrofit because its visual nature provides a comparison between the original and
retrofit building properties that helps eliminate design errors. Historically, the NSP has been the

most commonly used evaluation procedure, however, modern advances in computing have led
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to increased use of Nonlinear Dynamic Procedures (NDP) (Goel & Chadwell, 2008). This
procedure is less conservative than the linear procedures, but studies have shown the NSP is
slightly more conservative than the NDP and neglects higher mode effects important in taller
buildings (Sattar & Hulsey, 2015; Goel & Chadwell, 2008).

Table 2-3 — Retrofit building properties

Retro. #

Meth. Stories PL Haz. Te [sec] V, [kips] V. [kips] Ductility  Ustrength
FRP 3 CpP BSE-2E 0.81 411 505 7.2 3.6
FRP 3 LS BSE-2E 0.81 411 505 7.2 3.6
FRP 3 10 BSE-1E FRP cannot provide required strength / stiffness

Steel J. 3 CP BSE-2E 0.65 607 714 4.2 2.1

Steel J. 3 LS BSE-2E 0.65 607 714 4.2 2.7

Steel J. 3 10 BSE-1E 0.63 745 869 7.8 2.4

Conc. J. 3 CpP BSE-2E 0.52 625 747 5.5 2.9
Conc. J. 3 LS BSE-2E 0.52 625 747 5.5 2.9
Conc. J. 3 10 BSE-1E 0.50 836 875 23.6 2.3
FRP 6 CP BSE-2E 1.08 724 817 4.3 33
FRP 6 LS BSE-2E 1.08 724 817 4.3 33
FRP 6 10 BSE-1E FRP cannot provide required strength / stiffness

Steel J. 6 CP BSE-2E 0