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ABSTRACT

This thesis presents the evaluation of the relative contributions of various twist-3 quark-

gluon correlation functions relevant to single transverse spin asymmetry (SSAs) in a quark-

diquark model of the nucleons. The twist-3 quark-gluon correlation functions responsible for

gluonic pole and fermionic pole contributions are calculated and compared. We find that at

the leading nontrivial order, only gluonic pole contribution is finite and all others are zero for

both scalar diquark and axial-vector diquark. We also evalute the symmetries of the these

twist-3 quark-gluon correlation functions explicitely



1

1. INTRODUCTION

The measurement of single transverse-spin asymmetry (SSA) provides an excellent oppor-

tunity to evaluate our understanding of strong interaction and hadron structure, and thus has

attracted wide insterest in both experimental and theoretical sides in recent years. Two types

of single transverse-spin asymmetry experiments have been conducted so far. One is the single

particle inclusive production in a high energy collision: A↑ + B −→ C + X, where A and B

are the initial particles with the spin of A perpendicular to its momentum direction, C is the

observed particles (such as pions) of momentum l, X represents all other particles in the final

state. In such a process, SSA is defined as

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓
=

d∆σ

2dσunp
, (1.1)

where dσ↑ and dσ↓ represent the invariant differential cross section ECdσ
↑/d3pC and ECdσ

↓/d3pC,

respectively, for the production of C with momentum pµC = (EC ,p⊥, pL). dσ
unp in Eq. (1.1) is

the differential cross section in unpolarized scattering A+B → C+X. AN is also refered to as

”left-right” asymmetry because, by rotational invariance, the spatial distribution of produced

particle C on the left with A spin-up, is the same as the spatial distribution of produced C

on the right with A spin-down. The other type of experiments of SSA is A+ B −→ C↑ +X,

where C is transversely polarized while A and B are unpolarized. In this case, SSA can also be

defined as Eq. (1.1) with dσ↑(↓) stands for the differential cross section for produced spin-up

(spin-down) particle C with respect to the reaction plane, which is defined by the incoming

and outgoing particle momenta: pA, pB, and pC .

Single transverse-spin asymmetry was first observed in 1976 by Bunce et al in the process

p+ Be → Λ0↑ +X [1]. In their experiment, SSA was significantly nonzero at relatively small

transverse momentum p⊥ and thus was once interpreted as non-perturbative effects. However,
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during the 90s, the E581/E704 Collaborations at Fermilab reported SSA up to 30%-40% for

π polarizaiton in the forward region of the process p↑(p̄↑) + p → π +X with collision energy

√
s ≃ 20 GeV . They also observed a strong rise of SSA with xF for all pion charges [2]. Later,

the E925 Collaboration conducted the same experiment in BNL independently and confirmed

the results obtained in Fermilab [3]. From the end of the 90s, a series of experiments in BNL

have shown large SSA in p↑p process with collision energy as large as
√
s = 200GeV [4]. At

the same time, the measurements in HERMES, COMPASS and JLAB-CLAS Collaboration

have also shown azimuthal single spin asymmetry in semi-inclusive particle production in the

deeply inelastic collisions (DIS) of longitudinally polarized leptons off either transversely or

longitudinally polarized proton and deuteron targets [4].

Theoretically, two years after the experiment of Bunce et al., Kane, Pumplin and Repko

concluded that SSA should be negligible at high-energy scales [5]. However, several years later,

Efremov and Teryaev pointed out that a non-vanishing single transverse-spin asymmetry can

exist in pQCD if one goes beyond the leading term [6].In 2002, Brodsky et al. demonstrated

that large SSA could be generated in perturbative QCD by calculating SSA of single particle

production in a semi-inclusive lepton hadron deep inelastic scattering [9]. Their explicit cal-

culations show that the SSA is not suppressed by Q, the large scale of the scattering. Now

it is widely accepted that SSAs in high energy collisions are directly connected to the trans-

verse motion of quarks and gluons inside the transversely polarized hadron. It is the left-right

asymmetry of such internal motion of partons that results in SSA.

Two complementary QCD-based approaches have been proposed to analyze single transverse-

spin asymmetry theoretically: the transverse momentum dependent (TMD) factorization ap-

proach [7, 8, 9, 10, 11, 12, 13] and the collinear factorization approach [6, 14, 15, 16, 17, 18].

Both approaches treat SSA perturbatively and consistent with each other in the region where

they both apply [19, 20]. The TMD factorization approach is more suitable when two very

different momentum transfers exist, i.e. Q1 ≫ Q2 & ΛQCD. It directly probes the spin de-

pendence of the parton’s transverse motion at the momentum scale Q2, while the larger scale

Q1 defines the hard collision. The collinear factorization approach is valid when all observed
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momentum transfers Q & ΛQCD. In this approach, the leading power term in the 1/Q expan-

sion, which treats partons inside hadrons as free particles with certain momentum distributon,

does not contribute to SSA because of parity and time-reversal invariance for strong interac-

tion. Therefore in the collinear factorization approach, SSA originates from the correlation

of quarks and gluons inside a polarized nucleon in the form of the twist-3 quark-gluon and

tri-gluon correlation functions [14, 15, 16].

Both TMD factorization approach and collinear factorization approach exploit the basic

factorization theorem and inherit, to some extent, the pattern of cross section in a unpolarized

hadron collsion, which is

dσA+B→C ∝
∑
abc

ϕa/A(xa)⊗ ϕb/B(xb)⊗ σ̂a+b→c ⊗Dc→C(z), (1.2)

where the summations run over parton flavors: quark, antiquark and gluon. ϕa/A(xa) and

ϕb/B(xb) are parton distribution functions, which represent the probability of finding parton a

of momentum xaPA in hadron A of momentum PA, and parton b of momentum xbPB in hadron

B of momentum PB, respectively. Dc→C(z) is the fragmentation function for a parton c of

momentum pc = l/z to fragment into a hadron C of momentum l. σ̂a+b→c is the semi-inclusive

partonic hard-scattering cross section of the process a+ b→ c. In Eq. (1.2), only the paronic

had-scattering cross section can be calculated in pQCD while both the parton distribution

function and fragmentation function are non-perturbative. Likewise, TMD factorization and

collinear factorization approaches rely on some non-perturbative functions: the TMD parton

distribution functions (PDFs) and the twist-3 three-parton correlation functions, respectively.

Our understanding of these non-perturbative functions determines the predictive power of both

approaches [21, 22]. Although the quantum evolution of these functions from one perturbative

scale to another where these functions are probed can be evaluated in pQCD [23], the abso-

lute normalization of these functions or the boundary conditions are non-perturbative and can

only be extracted from experimental data. However, before the precise data are obtained from

experiments, a calculation based on a good model could provide important insight in the mech-

anism for generating single transverse-spin asymmetry, as well as valuable knowledge of the

relative importance of various functions. In this thesis, we present our calculations of all twist-3
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quark-gluon correlation functions relevant to the SSAs in the collinear factorization approach

based on quark-diquark model of the nucleon [9, 25]. We find, in both scalar diquark and axial-

vector diquark cases, that at the first non-trivial order all quark-gluon correlation functions

corresponding to the fermionic pole contribution, Tq,F (0, x), T∆q,F (0, x), Tq,F (x, 0), T∆q,F (x, 0)

vanish. For those functions corresponding to the gluonic pole contribution, Tq,F (x, x) is finite

while T∆q,F (x, x) = 0. Our results, though model dependent, indicate that the gluonic pole

contribution is more important than that of fermionic pole contribution. The result seems

to agree with a general expectation that a quark-gluon state with the quark carries all of its

momentum is more likely than a quark-gluon state with the gluon carries all of its momentum

to interfere with a quark state of the same momentum [15].
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2. COLLINEAR FACTORIZATION APPROACH TO SSAS

Before we go into more details of Collinear factorization approach, a physical picture of the

hadron-hadron scattering process is of great help. It is accepted that in a hadron-hadron hard

collision, two partons (quark, antiquark or gluon) from different hadrons collide to produce a

leading parton c, while other partons are spectators of the process in the leading power term.

Then c fragments into hadron C which is detected. With this whole process in mind, the

physical interpretation of each term in Eq. (1.2) is obvious. To study polarization phenomena

of the process A↑ + B → C + X (C unpolarized), one has to generalize Eq. (1.2) to include

spin

dσA+B→C+X ∝
∑
abc

ϕa/A(xa, s⃗⊥)⊗ ϕb/B(xb)⊗ σ̂a+b→c(xa, xb)⊗Dc→C(z). (2.1)

This leading term keeps unchanged if spin of hadron A is flipped because of parity and time-

reversal invariance for strong interaction. Therefore it has no contribution to the numerator

in Eq. (1.1) and higher twist correlation must be evaluated. The first consistent calculation

in collinear pQCD of a considerable SSA in the region with large xF was given by Qiu and

Sterman [14, 15]. With neglectable quark mass, they introduced new twist-3 quark-gluon

correlator functions convoluted with ordinary twist-two parton distribution functions in the

light-cone coordinates. The new twist-3 functions, unlike those twist-2 functions, do not have

a simple partonic distribution interpretation. More precisely, they obtain the numerator in
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Eq. (1.1) in the process A↑ +B → C +X (C unpolarized) [15]

∆σA+B→C+X(l⊥, s⃗⊥) =
∑
abc

ϕ
(3)
a/A(x1, x2, s⃗⊥)⊗ ϕb/B(x

′)⊗ σ̂ab→c(s⃗⊥)⊗Dc→C(z)

+
∑
abc

δqa/A(x, s⃗⊥)⊗ ϕ
(3)
b/B(x

′
1, x

′
2)⊗ σ̂′ab→c(s⃗⊥)⊗Dc→C(z)

+
∑
abc

δqa/A(x, s⃗⊥)⊗ ϕb/B(x
′)⊗ σ̂′′ab→c(s⃗⊥)⊗D

(3)
c→C(z1, z2)

+higher power corrections. (2.2)

Additional arguments such as the factorization/renormalization scale have been suppressed.

In Eq. (2.2). The superscript ”(3)” indicates the corresponding function is a twist-3 function.

ϕb/B(x
′) and δqa/A(x) are the standard twist-2 unpolarized and transversity parton distribu-

tion functions. Dc→C(z) is the standard fragmentation funtion. The symbol ⊗ denotes an

appropriate convolution of these functions in partonic light-cone momentum fraction. The

twist-3 terms in Eq. (2.2) represent the twist-3 contributions from the polarized hadron A

(first row), the unpolarized hadron B (second row) and the fragmentation process c → C

(third row). For each of these contribution, the partonic hard-scattering cross sections func-

tions σ̂ab→c(s⃗⊥),σ̂
′
ab→c(s⃗⊥) and σ̂′′ab→c(s⃗⊥) are different. Because the contribution from the

first line in Eq. (2.2) to the SSA is proportional to the derivative of the twist-3 correlation

functions, which leads to a characteristic growth of SSA when xF is large [16, 17]. Therefore,

in the forward region, Eq. (2.2) could be simplified as

∆σA+B→C+X(l⊥, s⃗⊥) =
∑
abc

ϕ
(3)
a/A(x1, x2, s⃗⊥)⊗ ϕb/B(x

′)⊗ σ̂ab→c(s⃗⊥)⊗Dc→C(z). (2.3)

It is important to note that in Eq. (2.3), only the partonic hard-scattering cross section

σ̂ab→c(s⃗⊥) is calculatble in pQCD while the parton distribution functions and fragmentation

functions both have non-perturbative nature. Compared Eq. (2.3) with the leading term of

unpolarized hadron-hadron hard scattering cross section in Eq. (2.1), one could assert that

the twist-3 correlation function includes all information of single transverse-spin asymmetry

phenomena in the leading nontrivial term.

The twist-3 quark gluon correlation functions were first introduced in Ref. [14] and the

complete set of quark gluon correlation functions relevant to the SSA were constructed by
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Figure 2.1: The Feynman diagram representation for the twist-3 quark-gluon correlation func-

tions, where ki ≈ xip with i = 1, 2 [23].

Kang and Qiu in Ref. [23] as

Tq,F (x1, x2)=

∫
dy−1 dy

−
2

4π
eix1p+y−1 +i(x2−x1)p+y2⟨p, s⊥|ψ̄q(0)γ

+[ϵs⊥σnn̄gF+
σ (y−2 )]ψq(y

−
1 )|p, s⊥⟩,

(2.4)

T∆q,F (x1, x2)=

∫
dy−1 dy

−
2

4π
eix1p+y−1 +i(x2−x1)p+y2⟨p, s⊥|ψ̄q(0)γ

+γ5[isσ⊥gF
+
σ (y−2 )]ψq(y

−
1 )|p, s⊥⟩,

(2.5)

where xi = (ki · n)/(p · n) with i = 1, 2 are momentum fractions for two independent partons.

n̄µ = [1+, 0−, 0⊥] and nµ = [0+, 1−, 0⊥] are two light-like vectors and n̄ · n = 1. Because of

parity and time-reversal invariance, one could derive the following symmetry property under

the exchange of the two arguments x1 ↔ x2 [14, 15, 16, 23]

Tq,F (x1, x2) = Tq,F (x2, x1), T∆q,F (x1, x2) = −T∆q,F (x2, x1). (2.6)

the diagonal quark-gluon correlation functions Tq,F (x, x) and T∆q,F (x, x) is responsible for the

leading order gluonic pole contribution to the SSAs [6, 14, 15, 16], while the leading order

fermionic pole contribution to the SSAs is given by the off-diagonal quark-gluon correlation

functions, Tq,F (0, x) and T∆q,F (0, x), or Tq,F (x, 0) and T∆q,F (x, 0) [6, 23]. From Eq. (2.6), It

is straightforward to find T∆q,F (x, x) = 0.

In the same paper, Kang and Qiu also demonstrated that these twist-3 correlation functions

can be represented by the Feynman diagram as shown in Fig. 2.1 with proper cut vertices. In

the light-cone gauge, the cut vertices for these two quark-gluon correlation functions are given
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by [23]

VLC
q,F =

γ+

2p+
2πgδ

(
x− k+

p+

)
y δ

(
y − q+

p+

)(
i ϵs⊥µnn̄

)
[−gµσ] Cq , (2.7)

VLC
∆q,F =

γ+γ5

2p+
2πgδ

(
x− k+

p+

)
y δ

(
y − q+

p+

)(
−sµ⊥

)
[−gµσ] Cq, (2.8)

where the color contraction factor Cq is

(Cq)cij = (tc)ij . (2.9)

i, j = 1, 2, 3 = Nc and c = 1, 2, . . . , 8 = N2
c − 1, respectively. tc are the generators of the

fundamental representation of color SU(3) group. To evaluate Fig. 2.1, one still need to know

how the quark and gluon are connected to the physical proton state, which depends on the

model of the nucleon. In the next section, the calculation is presented in quark-diquark model

of the nucleon for both scalar diquark and axial-vector diquark cases [24].
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3. CALCULATION OF TWIST-3 QUARK CORRELATION

FUNCTIONS IN THE QUARK-DIQUARK MODEL

In this section, the twist-3 quark-gluon correlation functions relevant to the gluonic and

fermionic pole are calculated based on quark-diquark model of the nucleon [9, 25]. Both scalar

and axial-vector diquark cases are evaluated. The section is organized as follows. In the

first subsection, the Feynman rules and form factor used in the calculation are introduced.

In subsection B, the calculations in scalar diquark case for twist-3 quark-gluon correlation

functions relevant to both gluonic and fermionic pole contributions are presented. Finally, a

similar calculation with an axial diquark is conduced in the last subsection.

3.1 The quark-diquark model of the nucleon

In the quark-diquark model, two of the three quarks in a hadron are much closer to each

other than to the third one and form a diquark [9, 25]. The diquark could be either a scalar

diquark or an axial-vector diquark. The single quark of mass m and the diquark of mass Ms

compose the nucleon of massM . The Feynman rules are as follows. The interaction between

Figure 3.1: Feynman rules in the quark-diquark model of the nucleon: (a) vertex links the

nucleon, the quark, and the diquark, (b) interaction vertex between the gluon and the diquark,

and (c) the diquark propagator. The diquark could be a scalar particle or an axial-vector

particle. The Lorentz indices are for the gluon and the axial-vector diquark.
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the nucleon, the quark and the diquark (see Fig. 3.1(a)) is given by

iλsFs(k
2) scalar diquark, (3.1)

i λv√
2
γµγ5Fv(k

2) axial-vector diquark, (3.2)

with λs and λv represent the point-like interaction strength for a scalar and an axial-vector

diquark respectively. Fs(k
2) and Fv(k

2) are the form factors which are used to remove the un-

physical ultraviolet divergence in k⊥ integration, with k the four momentum of the constituent

quark. Several choices for the form factor were introduced and discussed in Ref.[25]. In the

following discussion, We choose the same form factor for both the scalar and the axial-vector

diquark as

F (k2) = Fs(k
2) = Fv(k

2) =
k2 −m2

(k2 − Λ2
s)

2
Λ2
s, (3.3)

where Λ2
s & M2 is the ultraviolet cutoff. We will demonstrate below that the introduction of

the form factor smoothly suppresses the influence of the ultraviolet region of k2⊥ or k2 without

affecting the pole structure. The Feynman rule for the coupling between the gluon and the

diquark in Fig. 3.1(b) is

igs(2p− 2k − q)τ scalar diquark, (3.4)

igvV
τγα(q, p− k − q, k − p) axial-vector diquark, (3.5)

gs and gv are the coupling constant for scalar diquark and axial-vector diquark respectively.

V τγα(q, p− k − q, k − p) is given by

V τγα(q, p− k − q, k − p) = gτγ(2q − p+ k)α + gγα(2p− 2k − q)τ + gατ (k − p− q)γ . (3.6)

The Feynman rule for the point-like diquark propagator with momentum k (as in Fig. 3.1(c))

is

i
k2−M2

s
scalar diquark, (3.7)

i
k2−M2

s
dαβ(k,Ms) axial-vector diquark, (3.8)
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Figure 3.2: The lowest order Feynman diagram for twist-3 quark-gluon correlation functions

in the quark-diquark model.

dαβ is the summation of different polarizations of the spin-1 axial-vector diquark. Several forms

of dαβ are discussed in Ref. [25]. In the following calculation, We choose [25]

dαβ(k,Ms) = −gαβ +
kαnβ + kβnα

n · k
− M2

s n
αnβ

(n · k)2
. (3.9)

It has the following properties

dαβ(k,Ms) = dβα(k,Ms), (3.10)

nα · dαβ(k,Ms) = 0, (3.11)

kα · dαβ(k,Ms) = 0 for k2 =M2
s . (3.12)

3.2 Calculation with a scalar diquark

In the leading power term of Fig. 2.1, The diquark can be treated as a point-like particle.

Therefore, the diquark can be expressed as the propagator shown in Eq. (3.7). The lowest

order Feynman diagram for Tq,F and T∆q,F is shown in Fig. 3.2.

First study the quark-gluon correlation function with vertex in Eq. (2.7). For simplicity, the

beam direction is along z-axis. With this consideration, the initial hadrons have no transverse

momentum p⊥ and M2 = p2 = 2p+p−. Apply Eq. (2.7), (3.1), (3.4) and (3.7) to the diagram
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in Fig. 3.2, one could obtain

T
(s)
q,F (x+ y, x) =−NcCF

g λ2s gs π
2

p+

∫
d4k

(2π)4
d4q

(2π)4
δ

(
x− k+

p+

)
y δ

(
y − q+

p+

)
δ
(
(p− k)2 −M2

s

)
×ϵs⊥σnn̄(2p−2k−q)τ

(
−gστ+

qσnτ+qτnσ
q · n

)
Tr

[
γ+(̸k+ ̸q+m)(̸p+M)γ5 ̸s⊥(̸k+m)

]
× 1

k2−m2−iϵ
1

q2+iϵ

1

(k+q)2−m2+iϵ

1

(p−k−q)2−M2
s +iϵ

F (k2)F ((k+q)2),

(3.13)

where ϵ is a small positive parameter, F (k2) and F ((k+ q)2) are the form factors contained in

the Feynman rule as in Eq. (3.3), the subscript (s) indicates the scalar diquark. Integrating

over k+,k−, and q+ using the three δ-functions in Eq. (3.13),

δ(x− k+

p+
) = p+δ(k+ − xp+) , (3.14)

δ(y − q+

p+
) = p+δ(q+ − yp+) , (3.15)

δ((p− k)2 −M2
s ) =

1

2(1− x)p+
δ

(
k− −

(1− x)M2 − k2⊥ −M2
s

2(1− x)p+

)
, (3.16)

one could obtain

T
(s)
q,F (x+ y, x) = NcCF

g λ2s gs
16πp+(1− x)

∫
d2q⊥
(2π)2

d2k⊥
(2π)2

1

k2 −m2

∫
dq−

2π

×ϵs⊥σnn̄(2p− 2k − q)τ (q+gστ − qσnτ )Tr
[
γ+(̸k + ̸q +m)( ̸p+M)γ5 ̸s⊥(̸k +m)

]
× 1

q2 + iϵ

1

(k + q)2 −m2 + iϵ

1

(p− k − q)2 −M2
s + iϵ

F (k2)F ((k + q)2),

(3.17)

with

q+ = yp+, (3.18)

k+ = xp+, (3.19)

k− =
(1− x)M2 − k2⊥ −M2

s

2(1− x)p+
. (3.20)

The integration over q− is crucial and is evaluated by taking the residue of relevant pole(s)

of the integrand in Eq. (3.17), which provides the necessary phase for a real quark-gluon
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correlation function Tq,F (x+ y, x). For the leading nontrivial gluonic and fermionic pole con-

tribution to the SSAs, one can only analyze the pole structure in Eq. (3.17) at y = 0 (gluonic

pole) and x+ y = 0 (fermionic pole) while x > 0. From

(p− k − q)2 −M2
s + iϵ = −2(1− x− y)p+q− −

y(k2⊥ +M2
s )

1− x
− 2k⊥ · q⊥ − q2⊥ + iϵ = 0,

(3.21)

one obtains the location of the pole

q− = − 1

2(1− x− y)p+

[
y(k2⊥ +M2

s )

1− x
+ 2k⊥ · q⊥ + q2⊥ − iϵ

]
. (3.22)

Since x + y < 1, the pole is in the upper half plane of the q− whenever y = 0 or x + y = 0.

However, the potential poles from q2 + iϵ = 0 and (k+ q)2 −m2 + iϵ = 0 are sensitive to these

two limits. For the fermionic pole case, x+ y = 0 while y < 0 since x > 0, q2 + iϵ = 0 provides

a pole at

q− = −
q2⊥

2|y|p+
+ iϵ, (3.23)

which is in the upper half plane of the q−, while

(k + q)2 −m2 + iϵ = 2(x+ y)p+(k + q)− − (k⊥ + q⊥)
2 −m2 + iϵ = −(k⊥ + q⊥)

2 −m2 + iϵ

(3.24)

does not provide any pole in the q− integration. Therefore, when x + y = 0 and x > 0, the

integrand of q− integration in Eq. (3.17) has only two poles from (p− k − q)2 −M2
s + iϵ = 0

and q2+ iϵ = 0. Because both of the poles are in the upper half plane of q− and the integration

dq− in Eq. (3.17) is sufficiently converging when |q−| → ∞, the q− integration vanishes by

closing the q−-contour through the lower half plane. In conclusion, T
(s)
q,F (0, x) = 0 from this

leading order calculation with a scalar diquark, so as T
(s)
q,F (x, 0) = 0, which can be derived by

an explicit calculation or the symmetry property Tq,F (x, 0) = Tq,F (0, x).

In the gluonic pole case, y = 0

(k + q)2 −m2 + iϵ = 2xp+(k− + q−)− (k⊥ + q⊥)
2 −m2 + iϵ = 0, (3.25)
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contributes to a pole at

q− =
(k⊥ + q⊥)

2 +m2 − iϵ

2xp+
− k−, (3.26)

which is in the lower half plane of q− since x > 0, while

q2 + iϵ = −q2⊥ + iϵ (3.27)

is independent of q−. In conclusion, for the quark-gluon correlation functions relevant to the

leading gluonic pole contribution to the SSAs, the q−-integration in Eq. (3.17) has two poles

from (p− k − q)2 −M2
s + iϵ = 0 and (k + q)2 −m2 + iϵ = 0 with the former in upper and the

latter in lower half plane of q−. In principle, one can close the contour in either the upper or

the lower half plane and obtain the same result. Here we choose the contour in the upper half

plane and thus

(p− k − q)2 −M2
s + iϵ = 0, (3.28)

from which we can get

q− =
2q⊥ · k⊥ + q2⊥
2(x− 1)p+

. (3.29)

Use has been made of y = 0 and ϵ is ignored. After q− integration, one could obtain

T
(s)
q,F (x+ y, x) = −iNcCF

g λ2s gs

32πp+2(1− x)2

∫
d2q⊥
(2π)2

d2k⊥
(2π)2

1

k2 −m2

×ϵs⊥σnn̄(2p− 2k − q)τ (q+gστ − qσnτ )Tr
[
γ+(̸k + ̸q +m)( ̸p+M)γ5 ̸s⊥(̸k +m)

]
× 1

q2
1

(k + q)2 −m2
F (k2)F ((k + q)2). (3.30)

Further simplification could be achieved by introducing L2
s(m

2) as

L2
s(m

2) = xM2
s + (1− x)m2 − x(1− x)M2, (3.31)

with which one could derive

k2 = 2k+k− − k2⊥

= 2xp+
(1− x)M2 − k2⊥ −M2

s

2(1− x)p+
− k2⊥

=m2 − 1

1− x

[
k2⊥ + L2

s(m
2)
]
, (3.32)
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and similarly

(k + q)2 = m2 − 1

1− x

[
(k⊥ + q⊥)

2 + L2
s(m

2)
]
, (3.33)

where Eq. (3.20) , (3.29) and y = 0 are used in the derivation. Eq. (3.30) is simplified as

T
(s)
q,F (x, x) = i NcCF

g λ2s gs

32πp+2

∫
d2q⊥
(2π)2

d2k⊥
(2π)2

1

k2⊥ + L2
s(m

2)

×ϵs⊥σnn̄(2p−2k−q)τ (q+gστ−qσnτ )Tr
[
γ+(̸k+ ̸q+m)( ̸p+M)γ5 ̸s⊥(̸k+m)

]
× 1

q2⊥

1

(k⊥ + q⊥)2 + L2
s(m

2)
F (k2)F ((k + q)2). (3.34)

In evaluating the second row of Eq. (3.34), one could take advange of y = 0 and simplify the

calculation

ϵs⊥σnn̄(2p− 2k − q)τ (q+gστ − qσnτ )Tr
[
γ+(̸k + ̸q +m)(̸p+M)γ5 ̸s⊥( ̸k +m)

]
= −2(1− x)p+ϵs⊥qnn̄Tr

[
γ+(̸k + ̸q +m)(̸p+M)γ5 ̸s⊥(̸k +m)

]
= −2(1− x)p+ϵs⊥qnn̄

(
4imϵnqps⊥ − 4iMϵnqs⊥k

)
= −8i(1− x)p+

2
(m+ xM)

[
q2⊥ − (q⊥ · s⊥)2

]
. (3.35)

With this result, Eq. (3.34) could be shown as

T
(s)
q,F (x, x)=

NcCF gλ
2
sgs

4π
(1−x)(m+xM)

∫
d2k⊥
(2π)2

d2q⊥
(2π)2

[q2⊥ − (q⊥ · s⊥)2]F (k2)F ((k + q)2)

q2⊥
[
k2⊥+L

2
s(m

2)
]
[(k⊥+q⊥)2+L2

s(m
2)]
.

(3.36)

Choose both form factors F (k2) and F ((k+ q)2) as in Eq. (3.3), which remove the ultraviolet

divergence of the integration, use Eq. (3.31) to rewrite the form factors as

F (k2) = (1− x)
k2⊥ + L2

s(m
2)

(k2⊥ + L2
s(Λ

2
s))

2
Λ2
s, (3.37)

and similarly

F ((k + q)2) = (1− x)
(k⊥ + q⊥)

2 + L2
s(m

2)

((k⊥ + q⊥)2 + L2
s(Λ

2
s))

2
Λ2
s, (3.38)

where L2
s(Λ

2
s) is given in Eq. (3.31) with m2 replaced by the cutoff scale Λ2

s. Thus one can

obtain

T
(s)
q,F (x, x)

∣∣∣
dipolar

=
NcCF gλ

2
sgs

4π
(1−x)3(m+xM)

∫
d2k⊥
(2π)2

d2q⊥
(2π)2

[q2⊥ − (q⊥ · s⊥)2](Λ2
s)

2

q2⊥
[
k2⊥+L

2
s(Λ

2
s)
]2
[(k⊥+q⊥)2+L2

s(Λ
2
s)]

2

=
NcCF gλ

2
sgs

4π
(1− x)3(m+ xM)(Λ2

s)
2

∫
d2k⊥
(2π)2

I[
k2⊥ + L2

s(Λ
2
s)
]2 , (3.39)
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I could be calculated using Feynman parameter,

I ≡
∫

d2q⊥
(2π)2

q2⊥ − (q⊥ · s⊥)2

q2⊥[(k⊥ + q⊥)2 + L2
s(Λ

2
s)]

2

=

∫
d2q⊥
(2π)2

[q2⊥ − (q⊥ · s⊥)2]
∫ 1

0
dα

2α

[(1− α)q2⊥ + α ((k⊥ + q⊥)2 + αL2
s(Λ

2
s))]

3

=

∫
d2q⊥
(2π)2

[q2⊥ − (q⊥ · s⊥)2]
∫ 1

0
dα

2α

[(q⊥ + αk⊥)2 + α(1− α)k2⊥ + αL2
s(Λ

2
s)]

3

=

∫
d2q⊥
(2π)2

∫ 1

0
dα

2α[q2⊥ + α2k2⊥ − (q⊥ · s⊥)2 − α2(k⊥ · s⊥)]
[q2⊥ + α(1− α)k2⊥ + αL2

s(Λ
2
s)]

3

= π

∫
dq2⊥
(2π)2

∫ 1

0
dα

α(q2⊥ + α2k2⊥)

[q2⊥ + α(1− α)k2⊥ + αL2
s(Λ

2
s)]

3

=
1

8π

1

L2
s(Λ

2
s)
. (3.40)

Therefore

T
(s)
q,F (x, x)

∣∣∣
dipolar

=
NcCF gλ

2
sgs

8(2π)2
(1− x)3(m+ xM)

(Λ2
s)

2

L2
s(Λ

2
s)

∫
d2k⊥
(2π)2

1[
k2⊥ + L2

s(Λ
2
s)
]2

=
NcCF gλ

2
sgs

16(2π)3
(1− x)3(m+ xM)

(
Λ2
s

L2
s(Λ

2
s)

)2

. (3.41)

Because the form factor in Eq. (3.3) suppresses the ultraviolet divergence without altering the

pole structure of the original diagram, Eq. (3.36) holds independent of the existence of the

form factors. Choose F (k2) = F ((k + q)2) = 1, which is the same with no form factors. We

present the calculation below. After integration over k−

T
(s)
q,F (x, x)

∣∣∣
point−like

=
NcCF gλ

2
sgs

4π
(1−x)(m+xM)

∫
d2k⊥
(2π)2

d2q⊥
(2π)2

[q2⊥ − (q⊥ · s⊥)2]
q2⊥
[
k2⊥+L

2
s(m

2)
]
[(k⊥+q⊥)2+L2

s(m
2)]

=
NcCF gλ

2
sgs

16π2
(1− x)(m+ xM)

∫ 1

0
dα

∫
d2q⊥
(2π)2

q2⊥ − (q⊥ · s⊥)2

q2⊥
[
α(1− α)q2⊥ + L2

s(m
2)
] .

=
NcCF gλ

2
sgs

16π2
(1−x)(m+xM)

∫
d2q⊥
(2π)2

1

q⊥

√
q2⊥+4L2

s(m
2)
ln

√
q2⊥+4L2

s(m
2)+q⊥√

q2⊥+4L2
s(m

2)−q⊥
,

(3.42)

The integration over q⊥ is ultraviolet divergent as expected.

The calculation for T∆q,F (x + y, x) is almost the same with that of Tq,F (x + y, x) except

the cut vertex is replaced by the one in Eq. (2.8). One can obtain the expression for diagram
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in Fig. 3.2 as follows

T
(s)
∆q,F (x+ y, x) =−iNcCF

g λ2s gs π
2

p+

∫
d4k

(2π)4
d4q

(2π)4
δ

(
x− k+

p+

)
y δ

(
y− q+

p+

)
δ
(
(p−k)2−M2

s

)
×sσ⊥(2p−2k−q)τ

(
−gστ+

qσnτ+qτnσ
q · n

)
Tr

[
γ+γ5(̸k+ ̸q+m)(̸p+M)γ5 ̸s⊥(̸k+m)

]
× 1

k2−m2−iϵ
1

q2+iϵ

1

(k+q)2−m2+iϵ

1

(p−k−q)2−M2
s +iϵ

F (k2)F ((k+q)2)

(3.43)

As one can find from the the pole analysis for Tq,F (x + y, x), that the contraction, trace and

the form factors do not contribute poles, all poles come from the denominators of the quark

and gluon propagators. Since these denominators are the same in Eq. (3.13) and Eq. (3.43),

for the fermionic pole with x+ y = 0, both poles are in the upper half plane of q− and thus

T
(s)
∆q,F (0, x) = T

(s)
∆q,F (x, 0) = 0. (3.44)

Because of the symmetry property in Eq. (2.6), one can expect the diagonal correlation

function T
(s)
∆q,F (x, x) relevant to the gluonic pole contrubution is zero. As a consistent test of

our model calculation, we verify this result explicitly as follows. In the same procedure as we

analyze T
(s)
q,F (x, x), after integration over k+,q+,k− and q−, we obtain

T
(s)
∆q,F (x, x) =−

NcCF gλ
2
sgs

32πp+2

∫
d2k⊥
(2π)2

d2q⊥
(2π)2

F (k2)F ((k + q)2)

q2⊥[k
2
⊥ + L2

s(m
2)][(k⊥ + q⊥)2 + L2

s(m
2)]

×sσ⊥(2p−2k−q)τ (q+gστ−qσnτ )Tr
[
γ+γ5( ̸k+ ̸q+m)( ̸p+M)γ5 ̸s⊥(̸k+m)

]
,

(3.45)

where use is made of Eq. (3.32) and (3.33) for simplication. The contraction part and the

trace part in Eq. (3.45) can be calculated in a straightforward way,

sσ⊥(2p− 2k − q)τ
(
q+gστ − qσnτ

)
= 2(1− x)p+s⊥ · q⊥ , (3.46)
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where we have used y=0. The trace part is

Tr
[
γ+γ5( ̸k + ̸q +m)( ̸p+M)γ5 ̸s⊥(̸k +m)

]
= Tr

[
γ+(̸k + ̸q −m)(̸p−M )̸s⊥(̸k +m)

]
= −mTr

[
γ+ ̸p ̸s⊥ ̸k

]
−MTr

[
γ+(̸k + ̸q)̸s⊥ ̸k

]
+mTr

[
γ+(̸k + ̸q)̸p ̸s⊥

]
= −4mp+(s⊥ · k⊥)− 4xMp+(2s⊥ · k⊥ + s⊥ · q⊥)− 4mp+(s⊥ · k⊥ + s⊥ · q⊥)

= −4(xM +m)(2s⊥ · k⊥ + s⊥ · q⊥). (3.47)

Therefore,

T
(s)
∆q,F (x, x)=

NcCF gλ
2
sgs

4π
(1−x)(m+xM)

∫
d2k⊥
(2π)2

d2q⊥
(2π)2

q⊥· s⊥[2k⊥· s⊥ + q⊥· s⊥]F (k2)F ((k+q)2)
q2⊥[k

2
⊥+L

2
s(m

2)][(k⊥+q⊥)2+L2
s(m

2)]
.

(3.48)

After utilization of the form factor as in Eq. (3.37) and (3.38), one could apply Feynman

parameter

T
(s)
∆q,F (x, x)

∣∣∣
dipolar

=
NcCF gλ

2
sgs

4π
(1−x)3(m+xM)

∫
d2q⊥
(2π)2

d2ℓ⊥
(2π)2

∫ 1

0
dα

3!α(1−α)(1−2α)(q⊥· s⊥)2

q2⊥
[
ℓ2⊥+α(1−α)q2⊥+L2

s(m
2)
]4 ,

(3.49)

where l⊥ = k⊥+(1−α)q⊥. The numerator of the α integral is antisymmetric under α↔ 1−α

while the denominator and the integration limits are symmetric. Therefore, Eq. (3.49) is zero

as expected. To demonstrate the zero result is independent of the specific form of the form

factor, we evaluate Eq. (3.48) for point-like interaction by setting F (k2) = F ((k + q)2) = 1

T
(s)
∆q,F (x, x)

∣∣∣
point−like

=
NcCF gλ

2
sgs

4π
(1−x)(m+xM)

∫
d2q⊥
(2π)2

d2ℓ⊥
(2π)2

∫ 1

0
dα

(1− 2α)(q⊥ · s⊥)2

q2⊥
[
ℓ2⊥+α(1−α)q2⊥+L2

s(m
2)
]2 .

(3.50)

The numerator in Eq. (3.50) is still antisymmetric while the denominator is symmetric under

α↔ 1−α. Therefore T
(s)
∆q,F (x, x) vanishes independent of the specific form of the form factor.

3.3 Calculation with an axial-vector diquark

Because proton and quark are both spin-12 particles, diquark can be spin-0 or spin-1, which

correspond to a scalar diquark or an axial-vector diquark, respectively. To test the sensitivity
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of our results derived above on the choice of the scalar diquark, we present here a similar

calculation with an axial-vector diquark.

The Feynman diagram is the same as Fig. 3.2 but with an axial-vector diquark. Using Eq.

(3.2), (3.5), (3.6), (3.8) and (3.9), one can obtain the expression

T
(v)
q,F (x+ y, x)=−NcCF

g λ2v gv π
2

p+

∫
d4k

(2π)4
d4q

(2π)4
δ

(
x− k+

p+

)
y δ

(
y − q+

p+

)
δ
(
(p− k)2 −M2

s

)
×ϵs⊥µnn̄V µ′α′ω′

(q, p−k−q, k−q)
(
−gµ′µ+

qµ′nµ+qµnµ′

q · n

)
dαα′(p−k)dωω′(p−k−q)

×Tr
[
γ+(̸k + ̸q +m)γαγ5( ̸p+M)γ5 ̸s⊥γωγ5(̸k +m)

]
× 1

k2−m2−iϵ
1

q2+iϵ

1

(k + q)2−m2+iϵ

1

(p− k − q)2−M2
s +iϵ

F (k2)F ((k+q)2) .

(3.51)

We still choose the form factors F (k2) and F ((k + q)2) as in Eq. (3.3), or in Eq. (3.37)

and (3.38). Following the same procedure, one could make use of the three δ-functions in the

integration over k+, k− and q+. In the integration over q−, after analysing the denominators in

Eq. (3.51), one could find that all poles are from 1/q2, 1/((k+q)2−m2) and 1/((p−k−q)2−M2
s ),

which are exactly the same with Eq. (3.13) . In other words, the pole structure of the Feynman

diagram in Fig. 3.2 is insensitive to whether the spectator diquark is a scalar or an axial-vector.

Therefore, as in the case of a scalar diquark, that all off-diagonal quark-gluon correlation

functions relevant to the leading fermionic pole contribution vanish immediately,

T
(v)
q,F (0, x) = T

(v)
∆q,F (0, x) = 0. (3.52)

Calculation of the gluonic pole Tq,F (x, x) is not straightforward. After the integration over

k+, k− and q+ using the three δ-functions, one could abtain

T
(v)
q,F (x+ y, x) = NcCF

gλ2v gv
16πp+(1− x)

∫
d2k⊥
(2π)2

d2q⊥dq
−

(2π)3

×ϵs⊥µnn̄V µ′α′ω′
(q, p−k−q, k−q)

[
q+gµ′µ−(qµ′nµ+qµnµ′)

]
dαα′(p−k)dωω′(p−k−q)

×Tr
[
γ+(̸k + ̸q +m)γαγ5(̸p+M)γ5 ̸s⊥γωγ5(̸k +m)

]
× 1

k2−m2−iϵ
1

q2+iϵ

1

(k + q)2−m2+iϵ

1

(p− k − q)2−M2
s +iϵ

F (k2)F ((k+q)2) .

(3.53)
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For the q− integration, here we still choose the pole (p − k − q)2 +M2
s = 0 as in the scalar

diquark case. After q− integration and the simplification with L2
s(m

2), we obtain

T
(v)
q,F (x+ y, x) = iNcCF

gλ2v gv

32πp+2

∫
d2k⊥
(2π)2

d2q⊥
(2π)2

×ϵs⊥µnn̄V µ′α′ω′
(q, p−k−q, k−q)

[
q+gµ′µ−(qµ′nµ+qµnµ′)

]
dαα′(p−k)dωω′(p−k−q)

×Tr
[
γ+( ̸k + ̸q +m)γαγ5( ̸p+M)γ5 ̸s⊥γωγ5(̸k +m)

]
× 1

k2⊥ + L2
s(m

2)

1

q2⊥

1

(k⊥ + q⊥)2 + L2
s(m

2) + iϵ
F (k2)F ((k + q)2) .

(3.54)

For clarity, we list Eq. (3.18), (3.19), (3.20) and (3.29) again as follows.

q+ = yp+, (3.55)

k+ = xp+, (3.56)

k− =
(1− x)M2 − k2⊥ −M2

s

2(1− x)p+
, (3.57)

q− =
2q⊥ · k⊥ + q2⊥
2(x− 1)p+

. (3.58)

The contraction and trace are long and tedious. Eq.(3.11), (3.12), (3.12) and y = 0 should be

exploited for simplification.

ϵs⊥µnn̄V µ′α′ω′
(q, p− k − q, k − q)

[
q+gµ′µ − (qµ′nµ + qµnµ′)

]
dαα′(p− k)dωω′(p− k − q)

× Tr
[
γ+(̸k + ̸q +m)γαγ5(̸p+M)γ5 ̸s⊥γωγ5( ̸k +m)

]
.

= −8ix(m+Mx)p+
2
[q2 − (S⊥ · q)2] (3.59)

After all these calculation, we obtain

T
(v)
q,F (x, x) =

NcCF gλ
2
vgv

4π
x(m+ xM)

∫
d2k⊥
(2π)2

d2q⊥
(2π)2

[q2⊥ − (q⊥ · s⊥)2]F (k2)F ((k + q)2)

q2⊥
[
k2⊥ + L2

s(m
2)
]
[(k⊥ + q⊥)2 + L2

s(m
2)]

,

(3.60)

which are the same with in Eq. (3.36) except the overall (1 − x) factor is replaced by x due

to the difference in diquark spin. Therefore, the rest of evaluation and discussion following
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Eq. (3.36) in last subsection should be the same. We just show the results as follows,

T
(v)
q,F (x, x)

∣∣∣
point−like

=
NcCF gλ

2
vgv

16π2
x(m+ xM)

∫
d2q⊥
(2π)2

1

q⊥

√
q2⊥+4L2

s(m
2)

ln

√
q2⊥+4L2

s(m
2) +q⊥√

q2⊥+4L2
s(m

2)−q⊥
,

(3.61)

T
(v)
q,F (x, x)

∣∣∣
dipolar

=
NcCF gλ

2
vgv

16(2π)3
x(1− x)2(m+ xM)

(
Λ2
s

L2
s(Λ

2
s)

)2

, (3.62)

which are the same with Eq. (3.41) and (3.42) except that one factor of (1− x) is replaced by

x.

For fermionic pole T∆q,F (0, x), one starts with

T
(v)
∆q,F (x+ y, x) = −iNcCF

g λ2v gv π
2

p+

∫
d4k

(2π)4
d4q

(2π)4
δ

(
x− k+

p+

)
y δ

(
y − q+

p+

)
δ
(
(p− k)2 −M2

s

)
×sµ⊥V

µ′α′ω′
(q, p− k − q, k − q)

(
−gµ′µ+

qµ′nµ+qµnµ′

q · n

)
dαα′(p− k)dωω′(p− k − q)

×Tr
[
γ+γ5(̸k + ̸q +m)γαγ5(̸p+M)γ5 ̸s⊥γωγ5( ̸k +m)

]
× 1

k2−m2−iϵ
1

q2+iϵ

1

(k + q)2−m2+iϵ

1

(p− k − q)2−M2
s +iϵ

F (k2)F ((k + q)2) .

(3.63)

After the integration over k+, k− and q+ using the three δ-function, and the integration over

q− by the pole structure which is the same with T∆q,F (x, x) for scalar diquark case, one obtains

T
(v)
∆q,F (x+ y, x) = −NcCF

gλ2v gv

32πp+2

∫
d2k⊥
(2π)2

d2q⊥
(2π)2

×sµ⊥V
µ′α′ω′

(q, p− k − q, k − q)
[
q+gµ′µ−(qµ′nµ+qµnµ′)

]
dαα′(p− k)dωω′(p− k − q)

×Tr
[
γ+γ5(̸k + ̸q +m)γαγ5(̸p+M)γ5 ̸s⊥γωγ5( ̸k +m)

]
× 1

k2⊥ + L2
s(m

2)

1

q2⊥

1

(k⊥ + q⊥)2 + L2
s(m

2) + iϵ
F (k2)F ((k + q)2) ,

(3.64)

The contraction (second row) and trace (third row) can be calculated as

sµ⊥V
µ′α′ω′

(q, p− k − q, k − q)
[
q+gµ′µ − (qµ′nµ + qµnµ′)

]
dαα′(p− k)dωω′(p− k − q)

×Tr
[
γ+γ5( ̸k + ̸q +m)γαγ5( ̸p+M)γ5 ̸s⊥γωγ5(̸k +m)

]
= 8p+

2
(m+ xM)x(q · s⊥)(q · s⊥ + 2k · s⊥). (3.65)
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Therefore

T∆q,F (x, x)=−NcCF
gλ2vgv
4π

x(m+ xM)

∫
d2k⊥
(2π)4

∫
d2q⊥
(2π)4

(q⊥· s⊥)(q⊥· s⊥+2k⊥· s⊥)F (k2)F ((k + q)2)

[(k⊥+q⊥)2+L2
s(m

2)][k2⊥ + L2
s(m

2)]q2⊥
,

(3.66)

which is different from Eq. (3.48) only by a constant factor. So we also explicitly verify that

T∆q,F (x, x) = 0 when it is calculated with an axial-vector diquark.

As a conclusion, we summarize our key results as follows. We find, in terms of an explicit

calculation in the quark-diquark model of the nucleon, that at the leading non-trivial order

all quark-gluon correlation functions relevant to the leading fermionic pole contribution to the

SSAs vanish,

Tq,F (0, x) = Tq,F (x, 0) = 0, T∆q,F (0, x) = −T∆q,F (x, 0) = 0 . (3.67)

We also verify that T∆q,F (x, x) = 0, and find that only the diagonal quark-gluon correlation

function, Tq,F (x, x), is finite.
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4. SUMMARY AND CONCLUSIONS

Based on the quark-diquark model of the nucleon, We calculated various twist-3 quark-

gluon correlation functions of a transversely polarized nucleon relevant to the leading soft pole

and compared their contributions to the SSAs. We found in both scalar diquark and axial

vector diquark cases, the leading fermionic pole contribution, Tq,F (0, x),T∆q,F (0, x),Tq,F (x, 0)

and T∆q,F (x, 0), vanish. Only one of the diagonal quark-gluon correlation functions relevant

to the leading gluonic pole contribution, Tq,F (x, x), is finite. The other diagonal quark-gluon

correlation function, T∆q,F (x, x), also vanishes from both the symmetry argument and explicit

calculation. Our conclusions are independent of the diquark being a scalar or an axial-vector.

Although our calculations is based on certain model which does not include all information

of a nucleon, the features of the results should allow us to conclude with confidence that the

diagonal quark-gluon correlation function Tq,F (x, x) is much larger than all other quark-gluon

correlation functions that are relevant to the leading soft pole contribution to the SSAs. This

conclusion is significant and important for phenomenological study of the SSAs. It enables us

to study the physics of SSAs without including too many unknown correlation functions at the

early stage of probing this new domain of QCD dynamics.

To have a complete understanding of twist-3 correlation functions, one still need to calculate

the tri-gluon correlation functions [23]. However, it is impossible in quark-diquark model

because of the limitation of this model.
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