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Confined hydrogen atom in a spherical cavity in N- dimensions 

 
By 

Muzaian AbdulHameed Ali Shaqqur 
 

Supervised by 
Prof. Dr. Sami Al-Jaber 

 

Abstract 

In this research the Schrödinger equation for a confined hydrogen atom in a 

spherical cavity in N dimensional spatial space has been solved for N ≥ 3. 

The eigen functions as well as the eigen values have been determined.  

We show that the Schrodinger equation here doesn’t differ from that of the 

free hydrogen atom in N dimensions; therefore they have similar wave 

functions namely  

“  l (ρ) =  A′    e (   ) 1F1 (l+       – λ; 2l +  N – 1; ρ)”, while 

they differ in energy.  A series solution of the Schrödinger equation is 

adopted here, and then, by applying the boundary conditions to the wave 

functions we found the energy eigen-values. 

The dependence of the ground state energy eigen-values of a confined 

hydrogen atom for l = 0 for certain values of N, on the radius of the cavity 

S, has been examined. We found that they depend on the radius of the 

cavity S, we show that for a given N, if S increases the ground state 
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energies decreases until they approach a limiting value which approaches 

the energy eigen value of that N of the free hydrogen atom. While as S 

decreases, the ground state energy eigen values increases up until it 

approaches zero at a minimum value of S that is called the critical cage 

radius (Sc ) at which the total energy of the confined hydrogen atom equals 

zero. 

The critical values Sc are calculated for dimensions from (2-10), whose 

values are 0.722890, 1.835247, 3.296830, 5.088308, 7.200250, 9.617367, 

12.35000, 15.36350, 18.68200 respectively, (all the values here are 

multiples of  Bohr radius ( 0), where ( 0) = 0.529x10   meters. 

It is shown here that Sc increases as N increases.  

It is also shown that for a given S, the energy eigen-values for l=0 depend 

on the dimensionality of space N, that is, as N increases, the ground state 

energy eigen-values increase.  

The dependence  of  bound states of a confined H-atom, for a given S, as a 

function of N is investigated, and it is found that it decreases as N 

increases, while if we choose a larger value of S, the number of the bound 

states increases for each value of N. 

We found it interesting to compare the energy eigen-values of a confined 

hydrogen atom in a spherical cavity of a certain radius, with those energies 

of the corresponding energy eigen-states of a free hydrogen atom in the 
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same dimension N. We found that the effect of confinement becomes more 

profound for larger N. 

Finally, I considered the behavior of pressure on the cavity as the radius S 

is varied. 

It has been shown that the pressure exerted on the atom increases as S 

decreases up to a certain maximum value which occurs at a radius value 

called SP max, but then it decreases within a small range of S. 
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Chapter One 

Introduction 

One of the great developments in the human knowledge of the 20   century 

is the Birth of a new theory in physics called quantum mechanics, which 

builds a new model of the atom that explains its structure and stability. 

Classical Mechanics couldn’t properly explain this, because there is 

nothing that will stop the electron from spiraling into the nucleus where no 

more stable atomic structure exists.  

This model was mainly built on the simplicity of the hydrogen atom 

compared to other atoms. Solving the Schrödinger equation of the H-atom 

revealed its mystery, where many mathematical techniques were developed 

to solve the Schrödinger equation in three dimensions to get the energy 

eigen-values and the corresponding eigen-functions, and other relevant 

quantities. 

We are three-dimensional observers, and this makes it easy for us to 

conceive the observed reality as 3-Dimensions. One can distinguish four 

types of directions, spatial dimensions, and time. But theories such as string 

theory predict that the space in general has in fact 10 dimensions, and 

universe, when measured along these additional dimensions is subatomic in 

size. In the 20   century, the idea of the higher dimensional space was 

greatly investigated. Dimensions in both mathematics and physics refers to 

the parameters required to describe the position and relevant characteristics 
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of any object within a conceptual space, where the dimensions of space are 

the total number of different parameters used for all possible objects 

considered in the model, in physics also dimensions are referred to degrees 

of freedom or the units of measurements. Many physical problems related 

to higher dimensional space have recently attracted the attention of many 

workers [1, 2, 3, 4], where it is widely believed that it plays an important 

role in the study of cosmology, group theory, many body problem, super 

symmetry, and the problem of unifying the four forces in nature together 

etc. Schrödinger equation, in the case of multi-dimensional problems, 

works very well as the starting point for general discussion in any multi-

dimensional quantum problems. 

Many studies were concerned in solving this equation in N-dimensions, to 

obtain the eigen-functions and the eigen-values, one of which showed a 

method that relates the solutions in 2- and 3-dimensional problems to 

higher dimensional cases for radial symmetric potentials [4], while some of 

the others used the series solution and other methods. 

The radial Schrödinger equation of the H-atom in N-dimensions can be 

written as [1]:  ħ         (r) +         (r) +  E  (r) =  0       (1.1) 

∇   is the Laplacian operator in N dimensions given by [1] :  ∇ = r    –        ( r  (    )    ) +    ∧        (1.2) 
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∧  is a partial differential operator on the unit sphere S   , which also is 

the square of the angular momentum operator. 

 The radial part of the Schrödinger equation can be written as:       +         −  (     )   +    −     = 0      (1.3) 

The eigen-functions and the energy eigen-values for the free hydrogen 

atom are in terms of CGS system of units [1], 

R nl(ρ) = Á  e      ρ  1F1 ( l+      – λ; 2l + N – 1; ρ )   (1.4) 

         (1.5)           En= (     /2ħ )   (          )  

 where   is the reduced mass of the H-atom. 

Some other aspects of the H-atom were investigated in N-dimensional 

space [1]. For example the degeneracy of the energy level of the N-

dimensional hydrogen atom, the radial distribution function, expectation 

values (< 1/r >), (<1/  >), and the varial theorem were considered, it was 

shown that the effect of the effective potential manifests itself in some of 

those aspects. Also, the quantization of angular momentum in N- 

dimensions was described [1]. Romeo studied the Wentzel-Kramers-

Brilliouin (WKB) approximation in connection with hyper spherical 

quantum billiards [5]. Yaniz et al. investigated the position and momentum 

information entropies of N-dimensional systems [6]. The generalization of 

Fermi pseudo potentials to higher dimensions was illustrated by 
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Wo’dkiewic [7]. Random walks and moments of inertia in N dimensions 

have been considered by Bender et al. and Bender and Mead [8]. Fukutaka 

and Kashiwa considered the formulation of path integrals and their 

quantization on N-dimensional sphere [9].                                      

The problem of a hydrogen atom confined in a sphere in 3- 

dimensions has quite a long history in quantum physics. The concept of a 

confined quantum system originated with a model suggested by Michels et 

al [10], who proposed the idea of simulating the effect of pressure on an 

atom by enclosing it in an impenetrable spherical box. During the last 70 

years this model has proved to be quite useful in a number of fields of 

physics: the effect of pressure on energy levels, polarizability and 

ionization potentials of atoms and molecules [10], the cell model of the 

liquid state, semiconductor quantum dots, and several other areas. Its value 

in astrophysics has also been proved, e.g. in the mass-radius relation in the 

theory of white dwarfs, and in the determination of the rate of escape of 

stars from galactic and globular clusters. For a partial listing of references 

in this field, the reader may consult FrÖman et al  who gave a list of 64 

such publications up to 1984 [11].The confined hydrogen atom model has 

also been used for studies on the equilibrium properties of a partially 

ionized plasma and the thermodynamic properties of non ideal gases. It is 

also relevant for other situations where dense matter is involved, such as 

laser-imploded plasmas and the interior of giant planets [11]. 
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Somerfield and Welker recognized the importance of the model of 

Michels et al for astrophysics and carried out a detailed investigation of the 

properties of a hydrogen atom enclosed in a spherical box. Such an atom is 

frequently referred to as a compressed atom or a confined atom. 

Subsequently, there have been several other investigations on the 

compressed hydrogen atom with various techniques [11, 12]. 

Sommerfeld and Welker [12], studied it in detail and calculated the 

critical radius in 3 dimensions for which the binding energy becomes zero, 

they obtained a series expansions for the  l = 0 case, which are exact, being 

full generalization from the situation where the boundary conditions apply 

rigorously in the non-relativistic case, namely when a node coincides with 

the confining boundary and the analytic solution is known. They showed 

that, as the radius of the cavity decreases, the binding energy diminishes 

and there is a critical value of the sphere radius at which the binding energy 

becomes zero. That was called, the critical cage radius rc. Sommerfeld and 

Welker found that for the 1s state rc = 1.835×   . For r < rc the energy of 

the system is positive.  

Over the years there has been a steady flow of papers on this and 

other closely related problems. The model of the confined hydrogen atom 

has often been used as a test problem for various perturbation methods. 

Using their boundary perturbation method, Hull and Julius [13], obtained a 

formula which expresses the change of energy for the eigen-states in the 
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confined system in terms of the corresponding wave functions in free space 

[14]. 

The boundary correction for a hydrogen atom in a spherical well 

using an approximation method which is linear in energy was studied by 

Djajaputra and Cooper [14]. This method is used very often in solid-state 

physics has been widely used in electronic structure calculations, under the 

name of the linear muffin-tin orbital (LMTO) method. In this method the 

wave functions of a Hamiltonian with energies which are in close vicinity 

of the energy of a known wave function are calculated [14, 15, 16]. 

Also, the calculation method to solve the Schrödinger’s equation of a 

confined or half-confined hydrogen atom in three dimensions, i.e., a 

hydrogen atom with wave function which vanishes at a given closed or 

opened surface, was investigated by Yang and Wang [17]. 

   More recently it has also been considered the hydrogen atom within 

spherical boxes with penetrable walls. The application of the Rayleigh-

Schrödinger perturbation theory to the hydrogen atom in a spherical box 

has been discussed. In particular, the ground-state energy up to the fifth 

order in e has been obtained by Aguilera-Navarro, Koo and Zimerman 

[18]. 

But the effect of the boundary conditions on the energy eigen-values 

of the confined hydrogen atom in a spherical cavity in N-dimensions has 

not been investigated yet. Therefore, in this study, the Schrödinger equation 
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for the confined hydrogen atom in a spherical cavity in N-dimensions has 

been solved, the eigen-values are determined; the influence of the radius of 

the cavity on the eigen-values is examined for different dimensions, 

making use of numerical calculations using the mathematica 5.0 software. 

The critical radius for each dimension is determined, and then the Sc-N 

relation is plotted. The number of bound states for given radii of the cavity 

has been examined in this study, where we chose S= 22 0 and S= 44 0. 

Also, a comparison between the energy eigen-values in the case of 

the free and the confined H-atom as a function of N for a given radius of 

the cavity is pointed out. 

Finally, the dependence of the pressure (exerted on the wall of the 

cavity) on the radius of the cavity for a given dimension of space, N, is 

examined  

Most of the above aspects of the study were investigated for the ground 

state where   (the angular momentum quantum number) equals zero, and 

the energy of the confined H-atom is minimum. 

This study is organized in four Chapters; Chapter One is an introduction to 

the subject that contains some of the previous work related to the study. 

Chapter Two contains 3 theoretical sections, where the Schrödinger 

equation of the confined hydrogen atom in the case of N=3 is solved in 

section one, in section two it has been solved in N dimensions, while in 

section 3, I derived a relation between the pressure, and N, and the radius 
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of the cavity S. Through these sections some of the practical applications 

are mentioned.  

Chapter three consists of four sections, I arranged the calculations in tables 

and graphs in section 1, through which the results about the energy eigen 

values are examined and discussed. In section two, a definition for the 

critical radius of the cavity is introduced, and its behavior as a function of 

space dimensionality is examined too. In section three, the number of 

bound states was determined for two specific values: S=22  , and 44  ,and thus the in luence of space dimensionality and the radius of the 

cavity S on number of bound states is also examined. While in section four 

the pressure calculations are arranged in tables and represented by graphs. 

 Finally, in chapter four, conclusion of this study is given based on the 

discussion and results. 
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Chapter 2 

Theoretical 
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Chapter Two 

Theoretical Background  

Solving the Schrödinger equation for a system in physics is one of the 

important things to do in quantum mechanics mainly in problems of 

multidimensional space. This process leads to determining the eigen- 

values, eigen-functions and eigen-energies of each state. 

This chapter will include 4 sections; the first one contains a solution of the 

confined H-atom in 3-dimensions, which is similar to the solution of the 

Schrödinger equation of the free hydrogen atom in 3-dimensions. 

In the second section, a solution of the Schrödinger equation in N 

dimensions is carried out. 

In the third section a relation between the pressure exerted on the atom, the 

spatial dimensionality N, and the radius of the cavity S is worked out. As it 

was mentioned before, either for the free or the confined hydrogen atom, 

the wave functions will have the same form. But the free hydrogen atom 

will exhibit different energies other than those for the confined one. 

2.1. Solution of the Schrödinger equation of a confined        

hydrogen atom in a spherical cavity in 3-dimensions. 

Consider a H-atom in an impenetrable cavity, this condition simulates, 

practically, the physics of high pressure materials, and large classes of 

nanostructure systems such as quantum dots, and artificial atoms which are 
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related to this problem.  We mean by confined atoms that; those “atoms 

that experience external potentials which keep themselves in a region with 

length scales comparable to the atomic size” [19]. 

In this study I will first solve the Schrödinger equation for N=3, in order to 

simplify the understanding of the solution in N-dimensions. 

 Now, consider a hydrogen atom in an impenetrable spherical cavity. The 

potential of this system can be expressed as, 

                               ,    0≤ r ≤ S                                                          (2.1) 

V (r) =   

         ∞       ,     elsewhere          
Where S is the radius of the cavity, and Z=1 for the hydrogen atom. To 

examine the effect of the cavity on the energy eigen-values, one has to 

solve the Schrödinger equation to obtain a relation between the energy 

eigen values and the radius of the cavity. 

After making separation of variables for the Schrödinger equation in 

spherical coordinates, the radial equation reads,               +   
ħ   +          −  (   )  R =  0             (2.2) 

For simplicity, I write   u(r) =  r R(r) to give,       +   
ħ [        −  (   )ħ      +   ]  ( ) =  0                        (2.3) 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


13 
 

 
   

 

µ is the reduced mass of the H-atom, l is the angular momentum quantum 

number. 

Now it is convenient to define the dimensionless variables:  =   µ(  )
ħ          and           =  µ   (    ) ħ (  )       (2.4) 

One can easily notice that equation (2.3) is similar to that for the free 

hydrogen atom in three dimensions; therefore both will have the same form 

of the solution. 

With these substitutions, equation (2.3) becomes,       −  (   )   + (  −   ) u ( ) =  0                                    (2.5) 

The asymptotic behavior is obtained by solving equation (2.5) when  → ∞ , i.e. solving       −    = 0                                                     (2.6) 

Then, u ( ) =      +      , but      is infinite for large   , then B is set 

to zero.  

Thus     u ( ) =                                                         (2.7) 

In the vicinity of the origin (  → 0), in this case, the 
 (   )    dominates 

over the other terms in equation (2.5), and thus it becomes       =  (   )                                                                          (2.8) 
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The general solution of eq. (2.8) is   ( ) =     +   (   )                                                         (2.9) 

The term       diverges, and hence D must be set to zero. 

Thus  ( ) = C  (   ) 
Therefore the solution of eqn. (2.5) is assumed to take the form, 

u ( )            ν( )                                                              (2.10) 

After differentiation and Substitution in equation (2.5), the radial equation 

in terms of   ν ( )  becomes:       + [  (   ) − 1]     + [   – (   )  ]   =  0                           (2.11)   

A series expansion of ν ( )  , 
ν ( ) = ∑                                                              (2.12) 

gives us the recursion relation      = [ (     )   (   )(      ) ]                                                                         (2.13)         

We want to determine the coefficients    (  ,   ,   …) 

For the function ν ( ) to be terminated for very large values of j, the series 

must be terminated, i.e.  
    ⟶     +1   =   2 = 1  
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This is the same ratio of coefficients as those of the expansion of   . 
This leads to that   ν ( )  ∝    . Thus   u ( )          [This shows 

that u ( ) must terminate, but the series blows up as  ⟶ ∞]. 

Therefore, let  jmax   indicates the term of termination, then  a j max +1 = 0,  or 

the last term of the series is,        . From equation (2.13) we have 

jmax+l+1−  =  0  , or                    =   jmax+l+1            (2.14) 

where λ here corresponds to n ( the principal quantum number in the case 

of the free H-atom). 

But   determines E, where (   =      (     ) ħ (  )  ).  
With,    =     and,    q =   (  )

ħ    then  

E =   ħ      =        (     ) ħ    , or  

E =                                                                            (2.15)  

where    =       (     ) ħ =  −13.6     is the ground state energy of the free 

hydrogen atom. 

Keeping in mind that     =  (     )ħ    = 0.529   10     , is the Bohr radius, 

we also have, 

   ħ    =                                                                     (2.16)   
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The previous equation can be used to compute the energies in this problem, 

but yet we need to find the eigen-functions. Going back to equation (2.11), 

and comparing it with the associated Lagurre differential equation 

{      + [     − 1]    + [ (  – )  ]}    ( ) =  0                 (2.17) 

shows, 

P =  2l+1             and               q =   + l                     (2.18) 

Thus equations (2.19) give the radial solution, which is     ( ) =                    ( )                                           
                                                                       ( )  =                          ( )                              (2.19) 

Where A is the normalization constant whose value is determined from the 

requirement,    ∫ [∞                   ( )]     = 1                  (2.20) 

and after making use of, ∫            (x)    (x) dx =  (   )! ! (2 +  + 1) 
 We will get: 

A=    (     ) (     )!  [(   )!]                                                             (2.21) 
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The radial solution can also be expressed in terms of the confluent hyper 

geometric polynomials as (see appendix B)     ( ) =                                                                                (2.22)    (    ) (     )!  [(   )!]   (   )     (   )!(     )!(    )1F1 (1+ l – λ; 2l +2; ) 

The boundary conditions at r = S, where S is the radius of the cavity can be 

written as,     ( ) |r=S=      (  ) = Zero,                                                        (2.23) 

 Because the potential at the walls of the cavity is ∞, and the wave function 

diminishes there. 

Unfortunately, those zeros (namely the roots of the confluent hyper 

geometric polynomials) are not nice numbers (not integers), as in the case 

of the free hydrogen atom in 3-dimensions which gives the principal 

quantum numbers. The roots of the wave function are determined using 

mathematica software, version 5.0. 

The zeros of     ( ) are those of the confluent hyper geometric 

polynomials, and they are calculated using mathematica software, version 

5.0. 

Note that a subscript     is given to  ( ) because it depends on both of 

them, and the information that it holds depend on the value of   and  , 
while   itself depends on the radius of the cavity S as follows. 
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It can easily show that 

  =                                                                                              (2. 24) 

Since    q =       and,   =                        

     indicates the roots, and thus at r = S, we have,    =                       (2.25) 

This gives eqn. (2.24). 

Figure (1) below shows a graph of one of those wave functions of the 

confined H-atom for l =0, space dimensionality N=3, S=6  . 

In such graphs, there might be more than one zero (or root), the last 

intercept is the one coincides with the surface of the walls of the cavity, and 

hence it indicates the ground state energy for each S, as will be shown later.  

Let     be the    root of the confluent hyper geometric polynomials  

1F1 (1 -      ;2;   ). 
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Fig. (1): Mathematica plot which shows one of the zeros (horizontal-axis 
intercepts) of the function1F1 (1-12/z; 2; z). 
 

From equation (2.25) we can easily relate the zeros and the radius of the 

cavity with    to get the energy eigen values of this problem. 

     =                                                                                       (2.26) 

Then  =                                                                     (2.27) 

From equation (2.27) we can compute the values of   which corresponds to 

different values of S. Then eqn. (2.15) yeilds,    =        in eV units. 

Also by using  =   (  )
ħ  r, we can easily show that 

  = − ħ          =  − ħ                    (2.28)   

 and with    = ħ        we can write    in the form    

       =                             (2.29) 
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The energy eigen-values will be calculated numerically for the N- 

dimensional case in the next section. 
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2.2. Solution of the Schrödinger equation for the confined hydrogen 
atom in N-dimensional space. 

 “The problem of the confined atoms, would be equivalent to the problem 

of many-body Schrödinger equation with given boundary conditions” [19].  

For the hydrogen atom enclosed within an impenetrable spherical cavity in 

N-dimensions, the potential is: 

                  
             ,    0≤ r ≤ S                                          (2.31) 

V(r) =   

    ∞            ,     elsewhere 

The radial part of the Schrödinger equation in N-dimensions for the 

confined hydrogen atom in N-dimensions is [1]:          (   )      −     +   
ħ (          + E) R =  0      (2.32)       

Where   = ( + − 2), and l =  0, 1, 2 ….is the angular momentum 

quantum number for the H-atom. 

Now we introduce  =     (  )
ħ

       or       =    ,                 (2.33) 

and  = (       ħ (    ) (  ) )                                                (2.34) 

    

and using  
    =           =           and          =           , 

The radial part of the Schrödinger equation in N-dimensions becomes: 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


22 
 

 
   

 

      + (        ) −  (     )   +    −     = 0               (2.35) 

Same as before, notice that equation (2.35) is similar to that one for a free 

H- atom, but in N-dimensions. Accordingly, it has wave functions similar 

to those of the free H- atom in N-dimensions. 

As was done in the previous section, the asymptotic behavior is obtained by 

solving equation (2.35) when  → ∞ , i.e. solving       −    = 0          ⟶       R ( )  ∝                       (2.36) 

In the vicinity of the origin   ⟶ 0,       −  (     )   = 0             (2.37) 

 We are seeking a solution of Equation (2.37) of the form, 

R ( ) =          ( )               (2.38)     

Substitution of eqn. (2.38) in equation (2.35) gives:       +         − 1     +              = 0            (2.39)      

A series expansion of ν ( ) can be write as, 

ν( ) = ∑                                           (2.40) 

The substitution of eqn. (2.40) in equation (2.39), gives, 
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∑  ( − 1)         +          ∑           −∑           + 
         ∑        = 0                    (2.41) 

 ∑  ( − 1)         + [2 +  − 1]∑           −∑           +  (        )∑          = 0            (2.42) 

In the first and the second term, let j be j+1 to get,   ( + 1)            + [2 +  − 1]  ( + 1)             

−∑           + (λ l–     )∑          = 0              (2.43)                                                             

Substitute for j =  1 into equation (2.43) to get ∑  ( + 1)           + [2 +  − 1]∑ ( + 1)         
 ∑           + λ l−     )∑          = 0          (2.44)  

Equating the coefficients of equal powers of ( ), we get 

{j (j+1)+[2 + − 1] ( + 1)}     =  [ − (λ l –     )]     (2.45) 

Finally we get the recursion relation in the form of     =    (         ) (   ) (      )(   )      
Or,                =             (   )(        )                                                                          
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Taking into consideration that the series must terminate at nr = jmax, then  

Jmax +  l+       − λ =  0                                                           (2.46)  

Define nr the radial quantum number, we can write    

nr + l +        =  λ ,                                                                      (2.47) 

 Let ń to be the principal quantum number in N-dimensions. 

then,    ń =  λ =  nr+ l +                                               (2.48) 

But   determines E, where (   =      (     ) ħ (  )  ).  
With,    =     and,    q =   (  )

ħ  then  

E =   ħ      =        (     ) ħ    ,  
E =                                                                            (2.49)  

Remember that     =  (     )ħ    = 0.529   10        =       (     ) ħ =  −13.4     which is the ground state energy of the free 

hydrogen atom. 

And       ħ    =                                                          (2.50)   

What we have done here is getting a relation to compute the energies in this 

problem eqn. (2.49). By looking at equation (2.48) one can easily notice the 

dependence of the energy on the space dimensionality N through  . For 
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more visualizing we need to indicate the eigen-functions from which we 

can find the points where we can calculate the energy eigen-values. 

Comparing equation (2.39) with the associated Lagurre differential 

equation (      + [     − 1]    + [ ( – )  ] )     ( ) =  0            (2.51) 

We get p =  2l +  N – 2     ,    d – p = λ – l –           (2.52) 

 Now equation (2.39) has a solution of the form, 

 R L (ρ) =        (   )     –   –            –   (ρ)                                  (2.53) 

Or, 

   l (ρ) =  A′    e (   ) 1F1 (l+       – λ; 2l +  N – 1; ρ)  (2.54) 

Where  A’= A  (  +  +  – 32  )!   –   –  −12  ! 2  +   – 2 !              (see Appendix B) 

We need to apply the boundary conditions at r = S, where S is the radius of 

the cavity. Since the potential at the walls of the cavity is ∞, and the wave 

function diminishes there, thus, we can write     ( )|r=S =      (  ) = Zero,                                                     (2.55) 

Here we need to indicate the values of    where the wave function     
vanishes; therefore one has to plot graphs. In this research, mathematica 

software, version 5.0, has been used for this purpose. 
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Unfortunately, those zeros (roots of the confluent hyper geometric 

polynomials) are not nice numbers (not integers). 

The zeros here are those of the confluent hyper geometric polynomials in      ( ) , namely 1F1 (     -      ;  − 1;   ) which joins all the 

variables of this problem (N, S,  ) together.  

One can easily show that   =                                                                           (2.56) 

In such graphs, there might be more than one zero (or root), Let     be the     root, the last intercept is the one coincides with the surface of the walls 

of the cavity, and hence it indicates the ground state energy for each S,  

Since    q =       and,   =                

     indicates the roots, and r indicates S,    =                       (2.57) 

From equation (2.57) we can easily relate the zeros and the radius of the 

cavity with    to get the energy eigen-values of this problem. 

     =                                                                                         (2.58) 

Then    = 2   0                                                                (2.59) 
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For any given S and N we can plot the 1F1 (     -      ;  − 1;   ) 

and get the zeros, then using equation (2.59) we can compute the values of   which correspond to these values of S and N. Then compute E from    
=        in eV units. 

Also we have,   = − ħ          =  − ħ                             (2.60)   

With              =  ħ                     

Finally we can write , 

       =                              (2.61) 

Which is another formula to compute the energy eigen-values. 

Equation (2.61) predicts that the ground state energy belongs to the 

largest    which corresponds to the largest value of n, and smallest   

because     is a negative value, see eqns. (2.59), and (2.61). 

This implies that either we have to use eqn. (2.49), or (2.61) to calculate the 

energy for a given state, we have to suggest different values of the cavity 

radius which practically means trapping the hydrogen atom (or other types 

of atoms) within atomic scale confinement of other substance (doping 

process).  
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For later comparison between the energies of the confined hydrogen atom 

and the free one, we write the energy of the free hydrogen atom in N 

dimensions [1], namely  

       =    (        )                  (2.62) 

In the above equation, n refers to the principal quantum number for the free 

hydrogen atom. 

 For example considering the values of N=4, l=0, S= 9    we locate the 

zeros of the wave function by mathematica plots, just plot 

 1F1 (1.5 – 18/ ρ; 3; ρ) to determine the zeros in order to find the energy 

eigen values from eqn. (2.60), or (2.61).  

A mathematica graph for illustrative purposes is shown in figure (2), but 

one should be careful in locating the zeros, because for a given period of ρ 

it might not show all of the zeros (i.e.  In the graph below there is another 

zero at Z 1.78 which is not shown). 

 
Fig.(2): Mathematica plot which shows one of the zeros (horizontal-axis 
intercepts) of the function 1F1 (1.5 – 18/ ρ; 3; ρ). 
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In this study, the calculated energies correspond to l=0. In another words, 

the 1s state. Here it is worth mentioning that for each value of  l, when 

substituted in the hyper geometric part of the wave function, there are 

different roots, one or many, but the ground state of the problem 

corresponds to the largest   for l= 0.  

The radial wave function   l (ρ) =         (   )     –   –            –    (ρ)   must be 

normalized. Now to calculate A, the normalization constant, we know that 

the total probability to find the particle within the cavity is 1, 

Thus; |  | ∫ e ( ρ)∞  ρ  |  
λ –   –           –  (ρ) |         = 1         (2.63) 

From eqn. (2.57) we get,     =                                                               (2.64)     = (    )   ρ                 (2.65) 

Making use of  ∫    ∞      ( )   ( )  = (   )! !        (2.66) 

and ∫    ∞        ( )   ( )  = (   )! ! (2 +  + 1)          (2.67) 

gives, 

 | | ∫    –  ∞          –  –            –   ( )  (    )          =  1         (2.68)                     
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= | | ∫    –  ∞      –  –            –  ( )   (    )                       (2.69) 

       

=| | (    ) ∫    –  ∞       –   –             –  ( )                        (2.70)  

=| |  (    )             –      !(         )! [2 − 2 − + 1 + 2 +  − 2 + 1]                                      
                                                                                                          (2.71) 

Therefore, | | = (     ) (    –      )!          !(  )                                             (2.72) 

This yields the 3- dimensional case, namely 

A = [(     ) (     )!(   )!(  )]                 (2.73)        
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2.3. Expressing the relation between the pressure exerted on the H-

atom and the radius of the cavity: 

“The recent development in nanotechnology has generated intensive 

research activity in modeling spacially confined quantum systems, when an 

atom is or a molecule is trapped inside any kind of microscopic cavity, or is 

placed in a high pressure environment, it experiences special confinement 

that affects its physical and chemical properties.”[20] 

An atomic system under very high pressure simulates a confined system. 

The interaction of the atom with the surroundings was suggested to be 

replaced by a uniform pressure on a sphere within which the atom is 

considered to be enclosed. [20] 

Knowing the dependence of the ground state energy  on the radius of the 

cavity, equation (2.61), allows us to calculate the pressure needed to 

‘compress’ a hydrogen atom in the ground state in a certain size of the 

cavity. 

It is known that   =                                                                         (2.74) 

Substitute for the value of    from equation (2.61) to get    

P =     (         )                (2.75) 

But      =    , then 

P =         =                                    (2.76) 

 Now, in N dimensions the area of the hyper sphere is,  
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  ( ) =  ( ) /        !                                                             (2.77)                              

 and     =    ( ) /       !                                                                   (2.78) 

=         ! ( ) /                                                             (2.79) 

 =        ! ( ) /                                                     (2.80) 

Finally   =        !  /                                                           (2.81) 

When N=3,     =      !  /              = √    /            =                     (2.82) 

Equation (2.81) shows the dependence of the pressure exerted on the 

confined H-atom on the space dimension N, where more pressure is exerted 

on it with increasing N. 
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Chapter 3 

Results and Discussion 
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Chapter Three 

3.1. Results of the energy eigen-values. 

 In the previous Chapter, the formulae for the wave functions and for the 

energy eigen-values were determined. 

In this Chapter, we shall calculate the energy eigen-values for the ground 

state (l=0) for the confined H-atom for different values of N and S, and 

then we shall express the results in graphs.  Remember that the ground state 

corresponds to the largest root     (smallest value of λ). 

With the help of the following formulae, mathematica software version 5.0 

will be used to locate the roots of the wave functions of the confined H-

atom in its ground state for given values of S, and N.  

Here, we shall consider only the largest root, which corresponds to the 

smallest value of λ, taking into consideration that the wave function might 

have more than one root.  

The following formulas are needed to perform the calculations,   L (ρ) =  Á     e (   ) 1F1 (l+       –      ; 2l +  N – 1; ρ)      (3.1)  =                                                                                                 (3. 2) 

  =       =                                            (3.3) 

and thus, 
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  = − ħ      λ      = (  λ          )   =    . 
λ                      (3.4) 

Now, 

For l=  0, 1F1 (l+       –      ; 2l +  N – 1; ρ) becomes,     (3.5) 

1F1 (      –       ; N - 1; ρ)                                                           (3.6) 

For the free hydrogen atom, 

En= (-    /2ħ )   (        )   =      . (      )    (eV)                   (3.7) 

In table (1) the suggested values of S, the radius of the cavity, are listed in 

columns as well as the calculated ground state energies for l = 0, and for 

spatial dimensions from 3 to 10. 

One column for the largest     is presented for N = 3 only, while for the 

other spatial dimensions the calculated energy eigen values are presented 

without showing the corresponding    ΄ . 

The chosen cavity radii are in terms of the Bohr radius   . Therefore they 

were referred to as S x    in the tables and they are expressed in meters, 

while the energies are expressed in (eV) with accuracy of ten decimal 

numbers or less. 

The listed   ΄  are read with accuracy of six decimal numbers or less too. 
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Table (1): The Energy eigen-values for different values of S, and for 
specific values of N, when l=0. 
 
                         N=3                                                   N=4                           N=5                       
 
S ×  0             E(eV)                       
   (m) 
    S ×          E(eV) 

(m) 
 

S ×            E(eV)       
(m) 

 
14.00000 -13.59999903  27.999999 13.0000 -6.042119818 13.00000 -3.34789349 
13.00000 -13.59999895  25.999999 12.0000 -6.044444444 12.00000 -3.34356944 
12.00000 -13.59998867  23.999990 11.0000 -6.030714876 11.00000 -3.27748760 
9.000000 -13.59984889  17.999900 10.0000 -6.014260000 10.00000 -3.19906000 
6.000000 -13.58028715  11.991300 9.00000 -5.944123457 9.000000 -3.10449383 
4.000000 -13.14487281  7.8650000 8.00000 -5.912945312 8.000000 -2.83103125 
3.000000 -11.53190278  5.5250000 7.00000 -5.809316327 7.000000 -2.34226000 
2.000000 -3.400000000  2.0000000 6.00000 -5.455111111 6.000000 -1.51111111 
1.950000 -2.467091385  1.6662000 5.00000 -4.814740000 5.500000 -0.80727802 
1.900000 -1.470288384  1.2494400 4.00000 -3.068500000 5.300000 -0.43695265 
1.850000 -0.352170619  0.5954000 3.50000 -1.110204082 5.100000 -0.02647059 
1.845000 -0.233969341  0.4839900 3.40000 -0.430617647 5.090000 -0.00188976 
1.840000 -0.114611142  0.3378250 3.33000 -0.312775838 5.088500 -0.00041728 
1.837500 -0.054474543  0.2325866 3.30000 -0.019513314 5.088350 -0.00009218 
1.836500 -0.030333814  0.1734663 3.29950 -0.016092901 5.088340 -0.00008207 
1.835500 -0.006139872  0.0780000 3.29850 -0.010124904 5.088330 -0.00004494 
1.835250 -0.000089113  0.0093850 3.29750 -0.004502687 5.088329 -0.00004445 
1.835247 -0.000016232  0.0040100 3.29700 -0.001088792 5.088328 -0.00004446 
    3.29690 -0.000548072 5.088327 -0.00004350 
    3.29685 

3.29683 
-0.000165477 
-.0000175958 

5.088308 -0.00004255 
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Table (2): The Energy eigen values for different values of S, and for 
specific values of N, when l=0. 
 
            N=6                                     N=7                                 N=8 
S ×  0             E(eV) 
   (m) 

S ×  0              E(eV) 
(m) 

S ×  0        E(eV)   
  (m) 

23.0000 -2.17491 35.000000 -1.51104 54.000 -1.11042 
21.0000 -2.17263 30.000000 -1.51036 37.000 -1.10571 
19.0000 -2.16608 26.000000 -1.50687 36.000 -1.09714 
17.0000 -2.14412 23.000000 -1.49081 32.000 -1.08777 
14.0000 -2.06099 20.000000 -1.48110 27.000 -1.07776 
13.0000 -2.01183 17.000000 -1.37224 20.000 -0.97317 
12.0000 -1.91675 16.000000 -1.35482 17.800 -0.85000 
11.0000 -1.75367 15.000000 -1.27900 17.000 -0.79106 
10.0000 -1.54913 14.000000 -1.16641 16.000 -0.68850 
9.00000 -1.24677 13.000000 -1.10285 15.000 -0.58087 
8.00000 -0.72728 12.000000 -0.85000 14.000 -0.39139 
7.50000 -0.29255 11.000000 -0.58172 13.500 -0.30152 
7.35000 -0.15121 10.000000 -0.19580 12.500 -0.09596 
7.25000 -0.05475 9.7500000 -0.07010 12.400 -0.01872 
7.23500 -0.03752 9.6500000 -0.01688 12.385 -0.01384 
7.22500 -0.02585 9.6350000 -0.00916 12.380 -0.01182 
7.21500 -0.01976 9.6250000 -0.00376 12.370 -0.00910 
7.20500 -0.00802 9.6200000 -0.00140 12.355 -0.00451 
7.20250 -0.00443 9.6175000 -7.2E-05 12.351 -0.00305 
7.20125 -0.00347 9.6174000 -1.7E-05 12.350 -0.00273 
7.20050 -0.00289 9.6173750 -4.9E-06   
7.20025 -0.00213 9.6173700 -2.2E-06   
7.20025 -0.00213 9.6173680 -7.8E-07   
  9.6173670 -5.0E-07   
  9.6173665 -2.5E-07   
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Table ( ): The Energy eigen values for different values of S, and for 
specific values of N, when l=0. 
 
              N=9                                        N=10 
    S ×  0          E (eV) 
      (m) 

  S ×  0           E (eV)      
       (m)       

44.0000 -0.84923  77.500 -0.671595 
40.0000 -0.84152  54.000 -0.671168 
26.0000 -0.79845  42.000 -0.659666 
20.0000 -0.54400  31.000 -0.597919 
18.0000 -0.37778  25.000 -0.460442 
16.0000 -0.11402  23.000 -0.361531 
15.5000 -0.02503  20.000 -0.146391 
15.4000 -0.00703  19.000 -0.039580 
15.3800 -0.00345  18.900 -0.026864 
15.3750 -0.00208  18.700 -0.002335 
15.3740 -0.00200  18.685 -0.000429 
15.3700 -0.00125  18.684 -0.000265 
15.3690 -0.00109  18.682 -.0000477 
15.3650 -0.00030    
15.3640 -0.00010    
15.3635 -9.7E-06    
     

  

 

 

The following graphs represent these results. The plots were made using 

Excel 2007. 
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Fig.(3): Relation between the ground state energy eigen values of a 
confined H-atom, and the radius of the cavity for N=3&l=0.  
 

 
Fig.(4): Relation between the ground state energy eigen values of a 
confined H-atom, and the radius of the cavity for N=4&l=0.  
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Fig.(5): Relation between the ground state energy eigen values of a 
confined H-atom and the radius of the cavity for N=5&l=0. 
 

 
Fig.(6): Relation between the ground state energy eigen values of a 
confined H-atom and the radius of the cavity for N=6&l=0.  
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Fig.(7): Relation between the ground state energy eigen valuesof a 
confined H-atom and the radius of the cavity for N=7&l=0.  
 
 

 
Fig.(8): Relation between the ground state energy eigen values of a 
confined H-atom and the radius of the cavity for N=8&l=0. 
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Fig.(9): Relation between the ground state energy eigen values of a 
confined H-atom and the radius of the cavity for N=9&l=0. 
 
 

 
Fig.(10): Relation between the ground state energy eigen values of a 
confined H-atom and the radius of the cavity for N=10&l=0. 
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Fig. (11): Relation between ground state energy eigen values of a confined 
H-atom and the radius of the cavity for given space dimensions when l=0 
For N=3, 4, 5, 6 from below to above. 
 

 
Fig. (12): Relation between ground state energy eigen values of a confined 
H-atom and the radius of the cavity for given space dimensions when l=0, 
for N= 7, 8, 9, 10 from below to above.  
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Studying the data in the tables and studying the graphs, one can figure out 

the effect of the radius of the cavity on the ground state energy of the 

confined H- atom. As the radius of the cavity increases, the energy of the 

confined H- atom decreases and its limiting value becomes equal to that for 

the free H- atom in that dimension which can be easily calculated from eqn. 

(3.7), which means that the effect of the cavity becomes negligible for large 

values of S. 

Meanwhile, as the radius of the cavity decreases the ground state energy 

increases for a given N, this is so because as the cavity becomes smaller, 

then the confined atom will suffer many collisions with the walls of the 

cavity which will increase its kinetic energy (which is positive), and thus 

the total energy, then, increases, hence the particle is less bound. 

Alternatively, as the cavity radius decreases the surface gets closer to the 

position where the electron radial distribution function  

   (r) =     |    (r)|          (3.8) 

is maximum, and hence the confinement effect is expected to become more 

profound. 

A distribution function gives the probability of finding the particle a 

distance r in space from a certain reference point. 

One more observation about our results is that the confinement effects 

become more profound in higher dimensions. For example, for a given 
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cavity radius S, we can calculate from tables above the percentage 

difference from the ground state energy of the free hydrogen atom, or 

The percentage difference = 
                      × 100%             (3.9) 

Lets choose S= 14   then the corresponding percentage differences for 

N=3, 4,5,6,7 are 8.33×10-5 %, 0%, 1.66% 11.9%, 77.8%. 

It is easy to see in Figurs. (11), (12) that when N increases, the  limiting 

value of the energy increases, which is due to the additional repulsive term 

in the effective potential term where     =  ( ) + [ ( +  − 2) + (   )(   ) ]                           (3.10) 

The total energy is kinetic energy plus potential energy, here      becomes 

more positive with increasing N, thus the total energy is more positive too, 

in other words it increases. 
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3.2: Critical cage radius: 

An important point to discuss is to find the minimum cavity size that allows 

a bound state. Our previous results show that:  As the cavity radius 

decrease the binding energy diminishes and therefore, there is a critical 

value. Sc for the cavity radius at which the binding energy becomes zero. 

This critical value is called the critical cage radius. The critical cage radius 

of hydrogen atom is relevant to the ionization of its ground state. Here we 

search for the smallest cavity radius, for a given dimension N, at which the 

bound state energy approaches zero. We carry the calculations for N = 2 to 

10, and present our results in Table (4). For the N=3, our results give Sc = 

1.835247×    in meters. 

Sommerfield and Welker [12] obtained a critical cage radius = 1.835×    

in meters. Our results show that the value of the critical cage increases as 

the space dimension N decreases. This is so because as the dimension 

increases the particle is repelled further away from the nucleus which is 

due to the extra repulsive term in the effective potential. 

The results are displayed in the following table and in Fig (13). 
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Table (4): Critical cage radius of the cavity S  in different space dimension 
N for l=0. 

N             S ×   (m) 
    2 0.722890 

3 1.835247 
4 3.296850 
5 5.088327 
6 7.200250 
7 9.617367 
8 12.35000 
9 15.36350 
10 18.68200 

 

 
Fig.(13): Relation between the critical radius of the cavity and the 
dimension N for the ground state of the confined H-atom for l = 0. 
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Table (5): Values of E vs. N (the dimensionality of space) at S=12  , 

when l= 0. 

          N                                                E (ev) 
3 -13.59998867 
4 -6.044444444 
5 -3.343570000 
6 -1.916750000 

            7                                                         -0.850000000 
            8                                                            … 

 

 
Fig. (14): Relation between energy eigen-values and N for the confined H-
atom for S=12   and for l=0. 
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Table (6): Values of E vs. N for specific values of S, when l = 0. 
N          E(ev)             E(ev)           E(ev)              E(ev)          E(ev)                 E(ev) 
             S=3             S=6           S=9              S=12         S=16               S=20   
3 -11.532 -13.58029 -13.59985 -13.59999 -13.5999 -13.9999 
4  -5.455111 -5.944123 -6.044444 -6.04444 -6.10500 
5  -1.511111 -3.104490 -3.343570 -3.39703 -3.39949 
6   -1.246770 -1.916750 -2.08000 -2.17600 
7    -0.850000 -1.35482 -1.48110 
8     -0.68850 -0.97317 
9     -0.11402 -0.54400 
10      -0.14639 

 

 

 

Fig. (15): Relation between energy eigen-values of a confined H-atom and 
N when S=20   &l=0. 

The idea of the critical cage can be noticed from the plots in Figures (14), 

(15), and Tables (5), (6) where in the case of equal radii of cavities, as N 

increases the energy of the confined hydrogen atom increases, but one can 

see that there are no bound states for dimensions higher than 7 for S= 12  , 

this manifests the idea of the critical cage radius.  Going back to Table (5) 
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above, we can find that S = 12   is less than Sc for N=8, 9, 10. That is to 

say for dimensions higher than 7, and for radius =12   there are no bound 

states for the confined H-atom when l=0.  

That is because, when N increases, the energy increases as we have shown 

before, at the same time the energy increases when the radius of the cavity 

decreases, in another words the kinetic energy increases up to a certain 

value at which the total energy equals zero as S decreases. 

We can see from Table (6) that the Energy is quantized, (i.e. for certain 

values of S & N there are specific values of bound states of the energy. 

Again don’t forget that the energy is calculated corresponding to the largest 

zero of 1F1 (l+       – λ; 2l +  N – 1; ρ) which means lowest value of  , 

which corresponds to the ground state energies. 
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3.3. Bound states: 

Now, let’s consider the effect of the confinement and dimensionality of 

space on the number of bound states of the confined H-atom. To that end, 

we choose two values for the cavity radius (S= 22   & 44  ). The number 

of bound states is determined by the number of zeros or roots of the 

confluent hyper-geometric function which we search for using mathematica 

software version 5.0. 

As before, once the zeros are located, the bound state energies are 

calculated using equation (3.4), the lowest bound state energy is the ground 

state say (n=1), and the next ones are exited states (n=2, 3, 4,….).These 

calculations are carried  out for dimensions N=3 to 10. It is tempting to 

compare these energy values with those for the free N-dimensional H-atom. 

Our results for l=0, are shown in Tables (7), & (8) for S= 22  , 

S=44   respectively. The results are also presented into graphs (14, 15). 
 

The results in tables (7) & (8) show interesting features: Firstly, for a given 

S the number of bound states decreases as N increases, and this is due the 

extra repulsive term in the effective potential which reduces the effect of 

the negative potential energy, which means that the total energy of the atom 

will approach zero faster which stops having additional bound states. 

Secondly, the larger the cavity radius the higher the number of the bound 

states for a given N, since the confinement effect is small for large 

confining cavity, and because increasing the radius of the cavity leads to 
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decreasing the energy of the confined hydrogen atom which allows more 

bound states. 

Thirdly, upon comparing the bound-state energies of  the confined case, 

here we chose S=22  , with those corresponding states of the free one, we 

note that while the ground state energies are very close, the excited-state 

energies have a difference which increases as we go to higher excited 

states. This is explained by the fact that the radial distribution function has 

a maximum at a point that gets closer to the cavity surface as we go to 

higher excited states and thus the confinement effects become profound. 

It is of great importance to consider the special case ∝ = -1. Here, eqn. (2) 

in Appendix B implies that 1F1 ( ∝;   ;  ) has only one zero, (i.e. the series 

terminates when the power of   is 1), whose value x =   as eqn. (2) in 

Appendix B shows, and thus we have only one bound state. Therefore, for 

 l = 0, and for 1F1 (l+       – λ; 2l +  N – 1; ) =  1F1 (∝;  ;  ), we get    =    =  (N-1), and thus eqns. (3.3) and (3.6) yield the cavity radius and 

eqn. (3.7) yield the binding energy, namely 

S =                                                                                               (3.11) 

E =  (   )                                                                                       (3.12) 

It is interesting to note that the above state energy coincides with the 

energy of the first exited state (n=2) for the free hydrogen atom as can 

easily be checked using eqn. (3.7). One can also observe that in the infinite 

dimensional space (N⟶∞) the binding energy vanishes and the cavity 

radius becomes infinite which means that the H-atom isn’t anymore 
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confined. This implies that we can’t confine a H-atom in the infinite 

dimensional space. 
 
Table (7): Bound state energies for confined and free H-atom in different 
dimensions for l=0 and S=22  . 
 

 
N 

 
n 

En confined 
(eV) 

En free 
(eV) 

3 1 -13.5994 -13.60000 
3 2 -3.39938 -3.400000 
3 3 -1.42647 -1.511111 
4 1 -5.98962 -6.044444 
4 2 -2.16365 -2.176000 
4 3 -0.78931 -1.110204 
5 1 -3.39938 -3.400000 
5 2 -1.46274 -1.511110 
5 3 -0.12629 -0.850000 
6 1 -2.15134 -2.176000 
6 2 -0.89700 -1.110204 
7 1 -1.47696 -1.511111 
7 2 -0.37435 -0.085000 
8 1 -1.02850 -1.110204 
9 1 -0.64740 -0.850000 
10 1 -0.30600 -0.671605 

 
Fig. (16): Bound states for of a confined H-atom in different dimensions 
for S=22  &l=0. 
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Table (8): Bound state energies for confined and free H-atom in different 
dimensions for l=0 and S=44  . 
 
N 

 
n 

 
En confined 

 
En free 

 
N 

 
n 

 
En confined 

 
En free 

3 1 -13.59999 -13.6000 6 1 -2.15134 -2.17600 
3 2 -3.399985 -3.40000 6 2 -1.11526 -1.11020 
3 3 -1.48717 -1.51111 6 3 -0.64068 -0.67161 
3 4 -0.84320 -0.85000 6 4 -0.20107 -0.45959 
3 5 -0.40043 -0.54400 7 1 -1.50768 -1.51111 
4 1 -6.03072 -6.04444 7 2 -0.85774 -0.85000 
4 2 -2.21325 -2.17600 7 3 -0.45522 -0.54444 
4 3 -1.09762 -1.11020 8 1 -1.09762 -1.11111 
4 4 -0.64068 -0.67161 8 2 -0.64741 -0.67161 
4 5 -0.14864 -0.44959 8 3 -0.27441 -0.44959 
5 1 -3.40000 -3.40000 9 1 -0.84927 -0.85000 
5 2 -1.50768 -1.51111 9 2 -0.43565 -0.54444 
5 3 -0.84479 -0.85000 9 3 -0.07193 -0.37777 
5 4 -0.42193 -0.54400 10 1 -0.65417 -0.67161 
    10 2 -0.34421 -0.44959 

 
 
Fig. (17): Bound states of a confined H- atom in different dimensions for 
S=44 0 &l=0 

-14.5
-14

-13.5
-13

-12.5
-12

-11.5
-11

-10.5
-10

-9.5
-9

-8.5
-8

-7.5
-7

-6.5
-6

-5.5
-5

-4.5
-4

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0 1 2 3 4 5 6 7 8 9 10 11

E(
ev

)

N(space dimension)

Bound states for  space dimension from (3 to 10 ) for S=44 0

Series1

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


55 
 

 
   

 

 
 
Fig.(18): The energy eigen values of states (n=1, 2, 3) of  
a confined H-atom as a function of N for l=0, and for S=22  . 
 

This shows that the energy eigen-values for the excited states of the 
confined H-atom for l=0 behaves like those of  its ground state energy 
eigen-values, in other words E increases as N increases  for the excited 
states also. 
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3.4. Pressure calculations and graphs: 

In chapter two, we have derived an equation that relates the pressure 

exerted on a confined H-atom with the radius of the cavity and the spatial 

dimension N. The dependence can be written as:   =        !  /                  .                                  (3.13) 

For N=3,     =                =   .           (      ), where S= d  , and 

0 < d < ∞, or simply S is a multiple of Bohr radius. 

The  calculated pressure as a function of N&S are presented in Tables (9) -

(16) and graphs (19) – (26). All these calculations are expressed in terms of  

eV/    . 
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Table (9): Relation between pressures exerted on a confined 
 hydrogen atom and the radius of the cavity when l=0,N=3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.(19): Relation between the pressure 
exerted on the confined H-atom in a 
cavity and its radius for l = 0 and N=3.   

 
 
One can notice here that the pressure is maximum at S=2.4  . 
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Table (10): Relation between pressures  
Exerted on a confined hydrogen atom  
and the radius of the cavity when l=0,N=4. 
 
 
S×     (m)          P(eV/   ) 
 
13.0000 

 
 

 
0.000022  

 

12.0000  0.000026 
11.0000  .0000422 
10.0000  0.000061 
9.00000  0.000094 
8.00000  0.000150 
7.00000  0.000245 
6.00000  0.000430 
5.00000  0.000781 
4.00000  0.001210 
3.50000  0.000750 
3.40000  0.000330 
3.35000  0.000250 
3.30000  0.000170 
3.29950  0.000014 
3.29850  8.7E-06 
3.29750  3.81E-06 
3.29700  9.34E-07 
3.29690  4.3E-07 
3.29685  1.4E-07 

 
 
 
 
                                             Fig.(20): Relation between the pressure exerted  
                                          on a confined H-atom and the radius of the 
                                          cavity when l = 0 for N=4. 
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Table (11): Relation between pressures  
Exerted on a confined hydrogen atom  
and the radius of the cavity when l=0,N=5. 
 
S ×          P (eV/   ) 
   (m) 

13.00000 
 

0.00000046  

 

12.00000 0.00000068  
11.00000 0.00000103  
10.00000 0.00000162  
9.000000 0.00000270  
8.000000 0.00000440  
7.000000 0.00000706  
6.000000 0.00000985  
5.500000 0.00000813  
5.300000 0.00000520  
5.100000 0.00000311  
5.090000 0.00000003  
5.088500 5.25E-08  
5.088350 1.4E-09  
5.088340 1.22E-09  
5.088330 6.7E-10  
5.088329 6.61E-10  
5.088328 6.46E-10  
5.088327 6.3E-10  

 

 
                                     Fig. (21): Relation between the pressures exerted  
                                     on a confined H-atom and the radius of the  
                                     cavity when l = 0, N=5. 
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Table (12): Relation between pressures  
exerted on a confined hydrogen atom  
and the radius of the cavity for l=0,N=6. 
  
S×          P x 10  (eV/   ) 

 
23.0000 0.0095 
21.0000 0.0160 
19.0000 0.0297 
17.0000 0.0573 
14.0000 1.7656 
13.0000 2.6885 
12.0000 4.1406 
11.0000 6.3852 
10.0000 9.9923 
9.00000 15.133 
8.00000 17.895 
7.50000 10.603 
7.35000 6.1862 
7.25000 2.4318 
7.23500 1.6909 
7.22500 1.1723 
7.21500 0.9035 
7.20500 0.3670 
7.20250 0.2050 
7.20125 0.1605 
7.20050 0.0134 
7.20025 0.0098 

 

                                                 Fig (22): Relation between the pressures  
                                                  exerted on a confined H-atom and the 
                                                  radius of the cavity when l = 0, N=6. 
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Table (13): Relation between Pressures  
exerted on a confined hydrogen atom  
and the radius of the cavity for l=0,N=7. 
 
S ×       P × 10   (eV/   ) 
  (m) 

35.00000 0.01420  

 

30.00000 0.04176 
26.00000 0.11451 
23.00000 0.26477 
20.00000 0.69968 
17.00000 2.02222 
16.00000 3.05201 
15.00000 4.52666 
14.00000 6.69111 
13.00000 9.91163 
12.00000 14.3448 
11.00000 18.0514 
10.00000 11.8433 
9.750000 5.06102 
9.650000 1.31007 
9.635000 0.71827 
9.625000 0.29697 
9.620000 0.11079 
9.617500 0.00565 
9.617400 0.00066 
9.617375 0.00039 
9.617370 0.00018 
9.617368 0.00006 
9.617367 0.00004 
9.617367 0.00002 

 

                                       
                                        Fig (23): Relation between the pressures exerted  
                                       on a confined H-atom and the radius of the cavity 
                                       when l = 0, N=7. 
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Table (14): Relation between pressures  
exerted on a confined hydrogen atom  
and the radius of the cavity for l=0,N=8. 
 
S ×          P × 10   (eV/   ) 
  (m) 

54.00 0.00096  

 

37.00 0.01940 
36.00 0.02396 
32.00 0.06094 
27.00 0.23501 
20.00 2.34156 
17.80 5.19539 
17.00 6.98518 
16.00 9.87425 
15.00 13.9608 
14.00 16.3360 
13.50 17.1085 
12.500 9.91693 
12.400 2.06252 
12.385 1.53933 
12.380 1.31971 
12.370 1.02259 
12.355 0.05120 
12.351 0.03452 
12.350 0.03110 

 

 
                                   Fig (24): Relation between the pressure exerted on a   
                                 confined H-atom in a cavity and the radius of the 
                                 cavity when l = 0, N=8. 
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Table (15): Relation between Pressures  
exerted on a confined hydrogen atom  
and the radius of the cavity for l=0,N=9. 
 
S×      P × 10   (eV/   ) 
 (m) 

65.0000 0.0069  

 

46.0000 0.1553 
44.0000 0.2316 
40.0000 0.5469 
30.0000 6.8913 
29.0000 9.3323 
26.0000 24.772 
23.0000 63.767 
20.0000 178.97 
18.0000 320.80 
17.0000 377.03 
16.0000 279.47 
15.5000 81.655 
15.4000 24.288 
15.3800 12.073 
15.3750 7.2867 
15.3740 7.0257 
15.3700 4.4072 
15.3690 3.8326 
15.3650 1.0686 
15.3640 0.3675 
15.3635 0.0344 

 

                                          
                                           Fig.(25): Relation between the pressure exerted  
                                           on a confined H-  atom in a cavity and the radius 
                                        of the cavity when l = 0, N=9. 
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Table (16): Relation between Pressures exerted  
on a confined hydrogen atom and the radius of  
the cavity for l=0,N=10. 
 
S×         P× 10   (eV/    ) 
  (m) 

77.500 0.00668 
54.000 0.24983 
42.000 3.02896 
31.000 57.2121 
25.000 378.649 
23.000 683.432 
20.000 1121.19 
19.000 506.298 
18.900 362.258 
18.700 35.0134 
18.685 6.49326 
18.684 4.01117 
18.682 0.72287 

 

 
 
 
 
 
 
 
                                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.(26): Relation between the pressures exerted on a confined  
H-atom in a cavity and the radius of the cavity for l = 0, N=10. 
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 In this part of the study, we represent  the relation between the pressures 

exerted on the H-atom due to change of radius of the cavity for each value 

of  N from 3 to 10 in graphs as shown above from Fig (19) to Fig. (26). 

This relation is interesting, where it is noticed that when the radius of the 

cavity is increased the pressure decreases and approaches zero as S is large, 

which implies that the cavity effect becomes negligible and the H-atom acts 

like a free one. While when the radius of the cavity decreases the pressure 

increases gradually up to a certain maximum value, for each value of N, 

this maximum occures at a certain value of the cavity radius which we call 

Sp max. If the radius of the cavity becomes less than Sp max, the pressure will 

decrease rapidly until it approaches zero again within a very short range of 

S. We suggest that this is because as S decreases, one is moving away from 

maximum distribution function, and the probability of finding the H-atom 

within this region becomes small.  (Radial distribution function gives the 

probability of finding the particle in a distance r from a certain point in 

space),  
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Table (17): Relation between the values of S, where the pressure is  
maximum and N. 
 
SP max ×  0    N 
  (m) 

2.4 3 
4.0 4 
6.0 5 
8.0 6 
11.0 7 
13.5 8 
17.0 9 
20.0 10 

 

 
 
 
 
 
 
 
 
 
 
                                  
                          
 
 
 
 
 
 
 
Fig. (27): Relation between the radius of the cavity at which the pressure 
has a maximum value, and N for the ground state of a confined H-atom. 

 

We examined the relation between the radius at which pressure is 

maximum, Sp max, and N, see Fig. (27) above, we found that as N increases 

Sp max increases which is due to the dependence of the radial distribution 

function on space dimension N.  
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Chapter 4 

Conclusions and Future Work 
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Chapter four 

Conclusions: 

After completing this study, the following conclusions can be drawn:  

1- In this study the Schrödinger equation for the confined H-atom in 

a spherical cavity has been solved, in N-dimensions. It has been shown that 

the wave functions are dimension-dependent and having the same form as 

those of the free H-atom in N- dimensions. 

2- The ground state energy eigen-values for the confined H-atom in a 

spherical cavity, for l=0 have been evaluated for spatial dimensions from 3 

to 10. We found that the energy eigen-values are quantized and dimension-

dependent. That is for a certain dimension and for a given radius of the 

cavity there are a certain number of zeros, these zeros represent the 

solutions of the Schrödinger equation and the largest zero coincides with 

the boundary conditions for this problem, and the corresponding eigen-

values represent the bound states for these N & S. The largest value of the 

zeros corresponds to the smallest λ which, here, corresponds to the smallest 

value of energy of the confined H-atom, in other words indicates the 

ground state energy. 

 It has been noticed that the energy of the confined H-atom, increases 

as the radius of the cavity decreases until it approaches zero where the 

kinetic energy equals the potential energy at a value of the radius of the 

cavity called the critical cage radius. It has been shown that as the size of 
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the cavity is lowered, there ultimately exists a point where the electron 

becomes delocalized (its binding energy becomes zero) and it behaves like 

a particle in a sphere. 

As a definition, the critical cage radius means the minimum radius of a 

cavity where the total energy of the confined electron becomes zero, or not 

bound. 

Critical cage radius has been calculated for space dimensions N (2-10).Our 

results show that the critical cage increases as N increases. This is because 

the particle is repelled further away from the nucleus, due to the extra 

repulsive potential in the effective term. According to our calculations, for 

N=3, the value of Sc =1.835247×    where it was found by Sommerfeled 

and Welker that Sc =1.835×   . The critical cage radii for different values 

of N are calculated and listed in Table (4).  

Also the energy of the confined H-atom decreases as the radius of 

the cavity increases, down to the free limiting value where the radius of the 

cavity becomes large enough so that the confined H-atom acts like a free 

one, and thus the value of its energy approaches that of the free H-atom in 

that dimension.  

The dependence of the energy on the dimension N has also been 

investigated, it has been noticed that the energy increases as N increases. 

 In other words, the effect of space dimension on the ground-state energy 

becomes more profound as N increases.  
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  Our results revealed that the number of bound states decreases 

either as the cavity size decreases for given N or as the space dimension N 

increases for a given cavity radius. 

An interesting case (∝ =  −1 ) in the hyper geometric part of the 

wave function R  ( ), shows that there is only one bound state, for a given 

dimension, whose energy coincides with the first exited-state energy (n=2) 

for the free H-atom in that dimension. It has also been shown that in the 

limit of infinite dimension (N⟶∞) the cavity radius becomes infinite and thus the hydrogen atom becomes a free one. 
 A comparison between the ground state energy of the free H- atom 

and a confined one for given N reveals that the percentage difference 

between these energies is more profound for large values of  N, go back to 

Tables ( 7), (8). 

3- The pressure exerted on the wall of the cavity due to enclosing the 

H-atom inside a cavity of radius S, depends on N and S, it is found that for 

a given N, the pressure increases with decreasing radius up to a certain 

value and then starts to decrease, this value of P is a maximum. The value 

of this pressure increases with increasing N, and the value of the radius of 

the cavity at which the pressure is maximum increases as N increases. 

4- As I mentioned before this study is only for the ground-state 

energy (l=0). As a future study I am looking forward to extend this work 
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for different values of  l, to examine the effect of confinement, for l > 0, on 

physical properties of the confined H-atom. 
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Appendix A 

Theoretical background 

In the 20th century, some natural phenomena that classical physics couldn’t 

explain were noticed. One of these phenomena is the photoelectric effect, 

another one is the diffraction pattern of the electrons from crystals, and the 

phenomenon of the black body radiation, and the stability of atoms, and all 

of these phenomena were questions with no answers. These simulate the 

need for a new theory which is based on new assumptions that build a new 

model in physics. This new model is called the quantum theory which was 

originated by Max Planck in the year 1901. The model has been used by 

Einstein, and Bohr to explain photoelectric effect and the spectrum of the 

H- atom for its simplicity. Afterwards, de Broglie proposed the wave nature 

of particles; and proposed a formula for the wave length that is 

accompanied by the moving particle, namely, 

λ=             (A.1) 

Where h is the Planck’s constant and p is the linear momentum of the 

moving particle. This wave aspect of particles was proved experimentally 

through the Davison and Germer experimental confirmation, where the 

electrons were diffracted from the crystal like waves. 

But the de Broglie theory was unsatisfactory, because it depends on the 

classical basics of uniquely momenta and uniquely defined wave lengths. 
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The new model shows uncertainty in locating the position of the particle or 

indicating its momentum that is shown by the Heisenberg uncertainty 

principle. 

The mathematical aspects of nonrelativistic quantum mechanics are 

determined by solutions to Schrödinger equation. 

The time independent Schrödinger equation for a particle of mass m, with 

potential energy V(x) in one dimension is,  ħ      ( )   +   ( ) ( ) =    ( )                 (A.2)  

This has a complete solution including the time dependence given in this 

form,  ( ,  ) =   ( )     /ħ                                        (A.3) 

While in 3-dimensions by using spherical coordinates, the Schrodinger 

equation is,  ħ   ∇  ( , , ) +  ( ) ( , , ) =    ( , , )      (A.4) 

 ( ,  , ) is the Schrödinger wave function which is a mathematical 

description of the wave packet which describes the particle, and it is 

composed of a collection of waves representing a range of momentum. The 

particle is localized in a region of space defined by its wave packet, that 

contains all of the information that are available about the particle, and 

hence (particle ≡ wave packet).  
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For  ( , , ) to be acceptable as a wave function, it must be normalizable, 

and any solution of the Schrödinger equation which allows  ( , , ) 
becoming infinite must be discarded. 

Then  ( , , ) as well as its first derivative across any boundary must be 

continuous exept when the potential has an infinite jump where        is 

discontinuous. Finally, it must be orthonormalized. 

Now, we are concerned in finding the radial part of  ( ,  , ), that is   (r) . Thus knowing  (r) of a particle enables us to calculate many of its 

properties, 

∇  operator in 3 dimensions is given by, ∇ =   ( , , )   +      ( , , )  +             sin    ( , , )    +           ( , , )                  (A.5) 

Now, in N dimensional space, the laplacian operator in polar coordinates 

(r,  ,   ,    ,  ,   ,………… ,     , ) ,  of   . ∇ = r    –        ( r  (    )    ) +    ∧       (A.6) ∧  is a partial differential operator on the unit sphere S   , which also is 

the square of the angular momentum operator [1]. 
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Making separation of variables in eqn. (A.8) yields a radial equation and 

angular equation. 

The radial Schrodinger equation is written in different references as 

follows[1], 

             )      −     +   
ħ ( ( ) – E) R= 0     (A.7)   

Here   is the separation constant which also are the eigen values of ∧ , and  

 =  ( + − 2 )                                                                              (A.8) 

It worths here to write down the relation between the polar coordinates in 

N- dimensional Euclidian space (r,     , ….,   ,   ). Where 0≤  ≤ 2 ,  
and 0 ≤   ≤  , and the Cartesian coordinates (  ,  ,….,   ) [21].    = r cos               …………            = r sin               …………            = r cos    sin   ……………… sin      
. 
.    = r cos       sin       ……… sin      
. 
.    = r cos                                                                (A.9) 

Where the length element is given by [19], 
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   = ∑       ,                                                                (A.10) 

where   =  ,    =     ,………    =   ,    =   ,  And 

the metric tensor in N-dimensional polar coordinates is, 

      

           1  0    0    .………………………  0 

             0      0   ……………………         0 

             0  0                 …………….   0                            

            0  0  0             ………………...   0 

            .   .   .   …………………             0 

             .   .    .  ………………… ……        sin     … sin     

(A.11) 

Let       =   det      =   (   )    (   ) (   )…                  

             (A.12) 

Then the  ∇ =  √  ∑        ,    (                  )               (A.13) 

 Since we are interested in the radial part, then   =                    =        +                           (A.14) 

The Hamiltonian for a particle of mass m with potential V(r) is, 

H =   ħ     +   ( ) =   ħ   [       +          +  ‘angular momentum 

term’] + V(r)                                                         (A.15) 
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As soon as the Laplacian and the Hamiltonian operators are written, the 

Schrödinger equation can be easily written as,  ħ         (r) +        (r) - E  (r) =  0                         (A.16) 

Or       +        −  (     )  +   ħ        +   ħ     ( ) = 0     (A.17)    

 This equation is very important in this research, whose solution will be 

used to find the eigen functions and the eigen values for the confined H-

atom in a spherical cavity. 
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Appendix B 

The confluent hyper-geometric function [22]. 

The confluent hyper geometric differential equation is,        + ( −  )     − ∝  = 0                                                 (B.1)  

This equation has a solution called the Kummer confluent hyper-geometric 

functions   u(x) = 1F1 (∝ ;  ;  ) =  ∑ (∝)       ( )  !    . 
u(x) = 1 + ∝    ! + ∝(∝  ) (   )    !  +……………..                     (B.2)  ≠ 0,-1,-2,……………. 

If ∝ is zero or negative number then 1F1 ( ∝;   ;  ) becomes a 

polynomial. 

The Pochhammer symbol (∝) is defined as, (∝)  = ∝ (∝ +1)(∝ +2)……… . . (∝ + − 2)(∝ + − 1)   (B.3) 

           = (∝    )!(∝  )!  = Г(∝+ )Г(∝)      ≥ 1                                      (B.4) 

Notice that (∝) = 1,      ∝ ≠ 0, and   Г(n + 1) = n! 
The Lagurrre polynomials L∝ ( ) are related to the confluent hyper 

geometric functions as follows, L∝ ( ) = (∝  )!∝! ! 1F1 (-∝;  +1; x) = Г( ∝    )∝!Г(   )  1F1 (-∝;  +1; x)              (B.5)   
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Therefore if     ( ) =           (   )   ∝   (ρ) then we can write it 

equivalently using the confluent hyper-geometric function as, 

          ( )  =           (   ) (∝  )!∝! ! 1F1 (- ∝;  +1; )      

              = Á         (   )1F1 (-∝;  +1; )                                 (B.6) 

      Á =A (∝  )!∝! !                                                                       (B.7) 

with   ∝=  +  −12  –λ                     (B.8) 

  = 2 + − 1               (B.9) 

 then    ( ) =          (   )           !        –  !(      ) !1F1 (- ∝;  +1; )        (B.10)    

where   A  
          !  –        !(      ) !   =   A  ́                                     (B.11)                                                                                                
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  الملخص

في و ةة في فجوة كرويحصورفي هذا البحث تم حل معادلة شرودنجر لذرة الهيدروجين الم      
≤ N الأبعاد متعددفضاء    .حيث تم ايجاد الاقترانات الموجية التي تمثل ذرة الهيدروجين تلك ،3
  .قيم الطاقة التي يمكن لها أن تمتلكها ايجاد صيغة لحسابكما تم 

ومن اللافت للنظر في حل هذه المسألة أن معادلة شرودنغر تحت هذه الظروف لها نفس 
الأبعاد ولذلك كان  وفي الفضاء متعددصيغة معادلة شرودنغر في حالة ذرة الهيدروجين الحرة 

والتي تنطبق عندها شروط تحقيق الحل؛ في حين تختلف قيم  )الاقتران( لها نفس صيغة الحل 
في فجوة  حصورةذرة الهيدروجين الحرة عن تلك في حالة ذرة الهيدروجين الم الطاقة في حالة
 هيحيث أن الصيغة التي تستخدم لحساب قيم الطاقة في حال كونها حرة  ،كروية مغلقة

، في حين أن الصيغة التي تستخدم لحساب قيم الطاقة في حال كونها محصورة )3.7(معادلة
   :تران الحل هيصيغة اقوكانت ).3.4(تعطى بمعادلة 

Hyper geometric function Confluent   

 يأ 

    l (ρ) =  Á     e (   ) 1F1 (l+       – λ; 2l + N – 1; ρ)   
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وهذا الحل يحقق ظروف المسألة عند حدود الفجوة، حيث تكون قيمة الاقتران تساوي صفرا 
= حيث  نصف قطر الفجوةتساوي   r ماعند        |r=S  ، ولهذا نحتاج لايجاد قيم النقاط
، وللحصول تكون عندها قيمة الاقتران تساوي صفرا وهذه النقاط تسمى أصفار الاقتران التي

                         لقد تم استخدامعلى أدنى قيمة للطاقة نختارأكبر قيمة من قيم هذه الأصفار، و

  )5.0 Mathematica (   1 لايجاد أصفار الاقترانF1 (l+      – λ; 2l + N – 1; ρ)  
 يتحقق عندها الحل والتي تستخدم لتحديد قيم الطاقة التي يمكن لذرة الهيدروجين امتلاكها والتي

 .               =      حسب العلاقةفي أي مستوى 

  0 أما هي طاقة ذرة الهيدروجين الحرة وهي في أدنى مستوى للطاقة،   حيث 
اقة الاول لذرة الهيدروجين ويسمى نصف قطر بور، طقطر مستوى الفهي نصف 

  .فهي نصف قطر الفجوة S أما

عدد ( N دروجين تحت هذه الظروف تعتمد علىتم استنتاج ان قيم الطاقة لذرة الهي ولقد
، كما وتعتمد على نصف قطر الفجوة ) الأبعاد التي تمثل الفضاء الذي يحتوي ذرة الهيدروجين

  . التي تحتوي على ذرة الهيدروجين

ففي هذه الدراسة حسبت قيم الطاقة في المستوى الأدنى لذرة الهيدروجين المحصوره في 
 :ةويفسر هذا بالأعتماد على قيمة الجهد الفعال والذي يعطى بالعلاق .   قلت Sوكلما زادت أيضا،    زادت  Nحيث وجد أنه  كلما زادت  l=0فجوة كروية عندما  

Veff =  V(r) +  [l (l+N-2) + (   )(   ) ]     
وتصبح أقل سلبية    تزداد بزيادة  أن قيمة الجهد الفعال والتي منها نستطيع أن نستنتج

، وعندها تكون الطاقة قل أ هاقيمة الطاقة الحركية للالكترون والتي تستطيع الغاء تكونوعندها 
  .لية للالكترون صفراكال

أما نصف قطر الفجوة التي تصبح عندها ألطاقة الكلية للالكترون تساوي صفرا فيسمى 
  .وعند هذه القيمة لا يعود الالكترون مقيدا Scنصف القطر الحرج للفجوة 
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في ودونت  10 – 2ولقد حسبت قيم نصف القطر الحرج في هذا البحث، للأبعاد من 
جزء الاضافي في وهذا يعود لتأثير ال Scتزداد قيمة   ، حيث وجد أنه بزيادة )4(رقم جدول 

+ ) الجهد الفعال    − 2) + والذي يعمل على طرد الالكترون    (   )(   )
  . والذي يزداد بزيادة  بعيدا عن النواة

يزداد كما وتمت دراسة مستويات الطاقة التي يمتلك فيها الالكترون طاقة سلبية ووجد أن عددها 
ينقص من قيمة الطاقة   ونقصان  S ، حيث أن زيادةSوكلما زادت قيمة   كلما نقصت قيمة 

  .لكترونلالالكلية 

 الموجودة في الفجوةذرة الهيدروجين التي تمتلكها  قيم الطاقة مقارنة بين وعند اجراء
في نفس البعد  حرة وهي مع قيم الطاقة التي تمتلكها هذه الذرة l=0ذات  أبعاد معينة عندما 
أكثر كلما  أن التباعد بين قيم الطاقة في الحالتين يكون ملحوظا تبينللفضاء التي توجد فيه، 

 . زادت قيمة 

كما ودرست العلاقة بين نصف قطر الفجوة والضغط الذي يحدثه تغيير نصف قطرها، 
 نصف قطر نسمي عندهاحيث وجد ان انقاص نصف القطر يزيد الضغط الى قيمة قصوى 

حتى تؤول الى  قيمة الضغط تتناقص بعدها اذا تناقص نصف القطر أكثر و Sp max  لفجوةا
  .الصفر
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