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SUMMARY

There is significant uncertainty in our knowledge of the Martian atmosphere

and the aerodynamics of the Mars entry, descent, and landing (EDL) systems. De-

signing for these uncertainties lead to higher system masses and conservative perfor-

mance predictions. Data from flight instrumentation on-board Mars EDL systems

can be used to quantify these uncertainties; however, the existing data set is sparse

and many parameters of interest have not been previously observable. A majority

of the flight reconstructions performed in the past have been deterministic in na-

ture, neither utilizing statistical information about the uncertainty of the measured

data nor quantifying uncertainty of the estimated parameters. Statistical estima-

tion methods blend together disparate data types to improve the reconstruction of

parameters of interest for the vehicle. For example, integrating data obtained from

aeroshell-mounted pressure transducers (also known as flush atmospheric data sys-

tems), inertial measurement unit, and radar altimeter can improve the estimates of

the trajectory, atmospheric profile, and aerodynamic coefficients, while also quanti-

fying the uncertainty in these estimates. Moreover, the statistical methods can be

leveraged to improve current engineering models in order to reduce conservatism in

future EDL vehicle design.

The work in this thesis presents a comprehensive methodology for parameter re-

construction and uncertainty quantification while blending dissimilar Mars EDL data

sets. Statistical estimation methods applied include the Extended Kalman filter,

Unscented Kalman filter, and Adaptive filter to improve parameter estimation and

uncertainty quantification over traditional EDL reconstruction techniques. The esti-

mators are applied in a manner in which the observability of the parameters of interest

xxii



is maximized while using the sparse, disparate EDL data set. The methodology is

validated with simulated Mars EDL data and then applied to actual flight data from

the 2012 Mars Science Laboratory. Reconstructed performance of all three estimators

are compared with each other and to independent estimations, where applicable.

The reconstruction methodology is also used as a tool for improving vehicle de-

sign and reducing design conservatism. A method of optimizing the design of fu-

ture EDL flush atmospheric data systems is presented by utilizing the reconstruction

methodology in the objective function. In one method, a residual-based optimization

procedure is demonstrated where the accuracy of the estimates drives the design and

placement of the flush atmospheric data system sensor suite. In another method, an

observability-based optimization procedure is implemented where the uncertainties

of the parameters of interest are minimized. Both cases provide means to optimize

FADS sensor layouts and to tailor them for a given trajectory and mission operation,

something hitherto ignored in practice. The methods also identify the point of di-

minishing returns in the number of sensors needed, an important quantity to know

with limited bandwidth on flight computers.

Ultimately, the impact of the estimation methodology on aerodynamic and atmo-

spheric engineering models is studied. Aerodynamic uncertainties can be estimated

from past flight data; however, some of the flight measurements introduce assump-

tions and uncertainties that dilute the impact of these measurements and do not

rationalize reductions in aerodynamic database uncertainties. Direct measurement

of some targeted atmospheric parameters on future missions combined with a sta-

tistical estimation methodology can yield significant improvement in aerodynamic

uncertainty quantification and lead to reductions in conservatism present in design

models. Reconstructed atmospheric profiles using the estimation methodology do not

show as great of a promise in decreasing uncertainties in atmospheric models, since

EDL missions only provide data for a vertical profile of the atmosphere at one time

xxiii



period. However, if reconstructed atmospheric profiles and uncertainties are combined

with continuous data from orbiters or ground meteorological stations, one could make

great improvements in the atmospheric models used for EDL vehicle design.

xxiv



CHAPTER I

INTRODUCTION

Mars has captivated the the human imagination for centuries as it has shined brightly

in the night sky. Humans have been sending spacecraft to Mars for several decades;

however, the red planet’s thin atmosphere and rough terrain present challenges to the

exploration of the planet’s surface. The entry, descent, and landing (EDL) sequence

has challenged vehicle designers since the spacecraft has to slow down from inter-

planetary speeds using an atmosphere that is only about 1
100

th as dense as Earth’s

atmosphere, but is still thick enough that the landing sequence cannot be done solely

by propulsion in a mass efficient manner. The surface is also strewn with rocks and

craters that create hazards for safe landing. Finally, the conditions for Mars EDL are

difficult to replicate on Earth, creating a challenge for verification and validation of

spacecraft design [1].

The United States has landed seven successful missions on the surface of Mars.

The design of the entry and descent systems for these missions have been remarkably

similar, with the each using a 70 deg. sphere-cone shaped rigid aeroshell for the

hypersonic entry phase and a disk-gap band (DGB) type of supersonic parachute

for the descent portion of the sequence. The terminal landing system has varied.

Vikings 1 and 2 and Phoenix landed using subsonic propulsion and crushable legs,

Mars Pathfinder (MPF) and the two Mars Exploration Rovers (MER) used air bag

systems, and Mars Science Laboratory (MSL) utilized a propulsive system called the

Sky Crane [1, 2, 3]. Figure 1 shows the EDL sequence for MSL [4].

Despite the similarity between these spacecraft (see Fig. 2 [5]), there remains

large uncertainties in the engineering models, leading to design conservatism and a
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Figure 1: Mars Science Laboratory entry, descent, and landing sequence.

higher EDL system mass. Flight data from EDL spacecraft can be used to recon-

struct trajectory, atmosphere, and vehicle aerodynamic coefficients and thus allow

for the quantification of the uncertainties in the vehicle performance and the Martian

environment.

This thesis will demonstrate a comprehensive methodology to utilize flight data

from sensors on-board Mars EDL vehicles to statistically reconstruct both the param-

eters of interest and their uncertainties. The methodology will focus on reconstructing

an EDL vehicle’s trajectory, aerodynamic coefficients, and the atmosphere on the day

of flight. Additionally, the reconstruction tools will be leveraged towards design of

future EDL instrumentation and improvement in modeling tools to reduce design

margins in future missions.
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Viking MPF MER Phoenix MSL 

(a) U.S. Mars aeroshells to size [5].

Parameter Viking MPF MER Phoenix MSL
Forebody Geometry 70 deg. sphere-cone

Aeroshell Diameter (m) 3.5 2.65 2.65 2.65 4.5
DGB Parachute Diameter (m) 16.15 12.4 15.09 11.5 19.7

(b) Comparison of U.S. Mars EDL missions [5].

Figure 2: U.S. Mars EDL aeroshells.

1.1 Background

Post-flight reconstruction of the EDL sequence has been conducted for every successful

Mars mission to provide insight into the vehicle’s trajectory and the atmospheric

conditions it encountered during the descent. The data set of the past Mars missions

has largely consisted of measurements from on-board accelerometers, gyroscopes, and

radar altimeters, which were used for the estimation of the position, velocity, and

attitude of the vehicles during the EDL timeline. Moreover, based on the sensed

decelerations on the vehicle and the knowledge of the aerodynamic database, the

atmospheric profiles encountered by these vehicles have been estimated.

Past Mars EDL reconstruction analyses have neglected measurement noise and

uncertainty in the estimation models. The estimated trajectories and atmosphere

from flight data have also not been applied to reduce the uncertainties in the engi-

neering models used during design. Trajectory analyses for the recent MSL mission

seen in Refs. [6] and [7] show the many uncertainties inherent in the EDL sequence.
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In particular, the aerodynamic coefficients of the vehicles and the knowledge of the

Martian atmosphere contain large uncertainties that in turn propagate into uncer-

tainties in EDL performance. The following section will summarize the issues with

these uncertainties and describe possible ways in which uncertainty quantification

may remedy the situation.

1.1.1 Aerodynamic Uncertainty

1.1.1.1 Static Aerodynamic Coefficients

One of the major sources of uncertainties lie in the knowledge of the aerodynamic

coefficients of the vehicle. Table 1 lists the static aerodynamic coefficient uncertainties

for some recent Mars EDL vehicles [8, 9, 10]. As can be seen from the table, although

the shape of the EDL vehicle has remained the same for all past U.S. missions, there

is still high uncertainty in the aerodynamic performance of the vehicle, which in turn

leads to increased design conservatism and potentially higher entry vehicle mass.

Table 1: Static Aerodynamic Coefficient Uncertainty for Selected Mars EDL Vehicles.

MPF CA CN Cm Cn Cl
Mach ≥ 12* ±2% ±0.01 ±0.003 N/A N/A
Mach ≤ 8* ±10% ±0.01 ±0.005 N/A N/A

MER CA CN Cm Cn Cl
Mach ≥ 10* ±3% ±0.01 ±0.003 N/A N/A
Mach ≤ 5* ±10% ±0.01 ±0.005 N/A N/A
Phoenix† CA CN , CY Cm Cn Cl

Mach ≥ 10* ±3% ±0.01 ±0.002,±20% ±0.002,±20% 1.24× 10−6

Mach ≤ 5* ±10% ±0.01 ±0.005,±20% ±0.005,±20% 1.24× 10−6

MSL† CA CN , CY Cm Cn Cl
Mach ≥ 10* ±3% ±0.01,±10% ±0.006,±20% ±0.003,±20% 0.000326
Mach ≤ 5* ±10% ±0.01,±10% ±0.005,±20% ±0.005,±20% 0.0004

*Uncertainty values are linearly blended between regimes.
†Uncertainty model consists of an adder and then a multiplier [9].
Gaussian distribution is assumed for the uncertainties listed above.

The uncertainties in the aerodynamic coefficients exist due to the various methods

used to generate the aerodynamic database for a vehicle. As the work of Edquist et
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al. [8] shows, the data are compiled from methods such as Computational Fluid

Dynamics (CFD) tools that solve the Navier-Stokes equations and experimental data

from ballistic range and wind tunnels.

Due to the various sources that account for the data, the uncertainties are often

based on sensitivity studies using computational tools, past experience and engineer-

ing judgment, and experimental test calibration data. Uncertainty quantification us-

ing Mars flight data would definitely be an improvement over the disparate techniques

of Earth-based uncertainty quantification; however, past EDL flight reconstructions

have not performed aerodynamic uncertainty assessment.

Reconstruction of aerodynamic coefficients from previous flight data shows that

there remains a potential gap between the state-of-the-art computational tools, like

the CFD tool LAURA, and actual aerodynamic performance. Figure 3, where lift (CL)

and drag (CD) coefficient reconstructed from Viking 1’s on-board pressure transducer

and LAURA predictions, show there are some disagreements between current mod-

eling tools and flight data collected in the past [11]. The lift and drag coefficients

predicted by the CFD tool are 3% to 5% below the measured data, and Edquist [11]

goes on to test many possibilities for the discrepancy, such as angle of attack recon-

struction error, center-of-gravity location offset, and off-nominal atmospheric density.

Unfortunately, none of these hypotheses can completely explain the discrepancy. It

should be noted that the flight data from Viking does not contain error bars and

hence one cannot determine if the discrepancy is due to measurement or modeling

errors; still, this disagreement underscores the need for improved analysis of Mars

EDL flight data in order to reconstruct parameters of interest, such as aerodynamics,

with estimated uncertainties so that such discrepancies can be mitigated and current

engineering models and tools can be improved.
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Figure 3: Comparison of Viking 1 reconstructed aerodynamics and CFD predictions
at measured angle of attack.

1.1.1.2 Dynamic Aerodynamic Coefficients

Mars entry vehicles have been blunt bodies and these geometries display oscilla-

tory behavior in some flow regimes leading to unstable pitching motion in some in-

stances [12]. Figure 4 displays the signs of dynamic instability in blunt bodies through

the angle of attack history of MPF and Phoenix spacecraft [2, 13]. Depending on the

flight trajectory and vehicle orientation, these instabilities may occur just prior to

maximum dynamic pressure and reach their peak in the mid to low supersonic flow

regime [14]. Prediction of this phenomenon in early analytical work on the topic

in the 1950’s [15, 16] have been now supplemented by experimental and numerical

analyses.

Experimental methods for characterizing dynamic stability have utilized wind

tunnels and ballistic range facilities to determine aerodynamic coefficient like the

pitch damping sum (Cmq + Cmα̇) [14]. Each of the experimental techniques have

their own drawbacks, as listed by Ref. [14], and brings with them their own set of

uncertainties, whether it is due to the data reduction method or assumptions made

during testing. For example, Fig. 5(a) shows the reconstructed pitch damping sum

from the same ballistic range data set by two independent parameter estimation tools
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(a) Pathfinder [13] (b) Phoenix [2]

Figure 4: Pitching oscillation seen in the reconstructed angle of attack of Mars EDL
spacecraft.

(CADRA and ADFDAS) [17]. There is little agreement in the two estimated sets of

coefficients, especially near angle of attacks near zero. Such uncertainty between

two tested and independent codes underscores the current lack of certainty in the

knowledge of dynamic aerodynamic coefficients.

(a) MSL Ballistic Range Estimate [17] (b) MER CFD-based Results [18]

Figure 5: Uncertainties in dynamic aerodynamic coefficients demonstrated by dispar-
ity in the pitch damping sum reconstruction.

Numerical methods of computing dynamic aerodynamic coefficients using state-

of-the-art CFD tools have not given much clarity to the issue. Typically, CFD-based

dynamic analysis of blunt bodies involves perturbing a vehicle’s attitude and then

numerically computing time-accurate solutions using deforming grids [19]. However,
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as seen in Fig. 5(b), CFD based results show little agreement with experimental

results [18].

As can be clearly seen from Fig. 5, little agreement between numerical simula-

tions and experimental data reduction techniques leaves large uncertainties in the

knowledge of the dynamic stability parameters. Analysis of flight data for dynamic

aerodynamic coefficient reconstruction can vastly improve the knowledge and the un-

certainty quantification of these parameters. Additionally, accurate reconstruction of

the dynamic coefficients can even verify and validate the performance of the state-of-

the-art CFD tools, further improving design tools for future spacecraft.

1.1.2 Atmospheric Uncertainty

Another major contributor to Mars EDL design is atmospheric uncertainty (see

Fig. 6). Large variations in the atmosphere due to the seasons, the amount of dust

particles, and other weather-related events make the prediction of freestream density,

pressure, and temperature very uncertain. For example, looking at Fig. 6(a), one

can see large variations in density from the nominal prediction. Similar uncertainty

in the atmospheric profile knowledge exists for other Mars atmosphere models like

winds [20, 21, 22, 23]. The uncertainties in the atmospheric profile can manifest

themselves as uncertainties in the spacecraft trajectory, as seen in the various landing

footprint predictions for MSL based on different atmospheric model predictions (see

Fig. 6(b)).

Reconstructing the atmosphere from flight data and then quantifying the uncer-

tainties can improve atmospheric modeling. For Mars, information from orbiters,

such as the Mars Global Surveyor, have provided data to characterize the top of the

atmosphere with somewhat high certainty [24], but the characteristics of the atmo-

sphere under 90 km altitude relies heavily on the in-situ data from the six entry

missions (excluding MSL whose data has not been fully processed into global models
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(a) Density uncertainties for MSL [4]. (b) MSL footprints for different atmosphere
models [23].

Figure 6: Atmospheric uncertainty’s effect on EDL vehicle design.

at the time of writing of this thesis) [24, 25]. Hence, the design of EDL trajectories

rely on diverse modeling techniques, like global circulation models, mesoscale models,

and large eddy simulations. These methods do not always agree, which adds to the

overall uncertainty [21, 22, 25].

Moreover, the possible existence of highly variable density and wind shear regions

in the atmosphere add to the overall uncertainty. Shuttle-derived atmospheric models

of Earth showed these regions where density changed by as much as ±60% [26, 27].

These regions have been theorized to exist on Mars, where they may be caused by

gravitational waves in the thin atmosphere [4]. Such variability in atmospheric con-

ditions could constrain the design of EDL vehicles [25]. Thus, it is easy to see how

reconstruction of flight data to estimate atmospheric properties can be valuable in

maturing current atmospheric modeling tools, especially for the lower altitude regions.

1.1.3 Typical Mars EDL Vehicle Instrumentation

Although EDL flight data reconstruction provides a valuable tool to quantify aero-

dynamic and atmospheric uncertainties, on-board instrumentation has provided little

information to separate the effects of the two uncertainties. Table 2 summarizes

the various measurements taken during the EDL phase by past U.S. Mars missions.
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Table 2: EDL-related measurements taken by U.S. Martian missions.

Measurements Vikingsa Pathfinderb MERsc Phoenixd MSLe

Accelerometer X X X X X
Thee-axis gyroscope X X X X
Radar altimeterg X X X X X
TPS Recession X
Pressure (during EDL) X Xf X
Temperature (during EDL) X X X

Notes: a [29, 30] b [31, 32, 33] c [34, 35] d [2, 36] e [3, 37]
f Pathfinder only took pressure measurements during subsonic parachute descent.
g Usually takes measurements during the last few stages of EDL.

Ref. [28] provides a more in-depth discussion of the various sensors used for other

planetary EDL missions, including missions to Venus and Jupiter.

As can be seen in Table 2, most of the past EDL missions have only inertial

measurement unit (IMU) instruments, such as accelerometer and gyroscope, during

the hypersonic phases of EDL. Although these sensors provide a great estimate of

position and velocity when integrated using schemes like those used for strap-down

guidance systems [38], these measurements do not allow for simultaneous reconstruc-

tion of atmosphere and aerodynamic parameters . Usually aerodynamic knowledge

is assumed to be known in order to reconstruct atmospheric parameters [39]. This

leads to a confounding of aerodynamic and atmospheric uncertainties.

One solution to the confounding of the uncertainties is to have some means of ob-

serving freestream atmospheric conditions. Flush atmospheric data systems (FADS),

consisting of pressure transducers on the aeroshell, can collect surface pressure data

during the entry and help in the estimation of the aeroshell pressure distribution. In

turn, freestream atmospheric parameters, like density and pressure, can be inversely

estimated from the measured surface pressure distribution and a prediction of the

surface pressure distribution based on the aerodynamic database [40, 41]. Although

aerodynamic knowledge is needed for the initial prediction, the reconstruction process
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does not ignore the uncertainty in these parameters. Instead, the known aerodynam-

ics only provide an initial guess which is improved upon by the measured data that

then leads to the updated atmospheric parameter estimates. Thus, aerodynamic un-

certainty is not confounded with the atmospheric uncertainty. Section 2.2.1 discusses

how the aerodynamic and atmospheric uncertainties are kept separate by using FADS

data. Past use of FADS for re-entry and high speed applications is summarized below.

One of the first use of FADS were on the Viking landers [29, 42, 43]. The FADS

sensors were arranged in an annular fashion with one port at the predicted stagna-

tion point, as seen in Fig. 7 [42, 43]. However, the data from these spacecraft had

significant noise and were in general unintelligible [29].

The Shuttle Entry Air Data System (SEADS) program used a flush-mounted air

data system on the shuttle’s nose [44] with the port configuration (shown in Fig. 7(a))

arranged in a cruciform shape. This configuration was derived using heuristic meth-

ods dependent on engineering judgment [40, 44]. Designers used error analysis to

determine the minimum number of pressure ports and the ports were arranged in a

cruciform manner to capture changes in the pitch and yaw plane. However, the cru-

ciform configuration is only optimal if the trajectory has either angle of attack-only

motion or sideslip angle-only motion. This configuration is non-optimal in terms of

observability if both sideslip angle and angle of attack are non-zero at the same time.

Since the SEADS configuration was an optimization of a point in the trajectory, it

was not robust to variations from the nominal trajectory.

High-Angle-of-Attack Flush AirData Sensing (HI-FADS) systems have been used

for aerodynamic test vehicles and conceptual studies for munitions guidance. The

configurations were derived by adding annular arrays of pressure ports across the

forebody of the vehicle, as seen in Fig. 7(b). Similar to SEADS, these applications did

not use physics-based optimization routines to select the transducer locations; instead,

it was hoped that adding more ports at different radial and angular directions would
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capture the entire pressure distribution and allow for the estimation of the freestream

condition [45].

The air data system for the proposed Aeroassist Flight Experiment (AFE) (shown

in Fig. 7(d)) was based on physics-based optimization. Deshpande et al. [46] used a

gradient-based estimator and a genetic algorithm (GA) to optimize the distribution of

the sensors in order to decrease the effect of normally distributed random noise from

the pressure transducers. The residuals between the estimated parameters and their

true values were then combined in a single-objective function for the optimization

routines. However, the study only considered reconstruction of a single trajectory

point. As such, the reconstruction process that serves as the objective function for

the optimization problem is expected to converge to a single trajectory state, similar

to a situation in wind tunnel testing, but unlike the case of EDL reconstruction where

the trajectory states are variable.

MSL also carried a set of FADS transducers, which was known as the Mars Entry

Atmospheric Data System (MEADS). The MEADS science objective was to recon-

struct dynamic pressure to within 2% and angle of attack and sideslip angle to within

0.5 deg. when the dynamic pressure is greater than 850 Pa [37].1 Although the

transducers that were used for MEADS could sample at high rates, due to memory

constraints, both pressure and temperature data were saved at an effective sampling

rate of 8 Hz [37].

To accomplish this, the MEADS sensors were arranged in a cruciform configura-

tion around the forebody of the aeroshell (see Fig. 7(e)). The locations were based

on the predicted pressure distribution on the aeroshell for a point in the trajectory

where sideslip angle is small; however, no quantitative optimization procedure was

1The original specifications also included the objective of estimating freestream Mach number
(M∞) to within ±0.1, but that requirement was dropped since Mach number calculation necessitates
an accurate knowledge of the speed of sound, which is not observable with the FADS measurements
without additional assumptions [48].
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(a) SEADS [44] (b) HI-FADS [45]

(c) Viking [43] (d) AFE [46]

(e) MEADS [47]

Figure 7: Layouts of various FADS configurations.

conducted in the selection of the transducer locations. Based on the nominal tra-

jectory, stagnation pressure was around P1 and P2, while P6 and P7 were the most

sensitive to changes in the sideslip angle. All ports helped in the reconstruction of
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the angle of attack history. However, in reality with off-nominal trajectory condi-

tions the configuration is non-optimal [49]. Unlike the Viking FADS sensors, the

MEADS sensors on MSL went through a rigorous calibration and measurement error

characterization [50, 51].

1.2 Past Work in EDL Reconstruction

1.2.1 Overview of Reconstruction Techniques

Estimation is a technique of deducing the values of a process from the effects of

the process; simply, it is inferring the independent variables from the dependent

variables with a limited knowledge of the function that maps one type of variable to

the other [52]. In Eq. (1), x signifies the state (the independent variable of interest),

f is some mapping function, and y stands for the made observation. If x is given and

y is desired, this situation is the direct problem; on the other hand, if y is known

and x is desired, it is the inverse estimation (or estimation) problem. Sometimes

little is known about f itself, which then is also a system identification problem [53].

Measurement, process, and random noises also enter the inverse analysis and system

identification problem, further complicating the estimation.

y = f (x) (1)

For experimental and flight data reconstruction applications, this process typi-

cally involves estimating parameters of interest from sensor measurements. Three

issues need to be considered for inverse analysis: solution existence, uniqueness, and

instability of the problem [53].

• For flight data analysis, sometimes the data may not fit the model used in the

estimation process, which leads to non-existence of solution; usually these issues

are dealt by improving model knowledge.

• Often times, the measurement quantity is not directly the parameter of interest,
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and hence there is an issue of observability, which is the condition of whether

or not states can be estimated from the observation. Less than perfect observ-

ability of data are usually the cause of non-unique solutions. It is also possible

that the observation is not exactly the state of interest, but can be interpreted

by using the dynamics of the system being studied (e.g. using accelerometer

data to estimate position and velocity).

• One of the biggest hurdles to inverse estimation is that the problem is gener-

ally sensitive to small changes and can become divergent and unstable. For

flight data reconstruction, where the process equations are highly non-linear,

ill-conditioning of the data can be very detrimental to the estimation process.

With the above mentioned constraints, it is important to look at two classifications

of the estimation problem. If a quantity of interest is time-invariant or slowly time

varying, the reconstruction is often characterized as a parameter estimation problem.

Eq. 1 is an example of parameter estimation, where the parameter x is being estimated

from the observation y. However, if quantities change significantly with time, one

also has to use a dynamic equation in addition to a measurement equation and such

reconstruction is termed as state estimation problem [54]. The process of conducting

parameter estimation and state estimation is usually different because time-invariance

can be used to make assumptions that can change the estimation process. On the

other hand, state estimation methods can become parameter estimation techniques

by assuming that the dynamic equation is zero [52].

Three parameters of interest to the EDL flight data reconstruction are the vehicle

trajectory, atmospheric properties during the flight, and vehicle aerodynamics. Atmo-

spheric properties and aerodynamic coefficient reconstruction methods are typically

classified within parameter estimation, which involves least-squares and maximum

likelihood type of estimators. Trajectory reconstruction involves dynamical system

and is classified as a state estimation problem, in which typical methods include
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Wiener filter, Kalman filters, and Batch filters [55]. 2 The following sections will give

a brief overview of the reconstruction techniques typically used for Mars EDL flight

data set.

1.2.2 Trajectory Reconstruction

Trajectory reconstruction is usually a requisite that enables scientific investigations

for most instrumented planetary missions. An accurate trajectory reconstruction

in turn aids in atmospheric investigations and maintaining telecommunication links.

Typical EDL reconstruction techniques have consisted of direct integration of the

measurements to produce position and velocity history (deterministic trajectory re-

construction) or have used statistical filters to combine multiple types of data to

reconstruct the trajectory (statistical trajectory reconstruction). The following sec-

tions focuses on trajectory reconstruction techniques for Mars EDL vehicles, while

Ref. [28] can be consulted for detailed descriptions of trajectory reconstructions for

non-Mars EDL vehicles.

1.2.2.1 Deterministic Trajectory Reconstructions of Mars EDL Vehicles

Due to the limited choice of on-board sensors on Mars EDL vehicles, the reconstruc-

tion techniques have been mostly limited to deterministic estimation methods. These

estimation techniques are similar to strap-down reconstruction methods, where the

inertial measurements are integrated using the non-linear equations of motion with-

out considering the measurement uncertainty in the estimation process [38]. Results

from deterministic Mars EDL trajectory reconstructions can be found in the litera-

ture for Viking 1 and 2 [29, 43], Mars Pathfinder [31], Mars Exploration Rovers [34],

and Phoenix [2, 36]. Deterministic trajectory reconstruction has also been used as

the first step for atmospheric reconstruction that relies solely on accelerometer data.

2Note that although state estimation techniques have many more wrinkles than parameter esti-
mation techniques, in the end all of the state estimation filters could be looked-upon as least-squares
or maximum likelihood estimators.
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These techniques are explained in more detail in Section 1.2.3 and Appendix A.

Deterministic reconstructions do not consider measurement and process uncer-

tainties during estimation, and thus are unable to quantify the uncertainty of the

estimated parameters without using external uncertainty quantification techniques,

such as Monte Carlo analysis. Deterministic reconstruction methods are relatively

simple and have a long heritage in the field; however, often the analyst has to make

assumptions about the dynamics, like perfect knowledge of the aerodynamics or ig-

noring the effect of random noise in the accelerometer measurements, which can lead

to filter divergence. A classic situation could be seen in Fig. 8, which shows altitude

reconstruction for Mars Pathfinder based on accelerometer only measurements using

a deterministic filter and then accelerometer measurements blended with radar al-

timeter data using a statistical filter [56]. One can easily see an improvement in the

estimation when the statistical filter is able to use uncertainty statistics of the two

data types to decide what is the best estimate of the altitude.

270 275 280 285 290 295 300
−3

−2

−1

0

1

2

3

Time (sec)

A
lti

tu
de

 (
km

)

 

 

Deterministic − IMU
Statistical − Forward
Statistical − Backward
Radar Altimeter Data

Figure 8: Effect of blending different data types on the estimate of altitude for Mars
Pathfinder.
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1.2.2.2 Statistical Trajectory Reconstructions of Mars EDL Vehicles

A few of the past EDL trajectory reconstruction efforts have utilized statistical es-

timation techniques, where the method of choice has been the simple Kalman Filter

(KF). Kalman filtering was first utilized for Mars EDL reconstruction for Viking 1

and 2 by Euler et al. [30], who integrated the equations of motion using the IMU

data and then used the radar altimeter and terminal landing Doppler data to correct

the estimate of the trajectory. Although the Viking probes sampled the atmosphere

during EDL using pressure probes, Euler’s work did not include the pressure mea-

surements within the trajectory estimation procedure; thus, a statistical estimation

of both the trajectory and the atmosphere was not conducted at that point.

KF was also used for the Mars Pathfinder reconstruction by Spencer et al. [31], who

also used radar altimeter data to correct a nominal trajectory based on the integration

of IMU data. Spencer et al. also utilized a smoothing algorithm to combine the

trajectory reconstruction from forward and backward runs of the data, but used this

procedure with only the translational equations of motion. Since MPF did not have

on-board gyros, angular parameter calculations assumed a priori knowledge of the

vehicle’s aerodynamics.

Extended Kalman Filter (EKF) has also been applied to the Mars Pathfinder [57,

28], MER [58], Phoenix [59], and MSL [60] data sets. Many of these studies used IMU

and radar altimeter data as measurements instead of integrating them directly, and

so measurement noise statistics were used by the reconstruction tool to determine the

best estimate of the state. The work in this thesis is a continuation of those studies.

1.2.3 Atmosphere Reconstruction

Without pressure measurements during EDL, freestream density, and other atmo-

spheric properties have been estimated using the definition of the axial force coeffi-

cient, the reconstructed velocity of the vehicle, and the on-board sensed accelerations
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while assuming perfect knowledge of the aerodynamic coefficients. The pressure pro-

file is then estimated using the hydrostatic equation. Seiff [39, 61] proposed such

deterministic methods as early as the 1960’s. These classical methods are described

in greater detail in Appendix A. Atmospheric reconstructions of Mars missions us-

ing such techniques exist in the literature for the Viking missions [62, 63], Mars

Pathfinder [31, 32, 64], MERs [35], and Phoenix [2, 65].

Withers et. al. [64] notes that the largest source of error in atmospheric reconstruc-

tion using the classical methods has been the uncertainty in the vehicle’s attitude,

which, in turn, affects the estimate of the aerodynamic coefficients used in the re-

construction. Withers presents several ways of estimating the attitude from purely

accelerometer data, but the results show a great sensitivity to the assumptions made.

The problem with such estimation techniques is the confounding between the at-

mospheric and aerodynamic uncertainties. Measurement of the pressure distribution

on the aeroshell provides information to estimate freestream atmospheric conditions

independent of the IMU data and can be used to separate the two sources of un-

certainty. As noted in Table 2, three of the past Mars missions before MSL, the

two Viking missions and Pathfinder, had on-board pressure transducers. Pathfinder

only took measurements after the parachute deployment [32], so that data cannot be

used to reconstruct the atmosphere during the hypersonic EDL phase without addi-

tional approximations, such as those underlying the hydrostatic equation. Viking 1

and 2 [62], on the other hand, did take pressure measurements during the hypersonic

phase of EDL, but the pressure measurements were not directly used in the trajectory

estimation [63, 43].

On the other hand, pressure data have been used with statistical estimators for

non-Mars EDL flight reconstructions. The Shuttle Entry Air Data System (SEADS)

program of the 1980’s used a flush-mounted air data system to estimate the pres-

sure distribution across the Space Shuttle forebody during entry [66, 40, 41, 67, 68].
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MSL’s pressure data system is in large part based on the SEADS concept. The SEADS

project was able reconstruct the freestream conditions during the Shuttle entry suc-

cessfully and verified its results with simulation and wind tunnel data. However, re-

constructions based on SEADS data did not blend the inertial measurements with the

pressure distribution data; instead, an iterative, least-squares filter was used in con-

junction with a database of pressure distributions on the vehicle forebody to inversely

estimate the aerodynamic parameters that could create the pressure measurements at

the transducers [40, 41]. Thus, the potential coupling between trajectory and atmo-

spheric uncertainties were not considered by that analysis. Appendix B summarizes

the algorithms that have been used in the past to reconstruct atmospheric parameters

from FADS data sets.

There are also other measurements and sensors, like radio occultation, mass spec-

trometer, and gas chromatograph, that can improve the estimation of atmospheric

properties besides in-situ FADS data. Ref. [28] provides a list of Earth-based and

in-situ sensors that have been used to obtain atmospheric information for several

planetary bodies. For example, Doppler tracking that records the Doppler shift of

a radio wave from a spacecraft to determine its trajectory has been used in Mars

science applications to determine wind profiles during EDL [69, 70]. Although these

measurement types provide an independent source of atmospheric information, they

have not been utilized in the past during trajectory and atmosphere reconstruction of

EDL vehicles. Often, the uncertainty in the non-FADS and non-IMU measurements

are large and they do not significantly improve the observability of the parameters of

interest.

1.3 Application to Vehicle Design

The previous section discussed how specific reconstruction products, like trajectory,

atmospheric properties, and aerodynamic coefficients, have been estimated from EDL
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vehicle measurements. These products are often valuable since one can use them

to characterize the performance of current spacecraft. For example, the Phoenix

trajectory and atmospheric reconstruction helped explain why the spacecraft landed

relatively far from its expected landing location [2]. At other times, the reconstruction

products are helpful in achieving science goals, such as characterizing the atmosphere

of a planetary body, as was the case with the Viking atmospheric reconstruction [63].

However, very rarely is EDL flight data reconstruction used as feedback to improve

the design tools or engineering analysis methods. Since Mars-like atmosphere is hard

to replicate on Earth, EDL flight data are often the best source of information to

validate, verify, and improve state-of-the-art design tools.

1.3.1 Optimization of Flush Atmospheric Data System Layout

As mentioned earlier in Section 1.1.3, use of FADS sensors for entry applications has

become more prevalent. However, the methods for FADS design and sensor arrange-

ment still remain rudimentary. In spite of observations that different port configu-

rations can vastly affect the effectiveness of the estimation [71], past FADS sensors

have always been placed in symmetrical annular or cruciform patterns based on engi-

neering judgment rather than computationally-based rationale. FADS configurations

are also often designed for fixed points in the trajectory, e.g. the sensor configuration

is designed for Mach 5 and angle of attack of 2 deg., even though variations from the

nominal condition leave these configurations suboptimal for the inverse estimation of

parameters. Bandwidth limits on on-board sensors for planetary entry missions make

it crucial to make FADS configurations as efficient and optimized as possible in order

to capture important pressure measurements under a range of conditions.

A thorough review of literature has shown only one past study that has con-

sidered a computationally-based optimization for FADS sensor placement for EDL
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applications. This study was conducted in the early 1990’s in support of the Pres-

sure Distribution/Air Data System (PD/ADS) experiment that was proposed to be

included in the Aeroassist Flight Experiment (AFE), which was later canceled. Desh-

pande et al. [46] used a gradient-based estimator and a genetic algorithm (GA) to

optimize the distribution of the PD/ADS sensors in order to decrease the effect of

normally distributed random noise of the pressure transducers. The AFE geometry

and one of the optimized, sensor location results by Deshpande et. al. is shown in

Fig. 9.

(a) AFE Geometry [72] (b) PD/ADS location optimization [46]

Figure 9: Aeroassist flight experiment pressure sensor optimization.

Deshpande et al. used modified Newtonian theory for the predicted pressure

model and a non-statistically weighted, batch-type filter to estimate air data param-

eters, such as dynamic pressure, angle of attack, and sideslip angle. The residuals

between the estimated parameters and their known, true values were then used in

a single-objective function for the optimization routines, but the optimization was

only conducted for a fixed trajectory point (one Mach number, one angle of attack,

and one sideslip angle) instead of over a full vehicle trajectory. All of these points

left the optimization results narrowly applicable, since slight off-nominal trajectory

behavior would mean that the sensor ports were in off-optimal positions. A design
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methodology which includes a statistical filter that uses measurement uncertainty

information in the estimation process, a higher-fidelity pressure distribution model,

and optimization at more that one trajectory point can create a sensor configuration

that is more robust to off-nominal EDL trajectories and is more widely applicable.

1.3.2 Engineering Model Improvement for EDL Design

During current EDL vehicle design, large margins are often applied to mitigate design

characteristics that are highly uncertain. As mentioned earlier, aerodynamics and at-

mospheric properties are especially uncertain parameters of the EDL design process.

Evaluation of flight data could improve the predictions of state-of-the-art aerody-

namics and atmospheric parameter prediction tools, allowing for design margins to

be reduced and possibly boosting the performance of EDL vehicles.

Development of the aerodynamic database for a new spacecraft is a crucial process

during vehicle design. Typically, this process involves CFD solutions, wind tunnel and

ballistic range tests, and even Earth-based flight tests [73, 74]. Several examples of

aerodynamic database development for Earth and Mars EDL vehicles can be found

in the literature [9, 13, 17, 44, 75, 76, 77, 78]. However, rarely has actual flight data

from Mars has been used as part of an aerodynamic database update. Considering

the difficulties in simulating Mars-like conditions on Earth and also the constraints of

wind tunnel and Earth-based flight testing, flight data from actual Mars EDL vehicles

would be the best way to verify actual flight performance and improve designs for

future missions. Aerodynamic reconstruction from Viking BLDT program [79], the

Space Shuttle aerodynamic coefficient characterization studies [80], and the recent

development of aerodynamics for the Ares I vehicle [74] elucidates ways in which

such an update to an aerodynamic database could be performed. These Earth-based

tests have advantages over actual Mars EDL flight data, namely an independent and

more accurate characterization of atmospheric properties. In addition, the estimation
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methodology and process these programs used could also be applied to Mars EDL

vehicles.

Atmospheric models used for conceptual design of EDL vehicles are often based

on computationally-fast surrogates of general circulation models. General circula-

tion models solve differential equations that resolve mass, momentum, and energy

transport in an atmosphere similar to how CFD solves for flow along an aerodynamic

surface, but Global Reference Atmospheric Models (GRAM) simulate the results of

the differential equations using parametrization that realistically captures the tem-

perature, pressure, density, and winds of an atmosphere without actually solving

the differential equations. As a consequence, GRAM models are orders of magni-

tude faster than global circulation models [81]. GRAM models are largely based on

surrogate models of the global circulation models, but often adjustments are made

to these parametrization using flight data. Early Mars-GRAM models had modifi-

cations made due to Mariner 9 orbiter and Viking probes data [81, 82] while some

recent Mars-GRAM models have been validated with Mars Global Surveyor, Odyssey,

and Mars Reconnaissance Orbiter data taken during aerobraking operations [24, 83].

However, the information is sparse compared to what is required for a GRAM model

to be solely based on in-situ data, so GRAM models continue to be based on global

circulation models and other physics-based simulations. Reconstruction products

from EDL flight-data, especially using statistical estimation techniques, can provide

GRAM model developers with good estimates of atmospheric properties with associ-

ated estimated uncertainties along an entire vertical profile of the atmosphere. These

data can serve as anchors for GRAM models and improve the accuracy and resolution

of atmospheric prediction tools in the design of future EDL vehicles.
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1.4 Summary of Contributions

From the previous sections, one can note the many uncertainties that exist in the

design process for Mars EDL vehicles. Much of this conservatism can be ameliorated

by mitigating the deficiencies of past flight data reconstruction techniques. This thesis

proposes a methodology that utilizes the sparse, disparate Mars EDL data set to

reconstruct flight characteristics of Mars EDL vehicles, thereby improving upon the

current techniques of uncertainty quantification for EDL trajectory, aerodynamics,

and atmospheric estimation while also advancing EDL vehicle design. This goal is

achieved through the following contributions.

Systematic development of a comprehensive methodology for param-

eter reconstruction and uncertainty quantification that blend dissimilar

EDL data: The work presented in this research shows a methodology to conduct

EDL reconstruction of parameters of interest, such as trajectory, vehicle aerodynamic

coefficients, and atmospheric profiles. The methodology simultaneously utilizes dis-

parate EDL data, such as accelerometer measurements, on-board gyroscopic rates,

radar altimeter data, and pressure measurements from on-board transducers, in the

reconstruction process and uses the uncertainty in the measurements and the ini-

tial conditions to determine the resulting uncertainties of the estimated parameters.

Several statistical estimation algorithms are applied in this methodology. Statistical

estimation techniques evaluated here include the Extended Kalman filter, Unscented

Kalman filter, and Adaptive filter. Additionally, the methodology is augmented to

allow measurement uncertainty quantification by estimating systematic and random

error in the data set. This methodology is demonstrated using simulated data and

the flight data set of the Mars Science Laboratory.

Demonstration of a design methodology for future atmospheric data

systems: A new design algorithm for Mars EDL FADS instrumentation is devel-

oped that leverages the aforementioned reconstruction and uncertainty quantification
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methodology to create guidelines for placement of sensors on EDL vehicles. On-board

pressure measurements provided by FADS improve vehicle attitude and atmospheric

estimation. The resulting designs using the optimization algorithm maximize the ob-

servability of the estimated parameters. The design process is tested for Mars EDL

trajectories and potential sensor requirements for future instrumentation packages

are also developed.

Investigation of the effects of the statistical reconstruction methodol-

ogy on vehicle design through improved engineering models: The products

derived from applying the reconstruction methodology to flight data can be applied

to reduce design conservatism present in EDL conceptual design. The thesis considers

and quantifies the improvement possible from the use of flight data on future EDL

vehicle systems and discusses steps to increase the maturity of current design tools.

Based on analysis of the statistical estimation framework developed in this thesis

flight data needs are identified to reduce current vehicle design margins.

1.5 Outline for the Thesis

The remainder of this thesis proposal is divided into six chapters.

• Chapter II summarizes the estimation techniques that are being proposed to

form a part of a statistical-based estimation methodology for Mars EDL flight

data. The chapter introduces the estimation reconstruction methodology and

lists the associated process and measurement equations needed for EDL recon-

struction. Additionally, the estimation algorithms, taken from existing estima-

tion theory literature, are summarized and the process of dealing with numerical

ill-conditioning and process uncertainties are explained.

• Chapter III demonstrates the statistical-based estimation methodology using

simulated Mars EDL data set. Different Mars EDL trajectories are used to

create a simulated data set and the various estimators are applied to this data.
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Since the truth information is known, the estimators performance is character-

ized relative to the actual states.

• Chapter IV demonstrates the statistical-based estimation method using actual

flight data, specifically the data returned by the Mars Science Laboratory. Al-

though the true performance of the vehicle remains unknown, the estimation

results of the various methods are compared with each other and independent

reconstruction efforts. This situation typifies the most realistic application the

estimation methodology, since tuning of the various estimation techniques have

to be determined a priori.

• Chapter V describes an application of the estimation methodology for vehicle

design, specifically the design of a flush atmospheric data system. The optimal

placement of these sensors has not been extensively explored in the literature

previously and the estimation methodology serves as good optimization tool

to determine the best placement and configuration for these sensors on EDL

spacecraft.

• Chapter VI considers the application of the reconstruction methodology and its

results for the maturation of engineering tools used for EDL conceptual design.

Some specific issues being addressed include how reconstruction of flight data

can be used to reduce EDL system margins and boost performance of future

missions.

• Chapter VII summarizes the contributions by this thesis, discusses guidelines

for what type of estimation algorithm is preferred for Mars EDL reconstruction,

and lists lessons learned and future work.
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CHAPTER II

ESTIMATION METHODOLOGY

The methodology used for reconstructing Mars EDL vehicle flight parameters involves

taking EDL sensor measurements and using an estimation method to reconstruct the

vehicle trajectory, atmospheric profile, and aerodynamic coefficients. The estimator is

guided by the process equations, which describe the system dynamics of the problem,

and the measurement equations of the various data types being used to inversely

estimate the parameters of interest. The process equations are of the form shown in

Eq. 2a, where the function f is a non-linear dynamic equation of the state vector,

x, and in the case of EDL trajectories are the equations of motion described in the

next section (Eq. 3). The state noise (also called the process noise) vector is defined

as w, which is usually assumed to be a time-varying, Gaussian white noise. The

measurement (y) equation (Eq. 2b) also has a nonlinear function of the state vector

(in this case represented by h) and a measurement noise vector (v) that is also a time-

varying, Gaussian white noise. The Gaussian distribution assumption is common to

many types of estimation methods, although there is no requirement for it from the

perspective of estimation and information theory.

ẋ = f (t,x,w (t)) (2a)

y = h (t,x,v (t)) (2b)

The following sections will describe the process equations and measurement equa-

tions needed for EDL parameter reconstruction, leading to the description of the

specific statistical estimators used in this analysis.
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2.1 Process Equations

2.1.1 Trajectory and Atmosphere Dynamical Equations

The estimators need dynamic equations of motion, as seen in Eqs. (3), to propagate

the estimate of the states in time. For entry, descent, and landing applications, the

parameters of interest include the vehicle’s position, velocity, and attitude. The states

can be augmented to include time-varying atmospheric states. An equation of motion

must be presented for every state vector element so that the estimator can use initial

solutions to create a nominal estimate of the state at a given time.

ṙ = V sin γ (3a)

φ̇ =
V cos γ sinψ

r
(3b)

θ̇ =
V cos γ cosψ

r cosφ
(3c)

V̇ =
FT
m
− g sin γ + ω2r cosφ (sin γ cosφ− cos γ sinφ sinψ) (3d)

γ̇ =
1

V

[
FN cos ν

m
− g cos γ +

V 2

r
cos γ + 2ωV cosφ cosψ

+ω2r cosφ (cos γ cosφ+ sin γ sinφ sinψ)
]

(3e)

ψ̇ =
1

V

[
FN sin ν

m cos γ
− V 2

r
cos γ cosψ tanφ+ 2ωV (tan γ cosφ sinψ − sinφ)

− ω2r

cos γ
sinφ cosφ cosψ

]
(3f)

˙p∞ = −ρ∞gV sin γ (3g)

˙ρ∞ = −ρ
2
∞gV sin γ

p∞
(3h)

q̇0

q̇1

q̇2

q̇3


=

1

2



−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0




ωx

ωy

ωz

− 1

r
Rv,b


V cos γ cosψ
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 (3i)

The equations of motions have been adapted from several sources [84, 85, 50].

The states consist of the vehicle’s position, velocity, attitude, freestream pressure
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(p∞), and freesteam density (ρ∞). The position is in terms of planet-centric radius

(r), latitude (φ), and longitude (θ), while the velocity (V ), flight path angle (γ),

and heading angle (ψ) are defined relative to the planet surface and are based on

the vehicle-carried local horizontal frame [84]. The heading angle is defined in the

horizontal plane where due East is 0◦ and due North is 90◦. The attitude states are

given in terms of the quaternion (q0, q1, q2, q3) that defines the orientation between

the vehicle-carried local horizontal frame and the body frame [86, 85].

The intermediate states and parameters needed to define the equations of motion

include the planetary rotation rate (ω) and the rotation matrix (Rv,b), which is solely

a function of the quaternion and defines the rotation from the local horizontal frame

to the body frame [85]. Other intermediate states include the angular rates in the

body frame, ωx, ωy, and ωz, which come from the on-board gyroscopes, while g is

the altitude-dependent gravitational acceleration (assumed here to be based on a

spherical mass distribution). FN and FT represent the normal (lift) and tangential

(drag) forces in the body axis and lift modulation is modeled in the equations using

a bank angle (ν). The dynamical equations for the freestream pressure and density

are derived from the hydrostatic equation and the perfect gas law and the derivation

is described in Refs. [56] and [50]. Eqs. (3g) and (3h) use an isothermal assumption

that is valid over small changes in the altitude. Since the freestream pressure and

density rate equations are used as process equations and are propagated over small

time steps, this assumption is reasonable. Note that the process noise chosen for

the reconstruction process is tuned to compensate for potential issues with these

equations.

The process equations used here are not exactly the same equations in the tra-

jectory program that generates the simulated data which are used to evaluate the

performance of the estimation methodology. Thus, there is a process uncertainty

between how the simulated data are generated and how the estimator predicts the
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values of the states. In a simulation, one can modify the estimator’s process equa-

tions to match the trajectory program’s dynamics, but in the case of real data, the

simulation models are never perfect. Thus, the differences in the dynamics between

the program and this estimation methodology provides a test of the unmodeled un-

certainties expected in the actual data.

2.1.2 Improvement in the Process Equations

Past EDL reconstructions have had process equations similar to the ones shown in

Eqs. (3) [87, 50, 88]. However, a big distinction between those sets of equations and

Eqs. (3) is that the velocity propagation equations are a function of aerodynamic

quantities that are found using the aerodynamic database and the current estimate

of the state vector. Traditionally for EDL reconstruction, the velocity propagation

equations have been a function of the sensed accelerations [50], which made acceler-

ations part of the process rather than measurements used by the estimators. This

distinction is important since for normal Mars EDL data sets, making accelerometers

as part of the process would only leave FADS data and radar data as measurements.

The times when FADS and radar altimeter data are available often do not overlap

during EDL and since statistical filters are discrete-time estimators (i.e. estimated

states are only available at epochs with measurements), the traditional approach

leaves large chunks of times without an actual state estimate.

In the process equations provided here, accelerations are treated as measurements

and since this data are available from entry interface to touchdown there are no

gaps in the state estimate. Additionally, another advantage of these process equa-

tions is that accelerometer data and FADS data are both sensitive to freestream

density, making the atmospheric quantity observable through two independent data

sources. Thus, atmospheric and aerodynamic uncertainties are not confounded in
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regions where both IMU and FADS data are available. Although a simple innova-

tion, this last point makes this statistical estimation methodology an improvement

over other EDL methods in the past. Not only are trajectory and atmospheric states

estimated concurrently by statistical estimators, but one has now two independent

sources of data at the same time to make atmospheric quantities observable.

2.2 Measurement Equations

Measurement equations are used by the statistical estimator to predict the measure-

ment value based on the current estimate of the state. The actual measurements

can then be compared with the predicted measurements, and the state can be ap-

propriately updated. Most of the statistical estimators used in this work are based

on linear filter theory, so the estimator assumes that the measurements are a linear

function of the state vector plus a measurement error (v) as described in Eq. 2b. For

most measurement types, h is a non-linear function of the state vector, but using

a first-order Taylor series expansion, Eq. (2b) can be linearized about a point (the

nominal estimate of the state, x̄) as shown in Eq. (4), where x̃ is the deviation in

state from x.

yi = hi(x̄) + [∂h/∂x]x=x̄ x̃ + vi (4)

A measurement sensitivity (Jacobian) matrix (H), shown in Eq. (5), is defined as

H =


∂h1/∂x

·

∂hn/∂x


x=x̄

(5)

The measurement sensitivity equations have to be developed for every measurement

type included in the estimation process. Christian et al. discusses the development

of the sensitivity matrix for accelerometer and radar altimeter measurements [87].

More detailed expressions for the measurement sensitivity equations pertaining to ac-

celerometer and radar altimeter measurements can be found in the works of Karlgaard
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et al. [50] and Jaswinski et al. [89] The measurement equations of the FADS-type sen-

sors are presented here.

2.2.1 Flush Atmospheric Data System

For pressure port data, a measurement equation has to predict static pressure value

at a specific transducer and the equation is a function of three parameters: total angle

of attack (αt), freestream Mach number (M∞), and the orientation of the transducer

on the aeroshell, which are given in terms clock angle (ζ) and cone angle (η) [56].

The definition of the clock and cone angles with respect to the geometry of an entry

body can be seen in Fig. 10 [90, 91].

ζ 

η 

(a) Orientation angles definition [90]

ζ 

η 

(b) Angle sign convention [91]

Figure 10: Definition of clock and cone angles.

During the hypersonic EDL phase, the velocity of the vehicle is large with respect

to the wind velocity, so the planet-relative velocity can be used to calculate the angle

of attack (α) and angle of sideslip (β) (Eqs. (6)). The two orientation angles can then

be combined into a total angle of attack (also shown in Eqs. (6) - (9)), where u, v,

and w are velocity components in the body axis.

α = tan−1w/u (6)

β = sin−1 v/V (7)

αt = cos−1 (cosα cos β) (8)
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M∞ = V/a = V/
√
kP∞/ρ∞ (9)

Table 3: Cp values for ballistic range model at M∞ = 0.6 and η = 14 deg.

Total angle Clock angle, ζ (deg.)
of attack (deg.) 0 5 10 15 20 25

0 1.096745 1.096747 1.096749 1.09675 1.096752 1.096754
5 1.096761 1.096763 1.096764 1.096766 1.096768 1.096770
10 1.096772 1.096774 1.096776 1.096778 1.096779 1.096781
15 1.096780 1.096781 1.096783 1.096785 1.096786 1.096788
20 1.096783 1.096784 1.096786 1.096788 1.096789 1.096791
25 1.096781 1.096783 1.096784 1.096786 1.096788 1.096789
30 1.096775 1.096777 1.096778 1.096780 1.096782 1.096783
35 1.096765 1.096767 1.096768 1.096770 1.096771 1.096773
40 1.096750 1.096752 1.096753 1.096755 1.096756 1.096758
45 1.096731 1.096733 1.096734 1.096736 1.096737 1.096739

As seen in Eq. (6), the velocity magnitude and the speed of sound (a), which is

a function of the freestream pressure and density that are part of the state vector

and the specific heat ratio (k) of the gas, can be used to calculate the local Mach

number. Since the locations of the pressure measurement orifices are known, the

pressure coefficient (Cp) at each orifice can then be found from tables created from

the vehicle aerodynamic database. A small segment of such a database is shown in

Table 3 [56]. After the pressure coefficient is found, the pressure at each surface

location can be predicted using the vehicle velocity and density.

Besides inertial measurement unit data, atmospheric data system measurements

are the only other on-board EDL sensor that make freestream atmospheric parameters

observable. Using both types of data in a statistical estimator allows one to estimate

independently atmospheric and aerodynamic quantities. Aerodynamic knowledge (in

the form of the Cp distribution) is needed for the initial prediction of the atmo-

spheric data measurement; however, the estimator also considers the uncertainty in

the measurement, uncertainty in the nominal estimate of the atmospheric state, and

the residual between the true and predicted measurement value to create the best
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estimate of the atmospheric parameters. Hence, the uncertainty in the aerodynamic

database does not translate fully into the uncertainty of the atmospheric parameter

estimate. So unlike the classical methods of atmospheric reconstruction using solely

IMU data (see Appendix A), the aerodynamic and atmospheric uncertainties can be

differentiated. It is true that the initial prediction of the measurement, which is based

on an assumed aerodynamic database, still affects the estimate of the atmospheric

states, but uncertainties are not completely confounded as would be the case if only

IMU data were used for the atmospheric reconstruction.

Since the measurement prediction equation (h) for the atmospheric data system

is not analytical, the measurement Jacobian matrix (H) is numerically calculated.

Numerical ill-conditioning can arise based on the step size (δh) used to perturb the

pressure prediction equations. This problem can be alleviated if complex differentia-

tion is used for the Jacobian calculation. Equation 10 shows the definition of complex

differentiation. The process has been shown to have a truncation error of O(δh2) [92].

∂h

∂x
= lim

δh→0

Im [h(x + jδh)]

δh
≈ Im [h(x + jδh)]

δh
(10)

2.3 Aerodynamic Calculations

The aerodynamic coefficients of the vehicle can be reconstructed after trajectory and

atmospheric states have been estimated. As seen in Eq. 11a, aerodynamic force co-

efficients - in this case the axial force coefficient (CA) - can be reconstructed from

the axial acceleration measurements (ax,b) and the estimated freestream density (ρ∞)

and velocity (V∞) values. With the trajectory and atmosphere estimation process

complete, one can also calculate the aerodynamic uncertainty using the known atmo-

spheric uncertainties and measurement uncertainties and hence separately quantify

aerodynamic and atmospheric uncertainties. The uncertainty in the estimate of the

aerodynamic force coefficients (σCA) can be calculated by applying the chain rule to
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Eq. 11a) and using the already calculated uncertainties of the estimator’s state vector

as seen in Eq. 11b.

CA =
2max,b
ρ∞V 2

∞S
(11a)

σCA =
2max,b
ρ∞V 2

∞S

(
σax,b
ax,b
− σV∞
V∞
− σρ∞

ρ∞

)
(11b)

2.4 Statistical Estimators

The Mars EDL data set considered for analysis here consists of accelerometers, rate

gyroscopes, radar altimeters, and port pressure sensors. The estimation method in

Fig. 11 can consist of deterministic or statistical estimators. All of these cases involve

starting the reconstruction process from an initial condition and then propagating

this condition to the time the next measurement is available, where the estimated

states are updated using the measurement value. Three types of statistical esti-

mators have been considered in this methodology: Extended Kalman Filter (EKF),

Unscented Kalman Filter (UKF), and Adaptive filter. EKF has been the standard in

the reconstruction field, whereas UKF has been recently introduced. Adaptive filters

have been used in orbital determination problems and have been shown to be robust

to situations where the a priori knowledge of process and measurement noises are

lacking. The following section describes the algorithm for these three methods.

 

Aerodynamic 

Estimation 

Aerodynamic 

Coefficients 

 

 
 

Estimation 

Method 

Accelerometer 

Radar Altimeter 

Port Pressures 

Trajectory 

Atmosphere 

Angular Rates 

Figure 11: Flow diagram of the overall reconstruction methodology for Mars EDL
flight parameters.
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2.4.1 Extended Kalman Filter

EKF is a well-known modification of the linear Kalman filter and the algorithm is

summarized below [93, 94]:

1. Initialize the state vector and the state covariance matrix at time tk−1 = t0

and let k = 1, where k is an index of the epoch when a measurement is first

available.

2. Read in the measurement at time tk.

3. Calculate a nominal state (x̂−k ) at time tk by integrating the non-linear equations

of motions (Eqs. (3)) with x̂+
k−1 as the initial condition.

4. Calculate the nominal state covariance matrix (P̂−k ) by integrating the Riccati

equations (Eq. (12a)).

5. Calculate the measurement residual vector (yk), the measurement sensitivity

matrix (Hk), and the Kalman gain (Kk) using the nominal state and state

covariance (Eq. (12b)).

6. Calculate the best estimate of the state (x̂+
k ) and state covariance (P̂+

k ) using

Eqs. (12c) and (12d).

7. Increment counter k and go back to step 2 until measurements at all times have

been processed.

Ṗ = AP + PAT +BQBT (12a)

Kk = P̂−k H
T
k

(
HkP̂

−
k H

T
k +Rk

)−1

(12b)

x̂+
k = x̂−k +Kk

(
yk − h(x̂−k

)
) (12c)

P̂+
k = (I −KkHK)P̂−k (I −KkHk)

T +KkRkK
T
k (12d)
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A is the Jacobian of the equations of motion with respect to the state vector (i.e.

∂ẋ/∂x), B is the Jacobian of the equations of state with respect to the state noise (also

called process noise) vector (i.e. ∂ẋ/∂w), and I is the n × n identity matrix, where

is n is the number of states. The measurement covariance matrix (R = E(vvT ))

is defined at time k and information from pre-flight sensor calibration information

is typically used for this matrix. The process noise covariance (Q = E(wwT )) is

typically based on experimentation or pre-flight modeling errors.

For Mars EDL trajectory reconstruction, these two matrices have the largest un-

certainties. EKF assumes a priori knowledge of the R and Q noise matrices; however,

for Mars EDL applications, R matrix is likely to involve IMUs and radar altimeters

with a priori unknown bias, scaling, and random noise, and Q matrix is likely to

include a priori unknown aerodynamic and atmospheric uncertainties. The lack of a

good estimate for these statistics can corrupt the trajectory reconstruction and lead

to filter divergence.

2.4.2 Unscented Kalman Filter

Instead of using a linearized approximation to update the state and covariance ma-

trix, the UKF is based on the idea that a transformation of a probability distribution

can be approximated with multiple direct evaluations of an arbitrary nonlinear func-

tion [95]. Just like the EKF, the UKF assumes that the state variables are Gaussian

distributions in which the state estimates are the means and the state uncertainties

are the standard deviations of the distributions.

The UKF propagates a set of specially chosen state vectors called sigma points to

characterize the transformation of the state probability distribution. The definition

of the sigma points and how they are propagated in time are shown in Eqs. 13 [95, 96],

where n is the number of elements in the state space and λu, αu, βu, and κu are user
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defined tuning constants. κu is 0 or 3− n, u = 2 when x is Gaussian, αu ≈ 1× 10−3,

and λ ≈ α2
u(n+κu)−n [95, 97]. W is the weights for the (2n+1) sigma points and h is

the nonlinear transformation. The superscript “b” indicates the state and covariance

pre-transformation and the superscript “a” indicates values post-transformation.

x(0) = x̄ (13a)

x(i) = x̄ + x̃(i) i = 1, . . . , 2n (13b)

x̃(i) = ((n+ λu)P )Ti i = 1, . . . , n (13c)

x̃(n+i) = − ((n+ λu)P )Ti i = 1, . . . , n (13d)

W (0)
mean =

λu
n+ λu

(13e)

W
(0)
covariance = W (0)

mean + 1− α2
u + βu (13f)

W (i) =
1

2 (n+ λu)
i = 1, . . . , n (13g)

xa(i) = h
(
xb(i)

)
(13h)

x̄a =
2n∑
i=0

W (i)xa(i) (13i)

P a =
2n∑
i=0

W (i)
(
xa(i) − x̄a

) (
xa(i) − x̄a

)T
+Qk−1 (13j)

A new set of sigma points need to be calculated from x̂−k for the measurement

equations. The predicted measurement for each sigma point (ŷ
(i)
k ) and the estimate of

the mean value for the predicted measurement (ŷk) can be calculated using Eqs. 14.

The predicted measurement covariance (Py) and the cross covariance between the

estimated state and measurement (Pxy) are used for the Kalman gain and state update

steps [95, 96, 97].
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Py =
2n∑
i=0

W (i)
(
ŷ

(i)
k − ŷk

)(
ŷ

(i)
k − ŷk

)T
+Rk (14a)

Pxy =
2n∑
i=0

W (i)
(
x̂

(i)
k − x̂k

)(
ŷ

(i)
k − ŷk

)T
+Rk (14b)

Kk = PxyP
−1
y (14c)

x̂+
k = x̂−k +Kk (yk − ŷk) (14d)

P̂+
k = P̂−k −KkPyK

T
k (14e)

Unlike the EKF, UKF does not require the calculation of Jacobians and other

derivative terms that are often computationally difficult and are sources of numerical

ill-conditioning. Additionally, it should be noted that other derivative-free filters,

such as the divided-difference filters, are essentially variants of the UKF with minor

differences in the tuning parameters for selecting the sigma points [98].

For a multidimensional estimation problem, as is the case with EDL reconstruc-

tion, κu can be negative. In these cases, it is possible that the predicted covariance

will not be positive semi-definite. In this case, Ref. [95] recommends a modification

to the predicted measurement covariance equation (Eq. 14a). The modification sim-

ply consists of excluding the first sigma point from the covariance calculation and is

shown in Eq. 15.

Py =
2n∑
i=1

W (i)
(
ŷ

(i)
k − ŷk

)(
ŷ

(i)
k − ŷk

)T
+Rk (15)

2.4.3 Adaptive Filtering

As mentioned earlier, adaptive filtering is used when one does not have a priori

accurate knowledge of the measurement and process noise. Unlike linear, discrete,

stochastic problems where the best linear, minimum variance, unbiased estimate of

the state is given by the Kalman filter, no optimal estimator is known for a case
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when the process noise and measurement noise parameters are unknown [99]. The

approach used in this paper is the covariance matching or noise-adaptive technique

and is summarized in Eqs. (16)-(22) [99, 100].

wj = x̂j − x̄j j = 1, . . . , N (16)

ŵ =
1

N

N∑
j=1

wj (17)

Q̂ =
1

N − 1

N∑
j=1

B

[
(wj − ŵ) (wj − ŵ)T −

(
N − 1

N

)(
P̄ ∗j − P̂j

)]
BT (18)

P̄ ∗j =

∫ tj

tj−1

(
AP + PAT

)
dt (19)

vi = yi − h (x̄i) i = 1, . . . , L (20)

v̂ =
1

L

L∑
i=1

vi (21)

R̂ =
1

L− 1

L∑
i=1

(
(vi − v̂) (vi − v̂)T −

(
L− 1

L

)
HiP̄iH

T
i

)
(22)

Since the exact process and measurement noise are unknown (together with the

true states), empirically derived quantities serve as surrogates to estimate the process

and measurement noise. The empirically derived quantities w and v are approxima-

tions of the actual state noise and measurement noise vectors. Using these quantities,

one can estimate Q and R as shown in Eqs. (16)-(22). Information from the last N

state estimates are used to calculate w, while information from the last L measure-

ment points are used to calculate v.

The values for the various state and covariance updates are found from the EKF.

The state noise vector’s batch size N does not need to be the same as the measurement

noise vector’s batch size L. It should be noted that for at least the first N and L state

an a priori estimate of Q and R is used for the measurement update steps in the EKF.

Thus, the batch sizes are tuning terms that need to be determined empirically: small
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batch sizes would mean that the filter can begin adapting quickly in the reconstruction

process, but a small sample size also means that the estimated statistics, Q and R,

are not representative according to the central limit theorem.

For the specific case of Mars EDL trajectory reconstruction, Q can give infor-

mation about the aerodynamic coefficient uncertainties or the atmospheric property

uncertainties on the day-of-the-flight. The measurement noise uncertainties, R, can

also give valuable information about the sensor calibration.

2.4.4 Statistical Smoothing

The reconstruction can start from the atmospheric entry (forward pass) or a projected

landing location (backwards pass). The forward pass starts its estimate from an initial

state and covariance that is found independent of the trajectory reconstruction process

and the reconstruction is conducted in a chronological manner. The backwards pass

has the advantage of starting at a smaller uncertainty value as it begins from the end

of the forward estimate. The forward and backward pass estimates (denoted by the

subscripts f and b respectively) can be combined using the Fraser-Potter smoothing

solution [101], which is shown in Eqs. 23. It is advantageous to combine both the

forward and backward estimates in finding an optimal estimate of the trajectory [50].

The forward pass estimate at time k uses the measurement data from entry to k, while

the backward pass estimate at k uses the measurement data from landing time to k.

The combined smoothed estimate at time k will then use measurement data at all

times to create the estimate at k and is similar to a batch least-squares solution [102].

P̂k =
[
P̂−1
f,k + P̂−1

b,k

]−1

(23a)

x̂k = P̂k

[
P̂−1
f,k x̂f,k + P̂−1

b,k x̂b,k

]−1

(23b)
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2.4.5 Filter Tuning

The choice of the process and measurement noise statistics can have a significant

effect on the performance of the statistical filter [103]. Tuning of filters is typically

used to deal with ill-conditioning in the problem and is equivalent to regularization

techniques in parameter estimation where a penalty function is added to improve the

conditioning of the problem [53]. The selection process of the parameters is commonly

known in the literature as filter tuning and it usually consists of a trial-and-error

method of changing process and measurement noise statistics until a desirable result

is met. The trial-and-error process is time consuming, relies on engineering judgment

of the filter designer rather than some physical value, and is often non-unique. The

designer could use statistical sample consistency checks to ensure that the filter is

consistent. This involves three criteria [104]:

1. State errors should be unbiased (E[x̃] = 0) and their covariance should be

compatible with the state covariance (P )

2. The measurement residual (or innovation) should also be unbiased and be com-

patible with the measurement covariance (R)

3. The measurement residual should be random, white noise (i.e. uncorrelated in

time)

For every filter used in this methodology, checks were made to ensure that the

state residuals being calculated did not have a bias and that the estimated state

covariance bounded the residuals. Similar checks were made for the measurement

residuals as well. Additionally, it was ensured that the measurement noise residuals

had a Gaussian distribution, which was the distribution that was assumed implicitly

by all three filters.

However, the theory behind the Kalman filter only assures us that the above

consistency checks will be true for linear problems [105]; there are no assurances
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that the state covariance will represent the actual state error statistics for non-linear

problems. Conversely, using consistency checks to design a filter does not guarantee

a minimum state estimation error, which is the goal of the state estimation procedure

in the first place [106].

Filter tuning can also be recast as a minimization problem [55, 106]. The objective

function is to minimize state deviation error over time and the parameters of the

optimization process are the process and measurement noise statistics. The process

noise statistic consists of the contents of the process noise covariance (Q) and the

measurement noise statistic similarly consists of the contents of the measurement noise

covariance (R). Often the measurement noise can be calculated during sensor testing

and calibration, so R is known and can be excluded from the filter tuning problem.

Additionally, the usually unknown process noise covariance is a symmetric matrix, so

if there are n states and Q is n× n, then there are only n(n+ 1)/2 unique elements

in the Q matrix. Since the off-diagonal elements of the matrix are cross correlations

that are difficult to interpret physically, the minimization parameters can be reduced

to only the n elements in the diagonal of the Q matrix (i.e. q1,1, q2,2, . . . , qn,n) [106].

Powell [106] and Oshman [107] suggest a minimization problem for filter tuning

where the objective is to optimize the deviation of the state estimate from known

truth values. Equation 24 shows the objective function (J) as function of process noise

covariance elements, error between the true and estimated states (e), and the number

of measurement points (G) at which times the filter estimates a state. Non-dominated

Sorting Genetic Algorithm-II [108] (NSGA-II) is used as the optimization routine,

since the filter tuning process is inherently non-unique and multi-modal, which a

stochastic search algorithm like NSGA-II can handle very well. The optimization

routine is defined in more detail in Section 5.1.2.

J (q1,1, q2,2, . . . , qn,n) =

[
1

G

tfinal∑
ti=t0

eTi ei

] 1
2

(24)
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When true states are not known, filter tuning can be performed on simulated

data similar to the true states and then the tuned parameters can be applied to the

unknown truth case. Additionally, the RMS of the measurement residuals can serve

as a surrogate for e in Eq. 24 [106]. Part of this thesis work is to demonstrate the EDL

reconstruction methodology on actual flight data from the Mars Science Laboratory,

in which case the true states are unknown. Thus, the effect of filter tuning based on

simulated data or the measurement residual approach can be demonstrated during

the reconstruction of that data set.

2.5 Summary

Typical atmospheric entry data set are sparse and often leave parameters of interest

directly unobservable. This chapter presents an estimation methodology that can

directly reconstruct EDL trajectory and atmospheric parameters and also estimate

aerodynamic quantities using the reconstruction products while processing a realistic

set of disparate data typically measured by EDL missions. The three main parts of

the methodology presented are the process equations, measurements equations, and

filter algorithms.

The process equations give a nominal estimate of the dynamics of the system

and the specific equations presented here captured changes in the vehicle’s position,

velocity, attitude, and sensed atmospheric parameters. The equations are unique from

past EDL reconstruction methodologies since the velocity propagation equations are a

function of aerodynamic coefficients instead of measured accelerations, allowing IMU

data to be treated as measurements in the estimation methodology and providing

two independent observations of atmospheric density when IMU data are combined

with FADS data.

The measurement equations provide nominal estimates of the sensor data and

are critical for the estimator to translate information gained from measurements to
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update the state estimate. The FADS data measurement equation is presented and

the process of using trajectory and atmospheric estimates for aerodynamic estimates

is also studied.

Finally, the algorithm for the three statistical filters - EKF, UKF, and Adaptive

filter - are presented and the nuances between each estimator in terms of state un-

certainty propagation and process noise handling were explained. The EKF is the

standard non-linear filter popular in EDL and other state estimation fields, but UKF

and Adaptive filter are believed to be more adept at handling non-linearity in the sys-

tem dynamics, which is the point of concern for Mars EDL applications where there

are large non-linear uncertainties introduced by the atmosphere and aerodynamics.

Additionally, methods of combining different estimates using statistical smoothing or

methods of characterizing process noise for the EKF using filter tuning are discussed.

The methodology developed in this chapter is tested in the next two chapters using

simulated data set where the truth is known and flight data set. The methodology

also serves as the tool for improved methods in sensor and vehicle design covered in

later chapters.
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CHAPTER III

SIMULATED DATA RECONSTRUCTION

The estimation methodology for EDL trajectory, atmosphere, and aerodynamic pa-

rameters described in the last section is demonstrated using simulated Mars EDL

data sets in this section. Each estimation method is tested with simulated data set

and the performance of the estimators is quantified by looking at the difference be-

tween the estimated quantities and the known, true states. In the next chapter, the

estimation methodology will also be applied to an actual flight data set - Mars Sci-

ence Laboratory - and the reconstruction between the different estimators will be

compared.

The organization of this chapter is as follows. The simulated data set used to test

the estimation methodology is introduced in Sec. 3.1 along with the initial state and

process noise information. Next, Secs. 3.2 and 3.3 focus on the estimation performance

of the EKF, UKF, and Adaptive filter with the simulated nominal and perturbed

data set. Finally, the reconstruction performance of all three filters in the estimation

performance are compared in Sec. 3.4.

3.1 Simulated Data Set

3.1.1 True Trajectory

Mars EDL data sets are simulated in this study to demonstrate the effectiveness

of a statistical reconstruction methodology that incorporates disparate data types

and estimates trajectory, atmospheric parameters, and aerodynamic coefficients. The

NASA-developed Program to Optimize Simulated Trajectories II (POST2) [109] is

used to generate two Mars EDL trajectories which are shown in Figs. 12 and 13.

The trajectory is for a 2.65 m, 70 deg. sphere-cone with the same geometry and
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specifications as the Mars Exploration Rovers (MER) and Phoenix entry vehicles.

Two types of trajectories were simulated to test the estimation methodology. One is

a nominal EDL trajectory while the other is a dispersed case of the nominal trajectory

with perturbations to the vehicle’s aerodynamic database, planetary atmosphere, and

winds. These trajectories represent the truth data.

3.1.2 Sensor Measurements

The POST2 outputs are used to generate IMU (accelerometer and gyro rates), radar

altimeter (when the altitude is less than 10 km), and pressure transducer data (when

the dynamic pressure, q∞, is greater than 850 Pa.). Random Gaussian noise is applied

to the simulated data to model measurement noise and create a data set for analysis

(see Fig. 14). The uncertainty of the noise is based on past Mars EDL instrumentation

specifications as shown in Table 4.

Table 4: Measurement noise uncertainties for the simulated data set.
Measurement 3σ uncertainty (normal) Sample rate (Hz.)

Three-axis sensed acceleration 100 µg-RMSa 25
Three-axis angular rate 0.03 deg/hour-RMSb -
Radar altimeter altitude 0.3 ma 1

Pressure transducers 1% reading/transducerc 4

Notes: a [57] b [36] c [37]

The data sample rate used for reconstruction was chosen after a sensitivity study

of the root-mean-square (RMS) of the error in the estimate of some parameters of

interest, which are shown in Fig. 15. Although both the IMU and FADS data were

available at higher sample rates, it was found that the error does not decrease signif-

icantly if the sample rate is increased from 25 Hz for the IMU data and 4 Hz for the

FADS data.
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Figure 12: Reference trajectories used as the truth to verify reconstruction perfor-
mance of this methodology.

3.1.3 Initial States and Process Noise Uncertainties

The reconstruction process for both data sets begins with the same initial conditions

and initial covariance values. The initial uncertainties in the state variables are listed

in Table 5 and are based on the initial conditions at entry interface from recent Mars
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Figure 13: Reference aerodynamic coefficients used as the truth to verify reconstruc-
tion performance of this methodology.

missions. The initial state covariance matrix is calculated from these values.

The process noise covariance is calculated using the uncertainty information given

in Table 6. Process noise improves the estimator’s ability to reconstruct parameters

from noisy data and to model uncertainties in the process equations [89, 93, 94,

96]. Kinematic equations that describe the propagation of the position states are

well-known and hence there is no process noise modeled for these equations. The

velocity equations of motion, however, have uncertainties from the aerodynamics,

atmospheric parameters, and other unknown model errors and hence have process

noise states associated with them. The attitude states also have uncertainty, but

since the equations are strongly related to the measured gyroscope rates, the process

noise for the quaternion propagation equations are the same as the measurement

noise of the angular rate sensors. The high process noises for freestream pressure and

density demonstrate the relatively high uncertainty in the process equations so that

the estimator is biased towards the more certain measurements from the accelerometer

and FADS transducers.

The process noise uncertainties are tuning parameters for a filter and in this

case the values were chosen using methods described in Sec. 2.4.5 to tune the EKF

reconstruction using the nominal data set. The process noise could have been varied
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Figure 14: Example of the simulated data used for the reconstruction.

for the UKF reconstructions and the dispersed data set reconstructions; however, the

noise was kept constant for all of the reconstructions to test the robustness of the

methodology. When an actual flight data set is analyzed, the truth information will

be unknown; in that case, the tuned parameters from the simulated data set should
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Figure 15: Effect of sample rate of IMU and FADS data on the estimated parameter
residual from the truth.

Table 5: Initial state uncertainties used for the reconstruction process.

State 3σ uncertainty (normal)
Radius (planet-centric) [57] 5100 m

Latitude (planet-centric) [57] 0.12 deg.
Longitude [57] 0.03 deg.

Velocity (relative) [36] 2.9 m/s
Flight path angle (relative) [57] 0.06 deg.

Heading angle (relative) [57] 0.06 deg.
Euler angles (related to the quaternion) 0.03 deg./angle

Freestream pressure 10p∞,0
Freestream density 10ρ∞,0

Table 6: Process noise uncertainties used for the reconstruction process.

State 3σ uncertainty (normal)
Radius (planet-centric) -

Latitude (planet-centric) -
Longitude -

Velocity (relative) 0.003 m/s
Flight path angle (relative) 0.0825 deg.

Heading angle (relative) 0.0825 deg.
Quaternion Based on angular rate measurement noise

Freestream pressure 0.3p∞
Freestream density 0.3ρ∞

be used to define the filter tuning parameters.
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3.2 Nominal Data Set Reconstruction

3.2.1 EKF and UKF

3.2.1.1 Trajectory and Atmospheric Reconstruction

Trajectory parameters, such as planet-centric radius and planet-relative velocity, are

the first step in the reconstruction process. The percent deviation from the truth for

the trajectory parameters can be seen in Fig. 16. Both the EKF and the UKF do a

good job of estimating the radius (within 0.2%) and the velocity, although the UKF

estimate’s residual magnitude is lower than the EKF estimate’s residual. Note that

the radius and its uncertainty estimation improve significantly with the introduction

of radar altimeter measurement around 220 seconds.
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(d) Velocity (UKF)

Figure 16: Nominal simulated data set trajectory estimation using EKF and UKF.

The trajectory and atmospheric parameters in the estimation state vector are
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used to generate estimates for the angle of attack, sideslip angle, Mach number, and

dynamic pressure, which are shown in Fig. 17.

Recall from Sec. 1.1.3 that MSL had some defined objectives for the estimation of

angle of attack, sideslip angle, and dynamic pressure (and initially for Mach number).

For the most part, it appears that the trajectory and atmospheric parameters are

reconstructed close to the MSL objectives, especially in the region where FADS data

are available. The Mach number estimate does stray from the original objective

bounds for both the EKF and UKF, but the UKF estimate’s residual is lower than

the EKF estimate’s residual during the time FADS data are available. The original

science goals were to reconstruct M∞ within ±0.1 of the truth, while the science goals

for the other parameters were less stringent (e.g. α and β reconstruction goal is to

estimate within ±0.5 deg.). The Mach number value is dependent on the calculated

speed of sound, which in turn relies on the estimated freestream pressure and density.

These parameters are estimated using the FADS data that peak around the time

period (Fig. 14(d)) when the Mach number is outside the objective bounds. The

FADS data have simulated noises that are percentage of the nominal measurement

and the data are noisiest in this region. This non-linearity manifests itself in the

reconstructed freestream atmospheric parameters, speed of sound, and Mach number.

The estimated uncertainties presented are the 99.7% (3σ) confidence interval since

the states are assumed to be Gaussian distributions and the residual between the

estimated states and the truth fall within these confidence bands. Due to a lack of

the true uncertainty values, it is hard to determine if the UKF provides a better

estimate of uncertainties than the EKF, as predicted in the literature.

Quantifying uncertainties of the POST2 simulated data set using techniques such

as Monte Carlo analysis and linear covariance analysis may be a possible solution

to quantify the true uncertainty values; however, Monte Carlo analysis would only

capture initial state uncertainty and process noise (i.e. atmospheric and aerodynamic
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(a) Angle of attack (EKF)

0 100 200 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Time (sec)

R
es

id
ua

l m
ag

ni
tu

de
 (

de
g.

)

(b) Angle of attack (UKF)
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(c) Sideslip angle (EKF)

0 100 200 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Time (sec)

R
es

id
ua

l m
ag

ni
tu

de
 (

de
g.

)

(d) Sideslip angle (UKF)
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(e) Mach number (EKF)
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(g) Dyn. pressure (EKF)
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Figure 17: EKF and UKF estimate of the angle of attack, sideslip angle, Mach
number, and dynamic pressure using the nominal simulated data set.
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(b) Velocity

0 50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

10
5

Time (sec)

F
re

es
tr

ea
m

 P
re

ss
ur

e 
re

sd
iu

al
 m

ag
ni

tu
de

 (
%

)

 

 

EKF: Residual
EKF: Uncertainty
UKF: Residual
UKF: Uncertainty

(c) Freestream pressure

Figure 18: Comparison of measurement residuals between EKF and UKF using the
nominal simulated data set.

uncertainties) and fail to capture the uncertainty in the measurements themselves or

the phenomenon of the filter improving its state estimate with every measurement

that becomes available. Thus, the Monte Carlo or linear covariance analysis-based

uncertainties will be different from the estimated uncertainties from the filter. In-

stead of comparing estimated and true uncertainties, a more appropriate check for

the filter performance is comparing the residuals during measurement update (i.e.

Eq. (12c) and not residual from the true states) and the estimated uncertainties. If

the residuals lie within the bounds of the uncertainties then the filters are consis-

tent [104]. Additionally, lower residuals would support the hypothesis that a filter is

performing well. Figure 18 shows the measurement residuals of the radius, velocity,

and freestream pressure for the EKF and UKF using the nominal data set. One sees

that both filters are consistent, but the UKF slightly outperforms the EFK both in

the lower residual values and tighter confidence bounds.

3.2.1.2 Aerodynamic Coefficients Reconstruction

Figure 19 shows the reconstructed aerodynamic force coefficients for the time span

that FADS data were simulated since the freestream pressure and density are ob-

servable without any assumptions about the atmosphere for only this time period.

The reconstructed axial force coefficient appears to be very close to the truth, as the
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coefficient’s deviation for both the EKF and UKF estimates mostly lie within ±0.02

during the time period of interest. However, the true normal force coefficient (CN)

has a very small value (Fig. 13(a)), which raises a numerical issue as neither method

estimates CN to the same percentage accuracy as they estimate the axial force coeffi-

cient (CA). Although the residuals for CA and CN are of the same order of magnitude,

the residual for CN is only one order of magnitude lower than its nominal value. The

estimates for CA and CN are both accurate demonstrated by their low residuals, but

the CA estimate is better when considering the relative percentage accuracy.
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(a) Axial force coeff. (EKF)
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(b) Axial force coeff. (UKF)
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(c) Normal force coeff. (EKF)
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(d) Normal force coeff. (UKF)

Figure 19: EKF and UKF aerodynamic coefficient estimation using the nominal sim-
ulated data set.

The 3σ bounds show that the CA and CN uncertainty estimates are approximately

1 and 1×10−2. For nominal CA values of about 1, an error band of 1 may be adequate,
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but for nominal CN values that are of the order 1× 10−3, an error band of 1× 10−2

is large.

3.2.2 Adaptive Filter

3.2.2.1 Tuning of the Adaptive Filter

Most statistical filters have tuning parameters that have to be determined by the

analyst to ensure that the filter maintains consistency and does not diverge. For

EKFs, the tuning parameters are usually process noise, which the analyst determines

experimentally or by using an optimization procedure [106]. An Adaptive filter with

the covariance matching technique takes this subjectivity out of the equation by using

the state and measurement residual statistics to calculate process or measurement

noise and thus ensure consistency. However, since sample statistics are substituted

for true (but unknown) statistics of the problem, there is still some subjectivity left

in the choice of the sample size used for the noise covariance calculation. Too large

of a sample size will ignore sudden changes in the process dynamics, while too small

of a sample size will not be consistent with the central limit theorem and produce

oscillatory results. This is similar to the situation of using a moving average filter

with a variable sample window.

Myers [99] recommends using a fading memory weighting factor to emphasize

recent samples in the statistical calculation. However, this introduces another sub-

jective tuning parameter for the analyst to choose. Experimentally this filter has been

found to be useful for situations when there is a sudden shift in dynamics, such as a

vehicle maneuver. For the simulated EDL data set used for this study, there are no

such sudden maneuvers; thus, the fading memory filter was not utilized.

In this investigation, the batch sample size, N , is the only tuning parameter and

it is found experimentally, as seen in Fig. 20. The filter was run for several N -values,

and it was found that N = 10 provides uncertainty values indistinguishable from

uncertainties calculated with larger N -values. Note that for a sample size of N = 5,
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(c) Velocity

Figure 20: Effect of the Adaptive filter batch size on uncertainty calculation.

the uncertainty values could become very oscillatory for certain states like altitude,

especially during the terminal descent region where a highly certain altimeter data

and relatively less certain accelerometer data are available. With a small sample size,

the uncertainty oscillates between the altitude estimate from these two data sources.

3.2.2.2 Sensitivity of Adaptive Measurement Noise Calculation

The Adaptive filter equations introduced in Chapter 2 showed how to adapt both

process and measurement noise covariances. However, past Mars EDL reconstruction

investigations have noticed that process noise uncertainty is the major contributor

for an estimator’s performance [110]. This can be observed in Figs. 21 where one sees
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that process noise adaptation is the main factor in improving the estimator’s perfor-

mance. The use of measurement noise adaptation does not improve the estimation

performance significantly at all. Hence, for simplicity, in this study only the process

noise is computed by the Adaptive filter, while the measurement noise is assumed to

be known a priori based on pre-flight sensor calibration information.
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Figure 21: Effect of calculating the measurement noise covariance adaptively for a
simulated Mars EDL data set.

3.2.2.3 Trajectory Reconstruction

As discussed in Chapter 2, the Adaptive filter is an adaptation to the EKF, where

most of the EKF equations are used for state propagation and measurement update,

but the calculations of the noise matrices are done by the filter directly rather than

the use of a priori -determined values. The Adaptive filter is used to reconstruct the
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nominal data set and Figs. 22 and 23 compares the reconstructed trajectory using

the Adaptive filtering technique to the actual data. One can see that there is a

close agreement between the estimated and actual quantities. The maximum error

in altitude is approximately 150 m and the maximum velocity error is about 0.5

m/s throughout an EDL sequence that lasts around 275 seconds. The effect of the

relatively low uncertainty radar altimeter data is clearly visible in the altitude plots

where the residual of the error reduces significantly when that data are introduced.

This is very similar to actual Mars EDL cases when radar altimeter data available

during terminal landing greatly reduce the altitude error relative to that derived from

accelerometer only data [87, 56].
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Figure 22: Estimated position using Adaptive filter (N = 10) and the nominal simu-
lated data set.

3.2.2.4 Atmosphere, Aerodynamics, and other Derived Quantities

Since the state vector also included atmospheric states, atmospheric parameters of

interest are directly estimated by the filter. Additionally, derived states, such as angle

of attack, sideslip angle, and dynamic pressure can be calculated using a combination

of the estimated state vector. These reconstructed states are shown in Figs. 24 and 25.

Figs. 24 and 25 have labels identifying the region when pressure transducer mea-

surements were available. FADS sensors, which measure the pressure distribution
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Figure 23: Estimated velocity using Adaptive filter (N = 10) and the nominal simu-
lated data set.
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Figure 24: Estimated atmospheric density using Adaptive filter (N = 10) and the
nominal simulated data set.

on the aeroshell during entry, allow the estimation of density and pressure without

relying solely on accelerometer data. This additional source of information improves

the estimation of quantities like angle of attack and dynamic pressure.

Figure 26 shows the estimated axial force coefficient compared to the actual aero-

dynamic coefficient value. One can see that introduction of FADS data immediately

improves the estimation accuracy.
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Figure 25: Derived quantities using Adaptive filter (N = 10) estimation results and
the nominal simulated data set.
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Figure 26: Derived aerodynamic parameter using Adaptive filter (N = 10) estimation
results and the nominal simulated data set.

3.3 Dispersed Data Set Reconstruction

3.3.1 EKF and UKF

3.3.1.1 Trajectory and Atmospheric Reconstruction

The percent deviation from the truth for the trajectory parameters can be seen in

Fig. 27. Once again, both the EKF and the UKF estimate the radius and the velocity

accurately, although the UKF estimate’s residual magnitude is lower than the EKF

estimate’s residual for radius and velocity.

The estimates of the derived parameters, specifically angle of attack, sideslip angle,

Mach number, and dynamic pressure, using the dispersed simulated data set are

shown in Fig. 28.

Compared to the reconstructed parameters from the nominal data set, the devia-

tions of the estimates from the truth appear to be larger and noisier, which could be

reflecting the perturbations in aerodynamics and atmosphere modeled in this trajec-

tory or that the process noise is not tuned for this data set. Once again, the estimated

angle of attack, sideslip angle and dynamic pressure meet the MSL science objectives

for the most part, while the estimated Mach number (Figs. 28(e) and 28(f)) strays

from the original MSL objective. The rationale for this deviation is similar to what
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Figure 27: EKF and UKF trajectory estimation using the dispersed simulated data
set.

was previously stated in Sec. 3.2. Note that in this case even the true Mach number

profile shows significant variation in this region (Fig. 12(b)). This highly non-linear

behavior affects the estimation performance of this parameter.

3.3.1.2 Aerodynamic Coefficients Reconstruction

The reconstructed aerodynamic force coefficients for the dispersed data set are shown

in Fig 29. The small values for the normal coefficient again raise the same numerical

issues previously discussed.
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Figure 28: EKF and UKF estimate of the angle of attack, sideslip angle, Mach
number, and dynamic pressure using the dispersed simulated data set.
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Figure 29: EKF and UKF aerodynamic coefficient estimation using the dispersed
simulated data.

3.3.2 Adaptive Filter

3.3.2.1 Trajectory Reconstruction

Figures 30 and 31 show the reconstructed trajectory for the dispersed data set us-

ing the Adaptive filtering technique. Once again, one can see that there is a close

agreement between the estimated and actual quantities and the effect of the rela-

tively low uncertainty radar altimeter data is again easily visible in the altitude plots.

Upon comparing the estimated altitude and velocity uncertainty between the nom-

inal (Figs. 22 and 23) and dispersed cases, one sees that the dispersed cases have

larger uncertainties. This trend is similar to what was seen between the nominal and

dispersed data set reconstruction using the EKF and UKF. The larger uncertainties
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Figure 30: Estimated position using Adaptive filter (N = 10) and the dispersed
simulated data set.
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Figure 31: Estimated velocity using Adaptive filter (N = 10) and the dispersed
simulated data set.

can be attributed to the atmospheric and aerodynamic perturbations in the data set.

3.3.2.2 Atmosphere, Aerodynamics, and other Derived Quantities

The reconstructed freestream density for the dispersed data is shown in Fig. 32, and

the derived angle of attack, sideslip angle, and dynamic pressure histories are shown

in Fig. 33. The region where FADS data was used can be easily inferred from the

graphs of the residual of the reconstruction, since there is a sharp drop-off in the

reconstructed residual and uncertainties. Once again, this is consistent with the

reconstruction behavior seen with the EKF and UKF albeit with the Adaptive filter
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Figure 32: Estimated atmospheric density using Adaptive filter (N = 10) and the
dispersed simulated data set.

reconstruction yielding smaller uncertainty values in general.

Finally, the estimated axial force coefficient reconstruction is seen in Fig. 34.

Similar to the case for the reconstruction results of the nominal data set, the ax-

ial coefficient residual is small but the uncertainties are rather large except in the

region where both FADS and IMU data were available. This underscores the impor-

tance of blending these two different measurements and emphasizes the gain in model

uncertainty quantification by using such techniques.
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(d) Error in sideslip angle
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Figure 33: Derived quantities using Adaptive filter (N = 10) estimation results and
the dispersed simulated data set.
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Figure 34: Derived aerodynamic parameter using Adaptive filter (N = 10) estimation
results and the dispersed simulated data set.

3.4 Comparison of Estimation Performance

3.4.1 State Estimation Results

Tables 7 and 8 shows a comparison of the state estimation results between EKF,

UKF, and the Adaptive filter using the simulated data set. The table shows the

root-mean-square error from a sample of trajectory, atmospheric, and aerodynamic

quantities that were estimated by all three filters.

Table 7: Comparison of RMS error in estimates for EKF, UKF, and Adaptive filter
for the nominal simulated data set.

State Adaptive EKF UKF
Radius (m) 297.4 3558 1553
Density (% actual)a,b 1.121 6.244 2.116
Angle of attack (deg.)a 0.082 0.192 0.145
Sideslip angle (deg.)a 0.112 0.211 0.140
Dyn. press. (% max)a,c 0.081 0.670 0.283
Axial force coefficienta 0.005 0.017 0.006
aRMS of the residual where FADS data are available.
bNormalized by actual density
cNormalized by max. pressure

The benefit of using Adaptive filtering is apparent when its estimation results are
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Table 8: Comparison of RMS error in estimates for EKF, UKF, and Adaptive filter
for the dispersed simulated data set.

State Adaptive EKF UKF
Radius (m) 509.3 4550 1193
Density (% actual)a,b 2.301 10.90 3.675
Angle of attack (deg.)a 0.120 0.570 0.334
Sideslip angle (deg.)a 0.218 0.506 0.242
Dyn. press. (% max)a,c 0.205 0.784 0.463
Axial force coefficienta 0.014 0.022 0.018
aRMS of the residual where FADS data are available.
bNormalized by actual density
cNormalized by max. pressure

compared with results from other statistical filters with more empirically-driven pro-

cess noise. The Adaptive filter shows an order of magnitude improvement in estima-

tion capability for almost all estimated states. The improvement is more discernible

when one considers the estimation performance for atmospheric and aerodynamic

quantities when both IMU and FADS data were available. These quantities usually

have large uncertainties associated with them for Mars EDL and the Adaptive filter

shows that it can estimate these states with high accuracy albeit in a simulated set-

ting. After the Adaptive filter, the UKF has the next smallest residual although the

EKF residual is not that far off from the UKF residuals for some parameters.

Looking only at the state estimation results, if the truth information for the

states were not known, it seems that either Adaptive filter or UKF is acceptable

for reconstruction. Both outperform the EKF for the most part and additionally the

EKF will be expected to have divergence issues if the reconstruction is conducted over

a long time period due to non-linearity errors and higher order terms accumulating.

However, both the Adaptive filter and the UKF are computationally intensive. The

Adaptive filter requires the computational overhead of tracking the last N or L state

error values to compute the noise matrices at any given time. The UKF requires

2n+1 sigma points be propagated in time instead of just the propagation of the state
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vector in the EKF. Of course, if the filters are used on data off-line from the actual

event, which is the case for the off-line reconstruction of EDL performance, then the

computational issues are negligible.

3.4.2 Uncertainty Estimation Results

However, the biggest improvement shown by the Adaptive filter is in the uncertainty

estimation of these parameters as seen in Figs. 35. Looking at the radius and velocity

3σ uncertainty bounds, the Adaptive filter uncertainty estimates are lot tighter that

the EKF and UKF estimated ones. Unfortunately, there are no true uncertainty

bounds to compare these estimates to, as was the case for the state estimates, but

one can interpret from the results that the tighter confidence bounds are an indication

of greater precision in the estimate of the Adaptive filter.

More importantly, since the Adaptive filter formulation used in this investigation

computed process noise, one can also look at some model error terms such as at-

mospheric and aerodynamic uncertainties. Figs. 35(c) and 35(d) show the estimated

uncertainties in the freestream density and axial force coefficient. Both types of esti-

mated uncertainties are shown for the region where both IMU and FADS data were

available and the Adaptive filter estimate for both types of states are tightly bound

in this region, especially when compared to the results of other statistical filters. For

comparison, Fig. 35(d) also shows what the predicted uncertainty in the axial force

coefficient would be from the aerodynamic database (as summarized in Table 1). The

Adaptive filter estimate is very close to the predicted uncertainties and the tight con-

fidence bounds raises hope that reconstruction of actual flight data using Adaptive

filters will give realistic confidence bounds for estimated force coefficient and possibly

allow for the maturation of current aerodynamic error models. One can similarly im-

prove atmospheric models (such as those shown earlier in Figs. 6(a)) using Adaptive

filter estimate of atmospheric properties.
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Figure 35: State uncertainty quantification comparison between EKF, UKF, and
Adaptive filter using the nominal simulated data set.

The vast difference in state and uncertainty estimation capabilities of the Adaptive

filter and the more traditional EKF and UKF is in the computation of process noise

on-line. For example, Fig. 36 shows the process noise of velocity for all three filter.

The process noise used for the EKF and UKF to have non-divergent solutions was

chosen to be uniform using auto-tuning techniques found in Ref. [106]. On the other

hand, the adaptively calculated process noise varied over time and allowed the filter

to have the appropriate level of noise necessary to maintain consistency and accuracy

in the state estimation without significantly increasing the state uncertainty. The

result is a more accurate state estimation with tighter confidence bounds.
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Figure 36: Process noise comparison for velocity between EKF, UKF, and Adaptive
filter using the nominal simulated data set.

3.4.3 Computational Effort Comparisons

The prior sections compare the reconstruction performance of the three filters. A

similar assessment can be made for the computation effort required by each filter.

EKF propagates the best state and covariance estimate from one measurement

point to the next and requires the calculation of Jacobian matrices. For the process

equations used in this problem, these Jacobians were calculated analytically for the

most part and hence the normally computationally expensive calculation of Jacobians

using numerical methods was mostly avoided. So the reconstruction of a 200-400 s

Mars EDL trajectory using EKF took of the order of 5 minutes using a 3.4 GHz Intel

i7 processor. Note that the codes were written in MATLAB and no special effort was

made to optimize the run-time speed of the reconstruction code since this was not a

real-time application.

The Adaptive filter uses the structure of EKF but also involves the calculation

of the process and measurement noise covariances. The noise covariance calculations

need a larger storage requirement than the EKF to keep track of the last N and L

number of residuals. These calculations added a few more minutes to the run-time,

but in general the Adaptive filter was able to process a Mars EDL trajectory in under

10 minutes using the same computing resources used for the EKF.
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UKF requires the propagation of 2n+1 sigma points for both the state propagation

and measurement update steps. So when a large number of state elements are being

estimated, the computational burden of the sigma point propagation significantly

increases the run-time for the UKF. For a typical Mars EDL data set, the UKF had

a run-time of around 30 minutes.

In terms of complexity of setting-up the various filters, the EKF and UKF were

very simple to implement based on their algorithms that are widely available in lit-

erature. The Adaptive filter implementation was a little bit more complicated due

to the requirement of storing the last N and L state and measurement residuals. It

should be noted though that the biggest challenge of setting-up the reconstruction

tools was not how to implement the three filters but instead understanding how to

implement the measurement models and what process equations to choose to best

model the dynamics of the parameters of interest. The latter two tasks needed a lot

of experimentation and the majority of the time of the analyst.

3.4.4 Extensibility of Filter Comparison Results

This chapter provided a comparison of performance for three statistical filters. How-

ever, only two simulated data sets were used in the demonstration. Although trends

from the two simulated data set reconstructions were similar, one may wonder about

the extensibility of these results. Without considering a large variety of trajectories

to test these methods, one cannot make a conclusive statement that one filter has a

better performance than another filter.

Nevertheless, in the limited subspace of entry, descent, and landing trajectories

especially those for Mars, this chapter and other studies [56, 28, 59] have provided

enough examples to support statements about the performance of EKF versus UKF.

Adaptive filters have not been considered extensively for EDL reconstruction so more

examples are needed to make definitive conclusions about that particular filter. But
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the results of this chapter and the next chapter, where the filters are applied to an

actual flight data set, at least provide three independent Mars EDL trajectories with

which to make initial assessments of the three filters. Testing these three filters on

other trajectories in the future is necessary to further corroborate and strengthen

these initial assessments. Ultimately, however, it should be noted that although some

filters were found to have better performance than other filters when applied to the

data sets used in this chapter, the main conclusion from this study is to recommend

the usage of all three filters in situations where the truth is unknown such as when

using an actual flight data set.

3.5 Summary

Testing the estimation methodology with the simulated EDL data set allowed for the

luxury of knowing the truth and being able to benchmark filter performance to it. All

three filters were tested using the simulated data and all three methods reconstructed

the trajectory, atmosphere, and aerodynamic coefficients with proficiency. However,

when one compared the residual errors between the estimate and the true states, the

EKF’s performance was well off compared to the Adaptive filter and the UKF. The

Adaptive filter specifically performed really well with lower residual state errors and

tighter confidence bounds when compared to the two other filters. However, it should

be noted that unlike true state values, the true uncertainty values are unknown. So a

tighter confidence bounds is only being used as a hypothesis that the Adaptive filter

quantifies uncertainty well. In situations where the truth is unknown, the analysis

shows that both Adaptive filter and UKF should be used since they have similar state

error residuals and according to literature the UKF also performs well in uncertainty

estimation.
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CHAPTER IV

FLIGHT DATA RECONSTRUCTION: MSL

In the last chapter, the estimation methodology was tested with simulated data sets

where the truth was known. However, in most practical applications of the methodol-

ogy, the truth will not be known and comparisons can only be made with independent

reconstructions using the same data. In this chapter, flight data of an EDL vehicle

is analyzed, and the performance of all three filters is compared. The EDL flight

data are from the Mars Science Laboratory, which successfully landed on Mars on

Aug. 5, 2012. The vehicle landed at the near-equatorial Gale Crater that is at an

altitude of about -4.5 km [111]. This chapter will present the data that were collected

on-board and summarize the results of the trajectory, atmosphere, and aerodynamic

reconstruction using the estimation methodology.

4.1 On-board Data

The data collected on-board MSL consisted of IMU observations (3-axis accelerome-

ters and 3-axis gyroscopes), radar altimeter data, and MEADS measurements. Entry

interface (EI) occurred at Spacecraft Clock Time (SCLK) of 397501714.953130 s and

data was first collected at SCLK of 397501174.997338 s [112, 60]. The data presented

below have been adjusted from SCLK to an epoch where entry interface is zero.

4.1.1 Inertial Measurement Unit Data

The raw data collected on-board MSL consisted of δV and δθ measurements that were

converted into accelerations and angular rates using finite differencing. The nominal

sampling rate of the data was 200 Hz. Although the vehicle contained two sets of

IMUs, only data from IMU-A were used during EDL by the flight controller. The
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reference frame for the IMU was different from typical flight dynamics convention

of the body frame. The IMU frame, also referred to as the Descent Stage (DS)

frame, had its positive z-direction outwards in the vehicle axial direction, while the

x-direction is in the pitch plane. A negative 90 deg. rotation in the y-direction aligns

the DS frame to the flight dynamics conventional body frame [112]. Figure 37 shows

the unfiltered accelerations and angular rates in the vehicle body frame. The data

were used in unfiltered form for reconstruction.
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Figure 37: MSL inertial measurement unit data.

4.1.2 Terminal Descent Sensor - Radar Altimeter Data

The radar altimeter system took measurements during the terminal descent stage of

the trajectory. The sensor suite consisted of several radar altimeter beams which
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collected range and range rate information. These data were processed by the flight

computer to calculate a slant range and slant velocity. The slant range informa-

tion was used for the trajectory reconstruction. The unfiltered 20 Hz data and the

down-sampled 1 Hz data are shown in Fig. 38 along with the slant range uncertainty

calculated by the on-board flight software, which was used in the measurement noise

covariance.
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Figure 38: MSL terminal descent sensor slant range and uncertainty.

4.1.3 Mars Entry Atmospheric Data System

MEADS started collecting data from cruise stage separation at a nominal sampling

rate of 8 Hz. The data were converted to engineering units using pre-flight and

cruise-stage calibration information and an in-flight zero [60]. Data were collected

until shortly before the parachute mortar fire; however, calibration of the MEADS

data was only guaranteed when the dynamic pressure was greater than 850 Pa. For

MSL, this range fell between 50 and 175 s after EI. Only data from this region is used

for the analysis, although the data shown below in Fig. 39 are for all times after EI.

The data were found to be close to the expected values and very little discrepancy

was noticed in the initial analysis [60].

80



0 100 200 300
−5

0

5

10

15

20

25

30

35

Time since EI, s
P

re
ss

ur
e,

 k
P

a

(a) Pressure port 1

0 100 200 300
−5

0

5

10

15

20

25

30

35

Time since EI, s

P
re

ss
ur

e,
 k

P
a

(b) Pressure port 2

0 100 200 300
−5

0

5

10

15

20

25

30

35

Time since EI, s

P
re

ss
ur

e,
 k

P
a

(c) Pressure port 3

0 100 200 300
−5

0

5

10

15

20

25

30

Time since EI, s

P
re

ss
ur

e,
 k

P
a

(d) Pressure port 4

0 100 200 300
−5

0

5

10

15

20

Time since EI, s

P
re

ss
ur

e,
 k

P
a

(e) Pressure port 5

0 100 200 300
−5

0

5

10

15

20

25

Time since EI, s

P
re

ss
ur

e,
 k

P
a

(f) Pressure port 6

0 100 200 300
−5

0

5

10

15

20

25

Time since EI, s

P
re

ss
ur

e,
 k

P
a

(g) Pressure port 7

Figure 39: MEADS data for pressure ports 1-7.

4.1.4 Initial Conditions

The reconstruction was conducted for a time period starting at the entry interface

and ending with touchdown. However, the data needed for the reconstruction were

available at many different epochs. For example, IMU and MEADS data were avail-

able from cruise stage separation, while radar altimeter data became first available

late into the descent phase. Moreover, the initial state estimate was available at three
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different epochs (EI - 9 min, 10 s; EI - 9 min; and EI) while the initial covariance was

only available at EI - 9 min, 10 s. Thus, all of these values had to be brought to a

standard starting epoch.

In order to find the initial conditions for all states and covariances at the entry

interface, the statistical methodology was preceded by a deterministic reconstruction.

The deterministic reconstruction used the IMU data to propagate the vehicle posi-

tion, velocity, and attitude from EI - 9 min to touchdown. This process is similar to

what was done for several past Mars EDL reconstructions [2, 31, 34]. This determin-

istic reconstruction was also the source of an initial estimate of freestream density

and pressure. The initial freestream density prediction was found using the IMU

data, assuming the perfect knowledge of aerodynamic parameters, while the initial

freestream pressure was determined by integrating the hydrostatic equation with a

surface pressure of 695 Pa (measured by MSL shortly after it reached the Martian

surface) [60]. Although this procedure confounded aerodynamic and atmospheric un-

certainties, one should note that the results from these deterministic reconstructions

are only used to establish the initial conditions for freestream density and pressure

at EI; afterward, a statistical estimation method is used for reconstruction based on

both IMU and FADS data for atmosphere reconstruction, eliminating the need for

perfect knowledge of the aerodynamic parameters.

The initial conditions for MSL’s state vector are summarized in Tables 9 and 10.

The initial covariance at EI was found using Monte Carlo simulation with an initial

state and covariance known at EI - 9 min, 10 s.
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Table 9: Initial Conditions for Mars Science Laboratory (at entry interface)
State Condition Standard Deviation (3σ)∗

Radius (centric), m 3522200 32.0662
Latitude (centric), deg -3.9186 0.000781
Longitude (East), deg 126.72 0.000367
Velocity (inertial), m/s 6083.3 0.026059
Flight-path angle (inertial), deg -15.4892 0.000400
Azimuth angle (inertial), deg 93.2065 0.000268
Freestream pressure, Pa† 2.973× 10−4 10P∞,0
Freestream density, kg/m3† 2.838× 10−8 10ρ∞,0
∗Found with Monte Carlo simulation with known covariance at EI - 9 min
†Determined using a deterministic reconstruction

Table 10: Initial Conditions for Quaternions (at entry interface)
qJ,DS (J2000 to DS) qJ,MCMF (J2000 to MCMF)

Scalar 0.0018 0.9319
i 0.4011 0.1676
j 0.4059 0.2706
k -0.8212 0.1739

Note: Initial Euler angle uncertainties assumed to be ±0.2 deg

4.2 Customization of the Methodology

The realities of using a flight data set mean that the data are not always available

in the format required by a generalized methodology. The methodology presented in

Chapter 2 was adjusted accordingly based on the format of MSL’s data. The data of

the IMU were presented in a body-fixed reference frame called the “Descent Stage”

frame. This frame is shown in Fig. 40 [112]. The IMU frame was related to the

Descent Stage by the quaternion (qDS,IMU) given in Eq. (25). However, the Descent

Stage is not the traditional flight-dynamics body-frame, so an extra rotation (RDS,b)

is needed to go from the descent stage to the flight-dynamics body frame, shown in

Eq. (26).

qDS,IMU =

[
0.096566 −0.370039 0.894064 0.233229

]
(25)
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Figure 40: Notional representation of the Descent Stage coordinate system.

RDS,b =


0 0 1

0 1 0

−1 0 0

 (26)

Additionally, the quaternion needed by the process equations in Chapter 2 and

presented in Eq. (3) were to go from the local horizontal frame to the body frame, both

of which are non-inertial frames. Hence, the dynamical equations had the quaternion

rates component and a transport phenomena component (i.e. V cos γ cosψ compo-

nent) to them. However, from Table 10, one has the entry interface values for the

quaternions to go from J2000 to the Descent Stage and to go from J2000 to the Mars

Centered Mars Fixed frame. Since J2000 is an inertial frame, one can find the quater-

nion from J2000 to Descent Stage (qJ,DS) at any time using only the quaternion rate

equation and the gyro rates (ωx, ωy, and ωz), as shown in Eq. (27). Similarly, the

quaternion from J2000 to the Mars Centered Mars Fixed frame (qJ,MCMF ) is a only

a function of the simple quaternion rate equation and the rotation rate of the planet

(ω), as shown in Eq. (28). Finally, the rotation matrix to go from the Mars Centered

Mars Fixed frame to the local horizontal frame (RMCMF,LH) is solely a function of
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latitude (φ) and longitude (θ), as shown in Eq. (29). These quantities can be used

to define the original quaternion used in the process equations of the generalized

methodology, i.e. quaternion between local horizontal and body frames.



q̇0,J,DS

q̇1,J,DS

q̇2,J,DS

q̇3,J,DS


=

1

2



−q1,J,DS −q2,J,DS −q3,J,DS

q0,J,DS −q3,J,DS q2,J,DS

q3,J,DS q0,J,DS −q1,J,DS

−q2,J,DS q1,J,DS q0,J,DS




ωx

ωy

ωz

 (27)



q̇0,J,MCMF

q̇1,J,MCMF

q̇2,J,MCMF

q̇3,J,MCMF


=

1

2



−q1,J,MCMF −q2,J,MCMF −q3,J,MCMF

q0,J,MCMF −q3,J,MCMF q2,J,MCMF

q3,J,MCMF q0,J,MCMF −q1,J,MCMF

−q2,J,MCMF q1,J,MCMF q0,J,MCMF




0

0

ω

 (28)

RMCMF,LH =


− sinφ 0 cosφ

0 1 0

− cosφ 0 − sinφ




cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (29)

4.3 Estimation Results

MSL flight data are reconstructed using EKF, UKF, and Adaptive filter to provide

various best estimates of the spacecraft’s trajectory, vehicle aerodynamics, and Mars’

atmosphere during EDL. However, unlike Chapter 3, in lieu of knowledge about the

true states all three reconstructions are equally plausible, so subjective comparisons

between the reconstructions are made to ascertain estimation performance quality.

Additionally, an independent, NASA-conducted reconstruction of the MSL data using

the logic used on-board the flight software (FSW) [113] is provided where available for

comparison with the three statistical estimations. The flight software reconstruction

is largely a function of the IMU data.
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4.3.1 Trajectory Reconstruction

The reconstructed trajectory for MSL is shown in Fig. 41 and the estimated uncer-

tainties for the altitude and planet-relative velocity are shown in Fig. 42. Some major

EDL events can be identified on the reconstructed profile and these have been labeled

in the zoomed inset of the terminal descent phase (Fig. 41(b)). Parachute deployment

occurs around 260 s after EI, resulting in an inflection point in the trajectory plot,

while the heatshield jettisons approximately 20 s after the parachute deployment.

The next set of major events happen quickly starting with the backshell separation

at 375 s, then powered approach at 378 s, and lastly Sky Crane starting at 413 s.

Finally, touchdown is sensed around 430 s (7 min, 10 s) after EI.
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Figure 41: Reconstructed altitude and velocity history of MSL.

There is very little difference between the reconstructed altitude and velocity pro-

files of the three statistical estimators and the flight software. The flight software

reconstruction is largely only a function of IMU data and is conducted deterministi-

cally. The fact that the FSW reconstruction matches so closely with the statistical

estimations that also used other data types is a testament to the good quality of the

IMU data, which greatly improved the performance of the trajectory reconstruction.
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Figure 42: Reconstructed altitude and velocity uncertainties for MSL.

Other independent MSL data reconstructions have also noted the good quality of the

IMU reconstruction [60, 114, 115].

The altitude and velocity uncertainty reconstructions (Fig. 42) show that in gen-

eral EKF had larger estimated uncertainties than its other statistical estimation coun-

terparts. The EKF altitude uncertainty shows the growth in uncertainty during the

hypersonic flight regime through peak deceleration around 100 s, decrease in uncer-

tainty in the region of bank angle reversals and hypersonic guidance, a slight growth

in uncertainty during parachute deployment, and finally a steady decrease in altitude

uncertainty after radar altimeter data are acquired. The UKF and Adaptive filter’s

estimated altitude uncertainties are not as dynamic as the EKF estimate. The dif-

ferences in the behavior can be directly attributed to the handling of process noise.

The EKF process noise is tuned using strategies described in Sec. 2.4.5 to account for

the non-linearity in the dynamics that the first-order EKF equations cannot model

well. The larger process noise also leads to larger estimated state uncertainties, as

was shown in the simulated data results in Chapter 3. On the other hand, the UKF

and Adaptive filter have higher order methods for modeling the non-linearity and

process noise in the dynamics which keeps the estimate steady.
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The velocity uncertainties are very small, when compared to past Mars missions.

This is attributed to the excellent initial velocity estimate provided by the interplan-

etary navigation team (as was shown in Table 9) [116]. The EKF velocity uncertainty

estimate does not decrease significantly from the initial estimate, but both the UKF

and Adaptive estimates steadily decrease after the peak deceleration (around 100 s)

and even further after radar altimeter data are acquired (near 300 s). Once again, the

difference is due to the calculation of process noise. EKF has a slightly larger process

noise that leads to slightly larger state uncertainty estimates. The UKF estimates

smaller velocity uncertainties than the Adaptive filter in this case, but due to a lack of

knowledge in the true state, it would be conjecture to attribute a physical rationale

for this. Recall that with simulated data, the Adaptive filter actually had smaller

uncertainties than the UKF.

The planet-relative flight path angle and azimuth angle histories are shown in

Fig. 43. The time histories of these quantities are steady throughout the hyper-

sonic and supersonic stages of flight, and show oscillations near the terminal descent

portion when the Sky Crane was maneuvering. There is strong agreement between

the reconstruction done by the three statistical estimators and the flight software

estimate.

The time histories of the Euler angles - roll, pitch, and yaw - are shown in Fig. 44.

Some crucial EDL events, such as bank reversals and heading alignment can be seen

in these figures. The bank reversals are important since MSL was the first Mars

EDL vehicle that used hypersonic guidance via bank angle modulation [3]. These

modulations are visible on the roll and yaw angle history. Heading alignment prior

to parachute deployment is also observed in the figures. The Euler angle plots have

been restricted to shortly before parachute deployment, since these angles have little

physical meaning after that point. Similar to the case for flight path and azimuth

angles, there is strong agreement between the statistically-estimated quantities and
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Figure 43: Reconstructed flight path and azimuth angles for MSL.

the time history reconstructed by the flight software.

Angle of attack and sideslip angle histories are shown in Fig. 45. The time axes

are restricted from entry interface to the point where MEADS data were no longer

processed by the estimator for Figs. 45(a) and 45(b) to showcase the region where

the orientation angle estimates were influenced by both IMU and FADS data. This

region is also the only place in the reconstruction where aerodynamic and atmospheric

uncertainties are not confounded since two independent measurements were used to

estimate the angles.

Unlike the Euler angles, there are visible differences between the estimates de-

rived by the three statistical estimators and the flight software. The angle of attack

estimates for the Adaptive filter and UKF diverge slightly from the other estimates

around 100 s and then there is a step increase seen around 135 s. Similar observations

were made by other independent MSL reconstructions [10, 114]. The sideslip angle

estimate has a difference that is more visible, since after 100 s the flight software and

EKF estimates display a positive bias from zero, while the UKF and Adaptive filter

estimates stay closer to zero but still display large oscillations. It is possible that the

vehicle did indeed experience a non-zero sideslip angle, but a more likely explanation
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Figure 44: Reconstructed attitude history of MSL.

is a relatively significant cross wind component during this phase of flight that bi-

ases the IMU data [10, 115]. Since the methodology in this paper does not estimate

winds and uses the planet-relative velocity instead of the wind-relative velocity for

the angle calculations, a relatively strong wind may affect the accuracy of the angular

estimates. The UKF and Adaptive filter are able to bias their result more towards

FADS data that are theoretically not affected by the wind rather than the IMU data

which are affected by the wind) and thus the filters’ estimate sideslip angle closer to

zero.
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(a) Angle of attack
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(b) Sideslip angle

Figure 45: Reconstructed angle of attack and sideslip angle histories for MSL.

The angle of attack and sideslip angle uncertainties are shown in Fig. 46. One can

see that the introduction of MEADS data to the estimators around 50 s drastically

improves the uncertainty estimates in Figs. 45(a) and 45(b). The EKF seems to have

a longer lag-time before the uncertainties of the two orientation angles settle to the

level of the uncertainty estimates from the UKF and Adaptive filter. In general, one

sees that the 1σ uncertainties for the angle of attack are of the order 0.2 deg. and

the uncertainties for the sideslip angle are close to 0.1 deg.

The final landing location of MSL was available from post-flight communications

between the rover and orbiting spacecraft [114]. This location and the reconstructed

location using the estimation methodology are compared in Table 11. The 3σ un-

certainty bounds of the reconstructed positions for all three estimates encompass the

independently estimated location. The UKF and Adaptive filter have tighter bounds

than the EKF, corroborating the expected outcomes when simulated data were ana-

lyzed by these estimators in Chapter 3.
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Figure 46: Reconstructed angle of attack and sideslip angle uncertainties for MSL.

Table 11: Final landing location of MSL

State Orbit∗ EKF 3σ† UKF 3σ† Adaptive 3σ†

Radius (km) 3391.13 3390.71 0.605 3391.30 0.195 3391.15 0.262
Lat. (deg) -4.590 -4.632 0.075 -4.552 0.043 -4.557 0.045
Long. (deg) 137.442 137.394 0.0264 137.431 0.0129 137.438 0.0123
∗ Based on comm. between rover and orbiting satellites after landing [114].
† Assuming a normal distribution for the parameters.

4.3.2 Atmosphere Estimation

One of the unique features of the estimation methodology discussed in Chapter 2

is that atmospheric parameters are already included in the estimation state vector.

Thus, there is no need to use the force coefficient equations or the hydrostatic equation

to calculate atmospheric parameters.

Figure 47 shows the estimated atmospheric density history as well as the estimated

uncertainty for the region where both IMU and FADS data were available. The value

of the uncertainty generally increases with time as density increase. There is good

agreement between the estimated states by the three statistical estimators, with the

EKF having a slightly higher estimated uncertainty. The higher uncertainty for the

EKF can be explained by the modeling of high process noise needed to avoid filter
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divergence. The density and uncertainties are very smooth and do not display any

large oscillations. This underscores the good quality of the IMU and FADS data

as well as the near-nominal atmospheric profile encountered by MSL. One does not

observe any large density variations akin to the potholes-in-the-sky that were studied

during the design of MSL [25].
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Figure 47: Reconstructed density for MSL when FADS data was used.

Freestream pressure, which is also an element of the state vector, is shown in

Fig. 48 along with the estimated 1σ uncertainty. The values are once again shown for

the time period where both IMU and FADS data were available. Similar to freestream

density, all three estimates show good agreement in the estimated states, while the

EKF uncertainty estimate is slightly off the uncertainties estimated by UKF and

Adaptive filter. The agreement between the three estimators and the smoothness of

the estimates once again is a result of the good quality of the data and the near-

nominal environment.

The freestream temperature, which was calculated using the reconstructed density

and pressure, is shown in Fig. 49 along with the estimated uncertainty.

The isothermal assumption for the hydrostatic equation and the perfect gas law

were used to construct dynamical equations for freestream pressure and density in
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(b) 1σ uncertainty

Figure 48: Reconstructed pressure for MSL when FADS data was used.

Chapter 2. The perfect gas law was also used here to reconstruct temperature from

pressure and density. However, at the top of the atmosphere before FADS data are

introduced, density is estimated using accelerometer data only and since there are

not enough independent measurements of density and pressure, the estimated tem-

perature remains constant (isothermal). Hence, the temperature profile in Fig. 49

is limited to the points where FADS data were available. The reconstructed uncer-

tainties for temperature show similar trends as the uncertainties for other estimated

atmospheric parameters. The EKF uncertainties are slightly larger and more oscilla-

tory than the uncertainties estimated by the UKF and Adaptive filter.

The reconstructed dynamic pressure, Mach number, and their associated uncer-

tainties are shown in Figs. 50 and 51. Dynamic pressure is calculated using the

freestream pressure and planet-relative velocity, both quantities that are estimated by

the methodology. Wind-relative velocity could be substituted for the planet-relative

velocity for more accuracy, but the structure of this estimation methodology does not

have means of estimating winds. Nevertheless, the reconstructed dynamic pressure

and uncertainty agree well between the three estimators. Independent MSL recon-

structions conducted by NASA also agree with these estimates [60]. Mach number
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(b) 1σ uncertainty

Figure 49: Reconstructed temperature for MSL when FADS data was used.

was calculated using the planet-relative velocity and speed of sound calculated from

freestream density and pressure. However, the uncertainties in freestream pressure

and density before FADS data are introduced are also present in the speed of sound

calculation, making Mach number estimates in this region highly uncertain as seen in

Fig. 51(b). It is interesting to note that although the estimates of Mach number from

all three estimators agree very well with each other, the uncertainty estimated by the

Adaptive filter decreases rapidly after FADS data are introduced around 50 s, but

there is a lag before UKF and EKF estimates reach a lower level of uncertainty. This

is a sign that the Adaptive filter, which calculates the process noise on-line, is more

responsive to the lower level of uncertainty in atmospheric quantities once FADS data

are introduced.

4.3.3 Aerodynamics Reconstruction

No aerodynamic parameters were directly estimated by the three filters. Nevertheless,

one can use the estimated velocity and freestream density to derive the aerodynamic

quantities using methods shown in Sec. 2.3. Figure. 52 shows the reconstructed

axial force coefficient and its 1σ uncertainty, while Fig. 53 shows the estimates for
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Figure 50: Reconstructed dynamic pressure and uncertainty for MSL.
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Figure 51: Reconstructed Mach number and its uncertainty for MSL.

the normal force coefficient. The figures have been restricted to the region where

both IMU and FADS data were available. The pre-flight estimate of the two force

coefficients are also shown for comparison.

The unfiltered form of the accelerometer data were used in the aerodynamic co-

efficient estimation, hence the reconstructed force coefficients are noisy. One could

have used a filtered form of the IMU data, but since the unfiltered data were used

by the estimators that same data were also used for the aerodynamic reconstruction.
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Figure 52: Reconstructed axial force coefficient and its uncertainty for MSL.
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Figure 53: Reconstructed normal force coefficient and its uncertainty for MSL.

Additionally, both axial and normal force coefficients have an increase in noise after

130 s, which is a direct result of a step increase in noise in the actual sensed axial and

normal force that is visible in Fig. 54. This time does not correlate to any specific

EDL event, but happens shortly before heading alignment. Of course, this is also the

time where the angle of attack and sideslip angles have off-nominal behaviors (see

Fig. 45), so the increase in noise is probably directly related to the effect of the winds

discussed earlier.
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Overall, there is good agreement between the reconstructed force coefficients found

by the three filters. The UKF estimate of the axial force coefficient is slightly more

oscillatory than the EKF and Adaptive estimates between 100 and 130 s, but other

than that all three estimates seem to overlap. The normal force coefficient estimate

is extremely noisy for all three estimates, but the reconstructed values all show a

negative mean bias around -0.05. Similar observations were noted in other indepen-

dent MSL reconstructions [10, 114] as well, albeit with less noise since filtered-form

of the IMU data were used in those cases. The axial force coefficient uncertainties

show the familiar shape expected from simulated data reconstruction (Fig. 35(d)).

The uncertainties are low when the FADS data are first introduced around 50 s, but

slowly increase with time. The uncertainties also show the sign of the step increase

in noise in the sensed force, since uncertainty estimates become more noisy after 130

s. There is no tell-tale shape in the normal force coefficient uncertainties, but all of

the estimators have similar performance.
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Figure 54: Axial and normal forces sensed by the MSL IMU.
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4.4 Summary

The Mars Science Laboratory mission demonstrated the first use of hypersonic guid-

ance for Mars entry vehicles, and the aeroshell and supersonic parachute used by the

spacecraft were the largest ever flown for Martian missions. Despite the challenges,

the spacecraft safely landed on Aug. 5, 2012 in Gale Crater and relayed back inertial

measurement unit data, radar altimeter measurements, and flush atmospheric data

system pressure measurements that provide one of the most comprehensive data set

for Mars entry vehicles.

The diversity of data from the mission makes MSL a very good test case for the

statistical estimation methodology developed in Chapter 2. Although parts of the

process equations had to be modified to make it applicable to this case, MSL flight

data were reconstructed by three different statistical estimators with great success.

Overall, there was great agreement between the estimated trajectory, atmosphere, and

aerodynamics found by the three estimators and the estimates compared favorably

when independent reconstruction results were available. The precise initial state

conditions, great quality of the flight data, and the near-nominal trajectory of MSL

led to very well-behaved reconstruction results. There was generally good agreement

in the estimated uncertainties found by UKF and Adaptive filter, while the EKF

uncertainties were generally higher than the ones found by the other filters. Since

the process noise for the EKF is not tuned on-line, the noise is usually large to keep

the filter from diverging which leads to relatively larger estimates of uncertainty. The

UKF and Adaptive filter are able to better accommodate the non-linearity in the

dynamics and are less affected by the process noise, leading to smaller uncertainties

and tighter confidence bounds.

MSL had a near-nominal trajectory, but the one unexpected behavior was the

larger-than-expected winds that led to larger than nominal angle of attack oscilla-

tions and non-zero sideslip angle in the supersonic regime. The reconstruction of
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angle of attack and sideslip angle clearly captured this phenomenon. The FADS data

were supposed to be non-susceptible to winds, while IMU data that measures sensed

deceleration was susceptible to winds. The IMU-based flight software reconstruction

both showed non-zero sideslip angles, while the UKF and Adaptive filter reconstruc-

tions showed sideslip angles with a mean of zero throughout the FADS data region.

While the non-zero sideslip angle of the IMU-only flight software reconstruction is

not unexpected, the EKF’s non-zero sideslip angle is probably due to the filter’s first-

order state propagation equations and the way it handles process noise. While the

UKF and Adaptive filter biased their estimates towards FADS data rather than IMU

data in this regime and thus had near-zero sideslip angles, the EKF’s process noise

handling allowed the filter to be biased towards the high-rate, but wind-influenced

IMU data, making the mean of the sideslip angle non-zero. This underscores the im-

provement in estimation capability possible as one moves from the more traditional

EKF used in EDL reconstruction to higher-order filters like the UKF and Adaptive

filter.
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CHAPTER V

FADS DESIGN OPTIMIZATION

The narrative of the thesis has so far focused on the EDL performance reconstruc-

tion methodology and the results of this method when applied to simulated or actual

flight data. However, the reconstruction methodology itself can be leveraged to im-

prove vehicle design, especially the design of instrumentation on future missions. One

specific area that has shown a gap in literature is the optimal placement of transduc-

ers in a flush atmospheric data system (FADS). As described before, FADS provide

measurements of pressure on a vehicle’s forebody during flight and in conjunction

with inertial measurement unit (IMU) data enable the reconstruction of the vehicle’s

freestream conditions, angle of attack, and sideslip angle. Despite their increasingly

prevalent use, the methods for FADS design and sensor arrangement remain rudi-

mentary and are based on engineering judgment rather than computationally-based

rationale. This is in spite of observations that different port configurations can vastly

affect the effectiveness of the estimation [71].

This chapter will describe how the estimation methodology developed and demon-

strated in the past chapters can be used for FADS optimization. The chapter places

the FADS placement problem in the scope of a multi-objective optimization problem

and tackles it in two different fashions. In the first method, the estimation method-

ology is directly used as an objective function and the optimization is dependent on

the residual between the estimated states and the truth. In the other method, the

concept of a lowest possible variance that can be estimated - known as the Cramér-

Rao Lower Bound (CRLB) - is borrowed from estimation theory to find theoretically

optimum FADS placement and improve the observability of the data. Using either

101



of these methods allows an EDL vehicle designer to move forward from selecting the

best estimation methodology post-flight to deciding how to best arrange sensors to

improve the yield of the estimation pre-flight.

5.1 Background

5.1.1 Past Optimization of Atmospheric Data Systems

As mentioned in Sec. 1.3.1, there has been limited work in the past to optimize

the design atmospheric data systems in EDL vehicles. One of the few optimization

studies for air data systems was conducted in the early 1990’s in support of the

Pressure Distribution/Air Data System (PD/ADS) experiment that was proposed to

be included in the Aeroassist Flight Experiment (AFE), which was later canceled.

In the study, Deshpande et al. [46] used a gradient-based estimator and a genetic

algorithm (GA) to optimize the distribution of the PD/ADS sensors in order to

decrease the effect of normally distributed random noise of the pressure transducers.

Additionally, the work used modified Newtonian theory for the predicted pressure

model and a batch-type reconstruction process to estimate air data parameters, such

as dynamic pressure, angle-of-attack, and sideslip angle. The residuals between the

estimated parameters and their known, true values were then used in a single-objective

function for the optimization routines.

The work by Deshpande et al. only considered reconstruction of a single trajectory

point (one Mach number, dynamic pressure, etc.). Such a situation can be imagined

for a wind tunnel testing, where pressure transducers on a test object’s forebody

collect data while the object is kept at the same flow conditions for a fixed period

of time. So the reconstruction process, which serves as the objective function for the

optimization problem, is expected to converge to a single trajectory state, unlike the

case of EDL reconstruction where the trajectory states keep changing. The focus of

the current work is the optimization of sensor locations where the signal will change
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with time. This topic has not been analyzed previously for atmospheric data systems.

Additionally, the EDL reconstruction process shown here uses a pressure distri-

bution prediction model based on the aerodynamic database of the vehicle. This

database incorporates data from higher fidelity models based on CFD and wind tun-

nel data and is expected to be more accurate than the modified Newtonian assumption

used by Deshpande et al.

5.1.2 Multi-objective Sensor Placement Optimization

The FADS sensor configuration problem can be cast as a multi-objective optimization

problem with the objective of placing sensors to accurately reconstruct parameters of

interest in an inverse estimation process. Deshpande et al. [46] simplified this process

by creating a single-objective optimization problem where they combined the multiple

objectives of optimizing the reconstruction of dynamic pressure, angle-of-attack, and

sideslip angle using weighting parameters. The use of these weighting parameters

introduced subjectivity into the optimization process. Additionally, combining the

three distinctive objective function values into a single objective function could lead

to one of the objective functions dominating the design space due to larger magnitude

of its values when compared to the other objectives. This scenario can hide optimal

results for the non-dominant objective functions.

However, since that study, the field of multi-objective optimization has matured,

and the concept of Pareto dominance can be coupled with different types of opti-

mization techniques to enhance several objective functions concurrently without the

necessity of weighting functions [117]. Pareto dominance allows one to find a set of op-

timal points that are an improvement over all other points in the design space [117].

The problem involves finding solutions that represent trade-offs among conflicting

objective functions when multiple objective functions are involved. The concept of

domination, as described in Eq. (30), occurs when a objective function parameter
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vector p1 is better than another point p2 since the n-dimensional objective function

vector f of p1 is no worse than the objective function vector of p2 and the function

value p1 is strictly better that the function value of p2 along at least one dimension

of the objective function [117]. All points that are non-dominated by any other point

in the design space are members of the Pareto frontier.

min f = f(p)

∀i ∈ {1, · · · , n} : f(p1)i ≤ f(p2)i

∃j ∈ {1, · · · , n} : f(p1)j < f(p2)j

(30)

The optimization technique used here and is the Non-dominated Sorting Genetic

Algorithm II (NSGA-II) [108, 117]. NSGA-II is an evolutionary algorithm that can

solve multi-modal problems such as the FADS sensor placement problem [49] better

than traditional gradient-based methods that are often stuck in local minima. NSGA-

II uses Pareto dominance to find the best representation of the Pareto frontier [117]

and is considered a baseline technique in the field of multi-objective optimization [118].

The optimization algorithm consists of three basic steps: initialization, sorting,

and reproduction (see Fig. 55). A randomly generated population of feasible port lo-

cations is initially generated and then the members are assigned different fronts based

on the objective function values. A crowding distance in the objective function space

between different design parameters is also calculated to ensure diversity in the fron-

tiers. In successive iterations or generations, the optimizer uses an elitist technique to

pair the most Pareto dominant parents to produce children using tournament selec-

tion, crossover, and mutation operations and the process is repeated for a user-defined

period of time. Additionally, a continuous search space is implemented using modifi-

cations to the traditional mutation and crossover operators [119, 120]. It is expected

that the final generation will be close to the theoretical Pareto frontier [108].
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Figure 55: Flow diagram of Non-dominated Sorting Genetic Algorithm II.

Since the sensor placement problem for atmospheric data systems has many non-

unique solutions, it is expected to be multi-modal and can benefit from such a pro-

cedure. In this work, the concepts of Pareto dominance and evolutionary algorithms

that can handle multi-objective optimization are combined with the EDL reconstruc-

tion process to demonstrate a methodology to optimize FADS instrumentation. Such

a procedure can advance the work by Deshpande et al. and allow future designers to

determine the optimal number and locations of sensors on vehicles and objects that

use atmospheric data systems for measurement.

5.1.3 Simulated Data Set for Reconstruction

A simulated, Mars EDL data set is used as the basis for the sensor location op-

timization objective function. These true states are provided by the Program to

Optimize Simulated Trajectories II (POST2) [109], which was used to generate a

nominal EDL trajectory that is presented in Fig. 56. The trajectory is for a 4.5 m,

70-deg sphere-cone with the same geometry and specifications as the Mars Science

Laboratory (MSL).

For the residual-based optimization, the POST2 outputs are used to generate

IMU data, radar altimeter measurements (when the altitude is less than 10 km), and

FADS data (when the dynamic pressure is greater than 850 Pa.) using the same

measurement equations that are used in the estimator but with random noise added

to the measurements. The 850 Pa limit mimics the time frame in which the MSL

science objective is defined [37, 48]. The plots for angle of attack and sideslip angle are
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only shown to 200 seconds since the vehicle reaches the 850 Pa limit around that time

period. For the observability-based optimization, the truth data is used to calculate

the CRLB directly and simulated measurements are not generated.
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Figure 56: Simulated trajectory used for creating the data set used for FADS opti-
mization.

5.2 Residual-based Optimization Method

5.2.1 Cost Function

A major objective in optimizing the layout of the pressure-port system is to enhance

the accuracy of the reconstruction process. The EKF is being used as the statistical

estimator and it is assumed that the reconstructed parameters are supposed to be

theoretically close to the true states based on the data set that is available since the

EKF has been shown to reconstruct EDL parameters well in the last few chapters.

Thus, the goal of the FADS layout optimization is to choose the number of transducers

and the locations of the sensors so that the measurements themselves would be the

optimal data set to reconstruct the flight parameters of interest.
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The main parameters of interest are the dynamic pressure, angle-of-attack, and

sideslip angle. The cost function (J) is represented by the residual between the esti-

mated flight parameters and their true values. This is similar to what Deshpande et

al. [46] used for the PD/ADS optimization; however, the subjectivity of the weighting

parameters is removed from the optimization exercise. The cost functions for each

parameter are combined into a vector that will be optimized using Pareto dominance.

The residuals of the parameters are calculated at certain Mach numbers along the

trajectory and the maximum residual is reported as the objective function value. The

residuals are also normalized by the MSL science objective value, i.e. ±2% for q∞ and

0.5 deg for α and β. Thus, an objective function value between 0 and 1 signifies that

the port combinations produce data that can be reconstructed by the EKF to within

MSL science objectives. The cost function is stated in Eqs. (31), where i is an index

for the m-length Mach number vector over which the residuals are calculated. For

this objective function M∞,i = [14, 16, 18, 20, 24], which all fall within the nominal

time frame the pressure data instrument operates.

min J = [Jα, Jβ, Jq∞ ] (31a)

Jα =
m

max
i=1

∣∣∣∣αrecon,i − αtrue,i

αMSL objective

∣∣∣∣ (31b)

Jβ =
m

max
i=1

∣∣∣∣βrecon,i − βtrue,i

βMSL objective

∣∣∣∣ (31c)

Jq∞ =
m

max
i=1

∣∣∣∣ (q∞,recon,i−q∞,true,i)/q∞,true,iq∞,MSL objective

∣∣∣∣ (31d)

5.2.1.1 Constraints

Additionally, some geometric constraints were added to the problem. The port loca-

tions were restricted to within a 2 m radius on the forebody to restrict sensors on the

vehicle shoulder and the ports had to be at least 0.125 m (≈ 5 inches) apart. These

constraints are representative of manufacturing constraints faced by real FADS sensor

suites.
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5.2.2 Effect of Random Noise

It should be noted that the objective function value depends on the random noise

added to the various measurements. For the function evaluations here, the random

seed used to generate the measurement noise was kept constant, which would mean

that multiple function evaluations for the same configuration would yield the same

exact objective function value; however, different random seeds for measurement noise

would yield different results. In such cases, designers often use Monte Carlo analysis

or linear covariance analysis to simulate the effect of random noise on the objective

function value and then use a sample averaged mean objective function value for the

optimization [106]. The effect of random measurement noise was simulated for this

case by calculating the objective function value for one seven-port configuration with

varying random seeds and is shown in Fig. 57.
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Figure 57: Effect of random measurement noise on the value of objective function for
a single configuration.

The random noise does create some variation in the objective function value and

should be considered by a designer of an atmospheric data system. However, for

the optimization results shown here, the objective function evaluation was very time

intensive and coupling a Monte Carlo analysis with it would have been even more
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expensive. Additionally, the objective function value for the chosen measurement

noise’s random seed was very close to the mean value of the Monte Carlo-generated

distribution in this case. So the random seed for the measurement noise was held con-

stant and the objective function was calculated without using Monte Carlo analysis.

The decision to keep the random seed for the noise constant for a computationally

expensive objective function evaluation has some precedent in the literature [106].

5.2.3 Multi-modal Design Space

The main rationale for using an evolutionary algorithm, such as the GA, for opti-

mization is the nonlinear, multi-modal nature of the design space. The objective

function described in the earlier section meets this criterion, since the design space

has several local optima. This is demonstrated in Fig. 58, where a gradient-based op-

timization routine (the MATLAB provided Sequential Quadratic Programming code

within fmincon) is used to minimize just the Jα objective (Eq. (31b)) using different

initial conditions. The GA-based optimized solution, which will be discussed in more

detail in later sections, is also shown for comparison.

One can see in Figs. 58(a) and 58(b) that gradient-based optimizations are easily

stuck in a local optimum despite varying the initial conditions; however, an evolu-

tionary optimizer, such as the GA, can escape local minima due to the stochastic

nature of the algorithm. This can eventually lead to a near optimum solution in a

multi-modal design space as seen in Fig. 58(c). When the whole objective function

vector is optimized to find the Pareto frontier and the number of ports in the con-

figuration is varied, the design space is expected to become more complicated, thus

strengthening the rationale for using an evolutionary optimization technique for this

design problem.
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Figure 58: Optimal pressure-port locations using gradient-based optimization and
GA-based optimization.

5.3 Residual-based Optimization Results

The main objective of the optimization methodology is to identify (1) minimum num-

ber of ports needed for accurate reconstruction and (2) the optimal location of the

ports for each configuration. As two of the parameters of interest are orientation

angles, the minimum number of ports studied are the two-port configurations, since

angular value estimation requires at least two points of reference. For consistency

with the MSL configuration, seven ports serves as the upper bound.

The study is broken into three steps. First, single-objective optimization is per-

formed to identify the best configurations for systems for a given objective function

and number of ports. Next, two-objective optimization is performed on each pair
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of objective functions to study the trade-offs in the design space and visualize the

Pareto frontier environment. Finally, all three objective functions are simultaneously

optimized.

5.3.1 Single-objective Optimization

The optimizer is used to find optimal configurations that minimize each objective

functions for two, three, four, five, six, and seven-port configurations. Convergence to

the global minima cannot be guaranteed due to the stochastic nature of the optimizer;

thus, each optimization is repeated at least 10 times using different random number

seeds. Also, each optimization run is continued for at least 100 generations, as it

was found that the minimization routine converged to the lowest possible function

values by at least the 100th iteration. The maximum population size was limited

to 32 members to limit number of function calls per generation; however, smaller

population size leads to Pareto frontiers that are sparse.

Figure 59 shows the minimum objective function value found using single-objective

optimization for a specific number of ports. Additionally, Table 12 summarizes the

objective function vector for each of the single-objective optimization points noted

in Fig. 59. Recall that the objective function values were normalized so that values

between 0 and 1 signify that a configuration meets the minimum MSL objectives, so

the values exceeding the MSL objectives are shown in bold. One sees that the optimal

configuration for one objective function value often leads to unacceptable levels in the

other objective functions. As a baseline, reconstruction of the simulated data set using

the MSL configuration yielded [Jα, Jβ, Jq,∞] = [0.1657, 0.0321, 0.7876].

Figure 60 shows the optimum configuration for some of the single-objective re-

sults. The minimum dynamic pressure (Fig. 60(a)) result shows that the optimum

configuration is to place the two ports in the stagnation region, similar to what MSL

has done. Of course, the improvement in the pressure estimation comes at the cost
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Figure 59: Results of single-objective optimization with MSL value also shown.

Table 12: Objective functions for single-objective optimization.

Obj. 2-port 3-port 4-port 5-port 6-port 7-port
Minimum Jα solutions

Jα 0.06246 0.05757 0.05408 0.03862 0.03687 0.03397
Jβ 2.217 0.4953 0.24531 0.0486 0.052595 0.06094
Jq∞ 1.033 1.0413 0.75394 1.059 1.102 1.0787

Minimum Jβ solutions
Jα 6.366 2.932 0.6574 0.1629 0.18525 0.1389
Jβ 0.03976 0.02527 0.02052 0.01624 0.01673 0.01659
Jq∞ 1.155 1.176 1.0378 1.0558 0.9786 0.6746

Minimum Jq∞ solutions
Jα 0.83212 0.1032 0.1072 0.1256 0.09104 0.082205
Jβ 1.701 0.57362 0.096619 0.083149 0.072913 0.04621
Jq∞ 0.7877 0.5123 0.5237 0.5187 0.5023 0.4621

Note: Bold values exceed MSL’s goals used for normalizing the function.

of worse sideslip angle and angle-of-attack detection. The minimum sideslip angle

solution (Fig. 60(b)) spreads the four ports across the horizontal axis, but the abil-

ity to reconstruct dynamic pressure and angle-of-attack deteriorates. The seven-port

minimum angle-of-attack result (Fig. 60(c)) is interesting as the configuration puts

the pressure transducers on the spherical nose cap making the configuration sensitive

to changes in the angle-of-attack, but also worsening the dynamic pressure recon-

struction ability. Surprisingly, since the ports are spread around the spherical nose

cap, there is some sideslip angle resolution. It is likely that the optimizer was trying

to co-locate some of the sensors at the same spots but was prevented by the minimum
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distance between sensors constraint.
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Figure 60: Optimized pressure-port configurations from single-objective optimization.

5.3.2 Two-objective Optimization

The results of the single-objective optimization showed that configurations that max-

imized the reconstruction capability of one parameter penalized the estimation of

the other parameters. These trade-offs are visualized using Pareto frontiers devel-

oped from the results of two-objective optimization as seen in Figs. 61, 62, and 63.

Zoomed insets of each pair of two-objective optimization are also provided.
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Figure 61: Results of two-objective optimization for Jβ vs. Jα.

It should be emphasized that although the Pareto frontiers of cases with different

number of ports are plotted together in Figs. 61, 62, and 63, in reality each Pareto
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Figure 62: Results of two-objective optimization for Jq∞ vs. Jα.
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Figure 63: Results of two-objective optimization for Jq∞ vs. Jβ.

frontier is a solution to a separate optimization problem with a separate design space.

For example, there is no relation between the Jα−Jβ Pareto frontier for the two-port

case and the three-port case. One expects that as the number of ports increase the

overall objective function values will decrease, but it is not as if the three-port case

builds on the result of the two-port Pareto frontier case. Each optimization scenario

is randomly initialized and the optimization procedures for different number of port

cases do not share information with each other.

The Pareto frontiers in Figs. 61, 62, and 63 do coalesce onto each other as the
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number of ports increase. This behavior signals a diminishing return type of behavior

when the number of ports are increased. Upon inspection of the inset figures, it ap-

pears that when looking at α and β reconstruction performance, the six and the seven-

port results are close to each other. There is little gained in adding an additional port

to go from six to seven ports for this trade. Looking at the other two trades, the five-

port solution appears to match the six and seven-port results in the β and q∞ trade

but remains far off from the six and seven-port results in the α and q∞ trade. The di-

minishing return thus appears to be close to the six-port Pareto front. Recall that the

MSL configuration yields [Jα, Jβ, Jq,∞] = [0.1657, 0.0321, 0.7876], which

puts that configuration in the dominated solution space of the seven-port Pareto

frontiers, albeit not too far off the front. Of course, it should be stressed that this

observation is for the current objective function only and other formulations of the

cost function might improve the ranking of the MSL configuration.

5.3.3 Three-objective Optimization

For the final optimization case, all three objective functions were minimized simul-

taneously by the NSGA-II optimizer. Figure 64 shows the optimization’s results for

the various number of port cases, with Jα as the x-axis, Jβ as the y-axis, and Jq∞

shown with color. Note that all of the points in the plots are part of 3-dimensional

Pareto surfaces, whose two dimensions are shown on the x and y axes and the third

dimension is represented with color. Additionally, the MSL baseline is also shown

on the seven-port plot for comparison as a red diamond, even though it is not a

Pareto-optimal solution according to the optimization and not on the Pareto surface.

Some representative seven-port cases from the Pareto-optimal solutions are shown

in Fig. 65 and their objective function values are compared to the MSL configuration

in Table 13. The MSL baseline is shown as squares and the optimized values are
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Figure 64: Results of three-objective optimization.

shown as diamonds. The first case shows a configuration that improves the angle-

of-attack and sideslip angle capabilities from MSL, but is worse off in estimating

the dynamic pressure. The second figure is the opposite case, as dynamic pressure

reconstruction ability improves due to extra ports near the stagnation point, but

decreases angle-of-attack and sideslip angle estimation ability. The last configuration

improves in all metrics, but the improvement is not as drastic in some parameters as

in the first two cases. One can see that an optimization process can improve upon the

MSL configuration and through a method, such as the one conducted in this paper,

an atmospheric data system designer can decide which way he wants to move in the

design space.

The three-objective optimization shows configurations which improves the estima-

tion of all three parameters of interest. Thus, for an engineering solution, the designer
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Figure 65: Optimized pressure-port configurations from three-objective optimization.

Table 13: Comparison of seven-port representative cases with the MSL configuration.

Obj. Case 1 Case 2 Case 3
Value % Diff. MSL Value % Diff. MSL Value % Diff. MSL

Jα 0.06608 -60% 0.22787 +38% 0.09699 -41%
Jβ 0.015924 -50% 0.16001 +398% 0.02791 -13%
Jq∞ 0.934463 +19% 0.541879 -31% 0.55450 -30%

does not need to conduct a single-objective or a two-objective optimization. In fact,

the single-objective and two-objective optimization take a comparable about of time

as the three-objective optimization; however, there is still a benefit in conducting the

single and two-objective optimizations since they improve the understanding of the

design space and helps the designer choose the appropriate configuration from the

Pareto surface of the three-objective optimization.
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5.3.4 Computational Effort

The NSGA-II based method found Pareto frontiers of near-optimum configurations

in the multi-modal design space using a population size of 32 members, with each

run propagated for 100 generations and then repeated 10 times, resulting in 32,000

function calls. On the other hand, a brute-force search, where each possible con-

figuration was checked, would demand a significant more number of function calls.

Figure 66(a) compares the numbers of function calls between the NSGA-II method

and a brute-force method that searched all possible port locations within a 2 m radius

with a grid resolution in the radial direction of 0.125 m and the angular direction of

60 deg. The resulting coarse grid is shown in Fig. 66(b). Deshpande et al. [46] did

not provide any computational data for their method, and thus it is not included in

this comparison.
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Figure 66: Comparison of computational effort between NSGA-II based method and
brute-force search.

For a two-port comparison, Fig. 66(a) shows that the brute-force method is slightly

better than the NSGA-II method, but the number of combinations searched by the

brute-force method quickly makes the NSGA-II method the best choice as the number

of ports being considered increases, even for a coarse search grid used in this com-

parison. One could use heuristics to reduce the number of function calls needed by
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the brute-force method, but it is unlikely to improve the performance of the NSGA-II

based method.

5.4 Observability-based Optimization Method

5.4.1 Observability and Cramér-Rao Lower Bound

Deshpande et al. [46] and the work in the previous section used the residual be-

tween the estimated parameters and the true parameters as the objective function

for FADS optimization. Although a proper metric for sensor locations sensitivity

during parameter estimation, the residual-based function is time intensive since an

inverse parameter estimation process has to be conducted every time the function is

evaluated. This also makes the objective function values dependent on the estimation

method chosen.

An optimized sensor suite should be independent of what specific estimation

method is used to process the observations leading to the concept of observability as

a measure of how well the state vector can be deduced from the outputs [93]. Observ-

ability metrics can be found for linear, time-invariant systems using the observability

Gramian, but are hard to calculate for nonlinear, time-varying systems [121], such as

FADS sensors on a re-entry vehicle. The Cramér-Rao Lower Bound provides a useful

substitute by defining the theoretical lower bound of the expected uncertainty for an

estimation process. CRLB is independent of the estimation method and is defined as

the inverse of the Fisher information matrix, which due to the Gauss-Markov The-

orem results in a simple inequality as shown in Eq. (32). In this expression, P is

the state covariance matrix, H is the measurement sensitivity matrix, and R is the

measurement noise covariance.

P ≥
(
HTR−1H

)−1
(32)

If the measurement uncertainties are uncorrelated and can be represented by an

identity matrix, the CRLB simplifies further to the expression in Eq. (33), which is
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only a function of the Jacobian of the measurement equation with respect to the state

vector (or H). For FADS, the measurement equation is the pressure measured by a

transducer and this value is a function of the transducer location, trajectory states,

and atmospheric conditions [56].

Plowest =
(
HTH

)−1
(33)

5.4.2 CRLB Sensitivity to Trajectory

Dynamic pressure (q∞), angle of attack (α), and sideslip angle (β) are often the pa-

rameters of interest in FADS applications [44, 40, 46, 45] and were also the quantities

for which MSL’s science objectives were specified [37]. These terms serve as the state

vector here, which means that H and the CRLB-calculated P will be calculated with

respect to these parameters. If only the diagonal of P is considered, then one gets

uncorrelated variance of each of the parameters of interest as seen in Eq. (34).

(
HTH

)−1
= Plowest =


σ̂2
α

σ̂2
β

σ̂2
q∞

 (34)

FADS optimization will locate a sensor configuration that minimizes the non-

normalized, standard deviation (σ̂) - square-root of the variance - for each parameter

of interest over the length of the trajectory. Due to multiple parameters of interest,

the function is multi-objective and the optimum configurations will be part of Pareto

frontiers. However, since the CRLB is calculated at a given trajectory condition,

there will be a CRLB for every trajectory point. The CRLB values throughout the

trajectory need to be combined into one objective function vector that describes a

metric of observability for a given FADS configuration.

To decide how to combine the various CRLBs into one metric, a sensitivity study

of the CRLB-based, parameter standard deviations was conducted. These standard

deviation values were normalized by the MSL science objective values, i.e. 0.5 deg.
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for angle of attack and sideslip angle and 2% of the actual dynamic pressure, to yield a

normalized standard deviation (σ). NSGA-II was used to find Pareto frontiers at a few

selected trajectory points for a seven-port configuration and the fronts’ sensitivities

to variations in trajectory were studied.

Figure 67 captures the Pareto frontier variation with Mach number. The range of

the Pareto frontier decreases at certain Mach numbers - signifying an improvement

in observability - but the trend is not based on an increase or decrease in Mach

number. This is somewhat surprising since the flow regime actually changes from high,

hypersonic speeds to low, supersonic speeds and one would assume that observability

would change with the flow regime.
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Figure 67: Sensitivity of CRLB to Mach number for the seven-port optimized config-
uration.

Instead, a stronger correlation is seen with dynamic pressure (Fig. 68), where

higher dynamic pressure values lead to lower standard deviations and better observ-

ability. Due to CRLB’s strong sensitivity to dynamic pressure, the metric used to

aggregate CRLBs from various points in the trajectory should sample different dy-

namic pressure values to have a diversity of q∞ conditions.

Angle of attack and sideslip angle also have an effect on the CRLB. Figure 69

displays the variation in Pareto frontiers at various sideslip angles for low q∞ and

high q∞ conditions. Varying the sideslip angle slightly leads to a discernible change
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Figure 68: Sensitivity of CRLB to dynamic pressure for the seven-port optimized
configuration.

in the Pareto frontier, suggesting that variations in this quantity should be captured

in the aggregate metric. Variations in angle of attack displayed similar trends.
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Figure 69: Sensitivity of CRLB to sideslip angle for the seven-port optimized config-
uration.

5.4.3 Objective Function Formulation

In this investigation, 20 sample locations from the test problem trajectory were se-

lected for the aggregate objective function. These discrete trajectory states are shown
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in Fig. 70 overlaid on the continuous trajectory. One can see that there has been equal

distribution given to low and high dynamic pressure values and a variety of angle of

attack and sideslip angles.
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Figure 70: Sampled trajectory points for the aggregate objective function.

Using these sampled points, the objective function f is defined in Eq. (35), while

the optimization problem is defined in Eq. (36) where ¯ is the component-wise, arith-

metic average of the objective functions. The inequality constraint in Eq. (36) is used

to maintain a minimum spacing between the n port locations (p) and this minimum

distance dmin is chosen as 5 inches as was done for the residual-based optimization.

f(p)i = [σα,i, σβ,i, σq∞,i]
T ∀ i = {1, · · · , k} (35)

min f̄(p)

s.t. |pi − pj| ≤ dmin ∀ i, j ∈ {1, · · · , n}
(36)
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5.4.4 Implementation and Computational Effort

The NSGA-II method is an evolutionary algorithm so finding the true Pareto frontier

is not guaranteed. The CRLB-based optimization was conducted with a population

of 128 candidate configurations over 500 generations and this process was repeated

10 times. The final Pareto frontiers were found using the combined results. Experi-

mentation showed that a population size of 128 provided a good distribution across

the design space to capture the near-optimal Pareto frontier and that 500 generations

were enough to reach a stable set of non-dominated points. This process required

640,000 function calls. These calls were made regardless of the type of configuration

being optimized, i.e. a three-port or a seven-port situation had the same number of

function calls. Additionally, the number of generations, population size, and number

of repetitions were selected with conservatism to ensure that the optimization con-

verged. It is possible that similar results could be achieved with far fewer function

calls.

On the other hand, a brute-force search, where each possible configuration was

checked, would demand a significantly larger number of function calls, especially as

one increased the number of pressure transducers being optimized. This is described

by Fig. 71 where the number of function calls using a Monte Carlo-like process on

a representative grid of possible transducer locations and the CRLB-based, NSGA-

II optimization process are compared. A smart culling process can reduce the grid

size and the number of possible combinations to evaluate, but as shown in Fig. 71

even a coarser search grid size uses significantly more function calls compared to the

NSGA-II optimization that uses a continuous search space.

In terms of computational speed, the CRLB-based objective function evaluation

took around 10−3 s using a 3.4 GHz Intel i7 processor, with a slight increase in

run time as the number of ports increased. On the other hand, the residual-based

objective function took close to 25 s per run using the same hardware, underscoring
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Figure 71: Function evaluation comparison between Monte Carlo-based search and
the CRLB-based optimization method.

the improvement in speed if the CRLB-based function is used. Deshpande et al. [46]

did not provide any computational data for comparison of their method.

5.5 Observability-based Optimization Results

5.5.1 Multi-objective Optimization Pareto Frontiers

The results of the CRLB-based FADS optimization are summarized in Fig. 72, which

shows different views of the Pareto surface formed by the three-objective optimization.

Pareto frontiers for three-port through nine-port configurations are shown. The two-

port configuration did not provide a converged Pareto frontier in 500 generations and

was excluded in this analysis.

Figure 72 shows that the Pareto frontiers come closer and closer to the origin

as the number of ports increase. This is not surprising, since empirical evidence

suggests that increasing the number of ports improves observability and leads to

a lower objective function value. It also appears that the frontiers coalesce upon

each other and not much is gained in observability after the six-port configuration.

A six-port configuration thus appears to be the point of diminishing returns. The

identification of the point of diminishing returns is investigated further later in this

section.
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Figure 72: Pareto frontiers from multi-objective optimization.

Some representative configurations from the Pareto frontier are shown in Fig. 73.

Although there is a structure to the port configurations, there was no constraint for

symmetry and thus the optimized configurations are non-symmetrical. The represen-

tative configurations chosen in Fig. 73 are for either minimum σα, σβ, or σq∞ and the

layouts exhibit these qualities. Dynamic pressure observability is achieved by placing

ports near the stagnation point, which for this trajectory was around y = 0 and z =

-1 m. Angle of attack observability is achieved by placing ports in the pitch plane on

either side of the origin, while sideslip angle observability is maintained in a similar

way except in the yaw plane. Numerical effects of the optimization are apparent in

Fig. 73(b), where intuition would suggest that all of the ports would have z = 0,

and Fig. 73(c), where all of ports don’t have y = 0. Due to numerical noise, the
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optimization may not capture these nuances very well.
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Figure 73: Port configurations from some representative points of the Pareto frontiers.

Although single objective optimal results are interesting to study, designers are

more interested in configurations that can achieve good performance in all of the

objective functions. Every point of the Pareto frontier is a non-dominated solution

and hence it is hard to pick one point over another; however, one can define an equally-

weighted compromise point which is closest to the ideal solution. The definition of

this compromise point may differ due to the type of weighting applied; however,

the simplest such compromise point would come from a linear weighting scheme.

Figure 74 explains the meaning of this linearized, equally-weighted compromise point

on a nominal Pareto frontier.

Figure 74: Definition of the linearized, equally-weighted compromise point of a Pareto
frontier.

Using the linearized, equally-weighted compromise point as a benchmark of a good

design, Fig. 75 shows some representative optimal configurations for various number of

ports. Some broad design ideas can be gleaned from these configurations. It appears
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that annular-like layouts - where ports are laid out in rings - are more preferred using

this benchmark than cruciform layouts that were seen in some past configurations

(Fig. 7). Additionally, many of these ports are concentrated near a ring of radius 0.5

m, which is near the area of a change in curvature as the aeroshell shape transitions

from a spherical segment to the sharp cone. A change in curvature or geometry

would make a port located in that region very sensitive to changes in the trajectory.

Finally, all of the configurations have a port or two located near the stagnation point,

suggesting that measuring pressure in this region improves observability of all of the

parameters.
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Figure 75: Port configurations of some of the linearized, equally-weighted compromise
points of the Pareto frontiers.

Interestingly, some of the configurations shown could be simplified further. For

example, the 7-port configuration in Fig. 75(c) shows two ports near z = −1. If these

two ports are combined to create a 6-port configuration, the objective function values

does not degrade significantly from the 7-port values. Thus, although numerical
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optimization can quickly narrow down the design space to a list of good designs, it

still leaves room for intuitive improvements by the designer.

The linearized, equally-weighted compromise point also allows one to visualize the

point of diminishing returns. The diminishing point is apparent in Fig. 76, where the

objective function values of the representative point of the Pareto frontier are plotted

for different port configurations. If one is interested in only dynamic pressure recon-

struction, a 5-port configuration seems to suffice as the point of diminishing returns.

The Pareto contours in Figs. 72(b) and 72(c) that contain dynamic pressure depen-

dency also support this assertion. However, when all of the parameters are considered

together, one needs at least 6-ports to reach the point of diminishing returns, since

the marginal return point is not reached for angle of attack and sideslip angle until

this port configuration as seen in Fig. 76 and the Pareto frontier in Fig. 72(a).

3 4 5 6 7 8 9
0

0.002

0.004

0.006

0.008

0.01

Number of ports

σ α

(a) Angle of attack

3 4 5 6 7 8 9
0

1

2

3

4

5
x 10

−3

Number of ports

σ β

(b) Sideslip angle

3 4 5 6 7 8 9
0

0.5

1

1.5
x 10

−3

Number of ports

σ q∞

(c) Dynamic pressure

Figure 76: Identification of the point of diminishing return for non-symmetric config-
urations using objective values of the linearized, equally-weighted compromise points.

5.5.2 Sensitivity to Pressure Models

The pressure model used to evaluate the objective function has a sensible effect on the

optimization results. In Sec. 5.5.1, a Computational Fluid Dynamics (CFD) derived

pressure distribution was used in the function evaluations. However, CFD results

have some uncertainties associated with them. One can use the classical Newtonian

model to represent the pressure distribution, as was done by Deshpande et al. [46].
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Figure 77 captures the effect of using various pressure distributions by showing the

Pareto frontiers for a 6-port configuration with the nominal CFD distribution, a

CFD-based distribution perturbed randomly by 5%, and a Newtonian distribution.
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Figure 77: Comparison of Pareto frontiers for the 6-port configurations using various
pressure models.

One does not see a major difference between the results of the two CFD-based

optimizations, but the Newtonian distribution’s Pareto frontier in the α-β slice ap-

pears less structured. Since the Newtonian distribution is based on a smooth func-

tion — 2 sin2 θ — there are multiple port configurations that have similar objective

function values and that makes the objective function space multi-modal.

Similar conclusions can be drawn when looking at the configurations described by

the Pareto frontiers. Figure 78 shows the minimum σα configurations for the 6-port
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case using different pressure models. As expected for a suite making angle of attack

more observable, all three configurations have transducers that are located on the

pitch plane and have sets of ports that are on either side of the origin to increase the

sensitivity to changes in the angle of attack. Due to the accumulation of ports in two

locations, it seems that if one was only interested in angle of attack reconstruction a

2-port solution could suffice. In reality, designers are interested in reconstructing more

than one parameter and hence would not be interested in an optimal configuration

for only one parameter.
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Figure 78: Optimal σα 6-port configuration using various pressure models.

The nominal and perturbed CFD-based configurations yield extremely similar

results, while the Newtonian configuration is different. As the CFD-distribution is

not as smooth as the Newtonian pressure distribution, the objective function space

is less multi-modal and the configurations shown in Figs. 78(a) and 78(b) represent

samples from a basin of attraction. The Newtonian distribution-based objective space

is more multi-modal and vastly different looking configurations are represented in the

Pareto frontiers.

This exercise underscores the need to use computational methods to optimize a

FADS suite and to tailor it for the proper conditions. Simply relying on engineering

judgment and pressure distribution predictions from one set of tools - the modus

operandi of designing FADS configurations in the past - is not enough to design a

robust sensor suite. The variations caused by using different pressure distributions
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can be significant.

5.5.3 Sensitivity to Trajectory Perturbations

One of the main assertions of this comprehensive FADS placement optimization pro-

cedure is to make the chosen configuration robust and optimal over the entire tra-

jectory. The effect of trajectory variations is clearly visible in Fig. 79 which shows

the Pareto frontiers of a 6-port configurations using the nominal trajectory defined in

Sec. 5.4.3 and another trajectory perturbed by 5% from the nominal. Even though

the perturbation is small, the Pareto frontiers show a visible difference.
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Figure 79: Comparison of Pareto frontiers for the 6-port configurations using various
trajectories.

The effect of trajectory variation is also apparent in the optimized FADS config-

urations for minimum σq∞ shown in Fig. 80. As expected, the ports optimizing the
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reconstruction of dynamic pressure are centered around the stagnation point. How-

ever, the slight difference between the optimal σq∞ nominal (Fig. 80(a)) and perturbed

(Fig. 80(b)) trajectory leads to a different looking port configuration. On the other

hand, Fig. 80(c) shows a very different looking configuration that does not have the

best σq∞ value for either case but is still robust to the two different trajectories. This

emphasizes the effect of trajectory perturbation and why FADS optimization should

be performed across the entire trajectory and not at a single point of the trajectory.

This way solutions that are robust to such perturbations can be found instead of

optima based on point designs.
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Figure 80: Optimal σq∞ 6-port configuration using different trajectories.

5.5.4 Optimization with Symmetry Constraints

Past FADS sensors have had symmetric configurations (Fig. 7) and the FADS op-

timization study conducted by Deshpande et al. [46] explicitly set symmetry as a

constraint. Due to the preference of symmetry in these past configurations, the opti-

mization was also conducted with a symmetric constraint to look at how this affected

the optimal configurations. The new objective function is shown in Eq. 37 and this

optimization was repeated with various numbers of even-numbered pressure ports.
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min f̄(p)

s.t. |pi − pj| ≤ dmin ∀ i, j ∈ {1, · · · , n}

pi,y = −pj,y ∀ i ∈ {1, · · · , n/2} and j = i+ n/2

pi,z = pj,z

(37)

The Pareto frontiers of the design space are shown in Fig. 81. Once again, 2-port

configurations were excluded due to their poor convergence in the optimization. The

number of ports that serves as the point of diminishing returns may be determined

using Fig. 82, which shows the objective function of the linearized, equally-weighted

compromise points. For certain objectives, like sideslip angle, there seems to be

little difference in objective value by increasing the number of ports and the point

of diminishing returns appears to be at 4-port configurations. If one is interested in

only sideslip angle reconstruction, a 4-port configuration could suffice. But overall,

considering all of the objectives at once, it appears that 6-port configurations are the

points of diminishing returns as the Pareto frontiers coalesce upon each other as the

number of ports increase and only marginal improvement in the uncertainty is gained

by increasing the number of ports.

The port configurations related to the linearized, equally-weighted compromise

point of the Pareto frontiers are shown in Fig. 83.

There are some generalizing trends that can be observed when comparing the rep-

resentative symmetric, linearized, equally-weighted compromise point configurations

with their non-symmetric counterparts in Fig. 75. Similar to the situation with the

non-symmetric cases, the optimal configurations appear to be annular rather than

cruciform shaped. The ring of ports are in the region where the aeroshell shape

transitions from a spherical segment to a cone. These design guides seem to reinforce

lessons learned from the non-symmetric optimization. However, upon comparing their
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Figure 81: Pareto frontiers from symmetric, multi-objective optimization for various
port numbers.
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Figure 82: The point of diminishing return of symmetric configurations found using
objective function values of the linearized, equally-weighted compromise point.

respective objective function values, as shown in Table 14, the effect of the slight dif-

ferences between the two optimizations are apparent. The table shows that although
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Figure 83: Configurations of the linearized, equally-weighted compromise points from
symmetric optimization.

the symmetric constraint leads to slight improvements in some objective function val-

ues over the non-symmetric cases, there is always one objective function value where

the symmetric case performs very poorly compared to its non-symmetric counterpart.

It can be inferred then that symmetric constraints may hinder the observability of

the sensor suite in some fashion over the non-symmetric constrained results.

Table 14: Comparison between non-symmetric and symmetric configurations using
the linearized, equally-weighted compromise points.

Percent difference from
Ports non-symmetric values

%σα %σβ %σq∞
4 57.30 -14.92 11.37
6 -13.26 37.22 -5.31
8 -27.12 32.55 -11.95
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5.5.5 Optimizing for Low Dynamic Pressure and Wind Speed Recon-
struction

The observability of angle of attack, sideslip angle, and dynamic pressure were opti-

mized by the objective function chosen in this study. However, wind speeds are also

often important parameters of interest, and there are techniques that leverage FADS

measurements and on-board IMU data to estimate these quantities [122]. Thus, the

observability of wind speeds can also be a quantity that is added to the objective

function. However, past studies have shown that the wind speed estimation is more

a function of the IMU-based velocity reconstruction [50], so other changes to the

objective function have to be also made to reflect this situation.

Another potential modification is to capture the effect of the measurement or

sensor uncertainty in the objective function. Recall that for this objective function

formulation the measurement noise covariance, R, was assumed to be an identity

matrix. In actual sensors, the measurement uncertainty varies based on the flight

regime or the dynamic pressure value and this can be reflected by varying R with the

trajectory. In fact, FADS transducers are usually classified as either high dynamic

pressure or low dynamic pressure sensors and engineers often design a port configu-

ration for only one of these situations. For example, the MEADS suite that flew on

MSL was only optimally calibrated for dynamic pressures above 850 Pa. although the

transducers continued to take pressure measurements well below that limit. So one

can optimize port configurations by including a varying R in the objective function

and obtain results where one set of ports are optimized for high dynamic pressure

regimes and another set is optimized for the low dynamic pressure regime.

5.6 Summary

The inclusion of FADS sensors can allow separation of aerodynamic and atmospheric

uncertainties when combined with on-board IMU data; however, the past FADS have
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not been optimized using a physics-based optimization routine. The methodology

developed here introduces an optimization technique that can help designers plan

the quantity and the locations of pressure transducers to reconstruct EDL flight

parameters of interest, such as angle of attack, sideslip angle, and dynamic pressure.

One of the method presented uses the residual between the best estimated trajec-

tory from a given data set and the true parameter values to optimize the location of

the ports. Since the design space is multi-modal and multi-objective, an evolutionary

algorithm that can handle multiple objective functions has been used to show results

for single-objective, two-objective, and three-objective optimization results. Using a

MSL-like trajectory as the test problem, these procedures give representative port

configurations that improve reconstruction performance from the MSL baseline.

The other method uses the concept of observability to determine the optimum

placement of sensors without considering the estimation method that will be used

to analyze the data. Specifically, the Cramér-Rao Lower Bound is used to define

the lowest possible standard deviation of the parameters of interest. The effect of

the trajectory is considered in creating the objective function value, and it is found

that dynamic pressure plays the most important role in the value of the Cramér-

Rao-based uncertainties. An evolutionary optimization technique is again used to

conduct the multi-objective optimization and Pareto frontiers are found for various

port configurations. The optimization is conducted at first without any symmetrical

constraints and then with symmetry enforced as constraint. In either case, it is found

that a 6-port configuration is the point of diminishing return for the test problem.

Hence adding an additional port after the 6th port has minimal gain.

These methods advance the state-of-the-art in sensor placement and design, specif-

ically for atmospheric data system optimization, and introduce residual and non-

residual based optimization methodologies that can be beneficial to the designer of

future Mars EDL atmospheric data systems. The methodology can also be used to
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find the design parameters that provide the optimized configuration of atmospheric

data sensors without a priori weighting criterion. The optimization technique shown

here together with the Pareto dominance concept allows a designer to locate most

of the best configurations in a short period of time and thus allows for the optimal

placement of sensors while also identifying trends useful in the design of future FADS

instrumentation.
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CHAPTER VI

IMPACT ON EDL VEHICLE DESIGN

Many different uncertainties facing EDL design were discussed in Chapter 1. These

uncertainties lead to conservatism in design and ultimately to decreased potential

performance. Of course, mission success is the ultimate goal and thus conservatism

has remained in the design process. Mars EDL design has also suffered from a dearth

of Mars-like test facilities on Earth, leading to few ways that uncertainties can be

reduced in engineering design tools. However, with larger and more diverse types

of data being collected during EDL, there is a possibility that techniques like the

estimation methodology presented in this thesis and its reconstruction products can

decrease the uncertainties inherent in engineering tools. This chapter looks at the

impact of the estimation methodology on EDL tool maturation. Specifically, the

chapter considers the maturation of aerodynamic databases and atmosphere modeling

tools, since these two areas have some of the largest effects on uncertainties and

margins for EDL vehicle design.

6.1 Aerodynamic Coefficients Modeling

Although the U.S. has been flying the same aeroshell shape to Mars since the 1970’s,

the uncertainties in the aerodynamic database have not been significantly reduced.

Static aerodynamic coefficient uncertainties were shown in Table 1 in Chapter 1 and

one observes that the uncertainties for various parameters have at best remained

the same and in some instances have increased despite better modeling capabilities.

This section considers the current methods of aerodynamic uncertainty modeling

and provides recommendations on how the estimation methodology developed in this

thesis along with future instrumented missions can lead to reductions in aerodynamic
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database uncertainties.

6.1.1 Uncertainty Modeling for Aerodynamic Quantities

When the Viking aerodynamic database was created in the 1970’s, very little CFD

was used to determine the coefficients and the manner in which the uncertainties were

defined are not well documented [123]. Interestingly, the dispersions for the Viking

aerodynamics are smaller than what are used currently for 70-degree aeroshells for

Mars EDL applications [17]. Instead, the current aerodynamic uncertainties owe their

origins to work done for Mars Pathfinder and following missions.

Mars Pathfinder’s aerodynamic database was a combination of data from CFD

analysis and Viking-era ground test results [124]. The uncertainties were a function of

the computational model uncertainties and measurement uncertainties of the Viking-

era tests [124, 13]. Location of the sonic line, real gas effects, and other modeling

assumptions led to compounding uncertainties on the aerodynamic database [13].

The Pathfinder aerodynamic database was further expanded for MER and Phoenix

with detailed analysis for certain phenomena. Dynamic stability of the vehicle in su-

personic condition, a situation difficult to model using current CFD tools, led to a

reliance on ballistic range test data for pitch damping characterization [75] at a cost

of significant uncertainty. The possibility of aerodynamic shape change due to ab-

lation led to increase in uncertainties in rolling moment for Phoenix [8], a situation

that was not even considered for the previous missions. Since Mars Science Labora-

tory was a non-spinning, lifting vehicle, the aerodynamic database development for

this vehicle involved additional simulations that considered the effect of turbulent

boundary layer on aerodynamic coefficients [17, 125]. Improved modeling of aerody-

namic shape change due to ablation and effect of reaction control system interaction

in aerodynamic coefficients also affected the uncertainties.

The lesson gained from the development of the aerodynamic database since the
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Viking era is that although the general shape of the aeroshell that has been flown

on Mars since the 1970’s has been the same, newer computational and Earth-based

experimental techniques have only reduced some forms of aerodynamic uncertain-

ties. There remains unfulfilled promise in utilizing flight data to reduce the existing

uncertainties in the aerodynamic database.

6.1.2 Updating Uncertainty Models with Flight Data

6.1.2.1 Opportunities to Update Uncertainty Models in the Past

Flight data have long provided opportunities to validate values and uncertainties in

aerodynamic databases. Flight data have measurement uncertainties that can be

resolved using available pre-flight calibration data and there are no issues regard-

ing matching flight-relevant conditions that are faced with wind tunnel and ballistic

range tests. However, sensors on-board EDL vehicles often do not directly measure

quantities that have the largest uncertainties such as aerodynamic coefficients and

the inference to go from what is measured to what is desired compounds additional

uncertainties. The inability of past flight data to measure quantities with the largest

uncertainties directly is one of the main reasons that aerodynamic database uncer-

tainties have not decreased despite data from seven successful Mars missions.

Flight data from the Viking landers included both IMU and pressure measure-

ments from the aeroshell using FADS sensors. One of the ports of the FADS configu-

ration was strategically placed at the stagnation point (Fig. 7(c)) so that the aerody-

namic coefficient reconstruction could be simplified to the formulas in Eqs. (38)- (40).

However, there were no direct measurements of the atmospheric density (ρ∞) or wind

speeds (a component of V∞) and the uncertainties in those values along with the

measurement uncertainties of FADS and accelerometer did not provide enough un-

certainty resolution to decrease the aerodynamic database uncertainties further.
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ρ∞V 2

∞S
(40)

Data from Pathfinder, MER, and Phoenix consisted of IMU measurements (as

shown in Table 2 in Chapter 1), which by itself did not provide enough informa-

tion to separate aerodynamic uncertainties from atmospheric uncertainties. In fact,

Pathfinder only had accelerometer data, so even the attitude reconstruction of the

vehicle was based on assumptions, adding additional uncertainty to the reconstructed

aerodynamics [13]. Due to the large atmospheric uncertainties, aerodynamic uncer-

tainties could not be determined at a level to warrant decreasing database uncertain-

ties.

6.1.2.2 Past Difficulties in Aerodynamic Reconstruction with both FADS and
IMU data

The addition of FADS sensors to IMU for MSL was intended to separate aerodynamic

and atmospheric uncertainties [37]. Chapter 2 detailed the estimation methodology

used to reconstruct trajectory, atmosphere, and aerodynamic coefficients concurrently

using both FADS and IMU data. Refs. [60] and [126] describe other ways to recon-

struct EDL parameters from FADS and IMU data sets. However, all of these methods

use the FADS measurement equation presented in Sec. 2.2.1 as a way to bridge pres-

sure values on the aeroshell to freestream values across the shock. Since the FADS

measurement equation uses a CFD-based model for predicting surface pressure dis-

tribution, the uncertainties in the CFD model also translate into uncertainties in

the estimated freestream and angular quantities [10]. Additionally, the measure-

ment equation is also a function of Mach number, which is defined in Eq. (41). The
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speed of sound (a) is in turn a function of freestream pressure and density while

the freestream velocity is a function of the wind speed, all quantities that are not

independently observed by sensors other than a FADS. Due to the lack of enough

independent data, Mach number is extremely hard to estimate with low uncertainty,

as was seen in Figs. 17, 28, and 51. Moreover, Karlgaard et al. [60] also show that

Mach number is extremely hard to estimate using solely FADS data for M∞ ≥ 3. The

large Mach number uncertainties increase the uncertainties of parameters estimated

with the FADS data and do not provide enough justification to decrease aerodynamic

uncertainties in the database.

M∞ = V∞/a = (V − Vwind) /
√
kP∞/ρ∞ (41)

The difficulty of reconstructing Mach number also has parallels with other pa-

rameters like wind speed and freestream density that are needed for aerodynamic

modeling. The estimation methodology developed in this thesis assumed that wind

speed was negligible, but wind speed uncertainty is not negligible when one intends

to decrease uncertainties in aerodynamic databases. Unfortunately, neither FADS

measurements nor IMU data provide a way to separate wind speeds from inertial

velocities in a non-unique manner. Ref. [50] refers to ways in which to estimate wind

speeds within a statistical estimation framework, but wind speed estimation using

that method can lead to non-unique answers and that certainly does not engender

confidence in reducing aerodynamic coefficient uncertainties.

Additionally, although the methodology from Chap. 2 shows a way to estimate

freestream density as a quantity by itself, in reality an estimation algorithm needs a

very good estimate of velocity to separate freestream density from dynamic pressure,

which is actually the quantity that is observed by FADS and IMU data. One can

see this phenomena when one looks at the uncertainty in estimated dynamic pressure

(such as in Fig. 25(f)) and the uncertainty of freestream pressure (in Fig. 24(b)). The
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estimated dynamic pressure uncertainty is low throughout the trajectory compared

to the density uncertainty, which only improves in the region where both FADS and

IMU data are available and hence there is a very good estimate of dynamic pressure

and velocity.

All of the above difficulties do not mean that aerodynamic quantities cannot be

estimated with good certainty. Results from the MSL flight data set presented in

Chapter 4 in Figs. 52 and 53 showed reconstructed aerodynamic coefficients and their

uncertainties using the estimation methodology presented in this thesis. Independent

MSL reconstructions from Ref. [10] agreed with these uncertainty estimates. Sim-

ulated data results in Chapter 3 showed that the estimation methodology with the

current set of data may already quantify the aerodynamic uncertainties at the level

of the aerodynamic database (see Fig. 35(d)). However, the current data collected

on-board EDL vehicles still leaves high uncertainty in quantities like the speed of

sound, wind speed, and freestream density, whose uncertainty creeps into the esti-

mated aerodynamic coefficient uncertainties.

6.1.3 Improving Future Aerodynamic Uncertainty Quantification

One way in which uncertainties can be improved when FADS and IMU data are com-

ponents of the data set is by optimizing the location of the FADS sensors. Chapter 5

provided methods of optimizing the placement of the FADS sensors for a residual-

based approach where the accuracy of the estimate was the objective function or an

observability-based approach where the uncertainty of the estimation process was the

objective. Either approach can lead to a data set that produces smaller uncertainties

for the estimated angle of attack, sideslip angle, and freestream quantities, fueling re-

ductions in aerodynamic parameter uncertainties derived from these quantities. The

optimization process also provides a framework to add estimation of other param-

eters with high uncertainties, such as wind speed, to the objective function. Thus,
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certain FADS ports can be placed in locations that are most sensitive to wind speeds.

This will lead to lower uncertainty on wind speed that will lower uncertainties on the

derived aerodynamics.

Another way to improve the models is to directly measure the quantities that have

high estimated uncertainties. One of the largest drivers of current aerodynamic un-

certainty is the inability to separate freestream density uncertainty from the dynamic

pressure uncertainty. Freestream density can be directly estimated using mass spec-

trometers and nephelometers, two types of instruments that have flown previously

on planetary entry missions. Figure 84 shows schematics of mass spectrometers and

nephelometers that have flown on past planetary entry missions.

(a) Viking Mass Spectrometer [127]

(b) Galileo Nephelometer [128]

Figure 84: Possible in-situ sensors for atmospheric density measurements.

Mass spectrometers ionize captured gas particles which then are transported to

the mass analyzer using magnetic or electric fields. The instrument can calculate

number density and molecular weight of the gas, which when combined leads to mass

density of atmosphere. A nephelometer measures the light scattered by atmospheric
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particles and leads to information like the particle size, phase, and number density

of the atmosphere, which again can be combined to find the mass density of the

atmosphere. Mass spectrometers have been widely used by early atmospheric probes

to planetary bodies like Mars, Venus, Earth, Jupiter, and Titan [127, 129, 130, 131,

132, 133, 134, 135]. Nephelometers have also been used on multiple planetary bodies,

but their use has not been as widespread as mass spectrometers [128, 136, 137]. In

almost all cases, the mass spectrometers and nephelometers have been mounted on

the side of the aeroshell and the instruments have been operated in many different

flight regimes. Although the quality of the data from these past examples has not been

great, with advances in instrumentation technology [137], one may expect a significant

reduction in uncertainty of atmospheric density by directly measuring the quantity.

Gains in density uncertainty quantification can translate into improved aerodynamic

uncertainty quantification and improvements in the aerodynamic database.

Wind speed and Mach number uncertainties are the other large drivers of cur-

rent aerodynamic uncertainties. Anemometers, which primarily are used to mea-

sure flow speed, can be combined with physics-based relations to measure winds and

Mach number. Anemometers have not flown on past planetary entry missions and

may not operate in hypersonic conditions. However, there has been some limited

work to demonstrate supersonic flow anemometers, where a constant temperature

hot wire is exposed to the flow and the change in resistance is converted to flow

speed [138, 139, 140]. Reducing uncertainties in the supersonic regime is especially

critical since one sees the highest uncertainties in the aerodynamics in this regime

(see Table 1). Targeting instruments that directly measure atmospheric parameters

for this regime can be extremely beneficial for future EDL design, since there are

relatively large aerodynamic uncertainties that directly affect key EDL events like

parachute deployment. Additionally, instruments like FADS are not as effective in

this regime as they are currently construed. Direct measurement of the wind speed
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and an estimate of the Mach number with improved uncertainties can lead to much

improved uncertainty estimates of the aerodynamics and provide enough rationale for

lowering current aerodynamic uncertainties.

The effect of these additional data sets on EDL reconstruction are demonstrated

in Fig. 85. For this analysis, the nominal simulated data set from Chapter 3 is reeval-

uated using the estimation methodology and Adaptive filter with additional sensors

that improve the accuracy of the freestream density and velocity. Table 15 summa-

rizes the accuracy of the freestream density and velocity assumed for the analysis.

The assumptions for the data accuracy are not based on actual sensor specifications

of any current existing device; instead, accuracy values were selected to make the

accuracy of these freestream quantities on par with other parameters with specific

accuracy objectives. For example, MSL had a science objective to reconstruct dy-

namic pressure to within 2%. For this analysis, the two components of dynamic

pressure - density and velocity - were simulated to be accurate within 1% using two

new sources of data in addition to IMU and FADS.
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Figure 85: Effect on aerodynamic uncertainty quantification with augmented EDL
data sets.

The results from Fig. 85 show that having a data set with direct and accurate
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Table 15: Accuracy of data assumed for uncertainty quantification analysis.

Data Type % Accuracy (3σ)
Freestream Density 1%
Freestream Velocity 1%

measurements of freestream density and velocity significantly improves uncertainty

quantification. The density data could be provided by mass spectrometers or neph-

elometers, while the accuracy in the freestream velocity could be due to improvements

in measuring wind speeds, speed of sound, or both. The analysis suggests that pro-

viding accurate observations of both of these parameters can reduce aerodynamic

uncertainties even in the supersonic regime (near and after 200 s for this trajectory),

an area where there are large uncertainties in the current aerodynamic database. The

low dynamic pressure, supersonic regime is also an area where aerodynamic estimates

based on current EDL FADS implementations have large uncertainties.

Of course, due to safety of the EDL vehicle adding several on-board sensors that

are exposed to the flow might be unreasonable from a risk-management point of view.

One possible solution that has been discussed recently after MSL’s successful landing

is to instrument the ballast weights that are discarded during EDL and then transmit

data from these separate sounding probes. The ballast weights encounter similar

atmospheric conditions as the main vehicle and directly measuring these atmospheric

parameters may resolve the uncertainties plaguing aerodynamic modeling.

If the number of sensors providing measurements for a data set increase, using

improved estimation methods for reconstruction becomes a necessity. The statistical

estimation methodology provides a good framework to incorporate multiple, disparate

data types and allows the estimate to be biased towards measurements with higher

certainty. Additionally, it was seen in Chapter 3 that some higher-order methods

suggested by the methodology, such as Unscented Kalman filter and Adaptive fil-

ters, show improvement in uncertainty quantification over lower-order estimators like
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the Extended Kalman filter that are currently used in the EDL community. So di-

rect measurements of parameters with high uncertainties combined with improved

estimation methodologies such as the one developed in this thesis show promise of

decreasing aerodynamic uncertainties in future engineering models.

6.2 Atmosphere Modeling

Atmospheric parameters have a large effect on the uncertainties of EDL vehicle per-

formance as was shown in Fig. 6 in Chapter 1. In this section the state-of-the-art of

atmospheric modeling for EDL design is discussed and consideration is given to how

atmospheric reconstruction can improve future modeling efforts.

6.2.1 Current Atmospheric Modeling Techniques

The various models used to predict atmospheric conditions during EDL can be broadly

divided into three categories: general circulation models, mesoscale models, and

global reference models. Each model has a different level of fidelity and computa-

tional intensity, but should not be considered completely distinct since one type often

relies on another type of model for the initial conditions.

General circulation models are finite difference tools that solve differential equa-

tions that describe meteorological phenomena. One can make a comparison to com-

putational fluid dynamics to describe the mechanism of general circulation models

and in fact many circulation models solve the Navier-Stokes equation as one of the

governing equations. Since they are global in nature, the computational grids used

by the circulation models are coarse and thus the models are not able to account

for many phenomena at finer scales such as winds and large temperature inversions

near the ground. Still, general circulation models give bulk parameter predictions

and often serve to provide initial profiles for other tools. The most-used general cir-

culation model for Mars EDL design is the NASA Ames Mars General Circulation

Model (MGCM). The model has a long legacy and has been verified with several
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lander data, such as measurements from Viking, Pathfinder, and MER, and orbiter

observations from Mariner 9, Mars Global Surveyor, and Mars Reconnaissance Or-

biter [141, 142, 143].

Recently, more focus has been given to the simulation of atmospheric properties

near the Martian surface since orbiter instruments routinely give very good infor-

mation about the upper atmosphere. General circulation models cannot simulate

the active dynamics in this part of the atmosphere very well. Mesoscale models have

tried to fill this gap. The differences between mesoscale models and general circulation

models are in the way mesoscale models simulate turbulence for the boundary layer

near the ground through large eddy simulations and deal with non-hydrostatic fea-

tures of the atmosphere. Additionally, mesoscale models use nested grid schemes that

improve the resolution of small scale atmospheric features. An example of a nested

grid configuration is shown in Fig. 86 along with an example of the high-resolution

atmospheric predictions from mesoscale modeling. Commonly used models of this

class include the Mars Regional Atmospheric Modeling System (MRAMS) and the

Mars Mesoscale Model 5 (MMM5). These models have been verified with flight data

from Viking, Mars Pathfinder, and Phoenix and were used during the design phase of

MSL [4, 22, 23, 144, 145, 146]. Although these models are better than the general cir-

culation models in predicting smaller scale atmospheric features, both MRAMS and

MMM5 need initial and boundary conditions that are provided by general circulation

models like MGCM.

Global reference atmosphere models (GRAM) are engineering-level prediction

tools that use databases of atmospheric simulation results found by general circu-

lation models or mesoscale models. Parameterizations that realistically simulate the

dynamics in pressure, temperature, and density without solving the Navier-Stokes

equations make GRAMs computationally fast. The most commonly used GRAM for

Mars EDL applications is Mars-GRAM that has been verified with flight data from
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(a) Nested grids in MRAMS [4] (b) Winds at Gale Crater using
MMM5 [4]

Figure 86: Mesoscale model grid configuration and resulting high-resolution atmo-
spheric predictions.

Mariner 9, Viking, Pathfinder, and recent orbiters [24, 83]. Despite the computational

advantages associated with GRAMs, these models need some independent source of

atmospheric data to make these predictions. Hence, these models are dependent on

general circulation models, mesoscale models, or high-resolution flight data sets from

on-board orbiters.

6.2.2 Current Procedures for Updating Models

The performance of atmospheric models for Mars are often verified against flight

data from orbiters and probes; yet, the simulation parameters can be modified in

non-unique ways to achieve similar results. Therefore, the adjustment of many of

these parameters are done on an ad hoc basis, with trial-and-error and expert judg-

ment used to match the flight data. Designers of general circulation models typically

adjust parameters like the mean optical depth or sample the results at various fre-

quencies to get consistent predictions [141]. Mesoscale models often ignore the first

few days of simulation results for the atmosphere to “spin-up” properly and may need

to adjust parameters for polar cap movement that is a large forcing function on the
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environment [145, 146]. Although these adjustments lead to great agreement between

the model results and flight data, these adjustments do not lead to accurate predic-

tions of atmospheric conditions for future missions. Instead, fresh radio occultation

data from orbiters, Earth-based observations, and in the rare cases measurements of

the surface conditions are used to readjust the models for better performance in the

future [4].

GRAMs also go through an adjustment process when new flight data are available

for verification efforts. Since GRAM predictions are based on general circulation

model and mesoscale models in the first place, adjustments in the high-fidelity models

make their way into GRAM as well [82, 83]. However, additional adjustment factors

are used to improve the match to the flight data. Mars-GRAM adjusts parameters

such as the daily mean density and pressure that are used to bridge table look-up

data from MGCS used for lower levels of the atmosphere and data from troposphere

models used for the upper atmosphere [147]. Although these values have to satisfy

some physical laws, such as the gas law and the hydrostatic equation, their values are

not tied to directly observed quantities. Such adjustments make GRAM predictions

very accurate and have low uncertainties for times when independent flight data

are available (see Fig. 87), but do not provide any justification to believe that such

accuracy is extensible for future missions.

The procedure for atmospheric modeling used during the design and landing site

selection process for MSL represents the current state-of-the-art. A mixture of general

circulation, mesoscale, and global reference atmosphere models were used to charac-

terize the atmospheric environment and uncertainties for MSL’s entry. MGCM was

used to model the seasonal exchange of CO2 that dominates the dynamics of Mar-

tian atmosphere [4]. Surface pressure predictions were made by reanalyzing the Mars

Global Surveyor’s Thermal Emission Spectrometer data set. The surface pressure

predictions along with the MGCM-determined boundary conditions served as initial
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(a) 99th-percentile uncertainty bounds for
density after adjustments [147]

(b) Density ratio versus Global Surveyor
data after adjustments [147]

Figure 87: Mars-GRAM predictions compared to flight data before and after adjust-
ments.

conditions for MRAMS and MMM5, the two mesoscale models. Finally, the two

mesoscale model results were turned into usable engineering data by using the frame-

work of Mars-GRAM to quickly generate density and temperature profiles for use in

EDL simulations [23, 25]. In addition, the Mars Climate Sounder on-board the Mars

Reconnaissance Orbiter provided high-altitude vertical profiles of the atmosphere to

test and tune the models. The mesoscale and general circulation models-derived at-

mospheric profiles allowed EDL designers to tune the entry system to meet design re-

quirements. Ultimately, post-flight reconstructed atmospheric profiles from MSL were

shown to be in great agreement with the pre-flight atmospheric predictions [60, 114].

6.2.3 Recommendation for Improving Future Models

Chapter 2 provided a procedure for reconstruction of atmospheric states and uncer-

tainties from typical Mars EDL data and sample reconstruction products were shown

in Chapters 3 and 4. Although, the reconstructed profiles from EDL data set can

provide an accurate estimate of a vertical profile of the atmosphere at one epoch,

the current atmospheric models do not gain much from an observation from one time

point. Instead, the physics-based models, like the general circulation and mesoscale

models, benefit more from data sets for large time periods over large swaths of a
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planet. That type of data are most easily provided by orbiters rather than probes.

Probe data is useful for validation exercises of models, but the tuning done to models

to match probe flight data is not enough for accurate and highly certain predictions

for future.

Ultimately, EDL reconstruction of atmospheric profiles by the estimation method-

ology does not seem to be the best way of maturing of state-of-the-art atmospheric

models. Instead, continuous observations of atmospheric data, whether from orbiters

or from ground stations, are the most beneficial way of improving atmospheric pre-

diction tools. EDL atmospheric reconstructions using the estimation methodology

can be valuable verification data for the updated models, but the extensibility of the

models only occurs when the data are not limited to one epoch as is the case with

EDL data.

6.3 Summary

One of the major motivations for the estimation methodology developed in this the-

sis is to improve uncertainty quantification of EDL parameters and feed-forward that

information to improve EDL engineering models. The inability of current on-board

sensors to directly observe many EDL parameters of interest has led to large uncer-

tainties in some engineering models that has left conservatism in the design procedure.

If the performance of future vehicles has to be improved, one needs to systematically

reduce the uncertainties in current engineering tools.

Uncertainties in the aerodynamic database have a significant effect on EDL vehi-

cle performance. Assumptions in modeling techniques such as CFD and Earth-based

testing have left some of the uncertainties in the database. Past flight data have

not remedied the situation, since several quantities that affect aerodynamic uncer-

tainties are not directly observed. Introducing FADS to the typical EDL data sets
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also have not improved the situation significantly since there are still other uncertain-

ties and assumptions that are needed to process the new data type. Some possible

solutions include optimizing the FADS sensor layout, the topic of Chapter 5, to tar-

get the estimation of uncertain parameters and improve the uncertainty modeling

of most freestream and orientation angles so that these improvements feed-forward

into the aerodynamic estimation. Additionally, directly measuring other uncertain

parameters, such as freestream density, wind speed, and Mach number, through mass

spectrometers, nephelometers, and anemometers can further reduce the overall uncer-

tainty in the aerodynamics. Integrating in-situ measurement of these less observable

parameters with the estimation methodology of this thesis can yield large gains in

aerodynamic uncertainty quantification and improve the design of future EDL vehi-

cles.

However, the results of the EDL estimation methodology is less likely to improve

atmospheric modeling. The variable nature of atmospheres makes the estimation

methodology and probe data in general not suitable for maturing atmospheric models.

Instead, continuous observation of the atmosphere using on-ground meteorological

stations and orbiters may be the best method of predicting atmospheric profiles with

low uncertainties for future design.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Summary of Contributions

This thesis has demonstrated a statistical estimation methodology for entry, descent,

and landing parameters of interest that is also applied to improving current EDL

vehicle design. The methodology was designed specifically for the estimation of ve-

hicle trajectory, atmosphere, and aerodynamic parameters, which are simultaneously

reconstructed by blending a disparate set of on-board data. The method was tested

with simulated data and also applied to flight data from the Mars Science Laboratory

mission. Additionally, the estimation methodology is applied to the optimization of

flush atmospheric data systems and investigating the effect of improving engineering

tools used in conceptual EDL design using products of the reconstruction method-

ology. A short summary of the academic contributions from this thesis is provided

below and Table 16 shows the chapters associated with each contribution.

Table 16: Traceability of academic contributions.

Contribution Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6
Development of comprehensive method-

X X X
-ology for parameter reconstruction and
uncertainty quantification while
blending dissimilar EDL data set
Demonstration of design methodology

X
for future atmospheric data systems
Investigation of the effects of the statist-

X X X
-ical reconstruction methodology
on vehicle design through
improved engineering models
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7.1.1 Comprehensive Methodology for Reconstruction and Uncertainty
Quantification

As the crux of the thesis, the statistical estimation methodology developed in Chap-

ter 2 creates a framework for estimating an EDL vehicle’s trajectory, atmosphere, and

aerodynamics from on-board data taken by most re-entry spacecraft. The methodol-

ogy is an amalgamation of statistical techniques and improves upon the performance

of currently accepted techniques used for EDL reconstruction.

One key component of this methodology is that the process equations use aero-

dynamic coefficients that are a function of the estimation state vector instead of

sensed IMU acceleration for velocity state propagation. This distinguishes the current

method from what is traditionally done for EDL reconstruction, but more importantly

allows IMU accelerometer data to be treated as a measurement rather than a com-

ponent of the process equations. Treating the accelerometer data as a measurement

provides an additional data source besides FADS to sense freestream conditions.

Moreover, the methodology is one of the few EDL estimation methodologies that

incorporates multiple data types together at the same time in a general manner. The

current method blends accelerometer, gyroscope rates, FADS, and radar altimeter

data, although the framework is suitable for other data types as well. Blending

different data types allows the statistical estimator to bias the state estimates towards

measurements with less uncertainty. Additionally, since the methodology is composed

in a general manner, it is easily extensible to a wide range of estimation challenges.

Three different estimation techniques - EKF, UKF, and Adaptive filter - are avail-

able within this framework. Although EKF has been frequently used for non-linear

filtering and sometimes for EDL reconstruction, UKF and Adaptive filter have not

been commonly applied to EDL estimation. In fact, this thesis is the first applica-

tion of an Adaptive filter for EDL reconstruction and the only application of UKF

where the effect of the process noise has not been ignored. Each filter has its unique
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strengths and when all three filters are available, an analyst is able to obtain a com-

plete picture of EDL parameters. This is especially critical in situations where the

truth is unknown, like most flight applications. Guidelines for choosing a certain filter

are discussed in more detail in Sec. 7.2.

The estimation methodology has been validated using both simulated data and

flight data. Chapter 3 presents estimation results when the methodology is applied to

a nominal EDL data and a dispersed version of the nominal data with atmospheric and

aerodynamic perturbations. The simulated data provide a proof-of-concept, since the

true states are known. In both nominal and dispersed cases, all three filters had decent

estimation performance with the Adaptive filter yielding the most accurate estimates.

Since no true estimates of the uncertainties were available, the classification of the

uncertainty estimation performance is based on the size of the confidence bounds.

Based on this criterion, the UKF and Adaptive filters had the best performance

since they displayed tighter confidence bounds than the EKF. The reconstruction

methodology was also applied to the on-board Mars Science Laboratory data and

the results were presented in Chapter 4. All three estimators had great agreement in

the estimated trajectory, atmosphere, and aerodynamics although there were slight

differences in the estimated uncertainties between the three filters.

The statistical estimation methodology combines aspects of many different nu-

meric techniques to create a unified framework to estimate trajectory, atmosphere,

and aerodynamic properties of EDL vehicles from on-board data. Although EDL

reconstruction has been a topic of interest for a long time and several techniques have

been applied to the problem in the past, the methodology presented in this thesis

provides a comprehensive assessment that reconstructs most parameters of interest

for EDL and provide statistics on the associated uncertainties while utilizing two or

more data types as measurements to leverage the most information from the data set.

The flexibility of the methodology also allows it to be applied to situations that lead
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to improvements in current EDL vehicle design.

7.1.2 Design Methodology for Future Atmospheric Data Systems

One of the most straightforward ways the statistical estimation methodology can be

applied is to optimize the design of the flush atmospheric data systems as shown in

Chapter 5. FADS sensors are extremely useful for the EDL reconstruction process

as they provide information about the vehicle’s orientation and sensed freestream

atmospheric properties. However, the design of past FADS layouts has been based

on engineering judgment and heuristics. On occasions that the sensor layout has

been optimized, the optimization was based on a point in the trajectory yielding a

configuration that was not robust to other points of the trajectory or off-nominal

conditions.

This thesis presents a new design algorithm for Mars EDL FADS instrumentation

that leverages the statistical reconstruction and uncertainty quantification method-

ology to create guidelines for placement of sensors on EDL vehicles. The FADS

instrumentation methodology presented here is the first attempt at casting the FADS

sensor placement problem as multi-objective optimization problem. Results of the

optimization lead to Pareto surfaces, presenting a designer with choices that fit a

multitude of optimal criteria while only performing the optimization once. Two dif-

ferent philosophies are presented for FADS optimization.

The first approach is residual-based where the accuracy of the reconstruction con-

ducted by a configuration drives the optimization. Simulated data are created for

each configuration being tested and the estimation methodology is applied to recon-

struct angle of attack, sideslip angle, and dynamic pressure. The residual between the

estimated quantities and their true counterparts is quantified as an objective func-

tion, which is used by a multi-objective, non-dominated sorting Genetic Algorithm
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find components of the Pareto surface. The objective function formulation is time-

intensive, since an estimation must be conducted for each design parameter; however,

keeping the estimation method in the loop allows the designer to optimize the sensors

for best performance by the subsequent reconstruction effort.

The second approach is to maximize the observability of a configuration. The

Cramér-Rao Lower Bound is used to quantify uncertainties of the estimation. This

approach is less time intensive than the residual-based approach and the optimized

results are also independent of any specific estimation technique. However, every

point in the trajectory has an unique CRLB, so one must develop means to aggregate

the various bounds in an appropriate manner.

Both approaches to FADS optimization provide designers with many candidate

solutions and also yield important design trends for improving data quality. An

important consequence of the optimizations was the identification of the point of

diminishing returns. Bandwidth limits for on-board sensors on planetary entry mis-

sions make it crucial to make FADS configurations as efficient as possible in order to

capture important measurements under a range of conditions.

7.1.3 Effects of the Statistical Reconstruction Methodology on Vehicle
Design

One of the main goals of developing this estimation methodology is to improve uncer-

tainty quantification of EDL parameters such that current engineering models can be

improved. Aerodynamic parameters contain some of the largest uncertainties in EDL

design so the effect of the estimation methodology on improving models for these

quantities was studied.

Uncertainties in the current aerodynamic database stems from assumptions in

modeling techniques and uncertain results of in Earth-based testing. The data set of

past missions have not reduced many of these uncertainties since the parameters that

have the largest uncertainties, such as freestream density, speed of sound, and wind
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speeds, are not directly measured. Without these direct measurements, the estima-

tion methodology cannot improve aerodynamic uncertainty significantly and cannot

provide the rationale for reducing uncertainty in the current engineering models.

However, improvement can be achieved by optimization of current sensors, such as

FADS, to target the estimation of uncertain parameters and improve the uncertainty

modeling of freestream and orientation angles in order to decrease uncertainty in the

derived aerodynamic quantities. The most effective way to reduce aerodynamic un-

certainty is to directly measure these uncertain quantities. Suggested sensors include

mass spectrometers, nephelometers, and anemometers to reduce the uncertainty in

the aerodynamics by directly measuring freestream density, wind speeds, and Mach

number.

7.2 Filter Choice Recommendation

A major portion of this thesis consisted of applying three different statistical esti-

mators for EDL reconstruction. EKF has been the standard of choice in non-linear

filtering in many fields and Adaptive filtering has also been generally used since its

initial introduction in the 1970’s. UKF, developed in the late 1990’s, has also been

generally applied in non-linear filtering since computationally-intensive, Jacobian ma-

trices do not have to be calculated. EDL reconstruction has largely been the purview

of deterministic methods. When statistical estimation methods have been used, it

has been largely EKF. Since three different methods were evaluated in this thesis us-

ing both simulated and actual flight data, recommendations are provided here about

when to use a specific type of estimator. Although Wells also provides some guidelines

in Ref. [28], the recommendations in this thesis, summarized in Table 17, are more

comprehensive.

The most important requirement for an estimator is the accuracy of the estimated

quantities. Chapter 3 tested the method with simulated data where the truth was
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Table 17: Guidelines in choosing estimation methods for entry, descent, and landing
reconstruction.

Description EKF UKF Adaptive Filter
Accuracy of state estimate    
Accuracy of uncertainty estimate G#   
Computational load & storage reqts. G# # #
Low frequency of data G#   
Jacobian unavailable #  #
Response to large deviations in dynamics G#   
A priori process and measurement noises
unavailable

# G#  

Robustly stable to initial states and noises G#   
State parameter not directly observable G# G#  
 Excellent
G# Average
# Below average

known and the estimate of MSL’s landing location in Chapter 4 also had an inde-

pendent, highly certain estimate. In these cases, all three estimators provided very

accurate state estimates, as was summarized in Tables 7, 8, and 11. However, the

EKF had larger estimated uncertainty bounds when compared with the UKF and

Adaptive filter results. Although there was no truth data present to compare the es-

timated uncertainties, tighter uncertainty bounds indicate a more confident estimate

and signify a better quality of uncertainty quantification.

One of the advantages of the EKF algorithm is that it is simple to implement as an

on-line filter on a spacecraft. Modified forms of the EKF have been used in the past

on-board vehicles as a navigation filter. On the other hand, UKF and Adaptive filter

are harder to implement real-time. UKF requires propagation of the sigma points for

state propagation and measurement updates, and the computational load increases

linearly with the number of states being estimated. Adaptive filtering has large

storage requirements as the last N states and covariances and the last L measurement

residuals need to be stored for the process and measurement noise computations.

The increased computational load of the UKF and the storage requirements of the
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Adaptive filter make them poor candidates for real-time applications.

A common problem in past EDL missions have been the sparsity of data. Although

recent missions, such as Phoenix and MSL, have high sample rates of IMU data, there

are still some observations that are measured at low frequency. Figure 15 in Chapter 3

showed that EKF had a slight degradation in estimation performance at low sample

rates. Since EKF uses a linearized version of the actual non-linear equations for

covariance propagation, it requires frequent re-linearization to control the growth of

non-linearity errors. Wells [28] also noticed a similar trend for the EKF. However,

due to the use of sigma points that capture the non-linearity of the problem well,

UKF appear to be more robust to lower sample rates of data. Adaptive filters, which

use the same equations as the EKF for covariance propagation but also have adaptive

process and measurement noises, are also less susceptible to filter divergence when

the sample rate of data decreases.

The dynamics of a problem can make the equations of motion or measurement

equations discontinuous or piece-wise continuous. In these instances, the Jacobian

matrix will be undefined. UKF can still function in such situations, since the state,

covariance, and measurement updates are conducted using sigma point propagation.

However, the EKF and Adaptive filter need state and measurement sensitivity matri-

ces. The derivative-free nature of the UKF makes it very attractive in situations with

large discontinuities or dynamics with undefined partial derivatives. Adaptive filter,

which still needs Jacobian matrices, can still perform well in situations with large de-

viations due to the adaptive nature of the process and measurement noise covariance.

By adaptively calculating noise, the filter lessens the effect of the discontinuities and

prevents divergence in the state and covariance estimates.

The Adaptive filter shines in situations where a priori state and measurement

noise covariances are either unavailable or are not close to the actual values. The UKF

can also be robust to bad initial estimates if enough sigma points are used, but has a
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harder time converging to a solution where a priori noise statistics are unavailable. If

the dynamics are modeled well by the process and measurement equations, UKF will

still function in this situation. The EKF performs poorly in both scenarios, although

if the process and measurement equations are close to the truth, the filter will still

function.

Another criterion for evaluating the choice of filter is how well the estimator identi-

fies quantities not directly-observable by observations. The aerodynamic coefficients,

freestream density, and freestream pressure are good examples of quantities that can

be indirectly inferred from IMU and FADS data, but are not directly measured.

All three filters displayed good reconstruction performance whether simulated data

(whose estimation results are summarized in Tables 7 and 8) or actual flight data

(whose estimation results are summarized in Figs. 47, 48, 52, and 53) were used. The

Adaptive filter performed the best, however, when both the state and uncertainty es-

timates are considered. For example, the axial force coefficient estimate in Fig. 35(d)

is the only one with the parabolic shape seen in other independent aerodynamic

reconstructions [10].

Overall, all three estimators have characteristics that make them the best choice in

certain situations. The EKF tended to have more weaknesses when compared to UKF

and Adaptive filter, but its simplicity makes it attractive for real-time or preliminary

reconstruction of data. However, when computational time is not constrained, UKF

and Adaptive filter both perform well with a slight edge to the Adaptive filter based on

its better performance in the simulated data cases. For post-flight EDL reconstruction

applications, all three filters could be appropriate choices with preference given to the

UKF and Adaptive filter.
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7.3 Future Work

This thesis presented a statistical estimation framework for incorporating disparate

data types found on-board EDL vehicles and demonstrated how parameters of in-

terest, such as trajectory, atmosphere, aerodynamic coefficients, and their associated

uncertainties can be reconstructed from the data. The methodology utilized three sta-

tistical estimation methods and also demonstrated how the reconstructed products

could be leveraged to improve future vehicle design, such as by sensor optimization

or engineering tool maturation. The flexibility of the methodology easily lends itself

for future augmentations, such improving uncertainty quantification through higher-

order estimation methods, employing improved formulations for parameters with high

uncertainties, and eventually making the estimation methodology feasible to be used

as an on-board navigation filter.

7.3.1 Higher-order Estimation Methods for Uncertainty Quantification

The estimation methods utilized in this reconstruction as well as all past EDL statis-

tical reconstructions have assumed that the state variables have normal distributions.

When one considers the estimation of trajectory parameters, such as position or ve-

locity, a normal distribution may be a justifiable assumption based on Monte Carlo

simulations [5, 6, 124, 148]. However, there is no such justification for some other

parameters of interest, such as wind speeds and aerodynamic coefficients. In fact, in

many of these cases, uniform distribution or some other shape is a better assump-

tion [6, 17].

Using EKF or the current form of the Adaptive filter does not allow one to consider

non-Gaussian distributions. UKF is a higher-order filter in theory and the use of

sigma points allows the filter to simulate the actual non-linear process without any

assumptions about the Gaussian nature of the process. However, at the end the state

propagation and measurement update stages, the sigma points are used to calculate
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a mean and covariance that does assume a Gaussian process.

Instead, a possible method may be to have a multi-stage estimation algorithm

that incorporates higher-order estimation methods for certain parameters to better

document the non-Gaussian nature of the states. Possible higher-order estimation

methods include the Second-Order Kalman filter and Particle filter [121, 96]. EKF,

UKF, and Adaptive filter can be used in the first stage to update the trajectory

estimates and then the more computationally-intensive and information demanding

higher-order methods can use the new trajectory estimates for a smaller subset of

estimation parameters, such as wind speeds, density, pressure, and aerodynamic co-

efficients. Such a process can even lead to better estimates of the uncertainties, since

the parameter dynamics are not being forced into the form of a Gaussian process by

the estimation methodology.

7.3.2 Improving Formulations for Uncertain Parameters

In order to estimate atmospheric states such as freestream density and pressure, the

hydrostatic equation together with the perfect gas law were used to create atmospheric

dynamical equations. This approach has been previously used in the literature [50],

but in general the dynamic equations had several stringent assumptions associated

with them and the process noises were relatively high to make the filter non-divergent

when these dynamical equations were included. The high process noises suggest that

the states might not be well modeled, but there is no easy recourse in order to

estimate parameters like density and pressure that are more spatially evolving than

dynamically evolving.

Instead, the estimation methodology may be recast from a pure state estimation

problem to a mixed state and parameter estimation problem. Recall that in Chap-

ter 1, a distinction was made between a parameter estimation problem (time-invariant

estimation) and state estimation problem (time-varying estimation). A preliminary
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estimate of a time-invariant quantity, such as atmospheric density, can be discretized

by altitude. These individual densities at various increments can be thought of as

control points that are updated by a parameter estimation methodology, while side-

by-side the estimation methodology presented in this thesis can update time-varying

states. There will be no need to create dynamical equations for parameters that are

not time-varying and the estimation state vector can now include other uncertain

time-invariant parameters like wind speed.

7.3.3 Application of the Sensor Placement Optimization to Other Disci-
plines

The sensor placement optimization method described in Chapter 5 was designed

for atmospheric data system sensors, but is general enough to be applied to other

disciplines as well. The field of sensor placement optimization has recently be-

come very active and many studies have utilized evolutionary optimization tech-

niques [149, 150, 151] to tackle multi-modal design spaces. However, in most instances

the dynamics of the problem are vastly simplified to aid optimization speed and the

uncertainties in the design space are not considered directly in the optimization. The

observability-based technique described in this thesis is generalized enough to be a

very attractive optimization option in cases where getting a robust solution that re-

duces the uncertainties in the design space is more important than simply finding an

optimal but non-robust solution.

A good candidate for the application of this optimization method is the sensor

placement of the thermocouples that were part of the MSL aeroshell instrumentation.

Similar to the flush atmospheric data system sensors, the on-board thermocouples

took in-situ measurements that were then used to reconstruct other parameters of

interest, in this case surface heating and thermal protection system properties [152,

153]. The optimization method from Chapter 5 could be arapted to calculate the

optimal locations of the thermocouples so that they would be most sensitive to changes
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in surface heating and TPS material properties and provide the best data set for

reconstruction for a given trajectory.

7.3.4 Optimization of EDL Trajectories to Benefit Science Output

The sensor optimization process could also be used to design trajectories that will

maximize the observability for a given configuration of sensors. Mathematically, the

sensor optimization method as currently construed will have to be slightly modified

so that various trajectories will be the design parameters instead of sensor locations.

However, the objective function can still be residuals of the reconstruction process

or the observability of the sensors based on CRLB. The biggest issue in applying

this methodology for trajectory shaping will be the best way to parameterize the

trajectories for the optimization process. Simplistic parameterizations based on one

or two trajectory qualities, such as the initial position and velocity, will allow a rapid

exploration of the design space but not provide enough fidelity in the dynamics to

find true global optima. Parameterizations using techniques such as collocation might

provide ways to preserve fidelity of the dynamics during optimization without slowing

down the process [154].

7.3.5 Simplification of the Atmospheric Data System Optimization For-
mulation

The objective function for the atmospheric data system optimization consists of angle

of attack, sideslip angle, and dynamic pressure, which are all quantities that are de-

pendent on the pressure distribution over the aeroshell. Hence, one can envision sim-

plifying the three-objective optimization problem to a single objective optimization

using some formulation that is solely a function of the pressure coefficient. However,

it is not obvious what this formulation of the pressure coefficient should look like. A

simple maximization or minimization of the pressure coefficient value does not lead a

sensor configuration that best estimates angle of attack or sideslip angle. One can try
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to place sensors in regions where the pressure coefficient changes rapidly, but it is not

always obvious what parameter - angle of attack, sideslip angle, or dynamic pressure

- is being helped with such placement. Thus, although there exists a potential for

simplifying the multi-objective optimization problem using pressure coefficients, the

proper formulation still requires work in the future.

7.3.6 Extension of Methodology for On-board Navigation Filter

One of the main goals of this thesis is to utilize estimation methodology products to

improve future vehicle design. However, the estimation methodology itself could be

looked upon as an improved navigation filter for a future EDL vehicle. The three

estimation methods can be three independent voting filters that determine the state

knowledge of the vehicle during re-entry. Of course, in the current formulation the

estimation methodology is too unwieldy and computationally-intensive to be used

on-line. But unlike batch filters, all of the filters used in this method are sequential

and lend themselves as potential on-board filters with some modification and compu-

tational optimization. Moreover, if FADS systems are used on-board EDL vehicles,

an estimation methodology such as the one presented in this thesis can incorporate

that data with IMU and radar data for flight navigation instead of just using FADS

for scientific investigations. The improved knowledge of angle of attack, sideslip an-

gle, and freestream parameters that come with FADS data can vastly improve the

performance and margins of guidance systems, both in hypersonic and supersonic

regimes.
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APPENDIX A

CLASSICAL ATMOSPHERIC ESTIMATION

Due to the lack of pressure measurements during the entry phase of vehicles, past

atmospheric reconstructions have largely relied on a deterministic approach involving

accelerometer measurements, reconstructed velocity estimates, and a priori knowl-

edge of the aerodynamic coefficients of the entry body. This method of atmospheric

estimation was first suggested by Seiff in 1963 [39] and has since matured in its

implementation.

The reconstruction process uses the drag (CD) or axial force (CA) equation (shown

in Eq. 42a) to estimate the freestream density (ρ∞). Then the hydrostatic equation

(Eq. 42b) is integrated to reconstruct the freestream pressure (P∞). Finally, the

freestream temperature (T∞) can be estimated from the perfect gas equation of state

(Eq. 42c) and the knowledge of freestream density, freestream pressure, and the gas

constant (R) of the atmosphere, which depends in turn on the molecular weight of

the atmosphere.

ρ∞ = − 2dV/dt

V 2CDA/m
= − 2ax

V 2CAA/m
(42a)

dP = −gρdh (42b)

T∞ =
p∞
Rρ∞

(42c)

The process of being able to use Eq. 42a to reconstruct freestream density comes

after at least an initial attempt at trajectory reconstruction. Since accelerations from

the inertial measurement unit (IMU) is already available, this data can be integrated

to come up with a time history of the spacecraft’s position and velocity. However, the
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trajectory reconstruction only provides one of the two unknowns needed for density

reconstruction; the drag or axial force coefficient history with respect to time has to be

separately determined. Seiff [39] originally suggested that CD could be held constant

for the hypersonic regime when the body is doing a ballistic entry; however, later

work has suggested that due to the large significance of angle of attack oscillation on

the value of the drag/axial coefficient, it is important to calculate an angle of attack

history to determine the correct force coefficient.

The most popular method has been using an aerodynamic database or table to

calculate the angle of attack. Vehicle aerodynamic databases typically consist of

tables of force and moment coefficients as a function of Mach number or velocity,

Knudsen number, and total angle of attack. For hypersonic regime, drag coefficients

are insensitive to Mach number [39] and if the vehicle is in continuum flow, Knudsen

number effects are also low. Hence, aerodynamic coefficients can be approximated as

a function of only the total angle of attack. Using the sensed accelerations (ax, ay, az),

one can approximate a ratio of the axial and normal force (CN) coefficient as shown

in Eq. 43. [155]

CN
CA

=

√
a2
y + a2

z

ax
(43a)

The force coefficient ratio together with the aerodynamic database information

can then be used to fix a time history of the angle of attack. Next, the angle of attack

history could then be used to calculate the appropriate drag or axial force coefficient

from the aerodynamic database. Finally, with the known acceleration values, velocity

estimate, and predicted aerodynamic coefficient information, the freestream density

can be reconstructed using Eq. 42a.

The hydrostatic equation as shown in Eq. 42b makes the isothermal assumption

to simplify the original barometric equilibrium equation to the form shown. The

isothermal assumption suggests that changes in relative temperature with height is

far less than changes in relative density with respect to height, which can be assumed
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for most planetary atmospheres. [61, 156] With this in mind, the freestream pressure

can be calculated by integrating the hydrostatic equation as shown in Eq. 44. The

gravitational acceleration term (g) can be modeled as constant, varying with the

square of the local radius (inverse squared law), or calculated with a high fidelity

gravity model which is a function of the altitude and other state parameters, such as

geodetic latitude. [157]

P∞ =

∫ h

h0

−gρdh (44)

The reconstructed pressure value can be susceptible to wide variations based on the

constant of integration chosen. If the integration is conducted from atmospheric entry

and the pressure there is assumed to be zero but in actuality is a non-zero number,

there will always exist a bias term. This can be especially troublesome for the thin,

Martian atmosphere where even a small bias is relative a large issue. Thus, typically,

the constant of integration is anchored to some independent pressure measurement,

such as surface pressure measurements made by the vehicle after landing. One of the

surprising benefits of the integration operation is that pressure estimation is more

accurate than the density reconstruction. This is based on the fact that the quantity

ρV is more accurately known than ρ, and this improves the pressure estimation. [39]

The freestream temperature calculations using Eq. 42c are straight-forward with

known freestream density and pressure. The gas constant must be known and it

can be estimated very well if on-board instruments include mass spectometers. [156]

Moreover, sensitivity studies have found that the drag coefficient uncertainty may

not have a huge effect on temperature estimation. Temperature is proportional to a

ratio between an integration of C−1
D over altitude and just C−1

D . For blunt-bodies, CD

varies by only tens of percent during the entire re-entry sequence. Hence, there is a

very little dependence between the force coefficient and temperature. [64] Freestream

temperature calculations are however very much dependent on wind speeds, [36] and

temperature measurements derived from accelerometer information has been shown
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to be counter-intuitive at near sub-sonic speeds. [158].

The classical approach of using only accelerometer measurements to calculate

atmospheric parameters is very popular in literature due to its simplicity, but has been

shown to be sensitive to many types of errors, including uncertainties in accelerometer

measurements, reconstructed velocity, entry angle, and frequency/sample rate of the

data. [159] However, the most sensitive uncertainty is associated with the knowledge of

the vehicle attitude and the resulting aerodynamic force on the body. Hence, the need

of using a pressure measurement in addition to the accelerometer data for atmospheric

reconstruction is imperative to remove the effect of aerodynamic uncertainty.
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APPENDIX B

FADS DATA ATMOSPHERE ESTIMATION

Flush air data systems (FADS) have been utilized in the Viking missions, the Shuttle

Air Data System (SEADS), and high angle of attack FADS (HI-FADS) [90, 160]

aircraft on Earth. The analysts using air data systems are typically interested in four

parameters: freestream pressure (P∞), freestream density (ρ∞), angle of attack (α),

and sideslip angle (β). These four parameters are part of the air data state vector (x).

Usually, the reconstruction process involves using an iterative, least-squares algorithm

to estimate the four air data parameters from pressure data taken from the FADS

sensors. The procedure assumes that the surface pressure at port i can be given by

Eq. 45, which is a function of the total pressure (Pt), surface incidence angle (θ), and

the pressure ratio (R) (defined in Eq. 46). [40, 161, 50] These quantities in turn are a

function of the angle of attack, sideslip angle, and the port orientation angles (ζ and

η) that were defined in Chapter 2.

Pi = Pt
[
(1−R) cos2 θi +R

]
(45a)

cos θi = cosα cos β cos ηi + sin β sin ζi sin ηi + sinα cos β cos ζi sin ηi (45b)

R =
P∞
Pt

=


[

2
(γ+1)M2

∞

]γ/(γ−1) [
2γM2

∞−(γ−1)
γ+1

]1/(γ+1)

forM∞ > 1[
1 + γ−1

2
M2
∞
]−γ/(γ−1)

forM∞ ≤ 1

(46)

The iterative estimator tries to use a linearized version of the original non-linear

function (f) shown in Eqs. 45 and 46 to minimize the difference between the ac-

tual measurement and the measurement value predicted by the estimated states. [45]

The linearized measurement equation is described in Eq. 47, where the measurement
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sensitivity matrix (H) is defined in the same way as in the prior sections.

P = f(x) +
∂f

∂x
∆x+ h.o.t. (47a)

y = Pactual − f(x) = H∆x (47b)

Next, the famous weighted, least-square normal equation is used to solve for the

estimated states using Eqs. 48. [93] The measurement noise covariance (R) serves as

the weighting factor.

∆x =
(
HTR−1H

)−1
HTR−1y (48a)

x̂+ = x̂− + ∆x (48b)

This type of atmospheric reconstruction using FADS data has been referred to

as the differential corrections algorithm [162] and has been shown to be effective for

high angle of attack flight reconstruction applications. However, the methodology

does not typically use any other type of sensor data in the parameter estimation

problem. Improvements to the FADS reconstruction method have been suggested

recently [163], but they do not typically involve utilizing other data types together

with FADS. Very early, designers recognized that the FADS reconstruction problem is

very multi-modal and the estimation methodology often provides non-unique results.

Hence, work was done initially to identify under what situations the FADS data

would lead to faulty estimated states. Since the FADS reconstruction procedure was

based on least-squares regression methods, the χ2 of the estimated parameter (or

fits) were calculated to assess the goodness-of-fit. [164, 165, 160] Other efforts were

made in improving the calibration information of the FADS sensor to improve the

pressure reconstruction. [166] Some other enhancements involved using a stochastic,

genetic algorithm instead of gradient-based algorithms (like the differential corrections

approach) to reconstruct the air data parameters. [167] However, the biggest problem

with all of these approaches was that assumptions were made about the trajectory
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Figure 88: Hybrid air data estimation algorithm using IMU and FADS data.

states in order to cast the reconstruction as a parameter estimation problem; if IMU

and other on-board sensors could be used with the FADS data in the estimation

process, then assumptions about the flight’s trajectory would not have to be made.

Kasich et. al. [91] suggests a hybrid approach where FADS measurements are

blended together with inertial measurement unit (IMU) data in a Kalman filter.

Figure 88 shows the flow diagram of the hybrid air data estimator, where the dynamic

equations propagate the state variable that consist of angle of attack, sideslip angle,

total pressure (called Ps in this case), and the dynamic pressure (related to true

air speed (VT )) using IMU data. The Aerodynamic Flow Model box uses equations

similiar to Eqs. 45 and 46 to predict the flush port data as a function of the state

vector. The Kalman filter then uses the residual between the predicted and actual

FADS values to update the state vector. Although there is a loose coupling between

the IMU and FADS data using this approach, the methodology does not attain the

improvement in parameter and uncertainty estimation that a close coupling between

the two types can bring.

There are a few studies in the past where a Kalman filter has been used to simul-

taneously estimate a vehicle’s trajectory and atmosphere using both IMU and FADS
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dataset. [50, 168, 169] The improvement in estimation capability shown by these stud-

ies serve as the motivation behind the reconstruction methodology presented in this

thesis in Chapter 2. The methodology shown in this thesis attempts to improve pa-

rameter estimation and uncertainty quantification done by the simple Kalman filters

in the past, and thus utilize the complete dataset from an EDL flight to accurately

reconstruct the spacecraft’s performance.
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