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SUMMARY 

 

The load-carrying and energy-dissipation capacities of ultra-high-performance 

concrete (UHPC) under dynamic loading are evaluated in relation to microstructure 

composition at strain rates on the order of 105  s-1 and pressures of up to 10 GPa. Analysis 

focuses on deformation and failure mechanisms at the mesostructural level. A cohesive finite 

element framework that allows explicit account of constituent phases, interfaces, and 

fracture is used. The model resolves essential deformation and failure mechanisms in 

addition to providing a phenomenological account of the effects of the phase transformation. 

Four modes of energy dissipation are tracked, including pressure-sensitive inelastic 

deformation, damage through the development of distributed cracks, interfacial friction, and 

energy released through phase transformation of the quartz silica constituent. Simulations 

are carried out over a range of volume fractions of constituent phases to quantify trends that 

can be used to design materials for more damage-resistant structures. Calculations show that 

the volume fractions of the constituents have more influence on the energy-dissipation 

capacity than on the load-carrying capacity, that inelastic deformation is the source of over 

70% of the energy dissipation, and that the presence of porosity changes the role of fibers in 

the dissipation process. The results also show that the phase transformation has a significant 

effect on the load-carrying and energy-dissipation capacities of UHPC for the conditions 

studied. Although transformation accounts for less than 2% of the total energy dissipation, 

the phase transformation leads to a twofold increase in the crack density and yields nearly an 

18% increase to the overall energy dissipation. Microstructure-behavior relations are 

established to facilitate materials design and tailoring for target-specific applications.    
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CHAPTER I  

INTRODUCTION 

 

Ultra-high-performance concrete (UHPC) is a relatively new and advanced building 

material that provides several advantages over conventional concrete. Benefits include 

significantly enhanced ductility and energy-absorption capabilities [1-4] and compressive 

strengths in excess of 150 MPa and flexural strengths of over 200 times those of 

conventional concrete [5]. These attributes are possible because UHPC has several unique 

characteristics that set it apart from more conventional forms of concrete, including finer 

quartz sand, a lower water-to-cement ratio, and the presence of superplasticizers and fine 

ductile metal or polymer fibers that are intended to provide protection against a variety of 

threat scenarios, including blast and impact [5]. Designing UHPC structures that are resilient 

to such extreme loading events requires that the material have high strength, the capacity to 

dissipate much of the imparted energy, and the capability to attenuate the stress caused by 

the loading. However, it is not clear how the characteristics of UHPC at the microstructural 

level determine these attributes. In particular, the effects of the constituent volume fractions 

on load-carrying and energy-dissipation capacities under high-rate loading have not been 

systematically quantified using realistic micromechanical models. Complicating the issue is 

the fact that the intense loading regimes of the threats against which UHPC structures are 

intended to protect lead to elevated temperatures and pressures. Under such conditions, the 

material constituents can change phase, which can drastically alter the dynamic response of 

the material. Understanding the mechanical behavior alone, however, is not enough to 

characterize a material in these loading regimes. Dynamic loading of UHPC is inherently a 

coupled multiphysics process involving mechanical, thermal, and phase transformation 
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behaviors. Establishing these relationships is important, as the relations can be used to tailor 

UHPC structures to mitigate specific threats. 

The large number of design variables at the microstructural level - such as volume 

fractions of constituent phases, microstructure morphology, constituent size scales, 

constituent behaviors, and interfacial bonding strength - pose a challenge in exploring 

microstructure-property/response relations. Developing comprehensive structure-property 

relations, however, requires that these variables and their interactions be analyzed. Such 

relations should account for mechanical, thermal, and phase transformation behaviors of the 

constituents of UHPC. The mechanical aspects - including fracture, friction, and bulk 

granular flow - lead to internal temperature rises within a UHPC structure and hydrostatic 

pressures on the order of multiple GPa. These internal temperature increases and high 

pressures within UHPC can induce phase transformations in the constituents [6]. One such 

transformation is the solid-state transformation of quartz from the α-quartz phase to the 

coesite phase. Increased temperature can also lead to thermal softening of the constituents. 

Phase transformations can lead to stiffness and density changes, as well as additional fracture 

that can lead to further dissipation and temperature increases, which in turn alter the 

mechanical behavior. This interaction among mechanical, thermal, and phase 

transformational processes during dynamic loading of UHPC ultimately determines its load-

carrying and energy-dissipation capacities. Properly accounting for the coupling between 

these processes in the regime of dynamic loading environments can provide for a more 

complete assessment of the load-carrying and energy-dissipation capacities. Because UHPC 

is a complex heterogeneous material, which, like ordinary forms of concrete, contains large 

amounts of quartz sand [1], it is of interest to account for these behaviors to better 

understand and take advantage of such mechanisms. For example, to most effectively tailor 
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the energy-dissipation capacity of UHPC structures and enhance their survivability under 

extreme loading environments (e.g., blast and impact), the fundamental processes that give 

rise to energy dissipation must be understood. 

The influence of microstructure can be investigated using experimental methods 

and/or numerical techniques. The use of experimental methods is expensive and lengthy for 

such complex systems because the number of experiments needed for such a task can 

quickly grow beyond allowable financial and time constraints. Additionally, deformation 

processes involved in the dynamic response of UHPC - including distributed microcracking, 

friction, and granular flow - are inherently coupled phenomena that are difficult to fully 

capture separately using experimental methods. Nonetheless, these processes and their 

interactions must be quantified to tailor materials for specific applications. 

Numerical simulations offer a useful means for establishing microstructure-

performance relations. Much of the published literature involving numerical simulations of 

concrete implements homogenized phenomenological constitutive relations on the 

macrostructural scale. For example, Mroz and Angelillo developed a rate-dependent model 

for concrete [7]. The model makes use of a damage surface with an associated flow rule to 

account for stiffness degradation. Voyiadjis and Taqieddin developed an elasto-plastic 

damage model for concrete materials that uses the crack density to model the degradation in 

the elasticity tensor [8]. The model is capable of reproducing the post-failure softening 

behavior that is representative of concrete. A similar model was also developed by Fanella 

and Krajcinovic [9]. A number of other hydrocode models are available for simulating the 

nonlinear dynamic responses of concrete structures [10].  

Mesoscale simulations that fully account for the heterogeneous nature of concrete 

can help explain the microscale processes that give rise to the observed structural response 
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on the macroscale. Park, Xia, and Zhou [11] conducted numerical simulations at the 

mesoscale using a fully dynamic finite element model to systematically study the effect of 

aggregate volume fraction on the strength and energy-dissipation capacity of plain concrete. 

Their micromechanical model explicitly accounts for the two-phase structure of 

cementitious matrix and quartz aggregate of plain concrete. The simulations concerned strain 

rates on the order of 104 s-1 and hydrostatic pressures up to 1.5 GPa. The results showed that 

an aggregate volume fraction of 42% leads to a 15% improvement in energy-dissipation 

capacity and a 30% enhancement in strength as compared to plain mortar. Aragao et al. [12] 

also conducted simulations using a cohesive finite element model to analyze fracture and 

failure in concrete at the microstructural level in which the two-phase structure of 

cementitious matrix and quartz aggregate is explicitly modeled. Cohesive traction and 

fracture energy parameters are calibrated in a manner so as to allow the model to accurately 

represent experimental data from quasi-static tensile tests. Xu, Hao, and Li [13] performed a 

similar study involving a mesoscale numerical model of fiber-reinforced concrete that 

provides explicit account of the matrix, aggregate, and fiber phases. The study considered 

the effects of aggregate and fiber size distribution, as well as fiber volume fraction, on the 

dynamic compressive strength of fiber-reinforced concrete. The results showed that fiber 

volume fractions in the range of 0.6% to 1.8% do not appreciably change the compressive 

dynamic inflation factor (i.e., at a given strain rate, dynamic compressive strength is 

independent of fiber content).  

Lammi, McDowell, and Zhou [14] investigated the dynamic fracture and dissipation 

behavior of concrete at several levels of hierarchy of microstructure/mesostructure using a 

cohesive finite element model that accounts for crack formation and frictional dissipation at 

crack faces. The nominal strain rate considered was on the order of 103 s-1. Quartz aggregate 
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and porosity were explicitly modeled, along with the interface between the phases. The 

volume fractions of quartz and porosity were in the ranges of 0 - 40% and 0 - 5%, 

respectively. The results showed that the concrete with 40% aggregate by volume has a load-

carrying capacity that is up to 12.2% higher than that of pure matrix without aggregate. A 

porosity level of 5% decreases the load-carrying capacity by up to 10.9%. Porosity is also 

found to have the most significant effect on energy dissipation by enhancing plastic 

deformation.  

Ellis, McDowell, and Zhou [15] conducted numerical simulations of 3D 

microstructures with explicit resolution of porosity and steel fibers within a cementitious 

matrix. The interface between fibers and matrix was also explicitly modeled. At strain rates 

of 5×102 - 103 s-1, increasing the fiber volume fraction from 0% to 2% increased the load-

carrying capacity by up to 19%. The energy dissipation depended most significantly on the 

fiber volume fraction. In contrast,  porosity had only a minor influence on energy dissipation.  

Other studies have been conducted to account for temperature- and pressure-

dependent properties in concrete, but the focus of such work has been either on thermal and 

mass transport properties [16] or on the static mechanical behavior [17-20]. More recent 

work has attempted to bridge the gap between mass transport properties and mechanical 

properties by simulating the damage initiation in UHPC exposed to rapid heating [21].  

A number of issues have yet to be addressed. First and foremost, there has not been 

a thorough and systematic characterization of the dynamic behavior of UHPC. In particular, 

the material performance in relation to the volume fractions of constituents has not been 

investigated over a sufficiently wide range. Numerical simulations have not considered the 

essential deformation mechanisms - including fracture, friction, and inelastic granular flow - 

that occur at the microstructural level. There is a lack of understanding on how these 
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microstructural-level mechanisms affect macroscopic responses of the overall composites. 

Many of the analytical models in the open literature developed to characterize these 

relationships require an excessive number of material parameters, some of which have no 

basis in the physical processes underlying the material behavior [22]. Consequently, these 

models are often applicable only to relatively narrow ranges of compositions and loading 

conditions specific to the experiments upon which the phenomenological constitutive 

relations are based [23]. Additionally, there have been no studies on the attenuation of stress 

waves as they traverse heterogeneous UHPC microstructures. There have also been no 

studies on the relative contributions of mechanisms for energy dissipation as a stress wave 

propagates through the structure. Also, the constituents in UHPC are known to undergo 

phase transformations under conditions with high temperatures and high pressures resulting 

from loading of sufficient magnitudes. In particular, at pressures above 2.35 GPa, the quartz 

in concrete undergoes a phase transformation from α-quartz to coesite, which involves a 

volume change of 8.82%. The effects of such phase transformations of constituents in 

UHPC on the overall mechanical response of the material have not been quantified. The 

first part of this thesis focuses on the behavior without phase transformations; the second 

part analyzes the effect of the pressure-induced α-quartz-to-coesite phase transformation of 

the quartz aggregate. 

In the analysis conducted here, a micromechanical cohesive finite element model 

(CFEM) is adopted to allow explicit resolution of the constituents in the concrete 

microstructure, including the cementitious matrix, aggregate, fibers, and voids. The model 

phenomenologically captures the effects of the α-quartz-to-coesite transformation in quartz 

silica. The model also allows explicit account of crack formation and frictional interaction 

between crack surfaces that come into contact under compression. This approach enables 
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the contributions of different dissipation mechanisms (bulk inelasticity, fracture/crack 

formation, and interfacial friction) to be tracked and quantified. Additionally, this approach 

captures the interaction and coupling of the dissipation processes at the microstructural level. 

The composition of the microstructure is systematically varied over a wide range to delineate 

the effects of each material constituent. Simulations are carried out at strain rates on the 

order of 105 s-1. The analyses address two primary issues: (1) the correlation between volume 

fractions of constituent phases and macroscopic response in terms of load carried, stress 

attenuation, crack formation, and energy dissipated and (2) the effect of the aforementioned 

phase transformation on the macroscopic response. The results are used to develop 

microstructure-performance relation maps that can be used to identify desired material 

design parameters for specific application conditions.   
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CHAPTER II  

CFEM FRAMEWORK 

 

2.1. MICROSTRUCTURE INSTANTIATION 

One of the goals of this thesis is to thoroughly characterize the dynamic behavior of 

UHPC over a wide range of constituent volume fractions. This necessitates a large number 

of microstructural instantiations. Sixty unique microstructures are generated with idealized 

2D morphologies, reflecting all combinations of the aggregate, void, and fiber contents. The 

parametric range of constituent volume fractions is shown in Figure 1. 

 

 

Figure 1. Microstructure design space with combinations of constituent volume fractions 
analyzed. 
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The microstructures analyzed are generated in a manner similar to that in Lammi, 

McDowell, and Zhou [14]. The purpose of this study is to quantify the load-carrying and 

energy-dissipation capacities of UHPC as functions of the volume fractions of phases, rather 

than phase size or size distribution. Consequently, each of the phases has a fixed size with no 

deviation, as shown in Table 1. The fibers, idealized as ellipses in 2D, are given a constant 

ellipticity ratio of 5:1. The microstructure samples are 5 × 20 mm. These constituent volume 

fractions and sizes are typical of UHPC fabricated at ERDC and other facilities around the 

world. 

 

Table 1. Diameters of quartz, porosity, and fibers used for all microstructures in the 
numerical simulations. 

Phase Diameter (µm) 

Quartz 600 

Porosity 100 

Fiber 200 

 

2.2. CONSTITUTIVE RELATIONS 

2.2.1. Cementitious Matrix 

Cementitious materials are both pressure-sensitive and rate-sensitive, so the 

constitutive relation used must be able to capture both aspects of the behavior. In this study, 

the Drucker-Prager model is used for the cementitious matrix [24]. The Drucker-Prager 

relation assumes the yield condition 

 
( )tan 0F t p dβ= − − ≤ , (1) 

where 
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3
1 1 1

1 1
2

r
t q

K K q

   = + − −   
    

. (2) 

In the above equations, p  is the hydrostatic pressure; β  is the internal friction 

angle in the meridional stress plane; d  is the yield stress of the material under pure shear; q 

is the von Mises equivalent stress, given by 3
2 :q = S S ; K is the ratio between the yield 

stress in triaxial tension and the yield stress in triaxial compression; and r is the third 

invariant of the deviatoric stress, given by 93
2 :r = ⋅S S S . In the preceding relations, S is the 

deviatoric stress tensor. Parameter K allows for tension-compression asymmetry on any 

arbitrary π-plane. To ensure a convex yield surface, the value of K is restricted to the range 

0.778 1.0K≤ ≤ . Setting 1K =  removes the dependence on the third invariant of the 

deviatoric stress, and Equation (1) reduces to the classical Drucker-Prager yield criterion [25]. 

Furthermore, when 1K =  and 0β = , Equation (1) reduces to the von Mises yield criterion. 

Because cementitious paste exhibits dilatation and is a non-associative material, the 

yield function F does not serve as the plastic flow potential. Instead, a scalar flow potential G 

is chosen such that 

 
( )tanG t p ψ= − , (3) 

where ψ  is the dilation angle. After yielding, a material with non-associated flow has the rate 

of plastic deformation tensor 

 

p
p G

c

ε ∂=
∂

D
ɺ

σσσσ
, (4) 

where 
plεɺ  is the equivalent plastic strain rate, defined by  

 
2

:
3

pl p pε = D Dɺ , (5) 
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 and 

 
1

1 tan
3

c ψ= − . (6) 

The values used for the Drucker-Prager constitutive relation in this study are 

provided in Table 2 [11]. 

 

Table 2. Parameters used in Drucker-Prager constitutive relation. 

Density (g/cm3) 2.4 

Elastic Modulus (GPa) 22.9 

Poisson's Ratio 0.2 

Quasi-Static 
Compressive Strength 

(MPa) 
40 

Friction Angle 

β (degrees) 28 

Dilation Angle ψ 
(degrees) 20 

K 0.8 

 

2.2.2. Quartz Aggregate 

The phase diagram for quartz is shown in Figure 2 [26]. At ambient conditions, 

quartz exists as α-quartz, which exhibits a trigonal crystal structure [27]. Above a pressure of 

2.35 GPa and at ambient temperature, quartz undergoes a solid-state phase transformation 

to coesite, which exhibits a monoclinic crystal structure. This transformation is accompanied 

by an 8.82% decrease in volume [28] and a 0.45% decrease in internal energy [29]. Coesite 

has an enthalpy of formation of -907.25 kJ/mol [30].  Although quartz contracts upon 
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transformation into coesite, the transformation is associated with a loss in crystallographic 

symmetry. This is a consequence of the change of position of SiO2 polyeders within the 

second coordination sphere [31]. In the first part of this thesis, which investigates the effect 

of microstructure alone on the dynamic response of UHPC, the quartz aggregate is assigned 

rate-independent linear elastic properties with the elastic modulus and Poisson's ratio given 

above. In the second portion of this thesis, where the effect of phase transformation is 

assessed, a phenomenological model of the α-quartz-to-coesite transformation is employed 

as described below. This phenomenological model considers only the change in volume, and 

the transformation  is assumed to be isothermal. 

 

 

Figure 2. Phase diagram for quartz with the two phases of interest to this thesis circled in red 
[26]. 
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Due to the limited symmetry of trigonal and monoclinic crystals, the crystalline 

natures of α-quartz and coesite dictate that they are anisotropic. However, for simplicity, 

quartz is modeled as an isotropic material through the use of effective isotropic properties 

obtained using the Voigt-Reuss-Hill averaging technique [32]. This procedure is carried out 

over a range of pressures so that the material properties used in the simulations reflect 

relevant pressure-dependence, as shown in Figure 3. 

 

 

Figure 3. Effective isotropic elastic properties for α-quartz and coesite as functions of 
hydrostatic pressure. 

 

The first step is the collection of elastic constants for α-quartz and coesite as a 

function of pressure. Trigonal crystal structures possess six independent elastic constants. 

Since the data available in the literature [27] extend only up to 1.0 GPa, it is necessary to 

extrapolate the elastic constants of α-quartz up to the transition pressure of 2.35 GPa using 
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a linear curve fit. The monoclinic structure of coesite possesses fewer symmetries and 

requires 13 elastic constants [33]. 

Next, four sets of values are chosen for the purpose of deriving effective isotropic 

properties: (1) α-quartz constants at 0.0 GPa, (2) α-quartz constants at 2.35 GPa, (3) coesite 

constants at 2.35 GPa, and (4) coesite constants at 10.0 GPa. The Voigt-Reuss-Hill averaging 

technique [32] is used at each pressure to calculate four sets of isotropic properties. Elastic 

constants pertaining to pressures between points 1 and 2 and between points 3 and 4 in 

Figure 3 can be found through interpolation. 

The first step of the Voigt-Reuss-Hill averaging technique is to calculate the Voigt 

effective stiffness. The Voigt stiffness assumes uniform strain and provides an upper bound 

on elastic moduli. The Voigt effective bulk modulus  KV is defined by 

 11 22 33 12 23 319 ( ) 2( ),VK c c c c c c= + + + + +  (7) 

where cij are the components of the elastic stiffness tensor. The Voigt shear modulus GV is 

defined as 

 11 22 33 12 23 31 44 55 6615 ( ) ( ) 3( ),VG c c c c c c c c c= + + − + + + + +  (8) 

where cij are the components of the elastic stiffness tensor.  

Similarly, the Reuss effective stiffness assumes constant stress and provides a lower 

bound on the elastic moduli. The Reuss effective bulk modulus KR is defined as 

 11 22 33 12 23 311/ ( ) 2( ),RK s s s s s s= + + + + +  (9) 

where sij are the components of the elastic compliance tensor. The Reuss shear modulus GR 

is defined as 

 11 22 33 12 23 31 44 55 6615 / 4( ) 4( ) 3( ),RG s s s s s s s s s= + + − + + + + +  (10) 
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where sij are the components of the elastic compliance tensor. 

Finally, the Voigt-Reuss-Hill effective bulk modulus is simply the arithmetic mean of 

the Voigt stiffness and the Reuss stiffness, i.e., 

 .
2

R V
VRH

K K
K

+=  (11) 

Similarly, the Voigt-Reuss-Hill effective shear modulus is given by 

 .
2

R V
VRH

G G
G

+=  (12) 

Since KR≤ K≤ KV and GR≤ G≤ GV, where K and G are the true values of the 

stiffness and shear modulus, the Voigt-Reuss-Hill average provides a satisfactory estimate of 

the elastic properties if the quartz grains are assumed to be isotropic. At the grain level, the 

quartz aggregate is, of course, anisotropic. However, at the mesostructural level of UHPC, 

where more interest is in the collective response of the entire structure than in the behavior 

of any individual grain, isotropy of the quartz aggregate is a reasonable assumption. 

The Voigt, Reuss, and Voigt-Reuss-Hill stiffness values are summarized in Table 1. 

For clarity, the red line demarcates the boundary between α-quartz and coesite. In the last 

two columns of Table 1, the elastic modulus E and Poisson's ratio ν are calculated using the 

Voigt-Reuss-Hill bulk modulus and shear modulus according to standard elasticity 

relationships. 
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Table 3. Voigt-Reuss-Hill average stiffness values for α-quartz and coesite at key pressure 
values. 

 

 

The effective isotropic elastic properties are also shown in Figure 3. As in Table 3, 

the division between α-quartz and coesite is indicated by a red line. The values between the 

numbers calculated in Table 3 represent simple linear interpolation. 

The transformation of α-quartz into coesite is accompanied by a volume reduction 

of 8.82% [28]. The literature is not clear as to whether this volume reduction is with respect 

to the original, undeformed volume or with respect to the elastically deformed configuration 

just prior to transformation. For the purposes of this study, it is assumed that the 8.82% 

volume reduction is relative to the volume just prior to the transformation. To model this 

contraction, a methodology based on finite deformation kinematics has been developed. 

Assuming a multiplicative decomposition of the deformation gradient, the deformation of a 

quartz element can be shown schematically in Figure 4.  

 

Pressure (GPa) KV (GPa) KR (GPa) KVRH (GPa) GV (GPa) GR (GPa) GVRH (GPa) E (GPa) ν
0.0 (1 atm) 38.11 37.65 37.88 48.07 41.38 44.73 96.29 0.08

2.35 47.37 46.74 47.06 49.55 43.48 46.52 104.96 0.13
2.35 106.37 100.22 103.29 59.47 51.52 55.49 141.19 0.27
10.00 133.21 127.97 130.59 60.97 50.40 55.68 146.26 0.31

α-Quartz

Coesite
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Figure 4. Multiplicative decomposition of deformation gradient accounting for the volume 
change associated with quartz phase change. 

 

Here, R0 represents the reference region, c represents the initial center of the quartz 

element, and x represents the initial position. Fel is the deformation gradient associated with 

the elastic deformation of the quartz. This leads to an intermediate state where R is the 

intermediate reference region, c is the center of the quartz element in the intermediate state, 

and y is the position. Ftr represents the deformation due to the phase transformation alone 

and leads to the final state where R* is the reference region, c is the center, and y is the 

position. The final state can be reached through the combined deformation gradient 

tr el= ⋅F F F . No other forms of inelastic deformation are considered. Natural quartz crystals 

do not display appreciable plastic deformation except under the combination of pressures 

and temperatures in excess of 1.5 GPa and 400 °C, respectively [34]. Furthermore, these data 

are for quasi-static strain rates. Although pressures in this study are in this regime, 

temperatures are not; internal temperature increases are not accounted for. Consequently, 

the failure mode of quartz is likely to be brittle fracture under the high-rate loading of this 

study.  
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The volumetric contraction can be described as proportional and isotropic scaling of 

the coordinates about the center of an element relative to the intermediate state in the form 

of  

 ( )* .α= − +y y c c  (13) 

In Equation (13), α represents the amount of scaling in any direction corresponding to the 

desired volume change. Note that α<1 since the volume decreases upon transformation.  

The deformation gradient due to the transformation alone is 

 
*

tr

0 0

0 0

0 0

y

y

α
α α

α

 
∂  = = = ∂

  

F I . (14) 

To determine α, note that  

 
*

3d
det 0.9118.

d
trV

V
α= = =F  (15) 

Therefore, 0.9697.α =  

The total deformation gradient is 

 el el( )α α= ⋅ =F I F F . (16) 

The logarithmic strain with respect to the intermediate state is then 

 ( ) ( ) ( ) ( ) ( )L* * Lln ln ln ln ln ,α α α= = = + = +ε V V I V I ε  (17) 

where V
 
is the left stretch tensor. Finally, the Cauchy stress σσσσ, or the true stress in the final 

state, is calculated in incremental form according to 

 
L*: ,d d=σ C ε  (18) 
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where C is the fourth-order elastic stiffness tensor for quartz. To calculate the Cauchy stress 

at the i+1th time step, the Cauchy stress increment is simply added to the previous Cauchy 

stress, i.e., 

 
1 .i i d+ = +σ σ σ  (19) 

The above constitutive relations are implemented in the Abaqus/Explicit user 

material subroutine VUMAT [35]. The computational implementation of the VUMAT 

algorithm is shown in Figure 5. The algorithm starts by initializing all internal state variables, 

including one to track the phase of quartz elements, which is initialized to zero. This binary 

state variable is given a value of zero if the element is in the α-quartz phase or a value of one 

if it is in the coesite phase. The stress is then evaluated using basic equations of linear 

elasticity, with the values of E and ν interpolated from the α-quartz region of Figure 3, 

depending on the current hydrostatic pressure. At this point, the procedure checks the 

current hydrostatic pressure against the transformation pressure. If the current stress state is 

below the transformation stress, the algorithm returns to α-quartz elastic properties for the 

next time step. If, however, the current stress state yields a pressure above the 

transformation stress, the algorithm checks the status of the phase state variable. If the 

internal state variable is zero, the element must be reaching the transformation pressure for 

the first time, in which case the transformation-induced volume change must be effected. 

This is done by calculating the logarithmic strain according to the preceding series of 

equations. Then the internal state variable tracking the phase is changed from zero to one, 

signifying that the element has undergone the solid-state phase transformation. At this point, 

the stress is evaluated by interpolating elastic properties from the coesite region of Figure 3. 

Returning to the point at which the status of the internal state variable is checked, if the 
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value is already one, then the element has already undergone phase transformation. In this 

case, the volume does not need to be reduced again, and the algorithm proceeds directly to 

the calculation of stress using elastic properties interpolated from the coesite region of 

Figure 3. 

 

 

Figure 5. Flowchart summarizing computational implementation of Abaqus/Explicit 
VUMAT for phenomenological model of quartz phase change. 

 

To verify the proper implementation of the constitutive relations, the behavior of a 

block of α-quartz under uniform hydrostatic pressure is analyzed. Equal pressure loads are 

applied to five of the six faces of the cube, with the rear face fixed in the Z direction, 

creating a hydrostatic compression state of stress in the material. The load increases 
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gradually from 0 to 9 GPa so that the behavior of the cube can be clearly observed both 

before and after the transition pressure of 2.35 GPa. 

The behavior of the unit cube can be seen in Figure 6(a), which shows the 

hydrostatic pressure as a function of radial strain. Due to the symmetry of the model, all 

strain components are equal, as the strain represents the strain in any direction. A key 

observation from the figure is that when the transition pressure of 2.35 GPa is reached, the 

hydrostatic pressure remains nearly constant as the transformation occurs and the volume 

contracts. Below and above this transition pressure, however, the stress is linearly related to 

the strain, as expected. 

 

 

Figure 6. Validation of the phase transformation algorithm through the consideration of the 
response of a unit cube under hydrostatic pressure: (a) hydrostatic pressure as a function of 

radial strain and (b) unit cube volume as a function of time with and without transformation. 

 

The change in the element volume can be seen in Figure 6(b), where the normalized 

element volume is plotted as a function of time. The two curves represent the case without 

the phase transformation (blue) and with the phase transformation (red). Once the critical 

transformation pressure is reached, phase transformation occurs and a sudden decrease of 

8.82% in volume is seen, indicating the occurrence of the phase transformation. 
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2.2.3. Steel Fibers 

The Johnson-Cook model, which allows for the modeling of the rate-dependent 

hardening of steel, was used to describe the behavior of the steel fibers. The Johnson-Cook 

constitutive relation can be expressed as 

 ( ) ( )
0

, , 1 log 1 room

melt room

mp
p p n T T

T A B C
T T

εσ ε ε ε
ε

     −
 = + + −    −        

ɺ
ɺ

ɺ
.                (20) 

Here, A, B, C, and m are material parameters that are calibrated using experimental data [36]. 

The first expression on the right hand side accounts for strain hardening, the second 

expression accounts for strain-rate hardening, and the third expression accounts for thermal 

softening. Model parameters are listed in Table 4. The introduction of reinforcing steel fibers 

also requires the appropriate calibration of cohesive elements bonding the fibers to the 

cement matrix. The peak traction and fracture energy of the fiber-cement interface are in line 

with values taken from experimental data for fiber-reinforced cement [37, 38].  

 

Table 4. Parameters used in Johnson-Cook model for reinforcing steel fibers. 

Density (g/cm3) 7.8 

Young’s Modulus E (GPa) 203 

Poisson's Ratio ν 0.28 

A (MPa) 792 

B (MPa) 510 

n 0.26 

C 0.014 

Troom (K) 300 

Tmelt (K) 1793 

m 1.03 

0εɺ (s-1) 1 

Specific heat (J/kg-K) 477 
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2.2.4. Interfaces 

Cohesive elements are specified between all bulk elements boundaries with the 

exception of elements in the fibers, which are assumed to undergo no fracture. The cohesive 

elements allow for damage initiation and development. A bilinear traction-separation law is 

adopted to govern the behavior of the cohesive elements [39].  

The linear-elastic part of the traction-separation law relates the traction vector t to 

the element stiffness K and the separation u resulting from the traction vector t. This 

relationship is given by 

 
.=t Ku
 (21) 

The above equation can be expressed in matrix form to indicate coupling between 

the normal and shear components of the traction-separation relationship, i.e., 

 

.
n nn ns nt n

s ns ss st s

t nt st tt t

t K K K u

t K K K u

t K K K u

     
    =    
         

 (22) 

Full coupling between normal and shear components in the traction-separation 

response is represented by the off-diagonal terms. For the purposes of this thesis, however, 

an uncoupled relation is chosen, i.e., 

 

0 0

0 0 .

0 0

n nn n

s ss s

t tt t

t K u

t K u

t K u

     
    =    
         

 (23) 

Although the linear-elastic part of the response has no coupling between shear and 

normal components, damage initiation and evolution have a mixed-mode form. Damage 

initiation follows the quadratic interaction relationship shown in Equation (24), where tn is 
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the normal stress in a cohesive element, ts and tt are the shear stresses, and nt
0

, st
0

, and tt
0

 are, 

respectively, the critical values of nt , st , and tt , which represent the cohesive strength. In this 

thesis, both st
0

 and tt
0

 are assumed to have the same value. Because it is not physically 

meaningful for compressive tractions to contribute to damage initiation, only non-negative 

(tensile) normal tractions are considered in the damage initiation rule. This is indicated by the 

presence of the Macaulay brackets around tn. Damage is initiated when 

 

2 2 2

0 0 0
1n s t

n s t

t t t

t t t

     
+ + =     
    

. (24) 

A schematic representation of the bilinear traction-separation law is shown in Figure 

7. Loading initially proceeds from point A to point B, at which point softening occurs with 

increasing strain until failure at a separation of δ. 

 

 

Figure 7. Bilinear traction-separation law for cohesive elements. 

 

Once damage initiates in a cohesive element, the interface follows the mixed-mode 

fracture criterion of Benzeggagh and Kenane given in Equation (25) [40]. In this relationship, 
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Gn, Gs, and Gt  are the work done by tractions nt , st , and tt , respectively. 
C
nG , 

C
sG  and 

C
tG  

are the critical fracture energies in the normal and shear directions, respectively. These 

quantities are used to determine the degree of damage in a cohesive surface pair. For 

convenience, the critical fracture energies in the two shear directions are treated as equal (i.e., 

C C
s tG G= ). The criterion is written as 

 

( )C C C Cs t
n s n

n s t

G G
G G G G

G G G

η
 ++ − = + + 

. (25) 

There are four interface zones in the model: paste-paste, quartz-quartz, quartz-paste, 

and fiber-paste. The constitutive behavior of all cohesive elements modeled in this study 

follows the same constitutive law; however, the calibration of the traction-separation 

stiffness, the peak traction across the element ( 0
it ), and the normal and shear fracture 

energies (
f

nG  and 
f

sG ) is specific to each type of interface. The parameters for all cohesive 

relations used in this study are presented in Table 5. 

 

Table 5. Cohesive element properties for each interface. 

 
Material 

 
Cement 

Quartz 
Aggregate 

Cement-
Aggregate 
Interface 

Cement-
Fiber 

Interface 
Kn (TPa) 22.9 96.6 22.9 22.9 

Ks/t (TPa) 9.5 44.7 9.5 9.5 

tn
0 (MPa) 40.0 50.0 10.0 10.0 

ts/t
0 (MPa) 25.0 40.0 6.0 6.0 

Gn
C (J/m2) 40.0 15.0 5.0 5.0 

Gs/t
C (J/m2) 40.0 15.0 5.0 5.0 

η 1.45 1.45 1.45 1.45 
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As shown in Table 5, the traction-separation stiffness for cohesive elements along 

interfaces between the phases and within the bulk phases is a factor of 103
 times the stiffness 

of the corresponding bulk elements. This choice has two benefits. First, artificial softening 

of the model is avoided. Second, the work of separation associated with the linear-elastic 

portion of the cohesive behavior is minimized, ensuring that the bulk of the work is in the 

fracture energy, providing adequate softening in the cohesive response. 

2.2.5. Interfacial Contact and Friction 

After the failure of cohesive elements, contact between bulk elements leads to 

frictional sliding. Contact between element faces is incorporated into the model using a 

contact algorithm similar to that developed by Camacho and Ortiz [41]. The algorithm 

identifies free surfaces and fractured surfaces as potential contact surfaces in each time step 

of the simulation. Nodal coordinates at the end of every time step are used to define master 

and slave surfaces for the next time step. Nodal displacements are then calculated at the 

beginning of every time step. The corresponding nodal coordinates are used to check 

whether nodes of one internally defined surface have penetrated other internally defined 

surfaces. If penetration is predicted, then penalty forces of sufficient magnitude are applied 

to the surfaces in the direction of their normal vector such that there is contact between 

them but no interpenetration. For surfaces that are in contact, the Coulomb friction law 

governs the interfacial friction force. The coefficient of sliding friction for all interfaces is 

chosen to be 0.6, a typical value for cement-on-cement sliding [42]. It is assumed that the 

static and dynamic coefficients of friction are the same.   
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2.3. COHESIVE FINITE ELEMENT MODEL 

Figure 8 illustrates the configuration of the computational model along with the 

loading and constraint conditions. The particular microstructure shown has 10% aggregate, 

2.5% porosity, and 2.5% fibers by volume. Compressive loading is effected by the 

imposition of a boundary velocity normal to the top surface. For all calculations, the 

imposed velocity is 1000 m/s, giving rise to a nominal strain rate of 5×104 s-1 if the 

deformation in the whole model is uniform. The calculations consider the first 6 µs of 

deformation, resulting in a total strain of 30% in the vertical direction. Rigid boundary 

conditions are applied at the lateral sides of the microstructure, allowing the computations to 

approximate the overall conditions of uniaxial strain with significant lateral confining stresses.  
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Figure 8. Cohesive finite element model for UHPC microstructures with four constituent 
phases of UHPC, imposed velocity, periodic boundary conditions, cohesive elements, and 

infinite elements. 

 

The cohesive finite element model has a mesh resolution of 33.3 µm/element. In the 

absence of pores, the mesh consists of 360,000 six-noded triangular prism (type C3D6 in 

Abaqus) bulk elements and 1,438,800 eight-noded (type COH3D8) cohesive elements. 

Cohesive elements are present at all phase boundaries of all bulk elements; consequently, 

fracture between the constituent phases can be resolved. Additionally, cohesive elements are 

present within regions of quartz and matrix bulk elements, allowing for fracture within the 

quartz and cementitious matrix to be resolved. The cohesive elements also allow fracture 
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energy and subsequent dissipation through interfacial friction to be analyzed. Infinite 

elements (type CIN3D8) are specified at the bottom to allow stress waves to pass through 

the material and minimize reflection back into the microstructure. Despite the presence of 

this transmission boundary, partial reflections are seen in the calculations because material 

properties change during deformations and a perfect match of impedance cannot be 

maintained throughout the duration of the loading events. In this thesis, only data prior to 

the arrival of the stress wave at the bottom are used; therefore, the possible reflection of the 

stress is irrelevant. 

2.4. EVALUATION OF ENERGY DISSIPATION 

Four modes of energy dissipation (damage/fracture, friction, plasticity, and phase 

transformation) are tracked throughout the deformation process to assess the energy-

dissipation capacity of the microstructures. The first three quantities are provided by Abaqus 

as the output variables ALLDMD, ALLFD, and ALLPD, respectively. In the first portion of 

this thesis, which investigates the effect of microstructure alone, only these first three modes 

are considered. In the second portion, which investigates the effect of phase transformation, 

the energy released by the quartz aggregate upon transformation into coesite is also 

considered. 

The energy dissipated through damage and fracture of interfaces between the phases 

is defined in Equation (26), where v is the relative velocity vector between the pair of 

surfaces, t is the traction vector across the surfaces, and S is the surface of the material in the 

current configuration. The traction across the cohesive surfaces is determined by the 

traction-separation law discussed in Section 2.2.4. Only tensile tractions contribute to 

damage initiation and dissipation in this thesis. 



   30

 
0

t

d

S

E dS dτ
 

= ⋅ 
 
∫ ∫ v t  (26) 

After failure of cohesive elements at interfaces, surfaces come into frictional contact, 

as discussed in Section 2.2.5. This contact generates energy dissipation through friction. The 

frictional dissipation is defined in Equation (27), where v is the relative velocity vector 

between the pair of surfaces, t is the traction vector across the surfaces, and S is the surface 

over which contact occurs. Although Equations (26) and (27) appear identical, their usage 

differs in application. Equation (26) pertains to interfaces that have not yet fractured. No 

frictional dissipation is possible between these surfaces. Equation (27) is applicable to 

interfaces that have fractured, allowing for surfaces to come into contact. 
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The energy dissipated through inelastic deformation of the bulk constituents is 

defined in Equation (28), where σσσσ  is the Cauchy stress tensor, p
ɺεεεε  is the plastic strain rate 

tensor, and V is the volumetric domain in the reference configuration.  
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∫ ∫σ : εɺ  (28) 

Although friction and inelastic deformation typically generate heat, 

thermomechanical coupling is not considered in this thesis.  
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CHAPTER III  

RESULTS, ANALYSIS, AND DISCUSSION 

 

After all the microstructures are instantiated, the simulations are performed using the 

commercial finite element analysis software package Abaqus/Explicit [24]. 

3.1. EFFECT OF MICROSTRUCTURE 

3.1.1. Load-Carrying Capacity 

In response to the imposed velocity on the upper surface, a stress wave propagates 

through the microstructure in the direction parallel to the direction of the imposed velocity. 

The average normal traction on the upper face of the microstructures (tn) is taken as a 

measure of the load carried. The averaging is carried out over all elements having a node on 

the top face. The traction is averaged at each time step of the simulation to provide a single 

value of the load-carrying capacity at that time. The length of the microstructure in the x2 

direction allows sufficient time for the stress wave to develop so that an accurate 

representation of the load-carrying capacity can be captured without introducing an artificial 

response due to interaction with the transmission boundary on the bottom surface.  

Figure 9 shows the normal stress component in the vertical direction in a 

microstructure with 40% aggregate, 0% porosity, and 10% fibers at three different times in 

the simulation. The first time is 0.5 µs, which illustrates the initial response of the 

microstructure. This time is the first point at which stress data are stored in the course of the 

simulation. The second time is 3.0 µs, which provides a view of the stress in the 

microstructure at an intermediate time in the simulation. The final time is 6.0 µs. At this 

point in time, the stress wave has very nearly reached the bottom surface of the 
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microstructure. The implied wave speed is approximately 3.3 km/s. This value agrees 

reasonably well with the theoretical longitudinal wave speed in cement paste, which is given 

by 
1(1 ) (1 )(1 2 ) 3 3dc E . km sν ν ν ρ −= − + − ≈ ⋅ . During the next time step in the simulation, 

the stress wave reaches the bottom boundary and distorts the results. The microstructure 

discussed here, having 40% aggregate, 0% porosity, and 10% fibers, is the densest 

microstructure over the range of constituent volume fractions considered and therefore has 

the highest longitudinal wave speed. As such, the stress wave will also not have reached the 

bottom surface in any of the other microstructures. A dynamic loading event is an 

evolutionary process, so there is no single point at which the strength of the material can be 

defined. However, the proper comparison of 60 unique microstructures necessitates a 

common point of comparison. The choice of this point is somewhat arbitrary, but is based 

upon consideration of the propagation of the stress wave through the microstructure as well 

as the evolution of the traction on the upper surface. 
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Figure 9. Propagation of stress wave through a microstructure with 40% aggregate, 0% 

porosity, and 10% fibers at three different times: (a) 0.5 µs, (b) 3.0 µs, and (c) 6.0 µs. 

 

Figure 10 shows the evolution of the average traction on the upper face of a 

microstructure with 10% aggregate, 0% porosity, and 0% fibers by volume. Two distinct 

regions can be seen in the response. The first is a linear, rapidly increasing regime. In the 

second region, where the stress reaches a plateau, granular flow of the cementitious matrix is 

the dominant deformation mechanism. The microstructures will be compared at 6.0 µs, 

which provides a comparison during the relatively constant plateau region before the stress 

wave has reached the bottom surface. 
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Figure 10. Evolution of the average normal traction on the upper surface showing two 
distinct stages for a microstructure with 40% aggregate, 10% fibers, and 0% porosity. 

 

The load-carrying capacities for all 60 unique microstructures are shown in Figure 11. 

Four subplots are shown, each corresponding to a different aggregate volume fraction, to 

more easily present four-dimensional data. Within each plot, the horizontal axes indicate the 

fiber and porosity volume fractions. The vertical axis shows the normalized load-carrying 

capacity. The data are normalized to the load-carrying capacity of a microstructure 

comprised of 100% cementitious matrix. This baseline value is 7.6 GPa. At any time step 

within the plateau region mentioned above, the traction on the upper face exhibits some 

degree of variation due to the heterogeneity of UHPC microstructures. However, over the 

entire plateau region, the traction is relatively constant. Consequently, the load-carrying 

capacity shown in Figure 11 is the traction on the upper surface averaged over all time steps 

in the plateau region. Fibers play a significant role in the load-carrying capacity, while the 

aggregate and porosity play a lesser role. As expected, the microstructure with the largest 
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load-carrying capacity has 40% aggregate, 10% fibers, and 0% porosity. This provides a 38% 

improvement in the load-carrying capacity as compared to 100% cementitious matrix. 

 

 

Figure 11. Normalized load-carrying capacity for all microstructures at four different 
aggregate volume fractions: (a) 10%, (b) 20%, (c) 30%, and (d) 40%. The normalizing factor 

7.6matrix GPa.nt =  

 

Lammi, McDowell, and Zhou [14] concluded that there is a synergistic effect 

between the aggregate and porosity whereby the detrimental effect of porosity is 

compounded when the aggregate volume fraction is largest. No such trend is found in this 

analysis. Voids do have a measurable, but minor, effect on the load-carrying capacity. For 

example, a microstructure with 40% aggregate and 10% fibers experiences a 7% decrease in 

load-carrying capacity as the porosity is increased from 0% to 5%. This illustrates the need 
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to carefully control porosity in designing UHPC structures. Based on observation of the 

stress wave as it develops throughout a microstructure, the voids collapse under pressures in 

the range of 2-3 GPa.  

It can be seen here that increasing aggregate and fiber volume fractions increases the 

load-carrying capacity. Subsequent sections will show that increasing aggregate and fiber 

volume fractions also increases the energy dissipation. The fact that the load-carrying 

capacity increases despite the increase in energy dissipation indicates that the damage within 

the UHPC microstructure does not have a measurable effect on the load-carrying capacity 

under the loading conditions considered. The foregoing observations suggest that the load-

carrying capacity is in reality more of a reaction force at the impact site and that the load 

carried is primarily determined by the density of a given microstructure. This is illustrated in 

Figure 12, which shows the normalized load-carrying capacity of all 60 microstructures as a 

function of the average microstructure density. A clear upward trend in the data can be seen. 

However, the scatter in the data indicates that density alone does not explain the variation in 

the results. At a common density, the load-carrying capacity of two different microstructures 

can vary by as much as 20%. The figure also delineates aggregate volume fraction by color. 

This illustrates that for a common aggregate volume fraction, the linear trend has 

significantly less scatter than the entire data set. Because the average density shown on the 

horizontal axis is calculated as the sum of constituent density weighted by constituent 

volume fraction, the trends in this figure suggest that a more complex relationship is 

necessary to relate the load carried to the volume fractions of constituents. This will be 

discussed further in Section 3.1.3. 
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Figure 12. Normalized load-carrying capacity as a function of the overall density of the 
materials. 

 

The spatial distribution of the stress component in the vertical direction in 

microstructures at the extremes, or "corners," in Figure 1 of the simulated parametric ranges 

of microstructures can be seen in the eight plots in Figure 13. This figure shows the stress at 

0.5 µs, 2.0 µs , and 4.0 µs. The preceding analysis showed that the load-carrying capacity 

increases with increasing aggregate and fiber volume fractions, despite the fact that they also 

serve to increase the energy dissipation as well. However, the load-carrying capacity is 

measured in this study as the traction on the upper surface of a microstructure. Although 

there is no attenuation of this load, there may be attenuation within the microstructures. 

Figure 13, however, shows that there is no appreciable attenuation of the stress wave over 

the distance analyzed even as it traverses the microstructure. Although there is moment-to-

moment fluctuation, the stress remains relatively constant throughout the microstructure. 

The fluctuation is due to the heterogeneity of the microstructure. Over the length and time 
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scales considered in this study, the stress throughout a microstructure is governed more by 

the material’s short-term elastic response. 

 

 

Figure 13. Stress propagation in microstructures at the eight extremes of the design space at 

0.5 µs, 2.0 µs, and 4.0 µs: (a) 10% aggregate, 0% porosity, 0% fibers; (b) 10% aggregate, 0% 
porosity, 10% fibers; (c) 10% aggregate, 5% porosity, 0% fibers; (d) 10% aggregate, 5% 
porosity, 10% fibers; (e) 40% aggregate, 0% porosity, 0% fibers; (f) 40% aggregate, 0% 

porosity, 10% fibers; (g) 40% aggregate, 5% porosity, 0% fibers; and (h) 40% aggregate, 5% 
porosity, 10% fibers. 
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3.1.2. Energy-Dissipation Capacity 

Three modes of energy dissipation are tracked in this set of simulations: plastic 

dissipation due to inelastic deformation in the steel fibers and granular flow of the 

cementitious paste, damage due to fracture and distributed cracking, and friction at cracked 

interfaces.  

3.1.2.1. Total Energy Dissipation 

The total energy dissipation is the sum of the three modes of energy dissipation, but 

each mode does not play an equal role. The exact proportion of energy dissipated by each 

mode depends on the volume fractions of the constituents. However, some general 

observations can be made. Figures 14(a)-(b) show the energy dissipation components as a 

function of strain for two microstructures with a common aggregate volume fraction of 20% 

but different porosity and fiber volume fractions. It can be seen that increasing porosity and 

fiber volume fractions increases the portion of energy dissipation attributable to friction but 

decreases the portion attributable to inelastic deformation. Figure 14(a) shows porosity and 

fiber volume fractions of 0%, while Figure 14(b) shows porosity and fiber volume fractions 

of 5% and 10%, respectively. The vertical axes on these plots have been normalized such 

that the sum of the three energy dissipation components is exactly unity at a strain of 0.3. 

The two plots appear similar, but there are several differences that arise due to the different 

volume fractions of the constituents. At a strain of 0.3, inelastic deformation, friction, and 

fracture contribute 88.1%, 11.7%, and 0.2%, respectively, of the total energy dissipation in 

the first microstructure. In the second microstructure, inelastic deformation, friction, and 

fracture contribute 84.9%, 15.0%, and 0.1%, respectively, of the total energy dissipation. 

Although the presence of fibers and porosity is seen here to decrease the portion of energy 
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dissipation due to inelastic deformation, Section 3.1.2.4 will show that fibers and porosity in 

fact increase the plastic component of energy dissipation. 

 

 

Figure 14. Components of the total energy dissipated as a function of strain for 
microstructures with (a) 20% aggregate, 0% porosity, 0% fibers; (b) 20% aggregate, 5% 

porosity, 10% fibers; (c) 10% aggregate, 0% porosity, 0% fibers; and (d) 40% aggregate, 0% 
porosity, 0% fibers. 

 

Figures 14(c)-(d) show that increasing the aggregate volume fraction increases the 

portion of energy dissipation attributable to friction but decreases the portion attributable to 

plastic deformation. Figures 14(c)-(d) also show the energy dissipation components as a 
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function of strain in two microstructures with common porosity and fiber volume fractions 

of 0% at two different aggregate levels, 10% and 40%. In the first microstructure, inelastic 

deformation, friction, and fracture contribute 91.3%, 8.9%, and 0.2%, respectively, of the 

total energy dissipation. In the second microstructure, inelastic deformation, friction, and 

fracture contribute 79.2%, 20.6%, and 0.2%, respectively, of the total energy dissipation. In 

order to increase the energy dissipation of UHPC, emphasis should be placed on enhancing 

frictional and plastic work in the microstructure. Changing either of these by a given 

percentage will have a far larger effect on the overall total than changing the damage energy 

by the same percentage. 

Figure 14 shows the evolution of the energy dissipation components in four 

individual microstructures. Displaying the total energy-dissipation capacity in all 60 

microstructures necessitates a more concise format. Figure 15 shows the total energy 

dissipation capacity in all 60 microstructures. The horizontal axes indicate the fiber and 

porosity volume fractions. The vertical axis shows the normalized total energy-dissipation 

capacity. The data are normalized by the total energy dissipation of a baseline case, a 

microstructure comprised of 100% cementitious matrix. This normalizing factor 

135 .matrix 3

total MJ/mE = The values correspond to a simulation time of 6.0 µs. 
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Figure 15. Normalized total energy-dissipation capacity at 6.0 µs for all 60 microstructures at 
four different aggregate volume fractions: (a) 10%, (b) 20%, (c) 30%, and (d) 40%. The 

normalizing factor 135 .matrix 3

total MJ/mE =  

 

 As predicted, increasing the volume fraction of all three constituent phases serves to 

increase the total energy dissipation. However, the addition of a small amount of aggregate 

alone decreases the total energy dissipation. Specifically, the microstructure with 10% 

aggregate and no fibers or porosity has an energy-dissipation capacity of 84% of the baseline 

case. Even the microstructure with 40% aggregate and no fibers or porosity has an energy-

dissipation capacity just 3% higher than that of the baseline case. Despite the fact that 

aggregate alone does little to improve the energy-dissipation capacity, and in fact diminishes 

it at low volume fractions, the aggregate has a synergistic effect with porosity. That is, 

increasing porosity provides a greater benefit to the energy dissipation at larger aggregate 
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volume fractions. In particular, at 10% aggregate and 0% fibers, increasing the porosity from 

0% to 5% increases the energy dissipation by 14%, relative to the baseline. At 40% aggregate, 

however, the same increase in porosity yields an energy dissipation 22% larger than that of 

the baseline.  

Finally, the total energy dissipation in all microstructures is less than 10% of the total 

external work. This is likely the reason that the stress does not exhibit measurable 

attenuation, as discussed in Section 3.1.1. This is not to say that UHPC structures are 

incapable of attenuating an applied load. Rather, larger size and time scales, which would 

allow for a larger percentage of the external work to be dissipated, would likely be necessary 

for the stress to show signs of attenuation. The low percentage of external work dissipated 

may also be due to the rigid lateral boundary conditions, which restrict motion in the x1 

(horizontal) direction. Identical simulations with traction-free boundary conditions dissipate 

up to approximately 20% of the total external work. Nonetheless, the trends in the data 

agree with experimental findings. Increased porosity and fibers allow for a greater percentage 

of the external work to be dissipated. 

The unique nature of the cohesive finite element model presented herein allows for 

the energy dissipation to be broken down into three constituent components: damage 

through interface fracture, inelastic deformation and granular flow of the cementitious paste, 

and interfacial friction along cracked interfaces. The components of the total energy 

dissipation will be discussed in more thorough detail below, beginning with the energy 

dissipated through damage and fracture of interfaces, proceeding to the energy dissipated 

through friction between fractured interfaces, and ending with the energy dissipated through 

inelastic deformation. 
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3.1.2.2. Energy Dissipated Through Interface Fracture 

Figure 16 shows the energy dissipation through interface damage and fracture in all 

60 microstructures. The normalizing factor 0.3 .matrix 3

d MJ/mE = Note that nearly all 

microstructures dissipate less energy through damage than the baseline case. It is not until 

volume fractions of 40% aggregate and 5% porosity that more energy is dissipated through 

damage than in the baseline microstructure. Specifically, the microstructure with 40% 

aggregate, 5% porosity, and 0% fibers dissipates 15% more energy than the baseline case. As 

fibers are added, the energy dissipated through damage decreases. At 40% aggregate, 5% 

porosity, and 10% fibers, the energy dissipated through damage is 97% of the damage 

dissipated in the baseline case.  
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Figure 16. Normalized energy dissipation through interface damage and fracture at 6.0 µs for 
all 60 microstructures at four different aggregate volume fractions: (a) 10%, (b) 20%, (c) 30%, 

and (d) 40%. The normalizing factor 0.3 .matrix 3

d MJ/mE =  

The porosity has a synergistic effect with the aggregate on the energy dissipated 

through interface damage, similar to the trend observed in the total energy dissipation. That 

is, the benefit of porosity increases with increasing aggregate volume fractions. For example, 

at 10% aggregate and 0% fibers, increasing the porosity from 0% to 5% increases the energy 

dissipated through interface damage by 21% with respect to the baseline. At 40% aggregate, 

the same increase in porosity yields a 35% increase in the energy dissipated through interface, 

relative to the baseline. 

Fibers and porosity have a competing effect on the energy dissipated through 

interface damage and friction. The benefit of porosity diminishes with increasing fiber 

volume fractions. For example, at 10% aggregate, increasing the porosity from 0% to 5% 
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can increase the energy dissipated through damage by as much as 21% in the absence of 

fibers or as little as 17% in the presence of a 10% fiber volume fraction. This competing 

effect is even more pronounced at high aggregate volume fractions. For example, at 40% 

aggregate, increasing the porosity from 0% to 5% can increase the energy dissipated through 

damage by up to 35% in the absence of fibers or as little as 25% in the presence of a 10% 

fiber volume fraction. 

The energy dissipated through damage and fracture is by definition due in part to the 

energy dissipated in the pre-failure elastic softening of interfaces. This energy dissipation 

component, therefore, does not provide an accurate representation of the degree of cracking. 

Two common metrics for assessing the extent of cracking in solids are the scalar crack 

density parameter and the crack density tensor [43, 44]. The 2D scalar crack density DA is 

given by 
2

1

1 N

A k
k

D l
A =

= ∑ , where A is the 2D area of averaging, lk is the half-length of the kth 

crack, and N is the total number of cracks. More useful than the scalar parameter is the crack 

density tensor, which provides information about the degree of anisotropy of cracking in a 

solid. The components of the crack density tensor are given by 
2

1

1 n
k k

ij k i j
k

D l n n
A =

= ∑  , where 

nk is the unit vector normal to the kth crack. Provided the directional distribution of damage 

is adequately represented by a second rank tensor, the relationship between the scalar crack 

density parameter and the tensor is simply ( )AD tr= D . The significance of the crack density 

tensor is that it provides insight into both the extent of cracking and the degree to which it is 

anisotropic, which can influence the material's effective elastic properties if the cracking has 

a preferred orientation. For purely vertical cracking, the corresponding crack density tensor 
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has only one non-zero component: the (1,1) position. For purely horizontal cracking, the 

only non-zero component of the crack density tensor is in the (2,2) position, for example. 

The crack density tensor is calculated for each microstructure at each time step of 

the analysis. Because each volume fraction of phases within a microstructure results in an 

associated second-rank crack density tensor, the space of damaged microstructures becomes 

a five-dimensional data set.   

To effectively show this five-dimensional data set, four 2D grids of 2D plots are 

developed, as seen in Figure 17. Each plot in the figure corresponds to a separate aggregate 

volume fraction. The horizontal and vertical axes in each plot correspond to the porosity 

and fiber volume fractions, respectively. Each of the 15 grids within each plot conveys the 

second-order crack density tensor. The upper left dot in each grid corresponds to 

component D11, the upper right dot corresponds to component D12, the lower left dot 

corresponds to component D21, and the lower right dot corresponds to component D22. The 

colors of the dots indicate the magnitude of the tensorial component according to the color 

bar shown alongside the plots. Examination of Figure 17 reveals that the D11 component is 

the largest of all the components in every microstructure. This indicates that the cracking is 

predominately vertical. Note that the D22 is non-zero. In fact, it is the second largest 

component in every microstructure. It may be presumed that, given the direction of the 

loading, horizontal cracks (perpendicular to the direction of loading) will not develop. 

However, the crack density tensor clearly shows that there is a measurable amount of 

horizontal cracking. The off-diagonal terms of the crack density tensor are nearly zero and 

are not nearly as large as the terms on the main diagonal, indicating that any diagonal cracks 

are closer to vertical and/or horizontal than they are to 45 degrees.  
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Figure 17. 2D crack density tensor at 6.0 µs for all 60 microstructures with four different 
aggregate volume fractions: (a) 10%, (b) 20%, (c) 30%, and (d) 40%. 

 

Figure 18 shows the scalar crack density parameter in all 60 microstructures. It can 

be seen that the constituent phase with the greatest influence on the scalar crack density 

parameter is porosity. For example, at 40% aggregate and 0% fibers, increasing the porosity 

from 0% to 5% increases the scalar crack density by 193%. As with the energy dissipated 

through damage and fracture, porosity and fibers have competing effects on the crack 

density. Increasing the porosity serves to drastically increase the crack density. Fibers serve 

not only to decrease the scalar crack density but also to diminish the effect of porosity. For 
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example, the 193% increase in the scalar crack density discussed previously is diminished to 

a 158% increase when the microstructure has a fiber volume fraction of 10% instead of 0%. 

This is indicative of the ability of fibers to arrest the crack development facilitated by 

porosity.  

 

 

Figure 18. Scalar crack density parameter at 6.0 µs for all 60 microstructures with four 
different aggregate volume fractions: (a) 10%, (b) 20%, (c) 30%, and (d) 40%. 

 

The crack density is intimately related to the energy dissipated through interface 

damage and fracture. The scalar crack density parameter quantifies the extent or magnitude 

of cracking within a material. It can be regarded as a normalized average crack length. The 

energy dissipated through damage and fracture is the product of a cracked interface's 

fracture energy and its area. Thus, the crack density is directly proportional to the energy 
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dissipated through fracture, and the constant of proportionality is equal to the average 

interface fracture energy. Figure 19 shows the energy dissipated through interface damage 

and fracture along with the corresponding scalar crack density parameter as a function of 

strain in microstructures with 0% fiber and 0% porosity. The blue curves represent the 

energy dissipation, while the red curves represent the scalar crack density parameter. The line 

style (e.g., dashed, dotted, etc.) represents different porosity volume fractions. As the energy 

dissipation rises, so too does the crack density. 

 

 

Figure 19. Energy dissipated through interface damage and fracture along with the 
corresponding scalar crack density parameter as a function of strain in microstructures with 

0% fibers and 0% porosity over a range of aggregate volume fractions. 

 

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

Strain

E
d (

M
J/

m
3 )

0

0.0025

0.005

0.0075

0.01

φ

10% Vf
a

20% Vf
a

30% Vf
a

40% Vf
a

0.3
0



   51

3.1.2.2.1. Spatial distribution of damage dissipation 

The previous set of results shows the cumulative energy dissipated through interface 

damage and fracture in the entire microstructure. It is also of interest to investigate how the 

energy dissipation is distributed throughout the microstructure. In particular, the rate of 

energy dissipation through damage as a function of vertical position in the microstructure 

can provide insight into regions that have the most influence on the total energy dissipation.  

Figure 20 shows the spatial distribution of the rate of energy dissipation through 

interface damage at three instants in time: 0.5 µs, 2.0 µs, and 4.0 µs. Eight subplots are 

shown, each corresponding to a microstructure at the corners of the 3D parameter space. 

The vertical axes correspond to vertical position within a microstructure. The horizontal 

axes show the rate of energy dissipation through interface damage. The rate is normalized to 

the applied external power for a given microstructure. A number of trends should be noted 

in the two aforementioned plots. First, the figures show distinct peaks. These peaks 

correspond to the front of the propagating stress wave. Behind the stress wave, the rate of 

energy dissipation is on the order of 103 times smaller than the rate on the cusp of the wave 

front. This suggests that as the stress wave propagates through the microstructure, damage 

and fracture primarily occur at the wave front. The figures also corroborate the result shown 

in the 3D bar charts in Figure 18. The peaks in the bottom row of subplots of Figure 20, 

which shows data from microstructures with 40% aggregate, are clearly higher than the 

peaks in the top row of subplots, which shows data from microstructures with only 10% 

aggregate. This agrees with the previous finding that higher aggregate content leads to higher 

energy dissipation due to interface damage.  
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Figure 20. Spatial distributions of the normalized rate of energy dissipation through interface 

damage in microstructures at the eight extremes of the design space at 0.5 µs, 2.0 µs, and 4.0 

µs: (a) 10% aggregate, 0% porosity, 0% fibers; (b) 10% aggregate, 0% porosity, 10% fibers; 
(c) 10% aggregate, 5% porosity, 0% fibers; (d) 10% aggregate, 5% porosity, 10% fibers; (e) 

40% aggregate, 0% porosity, 0% fibers; (f) 40% aggregate, 0% porosity, 10% fibers; (g) 40% 
aggregate, 5% porosity, 0% fibers; and (h) 40% aggregate, 5% porosity, 10% fibers. 
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3.1.2.3. Energy Dissipated Through Interfacial Friction 

Figure 21 shows the energy dissipation through friction between fractured interfaces 

in all 60 microstructures. The normalizing factor 345 .matrix

f MJ/mE = This figure shows 

many similarities to the data shown in Figure 16 and discussed in Section 3.1.2.2. This is 

expected: friction along crack faces cannot occur until fracture has taken place. Constituents 

that contribute to interface fracture will thus also contribute to frictional dissipation. 

 

 

Figure 21. Normalized energy dissipation through interfacial friction at 6.0 µs for all 60 
microstructures at four different aggregate volume fractions: (a) 10%, (b) 20%, (c) 30%, and 

(d) 40%. The normalizing factor 345 .matrix

f MJ/mE =  

 

As with the crack density and damage energy dissipation, porosity and fibers have 

competing effects on the frictional energy dissipation. Increased porosity leads to higher 
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energy dissipation, but this influence is mitigated by the presence of fibers. For example, at 

an aggregate volume fraction of 10% without any fibers, increasing the porosity from 0% to 

5% increases the frictional energy dissipation by 31% relative to the baseline case. However, 

when the fiber volume fraction is 10%, the same increase in porosity yields only a 21% 

increase in the frictional energy dissipation. While this is still a large increase, it is 

significantly less than the increase observed when the fiber volume fraction is 0%. This 

suggests that at low porosity and low fiber volume fractions, increasing the porosity is the 

best means of increasing the frictional energy dissipation. 

A key difference between the trends in energy dissipated through interface fracture 

and friction is that increasing fiber volume fractions decreases the energy dissipated through 

fracture at all porosity volume fractions. In contrast, increasing fiber volume fractions 

increases the energy dissipated through friction at low porosity volume fractions but decreases 

the energy dissipated through friction at high porosity volume fractions. This indicates that 

the role of fibers in the energy dissipation process shifts depending on the amounts of the 

other constituents. In the presence of high porosity volume fractions, which contribute to a 

greater degree of cracking, as seen in Figure 18, fibers serve to arrest crack propagation and 

constraint the resultant frictional dissipation. It will be seen in the next section that porosity 

facilitates a greater degree of cracking by allowing for more distributed plastic strain and 

granular flow of the cementitious matrix. In the absence of porosity, this deformation 

mechanism is not available to the cementitious matrix, and so the friction between the 

matrix and the fibers has a more pronounced effect. 
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3.1.2.4. Energy Dissipated Through Inelastic Deformation 

Figure 22 shows the energy dissipation through inelastic deformation in all 60 

microstructures. The normalizing factor 390 .matrix

p MJ/mE = Unlike the other two 

components of energy dissipation, where large volume fractions of the constituents are 

necessary to generate energy dissipation values in excess of those of the baseline case, the 

energy dissipated through inelastic deformation is higher than that of the baseline cases for 

all volume fractions considered. Specifically, at 10% aggregate, 0% porosity, and 0% fibers, 

the plastic energy dissipation is 15% higher than that of the baseline case. Increasing the 

volume fraction of any of the constituents increases the plastic dissipation.  

 

 

Figure 22. Normalized energy dissipation through inelastic deformation at 6.0 µs for all 60 
microstructures at four different aggregate volume fractions: (a) 10%, (b) 20%, (c) 30%, and 

(d) 40%. The normalizing factor 390 .matrix

p MJ/mE =  



   56

 

The fiber volume fraction has a substantial influence on the energy dissipated 

through inelastic deformation. At all levels of aggregate and porosity, increasing the fiber 

volume fraction from 0% to 10% increases the energy dissipation through inelastic 

deformation by over 45% relative to the baseline case. The aggregate and porosity phases 

have only a slight influence on the amount of energy dissipated through inelastic 

deformation. At a given fiber volume fraction, changing either the aggregate or porosity 

volume fractions within the range considered changes the plastic energy dissipation by less 

than 10% relative to the baseline.  

The effect of the fibers and porosity on the energy dissipated through inelastic 

deformation is shown in Figure 23. This figure compares the equivalent plastic strains in 

three microstructures with a common aggregate fraction of 10% but with different fiber and 

porosity volume fractions. Figure 23(a) shows a microstructure with 0% fibers and 0% 

porosity, Figure 23(b) shows a microstructure with 10% fibers and 0% porosity, and Figure 

23(c) shows a microstructure with 0% fibers and 5% porosity. The color map scales are 

identical in each image to facilitate direct comparison among the three microstructures. 

Figure 23(a) shows the highest levels of plastic strain concentrated above and below the 

quartz grains. This is consistent from the theoretical consideration of spherical inclusions in 

an elasto-plastic matrix. Figure 23(b) shows substantially more plastic strain than Figure 

23(a). The areas of highest plastic strain correspond to fiber locations. This is indicative of 

the significant effect of fibers on the inelastic deformation and the slight influence from 

porosity. Figure 23(c) shows elevated plastic strain around collapsed voids. 
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Figure 23. Distributions of equivalent plastic strain at 6.0 µs in microstructures with 10% 
aggregate and (a) 0% porosity, 0% fibers; (b) 0% porosity, 10% fibers; and (c) 5% porosity, 0% 

fibers. 

 

3.1.2.4.1. Spatial distribution of inelastic dissipation 

The previous set of results shows the cumulative energy dissipated through inelastic 

deformation in the entire microstructure. It is also of interest to understand how the energy 

dissipation is distributed throughout the microstructure. In particular, the rate of plastic 

energy dissipation as a function of vertical position in the microstructure can provide insight 

into regions that have the most influence on the total energy dissipation.  

Figure 24 shows the spatial distribution of the rate of energy dissipation through 

interface damage at three instants in time: 0.5 µs, 2.0 µs, and 4.0 µs. Eight subplots are 
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shown, each corresponding to a microstructure at the corners/limits of range of the 

parametric study. The vertical axes correspond to vertical position within a microstructure. 

The horizontal axes show the rate of energy dissipation through plastic deformation. The 

rate is normalized to the applied external work input rate for a given microstructure. This 

input rate is on the order of 105 W. To obtain a complete picture of the spatial distribution 

of the energy dissipation, it is necessary to consider different times. Several trends can be 

identified from these plots, and all  are similar to the trends previously observed in the 

distributions of the energy dissipated through interface damage. First, the figures show 

distinct peaks. These peaks correspond to the front of the propagating stress wave. Behind 

the stress wave front, the rate of energy dissipation is on the order of 103 times smaller than 

the rate on the cusp of the wave front, suggesting that as the stress wave propagates through 

the microstructure, inelastic deformation occurs primarily at the wave front and little 

deformation occurs behind the front. In this regard, the spatial distribution of energy 

dissipation through inelastic deformation is similar to the distribution of energy dissipation 

through interface damage.  
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Figure 24. Spatial distributions of the normalized rate of energy dissipation through inelastic 

deformation in microstructures at the eight extremes of the design space at 0.5 µs, 2.0 µs, 

and 4.0 µs: (a) 10% aggregate, 0% porosity, 0% fibers; (b) 10% aggregate, 0% porosity, 10% 
fibers; (c) 10% aggregate, 5% porosity, 0% fibers; (d) 10% aggregate, 5% porosity, 10% 

fibers; (e) 40% aggregate, 0% porosity, 0% fibers; (f) 40% aggregate, 0% porosity, 10% fibers; 
(g) 40% aggregate, 5% porosity, 0% fibers; and (h) 40% aggregate, 5% porosity, 10% fibers. 
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3.1.3. Microstructure Performance Relation Maps 

The preceding discussion focused on the load-carrying and energy-dissipation 

capacities, and their individual components. In particular, the results of parametric studies 

were shown in a format wherein the response variables were functions of the volume 

fractions of constituent phases. However, the process of materials design flows in the 

opposite direction, from the top down. Performance objectives are specified, and then the 

necessary material attributes are identified. Structure-property/response trends shown in 

Figure 25, which relate the load-carrying and energy-dissipation capacities to the volume 

fractions of constituents, provide potential input into the design process.  

 

 

Figure 25. Microstructure performance relations relating (a) energy-dissipation and load-

carrying capacities to  volume fractions of constituents through parameter η1, (b) energy-

dissipation capacity to volume fractions of constituents through microstructure parameter η2, 
and (c) load-carrying capacity to volume fractions of constituents through microstructure 

parameter η 3. 

 

In Figure 25(a), the vertical axis shows a combined performance metric defined as 

the product of the energy-dissipation capacity and the load-carrying capacity. Here, the 

energy-dissipation capacity is expressed as the total energy dissipation normalized by the 
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total external work; that is, the total work dissipated as a fraction of the total work imparted 

into the material. The load-carrying capacity is expressed as the traction on the upper surface 

of a given microstructure normalized by the traction on the upper surface of a 

microstructure comprised of 100% cementitious matrix. The horizontal axis is a parameter 

that depends on the volume fractions of the constituents in microstructures. This parameter 

is obtained through a linear regression analysis and takes the form of  

 
( ) ( ) ( )1 0.47 3.0 2.6

0.048
,

1 1 1a f p
f f fV V V

η =
− − −

 (29) 

which provides the best description of the correlation among dissipation, loading carried, 

and microstructure.  

Figure 25(a) allows the selection of a specific material microstructure design for any 

given combination of desired load-carrying capacity and energy-dissipation. It is useful for 

identifying microstructure settings that may meet desired performance objectives and allows 

the trade-offs between conflicting requirements to be explored. It should be noted, however, 

that these maps are applicable only to loading under conditions of nominally uniaxial strain 

and consider only the volume fractions of constituents as design variables. The relation 

captures the trade-offs between energy dissipation and strength clearly; increasing the load-

carrying capacity will likely reduce the energy-dissipation capacity.  

Figure 25(b) relates the energy-dissipation capacity to microstructure. As in the first 

relation, the parameter that provides the best description of the correlation between the 

dissipation and microstructure is   

 
( ) ( ) ( )2 0.09 1.81 3.38

0.049
.

1 1 1a f p
f f fV V V

η =
− − −

 (30) 
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With all other parameters fixed, increasing any of the three constituents increases the 

energy dissipation capability of the materials, with porosity having the most significant 

influence, followed by the fibers and then the aggregate.  

Figure 25(c) relates the load-carrying capacity to the volume fractions of the 

constituents. The parameter that provides the best description of the correlation between the 

load carried and microstructure is  

 
( )

( ) ( )

0.80

3 0.38 1.2

0.99 1
.

1 1

p
f

a f
f f

V

V V
η

−
=

− −
 (31) 

This relation highlights the fact that fibers have the most influence over the load-

carrying capacity, and the correlation is positive. Porosity is the next most influential 

constituent, and the correlation is negative. Finally, aggregate has the least influence, and the 

correlation is positive. 

The parameters η1, η2, and η3 express the same information; the three formulations 

merely represent three different ways of looking at the data. This implies that the three 

parameters are not fully independent; the combined performance metric η1 is approximately 

equal to the product of η2 and η3. The relationship is not exact due to the error encountered 

in performing a least-squares regression on the three parameters separately.  

3.2. EFFECT OF SILICA PHASE TRANSFORMATION 

To delineate the effect of the phase transformation on the response of UHPC, the 

results of simulations not accounting for the phase transformation (as discussed in Section 

3.1) are compared with the results of calculations that do account for the transformation. 

The two sets of calculations are carried out under the same loading and constraint conditions. 
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The former set of simulations will be referred to as the "baseline" simulations. The latter set 

of simulations will be referred to as the "transformation-enabled simulations." 

3.2.1. Load-Carrying Capacity 

As the stress wave propagates through a microstructure, the hydrostatic pressure 

exceeds the threshold of 2.35 GPa behind the wave front, causing the quartz aggregate to 

transform into coesite, as shown in Figure 26. The particular microstructure shown contains 

40% aggregate, 0% porosity, and 10% fibers by volume. Figure 26(a) shows the 

microstructure at 0.5 µs. At this early stage, the stress wave has just begun to propagate 

through the material; only quartz at the very top of the microstructure has transformed into 

coesite. In Figure 26(b), which corresponds to 3.0 µs, the stress wave has traversed 

approximately half the length of the structure. All quartz behind the wave front has 

transformed into coesite, while all the quartz ahead of the wave front remains in the α-

quartz phase. Figure 26(c) shows the microstructure at 6.0 µs, where the stress wave has 

nearly reached the bottom surface and essentially all quartz in the structure is in the coesite 

state. 
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Figure 26. Phase of quartz aggregate as deformation progresses at (a) 0.5 µs, (b) 3.0 µs, and 

(c) 6.0 µs. 

 

The load-carrying capacity as measured from the transformation-enabled simulations 

is compared to results from the baseline simulations in Figure 27. As described in Section 

3.1.1, the average traction in the vertical direction on the upper surface of a microstructure at 

any single time step is taken to be a measure of the load carried. This figure shows four 

subplots, each corresponding to a different aggregate volume fraction. The horizontal axes 

correspond to the fiber and porosity volume fractions. The vertical axis shows the ratio of 

the load-carrying capacity as calculated from the simulations with the quartz phase change to 
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the load-carrying capacity from the baseline simulations without the phase change. The 

results show a minor downward shift in the load-carrying capacity. In particular, the load-

carrying capacity calculated from the simulations with the phase change is in the range of 

+1.5% to -10.1% of the load-carrying capacity calculated from the baseline simulations. 

 

 

Figure 27. Ratio between the load-carrying capacities for cases with and without (baseline 
cases) quartz phase transformation with (a) 10% aggregate, (b) 20% aggregate, (c) 30% 

aggregate, and (d) 40% aggregate. 

 

As Figure 27 shows, the load-carrying capacity ratio decreases continuously as the 

aggregate volume fraction increases. The load-carrying capacity ratio is relatively insensitive 

to fiber or porosity content; that is, it is rather constant at a given aggregate volume fraction. 

The fact that the load-carrying capacity decreases with increasing aggregate content relative 
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to the baseline case suggests that the phase transformation leads to more internal damage 

within the aggregate, which, in turn, reduces the load carried by the material. 

3.2.2. Energy-Dissipation Capacity 

In addition to the three modes of energy dissipation discussed in Section 3.1.2, a 

fourth mechanism that arises from the phase change of the quartz aggregate is introduced in 

this section. 

3.2.2.1. Total Energy Dissipation 

The quartz phase transformation has a more significant effect on the total energy 

dissipation than on the load-carrying capacity. The ratio of the total energy dissipation 

calculated from the transformation-enabled simulations to the total energy dissipation 

calculated from the baseline simulations is shown in Figure 28. The simulations with the 

phase transformation lead to higher energy-dissipation values. Specifically, the total energy 

dissipation calculated from the simulations with the phase change is in the range of  +0.3% 

to +18.5% of the energy dissipation calculated from the baseline simulations. At low 

aggregate volume fractions, the total energy ratio is almost unity, indicating that the energy 

dissipation has not changed appreciably. However, as the aggregate volume fraction 

increases, the energy dissipation relative to the baseline increases. At 10% aggregate, the 

maximum energy ratio is 1.03. At 20% aggregate, the maximum total energy ratio is 1.08. At 

30% aggregate, the maximum total energy ratio is 1.12. At 40% aggregate, the maximum 

energy ratio is 1.20. This suggests that the transformation of the aggregate enhances various 

mechanisms of energy dissipation, as increasing aggregate levels lead to increasing energy 

dissipation relative to the baseline cases. This will be analyzed in more detail in subsequent 
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sections, when the contributions from different mechanisms to the total energy dissipation 

are considered individually. 

 

 

Figure 28. Ratio between total energy dissipation for cases with and without (baseline cases) 
quartz phase transformation for microstructures with (a) 10% aggregate, (b) 20% aggregate, 

(c) 30% aggregate, and (d) 40% aggregate. 

 

At a given aggregate volume fraction, the effects of fibers and porosity on the total 

energy ratio are more complex than the relationship seen in the load-carrying capacity ratio. 

Note in Figure 28(a) that at 10% aggregate the energy dissipation ratio is relatively constant 

over all porosity and fiber volume fractions. In contrast, in Figure 28(d), which corresponds 

to an aggregate volume fraction of 40%, the energy dissipation ratio is still relatively constant 

at a given porosity level, but increasing the porosity decreases the ratio. Since the only 

difference between the two simulations is the treatment of the quartz aggregate, it is natural 
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to think that only the aggregate volume fraction changes the results. However, the fact that 

increasing porosity decreases the energy dissipation relative to the baseline cases indicates 

that there is a coupling between the porosity volume fraction and the quartz phase 

transformation. In particular, low porosity volume fractions yield a higher total energy 

dissipation than that of the baseline case, while high porosity volume fractions decrease the 

additional energy dissipation induced by the phase transformation. Although the highest 

porosity volume fraction considered in this study, 5%, still produces a total energy ratio 

above unity, the foregoing discussion suggests that there is a porosity volume fraction at 

which the total energy ratio is exactly one. Such a result may conceal the fact that the quartz 

phase transformation leads to more fracture and friction within the aggregate phase. 

The quartz phase transformation introduces a new component of energy dissipation. 

When the phase transformation initiates, the volume of the quartz aggregate reduces. This 

reduction in volume is an energy-consuming process. The energy dissipated through this 

mechanism is related to the volume of the aggregate that has undergone transformation, the 

change in volume, and the threshold pressure of transformation. This component is included 

along with interface damage, friction, and inelastic deformation in the computation of the 

total energy dissipation. The magnitudes of these four energy dissipation modes relative to 

each other will be discussed further in the next section. 

3.2.2.2. Energy Dissipation Modes 

This section considers how the quartz phase transformation affects the contributions 

of different mechanisms to the total dissipation over the course of the deformation process. 

Subsequent sections will consider the effect of phase transformation on the individual 

energy dissipation modes. Figure 29 shows the evolution of the energy dissipation modes in 
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a microstructure with 40% aggregate, 0% porosity, and 0% fibers. Recall that this 

microstructure provides the highest total energy-dissipation ratio (see Figure 28). Figure 29(a) 

corresponds to the simulation with account of the quartz phase transformation, while Figure 

29(b) corresponds to the simulation without account of the phase transformation. It can be 

seen that in the transformation-enabled simulations, a larger percentage of the energy 

dissipation is due to friction, and a smaller percentage is due to inelastic deformation. In 

particular, friction accounts for 36.9% and inelastic deformation accounts for 62.3% of the 

total energy dissipation in the transformation-enabled simulation. In the baseline simulation, 

friction accounts for 20.6% and inelastic deformation accounts for 79.2% of the total energy 

dissipation. In both cases, the energy dissipated through interface damage and fracture is less 

than 0.5%. However, differences are evident. Interface damage and fracture dissipate 0.29% 

of the total energy imparted into the material by the applied load in the transformation-

enabled simulation, whereas dissipation through interface damage and fracture constitutes 

only 0.13% of the total energy input in the baseline simulations. Because the loading and 

constraint conditions are identical in all cases, an increase in frictional dissipation is not 

possible without an increase in interface fracture. Clearly, then, the quartz phase 

transformation leads not merely to more interface damage, but also to a higher crack density. 

This increased crack density then gives rise to the significant increase in energy dissipation 

discussed previously. This will be further analyzed in the next section. 
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Figure 29. Evolution of the energy dissipated through different mechanisms in a 
microstructure with 40% aggregate, 0% porosity, and 0% fibers for simulations (a) with 

quartz phase transformation and (b) without quartz phase transformation. 

 

Figure 29(a) also shows the energy dissipated through phase transformation of the 

quartz aggregate for a microstructure with 40% aggregate, 0% porosity, and 0% fibers. At 

6.0 µs, the phase transformation contributes less than 1.5% of the total energy dissipation. 

All other microstructures show even smaller proportions of energy dissipated through phase 

transformation. Although the transformation itself dissipates a relatively small amount of 

energy, it induces substantially higher energy dissipation by enhancing other dissipation 

mechanisms. This will be quantified in the next three sections, which address the 

mechanisms of interface damage, interface friction, and inelastic deformation individually. 

Further insight into the relationships between the phase volume fractions, the quartz 

phase transformation, and energy dissipation can be gained by considering the three 

components of energy dissipation. 
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3.2.2.3. Energy Dissipated Through Interface Fracture 

Figure 30 shows the ratio of the energy dissipation through interface damage in the 

transformation-enabled simulations to that of the baseline simulations. For the sake of 

brevity, this ratio will be referred to as the "damage dissipation ratio." In all microstructures, 

the damage energy ratio is higher than one, indicating that the phase transformation leads to 

greater frictional dissipation. The quartz phase transformation has a strong effect on the 

energy dissipated via interface damage and fracture. The phase transformation yields damage 

dissipation levels that are up to 94.0% higher than those of the baseline cases. 

 

 

Figure 30. Ratio between the energy dissipated through damage for cases with and without 
(baseline cases) the phase transformation for microstructures with (a) 10% aggregate, (b) 20% 

aggregate, (c) 30% aggregate, and (d) 40% aggregate. 
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Aggregate and porosity have competing effects on the damage dissipation ratio, and 

this trend becomes more pronounced at higher aggregate volume fractions. At 10% 

aggregate and 0% fibers, decreasing the porosity from 5% to 0% increases the damage 

energy ratio from 1.13 to 1.23, giving a net change of 0.1. At 40% aggregate and 0% fibers, 

decreasing the porosity from 5% to 0% increases the damage energy ratio from 1.52 to 1.87, 

a net change of 0.35. The highest ratios are seen at an aggregate volume fraction of 40% and 

a porosity volume fraction of 0%. The lowest ratios are seen at an aggregate value fraction of 

10% and a porosity volume fraction of 5%  

The trends in the damage dissipation ratio bear resemblance to the trends in the total 

energy dissipation ratio. Both ratios increase with increasing aggregate fraction. Both ratios 

are negatively affected by the porosity volume fraction, and the influence of porosity 

becomes more pronounced at high aggregate volume fractions. The underlying cause for the 

coupling between aggregate and porosity can be explained by looking at the energy 

dissipated through damage and fracture along  different types of interfaces. 

Figure 31 shows the energy dissipated through damage and fracture of the cement 

phase, fracture of the quartz phase, and debonding along the cement-quartz interfaces in 

microstructures with 40% aggregate and 0% fibers. Figures 31(a) and (b), the top row, 

correspond to microstructures with 0% porosity. Figures 31(c) and (d), the bottom row, 

correspond to microstructures with 5% porosity. Figures 31(a) and (c), the left column, 

correspond to cases without the quartz phase transformation. Figures 31(b) and (d), the right 

column, correspond to cases with the quartz phase transformation. First, consider the left 

column. Without the phase transformation, damage and fracture within the cementitious 

matrix and quartz aggregate comprise roughly half of the overall damage dissipation 

regardless of the porosity level. In particular, at 0% porosity, damage dissipation within the 
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cementitious matrix and quartz aggregate constitute 51.2% and 47.8%, respectively, of the 

overall damage dissipation. At 5% porosity, damage dissipation within the cementitious 

matrix and quartz aggregate constitute 52.0% and 47.1%, respectively, of the overall damage 

dissipation. Clearly, the porosity does not have an appreciable influence on the locations of 

interface damage in the absence of the phase transformation. Now consider the right column. 

At 0% porosity, a much larger proportion of the damage dissipation is attributable to intra-

quartz fracture with the phase transformation. Specifically, 72.1% of the total is attributable 

to fracture surfaces inside the quartz phase, while only 27.2% is attributable to fracture 

surfaces within the cementitious matrix. Also, note that increasing porosity lowers the 

fraction dissipation attributable to the quartz aggregate. At 5% porosity, damage and fracture 

within the quartz aggregate drop to 65.1% of the total, while damage and fracture dissipation 

within the cementitious matrix increase to 34.2% of the total. Since increasing the porosity 

decreases the damage energy ratio, as seen in Figure 30, the shift cannot be simply due to 

increased damage and fracture within the cementitious matrix, resulting from higher porosity 

when phase change is considered. Rather, the shift is due to the lower stresses in the quartz 

aggregate at higher porosity levels. Such lower stresses make transgranular fracture less likely. 

A look at the crack density provides more insight in this regard. 
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Figure 31. Fraction of energy dissipated through damage and fraction of energy dissipated 
through fracture (intra-cement, intra-quartz, and along cement-quartz interfaces) in 
microstructures with 40% aggregate, 0% fibers, and (a) 0% porosity without phase 

transformation, (b) 0% porosity with phase transformation, (c) 5% porosity without phase 
transformation, and (d) 5% porosity with phase transformation. 

 

In Section 3.1.2.2, the crack density is used to quantify the extent of cracking within 

the UHPC microstructures. The same technique is used in the transformation-enabled 

simulations. Due to the complexity in comparing the 2D crack density tensor among 

microstructures with three constituent phases, the scalar crack density parameter is used to 
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scalar crack density parameter in the transformation-enabled simulations to the scalar crack 
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phase transformation has at least twice the amount of cracking of the case without phase 

transformation. At high fiber volume fractions and low porosity volume fractions, the case 

with phase transformation leads to almost five times the amount of cracking of the case 

without transformation. As the porosity volume fraction increases, the crack density ratio 

decreases, even for large fiber volume fractions. This trend is similar to the trend observed in 

the damage energy dissipation ratio. This indicates that increasing the porosity volume 

fraction brings the amount of cracking in the baseline and transformation-enabled 

simulations closer together. In other words, increasing the porosity volume fraction provides 

stress relief within the quartz aggregate, leading to less cracking within the quartz aggregate 

than would otherwise occur at lower porosity levels.  
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Figure 32. Ratio of scalar crack density parameter in simulations with account of quartz 
phase transformation to the baseline simulations in microstructures with (a) 10% aggregate, 

(b) 20% aggregate, (c) 30% aggregate, and (d) 40% aggregate. 

 

3.2.2.4. Energy Dissipated Through Interfacial Friction 

The ratio of the frictional energy dissipation as calculated from the transformation-

enabled simulations to the frictional energy dissipation as calculated from the baseline 

simulations is shown in Figure 33. For the sake of brevity, this ratio will be referred to as the 

"friction energy ratio." The quartz phase transformation has a drastic effect on the energy 

dissipated through friction between fractured interfaces. In particular, the phase 

transformation yields frictional energy dissipation levels that are up to 113% higher than 

those of the baseline simulations. The trends in the friction energy ratio bear resemblance to 
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the trends in the damage energy ratio. The friction energy ratio increases with increasing 

aggregate content and decreasing porosity content. However, there is one exception to the 

similarities with the damage energy ratio. The previous section showed that the damage 

energy ratio is independent of the fiber volume fraction. In this case, higher fiber volumes 

tend to decrease the friction energy ratio.  

 

 

Figure 33. Ratio of energy dissipated through interfacial friction as calculated from 
simulations with account of quartz phase transformation to the energy dissipated through 
interfacial friction as calculated from baseline simulations in microstructures with (a) 10% 

aggregate, (b) 20% aggregate, (c) 30% aggregate, and (d) 40% aggregate. 

 

There is a competition between the effects of aggregate and fibers on the friction 

energy ratio. The influence of fibers is most pronounced at low aggregate volume fractions. 

For example, at 10% aggregate and 0% porosity, increasing the fiber volume fraction from 0% 
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to 10% decreases the friction energy ratio from 1.77 to 1.34. In contrast, at 40% aggregate, 

increasing the fiber volume fraction from 0% to 10% decreases the friction energy ratio  

only from 2.13 to 2.07. This suggests that at low aggregate volume fractions, fibers can 

effectively reduce the increase in frictional dissipation caused by the quartz phase 

transformation. At high aggregate volume fractions, however, increasing the fibers has only a 

minimal effect on the frictional dissipation enhancement due to the phase transformation. 

3.2.2.5. Energy Dissipated Through Inelastic Deformation 

The ratio of the inelastic energy dissipation as calculated from the transformation-

enabled simulations to that as calculated from the baseline simulations is shown in Figure 34. 

For the sake of brevity, this ratio will be referred to as the "inelastic dissipation ratio." The 

quartz phase transformation can decrease the energy dissipated through inelastic 

deformation by up to 9.3% as compared to the baseline results. At a given aggregate volume 

fraction, the inelastic dissipation ratio is highest at low porosity volume fractions and high 

fiber volume fractions. In particular, the highest inelastic dissipation ratio of 0.99 is seen at 

10% aggregate, 0% porosity, and 7.5% fibers. The lowest is seen at 40% aggregate, 5% 

porosity, and 0% fibers.   
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Figure 34. Ratio of energy dissipated through inelastic deformation as calculated from 
simulations with account of quartz phase transformation to the energy dissipated through 

inelastic deformation as calculated from baseline simulations with linear elastic quartz 
properties in microstructures with (a) 10% aggregate, (b) 20% aggregate, (c) 30% aggregate, 

and (d) 40% aggregate. 

 

Note that at a given aggregate and fiber volume fraction, larger porosity volume 

fractions lead to lower inelastic dissipation ratios. This suggests that, in the absence of the 

quartz phase transformation, increasing the porosity leads to more plastic dissipation 

compared with the case with transformation. 

3.2.3. Microstructure Performance Relation Maps 

In the first part of this thesis, a set of microstructure-performance relation maps that 

relate the volume fractions of the constituents to the load-carrying and energy-dissipation 

capacities were developed. Such structure-property/response maps provide quantification 
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that can be used in top-down materials design, where performance objectives are specified 

and the necessary material attributes are then identified. An updated microstructure-

performance relation map is shown in Figure 35, accounting for the effects of the quartz 

phase transformation. To facilitate comparison with the relations developed without 

consideration of the phase transformation, the results of η1, η2, and η3 are superimposed 

over Figure 35(a), (b), and (c), respectively. 

 

 

Figure 35. Microstructure performance relation  map relating (a) energy-dissipation and load-
carrying capacities and load-carrying capacity to volume fractions of constituents, (b) energy-

dissipation capacity to volume fractions of constituents, and (c) load-carrying capacity to 
volume fractions of constituents. 

 

In Figure 35(a) the vertical axis shows a combined performance metric defined as the 

product of the energy-dissipation capacity and the load-carrying capacity. Here, the energy-

dissipation capacity is expressed as the total energy dissipation normalized by the total 

external work, that is, the total work dissipated as a fraction of the total work imparted into 

the material. The load-carrying capacity is expressed as the traction on the upper surface of a 

given microstructure normalized by the traction on the upper surface of a microstructure 

comprised of 100% cementitious matrix. The horizontal axis is a parameter that depends on 
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the traction carried by the material and the volume fractions of the constituents in 

microstructures. This parameter is obtained through a linear regression analysis and takes the 

form of  

 
( ) ( ) ( )4 0.76 2.8 2.1

0.049
,

1 1 1a f p
f f fV V V

η =
− − −

 (32) 

which provides the best description of the correlation among dissipation, loading carried, 

and microstructure. The chart in Figure 35(a) can be used to select a desired microstructure 

setting for any given combination of load-carrying capacity and energy-dissipation capacity.  

The relations also illustrate the trade-offs between energy dissipation and strength in 

microstructure design. Figure 35(b) relates the energy-dissipation capacity to the volume 

fractions of constituents. The parameter that provides the best description of the correlation 

between the dissipation and microstructure is   

 
( ) ( ) ( )5 0.45 1.6 2.9

0.049
.

1 1 1a f p
f f fV V V

η =
− − −

 (33) 

Figure 35(c) relates the load-carrying capacity to microstructure. The parameter that 

provides the best description of the correlation between the load carried and microstructure 

is 

 
( )

( ) ( )

0.81

6 0.45 1.6

0.99 1
.

1 1

p
f

a f
f f

V

V V
η

−
=

− −
 (34) 

These microstructure-performance relations bear many similarities to those 

presented in the first part of this thesis. A key difference, however, is that the in the first part 

of this study, η1 (which corresponds to η4 here) has exponents of 0.47, 3.0, and 2.6 for the 
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aggregate, fiber, and porosity phases, respectively. This illustrates that the phase 

transformation alters the significance of the aggregate and porosity in the dynamic response 

of UHPC, while the significance of the fibers is relatively unchanged. This difference 

demonstrates that the phase transformation lends the aggregate a much stronger influence 

on energy dissipation and should be accounted for in the design of UHPC structures to 

better mitigate the threats of dynamic loading with high pressures. 

Figure 35(a) shows that for a given level of energy-dissipation and load-carrying 

capacity, a larger value of η1 is required as compared to η4. A similar trend can be observed 

in Figure 35(b). In Figure 35(c), for a given load-carrying capacity, a larger value of η6 is 

required as compared to η3. Because of the nature of the parametric expressions, the 

relationship between volume fractions of the constituents and the parameters is not one-to-

one. That is, multiple microstructural compositions can yield the same parameter value. 

Figure 36 shows the values of the microstructure performance parameters obtained by the 

microstructure instantiations analyzed in this thesis. Each point in Figures 36(a)-(f) 

represents one of the 60 unique combinations of volume fractions of the constituents. The 

color of each point corresponds to the value of the parameter as indicated by the appropriate 

legend. The lowest values of η1 and η4 are seen at low volume fractions of aggregate, fibers, 

and porosity. Microstructures with high aggregate, high fiber, and low porosity content show 

parameter values similar to microstructures with high aggregate, low fiber, and high porosity 

content. Parameters η2 and η5 show similar relationships. Microstructures with high 

aggregate and high fiber volume fractions show the highest values of η3 and η6 with only a 

minor influence from porosity. Microstructures with low aggregate and low fiber volume 

fractions show the lowest values of η3 and η6. 
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Figure 36. Values taken by the microstructure performance parameters for the 

microstructure instantiations analyzed in this thesis: (a) η1, (b) η2, (c) η3, (d) η4, (e) η5, and (f) 

η6. 
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CHAPTER IV   

CONCLUSIONS AND FUTURE WORK 

 

4.1. CONCLUSIONS 

A material must balance strength with an ability to dissipate energy to be most 

effective in blast- and impact-resistant protective structures. UHPC is a building material 

that provides the benefits of traditional concrete along with increased strength and durability. 

However, due to the novelty of UHPC and its large range of possible microstructures, the 

dynamic behavior of UHPC is not fully understood. In an effort to provide useful 

information for materials' design, the load-carrying and energy-dissipation capabilities of 

ultra-high-performance concrete under dynamic loading were evaluated over a parametric 

range of volume fractions of constituent phases. With this motivation in mind, a series of 

dynamic numerical simulations was conducted in this thesis in which the volume fractions of 

quartz aggregate, steel fibers, and porosity were explicitly modeled and systematically varied.  

The conclusions of this study as they relate to the load-carrying and energy-

dissipation  capacities are the following: 

(1) The volume fractions of constituent phases have a significantly larger influence on the 

energy-dissipation capacity than on the load-carrying capacity of UHPC. The load-

carrying capacity is largely related to density, which affects the longitudinal elastic wave 

speed and the elastic stiffness of the material. These quantities in turn determine the 

reaction stress carried by the material. 

(2) The propagating stress wave does not show appreciable attenuation in magnitude for the 

size and time scales considered in this study. This is likely due to the fact that all 
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microstructures dissipate less than 10% of the external work. Active dissipation occurs 

primarily at the wave front, partly due to the high level of confinement or stress 

triaxiality of the nominally uniaxial strain deformation condition. 

(3) Fibers and porosity have competing effects on energy dissipation through interface 

fracture and friction, while aggregate and porosity have a synergistic effect on the energy 

dissipated through interface fracture. Furthermore, porosity alters the role played by 

fibers in the frictional dissipation process. At low porosity and aggregate levels, 

increasing the fiber volume fraction can increase frictional dissipation between the fibers 

and cementitious matrix by over 12%. At high porosity and aggregate levels, increasing 

the fiber volume fraction arrests crack propagation facilitated by the presence of porosity 

and can decrease frictional dissipation by over 17%. At low aggregate levels, increasing 

the porosity can increase frictional dissipation by almost 30%. At higher aggregate levels, 

increasing the porosity can increase frictional dissipation by almost 40%. 

(4) Inelastic deformation (granular flow of the matrix and plastic deformation of the fibers) 

contributes approximately 70% - 85% of the total energy dissipation, interfacial frictional 

dissipation contributes approximately 15% - 30%, and damage accounts for less than 

0.5%. Efforts to increase the energy absorbency of UHPC should focus on enhancing 

inelastic deformation and internal friction, as improvements to these two energy 

dissipation components have much larger effects than improvements to the interface 

fracture energy. 

 

Higher temperatures result from high strain-rate dynamic loading, leading to 

thermally driven events in materials. The analysis reported here does not account for 

processes such as temperature-induced phase transformation in the quartz aggregate and 
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thermal softening of the steel fibers or cementitious matrix. The high pressures resulting 

from the dynamic loading can also induce phase transformations in the constituents. Proper 

accounting of such phase transformations can allow materials design to take advantage of 

these mechanisms in order to tailor structural response for specific load applications. This 

thesis has provided a phenomenological model that accounts for the effects of the 

transformation of α-quartz into coesite on the behavior of UHPC. This phenomenological 

model is employed within the framework of a cohesive finite element model to quantify the 

relations between the load-carrying and energy-dissipating capacities of  microstructures with 

different volume fractions of phases. The quantification covers a range of the microstructure 

parameters.  In addition to microstructure-response relations that can be used in materials' 

design and selection, the conclusions of this study that pertain to the effects of phase 

transformation on the load-carrying and energy-dissipation capacities are the following: 

(1) Under the conditions of nominally uniaxial strain that involve high stress triaxiality, the 

α-quartz-to-coesite phase transformation decreases the load-carrying capacity of the 

material relative to the case without transformation, although this effect is relatively 

small.  

(2) The phase transformation increases the total energy-dissipation capacity of materials by 

up to 18.5% , even though the transformation itself dissipates less than 2% of the total 

energy input into the material during a loading event. This disproportional influence is a 

result of the effect of the transformation on fracture. Specifically, the phase 

transformation can increase the energy dissipated through crack surface friction by 100% 

by enhancing the development of cracks. Higher porosity levels and higher fiber volume 

fractions can reduce this effect of phase transformation, with the effect of fibers being 

more pronounced.  
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(3) The phase transformation decreases the energy dissipated through inelastic deformation, 

and this influence diminishes as aggregate and porosity volume fraction increase. 

 

4.2. RECOMMENDATIONS FOR FUTURE WORK 

Due to the elevated temperatures experienced during high strain-rate impact events, 

thermal effects should be considered in future work to obtain a clearer understanding of the 

behavior of UHPC under dynamic loading. The current thesis does not account for 

temperature-induced phase transformation in the quartz aggregate, thermal softening of the 

steel fibers or cementitious matrix, or other thermal effects. Elevated pressures can also 

induce phase transformations in the constituents. This thesis considers only the phase 

change of α-quartz into coesite; other transformations may be relevant to dynamic loading 

of UHPC, including α-quartz into β-quartz, as well as decarbonation and dehydroxylation of 

calcium-silicate-hydrates within the cementitious matrix. 

This thesis considers only a single set of properties for the cohesive elements. A 

parametric study using different peak traction or fracture energy values will provide insight 

into the influence of the interfaces on the dynamic response and potentially motivate 

research into improving interface strength between phases.  

Finally, it should be pointed out that, although the study here concerns only one 

form of UHPC, the framework developed is applicable to other heterogeneous materials. 

For example, interest has increased in using polymeric fibers (e.g., PVA and polypropylene) 

or carbon nanofibers instead of steel fibers in UHPC. Similar studies for such material 

systems can be conducted using this framework.  
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APPENDIX A  

COMPLETE LISTING OF MICROSTRUCTURES 
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Figure 37. Microstructures with 10% aggregate, 0% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

 

Figure 38. Microstructures with 10% aggregate, 2.5% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
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Figure 39. Microstructures with 10% aggregate, 5% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

 

Figure 40. Microstructures with 20% aggregate, 0% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
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Figure 41. Microstructures with 20% aggregate, 2.5% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

 

Figure 42. Microstructures with 20% aggregate, 5% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
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Figure 43. Microstructures with 30% aggregate, 0% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

 

Figure 44. Microstructures with 30% aggregate, 2.5% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
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Figure 45. Microstructures with 30% aggregate, 5% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

 

Figure 46. Microstructures with 40% aggregate, 0% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
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Figure 47. Microstructures with 40% aggregate, 2.5% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

 

 

Figure 48. Microstructures with 40% aggregate, 5% porosity, and (a) 0% fibers, (b) 2.5% 
fibers, (c) 5% fibers, (d) 7.5% fibers, and (e) 10% fibers. 

  

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)



   95

REFERENCES 

 

1. Rong, Z., W. Sun, and Y. Zhang, Dynamic compression behavior of ultra-high performance 
cement based composites. International Journal of Impact Engineering, 2010. 37(5): p. 
515-520. 

 
2. Sun, W., and J. Lai, Dynamic mechanical behavior and durability of ultra high-performance 

cementitious composite. Key Engineering Materials, 2009. 400: p. 3-15. 
 
3. Schleyer, G.K., S.J. Barnett, S.G. Millard, and G. Wright, Modeling the response of 

UHPFRC panels to explosive loading. In International Conference on Structures under 
Shock and Impact. 2010. Tallinn, Estonia: WIT Press. 

 
4. Rebentrost, M., and G. Wight. Behavior and resistance of ultra high-performance concrete to 

blast effects. In Second International Symposium on Ultra High-Performance Concrete. 
2008. Kassel, Germany: Kassel University Press. 

 
5. Cavil, B., M. Rebentrost, and V. Perry. Ductal - An ultra-high performance material for 

resistance to blast and impacts. In 1st Specialty Conference on Disaster Mitigation. 2006. 
Calgary, Alberta, Canada. 

 
6. Wang, J.-A.J., C.H. Mattus, and F. Ren, DHS counter improvised explosive device 

effects basic research. 2010. Vicksburg, MS: U.S. Army Engineer Research and 
Development Center. 

 
7. Mroz, Z., and M. Angelillo. Rate-Dependent Degradation Model for Concrete and Rock. In 

International Symposium on Numerical Models in Geomechanics. 1982. Zurich. 
 
8. Voyiadjis, G.Z., and Z.N. Taqieddin, Elastic plastic and damage model for concrete materials: 

Part I - theoretical formulation. International Journal of Structural Changes in Solids, 
2009. 1(1): p. 31-59. 

 
9. Fanella, D., and D. Krajcinovic, A micromechanical model for concrete in compression. 

Engineering Fracture Mechanics, 1988. 29(1): p. 49-66. 
 
10. Tu, Z., and Y. Lu, Evaluation of typical concrete material models used in hydrocodes for high 

dynamic response simulations. International Journal of Impact Engineering, 2009. 36(1): p. 
132-146. 

 
11. Park, S.W., Q. Xia, and M. Zhou, Dynamic behavior of concrete at high strain rates and 

pressures: II. numerical simulation. International Journal of Impact Engineering, 2001. 
25(9): p. 887-910. 

 



   96

12. Aragao, F.T.S., Y. Kim, J. Lee, and D. Allen, Micromechanical model for heterogeneous 
asphalt concrete mixtures subjected to fracture failure. Journal of Materials in Civil 
Engineering, 2011. 23(1): p. 30-38. 

 
13. Xu, Z., H. Hao, and H.N. Li, Mesoscale modelling of fibre reinforced concrete material under 

compressive impact loading. Construction and Building Materials, 2012. 26(1): p. 274-288. 
 
14. Lammi, C., D. McDowell, and M. Zhou, Computation of the mesoscale dynamic fracture and 

dissipation behavior of concrete. Manuscript submitted for publication. 2011. 
 
15. Ellis, B., D. McDowell, and M. Zhou, Energy dissipation and evolving strength of ultra-high-

performance fiber-reinforced concrete (UHPFRC). In 3rd International Symposium on 
Ultra-High Performance Concrete and Nanotechnology for High Performance 
Construction Materials. 2012. Kassel, Germany. 

 
16. Flynn, D.R., Response of High Performance Concrete to Fire Conditions: Review of Thermal 

Property Data and Measurement Techniques. 1998. Gaithersburg, MD: National Institute 
of Standards and Technology. 

 
17. Morsy, M.S., S.H. Alsayed, and M. Aqel, Effect of elevated temperature on mechanical 

properties and microstructure of silica flour concrete. International Journal of Civil & 
Environmental Engineering, 2010. 10(1): p. 1-6. 

 
18. Omer, A., Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 2007. 

42(8): p. 516-522. 
 
19. Naus, D.J., A Compilation of Elevated Temperature Concrete Material Property 

Data and Information for Use in Assessments of Nuclear Power Plant Reinforced 
Concrete Structures. 2010. Oak Ridge, TN: Oak Ridge National Laboratory. 

 
20. Handoo, S.K., S. Agarwal, and S.K. Agarwal, Physiochemical, minearalogical, and 

morphological characteristics of concrete exposed to elevated temperatures. Cement and Concrete 
Research, 2002. 32(7): p. 1009-1018. 

 
21. Lammi, C., D. McDowell, and M. Zhou. Prediction of damage initiation in ultra high-

performance concrete during rapid heating. In U.S. National Congress on Computational 
Mechanics. 2011. Minneapolis, MN. 

 
22. Farnam, Y., S. Mohammadi, and M. Shekarchi, Experimental and numerical investigations 

of low velocity impact behavior of high-performance fiber-reinforced cement based composite. 
International Journal of Impact Engineering, 2010. 37(2): p. 220-229. 

 
23. Bencardino, F., L. Rizzuti, G. Spadea, and R. Swamy, Stress-strain behavior of steel fiber-

reinforced concrete in compression. Journal of Materials in Civil Engineering, 2008. 20(3): p. 
255-263. 

 
24. ABAQUS Theory Manual. 2010. Providence, RI: Simulia. 



   97

25. Drucker, D.C., and W. Prager, Soil mechanics and plastic analysis or limit design. Quarterly 
of Applied Math, 1952. 10: p. 157-165. 

 
26. Swamy, V.S., B. Sundman, and J. Zhang, A thermodynamic assessment of the silica phase 

diagram. Journal of Geophysical Research, 1994. 99: p. 8. 
 
27. Calderon, E., M. Gauthier, F. Decremps, G. Hamel, G. Syfosse, and A. Polian,  

Complete determination of the elastic moduli of α-quartz under hydrostatic pressure up to 1 GPa: 
an ultrasonic study. Journal of Physics: Condensed Matter, 2007. 19: p. 1-13. 

 
28. Zhou, Y., An experiment study of quartz-coesite transition at differential stress. Chinese 

Science Bulletin, 2005. 50(5): p. 445-51. 
 
29. Boettger, J.C., and S.P. Lyon, New Multiphase Equation of State for Polycrystalline 

Quartz. 1990. Los Alamos, NM: Los Alamos National Laboratory. 
 
30. Bose, K., and J. Ganguly, Quartz Coesite Transition Revisited. American Mineralogist, 

1995. 80: p. 231-238. 
 
31. Renner, J., A. Zerbian, and B. Stockhert, Microstructures of synthetic polycrystalline coesite 

aggregates. The effect of pressure, temperature, and time. Lithos, 1997. 41: p. 169-184. 
 
32. Hill, R., The elastic behavior of a crystalline aggregate. Proceedings of the Physical Society, 

Section A, 1952. 65(5): p. 349-354. 
 
33. Kimizuka, H., S. Ogata, and J. Li, Hydrostatic compression and high-pressure elastic constants 

of coesite silica. Journal of Applied Physics, 2008. 103( 053506): p. 1-4. 
 
34. Blacic, J.D., and J.M. Christie, Plasticity and hydrolitic weakening of quartz single crystals. 

Journal of Geophysical Research., 1984. 89(B6): p. 4223-4239. 
 
35. Abaqus v6.10 Theory Manual. 2010. Providence, RI: Simulia. 
 
36. Zhou, X.Q., V.A. Kuznetsov, H. Hao, and J. Waschl, Numerical prediction of concrete slab 

response to blast loading. International Journal of Impact Engineering, 2008. 35(10): p. 
1186-1200. 

 
37. Li, V., Determination of interfacial debond mode for fiber-reinforced cementitious composites. 

Journal of Engineering Mechanics, 1994. 120(4): p. 707-720. 
 
38. Shen, B., and G.H. Paulino, Identification of cohesive zone model and elastic parameters of 

fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique. 
Cement and Concrete Composites, 2011. 33(5): p. 572-585. 

 
39. Camanho, P.P., C.G. Davila, and M.F. de Moura, Numerical simulation of mixed-mode 

progressive delamination in composite materials. Journal of Composite Materials, 2003. 
37(16): p. 1415-1438. 

 



   98

40. Benzeggagh, M.L., and M. Kenane, Measurement of mixed-mode delamination fracture 
toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. 
Composites Science and Technology, 1996. 56(4): p. 439-449. 

 
41. Camacho, G.T., and M. Ortiz, Computational modelling of impact damage in brittle materials. 

International Journal of Solids and Structures, 1996. 33(20-22): p. 2899-2938. 
 
42. Building Code Requirements for Structural Concrete (ACI 318-95). 1995. 

Farmington Hills, MI: American Concrete Institute. p. 369. 
 
43. Sayers, C.M., and M. Kachanov, A simple technique for finding effective elastic constants of 

cracked solids for arbitrary crack orientation statistics. International Journal of Solids and 
Structures, 1991. 27(6): p. 671-680. 

 
44. Homand, F., D. Hoxha, T. Belem, M. Pons, and N. Hoteit, Geometric analysis of 

damaged microcracking in granites. Mechanics of Materials, 2000. 32(6): p. 361-376. 
 


