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= 8.5× 10−4) and pressure throug-

hout the ignition process for the two schemes at each CFL number, compared
to the 3D DNS data from Yu and Bai [142]. . . . . . . . . . . . . . . . . . 171

7.9 Contours of HO2 for both schemes and each CFL number along the center
plane at t = 0.9τ0 with the ignition front defined as the surface of ỸH2
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SUMMARY

Chemically reacting flows contain a wide range of regimes with many velocity and time

scales. The increasing access to computational resources enables higher-fidelity simulations

of these flows. In order to take advantage of these capabilities, numerical schemes must

be robust, efficient and accurate in all of the regimes present in the flow. Pressure-based

schemes are suitable for many low Mach number flows, but are limited to low velocities and

relatively small temperature variations. Density-based schemes struggle to converge in low-

speed flows due to the time-step restrictions imposed by the acoustic velocity, which may

be orders of magnitude larger than the convective velocity. Furthermore, such codes may

exhibit excessive numerical dissipation due improper scaling of the dissipative properties of

the scheme. Chemical reactions introduce another set of temporal scales associated with the

kinetics mechanism used to model the system. These scales are often much smaller than

the convective or acoustic scales and impose additional restrictions on the time-step. This

disparity requires numerical schemes designed to handle the challenges that occur in low

Mach number, chemically reacting flows. Analysis of density-based schemes at the low

Mach number limit suggests that the development of improved, robust preconditioning with

suitable operator splitting techniques leads to improved solution fidelity.

In this work, a dual-time framework with low-Mach preconditioning is developed for

complex, chemically reacting large-eddy simulations. A new version of the well-known

MacCormack scheme is proposed and the resulting scheme improves the solution quality

significantly at low Mach numbers. An established ordinary differential equation solver

for stiff systems treats the stiffness associated with the chemical source terms. Methods to

couple the PDE and ODE solvers in both pseudo-time and in physical time are proposed

and analyzed. Validation of the non-reacting scheme and the coupled reacting scheme

using canonical test cases demonstrates the improved solution fidelity and simulations of

representative industrial applications demonstrate the combined scheme.
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CHAPTER 1

THESIS OVERVIEW

A number of schemes and approaches exist for simulating turbulent, chemically reacting

flows across the Mach number spectrum. Many of these schemes are suited for a particular

regime and ill-suited for others. For example, schemes based on the incompressible form of

the governing equations are not designed to capture the features of moderate or high Mach

number flows. On the other hand, schemes designed around high Mach number flows are

required to capture sharp gradients that may occur but these schemes are overly dissipative

for smooth flows. For many chemically reacting, turbulent systems, a full range of Mach

numbers may appear throughout the domain and numerical schemes must be designed to

handle all of the possible regimes.

Section 1.2 discusses many of the approaches for extending solvers to low Mach number

flows. The schemes are typically central schemes with explicitly added artificial viscosity for

stability (analysis of upwind schemes often relies on writing the scheme as a central scheme

with artificial viscosity arising from the upwinding). The Lax-Wendroff family of schemes

is a unique class of schemes that are central in nature and inherently stable, requiring no

additional artificial dissipation. To the author’s knowledge, this class of schemes has not

been analyzed previously in the low Mach number limit. The focus of this work is to develop

an improved preconditioning approach for chemically reacting flows using a member of

the Lax-Wendroff family of numerical schemes commonly used for Large Eddy Simulation

(LES), the classic MacCormack predictor-corrector scheme.

The remainder of this chapter provides a foundation for the analysis that follows. It starts

by motivating the interest in low Mach number scheme behavior in chemically reacting,

turbulent flows and detailing the challenges that arise in these conditions. A number of

schemes are surveyed to identify the important features required for low Mach numbers as
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well as the techniques used to address the integration of chemical source terms. It concludes

with an overview of the accomplishments of this work and an outline of this thesis.

1.1 Motivation

Computational resources continue to expand in both size and power, enabling simulations of

large aerospace systems to use methods with increasing fidelity as time moves forward. In

the realm of computational fluid dynamics, there are several classifications of methods that

may be used for turbulent, chemically reacting flows. At the highest fidelity levels, direct

numerical simulation (DNS) attempts to resolve every aspect of the flow in question. This

demands large amounts of resources and, barring revolutionary breakthroughs, simulating

practical aerospace applications remains impossible for the foreseeable future. On the

other end, the Reynolds-Averaged Navier-Stokes (RANS) approach reduces the majority

of the resolution requirements imposed by DNS through temporally filtering the governing

equations. The filtering operation implies the solution is for the mean, or time-averaged,

flow field. Consequently, all turbulent features and their effects on the mean flow must

be modeled. This permits rapid solutions and enables parametric design studies that are

useful for engineering applications. However, by filtering in time, the complex dynamics

and unsteady features that may be important in combustion are omitted. In between the two

methods lies a technique called Large Eddy Simulation (LES). Computational resources

now permit their use on highly complex, turbulent, chemically reacting flow fields. LES

uses a spatial filtering technique to remove only the smallest scales of the turbulent flow field

from the solution. This solves the problem of stringent resolution requirements that arise

in DNS. At the same time, resolving the temporal features of the flow field and requiring

models for only the smallest, scales solves the limitations of RANS approaches. Figure 1.1

illustrates the different classifications with respect to an example turbulent kinetic energy

spectrum.
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Figure 1.1: Illustration of the resolved and modeled regions of each computational technique
in an example spectrum of turbulent kinetic energy.

Proper LES requires accurate models to represent the turbulent scales that are not

directly resolved. These turbulent scales represent a portion of the inertial range and the

entirety of the dissipation range of the turbulent spectrum, and as such, the models replacing

those scales serve to mimic their dissipative effects. This generally takes the form of a

turbulent viscosity that is added to the physical viscosity in the viscous stress tensor. In

many instances, the form of these models is derived from or based on theoretical work and

formalized independent of the numerical scheme to which they are coupled for simulations.

When formulating the model independently from the numerical schemes, several as-

sumptions are generally made. It is often assumed that the filter used to separate scales is
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a perfect, low-pass filter in spectral space. However, in implicitly filtered LES, the filter

itself is never formally defined; instead, the mesh and the numerical scheme provide the

filter. Although it is often assumed that these filters are box-filters in physical space, the

actual behavior of the filter depends on the numerical scheme and is unlikely to be an ideal

(ie. sharp) filter [1]. This means that when a model is used in a simulation, its behavior is

intimately tied to the numerical scheme used. Therefore, it is essential to understand the

characteristics of the numerical scheme in the regimes of interest and to have numerical

schemes whose behavior can be controlled.

The dissipative behavior of the numerical scheme is important to understand and control

because it is easy for the influence of the turbulence model to be overwhelmed by the

numerical dissipation in the scheme. The ideal numerical scheme for LES is one that has the

minimal amount of numerical dissipation required for stability to ensure the model performs

optimally. This also suggests the ideal scheme should have dissipative properties that are

independent of flow conditions because turbulent, reacting flows contain a wide range of

conditions throughout the domain. It is well-known that without proper treatment, many

numerical schemes used for compressible flows are excessively dissipative in regions of the

flow with low Mach numbers [2, 3].

The overly dissipative nature of schemes used for compressible flows at low Mach

numbers is not the only difficulty encountered. Schemes that employ explicit temporal

integration methods show minimal dissipation from the temporal discretization, but stability

constraints impose small time steps based on the acoustic wave speeds. When the disparity

between the acoustic wave speed and the convective wave speed is large, these schemes

take an excessive number of time steps to resolve the features of interest. Additionally,

these schemes are prone to numerical oscillations that result from the decoupling of the

velocity and pressure fields at low Mach numbers, known as checker-boarding. Figure 1.2

exemplifies the oscillations in the velocity field when an explicit, compressible scheme is

used at low Mach numbers (details of this case are provided in Chapter 5). The oscillations
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Figure 1.2: The solution of a low Mach number flow over a circular bump using a com-
pressible scheme exhibits undesirable oscillations and asymmetries in the velocity field,
demonstrating the common quality issues that arise for many schemes at low Mach numbers.

and the asymmetry are emblematic of the solution degradation that occurs for many schemes

at low Mach numbers.

In the context of turbulent combustion, low Mach number flows are common and occur in

many systems that also contain high-speed or compressible flows. For example, many freely-

propagating flames and the deflagration of solid propellants occur at velocities ranging from

millimeters per second to a few meters per second. Gas turbines may have velocities on the

order of 100 meters per second, but also contain recirculation regions or stagnation regions

where velocities approach zero. Low-speed regions exist in many swirl combustors around

the annulus after the dump-plane or in the form of recirculation bubbles due to complex

vortex breakdown processes; reverse flow regions behind bluff-body stabilized flames are

similarly low speed. Even combustion problems classically envisioned as high-speed, such

as rocket motors with converging nozzles, exhibit regions of low-speed or stagnation flow

within the combustion chamber. Figure 1.3 illustrates these types of flows. In many of these

cases, the low speed regions control the behavior of the system through flame stabilization.
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Figure 1.3: Illustrations of several typical combustion configurations that contain low speed
flow regions that often dictate the dynamics of the system.

Therefore, accurate simulation of these systems requires a numerical scheme that enables

proper control of its dissipative properties, including Mach number independence.

The current challenges in engineering drive the need for accurate simulations. Specifi-

cally, many of the current challenges are centered on prediction and control of combustion

instabilities and/or improving fuel efficiencies and reducing pollutant emissions. The former

requires accurate resolution of the flow field, particularly the coupling between the pressure

field, the velocity, and the reaction rates, in all regions of the flow. The latter requires the use

of detailed chemical kinetics that are capable of predicting both low- and high-temperature

fuel oxidation and production of pollutants such as NOx. These chemical mechanisms

often have time scales that are much smaller than the acoustic or convective time scales,

resulting in even more stringent temporal resolution requirements than typically associated

with explicit schemes. The overarching goal of this work is to devise a numerical scheme for
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LES that is capable of accurately simulating all regions of a chemically reacting, turbulent

flow field using detailed chemical kinetics.

1.2 Literature Review

With the prevalence of low Mach number conditions alongside compressible and high-Mach

numbers in many interesting systems, schemes that have properties independent of Mach

number are desirable. One must understand the origin and nature of the difficulties at these

conditions before schemes to address the challenges may be developed. This section outlines

the challenges that occur at low Mach numbers. Following this, a number of schemes

for these conditions are presented and assessed relative to the desired goal of turbulent,

chemically reacting LES. Finally, the section concludes with a discussion of approaches

to treat stiff chemical source terms, particularly in the context of the low Mach number

conditions of interest.

1.2.1 Challenges at Low Mach Numbers

The numerical difficulties in low Mach number flows emerge from the disparity in the

eigenvalues, λi, of the system [2, 3]. Mathematically, if the condition number, or stiffness,

of a matrix is κ = max|λi|/|λj|, the system using the matrix becomes more difficult to solve

(or stiffer) as κ→∞. For the Euler equations, the matrix of concern is the flux Jacobian

and the resulting eigenvalues in three dimensions are λ ∈ {u+ c, u− c, u, u, u} where u is

the convective velocity and c is the acoustic velocity such that the eigenvalues u + c and

u − c correspond to the right- and left-running acoustic waves. This gives a condition

number κ = 1 + 1/M where M is the Mach number [3]. In low velocity regions of the flow,

and most evidently at stagnation points, the condition number of the Euler equations tends

towards infinity and the equations are ill-conditioned. For Navier-Stokes calculations, the

eigenvalues and condition number remain the same for flows that are convection-dominated

(ie. the Reynolds number is large, Re� 1). As the velocity approaches zero, two branches
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occur in the eigenvalues depending on the relationship between the Mach number and the

Reynolds number [3]. In the event that Re� 1 and Re/M � 1, the acoustic eigenvalues

remain the same but the three remaining eigenvalues are imaginary with |λ|= u/Re, giving

a condition number κ = (1 + 1/M)Re. This is an ill-conditioned case because Re/M � 1.

For the situation where Re � 1 and Re/M � 1, the first two eigenvalues are no longer

related to the acoustic velocity while the remaining three are unchanged from the previous

branch. The first eigenvalue becomes u and the second is imaginary with |λ|= uγ/Re where

γ is the ratio of specific heats. The resulting condition number is κ = γ/Re, which is again

ill-conditioned because Re� 1. This stiffness and the resulting ill-conditioning presents

numerical challenges that need to be addressed for accurate and efficient simulation of low

Mach number regions in a flow.

1.2.2 Numerical Methods for Low Mach Number Flows

Multiple methods exist to reduce the difficulties due to stiffness at low Mach numbers. These

methods are generally classified as either pressure-based methods or density-based methods,

depending on the original form of the governing equations [4]. Pressure-based methods

originate from the incompressible form of the governing equations and use corrections to re-

couple the velocity and pressure terms. In the incompressible limit, the governing equations

are no longer hyperbolic and the pressure becomes independent of density, requiring the

pressure to be updated using a Poisson equation rather than the equation of state. Time

marching schemes like those used for compressible flows are not suited for this regime [5]

and specifying the boundary conditions becomes difficult [6].

A class of iterative schemes called the semi-implicit, pressure-linked equations (SIM-

PLE) uses staggered grids by storing the pressure and velocity at the cell-centers and

cell-vertices respectively [7, 8]. Acharya et al. [8] provide a review of the SIMPLE scheme

as well as several of its variants that improve certain aspects of the original scheme such as

the SIMPLE-Consistent (SIMPLEC) and SIMPLE-Revised (SIMPLER) schemes. Karki
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and Pantankar [9] extended the SIMPLER algorithm by using two steps for the pressure

correction. The first step updates the thermodynamic variables and the second updates the

velocities. These extensions allowed the SIMPLER scheme to treat flows with temperature

and density variations. Asymptotic analysis based on Mach number enabled Munz et al [10]

to develop multiple pressure corrections for the SIMPLE schemes, extending the range to

higher Mach numbers.

Non-iterative approaches based on pressure corrections also exist. The Pressure-Implicit

with Splitting of Operators (PISO) scheme removes the iterative process from the SIMPLE

schemes [11]. This family of schemes, when properly extended, is capable of solving

reacting flows [12] and may be applied to moderate subsonic through supersonic Mach num-

bers [13]. Although the schemes may be used for a range of Mach numbers, compressible

subsonic, transonic, and supersonic Mach number flows present numerical difficulties [13].

Both the SIMPLE and PISO family of schemes were designed for use on staggered grids

to avoid cell-to-cell oscillations – so-called checker-boarding – due to the decoupling of

pressure and velocity [4]. Extensions of the schemes to collocated grids are possible through

proper interpolation techniques to introduce the required coupling. The well-known Rhie

and Chow scheme eliminates the checker-boarding that appears on collocated grids [14] and

may be viewed as a fourth-order artificial dissipation term applied to the pressure field only

[4].

It is possible to apply the time-stepping techniques used in the compressible solvers to

the incompressible equations. This is done by introducing an artificial compressibility factor

δ into the governing equations such that an artificial equation of state relates an artificial

pressure and artificial density, p = ρ/δ [6, 15]. With the addition of this term, the governing

equations become hyperbolic, just as if they represented a compressible flow, and time

marching schemes are again effective [5]. The value of δ is chosen to optimize convergence

and is constrained by the independence of the final solution on its value. It can be shown
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that artificial compressibility is equivalent to density-based preconditioning techniques with

the proper definitions of δ [2].

The artificial compressibility approach takes the incompressible equations and creates

a system that may be solved using a compressible solver. However, it is also possible to

approach the problem from the other side and devise a method that prevents the density-

based methods from becoming ill-conditioned in the low Mach number limit. This approach

is desirable for flows with a wide-range of Mach numbers where the compressible equations

may be required in some regions of the flow, while others are effectively incompressible;

it is also important for flows with significant thermal effects where the density is variable

but the flow velocities are low. These methods are also usually based on collocated grids,

which require significantly less book-keeping, are easier to implement, and require less

memory compared to the staggered schemes [4, 16]. The low Mach number extensions for

density-based methods fall into two categories: asymptotic methods and preconditioning

methods.

Asymptotic methods are based on perturbation analysis of the governing equations. This

is done by expanding the equations using Taylor-series approximations based on Mach

number and this has been done in the context of reacting flows [17–19]. Components of the

perturbed equations may be neglected, thereby reducing the differences in the wave speeds.

However, neglecting these components eliminates the ability to resolve those components

when they may be important. This prevents the application of asymptotic methods to

acoustic-combustion interactions and instabilities, as well as flows with a wide range of

velocities. Because of this limitation, these methods are not considered further.

Preconditioning techniques modify the eigenvalues of the coupled system of equations

to reduce the stiffness [2, 3, 5, 20]. In contrast with the asymptotic methods, preconditio-

ning methods may be designed to modify the eigenvalues based on local flow conditions.

This enables the retention of acoustic waves when physically relevant and allows optimal

convergence rates and accuracy regardless of Mach number [3]. Choi and Merkle [21]
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introduced a matrix preconditioning scheme to the compressible equations and compared

the convergence across Mach numbers to the convergence of the artificial compressibility

approach. The authors found that with this matrix preconditioning approach, the rate of

convergence is independent of Mach number and convergence is rapid for Mach numbers as

low as M = 0.05 [21]. Shortly thereafter, Turkel [22] sought to combine several specialized

preconditioning approaches into a unified approach. A generalized preconditioner that uses

two parameters, α and β, is demonstrated for a number of different dependent variable choi-

ces. It is shown that many of the existing preconditioners, including that of Choi and Merkle

[21], are a subset of this generalized preconditioner and the Choi–Merkle preconditioner can

be recovered by setting α = 0. The modifications to the eigenvalues guarantee the system is

well-conditioned, ensuring accuracy and efficiency across a wide range of Mach numbers

[3].

This Mach number independent behavior is intimately tied to the dissipative properties

of the discretization approach. The finite volume approach on collocated grids stores all of

the solution variables at the cell-centers and interpolates this solution to quadrature points on

the faces between cells. The interpolation techniques may be of any order of accuracy and

may be symmetric (central) about the face or biased (upwind). The number of quadrature

points on a face, combined with the interpolation order of accuracy, determines the formal,

global order of accuracy of the scheme. Central interpolation contains no dissipative errors

(although dispersive errors may exist) and is therefore ideal for smooth flows [4, 23]. The

non-dissipative behavior of the interpolation minimizes errors, but also leads to numerical

instabilities. Artificial viscosity techniques [24] or high-order, low-pass filters [25–29]

may be used to add sufficient dissipation to provide numerical stability. Unfortunately,

these techniques use the eigenvalues of the system. For low Mach number flows without

preconditioning, the dissipation introduced is excessive. Proper scaling of the dissipative

terms through preconditioning provides proper bounds and restores accuracy in a Mach

number independent fashion [3]. Interpolation schemes with a stencil biased in the upwind

11



direction are typically more robust than central interpolation schemes owing to the inherent

dissipation in the interpolation. These schemes likewise require proper scaling at low Mach

numbers to ensure accuracy.

Schemes like the Convective Upwind and Split Pressure (CUSP) [30, 31] and the

Advection Upwind Split Method (AUSM) [32] seek to control the dissipation through

decomposing the total flux between cells into convective and pressure fluxes. This enables

the interpolation procedure for each type of flux to be chosen independently. The CUSP

scheme, for example, chooses an interpolation based on the local Mach number. If the flow

is supersonic, both fluxes are upwinded; otherwise, the convective term uses an upwind

interpolation while the pressure term uses a downwind interpolation. This matches the

domain of dependence based on the eigenvalues of the system in subsonic flow [30]. The

AUSM scheme is similar, but the implementation of the dissipation terms is different [33].

Both CUSP and AUSM have been extended to low Mach numbers with preconditioning [3,

5, 34–37].

In addition to the schemes just presented, there exists an additional class of schemes

using central interpolation but possessing inherent numerical dissipation. This eliminates the

need for additional numerical dissipation in smooth flows. These schemes use Taylor-series

expansions in the independent variables, resulting in the well-known Lax-Wendroff scheme

and several variants [4]. The MacCormack scheme [38, 39] is one such variant and is a

popular choice for chemically reacting large-eddy simulations (LES). The original version

of the scheme does not use any artificial dissipation or filtering for smooth flows. It is

inherently stabilized by applying alternating sequences of first-order derivatives, resulting

in a second-order accurate scheme. Using alternating first-order derivatives leads to a

small numerical stencil, and this means the MacCormack scheme is easy and efficient to

implement in parallel computational environments. As an explicit scheme, there are no

global operations required to advance the solution in time. The two-step formulation is

well-suited for non-linear equations, including those with source terms, and eliminates much
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of the computational expense of the original Lax-Wendroff scheme [4]. Although frequently

used for compressible flows [4], the MacCormack scheme has not been previously analyzed

or applied to low Mach number flows. It is this scheme that forms the foundation of this

work.

The early studies using preconditioning focused primarily on the steady-state solution

and therefore the preservation of time-accuracy was not required. For unsteady calculations

where time-accuracy is required, a dual-time procedure is created where a pseudo-time

derivative is introduced to the governing equations and the solution is marched in pseudo-

time until convergence is reached. The resulting field is the unsteady solution at the resulting

physical time level [40]. Withington, Shuen and Yang [41] first demonstrated the dual-time

approach combined with preconditioning for chemically reacting flows. The authors used a

first-order implicit solver in pseudo-time to drive convergence to the solution of a second-

order accurate implicit scheme in physical-time for each physical timestep. The chemical

source terms were computed using a point-wise, implicit scheme; no special treatment

was given to equalize the chemical, convective, and acoustic eigenvalues. This approach

was generalized to include a viscous preconditioning parameter [20] and demonstrated

in multi-dimensional flows [42]. Again, no special treatment was given to the chemical

eigenvalues and the chemical source terms were computed using an implicit scheme. Weiss

and Smith [5] proposed a preconditioner that was not restricted to ideal gases and retained

the derivatives of temperature with density for solving flows where density is only a function

of temperature. This preconditioner was extended to account for chemical species and used

to solve reacting flows; as with the other authors, the chemical source terms were treated

implicitly and no special treatment was given to the chemical eigenvalues [43]. In a later

review, Turkel [2] indicates that many of the successful preconditioning applications have

used the Weiss–Smith form of the preconditioner and it is this form that is used in the current

work.
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The introduction of preconditioning removes the time-accuracy of the equations by

modifying the wave speeds [3]. This time-accuracy is restored through the introduction of

a pseudo-time derivative that contains the preconditioning instead of applying the precon-

ditioning to the physical-time derivative. The pseudo-time derivative is iterated until the

converges to a “steady-state”, at which point the governing equations return to their unaltered

form [3]. This two-level time scheme is known as a dual-time scheme, first introduced

by Jameson [44] in the context of accelerating the convergence of an implicit scheme. In

that instance, the objective was to use a multi-grid acceleration technique alongside local

time stepping for the convergence acceleration. Both of these techniques are only valid

for steady-state solutions, but the introduction of the dual-time procedure extended them

to unsteady solutions. The inner iterator may be either explicit or implicit, which permits

considerable flexibility in implementation. In particular, choosing an explicit scheme as

the pseudo-time iterator maintains all of the simplicity and efficiency of implementation on

parallel computers to yield an implicit scheme in physical time. Combined with techniques

to accelerate convergence such as local-time stepping or multi-grid, and/or techniques to

increase the local time step values such as low-Mach number preconditioning, dual-time

schemes relax many of the difficulties with implementing implicit schemes.

1.2.3 Treatment of Stiff Chemical Kinetics

Even for convection dominated flows at moderate speeds – like those occurring in aerospace

and industrial combustion systems – multi-component flow and chemical reactions introduce

a new set of time scales and eigenvalues. The chemical reactions themselves may introduce

eigenvalues that are the inverse of the characteristic chemical time scales [45]. These

eigenvalues can be well over 1× 1020 s−1, which introduces considerable stiffness into the

system in the flame fronts for even moderate flow velocities [3]. Additionally, the sign

of the chemical eigenvalues affects the stability of the numerical methods used. Positive

eigenvalues that arise during pre-heat and ignition phases of combustion are unconditionally
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stable for explicit schemes but only conditionally stable for implicit schemes [46]. The

reverse is true for negative eigenvalues that occur throughout the flame. This disparity

demands the use of sophisticated solvers such as DVODE [47], dynamic/adaptive methods

to reduce stiffness [48, 49], or the use of time-step restriction techniques in the scheme used

to integrate the full system of equations.

Reduction of the stiffness in the chemical source terms may be achieved using multiple

techniques. The dynamic adaptive hybrid integration (AHI) approach integrates the fast

species and reactions using an implicit scheme while the slow reactions are integrated using

an explicit scheme [50]. The speed of the species is determined during the simulation based

on their respective analytical timescales. By removing the slow species from the system

requiring implicit integration, the size of the source term Jacobian is significantly reduced

and in turn the cost of the implicit solver is also reduced.

In 2007, Sankaran and Oefelein [51] presented a preconditioning method for integrating

stiff chemical mechanisms in a zero-dimensional reactor. The authors attempt to derive a

generic scaling parameter based on the local combustion process to solve the problem of

ad hoc scaling parameters used by others [3, 52]. This scaling parameter is found using a

simple, global mechanism and the parameter modifies the eigenvalue of the reacting system,

turning the large, positive eigenvalue into a negative eigenvalue, stabilizing the system.

However, the authors were not able to generalize the process for a generic, multi-step

chemical mechanism. More recent work by Hansen and Sutherland [53] extend the work of

Sankaran and Oefelein [51] for use with larger, more complex chemical mechanisms. These

efforts for preconditioning the source term integration are still confined to zero-dimensional

reactors and have not yet been applied to multi-dimensional flows with reactions.

The second approach is to treat the chemical source terms as a local, pointwise problem

decoupled from the spatial fluxes. This approach is known as operator splitting and permits

the use of dedicated solvers for solving the stiff chemical source term differential equations

that arise within each computational point [54–59]. Such solvers are optimized for treating
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the disparate scales in detailed kinetics. The most popular of these methods are based on

implicit methods for sparse systems. Numerous solvers exist and combine information

contained in the eigenvalues with careful selection of time step size to control the error and

minimize the stiffness of the problems. The DVODE solver [47] is a popular choice.

Lian et al. [46] discuss how source terms arising from chemical reactions, as well

as those from turbulence models, can negatively impact the stability and convergence of

the solution. Positive source terms are best handled with an explicit integration scheme

while negative source terms (sinks) are best handled implicitly. These positive source terms

cause the solution to grow and care must be taken to choose appropriate time steps lest

the solution grow too much and therefore deviate from the physical and accurate values

causing instability. Sinks, on the other hand, work to stabilize the solution by driving it to

zero. Explicit treatment of sink terms may lead to unphysical sign changes if the integration

step is too large, causing instability or unphysical values. In the context of the dual-time

framework, care must be taken in choosing the physical time step to avoid instabilities due

to source terms [46, 60].

Source terms are not the only difficulty in unsteady flows; strong non-linearities preclude

large time step advances [60]. Lian et al. [60] introduce a method to limit the time step by

estimating the change in the solution over the chosen time step using the residual. An upper

bound on the time step is user-specified and represents the ideal integration size based on

the users’ requirements. If this estimate exceeds an acceptable tolerance, a smaller time step

is chosen so that the limit on the change in the solution is enforced. In combination with the

local time step acceleration technique employed with the dual-time stepping procedure, it

is shown that this limiting procedure is typically confined to small regions of flows where

non-linearities or source terms are strong [60]. By only using the limiting approach where

needed, the stability and accuracy of the scheme is not compromised while the increase in

cost is relatively minimal. Unfortunately, applying these non-linear time step controls to
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multi-step, explicit schemes is not straightforward. Techniques to enforce these limits using

the preconditioning parameter directly are proposed in this work.

Venkateswaran et al. [52] discuss the specific issues that arise in chemically reacting

flows. The authors identified two primary regimes in the chemical reaction process: the

first, a non-linear phase, is characterized by both positive and negative eigenvalues (sources

and sinks, respectively); the second phase is called the linear phase and is characterized

by predominately negative eigenvalues. Stability analysis shows that implicit schemes are

unconditionally stable for chemical mechanisms only when all the eigenvalues are negative

— in the presence of large, positive eigenvalues (strong sources), implicit schemes may be

unstable and explicit schemes should be used [3, 52]. These large, positive eigenvalues are

located in regions of ignition and may dominate the other terms in the species equations

while the resulting heat release dominates the other terms in the energy equation. To address

these issues, it is possible to gradually introduce the heat release and chemical source

terms through an ad hoc scaling function that increases through the iterations until the full

heat release and source terms are reached [52]. Although effective, this destroys the time

accuracy of the simulation and may be used only when the steady state is desired. This is not

a problem when using the dual-time formulation, where the convergence to “steady state” in

pseudo-time is the objective. For time-accurate solutions, it is possible to adapt the time step,

reducing it when the chemical reactions introduce large, positive eigenvalues and increasing

it when the eigenvalues are predominately negative; this approach is also ad hoc and a

generic way to scale the time step based on the local combustion process is unknown [52].

At transonic, supersonic and hypersonic conditions, the flow time scales and the chemical

time scales may be close to one another and the system will be well-conditioned. However,

at lower speeds like those occurring in many combustion applications, the disparity between

the flow time scales and the chemical time scales increases and the conditioning of the

system becomes worse. This is exacerbated when preconditioning is used because the flow
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time scale is now close to the convective time scale instead of the much-smaller acoustic

time scale [61].

1.3 Objectives

The motivating interest is to develop a methodology that extends the existing compressible

capabilities for LES in the LESLIE code [62, 63] into the low Mach number regime with

stiff chemistry, creating an all-Mach number, reacting flow solver. In order to accomplish

this, the following objectives have been met:

1. Analyze the MacCormack scheme at low Mach numbers and develop a generali-

zed, dual-time form of the scheme using preconditioning to address deficiencies

and improve performance.

Analysis of the 1971 form of the MacCormack predictor-corrector scheme [39] shows

that the inherent dissipation is ill-posed at low Mach numbers, consistent with the

behavior of unmodified artificial dissipation schemes [2, 3]. The straight-forward

application of preconditioning to the original scheme ensures proper scaling of the

inherent dissipation for steady preconditioning, but unsteady preconditioning reverts

to the overly-dissipative form. To address these limitations, a new, generalized form of

the scheme is proposed where the original scheme is augmented with a pressure-only

artificial dissipation similar to the Rhie and Chow scheme [14]. The results indicate

the scheme exhibits less dissipation for low Mach number flows relative to the original

1971, explicit scheme and the 1971 scheme with preconditioning. The reduction

in dissipation means the scheme is more efficient at low Mach numbers as it takes

significantly refined grids with the non-preconditioned scheme to match the solution

quality. Moving towards LES, it is also shown that the temporal evolution of isotropic

decaying turbulence at low Mach numbers exhibits less numerical dissipation than

the original scheme and the resulting flow statistics are insensitive to the physical

time step chosen for the time steps tested. This is an important step to ensuring that
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the numerical dissipation is minimal and that the physical and modeled turbulent

dissipation are the dominant contributors to the dissipation in the flow.

Enhancements to the robustness and efficiency of the preconditioned scheme are made

through the introduction of new preconditioning definitions. These definitions restrict

the amount of preconditioning applied to the equations when the local conditions show

strong non-linearities. The restrictions are derived using a Fourier analysis technique

to impose limits used in other, non-linear time step control schemes [60]. By limiting

the preconditioner instead of changing the time step, the new preconditioner definitions

may be used with any preconditioned scheme. Additionally, the Fourier technique

used permits the design of preconditioners to impose new limits based on the local

flow conditions.

2. Develop schemes to couple external, stiff chemical source term solvers to the

dual-time framework to enable robust, accurate simulations with detailed che-

mical kinetics.

The introduction of preconditioning permits larger time step sizes for each cell in

the pseudo-time iteration relative to the explicit integration scheme without precon-

ditioning. As a result, the integration of the chemical source terms must be treated

carefully to ensure accuracy despite the large difference between the time step size and

the characteristic time scales of the reactions. This problem is exacerbated with stiff

chemical mechanisms. Common approaches to mitigate stiffness issues in single-time

schemes based on operator splitting techniques introduce errors that, when applied

to dual-time schemes, can compromise the accuracy of the resulting scheme. The

traditionally, fully coupled approach to treating chemistry in dual-time schemes con-

tains ad hoc modifications that can lead to a lack of robustness and/or efficiency. Two

new schemes are proposed to address these limitations and are based on approaches

used to integrate chemical source terms in single time schemes. Care has been taken
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in the newly proposed schemes to understand and mitigate the errors that arise from

operator splitting.

The first scheme is an extension of the consistent splitting scheme, first demonstrated

by Schwer et al. for single-time schemes, to dual-time schemes [64]. This scheme

uses a stiff solver to integrate the chemical source terms and spatial fluxes together,

the former treated implicitly and the latter treated explicitly using the generalized

MacCormack scheme. Integrating these together eliminates the steady-state errors that

otherwise degrade the accuracy of operator split schemes [65] and ensures that all error

terms arising from the mixed implicit/explicit treatement of the terms are contained

on the left-hand side of the system [64]. The importance of the consistent splitting

approach is demonstrated by using an alternate scheme that employs a traditional

operator splitting scheme in pseudo-time. Because operator split schemes are known

to converge to the incorrect steady-state without special modifications [65], operator

splitting in pseudo-time leads to unacceptable errors in the physical time accuracy of

the scheme as shown in Chapter 7

The second scheme is based on the well-known Strang splitting [66] in physical

time, where the preconditioned scheme is used to solve the stages associated with

the flux operators and an external, stiff solver is used to solve the stages associated

with the reactions. This is a straight-forward and logical extension of the operator

splitting done in single-time schemes, but it requires subtle changes in a dual-time

scheme to ensure consistency with the original governing equations when a dual-time

scheme is used to integrate the fluxes. Additionally, the scheme has splitting errors in

physical time proportional to the time step and the eigenvalues of the Jacobian from

the chemical mechanism. These errors may be unacceptably large for large physical

time step values, but acceptable at smaller choices. Despite these drawbacks, the

scheme requires very few chemical integration steps relative to the other approaches

and this can result in substantial cost reductions.
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3. Implement advanced turbulence-chemistry closures in the dual-time, precondi-

tioned framework.

Using grids whose spatial resolution is determined by the turbulent flow features, as

is often done for LES, results in grids too coarse to resolve the flame front. Numerous

approaches exist to treat this disparity in resolution and to model the interactions

between the turbulence and the flame. In this work, the dynamically thickened flame

(DTF) model [67] is used with the dual-time, preconditioned scheme for practical

applications. It is also shown that the ideal physical time step size for a non-reacting

LES is too large for a chemically reacting flow, whose time step size requirement

based on solution accuracy is driven by the reaction-diffusion processes in the flame

front.

4. Apply the dual-time preconditioning scheme to a complex, reacting flows repre-

sentative of industrial or aerospace applications.

Two configurations of practical interest are considered. The first is the Volvo Flyg-

motor, a premixed, bluff-body stabilized combustor that is the subject of many ex-

perimental and numerical studies [68–78]. Simulations performed using an explicit,

compressible scheme on three grid resolutions as part of the Model Validation for

Propulsion workshop at the 2017 AIAA SciTech meeting [79] serve as a baseline for

comparison with the preconditioned scheme on the coarsest grid [80]. The preconditi-

oned scheme captures the recirculation zone in the experimental measurements more

accurately than the explicit scheme, where all three grid levels predicted a wake-like

structure. Other metrics are compared relative to the experimental data and explicit

results. On the coarsest grid, the preconditioned scheme takes approximately ten times

more computational expense than the explicit scheme on the same grid. However,

consistent with the observations in the simpler cases, the explicit schemes requires

more than a factor of ten increase in resources to capture the same solution quality.
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This is not demonstrated directly, but inferred from the fine grid solution with the

explicit scheme.

The second configuration is the Cambridge slot burner with a rod-stabilized V-flame

[81–84]. This has available experimental datasets and the premixed and stratified

conditions are simulated here. With inflow velocities of approximately 5 m s−1 and

moderate levels of turbulence, this is an ideal target for evaluating the preconditioned

scheme using a stiff chemical mechanism for the methane fuel. Due to the low

Mach numbers in the flow, the preconditioned scheme is faster on a given grid

resolution relative to the explicit scheme, in addition to the accuracy benefits of

the preconditioned scheme. The preconditioned scheme’s success with this case

demonstrates the improved capabilities enabled by this work.

1.4 Thesis outline

Chapter 2 outlines the physical governing equations used throughout the work, including

the aspects of Large-Eddy Simulation and the required models. This is followed by a

presentation of the original, 1971 form of the MacCormack scheme in Chapter 3. Analysis

shows that the inherent dissipative behavior of this family of schemes is degraded in the

low Mach number limit and modifications to the MacCormack scheme are needed to

ensure Mach-number independent dissipation and optimal scheme convergence. Chapter 4

provides the changes needed to rectify the solution issues at low Mach numbers through the

introduction of a preconditioned, dual-time formulation of the MacCormack scheme. The

selection of time step size in the dual-time, preconditioned framework is discussed. Novel

preconditioner definitions based on a Fourier analysis of perturbation responses improve the

robustness to pressure disturbances by several orders of magnitude. Several canonical test

cases building up to the LES of practical configurations in Chapter 5 highlight the improved

performance of the proposed scheme.
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With the fidelity of the non-reacting scheme established, the emphasis turns to the

reacting scheme formulation and validation. Chapter 6 outlines the existing techniques

used to couple external, stiff solvers for ordinary differential equations (ODEs) for the

integration of chemical source terms in single-time schemes. These techniques are then

extended to dual-time schemes and the importance of careful selection of operator splitting

techniques is discussed. The reacting schemes are validated using the autoignition of high

pressure, lean, premixed hydrogen mixtures with and without temperature and composition

inhomogeneities. This configuration is selected because it is well studied using direct

numerical simulation, the detailed chemical mechanism is stiff, and slight variations in

temporal accuracy or in the coupling between reaction and diffusion manifolds results in

large variations in the final solutions. This tests all of the critical aspects of the resulting

schemes.

Based on what is learned during the autoignition studies in Chapter 7, the dual-time,

preconditioned scheme is applied to two combustion rigs of industrial interest in Chapter 8.

The first is a well-studied, premixed, bluff-body stabilized flame. Extensive numerical

and experimental data is available for comparison with this rig. The second is a turbulent,

rod-stabilized V-flame with both premixed and stratified configurations. Experimental data

is available for this rig, but to date, this is the first application of LES on this configuration.

Finally, the results are summarized and critiqued in Chapter 9 and avenues for future research

are given.
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CHAPTER 2

GOVERNING EQUATIONS

The types of flows of interest in this work are continuum flows with variable thermodynamic

and transport properties in both space and time. Additionally, they are generally turbulent

and therefore display a wide range of spatio-temporal scales. This chapter begins with

an introduction of the equations for a three-dimensional, viscous flow. The formulation

is separated into non-reacting, single component fluids and reacting, multi-component

fluids. Although many equations of state exist, all cases considered are ideal gases and the

description of this equation of state is provided. The details of the evaluation of the transport

properties is also given.

Properly resolving every length and time scale in a turbulent flow is cost-prohibitive. To

make the simulation of complex flows tractable, a technique based on spatially filtering the

governing equations called large-eddy simulation is employed. The details of this approach

as well as required models are given. The chapter ends with a description of the dual-time,

preconditioned framework for chemically-reacting LES. Other than the extension of the

preconditioning matrix to include the one-equation kinetic energy model, these developments

are consistent with the existing literature [3, 5].

2.1 Non-reacting Navier-Stokes Equations

The vector form of the Navier-Stokes equations for a viscous fluid neglecting body forces is:

∂

∂t

˚
Ω

WNR dV +

¨
∂Ω

[FNR −GNR] · dA = SNR (2.1)
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where Ω is the domain, ∂Ω is the boundary of domain Ω, and

WNR =



ρ

ρu

ρv

ρw

ρE


, FNR =



ρu

ρuu+ p̂ı

ρuv + p̂

ρuw + pk̂

u (ρE + p)


,

GNR =



0

τxi

τyi

τzi

ujτij + q


, SNR =



0

0

0

0

0



(2.2)

The density is ρ and u = ûı + v̂ +wk̂ is the velocity vector. The density and pressure

p are related through the equation of state presented in Section 2.3. The total energy is

composed of the internal energy, e and the kinetic energy, 1/2u · u:

E = e+ 1/2u · u (2.3)

The internal energy for the single-component fluid here is:

e =

∫ T

T0

cv(τ)dτ (2.4)

where cv is the heat capacity at constant volume and may be a function of temperature.

The viscous shear stress tensor for a Newtonian fluid is:

τij = µ (T )

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ (T )

∂uk
∂xk

δij (2.5)
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where µ (T ) is the molecular viscosity as a function of temperature, λ (T ) is the bulk

viscosity and δij is the Kronecker delta. For the fluids considered here, Stokes’ hypothesis

is applied such that the trace of the stress tensor is zero. The result of this hypothesis is to

relate the bulk viscosity to the molecular viscosity, λ = −2/3µ. Using this assumption, the

viscous stress tensor is now:

τij = 2µ

(
Sij −

1

3
Skkδij

)
(2.6)

where Sij = 1/2
(
∂ui
∂xj

+
∂uj
∂xi

)
is the rate-of-strain tensor. The heat flux q = −κ(T ) ∂T

∂xj

where κ(T ) is the thermal diffusivity coefficient. The details of computing the state variables

p and T are given in Section 2.3 and the details for transport properties κ and µ are in

Section 2.4.

2.2 Reacting Navier-Stokes Equations

Consideration of multi-component, chemically reacting fluids extends the system of equati-

ons to incorporate the transport and reactions of the individual chemical species. This adds a

new conservation equation for each of the species partial densities, which each may contain

non-linear, coupled source terms. The resulting set of equations requires additional models

for transport properties and equations of state to account for the influence of the variable

composition. The governing equations are:

∂

∂t

˚
Ω

WR dV +

¨
∂Ω

[FR −GR] · dA = SR (2.7)
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with the set of variables for a multi-component flow neglecting body forces:

WR =



ρ

ρu

ρv

ρw

ρE

ρYk



, FR =



ρu

ρuu+ p̂ı

ρuv + p̂

ρuw + pk̂

u (ρE + p)

ρYku



,

GR =



0

τxi

τyi

τzi

ujτij + q

−Jk



, SR =



0

0

0

0

0

ω̇k



(2.8)

where Yk is the mass fraction of the k-th species and Jk is the species diffusion vector.

As before, the total energy is composed of the internal and kinetic energies. In the multi-

component case, the internal energy is the mass-weighted sum of each component k:

e =

Nk∑
k

Ykek (2.9)

where each component’s internal energy is computed as described in Section 2.3.

The heat flux vector in the energy equation is updated to include the change in energy

due to the diffusion of species:

q = −κ(T )
∂T

∂xj
− ρ

Nk∑
k

hkYkVk (2.10)
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where hk is the internal enthalpy of the k-th species and Vk is the diffusion velocity of the

k-th species. To reduce the expense in computing the species diffusion, the Hirschfelder-

Curtiss approximation is used:

VkXk = −Dk
∂Xk

∂xi
(2.11)

whereXk are the species mole fractions and whereDk is an approximate diffusion coefficient

for species k into the rest of the mixture defined in Section 2.4 [45]. This approximation for

the species diffusion leads to a system that does not conserve mass. By adding a correction

term to the velocity, mass conservation is recovered and the total species diffusion velocity

is [45]:

Vk =
Dk

Xk

Wk

W

∂Xk

∂xi
−
∑
k

Dk
Wk

W

∂Xk

∂xi
(2.12)

where Wk is the molecular weight of the k-th species and W is the molecular weight of the

mixture.

The final new terms are the chemical source terms, ω̇k. These source terms are computed

from M reactions with forward and backward rate expressions that take a general form:

Nk∑
k

ν ′kjSk ⇀↽

Nk∑
k

ν ′′kjSk (2.13)

for the j-th reaction out of M . In this notation, the molar stoichiometric coefficients for the

reactants and products are ν ′kj and ν ′′kj respectively and Sk represents the particular species

in the reaction. In order to conserve mass, each reaction must satisfy:

Nk∑
k

(ν ′′kj − ν ′kj)Wk = 0 (2.14)
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The species reaction rate ω̇k is:

ω̇k =
M∑
j

[
Kfj

Nk∏
k

X
ν′kj
k −Kbj

Nk∏
k

X
ν′′kj
k

]
(2.15)

where Kfj and Kbj are the forward and backward kinetic rate constants of each reaction re-

spectively. These kinetic rate constants are computed differently depending on the chemical

mechanism used. The most common form of reactions is the Arrhenius rate form:

Kfj = AfjT
αj exp

(
− Ej
RT

)
(2.16)

where Afj , αj , and Ej are empirical parameters. Other expressions are possible but the

details are not important for this work. For all of the chemically reacting cases performed,

the chemical source terms are evaluated using the Cantera package, version 1.8 [85].

2.3 Equations of State

For the conditions considered in this work, all gases are assumed to be ideal. This assumption

neglects any intermolecular forces, outside of collisions, and also neglects any particle

diameter effects, resulting in the relationship between pressure, density and temperature:

p = ρRT (2.17)

where R is the mixture gas constant and T is the temperature. The gas constant uses a

mass-based blending of the molecular weights:

R = Ru

Nk∑
k

Yk
Wk

(2.18)
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where Ru is the universal gas constant. The species-specific internal energy is a function of

that species’ sensible energy at a reference temperature, ek,0, and temperature:

ek = ek,0 +

∫ T

T0

cv,k(τ)dτ (2.19)

where cv,k is the specific heat at constant volume for species k. The internal energy is closely

related to the internal enthalpy,

h = e+
p

ρ
(2.20)

that is defined for the k-th species as:

hk = hk,0 +

∫ T

T0

cp,k(τ)dτ (2.21)

where hk,0 is the sensible enthalpy of the species and cp,k is the specific heat at constant

pressure of the species.

In the general case, cp,k, cv,k and hk,0 are functions of temperature. These are implemen-

ted using polynomial curvefits, generally segmented into two temperature ranges, and each

species requires 7 coefficients for each temperature range:

cp,k
Ru

= a1,k + a2,kT + a3,kT
2 + a4,kT

3 + a5,kT
4

hk,0
RuT

= a1,k +
a2,k

2
T +

a3,k

3
T 2 +

a4,k

4
T 3 +

a5,k

5
T 4 +

a6,k

T

(2.22)

The seventh coefficient, a7,k, is used to compute internal entropy of the species and not

needed for the equation of state as implemented. The perfect gas equation of state that

maintains this temperature dependency is called the thermally perfect equation of state and

it is valid for a wide range of pressures, temperatures and compositions.

For simpler flows, and particularly non-reacting flows, the expense of computing the

temperature-dependent properties and solving the integral for the internal energy is not nee-

ded. In these cases, where the change in properties is small with the change in temperatures
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in the flow, the heat capacities and enthalpies may be held constant. When this happens, the

relationship between internal energy and temperature is simplified:

ek = ek,0 + cv,kT (2.23)

and likewise for internal enthalpy,

hk = hk,0 + cp,kT (2.24)

This equation of state is simpler to convert between internal energy and temperature, requi-

ring neither iteration nor evaluation of an integral. This reduces expense, at the drawback of

only being approximately valid as temperatures vary. This form of the perfect gas equation

of state is known as calorically perfect.

2.4 Transport Properties

Expressions for κ and µ are needed to close all of the remaining unknown terms in the

governing equations. As with the equation of state, there are many models that may be used

to compute these coefficients. It is possible to compute the binary diffusion coefficients

and treat the multi-component diffusion in a precise fashion. However, this requires N2
k

diffusion coefficient calculations in each cell at each step and for large simulations with

more than a few species, it is prohibitively expensive. It is also unneeded as many flame

cases can be adequately treated using simplified approximations [45, 86, 87].

A simplified formulation for cases where the differential diffusion effects are important,

such as the hydrogen autoignition cases considered in Chapter 7, assumes that each species

has its own different, yet constant, Lewis number:

Lek =
κ

ρcpDk

(2.25)
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which relates the mixture thermal conductivity coefficient κ to the species mass diffusion

coefficient Dk using the mixture density and mixture heat capacity. The mixture averaged

thermal conductivity is computed using the local gas composition and temperature:

κ =
1

2

(
Nk∑
k

Xkκk +
1∑Nk

k Xk/κk

)
(2.26)

where the species-specific thermal conductivity coefficient κk is computed using a polyno-

mial curvefit:

κk = b0,k + T (b1,k + T (b2,k + T (b3,k + T (b4,k + T (b5,k + Tb6,k))))) (2.27)

With the mixture averaged thermal conductivity and the user-specified, species-specific,

constant Lewis numbers, the species diffusion coefficients can be found. A similar process

is used to compute the mixture viscosity using Wilke’s formula:

µ =

Nk∑
k

Xkµk∑Nk

j XjΠkj

(2.28)

where the species-specific viscosities µk are computed using another polynomial curvefit:

µk = c0,k + T (c1,k + T (c2,k + T (c3,k + T (c4,k + T (c5,k + Tc6,k))))) (2.29)

The final term needed to complete the expression is:

Πkj =

[
1 +

(
µk
µj

)1/2 (
Wj

Wk

)1/4
]2

√
8
[
1 + Wk

Wj

]1/2
(2.30)

When referenced later, this is known as constant-Lewis number transport.

As with the equation of state, it is possible to avoid the evaluation of the curvefits under

certain conditions. For non-reacting flows, particularly those composed of air, and for
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many methane or propane flows at atmospheric conditions, approximate calculations for

the thermal conductivity and viscosity are acceptable. This is useful when simulations are

using very simplified chemical kinetics with only a few species. In this case, the transport

coefficients may be computed using Sutherland’s law:

µ = µref

(
T

Tref

)3/2
Tref + S

T + S
(2.31)

where µref is a reference viscosity at a given composition and temperature, Tref , and S is an

empirically derived constant. The thermal conductivity is related to the molecular viscosity:

κ =
µcp
Pr

(2.32)

where Pr = µcp/κ is the Prandtl number for a given gas mixture and assumed to be a

user-specified constant. From this, the species diffusion coefficients can be found:

Dk =
µ

ρLePr
(2.33)

When referenced later, this is known as Sutherland’s transport.

2.5 Large-Eddy Simulation

Fully resolving all of the scales in a turbulent flow field is prohibitively expensive and will

remain so in the foreseeable future. Fortunately, Kolmogorov’s 1941 theory postulates that,

at sufficiently high Reynolds numbers, there is a wide range of eddy sizes from the largest

scales to the smallest. Energy cascades down from these large scales and is dissipated

at the small scales. At some point in the range between the large and small scales, the

eddies become isotropic and have properties that are universal for high-enough Reynolds

numbers. It is this isotropy and universality that enables Large-Eddy Simulations (LES).

In the LES approach, a low-pass filter is applied to the governing equations, removing the
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scales smaller than the filter cutoff. The effect of the removed scales on the rest of the flow

must be modeled. The universality of the small scales suggests that models may be used in

all flows with Reynolds numbers high enough for the Kolmogorov theory to apply.

To derive the LES governing equations, each variable in the original governing equations

is decomposed into a resolved component and an unresolved, or sub-grid, component,

φ = φ+ φ′′ where the overline (·) indicates the resolved component and the double prime

(·′′) is the unresolved component for every variable φ. This separation is achieved by

convolving a spatial filter kernel G(t, x) and the variable φ(t, x) such that:

φ(t,x) = G(t,x) ? φ(t,x) =

¨
t,Ξ

φ(t′, ξ)G(t− t′,x− ξ) dt′ d3ξ (2.34)

This filter may be explicitly defined and the convolution may be performed at each time

step in the simulation. This is known as explicitly filtered LES and is attractive because the

filtering is independent of the mesh; therefore, grid convergence can be measured. From a

mathematical standpoint, it also ensures the discretized LES equations are consistent and

when solved with a stable numerical scheme, the approach is convergent. However, the

explicit filtering operation is expensive and complicated on curvilinear grids, limiting the

use of the technique to academic configurations.

Instead of defining an explicit filter, it may be assumed that the filter is defined by the

mesh and numerical scheme. This is known as implicitly filtered LES, and rather than

performing a filtering operation on the solution, one solves directly for the filtered variables.

There is no additional cost due to the filtering in the scheme. Unfortunately, the discrete form

of the implicitly filtered LES equations is not consistent and measuring grid independence

through mesh refinement is an open challenge. Despite this drawback, implicitly filtered

LES is a popular approach.

The filter definition is assumed to be a band-pass filter in space, also known as a top-

hat filter, which for three dimensional filters may be approximated as the product of one
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dimensional filters:

G(t,x) =
3∏
i

gi(t− t′, xi − x′i) (2.35)

These one dimensional filters are:

gi(t, xi) =


1

∆i
if |xi − x′i| < ∆i

2

0 otherwise
(2.36)

where ∆i is the length of the computational cell in the i-th direction. This gives a total

filter size of ∆ = (∆1∆2∆3)1/3. In reality, the filter shape is only approximately a top-hat

as it relies on the numerical scheme for its actual definition and behavior [1]. Lastly, the

filter sizes vary throughout the domain as the cell sizes change; for the cases considered

here, the mesh is static in time and so G(t,x) = G(x) [88]. It is also assumed that the filter

commutes with differentiation. This introduces third-order leading terms in the truncation

error, making the scheme only second-order accurate [88]. The scheme used in this work is

also second-order accurate, so these errors are comparable with the scheme truncation errors.

It also requires that meshes vary smoothly in space – therefore, all meshes with non-uniform

grids are created with less than 10% stretching in any given direction whenever possible.

As a final note on the filtering procedure, application of the filtering as defined to

the continuity equation creates a source term. This source term is undesirable as the

numerical scheme used to implement it is only approximate, leading to errors in mass

conservation. This source term may be eliminated by considering the Favré averaged

variables, φ̃ = ρφ/ρ. The resulting spatially-filtered, multi-component, reacting LES

equations using Favré averaged variables are:

∂

∂t

˚
Ω

W̃ dV +

¨
∂Ω

[
F̃ − G̃

]
· dA = S̃ (2.37)
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where

W̃ =



ρ

ρũ

ρṽ

ρw̃

ρẼ

ρksgs

ρỸk



, F̃ =



ρũ

ρũũ+ p̂ı

ρũṽ + p̂

ρũw̃ + pk̂

ũ
(
ρẼ + p

)
+Hsgs

ρũksgs

ρỸkũ



,

G̃ =



0

τxi − τ sgsxi

τ yi − τ sgsyi

τ zi − τ sgszi

ũjτ ij + q̃ + σsgs

Tksgs

J̃k + Y sgs
k + θsgsk



, S̃ =



0

0

0

0

0

pdksgs + Pksgs −Dksgs

ω̇k



(2.38)

the description of which is in the following sections and is summarized from the work of

Génin [62] and Masquelet [63].

2.5.1 Conservation of mass

The filtered conservation of mass equation has no additional terms and appears very similar

to the unfiltered equation due to the Favré averaging. The spatially filtered density is ρ and

the Favré averaged velocity is ũ.

2.5.2 Conservation of momentum

The inviscid flux tensor in the filtered conservation of momentum equations also looks

similar to its unfiltered counterpart. The pressure is now the spatially filtered pressure, p.
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The viscous flux tensor contains new terms, however. There is the resolved, filtered stress

tensor τ ij , which based on the assumptions made in the original Navier-Stokes equations, is:

τ ij = 2µ̃

(
S̃ij −

1

3
S̃kkδij

)
(2.39)

where S̃ij = 1/2
(
∂ũi
∂xj

+
∂ũj
∂xi

)
is the resolved rate-of-strain tensor and µ̃

(
T̃ , Ỹk

)
is the

molecular viscosity as a function of the Favré averaged temperature and species composition.

The new stress tensor, τ sgsij , represents the stress introduced by the unresolved scales and is

defined as:

τ sgsij = ρ (ũiuj − ũiũj) (2.40)

This term contains the unknown filtered quantity ũiuj and must be modeled. The model

used here employs an eddy-viscosity closure using the subgrid kinetic energy and the

assumed filter width:

νt = cν∆
√
ksgs (2.41)

where ksgs is the resolved subgrid kinetic energy. The coefficient cν may be held constant,

as is done for all cases here, or may be determined dynamically using the localized dynamic

ksgs model (LDKM) [89]. The constant is cν = 0.067. Using this eddy viscosity, the subgrid

shear stress is:

τ sgsij = −2ρνt

(
S̃ij −

1

3
S̃kkδij

)
+

2

3
ρksgsδij (2.42)

2.5.3 Conservation of energy

The energy equation contains several modifications. The total energy is now defined as:

Ẽ = ẽ+
1

2
ũ · ũ+ ksgs (2.43)
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where ẽ is the Favré averaged internal energy. The heat flux vector is now defined to be:

q̃ = κ̃∇T̃ − ρ
∑
k

h̃kỸkṼk −
∑
k

qsgsk (2.44)

where κ̃
(
T̃ , Ỹk

)
is the heat diffusion coefficient at a given temperature and composition

and qsgsk is the subgrid heat transfer due to unresolved turbulent diffusion of species. The

species diffusion velocity Ṽk is computed using Equation (2.12) using the Favré averaged

variables.

The exact expression for the subgrid heat transfer due to turbulent diffusion of species is:

qsgsk = ρ
(
ỸkhkVk − Ỹkh̃kṼk

)
(2.45)

This term, along with the subgrid fluctuations in state variables, are often neglected and this

is the approach taken in this work as well [89, 90]. Two additional new terms appear in the

energy equation, one in the inviscid flux tensor and another in the viscous. The inviscid,

subgrid transport of enthalpy is defined as:

Hsgs = −ρ
(
Ẽu− Ẽũ

)
+ (up− ũp) (2.46)

and the subgrid heating due to viscous dissipation is:

σsgs = (ujτij − ũjτij) (2.47)

These two terms are modeled together:

Hsgs − σsgs = (ρνt + µ̃)∇ksgs +
ρνtcp
Prt
∇T̃ − ũjτ sgsij (2.48)

where Prt is the turbulent Prandtl number.
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2.5.4 Conservation of subgrid kinetic energy

The subgrid kinetic energy equation contains four terms: Tksgs is the diffusion of ksgs, pdksgs

is the pressure-dilation correlation, Pksgs is the production term and Dksgs is the dissipation

term. The exact form of the terms in the conservation equation for the subgrid kinetic energy

are:

Tksgs = −
((
ρK̃u− ρK̃ũ

)
− ũτ sgsij + (up− ũp)− (uτij − ũτ ij)

)
pdksgs = p∇ · u− p∇ · ũ

Pksgs = −τ sgsij ∇ũ

Dksgs =
(
τij∇u− τ ij∇ũ

)
(2.49)

where K = 1/2u · u is the total kinetic energy. No additional modeling is required for the

production term as all components are known from the solution or existing closures. The

pressure-dilation correlation pdksgs is often neglected and is small even for supersonic flows

with strong non-equilibrium and so it is neglected here as well [89].

The remaining terms require closures following the work of Génin and Menon [89]. The

model for dissipation of subgrid kinetic energy relies on the filter size and a characteristic

subgrid velocity represented by the subgrid kinetic energy itself:

Dksgs =
ρcε (ksgs)3/2

∆
(2.50)

The coefficient cε is taken to be a constant for all simulations, with a value cε = 0.916.

The diffusion of subgrid kinetic energy contains several unclosed terms. The contribution

due to pressure fluctuations is often neglected in low Mach number and low compressibility

situations [89]. However, in a general combustion case, some regions of the flow may not

have negligible subgrid pressure fluctuations and the terms are retained. The model for these
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terms is:

up− ũp = −ρνtR̃
Prt
∇T̃ (2.51)

The velocity-kinetic energy correlation is modeled using a gradient diffusion hypothesis

based on the subgrid kinetic energy. The resulting model for the diffusion of subgrid kinetic

energy is:

Tksgs = (ρνt + µ)∇ksgs +
ρνtR̃

Prt
∇T̃ (2.52)

2.5.5 Conservation of partial densities

The conservation equation for the partial densities introduces several new terms. The species

diffusion flux is similar to its unfiltered analogue, where now the terms are evaluated using

the Favré averaged variables:

J̃k = ρỸkṼk (2.53)

Two new subgrid terms are introduced; the subgrid mass flux:

Y sgs
k = −ρ

(
ũYk − ũỸk

)
(2.54)

and the subgrid species diffusion flux:

θsgsk = −ρ
(
ṼkYk − ṼkỸk

)
(2.55)

The subgrid species diffusion flux is neglected in this work while the subgrid mass flux is

modeled using a gradient diffusion assumption:

Y sgs
k =

ρνt
Sct
∇Ỹk (2.56)
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where Sct is the turbulent Schmidt number. Finally, the reaction source terms are filtered

and models for the interaction between the chemistry and the turbulence are described in the

next section.

2.5.6 Chemistry-Turbulence Closure

Prior to detailing the closure model for chemistry-turbulence interactions, it is important

to discuss the structure of flames and how turbulence may alter that structure. All of the

reacting results in Chapter 7 and Chapter 8 are premixed, either completely premixed with

no compositional variations, or partially premixed with compositional inhomogeneities

or stratification. Therefore, discussion of the flames and interactions with turbulence are

confined to premixed flames. Figure 2.1 illustrates the structure of a typical premixed,

laminar flame. There are two primary regions between the burned and unburned gases. The

first is the reaction zone, where a majority of the chemical reactions take place and the

heat release rates are the largest. This zone is typically thin and its thickness is denoted δr.

Within this zone, radical species are created and diffuse outwards from the reaction zone.

On the burned gas side, these radicals recombine to form the stable product species.

In the preheat zone, the radicals transported from the reaction zone participate in the

initiation and chain branching chemical reactions that provide the exothermic processes

needed to sustain the reaction zone. The energy for these reactions is provided by thermal

conductivity and radiation from the reaction zone. For the cases considered here, the radiative

effects are not considered and radiative transport is neglected. The flame thickness, δF , is

the size preheat zone and reaction zone together and is often called the thermal thickness.

Simulations using reduced kinetics in Chapter 7 and Chapter 8 use premixed hydrogen

or premixed methane as fuel sources. The main radicals in the reaction zone are atomic

hydrogen and atomic oxygen, and their diffusion into the preheat zone begins the chain

reactions that produce the hydroxyl radical. This is the primary source of heat release in this

region. Capturing the correct flame evolution requires accurately capturing both the reaction

42



Unburned gas

Burned gas

Preheat zone

Reaction zone Flame surface

δF

δr

Thermal Conductivity

Species Diffusion

Figure 2.1: Schematic of a laminar, premixed flame structure where δF is thermal thickness,
and δr is the thickness of the reaction zone; thermal conductivity and species diffusion
transport energy from the primary reaction zone into the unburned gases, creating the
preheat zone.

processes and diffusion processes and this requirement imposes constraints on the chemical

integration schemes as discussed in Chapter 6. Also indicated in Figure 2.1 is a dashed line

through the middle of the reaction zone. This line is artificially defined as the flame surface

and is useful for several models. In the thickened flame model [91–96] used in this work

and described below, this flame surface is computed based on user-specified criteria and

used in sensors to detect the flame location. This applies the thickening dynamically and

localized to the flame.

The interaction between the turbulence and the flame depends upon the relationship

between the turbulent length scales and velocities and the flame length scales and velocities

[45]. Again confining the discussion to premixed or partially premixed flames, there are two

turbulent length scales of interest: the integral length scale representing the largest eddies in

the flow, lt, and the Kolmogorov length scale representing the smallest eddies in the flow, η.

Likewise, the turbulent velocity scale is characterized by u′ and the flame velocity scale is

characterized by the laminar flame speed, SL. These may be related to the flame thickness,
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δF , through the Damköhler number to find the ratio of the largest turbulent time scales to

the chemical time scales:

Da =
lt/u

′

δF/SL
(2.57)

The relation between the smallest time scales and the chemical time scales is the Karlovitz

number:

Ka =

(
δF
η

)2

(2.58)

Finally, a turbulent Reynolds number may be defined using these definitions:

Ret = Da2Ka2 (2.59)

These non-dimensional numbers define several regimes of premixed combustion [45].

When the chemical time scale is smaller than any turbulent time scale and the flame is

thinner than the smallest turbulent eddies (Ka < 1), the internal behavior reaction zone of

the flame cannot be altered by the turbulence and behaves as a laminar flame. The entire

flame, including the preheat zone, is thin and this regime is called the flamelet regime. The

flame may be wrinkled by the turbulence and if u′ < SL, the wrinkling is minor and the

regime is called the wrinkled flamelet regime; on the other hand, if u′ > SL, the largest

turbulent eddies may transport burned or unburned gas into the reaction zone, creating a

corrugated flamelet. Under the conditions that Ka > 1 and Da > 1, the largest turbulent

time scales are larger than the chemical time scales, but η < δF and the small scale eddies

can enter and interact with the reaction zone structure. In this thin reaction zone regime,

the flame is still smaller than the largest eddies and may be wrinkled by them, but there is

an additional interaction between the chemistry and the turbulence at the smallest scales,

which requires modeling in LES. For larger values of Ka, the turbulence may be significant

enough to lead to localized quenching and this regime is known as the broken reaction zone.

Figure 2.2 illustrates these regimes in a modified Boghi diagram as proposed by Peters [45].
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Thin-Reaction Zone

Broken-Reaction Zone

Figure 2.2: Peters’ modified Borghi diagram showing the regimes of premixed, turbulent
combustion in log-log scale [45].

In the flamelet regime, where the interaction between the turbulence and the chemistry

is negligible, it is possible to omit any modeling terms at all and use:

ω̇k = ω̇k

(
Ỹk, ρ, T̃

)
(2.60)

This no-modeling approach is frequently called the quasi-laminar chemistry approximation

and may give acceptable results under certain conditions [97–99]. Alternatively, for regimes
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where the quasi-laminar chemistry approximation is known not to hold, other methods to

model the effects of turbulence on chemistry are required. The method used in this work to

model these effects is the dynamically thickened flame (DTF) model [91, 92, 94–96].

From a numerical standpoint, the flame reaction zone presents several challenges, in-

dependent of its interaction with turbulence. It is often very thin and would require many

grid points to properly resolve. It also contains the majority of the heat release in the flame,

introducing strong, non-linear source terms that impact the robustness and efficiency of the

scheme. These challenges can be overcome if the flame were thicker, such that it could be

resolved on a typical grid designed for the underlying fluid mechanics using LES [45]. If a

flame is assumed to be governed by a single, global reaction with rate ω̇, the laminar flame

speed of that reaction is proportional to the square root of the thermal diffusivity D and the

reaction rate [45]:

SL ∝
√
Dω̇ (2.61)

and the flame thickness is:

δF ∝
√
D

ω̇
(2.62)

If the thermal diffusivity is multiplied by a factor F and the reaction rate is divided by the

same factor F , then the flame thickness is increased by F and the flame speed is unaltered.

However, changing the thickness of the flame also alters the relative ratios between

the flame and the turbulent length scales. Specifically, Dathick = Da/F and the turbulence

can influence the flame less than under the original conditions [45]. In order to restore the

proper flame-turbulence interactions, an efficiency function E is introduced to account for

the now-unresolved effects of the turbulence on the flame. This efficiency factor multiplies

both the thermal diffusivity and the reaction rate, such that D̃ = EFD and ω̇ = Eω̇/F . In

the full governing equations, this modification is done to all of the transport coefficients and
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the reaction rates:
κ̃ = κ

(
Ỹk, ρ, T̃

)
EF

D̃k = Dk

(
Ỹk, ρ, T̃

)
EF

ω̇k =
Eω̇k

(
Ỹk, ρ, T̃

)
F

(2.63)

Modifying the transport properties everywhere in the flow is undesirable, so sensors

are used to detect the flame and apply the thickening and efficiency functions locally [93].

The sensor is designed for multi-step reactions and the user specifies the species to serve as

flame indicators as well as the maximum reaction rate used for normalization. The sensor is

defined as:

S =
Ns∑
j

|ω̇j|
ω̇j,max

(2.64)

for Ns sensor species and the sensor is activated:

min [S, 1] > εTF (2.65)

where εTF is a user-specified constant, taken to be 0.1 in all simulations. The thickening

factor is determined based on the laminar flame thickness, the LES filter size (which, for

implicitly-filtered LES is related to the local grid spacing), and a user-specified number of

cells over which the flame should be resolved once thickened, nF . The factor is computed at

each cell as:

F = 1 +

(
max

[
nf∆

δF
, 1

]
− 1

)
S (2.66)

The efficiency function can take many different forms [91, 92]. The method recommen-

ded by Charlette et al. [92] known as the static power law function is the one used here. The
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efficiency is given by:

E =

(
1 + min

[
F − 1,Γ

(
u′

SL
,
∆e

δF

)]
u′

SL

)1/2

(2.67)

The function Γ takes as its arguments an estimate of the turbulence intensity relative to the

laminar flame speed and the ratio of the effective filter size ∆e and the flame thickness [92]:

Γ (K,D) =

(((
f−αu + f−αδ

)−1/α
)−β

+ f−βRe

)−1/β

(2.68)

where the auxiliary functions are:

fu = 4

(
27Ck
110

)1/2
18Ck

55
K2

f 2
δ =

27Ckπ
4/3

110

(
D4/3 − 1

)
f 2

Re = Re∆
9

55
exp

[
−3

2

Ckπ
4/3

Re∆

] (2.69)

where the Reynolds number at the effective filter size is:

Re∆ = 4KD (2.70)

and the parameter α is:

α =
3

5
+

1

5
exp

[
− 1

10
K

]
− 1

5
exp

[
− 1

10
D

]
(2.71)

with constants β = 1.4 and Ck = 1.5. The velocity fluctuations at the effective filter level,

u′, are computed using the subgrid kinetic energy as:

u′ =
√

2ksgs (2.72)
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To summarize, the DTF model will artificially thicken a flame so it is resolvable on

a coarse (relative to the flame thickness) mesh. It does this by modifying the transport

properties and reaction rate such that the flame speed is preserved; this, in turn, changes

the effect of turbulence on the flame and an efficiency function is introduced to model the

missing turbulence-chemistry effects. For this to work on a local sense, the user must specify

the following:

• Marker species used to locate the flame surface; may be one or several.

• Maximum reaction rate for the sensor species.

• Cutoff size for sensor, above which the thickening is fully applied.

• Laminar flame speed thickness for the flame under the simulated conditions.

• Desired number of cells over which to spread the flame.

The flame speed, thickness and maximum reaction rates are functions of the equivalence

ratio, and for partially premixed or stratified flows, there is not a single value that will

work through all of the regimes. To account for this, these values may be interpolated

from a lookup table indexed on equivalence ratio. Prior to computing the thickening or the

efficiency functions, the local equivalence ratio is computed and the table is used to find

suitable values of the flame speed, thickness, and maximum reaction rates.

2.6 Boundary Conditions

The full set of Navier-Stokes equations are second-order partial differential equations with

five primary variables and the potential for many more depending on the LES models and the

number of species tracked. The introduction of any physical geometry or the introduction of

artificial surfaces used to truncate the domain into a finite region for numerical simulation

requires an additional set of equations for these boundaries. At every boundary, each variable

requires a specified condition and the velocity variables require two conditions, due to the
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order of the equations. Unfortunately, unsteady, turbulent combustion processes are sensitive

to acoustic, entropic, and vortical disturbances. The artificial truncation of the simulation

domain will introduce errors and these errors may couple with the dynamics of the system,

leading to the wrong solution or the complete failure of the scheme due to robustness issues.

Modeling the effects of the physical geometry, such as walls, is relatively straight forward

as will be shown. However, specification of inflow and outflow boundaries requires careful

derivation. These boundary conditions must match, as closely as possible, the waves entering

and departing the domain as the simulation evolves. This is achieved through analysis of

the characteristic form of the governing equations whereby the appropriate waves may be

imposed and the desired reflective and transmissive properties can be recovered.

There is flexibility in the choice of variables on which the boundary conditions are

imposed. In this work, boundary conditions are imposed on a primitive variable set. Walls

use the primitive set Uw = {p, ũ, ṽ, w̃, T̃ , ksgs, Ỹk}ᵀ while inflows and outflows of all types

use the primitive set Uio = {ρ, ũ, ṽ, w̃, p, ksgs, Ỹk}ᵀ. The distinction is made to facilitate

the use of data from experiments, specifically mass-flow rates into or out of a rig and wall

temperatures or heat flux rates measured. Generally speaking, a boundary or a portion of a

boundary may impose three classes of conditions: Dirichlet, where the value of a variable

is imposed on the boundary; Neumann, where the derivative of a variable is imposed on

the boundary, or Robin, where there is a mix of derivatives and imposed values. The next

sections will discuss how each type of boundary condition imposes values for the variables

and the resulting implications.

2.6.1 Characteristic Inflows and Outflows

Thompson [100, 101] devised a method to formulate boundary conditions by decomposing

the governing equations into their nonlinear, characteristic waves. Each wave propagates

with a wave speed corresponding to the eigenvalues of the flux Jacobian. This information

is used at inflows and outflows to determine, based on the local wave propagation direction,
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whether a Neumann condition or a Dirichlet condition should be imposed on that particular

characteristic variable. The analysis begins by writing the Navier-Stokes equations in a

non-conservative, linearized form:

∂Uio

∂t
+ A

∂Uio

∂x
+ B

∂Uio

∂y
+ C

∂Uio

∂z
+D = 0 (2.73)

where D contains all of the source and viscous terms in the system. The flux Jacobians,

A,B, and C cannot be diagonalized simultaneously. Therefore, the system of equations is

transformed into a coordinate system with a coordinate normal to the boundary, xn, and

transverse coordinates xt and xtt. The transverse flux terms are grouped together withD:

∂U ′io
∂t

+ A′
∂U ′io
∂xn

+D′′ = 0 (2.74)

where the rotated set of primitives is U ′io = {ρ, ũ1, ũ2, ũ3, p, k
sgs, Ỹk}ᵀ andD′′ = B′

∂U ′
io

∂xt
+

C′
∂U ′

io

∂xtt
+ D′. The rotated flux Jacobian is:

A′ =



ũ1 ρ 0 0 0 0 0

0 ũ1 0 0 1
ρ

0 0

0 0 ũ1 0 0 0 0

0 0 0 ũ1 0 0 0

0 ρc 0 0 ũ1 0 0

0 0 0 0 0 ũ1 0

0 0 0 0 0 0 ũ1



(2.75)

This Jacobian matrix may now be diagonalized with the right eigenvector matrix S:

S−1A′S = Λ (2.76)
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where Λ is the diagonal eigenvalue matrix with entries λi. There are two unique eigenvalues

and the remaining eigenvalues are repeated, λ1 = ũ1 − c, λ5 = ũ1 + c, λi:i/∈{1,5} = ũ1. This

diagonalization may be substituted into Equation (2.74):

S−1∂U
′
io

∂t
+L+ S−1D′′ = 0 (2.77)

with the wave amplitude vector L = ΛS−1 ∂U
′
iO

∂xn
:

L =



L1

L2

L3

L4

L5

L6

L6+k



=



λ1
2

(
∂p
∂xn
− ρc ∂ũ1

∂xn

)
λ2

(
∂ρ
∂xn
− 1

c2
∂p
∂xn

)
λ3

∂ũ2
∂xn

λ4
∂ũ3
∂xn

λ5
2

(
∂p
∂xn

+ ρc ∂ũ1
∂xn

)
λ6

∂ksgs

∂xn

λ6+k
∂Ỹk
∂xn



(2.78)

The original governing equations, Equation (2.37), are expressed in terms of the con-

servative variable vector W̃ and the resulting boundary conditions need to be transformed

into this variable set. Equation (2.77) is multiplied through by ∂W̃ ′

∂U ′
io

S where W̃ ′ is the

conservative variable set in the rotated space and the transverse, viscous, and source terms
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are neglected:

∂W̃ ′

∂t
+



d4

ũ1d4 + ρd1

ũ2d4 + ρd2

ũ3d4 + ρd3

∂ρẼ
∂ρ
d4 + ρ

∑3
i=1 ũidi + ∂ρẼ

∂p
d5 + ρd6

∂Ẽ
∂ksgs

+
∑Nk

k ρd6+k
∂Ẽ

∂Ỹk

ksgsd4 + ρd6

Ỹkd4 + ρd6+k



= 0 (2.79)

where:

d = SL =



d1

d2

d3

d4

d5

d6

d6+k



=



L5−L1

ρc

L3

L4

L2 + L5+L1

c2

L5 + L1

L6

L6+k



(2.80)

This system of boundary conditions are known as the Local One-Dimensional Inviscid

(LODI) conditions [45, 102]. Based on this set of equations, multiple types of inflow and

outflow may be specified.

Reflective Boundaries

Specifying the boundaries as reflective and providing target values for the velocity, tempe-

rature, subgrid kinetic energy, and gas composition on the inflow creates a boundary that

53



imposes the target values exactly. The resulting wave amplitudes are:

L1 = L5

L3 = L4 = L6 = L6+k = 0

(2.81)

The L2 wave is computed using a temperature form of the LODI equations:

L2 =
Tα2

v

cp
(L5 + L1) (2.82)

where αv is the coefficient of thermal expansion. For an ideal gas such as those considered

here, this simplifies to:

L2 =
γ − 1

c2
(L1 + L5) (2.83)

where γ is the ratio of specific heats. For inflows, the L5 wave is the only one exiting the

domain and must therefore be computed using information from inside the domain:

L5 = (ũ1 + c)

(
∂p

∂xn
+ ρc

∂ũ1

∂xn

)
(2.84)

On the outflow, all waves except the L1 wave are exiting the domain and must be computed

based on the interior conditions:

L2 = ũ1

(
∂ρ

∂xn
− 1

c2

∂p

∂xn

)
L3 = ũ1

∂ũ2

∂xt

L4 = ũ1
∂ũ3

∂xtt

L5 =
ũ1 + c

2

(
∂p

∂xn
+ ρ (ũ1 + c)

∂ũ1

∂xn

)
L6 = ũ1

∂ksgs

∂xn

L6+k = ũ1
∂Ỹk
∂xn

(2.85)
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with the incoming wave specified as:

L1 = −L5 (2.86)

It is also possible to impose mass-flow rate values on the inflow rather than primitive

values directly. This is done by requiring

L5 (ũ1 + c) + L1 (ũ1 − c) = −ũ1c
2L2 (2.87)

The end result is:

L5 = L1
1−M − (ũ1cTα

2
V ) /cp

1 +M + (ũ1cTα2
v) /cp

(2.88)

which for an ideal gas is:

L5 = L1
1− γM
1 + γM

(2.89)

The transverse waves become:

L3 = − ũ2

ρ

(
L2 +

L5 + L1

c2

)
L4 = − ũ3

ρ

(
L2 +

L5 + L1

c2

) (2.90)

with all other waves computed as before.

As the name suggests, when a wave is incident on the boundary, these conditions will

generate a reflected wave. This may interact with the rest of the flow and influence the

solution in undesirable ways. The modifications presented in the next section allow the

transmission and reflection properties of the boundaries to be tuned as desired.
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Non-reflective/partially-reflective Boundaries

The amount of reflectivity can be adjusted by permitting the boundary condition to relax to

the target value over time using a relaxation coefficient K. In this case, the desired response

to impose a variable is φbc = φtarget − e−Kt (φ− φtarget). The reflective conditions may be

recovered as K →∞; conversely, a perfectly non-reflective boundary that permits waves to

exit without any reflection occurs for K = 0. Values in between permit various amounts of

wave transmission and reflection. The transverse and scalar waves are computed as before:

L1 = L5

L3 = L4 = L6 = L6+k = 0

(2.91)

where now:
L2 = −ραvK

(
T̃ − T̃target

)
L5 = −ρc1−M2

2
K (ũ1 − ũ1,target)

(2.92)

As before, a constant mass version may be imposed:

L5 = c
1−M2

2
K
(
ρũ1 − (ρũ1)target

)
(2.93)

The outflow is made non-reflective by setting:

L1 = K
(
p− ptarget

)
(2.94)

2.6.2 Simple Inflows and Outflows

The simplest boundary conditions used for simulating fluid flows appear at what are often

called supersonic inflows or supersonic outflows. In the traditional use, a supersonic inflow

is a Dirichlet boundary, where the entire variable set Uio is imposed to the desired target
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values. This type of boundary can lead to wave reflections and oscillations, but it is robust

and ensures the desired values are rigidly imposed. On the other hand, supersonic outflows

impose Neumann conditions on each variable such that dU ′io/dxn = 0, where xn is the

coordinate normal to the boundary. Like the supersonic inflow, this boundary will generate

reflections when a wave impinges upon it.

Although simple to impose, these boundaries do not follow the physics of the flow as

well as the characteristic boundaries when used for subsonic flows. At inflows, imposing the

Dirichlet condition on all of the variables is consistent with all of the characteristic waves

entering the domain whereas the physics of the flow has one wave leaving the domain and

the rest entering. Likewise, the Neumann condition at the outflow is consistent with all

waves leaving the domain when in reality, one should be entering. The inflow discrepancy is

not generally a problem aside from generating strong pressure wave reflections. The outflow

discrepancy however leads to a loss of pressure in the domain when used for subsonic flows

because there is no mechanism for the pressure to relax to the ambient values outside the

domain.

This discrepancy may be addressed by making minor changes to the boundary conditions

and making both inflows and outflows Robin boundaries. On the inflow, the velocity,

temperature, and gas composition are imposed using Dirichlet conditions as before. However,

the pressure is switched to a Neumann condition with ∂p/∂xn = 0. This mimics the effect

of the pressure waves exiting the domain, although it will still generate reflections from

incident waves. Similarly, the outflow is modified so that all variables except pressure are

treated as Neumann conditions with zero gradient. The pressure is treated as a Dirichlet

boundary with the target value imposed rigidly.

Darmofal, Moinier and Giles performed an eigenmode analysis of this type of boundary

condition to assess the performance with the preconditioned and non-preconditioned system

[103]. The analysis decomposes the linearized Euler equations into their characteristic

form and solves for the time-dependent eigenmodes. From these modes, the frequencies

57



are calculated and the behavior of the boundary conditions is determined. For the Robin

boundary conditions with the non-preconditioned system of equations, the frequency is

[103]:

ω = (1−M2)(n+
1

2
)π; n ∈ Z (2.95)

This frequency has no imaginary component and therefore the boundary conditions do not

dissipate any disturbances [103]. Both the Robin inflow and outflow are perfectly reflective

with the non-preconditioned system.

2.6.3 Walls

The application of the wall boundary conditions is straight-forward, but must be done in the

proper order such that all of the variables are consistent. The walls are applied by setting

values in the ghost cells that are designed to impose the proper values on the cell face where

the wall is located. Consistency in the values is maintained by setting the conditions in the

following order:

1. Wall temperature is set based on the desired condition (e.g., adiabatic, isothermal, or

heat flux).

2. Pressure is set assuming a zero-gradient normal to the wall.

3. Gas composition is set assuming a zero-gradient normal to the wall.

4. Density and internal energy are computed using the imposed temperature, pressure,

and composition conditions.

5. Velocities are computed. The entire wall may or may not be moving in a specified

direction. In addition to the prescribed wall motion, the velocities may have additional

contributions based on the desired conditions:

• The normal velocity is set based on several possible configurations. For most

simulations, the normal velocity is zero. However, wall-effusion or surface bur-
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ning may be modeled by imposing a wall-normal velocity. Likewise, vibrating

walls may be created by imposing a wall-normal velocity based on vibration

amplitudes and frequencies.

• The tangential velocities are set based on whether the wall is a slip or no-slip

wall. For slip walls, the tangential velocities use a zero-gradient condition. For

no-slip walls, the tangential velocities are mirrored such that they are zero on

the wall and any prescribed motion is then added.

• The tangential velocities are modified based on any effusion or surface burning

that may occur at an angle.

6. Update all of the conservative variables for use in the flux routines, with careful

attention paid to the energy term to ensure everything is consistent with the imposed

primitive values.

The methods for applying each condition are described in the following sections. The

subscripts w, i and g indicate the wall value on the cell face, the interior value in the cell

center next to the wall, and the ghost value in the cell center next to the wall.

Temperature conditions

In the simplest case of adiabatic walls, the condition imposed is T̃g = T̃i. However, most

experiments do not have adiabatic boundary conditions on the walls and the heat exchange

from the flow to the wall and into the ambient environment or into the cooling apparatus may

dramatically change the dynamics of the flow. For long-running experiments, the walls may

be assumed isothermal once the heat through the wall from the domain reaches a steady state.

This can be imposed through the wall boundary conditions by specifying a wall temperature

T̃w and setting:

T̃g = 2T̃w − T̃i (2.96)
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For rigs with more transient conditions, the heat flux through the walls may be specified.

This is implemented by solving a simple heat conduction equation normal to the wall. The

heat flux, q, may be constant or a profile in space and/or time:

T̃w =
1

2

[
2T̃i −

qSn
κi

]
T̃g = 2T̃w − T̃i

(2.97)

where Sn is the surface area of the cell normal to the wall.

Gas state conditions

With the temperature condition set appropriately, the remaining state of the gas is determined.

The pressure is assumed to be zero-gradient:

pg = pi (2.98)

and the same is true for the species mass fractions:

Ỹk,g = Ỹk,i (2.99)

With the gas temperature, species and pressure set, the gas density is computed using the

equation of state. At this stage, the internal energy is also computed as well as all of the gas

thermodynamic properties.

Velocity conditions

The velocity conditions are set using either a slip or no-slip assumption for the transverse

terms and the normal terms may be computed with or without vibrations or mass flux. The
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transverse term behavior can be toggled by setting a factor f :

f =


2 slip walls

0 no-slip walls
(2.100)

In the case of vibrating walls, the normal velocity fluctuation is specified using a sum of

user-defined periodic functions:

Ṽ ′n =
Nm∑
i=1

Ai sin (2πfit) (2.101)

where there are Nm user-specified modes with amplitudes Ai and frequencies fi. The

velocity components in the Cartesian reference frame are then computed:

ũ′vib = Ṽ ′nSx

ṽ′vib = Ṽ ′nSy

w̃′vib = Ṽ ′nSz

(2.102)

where Sx, Sy, and Sz are the cell face areas in the X, Y and Z directions respectively. The

velocity contributions from mass effusion or surface burning are computed using:

ũ′effusion = Ṽ ′effusion (Sx + Tx cot θeffusion)

ṽ′effusion = Ṽ ′effusion (Sy + Ty cot θeffusion)

w̃′effusion = Ṽ ′effusion (Sz + Tz cot θeffusion)

(2.103)

where Ṽ ′effusion is the prescribed effusion velocity or surface burning velocity, Tx, Ty, and Tz

are the cell face areas tangential to their respective coordinate directions, and θeffusion is the

angle the effusion velocity makes to the wall. Two final sets of terms are needed for the wall
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boundary conditions. First, the flow normal to the surface on the interior is needed:

Ṽn = ũiSx + ṽiSy + w̃iSz (2.104)

and the prescribed wall motion values ũw, ṽw, and w̃w, if any, are needed. Finally, the

velocity components in the ghost cells to impose the desired wall boundary conditions are:

ũg = 2ũ′vib − 2ũ′effusion + (f − 1) (−2ũw + ũi)− fṼnSx

ṽg = 2ṽ′vib − 2ṽ′effusion + (f − 1) (−2ṽw + ṽi)− fṼnSy

w̃g = 2w̃′vib − 2w̃′effusion + (f − 1) (−2w̃w + w̃i)− fṼnSz

(2.105)

The conservative variables are set based on the imposed gas state and velocities. The

total energy in the ghost cell is recomputed based on the internal energy, subgrid kinetic

energy, and resolved kinetic energy. With that complete, the entire system is determined and

the wall boundary conditions are completely specified.

2.7 Preconditioning and Dual-Time

In Chapter 1, the numerical difficulties at low Mach numbers are traced to the disparity

between the eigenvalues of the flux Jacobians in the system. Preconditioning is a technique

used to modify the flux Jacobians in a way that reduces the ratio between the largest and

smallest eigenvalues, thereby reducing stiffness and improving iterative performance. The

physical governing equations are given in Equation (2.37), repeated here:

∂

∂t

˚
Ω

W̃ dV +

¨
∂Ω

[
F̃ − G̃

]
· dA = S̃ (2.37)
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The stiffness of the system may be altered by multiplying the temporal derivative by the

preconditioning matrix based on the conservative variables ΓC :

ΓC
∂

∂τ

˚
Ω

W̃ dV +

¨
∂Ω

[
F̃ − G̃

]
· dA = S̃ (2.106)

where now the temporal derivative is expressed in terms of a pseudo-time, τ , rather than

a physical time, t. This change is required because altering the eigenvalues of the system

changes the dynamics of the waves. In this case, it slows down the acoustic waves so their

speed is comparable to the convective wave speed. The resulting system is no longer time

accurate and indeed it is no longer the Navier-Stokes equations, except in the steady-state

when the pseudo-time derivative is zero.

For the LES of turbulent, reacting flows, temporal accuracy and transient phenomenon

are desired results and this loss of time accuracy is not suitable. Time accuracy can be

restored by incorporating two temporal derivatives in the governing equations [5]:

∂

∂τ

¨
Ω

W̃ dV +
∂

∂t

˚
Ω

W̃ dV +

¨
∂Ω

[
F̃ − G̃

]
· dA = S̃ (2.107)

where a pseudo-time derivative has been added to Equation (2.37). In this system, the

pseudo-time is iterated forward until τ →∞, at which point the pseudo-time derivative is

zero and Equation (2.107) is the same as Equation (2.37). Just as before, the eigenvalues of

the system can be modified by multiplying the iterative time (in this case, pseudo-time) by

the preconditioning matrix ΓC :

ΓC
∂

∂τ

¨
Ω

W̃ dV +
∂

∂t

˚
Ω

W̃ dV +

¨
∂Ω

[
F̃ − G̃

]
· dA = S̃ (2.108)

Now the modified wave speeds are confined to the pseudo-time derivative, which as τ →∞

becomes zero and the physical governing equations remain.
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For low Mach number flows, it is often beneficial to work with a primitive variable set

rather than the conservative variable set [3, 5]. The choice of primitive variables offers

some flexibility. The pressure-temperature set, Q̃ = {p, ũ, ṽ, w̃, T̃ , ksgs, Ỹk}ᵀ, is the most

common choice and the one used here. This set of variables is related to the conservatives

through the Jacobian matrix (written here for a multicomponent fluid with the one-equation

subgrid kinetic energy model):

∂W̃

∂Q̃
=



ρp 0 0 0 ρT̃ 0 ρỸj

ρpũ ρ 0 0 ρT̃ ũ 0 ρỸj ũ

ρpṽ 0 ρ 0 ρT̃ ṽ 0 ρỸj ṽ

ρpw̃ 0 0 ρ ρT̃ w̃ 0 ρỸj w̃

ρpH̃ − 1 ρũ ρṽ ρw̃ ρT̃ H̃ + ρH̃T̃ ρ ρH̃Ỹj
+ ρỸjH̃

ρpk
sgs 0 0 0 ρT̃k

sgs ρ ρỸjk
sgs

ρpỸi 0 0 0 ρT̃ Ỹi 0 ỸiρỸj + ρδij



(2.109)

where subscripts indicate differentiation, ie. ρp = ∂ρ
∂p

and ρT̃ = ∂ρ

∂T̃
, with the exception of

i and j, which are index variables. Likewise, the source term vector in the reacting, LES

governing equations, Equation (2.7), may be transformed from conservative to primitive

variables by S̃ = DQ̃ where D = ∂S̃

∂Q̃
:

∂S̃

∂Q̃
=



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

ρp
ρ (Pksgs −Dksgs) 0 0 0

ρT̃
ρ (Pksgs −Dksgs) Pksgs

2ksgs + 1
3ρ∇ · ũ 0

ω̇p,i 0 0 0 ω̇T̃ ,i ω̇ksgs,i ω̇Ỹj ,i



(2.110)

where it should be noted the reaction rates do depend on the subgrid kinetic energy, ksgs,

because of the DTF model.
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The decoupling of pressure from the equation of state causes the stiffness leading to the

divergence of ρp. The ρp terms in the transformation Jacobian are replaced with a new term

designed to alter the eigenvalues of the system and reduce the condition number. This new

matrix, the preconditioning matrix, is Γ and the governing equation becomes:

Γ
∂

∂τ

˚
Q̃ dV +

∂

∂t

˚
W̃ dV +

¨ [
F̃ − G̃

]
· dA = S̃ (2.111)

The preconditioning matrix is given by [3]:

Γ =



Θ 0 0 0 ρT̃ δ 0 ρỸj

Θũ ρ 0 0 ρT̃ ũδ 0 ρỸj ũ

Θṽ 0 ρ 0 ρT̃ ṽδ 0 ρỸj ṽ

Θw̃ 0 0 ρ ρT̃ w̃δ 0 ρỸj w̃

ΘH̃ − 1 ρũ ρṽ ρw̃
(
ρT̃ H̃ + ρH̃T̃

)
δ ρ ρH̃Ỹj

+ ρỸjH̃

Θksgs 0 0 0 ρT̃k
sgsδ ρ ρỸjk

sgs

ΘỸi 0 0 0 ρT̃ Ỹiδ 0 ỸiρỸj + ρδij



(2.112)

where H̃ is the total enthalpy and Θ is the parameter that rescales the eigenvalues:

Θ =
1

Ũ2
r

− ρT̃

ρh̃T̃
(2.113)

When the preconditioning is turned off, Θ = ρp. The parameter δ is either 0 or 1; when

δ = 0, Γ is the original Choi-Merkle [20] preconditioning matrix and when δ = 1, Γ is

the Weiss-Smith [5] preconditioning matrix. The selection of the reference velocity, Ũr,

determines the amount and type of preconditioning used and also affects the selection of the

time step. In general, the reference velocity may be defined using global or local criteria.

Global criteria use information that is the same everywhere in the domain whereas local

criteria use information from the cell and its neighbors. Local reference velocities are
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desirable because they scale the required amount of preconditioning for each region of the

flow. The local definitions of the reference velocity are found by performing a pressure

perturbation analysis and finding values that balance the pressure gradient term in the

momentum equation under various limits [3]:

Ur,local = min

(
max

(
|u| , l

π∆t
,
νSF
V

)
, c

)
(2.114)

where |u| is the steady preconditioning limit, l
π∆t

is the unsteady preconditioning limit

with some appropriate reference length l and νSF

V
is the viscous preconditioning limit.

Unfortunately, a purely local definition like this fails in stagnation regions where u = 0.

One approach to counteract this is to introduce a global preconditioning definition [3, 5,

104]:

Ur,global = min (κV∞, c) (2.115)

where V∞ is some reference, or freestream, velocity and κ is a small coefficient. However,

this global definition is not always easy to define for flows containing multiple flow regimes

[3].

An alternative approach to dealing with stagnation regions was proposed by Weiss et al.

[61] and analyzed by Darmofal and Siu [105]. Weiss et al. proposed adding a local velocity

scale representative of the pressure fluctuations:

Ur,p, local =

√
|∆p|
ρ

(2.116)

where ∆p is any local pressure difference that is easy to compute; most commonly, this is

taken to be the maximum pressure difference across the cell faces [3, 61, 104]. It is also

possible to introduce a global pressure fluctuation definition:

Ur,p,global =

√
|pg|
ρ

(2.117)
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Table 2.1: Definitions for the common limiting values of the reference velocity used in
Equation (2.113) to determine the preconditioning parameter.

Definition Local/Global Purpose

(A) |u| Local Steady

(B)
l

π∆t
Local Unsteady

(C)
νSF
V

Local Viscous

(D)

√
|∆p|
ρ

Local Pressure perturbations

(E) κV∞ Global Stagnation point

(F)

√
|pg|
ρ

Global Pressure perturbation

(G) c Global Speed of sound

where pg = p − p∞ is the gauge pressure. Naturally, all of the local and global terms

may be combined to ensure that the reference velocity is defined everywhere. However,

these definitions alone exhibit a lack of robustness when the flow experiences pressure

perturbations and additional controls are required [3, 104, 106–108]. Table 2.1 summarizes

the commonly used local and global definitions for the reference velocity.

Boundary Conditions

The equations for the boundary conditions described in Section 2.6 are applicable at low

Mach numbers as well, without any modifications. In fact, walls and the traditional su-

personic inflow and supersonic outflow conditions are all applied with no modifications.

The Robin type simple inflows and outflows are also applied without modifications, alt-

hough their behavior at low Mach numbers is substantially different in the preconditioned

system than the original system [103]. The characteristic boundary conditions presented in

Section 2.6.1 use the eigenvalues and eigenvectors of the system. When preconditioning
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is applied, these have both been modified and therefore changes should be made to the

boundary conditions as well [109–111]. Numerical studies indicate that failure to modify

the boundary conditions degrades convergence rates, but the solution quality does not suf-

fer [110, 111]. The following sections outline the differences required to account for the

preconditioned system as well as the analysis demonstrating the efficiency of the simple

boundaries.

Characteristic Inflows and Outflows

The governing equation used to begin the derivation of the characteristic boundary conditions,

Equation (2.74), is modified to account for the dual-time stepping formulation:

Γ′io
∂U ′io
∂τ

+
∂U ′io
∂t

+ A′
∂U ′io
∂xn

+D′′ = 0 (2.118)

where Γ′io is the preconditioning matrix formulated using the rotated primitives U ′io. To find

the system in the pseudo-time space, the equation is rearranged:

∂U ′io
∂τ

+ [Γ′io]
−1 ∂U

′
io

∂t
+ [Γ′io]

−1
A′
∂U ′io
∂xn

+ [Γ′io]
−1
D′′ = 0 (2.119)

Just as in the non-preconditioned case, the system is diagonalized [109]:

S−1
PC

(
[Γ′io]

−1
A′
)

SPC = ΛPC (2.120)

where SPC is the right eigenvector matrix of the preconditioned system and ΛPC is the

diagonal matrix of eigenvalues for the preconditioned system. In this case, the eigenvalues
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are [3, 109]:

λPC,1 =
1

2

[
(1 + ε) ũ1 −

√
(1− ε)2 ũ2

1 + 4εc2

]
λPC,2 = ũ1

λPC,3 = ũ1

λPC,4 = ũ1

λPC,5 =
1

2

[
(1 + ε) ũ1 +

√
(1− ε)2 ũ2

1 + 4εc2

]
λPC,5 = ũ1

λPC,6+k = ũ1

(2.121)

where ε = Ur/c is the reference Mach number. All but two eigenvalues remain the same as

the non-preconditioned case. The remaining two eigenvalues contain the preconditioning

parameter and are written as λPC,1 = ũ′ − c′ and λPC,5 = ũ′ + c′. In the limit of no

preconditioning, ε→ 1 and these two eigenvalues revert to their normal values of ũ1 ± c.

The diagonalization is substituted into the system:

S−1
PC

∂U ′io
∂τ

+ S−1
PC [Γ′io]

−1 ∂U
′
io

∂t
+LPC + S−1

PC [Γ′io]
−1
D′′ = 0 (2.122)

with the wave amplitude vector LPC = ΛPCS−1
PC

∂U ′
io

∂xn
[110, 111]:

LPC =



LPC,1

LPC,2

LPC,3

LPC,4

LPC,5

LPC,6

LPC,6+k



=



λPC,1

2

(
∂p
∂xn

+ ρ (ũ1 − c′ − ũ′) ∂ũ1
∂xn

)
λPC,2

(
∂ρ
∂xn
− 1

U2
r

∂p
∂xn

)
λPC,3

∂ũ2
∂xn

λPC,4
∂ũ3
∂xn

λ5
2

(
∂p
∂xn

+ ρ (ũ1 + c′ − ũ′) ∂ũ1
∂xn

)
λPC,6

∂ksgs

∂xn

λPC,6+k
∂Ỹk
∂xn



(2.123)
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and the vector d = SPCLPC :

d =



d1

d2

d3

d4

d5

d6

d6+k



=



LPC,5−LPC,1

ρc′

LPC,3

LPC,4

LPC,2 + 1
U2
r

[
(ũ1+c′−ũ′)LPC,1−(ũ1−c′−ũ′)LPC,5

c′

]
(ũ1+c′−ũ′)LPC,1−(ũ1−c′−ũ′)LPC,5

c′

LPC,6

LPC,6+k



(2.124)

such that:
∂U ′io
∂τ

+ [Γ′io]
−1 ∂U

′
io

∂t
+ dPC + [Γ′io]

−1
D′′ = 0 (2.125)

As with the non-preconditioned system, the transverse and viscous terms are neglected

to form the LODI system. To ensure conservation in physical time, the system is multiplied

by Γ′io

Γ′io
∂U ′io
∂τ

+
∂U ′io
∂t

+ Γ′iodPC = 0 (2.126)

and it is assumed that the pseudo-time derivative will be driven to zero [109]:

∂U ′io
∂t

+ Γ′iodPC = 0 (2.127)

Simple Inflows and Outflows

Section 2.6.2 introduced the Robin inflow and outflow boundaries, where the velocities

and temperature are imposed and pressure extrapolated on the inflow with the opposite

occurring on the outflow. In that section, a summary of an eigenmode analysis performed

by Darmofal, Moinier and Giles [103] indicated these boundaries are perfectly reflecting

for the non-preconditioned system. The authors also performed the same analysis using the
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preconditioned governing equations, for the same preconditioner described in Section 2.7.

Using their notation for the system, the eigenvalues are λ1 = M , λ2 = 1/2 (M (1 + ε) + τ)

and λ3 = 1/2 (M (1 + ε)− τ), where if preconditioning is not active, λ2 = u + c and

λ3 = u− c, and with M the Mach number, ε the preconditioning parameter and τ is related

to c′. From this, the frequencies are found [103]:

R (ω) =
λ2λ3

λ3 − λ2

(2n+ 1) π; n ∈ Z

I (ω) = − λ2λ3

λ3 − λ2

log

[
τ +M (1− ε)
τ −M (1− ε)

] (2.128)

Unlike the non-preconditioned case, the frequencies with the preconditioned system have an

imaginary component. Additionally, the frequencies remain bounded as the Mach number

approaches zero. Therefore, disturbances will decay exponentially and the boundaries are

not reflective. This is in contrast to the behavior of the boundaries in the non-preconditioned

system, where they are perfectly reflective. This difference makes these boundaries suitable

for low Mach number flows with a preconditioned scheme.
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CHAPTER 3

TRADITIONAL MACCORMACK SCHEME

The MacCormack scheme was first put forth in 1969 [38] and has endured the years since as

a well-studied and often-implemented scheme. The scheme uses a unique combination of

first-order stencils in space to create a second-order accurate scheme that is inherently stable.

This approach is attractive as it maintains a minimal stencil size, which improves parallel

performance, and requires few storage locations in memory, reducing the computational

footprint. It also is free of tunable parameters, reducing the expertise needed to apply it.

Because of this, many variations of the scheme have been proposed over the years to improve

and extend it. Implicit versions of the scheme exist [112] as well as schemes suitable for

shock capturing that employ corrections to ensure the scheme is total variation diminishing

(TVD) [113–115].

Perhaps the most commonly used form of the scheme is the 1971 version proposed by

MacCormack [39]. In this version, the direction of the first-order stencils is alternated in

each step to eliminate hypothetical biasing errors that may arise. This version also contains a

switch to the interface velocity calculation to address a weak, non-linear instability that may

cause simulations to diverge. This non-linear instability correction is not well-known and

not required in every case [116]. In practice, experience with this scheme has indicated that

both corrections are important for stability and accuracy in chemically reacting, turbulent

flows. For this reason, the 1971 form of the scheme is the version analyzed in this chapter

for its performance at low Mach numbers. The deficiencies found are addressed in the next

chapter. The analysis in this chapter is an expanded version of the analysis in Gallagher et

al. [117].
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3.1 1971 MacCormack Scheme

Integration with the MacCormack scheme uses one-dimensional sweeps for each compu-

tational coordinate in a predictor step and corrector step to yield a second-order accurate

scheme in both space and time. The viscous flux vector in the Navier-Stokes equations

is treated using second-order, central derivatives and is not unique to the MacCormack

scheme. These terms are not included in the following analysis to render the distinctions

in the MacCormack scheme clearer. Additionally, the bars and tildes are omitted from the

variables and the integration works for both DNS and LES equations. The predictor step for

the i computational direction is:

∆W
n+1/2
i,j,k = − ∆t

Vi,j,k

[
F (W n)i+1/2,j,k · Si+1/2,j,k − F (W n)i−1/2,j,k · Si−1/2,j,k

]
(3.1)

where Vi,j,k is the volume of the cell,S is the cell face area vector and ∆W is the incremental

change in the conservative variable vector. Similar sweeps are then performed in the other

computational directions prior to the corrector step:

∆W
n+1/2
i,j,k = ∆W

n+1/2
i,j,k − ∆t

Vi,j,k

[
F (W n)i,j+1/2,k · Si,j+1/2,k − F (W n)i,j−1/2,k · Si,j−1/2,k

]
∆W

n+1/2
i,j,k = ∆W

n+1/2
i,j,k − ∆t

Vi,j,k

[
F (W n)i,j,k+1/2 · Si,j,k+1/2 − F (W n)i,j,k−1/2 · Si,j,k−1/2

]
(3.2)

where the final time update is then:

W
n+1/2
i,j,k = W n

i,j,k + ∆W
n+1/2
i,j,k (3.3)
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The same coordinate-by-coordinate sweeps are performed for the corrector step using

the updated values:

∆W n+1
i,j,k = − ∆t

Vi,j,k

[
F
(
W n+1/2

)
i+1/2,j,k

· Si+1/2,j,k − F
(
W n+1/2

)
i−1/2,j,k

· Si−1/2,j,k

]
∆W n+1

i,j,k = ∆W n+1
i,j,k −

∆t

Vi,j,k

[
F
(
W n+1/2

)
i,j+1/2,k

· Si,j+1/2,k − F
(
W n+1/2

)
i,j−1/2,k

· Si,j−1/2,k

]
∆W n+1

i,j,k = ∆W n+1
i,j,k −

∆t

Vi,j,k

[
F
(
W n+1/2

)
i,j,k+1/2

· Si,j,k+1/2 − F
(
W n+1/2

)
i,j,k−1/2

· Si,j,k−1/2

]
W n+1

i,j,k =
1

2

(
W

n+1/2
i,j,k +W n

i,j,k + ∆W n+1
i,j,k

)
(3.4)

With no loss of generality, the scheme will be expressed using only the i directional sweep

for clarity.

The flux vector may be split into convective and pressure fluxes for notational purposes

useful later:

W
n+1/2
i,j,k = W n

i,j,k −
∆t

Vi,j,k

(
Si+1/2,j,kU

n
i+1/2,j,kW

n
i+1/2,j,k + Si+1/2,j,k p

n
i+1/2,j,kP

n
i+1/2,j,k

−Si−1/2,j,kU
n
i−1/2,j,kW

n
i−1/2,j,k + Si−1/2,j,k p

n
i−1/2,j,kP

n
i−1/2,j,k

)
(3.5)

where U is the contravariant velocity at the cell face with normal vector n̂, U = u · n̂, and

P = {0, 1, 0, 0, U}ᵀ. The same splitting of fluxes is done for the corrector step. The scheme

as written is a generic second-order Runge-Kutta time integration method and it is the spatial

discretization of the fluxes across each cell face that distinguishes the MacCormack scheme

from other methods.

In the 1969 MacCormack scheme, the interface values are computed using upwind

or downwind values [38], for example taking (·)i+1/2 = (·)i+1 and (·)i−1/2 = (·)i in the

predictor step:

W
n+1/2
i,j,k = W n

i,j,k −
∆t

Vi,j,k

(
Si+1/2,j,kU

n
i+1,j,kW

n
i+1,j,k + Si+1/2,j,k p

n
i+1,j,kP

n
i+1,j,k

−Si−1/2,j,kU
n
i,j,kW

n
i,j,k + Si−1/2,j,k p

n
i,j,kP

n
i,j,k

) (3.6)
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Table 3.1: Alternating difference direction pattern for MacCormack scheme [117].

Predictor Corrector

Iteration i+ 1/2 j + 1/2 k + 1/2 i+ 1/2 j + 1/2 k + 1/2

1 i+ 1 j + 1 k + 1 i j k

2 i+ 1 j + 1 k i j k + 1

3 i+ 1 j k + 1 i j + 1 k

4 i j + 1 k + 1 i+ 1 j k

5 i+ 1 j k i j + 1 k + 1

6 i j + 1 k i+ 1 j k + 1

7 i j k + 1 i+ 1 j + 1 k

8 i j k i+ 1 j + 1 k + 1

where Si±1/2,j,k are the areas of the cell faces. For the corrector step, the i+ 1/2 interface

uses the values at i and the i− 1/2 interface uses the values at i− 1. This approach always

uses the same difference direction for each of the predictor and corrector steps; for example,

uni+1/2,j,k = uni+1,j,k during the predictor step and un+1/2
i+1/2,j,k = u

n+1/2
i,j,k for the corrector step.

It was hypothesized that this fixed ordering introduced spatial biases in the solution and a

more accurate solution is possible by alternating the difference directions between iterations

[39]. An example of the alternating order is given in Table 3.1 and a “complete” cycle

occurs over 2D iterations, where D is the number of dimensions. MacCormack [39] noted

that there was no analytical way to verify or refute the hypothesis about bias in the solution.

MacCormack does note, however, that introducing the alternating directions may allow for a

higher stable CFL number in some situations.

The 1971 analysis of the MacCormack scheme [39] notes that the original scheme as

given above may develop a weak, non-linear instability when Ui,j,k < 0 and Ui+1,j,k > 0.

This flow configuration results in a loss of information regarding the sign of the momentum

and velocity in the momentum term (ρu)i+1/2,j,kui+1/2,j,k. Because of this, both the positive
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and negative momentum on each side of the face may grow unbounded despite the sum

remaining finite. This type of instability also occurs for the leapfrog scheme [116] and may

cause simulations to crash unexpectedly, particularly in the neighborhood of stagnation

or separation points. MacCormack [39] proposed altering the calculation of the interface

velocity when this is detected:

Ui+1/2,j,k =


Ui+1,j,k+Ui,j,k

2
if Ui,j,k < 0 and Ui+1,j,k > 0

Ui+1,j,k else
(3.7)

This is equivalent to central interpolation for the face velocity. The resulting discretization

retains the sign of the momentum term and all terms remain bounded. Discussions of this

non-linearity correction are often omitted and in some cases the correction may not be

required for stability as in the work by Mendez-Nunez and Carroll [116]. As noted earlier,

experience with complex, turbulent flows indicates the correction is required for complex

flows. It is possible that using artificial viscosity eliminates the need for the correction in

many instances by dissipating the resulting discontinuities.

Unfortunately, this non-linearity correction may lead to pressure oscillations in the

solution. Figure 3.1a demonstrates the oscillations in the pressure field that arise from

the original non-linearity correction in a simple temporal mixing layer used as a standard

test case in LESLIE (for demonstration only, the details of the case are omitted here and

can be found in [63]). The oscillations are relatively minor in this case as the Reynolds

number is low enough for viscous dissipation to keep them under control. Figure 3.1b is the

pressure field when the non-linearity switch is disabled. The pressure field is smooth and

the simulation is stable, although the stability is not guaranteed in all cases when the switch

is off. Lastly, Figure 3.1c is the pressure field using a new form of the non-linearity switch

proposed in this work. At low Mach numbers, these oscillations are generally larger than the

expected solution variation and the original formulation of the switch will lead to degraded

solution quality. The formulation of the new switch is given with the full formulation for
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(a) Original 1971 switch. (b) No switch. (c) New switch.

Figure 3.1: Pressure oscillations in a smooth flow using various forms of the non-linearity
switch. Oscillations with the original switch are large enough to degrade solution quality at
low Mach numbers. The details of the new switch are in Chapter 4 and Appendix A.

low Mach numbers in Chapter 4, while more details of the problem in the original scheme

are in Appendix A.

The addition of artificial viscosity, particularly a second-order form, permits the use of

the scheme in non-smooth flows. With pressure-based sensors for the artificial viscosity,

shocks are detected and the artificial viscosity activates to reduce the oscillations that

ordinarily arise. For low-speed flows, density or temperature based sensors are useful to

detect flame fronts. Without the artificial viscosity in the neighborhood of the flame, the

large gradients in density, temperature, and species mass fractions can cause numerical

instabilities. In the next section, a commonly used form of artificial dissipation is introduced

for use with the MacCormack scheme in reacting flows.
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3.2 Artificial Dissipation

Traditionally, extra dissipation is required to stabilize central schemes to damp out dispersive

errors. The first-order stencils used in the MacCormack scheme add dissipation that is

generally sufficient for smooth flows and artificial dissipation is not needed unless shocks or

flames are present. The Jameson-Schmidt-Turkel (JST) artificial dissipation scheme adds

a second- and fourth-order dissipation term to stabilize central schemes in the presence of

non-smooth flow features and to dissipate the dispersive errors present in smooth flows,

respectively [24]. The artificial dissipation flux for a finite-volume scheme in generalized

coordinates is given by:

AD = di+ 1
2
,j,k − di− 1

2
,j,k + di,j+ 1

2
,k − di,j− 1

2
,k + di,j,k+ 1

2
− di,j,k− 1

2
(3.8a)

di+ 1
2

= λi+ 1
2

(
ε

(2)

i+ 1
2

[Wi+1 −Wi]− ε(4)

i+ 1
2

[Wi+2 − 3Wi+1 + 3Wi −Wi−1]
)

(3.8b)

where the indices j, k are omitted for clarity in Equation 3.8b. The values of λ, ε(2) and ε(4)

at the cell faces are computed as arithmetic averages of the neighboring cell-centered values.

The eigenvalue takes the usual value of the fastest-traveling wave, λi,j,k = (|U |+c)A where

|U | is the contravariant velocity normal to the cell face and A is the face area.

The second-order dissipation coefficient is designed to drop the order of the scheme to

first-order near discontinuities in a variable. To detect both shocks and flames, a pressure

sensor and a density sensor are used:

ε
(2)
i,j,k = κ(2) max

q

(
Spq , S

ρ
q

)
; ∀q ∈ {cell and its neighbors} (3.9)
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where κ(2) is a user-defined dissipation coefficient. The sensor for any variable φ is computed

in each flux direction; for example, in the i-direction:

Sφi,j,k =
|φi+1,j,k − 2φi,j,k + φi−1,j,k|
|φi+1,j,k|+2|φi,j,k|+|φi−1,j,k|

(3.10)

The fourth-order dissipation is designed to be effective only in smooth regions of the flow

and is defined:

ε
(4)
i,j,k = max

(
0, κ(4) − ε(2)

i,j,k

)
(3.11)

where κ(4) is a user-defined dissipation coefficient.

It is worth noting that the artificial dissipation scheme used here is not guaranteed

to eliminate the oscillations that may appear around discontinuities and is therefore not

total variation diminishing (TVD). This implies the dissipation scheme is suitable only for

weak discontinuities that may appear in a flow, such as flames or weak shocks in transonic

conditions. In those cases, new minima or maxima may still appear and the user must

determine if this compromises the simulation accuracy. Strong shocks may still lead to

code divergence due to the size of pressure or temperature oscillations, despite the artificial

dissipation.

3.3 Low Mach Number Analysis

One of the most important aspects of the preconditioning approach is the modification of

the artificial dissipation terms [2, 3]. At low Mach numbers, the original JST scheme has

sub-optimal dissipative properties. The momentum equation is overly dissipated while the

pressure and temperature fields are insufficiently dissipated. Modifications are required

for the dissipation scheme to behave correctly in the low Mach number limit [3]. The

following analysis shows the dissipation built into the MacCormack scheme suffers from

the same problems in the low Mach number limit as the artificial dissipation schemes do.

If preconditioning is used, the dissipative properties of the scheme are improved for the
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steady preconditioning case. However, unsteady preconditioning has the same problems as

the original scheme without preconditioning and the direct application of preconditioning to

the scheme is not optimal.

The analysis begins with the one-dimensional, linearized Euler equations:

ut + Aux = 0 (3.12)

where u is the vector of unknowns, A is the flux Jacobian and subscripts indicate differenti-

ation. Provided the flux Jacobian is constant, the equations may be diagonalized such that:

wt + λᵀwx = 0 (3.13)

where w = T−1u and λ = Λii = T−1AT [118]. At this stage, the equations are still in

their exact form. When discretized, the equations will be approximate due to truncation

errors associated with neglected terms. These errors mean the discrete equations are no

longer identical to the exact equations. However, it is possible that the discrete form of the

equations does match some other, exact governing equation.

Warming and Hyatt’s modified equation analysis method [119] uses Taylor series ap-

proximations of the unknown vectorw to find the exact governing equation that matches

the discrete approximation to Equation (3.13). In the case of the MacCormack scheme, the

resulting modified equation is identical to that of the Lax-Wendroff method and is [118,

119]:

wt+λ
ᵀwx = −λ

ᵀ∆x2

6

(
1− λ

2ᵀ∆t2

∆x2

)
wxxx−

λ2ᵀ∆t∆x2

8

(
1− λ

2ᵀ∆t2

∆x2

)
wxxxx+H.O.T

(3.14)
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where λ2ᵀ = {λ2
i }. For the i-th component of the unknown vectorw, the modified equation

is:

wi,t + λiwi,x = −λi∆x
2

6

(
1− CFL2

i

)
wi,xxx −

λi∆x
3

8
CFLi

(
1− CFL2

i

)
wi,xxxx + H.O.T

(3.15)

The first term on the right hand side of Equation (3.15) is an odd-ordered derivative

of the unknown vector and therefore indicates a dispersive term. The second term on the

right hand side is even-ordered and is the dissipative term, and this is the reason for the

inherent stability of the MacCormack scheme. The built in dispersion and dissipation of the

MacCormack scheme is dependent on the CFL number corresponding to each wave. These

terms use the wave speed of each equation, similar to a matrix artificial dissipation used

in purely central schemes, and suffer from the same problems at low Mach numbers. The

fourth-order dissipation term is the same as the Jameson-Schmidt-Turkel (JST) artificial

dissipation [24] if the JST dissipation coefficient is ε(4) =
CFL

(
1−CFL2

)
8

.

With a preconditioning scheme, the eigenvalues of the flux Jacobian are rescaled using

a preconditioning matrix Γ. The preconditioned form of the linearized Euler equations is

found by multiplying the temporal derivative with the preconditioning matrix Γ:

Γuτ + Aux = 0

uτ + Γ−1Aux = 0

(3.16)

where Γ is the appropriate preconditioning matrix and τ is the pseudo-time coordinate. The

transformation from physical time in Equation (3.13) to a pseudo-time in Equation (3.16) is

due to the loss of time accuracy from scaling the eigenvalues – more details are provided in

Chapter 4.
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This equation is diagonalized by λ′ = Λ′
ii = T−1

(
Γ−1A

)
T andw = T−1u, yielding

the modified equation for the preconditioned MacCormack scheme:

wτ+λ
′ᵀwx = −λ

′ᵀ∆x2

6

(
1− λ

′2ᵀ∆τ 2

∆x2

)
wxxx−

λ′2ᵀ∆τ∆x2

8

(
1− λ

′2ᵀ∆τ 2

∆x2

)
wxxxx+H.O.T

(3.17)

This form of the equation is not conservative in the steady-state unless Γ is constant and

therefore the conservative equation is [120]:

Γwτ+Γλ′ᵀwx = −Γλ′ᵀ∆x2

6

(
1− λ

′2ᵀ∆τ 2

∆x2

)
wxxx−

Γλ′2ᵀ∆τ∆x2

8

(
1− λ

′2ᵀ∆τ 2

∆x2

)
wxxxx+H.O.T

(3.18)

In this method, both the dispersion and the dissipation terms use the preconditioned

wave speeds. Depending on the form of the preconditioning matrix, this may or may not

be suitable. Using a steady preconditioning matrix, the terms are well-behaved at the low

Mach number limit and no further modifications are required. However, in the unsteady, low

Mach limit that arises in high Strouhal number flows or acoustic problems, the resolution

of the acoustic waves is important. In this case, an unsteady preconditioner should be

used. This preconditioner approaches the unpreconditioned limit as will be discussed in

Chapter 4. When this occurs, the inherent dissipation in the MacCormack scheme reverts

to the dissipation of the scheme without preconditioning and becomes overly dissipative.

The straightforward application of preconditioning to the MacCormack scheme shall be

called the MC-PC scheme. Testing of this scheme demonstrates the overly dissipative nature

when used with the unsteady preconditioner and is reported in Chapter 5. Modifications to

the scheme are required to ensure proper behavior at the unsteady, low Mach number limit.

These modifications result in the generalized MacCormack scheme for low Mach number

flows introduced in the next chapter.
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CHAPTER 4

GENERALIZED MACCORMACK SCHEME

The 1971 form of the MacCormack scheme is inherently stable, but analysis of the method

at low Mach numbers indicates the inherent dissipation is overly dissipative in that limit

when used with the unsteady preconditioner. During the analysis of the scheme in Chapter 3,

a preconditioning matrix Γ was introduced but no details provided. With the dual-time form

of the preconditioned governing equations detailed in Chapter 2, the issues surrounding

the inherent dissipation in the MacCormack scheme may be addressed. This is done by

modifying the discretization procedure for the pressure fluxes and incorporating an artificial

dissipation on the pressure field alone to ensure the correct scaling of the eigenvalues in

the unsteady, low Mach number limit. An additional correction to the scheme elimina-

tes the instabilities observed when using the original non-linearity switch recommended

by MacCormack [39]. For completeness, the single-time MacCormack scheme without

preconditioning is shown with the new non-linearity switch, and this scheme is called the

Generalized MacCormack-Single Time scheme (GMC-ST). Validation of the non-linearity

switch for the GMC-ST scheme is provided in Appendix A. The dual-time form with pre-

conditioning is called the Generalized MacCormack-Preconditioned (GMC-PC) scheme and

the changes required relative to the GMC-ST scheme are provided. The description of the

GMC-ST and GMC-PC schemes is an extension of that already published by Gallagher et

al. [117].

Lastly, the time step selection method for the pseudo-time is addressed. The time step

selection depends on the choice of preconditioners used and there are many global and local

preconditioner definitions from which to choose. Preconditioned schemes typically exhibit

robustness issues in complex flows. This is most frequent near stagnation points [3, 5, 104]

and when the flow is nonlinear, and techniques exist to limit the time step when this occurs
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[60]. The non-linear time step controls adjust the time step after the fluxes are computed to

limit the amount of change in the solution. Because the time step is selected after the fluxes

are computed, these are not easily generalizable to multi-step, explicit schemes such as the

one used here, and when using an external, stiff source term solver the controls may lead

to an expensive loop to negotiate robust time steps. A new procedure based on the Fourier

analysis technique of Darmofal and Siu [105] shows how to design reference velocities for

use in the preconditioning definition that limit the solution change in the same way as the

non-linear time step controls. By modifying the preconditioner prior to the flux calculation,

no problems arise for multi-step schemes or for external, stiff solvers. A detailed study

of the existing and new preconditioner definitions indicates global preconditioners are not

needed and the new preconditioner definitions improve code stability in the presence of

strong pressure waves by several orders of magnitude.

4.1 Generalized MacCormack Scheme

The 1971 MacCormack scheme is suitable for single-time, explicit integration of moderate

Mach numbers. However, modifications are required for accuracy in low Mach number,

unsteady flows. Additionally, due to the central nature of the final inviscid flux, the scheme

requires additional artificial dissipation to properly handle discontinuities that arise in flows

with shocks and/or flames. For these reasons, a modified scheme is introduced in this section

that can function as both a single-time, explicit integration scheme and as the pseudo-time

iterator in dual-time with or without preconditioning. For clarity, the tildes and bars above

the variables have been omitted.

The non-linearity correction in the original scheme may produce large-amplitude pres-

sure oscillations that become worse as the grid is refined and are particularly damaging to

the solution quality at low Mach numbers. A new non-linearity switch is proposed, drawing

on inspiration from the AUSM scheme. Equation (3.5) is written with the convective and

the pressure fluxes separated, similar to the derivation of the AUSM scheme [32]. When
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written in this fashion, the solution vector is treated as a passive scalar convected by an inter-

face velocity. Equation (3.6) defines the interface values using the upwind and downwind

approach from MacCormack [39]. To address the situation where the information about

the sign of the momentum terms is lost, MacCormack proposed averaging the interface

velocity when the velocities on each side of the face are moving away from it. This leads to

insufficient dissipation when the original non-linearity correction is used. In the proposed

non-linearity switch, the value of the solution vector on the interface is averaged while the

interface velocities are treated with the upwind-downwind approach of the MacCormack

scheme:

Wi+1/2,j,k =


Wi+1,j,k+Wi,j,k

2
if Ui,j,k < 0 and Ui+1,j,k > 0

Wi+1,j,k orWi,j,k else
(4.1)

This preserves information about the sign of the momentum term while also maintaining

sufficient dissipation, thereby removing the pressure oscillations. Additional details of this

change are discussed in Appendix A.

4.1.1 Single-time integration

In single-time form, the governing equation, Equation (2.37), is solved using a variant of the

1971 MacCormack scheme. The predictor-corrector steps written for a single computational

direction only are:

W
n+1/2
i,j,k = W n

i,j,k −
∆t

Vi,j,k

(
Si+1/2,j,kU

n
i+1,j,kW

n
i+1/2,j,k − Si−1/2,j,kU

n
i,j,kW

n
i−1/2,j,k

+Si+1/2,j,kp
n
i+1,j,kP

n
i+1,j,k − Si−1/2,j,kp

n
i,j,kP

n
i,j,k

)
+ ∆tSni,j,k

(4.2)
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W n+1
i,j,k =

1

2

[
W

n+1/2
i,j,k +W n

i,j,k

− ∆t

Vi,j,k

(
Si+1/2,j,kU

n+1/2
i,j,k W

n+1/2
i+1/2,j,k − Si−1/2,j,kU

n+1/2
i−1,j,kW

n+1/2
i−1/2,j,k

+Si+1/2,j,kp
n+1/2
i,j,k P

n+1/2
i,j,k − Si−1/2,j,kp

n+1/2
i−1,j,kP

n+1/2
i−1,j,k

)
+∆tS

n+1/2
i,j,k

]
(4.3)

where in both steps, the termWi±1/2,j,k is computed using Equation (4.1). The source term

vector Si,j,k contains the production and dissipation terms for the subgrid kinetic energy

as well as the chemical source terms if the flow is reacting. For non-reacting flows, the

chemical source terms are zero and the entire source vector is assumed not to be stiff,

allowing for direct integration of the sources with the rest of the fluxes. For reacting flows,

this is no longer assumed to be the case and more details are provided in Chapter 6. The only

difference between this scheme and the original scheme is the change in the nonlinearity

switch from Equation (3.7) to Equation (4.1). The physical time step, ∆t, is the global

minimum of [4]:

∆ti,j,k = Vi,j,k
CFL

|u · SI |+|u · SJ |+|u · SK |+cSF + 2γ ν

Pr
SF

Vi,j,k

(4.4)

where SI ,SJ ,SK are representative cell face areas projected onto the I , J , and K compu-

tational coordinates and where the total cell face area is SF . ν is the kinematic viscosity

and the CFL number is taken to be 0.5. For simplicity, this scheme is referred to as the

Generalized MacCormack-Single Time (GMC-ST) scheme.

4.1.2 Low-Mach Number Formulation

The GMC-ST scheme is overly dissipative when used for low Mach numbers. For acoustic

or highly unsteady low Mach number problems, even with preconditioning, MC-PC is

overly dissipative, while around discontinuities the solution exhibits large oscillations due
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to its central nature. Both problems can be fixed by adding particular forms of artificial

dissipation to the scheme to allow better control over its characteristics. To reduce the

dissipation in a central derivative scheme at the unsteady, low Mach number limit, Potsdam

et al. [121] introduced a blended matrix artificial dissipation designed to use the unsteady

preconditioned eigenvalues for the pressure field and the steady preconditioned eigenvalues

for the other fields. By doing so, the approach ensures optimal dissipation for all variables.

A similar concept may be introduced into the MacCormack scheme. The interface pressure

is computed using central differencing and a JST-type fourth-order dissipation term is added

to the pressure field only:

∆P AD4 =


ε4ΓσpLp

∂3Q
∂x3 with preconditioning

ε4
∂W
∂Q
σeLp

∂3Q
∂x3 without preconditioning

(4.5)

ε4 is a user-specified constant [24], σp is the spectral radius of |Γ−1A| and σe is the spectral

radius of |(∂W
∂Q

)−1A|. A is the flux Jacobian and Lp is the selector matrix designed to apply

the dissipation only to the pressure term:

Lp =



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(4.6)

This is equivalent to the approach used in Rhie-Chow’s collocated scheme [4, 14] and

maintains ideal dissipative characteristics in the unsteady, low Mach number limit [34]. A

traditional second-order artificial dissipation term is added to reduce oscillations around

discontinuities. More advanced versions of the MacCormack scheme add a term to the

corrector step to enforce a total variation diminishing property and completely eliminate

oscillations [113–115].
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4.1.3 Dual-time integration

The pseudo-time derivative in Equation (2.111) is marched forward in pseudo-time until

the temporal derivative is sufficiently small and may be assumed to be zero. To translate

this into the physical-time solution, a discretization must be chosen for the physical-time

derivative. An implicit discretization permits the selection of physical time step sizes that

are as large as desired to capture the important transient features. In the case of non-reacting

flows, the physical time derivative is discretized using a second-order backward-difference

formula (BDF) [3, 5]. The physical time index is given by n while the pseudo-time index is

given by m:

(
Γm +

3

2

∆τi,j,k
∆t

∂W

∂Q
−∆τi,j,kD

m

)
∆Q

m+1/2
i,j,k =

− ∆τi,j,k
Vi,j,k

(
Si+1/2,j,kU

m
i+1,j,kW

m
i+1/2,j,k − Si−1/2,j,kU

m
i,j,kW

m
i−1/2,j,k

+Si+1/2,j,k

pmi+1,j,k + pmi,j,k
2

Pm
i+1,j,k − Si−1/2,j,k

pmi,j,k + pmi−1,j,k

2
Pm
i,j,k

+Si+1/2,j,k

(
∆P AD4

)m
i+1/2,j,k

− Si−1/2,j,k

(
∆P AD4

)m
i−1/2,j,k

)
− ∆τi,j,k

2∆t

[
3Wm − 4W n +W n−1

]
+ ∆τi,j,kS

m
i,j,k

(4.7)

(
Γm +

3

4

∆τi,j,k
∆t

∂W

∂Q
−1

2
∆τi,j,kD

m+1/2

)
∆Qm+1

i,j,k =
1

2

[
Γm
(
Qm
i,j,k −Qm+1/2

i,j,k

)
−∆τi,j,k
Vi,j,k

(
Si+1/2,j,kU

m+1/2
i,j,k W

m+1/2
i+1/2,j,k − Si−1/2,j,kU

m+1/2
i−1,j,kW

m+1/2
i−1/2,j,k

+Si+1/2,j,k

p
m+1/2
i+1,j,k + p

m+1/2
i,j,k

2
P
m+1/2
i,j,k − Si−1/2,j,k

p
m+1/2
i,j,k + p

m+1/2
i−1,j,k

2
P
m+1/2
i−1,j,k

+Si+1/2,j,k

(
∆P AD4

)m+1/2

i+1/2,j,k
− Si−1/2,j,k

(
∆P AD4

)m+1/2

i−1/2,j,k

)
−∆τi,j,k

2∆t

(
3Wm+1/2 − 4W n +W n−1

)
+ ∆τi,j,kS

m+1/2
i,j,k

]
(4.8)
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where ∆Qm+1/2 = Qm+1/2 −Qm and ∆Qm+1 = Qm+1 −Qm+1/2, and ∆t is the physical

time step. The physical time step may be chosen arbitrarily, including infinitely large values

for steady-state solutions.

The left-hand side of these expressions is a matrix whose size is (5 +NLES +Nk)× (5 +

NLES +Nk) entries where NLES is the number of LES equations (either 0 or 1 depending

on whether running in DNS or LES modes) and Nk is the number of species. This matrix is

dense and has no unique structure to exploit when solving the system of equations (ie. it

is not banded, not positive-definite, not symmetric). It also must be updated at each sub-

iteration when run using LES because of the source term Jacobian or any case when physical

time accuracy is required because of the conservative to primitive Jacobian. The solution of

the system of equations is performed using the Linear Algebra PACKage (LAPACK) [122]

and represents a large overhead on the scheme. Each pseudo-iteration with the GMC-PC

scheme in non-reacting flows takes between 1.5 and 3 times as long as each iteration with

the GMC-ST scheme. However, this increased cost per iteration is more than offset in a

reduced number of iterations or reduced grid size required for accurate results at low Mach

numbers as discussed in Chapter 5.

The pseudo-time iterations are repeated until the change in Q is small. At this point

Qn+1 = Qm and W n+1 can be computed from Qn+1. Convergence is stopped when the

residual meets one of the following criteria:

(i) Simulation reaches a maximum number of iterations for that physical time step;

(ii) Residual reduces below a maximum norm value;

(iii) Residual has decayed a specified number of decades;

(iv) Change in residual is less than a specified amount for several consecutive iterations.

These criteria are user-specified and are configured for each case.

Another aspect of the usual MacCormack scheme must be changed when it is used

as a pseudo-time iterator. Alternating the difference directions prohibits convergence to
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steady state as each time the difference direction changes between iterations, the solution

is slightly different. Figure 4.1 is an example showing the convergence history of the

GMC-PC for the lid-driven cavity problem at a Reynolds number of 100 and a Mach

number of 0.3 (see Section 5.3 for setup details) with and without alternating the difference

directions. The simulation with the alternating difference directions never converges to the

steady state solution (although the mean of the unsteady solution does converge); rather,

it oscillates around the steady state solution with a period of 8 iterations corresponding to

the completion of the differencing cycle in two dimensions. This is in contrast with the

convergence history when the difference directions are fixed and do not change with each

iteration. In that situation, the convergence is rapid. In order to ensure convergence in

pseudo-time when using this scheme, the alternating of the difference directions is disabled

throughout the pseudo-time iterations. As a guard against potential biasing, the difference

directions are alternated for each physical-time iteration consistent with the traditional

application of the MacCormack scheme. This scheme is referred to as the Generalized

MacCormack-Preconditioned (GMC-PC) scheme.
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Figure 4.1: Convergence history of the GMC-PC for the lid-driven cavity at Reynolds
number of 1000 and Mach number of 0.3 with/without alternating the difference directions.

4.2 Time Step Selection and Robustness

The modification of the eigenvalues destroys the time accuracy within the pseudo-time

iterations. Therefore, it is possible to use various acceleration techniques to improve the rate

of convergence in pseudo-time. The simplest acceleration technique is to permit the time

step in each cell to vary so each cell is always evolving at its maximum stable time step.

This is known as local time stepping and is the approach taken in this work. The selection

of the time step value for each cell is determined by the type of preconditioner, and these

have been designed to maximize robustness while still allowing rapid convergence.

93



4.2.1 Local Time Stepping

The following equations are used to compute the pseudo-timestep, ∆τ , in computational

coordinates [5]:

uA = u · SI + u · SJ + u · SK

Ur,A = UrSF

β = ρp +
ρT
ρhT

α =
1

2

(
1− βU2

r

)
u′ = uA (1− α)

c′ =
√
α2u2

A + U2
r,A

∆τ

V
=

CFL
u′ + c′ + 2γ ν

Pr
SF

V

(4.9)

Each cell is then permitted to evolve in pseudo-time using its local time step value. This

generates instabilities when there are large spatial gradients in the local time step values.

Such instabilities can be eliminated when an explicit smoothing filter is applied to the local

time step to reduce the gradients. This is done by applying an explicit filter iteratively:

∆τq = min

[
∆τq, (1−Nω)∆τq + ω

N∑
p=1

∆τp

]
(4.10)

where the subscript q corresponds to each cell center with a total number of neighbors N

and p is each neighboring cell center around q. A user-specified weight, ω, is used to control

the strength of the smoothing. This smoothing step reduces local maxima and increases

local minima. The increase of the local minima may violate stability constraints, so the

minimum value of the smoothed time step and the time step based on the stability limit

in Equation (4.9) is taken. In cases where large spatial time step gradients do not occur,

this smoothing is not needed and may delay convergence if applied. The user must specify

whether to use the time step smoothing on a case-by-case basis, with it being unneeded in

most smoothly-varying flows.
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4.2.2 Robust Preconditioning

This parameter, Θ, is controlled through the selection of the reference velocity, Ur in Equa-

tion (2.113), and as Ur → c, Θ → ρp and the preconditioning turns off. By carefully

designing the reference velocity, optimal choices minimize the stiffness. Pressure fluctuati-

ons larger than the dynamic pressure are related to the instabilities found near stagnation

regions but may trigger instability away from stagnation points as well [3, 104]. Darmofal

and Siu [105] analyze the pressure gradient preconditioner, definition (D) in Table 2.1 and

Table 4.1, proposed by Weiss et al. [61] by considering the one-dimensional preconditioned

Euler equations with symmetrizing primitive variables:

∂Qs

∂t
+ Γ−1A

∂Qs

∂x
= 0 (4.11)

whereQs = {p/ρc, u, s}T with s being the entropy; A, the flux Jacobian:

A =


M 1 0

1 M 0

0 0 1

 (4.12)

and the Weiss–Smith preconditioning matrix [5, 105]:

Γ−1 =


ε 0 0

0 1 0

0 0 1

 (4.13)

where the preconditioning is controlled through the value of ε. The entropy equation is

decoupled and not needed for the analysis. Performing a Fourier transformation of the

system and introducing Q̂s = {p̂/ρc, û}T where (̂·) is a perturbation and (·) is the mean
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value gives the exact solution:

Q̂s (t, k) = exp
(
−iktΓ−1A

)
Q̂s (0, k) = G(t, k)Q̂s (0, k) (4.14)

at time t and wavenumber k The growth or decay of the initial conditions in time is

the amplification matrix, G = exp
(
−iktΓ−1A

)
. From this analysis, one can ascertain

the pressure and velocity response to perturbations in the initial conditions [105]. These

responses are:  p̂
ρc

û

 =

 cos πα −iβ sinπα

− i
β

sin πα cos πα


 p̂
ρc

û


0

(4.15)

where α = cktβ/π and

β =


√
ε ε ≤ 1

1√
ε

ε > 1

(4.16)

The preconditioning parameter in this analysis is related to the reference velocity in Equa-

tion (4.9) through Ur = cβ. When ε = 1, no preconditioning is applied to the solution and

Ur = c. Based on this, Darmofal and Siu [105] find the velocity perturbation response to

an initial pressure perturbation when using the preconditioner Ur =
√
|∆p| /ρ proposed by

Weiss et al. [61] is:

|û|2 ≤ |p̂0|
ρ

(4.17)

Figure 4.2 shows the reference Mach number, Ur/c, and the perturbation Mach number

response, |û| /c, for increasing values of initial pressure perturbations |p̂0| /ρc2 using defini-

tions (A) and (D) from Table 2.1. The changes in slope indicate when one term takes control

of the reference velocity; for small perturbation strengths, the preconditioner is controlled by

definition (A) and |û| /c is three orders of magnitude larger than |p̂| /ρc2. As the perturbation

strength increases, definition (D) becomes the controlling term and “undoes” the effect of
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Figure 4.2: Reference Mach number and the velocity perturbation response for increasing
pressure perturbation strengths when using definitions (A), (D), and (G) in Table 2.1 for
flows with different mean Mach numbers, M .

preconditioning by driving the reference velocity towards c. At pressure perturbations of

1 atm, definition (D) exceeds c and the preconditioning is completely turned off through

(G).

Sankaran et al. [104] showed the definition for the reference velocity using definitions

(A) and (D) still exhibits a lack of robustness near stagnation regions for steady, inviscid

flows. They proposed a solution to this issue by setting the local reference velocity for each

cell equal to the maximum reference velocity of the local cell and all of its face neighbors.

Tests reported later in this section with pressure perturbations suggest that this correction

does not enhance the robustness of the scheme away from stagnation points. However, by

including regional effects into the local definition, it does eliminate the need for global

definitions of the reference velocity.

Solution limiting in the presence of non-linearities may be achieved using the non-linear

time step controls of Lian et al. [60]. The local reference quantities used to limit the response
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for the pressure and velocity are [60]:

pref = min

(
ρu2

2
, |∆p|

)
uref = min

(
|u| , c

γ

|∆p|
p

) (4.18)

where γ is the ratio of specific heats. Lian et al. [60] limited the timestep to ensure that

|δp| ≤ αpref and |δu| ≤ αuref , where α is a user-defined parameter taken to be 0.1 for

the pressure term and the c |∆p| /(pγ) component of the velocity limit and 2.0 for the |u|

component of the velocity limit. New preconditioning definitions are derived here by using

the Fourier analysis of Darmofal and Siu [105] to find values of the reference velocity that

will enforce these limits prior to computing the time step rather than after. In this analysis,

the limits from Lian et al. are used as upper bounds on the velocity and pressure perturbation

responses in Equation (4.15).

Limiting the velocity perturbation response such that |û| = αu1 |u| gives a preconditioner

reference velocity Ur = |∆p| /(αu1ρ |u|). For small pressure perturbations, ∆p ∝ ρu2, this

choice gives Ur ∝ u/αu1 and this term behaves similarly to the existing steady preconditio-

ning term (A); for large pressure perturbations, ∆p ∝ ρc2 and thus Ur ∝ c/(αu1M) and the

preconditioner is disabled as required. Limiting the pressure perturbation response to initial

velocity perturbations, |p̂| = αp1ρ |û| /2 gives a unique type of preconditioner based on the

local velocity gradient, Ur = |∆u|αp1/2. The performance of this term is not evaluated

and testing its usefulness is a future task. From Equation (4.15), the limitation pref ≤ |∆p|

cannot be enforced by varying the preconditioning definition and is left unenforced.

The final limit to consider is |û| = αu2c |∆p| /(pγ) and the resulting reference velocity

is Ur = αu2c. When M ≤ αu2 and the pressure perturbations are small, this term controls

the preconditioner and it is larger than the typical steady preconditioner, Ur = |u|; this

is not optimal for these conditions and degrades performance at low Mach numbers. The

reference Mach number and the velocity perturbation response using these new definitions
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in combination with definitions (A), (D), and (G) are shown in Figure 4.3a and Figure 4.3b

when αu1 = 2.0 and αu2 = 0.1. The new definitions reduce the amount of preconditioning

at lower pressure perturbations, indicated by the shift to the left relative to the original

definitions in Figure 4.3a. They also reduce the amount of preconditioning for lower Mach

numbers due to the αu2c term indicated by the shift upwards relative to the original defini-

tions, and undo the preconditioning more rapidly as the pressure gradient rises, indicated

by the increased slope relative to the original. When αu1 > 1, there is a small region as

the Mach number increases where definition (D) still activates; otherwise, definition (D)

is superseded. Figure 4.3c and Figure 4.3d show the reference Mach number and velocity

perturbation response when the Ur = αu2c term is omitted and αu1 = 1, which represents

the typical use of these terms. These new definitions for the reference velocity are tested

using simulations of pressure disturbances and the choice of included terms and coefficient

values is justified. Table 4.1 provides a complete listing of all terms to be tested and is an

extension of Table 2.1 including the newly developed reference velocities.

4.2.3 Pressure Perturbation Tests

A one-dimensional domain 10 cm in length is discretized with 100 uniform cells and the

left and right boundaries impose a zero-gradient condition on all variables. The flow is

initially uniform with a temperature of 300 K and a velocity u = {Mc, 0, 0}ᵀ where c

is the speed of sound and the convective Mach number is M ∈ {0.001, 0.01, 0.1}. The

pressure is initialized as a Gaussian pulse centered in the domain (xc = 5 cm) according

to p(x) = p∞ + δp exp
[
(− (x− xc) /σ)2] where δp is the magnitude of the perturbation,

p∞ = 1 atm and σ = 1 cm. The pressure perturbation δp is increased by factors of ten

times ρu2 until the preconditioned scheme is unstable for each Mach number. All other

conditions are held the same. The objective is not to find the exact pressure perturbation that

causes instability; rather, the order of magnitude of the maximum stable pulse is sufficient

to understand the robustness limits and this is the number reported for each case. In addition
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Table 4.1: Definitions for the common limiting values of the reference velocity used in
Equation (2.113) to determine the preconditioning parameter.

Definition Local/Global Purpose

(A) |u| Local Steady

(B)
l

π∆t
Local Unsteady

(C)
νSF
V

Local Viscous

(D)

√
|∆p|
ρ

Local Pressure perturbations

(E) κV∞ Global Stagnation point

(F)

√
|pg|
ρ

Global Pressure perturbation

(G) c Global Speed of sound

(H)
|∆p|

αu1ρ |u|
Local Pressure perturbations

(I) αu2c Local Pressure perturbations

to varying the magnitude of the perturbation, the terms included in the preconditioning

definition, listed in Table 4.1, are turned on and off in combinations to understand the

influence of each. The smoothing of the local time step size and the modification of the

local reference velocity based on the values in the neighborhood of a cell are referred to as

the ∆τs modification and the maximum Ur modification, respectively.

The GMC-PC scheme is run to steady-state by setting the physical time step to ∆t =

1× 1020 s and the pseudo-time iterations are continued until the residual reduces below

1× 10−9. The residual used to measure convergence is the L2-norm of the change in the

solution vector at each time step:

Resid. =

[
1

L× I × J ×K
L∑
l

I∑
i

J∑
j

K∑
k

(
Qm+1
i,j,k,l −Qm

i,j,k,l

)2

]1/2

(4.19)
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where I, J,K are the number of cells in each computational coordinate, L is the number of

variables in the solution vector, m is the pseudo-time step index, and Ql is the l-th variable.

Table 4.2 reports the order of magnitude of the maximum stable pulse strength for all of

the combinations of implementation details and preconditioning definitions. Without using

the ∆τs modification or the maximum Ur modification, definition (A) on its own is only

stable for perturbations on the order of ρu2 as demonstrated by the first row of Table 4.2;

this is consistent with the findings reported by others [3, 61, 104, 105]. Definition (D),

in concert with definition (A) and (G), does not enhance the stability in the presence of

pressure perturbations. On the other hand, the global pressure definition (F) combined with

definition (A) and (G) does enhance the stability by an order of magnitude for each Mach

number, although the results are still less than desirable. The combination of definitions (A),

(D), (F), and (G) improves the stability for the M = 0.1 case by another order of magnitude.

Taking the maximum Ur makes the robustness independent of the choice between local

and global pressure limits. This allows the removal of the global limits from Table 4.1.

Combining both the ∆τs modification and the maximum Ur gives the advantages of both

eliminating the need for global preconditioning definitions while also providing Mach

independence.

The new possible definitions for the reference velocity, (H) and (I) are added to the

original definitions (A), (D), and (G). This results in an order of magnitude improvement in

the maximum stable pulse strength relative to the original definitions and the behavior is

the same for all Mach numbers tested as demonstrated in Table 4.3. For M ≤ αu2 = 0.1

and small pressure perturbations, the new definition (I) dominates the traditional definition

(A) and results in less preconditioning and slower convergence. Figure 4.4 illustrates the

difference in convergence that results from including that term or not including it for the

M = 0.001 case with a pressure pulse of O(10). Initially the pressure perturbation is within

the domain and the pressure terms control the convergence, resulting in similar behavior with

and without the term. Once the pulse has left the domain and the remaining perturbations
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are small, the new definition causes a marked flattening of the residual. Stability is not

affected while the convergence is orders of magnitude faster by omitting this term. Lastly,

when αu1 = 1, the new pressure definition (H) is always larger than the original pressure

definition (D) and the latter may be omitted. The final reference velocity definition that

enhances robustness without the need for additional, more complex controls required by

others [60, 104], is:

Ur = min

(
max

(
|u| , l

π∆t
,
νSF
V

,
|∆p|
ρ |u|

)
, c

)
(4.20)
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Figure 4.3: Reference Mach number and the velocity perturbation response for increasing
pressure perturbation strengths, comparing original preconditioner (black) and the precondi-
tioner augmented with limits based on the non-linear time step control from Lian et al. [60]
(blue) with different mean Mach numbers, M .
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Table 4.2: Pulse strength order of magnitude for the maximum stable pressure pulse me-
asured in atmospheres for the various combinations of preconditioning definitions from
Table 2.1

(a) Without ∆τs or max. Ur

Ur M = 0.001 M = 0.01 M = 0.1

(A), (G) O(1e− 6) O(1e− 4) O(1e− 2)

max (A), (D), (G) O(1e− 6) O(1e− 4) O(1e− 2)

max (A), (F), (G) O(1e− 5) O(1e− 3) O(1e− 1)

max (A), (D), (F), (G) O(1e− 5) O(1e− 3) O(1)

(b) Without ∆τs; with max. Ur

Ur M = 0.001 M = 0.01 M = 0.1

(A), (G) O(1e− 6) O(1e− 4) O(1e− 2)

max (A), (D), (G) O(1e− 5) O(1e− 3) O(1e− 1)

max (A), (F), (G) O(1e− 5) O(1e− 3) O(1e− 1)

max (A), (D), (F), (G) O(1e− 5) O(1e− 3) O(1e− 1)

(c) With both ∆τs and max. Ur

Ur M = 0.001 M = 0.01 M = 0.1

(A), (G) O(1e− 5) O(1e− 3) O(1e− 1)

max (A), (D), (G) O(1) O(1) O(1)

max (A), (F), (G) O(1) O(1) O(1)

max (A), (D), (F), (G) O(1) O(1) O(1)
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Table 4.3: Comparison in maximum stable pulse strength between traditional preconditio-
ning using definitions (A) and (D) from Table 4.1 and the new preconditioning definitions
designed to enforce the same limits as the non-linear time step control from Lian et al. [60].

Ur M = 0.001 M = 0.01 M = 0.1

(A), (D), (G) O(1) O(1) O(1)

(A), (D), (G), (H), (I) O(10) O(10) O(10)
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Figure 4.4: Residual for the M = 0.001 case at the maximum stable pressure pulse with
and without the Ur = αu2c preconditioner definition.
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CHAPTER 5

NON-REACTING SCHEME VALIDATION

Numerous test cases may be used to validate the generalized MacCormack scheme and

provide an assessment of its performance with and without preconditioning. This chapter

presents a set of the most interesting cases that have been selected to highlight various aspects

of the scheme. The chapter begins with a simple, demonstrative case chosen to visually

indicate the different behaviors of the generalized MacCormack-Single Time (GMC-ST) and

generalized MacCormack-Preconditioned (GMC-PC) schemes. The inviscid, steady-state,

low Mach number flow over a bump highlights the deficiencies of the GMC-ST scheme due

to excessive numerical dissipation in the velocity field and the improved solution using the

GMC-PC scheme. The periodic convection of an inviscid, time-accurate vortex at both low

and moderate Mach numbers demonstrates the convergence and dissipative properties of

the GMC-PC scheme for different physical time steps and other scheme settings. This test

also verifies the theoretical prediction that the inherent dissipation of the 1971 version of

the MacCormack scheme with preconditioning (MC-PC) reverts to the unpreconditioned

behavior in the unsteady limit. The classic lid-driven cavity test case from Ghia et al. [123]

verifies the steady-state performance of the GMC-ST and GMC-PC schemes for a viscous

flow, while decaying isotropic turbulence evaluates the unsteady performance for a viscous

flow. These cases are an expanded presentation of the results published in Gallagher et al.

[117].

Time-accurate simulations require the specification of the physical CFL number and the

computation of the physical time step, ∆t. Wherever referenced in the text, the physical CFL

number has a subscript to indicate the velocity scale chosen as a reference for computing

the time step. For example, CFLV = V∆t/∆x for some velocity scale V . In all cases,

the GMC-ST scheme uses a CFL number based on the largest eigenvalue of the system as
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required for stability in an explicit scheme, indicated by a subscript u+ c, ie. CFLu+c = 0.5

for all GMC-ST cases. The GMC-PC scheme is run using either the acoustic velocity, c, or

the convective velocity, u and the CFL numbers are reported in terms of CFLc or CFLu.

5.1 Flow over Bump

The inviscid flow over a bump in a channel is a configuration used to validate numerical

schemes [9, 124–126] and is chosen here, not for quantitative comparisons, but because it

clearly illustrates the degradation of solution quality at low Mach numbers with compressible

schemes. Figure 5.1 diagrams the computational domain for this configuration. A circular

segment with a height equal to 10% of its chord length is located in the center of a channel.

In this case, the chord length is 1 m. The top and bottom domain boundaries are slip walls

and the left boundary is the Robin inflow and the right, the Robin outflow. The inflow

Mach number is M∞ = 0.001 and the outflow pressure is 1 atm. This case is run with the

GMC-ST and GMC-PC schemes and both schemes are run until they reach steady state.

The mesh is 512× 256 cells, with a uniform grid in the streamwise direction over the bump

and smooth stretching from the boundaries to the leading and trailing edges as shown in

Figure 5.2.

The expected solution is smooth and symmetric about the center of the bump [124].

Figure 5.3 shows the velocity field with isolines of Mach number superimposed. Asymme-

tries appear in the solution with the GMC-ST scheme in Figure 5.3a, although the largest

sources of error in the solution are the oscillations in the flow illustrated by the isolines

of Mach number. This is in strong contrast to the solution using the GMC-PC scheme in

Figure 5.3b, which is both smooth and symmetric. Despite the simple nature of the case

and the qualitative comparisons, the GMC-PC scheme exhibits improved solution quality

relative to the GMC-ST scheme due to the proper scaling of the dissipation on the velocity

and pressure fields in the GMC-PC scheme.
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V∞ = M∞c∞

Figure 5.1: Schematic of the domain for the inviscid flow through a channel with a bump.

Figure 5.2: Mesh used for the inviscid flow over a bump in a channel case containing
512× 256 cells.
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(a) GMC-ST

(b) GMC-PC

Figure 5.3: Steady-state solutions for the inviscid flow over a bump atM∞ = 0.001, showing
the degradation that occurs when compressible schemes (GMC-ST) are applied at low Mach
numbers. Isolines of Mach number and velocity contours highlight the smoothness and
symmetry of the solution using the preconditioned scheme, GMC-PC.

110



5.2 Inviscid Vortex Convection

The previous case indicates the dissipative properties of the GMC-ST scheme are undesirable

when applied to a low Mach number, inviscid, steady flow. The periodic convection

of an inviscid vortex assesses these properties for an unsteady flow and provides more

flexibility to explore how different aspects of the GMC-PC scheme influence the results.

The computational domain is a square measuring 2 mm per side, shown in Figure 5.4, and

contains a uniform grid with 256 cells in each direction. Each of the four computational

boundaries are periodic and a vortex is initialized in the center of the domain using the

velocity and pressure profiles [127]:

u(x, y) =
Ur − Vs (x− xc)

R2 exp
(
−
[
(x− xc)2 + (y − yc)2] /2R2

)
v(x, y) =

Vs (y − yc)
R2 exp

(
−
[
(x− xc)2 + (y − yc)2] /2R2

)
P (x, y) = Pr exp

(
−γ

2

(
Vs
cR

)2

exp
[
−2
([

(x− xc)2 + (y − yc)2])])
(5.1)

where Ur = Mbc is the convection velocity, Vs is the vortex strength, and (xc, yc) are

coordinates of the vortex center. The vortex radius, R = 0.2 mm, Pr = 101 325 Pa is the

reference pressure and γ = 1.4 is the ratio of specific heats. The vortex convects to the

right, through the right boundary and into the domain again on the left. The simulations

are stopped when it has returned to its starting position after convecting once through the

domain. Two convective Mach numbers are simulated to show the behavior of the GMC-PC

scheme relative to the GMC-ST scheme, Mb = 0.001 and Mb = 0.5.

Moderate Mach number behavior

When the convection speed of the vortex is Mb = 0.5, the reference velocity used to define

the preconditioning parameter in the GMC-PC scheme is the speed of sound. When this

occurs, preconditioning is disabled and the system is unmodified in pseudo-time. In this
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2 mm

2 mm

R = 0.2 mm

Ur = Mbc

Figure 5.4: Computational domain for the inviscid vortex convection case.

configuration, the primary differences between the GMC-ST and GMC-PC schemes are

that the latter is an implicit scheme in physical time and that the latter also has additional

dissipation on the pressure field as described in Chapter 4. As such, the differences in the

solution between the two schemes should be minor.

Figure 5.5 compares the transverse velocity along the streamwise centerline of the vortex

for the GMC-ST and GMC-PC schemes with the theoretical solution. Both schemes exhibit

minor dissipation in the peak values of velocity relative to the theoretical values, but overall

the profiles match well. Minor differences between the schemes are apparent at the leading

and trailing edges of the vortex, where the GMC-PC scheme shows an increased amount

of numerical dispersion in the solution. This dispersive error is consistent with implicit

temporal discretizations. Similar trends are observed in the pressure profile through the

center of the vortex in the streamwise direction shown in Figure 5.6. The GMC-PC and

GMC-ST schemes match one another well in the core of the vortex. However, as with

the velocity profile, the GMC-PC scheme shows more dispersion in the pressure profile

than the GMC-ST scheme. Also evident are numerical oscillations in the GMC-ST scheme
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Figure 5.5: Velocity profiles across the vortex convecting at M = 0.5, using the GMC-ST
and the GMC-PC schemes. Reprinted with permission from Gallagher et al.[117].

that are not present in the GMC-PC scheme and are attributed to the new non-linearity

switch discussed in Chapter 4 (for a discussion of the pressure field using the original

non-linearity switch, see Appendix A). The numerical dissipation added to the pressure field

in the GMC-PC scheme suppresses these weak oscillations.

Effect of physical time step selection

At low Mach numbers, the precise behavior of the GMC-PC scheme depends on the physical

time step selection through the unsteady preconditioner definition. For small physical

time steps, the unsteady preconditioner is dominant and this has the effect of disabling the

preconditioning by driving the reference velocity to the speed of sound. For large physical

time steps, the steady preconditioner is dominant and the reference velocity converges to

the convective velocity. These two limits are represented by physical CFL numbers of

CFLc = 1 and CFLu = 1 respectively. With the convective Mach number set to 0.001,

CFLu = 1 = 1000 CFLc.
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Figure 5.6: Pressure profiles across the vortex convecting at M = 0.5, using the GMC-ST
and the GMC-PC schemes.

In the analysis of the traditional MacCormack scheme at low Mach numbers presented

in Chapter 3, it is noted that the preconditioning approach could be applied directly to

the 1971 MacCormack scheme and this scheme is called MC-PC. The modified equation

analysis showed that the inherent dissipation scales with the preconditioned eigenvalues and

therefore, when preconditioning is active, the inherent dissipation is well-behaved. However,

in the case of small physical time steps, the preconditioning is deactivated and the dissipation

properties of the MC-PC scheme are predicted to revert back to those of the unmodified 1971

MacCormack scheme. Running the low Mach number vortex using the MC-PC scheme

with a physical CFL number of CFLc = 1 verifies this to be the case as shown in Figure 5.7.

There is little difference in the solution using the GMC-ST and the MC-PC schemes, and

both show a reduction in the windward side peak of approximately 50% and a reduction

in the leeward side peak of approximately 30% relative to the theoretical profile. On the

other hand, the modifications made to the GMC-PC scheme – specifically the change from

biasing the pressure fluxes to a central interpolation coupled with an artificial dissipation

on the pressure field – greatly enhances the solution quality. The GMC-PC scheme again
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Figure 5.7: Velocity profiles across the vortex convecting at M = 0.001 illustrating the
limitations of applying preconditioning to the original MacCormack scheme (MC-PC) when
run at a CFLc = 1. The improved scheme (GMC-PC) shows little numerical dissipation
under these conditions. Reprinted with permission from Gallagher et al.[117].

shows minor dispersion, but otherwise matches the theoretical profile very well and exhibits

little numerical dissipation. This suggests the GMC-PC scheme properties are independent

of Mach number.

The GMC-PC scheme is also run at a larger time step, CFLu = 1, and the resulting

velocity profile relative to the GMC-ST scheme and GMC-PC scheme at CFLc = 1 are

in Figure 5.8. With a physical time step 1000 times larger than when run at CFLc = 1,

the results of the GMC-PC scheme at CFLu = 1 show an increased amount of numerical

dissipation, as would be expected. However, the numerical dissipation is far less than that

seen in the GMC-ST scheme. The leeward side peak shows little dissipation relative to the

theoretical, while the windward side peak exhibits less than half of the dissipation seen in

the GMC-ST scheme.
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Figure 5.8: Velocity profiles across the vortex convecting at M = 0.001 for the GMC-PC
scheme at two different physical CFL numbers compared to the GMC-ST and theoretical
profiles. Both limiting cases of the GMC-PC scheme show improved dissipative properties
relative to the GMC-ST scheme at these conditions.

Effect of convergence criterion

The dual-time iteration procedure stops based on user-defined convergence criteria, at which

point the converged solution is the solution at the next physical time level (see Chapter 4

for details). There are multiple possible criteria from which the user may select, however

experience has shown the most reliable and practical is stopping convergence when the

residual reduces by a user-specified number of decades (orders of magnitude). Assessment

of the effect this criterion has on the solution quality indicates the solution for this case

is insensitive to the number of decades specified, provided the pseudo-time derivative is

converged enough. Figure 5.9 shows the velocity profiles for the GMC-PC scheme at

CFLu = 1 for convergence criteria set to 2, 3 and 4 decades of residual reduction. The

solutions are indistinguishable from one another in all cases.

However, simulations run with the convergence criterion under 2 decades diverged. At

0.5 decades, the simulation crashes within 4 physical time steps while at 1.5 decades, it
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Figure 5.9: Velocity profiles across the vortex convecting at M = 0.001, using the GMC-ST
and GMC-PC schemes with various convergence criteria. Reprinted with permission from
Gallagher et al.[117].

crashes after 200 physical time steps out of the 256 steps required. Experience with other,

more complex cases also seems to indicate that insufficient convergence leads to divergence

in physical time that may take a long time to manifest if only weakly insufficient.

Scheme efficiency

The previous results indicate the GMC-PC scheme has superior dissipative properties relative

to the GMC-ST scheme but no consideration has been given to the cost. On this grid, the

GMC-PC scheme at CFLc = 1 needs approximately 20 pseudo-time iterations per physical

time iteration to converge 4 decades. The convergence behavior is shown in Figure 5.10a

where the discrete jumps in the residual indicate the transition to the next physical time step

and the restarting of the dual-time iterations. At this CFL number, the GMC-PC scheme

requires approximately 10 times the number of iterations as the GMC-ST scheme, which

runs at CFLu+c ≈ CFLc = 0.5. If the convergence criterion were reduced by half, the

number of pseudo-iterations would be reduced by approximately half and the workload
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reduced to a factor of 5 times the GMC-ST scheme. Likewise, when run at a CFL number of

CFLu = 1, the GMC-PC scheme requires approximately 2000 pseudo-iterations to converge

4 decades as shown in Figure 5.10b. This is consistent with the ratio of CFL numbers

and the scheme when run with this criterion is approximately 10 times more expensive.

However, if the convergence criterion is reduced to 2 decades, this requires approximately

500 pseudo-iterations and the overall cost is reduced to approximately 2.5 times the number

of iterations as the GMC-ST scheme.

Despite the increased number of iterations in the GMC-PC scheme relative to the GMC-

ST scheme, the solution quality is significantly improved at low Mach numbers. For a

simple configuration such as this, it is possible to find a grid resolution that would provide

comparable results using the GMC-ST scheme. In this instance, it requires a grid with

three times as many cells in each direction – a resolution of 768 × 768 cells. This also

reduces the time step size for the GMC-ST scheme by the same factor, resulting in 27 times

the computational work relative to the scheme on the original grid. Figure 5.11 shows the

GMC-ST scheme on this refined grid relative to the GMC-PC scheme at CFLc = 1 and the

results are comparable. From this, the GMC-PC scheme is approximately 3 to 6 times more

efficient (based on convergence criteria) than the GMC-ST scheme for the same solution

quality and it is capable of producing a Mach number independent solution on the original

grid. When run at CFLu = 1, the GMC-PC scheme has similar efficiency as when run

at CFLc = 1, but reducing the convergence criteria has a larger effect on the reduction of

iterations. Therefore, this scheme can be up to an order of magnitude more efficient than the

GMC-ST scheme.
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Figure 5.10: Convergence history for several physical time iterations of the vortex convection
case at two physical CFL numbers. Discontinuities in the residual indicate the transition to
the next physical-time iteration. Reprinted with permission from Gallagher et al.[117].
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Figure 5.11: Comparison of the solutions using the GMC-ST and GMC-PC schemes, where
the GMC-ST solution requires three times finer mesh in both directions for comparable
accuracy to the GMC-PC solution on the original mesh. Reprinted with permission from
Gallagher et al.[117].
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5.3 Lid-Driven Cavity

The lid-driven cavity is a classic case designed to test the accuracy of numerical schemes

for viscous fluids. Numerical data are available for multiple Reynolds numbers and the

resulting flows range from simple, laminar flows to highly unsteady, turbulent flows with

multiple eddies and separation points[123, 128]. The bump flow and vortex flows considered

previously focus on the behavior of the GMC-PC scheme for inviscid steady and unsteady

flows respectively. The lid-driven cavity cases in this section focus on the viscous steady-

state performance of the GMC-PC scheme.

The test employs a square cavity, bounded on all sides by no-slip walls. The top wall is

impulsively set into motion, dragging the fluid along with it. There are four main features

that develop [123]. The primary vortex forms towards the top-right corner (for a rightward

moving top wall), with the core moving towards the center of the domain as the Reynolds

number increases. The two corner eddies at the bottom left and bottom right of the domain

also increase in size as the Reynolds number increases, with the bottom right corner eddy

growing at a larger rate and to a larger size than the left corner eddy. For Reynolds numbers

less than or equal to 1000, the corner eddies are each a single, large eddy. At higher Reynolds

numbers, the lower right eddy bifurcates with a second, small eddy forming in the corner.

In the original Ghia et al. dataset, the lower right eddy bifurcates at a Reynolds number of

3200 and the size of the secondary eddy increases with the Reynolds number [123]. The left

corner eddy also bifurcates at Reynolds numbers greater than or equal to 7500. A separation

bubble on the top of the left wall is the remaining topological feature. For Reynolds numbers

under 1000, this bubble does not form, while at a Reynolds number of 1000 the bubble

begins to develop, yet remains weak. Its size and strength increase as the Reynolds number

increases.

In addition to different topological evolution with increasing Reynolds numbers, the

amount of unsteadiness in the flow increases as well. For Re ≤ 1000, the fully-developed
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flow has a steady-state solution. At larger Reynolds numbers, the flow is unsteady and

periodic in time, so no steady-state solution exists (although the time-averaged flow field

does converge). Because the interest is in evaluating the steady-state performance of the

GMC-PC scheme, two Reynolds numbers are tested: Re = 100 and Re = 1000. The Mach

number, based on the velocity of the top wall, is also varied and M = 0.3 and M = 0.001

configurations are tested. Provided the Mach number is low enough that compressibility in

the flow is not significant, the results should be independent of the Mach number.

The Reynolds number and Mach number are defined to be Re = uwallL/ν, where the

length scale is the size of the domain, L = 1 m, and M = uwall/c, respectively. The

solution is initialized with stagnant conditions at p = 1 atm and T = 298.15 K. The

wall boundary conditions are no-slip, with an isothermal condition for temperature such

that Twall = 298.15 K. For incompressible solvers, this temperature boundary condition

is not important as the temperature equation is decoupled from the system and there is

no increase in temperature. For compressible solvers at low Mach numbers, the kinetic

energy from the wall dissipated through viscosity in the fluid is generally small enough

that the temperature increases in the domain are not enough to change the velocity field. In

that instance, adiabatic wall boundary conditions are possible. However, at higher Mach

numbers, including M = 0.3, the amount of kinetic energy dissipated is enough to cause a

large temperature increase throughout the fluid. This will change the density as well as the

transport properties and generate a different flow field than the original data from Ghia et al.

[123], who used an incompressible solver. The isothermal wall conditions act as an energy

sink to remove the dissipated kinetic energy. To ensure consistency in the simulation details,

both Mach numbers and Reynolds numbers use isothermal walls.

Iterative convergence properties

The solution is considered to have reached steady state when one of the convergence criteria

given in Chapter 4, repeated here for clarity, is satisfied:
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(i) Simulation reaches a maximum number of iterations for that physical time step;

(ii) Residual reduces below a maximum norm value;

(iii) Residual has decayed a specified number of decades;

(iv) Change in residual is less than a specified amount for several consecutive iterations.

Criterion (i) limits the number of pseudo-iterations in the GMC-PC scheme to 1× 106 and

limits the maximum physical time for the simulation to 20 s for the GMC-ST scheme. For

both schemes, Criterion (ii) terminates the simulation when the norm of the residual drops

below 1× 10−9. Criterion (iii) is removed from consideration by choosing a large number

of decades, 100 in this case. Lastly, the simulation is considered stalled through Criterion

(iv) when the difference in the residual is less than 1× 10−12 for more than 10 consecutive

iterations.

Table 5.1 provides the final residual reached and the termination used to halt the conver-

gence for each of the grids and configurations tested. On all grids and for all conditions, the

GMC-ST scheme converges close to the desired residual. At M = 0.3, the scheme reaches

the target residual on all grids for both Reynolds numbers. However, at low Mach numbers,

convergence is generally stopped due to the residual stalling. The opposite happens for the

GMC-PC scheme. Specifically, convergence stalls for all grids and both Reynolds numbers

at M = 0.3, while the desired residual is reached for all cases at M = 0.001. Unlike the

GMC-ST scheme, the cases where the GMC-PC scheme convergence stalled have a final

residual much larger than the target. The cause of this discrepancy is not known, but as will

be shown, the final flow field is correct despite the relatively large final residual.

Figure 5.12 shows the convergence history on the finest grids used for each condition

and scheme. At M = 0.3, the GMC-PC and GMC-ST schemes converge at similar rates as

the simulation progresses, although the GMC-PC scheme stalls at a relatively large residual.

This difficulty converging is less at Re = 1000. On the other hand, convergence for the low

Mach number case is markedly different. The GMC-PC scheme converges rapidly to the
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target residual, while the GMC-ST scheme is slow to converge. For comparison, on the finest

grid, the GMC-PC scheme reached the steady-state solution with a wall-time approximately

8.5 times faster than the GMC-ST scheme at Re = 100 and required approximately 24

times fewer iterations. At Re = 1000, the GMC-PC scheme required approximately 6 times

less wall-time and approximately 11 times fewer iterations. This suggests that the cost per

iteration is just under 3 times more for the GMC-PC scheme at Re = 100 and just under

2 times more at Re = 1000. However, as will be shown in the next sections, the GMC-ST

scheme is not capable of capturing the correct solution on these grids, making the GMC-PC

scheme even more efficient at low Mach numbers.

Quality of solution

Ghia et al. [123] provide velocity contours through the center of the domain to facilitate

comparison of numerical schemes. Comparisons between the two schemes and these velocity

contours are shown in Figure 5.13. At M = 0.3, both the GMC-ST and GMC-PC schemes

match the reference profiles well with little difference between the schemes and the expected

results. At M = 0.001, this is not the case.

Figure 5.14 shows the velocity profiles for both schemes at the low Mach number

condition. For the Re = 100 case, the GMC-ST scheme predicts a velocity field close

to the reference data, but shows an increased amount of dissipation near the peaks while

the GMC-PC data matches the reference data well. At Re = 1000, the GMC-PC scheme

matches the reference data while the GMC-ST scheme deviates from the expected values.

These profiles correspond to the coarsest grid resolutions where the GMC-PC scheme first

became grid independent. These correspond to the 64 × 64 and 128 × 128 resolutions

for Re = 100 and 1000, respectively. The steady state velocity contours for Re = 1000

at M = 0.001 in Figure 5.15 indicate both schemes predict the formation of a primary

vortex, but this vortex is located closer to the upper-right corner for the GMC-ST scheme.

This predicted location is similar to the primary vortex at a much lower Reynolds number,
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indicating the increased numerical dissipation at low Mach numbers in the GMC-ST scheme

lowered the effective Reynolds number of the flow.

Grid convergence properties

Multiple grids are used to measure the grid independence and spatial convergence rates

of the two schemes. The velocity profiles from Ghia et al. are used to create an error

measure for each result. The error is defined as ε = |u(yG,min)− UG,min|, where UG,min is

the minimum value of the X-component of the velocity profile along the Y-axis according to

the reference data from Ghia et al. [123]. The coordinate yG,min is the y-coordinate of that

minimum velocity, and u(yG,min) = umin is the velocity component from the present work

at that coordinate. This error measure is shown in Figure 5.16, where it should be noted that

the grid independent error is seemingly large. The data from Ghia et al. is numerical, using

a second order accurate scheme, and therefore convergence to their data within machine

precision is not to be expected.

At M = 0.3, both the GMC-ST and GMC-PC schemes converge at the same rate to the

target data. For reference, the blue dashed line has a slope of 2, indicating second-order

accurate convergence rates are achieved for both schemes at M = 0.3 as expected. This

is true for both Reynolds numbers. At M = 0.001, the GMC-PC scheme shows nearly

identical convergence rates as it did at M = 0.3, again suggesting the performance of the

scheme is independent of Mach number. However, the GMC-ST scheme does not perform

well at either Reynolds number in the low Mach number configuration and at Re = 1000,

the error has not yet begun to decrease even on the finest grid tested.

Unlike the vortex test case, it is not practical to find a grid such that the GMC-ST scheme

is capable of giving the same quality solution as the GMC-PC scheme for both Reynolds

numbers. In the Re = 100 case, it appears the GMC-ST scheme enters the convergent

range between the 64× 64 and 128× 128 grids. From this, a simple extrapolation suggests

the grid would need to be somewhere between 256 × 256 and 512 × 512 to reach the
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same solution quality. For the Re = 1000 case, the GMC-ST scheme has not yet started

to converge. Assuming the convergence were to start immediately for grids larger than

256× 256, simple extrapolation indicates the required grid would be 2048× 2048. Not only

does the GMC-PC scheme require less wall-time on a given grid, but it is many orders of

magnitude more efficient than the GMC-ST scheme when the accuracy of the predicted

solution is considered.
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Table 5.1: Convergence information for the lid-driven cavity for each combination of flow
conditions, meshes and schemes.

GMC-ST GMC-PC

Mesh Size Reynolds Mach Final Residual Criterion Final Residual Criterion

16× 16 100 0.3 1.00× 10−9 (ii) 2.57× 10−5 (iv)

32× 32 100 0.3 1.00× 10−9 (ii) 2.51× 10−5 (iv)

64× 64 100 0.3 1.00× 10−9 (ii) 2.62× 10−5 (iv)

128× 128 100 0.3 1.00× 10−9 (ii) 2.27× 10−5 (iv)

16× 16 100 0.001 2.07× 10−9 (iv) 1.00× 10−9 (ii)

32× 32 100 0.001 1.29× 10−9 (iv) 1.00× 10−9 (ii)

64× 64 100 0.001 1.12× 10−9 (iv) 1.00× 10−9 (ii)

128× 128 100 0.001 1.00× 10−9 (ii) 1.00× 10−9 (ii)

16× 16 1000 0.3 1.00× 10−9 (ii) 6.99× 10−6 (iv)

32× 32 1000 0.3 1.00× 10−9 (ii) 3.60× 10−6 (iv)

64× 64 1000 0.3 1.00× 10−9 (ii) 1.25× 10−6 (iv)

128× 128 1000 0.3 1.00× 10−9 (ii) 3.69× 10−7 (iv)

256× 256 1000 0.3 1.00× 10−9 (ii) 2.50× 10−7 (iv)

16× 16 1000 0.001 9.66× 10−9 (iv) 1.00× 10−9 (ii)

32× 32 1000 0.001 4.66× 10−9 (iv) 1.00× 10−9 (ii)

64× 64 1000 0.001 8.56× 10−9 (iv) 1.00× 10−9 (ii)

128× 128 1000 0.001 8.47× 10−9 (iv) 1.00× 10−9 (ii)

256× 256 1000 0.001 6.46× 10−9 (iv) 1.00× 10−9 (ii)
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Figure 5.12: Convergence histories for the GMC-ST and GMC-PC schemes on the finest
grids for each configuration. Reprinted with permission from Gallagher et al.[117].
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Figure 5.13: U- and V-velocity profiles for both Reynolds numbers at M = 0.3 indicating
both the GMC-PC and GMC-ST schemes are capable of capturing the correct solution.

129



−0.5 0.0 0.5 1.0
u/uw

−0.4
−0.2

0.0
0.2
0.4

y/
L

GMC-ST
GMC-PC
Ghia et al

(a) U-velocity profiles at Re = 100

−0.5 0.0 0.5 1.0
u/uw

−0.4
−0.2

0.0
0.2
0.4

y/
L

GMC-ST
GMC-PC
Ghia et al

(b) U-velocity profiles at Re = 1000

−0.5 0.0 0.5
x/L

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

v/
u w

GMC-ST
GMC-PC
Ghia et al

(c) V-velocity profiles at Re = 100

−0.5 0.0 0.5
x/L

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
v/

u w

GMC-ST
GMC-PC
Ghia et al

(d) V-velocity profiles at Re = 1000

Figure 5.14: U- and V-velocity profiles for both Reynolds numbers at M = 0.001 demon-
strating the inability of the GMC-ST scheme to capture the correct results. Reprinted with
permission from Gallagher et al.[117].
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Figure 5.15: Steady-state velocity contours in the lid-driven cavity for the M = 0.001 at
Re = 1000 using the GMC-PC scheme (filled contour) and the GMC-ST scheme (lines).
Contours are at 17 levels from |u|= 0 (light) to |u|= uwall (dark). Reprinted with permission
from Gallagher et al.[117].
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Figure 5.16: Error in velocity relative to reference data [123] for each mesh tested. The
blue dashed line represents second-order accurate convergence. Reprinted and adapted with
permission from Gallagher et al.[117].
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5.4 Decaying Isotropic Turbulence

The final non-reacting flow considered is a viscous, unsteady problem and represents a final

building block towards the understanding of the dissipative characteristics of the schemes.

Decaying isotropic turbulence is an initial value problem selected to highlight the differences

between the GMC-ST and GMC-PC schemes when run at a low turbulent Mach number

configuration. By running this case with no turbulent closure models, any differences

in the results are due solely to the differences in the numerical dissipation between the

two schemes. An initial turbulent field is generated on a uniform box grid with 643 cells

measuring 6.28 m per side. The von Karman-Pao model spectrum [129] is used to generate

the initial turbulence:

E (k) = 16 (u′)
2

√
2

π

(
k4

k5
0

)
exp

(
−2

k2

k2
0

)
(5.2)

where E (k) is the kinetic energy at wave number k and k0 is the wave number with the

peak energy content, set here to k0 = 4. The RMS velocity, u′, is chosen such that the

resulting turbulent Mach number is Mt = 0.001 and the kinematic viscosity of the fluid is

set to 100 mm2 s−1. Based on these conditions, the turbulence is under-resolved and the

ratio of the grid cell size to the Kolmogorov length scale is ∆x/η ≈ 20. Since this is an

unsteady problem, the GMC-PC scheme is run at two physical CFL numbers, CFLc = 1

and CFLu = 1.

Two metrics are used to indicate the dissipative properties of the schemes. The first is the

temporal evolution of the large scale structures. This is represented through the RMS of the

vorticity fluctuations, ωRMS . The second metric is the temporal evolution of the Kolmogorov

length scale at the smallest structures of the flow. This is defined as η = (ν3/ε)
1/4, where

ε = 2ν〈sijsij〉 with sij = 1/2
(
∂ui
∂xj

+
∂uj
∂xi

)
[129]. Both metrics are tracked as a function of

the eddy-turnover time, τt = L11/〈u〉 where L11 is the integral length scale.
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Figure 5.17: Time variation of the vorticity fluctuations and Kolmogorov length scale in
decaying isotropic turbulence using the GMC-ST and GMC-PC schemes. Reprinted with
permission from Gallagher et al.[117].

The GMC-ST scheme generates a rapid initial decay in the large scale structures of

the flow represented by the vorticity fluctuations as shown in Figure 5.17a. The GMC-PC

scheme, however, shows no such rapid initial decay. Furthermore, the large scale features

of the flow dissipate slightly faster at CFLu = 1, but the differences are minor relative to

CFLc = 1. In a similar fashion, the GMC-ST scheme shows an initial rapid increase in the

size of the dissipative scales η in Figure 5.17b whereas the GMC-PC scheme does not. The

sensitivity to the physical CFL number is even less evident in the size of the dissipative

scales. Overall, both the large and small scale features of the flow are primarily insensitive

to the physical CFL number when using the GMC-PC scheme.

At an intermediate eddy-turnover time of τt = 3.5, the kinetic energy spectra in Fi-

gure 5.18 show the presence of a pronounced inertial range in the GMC-PC results while

the GMC-ST shows a much smaller range that could be classified as inertial. The kinetic

energy content of the largest scales is similar in all three cases, but the energy content in

the intermediate scales to the smallest resolved scales is higher with the GMC-PC scheme.

This observation is consistent with previous observations of the behavior of preconditioned

schemes at low Mach numbers [130]. As with the changes in the characteristic flow sizes in

Figure 5.17, the kinetic energy spectra using the GMC-PC in Figure 5.18 are independent
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Figure 5.18: Turbulent kinetic energy spectra at τt = 3.5 for the GMC-ST and GMC-PC
schemes. Reprinted with permission from Gallagher et al.[117].

of the physical CFL number. The increased richness of the turbulent scales is evident in

the Z-vorticity contours in the flow (Figure 5.19). Minor differences are noticeable in the

GMC-PC scheme depending on the chosen physical CFL number, while there are significant

differences in the size and intensity of the structures compared to the GMC-ST scheme.

These differences between the GMC-ST and GMC-PC schemes are directly attributed to the

improved dissipative characteristics of the GMC-PC scheme. Again, attempts to grid-refine

the GMC-ST calculations to match the solution quality of the GMC-PC scheme were not

explicitly performed, but we can again conclude that the GMC-PC scheme would provide

significant savings in the associated computational expense.

All of the metrics considered thus far indicate the GMC-PC scheme exhibits less nu-

merical dissipation than the GMC-ST scheme. As a result, the velocity correlations in

Figure 5.20 show a much larger range in the velocity values for the GMC-PC scheme

relative to the GMC-ST scheme, as would be expected. However, the GMC-ST scheme
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appears to exhibit some anisotropy in the distribution of velocities. The amount of anisotropy

in the solution can be measured through the variance of the velocity components and the

covariance between them. At an eddy-turnover time of τt = 3.5, the covariance matrices for

the u and v velocity components are:

cov (u, v)GMC-ST =

0.862× 10−2 34.24× 10−5

34.24× 10−5 0.829× 10−2


cov (u, v)GMC-PC,CFLc=1 =

1.610× 10−2 5.936× 10−5

5.936× 10−5 1.581× 10−2


cov (u, v)GMC-PC,CFLu=1 =

1.691× 10−2 5.647× 10−5

5.647× 10−5 1.700× 10−2


(5.3)

with similar matrices for the other components. The diagonal terms in the GMC-ST matrix

are approximately half those in both GMC-PC matrices, again confirming the GMC-ST

scheme is more dissipative. Any deviation in the off-diagonal components is indicative

of anisotropy in the solution [129]. The GMC-ST scheme has off-diagonal components

approximately 5.5 times larger than the GMC-PC scheme, which has similar magnitude

terms for both CFL numbers. This corresponds to a correlation coefficient of 0.2 for the

GMC-ST scheme compared to the 0.06 for the GMC-PC schemes, indicating a stronger

preference for anisotropy with the GMC-ST scheme.
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(a) GMC-PC scheme at CFLc = 1 (b) GMC-PC scheme at CFLu = 1

(c) GMC-ST scheme

Figure 5.19: Z-vorticity (normal to the plane) in an isotropic decaying turbulence field along
the center plane for the GMC-PC and GMC-ST schemes at an eddy-turnover time τt = 3.5.
Reprinted with permission from Gallagher et al. [117].
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(a) GMC-PC scheme at CFLc = 1 (b) GMC-PC scheme at CFLu = 1

(c) GMC-ST scheme

Figure 5.20: Velocity correlations for the GMC-PC and GMC-ST schemes at an eddy-
turnover time τt = 3.5.
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5.5 Summary of results

This chapter demonstrates the performance of the GMC-PC scheme vs. the GMC-ST

scheme on a series of progressing to cases of interest for turbulent flows. The steady and

unsteady performance for both inviscid and viscous configurations indicate that the GMC-PC

scheme is more efficient than the GMC-ST scheme in all cases at low Mach numbers. Most

importantly for the prediction of complex flow fields, the GMC-PC scheme has dissipative

properties that are independent of Mach number. This is in contrast to the GMC-ST scheme,

which shows severely degraded solution quality as the Mach number is reduced, and in

some cases the scheme cannot predict the correct solution with a reasonable grid resolution.

Although the GMC-PC scheme exhibits less error than the GMC-ST scheme, it is more

expensive per iteration due to the computational overhead of solving the linear system at

each cell. This overhead causes each iteration in the GMC-PC scheme to be between 1.5 and

3 times more expensive than the comparable GMC-ST iteration. However, in some cases,

the GMC-PC scheme requires substantially fewer iterations at low Mach numbers than the

GMC-ST scheme and so it is not only more accurate, but also faster. In other cases at low

Mach numbers, the GMC-PC scheme will take longer than the GMC-ST scheme on a given

grid. When this occurs, the GMC-PC scheme will take more wall-time for the simulation on

the same mesh but getting a comparable solution with the GMC-ST scheme may require a

finer mesh and, consequently, more total resources.

With turbulent, reacting flows as the objective, the results from the decaying isotropic

turbulence provide key insights. Notably, the results with the GMC-PC scheme are insensi-

tive to the physical CFL number used. This is a useful property for LES for reasons that are

not immediately obvious. As discussed in Chapter 1, implicitly filtered LES relies on the

grid to act as a filter for the solution. This implies that the cutoff wave number in space is

kcut ≈ 1/∆x. At the same time, the temporal integration introduces a cutoff frequency in

physical time, fcut ≈ 1/∆t. In a turbulent flow, each eddy has an associated wave number

138



in the spatial domain, but it also has an associated frequency in the temporal domain. The

spatial and temporal descriptions of an eddy are related, although the relationship is not

always clear. However, under some circumstances, Taylor’s hypothesis may be used to relate

the temporal behavior of the flow directly to the spatial behavior of the flow [129].

If the hypothesis is valid, the frequency and the wave number are directly related:

f ∝ 〈u〉k (5.4)

where 〈u〉 is the mean flow velocity. More specifically, the spatial filter cutoff introduced

by the grid can be used to define a frequency filter cutoff also introduced by the grid,

fcut ∝ 〈u〉kcut. From this, a cutoff time step can be defined:

∆tcut =
1

〈u〉kcut
=

∆x

〈u〉 (5.5)

When the time step used in the integration is smaller than the cutoff time step just defined,

the frequency content of the solution contains information corresponding to the sub-filter

solution in space and this information is not physically useful. The cutoff time step can be

used to define an ideal physical CFL number:

CFLcut = 1 =
∆tcut〈u〉

∆x
(5.6)

This ideal physical CFL number is simply CFLu = 1 and the GMC-ST scheme is limited

by stability constraints to a much smaller CFL number at low Mach numbers. Given the

insensitivity to the physical CFL numbers with the GMC-PC scheme, the ideal physical

time step for turbulent, non-reacting LES is CFLu = 1 and this will serve as an upper limit

for the reacting flow field tests.
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CHAPTER 6

EXTENSIONS FOR STIFF CHEMISTRY

Careful consideration must be given to the treatment of the source terms that arise from

chemical reactions. These source terms are often highly non-linear and form a system of

stiff differential equations. In addition, the source terms result in a strong, localized heat

release for many of the chemically reacting flows of interest. Therefore, numerical schemes

must be designed to handle these unique challenges if they are to remain robust and accurate.

This chapter begins with a description of how chemical source term integration is handled in

single-time schemes using both fully-coupled and operator splitting approaches. Then, these

concepts are extended to dual-time schemes and analyzed. This is an expanded presentation

of the work in Gallagher and Menon [131].

To facilitate the presentation, the source term vector S̃ is rearranged into stiff and non-

stiff components, S̃S and S̃NS respectively. Unless otherwise needed, the tildes and bars are

dropped from all terms and the equations apply to both LES and DNS configurations. The

stiff vector is composed of the chemical reaction rates and the non-stiff vector is composed

of the subgrid modeling terms, if present. Furthermore, the inviscid and viscous fluxes, as

well as the non-stiff source term vector, are combined into a single residual vectorR, such

that the dual-time and single-time governing equations are:

Γ
∂

∂τ
Q+

∂

∂t
W = −R+ SS

∂

∂t
W = −R+ SS

(6.1)

respectively.
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6.1 Chemistry Integration in Single-Time Schemes

Broadly speaking, integration of chemical source terms for single-time schemes uses two

different approaches. The first is a fully-coupled approach, where the chemical source terms

are integrated alongside the spatial terms using the same temporal integrator. This may be

done explicitly or implicitly depending on the formulation of the scheme. These schemes do

not suffer from any splitting errors but rely on the temporal integrator to address the stiffness

and time step limitations due to the source terms. For implicit temporal schemes, the

stiffness is addressed automatically by nature of the scheme, but the presence of eigenvalues

with large, positive components limits the time step selection. For explicit temporal schemes,

the eigenvalues with positive real components do not impose stability constraints. However,

the eigenvalues with negative real components do impose time step constraints for stability

a the stiffness of the mechanism may demand time steps much smaller than the stability

constraint to ensure accuracy. Both approaches can be successful if the limits on the time

steps are taken into account or if techniques to reduce the stiffness are employed.

While the operator splitting approach segregates the workload into highly efficient,

dedicated solvers, the approach introduces splitting errors from the decoupling of the source

terms and the spatial fluxes [132]. Depending on the precise splitting scheme chosen, these

errors have various leading order of truncation errors in physical time. Two first-order

splitting methods are possible [132]. The first, Lie splitting, integrates the source terms over

the time step and then integrates the fluxes based on the updated solution:

dW ∗

dt
= S∗S,0, W ∗ (0) = W0, t ∈ [0,∆t] (6.2a)

dW ∗∗

dt
= −R∗∗∗ , W ∗∗ (0) = W ∗ (∆t) , t ∈ [0,∆t] (6.2b)
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An alternate splitting is also possible, where the fluxes are done first, followed by the sources:

dW ∗

dt
= −R∗0, W ∗ (0) = W0, t ∈ [0,∆t] (6.3a)

dW ∗∗

dt
= S∗∗S,∗, W ∗∗ (0) = W ∗ (∆t) , t ∈ [0,∆t] (6.3b)

In these schemes, the temporal derivative may be solved using whatever techniques are

suitable.

To analyze the errors, the right hand sides are linearized such that SnS,m = DWm and

−Rn
m = AWm where m is the starting time index and n is the ending time index. When

this is done, the truncation error for this scheme may be written as the difference between

the solution using the split scheme and the exact solution:

T.E. = (exp [D∆t] exp [A∆t]− exp [(A + D) ∆t])W0 (6.4)

for the first splitting and:

T.E. = (exp [A∆t] exp [D∆t]− exp [(A + D) ∆t])W0 (6.5)

for the second. The matrix exponentials are expanded using Taylor series approximations

and the terms are collected together:

T.E. =
DA−AD

2
∆t2 +O

(
∆t3
)

(6.6)

for the first splitting and:

T.E. =
AD−DA

2
∆t2 +O

(
∆t3
)

(6.7)
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for the second. The global error is first order for both of the possible splittings, unless

the operators commute, in which case the error terms cancel. Although interesting, this

commutation rarely happens in anything other than model equations [132]. Additionally,

despite similar formal truncation errors, the solution quality may suffer if the stiffest operator

is not integrated last and so the two splittings are not equivalent in practice [132].

The other first order splitting method is called the no-time splitting method [132, 133].

In this scheme, the source terms are first evaluated over the time interval and then the source

term is added to the residual and integrated together:

dW ∗

dt
= S∗S,0, W ∗ (0) = W0, t ∈ [0,∆t] (6.8a)

dW ∗∗

dt
= −R∗∗0 +

W ∗ (∆t)−W0

∆t
, W ∗∗ (0) = W0, t ∈ [0,∆t] (6.8b)

The solution using this scheme is [132]:

W (∆t) = exp [A∆t]

(
I +

exp [D∆t]− I

∆t

∫ ∆t

0

exp [−tA] dt

)
W0 (6.9)

which can again be expanded using Taylor series approximations for the matrix exponentials

into:

W (∆t) =

[
I + (A + D) ∆t+

A2 + D2 + AD

2
∆t2 +O

(
∆t3
)]
W0 (6.10)

As before, the truncation error is found by subtracting the exact solution [132]:

T.E. = −DA

2
∆t2W0 +O

(
∆t3
)

(6.11)

which is again a first-order accurate scheme. Unlike the Lie split scheme, however, this

scheme always has errors present whether the operators commute or not.
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Higher order splittings are possible. Strang splitting is a popular choice and these errors

are second-order accurate in physical time [66, 132, 134]. This scheme integrates one

operator over half of the time step, then uses that solution as the initial condition to integrate

the other operator over the full time step, and finally uses that solution as the initial condition

to integrate the first operator over the remaining half time step:

dW ∗

dt
= S∗S,0, W ∗(0) = W0, t ∈

[
0,

∆t

2

]
(6.12a)

dW ∗∗

dt
= −R∗∗∗ , W ∗∗(0) = W ∗

(
∆t

2

)
, t ∈ [0,∆t] (6.12b)

dW ∗∗∗

dt
= S∗∗∗S,∗∗, W ∗∗∗(0) = W ∗∗(∆t), t ∈

[
0,

∆t

2

]
(6.12c)

As before, the truncation error is:

T.E. =

(
exp

[
D

∆t

2

]
exp [A∆t] exp

[
D

∆t

2

]
− exp [(A + D) ∆t]

)
W0 (6.13)

which is again expanded using Taylor series approximations to yield:

T.E. =

(
1

12
[AAD− 2ADA + DAA]− 1

24
[DDA− 2DAD + ADD]

)
∆t3W0+O

(
∆t4
)

(6.14)

This scheme is globally second order accurate.

The formal order of accuracy is only one aspect of the actual error encountered using

these schemes. In all cases, the truncation errors involve the reaction and flux operators,

and they therefore also include the spectral content of those matrices. For many chemical

mechanisms, the eigenvalues in the reaction operator may be large and although the formal

order of accuracy may be acceptable, the magnitude of the errors may be significant. First

order splitting schemes with time steps determined by the chemical eigenvalues will have

errors that are O (1), while second order schemes will have errors O (∆t).

145



The way the schemes used to integrate the temporal derivative also influences the order

of accuracy. For example, assuming the chemical source terms are integrated using a

dedicated, stiff solver such as DVODE [47] and the flux terms are integrated using the

MacCormack scheme, there are two possible ways to implement the splitting. To illustrate

these approaches, the no-time splitting scheme in Equation (6.8) is used. The first way to

implement the splitting is:

dW ∗

dt
= S∗S,0 (DVODE) (6.15a)

W n+1/2 = W n −∆tRn + ∆t
W ∗ (∆t)−W0

∆t
, (MacCormack, Predictor) (6.15b)

W n+1 =
1

2

[
W n+1/2 +W n −∆tRn+1/2 + ∆t

W ∗ (∆t)−W0

∆t

]
, (MacCormack, Corrector)

(6.15c)

This scheme computes the source terms and then holds them constant throughout the

MacCormack integration step. When performed this way, the entire scheme is only first

order accurate as the error analysis indicated. The second approach to splitting is to perform

the operator splitting on each sub-step of the scheme:

MacCormack, Predictor:

dW ∗

dt
= S∗S,0 (DVODE) (6.16a)

W n+1/2 = W n −∆tRn + ∆t
W ∗ (∆t)−W0

∆t
, (MacCormack Sub-Step) (6.16b)

MacCormack, Corrector:

dW ∗∗

dt
= S∗∗S,n+1/2 (DVODE) (6.16c)

W n+1 =
1

2

[
W n+1/2 +W n −∆tRn+1/2 + ∆t

W ∗∗ (∆t)−W n+1/2

∆t

]
, (MacCormack Sub-Step)

(6.16d)
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With this approach, each sub-step contains the first-order splitting error. When the sub-steps

are combined together, the global order of accuracy improves to second-order. However, the

impact of the chemistry stiffness on the solution accuracy remains.

6.2 Fully-Coupled Chemistry in Dual-Time Schemes

The chemical source terms may be integrated using the same time integration scheme as the

the pseudo-time iterations in a fully-coupled fashion. This requires linearizing the implicit

source terms, forming the Jacobian matrix D =
∂Ss
∂Q

. The resulting scheme, performed

using the Generalized MacCormack scheme using a two step, backward differencing formula

for the physical time derivative is:

(
Γm +

3

2

∆τ

∆t

∂W

∂Q
−∆τDm

)
∆Qm+1/2 =

−∆τRm − ∆τ

2∆t

(
3Wm − 4W n +W n−1

)
+ ∆τSmS

(6.17a)

(
Γm +

3

4

∆τ

∆t

∂W

∂Q
− 1

2
∆τDm+1/2

)
∆Qm+1 =

1

2

[
Γm
(
Qm −Qm+1/2

)
−∆τRm+1/2

− ∆τ

2∆t

(
3Wm+1/2 − 4W n +W n−1

)
+ ∆τS

m+1/2
S

] (6.17b)

with them index indicating the pseudo-time iteration and the n index indicating the physical-

time iteration.

This scheme is only conditionally stable when the source term Jacobian D has positive

eigenvalues and the stable time step is proportional to the inverse of the largest, positive

eigenvalue. To avoid the expense of computing the eigenvalues for large systems, the local

time step is restricted to the minimum of the time step computed using Equation (4.9) and

(maxk [|ω̇k|/ρ])−1. Although this will limit the time step for both positive and negative

eigenvalues and therefore give non-optimal time steps and convergence rates, it avoids the
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need to compute the eigenvalues. The Jacobian matrix is approximated numerically using

first order, finite differences in each of the primitive variables.

6.3 Operator Splitting in Dual-Time Schemes

The operator splitting approaches used for single-time schemes can be extended to dual-time

schemes in a variety of ways. With a physical-time and pseudo-time derivative, the operator

splitting can be applied in either time derivative. The choice of which derivative to split and

how the splitting is done has implications for the accuracy of the scheme as will be shown

in Chapter 7.

6.3.1 Physical-Time Splitting

The physical-time split scheme employs a second-order, symmetric Strang splitting in

physical-time for the integration. This scheme is well-known and well-studied in the context

of single-time schemes [66, 132, 135] and was given in Equation (6.12). This scheme

integrates the chemistry source terms for a half time-step before and after the integration

of the residual term. The DVODE solver is used to integrate the stiff source terms in the

half-steps and the dual-time scheme is used to integrate the residual term in the middle step

of the scheme:

DVODE:

dW ∗

dt
= S∗S,0, W ∗(0) = W0 (6.18a)
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MacCormack Scheme:

Iterate until dual-time converges:

(
Γm +

∆τ

∆t

∂W

∂Q

)
∆Qm+1/2 =

−∆τRm − ∆τ

∆t

(
Wm −W ∗(t+

∆t

2
)

)
(

Γm +
1

2

∆τ

∆t

∂W

∂Q

)
∆Qm+1 =

1

2

[
Γm
(
Qm −Qm+1/2

)
−∆τRm+1/2

− ∆τ

∆t

(
Wm+1/2 −W ∗(t+

∆t

2
)

)]
(6.18b)

DVODE:

dW ∗∗∗

dt
= S∗∗∗S,n+1, W ∗∗∗(0) = W n+1 (6.18c)

where now the physical-time derivative is discretized using the predicted value at the end of

the first half time-step in a single-step, backward difference formula.

The Strang splitting requires the change in the physical time derivative relative to the

other schemes. The second step, Equation (6.12c), must represent only the change due to

the fluxes and non-stiff source terms and must not include changes due to the stiff source

terms [136]. Multi-step physical time derivatives will include portions of the source term

vector in the second step, violating this constraint. Therefore, multi-step schemes for the

second step will have an error term of O(1) regardless of the time step size [136].

An alternate scheme could be devised where the integration steps are reversed and the

residual term is integrated over the half-steps. However, such a scheme is not optimal. The

chemistry is, in general, the stiffest component of the system and the integration order in

Equation (6.12) will ensure second-order accuracy is maintained for small-enough time steps

[132]. Furthermore, the pseudo-time iteration is more expensive than the DVODE integration

and performing the pseudo-iterations twice would increase the cost of the scheme.
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As discussed previously, this scheme has second-order leading errors due to splitting

in physical time [66, 132]. For large physical-time CFL numbers, this error may be

unacceptable and lead to unphysical behavior [64, 135]. However, each physical time step

requires just two stiff source term integration calls and this may drastically reduce the

computational expense of the scheme for moderate CFL numbers.

6.3.2 Pseudo-Time Splitting

The splitting errors in the physical-time split scheme manifest in the physical solution.

Splitting the scheme in pseudo-time instead may mitigate the effects of the splitting errors

by keeping them at the pseudo-time level only. If traditional operator splitting is done on the

pseudo-time level, steady-state splitting errors may persist and corrupt the physical-time

solution. To demonstrate this, the no-time splitting approach in Equation (6.8) is performed

at the pseudo-time level. This scheme is a direct, dual-time analogue to the existing, single-

time scheme employed in the in-house solver LESLIE and uses DVODE to integrate the stiff

chemical source terms. In this case, the source terms are coupled to the spatial fluxes using

the no-time splitting approach in each sub-step. In each complete pseudo-time step, this

scheme is second-order accurate in the pseudo-time step ∆τ . In particular, these errors are

contained in the steady-state solution [65] and lead to a loss of time accuracy at the physical

time level. This is demonstrated in Chapter 7.

The predictor and corrector steps of the Generalized MacCormack scheme are each split

into two steps:

d

dτ
W ∗ = S

m+1/2
S ; W ∗(τ) = Wm(

Γm +
3

2

∆τ

∆t

∂W

∂Q

)
∆Qm+1/2 =

−∆τRm − ∆τ

2∆t

(
3Wm − 4W n +W n−1

)
+ ∆τ

W ∗(τ + ∆τ)−W ∗(τ)

∆τ

(6.19a)
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d

dτ
W ∗∗ = Sm+1

S ; W ∗∗(τ) = Wm+1/2(
Γm +

3

4

∆τ

∆t

∂W

∂Q

)
∆Qm+1 =

1

2

[
Γm
(
Qm −Qm+1/2

)
−∆τRm+1/2

− ∆τ

2∆t

(
3Wm+1/2 − 4W n +W n−1

)
+ ∆τ

W ∗∗(τ + ∆τ)−W ∗∗(τ)

∆τ

]
(6.19b)

At the start of each predictor and corrector step, DVODE is used to integrate the stiff source

term vector of the pseudo-time step ∆τ . This is then included as a source term in the

integration of the fluxes and non-stiff source term vector. The physical time derivative is

computed using a two-step, backward difference formula.

6.4 Consistent Splitting in Dual-Time Schemes

This scheme follows the single-time, consistent splitting approach from Schwer et al. [64]

and uses DVODE in both the predictor and corrector stages to integrate the stiff source terms

and the residual terms. The stiff source terms are evaluated implicitly within DVODE while

the residual terms are computed explicitly using the spatial discretization of the Generalized

MacCormack scheme. The predictor and corrector steps each take two steps, with the

first step integrating the system of equations and the second step solving the linear system

associated with preconditioning:

d

dτ
W ∗ = S

m+1/2
S −Rm − 1

2∆t

(
3Wm − 4W n +W n−1

)
(

Γm +
3

2

∆τ

∆t

∂W

∂Q

)
∆Qm+1/2 = ∆τ

W ∗(τ + ∆τ)−W ∗(τ)

∆τ

(6.20a)

151



d

dτ
W ∗∗ = Sm+1

S −Rm+1/2 − 1

2∆t

(
3Wm+1/2 − 4W n +W n−1

)
(

Γm +
3

4

∆τ

∆t

∂W

∂Q

)
∆Qm+1 =

1

2

[
Γm
(
Qm −Qm+1/2

)
+∆τ

W ∗∗(τ + ∆τ)−W ∗∗(τ)

∆τ

] (6.20b)

Using DVODE to integrate both the stiff source terms and the residual terms confines

the splitting errors to the left-hand side of the equation [64]. This may have effects on

convergence rates as the chemical and flow time scales become more disparate, but it

contains no errors in the steady state solution that arise from the operator splitting [64]. The

physical time derivative uses a two-step, backward difference formula.

6.5 Summary

In this chapter, the GMC-PC scheme is extended to treat stiff chemical source terms that

arise during combustion. This is done through the coupling of an external, dedicated stiff

solver to the underlying Generalized MacCormack scheme. In this case, the popular DVODE

solver is used, but any ODE solver may replace it as desired. In particular, the physical-time

split scheme could be extended to use the preconditioned chemical solver from Sankaran

and Oefelein [51] and Hansen and Sutherland [53] as those approaches mature. All of the

schemes presented are second-order accurate in pseudo-time and have second-order accurate

errors due to the operator splitting when that is used. However, the physical-time split

scheme drops the order of accuracy in the physical-time derivative due to the limitations of

multi-step schemes and operator split techniques [136]. Despite this reduction in order of

accuracy, the number of DVODE calls is drastically reduced for this scheme relative to the

others.

For clarity in the remaining chapters, the schemes will be referred to using a short-hand

name. The consistent-split scheme in Section 6.4 is designated Scheme A. The physical-time

split scheme in Section 6.3.1 is designated Scheme B. These two schemes are new and their
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properties are explored in-depth in Chapter 7. The traditionally, fully-coupled scheme is

called Scheme C and is used as a baseline, along with the GMC-ST scheme using the no-time

splitting of Equation (6.16), to contrast the performance with Scheme A and Scheme B. The

implementation of Scheme C does not contain a majority of the ad hoc corrections required

to make the scheme successful across a wide range of conditions [3, 52]. The scheme in

Section 6.3.2 using a traditional operator splitting approach in pseudo-time is included to

demonstrate the pitfalls of naı̈vely using operator splitting approaches from single-time

schemes in the dual-time framework. The steady-state errors from the operator splitting

will be shown to destroy the physical time accuracy of the scheme. This scheme is called

Scheme D.
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CHAPTER 7

REACTING SCHEME VALIDATION

Cases focusing on the autoignition of lean hydrogen mixtures under elevated pressures are

selected to test the critical behavior of the schemes. This configuration is chosen because

it is stiff, contains eigenvalues with large, positive real components [137], it is of practical

interest in homogeneous charge compression ignition (HCCI) engines, and it is frequently

studied using direct numerical simulations (DNS). For all cases, the chemical mechanism

used is the 9-species, 21-step mechanism of Li et al. [138].

The stiffness of the chemical mechanism and the spectral behavior of the Jacobian

matrix for it are presented using a zero-dimensional analysis from Cantera [85] for a

constant-volume reactor. The ignition delay, transient behavior of the solution, and the

final conditions are calculated as a baseline for comparison. These baseline results are

used to verify the split schemes are capable of accurately integrating the source terms in

the absence of spatial derivatives and fluxes. One-dimensional configurations including

temperature and composition inhomogeneities show the behavior of the schemes when

spatial changes in the flow interact with the source terms. The compositional inhomogeneity

includes the addition of the H radical. This causes the reaction front to separate from the

diffusion manifold and has led to the failure of Strang split schemes previously [135]. Lastly,

a large-eddy simulation (LES) of a three-dimensional, turbulent constant-volume HCCI case

is considered. This case is based on multiple DNS studies done in 2D [87, 139–141] and 3D

[142]. Using the DNS solutions as a baseline, the performance and the accuracy of the split

schemes is established for a physically complex flow.
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Figure 7.1: Evolution of key species with time from the Cantera constant volume simulation

7.1 Zero-Dimensional Ignition

The autoignition of a lean hydrogen mixture with air at a pressure of 41 atm and a tempera-

ture of 1100 K provides the opportunity to investigate the mathematical nature of the chosen

chemical mechanism. The equivalence ratio is φ = 0.1 and the Cantera package is used to

generate baseline results for comparison with the splitting schemes. At these conditions, the

ignition delay predicted by Cantera is τ0 = 1.83 ms and the final temperature of the system

is Tf = 1478.79 K. The temporal evolution of the major species and the radicals is shown

in Figure 7.1.

The eigenvalues λi of the Jacobian D are needed to determine the stiffness of the

system as well as to understand the stability characteristics of the integration scheme. As

discussed previously, eigenvalues with large, positive, real components are destabilizing.

These eigenvalues are frequently called the explosive eigenvalues [137, 143, 144]. Figure 7.2

follows the presentation of the eigenvalues by Gupta et al. [137] and shows the absolute
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Figure 7.2: Eigenvalue and temperature evolution with time from the Cantera constant
volume simulation. The magnitude of the real component of the eigenvalues is on the right
axis where open circles represent negative real components and filled squares represent
positive real components. Temperature is the dashed line on the right axis.

value of the real component of the eigenvalues, with negative real components shown as

open circles and positive eigenvalues shown as solid squares. The positive eigenvalues are

present during the pre-heat phase and they merge together at the time of ignition, where the

temperature gradient is the largest. Post ignition, the eigenvalues are all initially negative,

with a small, positive eigenvalue appearing at a late time. The positive eigenvalues are

associated with the production of the OH radical [137].

While the positive eigenvalues pre-ignition are numerically destabilizing, the ratio of

the largest to smallest eigenvalues indicates the stiffness of the system. Both pre- and

post-ignition, there are several orders of magnitude separating the eigenvalues. Therefore,

this chemical mechanism is stiff for all time. The stiffness requires special treatment to

ensure robustness and accuracy and justifies the use of the DVODE solver to integrate the

source terms in the split schemes.
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All four schemes are run at four different physical time step sizes to assess the accuracy

in the zero-dimensional reactor. The largest chemical time scale, proportional to the inverse

of the largest eigenvalue, is on the order of 0.001 µs. This is taken as the baseline physical

time step ∆t0 and the time step increases by a factor of ten in four different time step sizes

to a maximum of 1 µs. The pseudo-time convergence is halted when the L2 norm of the

pseudo-time derivative vector drops below 1× 10−12, or the L2 norm decays four decades

from its initial value, or when the L2 norm does not change by more than 1× 10−14 for

more than 10 pseudo-iterations.

Scheme C required an excessive number of iterations to converge when run at time

step sizes ∆t ∈ {100∆t0, 1000∆t0} and the simulations were not run to completion. The

scheme does not contain any techniques to adapt the pseudo-time step based on the stiffness

of the Jacobian, leading to frequent over-shooting of the change in the solution, resulting

in oscillations about the steady state in pseudo-time. While techniques are available for

this scheme [3, 52], it is ancillary to the objectives of understanding the split schemes and

improving Scheme C is not pursued. For the remaining cases, the number of pseudo-time

iterations required at each physical time step for each scheme and ∆t are shown in Figure 7.3,

along with the normalized temperature θ = (T − Ti)/(Tf − Ti) where T is the temperature,

Ti is the mean initial temperature and Tf is the final temperature. Scheme B is not included

in Figure 7.3 because it does not require any pseudo-time iterations in this case. The number

of iterations is averaged over bins 10 µs wide. In each scheme, increasing the time step

by a factor of ten led to an increase in the number of pseudo-iterations smaller than ten,

indicating the efficiency of the dual-time schemes at larger time steps. All four schemes

yielded solutions matching the baseline Cantera solution at the time steps used.
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7.2 One-Dimensional Ignition

The decoupling of the spatial flux and the source terms leads to errors in Schemes A, B and

D. Two simple tests demonstrate these errors using a one-dimensional, constant-volume,

premixed hydrogen autoignition under similar conditions as the zero-dimensional case. Both

cases use domains 1 mm in length and are discretized using 400 cells and periodic boundary

conditions. The initial pressure is 41 atm and the mean temperature is 1095 K [145]. To

ensure both fluxes and source terms are present, the flow is given a velocity of 1 m s−1.

This amounts to a reference frame transformation relative to the stationary case and does

not alter the physics of the configuration. Case 1A introduces a sinusoidal temperature

variation, as shown in Figure 7.4a, with amplitude 10 K and wavelength of 0.1 m, and the

fuel is premixed hydrogen at an equivalence ratio of φ = 0.1 [145]. Case 1B is a variation

of Case 1A, where a compositional inhomogeneity is added. A small portion of the fuel

is converted to atomic hydrogen, a total of 0.1% by mass. This is distributed through the

domain using a sinusoidal function, shifted 90 degrees to the temperature inhomogeneity

as illustrated in Figure 7.4b. The presence of atomic hydrogen has been shown to cause

operator split schemes to fail in single-time schemes [135] and its effect on the split schemes

in dual-time is assessed here. All four schemes are compared against the results using the

GMC-ST scheme. The dual-time schemes are run at four different physical CFL numbers

based on the speed of sound, CFLc ∈ {1, 10, 100, 1000}. The convergence criteria are the

same as those used for the zero-dimensional reactor.

Figure 7.5 compares the temporal evolution of the volume-averaged, normalized tem-

perature for each scheme and CFL number for Case 1A. At CFLc = 1000, both Scheme

B and Scheme C become unstable and the simulations diverge. In the former case, there

is a large, instantaneous release of heat during the source term step in the Strang splitting.

This introduces significant volumetric expansion during the flux step of the Strang splitting,

leading to large pressure waves that trigger numerical instabilities in the central scheme
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Figure 7.4: Initial fields for the one-dimensional test cases with a temperature inhomogeneity
(Case 1A) and with both a temperature and compositional inhomogeneity through the
introduction of atomic H (Case 1B).

161



Table 7.1: Errors measured by the L2 norm of the volume-integrated temperature in Case 1A
as a function of time for each scheme and CFL number, relative to the results for Scheme C
at CFLc = 1. The error for the explicit scheme relative to this case is 4.11× 10−6.

CFLc = 1 CFLc = 10 CFLc = 100 CFLc = 1000

Scheme A 0.13× 10−6 0.71× 10−6 6.10× 10−6 184.68× 10−6

Scheme B 1.86× 10−6 3.71× 10−6 28.88× 10−6 —

Scheme C — 1.57× 10−6 15.96× 10−6 —

Scheme D 0.28× 10−6 1.25× 10−6 15.70× 10−6 1478.35× 10−6

used. In the latter case, the divergence occurs during the point of peak heat release and

the time step controls are not advanced enough to limit the time step at this phase. Except

for Scheme D at CFLc = 1000, the temperature evolution of all the remaining cases is

indistinguishable with each other and with the baseline GMC-ST results. Table 7.1 reports

the L2 norm errors in the temperature profiles for this case, relative to the fully-coupled

scheme at the smallest CFL number. Scheme A consistently has the lowest amount of

error while Scheme B has errors that are of comparable order to the fully-coupled scheme.

Scheme D at CFLc = 1000 exhibits a delay in the ignition despite the convergence in

pseudo-time, leading to a large value of the L2 norm. The operator splitting is known to

converge to the incorrect steady-state solution [65], causing operator splitting errors to

manifest in physical-time. This demonstrates the need for consistent splitting as done in

Scheme A.

More subtle differences between the behavior of the schemes for each CFL number can

be seen in Figure 7.6 where the OH mass fraction as a function of space at multiple time

instants is shown as a function of space. At early times, production of the OH radical occurs

in the center of the domain where temperature is maximum. As time progresses, the amount

of OH increases and by 1.9 ms, deflagration fronts begin to propagate outwards from the

center. Scheme A shows minor variations in the profiles at the largest CFL number, despite
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the temperature profiles all collapsing. These variations may be attributed to errors due to

the increased numerical dissipation that occurs for large physical time step values. Variations

in Scheme B begin to appear at a lower CFL number than in Scheme A. These errors in

Scheme B are attributed to the splitting errors from the Strang splitting. Finally, the profiles

for Scheme D show the formation of OH radical is significantly delayed at CFLc = 1000

relative to the other CFL numbers and schemes. This delay is consistent with the delayed

temporal variation in Figure 7.5 and again demonstrates the need for the consistent splitting

approach in Scheme A to eliminate the steady-state errors due to operator splitting.

Case 1B is a more challenging case due to the importance of both the reactions and the

radical mass diffusion. At early times, the atomic hydrogen participates in three reactions:

recombination into H2, reaction with O2 to form atomic oxygen and OH, and a three-body

reaction with O2 to form HO2 [138]. The fundamental role of atomic hydrogen in the

flame is the source of the errors when solved using an inconsistently split scheme. The

large diffusion velocities and small mass of the atomic hydrogen lead to a rapid diffusion

of the radical through the mixture where its role in the kinetics is to participate in the

chain-branching reactions that drive the production of the OH radical. The formation of

the OH radical is exothermic and begins driving the remainder of the reactions. Previous

sensitivity studies conclude that the flame is most sensitive to variations in atomic hydrogen

reaction rates and atomic hydrogen diffusion coefficients [146, 147].

This sensitivity to both reaction rates and diffusion coefficients suggests that decoupling

the operators through a splitting scheme will generate large errors, a result borne out

previously when investigating Strang splitting schemes in single-time schemes [135]. These

errors may be compounded by additional sources of errors, such as numerical diffusion, that

occur at large CFL numbers. Because of these effects, large variations in the solution exist

between the schemes as shown in Figure 7.7a. For this case, Scheme C is unstable for all

CFL numbers and is omitted. All three schemes match the explicit simulation at a physical

CFLc = 1 but begin to diverge from the baseline solution as the CFL number increases. In
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the case of both Scheme B and Scheme D, increasing the CFL number delays the ignition

while increasing the CFL number for Scheme A has the opposite effect.

Inspection of the OH mass fraction evolution suggests the source of errors is different

between the consistent splitting in Scheme A and the inconsistent splitting in Scheme B

and Scheme D. Figure 7.7b tracks the evolution of the volume-averaged OH mass fraction

through the ignition process. The inset in Figure 7.7b shows the differences between the

schemes appears very early in the evolution. In Scheme B and Scheme D, the early-time

peak of OH mass fractions is delayed in time by the same amount of the increase in CFL

number, whereas Scheme A predicts values close to the baseline, GMC-ST solution during

this phase. In addition to the delay, the peak values are significantly higher than expected

for these two schemes.

At late times, both schemes also show a delay in OH mass fraction production as the

CFL number increases. On the other hand, Scheme A shows production occurring earlier

for each CFL number as well as a reduction in the values of the peak OH mass fraction. As

the CFL number increases, numerical dissipation increases and reduces the inhomogeneities

in the mixture. This, in turn, leads to more rapid ignition.

From these two cases, we make several conclusions.

• The traditional approach to integrating chemistry in dual-time, Scheme C, exhibits

robustness issues and instabilities when the time steps are large or the chemistry is

very fast.

• Scheme D, which uses a classic operator splitting in pseudo-time, exhibits errors in

the solution for Case 1A for the largest CFL number, but exhibits large departures

from the solution for multiple CFL numbers in Case 1B. The errors that arise in

Scheme D are due to splitting errors that persist at steady-state and these errors are

more dominant in Case 1B by design.
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• Scheme A is designed with a consistent splitting approach that eliminates these

problems and its results are superior to Scheme D.

• The physical-time split scheme, Scheme B, exhibits robustness issues at large time

steps and shows significant errors when the reaction and diffusion operators are

decoupled as in Case 1B. Despite these drawbacks, it does result in a considerable

cost reduction relative to Scheme A.

Based on these conclusions, Scheme C will not be considered further. When considering

Scheme B, the number of pseudo-iterations per physical time step is similar for both Scheme

A and Scheme B, but Scheme A uses the expensive DVODE call twice on each pseudo-

iteration while Scheme B needs only two DVODE calls per physical time step. This can

amount to approximately two orders of magnitude fewer DVODE calls in the Scheme B at

moderate CFL numbers. Because of this savings, it is worth evaluating further.
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Figure 7.5: Volume-averaged temperature profiles for each scheme and CFL number for Case
1A. Scheme B at CFLc = 1000 is unstable due to the instantaneous volumetric expansion
at the large, physical time step while Scheme C at the same CFL number is unstable at the
point of maximum heat release. Both are omitted.
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Scheme C is unstable for all physical CFL numbers tested and is omitted.



7.3 Three-Dimensional Ignition

As a final assessment of the schemes, we consider the autoignition of a homogeneous,

premixed hydrogen mixture in a turbulent, constant volume system designed to mimic

the conditions in an HCCI engine [87, 140–142]. The system is a periodic box with

sides measuring 4.1 mm and contains a premixed hydrogen mixture with φ = 0.1. The

mean initial temperature is T̃ = 1070 K at a pressure of p = 41 atm. Superimposed on

the mean fields are isotropic velocity and temperature perturbations with the RMS of the

velocity fluctuations u′ = 0.5 m s−1 and the RMS of the temperature fluctuations T ′ = 15 K.

The velocity and temperature fluctuations are generated independently and are therefore

uncorrelated with each other. Both fluctuations are generated using the model spectrum

[129]:

E (k) = 16 (ψ′)
2

√
2

π

(
k4

k5
0

)
exp

(
−2

k2

k2
0

)
(7.1)

where ψ is the variable whose spectrum is being computed, k is the wavenumber and k0 is a

user-specified parameter designating the peak wavenumber. These spectra are generated

such that the most energetic length scale for the velocity fluctuations is 1 mm and for the

temperature fluctuations is 1.32 mm [139]. All simulations start from identical realizations

of the initial conditions to eliminate variations due to differences in random seeds. The

domain is discretized with 64 cells in each direction, giving an initial resolution of ∆x/η = 4

and ∆x/δ0
F = 0.25, where η is the Kolmogorov length scale and δ0

F = 0.257 mm is the

unstrained thermal thickness of the flame for the mean conditions [87]. Also of interest, the

laminar flame speed is SL = 50 cm s−1 and the ignition delay time at the mean conditions is

τ0 = 3.3 ms. With a u′/SL = 1 and the laminar flame front resolved over four cells on the

original mesh, the quasi-laminar chemistry assumption is used for the chemistry-turbulence

interaction.

Investigations of non-reacting isotropic turbulence in Chapter 5 indicate the turbulent

structures are independent of the physical time step selection with the preconditioned scheme.
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With the introduction of chemical time scales and the coupling between the fluid mechanics

and the chemistry, the dependence on physical time step size is evaluated here. Both Scheme

A and Scheme B use physical time step sizes based on four CFL numbers. The turbulent

Mach number based on the mean conditions and the RMS velocity is Mt = 0.0012 and

the physical CFL numbers selected are CFLc = 1, CFLc = 10, CFLu′ = 0.1 (CFLc ≈ 100)

and CFLu′ = 1 (CFLc ≈ 1000). These give physical time steps that are approximately

1× 10−7 s, 1× 10−6 s, 1× 10−5 s and 1× 10−4 s respectively, and are therefore 100 to

1× 105 times larger than the chemical time scales.

As with the one dimensional simulations, Scheme B is numerically unstable when

run at CFLu′ = 1 at the point of peak heat release rate and it is omitted from discussion.

Figure 7.8 shows the surface area of the first propagating front (defined as the isosurface of

ỸH2
= 8.5× 10−4) [142] for the two schemes. At the large CFL numbers, CFLu′ = 0.1 and

1, the Scheme A results indicate a significant delay in the ignition compared to the results

at CFLc = 1 and 10. Additionally, the pressure rise is entirely absent at CFLu′ = 1, and

a slight pressure rise is present at CFLu′ = 0.1. However, the results at CFLc = 1 and 10

match the results predicted by Scheme B for all stable CFL numbers.

In both schemes, the ignition is delayed relative to the DNS data from Yu and Bai

[142] and appears close to the ignition time of the homogeneous mixture. Additionally,

at small CFL numbers with Scheme A and all stable CFL numbers with Scheme B, the

flame area and steady state are insensitive to the choice of CFL number. Both schemes

show the ignition front surface appearing later and reaching a lower peak value than the

DNS data. These differences in ignition delay and flame surface area are due to the coarser

grid resolutions used in this LES study. In particular, the coarse resolution enhances the

dissipation of the temperature fluctuations at early times, prior to any appreciable chemical

reactions. This delays the onset of ignition as the mixture is more homogeneous. Likewise,

the coarser resolution will have less wrinkling and fine-scale curvature than is present in the

DNS results, reducing the peak front area.
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Figure 7.8: Front surface area (the isosurface of ỸH2
= 8.5× 10−4) and pressure throughout

the ignition process for the two schemes at each CFL number, compared to the 3D DNS
data from Yu and Bai [142].
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This loss of accuracy with the Scheme A at large CFL numbers is attributed to the

behavior of the DVODE solver under these conditions. The DVODE solver is provided

a set of ODEs in time where the right-hand side of the system represents the spatially

discretized residual. This ODE system is integrated using an implicit, backward differencing

formulation for stiff equations and the system Jacobian is computed numerically. In Scheme

A, only the chemical source terms are treated implicitly in this nature and the spatial

residual is held constant through the integration step. To properly treat the chemical source

terms implicitly, the system of ODEs is augmented with an equation for the evolution of

temperature. This temperature equation may be solved assuming constant enthalpy (constant

pressure) or constant energy (constant volume). Both have been explored for this case and

the loss of accuracy manifests for both choices, so this assumption is not the root cause.

To treat the stiffness in the system, DVODE computes the Jacobian numerically and

uses the spectral information contained within it to detect stiffness and to determine time

step sizes. In the case of Scheme A for CFLu′ = 0.1 and CFLu′ = 1, the loss of accuracy

is attributed to the loss of numerical precision in the system when both the fluxes and

source terms are added together. For these CFL numbers, the unsteady preconditioner is

less active than at lower CFL numbers and the pseudo-time step sizes become large relative

to the time step sizes when the unsteady preconditioner is fully activated. This, in turn,

creates spatial residual terms that are large enough relative to the chemical source terms

that double-precision floating point values do not contain enough resolution to represent

the sum as different from the largest term. The loss of precision impacts the formation of

radical species, including the atomic hydrogen radical, which is key to the production of

OH and the release of heat to initiate the reactions. It also implies the numerical Jacobian

is misrepresented within DVODE. This, in turn, causes DVODE to take larger time steps

than should be used based on the stiffness of the system and the species production rates

are predicted inaccurately. Species and reactions more prevalent in the flame may have

production rates large enough relative to the fluxes to be captured when added together, so
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some amount of heat is released and an equilibrium is eventually reached. This equilibrium

is not the expected state, with H2O over represented and all of the radicals under represented.

On the other hand, Scheme B at CFLu′ = 0.1 predicts the initial evolution accurately

relative to the smaller CFL numbers until the point the primary ignition front disappears.

The formation of the ignition kernels is predominantly attributed to the reaction rates, with

convection and mixing a small component to their initial formation. Once the kernels grow

and become deflagration fronts, the coupling between the reaction rates and the flow-field

becomes more important to the evolution of the system. At CFLu′ = 0.1, the splitting

errors due to the decoupling of the reactions from the flow become large enough to cause a

difference in the system evolution. After this point, the rest of the fuel burns more slowly at

this CFL number, taking approximately 20% longer to consume the remaining fuel relative

to the other CFL numbers.

The mass fraction contours of HO2 in Figure 7.9 at t = 0.9τ0 show minor differences

as the CFL number increases for Scheme B and the ignition front indicated by the black

lines (defined to be where ỸH2
= 8.5× 10−4) suggest the flow dynamics until this stage are

independent of physical time step size, as observed in the non-reacting turbulence case [117].

Likewise, for CFLc = 1 and 10, the results with Scheme A show the initiation and growth

of the ignition kernels in the same locations as with Scheme B, with minor differences as the

CFL number increases. The differences in the front contours can be attributed to differences

in the front displacement speed. This displacement speed of the reaction front is defined as

[87, 139, 140, 142]:

sd =

DỸH2
Dt

|∇ỸH2
|

(7.2)

evaluated on a constant mass fraction surface. The material derivative of the species mass

fraction is:

ρ
DỸH2

Dt
= ∇ ·

(
ρDH2

∇ỸH2

)
+ ω̇ (7.3)
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where DH2
is the diffusion coefficient of hydrogen into the mixture. The displacement speed

may be density weighted:

s∗d =

(
ρ

ρ0

)
sd (7.4)

Using this measure, spontaneous ignition fronts are defined as s∗d > 1.1SL and the slowly

moving deflagration fronts as s∗d < 1.1SL [139]. The three-dimensional isosurfaces of the

primary ignition front in Figure 7.10 show that both slow, deflagration fronts (colored blue)

and rapid, spontaneous ignition fronts (colored yellow) exist in approximately the same

locations for Scheme A and Scheme B, consistent with expectations [142]. This insensitivity

to CFL number in the flow topology is similar to the preconditioned scheme behavior in

non-reacting flows [117], although it is only true over a small range of CFL numbers in the

reacting flows.
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(a) Scheme A at CFLc = 1 (b) Scheme B at CFLc = 1

(c) Scheme A at CFLc = 10 (d) Scheme B at CFLc = 10

(e) Scheme A at CFLu′ = 0.1 (f) Scheme B at CFLu′ = 0.1

Figure 7.9: Contours of HO2 for both schemes and each CFL number along the center plane
at t = 0.9τ0 with the ignition front defined as the surface of ỸH2

= 8.5× 10−4 indicated as
black lines.

175



(a) Scheme A (b) Scheme B

Figure 7.10: Isosurfaces of the ignition front defined as the surface of ỸH2
= 8.5 × 10−4

at t = 0.9τ for both schemes at CFLc = 1, where the blue regions indicate the slow,
deflagration front propagation (s∗d < 1.1SL) and the yellow regions indicate the rapid,
spontaneous ignition front propagation (s∗d > 1.1SL).

7.4 Summary of results

This chapter investigates the efficacy of four different schemes to integrate chemical source

terms in the autoignition of premixed hydrogen at elevated temperatures and pressures. The

tests are chosen because they are stiff, the fluxes and source terms are highly coupled, and

small discrepancies in accuracy manifest in large errors in the final solution. From these

tests, we can conclude the following:

1. The traditional approach to chemistry integration in dual-time schemes, Scheme C,

is unstable for very stiff problems such as Case 1B, where the presence of atomic

hydrogen triggers rapid initial reactions. Even for simpler problems, the scheme

exhibits reduced convergence rates. While ad hoc fixes are available for this scheme to

work, such as slowly introducing the chemical source terms over the pseudo-iterations,
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these techniques require user intervention and are not based in the physics of the

problem.

2. Using an external solver, in this case DVODE, eliminates all of the user intervention

and contains no ad hoc corrections to either the time step or the chemical source terms.

When the solver is coupled using a consistent splitting technique as in Scheme A, the

scheme is stable for very large physical CFL numbers in the zero- and one-dimensional

cases, including Case 1B. However, the three-dimensional isotropic turbulence case

revealed numerical precision errors and DVODE is unable to properly evaluate the

Jacobian to determine proper step sizes.

3. The importance of properly splitting the operators is shown through the contrast with

Scheme D, which employs a traditional operator splitting approach that is popular in

single-time schemes. This scheme exhibits large errors as the physical CFL number

increases. These errors are attributed to the convergence to an incorrect steady-state

in the pseudo-time iteration that is an artifact of the traditional operator splitting

techniques.

4. Finally, the scheme employing Strang splitting in physical time, Scheme B, performs

surprisingly well in most cases. For moderate physical CFL numbers, the results in all

cases are accurately predicted, including the turbulent autoignition simulations where

the results were the same for time steps up to 1000 times larger than the chemical time

scales. However, for large physical CFL numbers, the decoupling of the reactions and

the convective-diffusive fluxes results in errors. While relatively minor in the turbulent

autoignition simulation, the errors were severe in Case 1B, which is designed to trigger

the deficiencies of Scheme B. Lastly, for the largest CFL numbers, robustness is often

an issue as the decoupling of the source terms and the fluxes causes a large, local heat

release that triggers pressure waves large enough to cause numerical instabilities.
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Despite the drawbacks and limitations at large, physical CFL numbers, both the consis-

tent split scheme and physical-time split scheme are superior to the traditional approach

in terms of robustness and convergence rates. These schemes have the additional benefit

of requiring no user intervention or ad hoc corrections without a basis in the physics of

the problem. Furthermore, the techniques are not confined to using the DVODE solver and

any solver designed for stiff chemical kinetics may be substituted, offering more flexibility

than the traditional schemes. Because both Scheme A and Scheme B are limited to similar

CFL numbers, the former due to numerical precision loses and the latter due to the coupling

between sources and fluxes, only Scheme B is considered in the next chapter. This scheme

also provides the benefit of orders of magnitude fewer DVODE calls and therefore offers

the best potential improvement in performance.
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CHAPTER 8

APPLICATIONS

The previous chapters provide the details and validation for the non-reacting and reacting

forms of the Generalized MacCormack scheme with preconditioning. Based on the successes

and limitations of these schemes, this chapter explores two turbulent, chemically reacting

configurations. The first is the Volvo flygmotor, a bluff-body stabilized, premixed combustor

that serves as a canonical test case for turbulent combustion. This configuration is the target

of numerous experimental and computational studies [68–78]. The results in this chapter

are a comparison between an existing set of results using an explicit scheme presented

by Sankaran and Gallagher [80] and the GMC-PC scheme using the physical time split

chemistry integration. The GMC-PC scheme is performed only on the coarsest grid used in

Sankaran and Gallagher [80] and differences are apparent in the structure of the flow behind

the bluff body.

The second configuration is the Cambridge slot burner that has both premixed and

stratified configurations. Experimental data is available for comparison [81, 82, 84], along

with the only other known computational study, performed using a two-dimensional RANS

approach [83]. The GMC-PC scheme is run with the physical time split chemistry integration

using a reduced, stiff chemical mechanism. In addition to the comparisons with experimental

data, the topological structure of the flow throughout the flame is presented to identify key

differences between the premixed and stratified flows.

8.1 Volvo Flygmotor

The computational configuration for the Volvo flygmotor matches the requirements of the

Model Validation for Propulsion workshop [79] and the domain is detailed in Figure 8.1.

The domain represents a small section down the center of the experimental rig, with periodic
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Figure 8.1: Schematic of the computational domain used for the premixed, bluff-body
stabilized flame simulations using the specifications of the Model Validation for Propulsion
workshop [79].

boundaries in the spanwise direction. The inflow is a constant-mass, partially-reflective

characteristic boundary with the massflow rate set to 0.2083 kg s−1 at T̃ = 288 K and an

equivalence ratio of φ = 0.65. The fuel is propane and the oxidizer is air. The outflow

is a constant pressure outflow with a back pressure of 100 kPa and a convective sponge

boundary is applied to eliminate acoustic waves. All remaining boundaries are adiabatic,

no-slip walls. A two-step, global mechanism is used [148] along with Sutherland’s law for

the transport properties and thermally-perfect assumptions for the equation of state. The

DTF model is used for tubulence-chemistry interaction.
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Figure 8.2: Grid clustering around the bluff body and shear layers.

The baseline results for comparison use the hybrid MacCormack-MUSCL scheme [149],

where the MUSCL scheme provides numerical stabilization through the flame front. These

results were presented previously as part of the MVP workshop [80]. Grid independence

was assessed using three, progressively finer grids designated coarse, medium, and fine. The

grids contain 0.6 million, 1.2 million, and 3.7 million cells respectively. In all cases, the

grid stretching is confined to under 10% in order to ensure scheme accuracy. These baseline

results are relatively insensitive to the grid for the dimensions chosen [80]. Therefore, only

the coarse grid is used to with the GMC-PC scheme and Figure 8.2 shows the grid in the

region of the bluff body for this setup. The GMC-PC scheme is run at a physical time

step of 1× 10−6 s, approximately 100 times larger than the explicit time step. Stability

through the gradients in the flame front is provided by JST artificial dissipation. For this

case, the convergence criteria is set to 4 decades residual decay, requiring approximately

50 pseudo-iterations per physical time step on average. This is the minimum number of

decades that ensured stability in the physical time solution over long simulation times.

Figure 8.3 and Figure 8.4 show the instantaneous temperature and spanwise vorticity

contours along the center plane for the GMC-PC scheme and the explicit scheme. The
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(a) GMC-PC scheme.

(b) Explicit scheme.

Figure 8.3: Temperature contours along the centerplane of the Volvo flygmotor using the
GMC-PC scheme and the explicit scheme. Images are not at the same time instant.

time instants are different between the two schemes, however it is clear that both schemes

predict a symmetric flame shape, which is an important metric for success in this case. The

GMC-PC scheme shows less wrinkling along the edges of the flame in Figure 8.3, which

is attributed to the JST dissipation providing more numerical diffusion than the MUSCL

scheme in the explicit results. Likewise, the vortical structures also appear more diffuse

with the GMC-PC scheme in Figure 8.4. However, both schemes capture the change in

sign of the vorticity downstream of the bluff-body, which is again another key metric for

measuring the success of the scheme. The flow field immediately behind the bluff body

is different between the GMC-PC and explicit schemes. The latter shows little vorticity

until approximately one bluff-body height downstream, whereas the former shows vortical

structures much closer to the bluff body.

This difference in vortical structures near the body is more clear in the time-averaged

axial velocity along the centerline in Figure 8.5a. The GMC-PC scheme shows a more

pronounced recirculation region, coming closer to the experimental data, than the explicit
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(a) GMC-PC scheme.

(b) Explicit scheme.

Figure 8.4: Spanwise vorticity contours along the centerplane of the Volvo flygmotor using
the GMC-PC scheme and the explicit scheme. Images are not at the same time instant.

scheme on any of the grids tested. With most of the flow Mach number behind the bluff

body over M = 0.1, the region behind the bluff-body is the only location where a low

Mach number flow exists and it is not surprising the GMC-PC scheme exhibits the largest

differences in this location. The mean fluctuation level, defined as
√
u′2 + v′2/Uinlet, in

Figure 8.5b shows the GMC-PC scheme predicts increased levels of fluctuation along the

entire centerline, but most noticeably near the bluff body. Although all simulations were

time-averaged for similar lengths of time, the fluctuation level in the GMC-PC case shows

signs of not being fully converged. The lower numerical dissipation levels in the GMC-PC

scheme leads to longer averaging times required for second order statistics to converge

due to increased level of variation in the solution, and so additional averaging time may be

needed. The centerline anisotropy levels in Figure 8.5c, defined as v′/u′, shows all schemes

and grids produce similar levels of anisotropy with axial velocity fluctuations dominating

the transverse velocity fluctuations in contrast with the experimental data.
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(a) Mean axial velocity. (b) Mean fluctuation level.

(c) Mean anisotropy.

Figure 8.5: Profiles along the centerline behind the bluff-body for the GMC-PC scheme
compared to the explicit scheme. Results for the explicit scheme on several consecutively
finer meshes provide context for the GMC-PC scheme’s results.

Transverse velocity profiles at multiple locations downstream of the bluff body in

Figure 8.6 show similar trends as the centerline values. The mean velocity values for all

schemes and grids match each other and the experimental data well in Figure 8.6a and

Figure 8.6b. The RMS velocities in Figure 8.6c and Figure 8.6d show more variation,

particularly relative to the GMC-PC scheme. At all locations, the GMC-PC scheme again

shows signs of requiring additional convergence. The GMC-PC scheme captures the peaks

in the RMS velocities better, particularly relative to the explicit scheme on the coarse grid,

but the values near the centerline are generally overpredicted.

The simulations with the GMC-PC scheme require approximately 10 times as much

wall time as the explicit scheme on the same grid to reach the same physical time. The
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(a) Mean axial velocity. (b) Mean transverse velocity.

(c) Axial RMS velocity. (d) Transverse RMS velocity.

Figure 8.6: Transverse profiles at the downstream locations x/H ∈
{0.375, 0.95, 1.53, 3.75, 9.4} for the GMC-PC scheme, the explicit scheme, and ex-
perimental measurements. Results for the explicit scheme are on several consecutively finer
meshes.

explicit scheme integrates the chemical source terms explicitly; had the explicit runs used

DVODE for chemical integration, the GMC-PC scheme would be between 1 and 1.5 times

more expensive than the explicit scheme. This is because the time step is approximately

100 times larger than the explicit scheme, each physical iteration requires on average 50

pseudo-iterations, and each pseudo-iteration is between two and three factors more time

than the explicit scheme iterations when using DVODE. However, the solution quality is

similar throughout the majority of the flow field using the GMC-PC scheme, with the largest

changes occurring in the region behind the bluff body. This region is the only portion of the

flow that is at a low Mach number, and the GMC-PC scheme predicts the proper recirculation

region whereas the explicit scheme on all grids predicts a wake-like structure. As suggested
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by the studies in previous chapters, the explicit scheme would require a much finer grid in

the low Mach number region to achieve similar results. In this sense, the GMC-PC scheme

is more efficient and provides higher quality solutions on a given grid.

8.2 Cambridge Slot Burner

The Cambridge slot burner is a series of experiments operating at a range of conditions

from perfectly premixed through a range of stratification ratios. The experimental burner

consists of two pairs of slots, one lean pair and one rich pair, surrounded by single slots of

coflowing air as shown in Figure 8.7. Each slot is 5 mm wide and 50 mm deep with walls

between each slot. A rod with a diameter of 1.5 mm located 10 mm above the slot exit and

2 mm towards the rich side serves as the anchor for a V-flame. The slots have a square mesh

turbulence generator at the exit.

Two configurations are tested here. The premixed configuration corresponds to the fsh1

case [81–84] with volumetric flow rates of methane through both pairs of slots at 8.82 L/min

and air flow rates of 116 L min−1. The equivalence ratio for both slots is φ = 0.73. The

stratified configuration corresponds to the highest stratification ratio case available, fsh6

[81–84], where the volumetric flow rate of methane through the rich slots is 13.2 L min−1

and 4.41 L min−1 through the lean slots. The coflowing air remains unchanged. The lean

equivalence ratio is φ = 0.37 and the rich equivalence ratio is φ = 1.10.

The computational domain starts at the exit of the slots and extends upwards by 150 mm.

To keep the number of grid points reasonable, the walls between the slots are not resolved

and there are discrete jumps in the inflow boundary conditions between the slots. The

domain is 132 mm wide, with the extra space on the sides of the air slots also providing

coflowing air to avoid entrainment issues and recirculation regions outside of the air slots

[83]. Only the central 20 mm of the depth direction is simulated with periodic boundary

conditions in that direction. The left and right boundaries are slip walls, and the top boundary

is a partially reflecting characteristic outflow imposing atmospheric pressure. The inflow
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is a partially reflecting, characteristic inflow with the coflowing air at 2.88 m s−1 and the

methane slots at 4.386 m s−1. Isotropic turbulence is imposed on the inflow velocities with a

turbulence intensity of 10% [83].

The grid contains approximately 2.6 million cells. A large region around the rod is

discretized with approximately uniform cells in all directions, with gentle stretching from

the inflow to the uniform region, as shown in Figure 8.8a. Outside this region, the grid is

stretched with under a 10% stretching ratio towards the edge walls and the outflow to reduce

the number of grid points. The rod is resolved with enough cells sufficient to place two

points within the viscous sub-layer and stretched at less than 10% to the uniform region as

shown in Figure 8.8b.

The simulation is run using the GMC-PC scheme with the physical time split chemical

integration and the DTF model. The grid is fine enough in the region of interest that the

DTF model only thickens the flame by under 1% to ensure it is resolved over 5 cells. JST

artificial dissipation is used above y = 32 mm, where the grid progressively becomes too

coarse to resolve the flame and remain stable. However, no additional artificial dissipation

is required within the region of interest. The time step using the explicit scheme averages

1× 10−9 s due to the small cells at the rod surface. The GMC-PC scheme is run at a time

step of 5× 10−7 s, which corresponds to a physical CFL number of approximately 10 away

from the rod surface where the grid is uniform. This time step is chosen based on the limits

based on solution accuracy observed during the validation studies. A time step of 5× 10−8 s

was also run for a brief period and showed little change in the instantaneous structures,

therefore extended time-averaging using this time step was not performed. The pseudo-time

is converged such that the residual decays at least 2 decades, and for both premixed and

stratified configurations this requires an average of 100 pseudo-iterations. The chemisty is

modeled using the 16 species, 25 step Smooke-Giovangigli reduced mechanism [86]. The

transport properties are evaluated using constant, non-unity Lewis numbers and the state
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Table 8.1: Species and Lewis numbers used with the Smooke-Giovangigli mechanism.

Species CH4 O2 N2 CH2O H2O HO2 H2O2 HCO

Lewis 0.97 1.11 1.0 1.28 0.83 1.1 1.12 1.27

H2 H O OH CO2 CO CH3 CH3O

0.3 0.18 0.7 0.73 1.39 0.3 1.0 1.3

equation uses the thermally perfect assumptions. The species and the corresponding Lewis

numbers are listed in Table 8.1.

The mean temperature profiles at two locations, 20 mm and 30 mm, above the slot exit

in Figure 8.9 show the results with the GMC-PC scheme compared to the experimental

data and RANS data [83]. Error measurements for the experimental data are not provided,

so agreement may only be determined qualitatively. In the premixed configuration shown

in Figure 8.9a, the flame predicted by the GMC-PC scheme is slightly wider than the

experimental data, whereas the RANS is slightly narrower. Further downstream, shown in

Figure 8.9b, the width of the flame is over-predicted by both the GMC-PC scheme and the

RANS results. At 20 mm downstream from the burner in the stratified configuration, the

experimental data indicates a flame of similar width to the premixed case, but the temperature

peak is shifted to the right of the centerline of the rod as shown in Figure 8.9c. Both the

RANS data [83] and the GMC-PC data indicate a flame shifted to the left of the centerline,

with the GMC-PC scheme producing a wider flame than the RANS results. The peak

temperature from the GMC-PC scheme matches the peak temperature from the experiments

well, while the RANS data over-predicts the peak temperature. This distinction is likely

due to differences in the chemical modeling. The RANS data uses a flamelet approach

and the product temperature in the premixed case is accurate but in the stratified case is

over-predicted. With the reduced kinetic mechanism used here, the final product temperature
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is predicted better. Downstream, the GMC-PC scheme gives a flame position consistent

with the experimental data and superior to the RANS data as shown in Figure 8.9d.

Figure 8.10 shows the vorticity contours on the center plane for both the premixed and

stratified configurations. Immediately evident is the transition from a symmetric flow in

the premixed case to an asymmetric flow in the stratified case, where the stratified flow

deflects further into the lean side and deflects slightly further towards the coflowing air on

the other side. In the near-field behind the rod, the flow fields are different; the premixed

case indicates a separated flow similar to a laminar flow over a cylinder, while the stratified

flow is more indicative of a turbulent flow that remains attached longer. More pronounced,

however, is the vorticity field further downstream. The premixed case maintains the sign of

the vorticity away from the rod. On the other hand, the stratified case indicates a change in

sign of the streamwise vorticity downstream of the rod. This change in sign is similar to

what is observed in the Volvo case. Additionally, the premixed vorticity contours show a

relatively large vortex sheet on the left side of the V-flame while the stratified case indicates

smaller vortices within a sheet. These observations are more evident in the species mass

fractions.

Two species are used to indicate the leading and trailing edge of the flame brush. The

leading edge is tracked with the CH2O mass fraction, while the trailing edge is tracked

with the OH mass fraction. In addition to the flame asymmetry, stratification increases the

amount of wrinkling on the flame front [83]. Inspection of the CH2O mass fraction on the

leading edge of the flame shows a larger number of smaller spatial features in Figure 8.11c

relative to the larger structures in Figure 8.11a. The right side of the flame in the premixed

case indicated a symmetric shedding pattern, while the stratified case shows asymmetry

in the size and location of the vortices. Consistent with these leading edge vortices, the

OH contours on the inner edge of the flame indicate the amount of wrinkling that persists

through the flame front. For the premixed case in Figure 8.11b, the contours indicate minor

wrinkling caused by regular, large-scale structures. In the stratified case in Figure 8.11d,
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the left edge of the contours suggest a number of small scale structures that persist through

the front. The right side of the stratified flame shows the impact of the relatively larger

structures. However, as indicated by the OH contours, the flame thickness is considerably

larger in the stratified case and the wrinkling induced by the stratification does not persist

deep into the flame.

The types of structures in the flame may be determined through a quadrant analysis

of the invariants of the velocity gradient tensor. This analysis has been performed on

incompressible wall-bounded flows and jets [150–153], compressible decaying isotropic

turbulence [154], compressible boundary layers [155], and premixed-flame turbulence

interaction [156] as well as a premixed turbulent jet flame [157]. To start, the velocity

gradient tensor is A = ∂ui
∂xj

at each point in space and the tensor invariants are defined as the

coefficients in the characteristic equation [156]:

λ3 + Pλ2 +Qλ+R = 0 (8.1)

The invariants are:
P = −Tr(A) = −Aii

Q =
1

2

(
Tr(A)2 − Tr(A2)

)
=

1

2
AijAji

R = − det(A) =
1

3
AijAjkAki

(8.2)

The invariant P is the volumetric expansion of the fluid, where P < 0 indicates expansion,

P = 0 is dilation free, and P > 0 indicates compression. Non-dimensionalized versions of

all three invariants may be used:

P̂ =
P

||A||

Q̂ =
Q

||A||2

R̂ =
R

||A||3

(8.3)

where ||A||= (AijAij)
1/2.
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The three-dimensional (P̂ , Q̂, R̂) space can be divided into sectors divided by surfaces

where the discriminant D̂ is zero [156]:

D̂ =
1

108

(
27R̂2 +

(
4P̂ 3 − 18P̂ Q̂

)
R̂ + 4Q̂3 − P̂ 2Q̂2

)
(8.4)

Two surfaces divide the space, above which the points are part of focal topologies and below

which the points are part of nodal topologies:

1

3
P̂

(
Q̂− 2

9
P̂ 2

)
− 2

27

(
−3Q̂+ P̂ 2

)3/2

− R̂ = 0

1

3
P̂

(
Q̂− 2

9
P̂ 2

)
+

2

27

(
−3Q̂+ P̂ 2

)3/2

− R̂ = 0

(8.5)

A third surface also exists where the eigenvalues of A are purely imaginary:

P̂ Q̂− R̂ = 0 (8.6)

These dividing surfaces break the space into eight sectors as shown in Figure 8.12. Each

sector is defined in Table 8.2 based on the critical points associated with that topology. With

the velocity gradient tensor, the sectors also have a physical interpretation relating to the

type of flow that occurs at each point [153]. These physical interpretations are also included

in Table 8.2.

To identify the topology throughout the flame surface, three different isosurfaces are

extracted from the dataset. These surfaces represent regions of constant temperature,

T̃ = 800 K, 1300 K, and 1800 K. This corresponds to roughly the leading edge, center, and

trailing edge of the flame brush for both the premixed and stratified configurations. Because

each value of P̂ represents a
(
Q̂, R̂

)
plane, the values of P̂ are grouped into four bins

so they may be projected onto a plane. The resulting correlations are in Figure 8.13 and

Figure 8.14 for the premixed and stratified cases, respectively.
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Table 8.2: Sectors of the
(
P̂ , Q̂, R̂

)
space divided by the discriminant surfaces along with

their topological characteristics [156] and physical interpretations.

Sector Topology Interpretation

S1 Unstable focus/compressing Vortex Compression

S2 Unstable node/saddle/saddle Vortex Sheets

S3 Stable node/saddle/saddle Vortex Tubes

S4 Stable focus/stretching Vortex Stretching

S5 Stable focus/compressing Vortex Compression

S6 Stable node/node/node

S7 Unstable focus/stretching Vortex Stretching

S8 Unstable node/node/node

The top row of Figure 8.13 and Figure 8.14 are points that experience the largest amounts

of volumetric expansion. In the premixed case, the points are predominantly in the S3 region

indicating the presence of vortex tubes on the surfaces. Moving from left to right, the

density of points decreases as the temperature increases. For the premixed flame, the high

temperature isosurface is in the product side of the flame where less volumetric expansion

occurs and the majority of the points move to lower values of P̂ . The stratified case also

shows a predominance of S3 structures (vortex tubes) through all three isosurfaces, with the

tubes persisting through towards the product side. In contrast with the premixed case, there

are also a significant number of points in the S1 sector indicating vortex compression that is

not present in the premixed case. By the T̃ = 1800 K surface, the vortex compression is no

longer present.

At lower levels of volumetic expansion in the second row of figures, S3 structures

are again the dominant features in both the premixed and stratified cases. The premixed

case also shows a large number of points in the S4 and S5 region indicating both vortex

stretching and vortex compression occur along the surfaces, with it being more frequent
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at the lower temperatures The stratified case shows less stretching and more compression,

persisting through all three isosurfaces. The third row corresponds to the dilatation free

regime and both configurations show a majority of the points lie in the vortex stretching and

compression regions on the lower temperature isosurfaces. At the high temperature surface,

the premixed case shows both S2 and S3 regions are populated, indicating the presence

of stable vortex tubes and unstable vortex sheets. On the other hand, the stratified case

shows points primarily in the S3 region indicating stable vortex tubes are more frequent

than unstable vortex sheets.

The structures identified from the tensor analysis are consistent with the visual obser-

vations in Figure 8.10 and Figure 8.11. Both configurations have a large number of vortex

tubes throughout the reaction front, with the stratified case dominated by tubes while the

premixed case also contains regions of vortex sheets. In both cases, vortex compression is

common, but the stratified case shows an increased number of regions undergoing stretching.

The stratified case indicates the vorticity changes sign downstream of the rod suggesting

a strong baroclinic torque component exists. This baroclinic torque may be the cause of

the vortex stretching observed in the invariants and suggests a fundamentally different flow

topology exists in the presence of stratification. For both the premixed and stratified cases,

neither shows the classic teardrop shape in the invariants that is associated with non-reacting

turbulent flows, a trend that has been observed in other premixed reacting systems [156,

157].

193



Air CH4 Lean CH4 Lean CH4 Rich CH4 Rich Air

5 mm

1.5 mm

10 mm

Figure 8.7: Schematic of the Cambridge slot burner.
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(a) Grid in the measurement window of the experiment.

(b) Grid around the rod.

Figure 8.8: Grid within the important regions of the domain, including the near-wall location
where the flame will anchor.
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(d) Stratified, 30 mm

Figure 8.9: Mean temperature profiles at two streamwise locations downstream from the
burner exit for both the premixed and stratified conditions. Experimental and RANS data
digitized from Darbyshire et al. [83]. The vertical dashed line marks the centerline of the
rod.
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(a) Premixed

(b) Stratified

Figure 8.10: Instantaneous spanwise vorticity along the center plane of the burner for both
the premixed and stratified configurations.
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(a) Premixed, ỸCH2O (b) Premixed, ỸOH

(c) Stratified, ỸCH2O (d) Stratified, ỸOH

Figure 8.11: Instantaneous contours of reactant-side and product-side radical species indica-
tive of the leading and trailing edges of the flame brush for both configurations along the
center plane.
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Figure 8.12: Sectors representing different critical points in the topological analysis of the
invariants of the velocity gradient tensor. Sectors are defined in Table 8.2. Yellow dashed
lines represent the surfaces where the discriminant is zero.
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(a) P̂ ∈ [−1.25,−0.75) (b) P̂ ∈ [−1.25,−0.75) (c) P̂ ∈ [−1.25,−0.75)

(d) P̂ ∈ [−0.75,−0.25) (e) P̂ ∈ [−0.75,−0.25) (f) P̂ ∈ [−0.75,−0.25)

(g) P̂ ∈ [−0.25, 0.25) (h) P̂ ∈ [−0.25, 0.25) (i) P̂ ∈ [−0.25, 0.25)

(j) P̂ ∈ [0.25, 0.75) (k) P̂ ∈ [0.25, 0.75) (l) P̂ ∈ [0.25, 0.75)

Figure 8.13: Topological analysis of the velocity gradient tensor invariants for the premixed
case conditioned on T̃ = 800 K, 1300 K, 1800 K from left to right.



(a) P̂ ∈ [−1.25,−0.75) (b) P̂ ∈ [−1.25,−0.75) (c) P̂ ∈ [−1.25,−0.75)

(d) P̂ ∈ [−0.75,−0.25) (e) P̂ ∈ [−0.75,−0.25) (f) P̂ ∈ [−0.75,−0.25)

(g) P̂ ∈ [−0.25, 0.25) (h) P̂ ∈ [−0.25, 0.25) (i) P̂ ∈ [−0.25, 0.25)

(j) P̂ ∈ [0.25, 0.75) (k) P̂ ∈ [0.25, 0.75) (l) P̂ ∈ [0.25, 0.75)

Figure 8.14: Topological analysis of the velocity gradient tensor invariants for the stratified
case conditioned on T̃ = 800 K, 1300 K, 1800 K from left to right.





CHAPTER 9

CONCLUSIONS AND FUTURE WORK

The objective of this work is to extend an existing compressible solver so that it is capable

of resolving low Mach number, turbulent, reacting flows using the large-eddy simulation

(LES) technique. The reliance on turbulence models in LES to provide the proper amount of

dissipation representing the missing scales demands numerical schemes whose dissipative

properties are understood, controlled, and minimized. The application of compressible

solvers to the low Mach number regime often results in excess numerical dissipation [2, 3]

that may overwhelm the contributions of the turbulence models. These low Mach number

flows may be present globally or locally, such as behind bluff bodies or in recirculation

zones. Therefore, this work focused on the development of a numerical scheme using a

preconditioning approach that provides Mach number independent dissipative properties

and the ability to use dedicated, stiff solvers to treat the chemical kinetics. A summary of

the new contributions of this work follows, along with an assessment of what tasks remain

and what new areas of research are now possible.

9.1 Summary

The popular MacCormack scheme, a member of the Lax-Wendroff family of schemes,

serves as the baseline numerical approach for this work. It is attractive because it is a

central scheme that is inherently stable and uses a predictor-corrector scheme with first

order derivatives in each step. Because of this, it requires a small computational stencil, low

memory footprint, is simple to implement, and it requires no user specified parameters or

additional artificial dissipation. Despite its popularity and the large amount of literature

regarding the scheme, its properties at low Mach numbers have not been reported.
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Chapter 3 presents the original, 1971 form of the MacCormack scheme and analyzes its

dissipative properties at low Mach numbers. The inherent dissipation in the scheme is found

to suffer from the same degradation as artificial dissipation schemes in the low Mach number

limit. This degradation is caused by the improper scaling of the eigenvalues multiplying the

dissipation terms. The introduction of a preconditioning matrix to rescale the eigenvalues

and to eliminate stiffness in the system alleviates the excessive dissipation problem at

low Mach numbers when the preconditioning parameter equalizes the eigenvalues. The

preconditioning parameter depends on the local flow conditions and, when used in a dual-

time scheme for time accurate simulations, it also depends on the physical time step. As a

result, for unsteady flow configurations, the preconditioning is effectively disabled and the

modified equation analysis suggests the 1971 MacCormack scheme with preconditioning

will behave the same as the scheme without preconditioning. The 1971 form of the scheme

with preconditioning is called MC-PC.

Chapter 4 introduces a new form of the scheme, the Generalized MacCormack scheme,

designed to overcome the limitations of the original scheme. This scheme is presented in

both single-time form, suitable for compressible simulations, and a dual-time form with

preconditioning, which provides Mach number independent behavior. The single-time form

is similar to the original scheme; the only difference is an improvement to a non-linearity

correction from the original scheme. That correction is found to produce large-scale pressure

oscillations in otherwise smooth flows, while the new correction proposed here maintains

stability in complex flows without introducing the pressure oscillations. The dual-time form

of the scheme includes preconditioning at the pseudo-time level and splits the flux terms

into convective and acoustic components. The acoustic component is treated using central

differences for the interface pressure and an artificial dissipation using the properly scaled

eigenvalues is added to the pressure field. This ensures stability as well as proper scaling of

the numerical dissipation at low Mach numbers. The single-time and dual-time schemes are

called GMC-ST and GMC-PC respectively.
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A technique to develop robust preconditioner definitions based on a Fourier analysis

of perturbation responses is presented in addition to the new Generalized MacCormack

schemes. This technique is used to develop new preconditioning definitions designed to

limit the amount of preconditioning applied when the flow contains strong non-linearities.

These new definitions are more robust than existing preconditioner definitions and enhance

the stability of the scheme when faced with strong pressure perturbations by many orders of

magnitude. Additional analysis of the local time stepping methodology suggests that the

time steps must be smooth to ensure stability, and a local smoothing operation is applied

to the time steps. Lastly, a well-known technique for limiting the preconditioner definition

in the neighborhood of stagnation points is analyzed and shown to eliminate the need for

global preconditioner definitions.

Results for several non-reacting flows in Chapter 5 verifies the analysis of the MC-PC,

GMC-ST and GMC-PC schemes. For large physical time steps, such that the unsteady

preconditioner is not active and the preconditioning parameter equalizes the wave speeds,

the MC-PC scheme and the GMC-PC scheme exhibit substantially less numerical dissipation

than the GMC-ST in the convection of an inviscid vortex at a low Mach number. However,

at small physical time steps where the preconditioning is effectively disabled, the MC-PC

scheme solution matches that of the GMC-ST scheme, while the GMC-PC scheme exhibits

superior solution quality as predicted by the modified equation analysis. Meanwhile, the

convection of the same vortex at a moderate Mach number demonstrates the GMC-ST and

GMC-PC scheme both predict accurate solutions with minimal numerical dissipation.

The same conclusions are found through investigations of a steady, viscous flow. The

lid-driven cavity case at M = 0.3 using the GMC-ST and GMC-PC schemes matches the

reference data well for both a low and a high Reynolds number. However, at M = 0.001, the

GMC-ST scheme is unable to capture the correct solution on any of the grids tested, while

the GMC-PC scheme performs as well as it did at M = 0.3. Furthermore, at both Mach

numbers and Reynolds numbers, the GMC-PC converges at second-order rates with grid
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refinement as expected. This, combined with the vortex case results, demonstrate the Mach

number independence and minimized dissipative properties of the new GMC-PC scheme.

These cases also reveal the efficiency of the GMC-PC scheme. For the vortex convection

at M = 0.5, the GMC-PC scheme and GMC-ST scheme predict solutions that are negligibly

different, although the GMC-PC scheme requires more pseudo-time iterations per physical

time step and the cost per step is increased due to matrix inversions. In this instance, the

GMC-PC is not an effective scheme under these conditions and the GMC-ST scheme is

preferred. However, at the low Mach number, M = 0.001, the GMC-PC scheme requires

more iterations per physical time step at an increased cost on the same grid relative to the

GMC-ST scheme, but the solution quality is superior. Tests with the GMC-ST scheme

indicate the same solution quality using that scheme requires approximately 30 times the

computational workload. Therefore, depending on the physical CFL number chosen, the

GMC-PC scheme is at least 3 times more efficient and possibly up to an order of magnitude

more efficient than the GMC-ST scheme. The GMC-PC scheme is even more efficient in

the low Mach number lid-driven cavity case, where convergence required approximately 30

times fewer iterations than the GMC-ST scheme, while also providing a vastly improved

solution quality. These performance and accuracy improvements are most noticeable at low

Mach numbers.

Isotropic decaying turbulence at a low turbulent Mach number serves as a final verifica-

tion of the improved dissipative properties of the GMC-PC scheme. The GMC-PC scheme

at a physical CFL number based on the speed of sound, CFLc = 1, and at a physical CFL

number based on the initial RMS velocity, CFLu′ = 1, shows the solution is relatively

insensitive to the physical CFL number chosen. CFL numbers larger than CFLu′ = 1 are not

tested, as this exceeds the ideal CFL number for LES discussed in Section 5.5. The temporal

evolution of both the large and small scales in the flow exhibit less numerical dissipation

with the GMC-PC scheme relative to the GMC-ST scheme, and the turbulent kinetic energy
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spectra contain a richer range of scales with the GMC-PC scheme. The GMC-ST scheme

also indicates a tendency towards anisotropy not seen in the GMC-PC scheme.

Before moving to the schemes for reacting flows, these results should be put into a

broader context. Most central and upwind schemes have low Mach number variants, but

the Lax-Wendroff family of schemes is noticeably absent in that regime. The non-reacting

GMC-PC scheme extends the MacCormack scheme, but the analysis of the MacCormack

scheme also holds for other members of the Lax-Wendroff family. Therefore, the the inherent

dissipation in all members of the family of schemes is expected to be overly dissipative at

low Mach numbers without treatment, and the application of preconditioning to the scheme

directly is unlikely to improve these properties for unsteady flows. Modification of the

pressure terms combined with preconditioning improved the performance, and it is likely

that all members of this family of schemes would benefit from a similar change. This opens

up an entire family of second-order accurate, single-step or two-step explicit methods for

application to low Mach number flows, and existing solvers that employ schemes from this

family may be extended with minimal changes to the scheme.

Chapter 6 outlines extensions to the GMC-PC scheme to account for stiff chemical

kinetics. These extensions are designed to remove the limitations of the traditional approach

to integrating chemistry in dual-time schemes. This traditional approach linearizes the

source term vector and uses the same temporal integration scheme as the fluxes in a fully-

coupled approach. The robustness and accuracy of this scheme rely on ad hoc techniques

to ensure stability, such as limiting the pseudo-time step based on the chemical kinetics

or limiting the introduction of the source terms over several steps. This, in turn, reduces

the effectiveness of preconditioning and is purely numerical in nature without any physical

underpinning. The extensions proposed in Chapter 6 remove these ad hoc corrections by

coupling the dual-time scheme to an external, dedicated ODE solver.

Two schemes are proposed based on techniques commonly used in single-time schemes.

The first, a consistent splitting approach, uses DVODE to integrate both the fluxes and the
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source terms together, with the fluxes treated explicitly using the Generalized MacCormack

spatial differencing, and the source terms treated implicitly. This addresses the stiffness of

the chemical source terms and ensures there are no steady-state errors due to the operator

splitting. The second scheme is an extension of the common Strang operator splitting to

dual-time schemes with the splitting performed in physical time. Although this extension is

seemingly straight forward, the physical time derivative in the dual-time scheme must be

altered. Specifically, the physical time derivative cannot be multi-step as the flux integration

term must not contain any artifacts of the source term integration. Therefore, the physical

time accuracy of this scheme is limited to first order.

A third scheme is also detailed to highlight the importance of the consistently split

scheme. This scheme is the application to dual-time schemes of traditional operator splitting

techniques used in single-time schemes. These operator splitting techniques are known to

converge to incorrect steady state solutions due to splitting errors. Because the solution at

each physical time level is the steady state solution in pseudo-time, any steady-state errors

in the pseudo-time iterations will manifest as physical-time errors and degrade the quality

of the solution.

A progressive series of cases in Chapter 7 based on a premixed, lean hydrogen mixture

at elevated temperatures and pressures consistent with the conditions faced in Homogeneous

Charge-Compression Ignition (HCCI) engines tests the accuracy and limitations of the

proposed schemes. A zero-dimensional, constant volume reactor verifies that all schemes

can predict the same solution as the stand-alone Cantera package. This is done with a

range of time steps, ranging from a step size on the order of the chemical time scale, to

a step size approximately 1000 times larger. The traditional, fully-coupled scheme failed

to converge for large time steps, demonstrating the lack of efficiency in the traditional

approach. The other three schemes all matched the Cantera solution for all time steps. The

zero-dimensional reactor contained no flux terms, and therefore there are no errors due to

splitting flux and source term operators. The physical split scheme is vastly more efficient in
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this case, requiring only two DVODE calls per physical time step, as opposed to the schemes

using DVODE at the pseudo-time level that required orders of magnitude more DVODE

calls.

One-dimensional simulations with temperature and compositional inhomogeneities on a

background flow demonstrate the behavior of the schemes when fluxes and source terms

are present. The first case, with only a temperature variation, shows the success of the two

new schemes. The consistently split scheme is both stable and accurate for all physical

CFL numbers tested, while the scheme using operator splitting in pseudo-time deviates

from the expected solution as the CFL number increases. Although the errors are minor

in the volume averaged data for this case, it is indicative of the importance of eliminating

steady-state errors and demonstrates the fallacy of directly applying single-time techniques

to dual-time schemes. More significant errors are evident in the instantaneous, spatial fields,

where this scheme shows a large temporal delay in the transition from ignition kernel to

propagating deflagration waves. The physical split scheme also performs well in this case,

providing accurate solutions for all but the largest time step size. At the largest time step, the

source term integration operator introduces a large, localized heat release and this triggers

sharp changes in thermodynamic variables. This leads to numerical instabilities generated

by insufficient numerical dissipation in the central scheme around sharp interfaces. The

traditional, fully-coupled scheme also fails at the largest time step size at the point of peak

heat release rates.

The same case is repeated with the addition of a compositional inhomogeneity, atomic

hydrogen, offset from the temperature inhomogeneity. The presence of atomic hydrogen

begins the chain-branching reactions and establishes gradients in the radical species opposed

to the temperature gradients. Under these conditions, the physical split scheme using Strang

splitting is expected to exhibit large errors in the ignition behavior. Consistent with these

expectations, the physical split scheme shows substantial deviations with the expected

solution at larger physical CFL numbers, but performs unexpectedly well at smaller CFL
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numbers. The pseudo-time scheme with operator splitting performs similarly, and the errors

in both schemes are attributed to splitting the source terms and the diffusion operator.

The traditional, fully-coupled scheme exhibited numerical instabilities at all physical

CFL numbers and is unable to provide a solution for this flow. On the other hand, the

consistently split scheme is both robust and accurate. Errors in the solution do increase as

the physical CFL number increases, with the ignition occurring earlier than expected. This

is attributed to the diffusion of the temperature wave, leading to a more uniform temperature

throughout the domain and an earlier ignition. The diffusion of the temperature wave is

expected and due to the increased numerical dissipation at large physical CFL numbers.

The autoignition in a turbulent field with temperature fluctuations serves as a final

measure of the two, new schemes. The results revealed weaknesses in both schemes. In the

case of the consistently split scheme, the results for the two smaller CFL numbers tested

demonstrate the same insensitivity as the non-reacting turbulence results. However, at larger

CFL numbers, the scheme predicts markedly different solutions that miss both the transient

and the steady-state expectations. This failure is attributed to the loss of numerical precision

within the DVODE solver when it is calculating the Jacobian to assess stiffness in the system.

The source terms are so much smaller than the flux terms that finite precision math is unable

to generate their sum as different than the flux term itself, leading to DVODE incorrectly

predicting a constant system. This, in turn, leads to inappropriately large time step values

within DVODE and the solution is incorrect as a result. At the lower physical time step sizes,

the pseudo-time step is of a similar order of magnitude as the chemical time scales and the

loss of precision has less impact due to the small time steps DVODE is using. However, at

large physical CFL numbers, preconditioning is more active and the pseudo-time step is

several orders of magnitude larger than the chemical time scale and the loss of precision has

more of an impact.

The physical split scheme also breaks down at large physical CFL numbers. In this

instance, as with the previous cases, the scheme is numerically unstable at the largest CFL
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number due to the large heat release in the chemical integration step. For large time steps

where it is stable, the scheme predicts solutions that are insensitive of the time step until

the point where the coupling between diffusion, convection, and reaction rates is dominant.

When this transition occurs, the Strang splitting is unable to predict the correct solution

due to operator splitting errors. However, for small enough time steps, the solution is

insensitive to the physical CFL number used and the results are strikingly similar between

the consistently split and physical split schemes. Even at these modest CFL numbers, the

number of DVODE calls relative to the GMC-ST and consistently split schemes is reduced

by at least one order of magnitude, representing a significant reduction in cost.

Two practical configurations are the final demonstration of the new scheme for reacting

flows in Chapter 8. Due to the numerical limitations of the consistently split scheme, only

the physical split scheme is employed. The first is a premixed, bluff-body stabilized flame

frequently studied both numerically and experimentally. The case is not typically considered

low Mach number, but it features a prominent recirculation zone behind the bluff-body that

provides the stabilization for the flame. This region, by its nature, contains low velocities

and is therefore important to resolve correctly. Previous studies using an explicit scheme

and multiple grids are used as a baseline for comparison with the GMC-PC scheme. These

previous studies failed to capture the recirculation region behind the bluff-body, even as

the grid is refined, and instead predict a wake-like structure. The GMC-PC scheme, on

the other hand, correctly captures the recirculation zone on the coarsest grid used for the

baseline solutions. On this grid, the GMC-PC scheme is approximately 10 times slower

than the explicit scheme used in the other study. The finest grid used in the previous study

failed to capture the recirculation region, suggesting that the trends identified in the simpler

configurations hold for complex cases as well. Specifically, although the solution on a given

grid may be more expensive with the GMC-PC scheme, the solution at low Mach numbers is

superior and resolving the same quality solution with the explicit scheme is more expensive.
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The second configuration is a rod-stabilized V-flame over a two-dimensional slot burner.

This case has both premixed and stratified configurations with experimental data available.

This work is the first known LES of this configuration, and with inflow velocities of

approximately 5 m s−1, the flow is at a low Mach number. Temperature profiles throughout

the flame match experimental data and RANS simulation data well for both the premixed and

stratified cases. A new topological analysis of the results indicates predominantly tube-like

structures dominate the flame fronts. The topology of the stratified case shows an increased

amount of vortex stretching and the vorticity fields show a switch in the sign of the vorticity

downstream of the rod. This suggests a strong baroclinic torque exists in the flame and the

topology of the stratified flame contains fundamental differences relative to the premixed

case.

9.2 Future Work

The dual-time iterative procedure offers numerous opportunities for future work and research

regarding optimization and acceleration techniques. At each sub-iteration in the pseudo-

time step operation, a linear system is solved at each cell. Although the preconditioning

matrix is held fixed over all of the sub-iterations, the conservative to primitive Jacobian

matrix added to the preconditioning matrix must be updated using the latest values. This

prevents the inverse of the matrix from being stored and reused between sub-iterations and

represents a majority of the increased cost per step when solving the preconditioned system.

Unfortunately, for even the largest chemical mechanisms, these matrices are still dense and

have no unique structural advantages to reduce the cost of solving the system. Because

the matrices are unique at each cell and change each step, offloading them to dedicated

acceleration hardware like GPUs or coprocessors likely will not be advantageous due to

the memory transfer overhead. Therefore, techniques to update the matrix inverse directly

without needing to recompute it could lead to a large reduction in cost. This may be most

useful towards the end of the pseudo-time convergence, when the changes in the solution
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are small and may be confined to one or two entries in the matrix inverse, at which point

techniques for performing rank-one updates directly to the matrix inverse may be possible.

Along similar lines, it is possible to reformulate the consistently split scheme so that the

physical time derivative remains implicit in pseudo-time alongside the implicit source terms.

This way, the Jacobian does not appear on the left hand side of the system and only the

preconditioning matrix is required. Because this matrix is constant over the sub-iterations, its

inverse can be computed once and stored for all sub-iterations. This inverse can be computed

numerically, or the inverse preconditioning matrix may be written directly. Directly writing

this matrix will make the solution of the linear system simply a matrix-vector multiplication

operation where the matrix may be evaluated and stored once per pseudo-iteration. This

option was not explored in this work because of the numerical precision difficulties already

present in the scheme.

The behavior of both the consistently split scheme and the physical-time split scheme is

promising, but unsatisfying due to the numerical challenges encountered. The physical split

scheme is limited to moderate physical CFL numbers to ensure accuracy in physical time.

This is not unexpected given the nature of the splitting errors in physical time, and the scheme

does result in significant cost savings at low Mach numbers due to the reduced number of

DVODE calls. However, the time step in this case is dictated by the chemical dynamics

and the allowable time steps are far from the ideal step sizes for LES. The consistently split

scheme has the potential to allow physical time steps that are based on the fluid mechanics

and not the flame dynamics, but the numerical loss of precision stymied that effort. For this

scheme, the flame dynamics and fluid mechanics remain coupled through the pseudo-time

iteration and conceptually it is possible the physical time step may be chosen much larger

and still provide accurate solutions. Reformulating the consistently split scheme to eliminate

or mitigate this loss of precision is the highest priority in continuing this work.

An outstanding question is how the solution accuracy for chemically reacting flows is

affected by the physical time step size. This work showed that non-reacting turbulence pro-
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perties are relatively insensitive to the physical CFL number, and purely reacting problems

are likewise insensitive. But the coupling between the source terms and the fluxes may lead

to more stringent requirements on the physical time step selection than either component

does alone.

Finally, evaluation of features and improvements to the underlying scheme may extend

the range of conditions the scheme can solve. For instance, the artificial dissipation is not

TVD and extending the range of Mach numbers into supersonic or hypersonic regimes would

require modifications. These modifications may come through reformulating an upwind

scheme such as MUSCL or WENO to account for the preconditioned wave speeds, and

combining the GMC-PC scheme with the preconditioned upwind scheme to create a hybrid

scheme. Alternatively, a TVD version of the MacCormack scheme can be implemented and

extended for low Mach numbers. Further verifications of the other types of MacCormack

discretizations are also needed, specifically the higher order versions of the scheme.
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APPENDIX A

NONLINEAR INSTABILITIES IN THE MACCORMACK SCHEME

The generalized MacCormack scheme for single-time integration (GMC-ST) introduced in

Chapter 4 contains an update to the non-linearity switch first proposed in the 1971 version

of the scheme [39]. It was noted in Chapter 5 that the original switch generates large scale

pressure fluctuations in smooth flows whereas the new switch eliminates a majority of the

oscillations. In this appendix, the single-time behavior of the non-linear switch is assessed

through model equations designed to trigger the instabilities. Further discussion of the

oscillations in the inviscid vortex flow are also presented. These sections are extracted from

Gallagher et al. [117].

A.1 Model Equations

Model equations provide a test bed to assess the non-linear switch in its original and

proposed forms relative to the scheme without the switch. This is done using the linear wave

equation and the non-linear Burgers’ equation. The linear wave equation given by:

∂u

∂t
+ c

∂u

∂x
= 0 (A.1)

where the wave speed c is a constant in time but varies in space and u is the unknown.

The initial conditions and spatial variation in the wave speed are designed to trigger the

conditions that turn on the non-linearity correction:

c(x) =


1 if x > 0

−1 if x ≤ 0

(A.2)
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and the grid is created such that the i + 1/2 face of the cell centered on x = 0 has ci < 0

and ci+1 > 0. The initial condition on the scalar is a Gaussian pulse.

The scheme without a switch is discontinuous at the cell face, with a positive value on

the left side of the origin and negative value on the right as shown in Figure A.1a. This

solution is consistent with the observations of MacCormack [39], where the sum of the

solution across the cell face with divergent velocities is zero, even though each side may

grow unbounded. Although in this case the solution remains bounded, this jump represents

an infinite source of the scalar at the origin. On the other hand, both the 1971 form of the

non-linearity switch as well as the new form proposed here are continuous and zero through

the origin. Each half of the Gaussian wave convects away from the interface as expected.

Oscillations in all solutions occur due to the Gibbs phenomenon at the discontinuities.

The switch is based on the need to control non-linearities, so the second test uses the

inviscid Burgers’ equation:
∂u

∂t
+

1

2

∂uu

∂x
= 0 (A.3)

with initial conditions again designed to trigger the switch:

u(x, t = 0) =


− x
xc−x0.25 − 1.0 if x0.25 ≤ x < xc

− x
x0.75−xc + 1.0 if xc ≤ x < x0.75

0 else

(A.4)

where xc is the center of the domain, x0.25 and x0.75 are the coordinates at 25% and 75% of

the domain respectively.

The expected solution is two ramps that move away from the origin. Results in Fi-

gure A.1b show the same trends as with the linear equation. Specifically, both the 1971

switch and the new switch produce identical solutions. However, the scheme without the

switch again produces an infinite source of the scalar at the origin where the discontinuity

is located. Despite the non-linear equation, the instabilities seen in the 1971 switch in the
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(a) Linear wave equation
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(b) Inviscid Burgers’ equation

Figure A.1: Comparison of the schemes without the nonlinearity switch, with the original
1971 nonlinearity switch, and with the new nonlinearity switch given by Equation (4.1) on
the linear and nonlinear model equations. Reprinted with permission from Gallagher et
al.[117].

Euler and Navier-Stokes equations do not appear. This is suggestive that the instabilities are

not simply non-linear. They may be due to the coupling between the pressure and velocity

in the full Euler equation set, but a stability analysis of a coupled set of simple non-linear

equations may reveal the extent to which the instabilities are specific to the Euler equations.

Despite the lack of instabilities in these simple tests, the model equations confirm the new

switch produces the same solution as the original switch.

A.2 Vortex Convection

Based on the results of the model equations, the full Euler equation set is required to

reproduce the instabilities. The vortex test case described in Section 5.2 at M = 0.3

demonstrates the severe degradation in the solution when the original 1971 form of the

switch is used. This is shown in Figure A.2 and compared to the new form of the switch

and the solution without the switch. The original 1971 switch generates large-scale pressure
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oscillations in the solution. For this flow, the simulation remains stable when the switch

is disabled and the resulting pressure field is well behaved. This is not a general solution,

however, because the switch is required for stability in more complex flows.

The new switch proposed in this work leads to a pressure solution similar to the case

without the switch. All three pressure solutions are shown in Figure A.2a. The corresponding

velocity profiles are shown in Figure A.2b. The velocity profiles are unaffected by the

pressure oscillations and remain well-behaved. The local minima and maxima in the

velocity profiles are larger in magnitude with the original switch compared to the new switch

and the case without the switch. The pressure oscillations are due to insufficient dissipation

with the 1971 switch, which also explains the differences in the velocity predictions.
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(a) Pressure profiles across the vortex.

(b) V-velocity profiles across the vortex.

Figure A.2: Velocity and pressure profiles across the vortex using the original, 1971 nonli-
nearity switch, the new switch proposed in this work (Equation (4.1)), and no nonlinearity
switch for one turn around the domain. Reprinted with permission from Gallagher et al.
[117].
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APPENDIX B

COMPUTATIONAL SETTINGS AND PERFORMANCE

The dual-time scheme with preconditioning in this work introduces a number of new settings

that control the behavior the scheme. These settings will affect the robustness, accuracy,

and performance of the scheme. Therefore, all of the settings used for each of the cases

presented in this work are summarized below and may be used as a guide for setting up

similar problems or as a starting point for new problems. Additionally, the computational

cost of the simulations are also provided where available, again to serve as a baseline for

establishing expectations. Where appropriate, notes are added to each case to describe how

the settings were chosen and what effect might happen based on changes to them, if known.

Flow over Bump

This case is described in Section 5.1.

Table B.1: Preconditioning settings for the flow over a bump case.
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Notes

• Computational performance was not measured for this case.

• Turning on the local time step smoothing causes the case to take excessively long to

converge.

• Turning on the pressure preconditioner causes the case to take excessively long to

converge.

Inviscid Vortex Convection

This case is described in Section 5.2.

Table B.2: Preconditioning settings for the inviscid vortex case.
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CFLc = 1 3 7 0.3112 10000 1× 10−9 10 1× 10−12 — 7 — — — —

CFLu = 1 3 7 0.3112 10000 1× 10−9 10 1× 10−12 2–4 7 — — — —

Notes

• Computational performance (wall time) was not recorded for this case, but iterative

efficiency and solution quality metrics indicate the preconditioned scheme is at least 3

times more efficient than the non-preconditioned scheme; see Section 5.2 for details.

• Provided the number of decades the residual converges is greater than or equal to 2,

the results are insensitive to the convergence criteria.
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• Less than 2 decades of convergence leads to numerical divergence.

Lid-Driven Cavity

This case is described in Section 5.3.

Table B.3: Preconditioning settings for the lid-driven cavity case.
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All 7 3 — 300000 1× 10−9 — — — 7 — — — —

Table B.4: Relative wall times for the lid-driven cavity case. All timing metrics are relative
to the GMC-ST simulation on the same grid.

Case 16× 16 32× 32 64× 64 128× 128 256× 256

Re = 100, M = 0.3 227.91 115.02 5.28 1.09 —

Re = 100, M = 0.001 0.011 0.030 0.026 0.121 —

Re = 1000, M = 0.3 0.216 0.149 0.259 3.13 1.11

Re = 1000, M = 0.001 0.019 0.028 0.222 0.188 0.167

Notes

• The relative wall times indicate the GMC-PC scheme is significantly faster than the

GMC-ST scheme for all low Mach number cases. It is important to remember that the

GMC-ST scheme is unable to accurately capture the results under these conditions.
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• The GMC-PC scheme exhibited stalled convergence in the M = 0.3 cases, but the

flatness convergence criteria was not used to detect this. The timing studies are

therefore skewed in favor of the GMC-ST scheme.

• Turning on the local time step smoothing prevents proper convergence in this case.

Decaying Isotropic Turbulence

This case is described in Section 5.4.

Table B.5: Preconditioning settings for the non-reacting isotropic turbulence case.
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CFLc = 1 3 3 0.7 100 1× 10−9 10 1× 10−12 10 7 — — — —

CFLu = 1 3 3 0.7 100000 1× 10−9 10 1× 10−12 10 7 — — — —

Notes

• Computational performance was not measured for this case.

• Turning on the local time step smoothing causes the case to take excessively long to

converge.

Zero-Dimensional Ignition

This case is described in Section 7.1.

226



Table B.6: Preconditioning settings for the zero-dimensional ignition cases.

Case Pr
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Scheme A, all CFLs 3 3 0.01 20000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme B, all CFLs 3 3 0.01 — 1× 10−12 — — — 3 10 0.05 — —

Scheme C, all CFLs 3 3 0.01 20000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme D, all CFLs 3 3 0.01 20000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Table B.7: Relative wall times for the zero-dimensional ignition case. All timing metrics are
relative to the GMC-ST simulation.

Scheme CFLc = 1 CFLc = 10 CFLc = 100 CFLc = 1000

Scheme A 3.07 0.473 0.104 0.073

Scheme B 1.40 0.140 0.014 0.002

Scheme C 3.09 0.522 — —

Scheme D 3.38 0.593 0.125 0.091

Notes

• For this case, Scheme B did not require any pseudo-iterations because the flux terms

are not computed; therefore, preconditioning settings are not relevant.

• Scheme C took excessively long to converge at larger CFL numbers.

• Local time step smoothing was used in this case, but it is not relevant because the

cells all contain the same solution values. It does, however, affect performance and so

it is reported for completeness.
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• Scheme C took excessively long times to converge at the two largest CFL numbers,

so the simulation times are not recorded.

One-Dimensional Ignition

These cases are described in Section 7.2
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Table B.8: Preconditioning settings for the one-dimensional ignition cases.
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Case 1A

Scheme A, CFLc = 1 3 3 0.01 5000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme A, CFLc = 10 3 3 0.01 10000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme A, CFLc = 100 3 3 0.01 20000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme A, CFLc = 1000 3 3 0.01 50000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme B, CFLc = 1 3 3 0.01 5000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme B, CFLc = 10 3 3 0.01 5000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme B, CFLc = 100 3 3 0.01 10000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme C, CFLc = 1 3 3 0.01 10000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme C, CFLc = 10 3 3 0.01 10000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme C, CFLc = 100 3 3 0.01 20000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme D, CFLc = 1 3 3 0.01 5000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme D, CFLc = 10 3 3 0.01 10000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme D, CFLc = 100 3 3 0.01 20000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme D, CFLc = 1000 3 3 0.01 50000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Case 1B

Scheme A, CFLc = 1 3 3 0.01 5000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme A, CFLc = 10 3 3 0.01 10000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme A, CFLc = 100 3 3 0.01 20000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme A, CFLc = 1000 3 3 0.01 50000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme B, CFLc = 1 3 3 0.01 5000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme B, CFLc = 10 3 3 0.01 5000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme B, CFLc = 100 3 3 0.01 10000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme B, CFLc = 1000 3 3 0.01 50000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme D, CFLc = 1 3 3 0.01 5000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme D, CFLc = 10 3 3 0.01 10000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme D, CFLc = 100 3 3 0.01 20000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme D, CFLc = 1000 3 3 0.01 50000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —
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Three-Dimensional Ignition

This case is described in Section 7.3.

Table B.9: Preconditioning settings for the three-dimensional ignition case.
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Scheme A, all CFLs 3 3 0.0041 20000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Scheme B, all CFLs 3 3 0.0041 20000 1× 10−12 10 1× 10−14 4 3 10 0.05 — —

Volvo Flygmotor

This case is described in Section 8.1.

Table B.10: Preconditioning settings for the Volvo case.
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3 3 0.04 1000 1× 10−6 10 1× 10−12 4 3 10 0.05 0.25 0.04

Notes

• Computational timing was not performed for this case.
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• Less than 4 decades convergence leads to an eventual divergence in the code.

• The flame creates gradients large enough to cause numerical instabilities unless JST

dissipation is used.

Cambridge Slot Burner

This case is described in Section 8.2.

Table B.11: Preconditioning settings for the Cambridge slot burner cases.
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All 3 3 0.03 500 1× 10−9 10 1× 10−12 2 7 — — 0.25 0.007

Notes

• Computational timing was not performed for this case.

• The code is modified such that JST dissipation is only active beyond 30 mm above the

burner. Within the primary measurement window, the grid is fine enough to resolve

the flame. However, numerical instabilities exist as the grid coarsens towards the

outflow, so the artificial dissipation is used for stability there.
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