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SUMMARY 

 

Growing needs for precise manipulation in medical surgery, manufacturing 

automation and structural health monitoring have motivated development of high 

accuracy, bandwidth and cost-effective sensing systems. Among these is a class of multi-

axis electromagnetic devices where embedded magnetic fields can be capitalized for 

compact position estimation eliminating unwanted friction, stiction and inertia arising 

from dedicated and separate sensing mechanisms. Using fields for position 

measurements, however, is a challenging ‘inverse problem’ since they are often modeled 

in the ‘forward’ sense and their inverse solutions are often highly non-linear and non-

unique.  

A general method to design a multisensor system that capitalizes on the existing 

magnetic field in permanent magnet (PM) actuators is presented. This method takes 

advantage of the structural field symmetry and meticulous placement of sensors to 

discretize the motion range of a PM-based device into smaller magnetic field segments, 

thereby reducing the required characterization domain. Within these localized segments, 

unique field-position correspondence is induced using field measurements from a 

network of multiple-axis sensors. A direct mapping approach utilizing trained artificial 

neural networks to attain multi-DOF positional information from distributed field 

measurements is employed as an alternative to existing computationally intensive model-

based methods which are unsuitable for real-time control implementation. Validation and 

evaluation of this technique are performed through field simulations and experimental 

investigation on an electromagnetic spherical actuator. An inclinometer was used as a 
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performance comparison and experimental results have corroborated the superior 

tracking ability of the field-based sensing system.  

While the immediate application is field-based orientation determination of an 

electromagnetic actuator, it is expected that the design method can be extended to 

develop other sensing systems that harnesses other scalar, vector and tensor fields. 
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CCHHAAPPTTEERR  11    

INTRODUCTION 

 

1.1 MOTIVATION 

Magnetic sensors are commonly utilized to locate the orientation and position of 

solitary high-coercive rare-earth permanent magnets (PM) by detecting the variation of 

their unique magnetic fields. Sensing systems that operate on this principle are able to 

function in harsh conditions as magnetic fields are invariant to temperature, pressure, 

radiation and other environmental factors. In addition, these systems are non-contact and 

permit sensing across multiple non-ferromagnetic mediums. Harnessing magnetic fields 

for orientation/position sensing is not new as evident by Raab’s et al. [1] magnetic 

tracking system introduced three decades ago. Despite major advancement in 

miniaturization and magnetic sensing technology where modern sensors possess small 

physical footprints and high sensitivity [2][3], the use of magnetic sensors for real-time 

feedback control of actuators and devices is under exploited. The main obstacle 

preventing widespread adoption of such magnetic field-based non-contact sensors is the 

complexity involved and non-uniqueness encountered in determining the 

orientation/position of the PM with field measurements from the sensors. Inspired by 

developments in sensor fusion and sensing networks, an unorthodox multi-sensing 

approach is pursued. 

Other than magnetic sensors, a spectrum of sensing solutions is available for real 

time closed loop control of multi-degree-of-freedom (DOF) dexterous devices. The 
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capability of high-speed and precise control of these actuators, such as those described in 

[4]-[8], enables a multitude of potential medical, automation, manufacturing and robotics 

applications. The premise of non-contact sensing solutions, unlike conventional single 

axis encoders which introduce friction, stiction, and inertia caused by constraining 

mechanisms, has motivated the adaptation of optical [9] and vision [10] sensors for 

measuring the 3-DOF orientation of a spherical body. The main issue with utilizing 

optical sensors is the staunch requirement of a consistent ‘patterned’ surface for reliable 

positional sensing. Vision (cameras) and ultrasonic sensors are limited by their precision 

and require ‘a line of sight’. Although high end sensors employing eddy current, 

capacitive and triangulation technologies are able to provide measurements with high 

precision, they only work with metallic surfaces, in clean environments and reflective 

exteriors respectively. Laser interferometers, which uses reflected laser light to measure 

displacements to resolutions in the order of nanometers, are bulky/clumsy and costly 

which makes implementation exorbitant and unpractical. Inclinometers, accelerometers 

and other inertia/gyroscopic sensors offer an alternative means to measure the orientation 

and position through direct attachment to the moving body. However, unless these 

sensors are powered autonomously and transmit measurements wirelessly, constrictive 

bridging connections are required. 

In an era of efficiency, a sensing system that requires minimal additions or 

modifications to the actuator to provide feedback is highly acclaimed. This notion 

provides the impetus for the development of a multisensor system for electromagnetic 

devices that uses the existing assembly of PMs to concurrently provide both actuation 

and sensing feedback. While the focus articulated here is vector field-based sensing 
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(specifically the magnetic field), this approach can be extended and adapted to develop 

other sensing systems that capitalize on scalar (temperature), other vector (electrostatic, 

gravitational) and even tensor (stress) fields.  

1.2 BACKGROUND AND IMPETUS FOR MULTI-SENSOR APPROACH 

Rapid advances in low-cost computing technologies and low-power wireless 

communications within the last ten years have spawned a flurry of research and 

development on large scale sensor networks for a multitude of applications such as home, 

healthcare, military ISR, environment protection, water management, and livestock and 

endanger monitoring [11][12][13][14]. In the meso-scale, growing interest and stringent 

requirements for high precision smooth manipulation for a diverse application in medical 

surgery, manufacturing automation and structural health monitoring systems has 

motivated research aiming at capitalizing on the collaborative, complementary and 

competitive characteristics of sensor networks to synergistically fuse information.  

Simultaneous processing and interpretation of sensory information is a seamless 

and almost effortless process for humans. An example of such advantageous integration 

of information is stereopsis (stereo vision) which is the sensation of depth resulting from 

the difference of spatial perception from two or more visual senses. In numerous 

engineering applications, physical sensors are used to observe and measure the system 

states for subsequent feedback control and automation. With the advent and proliferation 

of affordable vision systems along with maturity of image processing algorithms, many 

of these control and automated processes have been achieved using vision sensors. A 

common issue encountered is the tradeoff between responsiveness and the operating 

range of the sensor that often limits the accuracy of the controlled system.  For example, 
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images with higher resolutions are required in order to achieve more precise control, 

thereby increasing the computation overheads with additional pixels to be processed. In 

addition, vision sensors often exhibit measurement errors which could further degrade the 

controlled system performance. An effective alternative to overcome the above problems 

is to employ an organized sensor network with multi-sensor fusion.  

Measurement errors of physical sensors can be classified as systematic and 

random errors. Unlike the former, random errors are stochastic in nature and although 

they cannot be predicted, they can be adequately modeled using stochastic models. Since 

these measurements occur in discrete intervals, the Discrete Kalman Filter (DKF) has 

been extensively and effectively used to estimate the true measurement from raw 

observations and prior knowledge of system dynamics [15][16][17]. 

To address the inherent latency and improve performance in vision based control, 

different sensor network architectures were investigated in [18]. In these studies, it was 

found that by sequentially activating vision sensors in a network, the maximum velocity 

that can be tracked was increased. Direct comparison between sequential and parallel 

architectures of sensor networks has been investigated in recent decades [16][17], and 

marginally favors sequential processing. However, there is a lack of a unified approach to 

amalgamate these two architectures in a complementary fashion. A network of sensors 

having elements of both architectures can improve the sensing performance two fold 

through reduction in overall sampling time and suppression of measurement noise.  

Inspired by developments in dynamic sensor networks, where an energy efficient 

sensor network is achieved through adaptively adjusting network density and coverage 

quality [19], the performance of the sensor network can be adjusted and regulated just 
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like a normal feedback controller. Such active management of the network reduces 

overall utilization of the entire sensor network while retaining the potential and 

capabilities of a fully operational sensor network. 

While multisensor data fusion (pertaining to synthesizing raw data from multiple 

sensors in a coherent, systematic and comprehensible manner/format) has dominated 

contemporary literature, the notion and critical role of multisensor planning (the physical 

structure and operational schemes/architecture of the sensor network) is becoming 

increasingly evident. The characterization of an organized sensor network that is 

fundamentally based on the temporal measurement model for a sensor is explicitly 

developed in Appendix A. This temporal model allows the subsequent derivation of 

optimal weighting scheme between concurrent sensor measurements. The throttling 

controller which actively manages the network configuration is introduced as well. To 

compare and evaluate control performance of various sensor configurations and 

effectiveness of network throttling, simulations of DKF assisted state feedback control of 

an inverted pendulum system in perfect (no noise) and practical (with noise) 

environments are used. 

Using the inverted pendulum as a system platform, the feasibility of an organized 

sensor network to improve command tracking under feedback control was investigated. 

In simulations, it was found that while the system controlled by a DKF state feedback 

benefitted from additional sensors in the steady state case, the effect on the transient 

response of the system due to a unit step was statistically undetectable. Using this result, 

a throttling sensor network that uses a reduced set of sensors in the transient response and 

a full complement of sensors at steady state was simulated. It was found that the 
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transition between configurations affects the performance of the system and the system 

under throttling sensor network outperformed the same system with static network while 

maintaining lower sensor utilization.  

The investigation and results drawn from the temporal optimization of sensor 

networks facilitated improved performance in control processes and automation. 

Motivated by these promising findings, sensing performance can similarly be enhanced 

by the corresponding spatial analysis of sensor networks. Such investigation pertains to 

the positional installation of sensors for optimal sensing coverage for complementary, 

cooperative sensing parameters, and competitive fusion. For multi-DOF electromagnetic 

actuators with PM assemblies, a networked circular array of discrete magnetic sensors as 

will be presented is capable of unobtrusive orientation/position detection. 

The last decade has seen a monumental shift in microprocessor development with 

the focus now on improving processor performance through multi-core applications 

rather than increasing the raw clock speed of the processor. In the last 5 years, multi-core 

technologies have been the driving force in the performance advancement in processors. 

The bottom-line is clear: improvements in sensing technologies in the future should not 

rely solely on the pursuit of superior individual sensors but assisted in a collective and 

broad approach in sensor network design and implementation. 

1.3 PRIOR AND RELATED WORK IN MULTI-DOF SENSING 

 The major challenge encountered in multi-DOF systems, especially those relating 

to rotational motion, is the achievement of simultaneous measurement for each degree of 

freedom. Developing a sensing system for 3-DOF spherical actuator has proved to be 

especially demanding and have been approached using a variety of methods and 
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techniques. Early designs utilize connecting linkages to decouple motion into 3 separate 

Euler rotations which can be subsequently measured by single axis rotary encoders 

[20][21]. These connections are undesirable as they are susceptible to mechanical wear 

and introduce undesirable inertia and friction. Non-contact solutions using vision and 

optical sensors were proposed by Lee at el [9][10]. In this vision-based system, the 

orientation of the rotor is obtained through a grid pattern recognition algorithm applied 

on collected image frames. The accuracy and sampling rate of such a sampling system 

will depend enormously on the resolution of the camera and processing capability of the 

sensing system. But the main concern is the requirement of a specially treated patterned 

surface for sensing. Optical sensors on the other hand generate electrical signals that are a 

linear function of its relative motion on the surface and while they do not require any 

specific pattern, the surface needs to be continuous and suitable for use with optical 

sensors. Another technique to detect motion in multi-DOF systems is to mount the 

inertia/gyroscopic sensors (such as inclinometers) onto the moving body as it is done in 

aircrafts and Unmanned Aerial Vehicles (UAVs) [22]. However the installation of these 

sensors not only introduce dynamical imbalance to the system, their measurements must 

be transmitted off the moving body which entails an additional wireless communication 

system. 

As magnetic sensors been used to localize the orientation and position of 

individual PMs, Son and Lee used the distributed multipole (DMP) model [23] to 

characterize the magnetic field of a single PM and design a magnetic field-based 2-DOF 

orientation sensor using methodically placed sensors [24]. One method involved 

extraction of the PM orientation by estimating and expressing the measured nonlinear 
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magnetic field density as a polynomial function and solving the inverse problem. In an 

effort to extend this technique to 3-DOF, a novel sensing methodology using Anisotropic 

Magneto-Resistive (AMR) sensors is described in [25] to detect directional changes of 

the magnetic field generated by the rotor that contains cylindrical PMs (used for 

actuation) and an auxiliary ring PM. As the magnetic field radiating from the ring PM is 

invariant to the rotor spin, it is used exclusively by 2 orthogonal AMR sensors to extract 

the rotor 2-DOF orientation. The third DOF, the spin of the rotor, is perceived through 

relative motion of the cylindrical PMs and because of the inability of the AMR sensor to 

distinguish between PMs, the spin determination appears to be only local. A decoupled 3-

DOF translational flux density based sensing system designed for active servoing is 

articulated in [26] and it uses a single hall probe to detect its relative position to a PM 

through measurement of the magnetic field. Compared to 3-DOF rotational motion, the 

expressions for the magnetic flux density as a function of translational position is less 

involved. A problem that the paper identifies is the presence of multiple solutions due to 

the symmetry in the magnetic field and tackles it by restricting the possible locations of 

the sensor probe. 

The remote nature of magnetic sensing techniques and ability to measure multiple 

DOFs at once has attracted considerable interest in the biomedical industry. This scheme 

is adapted to monitor the integrity of artificial medical valves [27] and real-time tracking 

of capsule endoscopy [28][29] through attachment of miniature but high coercive PMs. 

Sensors placed outside the body are able to track the relative position of the valves and 

capsules because the human body has a magnetic permeability similar to that of air and 

like other non-ferromagnetic materials, do not influence the magnetic field. It has also 
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been used to create a rotation sensing feedback to improve the control of prosthetic arm 

rotation in amputees by inserting a PM into the distal end of residual bone of the subjects 

with an upper limb amputation [30]. In endovascular catheterization, a PM attached to the 

probe is used to aid the navigation of the catheter in the body and elimination of 

repetitive and unnecessary X-Ray scans [31]. 

The same principle is also adapted in the navigation of autonomously guided 

vehicles (AGVs). By installing PMs in the ground, a set path can be created for AGVs to 

pursue using sensors mounted on the vehicle [32][33]. For enhanced performance, an 

array of single-axis magnetic sensors specially designed to isolate the linear region of the 

magnetic field can be installed for greater precision [34]. Using a 32 sensor 1-D array of 

sensors, the magnetic field of a bar magnet was used to compute its position [35]. 

In separate setups and approaches described in [36][37], [38][39] and [40], 2-D 

sensor arrays were successfully used to track a PM’s 5-DOF (3 translation, 2 rotation) 

position by exploiting the unique magnetic field of the PM as measured simultaneously 

by all sensors at various orientation and position. In [40], it is particularly distinguished 

for operating a heterogeneous array of magnetic sensors containing a mixed combination 

of single and multi axis Hall-effect sensors. Inverse computation of the PM’s position is 

achieved using a nonlinear optimization algorithm to minimize the deviation between 

measured and calculated magnetic field (using a single dipole analytical model). This 

approach is relatively slow, high in complexity and requires a good initial guess of the 

parameters. A viable and quicker alternative is to employ trained Artificial Neural 

Networks to map orientation estimates to measured fields [41]. It is noted that 

contemporary research is heavily polarized on the tracking and tracing of the motion of 
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solitary PMs using numerous sensors concurrently (in 1-D and 2-D sensor arrays), with 

sparse literature on the corresponding issue with an assembly of PMs. While the shift to 

network sensing is encouraging, there is a noticeable lack of an organized scheme to 

proficiently manage the individual measurements in these sensor arrays. 

The concurrent use of sinusoidally magnetized ring shaped PMs with low cost 

Hall-effect sensors have been utilized as an absolute single DOF rotary position [42][43]. 

Both approaches involve measuring the amplitude and direction of the magnetic field in 

the radial direction to infer the angular position of the PM. The knowledge of just the 

direction of a magnetic field in a pair of two-axis sensors can be used to robustly infer 

translational position of a cylindrical magnet [44]. The magnetic tracking approach 

discussed here is not limited to PMs and easily extended to EMs as an array of 64 EM 

coils has been successfully used to compute the position of a receiving coil [45][46]. 

1.4 PHILOSOPHY OF DISTRIBUTED FIELD SENSING 

The notion of distributed embedded field sensing is two-fold: Capitalize on the 

incidence of existing fields in dynamic systems for efficient and unobtrusive position 

sensing and given a set of instantaneous field measurements, provide positional estimates 

accurately and swiftly (low computational lag) as feedback for closed loop control. In 

general, a field is a physical quantity associated to every point in space (or time). 

Quantities at each point may be a scalar, vector or matrix generating scalar, vector and 

tensor fields respectively. In classical field theory, fields exist due to presence of field 

sources such as mass for gravitational fields and heat for temperature gradients. 

Whichever the field, the measurement of the quantities at multiple points in space can be 

used to infer location and orientation of the field sources. As many dynamic systems 
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contain fields that are embedded and inherent in the system, the detection of these 

moving fields permit direct correspondence to the system’s position and/or orientation. 

Furthermore, this eliminates the need for auxiliary sensor-delegated mechanisms that 

would have a detrimental effect on the dynamic performance on the system. 

 

Figure 1-1 Scalar, vector and tensor fields in space 

The notion of using measured fields for positional sensing can be visually 

presented using a simplistic diagram of various fields as shown in Figure 1-1 where each 

field occupies a  3  3 spatial space. For the scalar field, the field quantity within each 

space is a scalar and represented by the magnitude of the arrow. Similarly, in a vector 

field, the field quantity is represented by the direction and magnitude of an arrow while a 

2nd order tensor field can be represented by a collection of three arrows within each 

space. If each space presents a unique position/orientation of a dynamic system and field 

measurements in each space are also unique, the field measurement at any time can be 

used to directly infer the coordinates within the field space and hence the corresponding 

dynamic system’s position/orientation. 

The main difficulties in cultivating position-field correspondence are the 

complexities of analytical field models and absence of bijectivity (both injective and 

surjective or encompassing one-to-one and onto correspondence) between field 
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measurements and position/orientation. Also known as the magnetic “inverse problem”, 

contemporary literature has labeled this class of quandary being ‘highly non-linear and 

without formulations to follow’ [47], as well as ‘not solvable uniquely, even with 

complete knowledge of … magnetic field everywhere’ [48]. 

 

Figure 1-2 Comparison between a non-bijective and bijective transformation 

The differences between a bijective and non-bijective relationship is visually 

shown in Figure 1-2. In a non-bijective relationship, multiple positions/orientations share 

a common field measurement value. However, in a bijective relationship each field 

measurement is associated to only one position or orientation. It is clear that without a 

bijectivity, associating an arbitrary field measurement with a unique position is difficult. 

While theoretical field models for the prediction of fields in space are available, they are 

often highly complex and not in a tractable form for direct inverse computation 

operations. Moreover, model predictions and actual field measurements can differ and 

these discrepancies can significantly hamper the consequential sensing accuracy. 

However, even if these models are highly accurate and computation speed is not an issue, 

the symmetry inherent in all fields impedes bijectivity between measurements and 

position. This concern is exacerbated in systems with multiple field sources. 
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Figure 1-3 Relating between field measurements and position/orientation 

An evident alternative to theoretical models is through actual experimental 

analysis as shown in Figure 1-3. Direct experimentation allows the actual field to be 

analyzed and correspondence between position and distributed field measurements can be 

artificially and accurately constructed using function fitting methods. These methods are 

akin to performing sensor calibration, like relating the expansion length of the fluid in a 

thermometer to temperature. However unlike conventional calibration where the mapping 

is from a scalar to a scalar, field mapping involves vector to vector correspondence: 

relating multiple field measurements to multi-DOF positions. The most popular function 

fitting approach is least squares (LS) where the optimal fit between modeled and 

observed data is the instance where the sum of squared residuals (difference between an 

observed value and the value provided by the model) is at its minimal. Although LS 

mapping is computational swift, it is not intended to associate a large number of field 

measurements to position/orientation as the high order models required to adequately 

provide fitting become extremely complex. For such cases, artificial neural networks 

(ANN) are better suited due to their ease in relating multi-input-multi-output (MIMO) 

systems. Another simpler alternative is to employ lookup tables (LUT) to associate field 
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measurements with position (similar to multiplication tables). One shortcoming is the 

discrete nature of the relationship, though interpolation and spline functions allow 

construction of data between known value sets. However the amount of memory required 

for pre-caching grows exponentially with higher number of inputs (field measurements). 

With experimental data which is usually corrupted with sensing noise, the nature of LUTs 

inhibits discernment between signal and noise which reduces mapping accuracy.  

The predicament in field-position uniqueness can be counteracted by using 

multiple sensors to concurrently measure the field at various points in space. In addition, 

the field map relating position and measurements can be characterized critically to obtain 

a field map with a reduced localized domain where bijectivity holds. This would allow 

unique and absolute mapping within these localized segments and an incremental 

approach can be used to track mappings between segments. 

Although experimental data is used to construct the map, analytical field models 

offer valuable insight on the composition of the field to provide an outlet for design 

purposes to select or position/orient field sensors such that their measuring range is 

maximized and no saturation occurs. 

1.5 RESEARCH OBJECTIVES 

This research aims to develop a sensing system that uses distributed field-based 

measurements for non-contact orientation determination. Accomplishment of this goal 

comprises of the following objectives: 

The first is the development of a novel embedded field sensing system which 

capitalizes on the capacity of a network of field sensors to detect moving periodic 

fields for direct position/orientation correspondence. 



15 
 

This methodology utilizes inherent or embedded fields which are already present 

in the system for efficient and unobtrusive sensing. Only installations of static field 

sensors are required and the system’s dynamics are unchanged as no additional 

mechanisms are attached. This approach takes into consideration the intrinsic symmetry 

of fields in 3-D space and occurrence of periodicity in fields with multiple sources 

through characterization and classification of measured fields into segments. Through 

field analysis, swift direct mapping techniques can be implemented to uniquely relate 

field measurements to position/orientation within field segments. 

A general framework for vector (magnetic, gravitational, electrostatic) field 

sensing is presented though it is expected that the design method can be extended to 

develop other sensing systems that harnesses scalar (temperature, pressure, light) and 

tensor (stress, strain) fields. 

The second objective is the evaluation of the theoretical and operational 

performance of the sensing system in a magnetic field environment using 

analytical models and experimental investigation. 

Using analytical magnetic field models such as the DMP model [23][24], the 

predicted/projected magnetic fields of two distinct multi-PM configurations are used to 

determine the theoretical sensing accuracy limit of the field-based system. The first PM 

assembly consists of 24 PMs positioned in a circular path on a single-DOF rotating disk 

shaped rotor while the second assembly is based on an actual multi-DOF electromagnetic 

spherical actuator prototype being developed at Georgia Institute of Technology [4].  

With a matching configuration of 24 static magnetic sensors, the first setup allows 

statistical insight and examination of  the experimental field variation between identically 
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graded and geometrically sized magnets as well as field measurement disparities between 

similar sensors. These propagating effects on sensing performance are consequentially 

scrutinized. The prototype actuator offers a platform to illustrate the sensing system for a 

multi-DOF system using multi-axis magnetic sensors. 

The third and final objective is demonstrating this sensing system for non-contact 

open and closed loop control of an electromagnetic actuator. 

Lastly, the sensing system is implemented on a multi-DOF electromagnetic 

actuator using a network of magnetic sensors. As actuation is provided by the interactions 

between stationary EMs and a moving PM on the rotor, the field contributions by these 

EMs on measured magnetic fields must be actively compensated. Through isolation of 

the moving rotor field, the sensing system can be employed for accurate system 

identification and determination of the rotor orientation and provide real-time feedback 

for closed-loop control. 

1.6 OUTLINE AND ORGANIZATION OF THESIS 

The remainder of the dissertation is outlined as follows. 

Chapter 2 commences with the development of the embedded field sensing 

system for a dynamic system with up to three degrees of independent motion. This 

system consists of the forward and inverse model whereby the forward model is reserved 

for offline analysis for characterization and calibration, the inverse model is used in real-

time orientation determination. During field analysis, the entire field map is divided into 

segments to coincide with the inherent periodicity in the embedded field and symmetry of 

the field allows further classification into sectors. Within these segments/sectors, the field 
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measurements and instantaneous position exhibit bijectivity (one-to-one correspondence) 

which permit accurate mapping between the two. 

In Chapter 3, a single-DOF system with embedded magnetic field constructed 

using an assembly of 24 identical PMs is used as an illustrative example to validate the 

sensing methodology. Matched with an equal number of field sensors, statistical analysis 

on the field variation between segments and measurement disparity between sensors can 

be performed. These natural variations are arrested by optimally calibrating field 

measurements in segments and by sensors to a reference segment and sensor using affine 

transformation. These effects on the corresponding experimental sensing accuracy of the 

system are quantified and evaluated against the theoretical limit using analytical field 

models. 

The experimental investigation continues into Chapter 4 where the feasibility of 

the sensing system for multi-DOF sensing is examined on a spherical electromagnetic 

actuator. As such systems utilize existing embedded magnetic fields for actuation via EM 

PM electromagnetic interactions, the sensing system must compensate for the field 

contributions by these stationary EMs. Building on the previous chapter where a single-

DOF sensing system was implemented, the extension to multi-DOF is presented and 

investigated experimentally using multi-axis magnetic sensors. 

Chapter 5 presents an application of the sensing system that takes advantage of its 

swift and direct nature for closed loop control of an electromagnetic actuator. Exploiting 

the high bandwidth of magnetic sensors, the sensing system is able to perform online 

parameter identification to determine the system model and provide real-time positional 
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information for feedback control. Open and closed loop controllers were implemented 

and evaluated. 

Finally Chapter 6 summarizes the conclusions and findings of this dissertation 

and offer recommendations for future research in distributed field-based sensing. 
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CCHHAAPPTTEERR  22    

CAPITALIZING EMBEDDED MAGNETIC FIELDS FOR SENSING 

 

2.1 OVERVIEW 

Developing a sensing system to track a moving body with an attached magnetic 

field requires three considerations. The first is to understand the physics of the field in the 

medium and its behavior in motion. The second is to use parametric spaces to 

characterize and classify the field into smaller spatial segments where bijective 

relationship holds. With these segments, the third and final consideration is associating a 

set of distributed field measurements to a set of positional/orientation coordinates swiftly 

and efficiently without using time-consuming mathematical tools. Finally, as this 

approach assumes perfect symmetry of fields and multiple sensors, statistical based 

calibration methods are proposed to overcome real world implementation issues. 

2.2 QUASI-STATIC MODEL FOR FIELD SENSING 

In Figure 2-1, a physical body containing magnetic sources in a system can be 

described by the coordinates O of the origin. Using the Euler notation, the orientation of 

the moving xyz frame is described by a sequence of body-fixed rotations about x, y and 

finally z axis by the corresponding angles of α, β and γ respectively. The closed boundary 

Ω represents the free space containing the magnetic field. It is desired to use field 

measurements in Ω to extract the position and orientation of the moving field and body. 
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Figure 2-1 Describing a moving body with an attached field 

In this source-free and current-free space Ω, the conservative magnetic field 

satisfies Maxwell’s equations given by 
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where H and B are the magnetic field intensity and flux density respectively; and E and 

D are the electric field and induction respectively. These quantities are related through 

 oB H  (2.5) 

 oD E  (2.6) 

where μo is the magnetic permeability and εo is the permittivity in free space respectively. 

Taking the curl of Equation (2.1), 
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and using the vector identity 



21 
 

     2    B B B  (2.8) 

the propagation of the moving magnetic field can be derived from combining Maxwell’s 

equations which leads to a homogeneous vector wave equation of the form:  
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where 1o o oc    which represents the speed of magnetic wave propagation in free 

space (speed of light). From the general theory of relativity, in other mediums, this value 

will always be lower than that in free space.  

Taking into account the observation distance R, propagation speed of the 

magnetic field co and following the derivation in [49] for propagation of EM waves, the 

magnetic flux density as measured at a stationary point P in Ω can be expressed by 
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The first term in Equation (2.10) follows directly from propagation delay and the second 

component accounts for the delayed change in field due to spatial rotation. Some intuitive 

insights can be drawn from the value of the time-scale quantity R/co and the angular 

velocities: 

o For R/co <1 μsec, where P is close to the radiating body, the contribution of the 

second term is minimal and the time delay effects of both terms are insignificant. 

Physically, the magnetic wave propagation effects can be suitably neglected. This 

allows the expression in Equation (2.10) to be invariant to time and only 

dependent on the spatial angles 

  , , ,  PB B R  (2.11) 
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o For appreciable distances of R such that R/co is significant, the propagation delays 

are more apparent. Using chain rule, the second term in Equation (2.10) can be 

explicitly expanded to obtain 
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This expression reveals that the second term in Equation (2.10) can be neglected 

if the angular speed of the moving field is low (with respect to the speed of light). 

The above implies that for most electromechanical systems considered here, the 

time-scale R/co is in the order of nanoseconds and motion of the system is non-

relativistic, validating the quasi-static assumption of the magnetic field in Ω.  Such static 

magnetic fields are curl-free vector fields and hence H can be expressed by 

  H  (2.13) 

and φ is the scalar magnetic potential. In an isotropic and homogenous medium Ω, the 

magnetic flux density at any point in this Ω space is obtained through the solution of 

Laplace’s equation 

 2 0   (2.14) 

With proper boundary conditions for Equation (2.14), the B field in the space Ω is well 

defined and independent of time. Solutions to the Laplace’s equation are explicit 

functions of the spatial coordinates; as a result, the field measurements at P are only a 

function of the spatial angles of α, β and γ.   

For field based sensing where consideration of the field propagation speed can be 

neglected, it is essential to uniquely relate a set of position/orientation coordinates of a 

system Σ to a corresponding set of stationary sensor measurements Λ. There are two 

ways to relate and visualize these two sets: 

 Forward Model: Σ Λ  
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o This model can be visually illustrated with the aid of Figure 2-2 where the space 

within the forward model cuboid is the set of all possible orientation coordinates 

of a system Σ. For any α, β and γ, which corresponds to a point in the cuboid, the 

value at that coordinate is λ=[BPX BPY BPZ]T the magnetic flux density 

measurement at P. For bijection, for all q  there is exactly one unique element 

λ Λ  such that no unmapped element exists in either Σ or Λ or multiple mapping 

to a single element. In other words, every position/orientation q of the field 

should have a unique corresponding measurement λ that no other 

position/orientation would exhibit. As it will be shown, analysis of the field 

measurements in this parametric space is critical for field-based sensing. 

 

Figure 2-2 Forward model parametric space 

Inverse Model: Λ Σ  

o Mathematically, if the forward model is bijective, the inverse model Λ Σ exists 

and is bijective as well. This property allows sensor measurements to be mapped 

uniquely to position/orientation coordinates, which is the fundamental mechanics 

of a sensing system. As with the forward model, a visual representation of the 

inverse model can be constructed and illustrated in Figure 2-3. The cuboid 
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represents each of the three independent magnetic flux density measurements at P 

and the entire space within the cuboid is the set of field measurements Λ . For any 

BP, which corresponds to a point in the inverse model cuboid, the value at that 

coordinate is q=[ α β γ]T the spatial orientation of the field. 

 

Figure 2-3 Inverse model parametric space 

Illustrative example: 

Consider a moving body (moving xyz frame) containing a single magnetic source 

modeled using a single dipole model [50] as shown in Figure 2-4. Both poles have equal 

but opposite field strength m and fixed onto the z-axis. The dipoles are centered about O 

and the distance between the negative to positive pole is L. By the principle of 

superposition, the magnetic flux density at point P is with respect to the fixed XYZ frame 

is the additive effect due to both dipoles 

 p 3 3
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where R=[RX RY RZ]T is the directional vector in the XYZ frame between the origin O=[OX 

OY OZ]T and P=[PX PY PZ]T defined by  

  R P O  (2.16) 
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Through coordinate transformation of the unit vector in the z-axis, the expression for L is 

  Tsin sin cos cos cosL     L  (2.17) 

 

Figure 2-4 Magnetic field generated by a single dipole model 

The absence of  in Equation (2.15) is due to the placement of the magnetic dipoles on 

the z-axis, causing BP to be invariant to γ. Equation (2.15) can be converted into a non-

dimensional form as shown by 
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By defining the aspect ratio ρ=R/L, and through variable manipulations in Equation 

(2.18), the following expression for the non-dimensional field measurement pB  is 

obtained 
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where R


and L


are unit vectors. An observation to note is for a given R


, the expression 

for pB satisfies the following constraint: 
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This property suggests that in the space Ω, there are at two points, P1 and P2 such that the 

field measurements are not independent. 

For ρ→0, where the distance between P and O are orders less than the separation 

distance between the dipoles, Equation  (2.18) can be approximated by 

  T

p 8 8 sin sin cos cos cos       B L
  (2.21) 

For ρ→∞, where the distance between P and O are orders more than the separation 

distance between the dipoles, the expression for pB  is 
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both extreme cases, the magnetic flux density is invariant to R


 and only a direct function 

of the direction of L; a closed form expression to obtain α, β for a given flux density 

measurement exists by simultaneously solving any 2 of the 3 component equations in 

Equations  (2.21) or (2.22). 

 Of interest in quasi-static field sensing for multi-DOF actuators is when the aspect 

ratio is unity (where R and L are in the same order). The corresponding equation for pB is 

  p 3 3

/ 2 / 2
1, , ,

/ 2 / 2
    
  

 

R L R L
B R

R L R L

         (2.23) 

Clearly this expression is now a function of the direction of the unit vector R


, and the 

rotation angles α,β.  

With orthogonality in mind, one possible choice for the unit vector of R is 

 T1 0 0R


. With this R


 the distance between P and the magnetic dipoles are equal 

when α and β are zero. Using the expression in Equation (2.23), the dimensionless 

magnetic flux density measurement at P can be presented in forward model parametric 
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space Σ using 3 distinct plots as shown in an illustrative example in Figure 2-5 for 

 T1 0 0R


. The axes of this Cartesian parametric space are the individual 

components of q; and the value at each point in space is a singular component of the 

vector λ. This parametric space is also the visual representation of the set Σ and analysis 

of this space permits field characterization with respect to the individual components of 

q. Points with positive magnetic flux densities are shaded lightly and vice versa.  

Alternatively, the relationship between measured magnetic flux pB  and q can be 

characterized and presented in the inverse model parametric space Λ. In this space, the 

axes of this Cartesian parametric space are the individual components of pB ; and the 

value at each point in space is a singular component of the vector q. To facilitate 

illustration and avoid constructing visually confusing volumetric plots, two of the three 

measuring axes (such as (BX, BY), (BX, BZ) and (BY, BZ) are chosen and the numerical 

value of α and β computed to create surface plots as shown in Figure 2-6. In this 3 by 2 

grid of surface plots, the left and right columns depict the possible values of α and β 

respectively for a given combination of the measuring axes. For unique sensing, it is 

desired to associate a unique α and β for a set of field measurements. Clearly, from the 

surfaces plots in Figure 2-6, for the same set of measurement, multiple values of α and β 

exists. 
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(a) X-component of B as measured from P 

 

(b) Y-component of B as measured from P 

 

(c) Z-component of B as measured from P 

Figure 2-5 Field measurements in forward model parametric space Σ 
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Figure 2-6 Surface plots in inverse parametric space Λ 
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 Unlike the forward parametric space, the domain of the inverse parametric space 

is not well defined. As both spaces are equivalent, analysis and examination of the 

forward parametric space is used to draw insights and conclusions in the inverse 

parametric space. Through observation of the field distribution in the forward parametric 

space and noting well defined segmentation, the parametric space in Figure 2-5 can be 

segregated in 4×4 grid with 16 equal sectors as shown in Figure 2-7 with each sector 

referenced by the sign of the magnetic field in each component of λ. To facilitate 

identification, each sector is referenced using the column and row index. As there are 

three sensing axis at P, only up to 23 sectors can be uniquely described. Hence the entire 

parametric space is not bijective; B-1 does not exist for the entire space.  For example, the 

field map in sector (1,1) and sector (2,3) are identical; It is not possible to uniquely 

distinguish between the two sectors.  

However, subsets of the parametric space are bijective and determining such 

spaces is achieved directly from the classified space in Figure 2-7. Using all three sensing 

axes, one possible bijective subdomain is defined by  ,     and  / 2, / 2   

where all 8 sectors are uniquely referenced by the sign of λ. With two sensing axes, it is 

easily deduced that only up to 22 sectors can be uniquely described. One possible 

subdomain that is bijective to BX and BY is  / 2, / 2     and  / 2, / 2    . In 

summary,  bijection depends on both the function B and the domain space of Σ. 
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Figure 2-7 Field classification in forward model parametric space Σ 

2.3 MULTI-SENSOR APPROACH FOR DISTRIBUTED FIELD SENSING 

 The preceding section and accompanying example investigated the use of field 

measurements at a point to determine the orientation of a rotating field. Relaxing the 

restriction of utilizing only single point measurements, this portion generalizes the field 

sensing approach for a spatial network of sensors in the free space Ω. In this generalized 

case, the function f relates simultaneous position/orientation coordinates q to 

corresponding distributed field measurements λ in the space Ω. To facilitate illustration, 

only rotary motion of the field is considered. For a network of 2sT sensors, the 

measurement λ is a matrix whose columns are the field measurements by independent 

sensors and each row denotes the sensing axes. Mathematically, it is defined by 

 

     
     
     

,1 ,2 ,2

,1 ,2 ,2

,1 ,2 ,2

( )
T

T

T

X X X s

Y Y Y s

Z Z Z s

f f f

f f f

f f f

 
 

  
 
 

q q q

λ q q q q

q q q






f  (2.24) 
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where  T, ,  q . As observed in the preceding section, the domain of q plays a 

significant role in unique correspondence between measurements and orientation. For 

physical systems such a domain are usually finite continuous interval and can described 

by [ , ]l uq q q  where ql and qu denote the lower and upper limits. To determine if the 

domain of q (or subset of Σ) is bijective in f, requires the analysis of the parametric 

space. Unlike in the singular sensor case the value of λ at any arbitrary orientation is a 

vector, the value of λ is a matrix in the forward model parametric space.  

As presented using the illustrative example, visual analysis of parametric spaces 

allows characterization of the space and the field which it represents and offers a means 

of performing bijection analysis. In this space, the effects of field periodicity in multi 

source fields, and sensing equivalence in multiple points in physical space Ω can be more 

readily illustrated and observed. This facilitates demarcation of the largest domain in the 

parametric space defined as a segment, where bijection exists. This procedure is 

highlighted as summarized in Figure 2-8. 

With this segment specified in the parametric space, f -1 exists and localized 

mapping can be performed using the inverse model parametric space. Even if a closed 

form expression for f -1 may not be available or conveniently evaluated, artificial 

mapping tools such as the ANNs and least squares models can be used. Hence the 

accuracy of segment mapping is sensitive to the mapping tool used, the combination of 

the inputs, as well as mapping resolution.  
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BIJECTION ANALYSIS LOCALIZED SEGMENT MAPPING 

Field model: λ=f (q)

Transformation to parametric space

Characterization of space

Field 
periodicity

Segmentation Sectorization Aggregation

Sensor 
network

Approximate inverse model:Largest bijective domain in q: (ql,qu)  1ˆˆ q f

Type of mapping function

Mapping resolution

Combination of mapping inputs

Localized domain: q: (ql,qu)

 

Figure 2-8 Flowchart of bijective field mapping 

Due to symmetry of fields, segments can be divided into smaller sectors. By 

observing the sign of the individual components of λ, the specific sector which the 

measurement λ is associated with is immediately known. With the approximate inverse 

model  1ˆˆ f q  for that particular sector, the specific spatial location within that sector 

can be determined. Using both information, sector transformation can be performed to 

obtain the localized coordinate with the segment and hence the estimated orientation. If 

the entire parametric space is composed of multiple segments, an indexer is required to 

keep track of the incremental count of the current segment index. The diagram visually 

describing this process is shown in Figure 2-9. 
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 1ˆˆ f q

 

Figure 2-9 Flowchart of online field based sensing 

2.3.1 Characterization in Forward Model Parametric Space 

Few physical systems contain isolated single magnetic sources and multi-DOF 

electromagnetic actuators [4][5][6], similar to the one presented in Figure 2-10 feature an 

assembly of multiple PMs in a concentric pattern on the moving body. As such 

assemblies have the magnetic sources positioned off the z-axis, the spinning motion or 

change in γ can be detected by sensors in Ω. However an undesirable effect of such 

multi-PM configurations is the presence of multiple magnetic sources which introduces 

periodic nature of the resultant field along the γ spin axis. The approach to tracking 

moving magnetic fields due to multi-PM assemblies is similar to that of single source 

fields: Characterization of the forward model parametric space is required. This 

characterization allows the determination of bijective space. To induce a greater degree 

of bijection within this space, the dimension of λ can be increased by installing more 

sensors to simultaneously measure multiple locations in Ω.  
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Figure 2-10 Multi-DOF actuator with symmetric assembly of PMs [4] 

The following conditions are assumed during field characterization and 

segregation: 

 Motion of the embedded field is rotary in nature. Characterization is 

presented for up to 3-DOF rotary motion. 

 The inherent field sources are in a symmetric configuration which 

produces a periodic field about the z-axis of system. The spatial period is 

denoted as Φ. 

 This field is perfectly periodic and the performance of each sensor is 

identical. As this is not realizable in actual systems, field calibration is 

used to compensate for such effects. 

To maintain a consistent terminology, the ‘rotor’ is defined as the moving entity 

with an assembly of multiple field sources. The ‘stator’ is the stationary reference frame 

where field sensors are fixed to and defined from. While the analysis is presented in the 

context of three degrees of rotational motion, it can be adapted for systems with three 

degrees of translational motion or even systems with mixed rotational and translational 

motions. The orientation of the rotor with respect to the reference coordinate system XYZ 
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can be described in Euclidean 3-D space using two conventions: Euler angles and Tait-

Bryan angles. The differences between the two conventions are shown in Figure 2-11 in 

red and blue respectively. Both notations, however, use one angle to describe the spin of 

the rotor about the z-axis and differ in describing the direction of the z-axis.  

2 Ts
S

C

 

Figure 2-11 Defining the orientation of rotor using two conventions 

The stator contains 2sT sensors or sT sensor pairs (blue circles) spaced equally 

along a circular path C of radius Rs in a plane parallel to the XY plane as shown in Figure 

2-11. This sensor plane is displaced by -Hs along the Z-axis. The sth sensor position in the 

XYZ plane is 

    cos ( 1) sin ( 1)
T

s s s s sR s s H      S  (2.25) 

where s=1,2,…, 2sT; sT is a positive integer and /s Ts   is the angular spacing 

between adjacent sensors. In addition, there are 2sT sensors to guarantee that each sensor 
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has an opposite pair on C. The sensors are orientated such that the sensing Xs and Ys axis 

of each sensor are normal and tangential to C. 

To account for physical constraints pertaining to rotor inclination, the total range 

of motion of the rotor in terms of Euler and Tait-Bryan angles are 

 max max0 ,  ,   0 2              (2.26) 

 max max max max,  ,   0 2                (2.27) 

where ψ, θ and  specifies location of inclination axis (or y-axis when =0), the degree of 

inclination, and spin position of the rotor about the z-axis respectively. In Tait-Bryan 

notation, α, β and γ denotes the degree of inclination about the x and y axis and spin 

position of the rotor about the z-axis respectively. The forward parametric space for both 

notions is visually presented in Figure 2-12. The differences in describing the z-axis by 

both notations in Figure 2-11 can be more clearly understood by viewing the projection 

of a unit vector on a z-axis (denoted by A) onto the XY plane as shown in Figure 2-13. 

Hence A represents a unique inclination of the rotor. In terms of the Euler angles, A is 

described in fashion similar to polar coordinates where ψ and θ represents the polar angle 

and ‘distance’ from origin. Similarly, the Tait-Bryan angles are analogous to Cartesian 

coordinates. 

Σ

 

Figure 2-12 Forward parametric space in Euler (red) and Tait-Bryan (blue) angles 
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Figure 2-13 Differences in describing the z-axis using Euler and Tait-Bryan angles. 

 For a rotor exhibiting symmetric inclination, which is the case for most actuators, 

the red circle centered about the origin in Figure 2-13 depicts the allowable range of A. In 

Euler angles, the radius of this circle is sin θmax. The advantage of describing the motion 

in Tait-Bryan angles is the ability to characterize asymmetrical inclination  max max   

which is not possible in Euler angles. For limits of αmax and βmax, the allowable 

asymmetrical range is illustrated by the blue perimeter. To describe symmetrical 

inclination in Tait-Bryan angles and relate it to the corresponding expression in Euler 

angles, the following inequality must hold: 

 2 2 2 2
maxsin cos sin sin      (2.28) 

2.3.1.1 Field Segmentation and Sectorization 

The presence of field periodicity Φ, which is assumed to exist about the z-axis or 

spin-axis, allows discretization of the 3-D map of the parametric space into equal 

segments as shown in Figure 2-14. The determination of Φ can be obtained analytically 

through examination of the configuration of the field sources or experimentally by 

applying a Fourier Transform to the parametric map. These segments represent the field 
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periodicity and reduce the uniqueness of the parametric space to a single segment (in this 

case, the nth segment) whose domain nΣ  is demarcated by: 

 
max max0 ,   ,   ( 1) nn n                (2.29) 

 max max max max,   ,   ( 1) nn n                   (2.30) 

in Euler and Tait-Bryan angles respectively. The variable n represents the segment index 

and primes denote the localized coordinate. There are a total of nT=2π/Φ segments and 

each segment is indistinguishable from one another. The relationship between field 

measurements in different segments is defined as 

 
   

1 1, , , ,n n n n       λ λ
 (2.31) 

    
1 1, , , ,n n n n       λ λ  (2.32) 

in Euler and Tait-Bryan angles respectively and n1 is an integer.  

nΣ1Σ 2 / Σ

 

Figure 2-14 Field Segmentation due to periodicity 

With a uniform circular distribution of 2sT sensors around the stator and using 

Euler angles to describe rotor orientation, each segment in Figure 2-14 can be 
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alternatively and complementary characterized by sT smaller sub-segments; each with the 

reduced domain of ( , )Tn sΣ  defined by: 

 
  max max1 / / ,  ,   ( 1)T p T np s p s n n                 

 (2.33) 

where p is a positive integer that represents a reduced sensor pair indexer (p=1,2,…, sT).  

This is achieved by exploiting the distribution of the sensors and prior knowledge of the 

orientation of the z-axis projected onto the XY plane. This is best illustrated by viewing 

the projection of the unit z-axis vector A and sensors onto the XY plane. All possible 

locations of A for a specified segment is demarcated by the red circle of radius sin (θmax) 

in Figure 2-15 and denoted by nλ . This circle can be divided into 2sT equal wedges 

whose boundaries coincide with the location of the sensors. Wedges opposite one another 

constitute one single sub-segment. Comparing two arbitrary locations of the z-axis 

projection defined by A1(ψ, sinθ) and A2(ψ+p1π/sT, sinθ), which are located in the pth and 

(p+p1)
th wedge, with respect to Sp and 

1p pS  , both locations are identical. Hence, for any 

arbitrary θ and ϕ, measurements by multiple sensors for any segment (in this case, the nth 

segment and between the pth and (p+p1)
th sensors) are related through 

    
1( , ) ( , ) 1, , / , ,n p n p p Tp s       f f  (2.34) 

where p1 is an integer. 
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nΣ

,n pΣ

1p pS 

1 1p pS  

1,n p pΣ

,n pΣ 1,n p pΣ

1 Tp SS  

Tp SS 

1 1 Tp p SS   

1 Tp p SS  

TSS

 

Figure 2-15 Aggregate sensing using multiple sensors 

( ,1)nΣ

( , )n pΣ

( , )Tn sΣ

nΣ

 

 Figure 2-16 Aggregate segmentation due to sensing network 

 The significance of Equation (2.34) is that nΣ  can be completely characterized 

alternatively with only one of the wedges ( , )n pΣ  provided the approximate location of A 

is known. The aggregated characterization of s wedges would produce the entire map as 

shown in Figure 2-16. The relationship between field measurements between wedges (or 

the (n, p)th and (n, p+p1)
th segment) can be generalized to the entire sensing assembly as 
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   

1( , ) ( , ) 1, , / , ,n p n p p Tp s       λ λ
 (2.35) 

where the composition of ( , )n pλ  is a function of p to ensure Equation (2.35) holds and it 

is  defined as follows: 

 ( , ) ( , ) ( ,2 ) ( ,1) ( , 1)Tn p n p n s n n p   λ  f f f f  (2.36) 

and for completeness, 

 ( ,1) ( ,1) ( , ) ( ,2 )Tn n n n p n s
    λ λ  f f f  (2.37) 

As Equations (2.31) and (2.35) are independent, they can be succinctly combined to 

produce  

    
1 1( , ) ( , ) 1 1, , / , ,n p n n p p Tp s n          λ λ  (2.38) 

which relate field measurements between the (n, p)th and (n+n1, p+p1)
th segment. In 

summary, the correspondence between the global and localized coordinates of the (nth
, 

pth) segment can be summarized by 

 

( 1)

( 1) /
n

p T

n

p s

 
  

   
  

 (2.39) 

The property in (2.38) greatly simplifies the global 3-D parametric map of the 

sensing network (in Figure 2-12) to just a single segment (in Figure 2-16). When 

describing the rotor orientation using Euler angles, there are a total of nTsT segments 

compared to nT segments when using Tait-Bryan notation. It is noted that for all 3-D 

volumetric parametric maps discussed earlier, the value at any arbitrary q or qTB is a 

matrix containing multisensor multi-axis field components.  

Within each segment, the localized map can be demarcated further into smaller 

sectors by considering only the magnitude of nλ  or ( , )n pλ  and using the direction of nλ  or 
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( , )n pλ  for sector selection and identification. Again because of the spatial periodicity of 

the field from a homogenous PM assembly and equivalence of North and South poles of 

a magnet (magnitude wise), only half of the volumetric segment is unique when 

considering nλ  or ( , )n pλ . A single sector is defined by 

 
  max max

,

1 / / , ,

[ 1 ( 1) / 2] [ 1 / 2]

T p T

n m

p s p s

n m n m

     



     

        
 (2.40) 

where m=1,2,…,mT is the sector referencing index. The collective field measurement 

matrix for a specific sector is consequently ( , ),n p mλ  or ,n mλ  for segments with double and 

single indices. A visual illustration showing the composition of segments and sectors in 

the volumetric map as seen from the ψϕ plane is shown in Figure 2-17. Hence, for a 3-D 

volumetric matrix map that is complementary characterized using multiple sensors and 

existence of field periodicity, characterization of any single volumetric segment is 

sufficient to obtain a localized rotor position (within a segment) and knowledge of the 

segment indexes (p and n) allows direct correspondence to the global rotor position. 

To facilitate segment selection, a kinematic predictor is proposed. This predictor 

uses the present and past position to estimate the future position in the 3-D volume map 

of Figure 2-12 

  
2

1 / 2kT kT kTk T T T   q q q q   (2.41) 

where qkT is the rotor orientation at time=kT and T is the sampling time of the sensors. 

Using the backward difference equation to numerically estimate kTq and kTq  the 

kinematic predictor can be simplified to 

   ( 1) ( 2)1
ˆ 3 3kT k T k Tk T     q q q q  (2.42) 
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An arbitrary rotor position q at time kT can be uniquely associated with a point in a single 

indexed segment as shown in Figure 2-17. The specific segment can be identified by 

computing the indexes p and n: 

   int 0 0 1 / 2kT kTn  q  (2.43) 

   int 1 0 0 /kT kTp  q  (2.44) 

where int() denotes integer operand on . Combining Equations (2.42) with (2.43) and 

(2.44) allows for the prediction of the segment indexes at a future time of t=(k+1)T. 

PMΛ

PM
1,sΛ

PM
nΛ

PM
,T Tn sΛ

PM
1, pΛ

PM
,n pΛ PM

,Tn pΛ

PM
,1TnΛPM

,1nΛPM
1,1Λ

PM
,n sΛ

 

Figure 2-17 Spatial distribution of segments and sectors as seen from ψϕ plane 

2.3.2 Mapping in Inverse Model Parametric Space 

As analytical inverse computation of orientation from field measurements using 

analytical models is not tractable, computationally intensive and unsuitable for real-time 
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feedback, a function fitting approach is adopted. Such methods include straightforward 

Look-Up Table (LUT) methods, conventional least squares (LS) using basis functions of 

polynomials, sinusodials, etc and artificial neural networks (ANN). Both the LUT and LS 

approaches are more extensively used due to their simplicity, but ANNs are more 

adaptable when mapping multiple inputs and outputs. In addition, adding hidden layers or 

nodes has minimal effect on computation time as only arithmetic operations are required 

during real-time operation of ANN. The main drawback of ANNs is the offline initial 

training phase which can be time consuming. 

Look up tables: 

A LUT is a structured data where the location within this data structure contains 

pre-computed value of the desired output. These locations (known as lattice points) are 

discrete in nature and computation of the output for non-lattice points are obtained using 

interpolation methods. Consider a 3-D LUT whose axes represent the independent field 

measurements (λ1, λ2, λ3) as shown in Figure 2-18. Each point in space is the value of the 

input field measurements and the numerical value at that location is the corresponding 

orientation q. However, only the value at lattice points (in red) are explicitly known. If λ1, 

λ2 and λ3 coincides with the lattice point, the orientation is immediately known from the 

LUT. If not, trilinear interpolation is required to extract the value of q using the closest 8 

lattice points.  
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Figure 2-18 Mapping using 3-D LUT and trilinear interpolation 

Trilinear interpolation operation can be visualized by locating the 8 corner lattices 

that surround the point of interest q in parametric space. these corner lattices are q000, 

q100, q010, q110, q001, q101, q011 and q111). Linear interpolation is performed between the 

following 4 sets of points: (q000 and q100), (q001 and q101), (q011 and q111) and (q010 and 

q110) to obtain the points q00, q01, q11 and q10 respectively. Executing interpolation on q00 

and q10 as well as q01 and q11 allows computation of q0 and q1. The desired value of q is 

achieved from a final linear interpolation between q0 and q1. 

An issue with using LUT with interpolation is the significant increase in 

complexity in constructing the LUT and performing successive interpolation as the 

number of independent field measurements increases. For mappings requiring more than 

3 axes of independent field measurement, this method becomes memory intensive due to 

the large array of pre-computed data and requirement of numerous interpolating 

operations. 

Least Squares Models 

 Another commonly used method in data fitting is least squares. The best fit in the 

least-squares sense minimizes the sum of squared residuals. A residual is defined as the 
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difference between a desired observed value and the value provided by a model. A model 

can be linear or nonlinear and for the single input case, some of the well known models 

are polynomials and sinusoidals (Fourier series). Like LUT, it is not easily scalable with 

increased inputs and higher order models. For a system with 3 independent measuring 

axes (3 inputs) and single output, the number of coefficients required for a linear model 

(highest power is 1) is 3 (for each of the terms: λ1, λ2 and λ3). For a quadratic model, the 

number of coefficients increases to 9 (for each of the terms: λ1
2, λ2

2, λ3
2, λ1λ2, λ1λ3, λ2λ3, 

λ1, λ2 and λ3) and for a cubic model, the total number of coefficients totals to 19 (for each 

of the terms: λ1
3, λ2

3, λ3
3, λ1

2λ2, λ1
2λ3, λ2

2λ1, λ2
2λ3, λ3

2λ1, λ3
2λ2, λ1λ2 λ3, λ1

2, λ2
2, λ3

2, λ1λ2, λ1λ3, 

λ2λ3, λ1, λ2 and λ3). Hence, scalability of LS models is an issue. Moreover, these models 

are limited to a single output. For multiple outputs, independent multiple models must be 

used.  

Artificial Neural Networks 

An artificial neural network is a mathematical model that tries to mimic the 

structure and functional aspects of biological neural networks. Paired with supervised 

learning, back propagation ANNs can be trained to fit a desired set of inputs to a 

corresponding set of outputs by iteratively adjusting the weighting coefficients in the 

network. A commonly used cost function is the mean-squared error which tries to 

minimize the average squared error between the network's output desired target values 

over all data pairs. There are two approaches in obtaining the minimum: Gauss-Newton 

algorithm and the gradient descent method. However, the Levenberg-Marquardt 

algorithm, which interpolates between both methods, is usually employed. Neural 

networks are scalable as the general training algorithm is not dependent on the number of 
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inputs and outputs. The order of the network is easily controlled by the number of hidden 

layers g and number of hidden nodes within each layer h. A single hidden layer back 

propagation neural network architecture is shown in Figure 2-19. For any given fully 

connected back propagation network, the total number of weights in the network W is 

given by 

     21in outW m m h g h     (2.45) 

where min and mout are the number of inputs and outputs of the ANN. 

 

Figure 2-19 Back propagation artificial neural network 

In order to map field measurements λ to the angular positions of q or qTB, the 

entire and sectionalized segments or sectors volume map is discretized into a N1×N2×N3 

spatial grid, resulting to total of N1 N2 N3 training-target sets. These sets are then used to 

construct LUTs, design LS models or train ANNs. Clearly, the resolution of this map has 

a direct impact on the mapping accuracy. For field mapping using the ANN, 80% of the 

sets will be used for training, 15% for validation and 5% for testing. For this application, 

the inputs of the neural network (g hidden layers, h hidden nodes per hidden layer) are 
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field measurements by all sensors and the outputs are the target position. This can be 

mathematically represented in Equation (2.46) 

  , ( , ),ˆ ( )v g h n p m vq NN  (2.46) 

where v is an integer representing the training set index ( 1 2 31 v N N N  ), and ˆ vq  is the 

angular estimates of the neural network. The mean squared error (MSE) is used to 

evaluate of the performance of a neural network and is expressed as:  

      
1 2 3 2 22

11 2 3

1 ˆ ˆˆMSE
N N N

v v v v v v
vN N N

     


       (2.47) 

 The domain of the mapping depends on the field characteristics of the rotor 

assembly. If no periodicity is assumed or present, the domain of the ANN mapping will 

be the entire volume in Figure 2-12. With periodicity and/or multisensor aggregation, 

field segmentation reduces the required domain to just a segment or a sector if field 

symmetry is considered. The number of segments and mapping domains for these cases 

are compiled in Table 2-1.  

Table 2-1 Differences in mapping domain from types of field characteristics 

Field 
characteristics 

None Segmentation Aggregation 
Segmentation & 

Aggregation 

No. of segments 1 2π/Φ sT 2πsT/Φ 

Mapping 
domain max max

0

0 2

 
  

 

 
  

 
max max

0

0

 
  



 
  

  

 max max

0 /

0 2

Ts 
  

 

 
  

   

max max

0 /

0

Ts 
  



 
  

  

Mapping 
domain 

(with sectors) 
 max max

0

0 / 2

 
  



 
  

  
max max

0 /

0

Ts 
  

 

 
  

   

max max

0 /

0 / 2

Ts 
  



 
  

  
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While the discussion in the prior sections has been focused on a system with 3-

DOFs, the direct field sensing methodology is extensible to other DOFs. For the 2-DOF 

case, there are two possible types of motion: dual inclinations and single inclination with 

spinning motion. In both cases, the field map is no longer a volume (3-DOF) but now a 

surface as there are only 2 independent DOFs. As with the 2-DOF case, there are two 

possible types of motion for 1-DOF case: only spin or only inclination. The field map is 

reduced further a single dimension lines. A summary of the differences between 1, 2 and 

3-DOF parameters is shown in Table 2-2. 

Table 2-2 Differences in parameters for 1, 2 and 3-DOF sensing systems. 

 1-DOF 2-DOF 3-DOF 

Motion Spin Inclination 
Inclination & 

spin 
Dual 

inclination 
Unrestricted 

inclination & spin 
q = ϕ or ψ θ [θ, ϕ]T [ψ, θ]T [ψ, θ, ϕ]T 

qTB = γ α or β [α, γ]T or [β, γ]T [α, β]T [α, β, γ]T 

Range of 
Motion 

0 2    max max     max max

0 2

  
 

  

  max max

0  
  

 
   max max

0

0 2

 
  

 

 
  

 

Field 
Map 

Line Surface Volume 

 
 

2.3.3 Relationship between Sensor Maps 

In 2-DOF motion, field measurements of the moving rotor by a stationary sensor 

to create a map in forward parametric space can be alternatively perceived as the map 

obtained if the rotor was stationary and the sensor was in motion. Either way, this map 

represents a unique measurement which relates the position of the sensor with respect to 

the rotor PM surface. As all sensors are arranged in a systematic manner around the rotor, 
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the field maps by multiple sensors are geometrically related. In addition, it is worth 

nothing that the normal component (X-component) of the field measurement of any 

sensor is independent of the rotation of the field about the sensor. This equivalence 

allows construction of the normal component of multiple sensor maps with only one 

sensor map. The extension of this equivalence is that from this 2-D field map (of 2-DOF 

motion), the corresponding 3-D field map (of 3-DOF motion) can be constructed. As a 

result, this relationship permits real time diagnosis of sensors to determine faulty sensors 

as well as allowing the construction of 3-D field maps from experimentally obtained 2-D 

field maps. 

Consider a complete field map of the normal component of the field 

measurements at S1 has been obtained. For a given inclination θ and spin position ϕ of the 

rotor, the field measurement by S1 can be obtained using the field map and using the 

values of θ and ϕ as Cartesian coordinates in the 2-D field map. As the field map of S1 

uses spherical coordinates, the map can be visualized as a sectionalized part of a sphere. 

For an arbitrary rotor inclination and spin as shown in Figure 2-20, the instantaneous 

normal component of the field measurements of S1 and S2 are different due to the spatial 

positional differences between sensors. However, the measurement by S2 at this rotor 

orientation is present in the field map of S1 albeit at a different spatial location on the 

map. Hence, it is possible to estimate the field measurement at S2 using only known 

measurements of S1. 

Denoting the primes as coordinates of the respective sensors on the field map 

when the inclination is zero for any angular spin position, it can be seen geometrically 

that the instantaneous measurement of S2 is spatially related to the corresponding 
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measurement of S1 through the spatial shifts of ϕ2,1 and θ2,1 on the field map of S1. The 

blue path designates the relative position of S2 as the degree of inclination is increased. 

As seen in Figure 2-20, this path is not straight in the field map of S1. Computation of 

these spatial shifts can be obtained by locating S2 with respect to the moving xyz axis and 

computing the equivalent spherical coordinates representation to obtain the spatial shifts. 

 

Figure 2-20 Left: spatial relationship between sensors, Right: Field map of S1. 

The coordinates of S2 with respect to the moving xyz system are 

 

2 2

cos sin 0 cos 0 sin

sin cos 0 0 1 0

0 0 1 sin 0 cos
S S

x X

y Y

z Z

   
 

 

       
               
              

 (1.48) 

Transforming these coordinates into equivalent spherical coordinates with respect to the 

Cartesian xyz coordinates allows the determination of the coordinate of S2 in the field 

map of S1. 

  
2

1
2,1 cos / / 2S sz R    (1.49) 

  
2 2

1
2,1 tan S Sy x   (1.50) 

Using the above relationship, the field map of S2 can be reconstructed using a complete 

field map of S1. For every set of θ and ϕ in the field map of S1, the corresponding 
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measurement of S2 is directly obtained by the spatial shifts ϕ2,1 and θ2,1 in the field map of 

S1. Since the field map may be discrete in nature (such as those obtained experimentally), 

the computed values of S2 using the field map of S1 and the spatial shifts require 2-D 

interpolation. As this relationship is one-to-one, the inverse of this procedure allows the 

reconstruction of the field map of S1 from the complete field map of S2. However, due to 

the position of S2, the entire map of S1 is not reconstructable solely from the field map of 

S2. This is due to the position of S2, which covers a smaller surface area of the rotor as 

compared to S1 for a pre-defined range of θ. The ratio of θ2,1 / θ characterizes the amount 

of the map that can be reconstructed and is a function of the angular spacing between 

sensors. This relationship is graphed in Figure 2-21. At an angular spacing of 45°, the 

ratio is 0.71 and monotonously decreases with larger angular spacing where it is zero at 

90°.  

 

Figure 2-21 Reconstruction ratio as a function of sensor angular spacing. 

The approach used can also be used to construct the entire 3-D map from a single 

2-D map of the sensor. The coordinates of S1 with respect to a moving xyz system in 3-

DOF are 
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1 1

cos sin 0 cos 0 sin cos sin 0

sin cos 0 0 1 0 sin cos 0
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     
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 (1.51) 

Transforming these coordinates into equivalent spherical coordinates with respect to the 

Cartesian xyz coordinates using Equations (1.49) and (1.50) allows the determination of 

the coordinate of S1 in the field map of S1. Using this relationship, the 3-D field map of S1 

can be reconstructed using a complete 2-D field map of S1. The set of ψ,θ,ϕ in the 

required 3-D field map of S1 is directly obtained by the spatial shifts in the existing 2-D 

field map of S1. 

2.4 PHYSICAL SENSING CONSIDERATIONS 

Field segmentation and aggregation reduces the required characterization to any 

single segment. Within this segment, the field must be proficiently measured by sensors 

which possess sensing limitations as well as maintain a high signal to noise ratio (SNR) 

to minimize unsolicited noise effects which compromises mapping performance. Table 

2-3 evaluates a handful of magnetic sensors available in the industry today used for 

magnetic flux density measurements. The operating principles employed by majority of 

the sensors are Hall-effect, Giant magnetoresistance (GMR) and Anisotropic 

magnetoresistance (AMR). These sensors are available in single and multi-axis editions 

and most importantly of all, exhibit different sensing sensitivities and ranges. 

Armed with these sensing specifications, for a pre-defined location and 

orientation of sensors, analytical magnetic field models (such as the DMP model) can be 

used to simulate and generate the predicted fields at these desired sensing locations. The 

field range encountered at these areas can be used to meticulously select the sensors that 
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would fully utilize its entire sensing range without saturation. Alternatively, the sensors 

can be carefully preselected to meet cost or bandwidth stipulations and instead regulate 

the position and orientation of the sensors to ensure the entire sensing range is exploited. 

In such cases, low field sensors such as the Honeywell HMC1043 sensor need to be 

placed further away from PMs to avoid saturation while strong field sensors such as the 

Asahi HG-362A can be positioned close to PMs with no saturation effects. While low 

field sensors are more susceptible to stray background field effects, their high sensitivity 

is invaluable in micro/nano-scale PM configurations and assemblies where the magnetic 

fields are weaker and not detectable in strong field sensors.  

Table 2-3 Specifications of various types of industrial magnetic sensors 

Manufacturer Model Type Polarity 
Sensing 

Axes 
Sensitivity
(mV/mT) 

Range 
(mT) 

Bandwidth
(kHz) 

Price

Allegro A1301 Hall Bipolar one 25  ± 100 20 $1.14
Asahi HG-362A Hall Bipolar one 2.5  ± 2000 100 $1.58

Ametes MFS-3A Hall Bipolar three 280  ± 7.3 100 $24 
NVE AA003-02E GMR Unipolar one 320  1.4 1000 $7.85

Honeywell HMC1043 AMR Bipolar three 100  ± 0.6 5000 $40 

2.4.1 Field Calibration 

As noted earlier, the premise of field segmentation relies on the indistinguishable 

measured fields among segments. A direct method to compensate for the inevitable 

experimental field variation between segments is to implement affine transformation 

(AT) on field measurements of all segments with respect to a chosen ‘reference’ segment. 

For single axis sensors, the AT consists of scaling and translation factors. These factors 

will be chosen through optimization such that the field measurements in transformed 

segments will resemble the reference segments in the least squares sense. 

The segment AT of the nth segment of the sth sensor can be expressed by 
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 ( , ) , ( , ) ,n s n s n s n s B a B b


 (2.52) 

where an,s and bn,s are the linear transformation and translational factors of the AT for nth 

segment of the sth sensor. These factors are optimally chosen such that the following error 

function is minimized 

 
2

( , ) ( , ) 2n s r sB B


 (2.53) 

where ,r sB  is the least squares or ANN fitted model of the rth segment of the sth sensor. 

In aggregate multi-sensing, the sensing similarity among sensors permitted the 

reduction of the domain required for segment mapping. However, sensing variation can 

occur between seemingly identical sensors which can be attributed to sensor mis-

positioning, misalignment or inherent manufacturing related differences between sensors. 

As with field variation between segments, the approach of using affine transformation to 

calibrate and ‘standardize’ measurements across sensors is adopted. 

Similarly, the sensor AT of the sth sensor with respect to a reference sensor for 

any segments in that sensor can be expressed by 

 ( , ) ( , )n s s n s s B c B d
  (2.54) 

where cs and ds are the linear transformation and translational factors for the sth sensor. 

These factors are optimally chosen such that the following error function is minimized 

 
2

( , ) ( , ) 2r s r rB B  (2.55) 

where ,r rB  are the least squares or ANN fitted model of the reference segment in the 

reference rth sensor.  
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2.5 SUMMARY 

Employing pre-existing embedded fields for sensing has numerous advantages 

and a method to use distributed field measurements for orientation sensing has been 

presented. This methodology addresses the difficulties encountered in magnetic inverse 

problems of high non-linearity and non-uniqueness through analysis and characterization 

of the forward parametric space. For an assembly of identical PMs, due to field symmetry 

and periodicity and meticulous placement of sensors, only a fraction of the mappable 

parametric space is unique and suitable for defining unique correspondence between 

measurements and orientation. In addition, this approach is model-independent and uses a 

computationally swift function fitting approach to directly map measurements to 

orientation of the system which permits lag-free positional determination for real-time 

feedback control. Since perfect symmetry and periodicity do not exist in actual 

implementation, a statistical calibration approach is employed to compensate for field 

variation between PM sources and sensors. An in-depth analysis of using a network of 

sensors to detect a multi-source field is experimentally investigated in the next chapter. 

 

 

   



58 
 

CCHHAAPPTTEERR  33    

EXPERIMENTAL ANALYSIS OF MULTI-SOURCE MAGNETIC 

FIELDS FOR POSITIONAL SENSING 

 

3.1 OVERVIEW 

Physical fields exhibit symmetry and in systems with multiple magnetic field 

sources, field periodicity occurs. While analytical and theoretical models predict perfect 

symmetry and periodicity, in actual implementation and experimentation, due to physical 

imperfections and sensing noise, these occurrences usually do not materialize. From the 

previous chapter, the field sensing methodology relies on the field periodicity inherent 

from an assembly of field sources and equivalence of measurements from multiple 

sensors. This chapter seeks to experimentally investigate these assertions and their 

corresponding effects on mapping accuracy using magnetic fields. This investigation is 

done on a platform which contains a symmetric arrangement of permanent magnets 

which is present in many single-DOF rotary systems such as DC and stepper motors.  

Of particular interest is the statistical variation in field measurement due to 

different field sources (PMs) and sensors. The approach of statistical standardization 

using affine transformation is used as a practical means to compensate for these 

variations. This investigation is divided into two parts: the first part focusing on field 

variation from measuring multiple PM sources from the same sensor and the second 

studies the corresponding field variation of measuring the same sources between sensors. 
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3.2 FIELD PERIODICITY FROM MULTIPLE SOURCES AND SENSORS 

Using 24 similarly graded (N35) neodymium rare-earth cylindrical PMs (axially 

magnetized) and 24 large range Galium Arsenide (GaAs) single axis Hall-Effect 

magnetic sensors (Asahi HG-362A), the field measurements of multiple PMs by multiple 

sensors were collected and statistically analyzed. These measurements are used to relate 

position to produce field-position correspondence and mapping for a magnetic field-

based sensing for a single-DOF system with multiple field sources. 

3.2.1 Experimental Setup 

As shown in Figure 3-1, the 24 PMs are arranged in a circular fashion onto a 

movable rotor with a single DOF (spinning motion). The xyz and XYZ axes represent the 

moving (rotor) and fixed (sensors) reference frames. The angular spacing between PMs is 

ϕR and every PM is RR from the axis of rotation (Z-axis). The PMs are numerically 

indexed in a counterclockwise manner with the midpoint between PM1 and PM24 

coincident with the rotor x-axis (and the midpoint between PM18 and PM19 coincident 

with the y-axis) and they are orientated such that their magnetization vector is parallel to 

the negative Z-axis (Red surfaces denote south poles of the PMs). As a result, the spatial 

periodicity Φ of this assembly is 15°. The sensors (denoted by circles) are distributed 

around a circular path as discussed in the previous chapter. These single-axis sensors are 

orientated such that the measuring axes are coincident with the Z-axis. The rotor 

containing the PM assembly is rotated about a fixed shaft using a DC stepper motor 

(Motor: PMI Motion Technologies USS75B SynchroStep DC step motor, Stepper Drive: 

PMI Motion Technologies BSD-40 bipolar chopper drive) via a pinion and gear 
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assembly. The stepper motor and drive setup are rated at 400 steps/rev during half-step 

mode (200 steps/rev during full-step mode) and the gear ratio between the pinion and 

gear is 4:1; hence, a complete revolution of the rotor would require 1600 steps (0.225° 

effective step resolution). A ball screw provides accurate adjustment between the 

separation Hs between the PMs and sensors. This adjustment allows the investigation of 

the field variation where the aspect ratio ρ is close to unity. The complete setup is 

illustrated in Figure 3-2. The physical dimensions and magnetization strength of the PMs 

are compiled in Table 3-1 along with the corresponding DMP model used to analytically 

model the field of each PM. The setup’s physical parameters are tabulated in Table 3-2. 

Table 3-1 PM and corresponding DMP parameters 

PM DMP 
Radius 
(mm) 

Length 
(mm) 

Magnetization 
(T) 

Characteristic 
length (mm) 

No of 
dipoles

No of 
loops 

Dipole 
strength (A/m)

4.7625 12.7 1.1 9.1021 6 1 
-1.340  10-6

2.030  10-5 

 

Figure 3-1 Rotating multi-PM assembly and stationary sensor placements 
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Table 3-2 Experimental physical dimensions and parameters 

Rotor PMs Sensors 
No. of PMs RR (mm) ϕR (deg) 2ST RS (mm) ψs (deg) Hs (mm) 

24 49.53  15 24 49.53 15 9.517 

 

Figure 3-2 Experimental setup used for investigation of field characteristics 

The electrical and communication schematics of the setup are presented in Figure 

3-3. The outputs of the magnetic sensors, which are powered by a 8V DC power supply 

(HP 6236B triple output power supply), are transmitted in analog format as voltages and 

digitally acquired using 24 independent and dedicated 16-bit (15-bit signed format) Delta 

Sigma analog to digital converter (ADC) banks (aggregated using four Turck Inc. BL20-

4AI-U/I and two Turck Inc. BL20-2AI-U). A sensing/actuation gateway (SAG) (Turck 

Inc. BL20-PG-EN) comprising of a 32-bit Reduced Instruction Set Computer (RISC) and 

100BASE-TX Ethernet connectivity is attached to the ADCs and digital to analog 

converter (DAC) banks (aggregated using two Turck Inc. BL20-2AO). Field 

measurements by the sensors are communicated to a Human Machine Interface (HMI) 

(Turck Inc. Turckeye) and a PC over Ethernet connection to provide instantaneous 
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display and data logging capabilities. A custom C program running on the PC can collect 

measurements and automatically increment the stepper motor by transmitting transistor–

transistor logic (TTL) signals to the stepper drive, which is powered by a 20 V DC power 

supply (Kepco BOP 50-4M bipolar operational power supply) via the DAC. 

 

Figure 3-3 Electrical and communication schematics 

3.3 FIELD CHARACTERIZATION OF MULTIPLE PMS 

By using the stepper drive to increment the angular position of the entire PM 

assembly (ϕ), the field measurements by all 24 sensors can be recorded at every spatial 

increment step. Figure 3-4 shows the field measurements in the Z-direction of all 24 PMs 

by sensor S1 along with the predicted field measurements using the DMP model. As this a 

single-DOF system, Figure 3-4 also represents the forward parametric space of the 

system. The first trough at ϕ=7.5°, corresponds to the proximity of PM1’s magnetization 

axis while the adjacent trough at ϕ=22.5°, is due to the proximity of PM2 and so forth. A 

number of critical observations can be drawn by comparing the DMP field model and 

experimental field,  
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 The actual strength of the magnetic fields near the PM’s magnetization axes 

are weaker, and  

 More importantly, while the DMP model assumes indistinguishability 

between the magnetic fields of PMs, in actual experimentation, there exists 

variation between the magnetic fields of the PMs which can be attributed to 

physical imperfections. These imperfections result in field variation among 

segments. 

A total of 24 troughs are present and each trough corresponds to a specific PM or 

segment index as discussed in the preceding chapter. With this knowledge, the 

measurements by S1 in different segments (or due to the proximity of specific PMs) can 

be isolated. Figure 3-5 depicts the field measurements by four consecutive segments as 

collected from S1. Each segment (demarcated by ( 1)n n     ) can be further 

segregated into 2 equally sized sectors as observed in Figure 3-5. The variation in the 

field measurements in all segments is compared in Figure 3-6 by using the localized spin 

coordinate. Visual inspection suggests that the measurement variation is more significant 

at the troughs (at center of PMs, middle of segments) than the peaks (in between PMs, 

boundaries of segments) and this is reflected in all sensors. The reason is primarily due to 

natural variation of the magnetization strength in different PMs (despite being identically 

graded) which is accentuated at the troughs where the sensors are closest to each PM. As 

the magnetic fields in between the magnets are substantially weaker, the variations at the 

peaks are less noticeable. 
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Figure 3-4 Measured and DMP predicted field as a function of rotor rotation by S1 

  

Figure 3-5 Variation in measured field from four different segments by S1 
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Figure 3-6 Variation in measured field from all segments by S1 

3.3.1 Segment Field Calibration  

As noted earlier, the premise of field segmentation relies on the indistinguishable 

measured magnetic fields among segments. A direct method to compensate for the 

inevitable experimental field variation between PMs (or segments) is to implement affine 
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the first sector ( 0 / 2   ) to fit all field measurements in segment 1 (both sectors). 

The goodness of the fit statistics of these models, as well as their corresponding 

coefficients are produced in Table 3-3.  The 7th order polynomial fit of S1’s segment 1 is 

displayed in Figure 3-7. 

Table 3-3 Goodness of fit and coefficients of polynomial models used to fit segment 1 

Poly model order Cubic 4th 5th 6th 7th 
Sum squared error 167.8 119.9 118.8 117 116.9 

R2 0.9979 0.9985 0.9985 0.9986 0.9986 

coefficients 

c0 -105.9 -107.9 -107.6 -107.2 -107.1 
c1 -3.456 2.5 1.037 -1.569 -2.52 
c2 -5.003 -8.722 -7.277 -3.527 -1.641 
c3 0.5031 1.29 0.7618 -1.312 -2.773 
c4  -0.0531 0.02746 0.557 1.107 
c5   -0.00434 -0.0673 -0.1746 
c6    0.00282 0.01328 
c7     -0.000401 

 

 

Figure 3-7 Polynomial model fitting of field measurements in segment 1 of S1 

The affine transformed segments of S1 are illustrated in the global and localized 

spin position in Figure 3-8 and Figure 3-9 respectively. The computed optimal AT 

coefficients are appended in Table 3-4. 
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Figure 3-8 Field measurements by S1 across segments after affine transformation 

 

Figure 3-9 Variation in measured field from all segments by S1 after affine transformation 

Table 3-4 Affine transformation coefficients for the segments in S1 

Seg 1(ref) 2 3 4 5 6 7 8 9 10 11 12 
a 1 1.02 0.98 1.00 0.97 0.92 0.91 0.93 0.92 0.88 0.91 0.93 
b 0 1.306 -2.65 -0.88 -3.80 -6.41 -8.92 -6.78 -2.85 -16.16 -11.62 -7.70

Seg 13 14 15 16 17 18 19 20 21 22 23 24 
a 0.87 0.86 0.93 0.92 0.99 0.99 0.94 0.96 1.04 1.00 1.01 1.00 
b -15.54 -13.72 -7.32 -8.55 -1.08 -1.65 -7.50 -4.79 3.37 0.87 -0.28 0.15 
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With the data in Figure 3-6 and Figure 3-9, a one-way analysis of variance 

(ANOVA) is used to determine if the variation in different segments by a single sensor 

before and after AT are statistically significant. In this case, the ANOVA tests the null 

hypothesis that field measurements of all 24 segments by S1 are drawn from the same 

population. Statistical visualization of the variation in field measurements in segments 

without AT and with AT are reproduced in Figure 3-10 and Figure 3-11 respectively. On 

each box, the central mark is the median, the bottom and top edges of the box are the 25th 

and 75th percentiles and the whiskers extend to the most extreme data points. The results 

of the ANOVA are summarized in Table 3-5 and the high p-value implies that the null 

hypothesis for both cases cannot be rejected. The higher p-value for the segments with 

AT (value of 1) suggest a higher confidence that that the transformed measurements in 

segments are statistically indistinguishable. 

  

Figure 3-10 Statistical box plot of field measurement in all segments by S1 
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Figure 3-11 Statistical box plot of field measurement after affine transformation by S1 

Table 3-5 ANOVA results from field measurements in all segments by S1 

 
Source 

Sum of 
squares 

Degrees of 
freedom 

Mean 
squares 

F-
statistic 

p-
value 

No 
AT 

Segments 18856 23 819.83 0.64 0.9009 
Error 2049740. 1608 1274.71 

 
Total 2068596 1631  

With 
AT 

Segments 243.316 23 10.58 0.01 1.0000 
Error 1868899 1608 1162.25 

 
Total 1869142 1631  

 

Table 3-6 Effects of affine transformation on p-values across all sensors 

Sensor S1 S2 S3 S4 S5 S6 
No AT 

p-value 
0.9009 0.8581 0.8620 0.8628 0.7808 0.7486 

With AT 1.0000 
Sensor S7 S8 S9 S10 S11 S12 

No AT 
p-value 

0.7538 0.8077 0.8073 0.9422 0.8581 0.8135 
With AT 1.0000 

Sensor S13 S14 S15 S16 S17 S18 
No AT 

p-value 
0.8247 0.7833 0.8586 0.8926 0.8801 0.9008 

With AT 1.0000 
Sensor S19 S20 S21 S22 S23 S24 

No AT 
p-value 

0.9141 0.9546 0.9659 0.9328 0.8870 0.8583 
With AT 1.0000 
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By extending this statistical analysis to all 24 sensors, the p-values before and 

after AT for each sensor can be computed and are contrasted in Table 3-6. Across all 

sensors, the p-value increases to 1 after affine transformation, denoting high statistically 

similarity between segments in all sensors. 

3.3.2 Field – Position Mapping Across Segments 

Observation of Figure 3-4 reveals that for the entire rotor rotation, the association 

between field measurement and position is not bijective and indiscriminate mapping of 

the entire field map ( 0 360   ) will cause in erroneous results. To numerically verify 

this issue, all 24 sensor inputs can be used to associate simultaneous field measurements 

with spin position (over entire range) via training of the ANN (24 input and single output 

network). The MSE of the resulting ANN as a function of h is shown in Figure 3-12. At 

high h, the MSE stabilizes around 10 deg2. To spatially visualize the error, the absolute 

error resulting from the ANN trained global map as a function of spin location is 

presented in Figure 3-13. As shown, the error can be as high as 20° and more importantly 

noticeably periodic, which correlates with the periodic nature of the field. 

 

Figure 3-12 MSE as a function of hidden nodes for global mapping 
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Figure 3-13 Estimation error resulting from using indiscriminate global map, h=50 

Hence, to generate accurate correspondence between field measurements and 

position estimate for direct field sensing, segment or sector mapping is required. Using 

AT, the field measurements of all segments can be statistically ‘standardized’ with 

respect to the reference segment. Hence a mapping constructed using the reference 

segment can be used on other transformed segments. This section seeks to characterize 
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this map can be constructed using polynomial models or using an ANN, though for multi-

DOF or multi-input cases (such as using multiple independent field measurements), the 
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S1 is shown in Figure 3-14. With knowledge of the sector index m, the coordinate 

transformation between sectors and segment is described by 

 1

1

if 1
     

if 2

m

m





      

 (1.1) 

where 1  is the localized position within sector 1 and  is the localized position within 

the segment. It is observed visually that the resulting map exhibits bijectivity resulting in 

low mapping error. The Mean Squared Error (MSE) of these sector mappings of S1 using 

polynomials and ANNs as a function of model order and hidden nodes are shown in 

Table 3-7.  

 

Figure 3-14 Segment 1 mapping using experimental measurements of S1 

Table 3-7 Error analysis of various mapping functions for S1 

Mean Squared Error (deg2) 
Polynomial order ANN hidden nodes (h) 

Cubic 4th 5th 6th 7th 3 4 5 6 7 
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As there are multiple sensors, it is possible to utilize the ANN to efficiently and 

concurrently map all 24 sensor measurements in segment 1 to a specific orientation 

(sector map has 24 inputs (one for each sensor) and 1 output (ϕ angle)); an advantage not 

effortlessly realizable with polynomial models. Table 3-8 summarizes the effects on the 

number of network inputs on the MSE for ANN based mapping. Clearly, the inclusion of 

more sensors for field-position mapping results in lower MSE. The ANN which uses all 

24 sensor measurements resulted in an MSE of 0.00087 deg2, which about two orders of 

magnitude better than the ANN which uses only S1 as its input. 

Table 3-8 MSE for using multiple sensors during ANN mapping 

 
Number of inputs to ANN (h=2) 

1 2 4 8 16 24 
Sensors 
involved 

S1 S1, S2 S1, S2, S3, S4 S1, …,S8 S1, …,S16 S1, …,S24 

MSE (deg2) 0.01688 0.01320 0.00984 0.00461 0.00384 0.00087 
 

Using the sector mapping model, the errors resulting from applying this model 

(based on a 7th order polynomial) on non-reference segments of S1 are computed and 

spatially illustrated in Figure 3-15. The constructed map (of 1 segment) required only 

characterization of 1/24 of the total global map (or slightly less than 5%). Due to field 

variations between segments, the estimation error ( ̂  ) varies across segments and 

can be positively correlated with each segments’ deviation from the box plot of segment 

1 in Figure 3-10. These errors can be arrested using segment AT and the resulting 

estimation from using transformed field measurements are provided for comparison in 

Figure 3-16. After segment AT, the absolute estimation errors do not exceed 0.7° as 

compared to exceeding 7° at multiple locations without segment AT.  It is worth noting 
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that even without segment AT, the error in Figure 3-15 is significantly lower than the 

indiscriminate global map in Figure 3-13. 

  

Figure 3-15 Estimation error resulting from using reference map on other segments in S1 

  

Figure 3-16 Estimation error resulting from using reference map on segments with AT 
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functions/models for each segment. The estimation error resulting from using 

independent segment maps are spatially illustrated in Figure 3-17. The theoretical sensing 

limit is provided for comparison and uses DMP analytical field model to compute the 

errors resulting from only the mapping model (in this case a 7th order  LS polynomial). 

As shown in the figure, the theoretical estimation error resulting from using a mapping 

approach is approximately an order less than the experimentally obtained corresponding 

errors. 

 

Figure 3-17 Estimation errors resulting from individual segment maps and analytical field 

For a more in-depth analysis, the estimation errors in Figure 3-15 and Figure 3-16 
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AT for sector mappings using both polynomial and ANN is organized in Table 3-9. In all 

cases, affine transformation has a significant impact on the overall MSE; lowering each 

segment’s MSE and reducing the entire MSE for the polynomial and ANN mappings by 

two and three orders of magnitude respectively. For the ANN map, without affine 
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transformation, the substantial field variation in segment 14 instigated an MSE of more 

than 400 deg2. However, with AT, the MSE is radically reduced to under 0.02 deg2. With 

AT, the average MSE for all segments using the polynomial and ANN mappings are 

0.02569 deg2 and 0.02449 deg2 respectively, which are an order higher than the 

reference’s (segment 1) mapping MSE. 

Table 3-9 Comparison of MSE across different types of mapping models and segments  

Segment 

Mean Squared Error (deg2) 
Polynomial (only S1)

(7th order) 
ANN (only S1) 

g=1,h=3 
No AT With AT No AT With AT 

1 (Ref) 0.00804 0.00787 
2 0.19469 0.04690 0.19850 0.04636 
3 0.04636 0.03158 0.04099 0.03031 
4 0.05617 0.01426 0.05605 0.01306 
5 0.05447 0.03151 0.06576 0.03187 
6 2.78599 0.00906 10.87799 0.00912 
7 2.70748 0.03477 10.88868 0.03321 
8 1.18999 0.01395 3.23464 0.01260 
9 9.34537 0.13190 74.19064 0.11632 
10 2.21750 0.03199 7.67895 0.03156 
11 1.36853 0.00790 3.88583 0.00666 
12 0.49778 0.00777 0.96656 0.00767 
13 9.15840 0.01270 77.32280 0.01302 
14 23.10532 0.01525 417.42707 0.01539 
15 0.55836 0.08025 0.99547 0.07807 
16 1.62198 0.02116 5.03296 0.01822 
17 0.02484 0.02251 0.02355 0.02166 
18 0.01101 0.00509 0.01050 0.00538 
19 0.32426 0.02462 0.56312 0.02413 
20 0.05814 0.00463 0.07807 0.00454 
21 0.17007 0.01194 0.17262 0.01218 
22 0.00938 0.01105 0.01142 0.00911 
23 0.13607 0.03260 0.13891 0.03214 
24 0.05397 0.00671 0.05786 0.00705 

Max 23.10532 0.13190 417.42707 0.11632 
Min 0.00938 0.00509 0.02355 0.00454 

Mean 2.32108 0.02569 25.58044 0.02449 
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In an effort to investigate the effects of mapping model orders (degree of 

polynomials or number of hidden nodes) on the overall MSE of the position estimation, 

the aggregate MSE obtained by applying sector map to all segments are computed for a 

variety of sector map models and shown in Table 3-10. Without AT, the MSE for the 

polynomial models increases monotonously with higher model orders, the relationships 

between hidden nodes and MSE for the ANN models appear haphazard. However, in 

both types of models, the AT has an effect of stabilizing the MSE for all mapping orders. 

This is most likely due to the stronger fitting nature of higher order models to the 

reference sector and as a result higher MSE when the map is applied onto non-reference 

sectors. 

Table 3-10 Effects of model order/hidden nodes on MSE of estimation error 

Poly Model 
Order 

Mean Squared Error (deg2) ANN hidden 
nodes 

Mean Squared Error (deg2) 

No AT With AT No AT With AT 

Cubic 0.32052 0.02923 2 0.50339 0.02603 
4th 0.36150 0.02803 3 25.58044 0.02449 
5th 0.78941 0.02419 4 9468.57 0.03008 
6th 0.92622 0.02346 5 194.593 0.02388 
7th 2.32108 0.02569 6 2.04026 0.02484 
8th 3.16563 0.02451 7 4712.50 0.02379 

3.4 CHARACTERIZATION OF MULTIPLE SENSORS 

In aggregate multi-sensing, the sensing similarity among sensors permitted the 

reduction of the domain required for segment mapping. The field measurements collected 

for a complete rotor rotation by all sensors is presented in a box plot format in Figure 

3-18. Visually, it can be seen that the variation in field measurements between sensors are 

not comparable. The results of a one-way ANOVA applied on the data in Figure 3-18 is 

consolidated in and confirms this issue. As shown in Table 3-11, the p-value is so close to 
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zero that there is sufficient statistical evidence to confidently reject the null hypothesis 

(that measurements by all sensors are statistically similar). Using a field map generated 

using measurements of S1 will cause large positional estimation errors if field 

measurements of another sensor is used. This phenomenon occurs despite the fact that all 

sensors were of the same make and model and common supply voltage was supplied to 

all sensors. However, the disparities can be attributed to sensor mis-positioning, 

misalignment or inherent manufacturing related differences between sensors. As with 

field variation between segments, the approach of using affine transformation to calibrate 

and ‘standardize’ measurements across sensors is adopted. 

 

Figure 3-18 Statistical variation in the measurements of the PM assembly by all sensors 

Table 3-11 ANOVA results from field measurements by multiple sensors 

 
Source 

Sum of 
squares 

Degrees of 
freedom 

Mean 
squares 

F-
statistic 

p-
value 

No AT Sensors 2553760 23 111033 80.79 0.000 
Error 54094400 39360 1374.4 

 
Total 56648200 39383  

With 
AT 

Sensors 93.2132 23 4.05 0 1.000 
Error 1887384 1608 1173.75 

 
Total 1887477 1631  
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3.4.1 Sensor Field Calibration  

With segment field calibration where measurements in all segments are calibrated 

to a designated reference segment (in this case segment 1), calibration between the 

reference segments of all sensors will ensure every segment in every sensor are 

statistically standardized. Using S1 as the designated reference sensor, the affine 

transformed field measurements of all remaining sensors can be computed by minimizing 

the function defined in Equation (2.53). The computed optimal coefficients for sensor AT 

are appended in Table 3-12. After AT, the statistical variation in field measurements 

between sensors are illustrated statistically using a box plot in Figure 3-19. The results of 

a one-way ANOVA applied on the data in Figure 3-19 is provided in Table 3-11 for 

comparison with the pre AT data. The high p-value denotes that there is insufficient 

statistical evidence to confidently reject the null hypothesis. 

 

Figure 3-19 Statistical variation in the measurements of the PMs by all sensors with AT 
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Table 3-12 Affine transformation coefficients for individual sensors (S1 is reference) 

sensor  1(ref) 2 3 4 5 6 7 8 9 10 11 12 
c 1 0.970 0.927 1.023 1.025 1.029 1.044 1.090 0.976 0.716 0.843 1.041
d 0 -1.441 -7.343 2.425 3.364 4.832 6.006 11.858 -0.296 -27.00 -16.75 5.294

sensor 13 14 15 16 17 18 19 20 21 22 23 24 
c 1.017 0.964 0.938 0.985 1.010 0.976 0.900 0.840 0.830 0.772 0.860 0.907
d 1.744 -0.345 -9.294 1.739 4.141 -1.336 -10.12 -15.43 -16.48 -23.47 -12.34 -9.301

 

3.4.2 Field – Position Mapping Across Sensors 

As was seen earlier, a sector map constructed using the measurements in the 

reference segment was used to determine position estimates in non-reference segments 

with minimal estimation error through segment affine transformation. By optimally 

‘standardizing’ field measurements across segments as well as sensors, a single sector 

map of a reference sensor can be used across its own segments as well as across other 

sensors. The MSE of using the sector map of the reference sensor (S1) on the remaining 

23 sensors on the first 3 segments are shown in Table 3-13. Just as segment AT has 

reduced the MSE across segments, sensor AT has the comparable effect on lowering the 

MSE across sensors as well. Without AT, using the sector map of S1 on segment 1 across 

all sensors yielded an MSE average of 371 deg2 and with a peak of 7553 deg2. However, 

with sensor AT, the average MSE reduces to 0.0589 deg2 (which is less than one order of 

magnitude higher than the reference map MSE of 0.00804 deg2) and does not exceed 

0.3101 deg2. This trend is replicated for segment 2 and 3 as shown in Table 3-13. 

The above results are significant because now not only 24 segments can be 

mapped accurately using only 1 sector map; all 24 sensors can use the same map with 

comparable accuracy. Any designated sector map can be used on any of the 576 (24 
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segments × 24 sensors) segment of all sensors, which represents less than 0.1% of the 

total mappable domain.  

Table 3-13 MSE distribution across segments and sensors from reference sector map 

Sensor 
Mean Squared Error (deg2) 

Segment 1 (Ref) Segment 2 Segment 3 
No AT With AT No AT With AT No AT With AT 

1 (Ref) 0.00804 0.19469 0.04690 0.04636 0.03158 
2 0.52215 0.00640 3.54069 0.03205 1.94265 0.01238 
3 2.61876 0.04147 1.71383 0.09094 5.70980 0.03395 
4 0.15763 0.13027 0.08654 0.02600 2.66036 0.07396 
5 0.07241 0.04674 0.70266 0.03076 0.79964 0.07862 
6 0.06362 0.04675 0.11294 0.11397 0.10450 0.04505 
7 0.08430 0.01295 0.19729 0.04270 0.04436 0.00525 
8 0.33952 0.19366 0.38129 0.37028 0.51382 0.43671 
9 0.52540 0.03864 0.11026 0.06978 0.01032 0.00957 
10 7553.90 0.31013 6456.45 0.12486 3503.05 0.22467 
11 46.0183 0.08787 20.1790 0.03273 185.808 0.06735 
12 0.13526 0.07753 0.46154 0.07807 2.14421 0.11433 
13 0.07239 0.04973 0.07872 0.04820 0.57691 0.22768 
14 1.60990 0.01684 0.25710 0.18481 0.05494 0.03721 
15 0.34063 0.03421 1.16279 0.09119 0.06212 0.05161 
16 0.65134 0.03165 0.12092 0.07544 0.10760 0.05589 
17 0.12348 0.03481 0.12237 0.05965 0.89286 0.06420 
18 0.32400 0.02504 2.08002 0.00728 1.00446 0.05775 
19 7.18257 0.01656 3.22575 0.00860 0.08260 0.01802 
20 78.5096 0.01325 10.0850 0.03854 39.9080 0.02408 
21 122.585 0.03629 387.141 0.07071 216.468 0.08976 
22 650.855 0.01718 350.185 0.02565 435.681 0.01914 
23 66.5801 0.07555 89.4305 0.09453 134.044 0.13587 
24 5.47079 0.01088 11.1602 0.01873 2.23369 0.01815 

Max 7553.90 0.31013 6456.45 0.37028 3503.05 0.43671 
Min 0.06362 0.00640 0.07872 0.00728 0.04636 0.00525 

Mean 371.249 0.05890 305.799 0.07430 188.914 0.08050 
 

3.5 SUMMARY 

In this chapter, the experimental field variation due to 24 similarly graded and 

geometrically sized PMs was investigated using 24 single-axis magnetic sensors. As 
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expected, the variation between PMs has a detrimental effect on the performance in field-

position mapping. However, with affine transformation which compensates for individual 

field variation among PMs, the MSE of the field-position map is reduced by two orders 

of magnitude and is only an order of magnitude higher than the MSE of the reference 

segment map. Using the same approach, the field variation due to manufacturing effects 

and misalignment of multiple sensors, which is significantly higher than the variation due 

to different PM sources, can be compensated as well. The corresponding reduction in 

MSE is more pronounced when applying sensor AT where the MSE has been reduced by 

four orders of magnitude across sensors. Combining both segment and sensor AT, only 

one sector/segment map of any one sensor is required which can be applied to the 

remaining segments of all sensors. This represents less than 0.1% of the total mappable 

domain. 
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CCHHAAPPTTEERR  44    

SENSING SYSTEM FOR MULTI-DOF EM DEVICE 

 

4.1 OVERVIEW 

This chapter describes the development of a field based sensing system for an 

electromagnetic actuator which comprises of an embedded assembly of PMs. As such 

devices utilize EMs for actuation, magnetic fields generated by these EMs need to be 

actively compensated to isolate the rotor magnetic field for accurate field-based sensing. 

Even with isolated rotor field measurements, the measured fields are spatially nonlinear 

and contain periodicity due to the arrangement of PMs. As a result, even with closed 

form magnetic field models, the correspondence between orientation and field 

measurements are not unique. A mapping approach using ANNs is used to provide direct 

correspondence between field measurements and orientation of the system. 

Using a prototype multi-DOF electromagnetic actuator currently being developed 

at Georgia Tech [4] as a platform for experimental analysis, the remainder of this chapter 

is organized as follows: 

1. The embedded rotor magnetic field is isolated and extracted using active and 

passive methods. 

2. Bijective correspondence between orientation and field measurements for 

direct field based sensing is generated through segmentation and sectorization 

of the forward parametric space. With this bijective domain, ANN mapping 
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methods are used to associate distributed field measurements to orientation of 

the rotor. 

3. The effects of number and type of field measurements on the mapping 

accuracy are experimentally investigated using high and low field sensors. 

4.2 EMBEDDED MAGNETIC FIELD SENSING FOR MULTI-DOF ACTUATOR 

Multi-axis dexterous actuators such as electromechanical spherical motors utilize 

the intrinsic electromagnetic interaction between PMs and EMs on the rotor and stator 

respectively for rapid and agile actuation. These embedded PM assemblies already 

present on the rotor can be harnessed for sensing purposes and subsequently feedback 

control at low cost. Unlike conventional sensing feedback mechanisms which extract the 

positional information of the rotor from the physical motion of the rotor, the approach 

presented here uses the inherent magnetic field of the rotor PMs as measured by a 

network of magnetic sensors on the stator for embedded field-based sensing as conveyed 

in the block diagram in Figure 4-1. 

q̂

q̂

 

Figure 4-1 Block diagram of control multi-DOF electromagnetic actuator 
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As articulated in [4], the controller determines the desired torque Td using rotor 

orientation q and prior knowledge of the actuator dynamics. Since the actuator has more 

controllable inputs than mechanical DOF, an optimized controlling current input vector u 

is required and obtained through minimization of total input energy. By Lorentz force 

law, currents flowing in the energized EMs under the influence of the magnetic field due 

to the PMs induce a torque T on the rotor which translates into rotational motion of the 

rotor. Due to the rotor multi-PM assembly, an inherent magnetic field B moving in 

tandem with the rotor can be detected and measured coherently and complimentary by 

magnetic sensors on the stator. With knowledge of u and position of all EMs and sensors 

the magnetic field originating from the EMs, EM can be computed. Using the principle 

of superposition, the magnetic field due to the moving rotor PM can be isolated from 

direct field measurements . Through methodical analysis and meticulous 

characterization of PM, an estimate for the rotor position q̂  can be computed in real-time 

for active feedback control of the system. 

Hence positional sensing of a multi-DOF electromagnetic actuator can be broken 

down into two main components:  

 Isolation and extraction of rotor magnetic flux density 

 Position and rotor magnetic field correspondence using the field-based 

sensing system. 
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Figure 4-2 CAD model of spherical actuator with PMs and EMs [4] 

4.2.1 EM/PM Configuration and Sensing Network  

Multi-DOF electromagnetic actuators consist of a stationary stator and a moving 

rotor. The rotor is attached to the stator by means of a passive mechanical mechanism, 

such as spherical/ball bearing joints. Both the rotor and stator are composed of multiple 

layers of cylindrical PMs and EMs respectively. Figure 4-2 shows a CAD model of a 

prototype actuator currently being developed at Georgia Tech [4] with an internal stator 

(with 3 layers of EMs, each layer with 8 EMs) and external rotor (with 2 layers of PMs, 

each layer with 12 PMs). As these actuators are both dynamically and magnetically 

balanced, the PMs and EMs are designed such that their magnetization axes pass radially 

through the motor center. In addition, as part of the actuating principle of electromagnetic 

actuators, the magnetization axes of adjacent PMs are intentionally alternating by design. 

As a consequence, a spatial pattern of the PMs is inadvertently generated. This also 

results in the corresponding magnetic field periodicity of the entire PM assembly. 

To minimize current input to the EM during actuation and improve energy 

efficiency and heat management, the EMs are installed close to the PMs to maximize 
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force/torque generation. A direct consequence of the close proximity between the EMs 

and PMs is that the EM and PM magnetic fields are undistinguishable from one another 

and a sensor in the vicinity will measure the aggregate magnetic field of all EMs and 

PMs. Figure 4-3 defines the coordinate systems of the stator, rotor and measurement field 

sensors, which are denoted as XYZ (fixed reference), xyz (moving), and XsYsZs (fixed 

local to each sensor) respectively. The center of the spherical bearing is defined at O and 

it coincides with the origin of all coordinate systems.  

2 Ts
S

 

Figure 4-3 Coordinate systems for rotor, stator and sensors 

The centroid location of the eth PM on the ± layer (each containing 12 PMs) on 

the rotor expressed in the xyz frame using spherical angles as depicted in Figure 4-3 is 

  cos cos sin cos sin
T

e PM e eR        PM  (4.1) 

  1/ 2 ,   2 /12e PM PMe        (4.2) 



88 
 

 / 2L     (4.3) 

where e = 1,2,3 … 12, ϕPM is the azimuth spacing between adjacent PMs in each layer,  

θL is the zenith spacing between PM layers, RPM is the radial distance of each PM from 

O. In rotor coordinates, the magnetization vector of each PM (axially magnetized with 

radius a and length l) is given by 

    1 cos cos sin cos sin
Te

e e e         r  (4.4) 

In Figure 4-3, the blue and red surfaces represent the north and south poles of the PMs 

respectively. The PM configuration on both layers can be visually illustrated in spherical 

coordinates in Figure 4-4.This configuration possesses a distinct geometric pattern about 

the z-axis of the rotor which can be characterized by the azimuth spatial pitch (or 

periodicity) of the rotor, Φ and is equal to 2ϕPM. Visually it can be verified that the entire 

PM configuration of the rotor is composed of 6 identical segments (each containing 4 

PMs) demarcated by Φ. The consequence of the physical occurrence of Φ is the 

analogous symmetry of the magnetic field radiating from the assembly of PMs on the 

rotor. 

 

Figure 4-4 PM positioning and orientation in spherical coordinates when q=0 
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4.2.2 Rotor Magnetic Field Isolation 

In order to isolate the magnetic field of the rotor PMs, the magnetic field 

generated by the EMs must be actively negated. This can be achieved using one and/or 

both of the following approaches: 

 Exploiting the center of each of the EMs where the magnetic field generated 

by each EM in the direction orthogonal to the magnetization axis is zero. 

Sensors placed in these locations benefit from this occurrence and measure 

only the magnetic field of the PMs on the rotor. 

 Compensating the magnetic field from EMs at each sensor location. This can 

be analytically achieved by modeling it as an equivalent PM and using the 

DMP model [23][24]. As the EMs and sensors are stationary and of known 

distance and orientation from each other, this analytical closed form model is 

only a function of the input currents and will facilitate forward computation of 

the magnetic flux density originating from the EMs in real-time. Alternatively, 

such a model can be experimentally obtained using the measurements of the 

field sensors.  

The combined field measurements from all sensors can be consolidated column 

by column into matrix defined by: 

   1 2s,
Ts

   Λ q u B B B   (4.5) 

where s is the referencing index of the sensor; and Bs is the magnetic flux density as 

measured by the sth sensor which has w sensing axes. Λ contain field measurements of 

both the EM and PM and hence is a function of both the input and orientation of the 
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rotor. As the EMs are fixed on the stator, magnetic flux density contribution by the EMs 

is not a function of q and is simply 

        EM EM EM EM
1 2 Ts s

   Λ u B u B u B u   (4.6) 

where  EM
sB u is the aggregate magnetic field as measured by the sth sensor from the 

entire EM assembly when the input is u. Due to applicability of superposition, the 

aggregate magnetic field is the summation of field effects from each individual EM as 

described by 

    
24

EMEM

1

f

s s
f 

B u B u  (4.7) 

where 
EM f

sB  is the magnetic field as measured by the sth sensor by the fth EM in the 

assembly. Using this result, the magnetic flux density (as measured by the sensor network 

resulting from only the PM assembly on the rotor) can be isolated using the following: 

            PM PM PM PM PM
1 2,

Ts s
     Λ q Λ q u Λ u B q B q B q   (4.8) 

where PM
sB is aggregate magnetic field of all rotor PMs as measured by the sth sensor. 

Hence, obtaining a model for  EMΛ u  which potentially requires characterization 

(analytical or experimental) of up to 242sT individual models of 
EM f

sB . In addition, as 

the EMs do not contribute to the measured magnetic field when the current into the EMs 

are zero and this allows the spherical actuator to function as a spherical encoder in an 

absence of u.  
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4.3 NUMERICAL ANALYSIS AND INVESTIGATION 

The computation of the magnetic flux density of the PM assembly as measured by 

the sensors is achieved using the distributed multipole (DMP) model [23][24]. The use of 

the DMP model is preferred because of its ability to accurately characterize magnetic 

fields at close proximity to PMs and EMs and are extendable to objects of other 

geometry. By superposition, the resultant field at a point due to an assembly of PMs is the 

summation of the fields due to each individual PM. Each cylindrical PM has a radius of 

1.59 cm and is 0.635 cm long. They are modeled using a 4 loop and 10 dipoles DMP 

model as summarized in Table 4-1. The parameters of the 24 PM rotor and 8 sensor 

network defining the configuration are compiled in Table 4-2. Eight magnetic sensors are 

installed in the center of each of the 8 EMs on the XY plane (Hs = 0) to create an actuator-

sensor pair. 

Table 4-1 PM and DMP model parameters 
PM: 
M=1.31T, 
a = 1.59 cm, 
l = 0.635 cm 
 

DMP: (k=4,n=10); 
  = 0.191 cm 
mo = 33.5 x 10-6 A/m, m1i = 24.5 x 10-6 A/m 
m2i = 57.6 x 10-6 A/m, m3i = 52.0 x 10-6 A/m 
m4i = 276 x 10-6 A/m 

Table 4-2 Rotor and sensor network parameters 
Sensor Network 2sT = 8,Rs = 6.16 cm, ψs = 45°, Hs = 0 

Rotor PMs RPM=6.80 cm, ϕPM  = 30°,  Φ = 60° 

4.3.1 2 DOF Characterization 

The total range of motion in the 2-DOF case is the unrestricted spin of the rotor 

about the z-axis (     ) and inclination of the rotor about the y-axis (

max max15 15          ). Assuming that ψ is an integer multiple of ψs, at least one 

sensor group will be coincident with the x-axis of the rotor when θ=ϕ=0. The 
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simultaneous measurement of all three sensing axis of these sensors as a function of the 

two independent orientation angles (θ, ϕ) allow construction of a 2-D surface field map in 

forward parametric space for each sensing axis. Due to the spatial periodicity of the rotor 

PM configuration, there will be a total of 6 segments. These segments are identical so 

only the analysis of one segment is sufficient. Noting the field symmetry of the magnetic 

dipoles, for the 2 DOF case these segments can be further partitioned into smaller sectors. 

The geometric relationship between the global surface map and local segment and sector 

maps is shown in Figure 4-5. The sectors are referenced using a two-digit number with 

the most and least significant digit representing the row and column index respectively. 

 

Figure 4-5 Segmentation and sectorization of 2-D surface map 

As a consequence of magnetic dipole symmetry, the magnitude of the surface 

map within each sector is related to the θϕ’ axes of the surface map segment through the 

following coordinate sector transformation: 

 
 

 

01 0

20 1

i
ij

j
ij j


 

                       

1 if 0

where    1 if 3

0 otherwise
j

j

j
 
 



 (4.9) 
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and θij and ij  are the coordinate axes of the ijth sector for 0 1i  and 0 3j   as 

visually shown in Figure 4-6. The conclusion from Figure 4-5 and Figure 4-6 is that the 

magnetic field mapping of only any one of the eight sectors is required to completely 

describe the entire segment and hence the global surface. The ratio of the area of any 

single sector map to the area of the global surface is Φ/(16). For simplicity, the sector 

whose coordinate axis coincides with the axes of the segment (highlighted in red). 

 

Figure 4-6 Coordinate axes and sign distribution across the sectors in a segment 

Assuming ψ=0, the localized 2-D contour surface map of the magnetic flux density 

for all 3 axis as a function of θ and ϕ’ as measured by S1 is reproduced in Figure 4-7. For 

completeness, the corresponding surface maps for S2, S3 and S4 are shown in Figure 4-8, 

Figure 4-9 and Figure 4-10 respectively. The lighter and darker regions represent areas of 

positive and negative values as annotated by the colorbar. It can be visually verified that 

the three surface maps of S1 adhere to the segregation in Figure 4-5. The smaller segment 

and sector maps are shown in greater detail in the reduced parametric space in Figure 

4-11. Analysis of this segment parametric space verifies that only 1/8 of the surface is 

unique and the remaining surface can be obtained by applying the transformation in 

Equation (4.9). In fact, only 2% of the global surface map is required for characterization.  
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(a) X-component 

 
(b) Y-component 

 
(c) Z-component 

Figure 4-7 Contour field map of measurements by S1 in parametric space (Units: Tesla) 
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(a) X-component 

 
(b) Y-component 

 
(c) Z-component 

Figure 4-8 Contour field map of measurements by S2 in parametric space (Units: Tesla) 
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(a) X-component 

 
(b) Y-component 

 
(c) Z-component 

Figure 4-9 Contour field map of measurements by S3 in parametric space (Units: Tesla) 
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(a) X-component 

 
(b) Y-component 

 
(c) Z-component 

Figure 4-10 Contour field map of measurements by S4 in parametric space (Units: Tesla) 
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Figure 4-11 Segment and sector segregation for S1 

Sector Mapping Analysis 

Using the map described by Figure 4-6 the 02th sector enclosed by the region 

0 / 4 15      and 0 ' / 4 15      is chosen to be characterized using the 

neural network. Back propagation artificial neural networks are used to characterize the 

mapping between magnetic flux density measurements by sensors to the angular 

positions of θ and ϕ. Each of the three sector surface (one for each axis) of S1 in Figure 

4-11 is discretized into a square 100100 grid (resulting in 0.15° spatial resolution) to 
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produce 10000 pairs of training sets. Using these training sets, single hidden layer ANNs 

with varying number of hidden nodes are trained and the MSE and number of epochs 

required of the resulting network recorded. Training of the ANNs is halted once the 

gradient of the MSE is reduced below 0.0001. The MSE of the ANN angular estimates of 

θ and ϕ in logarithmic scale are shown as a function of the number of hidden nodes in 

Figure 4-12. Increasing the number of nodes generally reduces the MSE and for 10000 

training sets, the MSE converges to 10-2 deg2 when h=100. The number of epochs 

required to reach the stopping training criteria remains fairly constant throughout. 

 

Figure 4-12 MSE and required epochs as a function of hidden nodes 

The angular error of the estimates of θ and ϕ’ of the neural networks at each 

training set is compiled in Figure 4-13(a) and (b) respectively for h=5, 20 and 70. As 

suggested by the plots, increasing the number of hidden nodes reduces the angular error 
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across the entire sample set. A spatial distribution of the absolute angular error across the 

sector surface is shown in a 3-D plot in Figure 4-13(c). For the network with 70 hidden 

nodes, the absolute errors for both angle estimates throughout the surfaces are less than 

1.5° and over 90% of the surface has an absolute error less than 0.5°.  

(a) Error of ̂ at each sample. (b) Error of ˆ ' at each sample. 

 

(c) Spatial distribution of ̂  (left) and ˆ '   (right). (h=70) 

Figure 4-13 Error analysis of different neural networks 

Another method of adjusting the order of the ANN is the number of hidden layers 

in the ANN. By maintaining the total number of hidden nodes in the ANN constant (100), 

the number of hidden layers was incrementally adjusted from 1 to 4. Using the segment 

training sets, each ANN is trained until the stopping criteria is met. Training is halted 

once the gradient of the MSE is reduced below 0.0001. The MSE and number of epochs 
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required for each ANN is tabulated in Table 4-3. Although the total number of hidden 

nodes in all layers might be equal, the total number of weights will not. Among the neural 

networks, the two hidden layer ANN had the most weights.  However, as the data 

suggest, despite having fewer weights, the 3 layer neural network possesses the lowest 

MSE of 2.08  10-4 deg2 as well as requiring the fewest epochs (175) to achieve it. In 

addition, a two hidden layer ANN with 50 hidden nodes in each layer outperforms a 

similar a single hidden layer ANN possessing the same number of weights. Although the 

former requires more epochs, the difference in MSE clearly suggests that the MSE is 

more sensitive to the number of layers and hidden nodes in the layer than the number of 

weights in the ANN. 

Table 4-3 Effects of ANN architecture on MSE 

N1,N2 =100      
No of hidden 

layers, g 
Nodes per 

hidden layer, h 
Total 
nodes

Total 
weights

Epochs MSE 
(deg2) 

1 100 100 500 253 0.0152 
2 50 100 2750 328 0.00104 
3 33 99 2343 175 2.08  10-4 
4 25 100 2000 185 0.00159 
1 550 550 2750 259 0.00695 

 

The mapping performance is also dependent on the density of the training sets in 

the sector. To investigate this sensitivity, a single hidden layer ANN with 100 hidden 

nodes is used to train six different training sets. The difference between all six training 

sets is the various degree of discretization of the sector. For N1=N2=10, the spatial 

resolution is 1.5° and produces a total 100 training sets. The same gradient stopping 

criteria is applied to halt further training of the ANN in each case. To provide a fair 

comparison across all ANNs, a randomized set is used to test the ANN performance at 
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non training set data points. The results of these simulations are shown in Table 4-4. The 

results depicts a trend of increased required number of epochs and reduced training MSE 

(MSE resulting from training sets) with decreasing spatial resolution. The MSE obtained 

from applying the randomized set is higher for high spatial resolutions and this can be 

attributed to the poor spatial interpolation of the ANN between training data points. For 

spatial resolution lower than and equal to 0.15°, the randomized MSE are comparable to 

the training MSE. 

Table 4-4 Effects of training set resolution on MSE 

g = 1 h = 100     
N1,N2 Training 

sets 
Spatial resolution 

(deg) 
Epochs Training MSE 

(deg2) 
Randomized 
MSE (deg2) 

10 100 1.5 6 0.0114 2.9394 
25 625 0.6 49 0.0152 0.0444 
50 2500 0.3 220 0.0144 0.0223 
100 10000 0.15 128 0.0154 0.0149 
200 40000 0.075 492 0.0109 0.0104 
400 160000 0.0375 2404 0.0085 0.0079 

 

With 4 independently located sensors (S1, S2, S3 and S4), the mapping performance 

and accuracy can be improved by utilizing measurements from a combination of all 

available sensing measurements. With four sensors, up to a total of 12 independent 

sensing measurements are available. Table 4-5 summarizes the resulting MSE from 

pertinent combinations of sensors and sensing axes. From the data, for a single hidden 

layer ANN with 50 hidden nodes, the MSE drastically decreases as the number of inputs 

is increased. For better comparison, the absolute θ and ϕ error as a function of training 

sample index for different number of inputs is shown in Figure 4-14. This figure clearly 

shows the lower mapping error with increased number of sensors used.  
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Another point of interest is that for the same number of inputs, the mapping 

accuracy is sensitive to both the selection of the sensors and sensing axis. Among the 

cases with 4 inputs, the specific selection of Y and Z axes produced the lowest MSE 

(comparable to 6 input case using sensors 1, 2 and 3). In addition, for the mapping 

involving 2 sensors, selecting S1 and S4 had lower MSE than the other cases of S1 and S2 

and S1 and S3. The lowest MSE is obtained by training the ANN using all 4 sensors (12 

inputs) and the error distribution illustrated spatially is shown in Figure 4-15. For both 

plots, the maximum error does not exceed 0.0004°. 

Table 4-5 MSE resulting from various combination of sensors and sensing axes 

g=1, h=50 Epochs=5000 N1,N2 =100  
No. of Inputs Sensors Axes MSE (deg2) 

3 1 X,Y,Z 0.0166 
4 1,2 X,Y 0.0958 
4 1,2 X,Z 0.00147 
4 1,2 Y,Z 5.81  10-5 
6 1,2 X,Y,Z 1.48  10-6 
6 1,3 X,Y,Z 4.14  10-5 
6 1,4 X,Y,Z 9.84  10-7 
9 1,2,3 X,Y,Z 2.62  10-7 
12 1,2,3,4 X,Y,Z 3.55  10-9 

 

 

Figure 4-14 Absolute mapping error resulting from using multiple sensors 
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Figure 4-15 Spatial distribution of ̂ 
 
and ˆ '    for ANN using 4 sensors 

4.3.2 3 DOF Characterization 

In the 3 DOF case, the total range of motion is the unrestricted spin of the rotor 

about the z-axis (     ), inclination of the rotor about the y-axis (

max max15 15          )  and direction of the inclination axis ( 0    ).  As 

with the 2 DOF case, only the segment and/or sector mapping is required. However 

unlike the 2 DOF case, the 3 DOF forward parametric space is no longer in 2-D but in 3-

D and this increase in dimension reduces the number of sectors in a segment from 8 to 2. 

The volumetric field plot of the segment in parametric space is produced in Figure 4-16 

using a conic plot. The direction and size of the arrow represent the direction and 

magnitude of the field at that point respectively. The MSE of the ANN mapping using all 

4 sensors and every sensing axis (12 inputs in total) are tabulated in Table 4-6. Results 

are consistent with the 2-D case. 
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Table 4-6 MSE of 3-DOF mapping 

Spatial Grid  
 

No of hidden 
layers, g 

Nodes per hidden 
layer, h 

MSE 
(deg2) 

N1= N2 =31 3 33 0.8668 
N3 = 46 3 55 0.7105 

 

 

Figure 4-16 3-D sector volumetric parametric space by S1 in forward parametric space 

4.4 EXPERIMENTAL INVESTIGATION 

This section provides the experimental investigation of the field-based sensing 

system using industrial magnetic sensors. From simulations in the preceding section, due 

to the close proximity of the PMs, the multi-axis sensors were required to measure fields 

up to 0.5 T. Although high-field magnetic sensors measuring up to 2 T are available, they 

are only available in single-axis packages (Asahi HG-362A). The multi-axis magnetic 
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sensor available commercially with the largest measuring range of 7.3 mT is the Ametes 

MFS-3A. In this study, the performance of using both types (high and low field) of 

sensors will be examined. Due to the limited range of the multi-axis low field sensors, 

they have to be positioned further away from the PMs to avoid saturation which 

necessitate the adjustment of the sensor plane (Hs). 

4.4.1 Using Low Field Sensors 

In order to obtain a correspondence between orientation and measured rotor field, 

the rotor is rigidly attached to a rotary track of radius R by means of a mechanical strut as 

shown in Figure 4-17. The center of the rotary track is positioned such that it coincides 

with the spherical bearing of the rotor. The arc length of the track contains measurement 

markings that allow correspondence between the curvature distance, ρ and inclination, θ. 

An optical incremental encoder (Kübler T8.A02H) with a resolution of 1000 counts per 

revolution is affixed onto the strut to measure the spin position of the rotor. The sensing 

network, comprised of two 3-axis Hall-effect magnetic field sensor (Ametes MFS-3A), 

are fixed to the top of the stator base at a vertical offset of –Hs from the bearing center. A 

photo illustration of the rotor attached to the rotary track is shown in Figure 4-18. The 

parameters used in the experiment are tabulated in Table 4-7. 

Table 4-7 Experimental parameters  

Sensor: 2sT = 2, HS = 3.04 cm 
Setup:  R = 31.34 cm, θmax=22.5°, Φ=60° 
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Figure 4-17 Schematic of experimental setup using multi-axis weak-field sensors 

 

Figure 4-18 Experimental setup 

The electrical and communication schematics of the setup are presented in Figure 

4-19. It is largely similar to the setup in Figure 3-3 with the exceptions of the 3-axis Hall-

Effect sensors powered by 5V DC power supply and the optical encoder replacing the 
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stepper motor. The quadrature outputs of the encoder are captured using a high-speed 

counter module attached to the SAG and relayed to the computer/HMI for data capture 

and display respectively. 

 

Figure 4-19 Electrical and communication schematics 

4.4.1.1 2-DOF Characterization 

The simultaneous measurement of all three sensing axis of both sensors along with 

the two independent orientation angles (θ, ϕ) allow construction of a 2-D surface field 

map for each sensing axis of each sensor as depicted in Figure 4-20. As a result of the 

spatial periodicity of the rotor PM configuration, there will be a total of 6 segments. As 

there are two 3-axis sensors, each segment contains six 2-D surface field maps. Each 

segment can be further divided into sectors through magnetic field symmetry. Due to the 

displacement of the sensor plane, the segment loses some symmetry and instead of the 8 

sectors in the simulations, only 2 sectors exist. 
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Figure 4-20 Segmentation and sectorization of 2-D surface map  

To experimentally construct these surface maps, the rotor was preset to known 

inclinations (-22.5°<θ<22.5°) using the rotary track (at 5 mm increments measured on the 

track or 0.914° measured angularly) and the field measurements B of the 3-axis magnetic 

Hall-Effect sensors were recorded as the spin of the rotor is rotated at 0.36° increments 

(1000 data points per inclination set point). A complete contour field map (2-D image 

with 471001 pixels) for each sensing axis of sensors S1 and S2 are reproduced in Figure 

4-21 and Figure 4-22 respectively. Through visual inspection of both figures, 6 distinct 

segments (demarcated by ( 1)n n     , for n=1,…,6) can be easily detected. As this 

pair of sensors is located directly across from each other, their 2-D field maps are mirror 

images of each other about the ϕ-axis.  
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Figure 4-21 Contour field map for S1 (Top: BX, middle: BY, bottom: BZ, units: mT) 

The contour map of a single segment is presented in Figure 4-23 to offer a closer 

view to the intricate non-linear magnetic field map. Unlike the segment field maps of BX 

and BZ, the segment field map of BY is particularly unique as it allows discerning and 

identification of sectors via the direction of the field measurement in BY.  

By only considering the magnitude (|BX|, |BY| and |BZ|) and sensitivity analysis is 

performed. This analysis measures the rate of change of field magnitude per unit change 

in orientation and allows identification of areas of large field changes which corresponds 

to higher SNR. The sensitivity is computed from 

 Sensitivity dB d   (4.10) 

where η=X,Y or Z and χ=ϕ or θ. 
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Figure 4-22 Contour field map for S2 (Top: BX, middle: BY, bottom: BZ, units: mT) 

The spatial distribution of field sensitivity of S1 is compiled in Figure 4-24 where 

the columns represent three different sensing axis and the two rows signify the two 

independent rotor orientations. The sensing sensitivity of S2 is similar to that of S1 with 

the exception that they are mirrored about ϕ-axis. From Figure 4-24, it is observed that 

the sensitivity for positive θ inclination is significantly higher than the sensitivity in the 

negative θ inclination. Noting that the field measurements of S2 are mirrored about ϕ-

axis, the sensitivity for S2 will be more pronounced for negative θ inclination.  
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Figure 4-23 Segment field map for S1 (Left: BX, middle: BY, right: BZ, units: mT) 

 

 

Figure 4-24 Sensitivity analysis for S1 (Left: BX, middle: BY, right: BZ) (Top: w.r.t to ϕ) 
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4.4.1.2 Singular Segment Mapping 

It is desired to obtain the rotor orientation from isolated field measurements  

from the magnetic sensors. Within each segment, the mapping between orientation and 

magnetic field measurements of any single axis is not bijective (encompassing one-to-one 

correspondence) as evident in the presence on field contours (multiple positions share the 

field measurement). Hence, it is not possible to derive a mathematical expression that 

describes the inclination of the rotor from measurements of a single axis from any sensor. 

However, bijectivity can be obtained by considering simultaneous multiple axis 

measurements, multiple sensor measurements or combination of both. The segment map 

in Figure 4-23 is mapped rotor orientation using various combinations of BX, BY and BZ 

measurements from the two 3-axis Hall sensors and the MSE of the resulting map are 

compiled in Table 4-8. These mappings were achieved using an ANN with 25 hidden 

nodes. 

Table 4-8 MSE resulting from multi-axis and multi-sensor segment mapping 

ANN h=25 
Multi-axis Multi-sensor/ Multi-axis 

S1 MSE (deg2) S1 S2 MSE (deg2) 
X 54.3 X X 4.91 
Y 72.0 Y Y 40.2 
Z 31.2 Z Z 5.87 

XY 36.7 XY XY 1.04 
YZ 22.8 YZ YZ 0.302 
XZ 11.1 XZ XZ 0.133 

XYZ 0.641 XYZ XYZ 0.00737 
S2 MSE (deg2) XZ Y 4.74 
X 51.9 YZ X 2.87 
Y 71.0 XY Z 1.87 
Z 29.1 XY YZ 0.953 

XY 34.8 XZ YZ 0.0572 
YZ 22.4 XYZ XY 0.0418 
XZ 3.97 XYZ XZ 0.0330 

XYZ 1.74 XYZ YZ 0.0224 
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 For mapping pertaining to multi-axis measurements, as expected, the MSE is high 

when using only single axis measurements (X,Y or Z only) for both S1 and S2. Using any 

two combinations of sensing axis from one sensor reduces the MSE of the resulting map 

and using all three sensing axes reduces the MSE an order of magnitude for both sensors. 

The spatial distribution of the absolute inclination and spin angle errors resulting from the 

ANN mapping which uses all three sensing axes of S1 are shown in Figure 4-25 and 

Figure 4-26 respectively. These plots also illustrate the clustering of high errors near zero 

inclination. The lowest MSE (0.00815 deg2) is obtained when using all sensing axes of 

both sensors (S1 and S2) and a spatial distribution of the absolute errors of both angles are 

shown in Figure 4-27 and Figure 4-28. These plots visually demonstrate that the absolute 

errors in the segment mapping never exceeds 0.6° and 0.15° for the θ and ϕ angles 

respectively. In addition, these errors are distributed evenly throughout the segment 

domain. MSE resulting from other combinations of multi-axis and multi-sensor mapping 

suggests that increasing the number of independent sensing measurements into the ANN 

generally reduces the MSE. 
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Figure 4-25 Spatial distribution of absolute inclination θ error for mapping using S1 only 

 

Figure 4-26 Spatial distribution of absolute spin ϕ error for mapping using S1 only 
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Figure 4-27 Spatial distribution of absolute inclination θ error using S1 and S2 

 

Figure 4-28 Spatial distribution of absolute spin ϕ error for mapping using S1 and S2 
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4.4.1.3 Multiple Segment/Sector Mapping 

Using the two sectors in segment 1 as the reference segment and constructing 

fitting models in each sector, the field measurements in the remaining segments can be 

‘statistically standardized’ using affine transformation. Using a joint 5th order polynomial 

surface fitting model (5th order in both ϕ and θ) to characterize both sectors of segment 1, 

the affine transformation coefficients for each of the remaining sectors in each segments 

can be computed for both sensors. As a single field measurement by a single sensor 

possesses 3 independent values (one for each sensing axis), the AT coefficients are no 

longer scalar quantities but matrix valued quantities: 3 3 3, a b . Hence there are a 

total of 12 coefficients for each sector/segment AT transformation. The computed 

optimal values are tabulated in Table 4-9. Statistical visualization of the variation in field 

measurements in each segments for all three sensing axes without AT and with AT for 

both sectors in S1 are shown in Figure 4-29 to Figure 4-32. From these plots, it is clear 

that statistically, the variation between segments are reduced after AT as shown by 

agreement of the means. 

 

Figure 4-29 Sector 1 box plot of field measurements by S1 in all segments 
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Figure 4-30 Sector 1 box plot of field measurements by S1 in all segments after AT 

Table 4-9 Sector affine transform coefficients for each segment in S1 and S2 

S1 (Sector 1) 
 a11 a12 a13 a21 a22 a23 a31 a32 a33 b1 b2 b3 

Seg 1 1 0 0 0 1 0 0 0 1 0 0 0 
Seg 2 1.0079 -0.0893 -0.0409 0.0105 1.0897 -0.0005 0.0406 -0.0821 0.9736 0.1928 0.0212 0.0540
Seg 3 0.9925 -0.1184 -0.0901 0.0031 1.0432 0.0077 0.1182 -0.0727 0.9100 0.4031 0.0208 -0.0591
Seg 4 1.0165 -0.0540 -0.1335 -0.0035 0.9383 -0.0061 0.1976 0.0223 0.8889 0.5053 0.0500 -0.2573
Seg 5 0.9950 -0.0989 -0.1006 0.0046 0.9022 -0.0092 0.1448 -0.0433 0.9125 0.4662 0.0764 -0.1563
Seg 6 0.9877 -0.0546 -0.0433 0.0130 0.9931 -0.0160 0.0644 -0.0535 0.9510 0.2525 0.0874 0.0008

S1 (Sector 2) 
Seg 1 1 0 0 0 1 0 0 0 1 0 0 0 
Seg 2 0.9950 -0.0523 -0.0312 -0.0112 0.9758 0.0168 0.0309 -0.1555 0.9625 0.1106 0.0178 0.0127
Seg 3 0.9808 -0.0974 -0.0751 -0.0054 0.8488 0.0006 0.1075 -0.2159 0.9079 0.3145 0.0375 -0.0995
Seg 4 0.9878 -0.1421 -0.1059 -0.0397 0.7590 0.0293 0.1477 -0.2075 0.8933 0.4791 0.0772 -0.1047
Seg 5 0.9661 -0.1424 -0.0605 -0.0334 0.8063 0.0239 0.0855 -0.1212 0.9317 0.4010 0.0620 -0.0453
Seg 6 0.9492 -0.1567 0.0110 -0.0220 0.7972 0.0181 -0.0272 -0.1613 0.9823 0.1385 0.0442 0.1015

S2 (Sector 1) 
 a11 a12 a13 a21 a22 a23 a31 a32 a33 b1 b2 b3 

Seg 1 1 0 0 0 1 0 0 0 1 0 0 0 
Seg 2 0.9705 -0.0522 0.0368 0.0091 0.9150 -0.0081 -0.0561 -0.1152 1.0149 -0.0277 0.0620 0.1544
Seg 3 0.9497 0.0002 0.0980 0.0168 1.0314 -0.0139 -0.1481 -0.1280 1.0478 -0.2047 0.0652 0.3586
Seg 4 0.9512 0.0841 0.1434 -0.0016 1.0235 0.0037 -0.2113 -0.0634 -1.0874 -0.4351 -0.0050 0.3890
Seg 5 0.9704 0.0034 0.1020 0.0124 1.1308 0.0024 -0.1722 -0.1333 1.0694 -0.2748 0.0043 0.4104
Seg 6 0.9616 -0.0557 0.0494 0.0059 1.0791 0.0094 -0.0877 -0.1130 1.0113 -0.0818 0.0046 0.2599

S2 (Sector 2) 
Seg 1 1 0 0 0 1 0 0 0 1 0 0 0 
Seg 2 0.9667 -0.0092 0.0480 0.0063 1.0227 -0.0083 -0.0669 0.0799 1.0307 -0.0451 0.0022 0.0942
Seg 3 0.9355 -0.0560 0.1242 0.0250 1.0111 -0.0148 -0.1932 0.0084 1.0762 -0.2751 -0.0352 0.3015
Seg 4 1.0005 0.1583 0.1084 0.0410 1.1442 -0.0433 -0.1561 0.1811 1.0873 -0.4440 0.0071 0.1863
Seg 5 0.9949 0.0946 0.0791 0.0328 1.2094 -0.0178 -0.1324 0.0038 1.0563 -0.3371 -0.0355 0.2221
Seg 6 0.9864 0.0057 0.0287 0.0348 1.0353 -0.0387 -0.0496 -0.0776 1.0027 -0.1335 0.0144 0.0974
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Figure 4-31 Sector 2 box plot of field measurements by S1 in all segments 

 

Figure 4-32 Sector 2 box plot of field measurements by S1 in all segments after AT 

 Using sector 1 and 2 of the reference segment (segment 1), two independent 

ANNs (with 25 hidden nodes) are used to map field measurements to instantaneous 

orientation. Using all three field measurements of S1 as input to the ANN, the resulting 

MSE of the mapping is 0.120 deg2. As observed earlier in singular segment mapping, 

using all field measurements of S1 and S2 resulted in a significantly lower MSE of 

0.00566 deg2.  Each of these reference maps can be applied on the other 5 segments and 
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the MSE computed in each segment. Table 4-10 summarizes the computed error of using 

trained reference ANN on the remaining 5 segments. When applied to the field 

measurements of other segments after AT, the errors are much lower than when applied 

to segments without AT. For both sectors 1 and 2, and using the ANN trained using all 6 

sensing axes, the MSE on all non-reference segments are less or equal to 1 deg2 with AT 

as compared to without AT which reaches up to 6 deg2. For comparison, the absolute 

error distributions of the reference trained ANN on sector 1 of segment 4 without and 

with AT are shown in Figure 4-33 and Figure 4-34 respectively. Figure 4-35 and Figure 

4-36 shows the corresponding comparison for sector 2 of segment 6. These surface plots 

clearly show the reduced error across the entire sector domains with the implementation 

of AT. 

Table 4-10 Resulting MSE obtained from using trained reference ANN on other segments 

ANN 
g=1,h=25 

Mean Squared Error (deg2) 
Segment 

Sector 1 1 (Ref) 2 3 4 5 6 
S1 No AT 

0.120 
2.9919 5.5705 2.9107 2.6760 2.5429 

BX,BY,BZ With AT 2.2086 2.9941 1.5423 2.2219 1.4723 
S1, S2 No AT 

0.00566
0.7887 1.5317 1.1377 1.4511 0.9747 

BX,BY,BZ With AT 0.7322 1.0530 0.7023 0.8894 0.9198 
Sector 2       

S1 No AT 
0.457 

1.4029 3.5290 6.0823 2.0121 5.2861 
BX,BY,BZ With AT 0.9402 2.7203 3.1583 1.9216 2.4430 

S1, S2 No AT 
0.00540

2.1436 2.9923 1.3858 1.1583 2.4805 
BX,BY,BZ With AT 1.0454 0.8194 0.9493 0.7463 0.7003 
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Figure 4-33 Absolute orientation error distribution on sector 1 of segment 4 without AT 

 

Figure 4-34 Absolute orientation error distribution on sector 1 of segment 4 with AT 
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Figure 4-35 Absolute orientation error distribution on sector 2 of segment 6 without AT 

  

Figure 4-36 Absolute orientation error distribution on sector 2 of segment 6 with AT 

To arrest these errors further, each sector in every segment can be individually 

trained. For this system with 6 segments and 2 sectors within each segment, a total of 12 

individually trained ANNs are required. The MSE resulting from dedicated segment 

mapping are shown in Table 4-11. As seen from the data, the MSE are fairly consistent 

across segments and using more field measurements reduces MSE for both sectors. 
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Table 4-11 MSE across segments using dedicated segment mapping 

ANN 
g=1,h=25 

Mean Squared Error (deg2) 
Segment 

Sector 1 1  2 3 4 5 6 
S1 BX,BY,BZ 0.120 0.114 0.110 0.125 0.139 0.133 

S1, S2 BX,BY,BZ 0.00566 0.00553 0.00579 0.00481 0.00511 0.00479
Sector 2       

S1 BX,BY,BZ 0.457 0.399 0.376 0.401 0.421 0.312 
S1, S2 BX,BY,BZ 0.00540 0.00675 0.00690 0.00598 0.00440 0.00412

 

4.4.2 Using High Field Sensors 

With high field sensors, saturation of sensor signals is a non-issue. To produce a 

sensor/EM pair, 24 magnetic sensors are placed at the center of all EMs. The resulting 

distribution of the 24 sensors can be visualized by Figure 4-37. This figure also shows the 

indexing of the 24 sensors. All sensors are installed such that the measuring axis is 

normal to the surface of the EM (inwards towards the rotor center). The 6 sensors 

demarcated by the red dashed line denote the basic group of sensors which is a 

representative set of all sensors in the system. 

 

Figure 4-37 Distribution of high field sensors in spherical coordinates 

Using the same approach as for low field sensors, the 2-D surface field map for 

each sensor can be constructed. The field maps of sensor 1, 2, 9, 10, 17 and 18 are shown 

in Figure 4-38 and Figure 4-39. With these figures, the segregation of the field map into 6 



124 
 

segments can be visually verified. Using segment 1 (47 by 67 pixels) of the field maps of 

all sensors, the ANN can be trained using combinations of the sensor field maps. In this 

ANN, the total number of training sets is 3149. The resulting MSE from different sensing 

groups are summarized in Table 4-12. These results suggest that increasing the number of 

sensors/ ANN inputs reduces the MSE; the ANN trained using the field measurements of 

all 24 sensors had the lowest MSE of 0.000339 deg2. The spatial distributions of the 

resulting absolute errors for both angular estimates are shown in Figure 4-40 and Figure 

4-41 respectively. As shown in the figures, the errors do not exceed 0.02° for the entire 

segment. An interesting observation is if only 8 sensors can be used, using the 8 

equatorial sensors (17-24) had a significantly higher MSE than using the 8 top latitude 

sensors (9-16). This observation reinforces the finding that the mapping performance is 

highly sensitive to the choice of sensors. 

Table 4-12 MSE due to different sensing groups 

Group # of sensors Locations MSE (deg2) 
Equatorial 1 17 191 

2 17, 21 (180 apart) 108 
4 17 to 20 11.4 
8 17 to 24 0.127 

Group 6 1,2; 9,10;17,18 0.1831 
Latitude 8 (Top) 9 to 16 0.00999 

 16 (Top/bottom) 1 to 16 0.000826 
All 24 1 to 24 0.000339 
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Figure 4-38 2-D field map of Sensor 1(top), 17 (middle) and 2 (bottom), Units: Tesla 
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Figure 4-39 2-D field map of Sensor 9(top), 18 (middle) and 10 (bottom) , Units: Tesla 
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Figure 4-40 Distribution of absolute θ error for mapping using all high field sensors 

 

Figure 4-41 Distribution of absolute ϕ error for mapping using all high field sensors 

4.5 SUMMARY 

In summary, using a prototype multi-DOF electromagnetic actuator with an 

assembly of identical PMs on the rotor, a field-based sensing system comprising of a 

network of magnetic sensors placed in close proximity is evaluated. Using the magnetic 

DMP field model, the effects of the type of mapping function, spatial resolution and type 

of inputs used on the mapping performance of the sensing system for a prototype EM 
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actuator were investigated. Field simulation using DMP models illustrate that the 

absolute errors do not exceed 0.0004° using 4 multi-axis sensors. Subsequently, the 

mapping accuracy is experimentally verified and examined using an array of both single 

axis high and multi-axis low field sensors. Evaluation of the responsiveness and 

bandwidth of the sensing system is performed in tandem with a control implementation 

of an actuator in the following chapter.  
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CCHHAAPPTTEERR  55    

EMBEDDED FIELD CONTROL OF TWO-DOF ACTUATOR 

 

5.1 OVERVIEW 

The chapter presents the implementation of the magnetic field-based sensing 

system for direct system identification and control of an electromechanical actuator with 

an embedded field. This multi-DOF actuator uses the torques produced by 

electromagnetic interactions between stationary EMs and a moving PM for actuation as 

well as stationary PMs to provide restoring forces about an equilibrium position. Through 

diligent specifications of the input current into the actuating EMs, the sensing 

requirement of the actuator can be reduced to a single-DOF system. A field-based 

approach as outlined in the previous chapters is used to directly map field measurements 

to orientation of the system. Since energized EMs emit magnetic fields, they must be 

characterized so that active compensation of the field can be performed for accurate field-

based sensing. As the sensing system is non-contact and non-invasive in nature, 

orientation measurement does not affect the dynamics of the system, facilitating accurate 

parameter identification. Precise knowledge of the system model allows synthesis of open 

loop controllers and aid in the design of closed loop controllers. In addition, an industrial 

inclinometer is used as a comparison to assess the performance of the field-based sensing 

in low and high frequency motion. 
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5.2 ACTUATOR  SPECIFICATIONS AND MODELING  

This electromagnetic actuator is composed of a moving rotor with an embedded 

magnetic field generated by a grade N45 ring magnet and a stationary stator containing 

actuating EM coils and stabilizing PMs as well as the field based sensing system. The 

rotor is supported mechanically via a spherical bearing and through magnetic interaction 

between the ring magnet and stator PMs, is kept at equilibrium position as shown in 

Figure 5-1. As the rotor obscures the underside of the rotor, Figure 5-2 provides better 

visualization of the underlying sensing system and EM configuration. The stator is made 

translucent to facilitate viewing of the stator PMs located underneath the stator. A total of 

8 EMs are used to provide an applied torque via the attracting and repelling the rotor ring 

PM by adjusting the magnitude and polarity of the current inputs. 24 strong field Hall-

Effect sensors, configured in a circular arrangement are positioned into the system using 

the sensor bracket. The disk shaped rotor, as shown in Figure 5-3, is comprised of a ring 

magnet held into position by a spacer. The rotor is attached to the stator mechanically 

using a spherical bearing. This torque applied about the bearing due to energized EMs 

causes subsequent inclination of the rotor. Due to the proximity of the sensor network to 

the rotor ring PM, the instantaneous orientation is determined using field measurements 

by the sensors. 
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Rotor

Base

Stator

 

Figure 5-1 CAD rendition of multi-DOF actuator 

 

Figure 5-2 CAD Sensor and EM positioning and placement (stator translucent) 

 

Figure 5-3 Underside of CAD rotor assembly 



132 
 

A schematic specifying the various system dimensions and coordinate systems is 

shown in Figure 5-4. The bearing center is the origin of the stator reference XYZ frame 

and the moving rotor xyz frame is described using two independent angles, α (about X-

axis) and β (about Y-axis). Each sensor and EM are individually indexed; where the 1st 

sensor is located at the X-axis and the index increases in a counter-clockwise direction. 

The measuring axes of the sensors are along the Z-axis. The sensors, EMs and stator PMs 

are placed in the XY plane but displaced in the negative Z-axis by Hs, HEM and HPM 

respectively. 

 

Figure 5-4 Coordinate systems, sensor and EM indices and physical parameters 
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A feedback control operation of the actuator is illustrated in the block diagram 

shown in Figure 5-5. Using the positional feedback from the sensing system, the error E 

computed from the difference between the desired qd and estimated position q̂  is 

amplified by the controller to produce a input signal U. A saturator is enforced to prevent 

excessive currents from damaging the EM coils. This input signal (as an analog voltage) 

is converted to a current output I using current servo amplifiers. The current in each 

individual EM generates a resultant torque T about an axis of the rotor which translates 

into change in rotor orientation q. The subsequent change in the magnetic rotor 

orientation dynamically changes the rotor magnetic field BPM and is measured by a 

distributed network of magnetic sensors. This measurement , also contains field effects 

due to the EMs as well but can be compensated with an EM field model which relates the 

current input I to the field effects at each sensor EM. After compensation, the isolated 

signal PM contains only field measurements resulting from the moving rotor and utilized 

by the embedded sensing system to produce the estimated rotor position q̂ . 

q̂

 

Figure 5-5 Control implementation for EM actuator 
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5.2.1 Mechanical and Sensing Equations of Motion 

The generalized equation of motion of the rotor can be succinctly described by 

 ( , ) ( , ) ( , )  Jq C q q q K q q q T u q     (5.1) 

where J is the moment of inertia, C is the damping matrix, K is the stiffness matrix and q 

is the orientation of the rotor. The applied torque onto the system is denoted by T and is a 

function of the current inputs into the system u as well as the orientation of the system. 

The damping of the system is mainly due to the mechanical friction at the spherical 

bearing and the stiffness is a result of the rotor PM and stator PM nonlinear magnetic 

repulsive forces which provides an equilibrium point of the system when q=0. 

 Although the rotor has 3-DOF mechanically, the spin of the rotor is not detectable 

by the sensors because of the homogeneity of the ring PM field about the z-axis. Hence, 

the embedded field sensing system can only detect the relative inclination of the rotor (2-

DOF) and not the spin motion of the rotor. From the sensing system point of view, the 

orientation of the rotor can be described by a series of body fixed rotations of α and β 

(Tait-Bryan angles) or ψ and θ (Euler angles).  

If the axis of inclination is known (ψ), the system simplifies to a single DOF 

system (as a function of θ). For a small operating range of θ, the linearized EOM of the 

system can be expressed as follows if the axis of inclination is known, 

 ( )aJ C K T     u   (5.2) 

where J,C and K are the inertia, damping and stiffness coefficients. Ta is the EM induced 

torque about the specified axis of inclination. As will be shown in the subsequent section, 

the meticulous specification of u allows the determination of the inclination axis. 

Consequently, for a desired rotor orientation in Tait-Bryan or Euler angles (they are 
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equivalent as introduced in Chapter 2), the corresponding desired axis of inclination is 

defined by the application of u and the instantaneous degree of inclination is measured by 

the field based sensing system. 

 Although the linearized model of the system is known, the exact values for J, C, K 

and Ta are not. While J can be computed analytically (function of the rotor geometry) and 

the quantities K and Ta estimated from various models, the damping of the system C, 

contributed from the friction in the spherical bearing, is significantly harder to model and 

estimate. However, with a non-invasive sensing system which does not affect the 

system’s dynamics, a system identification approach is used to experimentally obtain all 

parameters of the system. 

5.2.2 Controlling Input Specifications 

The controlling input of the system is a 18 matrix u=[I1 I2 I3 I4 I5 I6 I7 I8] where 

each column represents the desired specified current into the respective indexed EM. A 

larger current input to a single EM will increase the attractive and repulsive magnetic 

force between the EM and rotor PM and subsequently affect the degree inclination of the 

rotor. The polarity of the current input determines the direction of the applied torque. Due 

to the circular arrangement of EMs, it is possible to specify an arbitrary axis of 

inclination of the rotor through meticulous specification of individual EMs. Expressing 

the position of the EMs in terms of the polar angle as shown in Figure 5-6, a shifted 

periodic function with period equal to 2π (360°) and amplitude of Iamp is used to establish 

the required direction and magnitude of the input current into each EM to achieve 

positive inclination about the inclination axis defined by ψa. This periodic function can be 

mathematically expressed by 
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 ( )amp u aI I f     (5.3) 

where fu is an odd periodic function with period 2π and unit amplitude. Possible functions 

include sinusodials fu(ψ)=-sin(ψ) and triangle waveforms. Regulation of Iamp will adjust 

the applied torque about the desired inclination axis. The angular position of each EM 

can be described by 

 ( 1) / 4e e    (5.4) 

where e is the index of the EM. Hence the required current into each EM is simply 

 ( )e amp u e aI I f     (5.5) 

Because of the periodicity, all current inputs are not independent and can be verified 

visually or analytically that the following relation holds: 

 1 5 2 6 3 7 4 8, , , ,I I I I I I I I         (5.6) 

Hence for this configuration of EMs, only the specifications of four EM inputs are 

required to specify the desired inclination axis. The resulting controlling input can be 

expressed as 

  1 8( ) ( ) ( )amp u a u e a u aI f f f        u    (5.7) 

where the magnitude of u is solely a function of Iamp for a given constant inclination axis. 

Assuming the applied torque is a linear function of u and hence Iamp, the EOM in 

Equation (5.2) can be expressed as 

 a ampJ C K T I       (5.8) 
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Figure 5-6 Determination of controlling input using shifted periodic function 

Using a sinusoidal function for fu, the input currents for unit Iamp can be computed 

as a function of the desired inclination axis. Only the first 4 current inputs are plotted 

since the remaining 4 are related through Equation (5.6). Due to the discrete placement of 

EMs, the average current magnitudes of these 4 inputs are not independent of the desired 

inclination axis as shown in Figure 5-7. If the inclination axis coincides with the angular 

position of an EM, the current input will be zero into that particular EM. For example, the 

current input in EM3 (I3) will be zero if the desired inclination axis is 90° (or 270°) from 

X-axis. 



138 
 

 

Figure 5-7 Current input into EMs as a function of desired inclination axis 

5.2.3 Aggregate Field Sensing System 

The sensing field map of this 2-DOF system is a surface demarcated by  

 max max0 ,             (5.9) 

This system contains only one rotor PM and hence has only one segment. Using 

aggregate multi-sensing, this field map can be complementary characterized by the 24 

sensors (12 pairs), each with the reduced domain of 

   max max1 / / ,  T p Tp s p s            (5.10) 

where p is a positive integer that represents reduced sensor pair indexer (p=1,2,…, 

sT=12). In polar coordinates, the domain of the entire map is the area within red circle 

and each pair of opposite wedges constitutes one possible reduced domain map as shown 

in Figure 5-8. Selection of wedges for sensing is determined by the location of the rotor 

x-axis (ψ) which is directly related to the desired inclination axis by π/2. Due to lack of 
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multiple segments, the combined field measurements of all single axis sensors for the pth 

wedge is 

 2 1 1Tp Z p Z s Z Z pB B B B    Λ    (5.11) 

As discussed in earlier chapters, Λ  can be completely characterized alternatively with 

only one pair of wedges pΛ due to the similarity between wedges. Using ANNs or LS 

models, any of the pΛ can be used to map measurements to instantaneous position for that 

particular reduced domain as well as the remaining domain.
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Figure 5-8 Aggregate sensing using multiple sensors and specified inclination axis 

5.3 EXPERIMENTAL SETUP 

The experimental setup consisting of the magnetic rotor, stator and base is shown 

in Figure 5-9. Due to balanced magnetic repulsive forces between the rotor ring PM and 

stator PM, the rotor has a level equilibrium position. With the rotor removed, Figure 5-10 

reveals the view of the sensing and actuation assembly which is now unobscured. The 24 
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sensors are positioned in a circular path of radius RS centered about the Z-axis. The 

angular spacing between sensors is ψs and this path is displaced by –Hs from the XY 

plane. All sensors (Asahi HG-362A) are oriented such that their sensing axes are parallel 

to Z-axis. The sensing bracket, made of polycarbonate, is used for securing the sensing 

assembly to the stator. Each of the 8 EMs has 775 turns of 29 AWG wire and has a 

physical radius aEM and length lEM. The EMs are also configured in a circular path of 

radius REM centered about the Z-axis. The angular spacing between EMs is ψEM and all 

EMs are displaced by –HEM from the XY plane. Located below the aluminum stator plate 

are 8 PMs that provide repulsive magnetic forces to keep the rotor at equilibrium in 

absence of applied torque. These cylindrical PMs have radius of aPM and length lPM and 

are evenly distributed along a circular path of radius RPM centered about the Z-axis. As a 

result, the angular spacing between PMs is ψPM and all PMs are displaced by –HPM from 

the XY plane. The underside of the rotor is shown in Figure 5-11 which clearly shows the 

spherical bearing and rotor ring magnet. The physical dimensions and parameters of the 

entire setup are summarized in Table 5-1. 

Rotor

Base

Stator

 

Figure 5-9 Experimental setup of multi-DOF actuator 
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Hall-Effect 

Sensor

Sensor 

Bracket

EM

 

Figure 5-10 Sensor and EM placement (with rotor removed) 

 

Figure 5-11 Underside of rotor 

Table 5-1 Experimental physical dimensions and parameters 

EM Sensors 
No. of 
turns 

aEM 

(mm) 
lEM 

(mm) 
REM 

(mm) 
ψEM 

(deg) 
HEM 

(mm) 
2ST 

RS 

(mm) 
ψs 

(deg) 
Hs 

(mm) 
775 15.87 9.65 53.34 45 26.99 24 49.53 15 19.63 

Stator PMs Rotor Ring PM 

 
aPM 

(mm) 
lPM 

(mm) 
RPM 

(mm) 
ψPM 

(deg) 
HPM 

(mm) 
R1 

(mm) 
R2 

(mm) 
l 

(mm) 
 

 4.76 12.7 63.5 45 40.17 38.1 76.2 6.35  
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A diagram describing the electrical and communication connections is shown in 

Figure 5-12. The outputs of the magnetic sensors, which are powered by a 8V DC power 

supply (HP 6236B triple output power supply), are transmitted in analog format as 

voltages and digitally acquired using 24 independent and dedicated 16-bit (15-bit signed 

format) Delta Sigma analog to digital converter (ADC) banks (aggregated using four 

Turck Inc. BL20-4AI-U/I and two Turck Inc. BL20-2AI-U). Similar to setups of the 

previous chapters, the gateway is used to sample and record field measurements. 

However, due to the high sampling time of the gateway (15 ms), it is not suitable for real-

time control implementation. Hence, a National Instruments real-time controller (NI-

cRIO 9012) is used. This module consists of 4 16-bit Delta Sigma ADC and 4 digital to 

analog converters (DAC). The effective sampling time of the NI controller which 

includes data sampling and computation is 1 ms (1 kHz). Control signals to the EMs are 

transmitted to the current servos (Three Kepco BOP 50-2M and one Kepco BOP 50-4M) 

via the 4 DAC banks. These control signals and field measurements by the sensors are 

communicated to a Human Machine Interface (HMI) (Turck Inc. Turckeye) and a PC 

over Ethernet connection to provide instantaneous display and data logging capabilities.  

 

Figure 5-12 Electrical and communication schematics 
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5.3.1 Field Characterization and Sensor Calibration 

In order to obtain a correspondence between orientation and measured rotor field, 

the rotor is rigidly attached to a rotary track of radius R by means of a mechanical strut as 

shown in Figure 5-13. The center of rotary track is positioned such that it coincides with 

the spherical bearing of the rotor. The arc length of the track contains measurement 

markings that allow correspondence between the curvature distance, w and inclination, β.  

Base

Spherical 
Bearing

Rotor (Ring PM)

HS

Rotary 
track

Strut

Z

X

z

β

w

EM EMEM EM

R

Stator/Sensors

 

Figure 5-13 Schematic of measured field and position  

Figure 5-14 shows the variation in measured field along the Z-axis by S1 to S7 

with zero inclination as the reference field measurement. As S1 is placed furthest from the 

inclination axis, it exhibits the largest field variation and hence superior SNR. 

Conversely, as S7 is collinear with the inclination axis, its field variation is minimal. 

Sensitivity analysis presented in Figure 5-15 affirms that field sensitivity is higher for 

positive inclination (where the ring PM inclines towards the sensors). For completeness, 

the field variations of the remaining sensors are categorized in quadrants and presented in 
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Figure 5-16, Figure 5-17 Figure 5-18. As reinforced by the circular arrangement of 

sensors, the field measurements by S7 to S13 (or S13 to S19) are related to the 

measurements of S1 to S7 (or S19 to S1) through reflection about the zero inclination. With 

this information, as seen from previous chapters, a direct mapping between measured 

field and instantaneous orientation of the rotor can be constructed using ANNs. 

 

Figure 5-14 Field measurements by sensors (S1 to S7) as a function of inclination 

 

Figure 5-15 Field sensitivity analysis for sensors S1 to S6 
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Figure 5-16 Field measurements by sensors (S7 to S13) as a function of inclination 

 

Figure 5-17 Field measurements by sensors (S13 to S19) as a function of inclination 
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Figure 5-18 Field measurements by sensors (S19 to S1) as a function of inclination 

Due to the close proximity of EM coils and field sensors, the magnetic field 

produced by energized coils are inadvertently measured by the sensors. With the rotor 

removed, EM field calibration can be performed to compensate for these effects to isolate 

rotor field measurement. By individually adjusting the input current to each EM and 

measuring the field variation by all 24 sensors, the EM field model can be experimentally 

obtained. Figure 5-19(a) depicts the measured field by the three sensors (S1, S2 and S24) 

with the closest proximity to EM1 as the current flowing into EM1 was regulated using the 

current servo. As S1 is situated near the center of EM1, it recorded the largest variation in 

measured field; about 25 mT when the input current was 1 A. The neighboring sensors of 

S2 and S24 exhibited significantly less variation; less than 5 mT when the input current of 

EM1 was 1A. The field measurements for all sensors however varied linearly with input 

current and a linear model (y=C1x) can be used to fit the experimental measurements. The 

coefficients (C1) of the fitted linear model for five sensors (S1, S2 , S2 , S23 and S24) closest 

to EM1 are compiled in Table 5-2. The remaining sensors had no noticeable measured 
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field variation and are omitted. This procedure is repeated for the remaining 7 EMs to 

construct the complete EM field model. Sensing field calibration for EMs 1-4 are shown 

in Figure 5-19 along with the fitted model coefficients in Table 5-2. With these 

coefficients, given an arbitrary u, the field effects due to the EMs on any sensor can be 

actively compensated. 

(a) EM 1 (b) EM 2 

(a) EM 3 (b) EM 4 

Figure 5-19 Sensor field calibration for EMs 1-4 

5.3.2 Parameter and System Identification 

With a calibrated sensing system, the stiffness of the system can be 

experimentally obtained through direct field measurements as shown in Figure 5-20. By 

adjusting the distance L and mass mp, the applied torque about the Y-axis caused by the 
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mass can be computed. The degree of inclination of the rotor can be obtained from the 

sensor field measurements. The experimental relationship between the restoring torque of 

the system as a function of rotor inclination is shown in Figure 5-21. As observed in the 

diagram, the torque is a nonlinear function of the rotor inclination as shown by the 

quadratic fit of the experimental data in red. However, for inclinations less than 6°, the 

relationship is approximately linear as seen by the black linear fit. Assuming linearity, the 

stiffness of the system (K) is 0.006379 Nm/deg. 

Table 5-2 Coefficients of fitted linear model for each sensors for all EMs. 

EM1 S23 S24 S1 S2 S3 
C1 (mT/A) 0.9363 -2.819 -23.96 -0.7212 0.9687 

EM2 S2 S3 S4 S5 S6 
C1 (mT/A) 0.8749 -2.877 -23.16 -0.6923 1.174 

EM3 S5 S6 S7 S8 S9 
C1 (mT/A) 0.5378 -3.01 -24.25 -1.451 1.008 

EM4 S8 S9 S10 S11 S12 
C1 (mT/A) 0.937 -2.438 -24.34 -0.8537 1.085 

EM5 S11 S12 S13 S14 S15 
C1 (mT/A) 0.8134 -1.971 -24.38 -1.193 0.787 

EM6 S14 S15 S16 S17 S18 
C1 (mT/A) 0.8124 -3.321 -22.68 -1.928 1.028 

EM7 S17 S18 S19 S20 S21 
C1 (mT/A) 0.8894 -3.177 -24.78 -1.959 1.024 

EM8 S20 S21 S22 S23 S24 
C1 (mT/A) 1.002 -0.7335 -25.43 -1.119 1.078 

 

Figure 5-20 Schematic for determining restoring torque of system 
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Figure 5-21 Restoring torque of the system as a function of inclination angle 

The remaining parameters of the actuator can be determined experimentally by 

analyzing the step response of the system. The transfer function of the linearized system 

in Equation (5.8) can be written as 
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Alternatively, the state space representation is 
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where x1 and x2 are the states of the system (angular position and velocity respectively). 

Using the Identification Toolbox in MATLAB, the variables in Equation (5.12) can be 

estimated. The step response of the system with the inclination axis about the Y-axis is 

shown in Figure 5-22. In this case, the degree of inclination of the rotor can be described 

by β and the measurement of S1 is used to infer rotor inclination. As EMs are energized to 
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induce inclination, the field measurements are actively compensated using EM field 

models in Table 5-2. The step response appears noisy and this is due to the active 

compensation of the EM field. The required current input into each EM to achieve this 

step response is shown in Figure 5-23. The parameters estimated by the toolbox are 

tabulated in Table 5-3. The damping coefficient and natural frequency of the system is 

0.044 (underdamped system) and 19.7 Hz respectively.  

 

Figure 5-22 Step response of rotor 

 

Figure 5-23 EMs individual inputs during step response 
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 With an identified model of the system, the step and free response of the model 

can be compared with the corresponding experimental responses. The comparisons 

between a delayed step and free response due to an initial condition are shown in Figure 

5-24 and Figure 5-25 respectively. As expected, there is a close correspondence between 

the identified model and experimental responses.  

 

Figure 5-24 Comparison between step response of identified model and experiment 

 

Figure 5-25 Comparison between free response of identified and experiment 
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Table 5-3 Experimentally identified system parameters 

Parameter Ta/J (deg/sec2A1) C/J (1/sec) K/J (1/sec2) ζ ωn (Hz) 
Value 3620 1.75 387 0.044 19.7 

 

5.4 EXPERIMENTAL RESULTS 

From the step response of the system, it can be seen that the system is 

underdamped and vulnerable to vibratory motion. Using the data comprising of the 

system model as well as real-time feedback of position information obtained from the 

field sensing system, open and closed loop controllers can be designed. In addition, an 

industrial inclinometer, commonly used in various devices for tilt determination is used 

as a comparison for this field-based sensing system. 

5.4.1 Comparison with Inclinometer 

An industrial inclinometer (TURCK B2N10H-Q20L60-2LU3-H1151) is installed 

onto the rotor to provide a comparison to the field based sensing system. This 

inclinometer (with a measuring range of ±10°) incorporates a micro-electro-mechanical 

capacitive element into the sensor that utilizes two parallel plate electrodes, one 

stationary and one attached to a spring-mass system. Movement produces deflection in 

the non-stationary electrode. This results in a measurable change in the capacitance 

between the two plates that is proportional to the angle of deflection. These signals are 

conditioned to provide voltage output proportional to the degree of inclination. 

By generating a sinusoidal input to the EMs at a frequency much lower than the 

natural frequency of the system of 0.3 Hz, the rotor’s corresponding oscillation can be 

measuring by both sensors. The comparison between the signals measured by the 

magnetic and inclinometers are compiled in Figure 5-26. Both signals share the same 
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peak to peak amplitude and period, and the only difference is the phase shift between 

both signals. The inclinometer signal appears to have a phase delay of 150 ms.  

 

Figure 5-26 Comparison between field-based sensing and inclinometer at 0.3 Hz 

 

Figure 5-27 Comparison between field-based sensing and inclinometer at 3 Hz 
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due to motion of the inclinometer. In addition, at this higher frequency, the inclinometer 

is unable to track the rapid motion of the rotor as illustrated by the large disparity 

between the signals in Figure 5-27. This is most likely due to the mechanics of the 

inclinometer which uses inertia for positional sensing. At these frequencies, the inertia 

load is unable respond quick enough for proper sensing. 

5.4.2 Open-Loop Input Shaping Control 

Using the experimentally obtained model of the system, an open-loop controller 

that actuates the rotor to a specified inclination with minimal overshoot and vibration 

residue can be designed. One approach is using input-shaping [51] where the command 

of the system is adjusted through careful analysis of the impulse response of the system. 

Two commonly used input shapers are used, the Zero-Vibration (ZV) shaper and Zero-

Vibration-Derivative (ZVD) shaper. The synthesis of these open loop controllers are 

shown in Figure 5-28. The asterisks denote convolution and the Q1, Q2 and Q3 denote the 

amplitude of the ZV and ZVD shapers and can be computed from the damping ratio of 

the system. T1, T2 and T3 represent the time delay between the impulses and are obtained 

from the damped period of the system. 

As described in [51], the sequences of the impulses for the ZV shaper can be 

written in matrix form as 

 

1

1 1

0 0.5

Z
j

Z Z
j

d

K
Q

K K
T

T

 
           

 (5.15) 

 
2( 1 )

ZK e     (5.16) 
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for j=1,2 and Td is the damped period of the vibration. Similarly, the ZVD shaper can be 

expressed as 

      

2

2 2 2

21

1 1 1

0 0.5

Z Z
j

Z Z Z
j

d d

K K
Q

K K K
T

T T

 
         
    

 (5.17) 

for j=1,2,3. For the system parameters identified, the amplitude and time delays for the 

ZV and ZVD shapers can be determined and summarized in Table 5-4. The input shaped 

step response of the system along with the specified input is shown in Figure 5-29 and 

Figure 5-31 respectively for the ZV and ZVD shaper. The associated EM input currents 

for both cases are shown in Figure 5-30 and Figure 5-32 respectively. For both the ZV 

and ZVD cases, the Signal to Noise Ratio (SNR) of the sensing signals after it has 

reached its targeted inclination is 33 dB. In other words, the sensor’s signal is almost 45 

times the average noise amplitude. 
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Figure 5-28 ZV and ZVD input shaping 
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Table 5-4 Input shapers parameters 

ZV ZVD 
Q1 Q2 Q1 Q2 Q3 

0.5348 0.4652 0.2860 0.4976 0.2164 
T1 T2 T1 T2 T3 
0 0.1580 0 0.1580 0.3160 

 

Figure 5-29 Response to ZV shaped command 

 

Figure 5-30 Current input into EMs due to ZV shaped command 
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Figure 5-31 Response to ZVD shaped command 

 

Figure 5-32 Current input into EMs due to ZVD shaped command 
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11 12 1 1

21 22 2 2

(( 1) ) ( ) ( ) ( ) ( )
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  
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   1

2

( )
( ) 1 0

( )

x kT
kT

x kT


 
  

 
 (5.19) 

Computation and determination of G(T) and H(T) are obtained using the following, 

 ( ) TT e AG  (5.20) 

  0
( )

T
T e d   AH B  (5.21) 

where the numerical values of A and B are experimentally obtained from direct system 

identification. From [53], the minimum-order observer, which assumes only the state x1 

(θ) is measurable, is defined by 

 2ˆ ( ) ( ) ( )Ox kT kT L kT    (5.22) 
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H L H I kT

 



  

   

 

 (5.23) 

where η is the observer state, LO is the observer gain and 2x̂  is the estimated state of the 

system (angular velocity). Full state feedback is achieved by defining the input as a 

function of the state and estimated state, 

  T1 2ˆ( ) ( ) ( )ampI kT x kT x kT  SFK  (5.24) 

Using the controller and observer gains listed in Table 5-5, the actuator was 

subjected to a step command of 4 degrees. Two sets of gains are used.  
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 The first set is an aggressive high gain controller designed to induce a 

rapid response (low rise time) to assess the bandwidth of the sensing 

system.  

 The second set is a feedback controller optimized for low settling time for 

point to point motion. 

The response of the system under the aggressive feedback gains is shown in Figure 5-33 

and the corresponding EM inputs in Figure 5-34. For this motion, the rise time is 40 ms 

which is significantly quicker than the open-loop input shaped control. From the 

response, the highest angular velocity of the rotor occurs during the rise time and is 

approximately 100 deg/sec. At these speeds, the sensing system has no difficulty tracking 

the rotor position. For the second set of gains, the rotor response and EM inputs are 

appended in Figure 5-35 and Figure 5-36 respectively. At a penalty of doubling the rise 

time, the settling time of the system is 200 ms, which is still slower than the ZV shaped 

open loop response. 

 

Figure 5-33 Step response of system to under aggressive gains 
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Figure 5-34 Current input into EM due to high gain aggressive controller 

Table 5-5 Parameters for full state feedback and reduced order observer 

G11 G12 G21 G22 H1 H2 LO 
KSF 

Case 1 Case 2 
0.9998 0.0009 -0.3867 0.9980 0.0018 3.6128 0.01 [0.55 0.01]  [0.2 0.03] 

 

 

Figure 5-35 Step response of system to state feedback control with velocity observer 
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Figure 5-36 Current input into EM due to state feedback control with velocity observer 

To investigate response of the system to point to point motion, a unit staircase 

reference command was utilized. Both this command and the corresponding response of 

the rotor are illustrated in Figure 5-37. The accompanying EM inputs are combined in 

Figure 5-38. As depicted in Figure 5-37, the full state feedback controlled system using a 

velocity state observer possesses good tracking performance for point to point motion. 

 

Figure 5-37 Multi-step response of system to feedback control with velocity observer  
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Figure 5-38 Current input into EM due to multi-step command  

5.5 SUMMARY 

In this chapter, the field-based sensing system was used for real-time control of an 

EM actuator. A direct approach, which exploits the non-invasive nature of the sensing 

system, was used to perform precise and accurate system identification for design of open 

and closed-loop controllers. The performance of the sensing system was evaluated 

against an industrial inclinometer and unlike such inertia-based sensors, did not suffer 

from poor tracking at high frequencies and delayed response. Exploiting the high 

bandwidth of the magnetic sensors and inertia-less nature of the magnetic field, the field-

based sensing system is able to accurately track rapid motion of the rotor with no time 

delay for real-time feedback stabilization and control. 
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CCHHAAPPTTEERR  66    

CONCLUSIONS AND FUTURE WORKS 

 

6.1 ACCOMPLISHMENT & CONTRIBUTIONS 

This dissertation introduced an accurate and computationally swift distributed 

field-based positional sensing system for control of multi-DOF systems using high 

bandwidth and cost effective magnetic sensors. Of interest here is a class of dexterous 

multi-DOF systems with existing embedded magnetic field sources used for actuation. 

Using a field-based approach, these moving fields can be capitalized to provide non-

invasive real-time concurrent positional and orientation sensing. The following 

contributions have been made: 

1. Development of a model independent embedded field-based sensing system 

This novel sensing method addresses the difficulties of magnetic inverse problems 

for multi source systems as well as the staunch requirement of fast computational speed 

for lag-free feedback control. The adopted approach is model independent and utilizes 

parametric spaces to spatially characterize the periodic field. Through this process, the 

entire field space can be divided in segments/sectors where bijection exists. With 

uniqueness, the mapping of only one segment/sector is required to completely 

characterize the whole field space. As the forward field models are highly non-linear with 

respect to the spatial coordinates, computation of the inverse field models is not tractable 

for real-time sensing. A non-linear function fitting approach of using highly scalable and 

robust ANNs is employed to efficiently approximate the inverse model (field 
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measurements to orientation of the moving system). As this technique assumes 

homogeneity between all magnetic field sources and sensing performance of all sensors, 

a requirement not realizable in actual implementation, statistical calibration is applied 

using affine transformation. 

2. Numerical and experimental performance evaluation of this sensing 

methodology on an existing electromechanical actuator 

Using the DMP model, the magnetic field as measured by a network of magnetic 

sensors can be simulated and subsequently used to create the inverse map between 

multiple field measurements and instantaneous orientation. This mapping performance is 

investigated with respect to spatial resolution, types of mapping functions and 

combinations of sensing inputs used. It was found that the choice of sensor as well as 

sensing axis has a profound impact on the sensing performance and this result is apparent 

during the experimental investigation on the electromechanical actuator. 

Using a specially designed matching assembly of 24 identical PMs and magnetic 

sensors, the experimental field variation between identically graded and geometrically 

sized magnets as well as field measurement disparities between similar sensors were 

evaluated. The subsequent propagating effects of these field variations on the sensing 

performance using the inverse model free mapping approach were quantified. Using field 

calibration approach, which statistically standardizes field measurements across segments 

and sensors, these unavoidable field variations can be compensated in real time to 

minimize the detrimental effects on sensing accuracy. 

3. Field-based sensing system for controller design and real-time control 

implementation 
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Electromagnetic actuators use the presence of magnetic fields for actuating as 

well as extraction of positional information via field-based sensing. As magnetic fields 

are linear and obey superposition, the measured fields in each sensor due to actuating 

fields from the EMs can be compensated in real-time with knowledge of the input current 

into each EM. The sensing performance of the field-based sensing system is evaluated 

against an industrial inclinometer. It was found that at high frequencies, the inclinometer 

is not able to track the rapid motion of the rotor during free response. At low frequencies, 

due to the inertia-based sensing system of the inclinometer, the output possesses a 

noticeable time delay of 150 ms which hinders real-time closed loop control 

performance. The field-based system, using high bandwidth magnetic sensors and using 

inertialess magnetic fields, has no such short comings and is able to unobtrusively 

perform accurate system identification on the system for design and implementation of 

open and closed loop controllers. 

6.2 FUTURE WORKS 

This research has provided a model-free approach in addressing the magnetic 

inverse problem of using distributed field measurements for real-time sensing and 

subsequent control. Further research and possible directions can be summarized as 

follows: 

1. Adapting the methodology to map other quantities  

While obtaining positional/orientation estimates from field measurements is the 

main focus of this study, other physical quantities of interest can be mapped directly to 

field measurements using ANNs. Some examples of these quantities are torques and 



166 
 

forces. In the case of electromagnetic actuators, the appliable torque is a function of the 

orientation of the rotor as well as the current input into the EMs. Hence a direct map 

between the field measurements and a baseline appliable torque will reduce the 

computational time required to compute the torque separately. Another possibility is 

mapping field measurements directly to the required controller output which are most 

commonly transmitted electrically using voltages and/or digital communications. Such an 

approach will avoid the computation of the orientation/position of the system for 

determination of the required controlling signal, thereby improving real-time 

performance. 

2. Considering heterogeneous sensor networks; combining high and low field 

sensors 

The sensor networks considered here are homogeneous. While high field sensors 

are proficient in detecting large changes in magnetic flux density, it is deficient in 

perceiving correspondingly small changes in magnetic field. In real world 

implementation, this issue is exacerbated by presence of sensing noise, further inhibiting 

discernment of small changes in magnetic fields. Low field sensors on the other hand 

possess higher SNR for small changes in magnetic field but encounter saturation effects 

in presence of strong magnetic fields. Therefore, a methodically designed network of 

both high and low field sensors can capitalize on the advantages of both types of sensors 

to generate a hybrid network that outperforms a homogeneous network of high or low 

field sensors. 

3.  Effects of PM configuration on sensing performance 
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The aim of this thesis is to develop a sensing system for pre-existing assemblies 

of PMs. The configurations of these PMs are usually optimized for actuation to maintain 

fairly constant torque at all orientation. As another avenue to improve sensing 

performance, the size, strength and configuration of PM assemblies can be further 

analyzed and optimized for systems primarily used for sensing such as haptic input 

devices. 

Without the constraint of homogeneous PMs in actuating devices (to provide 

steady applied forces/torques), the use of heterogeneous PM assemblies is especially 

appealing due to the uniqueness of the resulting global field. Through meticulous 

selection and organization of the PM assembly, one possibility is the creation of a ‘gray-

coded’ spatial field that is not only bijective for every point in space but has in-built error 

correction and noise suppression. 
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CCHHAAPPTTEERR  77  AAPPPPEENNDDIIXX  AA  

ORGANIZED SENSOR NETWORKS 

 

Sensors in a network can be organized into s groups with each group containing r 

sensors that competitively and/or complementary sample some or all states of an n-order 

system. Graphically, the sensing states of the jth sensor in the ith group of the [s, r] 

network can be represented as shown in Figure 7-1. As each network sensor has 

individual characteristics, an organized sensor network is implemented for active 

management. 

Figure 7-2 illustrates a control system using a network with [s, r] sequential and 

redundant sensors. It consists of a throttling controller, a weighting optimizer and a 

Kalman filter (DKF) working in tandem to produce a filtered estimate of the system 

states from noise corrupted individual sensor measurements. The throttling controller 

uses the desired controller output, sensor measurements and user defined performance 

specifications to determine the required [s, r] sensor configuration, and the optimal 

weighting distribution for each sensor group. Finally, the Kalman filter will utilize the 

weighted sensor measurements and system dynamics to generate a filtered estimate of the 

system states for subsequent control. A measurement model that characterizes the system 

state measurement by each sensor in the [s, r] network is developed in the temporal 

domain. 

AAPPPPEENNDDIIXX AA 



169 
 

 

Figure 7-1 Graphical representation of network organization 

 

Figure 7-2 Block diagram of an organized sensor network 

7.1  SENSOR TEMPORAL MEASUREMENT MODEL 

The measurement of the state vector nx   by the jth sensor of the ith group in the 

sensor network at time t (with sampling period Tij) is given by 
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 (7.1) 

where ( 1)ij ijkT t k T   ; k is the time index integer, ijb and n
ij ν  are the bias and 

uncorrelated zero-mean Gaussian white measurement noise with covariance n n
ij

Ψ  ; 

and the measurement matrix is 
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   1diag( )n n
ij ij ijp ijn   L     (7.2) 

 
1 if is measurable

0 otherwise
p

ijp

x



 


 (7.3) 

If all states are measurable, Lij is an identity matrix. Similarly, if xp is measurable, 

    1diag ( ) ( ) ( )ij ij i j ij ijp ij ijn ijkT kT kT kT  Ψ    (7.4) 

where ψijp is the variance associated with σijp. 

7.2 WEIGHTING COEFFICIENTS OPTIMIZATION 

The effective noise variance is minimized through constrained optimization. 

Without the loss of generality, we restrict our model to an [s, r] network with 

homogeneous sampling time Tij=Tc as an illustration. In this network, the simultaneous 

sampling of r sensors by the ith group provides a sequential weighed measurement iz  at 

time t where   ( 1)i ikT T t k T T     :  
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

   




z L x ν b

ν α ν Ψ
 (7.5) 

and ( 1)( / )i cT i T s  . In Equation (7.5), the over-bar “” indicates that the quantity is 

weighted in the ith sensor group and  

 1diag( )i i ip in  L    (7.6) 

where 1max( )ip i p ijp irp      .  Similarly, the weighted bias and noise covariance 

matrix are given by: 

 
1

  where 
r

n n
i ij ij ij

j





 b α b α   (7.7) 
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 1diag( )ij ij ijp ijna a aα    and 
1

r

ij n
j

α I  (7.8) 

 1diag( )i i ip in  Ψ    where 2

1

r

ip ijp ijp
j

a 


  (7.9) 

Hence, each sensor group contains r weighting coefficients to be selected for each 

of the n system states. One method to uniquely resolve for the r n coefficients is by 

determining the coefficients that minimizesΨ . For this, the first (r−1) noise variance in 

(7b) is expressed as a multiple of the rth variance, which yield 

  2 2 2
1 1 ( 1) ( 1)ip i p i p i r p i r p irp irpa m a m a       (7.10) 

where mijp is a known positive gain. Taking partial derivatives of (8) with respect to aijp 

(for j=1…r1) and equating them to zero, (r1) equations can then be obtained for 

computing the optimal weighting coefficients aijp: 

 
1

1

1 0
r

jp
ijp ijp ijp

jijp

m a a
a

 




   

   (7.11) 

Example:  

Table 1 shows the computed optimal weighting coefficients where the subscripts 

(i, p) are omitted for readability for a network with 1, 2, 3 and 4 sensor redundancy. 

Table 7-1  1 ra a  for the [s, r] network configuration. 

[s, 1] 1 1a   

[s, 2]    1
1 2

1

1

1

m
a a

m



 

[s, 3]    2 1 1 2
1 2 3

1 2 1 2

m m m m
a a a

m m m m


 
 

[s, 4]    2 3 1 3 1 2 1 2 3
1 2 3 4

1 2 1 3 2 3 1 2 3

m m m m m m m m m
a a a a

m m m m m m m m m


  
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The normalized weighted variance for [s ,2] and [s ,3], which are computed using 

(7b) with unit covariance of the rth variance and the coefficients in Table 7-1, are plotted 

as a function of the gains m1 and m2 in Figure 7-3(a) and (b). From both plots, the curve 

and surface approach unity asymptotically as m1 and m2 increase. Hence the inclusion of 

measurement from an additional sensor (no matter how noisy) will reduce the effective 

variance. It is noted that this weighting optimization is not restricted to the classical 

Gaussian noise distribution discussed here. 

[s, 2] [s, 3] 

Figure 7-3 Normalized effective variance for [s, 2] and [s, 3] 

7.3 DISCRETE KALMAN FILTERING 

As an illustration, we consider here a plant in continuous-time state-space 

representation with a controllable input u:  

 
( ) ( ) ( )

( ) ( ) ( )

t t t

t t t





x = Ax + Bu

y = Cx + Du


 (7.12) 

The corresponding discrete-time representation with process noise ω of covariance Ω is 

given by  

 
(( 1) ) ( ) ( ) ( )

( ) ( ) ( )       

k T kT kT kT

kT kT kT

 



x = Fx + Gu ω

y = Cx + Du
 (7.13) 
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where ( ) TT e AF ;
0

( )
T

T e d   AG B  and T=Tc/s. Without the loss of generality, the 

control law of the linear system using full state feedback (FSF) is 

  ˆ( ( 1) ) FkT t k T kT    u K x  (7.14) 

where KF is the feedback matrix; and ˆ( )kTx is the estimate of x at t=kT. The discrete 

Kalman filter [52] adapted for an [s, r] sensor-networked FSF system can be summarized 

by 

 
11 1( ) ( ) ( ) ( ) ( )kT kT kT kT kT
    K P I Ψ P Ψ  (7.15) 

  ˆ ˆ ˆ ˆ(( 1) ) ( ) ( ) ( ) ( ) ( )Fk T kT kT kT kT kT    x Fx GK x FK z x  (7.16) 

 
11(( 1) ) ( ) ( ) ( ) ( )Tk T kT kT kT kT
     P FP I Ψ P F Ω  (7.17) 

where K and P are the gain and estimate error covariance of the Kalman filter. 

7.4 THROTTLING CONTROLLER 

In an [s, r] network, a controller is required to select the desired sensor 

configuration out of a myriad of possible sensor configurations. For example, a three-

sensor network contains five possible sensor configurations as illustrated in Figure 7-4, 

where each arrow in the acquisition timing diagram represents the measurement input 

from a solitary sensor.  

A direct method that expresses the scalar integer quantities of r and s at a future 

time t=(k+1)T as functions of all observable and measurable variables and parameters at 

the current time t=kT can be expressed by: 

  ˆ(( 1) ) ( ), ( ), ( )r k T f kT c kT kT  x u  (7.18) 
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  ˆ(( 1) ) ( ), ( ), ( )s k T g kT c kT kT  x u  (7.19) 

where c is the desired command of the system.  

 

Figure 7-4 Acquisition schedule of different sensor configurations. 

7.5 SIMULATION RESULTS AND DISCUSSIONS 

We investigate the effects of utilizing sensor networks on the controlled system 

performance under the influences of process and measurement noise. For numerical 

validation and performance evaluation, the inherently unstable inverted pendulum system 

(along with the parameter values in Table 7-2) where analytical solutions are available 

for validation, is chosen in this study.  The system is under FSF control with optical 

cameras which has the advantage of measuring all state variables individually and 

simultaneously.   

Table 7-2 Simulation parameters of inverted pendulum 

System Parameters lp=0.5m; mp=0.2kg; mc=0.5kg; g=9.81ms2 
Process Noise Ω = diag(0.015,0.002,0.15,0.15) 
FSF Gains KF = [-26.9  -97.0  -23.9  -24.7] 
Sensor Parameters Tc = 0.1s; Lij = I,, bij = 0 
Measurement Noise Ψij = diag(0.152,0.12,0.12,0.12) 
DKF IC P(0) = Σ, ˆ (0) 0x  
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Figure 7-5 Schematic of inverted pendulum 

The linearized equation of the pendulum motion is given by Equation (7.20)where

T
x x    x  : 

 22 22 1

21 22 2

( ) ( ) ( )t t t
   
   
   

0 I B
x = x + u

A 0 B
  (7.20) 

  21

0 31
0 3( )

p p

p cp

m gl

m m gMl

 
   

A 2

41

3
p

p

l

Ml

 
   

B  (7.21) 

where 022 and I22 are the 22 null and identity matrixes respectively;  T
1 0 0B and 

 4p cM m m  .  

The FSF gains are computed to place the desired closed-loop poles at 10, 8, 3 

and 3. Modeled after an industrial network vision system [54], the optical camera, 

capable of sampling all four state variables at 10 frames per second (fps), has a sampling 

time Tij=Tc=0.1s. To ensure asymptotic stability under FSF, the maximum sampling time 

of the discretized system is Tcrit (or 0.0858 seconds for FSF gains in Table 7-2). The 

[s>1,r] ([1,r] would result in an unstable system) sensor network will possess an effective 

sampling rate of T=Tc/s.  

Two performance criteria, command error (CE) and filtered measurement error 

(FE) are defined for the cart displacement over N measurements: 
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  2

0
CE ( ) ( )

NT
c t x t dt   (7.22) 

  
1 ( 1) 2

0

ˆFE ( ) ( )
N k T

kT
k

x kT x t dt
 



   (7.23) 

where c is the desired cart command.  Since, in presence of noise, the time responses (and 

consequently the FE and CE) vary from simulation to simulation, the convergence of the 

mean and standard deviation (SD) of FE and CE as a function of number of simulation 

runs are statistically studied. From Figure 7-6, it can be seen that at least 200 runs are 

required for sufficient convergence of FE and CE. 

 

Figure 7-6 Convergence rate of FE and CE 

7.6 EFFECTS OF NETWORK CONFIGURATIONS 

The following cases were simulated: 

[s>1, 1]: in the noise-free environment and zero sensor bias: This is equivalent to 

investigating the effect of the different sampling period Tc/s on the system. The special 

case [∞, 1] is analogous to a continuous-time system (T0 as s∞) which serves as a 

basis for comparison. The transient and steady-state results (compared against [∞, 1]) are 
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plotted in Figure 7-7, where only the first 0.5 second of the unit step response is shown in 

Figure 7-7(a) to magnify the differences during transient.  

[2,1]: The interest here is to investigate the effect of sensor network on the stable 

system (with zero mean Gaussian white process and measurement noise as specified in 

Table 2) by comparing with/without Filter for the same sampling period of T=Tc/s:  

 No measurement noise:  ( ) ( )Ft kTu = -K x  

 No filter:    ( ) ( )Ft kTu = -K z  

 With DKF:   ˆ( ) ( )Ft kTu = -K x  

Table 7-3 compares the effects of using the DKF on CE and FE. Snapshot 

comparisons of the time responses are given in Figure 7-8. 

[s, r]: To provide insights into trade-offs between sensor redundancy and effective 

sampling time for a total number of sensors, additional sensor network configurations are 

compared statistically. Figure 7-8(b) and (c) shows the effect on the time responses of the 

cart due to alterations in r and s independently. With [2,2] as a basis for comparison, the 

data are  tabulated in Table 4 along with a surface plot relating CE/FE to the number of 

sensors in redundancy and sequential configuration in Figure 7-9. For each case, 500 

simulation runs were executed and in each independent simulation, the same Gaussian 

noise is applied to all cases (type of filtering in Table 7-3 and configuration in Table 7-4) 

being studied.  

Table 7-3 Effects of DKF on CE/FE (Mean, SD) in [2,1] network 

Response Unit step (cm2sec) Steady- state (cm2sec) 
500 runs CE FE CE FE 
No noise   7301, 499.3   43.30, 31.22 
No filter 7549, 973.2 666.2, 116.0 345.1, 175. 660.3,116.4 

DKF 7475, 1091 323.1, 79.04 308.9, 182. 254.3, 58.10 
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(a) Unit step response (b) Tracking error 

Figure 7-7 In absence of process and measurement noise 

Table 7-4 Effects of configuration on CE/FE (Mean,SD) with DKF 

Response Unit step (cm2sec) Steady- state (cm2sec) 
500 runs CE FE CE FE 

[2,2] 710.3, 33.57 7.276, 1.141 34.53, 22.76 70.7, 10.59 
[4,2] 721.1, 27.15 7.049, 0.781 18.84, 11.17 70.42, 7.64 
[8,2] 726.8, 23.19 7.008, 0.552 11.18,   6.69 70.09, 5.32 
[2,4] 710.8, 21.63 2.400, 0.349 12.00,   7.91 22.29, 3.13 
[2,8] 710.4, 17.97 0.841, 0.113 6.23,   4.17 6.66, 0.90 

 
The observations from the results are briefly summarized:  

Figure 7-7 shows that in a noise-free environment, the tracking error is reduced by 

2 orders when the number of sensor groups is doubled (or increasing from [21,1] to [22,1], 

and to [23,1]).  

Table 7-3 suggests that in an environment corrupted by Gaussian white noise, the 

filter lowers the CE and FE for both the unit step and steady-state response. In fact, the 

FE is halved when the DKF was used. 

As Table 7-4 suggests, for the steady-state case, the CE decreases with increasing 

sensor usage. While increasing the number of sensor groups from 2 to 8 (s) reduces the 

CE by almost 60%, performing the identical change to the sensors in each group (r) is 

more effective and results in a reduction of almost 80%. However, the CE for the unit 
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step responses are unchanged with increasing redundancy and in fact higher at networks 

with higher s. 

(a) Effects of DKF state estimates with [2, 1] configuration 

(b) Effects of redundancy [2, r],  where r=1, 2, 22 and 23 

(c) Effects of sampling rate [s, 1] where s=2, 22 and 23 

Figure 7-8 Effects of configurations on displacement (Left: step response, Right: steady-

state) 
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The trend in the FE is similar to that of the CE. For both the unit step and steady-

state cases, increasing the redundancy of the sensor network is more effective than 

increasing the network sampling rate in reducing the FE. Increasing the network 

redundancy from 2 to 8, reduces the FE reduced by 88% and 91% in the unit step and 

steady state case respectively. However, increasing the network sampling rate by the 

same factor could only muster an improvement in FE that is less than 5%. 

As depicted in Figure 7-9, increasing the number of sensors in redundancy 

reduces the error in all cases except for the CE in the unit step case. On the other hand, 

the FE and CE for the unit step case is unaffected by the number of sensors in sequential 

mode. Increasing the number of sequential sensors is most effective in reducing the CE of 

the steady-state case.  

 
FE of unit step response FE of steady-state response 

CE of unit step response CE of steady-state response 

Figure 7-9 Effects of r and s on CE and FE 
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7.7 THROTTLING CONTROLLER IMPLEMENTATION 

From the results of the previous section, it can be seen that configurations with 

higher number of sensors in redundancy improve steady state tracking of the system. This 

is largely due to the presence of the DKF and accurate knowledge of the controlling input 

into the inverted pendulum system which allows accurate prediction of the state during 

transient motion. Assuming the following minimum and maximum configurations are 

available: [2,1] and [2,5], a throttling sensor configuration controller that employs 

variable configurations using feedback from the DKF state estimate and desired 

command is described as follows,  

 
1 if ( )

(( 1) )
5 otherwise

V kT q
r k T


  


 (7.24) 

where ˆ ˆ( ) ( ) ( ) / ( ) (0)V kT c kT x kT c kT x    and q is the threshold transition between 

the network configurations. This threshold determines the specific crossover point where 

the network switches between the maximum and minimum configurations. As 

performance of the overall organized sensor network is sensitive to the value of q, and 

reusing the CE and FE as a means to critique performance, 500 simulations of a delayed 

step input of the system with the throttling controller utilizing different values of q are 

compiled in Table 7-5. The case where q=0.1 is omitted because at steady state the 

natural variation of ˆ( )x kT caused by the noise in the system will inadvertently trigger the 

transient mode of the network.  

From the table, while employing the maximum configuration at all times, q=1, 

results in the lowest FE, it did not produce the lowest CE. Decreasing the value of q from 

1 ([2,5]) towards 0 ([2,1]) results in increasing FE and decreasing sensor network 
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utilization. The corresponding trend in CE is however nonlinear and a minimum occurs 

between the two extreme values of q. The throttling networks that resulted in the lowest 

CE are: q=0.3, 0.4, 0.5 and 0.6. The best performing throttling network occurs at q=0.5; 

and it outperformed [2,5] in CE and maintained an average sensor utilization of 88.3% 

when compared to [2,5]. 

Table 7-5 Effects of q on CE/FE (Mean,SD) in throttling network 

500 runs q CE (cm2sec) FE (cm2sec) Utilization (%) 
[2,1] 0 777.5, 103.2 48.55, 9.618 20.0 

Throttling 

0.2 719.4, 54.82 18.69, 4.468 82.4, 3.55 
0.3 718.9, 54.67 17.57, 3.940 85.3, 2.19 
0.4 718.8, 54.59 16.87, 3.603 87.1, 1.67 
0.5 718.6, 54.58 16.29, 3.320 88.3, 1.41 
0.6 718.7, 54.87 15.80, 3.098 89.7, 1.23 
0.7 719.2, 55.03 15.33, 2.893 90.8, 1.08 
0.8 720.0, 55.13 14.89, 2.689 91.8, 1.01 
0.9 721.4, 54.88 14.46, 2.488 92.8, 0.97 

[2,5] 1 730.8, 53.22 11.79, 1.360 100 

 

The resulting response of the cart under a delayed unit step response using the 

throttling sensor controller (q=0.5) is shown in Figure 7-10.The corresponding responses 

of the cart using the static configurations [2,1] and [2,5] are added for comparison. It can 

be seen that the throttling controller has the characteristics of both extreme 

configurations: The transient performance of cart under throttling controller is similar to 

that of [2,1] and the steady state performance is similar to that of [2,5].  
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Figure 7-10 Cart response and utilization under throttling network 
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