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Confined hydrogen atom in a spherical cavity in N- dimensions
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Muzaian AbdulHameed Ali Shaqqur

Supervised by
Prof. Dr. Sami Al-Jaber

Abstract

In this research the Schrodinger equation for a confined hydrogen atom in a
spherical cavity in N dimensional spatial space has been solved for N > 3.

The eigen functions as well as the eigen values have been determined.

We show that the Schrodinger equation here doesn’t differ from that of the
free hydrogen atom in N dimensions; therefore they have similar wave

functions namely
Ry (p) = A'pt T2 1Fy (14 =2~ % 2 + N = 1; p)”, while

they differ in energy. A series solution of the Schrodinger equation is
adopted here, and then, by applying the boundary conditions to the wave

functions we found the energy eigen-values.

The dependence of the ground state energy eigen-values of a confined
hydrogen atom for | = O for certain values of N, on the radius of the cavity
S, has been examined. We found that they depend on the radius of the

cavity S, we show that for a given N, if S increases the ground state
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energies decreases until they approach a limiting value which approaches
the energy eigen value of that N of the free hydrogen atom. While as S
decreases, the ground state energy eigen values increases up until it
approaches zero at a minimum value of S that is called the critical cage
radius (S;) at which the total energy of the confined hydrogen atom equals

Z€ero.

The critical values S; are calculated for dimensions from (2-10), whose
values are 0.722890, 1.835247, 3.296830, 5.088308, 7.200250, 9.617367,
12.35000, 15.36350, 18.68200 respectively, (all the values here are

multiples of Bohr radius (ao), where (ag) = 0.529x10~1°meters.
It is shown here that S. increases as N increases.

It is also shown that for a given S, the energy eigen-values for =0 depend
on the dimensionality of space N, that is, as N increases, the ground state

energy eigen-values increase.

The dependence of bound states of a confined H-atom, for agiven S, asa
function of N is investigated, and it is found that it decreases as N
increases, while if we choose a larger value of S, the number of the bound

states increases for each value of N.

We found it interesting to compare the energy eigen-values of a confined
hydrogen atom in a spherical cavity of a certain radius, with those energies

of the corresponding energy eigen-states of a free hydrogen atom in the
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Xiv
same dimension N. We found that the effect of confinement becomes more

profound for larger N.

Finally, | considered the behavior of pressure on the cavity asthe radius S

is varied.

It has been shown that the pressure exerted on the atom increases as S
decreases up to a certain maximum value which occurs at aradius value

called Spmax, but then it decreases within a small range of S.
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Chapter 1

| ntr oduction
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Chapter One
Introduction

One of the great developments in the human knowledge of the 20" century
Is the Birth of a new theory in physics called quantum mechanics, which
builds a new model of the atom that explains its structure and stability.
Classical Mechanics couldn’t properly explain this, because there is
nothing that will stop the electron from spiraling into the nucleus where no

more stable atomic structure exists.

This model was mainly built on the simplicity of the hydrogen atom
compared to other atoms. Solving the Schrodinger equation of the H-atom
revealed its mystery, where many mathematical techniques were developed
to solve the Schrodinger equation in three dimensions to get the energy
eigen-values and the corresponding eigen-functions, and other relevant

guantities.

We are three-dimensional observers, and this makes it easy for us to
conceive the observed reality as 3-Dimensions. One can distinguish four
types of directions, spatial dimensions, and time. But theories such as string
theory predict that the space in general has in fact 10 dimensions, and
universe, when measured along these additional dimensions is subatomic in
size. In the 20" century, the idea of the higher dimensional space was
greatly investigated. Dimensions in both mathematics and physics refers to

the parameters required to describe the position and relevant characteristics
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of any object within a conceptual space, where the dimensions of space are
the total number of different parameters used for all possible objects
considered in the model, in physics also dimensions are referred to degrees
of freedom or the units of measurements. Many physical problems related
to higher dimensional space have recently attracted the attention of many
workers [1, 2, 3, 4], where it is widely believed that it plays an important
role in the study of cosmology, group theory, many body problem, super
symmetry, and the problem of unifying the four forces in nature together
etc. Schrodinger equation, in the case of multi-dimensional problems,
works very well as the starting point for general discussion in any multi-

dimensional quantum problems.

Many studies were concerned in solving this equation in N-dimensions, to
obtain the eigen-functions and the eigen-values, one of which showed a
method that relates the solutions in 2- and 3-dimensional problems to
higher dimensional cases for radial symmetric potentials [4], while some of

the others used the series solution and other methods.

The radial Schrodinger equation of the H-atom in N-dimensions can be

written as [1]:
- 72(r) + 2= () + Ep(r) = 0 (L1)
V 2 isthe Laplacian operator in N dimensions given by [1] :

szr(l‘N)a—ar(r (N_l)% +ri2/\2 (1.2)
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A? is apartial differential operator on the unit sphere SN=1, which also is

the square of the angular momentum operator.

The radial part of the Schrodinger equation can be written as:

d?R  N-1dR I(I+N-2 A1
a?R Wit gy (
dp? p dp p?

;—Z)R =0 (1.3)

The eigen-functions and the energy eigen-values for the free hydrogen

atom are in terms of CGS system of units [1],
Ru(p) = A e(Dpl ) (HE2- 0204 N-1p)  (19)

Ev= (— pe*/2h?) —g—— (15)
(n+

— )’
where u is the reduced mass of the H-atom.

Some other aspects of the H-atom were investigated in N-dimensional
space [1]. For example the degeneracy of the energy level of the N-
dimensional hydrogen atom, the radial distribution function, expectation
values (< Ur >), (<Ur?>), and the varial theorem were considered, it was
shown that the effect of the effective potential manifests itself in some of
those aspects. Also, the quantization of angular momentum in N-
dimensions was described [1]. Romeo studied the Wentzel-Kramers-
Brilliouin (WKB) approximation in connection with hyper spherical
guantum billiards [5]. Yaniz et al. investigated the position and momentum
information entropies of N-dimensional systems [6]. The generalization of

Fermi pseudo potentials to higher dimensions was illustrated by
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Wo’dkiewic [7]. Random walks and moments of inertia in N dimensions
have been considered by Bender et al. and Bender and Mead [8]. Fukutaka
and Kashiwa considered the formulation of path integrals and their

guantization on N-dimensional sphere [9].

The problem of a hydrogen atom confined in a sphere in 3-
dimensions has quite a long history in quantum physics. The concept of a
confined quantum system originated with a model suggested by Michels et
a [10], who proposed the idea of simulating the effect of pressure on an
atom by enclosing it in an impenetrable spherical box. During the last 70
years this model has proved to be quite useful in a number of fields of
physics. the effect of pressure on energy levels, polarizability and
ionization potentials of atoms and molecules [10], the cell model of the
liquid state, semiconductor quantum dots, and several other areas. Its value
in astrophysics has also been proved, e.g. in the mass-radius relation in the
theory of white dwarfs, and in the determination of the rate of escape of
stars from galactic and globular clusters. For a partial listing of references
in this field, the reader may consult FrOman et al who gave a list of 64
such publications up to 1984 [11].The confined hydrogen atom model has
also been used for studies on the equilibrium properties of a partially
ionized plasma and the thermodynamic properties of non ideal gases. It is
also relevant for other situations where dense matter is involved, such as

laser-imploded plasmas and the interior of giant planets [11].
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Somerfield and Welker recognized the importance of the model of
Michels et al for astrophysics and carried out a detailed investigation of the
properties of a hydrogen atom enclosed in a spherical box. Such an atom is
frequently referred to as a compressed atom or a confined atom.
Subsequently, there have been several other investigations on the

compressed hydrogen atom with various techniques [11, 12].

Sommerfeld and Welker [12], studied it in detaill and calculated the
critical radius in 3 dimensions for which the binding energy becomes zero,
they obtained a series expansions for the | = 0 case, which are exact, being
full generalization from the situation where the boundary conditions apply
rigorously in the non-relativistic case, namely when a node coincides with
the confining boundary and the analytic solution is known. They showed
that, as the radius of the cavity decreases, the binding energy diminishes
and there is a critical value of the sphere radius at which the binding energy
becomes zero. That was called, the critical cage radius r.. Sommerfeld and
Welker found that for the 1s state r. = 1.835% a,. For r < r. the energy of

the system is positive.

Over the years there has been a steady flow of papers on this and
other closely related problems. The model of the confined hydrogen atom
has often been used as a test problem for various perturbation methods.
Using their boundary perturbation method, Hull and Julius [13], obtained a

formula which expresses the change of energy for the eigen-states in the
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confined system in terms of the corresponding wave functions in free space

[14].

The boundary correction for a hydrogen atom in a spherical well
using an approximation method which is linear in energy was studied by
Djajaputra and Cooper [14]. This method is used very often in solid-state
physics has been widely used in electronic structure calculations, under the
name of the linear muffin-tin orbital (LM TO) method. In this method the
wave functions of a Hamiltonian with energies which are in close vicinity

of the energy of a known wave function are calculated [14, 15, 16].

Also, the calculation method to solve the Schrédinger’s equation of a
confined or half-confined hydrogen atom in three dimensions, i.e, a
hydrogen atom with wave function which vanishes at a given closed or

opened surface, was investigated by Yang and Wang [17].

More recently it has also been considered the hydrogen atom within
spherical boxes with penetrable walls. The application of the Rayleigh-
Schrodinger perturbation theory to the hydrogen atom in a spherical box
has been discussed. In particular, the ground-state energy up to the fifth
order in e?has been obtained by Aguilera-Navarro, Koo and Zimerman

[18].

But the effect of the boundary conditions on the energy eigen-values
of the confined hydrogen atom in a spherical cavity in N-dimensions has

not been investigated yet. Therefore, in this study, the Schrodinger equation
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for the confined hydrogen atom in a spherical cavity in N-dimensions has
been solved, the eigen-values are determined; the influence of the radius of
the cavity on the eigen-values is examined for different dimensions,
making use of numerical calculations using the mathematica 5.0 software.
The critical radius for each dimension is determined, and then the S-N
relation is plotted. The number of bound states for given radii of the cavity

has been examined in this study, where we chose S= 22a, and S= 44a.

Also, a comparison between the energy eigen-values in the case of
the free and the confined H-atom as a function of N for a given radius of

the cavity is pointed out.

Finally, the dependence of the pressure (exerted on the wall of the
cavity) on the radius of the cavity for a given dimension of space, N, is

examined

Most of the above aspects of the study were investigated for the ground
state where [ (the angular momentum quantum number) equals zero, and

the energy of the confined H-atom is minimum.

This study is organized in four Chapters; Chapter One is an introduction to
the subject that contains some of the previous work related to the study.
Chapter Two contains 3 theoretical sections, where the Schrodinger
eguation of the confined hydrogen atom in the case of N=3 is solved in
section one, in section two it has been solved in N dimensions, while in

section 3, | derived a relation between the pressure, and N, and the radius
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of the cavity S. Through these sections some of the practical applications

are mentioned.

Chapter three consists of four sections, | arranged the calculations in tables
and graphs in section 1, through which the results about the energy eigen
values are examined and discussed. In section two, a definition for the
critical radius of the cavity is introduced, and its behavior as a function of
space dimensionality is examined too. In section three, the number of
bound states was determined for two specific values: S=22qa,, and 44aq,,
and thus the influence of space dimensionality and the radius of the
cavity S on number of bound states is also examined. While in section four

the pressure calculations are arranged in tables and represented by graphs.

Finally, in chapter four, conclusion of this study is given based on the

discussion and results.
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Chapter 2

Theor etical
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11
Chapter Two
Theoretical Background

Solving the Schrodinger equation for a system in physics is one of the
important things to do in quantum mechanics mainly in problems of
multidimensional space. This process leads to determining the eigen-

values, eigen-functions and eigen-energies of each state.

This chapter will include 4 sections; the first one contains a solution of the
confined H-atom in 3-dimensions, which is similar to the solution of the

Schrodinger equation of the free hydrogen atom in 3-dimensions.

In the second section, a solution of the Schrodinger equation in N

dimensionsis carried out.

In the third section a relation between the pressure exerted on the atom, the
gpatial dimensionality N, and the radius of the cavity Sisworked out. As it
was mentioned before, either for the free or the confined hydrogen atom,
the wave functions will have the same form. But the free hydrogen atom

will exhibit different energies other than those for the confined one.

2.1. Solution of the Schrédinger equation of a confined

hydrogen atom in a spherical cavity in 3-dimensions.

Consider a H-atom in an impenetrable cavity, this condition simulates,
practically, the physics of high pressure materials, and large classes of

nanostructure systems such as quantum dots, and artificial atoms which are
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related to this problem. We mean by confined atoms that; those “atoms
that experience external potentials which keep themselves in a region with

length scales comparable to the atomic size” [19].

In this study I will first solve the Schrodinger equation for N=3, in order to

simplify the understanding of the solution in N-dimensions.

Now, consider a hydrogen atom in an impenetrable spherical cavity. The
potential of this system can be expressed as,

—ze?

0<r<S (2.1)

4TTEQGT
V()=

oo , elsewhere

Where S is the radius of the cavity, and Z=1 for the hydrogen atom. To
examine the effect of the cavity on the energy eigen-values, one has to
solve the Schrodinger equation to obtain a relation between the energy

eigen values and the radius of the cavity.

After making separation of variables for the Schrodinger equation in

spherical coordinates, the radial equation reads,

iioﬂﬁ)+%ea+ez)R—m“h=o 2.2)

r2dr dr ATTEYT r?

For simplicity, | write u(r) = r R(r) to give,

d’u | 2p, e? 1(1+1)h?
2

dr n*tameyr 2ur?

+Elu@) =0 (23)
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u is the reduced mass of the H-atom, | is the angular momentum quantum

number.

Now it is convenient to define the dimensionless variables:

p = BUCE). and A =\/ e (2.4)

i 2(4mey)2h2(—E)

One can easily notice that equation (2.3) is similar to that for the free
hydrogen atom in three dimensions; therefore both will have the same form

of the solution.

With these substitutions, equation (2.3) becomes,

d?u _ W+Du
dp? p?

+ (— - -) u(p) = (2.5)

The asymptotic behavior is obtained by solving equation (2.5) when
p — oo, l.e. solving
d?u 1

E;—-—-—u,—-O (2.6)

_P p p
Then, U (p) = Ae 2z + Bez, but ez isinfinite for large p, then B is set

to zero.
Thus Uu(p) =4 eT (2.7)
I i L l(1+1 _
In the vicinity of the origin (p — 0), in this case, the 2 dominates
over the other terms in equation (2.5), and thus it becomes
d? 1(1+1
u_ Wby 2.8)

dp? PE

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

14
The general solution of eq. (2.8) is
u(p) =Dp~t + Cpt*Y (2.9)
The term p_l diverges, and hence D must be set to zero.
Thusu(p) = C pt+D)
Therefore the solution of egn. (2.5) is assumed to take the form,

_p
u(p) < p*te”z vp) (2.10)

After differentiation and Substitution in equation (2.5), the radial equation

intermsof v (p) becomes:

Z—;+[2(l;1)—1]2—:+ [%]V:O (2.11)
A series expansion of v (p)
v(p) =25 a; p’ (212)
gives us the recursion relation
a4 pr = (j(+j :)l(ji)z_z jz) ] a (2.13)

We want to determine the coefficients (ay, a4, a,...)

For the function v (p) to be terminated for very large values of j, the series
must be terminated, i.e.

a,+1 i 1
lim J =L=7
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Thisis the same ratio of coefficients as those of the expansion of e”.

P
This leadsto that v (p) o e”. Thus U (p) « p'*lez [This shows

that u (p) must terminate, but the series blowsup asp — oo].

Therefore, let jmax indicates the term of termination, then ajux+1 =0, or

the last term of the seriesis, a; 4, Fromequation (2.13) we have
jmaxt1+1—=4=0 ,or A = Jmaxtlt+l (2.14)

where A here corresponds to n ( the principal quantum number in the case

of the free H-atom).

pe*
).

But A determines E, where (1 = \/2(47‘[80 YZhZ(—E)

8U(—E)

With, p =qr and, (= 2 then
—hz 2 _ e4-
E= - = , or
8u 2(4mey )?h2 A2
_ Ep
E= 2 (2.15)
_ o —wet :
where E, = ames o 13.6 eV isthe ground state energy of the free
hydrogen atom.

. . _ (4mey )n? —10 . )
Keeping in mind that a, = = 0.529 x 10™" m, isthe Bohr radius,
we also have,

—h? 9
2n 0 Ao (2.16)
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The previous equation can be used to compute the energies in this problem,
but yet we need to find the eigen-functions. Going back to equation (2.11),

and comparing it with the associated Lagurre differential equation

d? P+1 . d (q -P) b ~
{de"'[ -1+ [T JLE(p) =0 (2.17)
shows,

P=2+1 and q= A+l (2.18)

Thus equations (2.19) give the radial solution, which is

_p
Ryi(p) = Ap'*te 2 Ly_,(p)

_PF
Ru(p) = ApHte™ 2 LI, (p) (2.19)

Where A is the normalization constant whose value is determined from the

requirement,

A% [[Te” 2pH AL (0)]2r2dr = 1 (2.20)

and after making use of,

(n+k)

f, e* xMLE(X) L (x) dx = Cn+k+1)

We will get:

3 (A-1-1)!
A= \/ (Aa) 2A[(A+D)1] (2.21)
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The radial solution can also be expressed in terms of the confluent hyper

geometric polynomials as (see appendix B)

Ry (p) = (2.22)

@-l-DU (=5 ji+1__ AHD)! : :
3 A7tm ) _
\[(Aa) 2A[(A+D)] P (/1—1—1)!(21+1)1F1 1+ 1-22 +2,p)

The boundary conditions at r = S, where Sis the radius of the cavity can be

written as,
Ry (p) lr=s= Ry, (qS) = Zexo, (2.23)

Because the potential at the walls of the cavity is oo, and the wave function

diminishes there.

Unfortunately, those zeros (namely the roots of the confluent hyper
geometric polynomials) are not nice numbers (not integers), as in the case
of the free hydrogen atom in 3-dimensions which gives the principal
guantum numbers. The roots of the wave function are determined using

mathematica software, version 5.0.

The zeros of R,;(p) are those of the confluent hyper geometric
polynomials, and they are calculated using mathematica software, version

5.0.

Note that a subscript 4 [ is given to R(p) because it depends on both of
them, and the information that it holds depend on the value of A and [,

while A itself depends on the radius of the cavity S asfollows.
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It can easily show that

28
A= o (2. 24)

) _ 2 2
Since q—mand,p—mr

P indicates theroots, and thus at r = S, we have,
28

p = (2.25)

This gives egn. (2.24).

Figure (1) below shows a graph of one of those wave functions of the

confined H-atom for | =0, space dimensionality N=3, S=6a,,.

In such graphs, there might be more than one zero (or root), the last
intercept is the one coincides with the surface of the walls of the cavity, and

hence it indicates the ground state energy for each S, as will be shown later.

Let x,, bethen*root of the confluent hyper geometric polynomials

28
Fi(1-—:2: p).
1F1 ( e p)
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el (1~ 22123)

zoo [
ico |
ioo |
co | /
0

\_/

u} 2 4 3 = 1o iz 14
z

=50

Fig. (1): Mathematica plot which shows one of the zeros (horizontal-axis
intercepts) of the function;F; (1-12/z; 2; ).

From equation (2.25) we can easily relate the zeros and the radius of the

cavity with A to get the energy eigen values of this problem.

2

= 2.2
Xn =75 S (220
2S
ThenA = (2.27)
aoXn

From equation (2.27) we can compute the values of 1 which corresponds to

E
different values of S. Then egn. (2.15) yeilds, E,, = /1_3 in eV units.

8u(—E
Also by using p= ul(iz ) I', we can easily show that
B xp2 1 xp2
— = —— 2.2
En 8 S2 2| 4S2 (2.28)
2
and with Ey = Znag? we can write E, in the form
0
. an aOZ
E, = TasZ E, (2.29)
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The energy eigen-values will be calculated numerically for the N-

dimensional case in the next section.
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2.2. Solution of the Schrodinger equation for the confined hydrogen
atom in N-dimensional space.

“The problem of the confined atoms, would be equivalent to the problem
of many-body Schrodinger equation with given boundary conditions” [19].
For the hydrogen atom enclosed within an impenetrable spherical cavity in

N-dimensions, the potential is:

2
= O<r<S (2.31)
4TTEQGT
V() =
L © , elsewhere

The radial part of the Schrodinger equation in N-dimensions for the

confined hydrogen atom in N-dimensionsis[1]:

2
rl‘Ni(r(N‘l) d—R) _ B gty E)R=0 @232

dr dr r? h® Mmeyr

Where g =I(l+ N—-2), and | = O, 1, 2 ....is the angular momentum

guantum number for the H-atom.

J8u(-E
Now we introduce p = %T or p=(qr, (2.33)

1

Zze4ﬂ )E (234)

2h?(4meg)?(—E)

and A = (

gdr_dpdr_qdp drz_qdpz’

The radial part of the Schrodinger equation in N-dimensions becomes:
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N-1dR IL(I+N-2) A1 _
(pdp BT R+( 4)R 0 (2.35)

Same as before, notice that equation (2.35) is similar to that one for a free
H- atom, but in N-dimensions. Accordingly, it has wave functions similar

to those of the free H- atom in N-dimensions.

As was done in the previous section, the asymptotic behavior is obtained by

solving equation (2.35) when p — oo, i.e. solving

d?R _p
J——R_O — R(p) X e 2 (2.36)

N . d’R  I(14N-2) , _
In the vicinity of the origin p — 0, oz 2 R=0 (2.37)
We are seeking a solution of Equation (2.37) of the form,

— -5
R(p)=p'e 2v(p) (2.38)
Substitution of egn. (2.38) in equation (2.35) gives:

N-1

d?v | [2l+N-1 dv  |A-l-——
—+[ —1]— +|—=|v=0 2.39
dp? p ap p (2:39)
A series expansion of v (p) can be write as,
v(p) = Yj=0a p’ (2.40)

The substitution of egn. (2.40) in equation (2.39), gives,
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iy - 21+N-1 , .
Zj=0](]_1)ajp] 2+[ 5 ]Z]:()_] ajpf 1_
. p .
Yj=ojajp’ ™" + p =Yj=0a;p’ =0 (2.41)
Yj=0jU — Da; pI=2 + 21+ N = 1] ¥ -0 ja; j-2 —
. N-1 .
Yj=0a,-1+ (A-l- =) Xjm0aip’ ' =0 (2.42)

In the first and the second term, let j be j+1 to get,

z_ 1j(j + Daj p/ P+ 21+ N —1] z G+ 1Dajqp ™
j=m

j=1

1

—Yjm0Jaip ™t + - Tjme ajp’ T = 0 (2.43)

Substitute for j = —1 into equation (2.43) to get

Y=o+ Dajy P+ 214+ N -1]X,(G + 1) aj+1pj_1_
Yj=ojajp’ ™ +(/1—|—%) Yj=oajp’ 1 =0 (2.44)
Equating the coefficients of equal powers of (p), we get

{( (+D+[2L+ N =11 G+ Daj = [ - O-1-T)]a; (245)

Finally we get the recursion relation in the form of

. N-1
Qs = J=(A=l=—7)
JHL 7 G+ +QIAN-1)(+1)
jH+ 22
Or a; = a:
- I T GrDG+2i+N-1)
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Taking into consideration that the series must terminate at Ny = ey, then

Joen + |+%—x:o (2.46)

Define n, the radial quantum number, we can write

N-1
n+ 1+ —— = A, (2.47)

Let 11 to be the principal guantum number in N-dimensions.
V4 N_l
thenn, A= A=n+ 1|+ = (2.48)

pe*
).

But A determines E, where (1 = \/2(47‘[80 YZhZ(—E)

8U(—E)

With, p = qr and, Q= 2 then
E= —h%q? _ —net
8u 2(4meg )2h2A2"’
E
E= A_g (2.49)
_ (4mey)h?

Remember that a, = =0.529x1071%m

pe?

E, = ﬁ = —13.4 eV which is the ground state energy of the free
0
hydrogen atom.
—h2
And e = E, a3 (2.50)

What we have done here is getting arelation to compute the energies in this
problem egn. (2.49). By looking at equation (2.48) one can easily notice the

dependence of the energy on the space dimensionality N through A. For
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more visualizing we need to indicate the eigen-functions from which we

can find the points where we can calculate the energy eigen-values.

Comparing equation (2.39) with the associated Lagurre differential

eguation

d? P+1 i (d-p) P _
(dpz +1 p 1] dp + [ 0 ] )Ld_p(,o) =0 (2.51)
Wegetp=2+ N-2 d_p:1_|_% (2.52)

Now equation (2.39) has a solution of the form,

_pP -
Ra () =4p'e 2 127 "3 (p) (2553)
2

Or,
— A’ Al (—B) N-1 . .
Ru(p)=Ap e Fi(+ — -4 21+ N-1 p) 259

A+1+523y
Where A=A ]
(A-1-==)(21+ N -2)

(see Appendix B)

We need to apply the boundary conditions at r = S, where S is the radius of
the cavity. Since the potential at the walls of the cavity is co, and the wave

function diminishes there, thus, we can write
Ry, (p)l=s= Ry, (qS) = Zero, (2.55)

Here we need to indicate the values of p where the wave function Ry;
vanishes; therefore one has to plot graphs. In this research, mathematica

software, version 5.0, has been used for this purpose.
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Unfortunately, those zeros (roots of the confluent hyper geometric

polynomials) are not nice numbers (not integers).

The zeros here are those of the confluent hyper geometric polynomials in
N-1 2S .
Ry,(p) , namely 1F1 ( T pa ; N —1; p) which joins all the
0

variables of this problem (N, S, p) together.

One can easily show that
2S

A= o (2.56)

In such graphs, there might be more than one zero (or root), Let x,, bethe
nt" root, the last intercept is the one coincides with the surface of the walls

of the cavity, and hence it indicates the ground state energy for each S,

S =2 and 2y
ince =—— , P = ——
q (0 73) A p (0 13) A
P indicates the roots, and r indicates S,
2
(0 1)) A

p = S (2.57)

From equation (2.57) we can easily relate the zeros and the radius of the

cavity with A to get the energy eigen-values of this problem.

2

pr— 2.
Xn el S (2.58)
Then 1= -2 (2.59)
aoxn

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

27

N-1 2§
For any given S and N we can plot the 1F1 (T e N —1; p)
0

and get the zeros, then using equation (2.59) we can compute the values of

A which correspond to these values of S and N. Then compute E from £,

_ Eo . :
-z In eV units.
B xp2 B xp2
= ——"T—= —— 2.
Also we have, E, o 52 20 47 (2.60)
—}?

With E, =

! 0 2“.(102
Finally we can write,,

xXn? ag?
E, = ’252 E, (2.61)

Which is another formula to compute the energy eigen-val ues.

Equation (2.61) predicts that the ground state energy belongs to the
largest X, which corresponds to the largest value of n, and smallest 4

because E, isanegative value, see egns. (2.59), and (2.61).

Thisimplies that either we have to use egn. (2.49), or (2.61) to calculate the
energy for agiven state, we have to suggest different values of the cavity
radius which practically means trapping the hydrogen atom (or other types
of atoms) within atomic scale confinement of other substance (doping

process).
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For later comparison between the energies of the confined hydrogen atom
and the free one, we write the energy of the free hydrogen atomin N

dimensions [1], namely

E
Enfree = — N5 (2.62)

N-3.2
(n+ =)
In the above equation, n refers to the principal quantum number for the free

hydrogen atom.

For example considering the values of N=4, =0, S= 9a, we locate the

zeros of the wave function by mathematica plots, just plot

1F1 (1.5 — 18/ p; 3; p) to determine the zeros in order to find the energy

eigen values from egn. (2.60), or (2.61).

A mathematica graph for illustrative purposes is shown in figure (2), but
one should be careful in locating the zeros, because for a given period of p
it might not show all of the zeros (i.e. In the graph below there is another

zero at Z=1.78 which is not shown).

Fe |:1F1|:1_5 - %; 3;2:|:|

1t |

10 F

=10

u] 2 <+ E 2 in0 1z

Fig.(2): Mathematica plot which shows one of the zeros (horizontal-axis
intercepts) of the function 1F1 (1.5 18/ p; 3; p).
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In this study, the calculated energies correspond to I=0. In another words,
the 1s state. Here it is worth mentioning that for each value of |, when
substituted in the hyper geometric part of the wave function, there are
different roots, one or many, but the ground state of the problem
corresponds to the largest x,,for 1=0.

The radial wave function Ry, (p) = A pt e © 2 LZZ ¥ NN_21 (p) must be

-1- >
normalized. Now to calculate A, the normalization constant, we know that

the total probability to find the particle within the cavity is 1,

Thus;

42| [7e CP) p2!| Lff_*llf va(p) [2rVldr =1 (2.63)
2

From egn. (2.57) we get,

dr = % dp (2.64)

PN-1 (%)N—le—l (2.65)

Making use of foooe‘xkaﬁ(x)L (x)dx ("+k) Smn  (2.66)

and ["e X XU OLE(Ddx ="2E 2n+k+1) (267)

gives,

2l+N 2
. l__()

A1 [7e CP) p2t| L (AZ")N PN ldp=1 (269
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=141 [ e OO LT i) (AZ")’VPZHN‘1 dp (269

2l+N 2()

=4 ()N [ e P WN-ldp  (270)

(/1—1+21+1v 2- —)

=|A[2 (5D [21—21—N+1+2l+N—2+1]
@-1-C)
(2.71)
Therefore,
N-1
(A—1-—>)!

Al? = N 2.72
41" = (/la ) (a+1+2 )v(zx) (2.72)
Thisyields the 3- dimensional case, namely

_ 3 (A-1-1)! .1
G Gan? (2.73)
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2.3. Expressing the relation between the pressure exerted on the H-
atom and theradius of the cavity:

“The recent development in nanotechnology has generated intensive
research activity in modeling spacially confined quantum systems, when an
atom is or a molecule is trapped inside any kind of microscopic cavity, or is
placed in a high pressure environment, it experiences special confinement
that affects its physical and chemical properties.”[20]

An atomic system under very high pressure simulates a confined system.
The interaction of the atom with the surroundings was suggested to be
replaced by a uniform pressure on a sphere within which the atom is
considered to be enclosed. [20]

Knowing the dependence of the ground state energy on the radius of the
cavity, equation (2.61), allows us to calculate the pressure needed to
‘compress’ a hydrogen atom in the ground state in a certain size of the

cavity.

E
[ =— 2.74
It is known that P v (2.74)

Substitute for the value of E,, from equation (2.61) to get

—d Xn®a,?
P=— (Z5)Eo (275)

But dV=AdS, then

- — = 2.76
Ads ™ A ds (2.76)

Now, in N dimensions the area of the hyper sphere s,
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_ 2N N
An(S) = (%_1)! S (2.77)
and Py = 1 45 (2.78)

Z(R)N/Z gN-1 as

)

N
—(——1)! 2xn%a0% -1
2 n 0
— — 2.7
2(m)N/2 sN-1 45 s2 Eo (2.79)

N
(3_1)! 2xp%ap® 1

= 2SN 4 5200 (250)
Finally
N
1) 50
_ 2 n 0
Py = ~57- 75 Eo (2.81)
When N=3,
— (%)' xnzao2 _ VT xnzaoz _ 1 xnzaozE
Py=3 = 232 455 B0 T 5 am g5 L0 T g g5 Lo (282

Equation (2.81) shows the dependence of the pressure exerted on the
confined H-atom on the space dimension N, where more pressure is exerted

on it with increasing N.
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Chapter 3

Results and Discussion
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Chapter Three

3.1. Results of the ener gy eigen-values.

In the previous Chapter, the formulae for the wave functions and for the

energy eigen-values were determined.

In this Chapter, we shall calculate the energy eigen-values for the ground
state (1=0) for the confined H-atom for different values of N and S, and
then we shall express the results in graphs. Remember that the ground state

corresponds to the largest root X, (smallest value of ).

With the help of the following formulae, mathematica software version 5.0
will be used to locate the roots of the wave functions of the confined H-

atom in its ground state for given values of S, and N.

Here, we shall consider only the largest root, which corresponds to the
smallest value of A, taking into consideration that the wave function might

have more than one root.

The following formulas are needed to perform the calculations,

, _p - S
Ry (p)= A pte2) Fi(I+ % —pz—aoi 20+ N-1;p) (31
28
P = e (3.2
A= 2 =2 (3.3)
pao XnQo
and thus,
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_ hz XMZ _ XXLZ 2 _ .
En = Touasz ( ap“)Eo = (34)

Now,

For 1= 0, 1F, (I+ M1 —ﬁ; 2l + N—1; p) becomes, (3.5
2 pPAag

F1(5=-—= N-1; p) 36)

pPao

For the free hydrogen atom,

E (- puet/2h?) —g—— = —poe

(42

(eV) (3.7)

In table (1) the suggested values of S, the radius of the cavity, arelisted in
columns as well as the calculated ground state energies for | = 0, and for
spatial dimensions from 3 to 10.

One column for the largest X, is presented for N = 3 only, while for the
other spatial dimensions the calculated energy eigen values are presented
without showing the corresponding Xx,,’s.

The chosen cavity radii are in terms of the Bohr radius a,,. Therefore they
were referred to as S x ag in the tables and they are expressed in meters,
while the energies are expressed in (eV) with accuracy of ten decimal
numbers or less.

The listed x,,"s are read with accuracy of six decimal numbers or |ess too.
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Table (1): The Energy eigen-values for different values of S, and for
specific values of N, when [=0.

N=3 N=4 N=5
S x ag E(eV) X, Sxa, E(eV) SXa, E(eV)
(m) (m) (m)
14.00000 | -13.59999903 27.999999 | 13.0000 | -6.042119818 | 13.00000 | -3.34789349
13.00000 | -13.59999895 25.999999 | 12.0000 | -6.044444444 | 12.00000 | -3.34356944
12.00000 | -13.59998867 23.999990 | 11.0000 | -6.030714876 | 11.00000 | -3.27748760
9.000000 | -13.59984889 17.999900 | 10.0000 | -6.014260000 | 10.00000 | -3.19906000
6.000000 | -13.58028715 11.991300 | 9.00000 | -5.944123457 | 9.000000 | -3.10449383
4.000000 | -13.14487281 7.8650000 | 8.00000 | -5.912945312 | 8.000000 | -2.83103125
3.000000 | -11.53190278 5.5250000 | 7.00000 | -5.809316327 | 7.000000 | -2.34226000
2.000000 | -3.400000000 2.0000000 | 6.00000 | -5.455111111 | 6.000000 | -1.51111111
1.950000 | -2.467091385 1.6662000 | 5.00000 | -4.814740000 | 5.500000 | -0.80727802
1.900000 | -1.470288384 1.2494400 | 4.00000 | -3.068500000 | 5.300000 | -0.43695265
1.850000 | -0.352170619 0.5954000 | 3.50000 | -1.110204082 | 5.100000 | -0.02647059
1.845000 | -0.233969341 0.4839900 | 3.40000 | -0.430617647 | 5.090000 | -0.00188976
1.840000 | -0.114611142 0.3378250 | 3.33000 | -0.312775838 | 5.088500 | -0.00041728
1.837500 | -0.054474543 0.2325866 | 3.30000 | -0.019513314 | 5.088350 | -0.00009218
1.836500 | -0.030333814 0.1734663 | 3.29950 | -0.016092901 | 5.088340 | -0.00008207
1.835500 | -0.006139872 0.0780000 | 3.29850 | -0.010124904 | 5.088330 | -0.00004494
1.835250 | -0.000089113 0.0093850 | 3.29750 | -0.004502687 | 5.088329 | -0.00004445
1.835247 | -0.000016232 0.0040100 | 3.29700 | -0.001088792 | 5.088328 | -0.00004446
3.29690 | -0.000548072 | 5.088327 | -0.00004350
3.29685 | -0.000165477 | 5.088308 | -0.00004255
3.29683 | -.0000175958
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Table (2): The Energy eigen values for different values of S, and for
specific values of N, when [=0.

N=6 N=7 N=8

SX ag E(eV) SX ag E(eV) SX ag E(eV)
(m) (m) (m)
23.0000 -2.17491 35.000000 -1.51104 54.000 -1.11042
21.0000 -2.17263 30.000000 -1.51036 37.000 -1.10571
19.0000 -2.16608 26.000000 -1.50687 36.000 -1.09714
17.0000 -2.14412 23.000000 -1.49081 32.000 -1.08777
14.0000 -2.06099 20.000000 -1.48110 27.000 -1.07776
13.0000 -2.01183 17.000000 -1.37224 20.000 -0.97317
12.0000 -1.91675 16.000000 -1.35482 17.800  -0.85000
11.0000 -1.75367 15.000000 -1.27900 17.000  -0.79106
10.0000 -1.54913 14.000000 -1.16641 16.000  -0.68850
9.00000 -1.24677 13.000000 -1.10285 15.000  -0.58087
8.00000 -0.72728 12.000000 -0.85000 14.000  -0.39139
7.50000 -0.29255 11.000000 -0.58172 13,500  -0.30152
7.35000 -0.15121 10.000000 -0.19580 12500  -0.09596
7.25000 -0.05475 9.7500000 -0.07010 12.400  -0.01872
7.23500 -0.03752 9.6500000 -0.01688 12.385  -0.01384
7.22500 -0.02585 9.6350000 -0.00916 12.380  -0.01182
7.21500 -0.01976 9.6250000 -0.00376 12.370  -0.00910
7.20500 -0.00802 9.6200000 -0.00140 12.355  -0.00451
7.20250 -0.00443 9.6175000 -7.2E-05 12.351  -0.00305
7.20125 -0.00347 9.6174000 -1.7E-05 12.350 -0.00273
7.20050 -0.00289 9.6173750 -4.9E-06
7.20025 -0.00213 9.6173700 -2.2E-06
7.20025 -0.00213 9.6173680 -7.8E-07

9.6173670 -5.0E-07

9.6173665 -2.5E-07
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Table (3): The Energy eigen values for different values of S, and for
specific values of N, when [=0.

N=9 N=10
SXx ao E (eV) Sx ao E (eV)
(m) (m)

44,0000  -0.84923 77500  -0.671595
40.0000  -0.84152 54000 -0.671168
26.0000  -0.79845 42,000  -0.659666
20.0000  -0.54400 31.000  -0.597919
18.0000  -0.37778 25.000  -0.460442
16.0000  -0.11402 23.000 -0.361531
15,5000  -0.02503 20.000  -0.146391
15.4000  -0.00703 19.000  -0.039580
15.3800  -0.00345 18.900  -0.026864
15.3750  -0.00208 18.700  -0.002335
15.3740  -0.00200 18.685  -0.000429
15.3700  -0.00125 18.684  -0.000265
15.3690  -0.00109 18.682  -.0000477
15.3650  -0.00030

15.3640  -0.00010

15.3635  -9.7E-06

The following graphs represent these results. The plots were made using

Excel 2007.
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E-S rdation for N=3

2
0
0—1 3 45 6 7 8 9 101112131415

E (ev)
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- e ul

—@—Seriesl

===

-14

-16

Sx ag(m)

Fig.(3): Relation between the ground state energy eigen values of a
confined H-atom, and the radius of the cavity for N=3&1=0.

E-S rdation for N=4

—@—Seriesl

E(ev)

Sx ag(m)

Fig.(4): Relation between the ground state energy eigen values of a
confined H-atom, and the radius of the cavity for N=4&1=0.
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E-S rdation for N=5
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Fig.(5): Relation between the ground state energy eigen values of a
confined H-atom and the radius of the cavity for N=5&=0.

E-S rdation for N=6
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Fig.(6): Relation between the ground state energy eigen values of a
confined H-atom and the radius of the cavity for N=6&=0.
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E-Sreation for N=7
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e o >
ASMnan:
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Fig.(7): Relation between the ground state energy eigen valuesof a
confined H-atom and the radius of the cavity for N=7&1=0.

E-S rdation for N=8
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Fig.(8): Relation between the ground state energy eigen values of a
confined H-atom and the radius of the cavity for N=8&|=0.
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E-S rdation for and N=9
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Fig.(9): Relation between the ground state energy eigen values of a
confined H-atom and the radius of the cavity for N=9&=0.

E-S rdation for N=10
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Fig.(10): Relation between the ground state energy eigen values of a
confined H-atom and the radius of the cavity for N=10&1=0.
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E-S- reation for N=3,4,5,6 from bdow to above in turns.
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Fig. (11): Relation between ground state energy eigen values of a confined
H-atom and the radius of the cavity for given space dimensions when 1=0
For N=3, 4, 5, 6 from below to above.

E-S-relation for N=7,8,9,10 from bellow to above
0.2
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Fig. (12): Relation between ground state energy eigen values of a confined
H-atom and the radius of the cavity for given space dimensions when =0,
for N=7, 8, 9, 10 from below to above.
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Studying the data in the tables and studying the graphs, one can figure out
the effect of the radius of the cavity on the ground state energy of the
confined H- atom. As the radius of the cavity increases, the energy of the
confined H- atom decreases and its limiting value becomes equal to that for
the free H- atom in that dimension which can be easily calculated from egn.
(3.7), which means that the effect of the cavity becomes negligible for large

values of S.

Meanwhile, as the radius of the cavity decreases the ground state energy
increases for a given N, this is so because as the cavity becomes smaller,
then the confined atom will suffer many collisions with the walls of the
cavity which will increase its kinetic energy (which is positive), and thus
the total energy, then, increases, hence the particle is less bound.
Alternatively, as the cavity radius decreases the surface gets closer to the

position where the electron radial distribution function
Dy () = r¥7HRy, (1)1 (3.8)

Is maximum, and hence the confinement effect is expected to become more

profound.

A distribution function gives the probability of finding the particle a

distancer in space from a certain reference point.

One more observation about our results is that the confinement effects

become more profound in higher dimensions. For example, for a given
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cavity radius S, we can calculate from tables above the percentage
difference from the ground state energy of the free hydrogen atom, or

EfreeE. o
The percentage difference = Jree” Bconfined o 100% (3.9

free

Lets choose S= 14a, then the corresponding percentage differences for

N=3, 4,5,6,7 are 8.33x 10 %, 0%, 1.66% 11.9%, 77.8%.

It is easy to see in Figurs. (11), (12) that when N increases, the limiting
value of the energy increases, which is due to the additional repulsive term

in the effective potential term where

Varp = V(@) + [I(L+ N — 2) + LN

4

1
r2

] (3.10)

The total energy is kinetic energy plus potential energy, here Vs becomes

more positive with increasing N, thus the total energy is more positive too,

in other words it increases.
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3.2: Critical cageradius:

An important point to discuss is to find the minimum cavity size that allows
a bound state. Our previous results show that: As the cavity radius
decrease the binding energy diminishes and therefore, there is a critical
value. S for the cavity radius at which the binding energy becomes zero.
This critical value is called the critical cage radius. The critical cage radius
of hydrogen atom is relevant to the ionization of its ground state. Here we
search for the smallest cavity radius, for a given dimension N, at which the
bound state energy approaches zero. We carry the calculations for N = 2 to
10, and present our results in Table (4). For the N=3, our results give S =

1.835247x% a, in meters.

Sommerfield and Welker [12] obtained a critical cage radius = 1.835x% a,
in meters. Our results show that the value of the critical cage increases as
the space dimension N decreases. This is so because as the dimension
increases the particle is repelled further away from the nucleus which is

due to the extrarepulsive term in the effective potential.

The results are displayed in the following table and in Fig (13).
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Table (4): Critical cage radius of the cavity S, in different space dimension
N for 1=0.

N Sc¢ X ap(m)

N

0.722890
1.835247
3.296850
5.088327
7.200250
9.617367
12.35000
15.36350
18.68200

POO~NO UL W

o

S.-N réation for the confined H-atom

18

[
N

=
o

Scx a‘O (m)

/ —&—Seriesl

o N b~ O ©®

Fig.(13): Relation between the critical radius of the cavity and the
dimension N for the ground state of the confined H-atom for | = 0.
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Table (5): Values of E vs. N (the dimensionality of space) at S=12a,,

when |= 0.

E (ev)

-13.59998867
-6.044444444
-3.343570000
-1.916750000
-0.850000000

O~NOUAWZ

E-N rdation for S=12 q,

0
(L l 2 3 4 5

—@—Seriesl

E(ev)
[00]
= SN

-10 /
-12

-14

-16
N

Fig. (14): Relation between energy eigen-values and N for the confined H-
atom for S=12a, and for |=0.
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Table (6): Vaues of E vs. N for specific values of S, when | = 0.

N E(ev) E(ev) E(ev) E(ev) E(ev) E(ev)
S=3a, S=6a, S=9a, S=12a, S=16a, S=20a,
3 -11.532 -13.58029 -13.59985 -13.59999 -13.5999 -13.9999
4 -5.455111 -5.944123 -6.044444 -6.04444 -6.10500
5 -1.511111 -3.104490 -3.343570 -3.39703 -3.39949
6 -1.246770 -1.916750 -2.08000 -2.17600
7 -0.850000 -1.35482 -1.48110
8 -0.68850 -0.97317
9 -0.11402 -0.54400
10 -0.14639
E-N relation for S=20 Bohr radius
0
(L 4 6 /1’0
-2 /
-4
-6
3 s |
w —@—Seriesl

-10

-12

-14

-16

Fig. (15): Relation between energy eigen-values of a confined H-atom and
N when S=20q, &I1=0.

The idea of the critical cage can be noticed from the plots in Figures (14),
(15), and Tables (5), (6) where in the case of equal radii of cavities, as N
increases the energy of the confined hydrogen atom increases, but one can
see that there are no bound states for dimensions higher than 7 for S= 12a,,

this manifests the idea of the critical cage radius. Going back to Table (5)
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above, we can find that S = 12q, is less than S, for N=8, 9, 10. That is to
say _for dimensions higher than 7, and for radius =12a, there are no bound

states for the confined H-atom when 1=0.

That is because, when N increases, the energy increases as we have shown
before, at the same time the energy increases when the radius of the cavity
decreases, in another words the kinetic energy increases up to a certain

value at which the total energy equals zero as S decreases.

We can see from Table (6) that the Energy is quantized, (i.e. for certain

values of S & N there are specific values of bound states of the energy.

Again don’t forget that the energy is calculated corresponding to the largest

zero of 4F; (4~ — %4 21 + N — 1; p) which means lowest value of 4,

which corresponds to the ground state energies.
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3.3. Bound states:

Now, let’s consider the effect of the confinement and dimensionality of
space on the number of bound states of the confined H-atom. To that end,
we choose two values for the cavity radius (S= 22a, & 44a,). The number
of bound states is determined by the number of zeros or roots of the
confluent hyper-geometric function which we search for using mathematica
software version 5.0.

As before, once the zeros are located, the bound state energies are
calculated using equation (3.4), the lowest bound state energy is the ground
state say (n=1), and the next ones are exited states (n=2, 3, 4,....).These
calculations are carried out for dimensions N=3 to 10. It is tempting to
compare these energy values with those for the free N-dimensional H-atom.
Our results for 1=0, are shown in Tables (7), & (8) for S= 22a,,

S=44a, respectively. The results are also presented into graphs (14, 15).

The results in tables (7) & (8) show interesting features. Firstly, for a given
S the number of bound states decreases as N increases, and this is due the
extra repulsive term in the effective potential which reduces the effect of
the negative potential energy, which means that the total energy of the atom
will approach zero faster which stops having additional bound states.

Secondly, the larger the cavity radius the higher the number of the bound
states for a given N, since the confinement effect is small for large

confining cavity, and because increasing the radius of the cavity leads to
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decreasing the energy of the confined hydrogen atom which allows more

bound states.

Thirdly, upon comparing the bound-state energies of the confined case,
here we chose S=22a,,, with those corresponding states of the free one, we
note that while the ground state energies are very close, the excited-state
energies have a difference which increases as we go to higher excited
states. This is explained by the fact that the radial distribution function has
a maximum at a point that gets closer to the cavity surface as we go to

higher excited states and thus the confinement effects become profound.

It is of great importance to consider the special case o« = -1. Here, eqn. (2)
in Appendix B implies that 1F; («; y; x) has only one zero, (i.e. the series
terminates when the power of x is 1), whose value x = y as egn. (2) in
Appendix B shows, and thus we have only one bound state. Therefore, for

| =0, and for ;F; (I+ % — % 21+ N=1;p) = {F1 (e ¥; p), we get

p =y = (N-1), and thus egns. (3.3) and (3.6) yield the cavity radius and
egn. (3.7) yield the binding energy, namely

2_
g=N - La, (3.12)

4
E= iy Fo (3.12)

It is interesting to note that the above state energy coincides with the
energy of the first exited state (n=2) for the free hydrogen atom as can
easily be checked using egn. (3.7). One can also observe that in the infinite
dimensional space (N—o) the binding energy vanishes and the cavity

radius becomes infinite which means that the H-atom isn’t anymore
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confined. This implies that we can’t confine a H-atom in the infinite

dimensional space.

Table (7): Bound state energies for confined and free H-atom in different
dimensions for 1I=0 and S=22a,.

En confined En free
N|n |(eV) (eV)
3 |1 -13.5994 -13.60000
3 12 -3.39938 -3.400000
3 13 -1.42647 -1.511111
4 |1 -5.98962 -6.044444
4 |2 -2.16365 -2.176000
4 |3 -0.78931 -1.110204
5 |1 -3.39938 -3.400000
5 12 -1.46274 -1.511110
5 |3 -0.12629 -0.850000
6 |1 -2.15134 -2.176000
6 |2 -0.89700 -1.110204
7 |1 -1.47696 -1.511111
7 12 -0.37435 -0.085000
8 |1 -1.02850 -1.110204
9 |1 -0.64740 -0.850000
10 |1 -0.30600 -0.671605
Bound states for a confined H-atom in different
dimensions for S=22 a,,.
0
3] EP i e
EEEE 5 $ 9 10 11
] | |
-3
2 & <
-5
-6 4
> -7
()
o -8 ® Seriesl
-9
-10
-11
-12
-13
-14 Y
-15
N(dmension of space)

Fig. (16): Bound states for of a confined H-atom in different dimensions
for S=22a,&1=0.
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N n En confined En free N n En confined En free
3 1 -13.59999 -13.6000 | 6 1 -2.15134 -2.17600
3 2 -3.399985 -3.40000 |6 2 -1.11526 -1.11020
3 3 -1.48717 -1.51111 |6 3 -0.64068 -0.67161
3 4 -0.84320 -0.85000 |6 4 -0.20107 -0.45959
3 5 -0.40043 -0.54400 |7 1 -1.50768 -1.51111
4 1 -6.03072 -6.04444 | 7 2 -0.85774 -0.85000
4 2 -2.21325 -2.17600 |7 3 -0.45522 -0.54444
4 3 -1.09762 -1.11020 | 8 1 -1.09762 -1.11111
4 4 -0.64068 -0.67161 | 8 2 -0.64741 -0.67161
4 5 -0.14864 -0.44959 |8 3 -0.27441 -0.44959
5 1 -3.40000 -3.40000 |9 1 -0.84927 -0.85000
5 2 -1.50768 -1.51111 |9 2 -0.43565 -0.54444
5 3 -0.84479 -0.85000 |9 3 -0.07193 -0.37777
5 4 -0.42193 -0.54400 | 10 1 -0.65417 -0.67161
10 2 -0.34421 -0.44959
Bound statesfor space dimension from (3 to 10) for S=44a,
0
02 f% % i % §3
1 HEED- EEEL JNEN) {EEE? INEN 1
-1.5
I
-2
-2.5 * *
-3
3.5 A 4 ¢
-4
-4.5
-5
-5.5
-6 L 4
-6.5
-7
— 7.5 @ Seriesl
S -8
L 85
w -9
-9.5
-10
-10.5
-11
-11.5
-12
-12.5
-13
-13.5
Y
-14.5

N(space dimension)

Fig. (17): Bound states of a confined H- atom in different dimensions for

S=44a,&1=0
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confined H-atom for S=22a,

0 T
(L 2 10 12

E(eV)
(0]

/
===

-14

-16

Energy eigen values for the states n=1, 2, 3 for the

——n=1
=fl—n=2
n=3

Fig.(18): The energy eigen values of states (n=1, 2, 3) of

a confined H-atom as a function of N for 1=0, and for S=22a,.

This shows that the energy eigen-values for the excited states of the
confined H-atom for 1=0 behaves like those of
eigen-values, in other words E increases as N increases for the excited

states also.
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3.4. Pressure calculations and graphs:

In chapter two, we have derived an equation that relates the pressure
exerted on a confined H-atom with the radius of the cavity and the spatial

dimension N. The dependence can be written as:

N

1) xaay
— \2 Al ©o
Py = 57 “onez Eo- (3.13)

1 Xpi%a0® E,= 13.6 X ;2

For N=3, PN=3 = 8 55 8 ds

( ) where S= da,, and

0<d<oo, or simply Sisamultiple of Bohr radius.

The calculated pressure as a function of N& S are presented in Tables (9) -
(16) and graphs (19) — (26). All these calculations are expressed in terms of

eVl apN
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Table (9): Relation between pressures exerted on a confined
hydrogen atom and the radius of the cavity when [=0,N=3.

Sx a, P(eV/ay®)
(m)
14.00000 0.0007889
13.00000 0.0009852
12.00000 0.0012526
9.000000 0.0029691
6.000000 0.0100064
5.000000 0.0172469
4.000000 0.0326881
3.000000 0.0679767
2.500000 0.0930108
2.400000 0.0945503
2.000000 0.0676413
1.950000 0.0532823
1.900000 0.0341165
1.850000 0.0088524
1.845000 0.0059292
1.840000 0.0029282
1.837500 0.0013974
1.836500 0.0007794
1.835500 0.0001502
1.835250 0.0000022
1.835200 0.0000016
1.835175 0.0000079
1.835170 0.0000079

Pvs Sfor aconfined H-atom for N=3
0.12

0.1

0.08 +

0.06

—@—Seriesl

P (eV/ay?)

0.04

0.02
e i i

-0.02

S xay (m)

Fig.(19): Relation between the pressure
exerted on the confined H-atom in a
cavity and its radius for | = 0 and N=3.

One can notice here that the pressure is maximum at S=2.4a,,.
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Exerted on a confined hydrogen atom
and the radius of the cavity when 1=0,N=4.

Sx ay (M) P(eV/ay*)

13.0000 0.000022

12.0000 0.000026

11.0000 .0000422

10.0000 0.000061

9.00000 0.000094

8.00000 0.000150

7.00000 0.000245

6.00000 0.000430

5.00000 0.000781

4.00000 0.001210

3.50000 0.000750 i;
3.40000 0.000330 s
3.35000 0.000250 =
3.30000 0.000170

3.29950 0.000014

3.29850 8.7E-06

3.29750 3.81E-06

3.29700 9.34E-07

3.29690 4.3E-07

3.29685 1.4E-07
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Fig.(20): Relation between the pressure exerted
on a confined H-atom and the radius of the
cavity when| = 0 for N=4.
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Table (11): Relation between pressures
Exerted on a confined hydrogen atom
and the radius of the cavity when 1=0,N=5.

S x agp P(eV/aOS)
(m)

13.00000 | 0.00000046

Pvs Sfor aconfined H-atom for N=5
0.000012

12.00000 | 0.00000068
11.00000 | 0.00000103
10.00000 | 0.00000162
9.000000 | 0.00000270 0.000008
8.000000 | 0.00000440
7.000000 | 0.00000706
6.000000 | 0.00000985 0.000006
5.500000 | 0.00000813
5.300000 | 0.00000520
5.100000 | 0.00000311
5.090000 | 0.00000003
5.088500 | 5.25E-08
5.088350 | 1.4E-09 0.000002

5.088340 | 1.22E-09 \
5.088330 | 6.7E-10

5.088329 | 6.61E-10 0 2
5.088328 | 6.46E-10 ( : 10 15
5.088327 | 6.3E-10

0.00001

—@—Seriesl

P (eV/ay®)

0.000004

-0.000002
Sxay(m)

Fig. (21): Relation between the pressures exerted
on a confined H-atom and the radius of the
cavity when | = 0, N=5.

PDF created with pdfFactory Pro trial version www.pdffactory.com


http://www.pdffactory.com

60

Table (12): Relation between pressures
exerted on a confined hydrogen atom
and the radius of the cavity for [I=0,N=6.

SX ag

Px 10~8(eV/a,®)

23.0000
21.0000
19.0000
17.0000
14.0000
13.0000
12.0000
11.0000
10.0000
9.00000
8.00000
7.50000
7.35000
7.25000
7.23500
7.22500
7.21500
7.20500
7.20250
7.20125
7.20050
7.20025

0.0095
0.0160
0.0297
0.0573
1.7656
2.6885
4.1406
6.3852
9.9923
15.133
17.895
10.603
6.1862
2.4318
1.6909
1.1723
0.9035
0.3670
0.2050
0.1605
0.0134
0.0098

20

18

16

14

12

10

P x 10 (eV/a,®
co

i

>0

10

2

0

Sxay(m)

Pvs Sfor aconfined H-atom for N=6

—@—Seriesl

Fig (22): Relation between the pressures
exerted on a confined H-atom and the
radius of the cavity when | = 0, N=6.
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Table (13): Relation between Pressures
exerted on a confined hydrogen atom
and the radius of the cavity for I=0,N=7.

Sxa, Px107%eV/a,”)
(m)

35.00000 0.01420 Pvs Sfor aconfined H-atom for N=7

20

30.00000 0.04176
26.00000 0.11451
23.00000 0.26477
20.00000 0.69968
17.00000 2.02222
16.00000 3.05201
15.00000 4.52666
14.00000 6.69111 +

18

16

14

12.00000 14.3448 +
10
—@—Seriesl
9.750000 5.06102

13.00000 9.91163 12
11.00000 18.0514

10.00000 11.8433

9.650000 1.31007 *
9.635000 0.71827 6

Px 107 (eV/a,")

9.625000 0.29697

9.620000 0.11079 4

9.617500 0.00565

9.617400 0.00066 2

9.617375 0.00039

9.617370 0.00018 0

9.617368 0.00006 ( L P a0
9.617367 0.00004 2 S x a, (m)

9.617367 0.00002

Fig (23): Relation between the pressures exerted
on a confined H-atom and the radius of the cavity
when| =0, N=7.
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Table (14): Relation between pressures
exerted on a confined hydrogen atom

and the radius of the cavity for I=0,N=8.

Sxa, Px107%(eV/a,®)

54.00 0.00096 20

(m) Pvs Sfor aconfined H-atom for N=8

37.00 0.01940 18

36.00 0.02396

32.00  0.06094 16

27.00  0.23501 14
20.00  2.34156
17.80  5.19539 12

17.00 6.98518

10
16.00 9.87425

15.00 13.9608
14.00 16.3360

Px1012(eV/ a,®)

13.50 17.1085

—*"—'-

12.500 9.91693 4
12.400 2.06252

12.385 1.53933
12.380 1.31971 0

12.370 1.02259 (

12.355 0.05120
12.351 0.03452

Sx ay(m)

—@—Seriesl

12.350 0.03110

Fig (24): Relation between the pressure exerted on a
confined H-atom in a cavity and the radius of the
cavity when | = 0, N=8.
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Table (15): Relation between Pressures
exerted on a confined hydrogen atom
and the radius of the cavity for I=0,N=9.

—@—Seriesl

Sxay Px10 16(eV/a09) Pvs Sfor aconfined H-atom for N=9
(m) 400
65.0000 0.0069 380
360
46.0000 0.1553 340
44.0000 0.2316 320
40.0000 0.5469 300
30.0000 6.8913 280
29.0000 9.3323 260
26.0000 24.772 240
23.0000 63.767 3 220
20.0000 178.97 2 200
18.0000 320.80 2 180
17.0000 377.03 < 160
16.0000 279.47 & 140
15.5000 81.655 120
15.4000 24.288 100
15.3800 12.073 80 P
15.3750 7.2867 60
15.3740 7.0257 40
15.3700 4.4072 20
15.3690 3.8326 0 *
15.3650 1.0686 -20 010203040 50 607
15.3640 0.3675 S x ag(m)
15.3635 0.0344

Fig.(25): Relation between the pressure exerted
on a confined H- atom in a cavity and the radius
of the cavity when | = 0, N=9.
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Table (16): Relation between Pressures exerted
on a confined hydrogen atom and the radius of
the cavity for 1I=0,N=10.

Sxa, Px1078(eV/ay!?)

(m)

77.500 0.00668
54.000 0.24983
42.000 3.02896
31.000 57.2121
25.000 378.649
23.000 683.432
20.000 1121.19
19.000 506.298
18.900 362.258
18.700 35.0134
18.685 6.49326
18.684 4.01117
18.682 0.72287

Pvs Sfor aconfined H- atom for N=10
1200
1100
1000

900
800
700
600
500 # =&—Seriesl
400
300
200 \
100 \
0 e

-100 100

P x 108 (eV/a,'%)

S xay(m)

Fig.(26): Relation between the pressures exerted on a confined
H-atom in a cavity and the radius of the cavity for | = 0, N=10.
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In this part of the study, we represent the relation between the pressures
exerted on the H-atom due to change of radius of the cavity for each value
of N from 3 to 10 in graphs as shown above from Fig (19) to Fig. (26).
This relation is interesting, where it is noticed that when the radius of the
cavity is increased the pressure decreases and approaches zero as Sis large,
which implies that the cavity effect becomes negligible and the H-atom acts
like a free one. While when the radius of the cavity decreases the pressure
increases gradually up to a certain maximum value, for each value of N,
this maximum occures at a certain value of the cavity radius which we call
S max- If the radius of the cavity becomes less than S, max, the pressure will
decrease rapidly until it approaches zero again within a very short range of
S. We suggest that this is because as S decreases, one is moving away from
maximum distribution function, and the probability of finding the H-atom
within this region becomes small. (Radial distribution function gives the

probability of finding the particle in a distance r from a certain point in

space),
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Table (17): Relation between the values of S, where the pressure is
maximum and N.

SF’maxxao N

(m)

2.4
4.0
6.0
8.0
11.0
13.5
17.0
20.0 10

O 00 NO Ul b W

Spmax- N rdation for the confined H-atom

12

10 /
8 /
6 /
4 / —@—Seriesl

SP max

Fig. (27): Relation between the radius of the cavity at which the pressure
has a maximum value, and N for the ground state of a confined H-atom.

We examined the relation between the radius at which pressure is
maximum, S, max, and N, see Fig. (27) above, we found that as N increases
S, max increases which is due to the dependence of the radial distribution

function on space dimension N.
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Chapter 4

Conclusions and Future Work
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Chapter four
Conclusons:

After completing this study, the following conclusions can be drawn:

1- In this study the Schrodinger equation for the confined H-atom in
a spherical cavity has been solved, in N-dimensions. It has been shown that
the wave functions are dimension-dependent and having the same form as

those of the free H-atom in N- dimensions.

2- The ground state energy eigen-values for the confined H-atomin a
spherical cavity, for I=0 have been evaluated for spatial dimensions from 3
to 10. We found that the energy eigen-values are quantized and dimension-
dependent. That is for a certain dimension and for a given radius of the
cavity there are a certain number of zeros, these zeros represent the
solutions of the Schrodinger equation and the largest zero coincides with
the boundary conditions for this problem, and the corresponding eigen-
values represent the bound states for these N & S. The largest value of the
zeros corresponds to the smallest A which, here, corresponds to the smallest
value of energy of the confined H-atom, in other words indicates the

ground state energy.

It has been noticed that the energy of the confined H-atom, increases
as the radius of the cavity decreases until it approaches zero where the
Kinetic energy equals the potential energy at a value of the radius of the

cavity called the critical cage radius. It has been shown that as the size of
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the cavity is lowered, there ultimately exists a point where the electron
becomes delocalized (its binding energy becomes zero) and it behaves like

aparticle in a sphere.

As a definition, the critical cage radius means the minimum radius of a
cavity where the total energy of the confined electron becomes zero, or not

bound.

Critical cage radius has been calculated for space dimensions N (2-10).Our
results show that the critical cage increases as N increases. This is because
the particle is repelled further away from the nucleus, due to the extra
repulsive potential in the effective term. According to our calculations, for
N=3, the value of S; =1.835247x% a, where it was found by Sommerfeled
and Welker that S; =1.835% a,. The critical cage radii for different values
of N are calculated and listed in Table (4).

Also the energy of the confined H-atom decreases as the radius of
the cavity increases, down to the free limiting value where the radius of the
cavity becomes large enough so that the confined H-atom acts like a free
one, and thus the value of its energy approaches that of the free H-atom in

that dimension.

The dependence of the energy on the dimension N has also been

investigated, it has been noticed that the energy increases as N increases.

In other words, the effect of space dimension on the ground-state energy

becomes more profound as N increases.
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Our results revealed that the number of bound states decreases
either as the cavity size decreases for given N or as the space dimension N

increases for a given cavity radius.

An interesting case (x = —1) in the hyper geometric part of the
wave function Ry;(p), shows that there is only one bound state, for a given
dimension, whose energy coincides with the first exited-state energy (n=2)
for the free H-atom in that dimension. It has also been shown that in the
limit of infinite dimension (N—o0) the cavity radius becomes infinite

and thus the hydrogen atom becomes a free one.

A comparison between the ground state energy of the free H- atom
and a confined one for given N reveals that the percentage difference
between these energies is more profound for large values of N, go back to

Tables ( 7), (8).

3- The pressure exerted on the wall of the cavity due to enclosing the
H-atom inside a cavity of radius S, dependson N and S, it is found that for
a given N, the pressure increases with decreasing radius up to a certain
value and then starts to decrease, this value of P is a maximum. The value
of this pressure increases with increasing N, and the value of the radius of

the cavity at which the pressure is maximum increases as N increases.

4- As | mentioned before this study is only for the ground-state

energy (1=0). As a future study | am looking forward to extend this work
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for different values of |, to examine the effect of confinement, for | > 0, on

physical properties of the confined H-atom.
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Appendix A
Theoretical background

In the 20™ century, some natural phenomena that classical physics couldn’t
explain were noticed. One of these phenomena is the photoelectric effect,
another one is the diffraction pattern of the electrons from crystals, and the
phenomenon of the black body radiation, and the stability of atoms, and all
of these phenomena were questions with no answers. These simulate the
need for a new theory which is based on new assumptions that build a new
model in physics. This new model is called the quantum theory which was
originated by Max Planck in the year 1901. The model has been used by
Einstein, and Bohr to explain photoelectric effect and the spectrum of the
H- atom for its simplicity. Afterwards, de Broglie proposed the wave nature
of particles; and proposed a formula for the wave length that is

accompanied by the moving particle, namely,

A= > (A.1)

Where h is the Planck’s constant and p is the linear momentum of the
moving particle. This wave aspect of particles was proved experimentally
through the Davison and Germer experimental confirmation, where the

electrons were diffracted from the crystal like waves.

But the de Broglie theory was unsatisfactory, because it depends on the

classical basics of uniquely momenta and uniquely defined wave lengths.
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The new model shows uncertainty in locating the position of the particle or
indicating its momentum that is shown by the Heisenberg uncertainty

principle.

The mathematical aspects of nonrelativistic quantum mechanics are

determined by solutions to Schrodinger equation.

The time independent Schrodinger equation for a particle of mass m, with

potential energy V(x) in one dimension is,

;_::dzdll;gx)"" Vx)ypx) = EP(x) (A.2)

This has a complete solution including the time dependence given in this
form, Y(x,t) = PY(x)e EL/M (A.3)

While in 3-dimensions by using spherical coordinates, the Schrodinger

eguation is,
V2 (r,0,0) + VIO)P(r6,9) = EY(r,6,0) (A4

Y(r,0,p) is the Schrodinger wave function which is a mathematical
description of the wave packet which describes the particle, and it is
composed of a collection of waves representing a range of momentum. The
particle is localized in a region of space defined by its wave packet, that
contains all of the information that are available about the particle, and

hence (particle = wave packet).
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For ¥ (r, 6, @) to be acceptable as a wave function, it must be normalizable,
and any solution of the Schrodinger equation which allows ¥(r, 8, ¢)

becoming infinite must be discarded.

Then ¢ (r, 6, ¢) as well as its first derivative across any boundary must be
dy

continuous exept when the potential has an infinite jump where = IS
discontinuous. Finally, it must be orthonormalized.

Now, we are concerned in finding the radial part of Y (r, 8, ), that is

W(r) . Thus knowing ¥(r) of a particle enables us to calculate many of its

properties,

V2 operator in 3 dimensions is given by,

Vi=

*P(r.6,9) , 2 Y(r,0,0) 1 3 ( : 61/J(r.9.<p))
or?2 +r or T r2sin 8 00 sin & 00 T
1 0%yY(r.0,9)

r2sinf  0¢? (A-5)

Now, in N dimensional space, the laplacian operator in polar coordinates

(I’,Hl, 62, 63, 64, 65, ven omms mes weay HN—ZJ (p) , Of RN.
2__ . (1-N) 0 (N-1) 0y, 1 .2
v2=r( )ar(r )t A (A.6)

A? is apartial differential operator on the unit sphere SN=1, which also is

the square of the angular momentum operator [1].
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Making separation of variables in egn. (A.8) yields a radial equation and

angular equation.

The radial Schrodinger equation is written in different references as

followd[ 1],

_n d —1) dR 2
PN (VD) LR W) -BRE0 A7)

Here B isthe separation constant which also are the eigen values of A%, and
B=I(l+N-2) (A.8)

It worths here to write down the relation between the polar coordinates in
N- dimensional Euclidian space (r, Oy_2, ..., 61, @ ). Where 0< ¢ < 2,

and 0 < 6; < m, and the Cartesian coordinates (x; x; ....,x, ) [21].

Xy =rCcose sin 0;sin 0,............ sin 6,,_,

X, =rsing sin 6;sin 6,............ sin 6,,_,
X3=rcosf;sinb,.................. sné,_,

X;=rcosf ,_,snf;_; ......... sné,_,

Xp =T C0SH,,_» (A.9)

Where the length element is given by [19],
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ZU 1 9ij dutdu’ (A.10)
where ul =7, u? = 0,_5, wur v ... u™l=0, u"=¢, And
the metric tensor in N-dimensional polar coordinates is,

/’
10 0O i 0
072 0 tooiiiiieiieeein, 0
00 r*sinB,,_, .cccvvnennns 0
000 0
..................... 0
- r2sin®6,_, ...sin? 8,
(A.11)
Lt g = det gy = r2Dsin2=2)g., .. . sin%6,
(A.12)
Thenthe V2= % Pt aul( \/_ g_uﬁ ) (A.13)
Since we are interested in the radial part, then
7= (M) = et (19

The Hamiltonian for a particle of mass m with potential V(r) is,

—h2 d2+N 1d

_—h? s _
H_ZmV +V(T)— ‘m[dr2 r dr

term? + V(r)
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As soon as the Laplacian and the Hamiltonian operators are written, the

Schrodinger equation can be easily written as,

—h2
% vV ZR(r) + Veff R(r) - ER(r) =0 (A.16)
Or
d? N-1d I(I+N-2) = 2m e? 2m _
it T A e+ STE|R() =0 (A7)

This equation is very important in this research, whose solution will be
used to find the eigen functions and the eigen values for the confined H-

atom in a spherical cavity.
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Appendix B
The confluent hyper-geometric function [22].
The confluent hyper geometric differential equation is,
x%+(y—x)2—z—ocx=0 (B.1)
This equation has a solution called the Kummer confluent hyper-geometric

Yreo(0)nx™

(¥)nn!

functions U(X) =1F1(c¢;y 5 x) =

_ o x| oc(xt+1) x2
ux) =1+ T + D) 2 o (B.2)

If oc is zero or negative number then 1F1 (; y; x) becomes a

polynomial.

The Pochhammer symbol («),,is defined as,

(), = (¢ +1)(X +2) e oo oo, (X +n — 2)(x +n — 1) (B.3)
_ (x+n-1)!  T(x+n)
T (x-1)! () nzl (B.4)

Noticethat (<) =1, «=#0,and I'(n+ 1) =n!

The Lagurrre polynomials LY, (x) are related to the confluent hyper

geometric functions as follows,

+y)! [(<+y+1)
TR (oY +1X) =,

Y —
Lo (x) = «<!I'(y+1)

1F1 (-o¢;y +1; X) (B.5)
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Thereforeif Ry, (p) = Ap'tle -3 LY. (p) then we can write it

equivalently using the confluent hyper-geometric function as,

_Py (<+y)! ) .

Ru(p) = Ap'*te O TIINR (- oy +1p)
= A pi*t e CD R -y +1;p) (B.6)
A=A L (B.7)

xly!
with <= 1[4+ % —\ (B.8)
y=2l4+N-1 (B.9)
then Ry (p) =4 p*1 e (Hw;(f ;)(_Z)N) APy oy +Lp)  (B10)
(2+1+72):

= A (B.11)

where A
(A-1-2 i2i+n-2)
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