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Abstract 

Few physical processes can affect the earth’s climate on a global scale.  

The variability of the Sun is one such process.  The Sun is known to vary by 

about 0.1% due to Sunspots and other surface activity.  We do not yet know 

whether the Sun’s variability is normal.  Using the well-known properties of the 

old open cluster M67, we look for variations in Sun-like stars.   

In this thesis, we present the results of observation, calibration, correction 

and analysis of stars in M67.  We focus on Sun-like stars and binary systems.  

We also determine the limits of observation using a small research-grade 

telescope.  

We find several known variable stars with comparable amplitudes of 

variability.  Our precision is as high as 10 millimagnitudes, ranging 10-20 for Sun-

like stars.  Variability is detected as low as 20 millimagnitudes in amplitude.  Our 

current precision, however, fails to detect solar-like variations.
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Chapter 1. Introduction 

Few processes can have an effect on the Earth on a global scale.  One 

such process is the total luminosity output from the Sun.  Changes in the Earth’s 

climate have been linked to the Sun’s variable irradiances (Lean & Rind 2001).  

The total luminosity of the Sun varies on nightly to century time-scales 

(Lockwood et al. 1997; Pap et al. 1999).  By observing variability in stars like the 

Sun, we can learn about typical stellar behavior.  Understanding where the Sun 

fits among Sun-like stars can lead to better predictions of the Sun’s variability, 

including solar flares and prominences, over the coming decades. For 

astrobiological purposes, it is also helpful to know if the Sun is anomalous in its 

level of variability. 

 

1.1 Goals 

In this research, we examine the small-timescale variability of stars similar 

to the Sun.  Observations of the Sun show variability in timescales from minutes 

to the years that make up the Solar Cycle (Lockwood et al. 1997; Pap et al. 

1999).  Our project, however, lasts only one season; therefore it is only sensitive 

to nightly to monthly variability timescales.   

Our primary goal is to examine broadband brightness fluctuations due to 

stellar activity cycles, e.g. starspots rotating into and out of view.  Giampapa et 

al. (2000) reported that only 30% of Sun-like stars in M67 exhibit activity that is 

unusual for the Sun.  So the effect of starspots should be similar to that of 
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sunspots.  Willson et al. (1981) of the Solar Maximum Mission notes that 

sunspots cause dimming of up to 0.2% in total luminosity.  Pap et al. (1999) note 

that this effect is larger at shorter wavelengths.  They also note that the strongest 

modulation of the Sun’s amplitude of variability is an effect of sunspots across 

the surface. 

It has been suggested that variability of stars is linked to binarity (van den 

Berg et al. 2002).  Stassun et al. (2002) reports that 14 of 29 cluster member 

variable stars are in known binary systems.  This suggests that the differences of 

variability of these systems is not clear.  In light of this, we will focus our attention 

on how the variability is different between stars that are in known binary systems 

and single stars.  

A final goal of this study is to probe the usefulness of a small research-

grade telescope for millimagnitude photometry.  Some concern is that the 

telescope is located too close to the city of Des Moines for reasonable 

background sky noise levels.  Another concern is that the telescope is not large 

enough to provide high-precision photometry.  Understanding the limit of this 

photometry, whether it is limited by the telescope or by the location, will be useful 

for future observations with this equipment. 

 

1.2 Choosing a test “sight” 

The night sky is filled with stars.  Choosing which star to observe may 

seem trivial, but it can be difficult.  Most of the stars that you see are in the solar 

neighborhood.  Though many of them fall on the main sequence, most are not 
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particularly Sun-like.  Many Sun-like stars are observable with a telescope.  

However, it is not clear exactly which stars are best to observe. 

1.2.1 Cluster versus Field 

Since we want to study stars that are similar to the Sun, we should look for 

stars with a similar spectral type, age and composition.  For field stars, age can 

be difficult to determine accurately.  Clusters generally do not have such a 

problem.  If we were to use a star cluster, we can determine age with much less 

uncertainty by studying the cluster members’ locations on the Hertzsprung-

Russell diagram.  Furthermore, because these stars are close together on the 

sky, we only need a single line-of-sight, whereas with field stars, in order to find 

several stars similar to the Sun, we would need a line-of-sight for almost every 

star.  For field stars, however, differences in extinction due to differences in air 

mass cannot be neglected.  This is discussed in detail in Chapter 5. 

Current studies of field stars are plagued by variable comparison stars.  

Lockwood et al. (2007) notes that too many comparison stars results in nearly all 

of the observing time is spent on calibration stars and almost none is spent on 

the science object.  They go on to note that the level of variability is much higher 

in field stars than in the Sun, and that the Sun appears to be an outlier in 

variability with respects to other Sun-like stars. 

1.2.2 Open versus Globular 

With all of the star clusters available to us, we need to find clusters that 

are populous, nearby, and similar in age and composition to the Sun.  The typical 

globular cluster is much older and farther than the typical open cluster.  Globular  
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Figure 1.1 – M67 Field of View.  This image was taken 
using the V filter.  North is up; East is left. 
 

clusters are also much denser, permitting ground-based photometry of only the 

stars in the sparser outer regions.  On the other hand, it is harder to determine 

which stars are members and which are foreground or background field stars for 

an open cluster.   The ideal case is to have an open cluster that is sufficiently far 

from the plane of the galaxy in order to limit the density of contaminating field 

stars.  This same open cluster should be not so close that the cluster members 
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cover too large of an area on the sky, but close enough that the stars are still 

bright, and, of course, it should have plenty of member stars. 

 

1.3 M67 as a Test Laboratory 

Out of the small list of close open clusters, there is one that best satisfies the 

requirements for a test subject. The open cluster M67 fulfills all of these 

requirements, and it will be our stellar laboratory.  We should note that at least 

one study has referred to M67 cluster members as the “paradigm sample for 

Table 1.1  Properties of M67 (NGC 2682) 
Property Value Source 

Right Ascension (Ep. 2000.0) 08h 51m 23.s3 Yadav et al. (2008) 

Declination (Ep. 2000.0) +11° 49’ 02”  Yadav et al. (2008) 

Distance Modulus (m-M)o = 9.7 ± 0.2 Balaguer-Núñez et al. (2007) 

Galactic Longitude 215.688° Yadav et al. (2008) 

Galactic Latitude 31.923° Yadav et al. (2008) 

Proper Motion -6.51 ± 0.30 mas yr-1 (α) 
-4.54 ± 0.28 mas yr-1 (δ) 

Loktin (2003) 
Loktin (2003) 

Radial Velocity 33.67 ± 0.09 km s-1 Yadav et al. (2008) 

Reddening E(B-V) = 0.04 ± 0.004 Taylor et al. (2007) 

Metallicity [Fe/H] = 0.03 ± 0.01 Randich et al. (2006) 

Angular Size θ = 25 arcminutes Tadross et al. (2002) 

Age 4.2 ± 0.2 Gyr Balaguer-Núñez et al. (2007) 

 
studies of structure and evolution of Population I solar-age stars” (Montgomery et 

al. 1993).  We should learn a little bit about it.  The cluster is shown in Figure 1.1 

using an image from April 2nd, 2007, V filter image.  Notice the “dipper” asterism 

of four bright stars in a curved pattern that make up the “handle” and the five 

bright stars in the shape of a trapezoid on its side (to the right and slightly down 
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from the center of the image.  M67 is located in the constellation Cancer.  This 

open cluster is also known as NGC 2682 and C 0847+120.  The rest of its 

properties are summarized in Table 1.1. 

 

1.4 Overview of the Expected Procedure 

We start by collecting the data, and we will reduce it with the Image 

Reduction and Analysis Facility (hereafter IRAF).  Using SExtractor and 

Astrometrica, we will identify stars on the images and determine their equatorial 

positions.  We will then color-correct the photometry.  Then we will use Tim 

Naylor’s Optimal Photometry code to extract optimal and aperture magnitudes 

from each image.  After this, the program Ensemble Photometry will be used to 

improve the certainty of the data.  This program will also identify (and remove) 

variable stars to improve the differential photometric precision of the non-variable 

stars in an iterative procedure.  The last part of the procedure is to combine the 

data from each night to produce a more accurate night-to-night data set. 

 

1.5 Outline of Thesis sections 

The remaining chapters are described in a brief synopsis.  Chapter two 

describes the literature background on the subject of the open cluster M67.  It 

also contains relevant information on the variability of the Sun, describing how 

previous studies related Sun-like stars from other sources to the Sun. 
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Chapter three describes the location and method of observations.  It also 

describes calibrations of the optical systems.  The chapter explains what the 

systematic sources of error are and how they are corrected.  This chapter also 

discusses the organization of the material. 

The fourth chapter is the general analysis of the photometry.  It starts by 

extracting photometry and transforming it to the standard system.  The chapter 

will discuss how to improve uncertainties and how the variables are designated. 

Chapter five discusses the variability of stars outright.  This chapter is 

designed to focus on and discuss the goals in Section 1.2.  This chapter will also 

report in depth on the errors of the method.  Any parts that are left out due to 

time constraints will be addressed here. 

To conclude the thesis, the sixth chapter contains a brief synopsis of 

previous work.  A summary of the current work is presented with error estimates.  

The final portion of this chapter will be devoted to future work and advanced 

measures that would improve the method and the findings. 
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Chapter 2. History 

M67 is one of the most well-studied open clusters.  In this chapter, we 

review previous studies of the cluster, focusing primarily on broadband studies. 

 

2.1 Photographic and Photoelectric Studies 

Prior to the advent of the charge couple device (hereafter CCD) camera, 

there were two primary ways of recording telescopic observations.  The first is a 

simple photograph, which, at best, was accurate to about 0.01 magnitudes 

(Birney et al. 2006).   The second was a photoelectric detector.  This kind of 

detector allowed for a much easier use of filters to measure only the light of a 

certain color.  The photomultiplier tube, is more sensitive and has broader 

spectral response than the photographic plate.  With the improved technology, 

there was also an improvement in the photometric standard.  Johnson and 

Morgan (1953) developed a new standard in three colors (UBV).  Future 

broadband color studies would be based on this original standard. 

The new standards and technology revitalized interest in studies of star 

clusters, specifically in three-color studies.  Johnson and Sandage (1955) used 

three-color studies to develop a standard sequence useful for conversion 

between photographic and photoelectric magnitudes for the M67 field.  As well as 

studying clusters in three colors, a general and relative color-magnitude diagram 

(hereafter CMD) was produced.  Johnson and Sandage (1955) noted that M67’s 
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main sequence terminated fainter and redder than many other clusters, and a 

relative age was suggested to be around 5 Gyr.   

Further studies using three colors included the ability to estimate and 

remove the interstellar reddening.  Eggen and Sandage (1964) found that the 

reddening was E(B-V)=0.06.  With a known reddening value, they went on to 

determine a general distance of about 752 ± 70 parsecs.  

Racine (1971) used advances in technology to refine our knowledge of the 

cluster’s properties.  She noted that there was a clearly delineated binary 

sequence visible just above (0.8 mag) the main sequence and there is an 

absence of white dwarfs above a magnitude of V=17.  Her study ended at a 

limiting magnitude of V=20.5, a large increase from the previous limit of V=14 

(Eggen & Sandage, 1964). 

It is important to note that many studies of this cluster did not differentiate 

which stars were members of the cluster and which were field stars located in 

front of (between us and the cluster) or behind the cluster.  M67 has a high 

galactic latitude, which minimizes the ratio of field stars to cluster stars (Johnson 

& Sandage, 1955), so the assumption was that the field stars would not 

contribute significantly.  Sanders (1971, 1977) used a mathematical algorithm to 

determine the membership of M67.  He employed the proper motion and relative 

location of each star in the field of view to determine a probability of membership 

to the cluster. 

Since the 1950s, there have been several advances in the techniques of 

determining cluster membership.  Sander’s method is recognized to be limited.  
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Francic (1989) explains more clearly what the problems are with Sander’s 

method. Sander’s method is biased towards the fainter stars, but cluster 

membership is likely to go down with magnitude.  Another limitation to Sander’s 

method is that there is a bias towards stars that exist far from the center.  Jones 

and Walker (1988) outline fixes to the algorithm to adjust for such biases. 

Sander’s method was further improved by Zhao et al. (1993).  However, 

the observations made by Zhao et al. were not synchronized.  This means that 

stars do not appear on every image, the baseline between photographic plates is 

not relatively uniform and each pair of photographic plates has a different 

accuracy than the next.  Despite all of the corrections made, there is still a strong 

correlation for membership among the study of Zhao to Sanders and Girard et al. 

Girard et al. (1989) include radial velocities of stars within their 

membership algorithm.  Radial velocities can help to distinguish field stars that 

have unusually similar properties.  At this time, however, the radial velocity 

measurements are limited to stars brighter than V=12.8.  For stars without radial 

velocity data, they use a weighted version of Sander’s method to complete a 

membership probability. 

Due to the proximity of the cluster and the high number of binary members 

that had been found, there was concern that binary motion could be contributing 

to the dispersion of proper motion velocities.  Girard et al. studied this aspect with 

radial velocity measurements and found that binary motions are negligible, and 

the the dispersion of proper motion velocities are due to some other source. 
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2.2 CCD Studies 

The CCD for observational astronomy has become the primary tool for 

astronomical research.  The CCD has far greater sensitivity than the best 

photographic emulsions and higher spatial resolution than photoelectric 

detectors.  However, before measurements with new equipment can have 

meaning, standards must be made. 

For M67, the photometric standard stars were identified by Johnson & 

Sandage in 1955.  A portion (MV = 11.5-16.0) were revisited by Landolt (1992) for 

calibration with the standard filter set and photoelectric detector.  A calibration 

field for BVRI CCD photometry in M67 was first observed by Montgomery et al. 

(1993).  This field was made from several criteria.  First, a star that could be 

considered standard must be brighter than the 14th magnitude in the V filter.  

Second, the star must be less than five arcminutes from the center of the cluster.  

Third, the star must have an uncertainty of less than 15 millimagnitudes in at 

least four different images.  The last criterion is the star must be published in two 

other sources (typically Sanders 1977 and Girard et al. 1989), and is not a known 

variable.  Montgomery et al. standard fit the Landolt (1992) standards with an 

RMS error of 15 to 20 millimagnitudes, thus providing a reasonable 

transformation of data from prior studies.  This was the standard used for M67 

until Stassun et al. (2002) improved to 10 millimagnitude uncertainty and 

Sandquist (2003) improved certainty with high-precision photometry in BVI. 

Before CCDs, proper motions of stars in M67 were completed by 

comparing two photographic plates.  The best measurements were produced by 
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using two plates that were separated by a lot of time.  These studies were 

summarized by Jones (1997).  He also produced the first proper motion study on 

M67 using a CCD.  Due to the higher sensitivity and large area of measurement, 

CCDs are ideal for proper motion studies. 

 
Figure 2.1  A plot from Montgomery et al. (1993).  The 
solid lines are theoretical isochrones fit to the data set, 
each line representing a different possible age for the 
cluster.  

 
With the improvement of technology, many groups sought to redefine the 

characteristics of M67.  As a part of the study, Montgomery et al. (1993) use an 

isochrone to determine certain characteristics.  An isochrone is a model of the 

expected location of stars on a CMD with a large range of mass and a precise, 

unified, age and composition.  By adjusting the models age and composition, the 

fit should mimic the main sequence, turnoff and red giant branch.  An example of 



 13 

this can be found in Figure 2.1, where Montgomery et al. use theoretical models 

from Vandenberg (1985) to fit their data. The age they determined had a high 

uncertainty at 3 to 5 Gyr. 

Metallicity is one of multiple variables in an isochrone fit.  Because of the 

isochrone they used (only applicable for metallicities between -1.00 and 0.00), 

they determined the best match was [Fe/H]= -0.05±0.03.  Besides this 

measurement, nearly all isochrone derived values of metallicity are positive.  

Vandenberg (2007) present more accurate theoretical models to find a better 

isochrone.  The result is a metallicity value of [Fe/H] = 0.0165.  This is the same 

value that Grevesse & Sauval (1998) found for the metallicity of the Sun. 

Spectroscopy yields a higher certainty for metallicity.  Randich et al. 

(2006) use 10 stars brighter than MV=14.2 of different stellar types to estimate 

the metallicity of M67.  They find a value of [Fe/H] = 0.03±0.01.  Uncertainties 

from previous studies are more than three times larger.  Taylor (2007) uses 

several studies to find a weighted average metallicity.  The final result is  [Fe/H]= 

-0.009±0.009.  However, due to the questionable nature of this average (little 

information is given as to why parts of each study were left out of the final 

weighted average) we resort to the Randich et al. value as the most recent and 

most certain value for metallicity. 

The isochrone can also be used to determine the reddening of the system 

based on the amount of color correction needed for the isochrone to match the 

observations.  Montgomery et al. found the color excess to be E(B-V)=0.05±0.01.  

Sandquist (2003) found a different reddening value of E(B-V) = 0.04±0.01 from 
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an isochrone.  An improvement in precision wasn’t achieved until Taylor (2007) 

used a weighted average method to find a value of E(B-V) = 0.0409±0.0041. 

Variability in the cluster was explored thoroughly by Stassun et al. (2002) 

where variability is measured with a precision of better than 20 millimagnitudes.  

Amplitude of variability detected was limited to about 10 to 100 millimagnitudes 

with about half of the variables existing in known binary systems.  Many of these 

stars were further studied by Sandquist et al. (2003), Sandquist & Shetrone 

(2003) and Stello et al. (2007).  These studies were on specific variable members 

with little focus on Sun-like stars. 

One study (van den Berg, et al. 2002) links the variability of a system with 

likelihood of it occurring in a binary system.  Since Racine (1971), the binary 

sequence of M67 has been a popular topic.  Montgomery et al. (1993), Girard et 

al. (1989) and Zhao et al. (1993) all note it near 0.7 magnitudes above the main 

sequence.  Montgomery et al. (1993) note that 38% of cluster members are 

binaries, and Stassun et al. (2002) note that there is a large amount of binary 

systems outside the well-defined binary sequence. 



 15 

Chapter 3. Observations 

There are two ways of obtaining data for this project.  We can use data 

from previous studies, or we can take new data.  We chose to acquire new data 

because we can configure the observation method to suit our needs for this 

project.  Previous studies focus on the high-amplitude variability.  

 

3.1 Observatory 

3.1.1 Location 

We used the Erwin W. Fick Observatory, which is owned and operated by 

Iowa State University.  It is located southwest of Boone, Iowa (93° 56’ 38.2” west 

longitude, 42° 00’ 20.2” north latitude, at an altitude of 342 meters).  This 

observatory also has the advantage of availability; there is no competition for 

observation time.  

Though not far from a relatively large city, this location has good seeing 

with a naked-eye viewing limit on a typical moonless night at a magnitude of 

about 5.5.  The limiting magnitude depends on the light pollution around the 

location of the observatory.  You can see in Figure 3.1 (next page), that there are 

large sources of light pollution near Fick observatory (Cinzano et al. 2001).  The 

observatory is located at the large cross, while the smaller crosses located just to 

the east and southeast indicate the location of Ames, Iowa and Des Moines, 

Iowa, respectively.  Cinzano et al. determines the sky brightness for Fick 

Observatory’s location at a magnitude in V of 20.49 to 21.25.  Any stars fainter 
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Figure 3.1  Light pollution near Erwin W. Fick Observatory. 
Credit: P. Cinzano, F. Falchi, and C. D. Elvidge. Copyright 
Royal Astronomical Society. Reproduced from the Monthly 
Notices of the RAS by permission of Blackwell Science. 

 
than this range will be dominated by sky brightness.  The majority of the light 

pollution at our location comes from the city of Boone, Iowa (just to the 

northeast), but there is large contribution by the city of Des Moines.   

 

3.1.2 Light Gathering 

We employed the 0.6 meter aperture, computer controlled Mather 

Telescope for this project.  This telescope has a fast focal ratio of f/4.2 and it is 

mounted equatorially.  Due to the type of the mount, the telescope is limited to 

just over 8 hours of right ascension (beginning at about 2 hours east of the 

meridian).  The angular resolution of this telescope is limited to about one 

arcsecond when using the Marconi CCD47-10 CCD.  The camera has a 1024 by 

1024 pixel CCD, which covers an area of 13.3 mm by 13.3 mm;  the pixel size is 

13 microns.  The gain for the CCD is about 2.25 e-/ADU, and the effective  
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Figure 3.2  Transmission passbands for the B 
and V filters.  B filter is in blue (left) and the V 
filter is in red (right). 

 
readnoise is about 5.04 electrons per pixel.  The CCD covers a spectral range of 

about 200 to 1100 nm, and with filters, the spectral range of the data will cover a 

smaller bandwidth. 

The filters used with observation are Andover Corporation BVI 

Johnson/Bessell filters.  Unlike the original Johnson-type filters that were 

designed to work with photoelectric detectors, these filters were designed to 

account for the sensitivity curve of the CCD as recommended by Bessel (1990).  

The filters are square so they have little contribution to the vignetting error of the 

system.  According to the spectrophotometric data curve supplied by the 

manufacturer, the B filter has a center wavelength of 432.6 nm, a peak 

transmission of 73% with an effective width of 100.9 nm.  The V filter has a 
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higher transmission, at 88% with a center wavelength of 535.1 and an effective 

width of 96.6 nm.  Transmission as a function of wavelength is plotted in Figure 

3.2. 

 

3.2 Calibration Data and Standards 

The calibration of the instrument is essential in order to achieve the 

highest quality of images.  We discuss the steps used for calibration. 

3.2.1 Linearity 

CCD cameras respond to light linearly.  This means that there is a 

proportionality between the amount of light enters the detector, the number of 

photo-electrons produced, and in turn the number of counts, or Analog-to-Digital 

Units (ADU) that are recorded by the computer.  When the pixel full-well capacity 

is approached, however, CCD sensitivity becomes non-linear.  We must 

complete a linearity test to ensure that our data remain within the linear range. 

The test, according to Bryan (2001), involves imaging an illuminated board 

in pairs of images taken over a range of exposure times.  Each pair of images is 

taken close together in time.  There are two parts to a linearity test.  In the first 

part, these exposures are averaged together to minimize the effect of random 

noise (noise is discussed in detail in Chapter 5).  From the result, the mode of 

each image is plotted against the exposure time.  This plot should have a linear 

trend.  Though it is quick to determine a break point from the linear response 

region, this method is limited.  In the second part, we combine the images by  
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Figure 3.3  Linearity Test – Variance is plotted versus mean count.  Note the 
second linear regime starting near 26000 counts and the extreme turnoff 
near 42500 counts. 
 

dividing one by its pair (resultant image is called the quotient image).  This is 

done to eliminate most systematic sources of error, such as vignetting.  It also 

provides an image of counts close to unity.   After this, the mean of a localized 

measurement area (in our case, the central 200 by 200 pixels) is extracted from 

one of each pair of original images.  The quotient image is then multiplied by the 

mean to scale each image back to its original average.  Now we determine from 

this scaled quotient image the mean and the standard deviation, we can use 

these to make a plot of variance (standard deviation squared) versus mean.  As 

you can see in Figure 3.3, the primary linear regime ends at about 26000 ADU, 

limiting our useful data to values at or under this mark. 
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It is interesting to note that we did not expect to have two linear regimes. 

We completed this test twice, confirming in both cases to have a second linear 

regime between the values of 26000 and 42500 ADU.  Since the second region 

is smaller and implies a much higher read noise (see section 3.2.6 for 

determination of the readnoise), we will disregard values that enter that region.  

We therefore determined any star with a peak above 26000 to be saturated and 

removed from further analysis. 

3.2.2 Shutter Error 

While taking calibration data, an observer would notice that the entire field 

is not illuminated evenly.  Mostly, this is caused by vignetting, which we will 

address later.  There is, however, a change in illumination from the shortest 

exposures to the longest exposures.  This is called shutter error.  At shorter 

exposure times, the shutter requires a higher fraction of the total exposure time 

for opening and closing.  For the shutter at Fick, this results in higher illumination 

near the center of the image relative to the edges.  This effect can be seen 

clearly in the V filter images in Figure 3.4, whose shutter times are 0.1 seconds 

and 3.2 seconds respectively.  We can eliminate this problem by maintaining 

exposure times above some minimum value.  This minimum value will be 

different based on the filter, since each filter has a different transmission fraction, 

as well as the precision of the photometry. We start with taking many images 

across a wide range of exposure times.  Each image is normalized.  We then 

divide the longest exposure image by each of the other images.  The result is a 
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Figure 3.4  Images of a screen taken at different exposure times.  Similar 
vignetting effects can be seen (the darkened corners) in both, but on the 
left, the central intensity decreases radially due to shutter error. 
 

 
 

 
Figure 3.5  Shutter Test – Normalized standard deviation is plotted 
versus exposure time.  Note that the curves are not aligned due to 
differences in transmission fraction. 
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comparison of each image to the image of longest exposure time.  The standard 

deviation of this comparison image expresses the fractional deviation; e.g. if a 

standard deviation of a comparison image is 0.01, it has a 1% deviation.  A plot 

of the standard deviation of the comparison images versus exposure time is 

presented in Figure 3.5.  As the exposure time decreases, the edges of the 

image deviate more from the center.  If the effect were to only be a loss of 

illumination, the standard deviation would scale with exposure time.   

At this point, it is important to note that this effect will not be significant 

when taking science images.  The reason for this is that the field will  not be 

sufficiently bright to need short shutter times.  As said before, shutter error 

occurs when the amount of time devoted to opening and closing the shutter 

requires a higher fraction of the total time.  However, in order to get some  

calibration flats, fast shutter speeds are unavoidable. 

3.2.3 Biases and Flats 

The science images will have systematic errors that can be removed with 

calibration data such as Biases and Flats.  Biases will remove the additive 

systematic noise, and flats will remove the multiplicative systematic noise.  These 

processes are discussed in full detail in Chapter 4. 

Sometimes the bias includes a pattern that is present on all images.  If 

removing the additive effects are not enough to resolve this pattern, a master 

bias should be produced. This ‘persistent’ pattern will be removed in a 

multiplicative process separate from the flats. 
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3.2.4 Darks 

Sometimes, CCD data have to be corrected for dark current.  Dark current 

is caused by the accumulation of charge that is independent of the presence of 

light and is due to the temperature of the detector.  It is approximately linear with 

time and independent of filter or illumination.  The dark current is negligible if the 

CCD is cooled sufficiently, but we can verify this by taking a set of “dark” images.  

After shutting the slide that covers the CCD entrance, we take a series of 

exposures.  These need to be long in duration for the temperature at which the 

Andor CCD is operated.  After the series is complete, we correct for the bias, and 

combine the images to produce a dark image cleaned of cosmic ray hits.  We 

completed this test with the Andor CCD at -80 degrees Celsius, and we found, at 

the conclusion of this test, the dark current has an average value of 0.232±0.013 

ADU per minute per pixel or 0.004±0.002 ADU per second per pixel.  We 

conclude from this result that the affect of the dark current on our short duration 

science data is negligible. 

3.2.5 Determination of Readnoise and Gain 

There are multiple ways to determine the values of the gain and the 

readnoise of a CCD.  The first is outlined by James Bryan (2001), where the 

linearity test will also serve as an explicit test for gain and readnoise.  After 

recognizing the linear regime (see Figure 3.2), we fit fitting a line to it: 

! 

y = mx + b     where     

! 

m =
2

g
     and     

! 

b = 2R
2  
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where g is the gain in electrons per ADU and R is the readout noise in ADU.  

Bryan acknowledges the difficulty of this method to produce an accurate 

measurement of readout noise by supplying an alternative calculation for it: 

! 

R = g"  

where σ is the standard deviation of a single bias image.  This method seems to 

correlate well in comparison the next method. 

Another way to determine gain and readnoise is by using the method 

described in Birney et al. (2006).  This method uses two bias images and two flat 

images: 
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From this the gain value is determined and another equation is used to determine 

readnoise: 
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where σR is the readnoise.  The values we found for our data are g=2.25 

electrons per ADU and R=σR=5.04 electrons per pixel.  As a check to see if our 

readnoise and gain were correct, we used an IRAF-based program called 

“Noisemodel” in Figure 3.6.  Originally used for the Wide Field Planetary Camera 

on the Hubble Space Telescope, this program plots the variance versus the bias-

subtracted mean counts of the bias and flat images used for the linearity test.  
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Figure 3.6 Noisemodel Output – Variance is plotted versus mean counts.  The 
solid curve indicates the location of the median and the dotted curves represent 
the values for ± 2 standard deviations. 

 
From the input values of readnoise, gain and scalenoise, it produces a curve 

(solid) and error curves (dotted) based on standard deviation.  The user can 

judge whether the data is accurate by visually inspecting the  solid line passes 

through the median of the points for each bias and flat.  For our data, the plot 

confirms that the values above for readnoise and gain are correct. 

The scalenoise produces a curve in the fit.  Note that the initial bend of the 

line is because the axis is linear from -10 counts to 10 counts and switches to 

logarithmic after 10 counts.  Scalenoise for our data is 0.7% increase in variance 

per mean count.  This noise is the result of pixel-to-pixel sensitivity variations; it is 

seen as a nonlinearity in the variance with respect to mean counts, but this noise 

is systematic. It is removed when images are flat-fielded. 
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3.3 Program of Observation 

Data was acquired by three different people, so the method of observation 

was standardized.  In this section we discuss how that program was carried out.  

Table 3.1 on the next page gives a summary of the observations. 

3.3.1 Positioning the Field 

We will be using a photometry code designed to work with an 

inhomogeneous1 set of exposures.  Because of this, we do not need precise 

positioning of M67 on the CCD.  However, since we are interested in 

photometry of many cluster members across several nights, it is important to 

have relatively the same stars visible in the field of view.  After the field is 

positioned, the autoguider is turned on and set to a bright star.  The autoguider 

is necessary because there is a small, but noticeable timing error in the 

telescope drive.  Without it, the full-width at half-maximum (hereafter FWHM) 

of the star increases and the photometry becomes less precise. 

3.3.2 Focusing 

Focusing light allows a detector to distinguish more detail, and in most 

situations is preferred.  In our case, however, having sharp focus could cause 

saturation of the brightest stars for the exposure times we use.  By not focusing 

the image finely, we allow the light to be spread over a greater area of the 

detector, thus preventing saturation.  As long as this entire area is included in 
                                                        

1 Each image has a different photometric zero-point, uncertainty and central 
coordinates.  More importantly, not all stars may be present on all frames.  See 
further explanation in Honeycutt, 1992. 
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Table 3.1  Observations 

* The moon was not above the horizon for the duration of observations. 
† FWHM may not be a good indicator of the seeing conditions on these nights 
because the autoguider failed during part of the observations. 

 
our photometric measurements, the effects of poor focus will be insignificant for 

the stars we in which we are interested, and a coarse focus is adequate. 

Date Images/Filter Flats/Filter Weather Lunar Phase – Mean Obs. 

 B V Dome Sky  % Illumination FWHM  

13-Mar 5 5 - - P. Cloudy *Crescent – 38% 5.59† Tobin 

16-Mar 5 5 - - Clear *Crescent – 13% 3.68 Gonz. 

18-Mar 5 5 - - Cirrus *New – 2% 4.62† Gonz. 

20-Mar 6 6 4 - Clear *New – 2% 4.13 Eitter 

26-Mar 7 7 7 - Clear First Quarter – 53% 4.65 Tobin 

2-Apr 9 9 9 9 Clear Full – 100% 3.58† Tobin 

5-Apr 8 9 - - P. Cloudy Full – 94% 3.41 Eitter 

6-Apr 7 7 4 - P. Cloudy *Full – 89% 3.23 Eitter 

7-Apr 10 10 20 - Cirrus *Gibbous – 82% 4.37 Tobin 

8-Apr 10 10 20 10 Clear *Gibbous – 75% 2.93 Tobin 

9-Apr 10 10 20 8 Clear *Gibbous – 67% 3.48 Tobin 

13-Apr 6 6 4 - Clear *Crescent – 25% 3.88 Eitter 

16-Apr 9 9 20 - Cirrus *New – 3% 4.21 Tobin 

17-Apr 5 6 4 - Clear *New – 0% 4.09 Eitter 

19-Apr 6 6 4 - Clear *Crescent – 4% 3.92 Eitter 

21-Apr 9 9 20 - Cirrus Crescent – 18% 3.62 Tobin 

22-Apr 9 9 20 - Cirrus Crescent – 27% 4.83 Tobin 

29-Apr 9 9 20 8 Cirrus Full – 91% 4.23 Tobin 

12-May 6 6 4 - Clear *Crescent – 29% 4.80 Eitter 

17-May 6 6 4 - Clear *New – 0% 4.86 Eitter 

18-May 7 6 4 - Clear *New – 3% 4.41 Eitter 
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3.3.3 Exposure Times 

Because we are observing Sun-like stars, we need exposures that will 

give accurate photometry near 14.6 in V, and likewise near 15.3 in B.  For 

calibration and color corrections to standard stars, we need a few magnitudes 

brighter than this, or about magnitude 12 in V.  In order to achieve this, we need 

sufficiently long exposures, but we also need short enough exposures so that 

brighter stars do not saturate.  Empirically, we find that for the V filter, exposures 

of about 60 seconds are good for viewing stars between 11.5 and 15.5 

magnitudes.  Likewise, exposures of about 120 seconds are appropriate for 

viewing stars between 12 and 16 in the B filter.  

3.3.4 Cadence 

The cadence of the individual observations is greatly dependent on the 

CCD readout time.  Readout time has three settings:  32 seconds, 16 seconds 

and 1 second.  This corresponds to 34 seconds, 18 seconds, or 2 second of 

additional time for each exposure.  The advantage of longer readout times is that 

they result in smaller readnoise.  If the long readout setting is used, then the time 

required between exposures is comparable to the exposure time, lengthening the 

time on M67 on a given night.  We want to avoid this due to the changes in 

extinction across a series of exposures, which is discussed in Chapter 5.  Too 

short and the readout noise is greater, resulting in less precise photometry for the 

fainter stars.  Ultimately the middle readout time allows for observing over a small 

range in air mass, while retaining an acceptable readnoise level.  Total time 
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between the start of one exposure to the next is 78 seconds and 138 seconds for 

V filter and B filter images, respectively. 

We obtain multiple images on each night so that we properly characterize 

photometric uncertainties.  In particular, multiple closely timed images permit us 

a separate noise contributions from atmosphereic scintillation and Poisson 

statistics.   

The exposures for each filter are taken in series.  Between each series of 

science images, a series of bias images are taken, the filter is changed, the focus 

is adjusted and sometimes the telescope is repositioned (because focusing may 

cause the autoguider to lose the star), all of which will effect the night-to-night 

cadence.  Generally, the B filter images were taken first, followed by a set of 

biases and then the V filter images. 

Ultimately, the more images we can take the higher the precision we can 

achieve.  We take a minimum of 5 images per filter each clear night, and a few 

extra images (not more than 10) on nights with high cirrus or occasional clouds. 

Too many images will result in the second series of images occurring at a larger 

range of air mass and higher extinction amounts.  In light of this, we limit the 

series to a maximum of 10 images. 

3.3.5 Biases 

A bias image is created by taking an image of zero duration without 

exposing the CCD to light.  This will yield an image with pixel values that contain 

random noise and a bias offset value.  The bias offset value is added 

systematically to each pixel during the readout process so that the readout noise 
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is properly sampled.  A series of bias images (about 3 to 5) are taken at the start 

of the night, and then again between each series of flats or science images.  The 

series is taken over a short period of time. 

3.3.6 Flats 

 An important step in taking data is to correct for non-uniform 

illumination and pixel sensitivity variations across the CCD chip.  This can be 

done with flat field images.  There are two main types of flat field images that we 

employed: 

3.3.6.1 Dome Flats 

We obtained images of an illuminated screen, located about a meter in 

front of the telescope.  Because the screen is so close, any marks or scratches 

on it will be well out of focus. Dome flats are used to correct pixel-to-pixel 

sensitivity variations, which is a type of systematic noise.  Images can be taken 

at any dark time, regardless of the weather.  Because of this, many dome flats 

can be taken and combined to produce a high signal-to-noise (hereafter S/N) 

ratio.   

3.3.6.2 Twilight Sky Flats 

Large-scale systematic variations, which may escape correction in a dome 

flat, can be corrected with a twilight sky flat.  A twilight sky flat is produced by 

taking images of a region of sky, either just after sunset or just before sunrise.  In 

order to obtain very flat illumination, the telescope should be pointed towards a 

point on the sky with the smallest angular brightness gradient.  This point for both 
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B and V bands is located about 100 degrees from the Sun, opposite the zenith 

(Chromey and Hasselbacher, 1996) when the Sun is just below the horizon. 

Twilight flats are taken in a series of about 4 or 5 at a time.  The telescope 

is moved between exposures.  We do this to limit the effect of bright stars in the 

field.  Moving the telescope will change the location of the stars in the image.  

When combined, we use the median statistic to combine the flats, which is a 

good discriminator against outlier data values.  Since the image of a given star 

falls on different pixels in each image, the effect of the star becomes insignificant.  

3.3.7 Organization and Application 

To produce higher quality flat images, we combine flats from several 

different nights.  However, if the flats over the entire two months are combined,  

Table 3.2  Master Flat Combinations 
Group Range of Dates (2007) Twilight Flats Dome Flats 

Number  per Filter per Filter 

1 March 13th to March 26th 9† 11 

2 April 2nd to April 6th 9 13 

3 April 7th to April 9th 18 60 

4 April 13th to April 19th 8† 32 

5 April 21st to April 29th 8 60 

6 May 12th to May 18th 8† 12 
† The flats listed in this range of dates are replacement flats. 
 
 

there may be errors due to the changing conditions (changing temperatures, 

twilight gradients, dust levels, etc.)  Because of this, we separated our flats into 

groups by ranges of dates.  Any flats taken within a range are combined to form 
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a master dome flat and a master twilight flat for the group.  Table 3.2 summarizes 

which dates were combined to form a master twilight or master dome flat.  In 

some cases, the original set of twilight flats did not meet specific criteria and 

were removed from further analysis (for information on these criteria, see Section 

4.1.2 and 4.1.3).   In the case that there were no remaining twilight flats for a 

particular group, the twilight flats from the nearest available night were used in 

place of the missing flats. 
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Chapter 4. Analysis 

In this chapter, we will discuss the process by which the data is handled.  

First we correct the observations for systematic errors.  Then we use specialized 

programs and methods to minimize the uncertainties and transform the data to 

match professional standards. 

 

4.1 Data reduction in IRAF 

We reduced our data in the standard way using IRAF.  All data for the first 

five groups were reduced together.  The data for the sixth group were added later 

and used the same reduction method, only at a different time.  The reduction 

procedure is as follows.  

4.1.1 Bias Subtraction 

Each bias image within a series1 of biases  is combined to form a ‘series 

bias’.  The series biases are then combined to form a master bias.  This image is 

checked for a recognizable pattern, to ensure that there is no multiplicative noise 

present in the biases.  Our CCD does not display a pattern, so we did not need to 

subtract a master bias.  In our case, then, we need only subtract the mode of 

each series bias from each flat and science image, but only the series bias that is 

nearest each series of images is used. We use the mode value because it is a 

better discriminator against outlier data values than a simple average.  We use 

                                                        

1 The use of this term is explained as part of the cadence of observations in 
Section 3.3.4, and again for bias images in Section 3.3.5. 
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this method to account for the possibility of bias drift.  Bias drift is a naturally 

changing bias level over a night due to changes in conditions of the CCD 

electronics. 

4.1.2 Low Count Flats 

Our twilight flats were taken in a series of four or five images.  Several 

series of images were completed.  The exposure times were adjusted between 

each series.  At the end of each series, some twilight flats had a peak count 

lower than 20k.  Peak counts this low are introduce a higher amount of noise 

than desired, so any such flats are removed.  After all these flats are removed, 

the final count of usable twilight flats is available in Table 3.1.  This minimum for 

peak counts is the first criterion for removal of twilight flats. 

4.1.3 Accounting for Shutter Error 

Shutter error is a significant problem when taking twilight flats because the 

naturally bright illumination requires short exposures.  In the twilight, just after 

sunset, the sky will dim dramatically with time.  In order to get enough twilight 

flats, the observer begins taking exposures soon after sunset.  It is possible that 

the first few images are short exposures, which leads to a higher shutter error in 

these images.  In order to ensure that any shutter error introduced to the data is 

kept to a minimum, we will  remove from our data any images that have exposure 

times shorter than a minimum exposure time.  The minimum exposure time is 

based on the trend in figure 3.4.  For the B filter, our minimum exposure time is 

0.1 seconds.  This is to keep the deviation under 5 % per B filter twilight flat.  For 

the V filter, our minimum exposure time is set at 0.55 seconds. 
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Although different exposure times are expected because of differing 

transmission levels, the minimum exposure time for V is set to a longer exposure 

time than B.  This is counterintuitive since the same precision in Figure 3.4 is 

achieved at shorter exposure times in V than in B.  Since there were many V flats 

that satisfied the criterion listed in Section 4.1.2, we were able to be more choosy 

about which flats to ultimately use.  We therefore set this value at a longer 

duration and thus achieving a higher precision. 

After flats with short exposure times and low counts are removed, some 

groups did not have master twilight flats.  In this case we use the twilight flats 

from a night that is closest in time to the range of dates.  Specifically, we used 

the twilight flats from the night of April 2nd for the first group, the night of April 9th 

for the fourth group, and the night of April 29th for the 6th group. 

4.1.4 Flat Division 

Multiplicative, systematic noise, including vignetting and pixel sensitivity 

variations, are corrected with the use of flats.  We combine the best aspects of 

the two types of flats to produce a flat that is better than either one. First, all flats 

are scaled to a mode value of 45k.  We divide each master twilight flat by the 

master dome flat for a given range of dates.  Since the twilight sky illumination is 

more uniform than an illuminated screen, the resulting quotient image 

characterizes the deviation of the dome flat from uniformity.  A surface was fit to 

the image using 3rd order Legendre polynomials, which was smoothed by 

dividing up up the image into 30 pixel by 30 pixel boxes and calculating the 

median.  Therefore, this surface fit retains only the large-scale variations across 
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the image.  This surface fit is then multiplied by the master dome flat.  This 

corrects the master dome flat for large scale illumination variations.  After 

normalization, this image becomes the master flat for the group.  This process is 

repeated for each group, resulting in a total of six master flats per filter. Each 

science image is divided by the master flat for its date and filter. 

4.1.5 Standardization 

Observations were completed by three individuals, each with his own file-

naming conventions.  During the application of biases and flats, the files were 

renamed.  The adopted naming convention is related to the organization of data. 

Filenames are a two letters followed by three numbers.  The first letter is a 

designation for the type of image: ‘b’ for bias, ‘o’ for objective, ‘f’ for flat.  The 

second letter describes the filter (for biases there is only one letter).  The next 

three numbers are flat number, night and image. 

 

4.2 Determining Magnitudes 

4.2.1 Selecting Reference Images 

For the programs that we intend to use, a single image should be selected 

as a reference image.  We use one of the images in each filter as a reference 

image for the data of each filter.  We choose the reference images by 

determining the most centralized image.  We also consider the mean FWHM of 

the stars on the image to ensure that our reference image is of good quality.  We 

select these reference images prior to running any programs.  Though most of 
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the images during the twenty-one nights of data were taken in relatively good 

seeing conditions; most images were offset from the median central coordinates 

by about 100 pixels.  The reference images chosen (‘ob233.fit’ for the B filter and 

‘ov214.fit’ for the V filter) were offset from the median coordinates by less than 40 

pixels. 

4.2.2 SExtractor and Astrometrica 

The next step is to extract the stellar information and find an astrometric 

solution.  Each of these processes can be done independently with two different 

programs. 

4.2.2.1 SExtractor 

To extract stellar information, we use a program called SExtractor.  This 

program finds stars and reports stellar Cartesian coordinates.  The program also 

extracts basic aperture photometry based on input parameters including the gain, 

detection thresholds and FWHM.  Though photometry is a part of the output, 

SExtractor does not produce high precision magnitude estimates.  Because of 

this, our only purpose in using SExtractor is to locate stars and return their 

positions in Cartesian coordinates. 

We use this program to extract sources based on two key points.  First, 

this program uses a deblending algorithm that will efficiently and quickly identify 

and separate blended sources from each other.  Though this algorithm was 

designed for the detection of background galaxies, the settings are easily 

modified to detect and deblend close stars.  The second key point is the sources 

detected in a field can be limited only to those that do not reach a saturation level 
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set by the user.  This is important because our break from linearity occurs much 

lower than the saturation level and this setting allows us to identify only those 

stars that are within the linear regime. 

SExtractor detected 1163 stars in the B reference image.  Because of the 

extraction settings, the information of only 856 stars were written to an output file.  

For the V filter, SExtractor detected 927 stars and only 691 stars were extracted.  

We can see here that the program was able to extract more stars for the B filter 

than for the V filter.  This is due to the greater S/N ratio of the B filter. 

4.2.2.2 Astrometrica 2000.0 

To astrometrically fit the reference images, we used a program called 

Astrometrica 2000.0.  This program requires the user to input the image as well 

as the physical properties of the optical device to create an astrometric solution 

to the reference image.  The astrometric solution is determined from a stellar 

catalog that can be chosen by the user.  For our research, we used the USNO 

CCD Astrometry Catalog 2 (hereafter UCAC2) (Zacharias et al. 2004) astrometric 

database, which has a reported precision of better than 70 milliarcseconds and 

proper motion errors of less than 7 milliarcseconds per year. Since the output of 

Astrometrica uses the standard epoch of the selected catalog, and UCAC2 

standards are epoch 2000, the output equatorial coordinates are in epoch 2000.  

The program also outputs the standard photometry that is contained in the 

UCAC2 catalog.  The photometry is useful as a cross-check for matching lists. 

Though Astrometrica’s fit is applied to each detected star, we only retain 

the information for the “reference stars” that were matched to the UCAC2 
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catalog.  This is for two reasons. First, the fit includes a value of the deviation 

from the catalog for the reference stars only.  In order to understand the error of 

the astrometric fit, we need this value.  Secondly, the photometry output data for 

any stars that are not matched directly to the catalog are not a part of the 

standard magnitudes and may have errors. 

For the B filter, Astrometrica found 220 reference stars with an average 

deviation of less about .04 arcseconds.  For the V filter, Astrometrica found 245 

reference stars with an average deviation of less than 0.05 arcseconds.  

Astrometrica also returns the equatorial coordinates for the center of the plate. 

4.2.2.3 Matching Lists 

The independent lists from Astrometrica and SExtractor are then 

combined, matching extracted stars from SExtractor and the reference stars from 

Astrometrica by comparing their Cartesian coordinates.  The Cartesian 

coordinates are measurements of the distance of a star in units of pixels from the 

coordinate zero points.  SExtractor and Astrometrica have different zero points.  

The horizontal coordinates of each match, but the vertical coordinates are 

inverted.  This was fixed by changing the Astrometrica zero-point on the vertical 

axis from the top of the image to the bottom of the image. 

4.2.3 Least-Squares Fit 

Most of the stars extracted by SExtractor do not have a corresponding 

reference star from Astrometrica.  We would like to keep the list produced by 

SExtractor because of its deblending algorithm, so this means every star on this 

list must be fit with equatorial coordinates. 
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After organizing the list of matched reference stars, the list was refined to 

the reference stars whose root-mean-square fit is better than 0.01 arcseconds 

and the estimated S/N ratio was above 100.  There were 21 stars that match 

these criteria.  It is important that these stars are spread out across the image.  

This is to ensure the astrometric solution will fit all stars within the image. In order 

to find the equatorial coordinates for all of the stars, we will use a modified 

version of the method described by Birney et al. (2006).  The method first 

requires calculating plate constants: 

! 

" =
cot# sin($ % A)

sinD+ cosDcot#cos($ % A)
       

! 

" =
cosD# cot$ sinDcos(% # A)

sinD+ cosDcot$cos(% # A)
 

where A and D are the equatorial coordinates of the center of the image and α 

and δ are the equatorial coordinates of a star.  The plate constant for each star is 

the linear distance along the focal plane that you would find a star, and it is 

derived from a spherical coordinate system.  Since each star has specific 

Cartesian coordinates, the matching procedure is just solving a set of quadratic 

equations: 

! 

" # x = ax
2

+ by
2

+ cxy + ex + fy + g       

! 

" # y = hx
2

+ iy
2

+ jxy + kx + ly + m  

where a, b, c … m are all constants true for every star and x and y are the 

coordinates of each star.  This is the part that is slightly modified from Birney et 

al. (2006), since we are using a quadratic fit process instead of the standard 

linear method.  Although astrometric solutions were obtained with the standard 

linear method, quadratic and cubic methods simultaneously, we used the 
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quadratic method because we found that the solution fit the known coordinates of 

the UCAC2 reference stars with less error.   

We use Mathematica’s built-in Fit[ ] procedure to solve for the coordinates. 

Mathematica’s natural precision limit is on the order of 10 decimal places.  For 

this solution, we need at least 15 decimal places.  This value was not chosen at 

random, it is the limit of precision of modern computer programming, e.g. the 

maximum number of places after the decimal that a standard C or C++ variable 

can retain. Please see Appendix A for details on the Mathematica code and the 

constants derived from it.  The astrometric solution had an uncertainty of less 

than 0.25 arcseconds to the reference stars of the UCAC2 catalog.  The detected 

stars are visible as red circles in the overlay in Figure 4.1. 

4.2.4 Balaguer-Núñez matching 

For comparison to previous research, we need to match our stars to a 

published catalog of M67. We chose to use the catalog from Balaguer-Núñez et 

al. (2007) because it identified more stars (1843) in the direction of M67 than any 

other, and it includes membership information.  A large catalog ensures that the 

majority of our stars can be quickly cross-referenced to other studies.  The 

Balaguer-Núñez catalog is also cross-referenced to the Sanders (1977) catalog, 

which is the most widely cited reference for identification of stars in M67. 

Each star’s equatorial coordinates are then match to the Balaguer-Núñez 

equatorial coordinates.  As a check, the magnitudes listed in the catalog can be 

compared to the magnitudes in the outputs of SExtractor and Astrometrica.  



 42 

 
Figure 4.1  Image in B of the field of M67 with an overlay of the detected star 
locations in red circles.  The axes are in units of pixels.  Note that there are 
no circles around the brightest stars. 
 

We also consider any match of stars with equatorial coordinates that deviate by 

greater than a radial distance of 5 arcseconds to be unmatched. The result is 542 

matches, and the index number used by Balaguer-Núñez is applied to each of 

these stars.  Some stars did not match the Balaguer-Núñez identification.  The 

index for these stars is a count from 2001 to 2317 for B unmatched stars, and V 
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filter stars were labeled 2318 to 2884 if they didn’t match Balaguer-Núñez or the 

B filter stars. 

4.2.5 Optimal Photometry 

The algorithm we used to extract photometry is called Optimal 

Photometry.  There are three main parts to the algorithm. 

4.2.5.1 Preliminary Setup 

The Optimal Photometry program requires several files prior to the start of 

the first part of the program.  The first file is a list of the stars in the reference 

image and their Cartesian coordinates.  If stars have an identification number, it 

will be used in the output.  If this list also contains their equatorial coordinates, 

those will be preserved throughout the program.  The next file that is needed by 

the program is a list of exposure times and dates for each of the images.  Here 

we inserted the Julian Date as our date so that the program will include it in the 

output.  The last file that is needed by Optimal Photometry is a list of stars to 

define a point-spread function.  The five stars were chosen because they are 

bright, unsaturated, uncrowded and midway out from the center of the image.  

Specifically, these are stars with a radial location greater than 128 pixels and less 

than 384 pixels from the center so that they are in sparse regions of the field. 

4.2.5.2 Pix_info 

Now that we have all of the files needed for input, the next step is to run 

the first program.  The first program extracts information from the FITS header of 

each image file.  This program also requires as input the information on the 

linearity, saturation, gain and readout noise of the CCD.  The image is stored 
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with an improved header in another FITS file.  This file has a similar label to the 

original file with only the first character changed to an ‘h’. 

4.2.5.3 Mapccd 

Mapccd is a program that checks the orientation of each image relative to 

the reference image.  As part of the input for this program, an estimate of the 

average FWHM is needed, as well as a detection threshold level in standard 

deviations from the mean.  This information is used to create file called 

offsets.dat which will be fed into Opphot.  Mapccd also calculates the value of the 

background sky noise per pixel. 

Besides orientation in position and rotation angle, the offsets.dat also 

output useful statistics on the background sky noise, the number of matching 

stars to the reference image and the mean FWHM of a Gaussian fit to detected 

stars. 

4.2.5.4 Opphot 

This program reads in the output files from the previous two programs and 

returns aperture photometry and “optimal” photometry.  As a part of the input, the 

user specifies an overall radius value for aperture photometry; for this research, 

we used a value of 5 pixels. 

This program outputs many different files.  There is an aperture catalog 

file for each image, and optimal catalog file for each image, a sky file for each 

image, and a file that describes the seeing over all of the images. 
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4.3 Color Corrections 

Our instrumental magnitudes differ from published data in two important 

ways.  Instrumental magnitudes depend on the properties of the telescope, and 

more importantly, they depend on the atmospheric conditions.  They can be 

transformed to the standard system by linear least-squares fit to standard stars 

that have high-photometric precision. 

4.3.1 Preparation of Data 

Our data values are in four sets of catalogs: two sets of “optimal” 

photometry catalogs and two sets of aperture photometry catalogs, one set of 

each catalog for each filter.  Individually, these catalogs offer no useful 

information on the color of a star.  Color information is found by taking the 

difference between the photometry of the B filter minus the V filter for each star.  

In order to determine a color value for each star, the stars in the catalogs for 

each filter must be matched.  The result is a single catalog for each type of 

photometry.  Furthermore, stars that do not have a match in both filters have no 

useful color information and can not be color-corrected; such stars were removed 

from further analysis. 

The next step is to find suitable standard stars.  We used data from a 

published catalog known to have relatively-high precision (Sandquist 2003).  First 

we matched stars between our data and the Sandquist catalog.  Next, we use the 

instrumental color from our observations and standard color from Sandquist 

(2003) to form a baseline for a least-squares analysis. 
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Figure 4.2  Extinction coefficient versus wavelength plot for Landolt 
standard stars from the Cerro Tololo Interamerican Observatory in Chilé.  
Courtesy of Stritzinger et al., 2005. 

 
4.3.2 Theory of Color-Corrections 

The corrections use two basic processes.  The first is to remove the 

atmospheric contribution to the color error.  This is the primary reason for color 

corrections.  This contribution, called extinction, depends on color and airmass.  

Stritzinger et al. (2005) show in Figure 4.2 how the extinction coefficient depends 

on color.  This plot is for the Cerro Tololo Interamerican Observatory, so the 

vertical scale will be different for our data, but the effect over wavelength will 

essentially be the same. 

A larger airmass will cause the star to become fainter, but this effect is not 

the same for all stars.  Buchheim (2005) presented this effect, where he 

explained that (due to extinction) blue stars become fainter faster than red stars.  
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The reason that this occurs is somewhat complicated: Each star has a specific 

spectral distribution. The transmission of light by the filter varies over a specific 

spectral range.  Refer to Figure 3.2 to see how the transmission varies with 

wavelength.  The combination of these distributions determines the effective 

wavelength of the observed star.  The first-order effect will cause a slight shift in 

the effective wavelength of the starlight.  Since extinction is color-dependent (see 

Figure 4.2), for blue stars this effect is larger.  The combination of a color-

dependent effect of extinction and the change in the effective wavelength of a 

star creates a deviation from the first order correction based on the color of the 

star.  This is evident when looking at two stars of different color and calculating 

their second-order extinction coefficients.  Birney et al. (2006) gives us the 

standard equation for both orders of corrections: 

! 

(B "V )
Corr.

= (B "V )
Instr.

" # k X " # # k X(B "V )
Instr.

 

where corrected color is found from the instrumental color, extinction coefficients 

(k’ and k’’) and airmass (X).  The extinction coefficients are determined from the 

value of the instrumental color.  Examining only the correction of the second 

order extinction term as it applies to two stars separated only by color: 

! 

"(B #V $ $ ) = # $ $ k X"(B #V )
Instr.

 

Using this equation, we find that we can compare two stars, a blue straggler  and 

a red giant that have a difference in color index of about 0.5 magnitudes. With an 

intermediate value for airmass, X ≈ 1.4, and Birney et al. (2006) gives an 

estimate of k’’ ≈ -0.04.  (Buchheim (2005) also presents that this ‘textbook’ value 

for the second order extinction is consistent with observations.)  The change in 
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magnitude based only on the second-order extinction and color is 28 

millimagnitudes.  This means that the color shift of the blue straggler gets redder 

by 28 millimagnitudes more than the color shift of the red giant.  If this were not 

corrected, we would need to include it as an error, and it would be significant for 

our data since we expect ‘Sun-like’ variability on the order of 20 to 30 

millimagnitudes. 

The second process is to transform stars to a standard color given by a 

published catalog.  Transformation, though unimportant for our goal of differential 

ensemble photometry, is a necessary and useful result of correcting for 

extinction.  Birney et al. (2006) has an equation for transformation of extinction-

corrected magnitudes to standard magnitudes: 

! 

(B "V )
Corr.

= # + µ(B "V )
0
 

where φ is the offset and µ is the slope of the linear fit;  These two values are 

known as transformation coefficients.  Combining equations:   
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and solving for standard color as a function of instrumental color: 
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For this research, we will not solve for the individual values of the 

transformation coefficients or the extinction coefficients.  This is because we can 

make the correction in one step, a linear fit between standard and instrumental 
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colors.  Once A0 and A1 are found from the set of standard stars, corrections can 

be made to the other stars in the set.  Since we will be using a form of differential 

photometry, according to Birney et al. (2006), we can neglect the first order 

extinction term.  We know that A1(B-V)Instr. is the value that the second order 

extinction has contributed to the measurements.  To remove this value, we only 

need to subtract the error contribution from the individual measurements: 
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B
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= B
Instr.

" A
1
(B "V )
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      and      
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4.3.3 Method of applying corrections 

Each image was obtained at a different airmass, so color correction must 

be independent to each image.  A linear fit between the standard colors and the 

observed colors will contain both a slope and an offset (or intercept) value.  Once 

a slope is determined for the fit, we will use it to correct our instrumental 

magnitudes. 

The data points have two values: (B-V)0 and (B-V)Instr., using a linear least-

squares method to fit a line to the data using the formula 
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1
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where A0 and A1 are the coefficients of the fit.  A1 contains the information 

necessary to correct for second-order extinction coefficients and transformation 

to the standard system.  A0 and A1 can be found by completing the linear least 

squares fit.  The program does this by solving the following equations: 
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where n is the total number of data points used and the summations are over all 

stars.  Because there are known uncertainties in our data, we can not be certain 

that a single fit is correct.  By removing outliers from the calculations, the 

accuracy of the fit will increase.  Outliers are determined based on their distance 

from the linear fit in standard deviations.  After the first iteration of the program, 

outliers with uncertainty greater than three standard deviations were removed 

and the fit was calculated again.  On the next iteration, outliers with uncertainty 

greater than two standard deviations were removed and the fit was calculated 

again.  On this third calculation, the final values for A0 and A1 were calculated.  

The final values for each image are calculated from an average of 65 standard 

stars, and the fit has a correlation of better than 90%.  An abridged copy of the 

program written to calculate the color-correction constants for each image is 

available as Appendix B.  Figure 4.3 shows the linear fit along with data points 

after outliers are removed. 

To apply the corrections, a new program was written.  It was designed to 

use the same A1 constant to correct for each night’s measurements using these 

following equations: 
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Figure 4.3  Plot showing the instrumental color versus standard color.  
Orange squares signify the aperture catalog data, and green circles signify 
the optimal catalog data. 

 
where bInstr and vInstr are the instrumental values from the Optimal Photometry 

output, (B-V) is the instrumental color, and bStd and vStd are the desired result of 

color-correcting. 

It is useful to keep in mind that the resulting standard magnitudes do not 

include a calibrated zero-point offset.  This is not important because we will be 

looking at differential photometry, where the difference between two magnitudes 

will result in the cancellation of the offset anyway. 

The output catalog from this step contains the new color-corrected 

magnitudes.  It does not change the uncertainties significantly, however, so the 

uncertainties listed in the catalog are the same uncertainties found in the input 

from Optimal Photometry.  The contribution of error from this method should be 

small since our most significant correction is for second order extinction. 
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4.4 Improving Precision 

Generally, differential magnitudes and their uncertainties are determined 

on each image independently.  The concept behind ensemble photometry is that 

photometric uncertainties can be improved with a series of images of the same 

field.  Ensemble photometry assumes that a star that is designated as constant 

will be constant across multiple images.  From this, we can use a weighted 

average of the magnitude of the star to calculate a magnitude with less error.  

Strict ensemble photometry uses only the constant stars that are found on every 

image.  This method requires a homogeneous set of exposures.  The problem is 

that not all images contain the same stars because of varying aspects of 

observation, such as cloud cover, atmospheric transparency, airmass, 

positioning, focus, etc.   

4.4.1 Ensemble Routine – Honeycutt 1992 

The ensemble routine presented in Honeycutt’s 1992 paper describes a 

method that bypasses this problem.  He explains that differential time-series 

photometry can be obtained from an inhomogeneous set of images, not by 

comparison to specific stars, but by comparison of image to image.  These 

problems are resolved by accounting for the fact that there will be many 

“constant” stars available to determine the magnitude zero-offset of each image.  

By using as many of the constant stars as are available, you can tell how each 

image changes in uncertainty.  Using this image uncertainty, individual stars can 

then be compared to more well-known constant stars in the image. 



 53 

The routine uses a weighting system for each star in each image.  If the 

user is concerned that a star might be variable, the user can set the weight of the 

star to values near zero so that any significance of the variability is eliminated.  

An advantage of this program is that every star is returned in output even if it was 

not directly used to estimate the offset of an image. 

4.4.2 Ensemble Photometry Program 

This routine is available in a program written by Michael Richmond of the 

Rochester Institute of Technology called Ensemble Photometry.  The program 

has two parts, Multipht and Solvepht.  Multipht first identifies all stars in every 

image, matching them (if necessary), and reorganizing the photometry catalogs 

in a format that is expected by the Solvepht.  Solvepht uses the stars in the input 

catalog to determine which are variable.  Then this program minimizes the 

contribution of these designated variables by setting their weights to a value near 

zero.  Solvepht outputs corrected magnitudes and improved uncertainties for the 

data.  Below, these programs are explained. 

4.4.2.1 Multipht 

The first program retrieves information from multiple catalogs.  The 

information it requires is Julian date, X and Y coordinates, magnitude and 

uncertainty to be in columns in separate catalogs, one catalog per image.  Each 

of the catalog names must be on a list.  The user inputs the column number for 

the data and the name of the list. 

Other settings can be applied, including the ‘isolate’ routine, which will 

discard faint stars near a much brighter source.  How near these sources are is 
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defined by the match radius.  For our research the isolate function is used, but 

our match radius is set to 5 pixels.  This means bright and faint sources greater 

than 5 pixels from each other will be treated as two independent sources. 

The output of the program is the entire set of catalogs in one large file.  In 

this file, the uncertainty of each star is been replaced by the weight of the 

individual measurement.  The weight is the inverse of variance: 

! 

w =
1

" 2
 

For the purposes of this project, no matching between frames was required (they 

were already matched in a previous step), only the reorganization of the 

photometry catalogs was necessary. 

4.4.2.2 Solvepht 

The next program is called Solvepht.  The information that the user must 

provide includes the input file (the output file from Multipht), the ‘variability 

threshold’ parameter, ‘bad image’ numbers, ‘bad star’ numbers and ‘variable star’ 

numbers.  If bad stars are listed, they will be removed from the analysis so that 

they do not contribute to the overall solution. 

The first part of the program uses the input data to determine corrected 

magnitudes and corrected uncertainties.  This part makes two assumptions: (1) 

most of the stars are constant with well-defined magnitudes and (2) there are no 

second-order errors (such as scaling or color offsets) in the data.  The 

relationship between the true magnitude and the instrumental magnitude is 

simple: 
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! 

Ei, j = mi, j " [Mi " e j ] 

where Ei,j is the error of each measurement, mi is the instrumental magnitude, Mi 

is the true magnitude and ej is the zero-point magnitude offset of each image.  

The subscripts i and j refer to the star and the image, respectively.  The intent of 

the program is to minimize Ei,j for all stars by choosing Mi and ej appropriately.  

This is done by setting Ei,j to zero and using a least-squares analysis of all data 

points.  The resulting values for image offset and true magnitude are included in 

the output. 

The second part of the program estimates the uncertainty of the true 

magnitudes by standard practices (Bevington, 1969): 

! 

" i

2
=
N w j (m j #Mi$ )

2

(N #1) w j$
 

where σI is the uncertainty of the true magnitude, N is the total number of images 

that the star appears, wj is the weight and mj is the magnitude of the jth image 

and Mi is the true magnitude. 

The program includes statistics to determine if the data have discrepant 

values.  The uncertainty of the offset for each image is calculated: 
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where z is the difference between the corrected magnitude and the instrumental 

magnitude, w is the weight for each star from the Multipht program, and S is the 

total number of stars within each image.  Average uncertainty of each zero-point 

offset is less than 1 millimagnitude. 
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Figure 4.4  Plot of standard deviation versus magnitude with 
parabolic fit from B filter data.  Variable stars will appear at 
higher standard deviations than the typical star.  Note the outlier 
star at magnitude 14.5 has a well-known photometric variability. 
 

The third part of the program will determine variability.  All of the corrected 

data is divided into bins based on corrected magnitudes; the size of the bins are 

adjustable by the user.  The median value  of the uncertainty is calculated for 

each bin, and a parabolic curve is fit to these values.  This can be seen in 

Figures 4.4 and 4.5.  For each bin, the program also determines the average 

width of the scatter around the parabola.  The program then calculates the 

distance of each star from the parabolic fit in units of the width of the scatter.  

This value is considered the ‘variability score’ of each star.  Any star whose 

variability score is larger than the variability threshold will be flagged as a 

variable.  

These three parts can be run in an iterative process, so that the program 

removes the variable stars on the next iteration by setting the weights of the 
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Figure 4.5  Same plot as Figure 4.4, only with a log scale.  Here 
you can see the width of the scatter around the parabolic fit. 

 
flagged variable stars to a value near zero.  The program creator recommends at 

least two iterations, but for our data, we complete three iterations so that it 

detects variables a total of three times. 

Now that variable stars have been designated, we need to determine the 

uncertainty in their measured magnitude.  This is accomplished by using stars 

that are similar in mean brightness to the variable star.  The idea is that the 

uncertainty of stars of roughly the same magnitude should have the same overall 

uncertainty.  So, the determination of the uncertainty for a variable star is 

independent of its variability. 

4.4.2.3 Fine Adjustments 

Using different variability thresholds results in different results; a lower 

variability threshold will increase the number of designated variables.  In Figure 
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Figure 4.6  Standard deviation versus magnitude plot of the B filter data 
set.  Multiple variability thresholds are shown, with designated variables in 
separate colors. 

 

 
Figure 4.7  Standard deviation versus magnitude plot of the V filter data 
set.  Multiple variability thresholds shown, with designated variables in 
different colors. 
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4.6, we use the B filter data to show clearly how changing the variability threshold 

affects our data.  Stars that are considered constant are colored red.  The 

designated variables are shown in orange, yellow, pink, light green, green, blue 

and purple for variability thresholds of 1.5 to 4.5 in steps of 0.5, respectively.  

Stars that are designated variables in lower thresholds may be considered 

constant stars when using higher thresholds, but stars that are designated 

variables in higher thresholds will still be designated variables in lower 

thresholds. 

Different data sets can have different necessary adjustments.  The V filter 

data, for instance, has a lower S/N ratio due to the shorter integration times.  

Because of this, the scatter of the data points from any fitted parabola is larger 

than you would see with the B filter data.  This means that the threshold will need 

to be smaller than the tight-fitting B filter data.  As evident in Figure 4.7, different 

values are needed:  for the V filter data, the colors are orange, yellow, pink, light 

green, green, blue and purple, signifying a variability threshold of 1.5 to 4.5, 

respectively.  Figure 4.9 also shows this problem.   For the V filter, it is apparent 

that a much smaller variability threshold is needed to produce similar results.  

Further manipulation of this value will give the user the desired number of 

designated variable stars.  Since this uses a variable score to determine the 

variability of a star, large numbers of variable stars can be sorted by variability 

score. 
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Figure 4.8  Standard deviation versus magnitude (without designated variable 
stars) diagrams from the optimal catalog output of Ensemble Photometry.  Blue 
squares are data points from the B filter and red circles are data points from the 
V filter.  Note the large scatter of the data, such that hardly any trend is 
noticeable. 
 
 

4.5 Optimal versus Aperture 

Up to now, we have retained both catalogs that were output by Optimal 

Photometry through each step in the analysis.  Now, after processing the data 

through ensemble photometry the first time, the better choice becomes clear.  

The optimal catalog results in a much larger scatter than the aperture catalog, 

which is apparent when you compare Figures 4.8 and 4.9.  It is important to note 

that the scales of these figures match.  Note, in Figure 4.9, the B filter data has 

smaller uncertainty at a given magnitude than the V filter data. 

Our original purpose of selecting the Optimal Photometry code for our 

project was to minimize the photometric uncertainties.  Contrary to our 

expectations, the standard deviation of the optimal catalog is higher than the 



 61 

 
Figure 4.9  Standard deviation versus magnitude (without designated variable 
stars) diagrams from the aperture catalog output of Ensemble Photometry.  Blue 
squares are data points from the B filter and red circles are data points from the V 
filter.  Note the gap in the B filter data between magnitudes 14 and 15.6 is from 
setting the variability threshold too low, such that all stars near the bottom of the 
fitted parabola are designated variables. 
 

aperture catalog, especially for the range in which we expect to find Sun-like 

stars.  At this point we choose the aperture data catalog for the remainder of the 

analysis due to its smaller scatter in its reported magnitudes. 
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Chapter 5. Discussion of Results 

 

5.1 Results 

The following are the results of our observations.  We have shown that 

differential photometric observations can be made at a relatively-high precision 

using a small research-grade telescope.  In the following, we will first ‘place’ the 

Sun in M67 for comparison.  Then we will compare observed features of M67 

cluster to published characteristics.  Then we will discuss the variables detected 

by Ensemble Photometry. 

5.1.1 The Sun in M67 

Our primary goal for this project is to measure the photometric variability 

of  Sun-like stars. Sun-like stars in M67 should be located near the part of CMD 

where you would likely find the Sun if it were located at that distance and 

reddening.  Since it is not possible to transport the Sun to M67, we can at least 

estimate where the Sun would be.  To do this, all we have to know is the intrinsic 

absolute magnitude in V (MV), color index (B-V), interstellar reddening of the 

cluster (E(B-V)) and the distance (or distance modulus) to the cluster ((m-M)0).  

For the last two, we will use the information in Table 1.1.  For the first two, we will 

use values from the textbook by Cox (1999), B-V=0.65 and MV=4.82.  From 

Binney & Merrifield (1998), we can use an equation similar to Eq. 3.59: 
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where (mB - mV) is the observed color and (mB - mV)0 is the intrinsic color.  

Plugging in numbers to this equation, we find that the Sun’s observed color 

would be 0.69.  Using the distance modulus estimate of Yadav et al. (2008), we 

can use the apparent distance modulus equation from Birney et al. (2007) and 

the typical value for the optical extinction parameter Rv for diffuse interstellar 

medium from Cox (1999): 

! 

(m "M)# = (m "M)
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+ A#     and    
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where m is the apparent magnitude, M is the absolute magnitude, and A is the 

absorption of the interstellar medium at a particular wavelength.  The λ means 

that the m-M value is the apparent distance modulus in a particular wavelength 

(or filter), where as the 0 means that the m-M value is the true distance without 

dependency on a particular wavelength.  We solve for the apparent magnitude of 

the Sun if it were in M67, finding mV=14.58. 

5.1.2 Color-Magnitude Diagram 

One way to examine two-color observations is to make a CMD.  For our 

data, Figures 5.1-5.4 show the features that we expect to find when looking at 

M67.  First the turnoff has a characteristic bend separating the subgiant branch 

and the main sequence (Figure 5.4).  This bend (referred to as the ‘overall 

contraction phase’ by Iben, 1967) is due to convection in the core of massive 

stars (

! 

M >1.1M
Sun

).  Convective mixing allows a greater fraction of hydrogen to 

burn in the core, causing a shift up and to the left on the CMD prior to the ignition 

of hydrogen shell burning and entry to the subgiant branch. 
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Figure 5.1  CMD of all stars in our field-of-view.  The Sun is labeled with a 
filled black circle and designated variable stars are marked with an ‘X’. 

 

 
Figure 5.2  CMD of cluster member stars.  The Sun is marked by a filled 
black circle, and designated variable stars are marked with an ‘X’.  The 
‘overall contraction phase’ and binary sequence are visible. 
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Figure 5.3  Labeled CMD. 

 

 
Figure 5.4  A closer look at the Turn Off reveals the bend (overall contraction 
phase) caused by convective core mixing in massive stars.  The line is a guide 
for the reader and is similar to the shape and location of a plotted theoretical 
isochrone. 



 66 

 
Figure 5.5  CMD of cluster members with error bars.  The error bars in some 
cases can indicate a variable star.  The unusual size of the error bar at the 
bottom of the turnoff indicates a large amplitude variable star at that location. 

 
The second visible characteristic is the binary sequence (Figures 5.2 and 5.3).  

This is a row of stars oriented like the main sequence, but positioned vertically 

higher than the main sequence.  This feature of the CMD is well-documented for 

this cluster (Racine 1971; Sanders 1977; Girard et al. 1989; Montgomery et al. 

1993; Stassun et al. 2002). 

In Figure 5.5, we show a CMD with error bars.  The horizontal error is 

largely due to the fact that conservative error propagation techniques were used 

to calculate the B-V error (see section 5.3.2).  In this figure, we can tell several 

variable stars, just by the size of their error bars in relative to other stars of the 

same magnitude.  The large error bar located near the turnoff of the sequence 
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indicates a variable star with a large amplitude.  Variable stars like this will be 

discussed in the next subsection. 

5.1.3 Variability 

Variable stars were designated with the Ensemble Photometry program.  

For our data we recognized five variable stars.  Four of these were previously 

identified by Balaguer-Núñez identification numbers and Sanders numbers.  The  

Table 5.1  Designated Variable Stars 

ID S77 

! 

M
B  Period Exp. Amplitude Meas. Amplitude Meas. σ 

1176 1036 13.985 0.44 d 130 mmag 130 mmag 10 mmag 

1352 1282 14.625 †0.36 d 390 mmag 400 mmag 12 mmag 

777 757 14.657 0.44 d 80 mmag 80 mmag 17 mmag 

905 1063 14.569 ~23 d 150 mmag 140 mmag 10 mmag 
† Period varies with time.  ID is the Balaguer-Núñez identification number.  
S77 is the identification number used in Sanders (1977).  The expected 
amplitude is average amplitude found by Sandquist & Shetrone (2003). 

 
fifth was extremely faint, and had not appeared in previous catalogs.  The four 

identified designated variable stars were then checked against variable star 

catalogs for M67.  Stassun et al. (2002) contained all four as verified variable 

stars, Sanders (1977) verified three.  These four variables were studied more 

thoroughly by Sandquist & Shetrone (2003), and their properties are available in 

Table 5.1.  Note that the measured properties are from the Ensemble program, 

including the average B magnitude.  Light curves in B filter data are shown in 

figures 5.6-5.9.  Each of the four variable stars matched their expected 

amplitudes. 
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Figure 5.6  Light curve of W UMa system labeled 1176.  Note the 0.02 
difference in maximums and 0.09 difference in minimums. 

 
5.1.3.1 Variable Star 1176 

One of the brightest stars and X-ray sources near the turnoff, EV Cnc  

 (1176) is classified as a blue straggler because it is nearly 100 millimagnitudes 

to the left of the turnoff locus on the CMD.  Its period is 0.44144 days; and it is a 

W UMa binary system.  The differences in maximums and minimums are 

discussed in Sandquist & Shetrone are still visible, and it is likely that the cause 

is not variable on short time-scales.  It is important to note that this phased light 

curve in Figure 5.6 does agree with the period, minimum differences and 

maximum differences as observed by Sandquist & Shetrone. 

This system is also known to be a W Ursae Majoris contact binary system.  

These systems display very high levels of magnetic activity.  According to Ostlie 
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& Carroll (2007), these stars are important for studying the magnetic dynamo 

mechanism at extreme levels, and magnetic braking may cause these binaries to 

coalesce into single stars. 

5.1.3.2  Variable Star 1352 

Another W UMa system, AH Cnc (1352) is a well-known variable system  

 
Figure 5.7  Light curve of W UMa system labeled 1352.  Because of the 
consistently varying properties of the system, the light curve has 
discrepant points.  There is a hint of flat bottoms indicating total eclipses. 

 
and X-ray source.  This system is an eclipsing system with a period of 0.360452 

days.  The peculiar nature of this variable system is that it continually changes its 

light curve, in period, amplitude, and even shape of minimums.  At times the 

system shows no doubt of an eclipsing binary.  Sandquist & Shetrone (2003) 

discuss several possibilities including high surface activity, including large 
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starspots, for the cause of random changes in the light curve.  However, our 

measurements will need to be more precise before such changes can be 

properly characterized.  This system’s phased light curve can be seen in Figure 

5.7. 

5.1.3.3  Variable Star 777 

This star is another W UMa system.  The light curve in Figure 5.8 for this  

 
Figure 5.8  Light curve of the W UMa system labeled 777.  Note that the 
precision is not much better than the amplitude of variability. 

 
system matches the period of 0.35967 days.  This star is known to vary due to 

the variable O’Connell Effect.  This is where one peak will vary in relative to the 

other peak, sometimes dimmer than the other peak, sometimes brighter than the 

other peak.  However, for this star, this effect is too small to be seen with the 

precision of our current data. 
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5.1.3.4  Variable Star 905 

This star is the most peculiar star in the M67 cluster.  It exists (and can 

easily be found) dimmer than the subgiant branch and nearly inline with the red 

giant branch.  Another peculiarity is that it is an X-ray source (Belloni et al. 1998).  

Unlike the last three, this star is not a W UMa binary system.  Its variability is not 

obviously linked to the orbital characteristics of the system.  Sandquist & 

Shetrone (whose published data is the most recent for this object), indicate that  

 
Figure 5.9  Light curve for the variable system labeled 905.  This system is 
peculiar in its location and its variation of unknown origin.  Note the variation of 
data points and error bars. 

 
this system likely varies on multiple time-scales.  Their data supports a primary 

time-scale of about 23 days.  The measurements that we took indicate that the 

value should be closer to 22 days. Sandquist & Shetrone also indicate that there  
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Figure 5.10  Variable star locations.  Notice that these stars are well-
separated from other stars. Axes units are in pixels. 
 

was a large variation between cycles of the light curve.  They state that the light 

curve probably varies by a tens of millimagnitudes from cycle to cycle.  However, 

for our data the light curve is nearly dominated by error.  To reduce the effect of 

error, we can complete a weighted average of multiple measurements on a night 

to get one data point per night.  This should improve certainty.  Normally we can 

do this if the variability of this star is on a time-scale of larger than a night.  For 
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time-scales less than a day, the amplitude of variation would be significantly 

affected.  However, the uncertainty of night averages are based on the spread of 

the data points of the images over a given night.  Because of the spread of our 

data points is large, due to first-order extinction, this results in higher uncertainty 

than each image alone. 

All measurements and light curves use the B filter data.  This is because 

of two important reasons.  First, the photometric variation is larger in shorter 

wavelengths (Pap et al.).  Also, the data from the B filter have a higher S/N ratio, 

and therefore, smaller uncertainty.  For the relative position of a star, refer to the 

map in Figure 5.10 where the designated variable stars are circled. 

 

5.2 The Sun-like M67 

5.2.1 Define Sun-like 

Generally, all of the stars in the cluster have the same metallicity and age 

as the Sun.  The primary difference between the stars in the cluster and the Sun 

is the mass of those cluster members.  Since we will not be deriving masses in 

any way in this research (which is in no way trivial, considering the large portion 

of binary systems present), we are left with two choices.  Take a subset of the 

whole and compare the variability, or use the entire cluster and compare the 

variability between all stars.  Since we are not interested in the variability of red 

giant stars, blue stragglers or lower main sequence stars, the answer is to take a 

subset. 
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We select a subset of cluster members by defining a box, equally brighter 

and dimmer than the Sun and equally bluer and redder than the Sun.  This box is 

defined by two criteria.  First, the box will not contain obvious members of the 

binary sequence, and secondly, the box will not contain obvious members of the 

subgiant branch.  Figure 5.11 shows how the box is set on the CMD.  This box is 

defined as ±0.5 magnitudes vertically by ±0.075 magnitudes horizontally from the 

solar magnitude and color.  Variability of all of the stars that reside in this box will  

 
Figure 5.11  CMD with variables marked and box indicating the definition 
of Sun-like stars.  The black filled circle is the Sun and designated 
variables are both marked with an ‘x’ and labeled. 
 

be compared. 

The box surrounds 36 stars.  After reviewing Stassun et al. (2002) for 

known variable stars within the region, we found that two of the 36 stars were 
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known variables.  One of them (star 1006) is a single star and one of them (star 

1029) is a binary system.  The variability of the single star has an amplitude of 23 

millimagnitudes and the other is 15 millimagnitudes according to Stassun et al..  

Our measurements show that these stars have uncertainties of 12 and 11 

millimagnitudes, respectively.  These uncertainties, however, are similar to other 

stars with the same magnitude.  Because of this, it is unlikely that our 

measurements show any variability of these two stars. 

Since little data is available on the variability of the single Sun-like star, it 

is possible that the variability is based on stellar surface activity.  The expected 

amplitude of variability of this star is at the level that we would expect to see from 

surface activity.  The star’s location on the main sequence is a near mirror-image 

of the Sun, and it is located in a relatively sparse neighborhood in the cluster 

making the detection of photometric variability likely in future observations. 

Further investigation is necessary to confirm the nature of this variability. 

5.2.2 Solar-type Stars with Relatively-High Uncertainty 

Of the 36 Solar-type stars that we detect, we find that some of them have 

uncertainties higher than the two known variables.  Uncertainty in the Sun-like 

region of M67 is from 10 to 14 millimagnitudes.  Two stars have uncertainties of 

more than double these values (1604 and 1569), indicating that this uncertainty 

is from something other than typical measurement error. 

Each of these stars, however, are located near the corners of the frames 

where vignetting effects are strongest.  To explore this effect, we examine the 

uncertainty of several stars of similar magnitude, both near the corners of the 
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frame and near the center.  We find that uncertainty appears to increase 

significantly near 550 pixels.  The average increase in uncertainty is 8 

millimagnitudes for corner1 stars and less than 2 millimagnitudes for central2 

stars.  Because of this, we determine that this variability is a result of vignetting, 

and should be considered when confirming designated variables.  

Four other stars (1348, 728, 646, 663) are found to have higher-than-

expected uncertainties in the Sun-like region.  None of these four are previously 

known as variables.  However, because their uncertainty is less than double the 

standard deviation of the scatter of stars for Sun-like magnitudes, the uncertainty 

may be due to neglected error sources. After checking to see if any of these stars 

are located in vignetting regions (corners and edges) of the frame, we find that 

each star is near the edge of the observation region.  Larger uncertainties would 

occur If partial starlight is lost due to the FWHM of the star falling off the edge of 

an image. 

Other variability in Sun-like stars is difficult to differentiate from 

measurement errors.  Other stars that have higher-than-average uncertainties 

have increased uncertainties around 2-3 millimagnitudes.  However, since the 

uncertainties of these stars have a standard deviation of 4 millimagnitudes, this 

error is only due to the scatter of the measurements. 

 

 

                                                        

1 Stars whose radius from the center is larger than 550 pixels 
2 Stars whose radius from the center is smaller than 550 pixels 
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5.3 Single versus Binary 

In this section, we examine stars in known binary systems.  We are 

checking to see if there is a correlation between variability and binary systems.  

To do this, we use the catalog of known multiple systems presented in Sandquist 

(2003), of which we have detected 22 systems.  Using the average uncertainty, 

as we did in the previous section, we find that several systems exhibit 

uncertainties that are higher-than-average: 18 out of 21 systems. 

5.3.1 Uncertainties 

Ensemble Photometry uses uncertainty as a marker for variability in the 

variability score of the program output.  Significant uncertainty results in being 

flagged as a variable.  However, to be designated a variable star, the star must 

be variable in both filters.  Though this process has resulted in four correctly-

identified variable stars, some variable stars are likely lost in the process 

because their variability in the V filter has a smaller amplitude. 

The uncertainty levels for the four recovered variables are more than 20 

millimagnitudes above the average.  Another star, however, has uncertainty in 

the B filter that is comparable to the four recovered variables.  After checking 

previous studies, this star is a well-known RS Canum Venaticorum (hereafter RS 

CVn) variable star (Stassun et al. 2002; Sandquist et al. 2003; van den Berg et 

al. 2001). 

Thirteen of the 18 higher-than-average systems have uncertainties that 

are on the order of the scatter of the system.  Upon checking for known variability 

in these systems, two stars are known to be variable according to Stassun et al. 
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(2002), and one is a known Am star with flare detected by Sandquist & Shetrone 

(2003).  However, these uncertainties are within the scatter of measurements of 

the system. 

5.3.2 RS CVn System 1046 

According to Ostlie and Carroll (2007), these kinds of stars are known to  

 

Figure 5.12  A light curve showing the variability of the RS CVn system.  The 
horizontal axis is in Julian date, and the vertical axis is in B magnitude.  Note that 
the light curve varies by about 107 millimagnitudes. 
 

be tidally locked binary systems with enhanced magnetic activity.  This enhanced 

magnetic activity manifests as starspots, flares and other processes that cause 

photometric variation.  Furthermore, the typical timescale of photometric 

variations are believed to be significant in long timescales. 
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The expected variation of this star is 115 millimagnitudes (Stassun et al. 

2002; Sandquist et al. 2003)  based on the orbital period of the system.  

However, our measurements only show 20 millimagnitudes of increased 

uncertainty.  A view of the light curve in Figure 5.12 shows that the uncertainty 

determined by Ensemble Photometry is only a standard deviation of the variation 

of the star, whereas the maximum amplitude of variability may be much larger 

than the uncertainty.Due to the period of orbit (1.06 days), the variation may 

elude observations over a two month timescale.  Any surface activity would be 

seen as a deviation from a natural light curve.  This deviation is expected to be 

about 20 millimagnitudes (Sandquist et al. 2003), however, we have too few of 

observations to estimate a light curve.  

 

5.4 Uncertainties and Errors 

As with any experimental science, the most valuable part of the discussion 

is the uncertainty of the measurements.  We discuss error contributions from 

multiple sources including corrections to systematic errors and characterization 

of random errors. 

5.4.1 General Uncertainties 

Photometric measurements can be characterized by the measurement’s 

signal divided by the noise in ADUs.  The CCD equation below gives the S/N 

ratio (this is SNR in the equation): 

! 

SNR =
gNstar

net

gNstar

net
+ ngNsky + ngNdark + nNR

2
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where g is the gain,  n is the total number of pixels in the aperture, Nstar is the 

number of counts for the star in question (without sky contribution), Nsky is the sky 

count per pixel, Ndark is the number of counts from dark current.  NR is the 

readnoise.  For our data, Ndark is nearly zero so we can disregard it. 

However, there are several problems that can ruin a photometric 

observation.  Observing a star at a part of the CCD where pixels are ‘bad’ will 

cause loss in data.  For each of the variable stars we found, each were checked 

to ensure that they were not located where a bad pixel can have a large effect.  

Other problems include the naturally occurring cosmic rays.  Cosmic rays 

are high-energy atomic particles that travel near the speed of light.  Once they 

enter the atmosphere, they create a particle shower.  These particles cause 

streaks  across the image.  Cosmic rays are most easily removed by comparing 

multiple images, since each cosmic ray bombards the CCD at a different 

location.  When you cannot combine images, or you are completing time-series 

photometry, each measurement should be checked for an unusual spike in 

photometry; this would indicate a likely cosmic ray in the data.  Overall the effect 

of cosmic rays is small for Earth-based photometry, and so the error from this 

source is usually insignificant. 

5.4.2 Propagation of Error 

Errors from measurements must be maintained through any data 

manipulation.  This includes standard procedures like additive and multiplicative 

error propagation: 
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These are standard methods for simple procedures.  The rest of the subsection 

will be based on the more complicated procedures. 

5.4.2.1 Data Reduction Errors 

There are two sources of random error from the data reduction method.  

The first is bias drift.  The value of the bias offset will vary based on varying 

conditions of the electronic components.  To ensure that this error does not affect 

our data, it is important to employ bias calibration images nearest in time to the 

science images. 

The second source of random error can come from the calibration flats.  

This is based on the S/N level of the flats.  When the flats are combined, their 

total signal is additive.  Error from applying a master flat is important only if the 

total counts from the flat is comparable to or less than that of the maximum signal 

of any science image.  Over all groups, the lowest average for a master flat is 

268,000 counts per pixel.  Since we require our science data to conform to the 

linear regime of the CCD, we can safely say that each star is dimmer than 26,000 

counts per pixel.  Because the counts per pixel is much higher than the brightest 

star, the contribution of error from the master flats is insignificant for our data. 

5.4.2.2 List Matching, Astrometry and Blended Stars 

If there is an error in matching stars, the result would be the 

misidentification of a star.  Since the matching routine discards any matches 
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worse than 4 pixel difference between lists, there is a very low probability that a 

star was misidentified.  Astrometry would have even less contribution since the 

average error of the fit was under an arcsecond. 

After the first run of Ensemble Photometry, the majority of designated 

variables were stars with brighter optical companions.  Because of this, we 

removed stars that had any optical companions within two FWHM (10 pixels).  

This removed the last possible error contribution from misidentification. 

5.4.2.3 Optimal Photometry 

The design of this program was to complete a complicated algorithm in 

order to improve photometric uncertainties.  Since we found that aperture 

photometry had better uncertainties, error contribution from this step is 

straightforward to determine.  The user specifies an aperture.  The program 

calculates the sky background per pixel by removing the effect of stars via fitting 

a point-spread function to each detected star.  Once this is completed, the 

photometry of the star is the total number of counts of the star and the 

uncertainty is based on the CCD equation listed on a previous page.  The 

uncertainty in the measurement is the inverse of the S/N ratio. 

5.4.2.4 Color Corrections 

The error from this step comes from confidence of the linear fit and the 

uncertainty of the data points to the known source.  Since it is a second-order 

adjustment, the error from this step is small.  For the purposes of this research 

we will assume it is negligible. 
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However, to review the amount of error that this calculation may provide, 

we use the standard procedures above.  First, we must find the uncertainty of the 

regression coefficient using the equations found in Birney et al. (2006): 

! 

" 2
=
1

n
(#yi)

2$  

! 

"
b

2 =
n" 2

n x
i

2 # x
i$( )$
2
 

where n is the number of stars used in the linear regression, x is the instrumental 

color of a star, y is the standard color of a star, and σb is the uncertainty of the 

regression coefficient (the variable used for the regression coefficient is A1).  The 

value that value that we typically find for σb is 0.04. 

Next, we can use the standard procedures at the beginning of the section 

to calculate a conservative estimate for the typical sun-like star.  The typical error 

for Sun-like star is 0.01 for B and 0.016 for V.  Therefore, B-V would have an 

uncertainty of 0.019.  Color effects are removed by multiplying the regression 

coefficient by the instrumental color, and subtracting that value from the 

instrumental magnitude. 

Average instrumental values for B, V and B-V are -11.6, -11.5 and -0.08 

respectively.  The resulting error from multiplying the regression coefficient by the 

instrumental color is 0.019.  Finally, we see that the error of converting our 

instrumental magnitudes to standard magnitudes produces a final error for 0.021 

in B and 0.025 in V.  This is 11 millimagnitudes higher in B and 9 millimagnitudes 

higher in V.  At first glance, we can already see an improvement: Section 4.3.2 
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reports that a typical error from not correcting for second-order extinction is about 

28 millimagnitudes, higher than our maximum error estimate of 11 

millimagnitudes. 

However, since Ensemble Photometry uses all the stars in each frame to 

find variable stars, and it does not account for second-order extinction, it is likely 

that not correcting for this here could be extremely detrimental to the functionality 

of Ensemble Photometry program. 

It is also important to note that this conservative error is extremely 

dependent on the error of the original errors, and that the contribution of the 

regression coefficient is insignificant.  If our regression coefficient error stays the 

same, and our uncertainties are lessened, the resulting error from color-

correction is also lessened.  Furthermore, since the uncertainty of the 

observation scales with magnitude, the uncertainty of the color-correction step 

also scales with magnitude. 

5.4.2.5 Ensemble Photometry 

This program is designed to correct both photometry and uncertainties.  

For errors, the original uncertainties are converted into weights (wj) and the final 

uncertainty follows the standard process of Bevington (1969): 
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where the variables are explained in Section 4.4.2.2. 
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5.4.2.6 Group Statistics 

Using multiple images across a single night reduces the uncertainty for 

that night.  This is useful in two ways.  First, variables with periods longer than a 

day will benefit from having higher precision data points for a light curve.  The 

second way is that scintillation effects can be measured and characterized.  This 

step, however, requires correcting for first-order extinction effects across the 

frame and over the duration of the cadence of observations (see Section 5.4.3).  

Though we have not used this method to produce useful data, it is a necessary 

step to complete the research. 

Theoretically, we can model the effect uncertainty sources by using the 

CCD equation and a theoretical estimate for scintillation.  To do this, we must 

combine several parts, all of which can be found in Birney et al. (2006).  First, 

scintillation noise can be found by using the equation: 
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where X is the airmass of the observation, D is the aperture of the telescope in 

centimeters, t is the exposure time,  λ is the wavelength in nanometers, h is the 

elevation above sea level in meters, and ε is the scintillation noise in 

millimagnitudes.  For λ, we use the center wavelength of the filter.  Other values 

are listed in Chapter 3.  A plot of how scintillation noise changes as a function of 

airmass is shown in Figure 5.13.  Note that the curve is different for each filter, 

the top curve is from the V filter information, and the bottom curve is from the B  
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Figure 5.13  Plot of scintillation noise in millimagnitudes versus airmass.  
Typical airmass for our observations is closer to 1.2, and never exceeds 
2.0.  The top curve is using the V filter characteristics, whereas the 
bottom curve is using the B filter characteristics.   

 
filter information. 

Another equation that is necessary is the relationship between magnitude 

and net star counts1: 

! 

m = C " 2.5log(N
star

net ) + 2.5log[t] 

where m is the magnitude and C is a constant of the observation.  C can be 

found by using the data, and comparing the net star count to its magnitude and 

solving for C.  For our observations, we find that C is 20.7816 and 20.8593 for 

the B and V filters, respectively.  Solving for net star counts as a function of 

                                                        

1 Net star counts are the total number of counts within the aperture of photometry after 
subtracting the total sky counts. 
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Figure 5.14  Sigma versus magnitude plot.  Vertical axis is in milli-
magnitudes.  Note that there are several curves, each represent a 
different background sky count per pixel.  Higher background sky count 
per pixel values result in the leftmost curve, whereas lower count per 
pixel values result in the rightmost curve. 

 
magnitude: 

! 

N
star

net
= t 10

C"m2.5  

Another equation that is necessary for our is the CCD equation.  We 

mentioned this briefly at the beginning of Section 5.4.  Here the equation is: 

! 

SNR =
gNstar

net

gNstar

net
+ ngNsky + ngNdark + nNR

2

 

S/N ratio is measured in magnitudes-1.  By inverting, we are using the 

noise to signal ratio.  This can be expressed as an uncertainty.  We combine  



 88 

 
Figure 5.15  Standard deviation versus magnitude plot.  The black line is the 
Ensemble Photometry parabola that is fit to the data.  The blue curve (on top) 
is the estimate of error using the highest sky counts per pixel.  The pink curve 
(on bottom) is the estimate of error using the lowest sky counts per pixel. 

 
independent uncertainties by adding in quadrature, so: 
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and including the net star counts as a function of magnitude: 
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Ndark is nearly zero, so we can remove that term.  The others are known or 

estimated using our data.  Readnoise and gain are found in Chapter 3.  The n is 

the number of pixels in the aperture.  Since the aperture radius is five pixels, the 
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total number of pixels in the aperture is 78.54 pixels.  Nsky is the number of 

counts per pixel that the sky background contributes.  This value can be different 

for a variety of situations.  For example, the Nsky value is 1900 counts per pixel 

during a clear night with a full moon.  For a clear night without a full moon, this 

values is only 100 counts per pixel.  Once a value is chosen, we can plot σ 

versus magnitude, as shown in Figure 5.14. 

This is a theoretical model of how our data should look when plotted.  To 

compare this to our data, we overlay this plot on top of our data plots, as shown 

in Figure 5.15.  Since the data points (in red) are from the Ensemble Photometry 

program, the values should correspond to an average sky count model. 

5.4.3 First-Order Extinction 

In this project we have neglected the effects of first-order extinction in our 

magnitude determinations.  This is because: 1) we are using a differential 

ensemble photometry program, so the zero-point of the system will not matter, 

and 2) we are assuming that, for each image, the extinction effects across the 

frame are constant.  This second point is where we find trouble.  We can, 

however, calculate the maximum contribution to error of neglecting first-order 

extinction. 

Using average first-order extinction coefficients kB = 0.39 and kV = 0.25 

(Birney et al. 2006), we can estimate the maximum contribution from extinction to 

our differential magnitudes.  Applying Bouguer’s law to photometric 

measurements at two different values of airmass: 

! 

m"
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0

= m # " $ k" # X  
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where mλ,0 is the intrinsic magnitude, mλ is the observed magnitude, kλ is the 

extinction coefficient for some particular wavelength λ, and X is the airmass at a 

point in time.  Subtracting the second equation from the first, and assuming that 

the first-order extinction coefficient is constant between the observations, we find 

that: 

! 

m"
0

#m"
0

= 0 = m" #m $ " # k"X + k" $ X = %m # k"%X  

simplified,    

! 

"m = k#"X  

So, the difference in magnitude due to first-order extinction is based on the 

difference in airmass of the two separate observations.  Airmass, however is not 

constant over the duration of an image, nor from one edge of the image to the 

other.  If we examine stars with the same color and magnitude (thus canceling 

any contribution of second-order extinction), first-order extinction will depend 

upon the difference in airmass between those stars. 

For our data, we calculate the maximum and minimum airmass values for 

each filter.  Since the airmass of the observation will vary in three dimensions 

(duration of time, right ascension and declination), the effect of the first-order 

extinction will vary.  The maximum and minimum effects based on the change in 

airmass are presented in four pairs of columns in Table 5.2.  

Table 5.2  Extinction Effect 
Interval 
Over: 

Max 

! 

"X  
B filter 

! 

"M
B

 
(mmag) 

Max 

! 

"X  
V filter 

! 

"M
V

 
(mmag) 

Min 

! 

"X  
B filter 

! 

"M
B

 
(mmag) 

Min 

! 

"X  
V filter 

! 

"M
V

 
(mmag) 

Time 0.019 7.2 0.011 2.7 0.00005 0.02 0.00003 0.01 

Dec. 0.021 8.1 0.024 5.9 0.007 2.7 0.007 1.8 

R.A. 0.022 8.6 0.026 6.4 0.00006 0.02 0.00008 0.02 
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First-order extinction effects will also cause a scatter in nightly data.  For 

example, in Figure 5.12, each night’s data makes column of data points.  The 

first night in particular, where airmasses range from 1.7 to 1.8, we find that the 

scatter between images is about 34 millimagnitudes from beginning to end.  

Using Table 5.2, we find that the maximum contribution from the time duration of 

five images would be 36 millimagnitudes1.  This shows that the scatter in one 

night is less than the maximum contribution of first-order extinction.  By 

correcting extinction across the frame, it would allow Ensemble Photometry to 

correct the zero-points appropriately. 

                                                        

1 This is using the maximum extinction values for the B filter because the light curve is 
plotted in B magnitude versus Julian date. 
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Chapter 6. Conclusions 

 

6.1 Summary of Research 

6.1.1 Observations and Procedure 

Observations were made at Fick Observatory.  311 science images were 

acquired over 21 nights stretching just over two months.  156 science images 

were taken using the B and 155 images were taken using the V filter. 

General data reduction was completed with IRAF.  After extracting stellar 

information, the images are processed with Tim Naylor’s Optimal Photometry 

software where the aperture photometry method was determined to be superior 

for our data.  After color corrections, the data was processed with Ensemble 

Photometry to use the series of exposures and constant stars to our benefit.  

This program also designates variable stars using an objective algorithm and can 

be fine-tuned to provide the best results. 

6.1.2 Variability 

The analysis of the data yielded four variable stars, each of which is a 

known binary system.  Their variability was verified with Stassun et al. (2002) and 

the expected conditions of their variability and light curves were matched.  This 

gives us confidence that: 1) our photometry is reliable, and 2) the variable 

detection method we employed is successful.  A fifth ‘variable’ star was declined 

after realizing that the sky background contributes about 10 % to the noise of this 

star. 
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Though Ensemble Photometry did not detect other variable stars, our 

analysis suggests that more variable stars would be detected with a lower 

variability threshold.  An example of this is the detection of the RS CVn variable 

system.  This system is well known to exhibit variability, but even the high 

uncertainty of this star is too low to be flagged as a variable star with the current 

Ensemble Photometry settings. 

Other stars with relatively-high uncertainties were found.  Most of these 

stars have uncertainties that are smaller than the standard deviation at their 

magnitudes.  Higher levels of uncertainty are likely due to vignetting effects at the 

corners of images or the edges of the frame. 

6.1.3 Small Research-Grade Telescope Limitations 

Overall, there are several limitations when using this telescope:  1) the sky 

brightness is close to 21 magnitudes per square arcsecond on a moonless, clear 

night (Cinzano et al. 2001).   Any photometric observations with precisions better 

than 10 millimagnitudes must be at MV<19.  2) Extinction will lower the limiting 

magnitude of observations further.  Error due to extinction is about 8 

millimagnitudes for intermediate airmasses from the duration of a two-minute 

exposure alone.  The effect is larger when comparing two stars that are not near 

each other. 

Overall I do think that further investigation of this cluster will result in 

precisions to at least 10 millimagnitudes for Sun-like stars and with statistical 

manipulation we may be able to reach higher precisions.  This decrease in 
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uncertainty will also decrease the contribution of error from some steps, including 

both color-corrections and Ensemble Photometry. 

 

6.2 Suggestions for Improvements 

6.2.1 Longer Exposures 

Longer exposures will reduce the uncertainties due to random errors, 

especially in fainter stars.  Some brighter stars will be lost because of saturation.  

This should, however, result in a better ensemble correction and will lead to a 

higher precision of variable star detection.  More importantly, Ensemble 

Photometry uncertainties would be minimized for the Sun-like region.  A visual 

representation of how longer exposures would affect our data is available in 

Figure 6.1. 

6.2.2 First-Order Extinction 

 The most significant problem is the first-order extinction error.  In Section 

5.4.3, we discuss that, since there is a gradient of airmass across the frame, 

there must also be a gradient in the first-order extinction.  Since Ensemble 

Photometry uses all of the stars over each image to calculate an magnitudes and 

uncertainties, first-order extinction errors on some stars are a significant problem 

to all of the stars.  To correct this, we have two methods. 

6.2.2.1 Multiple Ensemble Photometry 

When using a cluster of stars, we find that we have enough stars to 

complete ensemble photometry on a section of the image.  For a section of the  
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Figure 6.1  Standard deviation versus magnitude plot.  The black 
curve is the parabola fit produced by Ensemble Photometry.  The 
blue curve (top) is a theoretical model of where the data should be 
located during a full moon.  The pink curve (middle) models where 
the data is expected for a clear night when the moon is not bright.  
The green curve (bottom) is the expected location of data for a 
clear, moonless night using the same conditions as the pink curve, 
except it uses a 4-minute exposure (double the original exposure 
time). 

 
image, the first-order extinction gradient is smaller, resulting in a smaller error  

from first-order extinction.  In order to complete this process, each section would 

need to overlap, so that stars near the edge of a section are not determined by 

using stars on the other side of the section where the effects of first-order 

extinction are largest. 
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6.2.2.2 Correction by Location 

Since we know the location relative to the center of the image of each star, 

and we know the value of airmass of the center (and by proxy, each star), then 

we can estimate the amount of first-order extinction for each star.  Once we know 

this, we can correct each star for this error. 

6.2.2.3 Effects of First-Order Extinction over Time 

It is important to note that in Section 5.4.2.6, we mention that group 

statistics can not be completed because of the scatter from image to image over 

a single night.  This scatter is due to the change in airmass over the duration of 

the series of science images.  Once first-order extinction effects are corrected 

across the frame, each image should have a zero-point offset that is related to 

the first-order extinction over the duration of images.  In essence, removing 

errors across the frame will result in removing the errors due to time. 

6.2.3 Vignetting Correction 

 Several stars were detected with unusually high uncertainties.  We 

determined that this was due to vignetting effects.  There are two types of 

vignetting effects:  1) ‘corner vignetting’, where the radius from the center of the 

frame is greater than 550 pixels, and 2) ‘edge vignetting’, where the star is close 

enough to the edge that the whole of the star may fall off of the sides of the 

image.   

The ensemble process, where all stars are collectively used to determine 

the magnitude of each star, does not account for these effects.  Because of this, 
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the precision of the output may be significantly effected.  These stars must be 

removed from calculations in order to achieve the highest precision. 

6.2.4 Longer Baseline 

This study was limited to a baseline of one season or about 2 months of 

data.  Stellar cycles are also known to be important on scales longer than one 

year (Lockwood et al. 1997; Pap et al. 1999).  An extra season will give us the 

ability to look for variability along yearly baselines. The Sun, for instance varies 

most noticeably on an eleven year cycle but also on longer timescales.  It is 

evident that long-term photometric monitoring should improve our chances of 

detecting solar-cycle-like activity. 

6.2.5 Focus 

In this research, we were not concerned with the focus of the images.  

This is because we were concerned with saturation of the brighter stars.  With a 

slightly defocused system, we can make our exposures longer without stars 

saturating.  However, because of this, we may have lost useful information (in the 

form of FWHM) about the seeing conditions.  Without this estimate, we cannot 

characterize the effect of the weather conditions on our data. 

Focusing the image to the best focus possible is one way to ensure that 

any information on the seeing conditions of an observation is retained.  The 

disadvantage of using the best focus method is that the brighter stars will 

saturate, limiting the level at which your observations can be made. 

If very dim and very bright stars are needed, a defocused image method 

would be preferred. Standardizing the amount that an image is defocused can be 
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done in several ways.  The first way is to use three or four stars across the image 

and a range of expected FWHM for each.  Deemed correct focus would be when 

each of the stars enter their respective range.  One problem with this is that the 

FWHM changes with weather conditions as well as with focus. 

Another way to standardize the focus is to find the best focus for a series 

of exposures, and then change the focus by an offset amount.  The problem with 

this method is that we are assuming that focus adjustment is similar across the 

observations in a season.  If it is not, then the focus offset must be a function of 

other variables, resulting in a complicated system. 
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Appendix A. Mathematica Code for Least-Squares Analysis 
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Appendix B. C++ Code for Color-Correction 
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Appendix C. C++ Code for Categorization and Group Statistics 
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