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SUMMARY 

The mechanical alloying and casting processes used to make polycrystalline 

metallic materials often introduce undesirable non-metallic inclusions and pores. These 

are often the dominant sites of fatigue failure origination at the low stress amplitudes that 

correspond to the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regimes, 

in which the number of cycles to crack initiation is more than 106. 

HCF and VHCF experiments on some advanced metallic alloys, such as powder 

metallurgy Ni-base superalloys, titanium alloys, and high-strength steels have shown that 

the critical inclusions and pores can appear on the surface as well as in the bulk of the 

specimen. Fatigue lives have been much higher for specimens that fail from a bulk site.  

The relative number of bulk initiations increases as the stress amplitude decreases 

such that just below the traditional HCF limit, fatigue life data appears to be evenly 

scattered between two datasets corresponding to surface and bulk initiations. This is often 

referred to as surface to bulk transition in the VHCF regime. Below this transition stress, 

the likelihood of surface versus bulk initiation significantly impacts the low failure 

probability estimate of fatigue life. Under these circumstances, a large number of very 

costly experiments need to be conducted to obtain a statistically representative 

distribution of fatigue life and to predict the surface versus bulk initiation probability.  

In this thesis, we pursue a simulation-based approach whereby microstructure-

sensitive finite element simulations are performed within a statistical construct to 

examine the VHCF life variability and assess the surface initiation probability. The 

methodology introduced in this thesis lends itself as a cost-effective platform for 
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development of microstructure-property relations to support design of new or modified 

alloys, or to more efficiently predict the properties of existing alloys. 
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1 Introduction 

1.1 Problem statement 

The mechanical alloying and casting processes used to make polycrystalline 

metallic materials often introduce undesirable non-metallic inclusions and pores that are 

large relative to the mean grain size. These are often the dominant sites of fatigue failure 

origination at the low stress amplitudes that correspond to the high cycle fatigue (HCF) 

and very high cycle fatigue (VHCF) regimes, in which the number of cycles to crack 

initiation is more than 106. Inclusions and pores cause a host of issues that can be broadly 

grouped into two categories: 

 

1. Issues related to the inclusion/pore density. These include matters such as large 

scatter in HCF and VHCF fatigue life data, specimen size dependence [1-3], and 

surface to bulk transition of HCF and VHCF crack origins. The experimental 

approaches to the study of these issues require large numbers of experiments to be 

conducted for large-scale components, and this is not yet practical due to time and 

cost limitations. 

2. Issues related to the fatigue crack formation processes. These include matters such 

as the nature of fatigue crack initiation from inclusions and pores, and their effects 

on the next stages of fatigue crack growth in the matrix. The experimental 

approaches to the study of these issues are particularly challenging due to the 

complex and subtle nature of the underlying processes. 
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The problems in both categories pose questions that are probabilistic in nature; 

studies of such issues require the use of appropriate statistics to characterize the 

underlying variability.  

HCF experiments on some advanced metallic alloys, such as Ni-base superalloys, 

titanium alloys, and high-strength steels show that fatigue life can be unexpectedly much 

higher for some specimens [4-18] where the failure origin is located in the bulk. The 

relative number of internal initiations increases as the stress amplitude decreases in the 

HCF regime such that just below the traditional HCF limit, fatigue life data appears to be 

evenly scattered between two datasets corresponding to surface and bulk initiations. The 

occurrence of two distinct failure distributions has been referred to as “Competing Failure 

Modes” [19, 20]. Under these circumstances, a large number of experiments need to be 

conducted to obtain a statistically representative distribution of fatigue life in the HCF 

and VHCF regimes.  

Other sources of information about variability in fatigue life may help to reduce 

the number of costly fatigue experiments that must be conducted to obtain a specific 

confidence level. In this thesis, microstructure-sensitive finite element analysis (FEA) is 

pursued as an additional source of knowledge about variability in fatigue life. Parametric 

crystal plasticity FEA simulations are performed within a statistical construct to study 

surface to bulk transition of fatigue crack origins. It will also be shown that the likelihood 

of surface versus bulk initiation significantly impacts the low failure probability estimate 

of fatigue life when the bimodal fatigue behavior is present. 



3 

 

To provide an experimental context, the application material for the crystal 

plasticity simulations is a fine-grained subsolvus microstructure of a powder metallurgy 

(PM) processed Ni-base superalloy, IN100.  

Computational approaches to characterizing fatigue life variability do not 

eliminate the need for experiments. Rather, they need to be calibrated according to 

experimental fatigue data, and they should be duly based on the underlying physical 

mechanisms that are inferred from experiments. When these conditions have been met, 

computational approaches can be intelligently implemented to guide experiments or to 

effectively explain experimental trends. Physically-based and properly formulated 

computational tools may provide the following advantages: 

 

• A cost-effective platform for development of microstructure-property relations to 

support design of new or modified alloys, or to more efficiently predict the 

properties of existing alloys. 

• The ability to study the effects of significant variation in microstructures. Such 

studies can be costly using experimental methods, if indeed feasible. 

• The ability to isolate and study the effects of microstructural attributes of interest, 

via reproducible “virtual” experiments.  

• The ability to predict response measures that can be intractable or costly to 

measure via experiments, such as fine scale behavior within the microstructure. 

• The ability to estimate the life expectancy of existing parts by capturing the 

relative effect of the controlling mechanisms at the different length scales 
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associated with the regimes of crack incubation, microstructurally small crack 

(MSC) growth, physically short crack (PSC) growth, and long crack (LC) growth. 
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1.2 Dissertation structure 

The remainder of this thesis is organized as follows. In the next section, we 

introduce two materials of interest, namely Ni-base superalloy and martensitic gear steel. 

In Chapter 2, the two main computational tools of this study, crystal plasticity model and 

the Fatigue Indicator Parameters (FIPs), are presented with the corresponding model 

constants and material parameters. A brief discussion of the Statistics of Extreme Value 

follows. This chapter concludes by presenting the finite element (FE) model and 

techniques we used to efficiently simulate the grains around inclusions and pores. 

Chapter 3 begins by summarizing the experimental literature concerning the role 

and nature of critical inclusions and pores in Ni-base superalloys. Using the crystal 

plasticity model, we calculate and compare the driving force for fatigue crack initiation 

(formation and early growth) in the matrix, surrounding the intact, cracked, and partially 

debonded inclusions as well as pores.  

Chapters 4 and 5 investigate two of the possible surface-to-bulk transition 

mechanisms in Ni-base superalloys, using the crystal plasticity model to construct 

statistics of relevant FIPs for multiple simulated grain orientation distributions. The 

dependence of these statistics on microstructure attributes, as well as applied uniaxial 

strain amplitude (Rε = -1), is explored.  

Chapter 4 explores the interplay of external loading and local microstructure 

changes that affect inclusion-related FIPs. In particular, the dependence of stress 

distribution at the inclusion-matrix interface on inclusion radius and applied uniaxial 

strain amplitude (Rε = -1) is examined. In Chapter 5, we examine the local state and 
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degree of residual stress relaxation around partially debonded inclusions and pores for 

several applied uniaxial strain amplitudes (Rε = -1) and initial residual stress values.  

In Chapter 6, the HCF and VHCF fatigue life variability are discussed with 

emphasis on the implications of competition between surface and bulk inclusions on the 

design of systems with very low probability of fatigue failure. The shortcomings of the 

existing approaches to computing these probabilities are presented followed by a 

simulation-based model that overcomes these shortcomings. The underlying probabilistic 

approach is explained, building on the notion that at low cyclic stress amplitudes, the 

inclusion-controlled fatigue response of advanced alloys is a probabilistic realization of 

the competing mechanisms of surface- and internally-initiated failures.  

Subsequently there is a discussion of possible mechanisms, as suggested by 

experimental findings, which can drive the surface to bulk transition of fatigue crack 

initiation sites in alloys with inclusions. These mechanisms provide the context for the FE 

simulations of Chapters 4 and 5. 

In Chapter 7, we will examine a case study where we incorporate the findings of 

Chapters 4 and 5 into the weighted probabilistic model presented in Chapter 6 to simulate 

the surface initiation probability in a fine-grained subsolvus microstructure of PM Ni-

base superalloy, IN100. We will explore the dependence of the simulated surface 

initiation probability on such microstructure attributes as inclusion density, inclusion 

radius distribution, inclusion-matrix interface strength as well as specimen size and 

applied strain amplitude (Rε = -1). 

In contrast to Ni-base superalloys, non-metallic inclusions often fracture into 

smaller pieces during deformation processing or during manufacturing in high strength 
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steels. These inclusions appear as inclusion stringers, acting as the dominant sources of 

fatigue failure origination [21]. It is instructive to study how inclusions interact within a 

cluster. In Chapter 8, the magnification/shielding effect of a neighbor inclusion on the 

inclusion’s potency to form a HCF crack in the adjacent matrix is studied. The finite 

element (FE) simulations of this section utilize the J2 elasto-plastic material behavior and 

the application material is a low carbon martensitic gear steel, Ferrium® C61 [22]. 

This thesis concludes with a summary of findings and a discussion of 

recommendations for future improvements in Chapter 9. 
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1.3 Materials examined in the Finite Element Analysis 

1.3.1 Ni-base superalloys  

Ni-base superalloys are the most widely used of all the classes of superalloys [23-

27]. Two of the most important Ni-base superalloy properties are superior yield strength 

and creep resistance at high temperatures. Other  crucial material properties include good 

fatigue life, phase stability, as well as oxidation and corrosion  resistance [25, 26].  With 

such unique properties, Ni-base superalloys find extensive applications in the hot sections 

of gas engine turbines as well as in rocket motors and nuclear reactors.  

A schematic of the Rolls-Royce Trent 800 aircraft gas turbine engine is shown in 

Figure 1-1 (a), showing the pressure and temperature profiles in various sections of the 

engine [27, 28].  Turbine Inlet Temperature (TIT), which is a direct indicator of the 

efficiency of a gas turbine  engine, depends on the temperature capability of first stage 

high pressure turbine blades, which are often made of  single crystal Ni-base superalloys 

[24, 29]. These alloys allow the turbine to operate more efficiently by withstanding 

higher temperatures. Polycrystalline Ni-base superalloys are used mainly in gas turbine 

engines for parts operating in the intermediate temperature regime, especially for 

components such as disks, spacers, and seals, as shown in Figure 1-1 (c) [27]. 
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(a) 

 

 
(c) 

    

 
(b) 

 
 

Figure 1-1: (a) pressure and temperature profiles in the Rolls-Royce Trent 800 jet engine, (b) common 
application alloys, and (c) A PM processed turbine disk [28]. 

 

 

The structure of most precipitation-strengthened Ni-base superalloys consists of 

the γ matrix, and of intermetallic γ´ precipitates of the [Ni3(Al,Ti)] type; these act as 

coherent barriers to  dislocation motion. The γ phase is a solid solution with a face-

centered crystal (FCC) lattice and randomly distributed different species of atoms. By 

contrast, the γ´ phase has an ordered crystalline lattice of type LI2. A two-phase 
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equilibrium microstructure is generated with a very unusual crystallographic relationship 

between the γ and γ´ phases. Both phases are face-centered-cubic, have almost identical 

lattice parameters, and are coherent for the fine γ´ phase [30]. 

  

 
 

(a) 
(b) 

Figure 1-2: Crystal structure of γ (a) and γ´ (b) [31]. 

 

 

The lattice sites in the γ phase are occupied by similar atoms, i.e., either Al or Ni. 

In the pure Ni3Al phase, atoms of aluminum are placed at the vertices of the cubic cell 

and form the sublattice A. Atoms of Ni are located at the centers of the faces and form the 

sublattice B, as shown in Figure 1-2 [31].  

These sublattices of the γ´ phase can accept as solute a considerable proportion of 

other alloying elements, which are dissolved in the γ phase as well. The γ´ phase hardens 

the alloy through an unusual mechanism called the yield stress anomaly. Dislocations 

dissociate in the γ´ phase, leading to the formation of an anti-phase boundary (APB). At 

elevated temperatures, the free energy associated with the APB is considerably reduced if 

it lies on a particular plane, which by coincidence is not a permitted slip plane. One set of 
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partial dislocations bounding the APB can cross-slip so that the APB lies on the low-

energy plane; since this low-energy plane is not a permitted slip plane, the dissociated 

dislocation is now effectively locked [25]. By this mechanism, the yield strength of the γ´ 

phase actually increases with temperature up to about 1000 °C, giving superalloys their 

currently unrivalled high-temperature strength [32]. 

Alloying elements such as aluminum and  titanium are used to promote the 

formation of the γ´ phase. Their close match in matrix-precipitate lattice parameters (~0-

1%), combined with their chemical compatibility, allows the γ´ to precipitate 

homogeneously throughout the matrix and to have long-term stability. Extremely small γ´ 

precipitates always occur as spheres, because this shape best minimizes surface energy.  

As the γ´ density grows, the overall energy can be minimized by forming cubes, and thus 

the γ´morphology changes from spheres to cubes or plates depending on the value of the 

matrix-precipitate lattice mismatch [30]. 

The γ´ phase size can be  controlled by certain precipitation-hardening heat 

treatments. Many superalloys have a two  step heat treatment that creates a dispersion of 

cuboidal γ´ particles, known as the  primary phase, with a fine dispersion between these 

known as secondary γ´ [27]; this is referred to as the subsolvus microstructure, as shown 

in Figure 1-3 for PM processed IN100 [13].  The material contains large γ′ precipitates 

that do not dissolve during the solutionizing step, as well as secondary and tertiary 

precipitates that form during cooling and subsequent aging. The subsolvus microstructure 

is noted for its high yield strength, fatigue resistance, and good fracture toughness, and is 

found mostly in disks of the lower temperature compressor sections. Temperature and 

cooling rate are varied to produce various microstructures. 
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(a) 

 

 
(b) 

Figure 1-3: The microstructure of subsolvus IN100, (a) the γ-primary-γ´morphology and (b) the secondary 
γ´ structure [13]. 

 

 
 

(a) 

 
(b) 

Figure 1-4: The microstructure of supersolvus IN100, (a) the γ- secondary-γ´morphology and (b) the 
secondary γ´ structure [33]. 
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The supersolvus microstructure is noted for its moderate strength and superior 

creep and fracture toughness; it is better suited for compressor and turbine disks than the 

subsolvus material. A supersolvus microstructure of a coarse grain PM processed IN100 

with an average grain size of approximately 20 microns is shown in Figure 1-4 [33]. The 

reference material for the finite element simulation of chapter three is a fine-grained 

(having an average grain size of approximately 5 microns) subsolvus PM processed 

IN100. 

It is often beneficial for a polycrystalline Ni-base superalloy to contain carbides to 

improve creep strength, as carbides are precipitated at grain boundaries and act to pin the 

boundaries and resist sliding [25, 27]. Oxidation or corrosion resistance is provided by 

adding elements such as aluminum  and chromium that promote the formation of a 

protective surface oxide layer. A small amount of yttrium enhances an oxide layer’s bond 

to the substrate [26].  

 Superalloy development has relied heavily on both chemical and process 

innovations and has been  driven primarily by the aerospace and power industries. 

Directionally  solidified and single crystal alloys are developed for turbine blade 

applications where grain boundaries are minimized or eliminated in order to obtain 

enhanced creep properties.  

In contrast, disk material is designed for enhanced strength coupled with good 

fatigue properties in order to cope with the stress cycles in the flight cycle. Grain 

boundaries are beneficial and polycrystalline Ni-base superalloys are the materials of 

choice. But the benefits are obtained at the expense of creep life. 
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Highly alloyed Ni-base disks suffer from excessive ingot segregation, which 

makes grain size difficult to control. The development of powder metallurgy (PM) 

processing has alleviated this issue; in PM processing, a molten stream of metal is gas 

atomized in an inert argon atmosphere, and the resultant powder is consolidated by 

HIPing and/or superplastic forging to near-net shape [24].  

Although PM results in remarkable chemical and microstructure homogeneity, as 

well as excellent strength and toughness properties, such products are prone to fatigue; 

failure often originates from ceramic inclusions, a by-product of the PM processing 

technique. Fatigue failure experiments highlight the increasing role of this failure mode at 

the lower stress amplitudes that correspond to HCF and VHCF regimes; such failures 

have raised a number of nontrivial issues in the design of PM Ni-base superalloy 

components for low probability of fatigue failure.  
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1.3.2 Ferrium® C61 martensitic gear steel 

The application of steels in modern high-power-density gears demands an 

optimized combination of improved case hardness and superior core toughness. Good 

case hardness provides resistance against contact and bending fatigue, whereas core 

toughness is intended to alleviate the detrimental effects of internal flaws [34-41].  

Ferrium® C61, accompanied by Ferrium C64 and C69, are three new alloys 

developed by QuesTek Innovations LLC (www.questek.com) using their Materials by 

Design® methodology for power transmission applications. All of these alloys utilize an 

engineered nanoscale M2C carbide strengthening dispersion within a Ni-Co lath 

martensitic matrix [42].  

At tempering temperatures of 450-600°C, these alloys exhibit a secondary 

hardening response in which fine M2C carbide dispersions form as replacements for 

coarse cementite particles [43]. Thus these alloys are often referred to as secondary 

hardening steels [42]. Case carburizing produces a gradient in the volume fraction of the 

M2C carbides and results in increased hardness and increased surface compressive 

residual stress. The efficiency of the M2C strengthening response allows this class of 

steels to achieve very high surface hardness with very low carbon content. Thus, this 

class of steels has the ability to achieve very high surface hardness without the formation 

of detrimental primary carbides [44]. A typical hardness profile of carburized Ferrium® 

C61 is shown in Figure 1-5. 
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Figure 1-5: Typical hardness profile of carburized Ferrium® C61 [44]. 

 

 

Ferrium® C61 is targeted as a superior alternative to current gear materials in 

applications where component redesign is not feasible, but elevated core strength is 

required. 

 

 

Figure 1-6: Typical  high-power-density gear, made of carburized Ferrium® C61 [44]. 
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Figure 1-6 shows a high-power-density gear, made of secondary hardening steels. 

Such gears often go through the following manufacturing stages: 

 

1. The gear is commonly machined from a cast ingot that has been forged into stock. 

Additional gear manufacturing methods include direct casting and powder 

metallurgy techniques such as powder forging [21]. 

2. Carburization is performed to achieve hardening by diffusing carbon into the 

surface at solutionizing temperatures [34]. High-temperature vacuum carburizing 

is desirable for high power density gear applications, as it avoids the intergranular 

surface oxidation that is common to conventional gas carburizing and that 

commonly initiates bending fatigue failures [45]. 

3. Once carburized, the gears are quenched and often subjected to cryogenic 

treatments to ensure complete martensitic transformation. Tempering treatments 

are then performed to achieve secondary hardening through the precipitation of 

alloy carbides.  

4. Various surface treatments can then be performed. Shot peening is commonly 

employed to impart compressive residual stress to the surfaces of the gear teeth 

and to the root notches. 

5. Different means are employed to improve the surface finish of the gear to get rid 

of stress-increasing asperities; these means include honing, grinding and 

burnishing [46]. 
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The application material for FE simulations in Chapter 8 is Ferrium® C61 with 

the composition listed in Table 1. The case and core hardness values are typically (60-62 

HRC) and (47-50 HRC), respectively. A representative precipitation hardened case 

microstructure is shown in Figure 1-7. Heat treatment of this steel involves the following 

stages [22]: 

 

1. Normalizing: The material is heated uniformly to 1875°F and air cooled. 

2. Annealing: The material is heated uniformly to 1250°F, held for 2 to 8 hours and 

air cooled. Hardness should be less than 327 HBW. 

3. Carburization and Hardening: The material is vacuum carburized at 1830°F, 

followed by quenching in a gas (1.5 Bar Nitrogen or higher) or oil medium. 

4. Refrigeration: The material is refrigerated at -100°F or lower for 1 hour in order 

to obtain optimum case hardness. This should be performed with minimal delay 

after completion of the quench. 

5. Tempering: The material is tempered at 900°F for 15 hours to achieve the desired 

case strength.  

 

Table 1: Composition of C61 martensitic steel (wt %) [22]. 

C 
Cr Ni Co Mo V Fe 

0.15 
3.5 9.5 18 1.1 0.08 Bal 
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Figure 1-7: The Ferrium® C61 microstructure for treatment processed specimens [47]. 
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2 Study tools 

2.1 Material models 

2.1.1 Homogeneous initially isotropic constitutive model for steel 

Homogeneous continuum formulations of inelastic behavior are computationally 

inexpensive tools for qualitative study of such attributes as inclusion orientation and 

spacing when one wishes to smear other aspects of microstructure heterogeneity. Chapter 

8 uses a homogenized elastoplastic material response having nonlinear kinematic 

hardening constitutive relations [48] to serve as the macroscopic material model; this 

model is included in the standard material model library of the commercial finite element 

software ABAQUS 6.7 [49]. It employs the simple Mises yield surface, i.e., 

 2( ) ysF f σ α σ= − −
ɶ ɶ

 (2.1) 

with F = 0 during plastic flow, and 

 ( ) ( ) ( ) ( ) ( )3 3
:

2 2 ij ij ij ijf S S S Sσ α α α α α′ ′ ′ ′− = − − = − −
ɶ ɶ ɶ ɶ ɶ ɶ

 (2.2) 

Here, S
ɶ

is the deviatoric stress tensor, σ
ɶ

 is the stress tensor, 
ɶ
α  is the back stress tensor 

and ′
ɶ

α  is its deviatoric component.  The uniaxial cyclic yield strength is defined by ysσ . 

The associative plastic flow rule is given by 
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where plεɺ
ɶ

is the plastic strain rate tensor and plεɺ  is the equivalent plastic strain rate, 

defined by 

 
2

:
3pl pl pl

ε ε ε=ɺ ɺ ɺ
ɶ ɶ

 (2.4) 

The evolution equation for the back stress tensor α
ɶ

 is expressed as 

 ( ) pl pl

ys

c
rα σ α ε αε

σ
= − −ɺ ɺɺ
ɶ ɶ ɶ ɶ

 (2.5) 

where c and r are material parameters. Here, c is the initial kinematic hardening modulus 

and r determines the rate of dynamic recovery of the back stress with increasing plastic 

deformation. Isotropic hardening is neglected in view of the desire to simulate a 

cyclically stable response in parametric studies with pure kinematic hardening. The 

elastic response is given by 

 : elCσ = ε
ɶ ɶ ɶɶ

 (2.6) 

where elε
ɶ

 denotes the elastic strain tensor, and 
ɶɶ

C  is the isotropic elastic stiffness tensor. 

Model parameters, presented in Table 2, are chosen to mimic the cyclic deformation 

behavior of the candidate low-carbon high-strength martensitic steel. 

 

Table 2: Material parameters of Ferrium® C61 martensitic steel 

mE  (GPa) 
mν  m

ysσ (MPa) 
mc (GPa) mr  

193.6 
0.28 1500 112.1 200 
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2.1.2 Crystal plasticity based model for polycrystalline Ni-base superalloys 

Homogeneous continuum constitutive models for inelastic behavior are 

computationally inexpensive tools to support the qualitative study of attributes such as 

inclusion size, aspect ratio, and surface irregularities when one wishes to smear out or 

disregard explicit consideration of other aspects of microstructure heterogeneity. Such 

formulations are useful at higher stress amplitudes, i.e., the low-cycle fatigue regime.  

Depending on the ratio of inclusion size to grain size and the heterogeneity level 

of cyclic plastic deformation, polycrystal plasticity is preferred relative to a homogeneous 

continuum constitutive formulation. Therefore, a continuum crystal plasticity model for 

IN100, based on the work of Shenoy et al. [50] and summarized by Przybyla and 

McDowell in complete form [51] is used for the bulk of the simulation work in this 

thesis.  

This approach is more appropriate for capturing anisotropy and slip activity 

within individual grains on specific slip systems, and it accounts for the temperature-

dependence of deformation mechanisms. Additional advantages of the crystal plasticity 

approach are: 

 

• The physics of the crystallographic slip can be embedded more accurately in a 

crystal plasticity framework. 

• Grains can be modeled explicitly using different crystallographic orientations and 

sizes as desired; this is especially important since grains play an important role in 

determining the crack initiation life in polycrystalline Ni-base superalloys [52]. 
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• The crystal plasticity framework is appropriate for application in a hierarchical 

scheme for bridging length scales from precipitates in single crystals to 

polycrystalline aggregate to the homogenized stress-strain macroscopic response. 

 

Since this thesis primarily emphasizes the role of non-metallic inclusions and 

pores that may be an order of magnitude larger than grains [53], it is not necessary to 

consider the constituent phases of a single grain, e.g., γ matrix and γ’ precipitates. The 

crystal viscoplasticity constitutive model to be used in this work implicitly accounts for 

the precipitates in an average sense and assumes a homogeneous stress-strain response 

within a grain.  

Deformation and stress heterogeneity within a grain due to its interaction with 

neighboring grains is not to be confused with this notion of grain-level homogeneous 

stress-strain response, as the former is seen in the finite element simulations if the 

simulated grain comprises more than one finite element integration point. In simulating 

the polycrystal, grain boundaries are treated only as idealized boundaries maintaining 

compatibility of deformation. This is a limitation of the present work. 

  

2.1.2.1 Kinematics of crystal plasticity 

The generalized plane strain finite elements, also referred to as 2.5D (See Section 

2.4.1), implement the kinematics of a fully 3D continuum. The kinematics of crystal 

plasticity theory is based on the multiplicative decomposition of the total deformation 

gradient,F , into a plastic part, pF , and a part that includes lattice deformation and rigid 
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body rotation, eF , based on the assumption of successive plastic and elastic deformation 

processes, as shown in Figure 2-1 [54, 55].  

 

 e p.=F F F  
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Figure 2-1: Successive elastic and plastic deformation. 

 

 

Plastic deformation of the crystal [56-58] is due to dislocation glide on close-

packed slip planes along close-packed directions; the isoclinic intermediate configuration 

in Figure 2-1 is selected, as that unique configuration that does not alter the orientation of 

the slip plane normal, o
α

m , and slip direction, o
α
s , unit vectors. In this case, the elastic 

deformation and rigid body rotation of the crystal lattice are embedded in eF , i.e., 

 e e 1
o o  and  α α α α −= ⋅ = ⋅s F s m m F  (2.7) 

Here, α corresponds to a specific slip system, and zero subscripts denote the reference or 

original configuration in Figure 2-1. The net effect of dislocation glide on the αth slip 
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system is modeled by the continuum shearing rate, αγɺ . The plastic velocity gradient in 

the intermediate configuration is related to the rate of shearing by [56] 

 
sysN

P P P 1
o o o

1

( ) ( )− α α α

α=

= ⋅ = γ ⊗∑L F F s mɺ ɺ  (2.8) 

where the summation is taken over all the slip systems, Nsys, in the crystal, and the 

quantity o o( )α α⊗s m  is the Schmid tensor in the intermediate configuration. The resolved 

shear stress on the αth slip system, ατ , serves as the driving force for dislocation glide. 

The resolved shear stress on a slip system in the intermediate configuration is given by 

 ( )2 :PK

o o

α α ατ = ⊗s mσσσσ  (2.9) 

where 2PKσσσσ  is the 2nd Piola-Kirchhoff stress tensor. 

  

2.1.2.2 Constitutive behavior 

The crystal plasticity model for IN100 is based on the work of Shenoy et al. [50] 

and presented in complete form by Przybyla and McDowell [51]. In this section, we 

present a summary of the model. The inelastic slip rate (flow rule) for the thα slip system 

is a two-term potential given by [59, 60]. 

 ( )
1 2n n

1 2
o

Q Q
exp exp sgn

kT D kT D

α α α α α
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α α

τ χ κ τ χ
γ γ τ χ
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ɺ ɺ (2.10) 
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where T is the absolute temperature, k is the Boltzmann’s constant, and Q1 and Q2 are 

activation energies; oγɺ  is a reference shearing rate and n1 and n2 are flow exponents; χα is 

the slip system back stress accounting for the Bauschinger effect in cyclic loading, κα is 

the threshold slip resistance, and Dα is the average drag resistance.  

There are two types of dislocation slip systems that may be activated in a FCC 

ordered structure, 12 octahedral slip systems <110>{111} and 6 cube slip systems 

<110>{001}. The octahedral slip systems are active over the entire temperature range, 

while the cube slip systems are active only at higher temperature [61, 62]. The evolution 

equations for the threshold slip resistance and the back stress internal state variables 

depend on the microstructure. These equations are elaborated in [50], and references 

therein and are summarized in the following.  

Three Internal State Variables (ISVs) are used: the threshold slip resistance, the 

dislocation density and the back stress variable. The threshold slip resistance, κα, is given 

by 

 o, t mix mixbα α α
λ λ λκ κ α µ ρ= +  (2.11) 

where λ stands for either the octahedral or cube slip systems, ρα is the dislocation density 

and µmix is the volume fraction averaged shear modulus given by  

 ( )mix p1 p2 p3 m mf f f fγµ µ µ′= + + +  (2.12) 

and 

 ( )mix p1 p2 p3 m mb f f f b f bγ ′= + + +  (2.13) 
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where  and mγµ µ′  are the shear moduli for the precipitate and matrix phases, 

respectively, and fm is the volume fraction of the matrix phase. Similar volume fraction 

averaging is employed for all the elastic properties (i.e. C11, C12, and C44) as well. The 

slip resistance is expressed in terms of an initial reference critical resolved shear stress 

(CRSS) and the Taylor hardening term due to interactions of the statistically stored 

dislocations, α
λρ .  

A statistical coefficient, α, accounts for the deviation from the regular spatial 

arrangements of the dislocation population. The initial threshold slip resistance o,
α

λκ is 

analogous to the yield strength and is influenced by microstructure attributes such as the 

grain size, precipitate size distribution, and associated volume fractions. The functional 

form for the microstructure dependence of the CRSS is based on Reppich and co-workers 

[63, 64]. The influence of the grain size, grd , is introduced through the Hall-Petch 

relations. The initial CRSS is given by 

 

( ) ( ) ( )
( ) ( )

1/ n
n n

o,oct o ,oct oct p1 2 p2 3 p3 p1 p2 ns

1/ n
n n

o,cub o,cub cub p1 2 p2 3 p3

f ,d , f ,d , f f f

f ,d , f ,d , f                    

                     

κ
κ κ

κ
κ κ

α α α

α α

κ τ ψ τ

κ τ ψ

 = + + +  
 = +  

 (2.14) 

and 

 
p1 p2 gr APB

oct cub p1 p2 p3 p3 3

1 2 APB _ refgr

f f c
c c c f d ,     

d d d

Γ
ψ ψ ζ ζ ζ ζ

Γ

 ′ ′
 ′= = + + + =
  

 (2.15) 

where λ is the octahedral or cube slip system, and the precipitate volume fractions are 

normalized and given as 
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p1 p2 p3

p1 p2 p3

p1 m p2 m p3 m

f f f
f , f , f

f f f f f f
′ ′ ′= = =

+ + +
 (2.16) 

Here, APBΓ  is the anti-phase boundary energy, w is a constant that accounts for 

the elastic repulsion within the precipitates and 1pλ  is the primary precipitate spacing. 

The parameters cp1, cp2, cp3, and cgr are determined by fitting the initial yield strength to 

the experimental data. The non-Schmid stress dependence of the octahedral slip systems 

is given by [59] 

 
ns pe pe cb cb se seh h hα α α ατ τ τ τ= + +  (2.17) 

where ,  , and pe cb se

α α ατ τ τ  are the resolved shear stresses on the primary, cube, and 

secondary slip systems, respectively, and hpe, hcb, and hse are constants that are 

experimentally determined. The evolution equation for the dislocation density is 

 { }o o 1 2h Z k kα α α α
λ λ λρ ρ ρ γ= + −ɺ ɺ  (2.18) 

where 

 

1

o eff

mix eff 2

k 2
Z      and     d

b d d

δ
δ

δ δ

−
 

= ≈  
 

 (2.19) 

where k1, k2, and kδ are constants and dδeff represents the secondary precipitate spacing. 

Hardening is controlled by a competition between dislocation storage and annihilation 

(dynamic recovery) mechanisms [65, 66]. A backstress term ( αχ ) is included in the 

model to capture the Baushinger effect due to heterogeneous distribution of dislocations 
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at the ′γ  precipitate interfaces since the two-phase microstructure is not modeled 

explicitly. The backstress evolution is given as 

 ( ){ }sC b sgnα α α α α α
λ χ λ λ λχ ηµ ρ τ χ χ γ= − −ɺ ɺ  (2.20) 

and 

 o o

o 1

z

z k α
λ

η
η

ρ
=

+
 (2.21) 

where Cχ  is a fitting parameter, the coefficient η  establishes the ratio of back stress 

amplitude relative to the cyclic flow stress for various slip systems and oη  describes the 

contribution from the GNDs. Shenoy et al. [50] calibrated the model for several distinct 

IN100 microstructures, using experimental fatigue data under variable strain rates to 

obtain some of the constants. Their work suggested physically reasonable values for the 

remaining model constants. A constant subsolvus-processed IN100 microstructure is used 

throughout this study; it is prepared using powder metallurgy techniques. Common model 

constants and microstructure parameters specific to this study are listed in Table 3 and 

Table 4, respectively. Initial values of all slip system back stresses are set to zero. The 

constitutive equations formulated in the previous section are implemented as a User 

MATerial (UMAT) in ABAQUS [49]. 
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Table 3: Common model parameters for all microstructures calibrated for T = 650ºC [50, 51, 67]. 

o,oct
ατ (MPa) o,cub

ατ (MPa) p1c  p2c  p3c  grc (MPa mm ) k δ  

85.1 170.2 1.351 1.351 1.22x105 9.432 2.5x10-3 

 

b ′γ (nm) 
bγ (nm) ′γµ (MPa) γµ (MPa) 1k (mm-1) 2k  Dα  (MPa) ho 

0.25 
0.41 81515 130150 2.6x105 8.2 150(oct) 

180(cube) 
4.8(oct) 

2.4(cube) 

 

peh  cbh  seh  οη  ( )APB APB_ refΓ = Γ (J/m2) 1γɺ  (s-1) 2γɺ  (s-1) 1n  2n  

0.8 0.0 -0.4 2.82 164x10-3 8.7 3.9x10-11 15 9 

    

11C ′γ (MPa) 12C ′γ (MPa) 44C ′γ (MPa) 11C γ (MPa) 12C γ (MPa) 44C γ (MPa) n κ  ( )0α
λρ  

(mm-2) 

135000 
59210 81515 158860 73910 130150 1 1.0x105 

 

Also, 1
1 o

-Q
γ = γ exp

RT
 
 
 

ɺ ɺ  and 2
2 o

-Q
γ = γ exp

RT
 
 
 

ɺ ɺ , where T = 923 K (650ºC) and 

oγɺ  R (J /(mol-K)) Q1 (J/mol) Q2 (J/mol) 

16 -16.1x10 s  8.314 280,000 480,452 
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Table 4: Model parameters for our specific subsolvus processed IN100 [50, 51, 67]. 

p1f  2d  (nm)  p2f  3d  (nm)  p3f  grd  ( m)µ  tα (MPa) Cχ (MPa) 2d  (nm)δ  

0.053 
320 .439 17 .078 6.6 .0385 2.713 8.2 
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2.2 Fatigue Indicator Parameters 

Fatigue Indicator Parameters (FIPs) are employed in this study at the 

microstructure scale to reflect the driving force for fatigue crack formation and early 

growth. The term “Critical Plane” is applied to the crystallographic facets and 

microstructure scale planes along which Stage I fatigue cracks often form and grow. This 

happens in shear-dominated cases that are common for alloys exhibiting dominant single 

or double slip in LCF at moderate temperatures, and particularly for low stacking fault 

energy FCC materials or Ni-base superalloys, as in the present study.  In this simulation-

based approach, the “potency” of inclusions to form fatigue cracks in a given material is 

judged by the magnitude of the mechanism-specific relevant FIP parameter in the 

adjacent matrix.  

Several “two-parameter” FIPs have been introduced, for example emerging from 

the work of Findley, Stulen, and Cummings in the 1950s [68-71]. These FIPs differ from 

one another based on whether they use stress, strain, or energy as field variables, but in 

general they all seek to relate a multiaxial state of stress or deformation to an equivalent 

scalar parameter [72, 73] that can correlate fatigue tests under various conditions. The 

choice of an appropriate parameter is largely influenced by the fatigue regime under 

study, the material behavior, the loading conditions, and their interplay.  

In polycrystalline Ni-base superalloys, the HCF life is typically composed of the 

following stages when cracks form via slip band cracking: 

 

1. Fatigue crack formation on crystallographic planes at the subgrain scale. 

2. Microstructurally Small Crack (MSC) growth.  
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3. Physically Small Crack (PSC) and Long Crack (LC) growth until specimen 

failure. 

 

The total fatigue life is modeled as the sum of the numbers of cycles spent in 

several consecutive stages, i.e., 

 
T inc MSC PSC LCN N N N N= + + +  (2.22) 

where 
incN , the crack incubation life, refers to the number of cycles required for a crack 

to nucleate and grow through the spatial domain of influence of the micronotch (e.g., 

debonded inclusion) to some particular scale on the order of grain size or a fraction of 

inclusion size. Hence, 
incN  includes both fatigue crack nucleation and some degree of 

early crack growth. 

This decomposition has greater utility in the present context than one that 

considers nucleation and growth because it associates specific material length scales with 

different regimes, whereas the spatial scale for nucleation per se is typically ill-defined. 

MSCN  is the number of cycles required for propagation of a MSC through perhaps 3-10 

grains in which fatigue crack growth is stochastic in terms of interaction with the 

microstructure, and 
PSCN  is the number of cycles required for propagation of a PSC 

during the transition to long crack growth. The long crack propagates according to LEFM 

with an associated number of cycles
LCN .  

Initiation life,
initiationN , is typically defined subjectively. It often refers to the 

number of cycles required to form a detectable crack, which of course depends on 
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detection limits, instrumentation and methods. Thus, one can usually rank order the 

nucleation, incubation, and initiation lives as 

 
nucleation inc initiationN N N< <  (2.23) 

In the HCF and VHCF regimes, crack incubation and early stages of MSC growth 

consume most of the total fatigue life. These stages are known to be controlled by cyclic 

irreversible deformation at the scale of microstructure, associated with to-and-fro slip and 

the impingement of slip bands on the grain boundaries [74]. To address fatigue crack 

incubation in shear (Stage I), shear-based FIPs are candidates for the relative assessment 

of fatigue crack incubation potency. In this thesis, the following shear-based FIPs are 

utilized. 

 

2.2.1 Maximum nonlocal cyclic plastic shear strain range 

Maximum nonlocal cyclic plastic shear strain range, *
,maxpγ∆ , is a simple yet 

revealing FIP that forms the basis for calculation of other FIPs. To obtain *
,maxpγ∆ , we 

start by calculating the range of the plastic strain tensor, p

ijε∆ , over a stabilized loading 

cycle at the finite element integration points, as
A B

p p p

ij ij ijε ε ε∆ = − . The instances A and B 

are shown in Figure 2-2 for strain ratios of Rε = -1 and 0 (Rε = ε
min

yy / ε
max

yy). Figure 2-2 

plots the applied nominal strain amplitude, normalized relative to the macroscopic yield 

strain, versus time for three loading cycles. 
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Time

εyy / εys

Time

εyy / εys

Cycle 1 Cycle 2 Cycle 3

Rε = -1

Rε = 0

A

B
A

B

 

Figure 2-2: Instances A and B for strain ratios of Rε = -1 and 0. 

 

 

The range of plastic strain tensor is then averaged over some finite domain with 

length scale on the order of microstructure, representative of the scale at which crack 

incubation is defined. 

 * 1p p

ij ij dV
V

ε ε∆ = ∆∫  (2.24) 

The asterisk denotes a quantity that is averaged over some finite averaging region. 

In this study, the nonlocal averaging region is taken to be of a constant size in order to 

account for size effects, and is located at the slip-intensified region of the inclusion notch 

root, as shown in Figure 2-3. The averaging procedure also helps to ensure 

computationally consistent and objective results by regularizing to avoid mesh-size 

dependence. Further, it accounts for the fact that cracks physically form over a finite 

region, as noted in other studies [75-78].  
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Figure 2-3: Averaging region. 

 

 

In general, experimental studies necessary to justify a particular domain size for 

averaging are lacking, so it is important for a measure to be consistently applied in 

parametric studies that seek to compare microstructures. In the finite element simulations 

of the following chapters, the size of the averaging area is chosen to (a) have a reasonable 

physical association with damage process zone and (b) offers some degree of 

computational regularization. As such, it depends on the model and element size and is 

specified accordingly.  

The nonlocal plastic shear strain range, *
,p θγ∆ , on a given plane-θ with unit normal 

vector n and along a given direction with unit vector t, is calculated by projecting the 

nonlocal range of plastic strain tensor, *p

ijε∆ , onto the plane as 

 * *
, 2 p

p θγ∆ = ∆i in tεεεε  (2.25) 

The maximum of the nonlocal plastic shear strain range, *
,p θγ∆  amongst all planes is taken 

to be the maximum nonlocal cyclic plastic shear strain range, *
,maxpγ∆ , i.e., 

 * *
,max ,max( )p p θθ

γ γ∆ = ∆  (2.26) 
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In this thesis, the ∆γ
*

p,max parameter is calculated as  

 * * * *
,max , ,1 ,3max( )p p p pθθ

γ γ ε ε∆ = ∆ = ∆ − ∆  (2.27) 

where ∆ε
*

p,1 >∆ε
*
p,2 >∆ε

*
p,3 are the ordered eigenvalues of *p

ijε∆ . 

 

2.2.2 The Fatemi-Socie (FS) parameter  

The Fatemi-Socie (FS) critical plane parameter [79, 80] is defined as 

 

* *
, ,max 1

2
p n

FS FS

ys

P k
θ θ

θ

γ σ

σ

  ∆
= +      

 (2.28) 

where *
,p θγ∆  is the nonlocal plastic shear strain range (c.f. 2.2.1), on a given plane-θ with 

unit normal vector n and *
,n θσ  is the maximum tensile stress acting normal to the plane of 

*
,p θγ∆ during a cycle. This particular definition pertains to proportional loading, as 

relevant to our purposes. Here *
,n θσ  accounts for the influence of peak tensile normal 

stress on microstructurally small crack formation and early growth and is normalized by 

the cyclic yield strength, ysσ . 

The FS parameter was shown by McDowell and Berard [72] to have relation to 

small crack growth under combined stress states and by McDowell [81] to correlate 

trends of observed multiaxial fatigue data for fatigue crack initiation quite well. The FS 

parameter is relevant to this study as the focus is on cyclic plasticity in the microstructure 

that governs crack formation at the scale of grains and early stages of microstructurally 
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small crack growth which are mainly responsible for the variability in the fatigue life at 

low applied stress amplitudes. 

Parameter 
FSk  weights the contribution of normal stress and can depend on the 

material as well as the multiaxial strain state [73]. A constant value of this parameter 

serves this study’s objective of comparing microstructures for a given alloy system. 

Parameter 
FSk  is selected as 0.5FSk = in this study, consistent with the work of Findley 

[52] on a similar superalloy, René 88DT, albeit in the macroscopic scale.  

 

2.2.3 Cumulative equivalent plastic strain  

Another grain scale measure to assess the driving force for forming 

microstructure cracks in the HCF regime is the cumulative equivalent plastic strain [82], 

defined for one cycle as 

 * *2
3

p p

P ij ij
P ε ε= ∆ ∆  (2.29) 

The cumulative equivalent plastic strain may be computed for one stable loading cycle 

(c.f. Eq. 29) or for an arbitrary time period (t1 to t2) as 

 
2

1

* *

0

2

3

t

p p

P P ij ij

t

P P dtε ε= + ∫  (2.30) 

Averaging volumes of 1 and 2-3 grains are used to obtain the averaged plastic strain 

tensor, * p

ijε from the plastic strain tensor at finite element integration points, p

ijε .  
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2.2.4 Inclusion-matrix interface separation parameters  

Chapter 4 focuses on the likelihood and location of inclusion-matrix interface 

separation at various applied uniaxial strain amplitudes. Accordingly, two FIPs will be 

used as qualitative measures of the driving force for the inclusion-matrix interface 

separation. 

The inclusion-matrix interface traction is calculated for each grain adjacent to the 

inclusion as 

 
( )*

int

max      if positive

0                                  if negative

incl incln n
T

σ
= 



i i
 (2.31) 

Here, *
ijσ  is the Cauchy stress tensor averaged over the grain and incl

n is the unit vector 

normal to the grain interface with the inclusion. For inclusions with a circular 2D section, 

incl
n  is unique for each grain. It is determined based on the location of the grain relative 

to the inclusion center. The compressive interface traction is excluded in the calculation 

of Tint. The ( )*max incl incln nσi i  refers to the maximum value of ( )*incl incln nσi i  over a 

loading cycle.  

Additionally, a particular FIP (called modified interface traction parameter or PT) 

is useful for identifying potential interface debonding sites that may include soft grains 

adjacent to hard, non-metallic inclusions. These grains experience large plastic strains 

due to their orientation but do not transfer high magnitudes of interface traction [83]. As 

such, any measure of interface separation potency that is solely based on the interface 

loads (i.e. stress or traction) falls short of identifying these potential hot spots. This new 



40 

 

indicator parameter PT includes the inclusion-matrix interface traction and impingement 

of slip bands on the interface and is defined as 

 ( )* int1incl p incl

T ij T

ys

T
P n n kε

σ

 
= ∆ + 

  
i i  (2.32) 

Here, *p

ijε∆  is the range of plastic strain tensor averaged over the grain adjacent to 

the inclusion. Parameter 
Tk  is a material constant that weights the contribution of tensile 

inclusion-matrix interface traction. Due to the lack of experimental data regarding the 

relative effects of interface traction versus plastic strain on the degree of interface 

separation, a constant value 0.2Tk =  is used in this study for comparison between 

microstructures for a given alloy system. Of course, this parameter can be calibrated to 

the experiments. Parameters Tint and PT are calculated for each interface grain, as shown 

in Figure 2-4. It should be noted that similar impingement parameters have been 

introduced by Zhang [84] and McDowell [85] that help to characterize the effects of 

directional plastic strain accumulation at the continuum level. Table 5 summarizes the 

main FIPs that are used in this thesis. 

   

nincl

Inclusion
t

 

Figure 2-4: Schematic of calculation method for Tint and PT. 
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Table 5: Summary of the FIPs used in this thesis. 

Parameter Name 
Definition Candidate 

references 
Used in 

Chapter(s) 

Maximum 
nonlocal cyclic 

plastic shear 
strain range 

* *
,max ,max( )p p θθ

γ γ∆ = ∆  

* *
, 2 p

p θγ∆ = ∆i in tεεεε  

 3, 6, 8 

Fatemi-Socie (FS) * *
, ,max 1

2
p n

FS FS

ys

P k
θ θ

θ

γ σ

σ

  ∆
= +      

 

[52, 73, 79, 80] 3, 6, 8 

Cumulative 
equivalent plastic 

strain 

* *2
3

p p

P ij ij
P ε ε= ∆ ∆  

[82] 3, 6, 8 

Interface traction ( )*

int

max      if positive

0                                  if negative

incl incln n
T

σ
= 



i i
 

[86-90] 4 

Modified 
interface traction ( )* int1incl p incl

T ij T

ys

T
P n n kε

σ

 
= ∆ + 

  
i i  

[86-90] 4 

 

 

This thesis focuses on a comparative study of microstructure attributes. The 

fatigue crack initiation (formation and early growth) potency is measured by the FIP 

magnitude. Comparison of absolute predicted fatigue life is not undertaken among 

various microstructure realizations, as that is a much more challenging and long term 

endeavor. However, one may relate FIPs to fatigue crack initiation life using modified 

Coffin-Manson laws if so desired, with the caveat that they represent only crack initiation 

life relations. 
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2.3 Statistics of extreme value (SEV) 

Fatigue is probabilistic in nature. HCF and VHCF failures are rare event 

phenomena that depend on the extreme attributes of microstructure and applied loading. 

The inherent variability in fatigue failure processes requires that suitable statistics be used 

to characterize fatigue properties [91]. In particular, the theory of statistics of extreme 

value (SEV) [92] has been successfully used in the pioneering work of Murakami et al. 

[93-95] to estimate the largest inclusion size in clean steels. In Murakami’s work, this 

value is linked to the range of stress intensity factor, K∆ , as  

 0.65K S areaπ∆ = ∆  (2.33) 

where area  is the square root of the projected area of estimated largest inclusion and 

S∆  is the applied stress range [96]. 

Extreme value distributions are used to model the smallest or largest values 

among a large set of independent, identically distributed random values representing 

measurements or observations. Three types of extreme value distributions exist within the 

extreme value theory, and these can be applied to different classes of underlying 

distributions [92]: 

 

1. Gumbel (type I): For distributions whose tails decrease exponentially (i.e., normal 

distribution) 

2. Fréchet (type II): For distributions whose tails decrease as a polynomial (i.e., the t 

distribution) 

3. Weibull (type III): For distributions whose tails are finite (i.e., beta distribution) 
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These three distributions are combined into a single form, referred to as the 

generalized extreme value distribution (GEV), allowing a continuous range of possible 

shapes such that the data can decide which distribution type is more appropriate. The 

generalized extreme value distribution has cumulative distribution function: 

 

1

( ; , , ) exp 1            for 1 0    
x x

c x
ξµ µ

µ σ ξ ξ ξ
σ σ

−

  −   −    = − + + >             
 (2.34) 

where µ is the location parameter, 0σ >  is the scale parameter and ξ is the shape 

parameter.  

Atkinson and Shi [97, 98] have suggested using the Generalized Pareto 

Distribution (GPD) in place of the GEV distribution to predict the maximum inclusion 

size. Both distributions predict that the maximum inclusion size increases with increasing 

specimen volume. Unlike a GEV estimate, which increases indefinitely, a GPD estimate 

is more realistic, as it reaches an upper limit. The GPD is often used to more accurately 

model the tail (exceedences over a threshold) of another distribution (such as normal). 

The GPD cumulative distribution function is  

 

( )
1

1 1    ( 0   ,    )   
( )

1                        ( 0)
x

x
x

c x

e

ζ

µ
σ

ζ µ σ
ζ µ µ

σ ζ

ζ

−

− 
 
 

 −  − + < ≤ ≤ − 
=  


 − =

 (2.35) 

where µ is the location parameter, 0σ >  is the scale parameter and ξ is the shape 

parameter. The GPD has three basic forms, each corresponding to a limiting distribution 

of exceedence data from a different class of underlying distributions. 
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1. Distributions whose tails decrease exponentially, such as the normal, lead to a 

generalized Pareto shape parameter of 0ζ = . 

2. Distributions whose tails decrease as a polynomial, such as Student t, lead to a 

positive shape parameter of 0ζ > . 

3. Distributions whose tails are finite, such as the beta, lead to a negative shape 

parameter of 0ζ < . 

 

To date, the application of GEV and GPD families of distributions to HCF has 

mainly been limited to the inclusion size distribution. Nevertheless, experimental 

literature suggests that besides inclusion size and shape, other morphological attributes 

can play a key role in determining the high cycle fatigue (HCF) resistance of alloys with 

primary inclusions. Such attributes may include surface irregularities, inclusion 

clustering, proximity to the free surface, inclusion orientation with respect to neighboring 

inclusions, and loading direction relative to inclusion/cluster orientation.  

 In this thesis, we will use the GEV distribution to fit the FE simulation data and 

interpolate various parameters of interest. 
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2.4 Techniques used in creating the finite element models  

In order to efficiently automate the repetitive tasks associated with the parametric 

finite element studies, we utilize the ABAQUS Scripting Interface [49] to develop 

modules that perform FE model creation, analysis, and post-processing, as shown in 

Figure 2-5. These modules can be linked with other analysis tools, thus contributing to 

the methodologies that seek to extend the life expectancy of existing alloys or tailor their 

microstructures to achieve improved HCF resistance. 

 

  

Preprocessor 

Module

FEA software Post-processor 

ModuleFE Model 

geometry

Loading

FEA settings

Microstructure 

attributes

Loading direction

Development of response correlation functions

Life extension methodologies for existing alloys

Development of new alloys

 

Figure 2-5: FE model creation modules. 

 

  

ABAQUS scripts are based on the Python object-oriented programming language. 

The meshing capabilities of ABAQUS/CAE can also be accessed from the scripts. This 
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enables us to create FE grains with smooth boundaries, alleviating the stress singularities 

associated with modeling grain boundaries that have zigzagged geometry.  

 

2.4.1 Generalized plane strain (GPS) elements 

Except limited 3D finite element simulations in Section 8.3, the remaining FE 

simulations in this thesis utilize two-dimensional generalized plane strain (GPS) elements 

[49]. GPS formulation offers a computationally efficient alternative to 3D elements in 

which 2D finite elements are endowed with the kinematics of a 3D continuum [99]. 

Finite element simulations utilizing GPS elements are often referred to as 2.5D 

simulations. 

The generalized plane strain theory used in ABAQUS [49] assumes that the 

model lies between two bounding planes that may move as rigid bodies with respect to 

each other, thus causing strain in the thickness direction (i.e., z axis in our study) of the 

model. It is assumed that the deformation of the model is independent of position with 

respect to this thickness direction, so the relative motion of the two planes causes a direct 

strain of the thickness direction only. Out-of-plane shear deformation is not included in 

the element formulation. 

In the finite element simulations, grains are meshed with quadratic triangular 

elements (i.e., 6 nodes and 3 integration points per element) of type CPEG6M [49], with 

full integration algorithm, hourglass control, and generalized plane strain formulation. 

This element type uses a quadratic approximation of the displacement distribution, 

resulting in a linear distribution of stress/strain over the element domain.  
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2.4.2 Simulating FE grains around inclusions and pores  

In the finite element simulation of polycrystals, Voronoi tessellation provides a 

useful mathematical foundation for defining grains [100-102]. Voronoi tessellation refers 

to a method of uniquely subdividing a domain into bounded convex polygons (polyhedral 

for 3D domain), called Voronoi or Dirichlet cells [103]. This subdivision is based on the 

spatial distribution of a set of constructor sites/seeds such that each and every Voronoi 

cell contains only one Voronoi seed, and each and every cell consists of all points closer 

to this seed than to any other site [104].  

To better fit the experimentally-characterized polycrystal attributes, such as the 

distribution of grain size, spacing, and shape, several researchers [51, 105-107] have used 

an iterative scheme based on the simulated annealing algorithm that seeks an optimized 

spatial distribution of Voronoi seeds. The Voronoi seeds are often restrained from being 

too close to each other. We use a similar approach in this thesis to construct a Voronoi 

diagram representing the polycrystal Ni-base superalloy, IN100.  

At low applied uniaxial strain amplitudes (Rε = -1) examined in this thesis, plastic 

deformation is constrained to the few grains at the notch root of the inclusion/pore. Away 

from the inclusion, grains deforms elastically. We coarsen the grains in this region to 

speed up the FE model creation such that the mean grain size in the critical region at the 

notch root of the inclusion/pore is 2 µm and away from it is 4 µm. It should be noted that 

we do not intend to suggest that the actual material has a graded (increasing) grain size 

distribution around inclusions/pores. This measure is taken to increase the computational 

efficiency and does not affect the response parameters of interest.  
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Additionally, in order to better represent the grains adjacent to the inclusion (or 

pore) and to improve the convergence of the FE analysis, several additional modifications 

are made to the Voronoi diagram: 

 

• Artificial Voronoi seeds are introduced for those neighbouring grains having 

seeds that are closer than 0.3 × dgr (dgr = 2 µm) to the interface of the 

inclusion/pore with the matrix, where dgr is the mean grain size. For those seeds 

that are closer to the inclusion than this distance, artificial Voronoi seeds are 

placed at their mirror sites with respect to the inclusion-matrix (or pore-matrix) 

interface.  

• Voronoi vertices that are no more than 0.05 × dgr outside of the inclusion-matrix 

interface are shifted to their mirror location inside the inclusion-matrix interface 

contour. This prevents the creation of FE grains that are drastically different from 

the Voronoi idealization of realistic grains.  

• Small Voronoi boundary segments result in the generation of finite elements of 

odd aspect ratio (as shown in Figure 2-6 middle), which may cause solution 

convergence issues and irregularities in the solution variables. The mesh at these 

locations can be corrected when the user inspects the FE mesh, but in order to 

automate the correction process, those Voronoi boundary segment vertices that 

are closer to each other than 0.2 × tmin, are both replaced by a Voronoi vertex 

located halfway on the corresponding boundary segment. Here, tmin is the finest 

element size used for all grains that are within R/4 (R is the inclusion/pore size) 

from the inclusion-matrix (or pore-matrix) interface. The value of R/4 is 
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approximately equal to tmin = 0.25 × dgr. The mesh due to this adjustment is shown 

in Figure 2-6 left. 

 

Small Voronoi boundary segment

Improvement by merging the 

vertices of the small Voronoi 

boundary segment

 

Figure 2-6: Improvements for Voronoi tessellation around inclusion. 

 

 

The above-mentioned modifications are considered as time-efficient methods for 

enhancing the mesh quality, and they generate a more natural-looking Voronoi diagram 

with the presence of an inclusion/pore; they are not based on a rigorous mathematical 

foundation. The selected parameters are based on trial-and-error and are not unique; they 

are chosen by visually monitoring the Voronoi diagram. The coordinates of the Voronoi 

vertices are then entered into the ABAQUS/CAE Python script to partition the matrix 

region into Voronoi cells. 
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2.4.3 Monotonic stress strain response of the 2.5D FE model 

The experimentally-obtained homogenous material properties are not suitable for 

idealized 2.5D simulations. As such, we estimate these parameters by simulating the 

stress strain relationship of polycrystalline aggregates using crystal plasticity and 2.5D 

generalized plane strain element formulations. However, the crystal plasticity model 

parameters are still calibrated to the experimentally obtained stress strain response.   

The stress and strain components are volume averaged over the polycrystalline 

aggregates, to comprise a statistically representative number of grains; this prevents the 

size of the polycrystalline aggregate from affecting the predictions of the homogenized 

material properties of interest. The grain aggregate is modeled with the same finite 

element type and subjected to the same boundary conditions as the simulations with the 

embedded inclusions, discussed later in this chapter.  

Figure 2-7 is a 2.5D FE model (see Section 2.4.1) showing the polycrystalline 

aggregate used for averaging the simulated stress and strain data. To alleviate the 

boundary effects in a computationally-efficient manner, the crystal plasticity region is 

embedded within a larger region, consisting of (1) a transitioning polycrystalline region, 

modeled with a fully anisotropic elastic material model and (2) a far-field homogenous 

region, modeled with a fully isotropic elastic material model, filled out using properties 

obtained via a recursive analysis starting with the initial values found in the literature 

[108].  
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Figure 2-7: The FE model for simulating the 2.5D stress strain relationship. 

 

 

The following boundary conditions are enforced, assuming the origin of the xyz 

coordinate system is at the center of the crystal plasticity region: 
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1. The traction free boundary condition is enforced for the entire length of the 

model’s left and right edges (x = -L/2, L/2 and -L/2 < y < L/2).  

2. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s bottom edge (y = -L/2 and - L/2 < x < L/2). 

3. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model. 

4. A monotonic uniaxial displacement uy = 0.01×L is applied to the entire length of 

the model’s top edge (y = L/2 and - L/2 < x < L/2) at the uniform rate of 0.002 s-1. 

 

Ten realizations of the polycrystalline microstructure with random grain 

orientation distribution were simulated; Voronoi seed spatial distribution as well as grain 

orientation distribution was varied within these microstructure realizations. We use two-

dimensional generalized plane strain (GPS) elements [49], often referred to as 2.5D, and 

the fully 3D crystal plasticity material model (see Section 2.1.2). Each grain was meshed 

with 60-100 quadratic triangular elements of type CPEG6M (see Section 2.4.1). The FE 

mesh coarsens away from the polycrystalline aggregate. 

Figure 2-8 plots the volume-averaged stress strain response for 5 of the simulated 

realizations. The polycrystalline aggregates typically consist of about 150 grains. 

Virtually equivalent plots are obtained, indicating that the polycrystalline aggregates are 

sufficiently large to be statistically representative for the assessment of the overall stress 

strain response.  
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Figure 2-8: Uniaxial stress strain response (averaged over the polycrystalline aggregate).  

 

 

The linear elastic portions of these plots were used to obtain the homogenized 

Young's modulus, E
m = 142 GPa, and Poisson's ratio, ν

m = 0.25, of the isotropic fully 

elastic response for the purposes of 2.5D generalized plane strain FE simulations. Figure 

2-9 (top) illustrates the plastic strain (yy) component, averaged over the polycrystalline 

aggregate, versus the applied total (yy) strain component for the same 5 of the 10 

microstructure realizations. The horizontal dashed lines correspond to the 0.1% and 0.2% 

plastic strain levels. Figure 2-9 (bottom) illustrates the yy stress component, averaged 

over the polycrystalline aggregate, versus applied total (yy) strain component for 4 of the 

10 microstructure realizations. 
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Figure 2-9: (top) εp
yy (averaged over the polycrystalline aggregate) vs. applied εyy; (bottom) σyy vs. εyy (both 

averaged over the polycrystalline aggregate). 
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The remote applied strain required to impose εp
yy = 0.1% plastic strain in the 

polycrystalline aggregate is defined as the remote yield strain and is calculated as εys = 

0.007. The 0.1% plastic strain is chosen as the offset yield point, since it more closely 

corresponds to the yield stress σys ≈ 1000-1050 MPa, reported in the experimental 

literature for fine-grained subsolvus IN100 at the intermediate temperature range of 600-

700°C [108]. 

 

2.4.4 Cyclic crystal plasticity FE model for embedded inclusions and pores 

Our finite element models use a two-dimensional generalized plane strain element 

formulation to calculate the response parameters of interest around cylindrical primary 

inclusions. For computational efficiency, the matrix region is divided into 3 regions with 

different constitutive models, as shown in Figure 2-10: (1) a ring-shaped region, adjacent 

to the inclusion, (2) an intermediary ring-shaped region, and (3) the far-field region. 

One of the potential difficulties in the multiphase FE simulation is the 

inconsistency of material properties at the boundary between the two regions, which 

leads to discontinuities and solution convergence issues. We take the following measures 

to minimize such effects. 

 

1. In region 1, grains are modeled using Voronoi tessellation (c.f. 2.4.1). Crystal 

Plasticity FE formulation is used to model the deformation behavior of grains 

with various sizes and orientations. The thickness of this region is chosen such 

that the plastic deformation around the inclusion does not go beyond region 1 at 

the highest simulated applied uniaxial strain amplitude (Rε = -1). 
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2. In region 2, grains are modeled using an extension of the Voronoi diagram from 

region 1. In contrast to the material behavior of region 1, individual grains of 

region 2 are simulated using fully anisotropic elastic material behavior. The 

elastic material properties are kept the same as those of region 1 in order to 

preserve a smooth transition across regions. 

3. The far-field region is modeled with homogenous isotropic fully elastic material 

properties defined by two material constants, Young's modulus Em = 142 GPa and 

Poisson's ratio νm = 0.25. These parameters were obtained in Section 2.4.3 from 

the volume averaged stress strain relationship of polycrystalline aggregates with 

statistically representative numbers of grains, such that increasing the 

polycrystalline aggregate size does not affect the predictions of these material 

properties. The grain aggregate was modeled using the same element type and the 

same boundary conditions that were used in the simulations with the embedded 

inclusion (c.f. 2.4.3).  

 

Half and quarter of the complete model are shown, respectively, in red and blue 

dashed lines in Figure 2-10. We simulate the full model throughout this study. Since the 

grain structure and orientation distribution are random, we cannot simulate half or quarter 

of the complete model instead. Simulating the full model also helps to alleviate the 

boundary effects.  
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Figure 2-10: Matrix subdivisions showing half and quarter of the complete model and the simulated 
inclusion-matrix interface types. 

 

 

The following boundary conditions are enforced, assuming the origin of the xyz 

coordinate system is at the center of the inclusion/pore: 

 

1. The traction free boundary condition is enforced for the entire length of the 

model’s left and right edges (x = -L/2, L/2 and -L/2 < y < L/2).  

2. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s bottom edge (y = -L/2 and - L/2 < x < L/2). 

3. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model. 

4. A cyclic uniaxial displacement uy is applied to the entire length of the model’s top 

edge (y = L/2 and - L/2 < x < L/2) at the uniform rate of 0.002 s-1. 
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For intact, perfectly bonded inclusions, the slip-intensified matrix region is 

located at the inclusion’s top and bottom poles (x = 0, y = ±R). To that end, the nonlocal 

FIP averaging is performed at these regions, as shown in Figure 2-11 (a). In contrast, for 

halved (cracked) inclusions, debonded inclusions, and pores, the slip-intensified matrix 

region is located at the inclusion’s right and left poles (x = ±R, y = 0). The nonlocal FIP 

averaging region for these simulations is shown in Figure 2-11 (b). 
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Figure 2-11: The FE model and location of the nonlocal FIP averaging region. 
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2.4.5 Stabilized load cycle 

The time duration of a cyclic FE analysis is proportional to the number of load 

cycles being simulated. A minimum of three simulated cycles is recommended to allow 

for early shakedown and to capture a steady FIP for a similar IN100 microstructure under 

comparable loading conditions. To further investigate this matter, we monitor variation in 

the nonlocal maximum range of plastic shear strain, *
,maxpγ∆ , with changes in the loading 

cycle at a notch root of a pore.  

The FE model, shown in Figure 2-11, is examined where the following boundary 

conditions are enforced; assuming the origin of the xyz coordinate system is at the center 

of the inclusion/pore: 

 

1. The traction free boundary condition is enforced for the entire length of the 

model’s left and right edges (x = -L/2, L/2 and -L/2 < y < L/2).  

2. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s bottom edge (y = -L/2 and - L/2 < x < L/2). 

3. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model. 

4. Cyclic uniaxial displacement uy= εyy ×L is applied to the entire length of the 

model’s top edge (y = L/2 and - L/2 < x < L/2) at the applied strain amplitudes εyy 

= 0.5, 0.6, and 0.7 εys (εys = 0.7 % (c.f. 2.4.3)), strain ratio Rε = -1, and uniform 

strain rate of 0.002 s-1.  
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The FIP is calculated for 10 simulated loading cycles. Two nonlocal averaging 

regions are studied: (1) grains, located at inclusion notch root and (2) a semicircular 

region, located at the slip-intensified region of the inclusion notch root, as shown in 

Figure 2-11. Only one inclusion radius (R = 10 µm) is examined in this section. The 

averaging area is 5% of the size of the inclusion [109], and L = 60 µm.  

Figure 2-12 shows the variation of *
,maxpγ∆  for two nonlocal averaging regions, 

the grain with the highest *
,maxpγ∆  value and the semicircular region at the inclusion notch 

root. A significant portion of the shakedown seems to have taken place upon completion 

of the 3rd loading cycle for both cases.  
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Figure 2-12: *
,maxpγ∆  vs. loading cycle (R = 10 µm; L = 60 µm; εys = 0.7 %; Rε = -1). Top: nonlocal 

averaging regions = grains (Grain with the highest *
,maxpγ∆

 
is shown). Bottom: nonlocal averaging regions 

= the semicircular region at the inclusion notch root. 
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The beginning and end of the load reversals in the 3rd loading cycle are labeled in 

Figures 2-13 (a) and 2-14 (a). In both cases, B � C is the proper trajectory for computing 

the shear-based FIPs explained in Section 2.2. 

Figure 2-13 (b) shows the variation of the averaged stress strain at the notch root 

of a pore with R = 6 µm for three loading cycles (εyy/εys = 0.6 and Rε = -1). Figure 2-14 

(b) shows the same plot for a partially debonded inclusion. The averaged stress strain 

plots in Figures 2-13 (b) and 2-14 (b) may appear as closed cycles of elastic reversed 

deformation. Nevertheless, the plots of averaged stress versus plastic strain, shown in 

Figure 2-13 (c) for a pore and Figure 2-14 (c) for a partially debonded inclusion, indicate 

a state of plastic shakedown [91]. Therefore, three cycles of loading will be simulated 

throughout this thesis unless specified otherwise. 
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Figure 2-13: (a) Load reversals (b) σ*
yy vs. ε*

yy and (c) σ*
yy vs. εp*

yy at the pore notch root (R = 6 µm; L = 60 
µm; εyy = 0.6 εys; εys = 0.7 %; Rε = -1). 
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Figure 2-14: (a) Load reversals (b) σ*
yy vs. ε*

yy and (c) σ*
yy vs. εp*

yy at the inclusion notch root (R = 6 µm; L 
= 60 µm; εyy = 0.6 εys; εys = 0.7 %; Rε = -1). 
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It should be noted that the number of simulation loading cycles, needed to achieve 

a stable nonlocal FIP, depends on a myriad of factors such as loading conditions (i.e., 

strain amplitude and strain ratio), microstructure attributes, and selected averaging area 

for calculation of the nonlocal FIP. Therefore, a different number of loading cycles may 

need to be simulated to achieve a stable response in other scenarios. 

 

2.4.6 Choice of element size 

The FIP averaging procedure helps to ensure computationally consistent and 

objective results by regularizing to avoid mesh-size dependence. Nevertheless, we still 

need to control the element size to ensure solution accuracy and convergence. Simulation 

time is also reduced by using a sufficiently, yet not needlessly, fine mesh density. The 

ideal element size depends on a myriad of factors that influence the solution convergence 

[110]. As such, a host of simulation techniques such as adaptive meshing algorithms 

[111-114] have been developed to warrant the optimal mesh density for a given finite 

element simulation.     

To examine to what degree the element size affects the simulation time, the FE 

model, shown in Figure 2-11, with a center pore (R = 10 µm) is examined. The following 

boundary conditions are enforced; assuming the origin of the xyz coordinate system is at 

the center of the inclusion/pore: 

 

1. The traction free boundary condition is enforced for the entire length of the 

model’s left and right edges (x = -L/2, L/2 and -L/2 < y < L/2).  
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2. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s bottom edge (y = -L/2 and - L/2 < x < L/2). 

3. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model. 

4. Cyclic uniaxial displacement uy= εyy ×L is applied to the entire length of the 

model’s top edge (y = L/2 and - L/2 < x < L/2) at the applied strain amplitudes εyy 

= 0.6 εys (εys = 0.7 % (c.f. 2.4.3)), strain ratio Rε = -1, and uniform strain rate of 

0.002 s-1.  

 

The mean grain size is (dgr = 2 µm). A mesh with element size tmin, is used to 

discretize grains that are within R/4 distance, i.e., 0 < d < R/4, from the pore notch root, 

located at (x = R, y = z = 0), as shown in Figure 2-15. We maintain the fine mesh in this 

region because the deformation is mainly localized here. Beyond d = R/4, the element 

size is increased linearly with increasing distance (i.e., d) from the pore notch root in 

order to reduce the computational cost. Figure 2-15 illustrates the element size variation 

for two fine mesh densities tmin = 0.1 and 0.2 µm. Figure 2-15 also illustrates the actual 

finite element discretization for tmin = 0.1 µm for inclusions/pores of radius R = 10 µm. 
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Figure 2-15: The element size variation as a function of distance (i.e., d) from the notch root. The mean 
grain size is (dgr = 2 µm). 

 

 

Figure 2-16 shows the 3rd cycle contour plots of local ,maxpγ∆  (i.e., computed at 

the element integration points) for tmin = 0.1, 0.2, 0.3, 0.4, and 0.5 µm. In these 
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simulations, a constant microstructure realization (constant Voronoi diagram and grain 

orientation distribution) around a pore with radius R = 10 µm is examined. 
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Figure 2-16: The 3rd cycle contours of the local ,maxpγ∆ , computed at the element integration points (R = 

10 µm; εyy = 0.6 εys; εys = 0.7 %; Rε = -1). The mean grain size is (dgr = 2 µm). 
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Figure 2-16 Continued. 
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Relative to the case with the finest mesh (i.e., tmin = 0.1 µm), coarser mesh 

scenarios expectedly underpredict the magnitude of local ,maxpγ∆ but seem to capture the 

location of the hot spot with the highest local ,maxpγ∆ . Table 6 shows the decrease in the 

simulation time as the mesh coarsens (tmin increases). 

  

Table 6: Simulation time versus minimum finite element size. 

tmin (µm) 0.1 0.2 0.3 0.4 0.5 0.6 

Simulation 
time (s) 

20528 4187 3186 2000 1686 828 

 

 

To examine the effect of mesh density on the nonlocal FIP calculations, we 

compare the FIP predictions using these choices of minimum finite element size, tmin. The 

particular FIP is the maximum range of plastic shear strain, 
*

,maxpγ∆ , averaged over 

individual grains. For this analysis, grains are a natural option for averaging ,maxpγ∆ ; each 

grain encompasses a large number of elements for all the examined values for tmin. 

The five grains with the highest grain-averaged magnitude of *
,maxpγ∆ , as 

suggested by the simulation with tmin = 0.1 µm, are considered. The FIP predictions for 

these five grains (from the remaining mesh density scenarios) are normalized with respect 

to the prediction of the finest mesh, i.e. tmin = 0.1 µm, and plotted in Figure 2-17.  
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Figure 2-17: Normalized *
,maxpγ∆

 
for the

 
five grains with the highest grain-averaged values (R = 10 µm; 

εyy = 0.6 εys; εys = 0.7 %; Rε = -1). 

 

 

The mesh density with tmin = 0.3 µm (plotted in red) seems to predict the grain-

averaged *
,maxpγ∆  within ±10 % of the best predictions based on the finest mesh 

examined; however, this result required only 15% of the simulation time required by the 

finest mesh. Thus, we can consider the tmin = 0.3 µm mesh density a pragmatic middle 

ground for our simulations. 
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3 HCF crack formation potency of inclusions and pores in PM Ni-base 

superalloys: A comparative study of FIPs 

3.1 Introduction 

The origin of fatigue failure in superalloys has been an important subject of 

experimental research programs over the past few decades. In engine applications, there 

are often two components to this problem: (1) low cycle fatigue (LCF), which results 

from relatively large cycles associated with the ground-air-ground cycles of the gas 

turbine engine, and (2) high cycle fatigue (HCF), associated with cyclic loading during 

service. HCF, in particular, has been recognized as the single largest cause of engine 

failures in military aircraft [115]. Representative experimental observations of inclusion-

controlled fatigue failure in common PM Ni-base supealloys are presented in this section.  

Hyzak and collaborators [116-118] used a precision sectioning technique to 

investigate fatigue crack initiation in two subsolvus high strength PM Ni-base 

superalloys, AF-115 and AF2-IDA, at T = RT, 649°C, and 760°C (Rε = -1). For the latter 

alloy, with lower concentrations of inherent pores and inclusions, it was observed that the 

primary mechanism for fatigue crack formation was the debonding of bulk non-metallic 

inclusions such as MgO particles, followed by formation of crystallographic cracks in 

large adjacent grains (so called “facet” initiation). The inclusions were observed to have 

ellipsoidal shape. At room temperature, crack formation was attributed to surface 

crystallographic cracking along intense planar slip bands at approximately 45 degrees to 

the tensile axis for all applied strain amplitudes, indicating Stage I initiation. However, as 

the strain amplitude decreased at elevated temperatures, there was a transition of 

initiation sites from near surface non-metallic inclusions and grains to bulk non-metallic 
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inclusions. Figure 3-1 shows one such bulk crack initiation at a non-metallic inclusion in 

AFZ-IDA [117]. 

 

 
 

Figure 3-1: Formation of crystallographic cracks in large grains adjacent to debonded bulk MgO inclusions 
in AFZ-IDA [117] (Rε = 0, T = 649°C). 

 

 

Gayda and Miner [119, 120] examined modes of fatigue crack formation and 

early growth of several Ni-base superalloys under pure cycling and cycling with dwell 

periods at 650°C (Rε = -1). They concluded that in the higher strength alloys without 

tensile dwell, crack initiation was transgranular and frequently associated with porosity or 

non-metallic inclusions. These sites were usually located near the surface, except for tests 

at low total strain ranges where large, internal (bulk) pores or inclusions often initiated 

fatigue cracks.  
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They also reported that in alloys with grain sizes less than 15 µm, fatigue crack 

formation and early crack growth was transgranular and became intergranular as the 

crack grew away from the inclusion. This transition was environmentally-assisted and did 

not occur for subsurface cracks until the crack broke through to the atmosphere. In the 

two coarse-grained alloys Waspaloy and Astroloy, Gayda and Miner did not report any of 

the internal crack initiation events that were observed in the fine-grained, high strength 

alloys in the plastic strain range of ∆εp = 0. 01% and strain ratio of Rε = -1. Since large 

grain Waspaloy and Astroloy are not strictly cleaner than the other alloys of their study, 

grain size, rather than inclusion-assisted crack formation, was considered to be the main 

cause of Stage I crack formation and early crack growth within persistent slip bands 

[119]. 

De Bussac [121] performed LCF experiments on specimens of N18 superalloy, a 

French patented PM Ni-base superalloy [122] at T = 450°C and T = 650°C and ∆ε/2 = 

0.4% (Rε = -1). They reported fatigue crack formation at surface and bulk inclusions. 

They identified the dependence of surface and bulk fatigue crack initiation probabilities 

on specimen size and oxidation effects based on experiments.  

Huron and Roth [123] performed low cycle fatigue experiments on specimens of 

René 88DT, also a polycrystalline PM Ni-base superalloy, at T = 204°C (εmax = 0.52% 

and 0.72%, Rε = 0) and T = 650°C (εmax = 0.60% and 0.80%, Rε = 0). The specimens 

were either seeded with inclusions or unseeded. They observed that fatigue cracks formed 

exclusively at internal ceramic inclusions at 650°C and at crystallographic facets within 

surface grains at 204°C. The data showed an increased tendency for internal initiation at 

elevated temperatures, with surface initiation becoming prevalent only at high stress 
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amplitudes. They pointed out that the majority of sites for fatigue crack formation 

corresponded to large crystallographic facets in grains with sizes ranging from 60µm to 

120µm, which are much larger than the average grain size of 26µm.  In the presence of 

large grains, non-metallic inclusions corresponded to less than 5% of all the fatigue crack 

formation sites. Thus, the shift from inclusion-related to crystallographic failure modes is 

expected when grains are quite large. 

Xie et al. [124] performed fatigue tests at T = 20°C and σmax = 600 MPa (Rσ = 

0.1) with in-situ SEM to trace the entire process of crack initiation, propagation, and 

fracture in Al2O3-seeded PM Rene’95 superalloy. Their observations, shown in Figure 

3-2, confirmed that the main fatigue crack initiation mechanism was crystallographic 

crack initiation in grains adjacent to debonded bulk non-metallic inclusions. 
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Loading direction

 
(a) 

 

Loading direction

 
(b) 

Loading direction

 
(c) 

 

Loading direction

(d) 

Figure 3-2: Fatigue crack initiation from a debonded inclusion in Al2O3-seeded PM Rene’95 superalloy; (a) 
N=0, (b) N=101335, (c) N=116316, (d) N=158116 (σmax=600MPa, Rσ = 0.1, T = 20°C) [124]. 

 

 

Findley and Saxena [53] examined fatigue crack formation mechanisms in René 

88DT for total strain range ∆ε = 0.66%, 0.79%, 0.94%, and 1.15% (Rε = 0) as well as ∆ε 

= 0.66%, 0.75%, and 1.50% (Rε = -1) at temperature T = 650°C. They reported that large 

grains, rather than non-metallic inclusions, were the dominant initiation sites.  

Cashman [125, 126] examined fatigue crack failure mode in René 95, a 

polycrystalline PM Ni-base superalloy at T = 399°C and 538°C (Rε = 0). He noted that 

fatigue cracks formed at small ceramic inclusions with diameters ranging from 20 to 127 
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microns. Cashman also identified competing modes of surface and bulk inclusion 

initiated fatigue crack formation. He noted dramatically different fatigue lives, even for 

comparable stress amplitudes, for surface and internally initiated fatigue cracks, with the 

internal sites associated with longer lives, nominally by a factor of eight.  

Miao et al. [127] performed ultrasonic fatigue experiments under σmax = 600 MPa 

and 940 MPa (Rσ = 0) at room temperature and T = 593°C for a supersolvus heat 

treatment René 88DT. They noted increased variability of fatigue life with decreasing 

stress amplitude. Their analyses of the fracture surfaces indicated that at room 

temperature, cracks formed at the surface where slip bands form, whereas at 593°C, all 

fatigue cracks formed internally. Both experiments were performed at low stress 

amplitudes in the VHCF regime.   

More recently, and with reference to a fine-grained, subsolvus PM IN100 Ni-base 

superalloy, Wusatowska et al. [108] (σmax = 568-811 MPa, Rσ = 0.05, and T = 426°C and 

621°C) and Jha et al. [14] (σmax = 1000-1200 MPa, Rσ = 0.05, and T = 650°C) noted the 

dominant role of ceramic inclusions in initiating fatigue cracks. Jha et al. [24] categorized 

the total fatigue lifetimes in terms of two populations, life-limiting and mean-controlling. 

They noted increased separation of the two lifetime data populations with decreasing 

stress amplitude, and attributed this increased divergence to the differing degree to which 

each of the relevant controlling mechanisms responds to the change of stress amplitude.  

Fatigue cracks were observed to originate from ceramic inclusions in both 

scenarios, with the surface and bulk inclusions governing the life-limiting and mean-

controlling lifetime populations, respectively. Table 7 summarizes the experimental 
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observations of fatigue crack initiation mechanisms in PM Ni-base superalloys associated 

with non-metallic particles. 
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Table 7: Experimental observations of fatigue crack initiation mechanisms in PM Ni-base superalloys. 
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The following conclusions can be drawn from the experimental findings cited 

above: 

  

1. Ceramic inclusions and pores are the dominant HCF crack initiation sites in fine-

grained Ni-base superalloys. In coarse-grained Ni-base superalloys, large grains 

can be more critical than inclusions and pores.  

2. Regardless of specimen size, non-metallic inclusions are generally more critical 

than grains of comparable size with regard to their potency to assist formation of 

fatigue cracks.  

3. Inclusion-matrix debonding is prevalent. Experimental studies of inclusion related 

fatigue failures in PM Ni-base superalloys reveal that the majority of inclusions 

were in fact debonded [116-118, 124]. 

 

It is commonly believed that the HCF and VHCF fatigue crack initiation 

(formation and early growth) mechanisms are irreversible deformation accumulation on 

active slip systems acting at a slower rate than that in the LCF regime. Inclusions behave 

as micronotches that raise the local stress field, yet the nature of this notch effect has not 

been adequately defined, particularly with respect to the nature of the inclusion-matrix 

interface. 

Computational studies of cast Al-Si alloys [76] and martensitic gear steels [78] 

have shown that the driving force for fatigue crack initiation in the matrix, surrounding 

the inclusions, depends strongly on the nature of the inclusion-matrix interface. Both 

studies suggest that inclusions with partially debonded interfaces provide higher driving 
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forces for fatigue crack initiation in the surrounding matrix than do intact, perfectly 

bonded and cracked inclusions.  

For PM Ni-base superalloys, however, similar computational studies regarding 

the effects of the inclusion-matrix interface are lacking. Characterizing such effects can 

play a significant role in explaining experimental observations that the majority of critical 

inclusions in Ni-base superalloys were debonded [116, 124]. In this Chapter, we calculate 

and compare three candidate FIPs around intact, halved, and partially debonded 

inclusions as well as pores. 
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3.2 Finite element model 

We utilize the FE model shown in Figure 2-11 for all inclusion-matrix interface 

types, as well as pores of the same size, to maintain consistency. The FE models for 

halved and partially debonded inclusions are replicated, respectively, in Figures 3-3 and 

3-4 to emphasize the designation of inclusion-matrix interface associated with them. In 

simulations with halved and partially debonded inclusions, contact between the 

interacting surfaces is assumed to be frictionless.  

We use two-dimensional generalized plane strain (GPS) elements [49] (see 

Section 2.4.1), often referred to as 2.5D, and the fully 3D crystal plasticity material 

model (see Section 2.1.2). The crystal plasticity material model constants and 

microstructure parameters are listed in Table 3 and Table 4, respectively. Properties 

assigned for the fully isotropic elastic inclusion include Young’s modulus Ei = 400 GPa 

and Poisson’s ratio νi = 0.3. Quadratic triangular elements of type CPEG6M are used to 

mesh the FE model (see Section 2.1.2).  
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Figure 3-3: FE model for simulations of halved inclusions. 
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Figure 3-4: FE model for simulations of partially debonded inclusions. 
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The three candidate FIPs under study are the maximum range of plastic shear 

strain *
,maxpγ∆ , the Fatemi-Socie 

FSP , and the cumulative equivalent plastic strain 
PP  

parameters (c.f. Section 2.2). The inclusion radius is R = 10 µm for all cases and L = 60 

µm. Two sizes of the semicircular FIP averaging region with radii equal to R/5 (2 µm) 

and R/√10 (3 µm) are considered, corresponding to averaging regions that are 2% and 5% 

of the inclusion/pore size [109]. The FIP averaging region is located in the slip-

intensified region of the inclusion/pore notch root. The element with the maximum local 

magnitude of FIP determines the center of the semicircular FIP averaging region within 

the slip-intensified region.  

The following boundary conditions are enforced; assuming the origin of the xyz 

coordinate system is at the center of the inclusion/pore: 

 

1. The traction free boundary condition is enforced for the entire length of the 

model’s left and right edges (x = -L/2, L/2 and -L/2 < y < L/2).  

2. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s bottom edge (y = -L/2 and - L/2 < x < L/2). 

3. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model. 

4. Cyclic uniaxial displacement uy= εyy ×L is applied to the entire length of the 

model’s top edge (y = L/2 and - L/2 < x < L/2) at the applied strain amplitudes εyy 

= 0.5, 0.6, 0.7, and 0.8 εys (εys = 0.7 % (c.f. 2.4.3)), strain ratio Rε = -1, and 

uniform strain rate of 0.002 s-1.  
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The FIPs are calculated for three simulated loading cycles. A total of 20 randomly 

assigned polycrystalline orientation distributions (realizations) are simulated for each 

applied strain amplitude and inclusion-matrix interface type. The Voronoi tessellation 

diagram is the same and only grain orientations (random) vary across these realizations. 

As such, only different grain orientations distinguish the microstructure realizations.  

A case pointer, of the A#-# format, is used to refer to each simulation scenario 

where A can be I, H, PD, or P for intact, perfectly bonded inclusions, halved (cracked) 

inclusions, partially debonded inclusions, and pores, respectively. The first and second 

numeric characters, separated by a hyphen, refer to the polycrystalline orientation 

distribution and the normalized applied strain amplitude (i.e., εyy/εys), respectively. For 

instance, the case pointer H5-0.5 refers to the simulation scenario where the inclusion is 

halved, the grain orientations are from polycrystalline orientation distribution 5, and the 

applied strain amplitude εyy = 0.5 εys. As such, 320 simulations (Figure 3-5) were 

performed (R = 10 µm for all of them) to assess these candidate FIPs around non-metallic 

inclusions and pores. 

 

A# - #

4 × 20 × 4= 320 Simulations
 

Figure 3-5: Simulation case pointer format. 
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3.3 Results and discussion 

Figure 3-6 relates the variation of the maximum range of the nonlocal plastic 

shear strain, the Fatemi-Socie parameter and the cumulative equivalent plastic strain to 

the applied strain amplitude for intact, perfectly bonded inclusions, halved (cracked) 

inclusions, partially debonded (PD) inclusions, and pores. Each data point corresponds to 

the mean value of 20 simulated polycrystalline orientation distributions. For each FIP, the 

two nonlocal averaging regions that are 2% and 5% of the inclusion projected area are 

plotted in hollow and solid symbols, respectively. As expected the smaller FIP averaging 

area results in higher predicted FIP values due to the highly localized nature of 

deformation at the notch root.  
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Figure 3-6: Comparison of FIPs vs. the applied strain amplitude (εys = 0.7 %, Rε = -1; R = 10 µm). 
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Figure 3-6 Continued. 

 

 

As seen in Figure 3-6, all three FIPs under study suggest that damaged inclusions 

and pores are more significant than intact, perfectly bonded inclusions. Moreover, 

between the two types of damaged inclusions studied, partially debonded inclusions are 

more critical than halved inclusions and pores at all applied uniaxial strain amplitudes 

studied. For instance, based on an averaging region that is 2% of the inclusion projected 

area: 

 

1. Partially debonded inclusions are 45 ~ 55 % more critical than halved 

inclusions at all applied strain amplitudes studied. 
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2. Partially debonded inclusions are about three times, twice, and 30% more 

critical than pores at εyy/εys = 0.6, 0.7, and 0.8, respectively. 

FIPs for inclusions increase proportionally (i.e., with the same pace) with respect 

to the applied strain amplitude. However, the FIPs for pores appear to increase at a 

different rate. Therefore, pores are less critical than halved inclusions at lower applied 

strain amplitude (i.e., εyy/εys = 0.5, 0.6, and 0.7), but they become as critical as, or more 

critical than, halved inclusions at the higher applied strain amplitude of εyy/εys = 0.8. This 

is shown in Figure 3-6 by the crossover of critical hot spots from inclusions to pores at 

higher applied strain amplitudes.  

Plastic deformation around pores is not as concentrated as that around damaged, 

especially halved, inclusions. As a result, around pores, more slip systems experience the 

effects of increased applied strain amplitude, which explains the higher rate of increase in 

FIPs for pores than for damaged inclusions. This effect is shown in Figure 3-7 via 

contour plots of the Fatemi-Socie 
FSP  parameter (i.e., computed at the element 

integration points) around a pore and a halved inclusion having the same polycrystalline 

orientation distribution and loaded at εyy/εys = 0.6 and 0.8. The 
FSP contour limits are set 

to 0 and 1×10-5; the black-shaded and grey-shaded regions corresponds to finite element 

integration points having 510FSP
−≥  and 0FSP ≤ , respectively. By definition, the Fatemi-

Socie parameter 
FSP  should be positive. However, the contour plots indicate regions with 

negative values for this FIP; these negative regions represent the ABAQUS Viewer’s 

extrapolation of the FIP values calculated at integration points, which are positive, to 

nodal values. Figure 3-7 indicates that as the applied uniaxial strain amplitude (Rε = -1) 

increases (from εyy/εys = 0.6 to 0.8), the critical region (with 510FSP
−≥ ) at the pore notch 
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root grows to affect a larger region than the critical region at the notch root of the cracked 

inclusion.  

 

x
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Figure 3-7: Contour plots of local 
FSP  parameter (computed at the element integration points) for (a) pore 

εyy/εys = 0.6, (b) pore εyy/εys = 0.8, (c) cracked inclusion εyy/εys = 0.6, and (d) cracked inclusion εyy/εys = 0.8 
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(εys = 0.7 %, Rε = -1; R = 10 µm). 

 

The crossover of most critical hot spots from inclusions to pores at higher applied 

strain amplitudes can help to explain experimental findings by Wusatowska et al., [108] 

who noted the dominant role of oxide inclusions for σyy / σys < 0.7 (Rσ = 0.05) and Jha et 

al., [14] who attributed the fatigue crack origin to a mixture of inclusions and pores at σyy 

/ σys > 0.7 (Rσ = 0.05). The material for both studies was a fine-grained, subsolvus PM 

IN100 Ni-base superalloy tested at elevated temperatures. However, sufficient 

experimental data are lacking to conclusively describe such experimental observations by 

the simulated FIP trends. 

Figure 3-8 shows the nonlocal PFS parameter around intact and damaged 

inclusions as well as pores at εyy/εys = 0.5 and 0.6; all of these are 10 µm in radius. The 

scatter bars indicate the standard deviation of the PFS parameter distribution for the 20 

simulated polycrystalline orientation distributions. The Voronoi tessellation diagrams are 

kept the same for these cases; only the grain orientations vary across these microstructure 

realizations. For εyy/εys = 0.6, a downward triangular symbol represents the maximum 

value of FIP amongst the 20 realizations around a halved inclusion. Similarly, an upward 

triangular symbol represents the minimum value of FIP amongst the 20 realizations 

around a debonded inclusion. 
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Figure 3-8: PFS parameter around inclusions and pores, 20 µm in diameter (εys = 0.7 %; Rε = -1). 

 

 

As seen in Figure 3-8, the FIP variation due to the orientation of adjacent grains is 

of the same order of magnitude as that due to the type of damaged inclusion (i.e., halved 

versus debonded). Our approach to the surface to bulk transition of HCF initiation sites in 

Chapter 6 accounts for the fact that the effect of grain orientation distribution and the 

type of damaged inclusion can be equally significant in terms of variability.  

Since the scatter bars in Figure 3-8 correspond to absolute values, they do not 

directly compare the degree of scatter amongst FIP distributions. To address this, we plot 

the coefficient of variation (CV) for each PFS parameter distribution in Figure 3-9. CV is 

a normalized measure of dispersion of a probability distribution defined as the ratio of the 

standard deviation, σ, to the mean, µ, i.e., 
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 CV
σ
µ

=  (3.1)      

Figure 3-9 is a bubble chart of the PFS parameter around intact and damaged 

inclusions as well as pores, all 20 µm in diameter. Results for four macroscopic remote 

applied strain amplitudes of εyy/εys = 0.5, 0.6, 0.7, and 0.8 are shown. The CV for FIP 

distributions of 20 simulated polycrystalline orientation distributions determines the size 

of each bubble. 
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Figure 3-9: PFS parameter around inclusions and pores, 10 µm in radius (εys = 0.7 %; Rε = -1). 
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As suggested by the smaller bubbles in Figure 3-9, the normalized FIP scatter is 

less among the microstructure realizations at higher applied uniaxial strain amplitudes, 

due to the more homogenous slip activity in the nonlocal FIP averaging region. Also, as 

the deformation becomes increasingly localized, FIP scatter decreases. The deformation 

is most localized for the halved inclusions, followed by partially debonded inclusions and 

then pores.  

The extreme value ( )*
,maxpγ∆  parameter is plotted in Figure 3-10 for partially 

debonded and halved inclusions as well as pores. The horizontal scatter bars correspond 

to the variation in this parameter among the simulated polycrystalline orientation 

distributions. The type I cumulative extreme value distribution, known as the Gumbel 

distribution (cf. Section 2.3) is fitted to this scatter data and plotted in red for each 

applied strain amplitude. The location and scale parameters of the Gumbel distribution 

fits are calculated using the maximum likelihood (MLE) [92] estimation method.  

Figure 3-10 indicates that the mean and variability in the absolute value of FIPs 

increase as the applied uniaxial strain amplitude (Rε = -1) increases. Whereas, the 

coefficient of variation, which is regarded as a normalized measure of FIP variability, 

was shown in Figure 3-9 to decrease as the applied uniaxial strain amplitude increased. 

The variability in the absolute value of FIPs increases as the applied strain amplitude 

increases because the nonlocal averaging region for the calculation of FIPs is taken to be 

of a constant size r = 2 µm. As such, increasing the applied strain amplitude increases the 

stress intensity in this averaging region and magnifies the variability in the distribution of 

FIPs for the simulated matrix realizations (grain orientation distributions). 
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These plots are presented in this section as representative plots of the kind used in 

Chapter 7 to assess the surface fatigue crack initiation probability under HCF and VHCF. 

In Chapter 7, we will utilize the cumulative generalized extreme value distribution 

(GEV), described in Section 2.3, to fit the simulated FIP data. The scale parameter of the 

fitted GEV distribution accounts for the increases statistical dispersion of the FIP data. 

GEV distribution includes the Gumbel distribution as a special case so that the data can 

decide which extreme value distribution type is more appropriate. The variation of the 

parameters of the fitted GEV distribution versus the applied uniaxial strain amplitude (Rε 

= -1) and inclusion radius will be further examined for partially debonded inclusions in 

Chapter 7.  
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(a) 

Figure 3-10: The Gumbel distribution fit of extreme value *
,maxp

γ∆  (εys = 0.7 %; Rε = -1). (a) partially 

debonded inclusions, (b) halved inclusions, and (c) pores (R = 10 µm). 
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Figure 3-10 Continued. 
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3.4 Summary 

The distributions of three shear-based FIPs were examined for intact, perfectly 

bonded inclusions, halved (cracked) inclusions, partially debonded (PD) inclusions, and 

pores. For each case, 20 simulated polycrystalline orientations (realizations) were 

simulated at four different applied strain amplitudes corresponding to the HCF and LCF 

regimes.  

Due to the dominating role of inclusions/pores in localizing the deformation, the 

spatial distributions of all three FIPs were found to be similar. The studied FIPs 

collectively indicated that:  

 

1. Damaged inclusions and pores are significantly more critical than intact, perfectly 

bonded inclusions.  

2. Partially debonded inclusions are often more critical than halved inclusions and 

pores at all applied uniaxial strain amplitudes. Nevertheless, a halved inclusion or 

pore may surpass the partially debonded inclusion, if it is next to a favorably 

oriented (particularly large) grain. 

 

As expected, FIPs increased at higher applied strain amplitudes. However, the rate 

of increase in FIPs for pores was found to be higher. This is because plastic deformation 

around pores is not as concentrated as that around damaged inclusions, and more slip 

systems experience the effects of increased applied strain amplitude. Interestingly, pores 

can become as critical as or more critical than halved inclusions at higher applied strain 

amplitudes, which can help to explain the similar trends seen in experiments by 
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Wusatowska et al., [108] who noted the dominant role of oxides inclusions for σyy / σys < 

0.7 (Rσ = 0.05) and Jha et al., [14] who attributed the fatigue crack origin to a mixture of 

inclusions and pores at σyy / σys > 0.7 (Rσ = 0.05). The degree of scatter in FIPs among 

microstructure realizations was found to depend on the: 

 

1. Applied strain amplitude: The coefficient of variation (CV) in the distribution of 

FIPs for the simulated grain orientation distributions was shown in Figure 3-9 

(CV was shown by the bubble size) to decrease as the applied uniaxial strain 

amplitude increases. CV is regarded as a normalized measure of FIP variability. 

However, Figure 3-10 indicates that the mean and variability in the absolute value 

of FIPs increase as the applied uniaxial strain amplitude (Rε = -1) increases. The 

variability in the absolute value of FIPs increases as the applied strain amplitude 

increases because the nonlocal averaging region for the calculation of FIPs is 

taken to be of a constant size r = 2 µm. As such, increasing the applied strain 

amplitude increases the stress intensity in this averaging region and magnifies the 

variability in the distribution of FIPs for the simulated matrix realizations (grain 

orientation distributions). 

2. Inclusion-matrix interface type: As the deformation becomes increasingly 

localized, FIP scatter decreases. The deformation is most localized for the halved 

inclusions followed by partially debonded inclusions and pores.  
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4 Inclusion-matrix debonding probability to stress amplitude 

4.1 Introduction 

In Chapter 3, we cited experimental studies that support the dominant role of 

inclusions in initiating fatigue cracks in various PM processed Ni-base superalloys, and 

we concluded that partially debonded inclusions are more critical than other damaged 

inclusions and pores.  

It is instructive to study the likelihood and location of inclusion-matrix interface 

separation at various remote applied uniaxial strain amplitudes. To that end, parametric 

finite element simulations are performed in this Chapter to assess the interface traction 

and the modified interface traction parameters (cf. 2.2.4). The findings are used in 

Chapter 7 to study the inclusion-matrix debonding effect on the ratio of probabilities of 

surface to bulk fatigue crack initiation.  

Although halved (fractured) inclusions can theoretically generate FIPs 

comparable to those for partially debonded inclusions, we assume that critical inclusions 

are debonded in the remainder of our study. This is not because they result in higher 

average FIPs (cf. Figure 3-9) but because: 

 

1. Inclusion-matrix debonding is prevalent. Experimental studies of inclusion related 

fatigue failures in PM Ni-base superalloys reveal that the majority of inclusions 

were in fact debonded [116-118, 124]. 

2. Computational studies suggest that the stress distribution in halved inclusions is 

likely to cause debonding of the inclusion-matrix interface [76].  
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3. Intuitively, inclusion-matrix interface debonding is more likely to occur than 

inclusion fracture. This is because the surfaces are of two different materials (i.e., 

inclusion and matrix). Most often the inclusion-matrix interface is not deliberately 

strengthened. 

   

In this Chapter, we introduce a probabilistic-mechanics approach to explore how 

the likelihood of inclusion-matrix debonding may decrease as the applied remote stress 

amplitude decreases.  

The interface traction (Tint) and the modified interface traction parameter (PT) (see 

Section 2.2.4) are used as indicators for assessing the driving force for the inclusion-

matrix interface separation. Parameters Tint and PT are calculated for each grain, located 

at the inclusion-matrix interface, as shown in Figure 2-4. The inclusion-matrix interface 

unit normal vector ( )incln  is unique for each grain, determined based on the location of 

the grain relative to the inclusion center. 

We define ( )Rc x
ω  as the cumulative probability that an inclusion with radius R 

results in parameter FIP smaller than x (an averaged quantity) in magnitude under the 

applied uniaxial strain amplitude
 yy ysω ε ε=

 
for Rε = -1. The indicator parameter could 

be Tint or PT. 

Since Rc
ω  depends on the inclusion radius, the probability that an arbitrary 

inclusion, regardless of its size, results in an indicator parameter smaller than x in 

magnitude under the applied strain amplitude
 
ω  can be expressed as 

 ( )  ( ) R RC x P c x dRω ω= ∫  (4.1) 
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where the variable RP  refers to the inclusion radius distribution such that 

  1RP dR =∫  (4.2) 

Thus, the probability that this inclusion debonds under these circumstances can be 

expressed as 

 *1 -  ( )
debond

C xP ωω =  (4.3) 

where x* is a material-specific threshold parameter.  

In this chapter, we simulate several polycrystalline orientation distributions at 

various applied strain amplitudes to construct the empirical cumulative distribution 

functions (CDFs) of extreme value FIP parameters in order to model Rc
ω .   
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4.2 Finite element model 

Finite element simulations utilize two-dimensional generalized plane strain 

elements [49], and the full model, shown in Figure 4-1, is utilized to mitigate any 

boundary effects. We use two-dimensional generalized plane strain (GPS) elements [49] 

(see Section 2.4.1), often referred to as 2.5D, and the fully 3D crystal plasticity material 

model (see Section 2.1.2). The crystal plasticity material model constants and 

microstructure parameters are listed in Table 3 and Table 4, respectively. Properties 

assigned for the fully isotropic elastic inclusion include Young’s modulus Ei = 400 GPa 

and Poisson’s ratio νi = 0.3. Quadratic triangular elements of type CPEG6M are used to 

mesh the FE model (see Section 2.1.2). 

The following boundary conditions are enforced; assuming the origin of the xyz 

coordinate system is at the center of the inclusion: 

 

1. The traction free boundary condition is enforced for the entire length of the 

model’s left and right edges (x = -L/2, L/2 and -L/2 < y < L/2).  

2. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s bottom edge (y = -L/2 and - L/2 < x < L/2). 

3. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model. 

4. Cyclic uniaxial displacement uy= εyy ×L is applied to the entire length of the 

model’s top edge (y = L/2 and - L/2 < x < L/2) at the applied strain amplitudes εyy 

= 0.5, 0.6, and 0.7 εys (εys = 0.7 % (c.f. 2.4.3)), strain ratio Rε = -1, and uniform 

strain rate of 0.002 s-1. 
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A total of 20 polycrystalline orientation distributions are simulated at each applied 

strain amplitude and inclusion radii R = 4, 6, 8 and 10 µm. The Voronoi tessellation 

diagram is same across these realizations and only grain orientations vary.  

Upon the completion of the 3rd cycle, the parameters Tint and PT are calculated as 

the indicator parameters (see Section 2.2.4) for each inclusion radius, polycrystalline 

orientation distribution, and applied strain amplitude. For discrete values of the applied 

strain amplitude and the inclusion radii, Eq. 4.1 can be approximated as 

 
1,2,...,

                            0.5,0.6,0.7,0.8
iR R i

i n

C P c Rω ω ω
=

∆ == ∑  (4.4) 

where n and ∆Ri are the number and the size of bins used to discretize the inclusion 

radius distribution. Since we are simulating inclusions with radii R = 4, 6, 8 and 10 µm, n 

= 4. We restricted this study to inclusions up to 10 µm in radius due to computational 

time constraints and consider this as a limitation of this study.  
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Figure 4-1: Full model for simulations of intact, perfectly bonded inclusions. 
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4.3 Results and discussion 

Figure 4-2 shows the yy stress contours of an intact, perfectly bonded inclusion 

for εyy = 0.5 εys and Rε = -1. They are plotted for polycrystalline orientation distribution 

#1 and at the peak applied uniaxial strain amplitude in the third cycle (point A in the 

cyclic load history, shown in Figure 4-2). As expected, the yy stress component peaks in 

the north and south poles of the inclusion, two regions outlined in red dashed lines. 

 

x
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A D
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Figure 4-2: yy stress contours of a intact, perfectly bonded inclusion plotted at point A (εys = 0.7 %; Rε = -
1). 
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The grains that produce the highest magnitudes of PT were most frequently 

located at these sites, as marked with “+” and “o” symbols in Figure 4-3. 

 

x

y

z  

Figure 4-3: Grains for the FIP averaging regions at the north and south poles of the inclusion. 

 

 

The empirical cumulative distribution functions (CDFs) of extreme value 

nonlocal PT parameter are plotted in black symbols in Figure 4-4 for εyy = 0.5 εys and Rε 

= -1. These CDFs represent 0.5 ( )R Tc P
ω= . The red dashed line represents the simulated 

  0.5 ( )TC P
ω = (see Eq. 4.4) for the inclusion radius distribution shown in Figure 4-5. The 

dashed lines in Figure 4-5 correspond to inclusion sizes that are out of the range 

examined in the simulations of this thesis. 
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Figure 4-5: Inclusion radius distribution. Out of the range examined in the simulations of this thesis. 
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The simulated ( )TC P
ω  distributions are shown in Figure 4-6 for the applied strain 

amplitudes ω = 0.5, 0.6, 0.7, and 0.8. The experimental data needed to calibrate the 

material-specific threshold parameter *
TP  are lacking. As such, to estimate *

TP , we 

assume that the applied uniaxial strain amplitude of ω = 0.8 is high enough such that, 

95% of all inclusions debond. This can, of course, be modified to accord with available 

experimental observations. We can then estimate *
TP  by solving ( )0.8 * 0.05TC Pω = = .  
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Figure 4-6: Simulated Cω and estimation of *
TP . 

 

 

We are now able to solve Eq. 4.3 to obtain 
debond

Pω  at the applied strain 

amplitudes ω = 0.5, 0.6, 0.7, as 0%, 12%, and 71%, respectively. Figure 4-7 shows the 
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variation of 
debond

Pω  versus the applied macroscopic strain amplitudes. The following 

two-term power series is fit to the data using the maximum likelihood (MLE) [92] 

estimation method: 

 -5.2091.189 -  0.07478
debond

Pω ω=  (4.5) 
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Figure 4-7: The variation of debondPω  versus the applied strain amplitude based on the PT parameter. 

 

 

Similarly, the computed cumulative distribution functions (CDFs) of extreme 

value nonlocal Tint parameter are plotted in Figure 4-8. These trends represent the 

simulated int( )C T
ω  for ω = 0.5, 0.6, 0.7, and 0.8. The inclusion radius distribution is 

shown in Figure 4-5. Again, in order to estimate *
intT  for the case study in Chapter 7, we 
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assume that at ω = 0.8, 95% of all inclusions would likely debond. As such, we can 

estimate *
intT  by solving ( )0.8 *

int 0.05C Tω= = . Figure 4-9 shows the variation of 
debond

Pω  

versus the applied strain amplitude. The following linear fit to the data is obtained using 

the maximum likelihood (MLE) [92] estimation method: 

 2.28 0.837debondPω ω= −  (4.6) 
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Figure 4-8: CDFs of extreme value nonlocal Tint parameter. 
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Figure 4-9: The variation of debondPω  versus the applied strain amplitude based on the Tint parameter. 
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4.4 Summary 

Inclusion-matrix interface debonding is mainly due to the residual stresses 

resulting from prior processing. Most inclusions could be already debonded before the 

application of cyclic loading. Nevertheless, Even if a small percentage of inclusions 

debond during fatigue loading, this percentage decreases as the cyclic stress/strain 

amplitude decreases. Thus, this mechanism decreases the surface initiation probability. 

The modified interface traction parameter, PT, is used as an indicator for assessing 

the driving force for the inclusion-matrix interface separation. The north and south poles 

of the inclusion (aligned with the loading direction) are the two most likely regions for 

inclusion-matrix interface separation for all polycrystalline orientation distributions 

studied. Based on the cumulative distribution function of the extreme value PT 

parameters, the probability of inclusion-matrix debonding is expressed as a function of 

the applied strain amplitude, εyy/εys. This expression will be used to account for the effect 

of inclusion-matrix debonding on the change in the ratio of probabilities of surface to 

bulk fatigue crack initiation in Chapter 7. 
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5 Residual stress relaxation at primary inclusions and pores 

5.1 Motivation 

The dependence of surface fatigue crack initiation probability, 
sp , on the stress 

amplitude can be partially due to the retention of beneficial residual stresses. The 

reasoning is based on two well-established phenomena: 

 

1. Compressive stresses reduce the propensity of cracks to initiate at surface 

inclusions in PM processed Ni-base superalloys [129, 130]. 

2. Cyclic strains and overstrains can eliminate compressive stresses [131-135]. The 

residual stresses can relax significantly due to mechanical loading even under 

normal operating conditions. 

 

As such, for a given R ratio and as the stress amplitude decreases, compressive 

residual stresses might not relax at some of the inclusions even though these stresses 

would otherwise relax at the higher stress amplitudes. These compressive residual 

stresses can effectively suppress fatigue crack initiation at some of the inclusions. 

In Chapter 6, we will further discuss and mathematically formulate this effect. In 

this Chapter, we use a simulation-based approach to examine the residual stresses around 

idealized inclusions and pores. The relaxation of these stresses due to cyclic loading is 

also studied for several cyclic uniaxial strain amplitudes and initial residual stress values. 
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5.2 Introduction 

Compressive residual stresses induced by mechanical surface treatments such as 

shot peening, laser shock peening, autofretage, hole expansion, and low-plasticity 

burnishing can be highly beneficial to fatigue resistance [131]. In general, such processes 

have shown potential to reduce crack initiation at surface inclusions in PM processed Ni-

base superalloys [129, 130]. In implementing these processes, various issues should be 

considered, including: 

 

1. Harmful tensile residual stresses are present in the interior of surface-treated 

specimens as a consequence of the compressive residual stresses that are applied 

near the surface to maintain static equilibrium. This can result in higher mean 

strain and stress at bulk inclusions during fatigue cycling. 

2. To suppress cracking at large surface inclusions, cost-efficient surface treatment 

processes such as shot peening may produce so much cold work, lapping, and 

other material damage near the surface as to override the benefits of compressive 

residual stresses. Alternative surface enhancement processes such as low 

plasticity burnishing [134] should be assessed in such situations. These processes 

potentially offer compressive residual stresses to a greater depth and with less 

cold work than shot peening, but they can be more costly. 

3. Some surface treatment processes such as shot peening and laser shock peening 

can break up the inclusions, producing inclusion clusters, having lengths up to 

twice the maximum lengths of the original inclusions [136, 137]. Theses inclusion 
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clusters can be more critical than the original inclusions if their relative placement 

results in enhanced potency for fatigue crack formation and growth. 

4. Thermal relaxation can greatly reduce the magnitude and beneficial effects of the 

compressive residual stresses [134, 138-140]. Such effects are not examined in 

this study, since our objective is the study of surface to bulk transition as the 

applied stress/strain amplitude decreases. 

 

In addition to thermal loading, cyclic loading is believed to eliminate compressive 

stresses [131-135]. Mattson and Coleman [141] were among the first researchers who 

reported cyclic residual stress relaxation, as shown in Figure 5-1.  

 

 

Figure 5-1: Residual stress relaxation before and after cyclic loading at room temperature [141]. 
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Extensive research efforts were undertaken to predict the dependence of residual 

stress relaxation on the magnitude and distribution of the residual stress, the degree of 

cold work, the applied alternating and mean stresses, and the number of applied loading 

cycles. Morrow and Sinclair [142] conducted strain-controlled fatigue tests and proposed 

a relationship between mean stress and load cycle, i.e., 

 
1 1

log( )

b
N

y am a

m m y

N
σ σσ σ

σ σ σ

 −
= −   

 
 (5.1) 

where σm
N is the mean stress at the Nth cycle, σm

1 is the mean stress at the first cycle, σa is 

the alternating stress amplitude, σy is the material yield strength, and b is a constant 

dependent on material softening and applied strain range ∆ε. 

Following Morrow's work, it has been commonly accepted that residual stress 

effects on fatigue can be assessed by the relaxation of the mean stress [133]. For instance, 

Jhansale and Topper [143] proposed a logarithmic linear relationship between mean 

stress relaxation against axial strain-controlled cycles. Alternative equations have also 

been proposed based on the relaxation of the surface residual stress instead of mean stress 

value [144]. 

Figure 5-2 shows the relaxation of compressive residual stresses due to cyclic 

strains in the experimental studies of Barrie et al. [129] on subsolvus PM processed 

seeded Udimet® 720. 
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Figure 5-2: Axial residual stresses of shot peened PM processed Udimet® 720 specimen before and after 
testing at T = 650°C, ∆εt = 0.8% and Rε = 0; Nf is not mentioned for this specific case but should be around 

104 [129]. 

 

 

The rate of residual stress relaxation depends strongly on mean stress and stress 

amplitude among other factors, as shown in the numerical predictions of Figure 5-3. 

 

 

Figure 5-3:  Effect of stress amplitude on residual stress relaxation (Rσ = -1) [131]. 
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Despite considerable research [145], there is insufficient experimental knowledge 

concerning the effect of fatigue cycling on residual stresses around inclusions and pores 

because: 

 

1. There remains the technical challenge of accurately measuring the residual stress 

relaxation and redistribution under cyclic mechanical and thermal load [146]. 

2. Residual stresses and their relaxation behavior are expected to differ around 

inclusions and pores.  

 

To that end, there is considerable interest in predictive models for the state and 

relaxation of residual stresses [147, 148]. Computational modeling such as finite element 

analysis offers a useful platform to investigate the effects of process history (including 

residual stresses) on the fatigue resistance of components [78]. 
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5.3 Simulation-based methodology for imposing the residual stresses 

In this Chapter, we adopt a simulation-based approach to study the degree of local 

residual stress relaxation around primary inclusions and pores. In this approach, a 

uniform state of equiaxial compressive stress is imposed prior to fatigue simulations 

using a simplified yet practical methodology developed by Prasannavenkatesan et al. [78, 

149]. The use of this methodology is justified because: 

 

• We seek to qualitatively compare the degree of residual stress relaxation under 

several applied uniaxial strain amplitudes (Rε = -1) and for several initial residual 

stress values in order to draw conclusions regarding the dependency of the 

number of fatigue hot spots (referred to as Ψ in this thesis) on the applied strain 

amplitude. In lieu of the comparative nature of our study, the inherent 

inaccuracies of this simplified approach are not significant. 

• Common mechanical surface treatment processes produce a state of residual stress 

that does not vary significantly over a domain of the order of primary inclusion 

size in fine grained PM processed Ni-base superalloys. 

• Parameters for equations of residual stress relaxation such as Eq. 5.1 are lacking 

for the material of this study. 

 

We summarize this simplified approach in the following. A detailed explanation 

of this approach is given in [78, 149] and the references therein. It should be noted that 

this simplified approach imparts an equiaxial state of compressive residual stress that 

may exist in a subsurface region due to a variety of mechanical surface treatments. 
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Therefore, it is not limited to simulations of a specific process, e.g., shot peening. Also, 

changes to the material properties (crystal plasticity model parameters), due to the 

peening process, are neglected in this study. 

A subsurface element is considered which is small enough, relative to the gradient 

of the residual stress field along the specimen depth, that a uniform distribution of 

residual stress can be assumed over its domain, as shown in Figure 5-4.  

 
Su
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Figure 5-4: A subsurface element with uniform compressive residual stresses [78, 131, 149]. Failure is 
defined as fracturing the specimen. 
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A uniform state of equiaxial residual stress over a subsurface domain is imparted 

by a two step strain-controlled (εxx
load and εxx

final) loading in the depth direction, as shown 

in Figure 5-5 for the 2.5D case. The following direction convention holds for all 

subsequent calculations: 

 

• Direction of impact (shot peening) – along the x direction 

• Equibiaxial residual stress state – along y and z directions 

• Cyclic loading  – along the y direction  
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Figure 5-5: (a) Boundary conditions for imparting the equiaxial state of stress (b) two step compression in 
the x direction, (c) strain variation in the subsurface element [78, 149]. 

 

 

For a simple initially homogenous material model with pure nonlinear kinematic 

hardening, a closed form solution to the magnitude of compressive strains, εxx
load and 

εxx
final, is derived in terms of the magnitude of residual stress by Zhang et al. [149]. 

However, due to the intricacies of the IN100 crystal plasticity material model, the strains 

εxx
load and εxx

final are estimated iteratively in this section using incremental polycrystal 
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plasticity calibrated to the macroscopic stress-strain response of IN100 Ni-base 

superalloys (see Section 2.4.3). For imposing the residual stress, the following boundary 

conditions are enforced (shown in Figure 5-6 (a)): 

 

1. The x-symmetry boundary condition (ux = 0) is enforced for the entire length of 

the model’s left edge (x = -L/2 and -L/2 < y < L/2).  

2. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s top and bottom edges (y = -L/2, L/2 and - L/2 < x < L/2).  

3. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model.  

 

Upon application of compressive residual stresses, cyclic simulations are 

performed to calculate and compare FIPs for the case without initial compressive residual 

stresses. For the cyclic loading simulations, the boundary conditions are relaxed such that 

assuming the origin of the xyz coordinate system is at the center of the inclusion/pore 

(shown in Figure 5-6 (b)): 

 

1. The traction free boundary condition is enforced for the entire length of the 

model’s left and right edges (x = -L/2, L/2 and -L/2 < y < L/2).  

2. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s bottom edge (y = -L/2 and - L/2 < x < L/2). 

3. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model. 
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4. Cyclic uniaxial displacement is applied to the entire length of the model’s top 

edge (y = L/2 and - L/2 < x < L/2). 
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Figure 5-6: Loading and boundary conditions: (a) imposing an equiaxial state of stress and (b) subsequent 
cyclic loading. 
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5.4 Imposing the compressive residual stresses without inclusion or pores   

The finite element simulations utilize two-dimensional generalized plane strain 

(GPS) elements [49] (see Section 2.4.1), often referred to as 2.5D, and the fully 3D 

crystal plasticity material model (see Section 2.1.2). The crystal plasticity material model 

constants and microstructure parameters are listed in Table 3 and Table 4, respectively. 

The full model, shown in Figure 5-7, is utilized to mitigate any boundary effects. Grains 

are randomly oriented, and each grain is meshed with 10-20 quadratic triangular elements 

of type CPEG6M (see Section 2.1.2), using the reduced integration algorithm.  

While the strains εxx
load and εxx

final are applied in terms of displacement to the right 

edge (i.e., x = L/2) of the model to achieve a uniform strain rate of 0.001 s-1, all stress and 

strain components are averaged over a circular averaging area with the radius of 10 µm 

(see Figure 5-7). This averaging area consists of about 100 grains. The averaged yy stress 

component, σ
*

yy, upon the completion of εxx
final is considered as the imposed residual 

stress, σ
res. The magnitude of σ

*
yy turns out to be different than the averaged zz stress 

component, σ*
zz, mainly because: 

 

1. Two-dimensional generalized plane strain idealization is used. Out-of-plane shear 

deformation is not included in the element formulation.  

2. Grains are randomly oriented, and fully anisotropic material properties are 

assigned to them.  
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Figure 5-7: Full FE model for prediction of εxx
load

 and εxx
final. 

 

 

Several pairs of values for εxx
load and εxx

final are tested, amongst which cases A, B, 

and C (see Table 1) are chosen for further analysis. The imparted σres values for cases A, 

B, and C correspond to experimentally measured residual stresses of shot peened PM 

processed Udimet® 720 [129] (see Figure 5-2) below the surface to the bulk transition 

depth, dt = 100 µm, as suggested by de Bussac [121] (see Figure 6-13). Here, simulating 

the residual stress distribution with depth is not of primary importance, and the exact 

depths corresponding to cases A, B, and C are not the key issue here. The key issue is 

that fatigue crack initiation origins at these depths are considered to be surface-

originated. 
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 Table 8: The imposed σres values for cases A, B, and C. 

Case Pointer εxx
load εxx

final σres (σres
yy) 

 0.02 0 -400 MPa 

A 0.02 0.01 -900 MPa 

 0.03 0 -650 MPa 

B 0.03 0.005 -1070 MPa 

C 0.02 0.015 -1170 MPa 

 0.03 0.01 -1400 MPa 

 

 

Figure 5-8 shows the contours of σyy upon the completion of εxx
final in the circular 

averaging area, where εxx
load = 0.03 and εxx

final = 0. The σyy stress component appears to be 

fairly evenly distributed throughout this area, suggesting that its average, σres, is relatively 

independent of the microstructure realization. Still, multiple microstructure realizations 

were considered in estimating the shot peening strain levels required to match the 

measured initial residual stress. The Voronoi tessellation diagram and polycrystalline 

orientation distribution vary across these realizations. Virtually equivalent values of σres 

were obtained, indicating that the polycrystalline aggregates, typically consisting of about 

100 grains, are sufficiently large to be considered as RVE for the purposes of estimating 

residual stresses. 
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Figure 5-8: Contours of σyy upon the completion of εxx
final (εxx

load = 0.03 and εxx
final = 0.03). 

 

 

Figure 5-9 shows the variation of σ*
yy versus the elastic, ε*

yy,el, and plastic, ε*
yy,pl, 

parts of the averaged total yy strain component, ε
*

yy, while the strains εxx
load= 0.02 

followed by εxx
final = 0.01 are applied by displacing the right edge (i.e., x = L/2) of the 

model. 
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Figure 5-9: Variation of σ*
yy vs. ε*

yy,el and ε*
yy,pl (εxx

load= 0.02 & εxx
final = 0.01). 
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5.5 The influence of an embedded inclusion/pore   

The imparted residual stresses are different in the local neighborhood of an 

inclusion or a pore. To study the inclusion effect, we simulate inclusions that are assumed 

to be already debonded at the beginning of the shot peening process as a means of 

assessing their influence on the local residual stress state and the fatigue crack formation 

potency. In simulations with partially debonded inclusions, contact between the 

interacting surfaces is assumed to be frictionless. 

Pores and partially debonded inclusions with radii R = 4, 6, 8, and 10 µm are 

embedded in the full FE model, as shown in Figure 5-10. Except for the embedded 

inclusion/pore, this model is similar to the one shown in Figure 5-7. Properties assigned 

for the fully isotropic elastic inclusion include Young’s modulus E
i = 400 GPa and 

Poisson’s ratio νi = 0.3.  
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Figure 5-10: The application of εxx
load

 and εxx
final in the full FE model with embedded inclusion/pore. 

 

 

Figure 5-11 shows the contours of local σyy (computed at the element integration 

points) upon the completion of εxx
final in the crystal plasticity modeled region. A partially 

debonded inclusion and a pore with radii R = 6 µm were embedded in Figures 5-11 (a) 

and (b), respectively. Figures 5-12 (a) and (b) show the same contour plots for a partially 

debonded inclusion and a pore with radii R = 10 µm. The grey-colored contours in both 

figures correspond to the regions where the absolute value of the residual stresses 

exceeds 80% of the absolute value of the reference residual stress value for the case 

without an embedded inclusion/pore (i.e., 0.8 res

yy refσ σ≥ ⋅ ; 1170 res

ref MPaσ =  for case C). 

In this region, the beneficial compressive residual stresses are comparable to the case 



135 

 

without an embedded inclusion/pore. Thus, we can say this region has not been 

negatively affected by the presence of inclusion/pore.  

The red-colored contours correspond to the regions where the absolute value of 

the residual stresses is less than 50% of the absolute value of the reference residual stress 

value (i.e., 0.5 res

yy refσ σ≤ ⋅ ; 1170 res

ref MPaσ = ). In this region, we have significant loss of 

beneficial residual stress due to the presence of inclusions/pores.  

As seen in these contour plots, pores result in a more widespread decrease in the 

beneficial residual stress. Figure 5-12 (b) shows that the affected region is larger as the 

pore size increases, whereas, increasing the radius of the partially debonded inclusion 

decreases the size of the red-shaded area.  

  



136 

 

Isotropic 

Elastic

Crystal 

plasticity 

model

30 

µm

step

εxx

0.02
0.0151   2

ux

x

y

z

R = 6 µm

x

y

z

σyy (εxx
load = 0.02 and εxx

final = 0.015)

1170          0.8        0.5res res res

ref yy ref yy refMPaσ σ σ σ σ= ≥ ⋅ ≤ ⋅
 

(a) 
 

Isotropic 

Elastic

Crystal 

plasticity 

model

30 

µm

step

εxx

0.02
0.0151   2

ux

x

y

z

R = 6 µm

x

y

z

σyy (εxx
load = 0.02 and εxx

final = 0.015)

1170          0.8        0.5res res res

ref yy ref yy refMPaσ σ σ σ σ= ≥ ⋅ ≤ ⋅
 

(b) 

Figure 5-11: Contours of σyy at the completion of εxx
final, (a) debonded inclusion and (b) pore (case C, R = 6 

µm). 
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(b) 

Figure 5-12: Contours of σyy at the completion of εxx
final, (a) debonded inclusion and (b) pore (case C, R = 

10 µm). 

 

 

To study the change in the residual stresses at the inclusion/pore notch root due to 

presence of an inclusion/pore, a semicircular region with radius r = R/2 (R = 

inclusion/pore radius) is used as the residual stress averaging area. The averaging region 
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is located in the slip-intensified region of the inclusion/pore notch root (see Figure 5-10). 

This averaging region contains 3 ~ 4 grains for the smallest inclusion/pore examined, i.e., 

R = 4 µm. At R = 10 µm, it comprises 15 ~ 20 grains. Examining a statistically 

representative number of simulations is crucial for the embedded inclusion/pore case 

because the averaging region is smaller than that of the case with no inclusion/pore (see 

Figure 5-7). The nonlocal residual stress value is obtained by averaging σyy over this area 

upon the completion of εxx
final: 

 
1res

yy yydV
V

σ σ= ∫  (5.2) 

The strains εxx
load and εxx

final from cases A, B, and C (see Table 8) are examined 

for the partially debonded inclusion. For brevity, only case C is considered for pores. Ten 

different polycrystalline orientation distributions (realizations) are simulated for each 

loading case and inclusion/pore size. The Voronoi tessellation diagram is the same and 

only grain orientations vary across these realizations. Table 9 lists median nonlocal 

imparted res

yyσ  values across simulated polycrystalline orientation distributions 

(realizations) for embedded inclusions and pores. A modest variation between different 

realizations is observed. 
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Table 9: Median imparted res

yyσ  values across simulated polycrystalline orientation distributions 

(realizations) for embedded inclusions and pores. 

Inclusion 

R → 4 µm 6 µm 8 µm 10 µm 

R
es

id
ua

l 
st

re
ss

 c
as

e A -1328 (MPa) -1384 (MPa) -1546 (MPa) -1670 (MPa) 

B -1334 (MPa) -1359 (MPa) -1588 (MPa) -1702 (MPa) 

C -1456 (MPa) -1480 (MPa) -1701 (MPa) -1790 (MPa) 

Pore 

R → 4 µm 6 µm 8 µm 10 µm 

 C -1368 (MPa) -1001 (MPa) - 733 (MPa) - 539 (MPa) 

 

 

For case C, the median imparted res

yyσ  for the case with embedded inclusion/pore, 

highlighted in bold in Table 9, is normalized by the value corresponding to the case 

without an inclusion/pore (i.e., 1170 res

ref MPaσ =  for case C). We reiterate that for the 

case with an embedded inclusion/pore, the residual stress averaging area is a semicircular 

region with radius r = R/2 (R = inclusion/pore radius), located at the inclusion/pore notch 

root (see Figure 5-10). Whereas, for the case without an inclusion/pore, the residual stress 

averaging area is a circular area with the radius of 10 µm (see Figure 5-7). Figure 5-13 

shows the variation in the ratio res res

yy refσ σ  versus the inclusion/pore radius. 

 



140 

 

Radius (µm)

4 6 8 10

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pore

PD Inclusion

1170 MPares res

refσ σ= = −
res

yy

res

ref

σ

σ

 

Figure 5-13: Variation in the ratio res res

yy refσ σ  versus the inclusion/pore radius. 

 

 

The embedded partially debonded inclusions (shown with filled symbols in Figure 

5-13) seem to have a higher averaged (at their notch root) compressive residual stress 

than the case with no inclusions/pores. For instance, for a partially debonded inclusion 

with R = 10 µm, the compressive residual stress averaged at the inclusion notch root 

(over the semicircular region with radius r = 5 µm) is substantially more (~ 50%) than the 

reference compressive residual stress for the case with no inclusion/pore. Larger 

inclusions enhance the local compressive stresses by a higher percentage.  

The embedded pores on the other hand can have mixed effects, whereby small 

pores have higher local compressive stresses relative to the case with no pores, and large 

pores decrease the local compressive stresses. Next, averaged residual stresses are 
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monitored for embedded inclusions and pores throughout the application of cyclic 

loading to explore the degree of their relaxation. 
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5.6 Applying the cyclic loading after shot peening  

Upon achieving the target res

yyσ , cyclic loading simulation is performed on the 

same FE model. The residual stresses imposed in the shot peening simulation serve as 

initial conditions for subsequent cyclic loading. For brevity, only the initial residual 

stresses of case C are examined. Moreover, for any simulated inclusion radius (R = 4, 6, 8 

and 10 µm), only one polycrystalline orientation distribution is simulated. The examined 

realization has an initial σ
res value that is closest to the median of all the simulated 

polycrystalline orientation distributions (realizations). For the cyclic loading simulations, 

the boundary conditions are relaxed such that assuming the origin of the xyz coordinate 

system is at the center of the inclusion/pore: 

 

1. The traction free boundary condition is enforced for the entire length of the 

model’s left and right edges (x = -L/2, L/2 and -L/2 < y < L/2).  

2. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s bottom edge (y = -L/2 and - L/2 < x < L/2). 

3. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model. 

4. Cyclic uniaxial displacement is applied to the entire length of the model’s top 

edge (y = L/2 and - L/2 < x < L/2). 

 

Here, we report the residual stress relaxation in the y and z directions (y = cyclic 

loading direction) for the initial three simulated loading cycles. We monitored these 

stresses throughout the application of fifteen loading cycles and observed negligible 
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variation upon application of three loading cycles. Table 10 lists the averaged yy and zz 

residual stress components at the end of three initial loading cycles, N = 1, 2, and 3 for 

partially debonded inclusions. The beginning of cyclic loading (end of shot peening) is 

indicated as N = 0. The negative values correspond to a shift from compressive to tensile 

stress state. 

 

Table 10: averaged yy and zz residual stress components at the end of three initial loading cycles, N = 1, 2, 
and 3 for partially debonded inclusions. 

yy residual stress component for partially debonded inclusions 

 R = 4 µm R = 6 µm R = 8 µm R = 10 µm 

N = 0 1449 1478 1726 1790 

εyy/εys 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 

N = 1 635 590 542 496 670 630 587 537 793 735 669 593 911 856 796 729 

N = 2 629 585 543 504 664 625 583 537 785 727 662 591 904 850 792 725 

N = 3 626 582 539 500 661 622 580 533 781 722 658 587 900 846 788 720 

zz residual stress component for partially debonded inclusions 

 R = 4 µm R = 6 µm R = 8 µm R = 10 µm 

N = 0 1799 1666 1795 1848 

εyy/εys 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 

N = 1 433 424 418 412 456 447 442 435 486 494 482 469 567 561 554 546 

N = 2 431 417 385 337 453 440 423 393 481 481 454 411 564 552 532 502 

N = 3 431 415 380 328 451 438 419 386 479 478 447 400 562 549 526 493 

 

 

Figure 5-14 shows the relaxation of res

yyσ  and res

zzσ  for a partially debonded 

inclusion (4 µm in radius) versus the applied uniaxial strain amplitudes εyy = 0.5, 0.6, and 

0.7 εys (εys = 0.7 % (c.f. 2.4.3)) for strain ratio Rε = -1 and uniform strain rate of 0.002 s-1. 
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The residual stresses are normalized relative to their initial values at the onset of cyclic 

loading, listed in Table 10 at N = 0 for case C. 
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Figure 5-14: Relaxation of nonlocal (averaged over r = 2 µm) res

yyσ  (top) and res

zzσ (bottom) at the notch 

root of a partially debonded inclusion (radius R = 4 µm) versus the applied uniaxial strain amplitude (εys = 
0.7 %; Rε = -1). 
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Figure 5-14 Continued. 

 

 

Similar to Figure 5-14 for R = 4 µm, Figures 5-15 and 5-16 show the relaxation of 

res

yyσ  and res

zzσ  for partially debonded inclusions with radii, respectively, equal to R = 6 

µm and R = 10 µm versus the applied uniaxial strain amplitudes εyy = 0.5, 0.6, and 0.7 εys 

(εys = 0.7 % (c.f. 2.4.3), Rε = -1, and strain rate 0.002 s-1). 
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Figure 5-15: Relaxation of nonlocal (averaged over r = 3 µm) res

yyσ  (top) and res

zzσ (bottom) at the notch 

root of a partially debonded inclusion (radius R = 6 µm) versus the applied uniaxial strain amplitude (εys = 
0.7 %; Rε = -1).  
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Figure 5-16: Relaxation of nonlocal (averaged over r = 5 µm) res

yyσ  (top) and res

zzσ (bottom) at the notch 

root of a partially debonded inclusion (radius R = 10 µm) versus the applied uniaxial strain amplitude (εys = 
0.7 %; Rε = -1). 

 



148 

 

 As seen in Figures 5-14, 5-15, and 5-16 the compressive residual stresses (yy as 

well as zz components) at the inclusion notch root reduce to 35-65% of their initial value 

with the application of cyclic loading. A substantial amount of beneficial compressive 

residual stresses (in y and z directions) would be retained for the case of PD inclusions. 

The inclusion size influences the degree (percentage) of relaxation. The initial 

compressive residual stress is higher for large inclusions, as is the decrease in the 

magnitude of residual stress due to subsequent cyclic loading. The combined effect is a 

higher magnitude of retained compressive residual stress, relative to their initial value, for 

larger inclusions. 

Cyclic microplasticity is the primary driver for the relaxation of residual stresses 

in favorably oriented grains under HCF [91] loading conditions. This explains why the 

highest degree of residual stress relaxation occurs at εyy/εys = 0.8, for all sizes of 

inclusions (the same will be shown to hold for pores).  

In order to examine the additional residual stress retained upon the application of 

cyclic loading at lower applied strain amplitudes, we consider the difference in the 

magnitude of residual stresses at εyy/εys = 0.5, 0.6, 0.7, and 0.8 relative to their minimum 

value at εyy/εys = 0.8, ( )
0.8

res

ω
σ

=
. The residual stress values at the end of the third loading 

cycle are examined. This difference in the magnitude of residual stress is then normalized 

by ( )
0.8

res

ω
σ

=
and plotted as a percentage in Figure 5-17 for inclusions with R = 4, 6, 8, 

and 10 µm.  
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(bottom) for partially debonded inclusions, Rε = -1. 
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According to Figure 5-17, up to 25-35% more of the beneficial residual stresses 

(in y as well as z directions)  can be retained when the applied strain amplitude decreases 

from εyy/εys = 0.8 to εyy/εys = 0.5. This is aligned with our original hypothesis as to how 

the decrease in the degree of residual stress relaxation at lower stress amplitudes can be 

partially responsible for the dependence of surface fatigue crack initiation probability, 
sp

, on the stress amplitude (see Section 5.1). 

 Similar to Table 10 for partially debonded inclusions, Table 11 lists the averaged 

yy and zz residual stress components at the end of three initial loading cycles, N = 1, 2, 

and 3 for pores. The beginning of cyclic loading (end of shot peening) is indicated as N = 

0. The negative values correspond to a shift from compressive to tensile stress state. 
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Table 11: averaged yy and zz residual stress components at the end of three initial loading cycles, N = 1, 2, 
and 3 for pores. 

yy residual stress component for pores 

 R = 4 µm R = 6 µm R = 8 µm R = 10 µm 

N = 0 1368 1001 733 539 

εyy/εys 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 

N = 1 364 237 103 -38 52 -3 -72 
-

151 
-71 

-
116 

-
168 

-
233 
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-
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-
149 

-
203 

-
222 

-
214 

-
201 

-
192 

N = 3 352 227 99 -29 46 -9 -70 
-

119 
-75 

-
113 

-
148 

-
200 

-
222 

-
213 

-
199 

-
190 

zz residual stress component for pores 

N = 0 613 481 361 539 

εyy/εys 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 

N = 1 152 135 121 108 -14 -17 -23 -31 -50 -68 -90 
-

118 
-

103 
-

111 
-

128 

-
144 

N = 2 151 134 116 87 -14 -19 -33 -69 -53 -76 
-

109 
-

150 
-

103 
-

116 
-

138 

-
161 

N = 3 150 132 112 76 -15 -19 -36 -76 -53 -78 
-

112 
-

155 
-

103 
-

117 
-

140 

-
164 

 

 

The retained compressive residual stresses are much lower for pores. Figure 5-18 

shows the relaxation of res

yyσ  and res

zzσ  for a pore (4 µm in radius) versus the applied 

uniaxial strain amplitudes εyy = 0.5, 0.6, and 0.7 εys (εys = 0.7 % (c.f. 2.4.3)) for strain 

ratio Rε = -1 and uniform strain rate of 0.002 s-1. The residual stresses are normalized 

relative to their initial values at the onset of cyclic loading, listed in Table 11 at N = 0 for 

case C. 
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Figure 5-18: Relaxation of nonlocal (averaged over r = 2 µm) res

yyσ  (top) and res

zzσ (bottom) at the notch 

root of a pore (radius R = 4 µm) versus the applied uniaxial strain amplitude (εys = 0.7 %; Rε = -1).  

 

 

Similar to Figure 5-18 for R = 4 µm, Figures 5-19 and 5-20 show the relaxation of 

res

yyσ  and res

zzσ  for pores with radii, respectively, equal to R = 6 µm and R = 10 µm versus 
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the applied uniaxial strain amplitudes εyy = 0.5, 0.6, and 0.7 εys (εys = 0.7 % (c.f. 2.4.3), 

Rε = -1, and strain rate 0.002 s-1). 
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Figure 5-19: Relaxation of nonlocal (averaged over r = 3 µm) res

yyσ  (top) and res

zzσ (bottom) at the notch 

root of a pore (radius R = 6 µm) versus the applied uniaxial strain amplitude (εys = 0.7 %; Rε = -1). 
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Figure 5-20: Relaxation of nonlocal (averaged over r = 5 µm) res

yyσ  (top) and res

zzσ (bottom) at the notch 

root of a pore (radius R = 10 µm) versus the applied uniaxial strain amplitude (εys = 0.7 %; Rε = -1). 

 

 

Upon the first loading cycle, the compressive residual stresses almost completely 

diminish for all but the smallest pore size studied (R = 4 µm). As seen in Figure 5-18 (a) 

for R = 4 µm, only around 30% of the initial compressive residual stresses are retained at 
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the lowest simulated applied strain amplitude of εyy/εys = 0.5. Most simulated pore sizes 

result in the initial compressive residual stresses to shift to a tensile state, detrimental to 

the material’s fatigue resistance. 

To better understand the different effects of partially debonded inclusions and 

pores, we monitor the variation of averaged stress versus plastic strain (σ*
yy versus ε

*
yy,pl) 

at the notch root of a pore (Figure 5-21 b) and at a debonded inclusion (Figure 5-21 c) 

with R = 6 µm after three loading cycles (εyy/εys = 0.6 and Rε = -1). The dark, wide black 

lines show the variations during shot peening. 

The beginning and end of load reversals in the first loading cycle are labeled in 

Figure 5-21 (a). Under fully reversed cyclic loading (i.e., Rε = -1), extensive cyclic 

plasticity occurs during the first load reversal (segment BC), resulting in substantial 

relaxation of compressive residual stresses. As such, for both inclusions and pores, the 

first loading cycle results in the highest percentage reduction in the magnitude of residual 

stresses; this agrees with experiments using shot peened Astroloy [150] and IN939 [151] 

superalloys under cyclic loads. Almer et al. [152] pointed out that microstresses within 

grains relax rapidly due to this small-scale plastic deformation, while macroscopic 

stresses relax less rapidly; this can significantly influence fatigue crack formation and 

growth behavior in HCF [78]. 

The relatively rigid inclusion plays a significant role in retaining the compressive 

residual stresses by bearing compressive stresses in the first load reversal (segment BC), 

thus resulting in a lesser amount of plastic deformation and residual stress relaxation. 

Figure 5-21 indicates a state of plastic shakedown where the third cycle can 

essentially be considered closed cycles of alternating plastic deformation without any 
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accumulation of plastic strains, i.e., plastic strain ratcheting [91]. The compressive 

residual stresses around partially debonded inclusions endure the applied cyclic loading 

over a broader range of inclusion sizes and applied strain amplitudes. Thus, we consider 

the residual stress effects only for inclusions when we study in Chapter 6 the residual 

stress relaxation effects on the ratio of probabilities of surface to bulk fatigue crack 

initiation. 
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Figure 5-21: (top) load reversals. The variation of σ*
yy vs. εp*

yy at the pore (middle) and debonded inclusion 
(bottom). R = 6 µm, εyy/εys = 0.6 and Rε = -1. The dark, wide black lines show the variations during shot 

peening.  
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5.7 Summary 

A simplified methodology developed by Prasannavenkatesan et al. [78, 149] was 

implemented to: 

 

1. Model the residual stress state due to the shot peening process. 

2. Study the residual stresses around inclusions/pores. 

3. Examine degree of residual stress relaxation around inclusions/pores. 

 

The embedded partially debonded inclusions were found to have increased the 

local compressive stresses by as much as 80% depending on the inclusions size and the 

magnitude of initial residual stresses. Relative to the case with no pores, small and large 

pores, respectively, have higher and lower local compressive stresses. 

Next, residual stresses were monitored for embedded partially debonded 

inclusions and pores throughout the application of cyclic loading. Extensive cyclic 

plasticity during the first load reversal results in the highest percentage reduction in the 

magnitude of residual stresses such that the compressive residual stress: 

 

1. Reduces to 35-65% of its initial value at the partially debonded inclusion notch 

root. Larger inclusions were found to retain compressive residual stresses to a 

higher degree.  

2. Almost completely diminishes at the pore notch root. 
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It was also found that the degree of residual stress relaxation increases with 

increased applied uniaxial strain amplitude (Rε = -1) for all sizes of inclusions and pores. 

These findings were explained by examining the scale of cyclic microplasticity at the 

notch root of inclusions and pores. It was found that the relatively rigid inclusions restrict 

the plastic deformation in the first load reversal, thus resulting in enhanced residual stress 

retention. Larger amounts of the beneficial residual stresses were retained when the 

applied strain amplitude decreased. The contribution of this additional amount of retained 

residual stress to the surface-to-bulk transition of HCF failure origins will be addressed in 

Chapter 6.   
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6 Weighted probability approach for modeling surface to bulk 

transition of HCF failures dominated by primary inclusions and 

pores 

6.1 Introduction: Bimodal fatigue life distribution with surface and bulk sites 

Fatigue life variability naturally exists in all fatigue regimes due to variability in 

the microstructure and to uncontrollable test conditions. Nevertheless, HCF experiments 

on some advanced metallic alloys, such as Ni-base superalloys, titanium alloys, and high-

strength steels, show that fatigue life can be unexpectedly much higher for some 

specimens [4-18]. The relative number of such observations increases as the stress 

amplitude decreases in the HCF regime, such that just below the traditional HCF limit, 

fatigue life data appears to be distributed between two branches. The occurrence of two 

distinct failure distributions has been referred to as “Competing Failure Modes” [19, 20]. 

This duplex distribution over drastically different fatigue lives appears as a 

plateau in the corresponding S-N curve, often referred to as a step-wise or duplex S-N 

curve.  Figure 6-1 (a) shows a step-wise S-N curve in Ti-6-2-4-6 [16]. Similarly, Figure 

6-1 (b) shows a step-wise S-N curve in a bearing steel [17]. A bilinear, step-wise, or 

duplex cumulative distribution function (CDF) of fatigue life refers to the same effect; 

when two separate normal distribution functions are fitted to the datasets, they appear as 

two linear segments when CDF is plotted in a logarithmic scale, Figure 6-1 (c). It has 

been shown that two modes of failure can be separable by statistical analysis, even in 

circumstances where there may be a high degree of overlap in the fatigue data for the two 

modes [18]. 
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Figure 6-1: Step-wise S-N curve in Ti-6-2-4-6 [16] (top) and a bearing steel [17] (middle); Example of 
bilinear fatigue life CDF in Ti-6-2-4-6 [16] (bottom). 
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As the stress amplitude decreases below the traditional endurance limit and into 

the VHCF regime, the dataset that corresponds to shorter fatigue lives becomes sparsely 

populated, whereas the other dataset grows in number and thus controls the mean of the 

entire data population [12-15, 153, 154]. As such, the two datasets are often referred to as 

(1) life-limiting and (2) mean-controlling, respectively. 

At a given stress amplitude, the overall fatigue life variability can be associated 

with two sources (c.f. Figure 6-2): 

 

1. Variability within each life data population corresponding to (b) surface and (c) 

internally originated fatigue failures due to variability in the microstructure and 

underlying mechanisms. 

2. Separation (a) between the life data populations due to the: 

a. Environmentally-enhanced cracking at surface sites [18]. Regarding the 

latter, fatigue crack growth rates in air are significantly faster than those 

observed in vacuum [119, 120]. In contrast, the bulk initiation 

mechanisms essentially operate in a quasi-vacuum environment, 

producing longer fatigue lives. 

b. Lack of constraints on plastic strain localization at sites near the free 

surface. 

 

Additionally, these life-limiting and mean-controlling datasets broaden and 

diverge with decreases in the stress amplitude.  The INCREASE in overall fatigue life 
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variability due to a decrease in stress from σ to σ' (within the VHCF regime) can be 

identified, as schematically shown in Figure 6-2. 

 

1. Increased variability (b<b') and (c<c') within lifetime data populations, 

corresponding to surface and internally originated fatigue failures [12] that arise 

due to increased deformation heterogeneity at lower stress amplitudes. 

2. Increased separation (a<a') between the lifetime data populations, attributed to 

differences in the failure initiation mechanisms to decreases in the stress 

amplitude [14, 18]. 

 

Here, the fatigue life is defined by the number of cycles to fracture the specimen, 

Nf, and normal distribution functions are shown for each data population only for 

illustrative purposes. 
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Figure 6-2: Variability in fatigue life for a given applied stress/strain amplitude (symbols are for illustrative 
purposes and do not represent actual experimental data). 

 

 

In light of the distinct nature of surface- and bulk-originated failure modes, 

bimodal representation of the probability distribution function (PDF) of the fatigue life 

data, f(x), has been suggested as a more accurate fit to the experimental fatigue data [12-

14, 16, 126, 155]. In the bimodal representation, two PDFs, fs and fb, corresponding to 

each of the two fatigue life datasets are superimposed as 

 ( ) ( ) ( )s s b bf x p f x p f x= +  (6.1) 

Similarly and in terms of the cumulative distribution function (CDF) of the fatigue life 

data, c(x), 

 ( ) ( ) ( )s s b bc x p c x p c x= +  (6.2) 
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where cs and cb correspond to the CDF of each fatigue life dataset. Statistically-speaking, 

the weighting parameters, ps and pb, are the probabilities that a given data point belongs 

to the life-limiting dataset (first term) or the mean-controlling dataset (second term). 

In clean alloys with inclusions, such as powder processed alloys, the life-limiting 

(worst-case) characteristics of the HCF and VHCF regimes are governed by extreme 

value microstructure attributes, which are large non-metallic inclusions. The processes of 

fatigue crack formation and early growth from surface grains, inclusions, or pores and 

bulk inclusions govern the scatter within the life-limiting and mean-controlling datasets 

[156].  

Because we are attributing the life-limiting and mean-controlling datasets to the 

surface and bulk inclusions in PM Ni-base superalloys, the weighting parameters, ps and 

pb of the bimodal fatigue life distribution in Eqs. 6.1 and 6.2 are hereafter referred to as 

the probability of failure initiation (formation and early growth) from surface and bulk 

inclusions, respectively. 

Physically-based life prediction methodologies that integrate the mechanisms of 

fatigue variability in Ni-base superalloys are of great interest in life-extension as well as 

in new alloy development in the gas turbine industry [156-158]. To that end, life-limiting 

mechanisms of superalloys have received considerable attention [12, 14, 119, 120, 153, 

156, 159, 160]. This is because superalloy applications demand a very low probability of 

failure, for example 0.1% (known as B0.1) in aircraft gas turbine applications.  

Many experimental studies seek to enhance the general understanding of fatigue 

crack formation and early growth behavior by obtaining extensive databases of hard-to-

measure fatigue crack growth data, often introducing known populations of artificial 
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inclusions (seeds) to production powder to intentionally promote surface fatigue failure 

initiation. 

Although a fair level of understanding has been achieved regarding small crack 

growth behavior, a physically-based predictive tool is lacking, and fatigue crack growth 

behavior is still the subject of active research. The complexities of this problem are 

evident in the erratic trends of fatigue crack growth data, as shown in Figure 6-3. 

Besides the distribution of the life-limiting dataset, the populations of life-limiting 

versus mean-controlling distributions (i.e. surface versus bulk initiation probabilities in 

the PM Ni-Base superalloys), P=ps/pb, can significantly impact the low failure 

probability estimate of fatigue life for the bimodal fatigue life distribution. This will be 

discussed in the next section. 
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Figure 6-3: Distribution of measured fatigue crack growth rates. Top: Inclusion-initiated cracks in seeded 
Udimet720 [159]. Bottom: Inclusion- and pore-initiated cracks in IN100 [14]. The test temperature was 

650°C. 
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6.2 The significance of surface and bulk initiation probabilities 

To further illustrate the impact of surface initiation probability on the low failure 

probability estimate of fatigue life, we cite the experimental fatigue data of a study on 

subsolvus PM IN100 tested at 650°C, f = 0.33 Hz, and Rσ = 0.05 (stress-controlled) [14].  

The Cumulative Distribution Function (CDF) of fatigue life data is shown in blue 

symbols in Figure 6-4. The fitted CDF to all the fatigue life data points is shown with a 

continuous blue line. The traditional B0.1 estimate (1 in 1000 probability of failure) is 

computed by extrapolating this fitted CDF. 

The CDF of the simulated life-limiting distribution, i.e., cs in Eq. 6.2, is shown 

with a black dashed line in Figure 6-4. In the referenced study, the life-limiting 

distribution was simulated using the Paris crack growth equation with random 

parameters. The initial crack size for the inclusion initiated crack was determined based 

on the diameter of the circle with equivalent projected area. By simulating the 

distribution cs, a first-order improvement to the B0.1 estimate is achieved by solving 

cs(Nf) = 0.001.  

However in doing so, an overly conservative B0.1 estimate is obtained, as the 

contribution of the mean-controlling distribution is not accounted for. As shown in Figure 

6-4, a considerable improvement to the B0.1 estimate can be obtained by accounting for 

the fact that for any surface initiation, there occurs pb/ps bulk initiations. This view is 

justified, as all the bulk initiated failures are known to have longer lives than the surface 

initiated cases. Thus, one must calculate the B0.1 estimate based on the implicit relation: 

 
0.001

( )s f

s

c N
p

=  (6.3) 
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IN100: (Jha, Caton, and Larsen, 2008). [Only 

one CDF is extracted from the reference]
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Figure 6-4: Improvements to the B0.1 estimate. The experimental and fitted fatigue life data are shown in 
blue symbols and line, respectively. The simulated life-limiting distribution (cs) is shown with a black 

dashed line [14]. 

 

 

The processes of fatigue crack initiation at bulk sites have previously been studied 

in the context of surface-treated materials or of damage-tolerant design of large 

components, where surface initiation is suppressed or where the critical site, often a large 

inclusion or a cluster of favorably oriented grains, is more likely to exist in the bulk of the 

material.  

Extensive research at the Air Force Research Laboratory (AFRL) [12-15, 153, 

154] indicates that even though the life estimate obtained by solving cs(Nf) = X does not 

account for a significant number of bulk initiations, it still results in a conservative 
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estimate with significant improvement to the traditional estimates that are based on the 

extrapolation of a unimodal life distribution. 
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6.3 Existing approaches to prediction of surface initiation probability 

From experimental data, the weighting parameters can be obtained as the 

proportions of all experiments that show surface and bulk failure initiation sites, 

respectively [14], i.e., 

 
( )
( )

s s s b

b b s b

p n n n

p n n n

= +

= +
 (6.4) 

Experimentally obtained values of ps are sensitive to slight variations in the 

outcome of limited experimental data, and a prohibitively large number of fatigue 

experiments is needed to ensure that the experimentally obtained values of ps vary 

negligibly upon performing additional experiments.  

To further illustrate the dependence of ps on the variations in the outcome of 

experimental data, suppose that the actual value of ps = 0.2 and we intend to perform 

fatigue experiments to calculate ps. If we perform 10 fatigue experiments, 2 of the 

experiments should fail from the surface. Now, suppose that only one surface initiated 

failure event is substituted by an internally initiated failure event. Thus, the 

experimentally measured surface initiation probability is calculate as 

( )2 1 10 0.1sp = − = , resulting in a 50 % error (the actual value was ps = 0.2). For this 

example (assuming we now the actual value of ps = 0.2 a priori), Figure 6-5 illustrates the 

sensitivity of ps to the number of experiments used to calculate it.  

As observed in this simple example, at least 100 experiments are needed to 

warrant 95 % confidence in this experimental estimation. This number increases as the 

actual value of ps decreases (in VHCF) and the desired confidence level increases. 
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Figure 6-5: Sensitivity of ps to the number of experiments used to calculate it. 

 

 

It is clear from Figure 6-5 that the size of most experimental studies performed to 

date is typically far too small for the purpose of accurately estimating ps. A more 

practical and accurate assessment of the surface initiation probability is desirable in order 

to better assess the mean and minimum life modeling of entire population. Without this, 

the applicability of Eqs. 6.1-6.3 is quite limited (perhaps unusable in practical terms). 

Physically-based simulative approaches to predicting surface and bulk fatigue 

crack initiation probabilities can help to reduce the number of experiments. Such 

approaches are lacking.  
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Cashman [125, 126, 155] pursued an analytical methodology, based on the 

Weibull “Weakest Link” concept [92]. First, he calculated ps from available experimental 

data as ( )s s s bp n n n= +  for various applied uniaxial strain amplitudes. Then, he fitted 

the binary logistic distribution [161, 162] to the probability of surface initiation as a 

function of applied loading. The fitted binary logistic distribution is shown in Figure 6-6 

for the uniaxial experimental data for PM René 95 [125]. The ordinate is identified as 

pseudostress amplitude, defined as ( )2E ε∆ ; ε∆  and E  denote the total strain range and 

the modulus of elasticity, respectively. This is the typical aspect of the method of 

presenting fatigue life data points in strain-controlled fatigue tests at GE Aviation [19]. 
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Figure 6-6: The fitted binary logistic distribution to the experimental surface initiation probability vs. 
pseudostress amplitude in René 95 tested at 538°C [125]. 
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Logistic regression is often used to predict a discrete outcome, such as surface and 

bulk failure initiation, from a set of variables that may be continuous (e.g., stress 

amplitude), discrete/categorical (e.g., inclusion versus pore), or a mix of both [162]. 

Mathematically, the binary logistic model used for the stress-dependence of the surface 

initiation probability can take the form [126, 161, 163]: 

 

1

1
a

b
sp e

σ 
 
 

−
−− 

 
  

= +  (6.5) 

where σ is the relevant measure of the loading condition (e.g., stress amplitude/range), 

and a and b are the model parameters, calculated from the available ps data for 

representative loading conditions with maximum likelihood estimation.  

Cashman considered small subregions at the inclusion notch root. He then used 

the estimated cyclic stress intensity factor for each subregion (assumed to be uniform 

over subregions) as an indicator parameter for fatigue crack initiation in the PM Ni-base 

superalloy René 95. He simulated ps by formulating the “Weakest Link” concept for the 

collection of the small subregions at the inclusion notch root. He then calibrated the 

parameters of the simulated ps distribution to the fitted binary logistic distribution of ps. 

Cashman’s approach is limited because: 

 

• It assumes the inclusion size is constant. 

• It relies on the analytical solution of the cyclic stress intensity factor for a 

homogenous isotropic material. As such, it does not account for the micro 
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plasticity under HCF and VHCF, nor it accounts for the variability due to the 

microstructure. 

• It is limited to the uniaxial loading condition.  

 

In contrast, the simulation-based methodology developed in this thesis (described 

in the next section) overcomes these shortcomings as it includes the inclusions size effect 

and uses crystal plasticity material model (calibrated to experimental data at T = 650°C) 

to simulate grains around inclusions/pores. Also, we use FIPs (well-suited for fatigue 

crack formation and early growth under HCF and VHCF regimes) into our probabilistic 

construct. As such, the model is capable of handling the effects of multiaxial loading 

conditions (e.g., tension, torsion, rotating bending and plane bending). 
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6.4 Simulated surface and bulk initiation probabilities 

6.4.1 Fatigue hot spot  

We relate the probability of fatigue crack initiation in the surface region to the 

expected number of critical fatigue hot spots in this region, Ψ. The term “fatigue hot 

spot” refers to a microstructure attribute or collection of attributes (a large favorably 

oriented grain, an inclusion, a pore, etc.) which, under a given uniaxial loading condition 

(i.e., ∆ε and Rε) can associate with a sufficient driving force to incubate a fatigue crack. 

The effects of loading condition, free surface, oxidation, specimen size, as well as the 

density and size distribution of primary inclusions are incorporated in a single variable Ψ.  

A fatigue “hot spot” may have one or more constituent elements. In fine-grained 

PM Ni-base superalloys, non-metallic inclusions are candidate fatigue hot spots. A less 

potent inclusion may qualify as a hot spot if it is adjacent to a large grain that is favorably 

oriented for intense shear deformation. Examples of microstructure configuration that 

may be fatigue hot spots are shown in Figure 6-7 with added degrees of complexity. If a 

fatigue experiment were performed at a given stress amplitude under HCF or VHCF, the 

most potent fatigue hot spot would be the dominant fatigue crack formation site. Other 

fatigue hot spots might serve as sites for secondary fatigue crack formation. 
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Figure 6-7: Degree of complexity for microstructure configurations. (a) Inclusion, (b) Inclusion next to a 
large grain, and (c) Inclusion with surface irregularity, next to a large grain. 

 

 

Hyzak et al. [116] noted the significant influence of inclusion shape in the high 

cycle fatigue regime. They observed that the dominant fatigue cracks initiated from sharp 

hafnium oxide inclusions in AF-115 alloy despite the existence of other considerably 

larger but equiaxed non-metallic inclusions.  

Wusatowska-Sarnek et al. [108] studied LCF crack initiation from oxide 

inclusions in IN100. Lifetime data corresponding to fatigue cracks incubated from 

surface inclusions seems to show a regular trend with respect to the equivalent inclusion 

size, with larger inclusions resulting in shorter lives. However, fatigue cracks seem to 

result from bulk inclusions of drastically different sizes for the same stress amplitude and 

fatigue life (Figure 6-8). 
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Figure 6-8: Fatigue life vs. the inclusion diameter (R=0.05). Internal and surface inclusions are referred to 
by open and full symbols, respectively [108]. 

 

 

This implies the influence of other microstructure attributes in addition to the 

inclusion size on fatigue strength. A similar conclusion can be drawn from Figure 6-9 by 

looking at the large variation in the crack initiation area of bulk non-metallic particles at 

constant Nf. The cooperative influence of these attributes can be detrimental to material 

integrity even if any given attribute by itself is subcritical. 
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Figure 6-9: Lifetimes for surface and subsurface crack initiation locations in IN100 [14]. 

 

 

At low stress amplitudes, several microstructure attributes may need to work 

together to generate sufficient driving force for fatigue crack formation and early growth. 

For instance, a large non-metallic inclusion that can invariably incubate a fatigue crack at 

high stress amplitudes may need the additional influence of a large favorably oriented 

neighboring grain, to generate sufficient driving force for fatigue crack formation at low 

stress amplitudes.  

If the expected number of fatigue hot spots for a given material volume, V, (i.e., 

component, test coupon, or regions therein) at a given stress amplitude is expressed by Ψ, 

then Ψ is a monotonically increasing function of σa, the applied stress amplitude, i.e.,  

 
1 21 2 a a a ii σ σ σ σ σ σσ σ σ = = => > ⋅⋅⋅ > ⇒ Ψ > Ψ > ⋅⋅⋅ > Ψ  (6.6) 
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This is because the probability for a microstructure configuration decreases as it 

includes more critical microstructure attributes (cf. Figure 6-7).  

The existing probabilistic approaches [18, 164] neglect the dependence of the 

expected number of critical fatigue hot spots on the stress amplitude and Rσ ratio. Thus, 

they fail to capture the decrease in surface versus bulk initiation probabilities with 

decreasing stress amplitude. Such frameworks only consider the dependence of surface 

and bulk initiation probabilities on specimen size and the number density and size 

distribution of primary inclusions. 

 

6.4.2 Definition of surface versus internal crack initiation 

The criterion that defines a surface fatigue crack initiation event is subjective, and 

no suitable classification currently exists. Initiation sites that under visual inspection of 

the fracture surface appear in the bulk and on the surface of the test specimen are 

categorized as internal and surface-originated cases. Figure 6-10 shows low 

magnification SEM fractographs of fatigue crack initiation from a ceramic inclusion 

located in the bulk (top) and on the surface (bottom) of the test specimen. The material is 

a Ni-base superalloy, René 95, tested at elevated temperature in strain control [165]. This 

classification is performed regardless of the number of fatigue cycles to failure.  
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Figure 6-10: Fatigue crack initiation from ceramic inclusions in René 95; (top) internal fatigue initiation 
site, (bottom) surface initiation site [165]. 
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For near surface initiation sites, a transition depth, dt, needs to be defined beyond 

which fatigue failure initiation is considered internal (Figure 6-11). 

  

dt

Vs

Vt - Vs

 

Figure 6-11: dt = the transition depth; Vt = specimen total volume; VS = specimen surface volume. 

 

 

De Bussac [121] performed LCF experiments on specimens of N18 superalloy, a 

French patented PM Ni-base superalloy [122], and suggested a graphical criterion for 

defining dt. He plotted the experimental fractographic measurements of the average size 

of the fatigue crack origin versus their depth from the free surface. The size of the fatigue 

crack origin was defined as the equivalent diameter, deq, of the critical non-metallic 

inclusion. This equivalent diameter was defined as the square root of the area of the box 

shown in Figure 6-12, i.e., maxeqd D D⊥= ⋅ . The depth of the initiation site was defined 

as the minimum distance from the crack origin to the specimen free surface. 
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Figure 6-12: The definition of the equivalent diameter. maxD is the largest linear dimension of the critical 

non-metallic inclusion and D⊥ is the dimension normal to maxD [121]. 

 

 

Figure 6-13 shows the average size of the fatigue crack origin versus their depth 

from the free surface. 

 

 

Figure 6-13: Size of the fatigue crack origin vs. its distance to the surface [121]. 
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It can be seen in Figure 6-13 that beyond a critical depth of 100 µm, the average 

size of the fatigue crack origin remains constant. From this, bulk-originated fatigue 

failure was defined as crack formation at a depth greater than 100 µm. Between 0 and 100 

µm from the surface, fatigue failure is classified as surface-originated. The average grain 

size for the N18 superalloy under study was 11 µm (9.5 ASTM) with a narrow size range, 

and the average size of the fatigue crack origins were 20-100 µm.  

A particular definition for the transition depth, dt, should be based on the 

differences between surface-originated and bulk-originated fatigue failure for the 

problem at hand. In our study, surface-originated fatigue failure corresponds to 

drastically shorter fatigue lives. Moreover, since we are considering HCF and VHCF 

crack failure from ceramic inclusions, fatigue crack formation and early growth are 

considered to consume most of the total fatigue life. Therefore, if these stages are not 

considerably influenced by the specimen free surface, the failure can be considered to 

have initiated internally.  

The experimental data needed to define the transition depth, dt, in the fine-grained 

IN100 superalloy of our study is lacking. As such, we use the definition by de Bussac 

[121], i.e., dt = 100 µm, since the average size for ceramic inclusions and grains in the 

fine-grained IN100 superalloy of our study is comparable to those of de Bussac. This 

definition can, of course, be modified to accord with available experimental observations.  

 

6.4.3 Surface initiation probability based on the number of fatigue hot spots  

Surface initiation probability depends on the expected number of fatigue hot 

spots, because the infrequent configurations are more likely to be found in the bulk than 
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at the surface. To predict the ratio of probabilities of surface to bulk fatigue crack 

initiation, we must use a probabilistic mechanics framework that incorporates the 

probabilities that fatigue hot spots exist in the surface versus bulk regions.  

Specific crack initiation mechanisms depend on experimental conditions such as 

loading, temperature, and environment, which pose challenges and opportunities for 

improvement in service life in the HCF and VHCF regimes. Therefore, an attempt is 

made in this thesis to maintain the generality of the framework so as to allow for future 

refinement. 

In probability theory and statistics, the binomial distribution is the discrete 

probability distribution of the number of successes in a sequence of n independent yes/no 

experiments, each of which yields success with probability i. The probability of getting 

exactly k successes in n trials is given by the probability mass function [166]: 

 ( ) ( )( ) 1
k n kn

g k i i
k

− 
 
 

= −  (6.7) 

The underlying assumptions of the binomial distribution are that there is only one 

outcome for each trial, that each trial has the same probability of success and that each 

trial is mutually exclusive. We use the binomial distribution to assess the probability 

distribution for a specific number of fatigue hot spots in the surface region. If Ψ hot spots 

can potentially initiate a surface originated fatigue crack, i.e., from within volume Vs, the 

probability mass function of having exactly k number of such fatigue hot spots in the 

surface region is given by  
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    
    

    

Ψ −
=  (6.8) 

where Vs and Vt are the volume of the surface region and the total volume of the 

specimen, respectively.  

It is assumed that even one fatigue hot spot present in the surface region, Vs, can 

cause surface originated fatigue failure. In other words, regardless of the hot spot severity 

(determined by factors such as size, shape, or orientation of inclusions when inclusions 

are the main hot spots), a surface hot spot prevails over any internal hot spot.  

This weakest-link approach is a reasonable way to account for the higher growth 

rate of surface fatigue cracks due to environment effects and to their higher stress 

intensity factor [116, 117, 119, 120] and is in agreement with the approach of Ravi 

Chandran et al. [18]. This assumption is particularly well-suited for study of the fine 

grained IN100 at 650°C chosen for this project, in which grain boundary oxidation has 

been shown to cause rapid intergranular crack growth [119].  

It is possible that a bulk hot spot competes with one in the surface volume of the 

same specimen, especially for surface treated specimens. For specimens without surface 

treatment, this scenario is negligibly improbable. Figure 6-14 shows a very rare scenario 

in which a large internal inclusion has been almost at par with the surface inclusion in a 

Ni-base superalloy specimen without surface treatment [165]. The material is a Ni-base 

superalloy, René 95, tested at elevated temperature in strain control. The final failure was 

still due to the surface inclusion.  
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Figure 6-14: Fracture surface demonstrating competing surface and internal initiation sites [165]. 

 

 

The previous paragraph addresses the weak competing effect of bulk versus 

surface hot spots within the SAME specimen. It differs from the more general 

probabilistic notion of bulk versus surface failure probability, which refers to the 

outcome of experiments on a number of specimens. In the latter context, the bulk failure 

initiation probability may far exceed that of surface failure initiation in the VHCF regime. 

The probability of surface fatigue crack initiation, i.e., the probability of having at least 

one fatigue hot spot in the surface region, is given by  

 1 ( 0) 1 t s
s

t

V V
p g k

V

Ψ
 
 
 

−
= − = = −  (6.9) 

Fatigue failure is expected to originate from bulk fatigue hot spots if and only if 

such hot spots are absent in the specimen surface region. The probability of bulk fatigue 
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crack initiation, i.e., the probability of having no fatigue hot spot in the surface region, is 

therefore given by 

 ( 0) t s
b

t

V V
p g k

V

Ψ
 
 
 

−
= = =  (6.10) 

Now, if at stress amplitudes 1aσ σ=  and 2aσ σ= , Ψ1 and Ψ2 number of fatigue 

hot spots can produce sufficient driving force for fatigue crack initiation, then 1 2σ σ>  

renders Ψ1 > Ψ2, and this in turn results in ( ) ( )1 2s sp pσ σ σ σ= > = , since 1t s

t

V V

V

−
< . 

In other words, as the stress amplitude decreases, so do the expected number of fatigue 

hot spots, Ψ, and the probability of having a hot spot in the surface relative to the bulk. 

The problem now is to predict the dependence of Ψ on loading conditions, which are 

specific to the material of interest.  

The methodology proposed in this thesis is appropriate for other advanced alloys, 

such as titanium alloys and clean steels, by recognition of similar competing mechanisms 

involving non-metallic particles, large grains, α cluster-defects, or phases that are 

particularly susceptible to fatigue crack formation. Distributed fatigue crack formation 

depends not only on microstructure but also on the applied loading/boundary conditions.  

Przybyla and McDowell [51] have recently proposed a new microstructure-

sensitive extreme value statistical framework. It couples the extreme value distributions 

of certain fatigue indicator parameters (FIPs), or response functions, to the correlated 

microstructure attributes that exist at the extreme value locations of these FIPs. By 

mathematically representing fatigue driving force parameters, or so-called FIPs, in the 
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space of basis functions used to represent distribution functions of microstructure 

attributes, this enables identification of hot spot regions that are above a FIP threshold.   

It should be noted that the model’s variables and parameters depend on the 

microstructure. Thus, the proposed framework needs to be calibrated to experimental 

fatigue life data for specific microstructures. The philosophy adopted here is that the 

formulation (and the simulations therein) should be calibrated to experimental data for 

selected loading conditions, thereafter providing the capability to assess the sensitivity of 

fatigue life predictions to variations of microstructure and loading conditions within their 

calibrated range.  
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6.5 Suggested physical mechanisms of surface initiation dependence on the stress 

amplitude in alloys with inclusions 

Since the variation of ps and pb with respect to the stress amplitude is assessed by 

studying the stress amplitude dependence of Ψ, several important physical mechanisms 

that can affect the dependence of Ψ on the stress amplitude are introduced in this section. 

References are made to fine grained microstructures of PM processed Ni-base 

superalloys, but these mechanisms can operate in other advanced metallic alloys with 

primary inclusions controlling fatigue failures. 

 

6.5.1 Inclusion-matrix interface separation 

The results of Chapter 4 suggest that as the stress amplitude decreases, a smaller 

number of inclusions may debond or crack; hence a smaller number of inclusions may 

produce enough driving force to initiate fatigue cracking in the surrounding matrix. As a 

result, Ψ decreases with the stress amplitude through the lower probability of inclusion-

matrix interface debonding and inclusion cracking. 

It should be noted that inclusion-matrix interface debonding is mainly due to the 

residual stresses resulting from prior processing. Most inclusions could be already 

debonded before the application of cyclic loading. Nevertheless, Even if a small 

percentage of inclusions debond during fatigue loading, this percentage decreases as the 

cyclic stress/strain amplitude decreases. Thus, this mechanism decreases the surface 

initiation probability. 
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6.5.2 Residual stress relaxation 

The results of Chapter 5 suggest that for a given R ratio and as the stress 

amplitude decreases, compressive residual stresses do not relax at some of the inclusions 

(that would otherwise relax at the higher stress amplitudes). These compressive residual 

stresses can effectively suppress fatigue crack initiation at some of the inclusions. 

Therefore, statistically speaking, Ψ decreases with decreases in the stress amplitude 

through retention of beneficial compressive residual stresses. Figure 6-15 shows 

experimental proof that the initial cyclic plastic strains generated at higher strain ranges 

and strain ratios apparently reduced the magnitude of shot peening compressive residual 

stresses sufficiently to promote surface fatigue crack initiation [129]. 

 

 

Surface

Surface SurfaceSurface

 

Figure 6-15: Fatigue failure origins of shot peened PM Udimet720 tested at 650 ◦C [129]. 
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6.5.3 Effect of proximity to the free surface  

The matrix ligament between a near surface inclusion and the specimen free 

surface experiences increased deformation when a far-field displacement is applied. At 

the continuum level, this is due to the reduced constraint on the deformation in this 

region. This effect can explain enhancement of fatigue crack initiation from surface or 

near surface inclusions in spite of existence of larger inclusions in the bulk.  

To illustrate this influence, finite element simulation results are briefly reported 

here for linear elastic partially debonded inclusions with radii R = 10 and 15 µm located 

near the free surface, as shown in Figure 6-16. Only one microstructure realization 

(Voronoi seed spatial distribution and grain orientation distribution) is examined. 

Inclusion depth is defined as the minimum distance of the inclusion edge from the 

surface. Contact between the inclusion and matrix in the debonded region is assumed to 

be frictionless.  

We use two-dimensional generalized plane strain (GPS) elements [49] (see 

Section 2.4.1), often referred to as 2.5D, and the fully 3D crystal plasticity material 

model (see Section 2.1.2). The crystal plasticity material model constants and 

microstructure parameters are listed in Table 3 and Table 4, respectively. Properties 

assigned for the fully isotropic elastic inclusion include Young’s modulus Ei = 400 GPa 

and Poisson’s ratio νi = 0.3. Quadratic triangular elements of type CPEG6M are used to 

mesh the FE model (see Section 2.1.2). The elastic properties for the far-field matrix 

region are Young's modulus, Em = 142 GPa, and Poisson's ratio, νm = 0.25 (see Section 

2.4.3). 
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The following boundary conditions are enforced; assuming the origin of the xyz 

coordinate system is at the center of the model: 

 

1. The traction free boundary condition is enforced for the entire length of the 

model’s right edge (x = L/2 and -L/2 < y < L/2).  

2. The x-symmetry boundary condition (ux = 0) is enforced for the entire length of 

the model’s left edge (x = -L/2 and -L/2 < y < L/2). 

3. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s bottom edge (y = -L/2 and - L/2 < x < L/2). 

4. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model. 

5. Cyclic uniaxial displacement uy= εyy ×L is applied to the entire length of the 

model’s top edge (y = L/2 and - L/2 < x < L/2) at the peak applied strain 

amplitude εyy = 0.0015, strain ratio Rε = -1, and uniform strain rate of 0.002 s-1.  
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Figure 6-16: FE model for simulations of partially debonded near-surface inclusions. Inclusion depth is 
defined as the minimum distance of the inclusion edge from the surface.  

 

 

The Fatemi-Socie 
FSP  parameter (c.f. Section 2.2) is calculated for the 3rd loading 

cycle. Figure 6-17 shows the variation of PFS parameter versus inclusion depth from the 

specimen’s free surface for partially debonded inclusions with radii R = 10 and 15 µm. 

As shown in Figure 6-17 for partially debonded inclusions and peak applied strain 

amplitude εyy = 0.0015 (Rε = -1), the 
FSP  parameter may increase substantially when the 

inclusion depth is smaller than its radius. The simulation-based weighted probabilistic 

construct developed in this thesis (described in Section 6.6) is capable of handling the 
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effects of proximity to the free surface. However, we do not include the free surface 

effect when we examine a case study in Chapter 7. 
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Figure 6-17: Nonlocal Fatemi-Socie PFS parameter around partially debonded inclusions versus inclusion 
depth for two inclusions with radii of 10 µm and 15 µm (Peak εyy = 0.15 % and Rε = -1). 
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6.5.4 Surface oxidation effects 

Among other factors, the environment may significantly influence the surface 

versus bulk fatigue crack initiation probabilities through either environmentally assisted 

fatigue crack growth at high strain amplitudes or through the formation of protective 

surface oxide layers at low strain amplitudes.  

Mechanically sound surface oxide scales can form at elevated temperatures due to 

the dynamic equilibrium between continuous microcracking and superimposed oxide-

healing processes [167]. It is possible that surface oxidation at elevated temperature 

retards crystallographic crack incubation at the surface, in which case cyclic strain 

localization becomes dominant in favorably-oriented, large subsurface grains. This agrees 

with the observations by Huron and Roth [123], who noted the decreased relative 

frequency of crystallographic surface fatigue crack formation in the same material at the 

intermediate temperature of 650°C. 

In this thesis, we do not intend to address the mechanisms of surface oxide 

formation and the detailed analysis of its impact on Ψ. As such, we consider it sufficient 

to qualitatively discuss a possible scenario in which a sound surface oxide scale can 

reduce Ψ. Due to addition of alloying elements such as chromium, aluminum, and 

titanium, most Ni-base superalloys have chromia or alumina rich surface oxides, an 

example of which is shown in the SEM micrograph of Figure 6-18.  
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Figure 6-18:  SEM micrograph of Haynes 242 alloy cross-section after 60 min of exposure at 900 °C, 
showing the presence of a chromia oxide layer on the specimen surface [168]. 
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Figure 6-19:  Fatemi-Socie parameter PFS vs. normalized inclusion depth from the free surface. (Rε = -1, 
εmax=0.15%). Surface oxide layer is 2 µm thick. 
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Assisted by increased plasticity at elevated temperatures [169], the oxide layer 

may endure the applied stress in the VHCF regime. In addition to protecting the 

underlying metal from environmental corrosion, a surface oxide layer can alter the 

fatigue crack initiation potency of near surface primary inclusions. To illustrate this, the 

nonlocal Fatemi-Socie parameter PFS (see Section 2.2.2) for cylindrical inclusions located 

at various depths from the free surface is shown in Figure 6-19 with and without a 2 µm 

thick intact isotropic linear elastic surface oxide layer. The elastic modulus and Poisson’s 

ratio of the surface oxide layer are assumed to be equal to E = 400 GPa and ν = 0.2, 

respectively, in these simulations [169]. As seen in Figure 6-19, the surface oxide layer 

can affect a pronounced decrease in initiation potency of near surface inclusions. Thus, Ψ 

can decrease when the oxide layer is less likely to fracture at low stress amplitudes.  

 

 

Figure 6-20: Surface initiation probability vs. strain [121]. 
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Figure 6-20 is constructed from experimental fatigue data of N18 PM Ni-base 

superalloy, reported by de Bussac [121]; it shows the decrease in surface crack initiation 

probability (increase in bulk initiation probability) as the strain level decreases for tests 

performed at a constant temperature. For a given strain level, the surface initiation 

probability decreases for increasing temperature.  

Cashman [126] also reported enhanced probability of surface initiation at the 

higher temperature of 1000°F, compared to the results at 750°F; this is shown in Figure 

6-21 by the binary logistic fit [161] to the experimental data of PM René 95. The ordinate 

is identified as pseudostress amplitude, defined as ( )2E ε∆ .  

In a recent paper [19], Cashman concludes that the “Competing Modes” effect 

(i.e., the occurrence of surface and bulk failure among specimens tested under the same 

conditions) is temperature dependent because of the environmental contribution. They 

found it puzzling that surface fatigue crack initiation might diminish at higher 

temperatures. Our hypothesis regarding the formation of protective surface oxide layers 

can explain this anomalous effect as an enhancement of surface oxidation caused by 

increased temperature. 
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Figure 6-21: Surface initiation probability vs. pseudostress amplitude and temperature [126]. 

 

Oxide scale growth has complex effects on the net ratio of probabilities of surface 

to bulk fatigue crack initiation. For instance, the fatigue crack initiation potency, as 

measured by the PFS parameter, of a near surface inclusion decreases as the oxide layer 

grows, as shown in Figure 6-22. However, the mean size of the pores that form in the 

oxide scale increases during scale growth (see Figure 6-23), and so does the probability 

of scale failure (because stress intensity at the notch root of the pore increases as the pore 

size increases). 
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Figure 6-22: Nonlocal PFS parameter vs. oxide layer thickness; symbols are computed data points. 

 

 

Figure 6-23: Average pore size in the oxide scale vs. oxidation time [170]. Oxide scale is formed on Ni99.6 
after oxidation at 900°C in air. 

 

 

The oxidation behavior of metallic alloys is complex in its own right due to the 

interplay between heterogeneous oxide growth, oxide interaction, oxide volatilization, 
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and spalling. The properties of the surface oxide layer depend on many factors, such as 

stress amplitude, loading history, environment, and oxidation time and temperature to 

name a few. Unfortunately, there are relatively few techniques available for measuring 

the mechanical properties of surface oxides, and the properties of the surface oxides 

formed are invariably different from those of bulk oxides. The surface oxide layer also 

alters the dislocation activity of the near surface grains, as dislocation motion and 

formation of extrusions and intrusions are resisted by this layer.  

Therefore, detailed study of the influence of an intact protective surface layer is 

essential, as it will enable more realistic assessment of the contribution that such a layer 

makes to the surface to bulk transition of mean fatigue behavior. These effects are 

beyond the scope of this thesis. 
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6.6 The expected number of fatigue-critical inclusions and pores 

Assuming bimodal fatigue crack initiation from inclusions and pores, the 

expected number of fatigue hot spots can be expressed as 

 poreinclusion
Ψ = Ψ + Ψ  (6.11) 

where Ψinclusion and Ψpore are the numbers of inclusion and pore hot spots in a given 

volume, respectively, determined as 

                      i = inclusion or pore i i in PσΨ =  (6.12) 

Here, ni, is the expected number of inclusions or pores, determined as 

                       i = inclusion or porei i Vn ρ=  (6.13) 

where V is the specimen material volume having a uniform stress state and ρi is the 

inclusion/pore density per unit volume.  

The stress amplitude-dependent variable iPσ  is the probability that an arbitrary 

inclusion (or pore) is a fatigue hot spot, i.e., it can produce sufficient driving force to 

incubate a fatigue crack (see Section 6.4.1). For an arbitrary inclusion, the general form 

can be expressed via summing a series of weighted probabilities as 

 ( ) ( ) ( )int | , , , ,int
int

   type inclusion
R erface R type R type erface

erface
inclusion

type

P P C dRP σ
σ σ

        
= ∑ ∫∑  (6.14) 

where the summations are performed over all possible inclusion types and inclusion-

matrix interfaces. Generally, inclusion types can refer to such attributes as the inclusion 
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mechanical properties (i.e., soft versus hard or elastic versus elastoplastic) or inclusion 

morphological features (i.e., round versus elongated).  

The variable type
RP  refers to the probability distribution of size for an inclusion of 

certain type. The variable ( )int | , ,erface R type
P σ  is the conditional probability of the inclusion 

interface for an inclusion of certain size and type. For instance, we examined the interface 

traction in Chapter 4 as one way of characterizing the probability of inclusion-matrix 

interface debonding for cylindrical ceramic inclusions. Consequently, we derived an 

expression for 
debond

Pω  in Eq. 4.6.   

The variable ( ) ( ), ,int
inclusion

R type erface
C σ  is the conditional probability that this inclusion 

of certain size, type, and interface characteristics is a fatigue hot spot at a given stress 

amplitude. For an arbitrary pore, iPσ  can be more simply defined as 

 ( )  pore pore
pore R RP P C dRσ σ= ∫  (6.15) 

where R is the inclusion size (radius), pore
RP  refers to the size distribution of pores and 

( )pore
RC σ  is the conditional probability that it is a fatigue hot spot at a given stress 

amplitude. The integrations in Eq. 6.14 and Eq. 6.15 are performed over the 

inclusion/pore size distribution.  

In Chapter 7, we use an extreme value distribution of the simulated Fatemi-Socie 

parameter to characterize the conditional probability ( ) ( ), ,int
inclusion

R type erface
C σ  for partially 

debonded ceramic inclusions in Ni-base superalloy, IN100.  
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6.7 Summary 

The relative paucity of inclusions in PM alloys, compared to their cast and 

wrought counterparts leads to higher mean fatigue lives but broader distribution of 

fatigue lives. Consequently, inclusion-initiated failure has a greater impact on variability 

of the PM processed alloy fatigue life due to its relative cleanness. In fact, PM processing 

results in such a rare occurrence of relatively large defects that conventional experimental 

characterization with a limited number of small-volume fatigue test specimens does not 

adequately sample inclusion-initiated damage to characterize the surface initiation 

probabilities. 

We introduced a simulation-based methodology to characterize the surface 

initiation probabilities, with an emphasis on the early stages of HCF and VHCF crack 

initiation mechanisms from inclusions and pores. We calculated the probability of fatigue 

crack initiation in the surface region by computing the expected number of critical fatigue 

hot spots in this region. This is done by considering the fatigue crack initiation potency of 

inclusions/pores for a given loading ratio and stress amplitude. In Chapter 7, we will 

examine a case study where we assess the fatigue crack initiation potency of partially 

debonded ceramic inclusions in IN100 by calculating FIPs using the finite element crystal 

plasticity simulations. 

More research needs to be done to incorporate the joint extreme value statistics of 

key relevant microstructure attributes into analytical life-prediction methodologies that 

quantify their coupled effects on fatigue life in the HCF and VHCF regimes. These 

effects depend on applied stress amplitude, mean stress and stress state. One must 
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characterize the degree of dependence of these effects on the local stress state to 

realistically assess the surface to bulk transition of HCF crack initiation sites. 
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7 Case study: Surface initiation probability in Ni-base superalloy, 

IN100 

7.1 Approach 

In this case study, we examine the surface initiation probability in uniaxial strain-

controlled cyclic loading simulations of round smooth specimens of the fine grained PM 

processed Ni-base superalloy IN100. We assume that partially debonded alumina 

inclusions are the main source of fatigue crack initiation (formation and early growth). 

This assumption is reasonable because: 

 

• Pores are not present in the PM processed IN100 parts. Ceramic inclusions, on the 

other hand, are a by-product of the PM processing technique (see Section 3.1). 

• We concluded in Chapter 3 that partially debonded inclusions are more critical 

than halved and intact, perfectly bonded inclusions. 

 

Accordingly, the expected number of fatigue hot spots at an applied strain amplitude 

yy ysω ε ε=  for (Rε = -1) is: 

    inclusion inclusion inclusion inclusionn P V Pω ωρΨ = Ψ = =  (7.1) 

where V  is the volume of the specimen gage section having a uniform stress state and ρ  

is the inclusion density. Also, Eq. 6.14 reduces to 

 , ,   R R
R debond debondedinclusion

P p C dRP ω ωω = ∫  (7.2) 
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where R is the inclusion size (radius) and 
RP  refers to the size distribution of inclusions. 

The variable ,R
debondp ω  is the probability that an inclusion of radius R debonds under the 

applied strain amplitude ω. According to Chapter 4, it can be calculated as 

  , * )Pr(R
int intdebondp T Tω >=  (7.3) 

and 

 * *)Pr( 1 ( )int int intRT T c Tω> = −  (7.4) 

Here, *( )intRc Tω  is the cumulative probability that an inclusion with radius R results 

in an interface separation indicator parameter smaller than a critical threshold *
intT  under 

the applied strain amplitude ω. The interface separation indicator parameter is Tint for this 

case study (see Section 2.2.4). We obtained *
intT  by solving ( )0.8 * 0.05intC Tω= =  based on 

the assumption that the nominal remote applied strain amplitude of ω = 0.8 is high 

enough that 95% of inclusions would debond. Using the generalized extreme value 

(GEV) distribution (see Section 2.3), the probability of exceedance can be expressed as 

 

1

*
* ) 1 exp 1Pr(

Tint

int

int

int

T

T
T

int
int int

T
T T

ξ
µ

ξ
σ

−
   
           

−
> = − − +  (7.5) 

where 
intTµ , and 

intTσ , and 
intTξ  are the location, scale, and shape parameters of the GEV 

distribution, calibrated to the extreme value Tint distribution for the particular inclusion 

radius and the applied strain amplitude. 
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Similarly, the variable ,R

debondedC
ω  is defined as the conditional probability that a 

debonded inclusion with radius R is a fatigue hot spot at a given applied strain amplitude. 

This conditional probability can be expressed as the probability that the PFS parameter, 

the underlying FIP for this case study, exceeds a material-specific threshold, *
FSP .  

 , * )Pr(R

debonded FS FSC P P
ω = >  (7.6) 

Using the GEV distribution, the probability of exceedance can be expressed as 

 

1
*

* ) 1 exp 1Pr(
FS

FS FS
FS FS FS

FS

P
P P

ξµ
ξ

σ

−

   − 
> = − − +   

    
 (7.7) 

where 
FSµ , and 

FSσ , and 
FSξ  are the location, scale, and shape parameters of the GEV 

distribution, calibrated to the extreme value PFS distribution for the particular inclusion 

radius and the applied strain amplitude. In the next Section, we use 2.5D crystal plasticity 

FE analysis to characterize the parameters of their GEV distributions.  
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7.2 Finite element model 

We use two-dimensional generalized plane strain (GPS) elements [49] (see 

Section 2.4.1), often referred to as 2.5D, and the fully 3D crystal plasticity material 

model. The crystal plasticity model is calibrated to experimental data at T = 650°C by 

Shenoy et al. [50]. The model constants and microstructure parameters are listed in Table 

3 and Table 4, respectively. Properties assigned for the fully isotropic elastic inclusion 

include Young’s modulus Ei = 400 GPa and Poisson’s ratio νi = 0.3.  

Quadratic triangular elements of type CPEG6M are used to mesh the FE model 

(see Section 2.1.2). The full model, shown in Figure 2-7, is utilized to mitigate any 

boundary effects. We utilize the Tint parameter (see Section 2.2.4) distributions for the 

intact, perfectly bonded inclusions simulated in Section 4.3 to estimate ,R
debondp ω . For 

calculating ,R

debondedC
ω , partially debonded inclusions having R = 4, 6, 8, and 10 µm are 

simulated, with L = 60 µm. In simulations with partially debonded inclusions, contact 

between the interacting surfaces is assumed to be frictionless. The following boundary 

conditions are enforced; assuming the origin of the xyz coordinate system is at the center 

of the inclusion/pore: 

 

1. The traction free boundary condition is enforced for the entire length of the 

model’s left and right edges (x = -L/2, L/2 and -L/2 < y < L/2).  

2. The y-symmetry boundary condition (uy = 0) is enforced for the entire length of 

the model’s bottom edge (y = -L/2 and - L/2 < x < L/2). 

3. The z-symmetry boundary condition (uz = 0) is enforced to the reference point of 

the GPS model. 
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4. Cyclic uniaxial displacement uy= εyy ×L is applied to the entire length of the 

model’s top edge (y = L/2 and - L/2 < x < L/2) at the applied strain amplitudes εyy 

= 0.5, 0.6, 0.7, and 0.8 εys (εys = 0.7 % (c.f. 2.4.3)), strain ratio Rε = -1, and 

uniform strain rate of 0.002 s-1.  

 

A total of 20 polycrystalline orientation distributions are simulated for each 

applied strain amplitude. The Voronoi tessellation diagram is held constant across these 

realizations and only grain orientations vary. A fine mesh, with element size equal to 0.5 

µm, is used for all grains that are within R/4 distance from the inclusion, because the 

deformation is mainly localized in this region. Beyond d = R/4, the element size increases 

linearly with increasing distance from the inclusion, in order to reduce the computation 

time.  

Upon completion of the 3rd cycle, the modified Fatemi-Socie parameter 
FSP  is 

calculated as the Fatigue Indicator Parameter (see Section 2.2.2) for each inclusion 

radius, polycrystalline orientation distribution, and applied strain amplitude. The 

semicircular nonlocal averaging region is taken to be of a constant size r = 3 µm (about 

5% of the largest simulated inclusion area, R = 10 µm) in order to account for the size 

effects.  This averaging region is located at the slip-intensified region of the inclusion 

notch root, as shown in Figure 2-7. 
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7.3 Model calibration 

The GEV distribution (see Section 2.3) is fitted to Tint distributions for the 20 

polycrystalline orientation distributions simulated in Section 2.2.4. Table 12 lists the 

parameters of the fitted GEV distributions for the range of simulated inclusion radii and 

applied strain amplitudes for intact, perfectly bonded inclusions. Here, µ is the location 

parameter, 0σ >  is the scale parameter and ξ is the shape parameter.  

 

Table 12: Parameters of the GEV fits to the Tint for the intact, perfectly bonded inclusions.  

 

Remote applied strain amplitude (εyy/εys); Rε = -1. 

0.5 0.6 0.7 0.8 

In
cl

us
io

n 
R

ad
iu

s 
(µ

m
)  

µint σint ξint µint σint ξint µint σint ξint µint σint ξint 

4 520.48 57.43 
-

0.4428 
624.48 68.11 

-
0.4442 

728.73 79.44 
-

0.4445 
833.16 90.34 

-
0.4511 

6 727.32 45.64 
-

0.4075 
872.17 54.99 

-
0.4119 

1017.17 63.92 
-

0.4137 
1155.92 67.50 

-
0.4491 

8 744.34 43.91 
-

0.0802 
892.78 53.10 

-
0.0935 

1041.09 61.08 
-

0.1106 
1175.04 62.95 

-
0.1603 

10 748.99 31.95 0.2384 898.71 38.28 0.2401 1047.65 43.66 0.2331 1183.82 43.67 0.1830 

 

 

Furthermore, the GEV distribution is fitted to the extreme value 
FSP  parameter 

around partially debonded inclusions for the 20 simulated polycrystalline orientation 

distributions. Table 13 lists the parameters of the fitted GEV distributions for the range of 

simulated inclusion radii and applied strain amplitudes. 
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Table 13: Parameters of the GEV fits to the PFS for the partially debonded inclusions. 

 

Remote applied strain amplitude (εyy/εys); Rε = -1. 

0.5 0.6 0.7 0.8 
In

cl
us

io
n 

R
ad

iu
s 

(µ
m

)  
µFS σFS ξFS µFS σFS ξFS µFS σFS ξFS µFS σFS ξFS 

4 5.79 
× 10-5 

1.99 × 
10-5 

0.2029 14.78 
× 10-5 

6.32 × 
10-5 

-
0.0963 

36.41× 
10-5 

12.03 
× 10-5 

-
0.1530 

76.30× 
10-5 

22.22 
× 10-5 

-
0.1513 

6 18.51 
× 10-5 

5.57 × 
10-5 

0.0702 47.13 
× 10-5 

12.52 
× 10-5 

-
0.1557 

102.26 
× 10-5 

24.69 
× 10-5 

-
0.2355 

208.17 
× 10-5 

41.85 
× 10-5 

-
0.2936 

8 31.98 
× 10-5 

9.38 × 
10-5 

-
0.0966 

79.92 
× 10-5 

15.17 
× 10-5 

0.0691 169.52 
× 10-5 

40.08 
× 10-5 

-
0.1530 

315.37 
× 10-5 

66.75 
× 10-5 

-
0.0449 

10 43.0 
× 10-5 

15.3 × 
10-5 

-
0.1911 

98.4 × 
10-5 

29 × 
10-5 

-
0.1189 

198.8 
× 10-5 

46.5 × 
10-5 

-
0.0122 

412.0 
× 10-5 

83.3 × 
10-5 

-
0.1736 

 

 

Figures 7-1 and 7-2 show the variation of the fitted PFS GEV distribution 

parameters versus the applied uniaxial strain amplitude (Rε = -1) and inclusion size 

(radius). As shown in Figure 7-1, the location and scale parameters of the fitted PFS GEV 

distributions increase exponentially as a function of the applied strain amplitude, ω. In 

contrast, both parameters increase in approximate linear manner as a function of 

inclusion radius for the simulated applied strain amplitudes, as shown in Figure 7-2.  
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Figure 7-1: Parameters of the PFS GEV distribution fits vs. the applied strain amplitude for partially 
debonded inclusions (εys = 0.7 %; Rε = -1). 
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Figure 7-2: Parameters of the PFS GEV distribution fits vs. the inclusion radius for partially debonded 
inclusions (εys = 0.7 %; Rε = -1). 
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Figure 7-3 shows the bivariate dependence of the PFS GEV distribution 

parameters on the applied strain amplitude and inclusion size (radius) for Rε = -1. 
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Figure 7-3: The dependence of the parameters of the PFS GEV distribution fits on the applied strain 
amplitude and inclusion radius for partially debonded inclusions (εys = 0.7 %; Rε = -1). 
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For the intact, perfectly bonded inclusion, Figure 7-4 shows the bivariate 

dependence of the Tint GEV distribution parameters on the applied strain amplitude and 

inclusion size (radius) for Rε = -1. Figure 7-4 indicates that the scale parameter decreases 

as R (inclusion radius) increases. The scale parameter value determines the statistical 

dispersion of the data. If it is large, then the distribution will be more spread out; if it is 

small then the distribution will be more concentrated. As R increases, the dispersion of 

the extreme value Tint data decreases because the number of sampled grains for the 

calculation of the maximum value of Tint increases.  

In contrast, the scale parameter for the fitted PFS GEV distribution increases as R 

(inclusion radius) increases (shown in Figure 7-2). This is because the nonlocal averaging 

region for the calculation of the PFS parameter is taken to be of a constant size r = 3 µm 

(about 5% of the largest simulated inclusion area, R = 10 µm). As such, increasing the 

inclusion radius increases the stress intensity in this averaging region and magnifies the 

variability in the PFS distribution for the simulated matrix realizations (grain orientation 

distributions). 
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Figure 7-4: The dependence of the parameters of the Tint GEV distribution fits on the applied strain 
amplitude and inclusion radius for the intact, perfectly bonded inclusions (εys = 0.7 %; Rε = -1). 
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The multivariable Taylor series expansion is truncated to approximate the GEV 

distribution parameters for intermediate applied strain amplitudes and inclusion radii as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* * * *

* * * *

* * * *

, ,

, ,

, ,

FS FS
FS FS

FS FS
FS FS

FS FS
FS FS

R R R R
R

R R R R
R

R R R R
R

µ µ
µ ω µ ω ω ω

ω
σ σ

σ ω σ ω ω ω
ω

ξ ξ
ξ ω ξ ω ω ω

ω

∂ ∂
≈ + − + −

∂ ∂
∂ ∂

≈ + − + −
∂ ∂

∂ ∂
≈ + − + −

∂ ∂

 (7.8) 

where 
FSµ , 

FSσ , and 
FSξ  are the location, scale, and shape parameters, respectively, and 

yy ysE Eω =  denotes the applied strain amplitude. Similarly, for the Tint parameter: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

int int

int int

int int

int int

int int

int int

* * * *

* * * *

* * * *

, ,

, ,

, ,

T T

T T

T T

T T

T T

T T

R R R R
R

R R R R
R

R R R R
R

µ µ
µ ω µ ω ω ω

ω
σ σ

σ ω σ ω ω ω
ω

ξ ξ
ξ ω ξ ω ω ω

ω

∂ ∂
≈ + − + −

∂ ∂
∂ ∂

≈ + − + −
∂ ∂

∂ ∂
≈ + − + −

∂ ∂

 (7.9) 

For the nearest point having *R R=  and *ω ω= , these GEV distribution 

parameters are listed in Tables 12 and 13, respectively, for the Tint and PFS parameters. 

Upon substituting Eq. 7.3 - Eq. 7.9 in Eq. 7.2, we numerically integrate Eq. 7.2 over the 

inclusions size distribution to calculate
inclusion

Pω . Subsequently, the variable 
inclusion

Pω  is 

substituted in Eq. 7.1 to calculate Ψ  which in turn is substituted in Eq. 6.9 to calculate 

the surface initiation probability. These equations are summarized in Table 14. 
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Table 14: Equations for calculating the surface initiation probability. 
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R
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ξ ω ξ ω ω ω

ω

µ
µ ω µ ω
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R
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R
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− + − ∂ ∂
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∂ ∂

≈ + − + −
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7.4 Study of the ps dependence on the specimen size 

To study the effects of specimen size on the surface initiation probability, virtual 

specimens are assumed to have a cylindrical gage section 15.2 mm long, similar to the 

specimens in [14], and gage section radii equal to 5, 10, and 15 mm. Figure 7-5 shows the 

variation of ps versus the applied strain amplitude for these specimens. The intersection 

of the horizontal dashed line, having ps = 50%, with plots of ps marks the surface to bulk 

transition applied strain amplitude (Rε = -1). This transition occurs at lower applied strain 

amplitudes when specimen size increases.  

It is expected that larger specimens have shorter HCF lives. Our model simulates 

such specimen size effects. As shown in Figure 7-5, larger specimens have a higher 

surface to bulk HCF failure initiation probability at all applied strain amplitudes. This 

higher surface initiation probability corresponds to shorter fatigue lives (see Section 6.1). 

Increasing the specimen size increases the probability of bulk defects. The trend 

shown in Figure 7-5 of increasing surface probability with specimen size does not 

contradict this fact. This trend results from the weakest-link approach, stipulating that a 

surface hot spot prevails over any internal hot spot, due to the higher growth rate of 

surface fatigue cracks (see Section 6.4.3). It is assumed that even one fatigue hot spot 

present in the surface region can cause surface originated fatigue failure.  

  



222 

 

 

 

 

 

ω

0.50 0.55 0.60 0.65 0.70 0.75 0.80

p
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Spec. Radius = 5 mm

Spec. Radius = 10 mm

Spec. Radius = 15 mm

ps = 50%

Surface to bulk 

transition is delayed as 

the specimen size 

increases.

 

Figure 7-5: ps dependence on the specimen size. 
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7.5 Study of the ps dependence on the inclusion population attributes 

Attributes of the inclusion population such as number density, inclusion radius 

distribution, and inclusion-matrix interface strength can greatly alter the surface initiation 

probability. If we assume that the second-order inclusion-inclusion interaction effects are 

negligible, inclusion number density effects are expected to be similar to those of 

specimen size, discusses in Section 7.4. This is because, similar to enlarging the 

specimen, increasing the inclusion number density raises the expected number of fatigue 

hot spots, Ψ, thus enhancing the likelihood of surface failure initiation (see Section 

6.4.3).  

In order to verify our model’s prediction of inclusion number density effects, 

three values for the inclusion volume density equal to ρ = 1, 2, and 3 (×10-9) are 

examined in this case study. Figure 7-6 shows the variation of ps versus these simulated 

inclusion densities. As seen in Figure 7-6, the surface initiation probability increases with 

increases in the inclusion number density for all applied strain amplitudes. 
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Figure 7-6: ps dependence on the inclusion density. 

  

 

To examine the dependence of ps on the inclusion size (radius) distribution, we 

consider four different probability distribution functions (PDFs), shown in Figure 7-7, in 

order to represent the inclusion population. These normal PDFs share a common scale 

parameter σR = 3 but have different mean values equal to µR = 4, 6, 8, and 10 µm. 

Inclusion radius varies from 4 µm to 10 µm in all simulated inclusion populations. 
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Figure 7-7: The simulated inclusion radius distributions. 

 

 

We assume that each specimen contains an average of 20 inclusions. Therefore, 

inclusion volume density increases with increasing µR. We previously estimated T*
int by 

solving C
ω=0.8

(T
*

int) = 0.05 based on the assumption that the applied uniaxial strain 

amplitude of ω = 0.8 is high enough that, as a result, 95% of all inclusions would likely 

debond. This T*
int estimate was obtained for µR = 4 µm. Since Cω

(Tint) depends on the 

inclusion radius distribution (see Eq. 4.1), Cω=0.8
(T

*
int) is expected to be different than 5% 

for µR = 6, 8, and 10 µm.  

Figure 7-8 shows the CDFs of the extreme value Tint parameter at ω = 0.8 and the 

C
ω=0.8

(T
*

int) estimates. As seen in these plots at ω = 0.8, the probability of inclusion 
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debonding at a constant applied strain amplitude, calculated as (1 - C
ω=0.8

(T
*
int)), 

increases when the mean inclusion radius (i.e. µR) increases.  
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Figure 7-8: CDFs of extreme value Tint showing the variation of Cω=0.8(T*
int) vs. the mean inclusion radius. 
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Similarly, we construct the CDFs of the extreme value PFS parameter at ω = 0.8 

(i.e., Cω=0.8
(PFS)) and plot the variation of Cω=0.8

(P
*

FS) versus the mean inclusion radius 

in Figure 7-9.  
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Figure 7-9: CDFs of extreme value PFS showing the variation of Cω=0.8
(P

*
FS) vs. the mean inclusion radius. 

 

 

As shown in Figure 7-10, alloys with smaller inclusions have a lower surface 

initiation probability. This greater tendency towards bulk initiation means that the surface 

to bulk transition occurs at higher applied uniaxial strain amplitudes. Since bulk initiation 

corresponds to longer fatigue lives, decreasing the mean inclusion radius is expected to 

enhance the HCF life expectancy of the material.  
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Figure 7-10: ps dependence on µR. 

 

 

In order to study the effects of inclusion-matrix interface strength, we compare 

the trends of ps versus ω for four different values of T*
int. Absent direct experimental data 

regarding the interface bonding properties, T
*

int can be indirectly approximated by 

solving Cω=a
(T

*
int) = 1 - b for known values of inclusion-matrix interface debonding, b, at 

the applied uniaxial strain amplitude of ω = a. 

Let us suppose that the probability of inclusion-matrix interface debonding at ω = 

0.8 reduces from 95% to 89%, 86%, and 80% as the interface bonding is increasingly 

strengthened. Under these conditions, as illustrated in Figure 7-11, T
*

int is obtained by 

solving Cω=0.8
(T

*
int) = 1 – b and tabulated in Table 15. 
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Table 15: T*
int approximated from known inclusion debonding probabilities. 

ω 
b T*

int (MPa) 

0.8 
95%  755.3 

0.8 
89% 805.8 

0.8 
59% 997.9 

0.8 
50% 1113.3 
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Figure 7-11: Calculating T*
int from inclusion debonding probabilities. 
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Figure 7-12 shows the trends of ps versus ω for four different values of T
*

int. 

Improving the inclusion-matrix bonding, to the extent that instead of 95%, only 50% of 

all inclusions debond at ω = 0.8, can significantly reduce the surface initiation 

probability at all applied uniaxial strain amplitudes. This greater tendency towards bulk 

initiation translates into enhancements in the HCF life expectancy of the material.  
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Figure 7-12: ps dependence on T*
int. 
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7.6 Summary 

In Section 6.2, we discussed the significance of surface initiation probabilities for 

improving the design for very low probability of failure. We explained that the B0.1 

estimate (1 in 1000 probability of failure) is currently obtained by extrapolating the 

cumulative surface initiation probability distribution, and we showed that this is done by 

solving cs(Nf) = 0.001.  

However in doing so, an overly conservative B0.1 estimate is obtained, as the 

contribution of the bulk initiation probability is not accounted for in the existing 

approaches. We argued that a considerable improvement to the B0.1 estimate can be 

obtained by accounting for the fact that for any surface initiation event, there occur pb/ps 

bulk initiation events; thus we suggested calculating Nf by solving cs(Nf) = 0.001/ps. 

As a case study, we assessed the surface initiation probabilities for virtual 

cylindrical fatigue specimens, emphasizing the early stage crack initiation mechanisms 

from partially debonded inclusions in HCF and VHCF. We computed the expected 

number of fatigue critical inclusions by using finite element crystal plasticity simulations 

to calculate the critical plane fatigue indicator parameter PFS around the inclusions.  

By virtue of microstructure scale simulations, grain-level microplasticity is 

incorporated in calculations of the underlying fatigue indicator parameter. Therefore, 

important physical mechanisms that control the HCF response of the material are 

accounted for in an integrated approach that also accounts for the multiaxial state of local 

stresses. 

For the case study, we verified our model’s prediction of surface initiation 

probability for specimens having different gage radii as well as microstructures having 
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different inclusion-related attributes such as inclusion density, inclusion radius 

distribution, and inclusion-matrix interface strength. The inherent idealizations of our 

computational approach, as well as our incomplete knowledge of mechanisms that 

conspire to initiate a fatigue crack, prevent us from confidently calculating the surface 

initiation probability. However, our philosophy is that such idealized simulations shed 

light on the dependence of surface initiation probability on the specimen size, 

microstructure attributes, and loading conditions. These simulations help to delineate the 

trends and compare scenarios, supporting decisions in materials design and 

development/improvement. 
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8 Finite element simulation of shielding/intensification effects of 

primary inclusion clusters in high strength steels 

8.1 Introduction 

Casting and mechanical alloying processes for advanced metallic alloys often 

introduce undesirable non-metallic inclusions that are considerably larger than the mean 

grain size [9, 78, 171, 172]. These inclusions often fracture into smaller inclusions during 

primary deformation processing or manufacturing, leading to inclusion stringers or 

clusters, as shown in Figure 8-1. These clusters are high probability sites of fatigue 

failure origination [21]. The mechanisms of crack nucleation and early growth from 

inclusions involve either cracking of the inclusion or debonding of the inclusion/matrix 

interface, concentrating cyclic plastic shear strain in the surrounding matrix [173-177]. 

 

 

 

Figure 8-1: Backscatter SEM image of Al2O3 (top) and La2O2S (bottom) inclusion clusters [21]. 
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Due to the greater volume of application of high strength steels than of Ni-base 

superalloys, more research studies have examined the critical role of non-metallic 

inclusions in these alloys [4-6, 9, 10, 21, 94, 95, 173, 175, 176, 178-182]. Second phase 

particles have often been reported to serve as crack nuclei in different grades of steel [21, 

173, 175, 178, 181, 183].  

Cyclic bending experiments [21] on shot peened Ferrium® C61 revealed that 

minimum fatigue strength is controlled by subsurface fatigue crack formation at inclusion 

clusters, still in the compressive residual stress field. Alumina (Al2O3) and lanthanum 

oxy-sulfide (La2O2S) inclusion clusters were observed to originate fatigue cracks. Both 

inclusion types appeared in clusters of individual particles, each between 1 and 10 µm in 

diameter, aligned along the hot working direction of the billets from which the gears are 

manufactured. Figure 8-1 shows SEM micrographs of both classes of inclusions, as seen 

on the tooth fracture surfaces, as well as the corresponding mating fracture surfaces of the 

failed spur gear.  

The cluster morphology is somewhat different between Al2O3 and La2O2S classes. 

Al2O3 clusters are generally composed of fewer individual inclusion particles tightly 

concentrated along a single line. In contrast, La2O2S clusters are composed of numerous 

particles and have a much larger cluster width. The overall size of the inclusion clusters is 

not significantly different for Al2O3 and La2O2S inclusions, but the nature of the 

individual particles within them does show significant differences. La2O2S particles 

appear on both mating fracture surfaces, with individual particles primarily de-cohering 

from the opposing fracture surface, leaving behind a concavity. Some single particles 
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show signs of fracture, such as the annotated particle 4 in Figure 8-1. Al2O3 particles, in 

contrast, do not show discernable signs of particle fracture.  

Prasannavenkatesan et al. [78, 149, 182] developed a computational framework 

that considered the gradients from the surface of residual stress distribution, bending 

stress, and carburized material properties. They performed three-dimensional FE 

simulations to parametrically explore the fatigue crack formation potency at subsurface 

primary inclusions in carburized and shot peened martensitic gear steels including 

Ferrium® C61. They conducted systematic parametric studies to investigate the spatial 

interaction of inclusions in order to frame a method for estimating the critical inclusion 

spacing for minimal interaction in fatigue. They calculated two FIPs, namely the nonlocal 

average maximum shear plastic strain range, 
*

,maxpγ∆  (cf. 2.2.1), and the Fatemi-Socie (cf. 

2.2.2) parameters around idealized (i.e., ellipsoidal) inclusions. They predicted a strong 

propensity for crack formation at subsurface depths (i.e., ranging from 75 µm to 300 µm 

below the surface) for both isolated inclusions and for inclusion clusters. The simulation 

predictions are consistent with the cyclic bending experimental data of [21].  

In the HCF regime, crack nucleation and early stages of microstructurally small 

crack (MSC) growth within the inclusion cluster consume most of the total fatigue life 

and hence control the inherent scatter in the HCF life [6, 9, 11, 171, 179, 184]. As 

inclusion clustering is evident in Ferrium® C61, it is of prime importance to discern the 

relative short range shielding/enhancement effects of the neighboring inclusion on the 

fatigue crack formation potency.  

The intensification/shielding effect of an elastic inclusion on the range of stress 

intensity factor of an adjacent crack has also been investigated [185-188]. However, it is 
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important to define the interaction effect of a neighboring inclusion on the formation and 

early growth of a fatigue crack at non-metallic, partially debonded inclusions in metals. 

Though research on this problem is lacking in the literature, such valuable understanding 

will contribute to the design of fatigue-resistant microstructures and will enhance the 

methods and processes by which one can improve the fatigue performance. 

This Chapter investigates the way a neighboring inclusion causes changes in the 

high cycle fatigue (HCF) crack nucleation potency of non-metallic primary inclusions in 

Ferrium® C61 [22] martensitic gear steel. This investigation is conducted using two- and 

three- dimensional elasto-plastic finite element (FE) analyses. Fatigue Indicator 

Parameters (FIPs) are computed in the proximity of the inclusion and are used to compare 

the crack nucleation potency of various scenarios.  

FE simulations suggest significant intensification of plastic shear deformation, 

and hence higher FIPs, when the inclusion pair is aligned perpendicular to the uniaxial 

stress direction. Relative to the reference case with no neighboring inclusion, FIPs 

decrease considerably when the inclusion pair aligns with the applied loading direction. 

These findings shed light on the anisotropic HCF response of alloys whose 

primary inclusions have been arranged in clusters by virtue of the fracture of a larger 

inclusion during deformation processing. Materials design methodologies may also 

benefit from such cost-efficient parametric studies that explore the relative influence of 

microstructure attributes on the HCF properties and suggest strategies for improving the 

HCF resistance of alloys.  

In the HCF and VHCF regimes (i.e., total fatigue life >> 106), crack growth 

beyond the influence of the critical inclusion (inclusion cluster) is known to contribute 
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negligibly to total fatigue life [11, 171]. This is the regime on which the present study 

focuses. We build on the work of Prasannavenkatesan et al. to simulate the 

shielding/intensification effects of primary inclusion clusters in Ferrium® C61.  

HCF and especially VHCF crack formation processes are rare event phenomena, 

otherwise known as extreme value problems [10, 189-191]. The life-limiting (worst-case) 

characteristics of the VHCF regime are governed by extreme value microstructure 

attributes, which in turn depend on material processing, loading history, etc. The small 

occurrence rate of the VHCF-controlling microstructure attributes results in increased 

scatter in fatigue life data, as well as specimen size effects.  

Accordingly, a very large number of experiments is required to obtain a 

statistically representative distribution of fatigue life in this regime. Even with the advent 

of high-frequency fatigue testing methods [6, 192, 193], statistically representative 

experimental characterization of the VHCF regime is not yet practical due to time and 

cost limitations. Therefore, the contribution of modeling and simulation to understanding 

the variability in fatigue lifetime may assist in reducing the number of costly fatigue 

experiments that must be conducted to obtain a specific confidence level.  
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8.2 Finite element model 

We consider a fully martensitic gear steel (low carbon content) matrix (c.f. 1.3.2) 

with hard non-metallic inclusions that are partially debonded. Contact between the 

interacting surfaces is assumed to be frictionless. The initial debonding could occur 

during processing as well as service (over) loading. We use a homogeneous rate-

independent plasticity model with nonlinear kinematic hardening [48, 49] to simulate the 

matrix material (c.f. 2.1.1). This model is included in the ABAQUS standard material 

model library [49]. Pure kinematic hardening is employed to simulate a cyclically stable 

response in parametric studies. Model parameters are chosen to mimic the cyclic 

deformation behavior of the candidate low carbon high strength martensitic steel at room 

temperature as elaborated elsewhere [77]. Unlike crystal plasticity, this constitutive 

model has no size effects; relevant size effects are described only by the inclusion size 

and spacing, i.e., the ratio R/d, and the scale of averaging the FIPs. 

Idealized cylindrical inclusions with homogeneous linear elastic isotropic material 

properties are considered to be partially debonded, the worst-case scenario for HCF crack 

nucleation [75, 76, 78], as experimentally observed for similar systems [4, 5, 7, 177]. 

Inclusion-matrix interfaces are simulated using a frictionless contact penalty algorithm 

within the commercial finite element software, ABAQUS [49].  

The material investigated is a Ferrium® C61 martensitic gear steel [22] subjected 

to carburization and tempering. The microstructure consists predominantly of tempered 

lath martensite. A detailed description of the heat treatment, surface treatment and 

composition of the material are presented elsewhere [21]. The material constitutive 

behavior and parameters are presented in Section 1.3.2. The parameters are typical values 
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for carburized and tempered low carbon martensitic steels intended for HCF applications 

[21]. 

Figure 8-2 shows a schematic of a nested three-phase finite element model in 

which two elastic inclusions are embedded in a near field elasto-plastic matrix that is 

surrounded in turn by a far field matrix region simulated as having isotropic elastic 

properties. Generalized plane strain (see Section 2.4.1) FE simulations were performed to 

study the variation in FIPs for the non-metallic inclusion of interest with minimum 

spacing d relative to the neighboring inclusion; these are shown, respectively, in dark and 

light shades in Figure 8-2. Inelastic strain occurs only near the inclusion at remote 

applied strain below macroscopic yield. Figure 8-2 also elaborates the dimensions of the 

FE domains, the boundary conditions, and the loading direction enforced in the 

simulations. 
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Figure 8-2: Schematic of the two-dimensional finite element model. 

 

 

Minimum inclusion spacing and the inclusion pair orientation with respect to the 

far field applied displacement direction are defined by d and (90 – θº), respectively, as 

shown in Figure 8-3. 
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Figure 8-3: Inclusion spacing and orientation. 

 

 

The two candidate FIPs under study are the maximum range of plastic shear strain 

and the Fatemi-Socie (c.f. Section 2.2), assuming kFS = 0.6 [78]. The nonlocal averaging 

region is taken to be of constant size (3 × 3 µm2) to account for effects such as inclusion 

size and spacing.  

We focus on parametric studies of the shielding/intensification effect exerted by a 

neighboring inclusion within a two-inclusion cluster, compared to the changes in 

magnitude of FIPs in a reference case having no neighboring inclusion. One may use 

modified Coffin-Manson laws to relate such FIPs to fatigue crack formation or to the 

initiation life of a crack within the influence domain of the primary inclusion [79, 80, 

194, 195]; however, we do not pursue that here. 

Three cycles of uniaxial cyclic strain, with applied strain ratio of Rε = εmin/εmax = 

0, are applied in the y direction in terms of displacement, as shown in Figure 8-2. A 

macroscopic peak strain of εmax = 0.8 εys is applied, where εys = 0.75 % is the matrix yield 

strain in 2.5D plane strain. 
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Limited representative cases are simulated at εmax/εys= 0.4, 0.5, 0.6, 0.7, and 0.8 

(Rε = 0) to investigate the effect of remote applied loading relevant to both HCF and 

VHCF regimes. The diameter of the inclusion of interest is 20 µm in all cases, and the 

dimension of the elasto-plastic region is 100 µm. A fine mesh is employed close to the 

inclusion (element size about 0.5 µm) to capture the details of deformation around the 

inclusion, fanning out with a coarse mesh away from the inclusion. 

All 2.5D simulations were performed using 3-node GPS triangular elements in 

ABAQUS. Figure 8-4 magnifies the FE mesh in the elasto-plastic region for a 

neighboring inclusion of 20 µm in diameter with d = 4 µm and θ = 60º. Inclusions are 

assumed to be debonded over their top half interface with the matrix, and frictionless 

contact is assumed along debonded regions. Inclusions are deemed bonded over their 

bottom half interface with the matrix region; the ABAQUS *Tie command is used to 

enforce continuous displacement across these interfaces. 
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Figure 8-4: Detailed view of the FE mesh. 

 

 

Properties assigned for the fully isotropic elastic inclusion include Young’s 

modulus Ei = 380 GPa and Poisson’s ratio νi = 0.2 [174]. The third cycle is used for the 

calculation of the FIPs over several averaging regions near the inclusion debond notch 

root to identify the area that yields the highest average parameters. The averaging 

procedure also helps to achieve computationally consistent results by regularizing to 

avoid mesh-size dependence, and it accounts for the fact that cracks physically form over 

a finite region, as noted in other studies [75, 76]. In this study, in 2D geometries (3D 

constitutive model), the averaging area is taken to be 3 × 3 µm2. We define normalized 

nonlocal ∆γ
*

pl,max and PFS parameters as 
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where the reference values, (∆γ
*

pl,max)
ref and (∆Γ)

ref are obtained for an identical 

simulation in each case, i.e., the same geometry and remote applied boundary conditions 

are used for a single inclusion without the neighboring inclusion. Accordingly, shielding 

and intensification effects due to a neighboring inclusion correspond, respectively, to ∆γ
N 

and ∆Γ
N values below and above unity. 

 



245 

 

8.3 Results and Discussion 

Figure 8-5 shows the 2.5D finite element predictions of ∆γ
N dependence on the 

inclusion pair orientation with respect to the transverse direction, θ (see Figure 8-3), for 

several values of inclusion spacing, d. The macroscopic remote applied strain amplitude 

and strain ratio for these simulations are εmax = 0.8 εys and Rε = 0, respectively.  

Three schematics are overlaid on this figure to illustrate the relative placement of 

the two inclusions (both 20 µm in diameter) with respect to the applied loading for d = 4 

µm and θ = 0, 45, and 90 degrees, the cases exhibiting the highest intensification and 

shielding effects. For the inclusion interface under study, ∆γ
N can increase several fold 

for small inclusion spacing when the inclusion pair is aligned normal to the loading 

direction, i.e., θ = 0º. 
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Figure 8-5: ∆γN dependence on inclusion pair orientation, with inclusion diameter D = 20 µm (for both 
inclusions) at various θ. 

 

 

The inclusion interaction and thus ∆γ
N intensification, for this orientation weakens 

exponentially for increasing inclusion spacing, as shown in Figure 8-6, in which 

neighboring inclusion diameters are 10 µm, 20 µm, and 40 µm. With regard to the 

nucleation potency, the detrimental intensification effect of the neighboring inclusion 

almost completely diminishes, i.e., ∆γ
N = 1, for particle spacing on the order of 

neighboring inclusion diameter and beyond.  

However, particle distances less than the inclusion diameter are quite common 

when a primary inclusion fractures into smaller pieces during processing (Figure 8-1). 
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Neighboring inclusions whose spacing is greater than their diameter are still likely to 

adversely affect the fatigue resistance of the alloy, as they promote enhanced 

propagation. 
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Figure 8-6: ∆γN vs. inclusion spacing for θ = 0º. 

 

 

As the inclusion pair aligns with the applied loading direction, i.e., θ → 45º, ∆γ
N 

drops below unity, indicating the shielding influence of the neighboring inclusion. 

Relative to the orientations resulting in ∆γ
N intensification, the scatter in the ∆γ

N for all 

the orientations with the shielding effect is much smaller. This indicates that the shielding 

phenomenon does not appear to be as sensitive to the particle spacing as does 

intensification.  
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Figure 8-7 plots ∆γ
N variation near the inclusion of interest versus particle spacing 

for three neighboring inclusion diameters of 10 µm, 20 µm, and 40 µm at θ = 90º. As seen 

in Figure 8-7, the shielding effect depends strongly on the neighboring inclusion 

diameter. Although a beneficial shielding effect increases with the size of the neighboring 

inclusion, a neighboring inclusion that is larger than the inclusion of interest most likely 

lowers initiation life by acting as the dominant initiation site, unless it is suppressed by 

other means such as improvement in its interfacial bonding. Nevertheless, a neighboring 

inclusion of equal diameter (i.e., 20 µm) can still have a considerable (~ 30%) shielding 

effect. 
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Figure 8-7: (1 - ∆γN) vs. particle spacing at θ = 90º. 

 

 

It is instructive to consider the ratio of beneficial shielding gain at θ = 90º to the 

unfavorable ∆γ
N intensification at θ = 0º, i.e., (1 - ∆γ

N
θ = 90º) / (∆γ

N
θ = 0º - 1), versus 

neighboring inclusion diameter, as shown in Figure 8-8 for the three neighboring 

inclusion diameters of 10 µm, 20 µm, and 40 µm. In general, this ratio may be interpreted 
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as the relationship of the potential improvement in the longitudinal orientation of loading 

to the possible weakening in the transverse orientation.  

Figure 8-8 may appear to suggest that the beneficial shielding effect of a 

neighboring inclusion can be exploited by deliberately promoting inclusion clustering 

during processing to achieve scenarios with higher values of (1 - ∆γ
N

θ = 90º) / (∆γ
N

θ = 0º - 1) 

ratio. However, manufacturing process effects and the state of service loads need to be 

known prior to material processing in order to take advantage of this shielding effect 

without introducing additional sources of fatigue life variability. Therefore, in practice, 

the objective is likely to avoid detrimental intensification due to clustering of inclusions 

rather than taking advantage of any possible enhancement in fatigue resistance through 

the shielding effects. 
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Figure 8-8: Ratio of beneficial shielding gain at θ = 90º to the unfavorable ∆γN magnification at θ = 0º vs. 
particles’ spacing. 

 

 

Next, we study ∆γ
N dependence on the remote applied strain amplitude for three 

candidate cases with θ = 0º, 45º, and 90º. Inclusions are 20 µm in diameter and d = 10 µm 

for all cases. As shown in Figure 8-9, intensification and shielding intensities appear to be 

almost independent of the applied strain level for Rε = εmin/εmax = 0 and εmax/εys= 0.4, 0.5, 

0.6, 0.7, and 0.8. Simulations for other inclusion sizes and spacing show the same trend 

and are not repeated here. 
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Figure 8-9: ∆γN vs. remote applied strain amplitude. 

 

 

It would be instructive to verify whether the normalized nonlocal ∆Γ parameter, 

i.e., ∆Γ
N, is subject to similar intensification and shielding trends. For brevity, it suffices 

to present only plots of ∆Γ
N versus θ, for several values of d in Figure 8-10 (counterpart 

to Figure 8-5 for ∆γ
N). The macroscopic applied peak strain and strain ratio for these 

simulations are εmax = 0.8 εys and Rε = εmin/εmax = 0, respectively. The ∆Γ
N values are 

slightly higher at all θ and d values studied here. This increase is due to the added 

contribution of the tensile stress and is expected to depend on applied strain ratio, Rε. 
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Nevertheless, ∆Γ
N trends are similar to those of ∆γ

N with regard to intensification and 

shielding effects.  
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Figure 8-10: ∆ΓN vs. inclusion pair orientation. 

 

 

Figure 8-11 illustrates a three-dimensional (3D) representation of an inclusion 

pair with model dimensions slightly modified to improve computational efficiency. 

Inclusions are spherical in shape with diameter of 20 µm. Figure 8-12 is the 3D 

counterpart of Figure 8-5 and shows the prediction of ∆γ
N dependence on θ for d = 4 µm, 

5 µm, and 8 µm.  
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The 3D simulation trends appear less structured and are pointwise different in 

magnitude from the 2.5D predictions. The lack of smooth trends is mainly due to mesh 

coarseness in the FIP averaging region due to computational limitations. Nevertheless, 

the 3D trends generally confirm the aforementioned intensification and shielding effects 

of the neighboring inclusion as θ → 0º and θ → 90º, respectively. Little additional insight 

is gained from much more costly 3D simulation in this case. 
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Figure 8-11: Three-dimensional finite element model. 
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Figure 8-12: 3D FE prediction of ∆γN dependence on inclusion pair orientation. 
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8.4 Inclusion-matrix debonded interface orientation 

Throughout this Chapter, we have assumed that the debonded half of the 

inclusion-matrix interface is normal to the remote applied loading direction for both the 

center as well as neighbor inclusions, as shown in Figure 8-13 for θ = 0o and 45o. 

 

Debonded surface

Cyclic loading

Center inclusion

Neighbor inclusion

 

θ = 0o 
θ = 45o 

Figure 8-13: Debonded interface orientation. 

 

 

To justify this assumption for the debonded interface orientation, we simulate the 

distribution of the magnitude of tensile normal traction (a driving force for inclusion-

matrix separation) acting on the inclusion-matrix interface of the center inclusion, for 

intact, perfectly bonded inclusions. The tensile normal traction is calculated as

Tt n nσ= ⋅ ⋅
� � �

ɶ
 at all nodes along the interface, where n

�
 is the point-wise unit vector normal 

to the interface. The diameter is 20 µm for both inclusions, and the inclusion spacing is d 

= 5 µm. In Figure 8-14, the hollow circle and cross symbols mark the locations along the 

inclusion-matrix interfaces of the center and neighbor inclusions, respectively, where t
�

 

is within 10% of its highest value. Each of the seven concentric circles outlines the 
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inclusion-matrix interface for a specific inclusion pair orientation with respect to the 

transverse direction, θ.  
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Figure 8-14: Locations along the inclusion-matrix interface with the 10% highest tensile traction for 
various θ for εmax = 0.5 εys (Rε = 0). 
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At each θ, the single solid circle symbol marks the location on the center 

inclusion’s interface that is directly facing and closest to the neighbor inclusion. This 

location is another intuitive debonded interface scenario as shown in Figure 8-15 for θ = 

45o.  

 

Center inclusion

Neighbor inclusion θ
 

Figure 8-15: Candidate debonded interface scenario for θ = 45o. 

 

 

The simulations of Figure 8-16 are identical to those of Figure 8-14 except the 

applied uniaxial peak strain has increased from 0.5 εys to 0.8 εys (Rε = 0). Invariably, 10% 

of all the interface nodes with the highest point-wise magnitude of tensile normal 

traction, t
�

, are located around the inclusions’ north and south poles. These points shift 

slightly when θ or the applied strain amplitude changes, but they are generally confined 

to these poles. Therefore, the assumption of a debonded interface that is normal to the 

applied loading direction would be reasonable for both center as well as neighbor 

inclusions for our qualitative study. 

 

 



259 

 

 

 

θ
0 15 30 45 60 75 90

0

30

60

90

120

150

180

210

240

270

300

330

Center inclusion's interface locations with the highest 10% tensile traction

Neighbor inclusion's interface locations with the highest 10% tensile traction

Center inclusion's interface location closest to the neighbor inclusion

 

Figure 8-16: Locations along the inclusion-matrix interface with the 10% highest tensile traction for 
various θ for εmax = 0.8 εys (Rε = 0). 



260 

 

8.5 Integration into the weighted probability approach 

In Chapter 6, we introduced a weighted probability approach for modeling surface 

fatigue crack initiation probability, ps. An attempt was made to maintain the generality of 

the framework so as to allow for future refinements such as the integration of inclusion 

clustering effects. To include the clustering effects, Eq. 7.2 should be revised as  

 ( ), , , ,
, , f    d  d  d  dR R R d

R R dinclusion
R dP C RP θ ω

θ
ω θ′

′

   
  
    

′= ∫ ∫ ∫ ∫  (8.3) 

where R is the inclusion size (radius) and 
RP  refers to the size distribution of inclusions. 

The variable , ,f R
R d θ′  is defined as the conditional probability that the nearest neighbor 

inclusion (to the inclusion with radius R) is of radius R', spacing d, and orientation (with 

respect to the applied uniaxial stress direction) θ (see Figure 8-3 for the definition of 

inclusion spacing and orientation). This conditional probability is essentially a nearest-

neighbor distribution function [196] that can be based on the experimental data.  

The variable , , , ,R R dC θ ω′  is defined as the conditional probability that an inclusion 

with radius R with a nearest neighbor inclusion with radius R', spacing d, and orientation 

θ is a fatigue hot spot at a given applied strain/stress amplitude, referred to with ω. This 

conditional probability reflects the shielding/intensification effects of the neighboring 

inclusion taking into account the spacing and orientation between the inclusions. It can be 

expressed as the probability that the underlying FIP exceeds a material-specific threshold, 

FIP*.  

 , , , , *)Pr(R R d FIP FIPC θ ω′ = >  (8.4) 
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Due to the generality of the weighted probability approach, higher order statistics 

of microstructure attributes may also be addressed. The study of these effects is beyond 

the scope of this thesis. 
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8.6 Summary 

Parametric cyclic FE simulations suggest that the HCF crack initiation potency of 

debonded primary non-metallic inclusions, as reflected through FIPs, is strongly 

influenced by the existence of a neighboring inclusion. This is the case for the partially 

debonded inclusions under study, and relative to the case with no neighboring inclusion: 

 

• FIPs are higher (intensification) when the inclusion pair is oriented transverse to 

the loading direction, weakening exponentially as inclusion spacing increases. The 

intensification effect of the neighboring inclusion almost completely diminishes 

for particle spacing on the order of the neighboring inclusion’s diameter and 

beyond. 

• FIPs are lower (shielding) as the inclusion pair aligns with the applied loading 

direction. For this orientation, shielding depends strongly on the neighboring 

inclusion’s size but appears to vary negligibly with particle spacing. 

• In practice, the objective may be to avoid detrimental intensification due to 

clustering of inclusions rather than taking advantage of any possible enhancement 

in fatigue resistance through the shielding effects. 

• Relative to the orientations that result in ∆γ
N intensification, the scatter in the ∆γ

N, 

for all the orientations with the shielding effect, is much smaller. As such, the 

intensification level is considered more sensitive to the particle spacing than the 

shielding level. 

• Intensification and shielding levels appear to be almost independent of the applied 

strain levels studied.  
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Simulation-based strategies offer a convenient platform [85, 197-199] to 

understand mechanisms of fatigue crack formation and early growth from such second 

phase particles and through the inclusion cluster. These in turn can be used to: 

 

• Identify means to suppress such phenomena, 

• Explain such properties as directional dependence or anisotropy of fatigue 

response, 

• Design alloys with enhanced fatigue properties, and 

• Predict the equivalent crack size to be used at the onset of fracture mechanics 

analysis, as applicable. 

 

We reiterate that such studies of idealized nature are useful for qualitative 

comparison of different scenarios, discerning trends, and predicting likely effects of 

neighboring inclusions. A myriad of other microstructural, environmental, and loading 

attributes influence the fatigue response, and their study is beyond the scope of this work. 

Further analysis using more realistic crystal plasticity simulations will be pursued to 

quantify and rank order added effects of microstructure variability at the grain scale, a 

key factor in the HCF regime. These may shed additional light on particle size and 

spacing dependencies owing to interplay with microstructure. 
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9 Contributions and recommendations for future work 

9.1 Contributions 

This research studies the mechanisms that influence the ratio of surface to bulk 

fatigue crack initiation probabilities at low stress amplitudes (i.e. HCF and VHCF 

regimes). The specific contributions of this research are: 

 

1. Studied several simulation-based Fatigue Indicator Parameters (FIPs) that are 

suitable candidates for assessment of early stages of fatigue crack formation at 

primary inclusions and pores in the HCF and VHCF regimes. 

2. Examined, using crystal plasticity FE simulations, the effects of applied uniaxial 

strain amplitude on the probability of inclusion-matrix interface separation. 

3. Examined, using crystal plasticity FE simulations, the state of compressive 

residual stresses around inclusions and pores as well as their degree of relaxation 

due to cyclic loading. 

4. Developed a weighted probabilistic construct to characterize the probabilities of 

fatigue crack formation from surface versus bulk fatigue hot spots. This construct 

assists in predicting the surface to bulk transition stress/strain amplitude and its 

dependence on specimen size, inclusion density, inclusion radius distribution, and 

inclusion-matrix interface strength. The approach is (i) amenable to cost-effective 

finite element simulations and (ii) accounts for the interplay of microstructure 

attributes and applied loading.  

5. Incorporated FIPs (well-suited for fatigue crack formation and early growth under 

HCF and VHCF regimes) into the weighted probabilistic construct. This project 
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provides a fatigue model that is capable of simultaneously handling the effects of 

multiaxial loading conditions (e.g., tension, torsion, rotating bending and plane 

bending), stress gradient, and free surface effects on the fatigue response. 

6. Devised and performed systematic crystal plasticity FE simulations to exercise the 

weighted probabilistic construct in a fine-grained subsolvus microstructure of a 

powder metallurgy processed Ni-base superalloy, IN100, where non-metallic 

processing inclusions are the main fatigue hot spots in the HCF and VHCF 

regimes. 

7. Examined the effects of neighboring inclusions on the HCF crack formation 

potency in martensitic gear steel where inclusions appear in clusters [21].  

 

From a broader perspective, the computational approach pursued in this research 

may offer the following: 

 

8. It assists in predicting variability in early stages of fatigue crack initiation life, 

including the shape of its distribution; this work thus helps to reduce the number 

of experiments required in order to predict crack formation. Therefore, it may 

extend the service life of existing superalloys, as Jha et al. [15] suggested can be 

done, with the confidence level necessary for the relevant applications. 

9. It facilitates the implementation of fatigue response properties obtained from 

experiments on laboratory coupons in the design and life assessment of large 

components such as turbine disks. 
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10. It provides information necessary for the development of microstructure–property 

fatigue models that can be used to make processing and manufacturing 

recommendations. From the material design perspective, this research will 

contribute to the current efforts to develop new alloys with enhanced fatigue 

properties. It will enhance damage tolerant design methodologies and tools such 

as DARWINTM, Design Assessment of Reliability With INspection, which are 

used extensively by gas turbine engine manufacturers and the Federal Aviation 

Administration (FAA) to improve the safety of jet engines [200]. 
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9.2 Recommendations for future work 

Extensive computational studies have been performed in this thesis to characterize 

the fatigue crack formation and early growth in alloys with primary inclusions. The 

simulated surface initiation probability approach is new and not yet comprehensive in all 

respects. There are many avenues for future research as listed below: 

9.2.1 Experiments 

9.2.1.1 Identification of fatigue crack formation mechanisms in other advanced alloys 

The methodology proposed in this thesis can be used to simulate surface initiation 

probability in other advanced alloys such as titanium alloys and clean steels by 

recognition of similar competing surface and bulk initiation mechanisms involving non-

metallic particles, large grains, α cluster-defects, or phases that are particularly 

susceptible to fatigue crack formation.  

In a given material, various crack incubation processes often operate 

simultaneously. For instance, formation of Zener-Stroh fatigue cracks [cf. 201, 202] due 

to the impingement of slip bands on the grain boundaries has been reported in 

polycrystalline Ni [203], as shown by the arrows in Figure 9-1. Understanding the key 

underlying physical mechanisms is essential in order to define a truly predictive fatigue 

indicator parameter. 
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Figure 9-1: Crack formation at grain boundaries of Ni tested at room temperature [203] (
42 2.5 10pε −∆ = × ). 

 

 

9.2.1.2 Characterizing the mechanical properties of inclusion-matrix interface and surface 

oxide scale 

We concluded in Chapter 3 that the inclusions-matrix interface characteristics can 

significantly influence the potency of inclusions to initiate fatigue cracks. The probability 

of inclusion-matrix debonding at a given applied stress/strain amplitude depends on the 

bond strength between the two phases. Experimental data are lacking for the bond 

strength of inclusions and matrix phases under tensile and shear loading. Additionally, 

this bond strength is expected to depend on the size of the interface, demanding small-

scale experiments. With regard to the surface oxide scales, there are relatively few 

techniques available for measuring their mechanical properties. The mechanical 

properties of the surface oxides are expected to depend on the scale thickness. 
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9.2.1.3 Characterizing the cyclic stress-strain response of the treated surface layer 

Mechanical surface treatments induce a significant gradient in microstructure 

attributes from the surface to the core. The altered microstructure in the specimen surface 

region is likely to respond differently to changes in the loading, thus affecting the surface 

initiation probability. Detailed experimental study is imperative in order to characterize 

the cyclic stress-strain response of the case layer. Such studies should provide 

information regarding the degree of cyclic hardening that occurs during the initial stages 

of fatigue cycling. 

 

9.2.1.4 Experimental measurement of residual stress state and relaxation behavior 

Crystal plasticity simulation findings regarding the degree of residual stress 

relaxation around inclusions and pores need to be validated with experiments. Interrupted 

residual stress measurements or non-destructive high energy x-ray diffraction methods 

can be utilized to gain insight into residual stress profile evolution during cyclic loading. 

Any additional information regarding the compressive residual stress state and its 

relaxation behavior can be used to tailor microstructures with improved fatigue 

resistance. 
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9.2.2 Computational modeling 

9.2.2.1 3D models with irregularly shaped inclusions 

We simulated idealized cylindrical inclusions using 2.5D generalized plane strain 

models. Our philosophy was that such idealized simulations help to delineate the trends 

and compare scenarios. It may be necessary to construct high resolution 3D FE meshes 

from realistic microstructures in order to perform a standalone assessment of fatigue 

initiation potency of various inclusion/pore scenarios. For instance, Gokhale et al. [204-

206] implemented complex particle morphologies in computer simulated heterogeneous 

microstructures using digital image processing. Zhang and McDowell [149] also 

evaluated fatigue potency at primary inclusions by constructing 3D FE meshes from 

measured (realistic) microstructures containing non-metallic inclusions.  

Conducting crystal plasticity simulations of 3D FE domains with complex 

inclusion/pore morphologies to construct simulated statistical distribution of response 

parameters can be computationally prohibitive. Therefore, there is a need for multiscale 

modeling such as the schemes developed by Liu and co-workers [207, 208] to identify 

the fatigue critical hot spots. Once the fatigue critical hot spots are identified, detailed 

crystal plasticity simulations can be conducted locally to characterize the variability in 

HCF. 

 

9.2.2.2 Development of mechanism-specific correlation functions  

Przybyla and McDowell [51] have recently proposed a new microstructure-

sensitive extreme value statistical framework. It couples the extreme value distributions 
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of certain response functions (FIPs) to the correlated microstructure attributes that exist at 

the extreme value locations of these FIPs. By mathematically representing fatigue driving 

force parameters in the space of basis functions used to represent distribution functions of 

microstructure attributes, we may be abled to identify hot spot regions that are above a 

FIP threshold.   

 

9.2.2.3 Development of new adaptive fatigue indicator parameters 

For simulating Zener-Stroh fatigue cracks [cf. 201, 202, 203] that could form due 

to the impingement of slip bands on the grain boundaries, Zhang [84] introduced an 

impingement parameter that characterizes the effects of directional plastic strain 

accumulation at the continuum level. Other FIPs could be introduced to reflect MSC 

growth at the scale of single inclusion and inclusion clusters to estimate the life 

consumed in crack formation and small crack growth to length of the order of cluster 

size.  

The mechanisms and rate of crack formation and MSC growth processes are 

known to change over the crack evolution period due to a myriad of short and long range 

microstructure attributes. As such, there is a need for the FIPs to adapt to and reflect the 

altered microstructure attributes. 
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