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¿Qué es la vida? Una ilusión,

una sombra, una ficción,

y el mayor bien es pequeño;

que toda la vida es sueño,

y los sueños, sueños son.

Calderon de la Barca

iii



PREFACE

We learn from an early age that, if we apply enough force to an object, we will eventually

break it. However, we do not usually perceive that the repetitive application of much lower

forces can also break the object. This fact turns to be important for rotating or alternating

machinery, (e.g., motors, turbines) or structures undergoing vibrations (e.g., cars, planes,

pipelines, bridges) among a myriad of examples that must endure thousands or millions of

cycles.

For every good produced, either an everyday object or a complex machine, manufac-

turers must verify the integrity of their products to guarantee user safety and product

reliability. When these conditions are not satisfied, the outcome may be unnoticed or it

may cause tragedies such as the sinking of the Titanic or the crashing of an airplane. Such

a broad range of outcomes explains why engineers study the mechanical properties of ma-

terials in an attempt to prevent failures. Indeed, millions of dollars are spent every year in

research to improve materials and prevent unexpected failures.

In brief, this thesis analyzes how a piece of metal can be damaged by applying repetitive

forces, or in other words, how fatigue damage evolves in metals. The results of this work

provide computational tools to engineers for improving materials and better understanding

of the fatigue phenomena.

GMC
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SUMMARY

In spite of its significance in industrial applications, the prediction of the influence

of microstructure on the early stages of crack formation and growth in engineering alloys

remains underdeveloped. The formation and early growth of fatigue cracks in the high

cycle fatigue regime lasts for much of the fatigue life, and it is strongly influenced by

microstructural features such as grain size, twins and morphological and crystallographic

texture. However, most fatigue models do not predict the influence of the microstructure

on early stages of crack formation, or they employ parameters that should be calibrated

with experimental data from specimens with microstructures of interest. These post facto

strategies are adequate to characterize materials, but they are not fully appropriate to aid

in the design of fatigue-resistant engineering alloys.

This thesis considers finite element computational models that explicitly render the

microstructure of selected FCC metallic systems and introduces a fatigue methodology that

estimates transgranular and intergranular fatigue growth for microstructurally small cracks.

The driving forces for both failure modes are assessed by means of fatigue indicators, which

are used along with life correlations to estimate the fatigue life. Furthermore, cracks with

meandering paths are modeled by considering crack growth on a grain-by-grain basis with

a damage model embedded analytically to account for stress and strain redistribution as

the cracks extend.

The methodology is implemented using a crystal plasticity constitutive model calibrated

for studying the effect of microstructure on early fatigue life of a powder processed Ni-base

RR1000 superalloy at elevated temperature under high cycle fatigue conditions. This alloy

is employed for aircraft turbine engine disks, which undergo a thermomechanical production

process to produce a controlled bimodal grain size distribution. The prediction of the fatigue

life for this complex microstructure presents particular challenges that are discussed and

addressed.
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The conclusions of this work describe the mechanistic of microstructural small crack. In

particular, the fatigue crack growth driving force has been characterized as it evolves within

grains and crosses to other grains. Furthermore, the computational models serve as a tool

to assess the effects of microstructural features on early stages of fatigue crack formation

and growth, such as distributions of grain size and twins.
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CHAPTER I

INTRODUCTION

1.1 Importance of fatigue failure

The production of parts and goods requires the qualification of their structural integrity

to guarantee the safety of the users and adequate functioning and reliability. When these

conditions are not satisfied, the outcome may range from being unimportant and unnoticed

to causing deaths. Such a broad range of outcomes justifies the need for understanding

the mechanical properties of materials and evaluating of risks of failure. In particular, this

thesis focuses on the analysis of fatigue damage on metallic materials.

Although infrequent, catastrophic failures such as railway axes in the 19th century [208],

crashes of de Havilland Comet airplanes in the mid-20th century [192], and the recent failure

of a turbine [12] in the world’s largest passenger aircraft, show the need for understanding

the fatigue phenomena the purpose of preventing human and economic losts. Indeed, the

economic impact of fatigue failures on industry is in the billions of dollars, a problem that

prompts the development of strategies that mitigate the problem.

To moderate fatigue damage, engineers have traditionally attempted to either redesign

parts or search for better fatigue-resistant materials. In the last decade, this latter approach

has received particular attention with the introduction of computer-based models for de-

signing materials. These models provide an efficient tool for testing strategies that improve

the desired property of a material without intense experimental work.

1.2 Outcomes

The core of this work is dominated by a critical review of extensive experimental data, which

is later translated into informed decisions for the design of computer simulations. This

approach allows the construction of physics-based models that contribute to the scientific

community in two main ways: connecting areas of studies and length scales and contributing
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to engineering applications.

1.2.1 Connection to areas of study and length scales

As a result of the complexity of the fatigue problem, any attempt to characterize the early

fatigue growth of cracks needs to be supported by an understanding of the fundamental

physics involved. Certainly, in the past two centuries, many disciplines have approached

the problem, leading to contributions that sometimes seem disconnected. One of the reasons

for such a disconnection is that fatigue damage can be studied as a macroscopic phenomenon

that leads to cracks or as the accumulation of defects on an atomic scale. This wide range

falls outside the domain of validity for most fatigue models and requires an approach that

uses a multiscale model. Thus, this thesis will analyze multiscale models that estimate the

early fatigue growth of cracks as a function of the underlying microstructure.

1.2.2 Contribution to engineering applications

Apart from analyzing the fundamental mechanics of fatigue, this thesis will also develop

computational tools that will assist in designing fatigue-resistant alloys. These tools will be

designed according to the needs of an industrial partner that will employ the computational

tools to assess the initiation of fatigue cracks in turbine disks. Because of this partner,

the models will be based on the commercial finite element software ABAQUS, which is

a common language for transferring computer-based tools to industry. Furthermore, the

computational work will aim to run for up to a day on a USS 2000 computer to comply

with industrial preferences.

1.3 Thesis organization

This thesis starts with a broad view of the early fatigue problem crossing multiple materials

and loading conditions. Throughout the chapters, the content becomes more detailed with

regard to materials, loading conditions, and damage mechanisms, facilitating the testing of

the models proposed with data from real materials.

The next chapter overviews theoretical models and experimental data regarding the
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nucleation and early growth of fatigue cracks, and the influence of strain localization and

microstructures. This general review of the current understanding examines multiple failure

mechanisms for multiple metals under a wide range of loading conditions. One conclusion

of the review is that many strategies that predict the failure of materials do not consider

adequately the local driving forces for crack growth at the crack tip. Hence, Chapter 3 will

focus on reviewing a variety of measures of the fatigue driving force that are compared in

FEM simulations of Cu single crystals, which is among the most studied material under

cyclic loading. These results provide confidence about the quality of the driving forces at

the crack tip that will be employed in simulations of small cracks.

Chapter 4 starts by discussing possible correlations between the fatigue life of small

cracks and fatigue indicator parameters. Due to the local character of the driving forces,

the simulations would require intense computational work that updates the local fields after

some extent of crack growth. To avoid such demanding work, a novel mesoscale model will

provide the fundamental shortcuts that allow crack growth to be simulated along multiple

grains and hundreds of microns. The basis and limits of the mesoscale model assumptions

are discussed extensively. This analysis concludes that the stress and strain redistribution

due to crack growth cannot be ignored and needs to be accounted explicitly. Hence, the

chapter further introduces a fully anisotropic damage model that can simulate crack growth.

This study then continues applying the mesoscale model on a specific material: the

RR1000 alloy, which is a nickel-based superalloy employed in turbines for planes. This al-

loy is currently of interest for the turbine industry and needs to resist thousands of loading

cycles that result from landing and taking off. Hence, Chapter 5 introduce the main charac-

teristics of superalloys and their relation to fatigue failure. Furthermore, a crystal plasticity

model for RR1000 is discussed in relation to experimental stress-strain data, which is em-

ployed in the calibration of the model. Additionally, the fatigue driving force for RR1000

is characterized and the results are compared to those in Chapter 3 for Cu.

Following this, the mesoscale model is adjusted for the analysis of RR1000 alloys. Such

a task implies fitting the constants and the construction of a sub-grain model that pre-

dicts the evolution of the driving force while the crack grows within a grain, which is not
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explicitly considered by the mesoscale model. The results show that the sub-grain be-

havior is predictable and follows a law that cannot be deduced from previous approaches

in the field. Indeed, these results are a fundamental explanation of why theories such as

singularity-based fracture mechanics fail in describing the small crack problem.

Chapter 7 focuses on applying the mesoscale model to predict the early fatigue life of

RR1000 microstructures with ALA grains, which correspond to materials that have big

grains surrounded by smaller grains. This bimodal distribution of grain size affects the

fatigue life in ways that can be studied with the tools developed in the previous chapters.

Finally, this thesis concludes with a summary of the most relevant conclusions from this

work and future additional work. In addition, the appendix section provides further infor-

mation about the computational implementation and some details of the numerical scripts

developed.
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CHAPTER II

OVERVIEW: MICROSTRUCTURALLY SMALL CRACKS

For more than a 150 years, engineers and scientists have been concerned about fatigue dam-

age of metals, which they still consider a matter of high priority as shown by the number

of conferences related to fatigue damage. Indeed, the complexity of the nucleation and

growth of a fatigue crack has called the attention of researchers from multiple disciplines

ranging from applied engineering to theoretical physics, involving studies about cyclic load-

ing, crack formation, plastic deformation, and slip localization among the most important

aspects. Hence, the challenge is to combine the understanding from these sources.

2.1 Approaching the problem

Among the multiple approaches developed to study small fatigue cracks, three perspectives

stand out for their importance with regard to understanding the problem of microstruc-

turally small cracks (MSCs):

• Fatigue life estimation,

• Fracture mechanics, and

• Plastic deformation.

2.1.1 Fatigue life estimation

More than 100 years ago, Wöhler (see the excellent historical review by Walter [208])

pioneered the study of the fatigue failure on railway components by correlating the number

of cycles to failure with the applied stress amplitude, today are know as S-N curves. These

curves were later plotted in logarithmic scale, which inspired Basquin [15] to fit a power

law with two material constants (i.e., a line in logarithmic scale) to correlate the total life

to the applied stress range. Since metals do not show a macroscopic plastic deformation
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in the high cycle fatigue (HCF) regime, the stress applied is a natural magnitude to assess

the fatigue damage. However, when plastic deformation is macroscopically apparent (e.g.,

low cycle fatigue (LCF) and notches), the strains that develop are a better magnitude to

describe fatigue damage.

Coffin and Manson independently proposed a power-law correlation between plastic

strain and life that was later combined with the Basquin model into a single strain-life

relation:

1

2
∆ε =

σ′f
E

(2N)b + ε′f (2N)c, (1)

in which σ′f , b, ε′f and c are material constants that depend on the chemistry of the ma-

terial, but they can also depend on the microstructure processes, loading conditions and

environment among many. Most fatigue life models cannot predict theoretically the value

of the material constants, but they require experimental tests to calibrate the parameters.

Hence, this post facto methodology can be adequate to characterize materials, but they are

not fully appropriate to assist in the design of microstructures for newer fatigue-resistant

engineering alloys.

Power law correlations such as that in Equation 1 were introduced between 50 to 100

years ago, and they are still of relevance to engineering applications. Certainly, Equation 1

has inspired a myriad of power law correlations to estimate the fatigue life under multiple

testing conditions. However, the total life approach disguises the nature of fatigue damage

by assuming one temporal scale (the total life) and one length scale (the entire specimen

cross-section) associated with the failure process; in other words, it does not distinguish the

stages of fatigue life. Indeed, the damage tolerant approach born from fracture mechanics

in the 60’s recognize the need to understand the evolution of fatigue damage represented

by the crack growth rate.

2.1.2 Fracture mechanics

The classical fracture mechanics approaches quantify the local driving force for fatigue

crack growth in terms of far field magnitudes (e.g., ∆K, ∆J-integral, ∆CTOD). Even

though traditional homogeneous material fracture mechanics provides useful tools for the
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assessment and characterization of long cracks (e.g., the Paris Law [192]), it fails when

dealing with MSCs. Certainly, experiments have revealed an “anomalous” growth of cracks

until they become longer than some characteristic length related to the microstructure

[73, 66, 194, 199]. The works of Tanaka and Akiniwa [194] or Tokaji and Ogawa [199]

provide clear experimental evidence of the correlation between the microstructure and the

crack speed. For example, Figure 1 [199] presents the crack growth rate measured from a

MSC in steel on the surface of the specimen and the corresponding microstructure crossed

by the crack.

As shown in Figure 1, the growth rate of MSCs decreases substantially as the crack

tip approaches a grain boundary (GB), where it may even arrest. After crossing the GB,

the crack may accelerate rapidly and then decelerate until reaching the next GB. This cy-

cle repeats until the crack becomes “long,” which can be defined as the required length

for applicability of linear elastic fracture mechanics (LEFM), which includes homogene-

ity, similitude and small scale yield requirements. The current challenge is to model this

oscillatory behavior and the transition into a long crack as a function of the underlying

3-dimensional microstructural attributes.

MSCs grow with different kinetics that usually depend on the length of the crack relative

to the microstructure lengths scale [130], rendering local-global singularity-based fracture

mechanics valid only for longer cracks. Among the many reasons for this behavior is that

the mesoscale material inhomogeneity and the directional character of slip invalidate the

similitude assumption, leading to a disconnect between the apparent driving force far from

the crack tip and that at the crack tip. In other words, the highly localized and anisotropic

plastic zones of small cracks do not resemble those predicted by crack singularity models

based on homogeneous plasticity [178, 117]. Second, the small scale yielding requirements

of LEFM are often violated by MSCs. Third, the cycle plastic zone and damage process

zone must engage a suitably large number of grains to achieve statistical homogeneity of

the crack growth response along the entire crack front. Additionally, virtually all of the

common driving forces (e.g., ∆K, ∆J, ∆CTOD) are not of thermodynamic character when

used in fatigue applications.
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Figure 1: An example of experimental fatigue crack growth rate for a MSC in low carbon
steel. Note the correlation with the microstructure shown above. (Adapted from [199]).

These reasons point to the lack of accuracy of traditional fracture mechanics theory and

suggest the need for a microstructure-sensitive approach [131]. Since the MSC regime is

dominant in HCF, comprising a significant portion of the fatigue life [81], improvements

in current life prediction schemes require an understanding of the early stages of damage,

progressing from the first grain up to hundreds of grains. Novel microstructure-sensitive

schemes should represent the most significant features of the underlying physics over differ-

ent length scales [119, 121].

2.1.3 Plastic deformation

Ewing and Humfrey [52] were among the first to ascertain that in HCF of iron, plastic

deformation accumulates on certain favorably oriented grains (constrained microplasticity)

in the form of slip bands that cross entire grains. Indeed, Figure 2, published in 1903 [52],

shows iron grains crossed by slip bands that orient along the least slip-resistant directions.
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Figure 2: Slip bands found in iron in 1903 by Ewing and Humfrey [52]. A century has
passed and scientists are still trying to understand and model the role of these bands.

The bands comprise organized dislocation structures that appear during the early stages

of fatigue life as a result of thermodynamically irreversible interactions among crystalline

defects [92], causing extrusion and intrusions at free surfaces [17, 140, 164]. These intrusions

are usually accepted as necessary precursors of cracks at free surfaces [109]; in addition, the

environment plays a major role that is almost independent from the plastic deformation

[79]. Moreover, these basic observations of the fatigue process are especially prevalent in

the LCF regime.

The correlation between fatigue crack directions and slip bands was further noticed by

Forsyth [60], who classified fatigue damage in two stages depending on the path followed

by the crack:

• Stage I corresponds to the initial phase in which plastic deformation occurs predom-

inantly by single slip along a favorably oriented slip plane that usually becomes the

site where cracks nucleate; the loading of the cracks is predominantly mode II. Thus,

Stage I cracks propagate following well defined crystallographic planes.

• Stage II is characterized by slip along multiple crystallographic planes that allows for

cracks to grow through many slip planes, which results in a net noncrystallographic

opening mode and the formation of fatigue striations. Because cracks grow from
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Figure 3: Schematic representation of transition from fatigue Stages I to II. This sim-
ple description exemplifies the intrinsic correlation between subgrain plastic deformation
structures and crack growth directions.

the contribution of multiple slip planes, the macroscopic plane of the crack can turn

towards maximum mode I loading.

The work of Forsyth is among the first to relate the orientation of cracks to the plastic

deformation substructure, showing that the direction of cracks is initially defined by the

orientation of slip bands, as depicted in Figure 3. Later investigations showed that the bands

reappear at the same location after repolishing the metal, so they were named persistent

slip bands (PSBs).

2.1.3.1 Stress and strain evolution

Multiple researchers have characterized the evolution of the cyclic stress-strain curve, whose

area is a measure of the irreversibility of the process. Mughrabi [140] was among the first to

show that Cu single crystals present a plateau in the saturation stress with increasing applied

cyclic strain. The plateau corresponds to the localization of plastic strain in persistent slip

bands and extends up to the formation of cell structures. Such a behavior is not particular

of Cu; it is generally found in most low-to-medium stacking fault energy (SFE) FCC metals

loaded for single slip [97, 104].

Secondly, single crystal experiments of low-to medium SFE metals and alloys have shown
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that plastic strain localization can limit the material hardening when cycled in the HCF

regime. Indeed, after localization occurs, stress-cycle or stress-accumulated strain diagrams

present plateaus [167, 219, 202, 212], as exemplified by Figure 4 (left). Since localized

plastic strain can accommodate a limited amount of strain, further cycling can develop

new areas of localized plastic strain [211]. These mechanisms of plastic deformation in

FCC single crystals are also usually found on individual grains in polycrytalline materials

[168, 137, 104]. As a result, FCC polycrystalline metals can present plateaus after the most

favorably oriented grains have localized plastic stain, as shown in Figure 4 (right).

Although plastic strain may localize with a variety of dislocation substructures for dif-

ferent materials, Figure 4 is representative of FCC metals and alloys with low-to-medium

SFE cycled under the HCF regime. Such an evolution of the shear stress suggests that crack

nucleation and early growth can occur under almost constant stress. Indeed, analyses of

the dislocation substructures (e.g., slip bands) close to the crack tip have shown that crack

embryos may not alter dislocations substructures [88, 3], and therefore, the strains around

the crack are accommodated by slip bands without further hardening.
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2.2 Physics and models for early fatigue damage

2.2.1 Driving forces and irreversibility

Multiple studies have shown that, at an atomic scale, the irreversible migration of point and

line defects is responsible for crack growth; for example, the nucleation of fatigue cracks (i.e.,

extrusions and intrusions, particle decohesion) has been attributed to the intense production

of vacancies in slip bands [7, 165, 201]. In contrast, fatigue crack growth is usually dominated

by dislocations that are emitted from a stress concentrator (a crack embryo) and that are

not annihilated after a stress cycle [76, 153, 151, 54]. Indeed, the remaining dislocations

trapped by wells of potential (e.g., foreign atoms, point defects, forest dislocations, second-

phases) cause a permanent change in crack tip displacement range (∆CTD), which has been

employed as a the crack driving force by Tanaka et al. [195] and references therein. In other

words, crack growth corresponds to the accumulation of net Burgers vectors at the crack

tip [177, 163].

The introduction of a line defect can be reversed by its annihilation with another defect

or at a surface; for example, in the mesoscale, cracks developing in a vacuum can reweld

and disappear [148, 211]. To characterize this feature, fatigue models should distinguish

between the driving force and the degree of mechanical irreversibility. The former measures

the production of defects (i.e., degree of plastic deformation) and depends mainly on the

constitutive behavior and loading conditions. The latter quantifies the irreversibility of the

crack tip dislocation migration (net crack growth), and it is strongly affected by interaction

with the environment. Although the driving force and irreversibility are conceptually dif-

ferent and usually almost independent, they can influence each other in multiple ways. For

example, strain localization can enhance diffusion of foreign atoms from the environment

(creating fast-paths) and embrittle atomic layers close to the crack surface, while irreversibil-

ity affects the number of cycles to failure, and equivalently, the accumulated plastic strains

until failure [214].
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2.2.2 Crack nucleation models driven by dislocations

This section will address a variety of models that consider the irreversibility of line defects

and point defects within a crack tip damage zone [113].

2.2.2.1 Crack nucleation at free surfaces

In a foundational approach, May [116] developed a model for crack nucleation based only

on irreversible random slip planes that form valleys deep enough to be considered as cracks.

Later, Rosenbloom and Laird [179] were able to model the surface roughening observed

experimentally after a certain number of cycles, but they could not account for the fact

that cracks tend to nucleate at the interface between the slip band and the matrix and that

a net amount of material is extruded from the slip band.

In a different approach, Lin and Ito [107] attempted to model slip bands by using only

two very close slip planes, one activated during forward loading and the other during reverse

loading (Figure 5). A drawback of the model is the ad hoc assumption that plastic strain

localization in slip planes produces a stress field in which resolved shear stresses vary linearly

from positive in a given slip plane to negative in the adjacent one. This assumption has not

been supported by experimental evidence or independent simulations.

Tanaka and collaborators [193, 196] further explored the idea of very close parallel

layers that accumulate deformation by modeling irreversible dislocation pileups of different

signs against a GB, as shown in Figure 6. They used continuously distributed continuum

dislocations and LEFM to deduce a dependence on the grain size of the threshold the stress

intensity factor range (∆Kth) and the fatigue life. Their results constitute a theoretical

basis for the power-law fatigue life models.

Following this approach, Navarro and de los Rios [147] employed a 2D elastic-plastic

model based on dislocation pileups and cyclic crack tip displacement range to assess the

effect of slip band blockage on successive grains. Their results showed that the constraint

on slip caused by the grains contributed to oscillatory crack growth rates close to those

observed for small cracks as depicted in Figure 7. This work emphasized that both strain

localization and GB blockage affect the driving force for fatigue crack growth.
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Using another approach, Mura and colleagues [203, 142] proposed fatigue crack initiation

formulations based on energy considerations using the elastic theory of dislocations and

dipoles. This work assumes that dislocation dipoles accumulate as a result of irreversible

dislocation motion along different favorably oriented slip planes, which become active in

tension or in compression. As a result, the elastic energy increases until it is relieved by the

crack initiation along PSBs. Thereafter, Sangid, Sehitoglu and colleagues [182, 181, 180]

also analyzed fatigue crack initiation at slip bands and GBs using energy-based models

enriched with atomistic simulations that account for the role of GBs. Their work developed

a methodology to compute the energy balance for a PSB and employed a failure criterion

based on the minimization of the PSB energy with respect to plastic deformation.

The studies based on energy considerations were successful in explaining the evolution

of the fatigue driving force to nucleate cracks as a function of the dislocation accumulation

process; however, they rely either on pile-up mechanisms, PSBs with ladder structures or

other predefined dislocation structure without considering arbitrary complex dislocation

organization within slip bands and multislip effects. Moreover, they ignore crack growth

aspects and the role of the environment in the nucleation of cracks.

More recently, improvements in computational capacity have allowed researchers to

model plastic deformation by explicitly inserting, tracking, and removing dislocations rep-

resented by line singularity fields in a linear elastic solid. The so-called discrete dislocation

dynamics method was successful in describing strain localization [48] and also surface relief

[47]. Similarly, atomistic simulations proved useful in revealing the irreversible interactions

among defects and foreign environmental atoms at the crack tip that are responsible for

crack growth.

Although dislocation dynamics and atomistic approaches are promising, they are com-

putationally too demanding for engineering applications; more importantly, they are usually

based on limited, simplified assumptions regarding the representation of dislocations. These

simplifications render such models more qualitative (e.g., two-dimensional, no mixed char-

acter, no cross-slip nor climb, extremely rapid loading, and approximate potentials), so

other continuum models still retain substantial importance.
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Figure 7: Variation of the crack driving force in crossing many grains. When the crack
crosses a new GB, the driving force jumps instantaneously and continues decreasing up to
the next GB. Adapted from [147].

2.2.2.2 Crack nucleation at interfaces

Several experimental studies on bicrystals and polycrystals have shown that GBs are some-

times favorable sites for cracks to nucleate [209, 78, 138]. Zhang and Wang [225] reviewed

the accumulation of plastic deformation in Cu bicrystals and concluded that intergranular

failure is promoted for medium and large misorientation angles. Furthermore, they showed

that the impingement of slip bands on GBs produces strain concentrations that initiate

cracks at multiple locations along a GB; this is also observed in a variety of FCC metals

[202], as exemplified by Figure 8. These studies are in agreement with the experiments

developed by Mughrabi et al. [141], who concluded that cracks could form along GBs

in Cu polycrystals via the Zener-Stroh mechanism. In this mechanism, when dislocations

blocked by obstacles pile up (e.g., at GB), they can develop stresses high enough to render

a crack more energetically favorable [190, 191]. Following the work from Zener, Stroh ini-

tially proposed that around 1000 dislocations on a slip plane were require for coalescence to

occur [190], but recognizing that so many dislocations could not be found in experiments,

he later argued that a few hundred would be enough if multiple slip planes were allowed
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Ni Bi-crystal Ni Polycrystal

Figure 8: Intergranular cracking caused by the impingement of slip bands on GBs in Ni.
Note the distributed character of the damage, which originates cracks at several locations
along a GB. (Left) Adapted from [202]. (Right) Adapted from [138]

[191]. More recently, Cherepanov concluded that cracks at interfaces of different anisotropic

elastic materials could be formed with just a few dislocations [40].

Fan [53] reviewed the behavior of cracks at the interfaces of anisotropic elastic materials

and concluded that the Zener-Stroh mechanism relates to the behavior of smaller cracks

while the traditional Griffith theory [6] is valid for larger cracks. Furthermore, Fan also

argued that the energy release rate for Zener-Stroh cracks loaded with external stress has

contributions from a plasticity factor (super-dislocation Burgers vector) and a stress factor

(normal stress to the interface). Although these conclusions are valid for “brittle-type”

boundaries that cannot emit dislocations from crack embryos, their validity for ductile met-

als depends on the misorientation between grains that regulate the fast diffusion of foreign

atoms (typically from the environment), enhancing the brittle character of the boundaries.

2.2.3 Crack nucleation models assisted by vacancies

Low amplitude strain cycling of metals leads to plastic strain localization, which is char-

acterized by an intense dislocation activity within constrained regions. Antonopoulos and

co-workers [8] showed that the production and the annihilation of dislocations results in an

extensive generation of point defects, among which vacancies dominate in terms of num-

ber density. Furthermore, they argued that vacancies accumulate within the dislocation
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structure in the slip band (i.e., dipole walls) and produce long-range tensile effects on slip

bands. This hypothesis was later used by Brown and Ogin [27] who, instead of modeling

dislocation pileups as per Tanaka and Mura [196], accommodated the boundary mismatch

strain by assuming a uniform array of dipoles. The model results in a singular stress at the

intersection of the slip band with the surface, which drives the crack growth.

The EGM model (Essmann-Gossele-Mughrabi) [51] also assumed that dislocation an-

nihilation generates high concentrations of vacancies that migrate, depending on the tem-

perature; however they proposed that vacancies accumulate along the slip band-matrix

interface. The boundary mismatch strain is again accommodated by an array of dipoles

under compression, which is not in agreement with the results from Brown and Ogin [27].

Polak further developed the EGM model [164, 169] by extending the production and mi-

gration of vacancies to the entire volume of the slip band. Later, Hsiung and Stoloff [77]

indeed observed evidence of vacancy diffusion towards the slip band interface and proposed

a function that would estimate the number of cycles to nucleate a crack between the slip

band and the matrix; their estimate depends on the vacancy concentration, which drives

crack nucleation.

Although point-defect-based models have traditionally been formulated only for describ-

ing early crack nucleation at intrusions, these models recognize that the fatigue driving force

may depend on the production and the migration of point defects along localized bands. In

fact, atomistic simulations have shown that crack growth due to vacancy condensation is a

feasible mechanism at that scale [151, 54]. Moreover, the nucleation of cracks under creep

conditions at GBs has long been recognized to occur at high temperature due to coalescence

of vacancies depending on the temperature and the strain energy release rate [61]. Such a

mechanism might also be expected to occur for vacancies produced under fatigue conditions

as a result of the interaction among dislocations at slip bands impinging on GBs.

2.2.4 Crystal plasticity and FEM approach

Since crack nucleation and crystal orientation are connected in transgranular failure of

metals with planar slip, any constitutive law employed for simulating crack initiation and
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early growth needs to account for crystallographic slip geometry. In this sense, crystal

plasticity constitutive formulations [9, 10] are among the simplest and least computationally

demanding models that can describe crystal orientation by allowing plastic deformation to

occur only along a finite number of slip planes. Certainly, these models have been extensively

used in crack initiation analyses. In an early study, Gall et al. [64] investigated variability in

crack nucleation by modeling a notch with a crystal plasticity scheme. Their model varied

the orientation of only two slip planes and characterized the deviation of the nucleation

driving force. Later, Bennett and McDowell [19, 20] employed models with explicit cracks

to study the effect of different crystallographic orientations of the neighboring grains on the

CTD, an approach also employed by Ferrie and Sauzay [57].

Some recent works avoided representing cracks with refined meshes and employed indi-

cators of fatigue damage. Dunne et al. [49] reproduced the grain morphology in a crystal

plasticity model of a Ni-base superalloy and tried to predict the site of formation of a crack.

Although they successfully described the slip pattern found in experiments, cracks did not
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form in the highest plastic strain regions, suggesting the need for Fatigue Indicator Param-

eters (FIPs) that do not depend just on plastic strain [121]. Kirane and Ghosh [90, 91] also

examined crack nucleation in simulations that accounted for realistic distributions of grain

size, shape and crystallographic orientation of Ti alloys undergoing dwell fatigue. They

proposed a fatigue crack nucleation criterion that depends on the local stresses and the

length of the neighboring pile-ups in order to measure the non-local accumulated plastic

strain on neighboring grains.

The importance of these investigations is that they showed the influence on fatigue crack

initiation of the stress and strain concentration that occurs within grains and at GBs, as

previously mentioned as one of the features in Tanaka’s model. Nevertheless, Tanaka’s

models localize the inelastic strain on infinitesimally close planes, while traditional crystal

plasticity models employ a diffuse inelastic strain treatment. For the sake of complete-

ness, Repetto and Ortiz [174] investigated the effect of vacancy generation and diffusion by

proposing a decomposition of the deformation gradient that included vacancy generation,

and their results resemble those found in crack nucleation experiments. However, the role

of vacancies is not usually explicitly addressed within FEM models due to poor current

understanding of their behavior, and to the increase in computational complexity.

2.2.5 Driving force and FIPs

During crack nucleation and the early growth processes, the local driving force is affected by

the microstructure, which has particular implications for MSCs. Hence, the driving force for

early fatigue damage needs to be characterized using FIPs that describe the local fields (i.e.,

not the far field described by the stress intensity factor in LEFM). In the past fifty years,

a myriad of formulations have been proposed to correlate early fatigue crack growth based

on stress, strain or energy concepts [188]. The sheer number of formulations shows that a

single continuum model cannot capture the nature of all metals fatigue under multiaxial

conditions. Thus, the choice of a FIP is necessarily linked to the kind of deformation

mechanism involved in the material and the loading conditions to analyze.

Fatemi and Socie [56] proposed a FIP based on the critical plane approach of the general
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form

FIPFS = ∆γpmax

[
1 + k

σmaxn

σy

]
, (2)

in which ∆γpmax is the maximum cyclic plastic shear strain, σmaxn is the maximum normal

stress on the maximum plastic shear range plane normalized by the yield strength σy, and

k is a constant, usually between 0.5 and 1. FIPFS correlates well with the early fatigue be-

havior of metals that exhibit planar slip and provides a useful quantitative characterization

of the early crystallographic crack growth phenomena [188, 55].

The value of such a parameter was explored by Reddy and Fatemi [173] and McDowell

and Berard [120], who postulated that FIPFS represents the fatigue driving force and plays

a role similar to that of the ∆K or the ∆J-integral in predicting fatigue crack nucleation. In

particular, McDowell and Berard [120] and McDowell [118] showed that the Fatemi-Socie

parameter in Eq. (2) behaved over a broad range of multiaxial loading conditions in a

manner very similar to the ∆J-integral of elastic-plastic fracture mechanics, which is of

course closely related to the fatigue crack growth driving force. Afterwards, several inves-

tigators have successfully employed approaches akin to the Fatemi-Socie parameter along

with crystal plasticity formulations for studying the effects of microstructure on fatigue life

[220, 185, 223, 171].

2.3 Preliminary conclusions

This review of the current understanding of the development of small fatigue crack supports

these propositions:

• Traditional homogeneous-based fracture mechanics cannot describe the early behavior

of fatigue cracks because the models are based on far-homogeneized fields magnitudes

and not local measurements. Instead, an adequate description of the fatigue driving

force requires the characterization of the local fields, which could be carried out by

FIPs that depend on the damage mechanism.

• Mechanically irreversible processes are the original cause of fatigue damage, either as

point or line defects, although the nature of the damage may change along the fatigue
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life. Even though fatigue models may not consider atomic scale processes explicitly,

they should represent the homogenized effect of those processes.

• When the amount of loading is below yield strength, the microstructure can greatly

affect plastic deformation orientation and continuity among grains. This variability

is then transferred to the fatigue lives of components.

Hence, the prediction and comparison of the fraction of fatigue life asso-

ciated with the growth of MSCs is still an open challenge [119]. This impacts

mechanical design by necessitating an increase in the safety factor due to un-

certainty, which points to the utility of the present research. The proposed in-

vestigation employs the finite element method and crystal plasticity formulations to study

the fatigue life of MSCs in 3D polycrystals. It does this by explicitly rendering the grain

structure of FCC metals with low-to- medium SFE that manifest planar slip. The preferred

approach avoids explicit modeling of cycle-by-cycle crack extension with explicit nodal re-

lease; Instead, it employs FIPs to estimate the driving force for small crack growth.
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CHAPTER III

SINGLE CRYSTAL ANALYSIS

3.1 Overview

The fact that the transgranular growth of MSC is affected by the character of the GBs sug-

gests that models homogenized above a grain scale would not capture the intrinsic variability

of small crack growth. This focuses attention on the simulation of explicit microstructures.

Moreover, fatigue crack formation has long been associated with the localization of plas-

tic strain, which suggests that subgrain slip localization plays a role in defining the driving

force for MSC crack growth. Limited experimental evidence has shown “anomalous” growth

rates in single crystals ([111, 23, 224]) even in the absence of a clear intrinsic microstruc-

tural length scale associated with the minimum crack growth rate. Due to the anisotropy

and heterogeneity of single slip, the influence of strain localization is expected to be more

significant in Stage I crystallographic crack growth, which comprises a significant portion

of the life under high cycle loading conditions (low strain amplitudes).

Although the localization of cyclic plastic strain (i.e., not induced by geometric stress

concentration) has long been recognized in experimental work as a precursor to fatigue

damage, its influence on the crack tip driving force has not been studied extensively by

theoretical or computational models. Indeed, most studies have avoided the additional

complexity of introducing a crack and have attempted to describe either the formation or

the deformation of regions with localized plastic strains (i.e., slip bands). Winter [213] was

among the first to model a slip band as a different material embedded in a matrix. His work

assumed that the composite material deforms following the rule of mixtures. This approach

was employed by many to characterize the cyclic evolution of pure metals, and more recently

the same basic idea was employed in modeling slip bands as a different material in a crystal

plasticity framework [228, 183].

One of the most detailed studies to date that considers effects of slip bands on the
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crack driving force is the work by Hutchinson and Tvergaard [82]. Their investigation

considered the effect of slip bands on cracks using a 2D fracture mechanics approach under

small scale plasticity, and it showed that the driving force can be improperly estimated

using homogeneous plasticity. These results are relevant for interpreting single crystal

experiments in which plastic strain localizes. Hence, this chapter studies the driving force

for fatigue crack growth in single crystals by modeling short cracks under Stage I. The

simulations employ FEM crystal plasticity models containing an idealized slip band with

material properties that differ from the matrix. Two measures of the driving force are

compared, ∆CTD and FIPs, in order to establish the degree to which they can be related

under remote multiaxial displacement/strain-controlled loading. The final goal is to learn

from the simulation of single crystals to extrapolate those lessons to individual grains in

simulations of polycrystals.

3.2 Fatemi-Socie-based FIP and ∆CTD

The damage-tolerant approach assumes the presence of a crack and calculates its crack

growth rate by means of the range of stress intensity factor (∆K), the range of the J-

integral (∆J) or the ∆CTD. These measures attempt to characterize the driving force for

crack growth under cyclic loading of metals, and their generalized success has prompted

their use in situations well beyond the limits of the underlying hypotheses [178, 117]. As

mentioned in the previous chapter, the complexity of studying MSC fatigue driving forces

lies in correctly describing the local fields, which are assumed a priori in the similitude

hypothesis of LEFM and EPFM.

The use of the ∆CTD as a driving force introduces the need to conduct detailed FEM

simulations that capture the influence of load history and microstructure in the vicinity

of the crack tip. The CTD is typically computed using the displacement of two nodes

just behind the crack tip, decomposing the displacement into an orthogonal basis parallel

(giving the crack tip sliding displacement, CTSD) and normal (giving the crack tip opening

displacement, CTOD) to the notch plane. The ∆CTD approach has been extensively and

successfully employed in fracture mechanics experiments and theoretical modeling [16], but
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it has the drawback of requiring detailed meshes that are computationally demanding.

More recent approaches have emerged that attempt to estimate the local driving force of

small fatigue cracks under complex loading sequences. A myriad of FIPs used to correlate

multiaxial fatigue crack initiation have been based on stress, strain or energy concepts

[188], with the caveat that a single continuum parameter cannot correlate the fatigue crack

initiation behavior of all metals under multiaxial conditions. In other words, the choice

of a FIP is linked to the material-specific deformation and fatigue damage mechanism(s).

Several studies have employed approaches akin to the Fatemi-Socie parameter instead of

the ∆CTD for studying the effects of microstructure on fatigue crack formation and early

crystallographic growth [185, 223, 171].

A primary objective of this research is to explore whether such a FIP can achieve a

linear correlation with the ∆CTD for a crack within a single grain/crystal. Accordingly,

the FIP attained over the third loading cycle will be compared to the corresponding ∆CTD

in cracked single crystals for several stationary crack lengths (no consideration of crack

growth and corresponding wake effects) employing a crystal plasticity constitutive model

for Cu with a variety of meshes, loading conditions, and plastic strain localization scenarios

as follows:

• Shear and mixed mode loading: Transgranular small fatigue cracks evolve from shear-

dominated growth to opening-dominated growth; hence, an adequate driving force

must represent the behavior of the crack tip under multiaxial loading conditions.

This study evaluates ∆CTD and FIPs under imposed remote shear and mixed mode

loading conditions.

• Plastic strain localization: The effect of plastic strain localization on ∆CTD and FIPs

is analyzed by modeling cracks lying at the interface of idealized slip bands with a

matrix having different material properties. For comparison, two slip band thicknesses

are modeled, and the driving forces are computed for models without slip bands.

• Parametric study of normal stress coefficient, k: The literature does not provide a

clear method to estimate the value of the constant k in the Fatemi-Socie FIP; this
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chapter undertakes a parametric study to understand the sensitivity of the FIP and

its correlation with ∆CTD.

• Mesh refinement: Cyclic plastic strain depends on the volume over which it is eval-

uated, and the maximum FIP attained changes with the size of the FEM mesh em-

ployed. Hence, the effect of the mesh is assessed in terms of mesh refinement, FIP

averaging volume, and crack tip shape/geometry.

3.2.1 Modeling single crystals with cracks

Simulations of single crystals with cracks were performed using 3D finite element models

in ABAQUS [1] with a user-material subroutine (UMAT) for Cu crystal plasticity based

on McGinty’s work [123]. The choice of Cu for simulations is based on the extensive char-

acterizations of the slip bands and fatigue evolution in the literature. Five models with

stationary cracks lengths of 2 µm, 5 µm, 7.5 µm, 10 µm and 15 µm were analyzed with

an initial spacing between parallel crack surfaces of 0.2 µm, as shown in Figure 10. This

initial opening is about one order of magnitude smaller than any other dimension, and

should be interpreted as a rough approximation of experimental observations [100, 37, 176].

The models contain about 3000 reduced 8-node brick elements (C3D8R) constructed with

ABAQUS visual interface to introduce some refinement in the element size towards the tip

and slip band. Note that the latter requirement introduced asymmetries in the mesh, al-

though their effect was negligible. The crack tip geometry was initially chosen as semicircle

with a minimum of 10 elements along the perimeter, which follows the recommendations

by Anderson [6] for fracture mechanics FEM simulations of elasto-plastic materials.

In one set of simulations the entire single crystal was allowed to undergo plastic de-

formation following the crystal plasticity constitutive model developed by McGinty [123];

these simulations are referred to as homogeneous and do not employ an explicit slip band of

localized plastic deformation. A second set of simulations involved single crystals in which

only the region immediately above and parallel to the crack (refer to Figure 10) had no

restriction in deforming plastically other than specification of potentially active slip sys-

tems; this region is referred to as the “slip band”. This band is considered as idealized as it
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Table 1: Displacements applied to the top face in µm for the different cases analyzed. The
displacement of the bottom face had the same magnitude and opposite direction/sense.

Shear 1 Shear 2 Shear 3 Mixed 1 Mixed 2 Mixed 3

X axis 0.005 0.010 0.050 0.00354 0.00707 0.03540
Y axis 0 0 0 0.00354 0.00707 0.03540

Nominal peak strain 0.05% 0.1% 0.5% 0.05% 0.1% 0.5%

does not attempt to represent in detail the complex structure and mechanics of an actual

persistent slip band in Cu single crystals. The width of the slip band was set at either 1

µm or 2 µm, which corresponds to the minimum width usually measured in cyclic loading

experiments on pure Cu ([59]); below this length-scale, cell structures become energetically

favorable [88, 108]. The crystal was oriented for single slip in remote shear loading, parallel

to the crack and the slip band (X-direction, or < 110 > (111)) slip direction, but the re-

maining planes are not symmetric with respect to the crack front. The model is employed

to determine the extent to which plastic strain localization in a slip band adjacent to a crack

affects the driving forces as a function of remote load amplitude and mixed mode character.

3.2.2 Applied loading

The loading sequence consisted of quasistatic relative displacement of the upper and lower

boundary planes of the crystal in Figure 12 under shear or mixed mode loading to achieve

nominal overall model peak strains of 0.05%, 0.1%, and 0.5%. These values were chosen

to provide plastic strains between 10−4 to 10−1, typical of the HCF to LCF transition

regimes. The magnitudes of the displacement vector (D) in Figure 13 were equivalent for

loading cases with similar number in Table 1 (e.g., Shear 1 and Mixed 1). Furthermore, the

out-of-plane displacement (Z axis) of the boundary planes was null, but they were allowed

to move freely along the (Y axis). Three cycles were applied between zero and maximum

displacement (i.e., Rε = 0) after which the fatigue driving forces were evaluated, as depicted

in Figure 13.
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planes of the single crystal as a function of time. The driving force is computed over the
loading portion of the third loading cycle
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3.2.3 Constitutive model for Cu

The continuum theory of crystal plasticity (cf. [43, 89]) was implemented in ABAQUS using

a UMAT for Cu at room temperature. The numerical scheme is an extension of the implicit

integration method outlined by Cuitiño and Ortiz [43], and was initially developed for Cu

by McGintiy [123]. The formulation combines anisotropic elasticity along with the flow rule

γ̇(α) = γ̇0

∣∣∣τ (α) − χ(α)

g(α)

∣∣∣msgn(τ (α) − χ(α)), (3)

where γ̇(α) is the shearing rate for slip system α, γ̇0 = 0.001s−1 is the reference shearing rate,

m = 50, τ (α), χ(α) and g(α) are the corresponding slip system shear stress, back stress and

drag stress, respectively. The slip system back stress was neglected for all planes (χ(α) = 0)

and the drag stress had an initial value of g0 = 13MPa, and evolves according to

ġ(α) = Hdirγ̇
(α) −Hdyng

(α)|γ̇(α)|, (4)

in which Hdir = 225MPa, Hdyn = 2.25MPa. For further details see Ref. [123].

This constitutive formulation was employed in the homogeneous specimen and in the slip

band region. The matrix that surrounds the slip band used the same constitutive model,

except that the initial drag stress was specified as g0 = 100MPa, which delays the onset of

plastic deformation.

3.2.4 Calculation of the driving force parameters

3.2.4.1 ∆CTD

The ∆CTD was evaluated by measuring the displacement between nodes 1 and 2 at the

mid-thickness (see local X-Y axis in Figure 10, right) over the loading portion of the third

loading cycle. The total crack tip displacement range was calculated using [112, 19, 20]

∆CTD =
√

∆CTOD2 + ∆CTSD2 (5)

The ∆CTOD and the ∆CTSD were calculated as the change in distance between nodes 1

and 2 in Figure 10, resolved along the X and Y axis directions, respectively, which follows

the methodology outlined by Shih [186] and has been extensively employed in fracture

mechanics [26].
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3.2.4.2 FIP calculation

As described by McDowell [119], FIPs offer an attractive and efficient means to estimate

the driving force for small fatigue crack growth because they avoids the direct measurement

or computation of the ∆CTD. The maximum cyclic plastic shear strain range on any plane

is computed to evaluate the FIP in Equation (2) using the ordered principal cyclic plastic

strain ranges over a cycle (∆εpi )cyc, for i = 1, 2, 3, as 1
2∆γpmax = 1

2 [(∆εp1)cyc − (∆εp3)cyc].

These principal plastic strain ranges correspond to the principal values of the plastic strain

tensor range, ∆Ep = Ep
final−E

p
initial. For proportional loading with a positive peak plastic

strain, we may estimate ∆γpmax based on the unloading half cycle from the peak load to the

minimum point in the cycle, such that ∆Ep = Ep
max−Ep

min. Here, subscripts max and min

relate to the peak and minimum points in the cycle, respectively. The unit normal vector

to the plane of maximum plastic strain range (π) is defined by the eigenvectors associated

with (∆εp1)cyc and (∆εp3)cyc, ν1 and ν3, i.e.,

π =
ν1 + ν3

||ν1 + ν3||
(6)

The normal stress to the plane of maximum range of plastic shear strain is then given by

σn = max(πiσijπj). The constant k = 1 is assigned in Equation 2, and the polycrystalline

yield strength (σy) is taken as 150 MPa.

3.3 Results of the simulations

3.3.1 ∆CTD and maximum FIP

This section presents the results of multiple measurements of the fatigue driving forces

in single crystals. As explained in section 3.2.4.1, the ∆CTD corresponds to the net dis-

placement of two nodes, while the FIP is computed for every element using Equation (2).

However, the fatigue driving force based on FIPs could be evaluated in several ways: the

simplest case is to employ the maximum FIP computed among those elements near the

crack tip. A second option is to define a non-local region and then average the FIP com-

puted for each element in that volume. In this case the driving force is referred to as an

average FIP.
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Figure 14 illustrates the ∆CTD, computed from simulations over the loading portion of

the third loading cycle, as a function of the stationary crack length for shear (left) and mixed

mode (right) loading. Overall, the ∆CTD exhibits a monotonic increase with decreasing

slope as the crack length increases. For specimens with slip bands under shear, differences

with the homogeneous case become more significant with increasing nominal peak strain.

Furthermore, the value of the ∆CTD is dominated by the ∆CTSD for shear loading, which

is typically an order of magnitude larger than the ∆CTOD in this case. When mixed mode

loading is applied, the ∆CTD has significant contributions from both the ∆CTSD and

∆CTOD; homogeneous and localized plasticity cases show a similar monotonic increase

with crack length, differing in the magnitude of the ∆CTD for increasing nominal peak

strain.

The dependence of the ∆CTD on slip bands varies with the crack length and load

amplitude. In the presence of a slip band, shorter cracks under low loading amplitude

(shear/mixed 1 and 2) exhibit larger ∆CTD while homogeneous specimens with longer

cracks show the opposite trend. Additionally, for shear and mixed loading, the results show

that the thickness of the slip bands exerts only a secondary influence on the crack driving

force, also found by Sauzay and Gilormini [183].

Figure 15 is equivalent in essence to Figure 14, save that it considers the maximum FIP.

Overall, the trends in both figures are comparable, but the maximum FIP shows differences

between models with and without slip bands. The similarities between Figures 14 and 15

suggest that the FIP and the ∆CTD may be correlated.

Figure 16 cross plots the maximum FIP near the crack tip versus the ∆CTD for all

cases studied, with and without slip bands, for all crack lengths and applied displacement

amplitudes. In all cases, the maximum FIP was located in proximity to the crack tip,

and the correlation to ∆CTD had a slope on the order of unity in logarithmic coordinates.

However, shear loading seems to shift the FIPs of the homogeneous specimens towards lower

values (blue dots). Furthermore, the FIP seems to lose the correlation with ∆CTD for very

low values of ∆CTD, suggesting a threshold value when the applied displacement amplitude

is decreased (also found in mixed mode loading with lower nominal peak strain, although
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Figure 14: ∆CTD measured from models with increasing static crack lengths for shear
(left) and mixed (right) mode loading. The numbers next to the loading mode correspond
to the applied displacement defined in Table 1. Symbol legend: � 1 µm band, • 2 µm
band, � Homogeneous.
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Figure 15: Maximum FIP as a function of static crack lengths for shear (left column) and
mixed mode (right column) loading. The numbers next to the loading mode correspond to
the applied displacement defined in Table 1. Symbol legend: � 1 µm band, • 2 µm band,
� Homogeneous.
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Figure 16: Maximum FIP reached close to the crack versus ∆CTD for shear (left) and
mixed mode (right) loading. The numbers next to the loading mode correspond to the
applied displacement defined in Table 1.

not shown here). This threshold is expected since the comparison is made between a FIP

based on cyclic plastic deformation and the total ∆CTD (which includes elastic and plastic

components).

To avoid the threshold and extend the correlation between the FIP and the ∆CTD over

broader domains, either the elastic component of the ∆CTD should be subtracted or the

FIP should additionally account for elastic strain. The latter option is preferred, in view of

the complexities in resolving the elastic part of the ∆CTD. Figure 17 presents the maximum

FIP among all elements but calculated using the full strain tensor to compute ∆γmax. In

this case, the results do not show the threshold presented in Figure 16, and the correlation

between the total-strain FIP and ∆CTD extends for the entire load range studied. The

shift of the data relative to homogeneous specimens still persists in shear loading. Clearly,

the plastic strain range dominates the FIP near the crack tip, as expected.

3.3.2 Volume averaged FIPs

As a means of arriving at mesh insensitive measures of FIPs and respecting the finite

volume of the fatigue damage process zone [119], nonlocal (volume averaged) measures

of cyclic plastic shear strain range and normal stress are adopted. This is also justified
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Figure 17: Maximum total-strain FIP reached close to the crack versus ∆CTD for shear
(left) and mixed mode (right) loading. The numbers next to the loading mode correspond
to the applied displacement defined in Table 1.

by the fact that dislocation substructures and crack nuclei of finite scales form on the

order of a µm; for example, plastic deformation and fatigue damage are intrinsic non-local

processes [21, 114, 119, 121]. In view of the strong gradients of inelastic deformation and

the presence of a physical damage process zone at the tip of an advancing fatigue crack, it

is to be expected that the characteristic volume for averaging FIPs (see Section 3.2) should

somehow relate to the geometry of the crack tip, cyclic plastic zone size, and so forth. For

example, when a single slip band has developed, the crack driving force depends on the

length of the ligament up to the GB and not the volume of the grain [114]. To evaluate the

effect of the averaging volume on the driving force, the FIP was averaged based on values

from each element in homogeneous specimens over the following volumes:

• Spheres of either 3µm or 5µm in diameter, randomly placed in the single crystal. The

average FIP corresponds to the maximum value found among all of the spheres among

50 locations/samples near the notch root,

• Bands of either 1µm or 2µm, similar to the volume occupied by slip bands. These

averaging volumes are parallel to the slip plane that is expected to activate the most,

so the average value should represent the behavior of the entire slip plane,
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• The entire volume of the crystal.

To avoid averaging over essentially elastic deformation regions, only the elements within

each volume that have FIP values above 10−8 were considered.

The effect of the averaging volume FIPs on homogeneous specimens is assessed in Figure

18, which compares the FIP averaged over a variety of domains. All the averages follow

the same trend, but the average over spheres seems to exhibit higher variability, which is

expected since as the limit of the sphere size approaches zero, the maximum FIP values

should be recovered. Additionally, the location of the spheres adds a degree of freedom that

contributes to the variability of the results.

Regarding the average over bands, the change from 1 µm to 2 µm bands does not

seem to affect the results significantly, but they differed from averaging the FIPs over

the entire crystal, especially for low amplitude loading. The fact that differences decrease

with decreasing loading amplitude suggests that for small loading amplitude, the plastic

deformation in homogeneous specimens did not extend outside the band, but localized

within it.

The good behavior of the band average in Figure 18 suggests that the average FIP on

the volume defined by the slip bands can moderate the variability of the results. In the

case of the simulation of homogeneous specimens, the averaging volume chosen corresponds

to a band of 2µm, similar to that occupied by slip bands. Hence, the rest of this and the

following chapters will employ FIPs averaged along bands that are parallel to the most

activated slip plane, and they will be referred as to averaged FIPs.

Figure 19 presents the results of the averaged FIP for the simulations introduced in

section 3.3.1 as a function of static crack lengths. The comparison with Figures 14 and

15 shows that the evolution of the averaged FIPs is smoother than that of maximum FIP

values, and resembles the evolution of the ∆CTD.

Figure 20 depicts the comparison between the nonlocal FIPs averaged along bands and

the ∆CTD; It shows that both parameters have almost a one-to-one correlation with slightly

less variability than in the case of maximum FIP vs ∆CTD. Additionally, the correlation

between the nonlocal FIP and the ∆CTD does not appear to be affected by the presence
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Figure 18: Comparison of the FIP averaged over spheres, bands or the entire crystal for
homogeneous specimens as a function of static crack lengths. Symbol legend: • 3 µm sphere,
• 5 µm sphere, H 1 µm band, N 2 µm band, 2 entire crystal.
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Figure 19: Averaged FIP as a function of static crack lengths for shear (left column) and
mixed mode (right column) loading. Symbol legend: � 1 µm band, • 2 µm band, �
Homogeneous.
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Figure 20: FIP averaged over bands parallel to the crack versus ∆CTD for shear (left) and
mixed mode (right) loading.

of a slip band, and all results in Figure 20 follow a single power law.

3.3.3 FIP calculation assessment

For proportional loading, the methodology to calculate the FIP introduced in section 3.2.4.2

is simpler than the approach employed by McDowell and coworkers [171], which is described

in further details in Appendix A. This methodology requires calculation of four eigenvalues

(instead of two) and computes the plastic shear range by subtracting the plastic shear

calculated at maximum and minimum loading, ∆γpmax = γpmax − γpmin, using that,

γpmax =
∣∣∣εp1|max − εp3|max∣∣∣ sgn(εp1|max),

γpmin =
∣∣∣εp1|min − εp3|min∣∣∣ sgn(εp3|min), (7)

in which (εpi )cyc, for i = 1, 2, 3 are the ordered principal plastic strains, and the subscripts

max and min refer to the peak and minimum points in the cycle, respectively. The value

of ∆γpmax is then employed to compute the FIP along with the stress acting normal to the

plane of γpmax, following the procedure described in section 3.2.4.2

To assess the equivalence of both methodologies, a set of fully reversed simulations

(Rε = −1) were developed for Shear and Mixed loading as described in Table 1. This type
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Table 2: Displacements applied to the top face in µm for the different cases analyzed. The
displacement of the bottom face had the same magnitude and opposite direction.

Tensile 1 Tensile 2 Tensile 3

X axis 0 0 0
Y axis 0.005 0.010 0.050

Nominal peak strain 0.05% 0.1% 0.5%

of loading is only employed in this section for comparing FIP calculations methodologies.

Additionally, tensile loading cases were analyzed in which Rε = −1 and the displacement

vector D was along the Y direction, as described in Table 2. The calculations used only

homogeneous specimens (all the elements hold the same constitutive model), but the volume

occupied by 2µm slip bands was employed to compute an averaged FIP. Figures 21 and 22

compare the maximum FIPs and the FIPs averaged along 2µm bands computed with both

methodologies. The results show good agreement among the calculations; only a slight bias

was observed with increasing loading, which supports the calculations in section 3.2.4.2.

3.3.4 Influence of the constant k in the FIP definition

Little guidance exists regarding the value of the constant k in the Fatemi-Socie parameter

of Equation (2), which controls the influence of normal stress to the plane of maximum

plastic shear strain range. The form of the FIP is loosely related to the models from Brown

and Miller [28, 87] and Findley (see Ref. [188]) that argue for the role of normal stress (or

strain) to the crack plane in enhancing the crack driving force (cf. [118]). Thus, the effect

of this constant on the correlation between the total-strain FIP and ∆CTD was analyzed

by varying k from 0 to 2 and then pursuing linear regression in log-log plots, which was

performed by using a Matlab subroutine [99] to minimize the mean square error (MSE) in

correlation with the ∆CTD. The slope of the linear regression represents the exponent b in

the power law

FIP(k) = C∆CTDb, (8)

while the intersection with the vertical axis represents the log(C). Figure 23 presents an

example of the linear regression using k=1, and is representative of all the cases analyzed.
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Figure 21: Comparison of the max FIP calculation as a function of static crack lengths for
shear (left), mixed (center), and tensile (right) mode loading.

42



� FIP computed in this work � Przybyla and McDowell [171]

Shear3

Shear2

Shear1

A
v
g
.
F
IP

Crack Length [µm]

A
v
g
.
F
IP

A
v
g
.
F
IP

2.5 5 7.5 10 12.5 15

2.5 5 7.5 10 12.5 15

2.5 5 7.5 10 12.5 15

0.005

0.015

0.025

0.001

0.0025

0.004

0.003

0.007

0.0011

Mixed3

Mixed2

Mixed1

Crack Length [µm]

2.5 5 7.5 10 12.5 15

2.5 5 7.5 10 12.5 15

2.5 5 7.5 10 12.5 15

0.005

0.015

0.025

0.001

0.0025

0.004

0.003

0.007

0.0011

Tensile3

Tensile2

Tensile1

Crack Length [µm]

2.5 5 7.5 10 12.5 15

2.5 5 7.5 10 12.5 15

2.5 5 7.5 10 12.5 15

0.005

0.015

0.025

0.001

0.0025

0.004

0.003

0.007

0.0011

Figure 22: Comparison of the averaged FIP calculation as a function of static crack lengths
for shear (left), mixed (center), and tensile (right) mode loading.
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Figure 23: Linear regression of the averaged total-stain FIP vs ∆CTD. Shear loading (left).
Mixed loading (right).

Figure 24 presents the constants b and C, as calculated using the linear regression of

the averaged total-stain FIP, including the data from all the models (i.e, with and without

slip bands). For the entire range of k, the correlation is almost one-to-one (i.e., b ≈ 1) for

both shear and multiaxial loading. Coefficient C evolves in similar ways for both shear and

mixed loading, but the latter is slightly lower than the former. Finally, the bottom plots in

Figure 24 show the MSE of the linear regression, which increases with k, and which thus

suggests that the dependence on the normal stress may be slightly nonlinear, as suggested

by other models [188]. Note that the quality of the correlation may be improved by fitting

data from simulations conducted either with or without slip bands.

The previous analyses consider linear regressions of shear and mixed mode loading data

independently. Both loading conditions resulted in an approximately one-to-one correlation

(b = 1.1±0.1), but the coefficient C showed a larger relative difference. Figure 25 describes

the ratio of the coefficients b and C for shear and mixed mode loading. Interestingly, the

coefficients for the shear and mixed modes become more similar with increasing value of

k, for which the MSE increases. Thus, the quality of a single correlation for multiaxial

loading conditions needs to balance these two opposite trends; consequently the optimum

k is not the value associated with minimum MSE. Further loading condition data would be

necessary to determine the best correlation between the FIP vs ∆CTD for a general loading
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Figure 24: Linear regression of the averaged total-stain FIP vs ∆CTD. b, C correspond to
Equation (8). Shear loading (left). Mixed loading (right).
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Figure 25: Relation between the regression coefficients that were determined independently
for shear and mixed mode loading. Note that increasing k makes the coefficients more
similar, which would be ideal for single multiaxial correlation between the FIP and ∆CTD.
b and C correspond to Equation (8).

situation, but the point is made that exponent b showed smaller variations than coefficient

C for different loading modes.

For completeness, regression analysis was performed with the maximum FIP data in-

stead of the average FIP, and the results are presented in Figure 26. In this case, fitting

parameters for Equation (8) are significantly different between shear and mixed loading,

while the MSE is much larger than in the averaged case. Thus, these results support the

use of averaged values instead of local maximum magnitudes to characterize the driving

force with a single correlation law for multiple loading conditions.
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3.4 Influence of the model geometry

With the objective of generalizing the results, this section presents additional simulations

that are similar to the those previously introduced, but with particular differences in ge-

ometry, i.e., the initial spacing of the faces of the crack, the crack tip geometry, and the

mesh refinement. The loading conditions, the material and the crystallographic orientation

are identical, but the analyses only consider cracks adjacent to a 2 µm slip band and ho-

mogeneous specimens, because the results showed that the thickness of slip bands plays a

secondary role on the driving forces.

3.4.1 Initial crack face spacing

To evaluate whether the initial separation between the faces of the crack (initial opening)

affects the results, a new set of simulations was developed using an initial crack opening of

0.05µm (compared to 0.2µm).

Figures 27 and 28 present the evolution of the ∆CTD and the band averaged FIP with

the crack length, respectively, and they depict trends similar to those found for an initial

crack face spacing of 0.2µm (Figures 14 and 15). In particular, the localization of plastic

strain in a 2µm band enhances the driving force for high and low displacement amplitudes,

and the homogeneous specimens with shorter cracks present slightly higher driving forces

for crack growth, especially for mixed loading. Figure 29 exhibits the FIP averaged over

2µm bands as a function of the ∆CTD for simulations with an initial opening of 0.05µm,

for shear and mixed loading. These results show a shift of the FIP to lower values for

the homogeneous specimens, and an almost one-to-one relation between the FIP and the

∆CTD, similar to the results shown in Figure 20.

3.4.2 Effect of crack tip geometry

A primary drawback of using ∆CTD as the fatigue crack growth driving force is that it

requires the analysis of the details of the crack tip geometry and the choice of location at

which to measure/compute the displacements. The simulations described in the previous

sections have presented cracks with circular tip geometry. For comparison, this section
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Figure 27: ∆CTD as a function of crack length for an initial crack face spacing of 0.05µm.
Shear loading (left). Mixed mode loading (right). Symbol legend: • 2 µm band, � Homo-
geneous.
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Figure 28: Averaged FIP as a function of crack length for an initial crack face spacing of
0.05µm. Shear loading (left). Mixed mode loading (right). Symbol legend: • 2 µm band, �

Homogeneous.

50



� Shear1  Shear2 � Shear3
Homogeneous 2µm band

A
v
g
.
F
IP

∆CTD[µm]

10−4 10−3 10−2 10−1

10−4

10−3

10−2

10−1

� Mixed1  Mixed2 � Mixed3
Homogeneous 2µm band

∆CTD[µm]

10−4 10−3 10−2 10−1

10−4

10−3

10−2

10−1

Figure 29: Comparison between ∆CTD and the averaged FIP for an initial crack face
spacing of 0.05µm. Shear loading (left). Mixed mode loading (right).

assesses single crystals with a 90◦ triangular crack tip, as depicted by Figure 30. The load

history is similar to that shown in Figure 13, but only two nominal peak strain cases were

analyzed, 0.1% and 0.5% (shear/mixed mode 2 and 3). In this case, the driving force is also

measured over the loading portion of the third loading cycle, and the FIP is calculated as

stated in section 3.2.4.

In Figure 31 the ∆CTD for homogeneous and 2 µm slip band specimens that were

shown in Figure 14 are reproduced in solid symbols; These are compared with the results for

triangular crack tips in hollow symbols and thicker lines. The ∆CTD does not appear to be

significantly affected by changing the shape of the tip geometry, and, more importantly, the

differences are consistent for all the load histories and meshes analyzed. Thus, the change

from a circular to a triangular crack tip shape may justify a consistent bias of around 10%

in ∆CTD. Figure 32 presents the FIP versus ∆CTD for the circular tip (solid symbols)

and triangular tip (hollow symbols), for the two loading conditions analyzed, showing that

the shape of the crack tip affects to some extent the maximum FIP and ∆CTD correlation,

especially for higher driving forces.

However, the correlation between the averaged values of the FIP and the ∆CTD does

not appear to be affected by changing the shape of the crack tip, as shown in Figure 33.

51



0.1µm

0
.2
µ
m

20µm10µm

S
li
p

b
a
n

d

Y

X

Z

Y

X

Node 2

Node 1

2
0
µ
m

Figure 30: Cracked single crystal with a 90◦ triangular crack tip. The ∆CTD is measured
between nodes 1 and 2.

Indeed, there is a good agreement between the results for both crack tip geometries in shear

and mixed mode loading in several respects:

1. The threshold at low driving force,

2. The effect of a 2µm slip band in the driving force, and

3. A similar level of variability in the correlation between the FIP and the ∆CTD.

Finally, Figure 34 presents the results obtained by using the averaged FIP calculated

using the total strain tensor (including both elastic and plastic components); it supports the

conclusion that the crack tip geometry exerts only a secondary influence on the correlation

between the FIP and ∆CTD when the FIP is computed as averaged rather than as a

pointwise maximum in the mesh.

3.4.3 Mesh refinement

As mentioned previously, use of the maximum pointwise FIP has been avoided in previous

works by McDowell (2007,2010) in part due to its inherent mesh sensitivity; continued
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Figure 31: ∆CTD as a function of stationary crack lengths for shear (left column) and
mixed mode (right column) loading. Data in solid symbols correspond to homogeneous and
2µm slip band specimens in Figure 14, while the results for triangular crack tips are shown
in hollow symbols and thicker lines. Symbol legend: • 2 µm band, � Homogeneous.
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Figure 32: Maximum FIP close to the crack ∆CTD for shear (left) and mixed mode (right)
loading. Solid symbols: circular crack tip. Hollow symbols: triangular crack tip.
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Figure 33: Averaged FIP versus ∆CTD for shear (left) and mixed mode (right) loading.
Solid symbols: circular crack tip. Hollow symbols: triangular crack tip.
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Figure 34: Averaged FIP versus ∆CTD for shear (left) and mixed mode (right) loading.
Solid symbols: circular crack tip. Hollow symbols: triangular crack tip.

mesh refinement results in higher maximum FIPs in the proximity of a sharp crack tip. To

investigate the effect of mesh refinement on the driving force, the meshes for the circular and

triangular tip geometries with crack lengths of 2µm were refined, approximately doubling

the number of elements at the crack tip each time, as shown in Figures 35 and 36. Upon

refinement, the number of elements increased from about 3000 to 10000 for the circular

crack tip models and from about 2500 to 100000 for the triangular crack tip models. The

refinement is not homogeneous but is more intense towards the crack tip, which defines

better the strain fields where plastic deformation is the highest; hence, some mesh sensitivity

should be expected.

The refinement of models increases the computational time by orders of magnitudes

(from hours to weeks); therefore, further refinement would not be applicable in engineering

applications with current computation capabilities. Furthermore, the smaller element size

is about 4nm, which is about 10 Burgers vectors, additional refinement could affect the

validity of continuum theories. To reduce the computational work, the analysis of refined

meshes considered only a nominal peak strain of 0.1% (Shear2 and Mixed2), as described

in Table 1. Moreover, the models have homogeneous properties or a 2µm band parallel to

the crack.
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Figure 35: Mesh refinement analysis for the circular crack using 15, 30, 60 elements at the
crack tip and a crack length of 2µm .
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Figure 36: Mesh refinement analyzed for the triangular crack tip with 10, 25, 40 and 80
elements at the crack tip, respectively, and a crack length of 2µm.
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Figure 37: ∆CTD with increasing mesh refinement for Shear2 (left) and Mixed2 (right)
loading for the circular crack tip geometry. • Homogeneous, • 2µm band.

Figure 37 shows that for circular and triangular crack tip geometries and for both

loading modes, the value of the ∆CTD appears to be converging with increasing mesh

refinement for models with and without slip bands. Furthermore, the influence of a slip

band is significant and consistent among all the simulations. Hence, these results again

show the lack of influence of the crack tip geometry on the ∆CTD and the possible effect

of strain localization on small fatigue crack driving force.

Figures 39 and 40 illustrate the FIP-based driving forces as a function of increasing mesh

refinement for the circular and triangular crack tip geometries, respectively. The trends are

similar between circular and triangular tip geometries and show that FIPs increase mono-

tonically with increasing refinement. As expected, the maximum FIPs are more sensitive

to the refinement, and their values increased between 2 to 4 times, while averaged FIPs

exhibit less sensitivity, especially under single slip loading.

Overall, shear loading (with a single, dominant octahedral plane activated) seems to be

less affected by the crack tip mesh refinement, especially with regard to the averaged FIPs.

The results for mixed mode loading are affected by coarse meshes, but upon refining the

mesh the averaged FIPs varies in less than 15% when the number of elements in the model

is increased by a factor of 10. Thus, the mesh sensitivity can be mitigated with adequate

refinement, given the nonlocal scheme for estimating FIPs.
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Figure 38: ∆CTD with increasing mesh refinement for Shear1 (left) and Mixed1 (right)
loading for the triangular crack tip geometry. • Homogeneous, • 2µm band.

Maximum FIP values show almost no differences, qualitatively and quantitatively, whether

the elastic strains are considered or not (compare Max FIP with Max FIP(t-s)), which sug-

gests that plastic strains dominate. On the contrary, averaged values are more affected if

the elastic strains are employed in the calculation of the FIP, particularly for shear mode

loading.

When comparing shear and mixed mode loadings, the latter seems to be more affected

by mesh refinement. For example, ∆CTD exhibits higher values in homogeneous crystals

under Mixed2 conditions, although this trend is not consistently found in FIP calculations.

This lack of agreement among simulations is found for circular and triangular crack tips,

and may suggest that the averaging volume should include two slip bands, corresponding

to the two most active planes.

It is emphasized that the procedure of averaging FIPs is not intended to entirely elimi-

nate mesh sensitivity, but rather to regularize mesh sensitivity compared to the local max-

imum FIP case and to provide a measure of driving force that is consistently applied (in

terms of the averaging volume that corresponds roughly to a crack tip damage process zone).

Hence, the fact that such averaged FIPs conform, with higher confidence than pointwise

maximum FIPs, to a linear correlation with ∆CTD is a most relevant point of the present

study.
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Figure 39: Different FIP as a function of mesh refinement for Shear1 (left) and Mixed1
(right) loading for the circular crack tip geometry. Here, (t-s) refers to total strain calcula-
tions. • Homogeneous, • 2µm band.

59



A
v
g
.
F
IP

(t
-s
)

Crack tip elements

A
v
g
.
F
IP

M
a
x
F
IP

(t
-s
)

 Shear2

M
a
x
F
IP

20 40 60 80

20 40 60 80

20 40 60 80

20 40 60 80

×10−4

×10−4

×10−3

×10−3

7

8

9

10

0

2

4

6

0

2

4

6

8

0

2

4

6

8

 

Crack tip elements

 Mixed2

20 40 60 80

20 40 60 80

20 40 60 80

20 40 60 80

×10−3

×10−3

2

3

4

5

1

1.5

2

2.5

0.01

0.04

0.07

0.1

0.01

0.02

0.03

0.04

Figure 40: Different FIP as a function of mesh refinement for Shear1 (left) and Mixed1
(right) loading for the triangular crack tip geometry. Here,(t-s) refers to total strain calcu-
lations. • Homogeneous, • 2µm band.
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3.5 Preliminary conclusions

This chapter considered the short fatigue crack driving force for cracks in single crystals,

with and without idealized slip band heterogeneities, by analyzing the ∆CTD, the Fatemi-

Socie FIP, and the correlation between the two for several multiaxial loading conditions.

The results support the following conclusions:

• The localization of plastic strain in a slip band can exert significant influence on the

∆CTD, particularly for higher values, and appears to affect the threshold ∆CTD.

This observation suggests that fatigue models that do not consider slip band strain

localization, when relevant, may lead to inaccurate estimation of the small crack

growth driving force.

• The ∆CTD was successfully correlated with the Fatemi-Socie FIP (either maximum

or averaged values), suggesting that these measures of the fatigue crack driving force

may be interchangeable under certain conditions. Furthermore, the quality of the

correlation was not noticeably affected by introducing slip bands (with dimensions

much larger that the CTOD), and the crack tip geometry exerted only a secondary

influence on the driving forces.

• For values of the constant k in the Fatemi Socie FIP between 0 and 1, the correlation of

the averaged FIP and ∆CTD is almost one-to-one (e.g., b ≈ 1.1), and the mean square

errors present local minima for both remote shear and multiaxial loading conditions.

The evolution of the proportionality constant C is also similar between shear and

mixed loading, but its value differed for both cases.

• Averaged FIP values showed lower variability and dependence on the mesh refinement

than local maximum magnitudes. In particular, averaged FIPs under shear mode

loading showed lower dependence and consistent results, which is attributed to the

fact that the averaging volume (the slip band) is parallel to the most activate and

dominant slip plane. Mixed mode loading may be improved by averaging the FIP

along two slip bands, each corresponding to the two most active planes
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• Mesh refinement affects slightly the value of computed FIPs to a greater extent than

∆CTD, and the effect is more intense for mixed loading. Averaged FIPs demonstrate

reduced sensitivity, but the point is made that the goal is not to entirely eliminate

mesh sensitivity, but to achieve a consistency in the estimation of the driving force.

These findings offer fundamental support for simulation of small fatigue cracks using

FIPs, since they demonstrate that ∆CTD and Fatemi-Socie based FIPs are correlated

measures of the driving force. Furthermore, FIPs can be employed even in cases when

strain localization develops, and its correlation to ∆CTD is almost identical to the that in

homogeneous materials.

The following chapter will discuss the use of FIPs to evaluate fatigue crack growth rates

and later on, in Chapter 5, simulations with single crystals will be revisited employing a

different constitutive model and FIP averages along multiple bands.
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CHAPTER IV

NUCLEATION AND EARLY GROWTH OF FATIGUE CRACKS

To this point, this research has compared measures of the driving forces for early fatigue

crack growth in single crystals, and the results support the use of volume-averaged FIPs in

the analysis of Stage I MSC fatigue crack growth. This work continues by correlating FIPs

with fatigue life, considering explicitly the simulation of crack growth and the consequent

redistribution of stresses and strains. These effects were previously considered by comparing

different stationary crack lengths with meshes rendering cracks with predefined paths, but a

more general strategy is required for assessing the nucleation of cracks at arbitrary locations

in polycrystals.

4.1 Local and mesoscale models for crack growth

4.1.1 FIP formulations

Because multiple FIPs could be formulated to account for different types of failure mecha-

nisms, the choice of a FIP to characterize the driving force for fatigue crack growth depends

on the mechanism involved in the fatigue damage process. Since the FIPs are designed to

characterize failure mechanisms, they are not necessarily specific for a certain alloy and can

be applied to ranges of materials that share the same damage mechanisms.

This work focuses on FCC metals with low to moderate SFE and proposes to quantify

the driving force for transgranular failure with a version of the Fatemi-Socie parameter that

has been adapted to evaluate the FIP on each octahedral slip plane, i.e.,

FIPα =
∆γαp

2

(
1 + k

σαn
σy

)
, (9)

where ∆γαp is the cyclic plastic shear strain on slip plane α, σαn is the peak stress normal

to the slip plane α, σy is the cyclic yield strength, and k is a factor between 0.5 and 1, as

proposed by Fatemi-Socie [56]. For each slip plane α, this FIP is assumed to correlate with

the ∆CTD. The choice of evaluating FIPs for individual slip planes is supported by the
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fact that the early stages of low amplitude fatigue are dominated by strain localization in

single slip (Stage I), and fatigue crack growth is usually limited to only a single or a small

number of crystallographic planes.

4.1.2 FIP correlation with transgranular fatigue life

A hierarchical (multistage) approach to fatigue modeling partitions the number of cycles to

failure (Nf ) into several regimes. Although the damage mechanisms involved may depend

on the material and loading conditions, Nf has been divided in four regimes [119, 122]:

nucleation, MSC, physically small crack (PSC) and long crack growth, i.e.,

Nf = Nnuc +Nmsc +Npsc +Nlc (10)

4.1.2.1 Nucleation

The nucleation regime in pure metals has been interpreted in multiple ways, but many

authors have defined this regime as the number of cycles required to develop certain ge-

ometric features–angle of an intrusion [79], height of the extrusion [42], a specific critical

length [150]. Such an interpretation is broad enough to be applicable to engineering al-

loys, even when cracks nucleate at voids, second phases or foreign particles. For example,

when cracks start at inclusions, the nucleation regime includes an incubation period, which

refers to the cycles required for debonding or cracking an inclusion from the matrix [75].

Although this period is usually short in comparison with the life of the specimen (particles

may debond in one cycle or particles can even be partially debonded during the materials

processing), it affects the initial conditions of the subsequent nucleation regime.

The difficulty in defining the nucleation regime lies in differentiating a stress concentrator

from a crack. One approach to avoid the ambiguity is to associate each regime with a

damage mechanism. Thus, the nucleation regime is defined as a period in which mechanical

irreversibility is not characterized by a single well-understood mechanism (i.e., formation of

sub-grain dislocation structures, fluxes of vacancies, intrusion formation). These irreversible

processes disrupt the initial smooth geometry and create stress concentrators that start

emitting dislocations from a region of a few atomic layers (typically about 1 to 100). When
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the mechanical irreversibility at this hot spot spikes (becomes larger than the mechanical

irreversibility of the bulk) due to the lack of reabsorption of defects, it may be considered

that a crack embryo has been formed. This lack of reabsorption mechanism will typically

dominate fatigue crack growth for the rest of the life, so the transition into the PSC and

long crack can be defined based on the size of the irreversible processes, i.e., the fatigue

damage process zone. The proposed definition does not intend to be applicable in a general

sense more than transgranular fatigue crack nucleation, since different mechanisms may

become active during the fatigue life of different materials. For example, in some cases [25]

the nucleation mechanism may be dominated by brittle fracture of inclusions rather than

plastic slip.

Based on the definition proposed for the nucleation regime, the estimation of this period

will require,

1. The determination of the number of cycles to develop a stable mesoscale dislocation

structure.

2. The prediction of the evolution of the geometry (i.e., extrusions and intrusions) by

considering the influence of point and line defects.

3. The comparison of the local irreversible processes and the prediction that dislocation

emission dominates.

The work by Repetto and Ortiz [174] on Cu is among the most detailed models that

attempts a formal simulation of the nucleation regime, though the results are disputed by

Polak and Sauzay [169]. Indeed, the mechanisms involved in the nucleation of cracks are so

complex that today no models are capable of reproducing the physics of the process, not

even for simple alloys such as Cu. Furthermore, the models based on energy consideration

([142, 180]) are approximate and arguable solutions, applicable to specific materials and

dislocation structures. Hence, the number of cycles required to nucleate a crack in the

bulks of a grain may only be estimated using correlations with experimental data. For

example, one relation is the power-law based on the simplified dislocation model by Tanaka
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and Mura [196],i.e.,

Nnuc =
αg
dgr

(FIPα)−2, (11)

which was further extended by Chan [36] and Shenoy [185]. Here, dgr is a length scale rep-

resentative of the microstructure that could be the size of the first grain to crack (typically

the largest grain at or near the surface), the size of an inclusion or some other defect; αg

is a measure of the mechanical irreversibility of dislocation activity at surface intrusions,

precipitate surfaces or bulk of grains and depends strongly on the environment.

Equation (11) has been extensively employed in fatigue modeling [185, 4] and has been

supported by experimental evidence [79, 139]. For example, Hunsche and Neumann [79]

performed experiments using single crystals and concluded that the life to nucleate the

crack was proportional to the inverse of the square of the plastic shear strain accumulated

in PSBs. Moreover, since the nucleation regime is dramatically affected by several factors

such as the environment, the loading conditions or the surface roughness, Equation (11)

can be reformulated to include an explicit dependence of these effects [83].

However, Equation (11) does not provide the value of the crack length by the end of the

nucleation regime, suggesting that the change into MSC regime may occur at some point

inside the grain. Hence, the number of cycles required to crack the first grain is formed by

the nucleation regime plus the growth up to the GB. Furthermore, the physical mechanisms

in the nucleation process (e.g., crack growth due to point defect coalescence) may reappear

as dominant over dislocation emission in cases where the crack crosses into another grain

and does not have enough driving force to transmit or emit new dislocations across the

boundary. In such a situation, the crack would need to nucleate again at the new grain.

The likelihood of this scenario decreases after a few grains have been cracked, since the

average driving force tends to increase.

4.1.2.2 MSC regime

Although the nucleation period may last for thousands of cycles, depending on the stress

amplitude, in typical HCF applications a significant portion of the life is spent in very early

stages of crack growth. Following the nucleation period, the crack growth rate is assumed
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to be controlled by the mechanical irreversibility of dislocations emitted from an embryonic

crack. Indeed, it is noticeable that most vacancies models concern only the localization of a

crack and not the extension, which was further reinforced in a personal communication with

Professor Polak, who stated that “in crack propagation the role of vacancies is probably

not as important as in crack nucleation [166].”

The MSC crack growth rate is proportional to the number of dislocation emitted and

not annihilated after a cycle, or equivalently the ∆CTD [122], i.e.,

da

dN

∣∣∣
msc

= φ
〈
∆CTD−∆CTDth

〉
, (12)

where ∆CTDth is the threshold ∆CTD that recognizes a minimum required driving force

for dislocation emission, and the Macaulay brackets satisfy that 〈a〉 = a if a > 0 or 〈a〉 = 0

if a ≤ 0.

The proportionality factor φ in Equation (12) measures the mechanical irreversibility of

the dislocation activity in the process zone and depends on the environment, the loading

amplitude, and the temperature among many factors. The quantification of mechanical

irreversibility has been attempted using a variety of measurements that usually result in

values on the order of 0.01 to 0.1 [187]. Hence, about 1% to 10% of the dislocations created

at the crack tip remain after a full loading cycle.

Although it might be desirable to explicitly calculate and track ∆CTD values during

simulations, the evaluation of the ∆CTD would require a detailed representation of the

geometry of cracks. FIPs can more efficiently take the place of ∆CTD in Equation (12),

as shown in Chapter 3. Since plastic deformation in the MSC regime is characterized by

slip on only a few activated planes, the transgranular crack growth rate within a grain is

proposed to follow

da

dN

∣∣∣α
msc

= φ
〈
A(βi)FIPα −∆CTDth

〉
, (13)

in which A is a scaling constant that may depend on microstructural attributes, referred

to as βi, and ∆CTDth represents a threshold below which no dislocations are emitted from

a crack, i.e., the Burgers vector. Notice that this formulation proposes that crack growth

rates differ among slip planes.
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4.1.2.3 PSC and long crack regimes

When the cyclic plastic zone ahead of the crack is large enough to engulf many grains, and

EPFM theory becomes valid, the crack has reached the PSC regime. For such a regime,

the transgranular crack growth rate is proposed to follow

da

dN

∣∣∣
psc

= φ̃

〈
Ã(βi)

(
∆σ

Su

)m1

− b
〉
, (14)

which is based on the work of Alexandre et al. [4]. Ã and φ̃ are constants analogous to in

Equation 13. Equation 14 is an homogenized averaged crack growth rate from the cyclic

elasto-plastic process zone.

The long crack growth rate can be characterized, for R=0, by the ∆K via the Paris Law

[6], i.e.,

da

dN

∣∣∣
lc

= C∆Km = C(Y σ
√
πa)m, (15)

in which C and m 6= 1 are material constants, Y depends on the geometry, and σ is the

far field stress. Equation (15) can integrated for the specific geometry of interest between

a transition crack length to the long crack regime and the maximum allowed crack length

or critical crack length. Furthermore, the choice of material constants in this formulation

reflects the type of failure mode (transgranular vs. intergranular). Since the PSC and

the long crack regimes can usually be addressed successfully using continuum homogenized

theories (EPFM and LEFM), this investigation focuses on the MSC regime.

4.1.3 Intergranular failure

The literature that deals with driving forces for MSC intergranular crack growth is not

extensive, but a few authors have characterized the far field driving force by means of ∆K

[86], ∆J and C∗ [155] depending on the loading conditions. Thus, the relation between ∆J

and the Fatemi-Socie parameter found by Berard and McDowell [120] justifies the use of

an FIPα based on critical plane theories, but in the case of intergranular decohesion, the

orientation of the GBs plays a role in determining the local driving force if a Zener-Stroh

mechanism is assumed.
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The driving force for intergranular Zener-Stroh decohesion depends on the accumulated

directional plastic strain at a GB and the stress normal to that boundary. In the spirit of

the energy release rate formulated by Fan [53], this work proposes a FIPint that is the result

of multiplying two factors: the first factor relating to the number of dislocations impinging

on the GB and the second to the stress normal to the boundary, i.e.,

FIPint =

[∑
α

∣∣∣γαp
2

(
1 + ktran

σαn
σy

)∣∣∣]λ1 (σGBn
σy

)λ2
, (16)

in which λ1 and λ2 are material constants and σGBn is the peak stress normal to the GB.

The first factor on this equation is similar to FIPα except that the directional plastic shear

strain and not the range of plastic shear strain, is introduced.

Even though cracks may nucleate intergranularly for low loading frequencies or high

temperatures [154], this research focuses on the MSC regime and accounts for the trans-

granular and intergranular failure transition after cracks have nucleated. Then, it is assumed

that cracks can only nucleate in a transgranular manner, and subsequently the intergranuar

and transgranular failure modes are assessed. Indeed, GB nucleation is more prevalent at

higher strains [38], which may be achieved at the crack tip of longer cracks. To estimate

the intergranular crack growth of MSCs, this study employs an expression similar to that

proposed by Miller et al. [132], i.e.,

da

dN

∣∣∣inter
msc

= φintexp

{
−Q−B〈PS〉

RT

}
∆t(1/2−ξ)FIPint, (17)

This formulation accounts for the fact that the diffusion of foreign atoms controls inter-

granular cracking, as proposed in [132]. ∆t is a time range representing the portion of the

cycling period at high strain and stress, Q is the activation energy, and PS is the maximum

principal stress; ξ and B are assumed to be constants that may depend on the type of failure

mechanism.

4.2 Mesoscopic fatigue life prediction

To this point, this chapter has introduced local measurements of the driving force for small

fatigue crack growth based on the physics at the grain scale. These measurements are valid,
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theoretically, up to the limit in which the continuum representation is valid (typically on

the order of tens of Burgers vectors [11]). However, the study of realistic microstructures

demands the prediction of the small crack driving forces over tens or hundreds of microns

and thousands of cycles, which limits the achievable refinement in the crack growth rates

calculations, even when using hundred of processors in computer clusters. Hence, a feasible

mesoscale scheme is required; it should be capable of extrapolating the response of the

material over distance and time. The extrapolation must be dual, in the sense that it needs

to predict the cycles required to extend a crack and the updated driving force on the crack

without applying hundreds of loading cycles or detailed cycle-by-cycle evaluation of stress

redistribution.

4.2.1 Cycle-averaged FIPs

Although a cycle-by-cycle analysis would be desirable, it is currently computationally un-

feasible to reach hundreds of thousands of loading cycles using crystal plasticity constitutive

models at a scale of hundreds of grains. These competing demands can be addressed by

assuming that, except for the FIP, the magnitudes in Equation (13) do not not depend on

the number of cycles or the crack length. This simplification requires that values of βi be

approximately constant, which means that the microstructure and the strain localization

mechanisms should not change significantly over the life (e.g., no significant GB shift, no

drastic rotation of the crystal lattice within the grain, and no growth of voids, etc). Fur-

thermore, since the irreversible processes at the crack tip depend on the stress that changes

constantly over the cycle, the irreversible factor should average this effect by introducing a

dependence on the shape of the loading cycle. This requirement implies that the mechanical

irreversibility varies for different shapes of the loading cycle, but it does not change cycle

after cycle.

The mesoscale model should further assume that the FIPs calculated after a few cycles

(typically three to ten loading cycles) can represent the effect of the microstructure on the

mean FIP over thousands of cycles and can correlate with life estimations for a grain. Such

a simplification can be justified, in the small crack regime dominated by single slip, by the
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following arguments:

1. Winter [213] first proposed that the accumulated plastic strain in Cu slip bands was

constant. Although this assumption was later shown not to be accurate [17], it is still

a good approximation for individual slip bands (not macro PSBs formed by multiple

slip bands [98]). Indeed, once a grain localizes plastic deformation and nucleates a

crack, dislocation structures within the grain do not change significantly, even when

a crack is propagating along the grain [88].

2. As discussed in section 2.1.3.1, several authors [167, 212] have characterized that the

stress amplitude (in plastic strain-controlled tests) remains almost constant during a

significant portion of the fatigue life of single crystals under HCF. This can also be

assumed to apply to individual grains [168, 137, 104] as shown in Figure 4. Note that

some investigators [212] have argued that some low SFE single crystals may not have

a saturation stress when cycled at high plastic strain amplitude; in these metals, the

simplifications proposed in this research may be applied to low plastic strain cycling.

Thus, once plastic deformation is localized, stress fields are almost constant, and plastic

shear strains evolve slowly, as long as the specimen geometry remains constant. However,

when a crack grows inside a grain, the redistribution of stress would modify the crack driving

force, or equivalently, the current FIP value. To account for this effect, this work seeks to

develop simpler models that do not require damage to be introduced at a microscopic scale

(element-by-element), but at a mesoscopic scale (grain-by-grain). This objective is based

on the hypothesis that the evolution of the driving force on each grain is proportional to the

initial averaged FIP (i.e., before cracking), and it follows some law dependent on the crack

length (a). Such a function may depend on the microstructure, but an average behavior

can be explored by comparing the multiple crack growth laws proposed in the literature.

For example, Hobson and coworkers [73, 74] proposed that the crack growth rate for small

cracks followed the equation

da

dN
= C

(
d− a

)1−α
aα (18)
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in which d is a microstructural length scale, and C and α are experimental constants. In

this equation, the crack growth rate has two competing factors, one that decreases the

driving force when the crack approaches the microstuctural barrier (d − a), and another

that dominates for larger crack lengths, (aα). More recently, Miller [130] worked extensively

on predicting the crack growth rates, which he summarized as three different regimes, i.e.,

da

dN
= A∆γα

(
d− a

)
(19)

da

dN
= B∆γβa−D (20)

da

dN
= C

(
∆γ
√
πa
)n

(21)

Interestingly, for the first regime Equation (19), Miller replaced the factor (aα) in Hob-

son’s model with the range of plastic deformation (∆γ), which is involved in all the regimes.

These equations resemble the fracture mechanics approach, which has a factor representing

the applied loading and a factor involving the crack length. Indeed, similar approaches have

been developed for small cracks based on the applied stress and not strains. For example,

Nisitani et al.,[152] and many Japanese researchers have employed small crack growth laws

of the form,

da

dN
= Cσnaa (22)

Hence, this investigation proposes that a FIPαmeso can be formulated as the product of

a magnitude that represents the initial applied loading and a function that predicts the

influence extending the crack i.e.,

FIPαmeso = FIPαo · g(a) (23)

Here, g(a) carries the influence of the crack length and is valid over a limited mesoscale

domain and FIPαo represents the plastic deformation before cracking. The FIPαmeso can be

understood as a measure of the driving force for the Microstructural Fracture Mechanics

proposed by Miller [130]. In comparison, for LEFM the FIPαo simply becomes the far field

stress and g(a) is equivalent to
√
πa, which is valid for any crack length.

In the case of MSCs, it is hypothesized that the FIPαmeso evolution can be predicted

within a grain using a single type of law, such as Equation (23). The individual evolution in
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each grain are summed up to contribute to a macroscopic crack growth rate that, depending

on the microstructure, may present an evolution different from Equation (23). Consequently,

g(a) represents the crack length dependence of the crack growth within the grain, and it

should follow some decreasing driving force law, similar to the first regime proposed by

Miller (Equation (19)). Furthermore, the crack length should be taken as the normalized

crack length within a grain i (ai, 0 ≤ ai ≤ 1), and not the entire length of the crack. The

dependence of the FIP with the total crack length is captured by the FIPαo , whose mean

statistical value among grains should increase as the cracks grow.

4.2.2 Mesoscale averaging volumes for FIPs

To regularize numerically the FEM discretization and also to represent the physical scale

of the process zone for crack formation, the FIPs calculated at each integration point in

the FEM need to be averaged over mesoscale volumes. To a certain degree, the selection

of averaging domains for estimating FIPs is arbitrary and is related to the level of compu-

tational work, but the physics of the problem ultimately guides the choice. For example,

one natural choice is to average transgranular FIPs over the entire volume of grains [185],

which results in a coarse and non-crystallographic measure of the driving force, or over a

regular fraction of the grain volume [222]. Other authors have proposed one-dimensional

domains connecting integration points to average the FIPs [75].

Due to the intrinsic planar slip of low to medium SFE metals and precipitate strength-

ened alloys, transgranular failure occurs along bands parallel to slip planes with little diffu-

sion of damage normal to the slip planes. This scenario resembles the damage accumulated

along slip bands due to dislocation substructures in pure metals [168, 138] or to localized

shearing of γ′ precipitates in superalloys [216, 189]. Furthermore, as explained in Chapter

2, several theoretical models [107, 196, 147] have described the fatigue crack nucleation

process evaluating the plastic deformation along favorably oriented planes or bands. Thus,

this investigation will average FIPs representing transgranular failure on bands of width W

parallel to slip directions across an entire grain, as depicted in Figure 41. From a compu-

tational standpoint, the value of W should be at least the size of the finite element; based
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on the physics of the problem, W should be at least the spacing between slip bands, which

has been described by several empirical laws summarized in [5]. An additional feature of

averaging along bands is that it naturally introduces a sub-grain length scale for localized

deformation, even when the constitutive equation is not capable of self-localizing plastic

strain.
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Figure 41: Schematic representation of the bands in which FIPs are averaged to estimate
transgranular failure. The figure on the left represents the assignment of each element of
the mesh to a band of width W. On the right, the implementation in a FEM model is
presented. The bands in one grain are highlighted with different colors and numbers for
one slip plane normal.

Intergranular decohesion depends on the plastic deformation impinging on the GB and

on the misorientation of the grains; thus, a natural choice is to calculate the driving force

for intergranular failure on every GB sector shared by two grains. Regarding FEM mesh,

this research proposes to estimate the intergranular fatigue life in two sets of neighboring

elements separately. Each set represents the GB sector on each on the neighboring grains,

and it is composed by the first neighbor elements to the GB, as highlighted with a more

intense color in Figure 42.

Since the nature of the Zener mechanism allows nucleating multiple cracks on the same

GB sector (each due to the impingement of a different slip band as shown in Figure 8) that

afterwards grow and interconnect, the life of each element on a GB is computed using the
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Figure 42: 2D representation of a mesh with numbered grains and some of the GB sectors
highlighted with a more intense color. For each element in the GB sector, the FIPint and
intergranular life are computed, and the latter is averaged on each of two GB sectors in
each grain independently.

FIPint. Then, the mean life of each GB sector results from the average value of the life

of the elements within. These averages are computed on both GB sectors independently,

and the minimum of those averages defines the intergranular fatigue life of the GB. This

calculation is slightly different from that used for transgranular failure in which the FIPs are

averaged before calculating the life because the Zener-Stroh mechanism has a “distributed

character” rather than a clear crack tip localization.

4.2.3 Grain-by-grain fatigue life estimation

Since this research focuses on the interaction between small fatigue cracks and the mi-

crostructure at a mesoscale level, the minimum length scale employed to evaluate the num-

ber of cycles to failure is related to the grain size; therefore, the mesoscale scheme developed

in this thesis will estimate the fatigue life considering the bands grains as the minimum units

that fail in transgranular crack growth. Although the transition from nucleation to MSC

regime may occur while the crack lies inside a grain, the model will assume that the nu-

cleation regime extends until the first grain has cracked, and the possible crack growth

direction inside a grain is a straight path along any of the bands defined for averaging the
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FIP. Since each grain has many bands over which the FIP is averaged, the number of cycles

required to nucleate a crack is estimated for each band; the minimum life among all bands

defines the life to nucleate a crack in a grain and the direction of cracking. Similarly, the

comparison among multiple grains defines in which grain a crack will nucleate first.

After determining the nucleation life, the model computes the MSC life for bands that

are in contact with the crack, and the crack extends along the band with the minimum

MSC life. The condition of being in contact means that a band has at least one element

that is within one element of distance to the crack, which will also be referred as a band

neighboring the crack. Since the MSC regime considers only bands that neighbor the crack,

the number of bands involved in the MSC life assessment increases with the perimeter of

the crack. Furthermore, the number of bands assessed in the MSC regime is significantly

smaller than that in the nucleation regime, which considers all the bands in the model.

Another caveat of the mesoscale model is that Equations (13) and (17) define the MSC

crack growth rates and not a value for the MSC life of a grain; therefore, these equations need

to be integrated to estimate the MSC life of each grain. In order to integrate analytically

the crack growth rates, an explicit dependence of the FIPmeso on the crack length within

each grain is necessary. This situation will be reviewed in the following chapters, where the

function g(a) in Equation (23) is derived for a specific material.

4.3 Crack growth and stress redistribution

Once a fatigue crack has grown over a grain the stress intensification at the crack tip and

tortuous path of the crack may influence the driving force. To account for such an effect,

this section develops a theoretical methodology to extend the crack in FEM simulations.

Myriad strategies available in the literature account for crack growth stress redistribution—

continuous, weakly and strongly discontinuous kinematic fields—with an ample range of

complexity in the FEM implementation: embedded cracks, cohesive elements, and remesh-

ing [206, 84, 85], etc. Among those methodologies, the most appropriate should,

• minimize computational overhead,
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• represent the decohesion of small cracks,

• be applicable to any crack growth path (either intergranular or transgranular failure),

and

• be able to represent crack closure.

4.3.1 Traditional approached to simulate crack growth

One possibility to simulate crack growth that has been extensively employed in fracture

mechanics modeling (available in ABAQUS) is an enriched finite element method (e.g.,

XFEM). Such a technique usually enriches the FEM formulation with discontinuity-based

functions that are typically compatible with the elastic singular fields of LEFM; for example,

the enriched displacement approximation may have the following interelement interpolation

[124, 67]:

uXFEM (x) =
∑
i

Ni(x)ui +
∑
i

Ni(x)H(x)ai +
∑
i

Ni(x)

4∑
α=1

[
Φα(x)bi

]
(24)

Here, uXFEM is the enriched displacement vector at position x, Ni(x) is the nodal shape

function, H(x) is the Heaviside function that represents the opening of a crack, Φα are

the asymptotic functions that resemble LEFM crack tip displacement fields, and ai and bi

are the extra degrees of freedom associated with the Heaviside and asymptotic functions,

respectively. The standard enriched formulation can successfully recreate the strain/stress

fields surrounding cracks that result from elastic singularity-based models, but its applica-

tion to small fatigue crack simulations is arguable and inaccurate, since small cracks do not

present the singularity fields corresponding to LEFM. Although it would be conceptually

possible to formulate “small crack enrichment functions,” such a formulation is not known

to have been proposed and verified. Moreover, enrichment functions aimed at addressing

small cracks would be greatly complicated by the need to consider nonlocality, lack of self-

similarity, and crystallographic slip anisotropy. There is no clear path in this direction,

which would be largely expensive for cycle by cycle crack extension.

The cohesive element model is a feasible alternative that does not assume a predefined

strain field, and thus can be applied to the small crack problem [136]. Multiple cohesive
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element models are available in ABAQUS, but they require the definition of the cohesive

region in the mesh. Thus, if the crack path is not predefined, either the entire volume

needs to be filled with cohesive elements or remeshing is required at each increment of

crack length. Either case increases the computational burden substantially, especially the

latter one. One variation is to employ embedded cohesive elements [156, 157], but this type

of model requires the modification of the finite element formulation and is not amenable

with standard FE codes. Moreover, the orientation of the cohesive zone is predefined,

so without remeshing this model does not allow reorientation along a specific direction

(e.g., crystallographic plane). Finally, cohesive zone models can suffer from non-regularized

localization of plastic deformation, which adds complexities without clear solution.

A simpler method that is also available in ABAQUS is to remove the element from the

calculation; however, this technique does not allow the resistance to be reaffirmed under

crack closure. An alternative for the simulation of fields redistribution due to crack growth

is the implementation of a damage mechanics model that is able to degrade the elastic

stiffness tensor. Furthermore, the elastic stiffness can be reaffirmed to simulate the tension-

compression asymmetry caused by crack closure. Within the mesoscale framework, the

crack extends on a grain-by-grain basis by decreasing the elastic stiffness tensor of the

elements on a band along the entire cross section of the grain. After degrading the stiffness

in a new grain, a few cycles should be applied to update the FIPs before predicting to which

grain the crack will extend to.

The degradation of stiffness only affects the crystal plasticity algorithm in the calculation

of the stress tensor, which makes use of the elastic stiffness tensor. Indeed, this calculation is

performed after the kinematic evolution is solved (i.e., elastic and plastic strains). Therefore,

the change of the elastic stiffness tensor does not interfere with the core of the crystal

plasticity algorithm, and it should not affect the convergence of the plastic components.

Hence, the elastic-damage approach strategy is chosen to account for crack growth, as

developed in the following subsections.
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4.3.2 Overview of damage mechanics

By the end of 1950’s, Kachanov’s work on creep gave birth to damage mechanics as a

discipline; this soon became a volume-averaged alternative to the individual dominant crack

character of fracture mechanics. Indeed, both theories attempt to describe the behavior of

solids in the presence of defects with different approaches, and the choice of either depends

on the application, and whether a single dominant crack is expected.

Several damage mechanics formulations rely on the assumption that a fictitious un-

damaged configuration (Figure 43 c) evolves due to a fictitious deformation gradient [144].

Figure 43 represents the evolution of an initially undamaged bar (a) that becomes damaged

with a reduced effective cross-section after being loaded uniaxially (b). This damaged state

is assumed to be mechanically equivalent to a fictitious undamaged bar (c) subject to the

applied load t with the cross-sectional area Ā, called the fictitious undamaged state, which

involves a non-zero damage variable D.

a) Initial b) Damaged c) Effective undamaged

Figure 43: Damage in a bar under uniaxial tension. a) to c) represents the three possible
stages.
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4.3.2.1 Damage mechanics under unidirectional loading (1D)

The basis of damage mechanics can be understood with a simple thought exercise consisting

of a system of similar parallel bars loaded in tension, as shown in Figure 44. Initially, all

the bars sustain some stress, and the total applied force is distributed (Figure 44 a). Thus,

the nominal stress on each bar is,

a) b) c)

Figure 44: Parallel bars model. The number of broken bars increases with increasing
applied force (a to c).

σ =
P

A
. (25)

Here, P is the applied force, and A is the total load-carrying area (i.e., the number of bars

times the cross-section). Upon an increment in the load, some bars may break, and the

resulting force redistribution due to a decrease in area (Ā) will increase the stress on the

remaining bars, σ̄. However, if the stress is calculated without an update in the load-carrying

area, there will be no change in the stress. Thus, it can be stated that

P = σ̄Ā = σA, (26)

in which σ̄ and Ā are considered as “effective” quantities, different from the nominal quan-

tities. Furthermore, by assuming that each bar has elastic deformation up to a perfectly

brittle failure, the effective stress satisfies

σ̄ = Eε (27)

Thus,

σ =
Ā

A
σ̄ =

Ā

A
Eε = (1− d)Eε, (28)

which still holds in more general situations in which d can be interpreted as a damage

parameter indicating no damage if d = 0 and full fracture if d = 1.
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4.3.2.2 Multiaxial damage mechanics

Despite the simplicity of the unidirectional model, it presents some of the distinctive features

of more general cases. For example, it correctly represents the reduction in stiffness, exper-

imentally verified upon unloading damaged dog-bone or fracture mechanics specimens. A

straightforward and simple extension to multiaxial states assumes that damage is isotropic

and represented by a single scalar parameter [2], i.e.,

σ = (1− d)σ̄, (29)

in which d is an internal scale variable that represents the damage evolution used to relate

damaged and undamaged configurations. More detailed formulations employ 2nd rank

damage tensors, φ, to characterize the effective stress, i.e.,

σ = (I − φ) · σ̄. (30)

However, the most general formulation requires the damage to be characterized with a 4th

rank damage tensor D, i.e.,

σ = (I −D) : σ̄. (31)

Depending on the shape of the tensor, the induced evolution can be isotropic or anisotropic;

i.e., if φ or D are represented with a diagonal matrix, the resulting damage is isotropic.

Furthermore, in the general case the stress tensor can become unsymmetric in the damage

configuration, thus entering the realm of polar continua.

Considering an elastic material, different hypotheses are usually proposed to derive

transformation relations between configurations in Figure 43. The hypotheses most com-

monly studied and used for elastic damage theories are,

• The principle of strain equivalence [102], which states that both the nominal and

effective applied stress produces the same strain i.e.,

ε = C̄
−1

: σ = C−1 : σ̄, (32)

in which C̄ is the damaged elastic stiffness tensor, and in the most general case, it can

be related to the undamaged elastic stiffness tensor via the 4th rank damage tensor
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(I −D), i.e.,

C̄ = (I −D) : C, (33)

which can lead to non-symmetric damage elastic stiffness tensor, C̄.

• The principle of energy equivalence [41], which assumes that the elastic energy of the

effective and nominal stresses and strains are equal, i.e.,

w =
1

2
σ : ε =

1

2
σ̄ : ε̄ (34)

One consequence of this principle is that the effective elasticity tensor is symmetric

since

w =
1

2
σ : ε =

1

2
σ : C : σ, (35)

and

w =
1

2
σ̄ : ε̄ =

1

2
σ̄ : C̄ : σ̄ =

1

2
σ : MT : C̄ : M : σ, (36)

where M = (I −D)−1. Consequently

C = MT : C̄ : M or C̄ = M : C : MT , (37)

which proves the symmetry of C̄.

For completeness, it is worth mentioning that Voyiadjis and Kattan [206] proposed a

generalized hypothesis of strain transformation that considers the previous principles as par-

ticular cases. In this approach, the nominal and effective strain tensor are related through

the transformation law

ε̄ = L(ϕ(8)) : ε (38)

in which L(ϕ(8)) is a 4th rank tensorial function of the 8th rank damage tensor, ϕ(8).

Then, by defining L(ϕ(8)) = I or L(ϕ(8)) = M−T , the strain equivalence principle or the

energy equivalence principle are recovered, respectively. Noticeably, this formulation can be

postulated without the concept of the effective stress space, just as a relation that evolves

the process of degradation of the elastic stiffness.
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4.3.2.3 Symmetrization of the damage tensor

Since the principle of strain equivalence does not guarantee that the effective stress is sym-

metric, the “machinery” of polar continua (e.g., micromorphic, microstretch or micropolar)

would be required. To avoid such complication, strategies involving the symmetrization of

the stress tensor can be implemented. The three most commonly adopted strategies for

symmetrization are as follows [101, 207]:

σ̄ = (I − φ)−
1
2 · σ · (I − φ)−

1
2 (39)

σ̄ =
1

2

(
σ · (I − φ)−1 + (I − φ)−1 · σ

)
(40)

σ =
1

2
(σ̄ · (I − φ) + (I − φ) · σ̄) (41)

in which φ is the 2nd rank damage tensor proposed by Murakami [143].

Although a variety of other symmetrization techniques have been proposed, only the

one defined by Cordebois and Sidoroff [41] (Equation (39)) can be used to obtain a simple

and condensed 4th rank damage tensor that has the form [207],

M = (I − φ)−
1
2 (I − φ)−

1
2 , (42)

Indeed, Equation (40), which has been extensively employed by Murakami [144], does not

result in a general 4th rank damage tensor. Note that the three symmetrization techniques

produce frame-indifferent stress tensors as required for constitutive equations [101].

Voyiadjis and Kattan [206] stated that the three symmetrization techniques result in

qualitatively similar damage tensors, except for some oscillations in one coefficient when

using Equation (39); they thus recommended the other two methods. However, other studies

analyzed the first two symmetrization techniques and concluded that the symmetrization

results were not equivalent since the results were affected by the technique employed [215].

Thus, the reliability of the symmetrization techniques is still a matter of contention.

Another strategy for avoiding non-symmetric stress tensors was proposed by Cauvin [33];

it assumed the validity of the equivalence strain principle and deduced necessary conditions

on the damage tensor to render the elastic stiffness tensor “partially” symmetric. This

approach is based on a set of constraints onD such that the undamaged and damaged elastic
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tensors satisfy Cijkl = Cjikl, Cijkl = Cijlk and C̄ijkl = C̄jikl, C̄ijkl = C̄ijlk, guaranteeing the

symmetry of the stress tensor. Thus,

C̄ijkl = (Iijrs −Dijrs)Crskl = C̄jikl = (Ijirs −Djirs)Crskl, (43)

which implies

Dijrs = Djirs, (44)

and also

C̄ijkl = (Iijsr −Dijsr)Csrkl = (Iijsr −Dijsr) : Crskl = (Iijrs −Dijrs)Crskl, (45)

which implies

Dijsr = Dijrs. (46)

Equations (44) and (46) are sufficient conditions to guarantee the symmetry of the stress

tensor, but they do not guarantee that C̄ijkl = C̄klij nor Dijkl = Dklij [34]. Indeed, the

most general damage tensor has 36 independent variables, which can be written in matrix

(Voigt) notation as

[
D
]

=



D1111 D1122 D1133 2D1123 2D1131 2D1112

D2211 D2222 D2233 2D2223 2D2231 2D2212

D3311 D3322 D3333 2D3323 2D3331 2D3312

2D2311 2D2322 2D2333 2D2323 2D2331 2D2312

2D3111 2D3122 2D3133 2D3123 2D3131 2D3112

2D1211 2D1222 2D1233 2D1223 2D1231 2D1212


(47)

4.3.3 Damage accumulated on slip planes in metals

Despite the fact that the fundamentals of damage mechanics were established between the

1980’s and 1990’s, a description of the damage accumulated on slip planes in metals is still

not thoroughly developed. One important deficiency of most damage models is that they do

not usually involve microstructural information, which is the reason why damage mechanics

and micromechanics have diverged in the past 20 years. Indeed, many damage models have

been developed for brittle-type materials such as concrete, for which the damage evolution
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usually depends only on thermodynamic forces (e.g., the orientation of maximum stress)

while the effect of the microstructure is dimly reflected in the damage constants. Note that

microplane theories define director vectors [32, 31] that are not based on the microstructure

or the physics of crack extension per se.

Because metals undergoing limited cyclic plastic deformation develop damage along a

few activated slip planes that eventually lead to crack formation, the evolution of damage

is strongly correlated with the underlying microstructure and needs to be reflected by the

damage law. Hence, this research will employ a crystal plasticity model that assumes a

decomposition of the total deformation gradient in an elastic-damage (F ed) part and a

plastic-damage (F pd) part:

F = F ed · F pd, (48)

as shown in Figure 45. This approach assumes the existence of the following configurations:

Co: Initial undeformed configuration.

Ct: Current elasto-plastically deformed and damaged configuration.

Cpd: Plastically-damaged configuration after elastic unloading, which has damage.

Each of the deformation gradients F ed and F pd may be further decomposed as F ed =

F e · F de and F pd = F dp · F p to form:

F = F e · F de · F dp · F p (49)

in which F de and F dp are associated with elastic and plastic deformation as enhanced by

damage, respectively, but for simplicity this separation will not be pursued.

The proposed kinematic representation implies that,

• Plastic deformation can cause damage, which is assumed to occur sequentially after

plastic deformation, preserving the isoclinic character. Such sequence is found, for

example, in vacancy production followed by clustering, which is thought to be an im-

portant contribution for crack initiation [44][201]. Moreover, Repetto and Ortiz [174]

have attempted to characterize vacancy evolution by decomposing the deformation

gradient.
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Figure 45: Proposed representation of elasto-plastic-damage deformation configurations.

• Damage may appear without the need of plastic deformation, since it can be the

result of irreversible elastic release of energy; this makes it necessary to decompose

the damage contribution on the deformation gradient. Indeed, elastic damage can be

interpreted as the introduction of elastic constants that depend on some parameter.

To account for the effect of voids, Potirniche and coworkers [170] proposed an interme-

diate deformation gradient that would be equivalent to F v = F de ·F dp and coupled it with

crystal plasticity. Although they successfully modeled isotropic damage effects with crystal

plasticity, they do not account for the orientation of damage. Furthermore, they showed

that

F v =
1

(1− d)
1
3

I (50)

in which d is the isotropic damage that represents the evolution of porosity.

By pulling back from the current configuration to the undamaged elasto-plastically

deformed configuration (where crystal plasticity is defined), the stress becomes

Σ = det(F e · F v)(F e · F v)−1σ(F e · F v)−T =
1

(1− d)
1
3

det(F e)(F e)−1σ(F e)−T , (51)

and since the shear stress satisfies

τα = Σ : sα ⊗mα, (52)

we can interpret that by introducing the deformation gradient F v, the shear stress becomes

an effective shear stress:

τ̄α =
1

(1− d)
1
3

τα, (53)
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Recently, Vladimirov et al. [205] studied the anisotropic creep damage in superalloys by

tracking a damage accumulation on each slip plane; they proposed what could be described

as an effective resolved shear stress on each slip plane, which depends on a pseudo-isotropic

damage parameter (ωα) for each slip plane α:

τα =
1

1− ωαΣ : sα ⊗mα, (54)

Here, ωα is the damage accumulated on each slip plane. Although it was not noticed on the

publication, this approach is a generalization of the work from Potirniche et al. for crystal

plasticity, by assuming a combined plastic-damage deformation gradient, F pd.

Although the original objective was only to propose a methodology that represents

the separation of crystallographic planes, section 4.3.3 discussed a general framework that

combines crystal plasticity with elastic and plastic damage. The damage associated with

the plastic deformation gradient can be connected, for example, with vacancies and voids

creation, as mentioned before [170, 205]. However, a formulation still needs to be devel-

oped for the elastic deformation gradient associated with the directional stress and strain

redistribution of fatigue crack growth.

4.3.4 A model for crack surface separation along crystallographic planes

This section presents a model to represent the crack surface separation based on the degra-

dation of the elastic stiffness tensor C, referred to the orientation of the crack along a

crystallographic direction. The general approach proposed by Voyiadjis and coworkers

[206] and presented in Section 4.3.2.2 is interesting mainly from a theoretical standpoint

as a general principle, but it is less applicable due to the complexities involved in defining

the function in Equation (38). Similarly, although the energy equivalence principle assures

symmetry of the damage tensor, the difficulty lies in defining the 4th-rank damage tensor,

which cannot be identified with any general anisotropic elastic stiffness tensor. Moreover,

the symmetrization techniques also introduce concerns about this approach. Consequently,

this investigation follows the path proposed by Cauvin [33], who assumed the strain equiva-

lence principle and imposed constraints on the shape of the degraded elastic stiffness tensors

to guarantee the symmetry of the stress tensor.
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Figure 46: Schematic array of parallel cracks.

4.3.4.1 Definition of the damage tensor

The simple coupling between stress and strain introduced by the strain equivalence principle

allows the user to guess the effects of a certain damage tensor by simple inspection. In this

research, the damage tensor should represent the separation of the crack surfaces along a

crystallographic plane, which is intrinsically anisotropic. One alternative is to employ the

following 4th rank tensor that describes the damage of the regular arrangements of cracks

in Figure 46 [34, 103]. The description of the 4th rank damage tensor is simplified by

using a 6x6 matrix representation in Equation (55), similar to the Voigt representation for

elasticity, i.e.,

[
D
]

=



d1 0 0 0 0 0

d2 0 0 0 0 0

d2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 d5 0

0 0 0 0 0 d5


, (55)

By comparing Equations (55) and (47), we can find the 4th rank damage tensor that

represents a crack whose surface normal is oriented towards direction 1 and that preserves

the symmetry of the stress tensor. The components of the damage tensor are zero except

for:

D1111 = d1, D2211 = d2, D3311 = d2
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D1212 = d5
2 , D2112 = d5

2 , D1221 = d5
2 , D2121 = d5

2

D3131 = d5
2 , D1331 = d5

2 , D3113 = d5
2 , D1313 = d5

2

Here, d1, d2 and d5 are parameters associated with the degradation of the elastic stiffness

tensor that in a general situation may be independent. However, in the interest of describing

the separation of crack surfaces and the stress redistribution in HCF, this study proposes

that those parameters are not independent but are constrained as follows:

• d2 = αd1 with α constant. This functional dependence gives the property that when

the cracked element is loaded normal to the crack plane, normal and transverse stresses

go to zero.

• d5 = βd1, with β constant. d5 controls the resistance under shear loading and rep-

resents the interference or friction between surfaces of the cracks, which is expected

to be insignificant for Stage I fatigue cracks [66, 162]. Note that surface roughness

interference due to meandering crack growth can still be accounted for by explicitly

simulating crack growth through grains.

Consequently, a single parameter for each slip system d
(α)
1 controls the resistance normal

to the slip plane. The degraded elastic stiffness tensor represents the response of a cracked

equivalent element (CEE) shown in Figure 47. To verify that the theorized behavior is

actually obtained, a MATLAB c© script computed the degradation of the elastic constants

and the stress tensor that follows from different damage coefficients and applied elastic strain

tensors. The elastic constants represent the elastic stiffness tensor for RR1000 superalloy

[105] with cubic symmetry, C11 = C22 = C33 = 166.2GPa, C12 = C13 = C23 = 66.3GPa,

C44 = C55 = C66 = 138.2GPa, rotated so that one slip plane normal is along axis 1. This

calculation represents the case in Figure 47, in which the crack surface normal is oriented

along direction 1.

Table 3 presents the cases analyzed and the resulting stress tensor (in Voigt notation),

which results in the expected behavior for a CEE. The values α = 0.398917 and β = 1 were

determined for the specific elastic constants employed so that, when an oriented CEE is
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e2

e1

e3

Undamaged CEE

Figure 47: The effect of degrading the elastic stiffness tensor is equivalent cracking an
oriented CEE.

loaded in tension parallel to the crack, the resulting stress in that direction is not affected by

the degradation (this situation is reviewed in the 4th example in Table 3). These results are

for a crack normal with a specific direction (1-axis); therefore, in a general case the 4th rank

damage tensor should be accordingly rotated to orient the crack with the crystallographic

plane.

4.3.4.2 Roughness friction and closure

The parameter d5 controls the friction resistance between surfaces of the cracks in a CEE.

For Stage I fatigue cracks where shear loading dominates, experiments [66, 162] have shown

that MSC growth rates resemble the results from longer cracks with large fatigue ratio R∼ 1.

Since this type of loading conditions minimizes the friction of the crack surfaces because

the cracks remains open most the time, it is reasonable to assume that MSCs should also

experience limited friction. For simplicity, the simulations will assume that parameter d5

takes a value of 0.99 when the crack is open, which implies that only 1% of the shear

resistance is maintained; hence, there is no attempt to address roughness induced closure

effects emerging from crack face frictional contact. However, it is noted that d5 could be

formulated as a function of the normal stress to the crack to introduce a friction law between

the faces of the crack.
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Table 3: Effect of damage coefficients (d1,d2 and d5) on the stress tensor σ for different
strain tensors in elastic materials. The crack surface normal is along direction 1 (Figure
47). “Any” means that the results are invariant with respect to that damage coefficient.

Elastic strain applied Damage Resulting elastic stress Case studied

1
3 2


1 0 0

0 0 0

0 0 0


d1 = 0

d2 = 0

d5 = 0


16.6x104 0 0

0 6.6x104 0

0 0 6.6x104

 No damage. Normal stresses
are obtained upon tensile

loading.

1
3 2


0 1 0

1 0 0

0 0 0


d1 = 0

d2 = 0

d5 = 0


0 27.6x104 0

27.6x104 0 0

0 0 0

 No damage. Shear stresses
are obtained upon shear

loading.

1
3 2


1 0 0

0 0 0

0 0 0


d1 = 0.9999

d2 = 0.3989

d5, any


16.6 0 0

0 < 10−2 0

0 0 < 10−2

 Fully Damaged. All stresses
decrease upon tensile

loading normal to the crack.

1
3 2


0 0 0

0 1 0

0 0 0


d1 = 0.9999

d2 = 0.3989

d5, any


6.6 0 0

0 1.4x105 0

0 0 4x104


Fully Damaged. The stress

normal to the crack
decreases upon tensile

loading parallel to the crack.

1
3 2


1 0 0

0 0 0

0 0 0


d1 = 0.5

d2 = 0.3989

d5, any


8.4x104 0 0

0 < 10−2 0

0 0 < 10−2

 Partially Damaged. Stresses
decrease upon tensile

loading normal to the crack.

1
3 2


0 0 0

0 1 0

0 0 0


d1 = 0.5

d2 = 0.3989

d5, any


3.3x104 0 0

0 1.4x105 0

0 0 4x104


Partially Damaged. Only
the stress normal to the

crack decreases upon tensile
loading parallel to the crack.

1
3 2


0 1 0

1 0 0

0 0 0


d1, any

d2, any

d5 = 1


0 27.6 0

27.6 0 0

0 0 0

 Fully Damaged. Stresses go
to zero upon shear loading

parallel to the crack.

1
3 2


0 0 1

0 0 0

1 0 0


d1, any

d2, any

d5 = 1


0 0 27.6

0 0 0

27.6 0 0

 Fully Damaged. Stresses go
to zero upon shear loading

parallel to the crack.

1
3 2


0 0 0

0 0 1

0 1 0


d1, any

d2, any

d5, any


0 0 0

0 0 27.6x104

0 27.6x104 0

 Fully Damaged. Stresses are
obtained upon shear loading

normal to the crack.

1
3 2


0 1 0

1 0 0

0 0 0


d1, any

d2, any

d5 = 0.5


0 13.8x104 0

13.8x104 0 0

0 0 0

 Partially Damaged. Stresses
decrease upon shear loading

parallel to the crack.
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When the stress normal to the crack plane is in compression, the crack should be con-

sidered to be as closed and the elastic stiffness is fully recovered (both elastic tensile and

shear resistance). Crack closure can be caused by the wake of plastic deformation as the

crack grows, or by the meandering crack path among crystallographic planes in multiple

grains. The former is considered by the present framework since plastic deformation is still

included in the constitutive formulation after the degradation of the elastic stiffness tensor.

The decrease of elastic stiffness prevents further development of plastic deformation because

the stresses can be lower than the threshold for slip activation, but the accumulated plastic

strains remain unaltered.

The meandering path of a crack, exemplified in Figure 1, is taken into account in the

model by explicitly considering grains and bands oriented with the slip planes. Therefore,

a crack will develop some roughness on the cracked surface with an intrinsic length scale

that depends on the grain size. The surface can suffer additional plastic deformation in

compression (e.g., deformation of peak), but the formulation does not consider surface

friction.

4.3.4.3 Positive definiteness of the elastic stiffness tensor

An additional verification is that the elastic energy we remains positive for all damage d1,

i.e.,

we =
1

2
σ : Ee = Ee : C̄ : Ee > 0 ∀ d1 (56)

The elastic stiffness tensor in Voigt notation has the property to maintain the energy

equivalence:

we =
1

2
Ee : σ =

1

2
{Êe}{σ̂}e =

1

2
{Êe}[Ĉ]{Êe} > 0 ∀ d1 (57)

in which {σ̂}, {Êe}, [Ĉ] refer to the stress, strain and elastic stiffness tensor matrices in

Voigt notation, respectively. Equation (57) implies that the elastic stiffness matrix should

be positive definite, which is equivalent to saying that the eigenvalues of [Ĉ] are all greater

than zero. Then, the eigenvalues of the elastic stiffness tensor in Table 3 (written in Voigt

notation) were computed for a range of damage parameter d1 as shown in Table 4. From
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these results we can infer that the degraded elastic stiffness tensor is positive definite and

satisfies Equation (57).

Table 4: Eigenvalues of the degraded elastic stiffness tensor in Table 3 computed for multiple
values of the d̃.

Eigenvalues

d1 λ1 λ2 λ3 λ4 λ5 λ6

0 0.9990 0.9990 2.7640 2.7640 2.7640 2.9980

0.1 0.9551 0.9990 2.7640 2.4826 2.4876 2.8128

0.3 0.8389 0.9990 2.7640 1.9348 1.9348 2.4908

0.5 0.6726 0.9990 2.7640 1.3820 1.3280 2.7640

0.7 0.4462 0.9990 2.7640 0.8292 0.8292 2.0072

0.9 0.1610 0.9990 2.7640 0.2764 0.2764 1.8541

0.99 0.0166 0.9990 2.7640 0.2764 0.2764 1.8014

0.9999 0.000166 0.9990 2.7640 0.0002764 0.0002764 1.7961

4.4 Elastic stiffness degradation in the mesoscale model

The mesoscale approach introduced in section 4.2 assumes that the crack is extended along

an entire band within a grain in correspondence with the number of cycles computed for this

amount of extension to occur based on the grain-level FIP values. Hence, the degradation

of the elastic stiffness tensor is performed in such an incremental fashion to achieve proper

description of stress redistribution with crack growth. The stress and strain fields and the

fatigue driving force are later updated with further cycling.

However, an instantaneous decrease of stiffness can affect the convergence rate of the

FEM, and it requires a gradual increase of coefficient d1 on the elements to achieve con-

vergence. In this case, the rate of degradation of stiffness is only dictated by the rate of

convergence of the FEM algorithm. Furthermore, in order to account for crack closure,

the stiffness tensor should be reestablished if the stress normal to the crack is negative

(compression), which implies decreasing d1 up to zero. The assessment of the stress sense

is performed for each element in a cracked band (i.e., allowing partial crack closure), and
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when one of those elements presents a compressive stress normal to the crack, d1 is de-

creased gradually to achieve convergence. All these tasks are performed in ABAQUS by

the UMAT, which is the subroutine that can control the evolution of the stiffness tensor for

each element and at each time increment.

4.4.1 Issues with the degraded stiffness tensors

The damage mechanics model proposed to degrade the stiffness tensor is a flexible strategy

to simulate the decohesion of cracked surfaces along directions that do not need to be

predefined when the FEM mesh is created. It is also adequate to model either transgranular

or intergranular cracks or to represent the crack separation along a single or multiple slip

plane. Another benefit is that the stress and strain redistribution can be partially evaluated

by not fully degrading the stiffness tensor. This methodology would reduce significantly the

computational work, while the results could still be a good approximation of more detailed

simulations.

However, the model relies on strongly anisotropic stiffness tensors that presented a

much slower rate of convergence compared to the undamaged case. Furthermore, the rate

of convergence was noticeably decreased when the parameter d1 approached a value of one

(typically d1 > 0.75 ) or when the nominal applied strain increased. As argued in the

literature [210], this slow convergence could have multiple origins:

• Depending on the orientation and value of d1, the degraded elastic stiffness could

present a high degree of anisotropy, and under the finite deformation formulation, it

could lead to a non-convex elastic potential energy over the entire space of admissible

loading conditions [69]. Under such circumstances, the underlying principle of virtual

work in FEM may be affected, causing a lack of convergence.

• The convergence of the constitutive model could be affected by the misalignment

of stresses and nodal forces due to strong anisotropic properties [197] or an elastic

snap-back instability (the softening behavior in which both strain and stress decrease

with further loading) [65] among multiple possibilities. Thus, if the stiffness tensor is
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degraded too rapidly, it could cause a strong change in some of the stress components,

affecting the convergence of the crystal plasticity model FE.

4.4.2 Simplification of the elastic stiffness degradation model

The possible causes for the low convergence rate of the degraded stiffness model are indeed

complex, and their solution would require a detailed and exhaustive analysis of the model to

be implemented, first in FEM environment, second in ABAQUS, and finally, in coordination

with the crystal plasticity model. Hence, in order to maintain the focus of the thesis on

the study of the small fatigue crack problem, this research will employ a simplified model

in which the stiffness tensor varies following isotropic degradation, i.e.,

C̄ =
(
1− d̃

)
C (58)

being d̃ a scalar that varies from 0 to 0.99, at which point fully surface decohesion is

assumed. To further simplify the implementation and reduce computational time, crack

surface separation is only considered for transgranular failure (i.e., along transgranular

bands and not GB sectors), which does not affect the characterization of the early transition

between failure modes. In other words, intergranular fatigue life is assessed, but cracks are

not extended along GBs.

4.4.2.1 Gradual degradation of the elastic stiffness tensor to achieve convergence

In simulations with isotropic degradation of the stiffness tensor, the abrupt increase of

the damage parameter d̃ from zero to 0.99 can affect the convergence. For example, in

some cases ABAQUS attempted to reduce the time increment in orders of magnitude after

increasing d̃, but simulations did not converge even after having converged easily, with

relatively large time increments, on the preceding steps. If the maximum time step in the

input file was reduced, simulations showed an improvement in convergence. However, this

strategy affects the entire loading step and not only during the degradation of the stiffness

tensor. An improved strategy is to control the degradation of the stiffness tensor for those

elements in a cracked band using a feedback from the current time increment, i.e.,

d̃(i+1) = d̃i ± ν dti (59)
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for d̃ ranging between 0 (initial) to 0.99 (fully cracked). Here, dti is the ith time increment

that is passed to the UMAT for each new increment, and ν is a factor that depends on

the cycling period and overall convergence of the crystal plasticity model. Thus, to fully

degrade the stiffness tensor in one loading cycle (tcycle), ν should satisfy that 0.99/ν ≤ tcycle.

For example, for loading cycles of 2 seconds, a value of ν = 2 was enough to increase

d̃ up to 0.99 by the end of the loading step, hence assuming total separation of the crack

surfaces. The plus sign corresponds to the case in which the stress normal is positive and

the stiffness tensor should be degraded (crack extension). In contrast, if the stress normal

to the crack is negative (in compression), the crack is assumed to be closed, and the stiffness

is reestablished by decreasing d̃ up to zero. Figure 48 presents a schematic description of

the loading sequence, the instances in which d̃ is increased and some possible evolutions

for d̃ in one random realization. For simplicity, Figure 48 assumes only one d̃ parameter

per band, but the simulations actually track the value of d̃ for each element in the cracked

bands, which allows for partial crack closure within a grain. In all cases, the increase or

decrease of d̃ occurs after predicting the path of the crack along the next grain, and it is

controlled by Equation (59) to achieve a good convergence rate.

Equation (59) does not relate the stiffness degradation rate to the fatigue driving force

per se, but it is an artifact to introduce a crack in bands with an acceptable convergence

rate of the overall simulation. Indeed, Equation (59) decreases the stiffness tensor in pro-

portion to the time increment, so if the simulation has a large time increment (because

it is converging easily), it will decrease the stiffness tensor significantly, which will further

tend to slow down the rate of convergence. This modification of the degradation model

limits the softening of the elastic stiffness tensor, and it is consistent with other regulariza-

tion solutions (such as artificial viscosity [18]), that modify the time-scale of the damage

process.

Furthermore, d̃ increases up to 0.99 and not to 1, to increase the speed of the simulations

and avoid numerical instabilities due to strain localization; a value of 0.99 means that the

resisting stress on the elements that are cracked is about two orders of magnitude smaller

than without a crack. Bammann and coworkers [14] proposed a similar limit of the damage
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The gradual recovery of the elastic stiffness tensor

cracked plane is in compression
corresponds to crack closure and occurs when the

The gradual degradation of the elastic stiffness

after finding the band with minimum life
tensor starts on the following loading cycle

For all grains, the change of the elastic
stiffness tensor is controlled by ν

and start increasing d̃

d̃ is proportional to the evolution

Time
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Figure 48: Schematic description of the possible time evolution of d̃ in different bands; d̃ is
proportional to the degradation or recovery of the stiffness tensor. For simplicity the figure
describes a single value of d̃ for each band, but the simulations actually degrade the elastic
stiffness tensor for each element in cracked bands. The parameter ν in Equation (59) controls
the rate of degradation of the elastic stiffness tensor, and it should satisfy that 0.99/ν ≤ tcycle
to fully crack a grain in one loading cycle.
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parameter to avoid numerical problems. Despite the fact that the addition of damage may

temporarily require reduced time increments, the simplifications implemented improve con-

siderably the convergence rate and reduce the number of simulations that exhibit abnormal

termination.

4.4.3 Mesoscale life estimation algorithm

Figure 49 presents a summary of the mesoscale scheme devised for assessing the fatigue

crack formation and early growth in microstructures. The algorithm starts by calculating

the values of the FIPs and their average on every band in every grain after applying a few

cycles (i.e., three to ten cycles), and it proceeds calculating the number of expected cycles

to nucleate crack on all bands for all grains using Equation (11). Once the band with the

lowest number of cycles to nucleate a crack is found and the elements within are marked

as “cracked,” the model applies again a few cyclic loading and updates the values of the

parameters in Equations (12), (13) and (17). It is during this loading cycle that the stiffness

tensor is degraded (d̃ increased) in those elements marked as cracked in a rate that follows

Equation (59), which improves the convergence of the FEM model.

Thereafter, the algorithm computes the MSC life of bands or GB sectors for trans-

granular and intergranular failure, respectively. The implementation then finds the band

neighboring the crack with minimum MSC life, and renders the elements within as cracked.

The simulation proceeds by applying further loading cycles, in which the stiffness tensor is

degraded on the cracked elements, and the MSC life is evaluated again on the remaining

grains. By repeating the procedure, the model can calculate the path of a crack among

several grains, estimate the number of cycles to failure and account for competition be-

tween transgranular and intergranular growth; The simulation ends when a certain number

of grains have been cracked. This approach is limited to represent a single dominant crack.
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- Create a regular (voxellated) mesh containing
microstructural attributes e.g., grain size, orientation
distribution.
- Subdivide each grain in bands and assign elements to them.
- Create sets with the elements neighboring another grain.

- Typically 3 to 10 cycles are enough to develop stress-strain
flields close enough to saturation conditions.

- Calculate FIPs for each element.
- Calculate the average FIP for each band.
- Estimate the life of each band. The nucleation life
corresponds to the lowest life among all bands.
- Set the band with lowest life as “cracked”, which means
that the crack spans the entire grain.

- The stiffness tensor is degraded at a rate defined by
Equation (59) for the elements on all the cracked bands.
- 2 to 5 loading cycles are typically enough to update the
stress and strain fields due to crack growth and crack closure.

- Updates the FIPs for each element.
- Updates each band average of the FIP.
- Estimates the life of each non-cracked bands. The MSC life
corresponds to the lowest life among all bands.
- Sets the band with lowest life as “cracked”, which means
that the crack spans the entire grain.

No

Yes

- The algorithm continues calculating MSC lives and
extending the crack until a predifined number of grains are
cracked.

Figure 49: Flow chart showing the algorithm to calculate the life until a certain number of
grains are cracked.
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4.5 Preliminary conclusions

This chapter introduced local correlations between crack growth rates and FIPs based on

a hierarchical approach to fatigue modeling that allows the estimation of the life consumed

in different stages as the crack extends.

To limit the computational demands, a mesoscale framework was introduced that enables

modeling of crack growth over many grains. The mesoscale scheme takes the grain as the

minimum unit that can crack (instead of an element) and assumes that the evolution of

the driving force inside grain i scales with a function, g(ai) that depends on the normalized

length of the crack within the grain, ai, (0 ≤ ai ≤ 1).

Once the crack has extended over one or more grains, the stress and strain redistri-

bution can affect the driving force on the neighboring uncracked grains. To account for

this effect, various strategies were reviewed, among which the damage mechanics approach

was preferred. This methodology degrades the elastic stiffness tensor without affecting the

crystal plasticity calculations.

A general anisotropic damage formulation was developed for finite deformation based

on a 4th rank damage tensor that guarantees a symmetric stress tensor. However, the

implementation in ABAQUS of such model showed very low convergence rate. Hence, to

maintain the focus of this thesis on the fatigue problem, a simplified model was implemented

to extends cracks along grains. The simplified isotropic degradation of the stiffness tensor

presents acceptable convergence rates when combined with an algorithm that adjusted dy-

namically the decrease of elastic stiffness.
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CHAPTER V

APPLICATION: MODELING RR1000

The previous chapters have presented a physically-based model to predict fatigue life at the

grain scale with a broad focus on FCC metals. To compare the model with experimental

data, this investigation will apply the multi-stage framework to predict the early stages

of the fatigue life in turbine disks made of the RR1000 alloy. This alloy corresponds to a

third generation of powder-processed Ni-base superalloy with a dual microstructure (large

grains surrounded by small grains), strengthened by γ′ precipitates [133]. The distribution of

grain sizes results from a thermomechanical process aimed at improving different mechanical

properties at different locations.

The premise is that the fatigue initiation life of a relatively new alloy can be estimated

for different microstructures by combining current general knowledge of fatigue damage

and plastic deformation at multiple scales with limited experimental information. Such an

objective is expected to be achieved by including the most significant aspects of the physics

of the fatigue problem and is not a mere fitting of data.

5.1 Significant aspects of Ni-base superalloys

Synthesizing the physics of crystallographic plastic deformation relevant to fatigue damage

is one of the main goals of this thesis. The following characteristics of superalloys are

relevant to the fatigue resistance of RR1000 alloy:

• Planar slip: Because Ni-base superalloys for disk applications have an FCC arrange-

ment, octahedral planes are the most dense, and at low to medium temperatures,

plastic deformation occurs mainly by planar slip along those planes. In addition,

starting in the range between 600◦C and 700◦C, many superalloys deform along the

cube plane directions in the matrix, often attributed to a zig-zag cross-slip mechanism

depicted by Figure 50 [22, 115].
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• Cyclic strain localization: A characteristic shared by low to medium SFE FCC alloys

(e.g., Cu-Al alloys, certain stainless steels and many superalloys) [13, 29, 71, 218] is

the development of thin slip bands in fatigue (∼ 100 nm in thickness). This process is

closely connected to the formation and growth of cracks in the small crack regime and

indicates that transgranular fatigue crack growth tends to follow octahedral planes

[70, 110].

• Constitutive modeling: To capture relaxation and creep effects at medium to high

temperature, the Chaboche [35] and crystal plasticity [9] models have been most

commonly employed. The first is a macroscopic model that does not account for the

crystallographic orientation, while the second is more relevant for small crack growth

analysis, since plastic deformation develops on a finite number of slip planes along

which cracks grow within individual grains.

• Environmental effects: Because it augments crack tip irreversibility and weakens GBs

[80, 96], the content of oxygen in the environment affects the fatigue crack growth

rates in metals and is detrimental for many FCC metals. Furthermore, several authors

[133, 93] have concluded that oxygen diffusion can trigger intergranular crack growth

in superalloys (including RR1000), which can reduce the fatigue life by orders of

magnitude.

• Nucleation and transition to a MSC: Turbine parts (e.g., disks) may present a mi-

crostructure with a wide statistical dispersion of grain sizes in which the largest grains

are often the most favorable sites for crack transgranular nucleation [62, 46], followed

by inclusions or GBs.

Figure 50: Zig-zag dislocation mechanism in superalloys at 650C [22]
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5.1.1 Microstructure of RR1000 alloy for disk applications

Only a few studies in the literature have focused on RR1000 alloy, but they provide useful

insights. Some studies [135, 133, 134, 63] have analyzed the microstructure evolution of

turbine disks as a function of thermal history. The heat treatment is designed to produce

a dual-microstructure [133], which optimizes the grain size at different locations, based on

service requirements. For example, the bore region undergoes tensile and fatigue loading

at relatively low temperature and achieves the best of performance with fine grain mi-

crostructures. However, the rim region requires good creep and high temperature fatigue

crack growth resistance, which are achieved with coarse grain microstructures, as shown in

Figure 51.

Rim: Coarse grainsBore: Fine grains

Turbine disk

Figure 51: Sketch of the cross section of a turbine disk. Red/blue color indicates
the last/first region to cool down in the manufacturing process, which results in a dual
microstructure.[133]

Mitchell et al. [133] characterized quantitatively the change in grain size and the γ’

volume from the bore to the rim, as a function of the maximum temperature achieved while

processing. Furthermore, at 750◦C they showed evidence of localized planar deformation,

typical of low SFE materials, and precipitates cut by dislocations. Stocker et al. [189]

performed several TEM analyses confirming the localized planar deformation in the form

of slip bands along with some climb at 650◦C, as shown in Figure 52. Interestingly, they

compared the results with specimens deformed at room temperature and found that “dis-

location patterns were broadly similar for samples tested under pure fatigue and combined

fatigue creep loading conditions.” Furthermore, the study also reported planar slip charac-

ter of the deformation, and none of these studies mentions either cube slip or microtwining

[95, 204], although they were not searching for them specifically.
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Figure 52: TEM micrographs for RR1000 after 2% deformation, 0.5%/s and hold time
100s. (left) Planar slip deformation. (right) Shearing between γ’ particles and dislocations.
[189]

The thermal gradient from the heat treatment produces bore and rim regions that can

be considered as formed by unimodal grain size distribution with different mean values.

However, in between lies the so-called transition region that has a bimodal distribution

with small and large grain sizes coexisting. The shape of the distribution determines the

probability of having an “as-large-as” (ALA) grain of a certain size [133, 62, 63], which

plays a major role in limiting the fatigue life. The transition zone is most critical and prone

to failure because the dual microstructure renders ALA grains close to those in the rim.

Thus, a deep understanding of the microstructural effects on fatigue life (e.g., effect ALA

grains) is needed in order to design a microstructure that will be adequate and that can be

realized with thermomechanical processing.

5.2 Grain size distribution and FE mesh generator

An important step in modeling the influence of the microstructure on fatigue life is to

provide an accurate description of the grain size and texture. For the HCF and HCF-LCF

transition regimes, the extreme values of the distributions should be considered with regard

to minimum fatigue life, rather than the mean values. Then, models should reproduce

distributions of grain size with more detail towards the larger grain size tail (e.g., ALA

grains). Based on the analysis of Lin et al. [106], the smallest representative volume element
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(RVE) for the constitutive modeling of RR1000 with unimodal grain size distribution would

contain on the order of 100 grains. This estimation involves only the macroscopic stress-

strain behavior, so an RVE for fatigue analysis based on extreme values would include an

even larger number of grains. Indeed, the wide scatter in HCF simulations and experiments

shows that true RVEs are larger than the volumes usually employed in specimens.

Since bimodal distributions of grains have a larger number of significant statistical mo-

ments than unimodal distributions, RVEs of dual microstructures should include larger

numbers of grains. If we consider RR1000 dual microstructures as being formed by two

independent unimodal distributions (each similar to the bore and rim), we would expect

that an RVE should contain at least 100 grains of each distribution. Furthermore, RR1000

disks typically contain ALA grains in the rim that are about ten time larger than the ALA

in the bore [133, 62]. Then, assuming that ALA grains in the bore are formed by one

element, rim ALA grains would have about 4000 elements, and a RVE would need about

400000 elements! Such a large number of elements is outside the scope of this research be-

cause it would demand extensive computational resources, so an alternative solution should

be found. One alternative would be to create meshes with variable element sizes, but this

approach will not be pursued because it introduces additional complexities such as non-

homogeneous meshes with variable accuracy in FIP calculations from grain to grain. A

second solution is to perform a statistical analysis of the simulations using models with one

rim ALA grain surrounded by smaller bore-size grains. This solution is preferred because it

demands an amount of computational work that can be scaled with the available resources

and desired accuracy.

Each model is aimed to represent a statistical volume element (SVE) of sufficient size

to capture the lower order moments of the cyclic-plastic evolution [171]. Therefore, the

simulations are allowed to nucleate only one crack, after which the crack extends in the

MSC regime. Each simulation represents the behavior of a dominant crack that can extend

through crystallographic planes, and can branch at GBs (i.e., not inside a grain)
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5.2.1 Mesh generator

Before conducting FE simulations, the information about the microstructure needs to be

defined and incorporated into ABAQUS [1] either via the input file or additional files read

by user subroutines. Such tasks are performed by the Mesh Generator program, which is

a Matlab script based on the framework originally created by Musinski [146] for assigning

grain size distributions. The Mesh Generator program was designed to allow the user to

define all the parameters involved in the FE simulations (from the constitutive model to

the fatigue life model) under a single user-friendly graphical interface.

The objective of the Mesh Generator is to create all that is required to run a simulation,

which demands that several calculations be performed before the input files are written.

The program initially creates a regular cubic mesh of reduced 8-node linear brick elements

(C3D8R) using ABAQUS python commands (called from the Matlab code) and defines

regions occupied by spherical grains with lognormal grain size distributions. The lognormal

distribution is described by

f(x;µ, σ) =
1

xσ
√

2π
exp

[−(ln(x)− µ)2

2σ2

]
, (60)

and it has been employed to fit IN100 superalloy [185, 217, 68] using µ = −0.1 and σ = 0.4.

Due to the lack of quantitative data about the specific grain size distributions for rim and

bore regions in RR1000, they are assumed to follow a lognormal distribution.

The number of grains is calculated as the ratio of the volume of the cubic mesh divided

by a slightly reduced average grain size that accounts for the spherical packing factor; this

factor represents the open spaces in between randomly packed spheres [146]. The unassigned

elements in between spheres are afterwards added to the closest grains, and the result is

an approximately equiaxed grain structure. The crystallographic orientation of the grains

is defined with three Euler angles (in Bunge notation [50]), which are selected randomly to

achieve no initial texture. The program also provides the chance to specify the size of three

grains that are located at the center, bottom-center and left-center of the mesh (Figure 53,

right); these grains correspond to ALA grains surrounded by smaller grains that follow a

lognormal distribution. This work focuses on the influence of one ALA grain, and will not
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Z
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Figure 53: An example of a mesh created. On the left the entire model is shown. On the
right a detail of grains 1, 2 and 3, which were given grain radius larger than the rest. The
model has periodic boundary conditions and strain is applied along the Z axis.

consider the cases of two or three ALA grains in the same simulation.

Once all the elements are assigned to grains, the Mesh Generator subdivides each grain,

starting from the center of the grain, in consecutive bands of similar width (as shown in

Figure 41, Chapter 4) and lists the elements whose centroids lie within the bands. This

task is repeated four times, each corresponding to a different slip plane normal, and these

sets of elements will later be used for averaging FIPs. Similarly, a series of sets is defined,

listing the elements neighboring another grain that will later be employed to assess the

intergranular failure of GBs. Each boundary between two grains is represented by two sets

of elements, each belonging to one of the grains. Furthermore, the model has boundaries

achieved by imposing that the sum forces and moments on opposite faces of the cubic are

equal to zero. Note that the meshes are not truly periodic, since grain distributions on

opposite faces are not identical. Finally, all the sets and boundary conditions are written

in the input file, so they are available for visualization in the ABAQUS graphical interface.

Apart from the standard ABAQUS input file, the user subroutines require further in-

formation about the microstructure that is defined during the creation of the mesh. This

information is passed to ABAQUS in the form of text files that are read by the user sub-

routines and usually stored in local (dynamic) or global (static) memory. Among the files
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created by the Mesh Generator are,

• Definitions.txt : Defines the value of the constants used in the prediction of the life,

i.e., irreversibility factors, ∆CTDth.

• Geom Def.txt : Defines several variables employed by the user subroutines, mainly

concerned to the geometry and microstructure of the model, i.e., number of elements

and grains, mesh size, width of the bands within which to average FIPs, and number

of grains to crack (i.e., maximum crack length).

• Grain.txt : Lists the size of the grains and the Euler angles that define the orientation

of the grain.

• Min dist.txt : Defines the connectivity among bands in which the FIP is averaged.

This information is stored as a logical variable array (possible values are 0 or 1) and

usually corresponds to the largest variable stored, easily reaching gigabytes in size

when hundreds of grains are involved.

• Neighbor grains.txt : Contains in line number (2i− 1) how many neighbor grains has

grain i, and in line 2i lists the actual number each of those neighboring grains separated

by commas.

5.3 Crystal plasticity constitutive model

5.3.1 Kinematics of crystal plasticity for large deformations

This section presents an overview of the crystal plasticity formulation for large strains

employed in simulations. Further details about the generalities of crystal plasticity models

can be found in Ref [89].

Considering an infinitesimal element, the deformation gradient defines the transforma-

tion between two configuration, i.e.,

dx = F · dX (61)

where x and X are the current and initial coordinate of a material particle, respectively.

The deformation gradient is decomposed into an elastic-damaged, F ed, and plastic F p such
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that

F = F ed · F p (62)

which takes into account the degradation of the elastic stiffness tensor as discussed in the

previous Chapter, but does not include any damage in the plastic part. F p describes

the kinematics of plastic deformation without any rigid rotation of the lattice, which is

considered in F ed. Figure 54 represents the slip direction (sα) and the slip plane normal

(mα) in the initial, intermediate and current configurations.

Reference
Configuration

Intermediate
Configuration

mα = mα
0 ·
(
F ed

)−1

sα = F ed · sα0

Current
Configuration

F edF = F ed · F p

mα
0

sα0

mα
0

sα0

F p

γα

Figure 54: Schematic representation of the elastic-damaged and plastic deformation gradients
in a crystalline solid.

According to Rice [175], if dislocation motion is the only deformation process, the time

derivative of the plastic deformation gradient Ḟ
p

can be expressed as,

Ḟ
p

=
( Nα∑
α=1

γ̇αsα0 ⊗mα
0

)
· F p (63)

in which Nα is the number of active slip systems and γ̇α is the shearing rate for slip system
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α.

The plastic velocity gradient Lp0 in the intermediate configuration satisfies

Lp0 = Ḟ
p · (F p)−1 =

( Nα∑
α=1

γ̇αsα0 ⊗mα
0

)
(64)

and in the current configuration plastic velocity gradient follows,

Lp = F ed ·Lp0 · (F ed)−1 (65)

while the elastic velocity gradient in the current configuration is given by

Led = Ḟ
ed · (F ed)−1 (66)

Finally, the velocity gradient in the current configuration can be computed as the sum of

Equations (65) and (66),

L = Ḟ · (F )−1 = Led +Lp (67)

In the intermediate configuration, the second Piola-Kirchoff stress T satisfies that,

T = C̄ : Eed (68)

in which Eed is the Green strain tensor:

Eed =
1

2

[
(F ed)T · F ed − I

]
(69)

being I the 4th rank identity tensor. The Cauchy stress σ in the current configuration is

obtained as

σ =
1

det(F ed)
F ed · T · (F ed)T (70)

Finally, the resolved shear stress, τα, for system α is computed using that

τα = σ :
(
sα0 ⊗mα

0

)
(71)

5.3.2 RR1000 crystal plasticity model

Zhan et al. performed an experimental evaluation of RR1000 [220, 221], including monotonic

and fatigue tests at 650◦C using different strain rates (0.5%/s, 0.05%/s, 0.005%/s) and dwell
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periods. In order to describe the constitutive behavior including creep effects, these results

were later employed to fit a Chaboche model. Overall, the model was fit to the data with

acceptable error for industrial applications, but in experiments with dwell periods the stress

relaxation predicted exceeded grossly the experimental measurements after the first cycle.

The experimental data were later employed to fit a model that tracked the diffusion of

oxygen in order to predict crack growth rates [227].

Recently, Lin et al. [105] fit Zhan’s RR1000 experimental data to 2-D FEM simulations

that explicitly describe grain orientation and to a crystal plasticity scheme based on the work

by Meissonnier et al. [125]. The model was implemented in ABAQUS using a fully-implicit

implementation based on the Newton-Raphson iterative method and the backward-Euler

integration scheme. The constitutive model employs the flow rule

γ̇(α) = γ̇0exp

[
− F0

kT

〈
1−

〈∣∣τ (α) −B(α)
∣∣− S(α)µ/µ0

τ̂0µ/µ0

〉p〉q]
sgn(τ (α) −B(α)), (72)

where γ̇(α) is the shearing rate of slip plane α, τ (α) is the associated resolved shear stress,

T is absolute temperature, F0, τ̂0, p, q, γ̇0, µ, µ0 are constants that may differ for octahedral

and cube slip planes, and k is the Boltzmann constant. This formulation is based on the

work from Busso [30] that is related to the work of Kocks [94] and considers 12 octahedral

and 6 cube slip systems. The constants were adjusted by simulating a sheet with grains

under cyclic loading, with and without dwell times at multiple strain rates at 650◦C [105].

The flow rule in Equation (72) includes, for each crystallographic plane, a directional

slip resistance term (S(α)) that functions as a threshold stress below which no plastic de-

formation develops and a back stress (B(α)) that accounts for directional hardening and

Bauschinger effects. The evolution laws for slip resistance and back stress in Equations (73)

and (74) follow, respectively:

Ṡ(α) =
[
hS − dD

(
S(α) − S(α)

0

)] ∣∣∣γ̇(α)
∣∣∣ (73)

Ḃ(α) = hB γ̇
(α) − r(α)

D B(α)
∣∣∣γ̇(α)

∣∣∣ (74)
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in which r
(α)
D =

hBµ0

S(α)

{
µ′0
fcλ
− µ

}−1

and S0, hB, hS , dD, µ
′
0, fc, λ are constants that are

different for octahedral and cube slip planes. Both equations follow a hardening-dynamic

recovery type of evolution [103], but they differ in the initial values of the stresses, namely

S0 for the slip resistance and B
(α)
0 = 0 for the back stress.

Since this formulation does not account for dislocation transmission across GBs, the

plastic deformation generated within one grain cannot be transferred into a neighboring

grain. Furthermore, the constitutive model does not have an intrinsic length scale, so two

identical FEM models but one ten times larger will result in exact same stresses and strains.

Both limitations of the constitutive formulation will be partially mitigated by the fatigue

model.

5.3.3 Constitutive model implementation

The model was implemented as a UMAT in ABAQUS 6.9 [1] by modifying Shenoy’s original

crystal plasticity implementation for IN100 [184], which is also an implicit scheme based

on the Newton-Raphson and the backward-Euler methods. As discussed by McGinty [123],

power law flow rules can produce numerical instabilities that would require exceptionally

small time steps when using explicit algorithms. Since the exponential flow rule proposed

by Lin et al. [105] can be approximated by a sum of power terms, an implicit scheme is

judged as the most reliable path to calculate the plastic shearing rate.

With the beginning of a new time increment ∆t, the subroutine evaluates the discrete

plastic shear rate for each slip system, i.e.,

γ̇(α) = γ̇0exp

− F0

kT

〈
1−

〈∣∣∣τ (α)
t+∆t −B

(α)
t+∆t

∣∣∣− S(α)
t+∆tµ/µ0

τ̂0µ/µ0

〉p〉q sgn(τ
(α)
t+∆t−B

(α)
t+∆t), (75)

and the slip resistance S(α) and the back stress B(α) are discretized using Euler differences,

S
(α)
t+∆t =

S
(α)
t +

(
hS + dDS

(α)
0

) ∣∣γ̇(α)
∣∣∆t

1 + dD∆t
∣∣γ̇(α)

∣∣ (76)

and

B
(α)
t+∆t =

B
(α)
t + hB γ̇

(α)∆t

1 + r
(α)
D ∆t

∣∣γ̇(α)
∣∣ (77)
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Since Equations (75), (76), and (77) are coupled and nonlinear, a Newton-Raphson

algorithm is employed to solve for the set of equations by iteratively solving the function

f (α) defined as,

f (α) =

Nsys∑
(β)=1

∂f (α)

∂γ̇(β)
∆∂γ̇(β) =

γ̇(α)

γ̇0
sgn(τ (α) −B(α))− exp

[
−F0

κθ

〈
1−

〈∣∣τ (α) −B(α)
∣∣− S(α)µ/µ0

τ̂0µ/µ0

〉p〉q]
=

∂

∂γ̇(β)

{
γ̇(α)

γ̇0
sgn(τ (α) −B(α)) + exp

[
−F0

κθ

〈
1−

〈∣∣τ (α) −B(α)
∣∣− S(α)µ/µ0

τ̂0µ/µ0

〉p〉q]}
∆∂γ̇(β)

(78)

The first term of the last equation equals,

∂

∂γ̇(β)

{[
γ̇(α)

γ̇0
sgn

(
τ (α) −B(α)

)]}
∆∂γ̇(β) = sgn

(
τ (α) −B(α)

) δ(αβ)

γ̇0
(79)

The second term equals zero when

∣∣τ (α) −B(α)
∣∣− S(α)µ/µ0

τ̂0µ/µ0
≤ 1. Note that this condi-

tion is sufficient for both Macaulay brackets. For any other case,

∂

∂γ̇(β)

{
exp

[
−F0

κθ

〈
1−

〈∣∣τ (α) −B(α)
∣∣− S(α)µ/µ0

τ̂0µ/µ0

〉p〉q]}
∆∂γ̇(β) =

exp

[
−F0

κθ

〈
1−

〈∣∣τ (α) −B(α)
∣∣− S(α)µ/µ0

τ̂0µ/µ0

〉p〉q](
1−

(∣∣τ (α) −B(α)
∣∣− S(α)µ/µ0

τ̂0µ/µ0

)p)q−1

(∣∣τ (α) −B(α)
∣∣− S(α)µ/µ0

τ̂0µ/µ0

)p−1
q p

τ̂0µ/µ0

[(
∂τ (α)

∂γ̇(β)
− ∂B(α)

∂γ̇(β)

)
sgn

(
τ (α) −B(α)

)
− µ

µ0

∂S(α)

∂γ̇(β)

]
(80)

The derivatives for the discrete implicit scheme have the following shape

∂B
(α)
t+∆t

∂γ̇(β)
=

[
hB − r(α)

D B
(α)
t sgn

(
γ̇(α)

)]
δ(αβ)∆t

1 + r
(α)
D ∆t

∣∣γ̇(α)
∣∣ (81)

∂S
(α)
t+∆t

∂γ̇(β)
=

[
hS − dD

(
S

(α)
t − S(α)

0

)]
sgn

(
γ̇(α)

)
δ(αβ)∆t

1 + dD∆t
∣∣γ̇(α)

∣∣ (82)
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The Newton-Raphson method is usually an efficient solving technique, but it does not

guarantee the convergence of the calculation, especially if the initial guess is far from the

solution. For this problem, the initial guess corresponds to the ISVs from the previous time

step, which may vary significantly over a time step. Therefore, after the Newton-Raphson

method is executed; a line search algorithm aids in the convergence of the equations [123].

In certain cases the line search algorithm does not assure convergence, so the time increment

is then refined into subincrements within the UMAT to integrate the constitutive equations,

in a process that is transparent to the underlying FEM algorithm. To summarize the func-

tioning of the algorithm, Figure 55 presents a flow chart with the computations performed

by the UMAT for each time step; this is a modified version of the scheme described by

McGinty [123].

Furthermore, Figure 56 outlines the interaction between the ABAQUS FEM algorithm

and the UMAT. For each time increment, ABAQUS passes to the UMAT the deformation

gradients at the beginning F t and end F t+∆t of the time increment. After resolving the

kinematics of plastic deformation, the elastic deformations, the Jacobian and the Cauchy

stresses (see Ref. [123] for further details), the UMAT updates the Euler angles, and

the ISVs–plastic stains, back stress, slip resistance–, and returns to the FEM algorithm

controlled by ABAQUS.

The integration scheme is always subject to improvement; for example, the power func-

tions employed by Shenoy et al. [184] for the IN100 constitutive formulation are less stiff

than the exponential function in Equation (72), which can lead to an abnormal abortion

of the simulations caused by a diverging number of time subincrements. One strategy to

avoid an unbounded number of time subincrements has been to set a low limit to the maxi-

mum time increment in the FEM computations. This strategy is highly undesirable since it

imposes limits on time increments for the entire FEM code that cannot be modified based

on the variable convergence requirements of the constitutive model. In other words, if the

constitutive model requires a small limit in the time increment to be able to converge at a

specific point in the loading history (e.g., the initial steps of a dwell period, at the onset

of plastic deformation or after changing the loading direction), that small time increment
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Figure 55: Flow chart showing the numerical integration scheme of the constitutive model
for each loading step. Adapted from [123].
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Figure 56: Flow chart showing the interaction of ABAQUS finite element algorithm with
the UMAT subroutine. Adapted from [123].
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becomes the maximum possible increment for the entire step.

A more adequate strategy to avoid the problem is to limit the maximum number of

subdivisions (e.g., lower than 106) and restart the analysis of the current step with a smaller

time increment; this means that the sub-incrementation is not entirely transparent to the

FEM algorithm. This methodology has been implemented using the ABAQUS command

“PNEWDT”, which restarts the analysis of the current step with a smaller time increment

every time the number of subdivisions reaches 1x106, as shown in Figure 55. This strategy

demonstrated that the maximum time increment was not a limiting factor, and the running

time of the simulation decreased sharply (for example, simulations with hold time run about

one order of magnitude faster).

5.3.4 Calibration of the constitutive model for RR1000 superalloy

The constitutive model was exercised using a mesh similar to that shown in Figure 53

with unimodal grain size distribution, rendering about 30 grains, created with the Mesh

Generator. Loading consisted of applying a low-amplitude cyclic displacement along the

Z direction and periodic loading conditions in which the sum of forces and moments on

opposite faces was equal to zero. Table 5 presents the values of the constants, which

are similar to those used by Lin [105] at 650◦C and strain rates of 0.5%/s, 0.05%/s and

0.005%/s., except for a 15% increment in the initial values of the threshold stress (S0).

The results are compared to experimental data in Figures 57, 58, and 59, which show the

red squares from the simulations overlapping the experimental data in black circles. These

results suggest that the calibration by Lin et al. [105] for a 2-D model works adequately.

However, the analysis of the parameters points out that the initial value of the threshold

stress for the cube slip is about an order of magnitude smaller than that of the octahedral

slip. Such a fact does not seems to be reasonable from a physical standpoint if we consider

that the cube slip mainly represents the zig-zag meandering of dislocations along octahedral

planes. Even though cube slip via a zig-zag cross-slip mechanism has not been explicitly

observed in RR1000 alloy, a limited amount is expected to develop, but this argument would

not justify the difference in the initial value of the threshold stresses.
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Table 5: Initial values of the parameters of the constitutive model.

Parameter Octahedral slip Cube slip

F0 (kJmol−1) 295 295

p 0.31 0.99

q 1.8 1.6

γ̇0 (s−1) 120 4

τ̂0 (MPa) 810 630

S0 (MPa) 400 55

hB (GPa) 400 100

hS (GPa) 160 4.5

dD (MPa) 6024 24

µ′0 (GPa) 72.3 28.6

fc 0.42 0.18

Other parameters: C11 = 166.2GPa, C12 = 66.3GPa, C44 = 138.2GPa,
λ = 0.85, µ0 = 192GPa.
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Figure 57: Stress-strain results for the cubic mesh undergoing 2% cyclic displacement-
controlled loading at 0.5%/s strain rate: simulations (red) and experiments (black) [220].
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Figure 58: Stress-time results for the cubic mesh undergoing 2% cyclic displacement-
controlled loading at 0.5%/s strain rate: simulations (red) and experiments (black) [220].

The partition of plastic strain between octahedral and cube planes can be quantified by

comparing the equivalent plastic strain, εpleq =
√

2/3
∑
εplij calculated based on either the

contribution of the octahedral planes or the cube planes, i.e.,

EplOct =
12∑
α=1

γ
(α)
Oct(s

(α)
0 ⊗m(α)

0 ) and EplCub =
6∑

α=1

γ
(α)
Cub(s

(α)
0 ⊗m(α)

0 ),

in which s
(α)
0 and m

(α)
0 are the slip plane normal and the slip plane direction in the inter-

mediate configuration respectively.

To reproduce the work by Lin et al.[105] as closely as possible, a set of simulations were

designed rendering planar sheets of one element thickness and explicit circular grains. The

resulting octahedral and cube equivalent plastic strains after five loading cycles are depicted

in Figure 60. These results suggest that at 650◦C the contribution from octahedral and cube

slip are comparable, which is not in agreement with the general behavior expected for Ni-

base superalloys at that temperature. This discrepancy is caused by the lack of uniqueness

of the constants for the constitutive model when they are fitted to macroscopic tensile
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Figure 59: Stress-time results for the cubic mesh undergoing 2% cyclic displacement-
controlled loading at 0.5%/s strain rate with 100s hold time: simulations (red) and ex-
periments (black) [220].

experiments of polycrystals. Furthermore, even though the macroscopic behavior might

match the experiments, the local overestimation of cube slip may affect fatigue assessment

by predicting lower values of octahedral strains. Currently, there is no accepted methodology

to fit the constitutive model with cube slip originated by the zig-zag mechanism. Therefore,

since the zig-zag mechanism requires dislocations to move along octahedral planes, the best

guidelines for defining the values of the parameters are that octahedral slip dominates and

that the initial value of the threshold is, at least, larger for the cube than for the octahedral

slip planes.

Testing single crystals oriented for octahedral and cube slip activation would not resolve

the calibration problem since the cube slip in the model represents mainly octahedral slip

with a zig-zig mechanism. Further research needs to be done to introduce proper calibration

methodologies that convey the physics of dislocation cross-slip along octahedral planes,

resulting in plastic deformation along cube planes. However, a relatively simple procedure
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Figure 60: Equivalent plastic strains calculated with the contributions of either octahedral
and cube slip.

to test the model would be to run EBSD analysis of deformed polycrystals and quantify

the number of grains in which cube slip occurs by observing the crystallographic direction

of the macroscopic slip bands. Then, the constants in the model (e.g., the ratio between

the octahedral and the cube back stress thresholds) could be adjusted quantitatively to

represent the macroscopic partition between octahedral and cube slip.

Another route to verification of the quality of the model relates to the cross-slip mecha-

nism that provides the cube slip. In a recent publication, Tinga et al. [198] explained that

in order to have cross-slip, the resolved shear stress on the octahedral planes should have

the same direction on both planes, otherwise the γ’ precipitates will impede further move-

ment of dislocations. Hence, the direction of the resolved shear stress on pairs of octahedral
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planes that lead to cube slip were compared, and on certain grains with non-zero cube slip,

the stress showed opposite signs. In consequence, the model as presented and fit by Lin et

al. [106] presents certain aphysical aspects, in spite of the overall apparent agreement with

experimental data.

5.3.5 Improvements in the calibration of the constitutive model

The arguments in the previous section suggest that the constants of the crystal plasticity

model need to be recalibrated in an attempt to make the threshold stress for the octahedral

planes lower or at least equal to that for the cube planes. For the recalibration, the higher

rate (0.5%/s) from [220] was not considered because it presented a softening behavior (in

comparison with the other rates) that was not explained by the authors, cannot be justified

by the physics of plastic deformation of superalloys, and perhaps raises concern about the

accuracy of the experimental procedures. Hence, the constitutive model was recalibrated

using only two strain rates 0.05%/s and 0.005%/s, aiming to lower the threshold stresses

for the octahedral slip systems below that of the cube slip system. After many (∼ 70)

trial-and-error adjustments of the parameters, the results employing the constants in Table

6 were considered as “acceptable” to a first approximation.

For example, Figure 61 presents the experimental saturated loop for 0.05%/s strain rate

compared to the results from the simulations used for calibration. Similarly, Figure 62 and

Figure 63 present the peak load as a function of time for 0.05%/s and 0.005%/s strain

rates, respectively. Finally, the validation of the model under dwell conditions is presented

in Figure 64. To assess the convergence with increasing numbers of grains, Figures 61 to

64 include the results of more refined models with 5832 elements and about 170 grains

randomly oriented. The refinement of the SVE only increased the stress by about 1-2.5%,

which suggests that the model calibration represents the mean behavior. Indeed, these

differences have a minor effect in the calculation of the FIP due to the uncertainty in

determining the Fatemi-Socie constant k (Equation (9)).

Although the calibration of the crystal plasticity model could still be improved, the lack

of slip transmission across GBs and the aphysical aspects in the model along with the scarce
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Table 6: Parameters of the constitutive model the resulted from the recalibration procedure.

Parameter Octahedral slip Cube slip

F0 (kJmol−1) 885 885

p 0.217 0.495

q 2.25 1.66

γ̇0 (s−1) 120 4

τ̂0 (MPa) 810 630

S0 (MPa) 210 288

hB (GPa) 40 50

hS (GPa) 320 6.75

dD (MPa) 1204.8 12

µ′0 (GPa) 72.3 28.6

fc 0.315 0.18

Other parameters: C11 = 166.2GPa, C12 = 66.3GPa, C44 = 138.2GPa,
λ = 0.85, µ0 = 192GPa.

experimental data available limit the accuracy of the results. Therefore, this investigation

assumes that the model describes the mean behavior of RR1000 alloy adequately, and

continues with the analysis of cracks, pointing out that some limitations could arise.
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Figure 61: Stress-strain saturated hysteresis loop under displacement-controlled loading at
0.05%/s strain rate, comparing simulations. Symbol legend: � Simulations ∼ 30 grains, �
Simulations ∼ 170 grains, • Experiments (black) [220].
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Figure 62: Stress vs. cycles results for the cube under cyclic displacement-controlled loading
at 0.05%/s strain rate, comparing simulations. Symbol legend: � Simulations ∼ 30 grains,
� Simulations ∼ 170 grains, • Experiments (black) [220].
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Figure 63: Stress vs. cycles results for the cube under cyclic displacement-controlled loading
at 0.005%/s strain rate, comparing simulations. Symbol legend: � Simulations ∼ 30 grains,
� Simulations ∼ 170 grains, • Experiments (black) [220].
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Figure 64: Stress vs. time results for the cube under cyclic with 100s dwell displacement-
controlled loading, comparing simulations. Symbol legend: � Simulations ∼ 30 grains, �
Simulations ∼ 170 grains, • Experiments (black) [220].
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5.4 ∆CTD vs. FIP for RR1000

The response of the constitutive equation for RR1000 alloy is further explored with a set

of simulations of single crystals with cracks, similar to those presented in Chapter 3. The

simulations correspond to the circular crack tip introduced in Figure 10, using different

stationary cracks lengths of 2µm, 5µm, 7.5µm, 10µm and 15µm. The simulations considered

three loading cycles according to Figures 12 and 13, and the FIP was evaluated in the last

half-cycle. The entire crystal obeyed the RR1000 constitutive model (i.e., homogeneous case

with no explicit slip band) and the range of loading was expanded by including cases Shear4

and Mixed4 detailed in Table 7, while the rest of the loading cases were defined in Table 1.

Similar to Chapter 3, the crystallographic planes are oriented so that one octahedral slip

direction lies parallel to the plane of the crack.

Figure 65 presents the maximum FIP among all elements versus the ∆CTD for all

the loading ranges simulated. On each plot two regimes can be distinguished: to the left

the region in which elastic deformation dominates the driving forces, and to the right the

region in which plastic deformation is significant. The change in regime occurs for values of

∆CTD about 10−2µm, which is significantly greater than the Burgers vector (∼ 10−4µm to

10−3µm), as would be expected. This discrepancy should be expected since the constitutive

model was calibrated using cyclic stress-strain data loaded up to a 2% nominal strain range,

which suggests that the model may not be accurate for simulations with limited plastic

deformation. Hence, fatigue simulations should focus on the portion of the HCF regime

that is farther from the fatigue threshold and closer to the HCF-LCF transition. The

constitutive equation requires further calibration and refinement to be employed in the

Table 7: Displacements applied to the top face (in µm) for the additional case analyzed.
The displacement of the bottom face had the same magnitude and opposite direction.

Shear 4 Mixed 4

X axis 0.100 0.0707

Y axis 0 0.0707

Nominal peak strain 1% 1%
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VHCF regime, i.e., regimes near the fatigue threshold.
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Figure 65: Maximum FIP versus the ∆CTD for shear (left) and mixed mode (right) loading.

Figure 66 compares the value of the ∆CTD with the FIP averaged over a 2µm band

parallel to the crack (similar to that in Figure 10, Chapter 3). Similar to Figure 65, the

averaged FIP presents a steep increment for ∆CTD of about 10−2µm, which is thought to

be connected with the activation of plastic deformation in increasing numbers of elements

within the band. Indeed, such steep increments are not present in Figure 67, which com-

pares the ∆CTD with the total-strain FIP (elasticity included) averaged over bands. The

correlation between both measures of the fatigue driving forces is significantly better for

Shear than for Mixed loading. Such a disparity in the correlation quality with the loading

mode is presumably caused by the averaging volume, which lies along the slip plane oriented

for single slip. This fact suggests that the correlation could be improved by using multiple

averaging volumes according to the slip plane activated.

To quantify the correlation, a linear regression analysis was performed including only

data from Shear3 and Shear4 loading. Data from Shear1 and Shear2 loading were not

considered because plastic deformation is very limited and requires further calibration of

the constitutive model. Furthermore, mixed loading simulations were not included because,

as argued, the quality of the correlation is significantly lower than that for Shear loading.
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Figure 66: FIP averaged over bands versus the ∆CTD for shear (left) and mixed mode
(right) loading.
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Figure 67: Averaged FIP versus the ∆CTD for shear (left) and mixed mode (right) loading.

The results are depicted by Figure 68, which shows an almost one-to-one relationship (b ∼ 1)

between both driving forces as a function of the Fatemi-Socie constant k. Overall, these

results are in agreement with those presented for Cu in Chapter 3 (see Figure 24).
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Figure 68: Linear regression of the averaged total-strain FIP vs ∆CTD for shear loading.
Here, b and A correspond to Equation (8)

5.4.1 Multiple band analysis

The simulations of cracked single crystals for RR1000 (i.e., Figure 67) suggested that aver-

aged FIP correlated better with ∆CTD under pure Shear rather than Mixed loading. One

cause for this difference is, presumably, that the averaging volume was chosen to mimic

one dominant slip band and not two. A natural extension would be to calculate a FIP

based on the averages on multiple bands along different slip planes. Then, the results of the

simulations were reanalyzed by assigning the elements in the meshes to bands (as shown in

Figure 41) and averaging the FIP(α) for each slip system on each band (i.e., for each band,
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three different averaged FIPs). The equivalent FIP for the multiaxial case is calculated as

FIP =
N∑
i

FIP
(α)
i m(α), (83)

in which m(α) is a vector that corresponds to the slip direction of slip plane α and FIP
(α)
i

are the values of the N higher band-averaged FIPs without repeating slip systems. Here, N

refers to the number of slip systems considered and goes between 1 to 5. For each element,

the FIP is calculated using Equation (9), in which k = 0.5 and ∆γαp is, for each slip plane α,

the difference between the maximum and minimum accumulated plastic shear strain over

the last cycle, i.e.,

∆γαp = γαp

∣∣∣max
over cycle

− γαp
∣∣∣min
over cycle

(84)

Hence, the range of slip on system α is determined every cycle.

The magnitude of the ∆CTD in Equation (83) is compared to the magnitude of FIP in

Figure 70, which presents in blue dots the sum of the contributions from the 5 most active

systems. The correlation for Mixed loading has improved significantly, and it is comparable

with that for shear loading. For completeness, Figure 70 also presents the calculations of

the FIP magnitude using increasing numbers of bands that contribute, N from 1 to 5 in

Equation (83), as marked with different colors. As expected, in Shear loading one band

is enough to provide a good estimation of the ∆CTD. For mixed loading, the difference

between using 1 or 3 bands can be up to a factor 2 or 3, while using 4 and 5 bands does

not significantly affect the quality.

The comparison between Figures 66 and 70 suggests that selection of an appropriate

direction for averaging volume has a central effect on the quality of the driving force,

while, at least for the constitutive model employed, the number of bands employed exerts a

second order influence. An additional note is that the calculations are based on non-uniform

meshes, which introduces error, though small, in the estimations of FIPs.

Finally, the correlation between the FIP and the ∆CTD is evaluated by performing a

regression analysis to the data in Figure 70. The regression considered the FIP from the

sum of 5 bands (blue dots) from Shear3/Mixed3 (�) and Shear4/Mixed4 (N) in which plastic

deformation dominates the ∆CTD. The result of the correlation is presented in Figure 71,
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Figure 69: Representation of the averaging volumes for different normal planes. Each color
corresponds to a band. For further details about the crack tip shape refer to section 3.2.1
in Chapter 3.
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Figure 70: FIP calculated as a contribution different number of bands versus ∆CTD for
shear (left) and mixed mode (right) loading.

which shows that both shear and mixed data support a one-to-one relation. The exponent

b = 1.16 in the correlation (Eq. (8) ) is close to that found in Figure 68 for k=0.5 (b = 1.04).

The proportionality constant A differs in the previous analysis by about a factor of two due

to the different methodologies employed to calculate the FIP. Moreover, the quality of the

correlation is better than that for the correlations in Chapter 3, probably because only

homogeneous data are employed here. Moreover, more scatter is observed towards the left

of the figure, which reflects the influence of the dominant elastic deformation.

5.4.2 Non-local constitutive models

The results presented are based on calculations of the FIP for each element using a local

constitutive model, subsequently averaged over finite volumes to produce non-local mea-

surements of the driving force (averaged FIP). An additional possibility would be to develop

non-local constitutive models that are able to develop regularized localization of strain and

to determine the crack tip process zone. Non-local gradient theories are currently one of

the topics of active research, but the complexities involved are significant. On the other

hand, non-local integral constitutive models may become a viable and more physical ap-

proach that matches naturally into the formulation developed in this thesis. Indeed, the
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Figure 71: Linear regression of the averaged FIP vs ∆CTD using the data from Figure 70
with FIP greater than 10−4.

constitutive model could be formulated so that the back stress or the slip resistance include

a dependence on the averaged value along the band to which the element belong. This type

of formulation would be consistent in some sense with the models of dislocation structures

proposed by Ortiz and coworkers [158, 159] based on weak forms.

5.5 Preliminary Conclusions

The concepts discussed in the previous chapters regarding the study of early fatigue life

and microstructure will next be applied in the study of RR1000 superalloy with dual mi-

crostructure. This chapter has described the nature of the RR1000 superalloy for turbine

disk applications and introduced a crystal plasticity constitutive formulation showing the

following:

• A crystal plasticity model for RR1000 was successfully implemented. The model con-

siders cube slip to account for the zig-zag cross-slip mechanism and fits adequately

to macroscopic stress-strain and stress-time experimental data. However, the model
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may present some aphysical characteristics such as the dominance of cube slip plas-

tic deformation or stresses incompatible with the zig-zag mechanism in spite of the

macroscopic agreement. Furthermore, the GBs are treated in a simplified manner

that does not account for slip transmission and the model does not have any intrinsic

length scale.

• A new procedure was introduced in the implicit crystal plasticity scheme to enhance

efficiency in ABAQUS.

• Modeling dual microstructures has special requirements to account for the moments of

the grain size distribution. This work proposed to generate statistics with simulations

based on SVE rather than a RVE, to be able to scale the quality of an estimation of

the fatigue behavior with the computational effort. Furthermore, a Mesh Generator

program has been developed to feed the FE solver with a complex microstructure that

may include ALA grains.

• The analysis of single crystals with cracks has shown that the current calibration of

the RR1000 constitutive model may not be accurate for VHCF loading type, but is

good enough for studying the HCF regime and the transition to LCF. Moreover, for

multiaxial loading, the sum of FIPs averages along multiple bands presents better

correlation with ∆CTD than the maximum FIP average value.

• The correlation between the FIP and the ∆CTD for RR1000 is approximately one-to-

one, which is similar to the results found for Cu in Chapter 3. Since the constitutive

models for both metals are completely independent, the similarity in the correlation

reinforces the fundamental relation between the FIP and the ∆CTD measures of the

driving force .
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CHAPTER VI

APPLICATION: FATIGUE MODEL FOR RR1000

The previous chapter presented simulations modeling the constitutive behavior of RR1000

alloy as a polycrystal or a cracked single crystal. This chapter introduces the fatigue model

established in Chapter 4 as adapted for the study of RR1000 alloy, along with some de-

tails of the implementation in ABAQUS [1]. Because the disks for aircraft gas turbine

engines undergo peak loads during takeoffs and landings, the most common test conditions

correspond to peak strains between 1% and 2% under strain control with Rε = 0.1 and

temperatures from 650◦C to 725◦C. These loading conditions are reproduced in this study

of the effect of microstructure on fatigue early life and should result in nucleation lives on

the order of 104 to 105 cycles.

6.1 Fatigue model implementation

The fatigue model has been implemented in ABAQUS FEM [1]. One drawback of using

commercial FEM software is that access to the solver loop is constrained to a few fixed

and predefined subroutines or stages. For example, under ABAQUS the constitutive model

needs to be defined in the UMAT that is executed at a specific point in the solver loop.

Similarly, the user-defined external database subroutine (UEXTERNALDB) is executed

at each time increment once all the elements have converged, because it is intended for

performing calculations in addition to the FEM computations. This subroutine could be

employed when the parameters of the constitutive equation depend on an independent (i.e.,

decoupled) calculation such as a diffusion-controlled mechanism. Figure 72, adapted from

ABAQUS documentation, presents a simplified flow chart describing the instances in which

ABAQUS accesses the UEXTERNALDB subroutine during the solver loop.

In this research, the UEXTERNALDB subroutine plays a major role, since it contains

an algorithm that deals with the information about microstructure and averaging volumes

135



Figure 72: Simplified description of the steps executed by ABAQUS to solve the FE and the
instances when the UEXTERNALDB is called. Adapted from ABAQUS documentation.

(e.g., which elements belong to each grain), calculates local and averaged values of FIPs,

and estimates the fatigue life for each band among the most important tasks. Using the

UEXTERNALDB subroutine allows seamless simulations that can predict whether cracks

should grow in transgranular or intergranular fashion, accounting for the crack growth

stress redistribution by adding damage to elements only if the crack undergoes opening

loads. Additionally, as with any other subroutine in ABAQUS, the UEXTERNALDB

subroutine is implemented in Fortran. For further details about the functioning of the

UEXTERNALDB subroutine, refer to Appendix B.

6.1.1 Transgranular FIP calculation

The calculation of the FIP requires the evaluation of the cyclic plastic strains, which can

be decomposed into reversed cyclic plasticity (∆εpcyc) and plastic ratcheting (∆εpratch), as

136



Strain

S
tr

es
s

∆εpratch

RatchetingCyclic Plasticity

∆εpcyc

S
tr

es
s

Strain

∆εpcyc

Figure 73: Schematic stress-strain curves depicting reversed cyclic plasticity and ratcheting.

exemplified in Figure 73. The former, also referred to as plastic shakedown, regards to the

condition in which the material presents reversed plastic straining without a net accumula-

tion of plastic deformation. The latter refers to cases in which the material accumulates a

net amount of directional plastic strain in each cycle.

Following the arguments of McDowell [119], the processes of crack decohesion in slip

bands (irreversible slip-driven crack growth) are better represented by the reversed cyclic

plastic strain, based on a steady state cyclic behavior, rather than plastic ratcheting. Hence,

the FIPα in Equation (9) is calculated for each element and slip plane using the maximum

plastic strain range developed on each slip system without the ratcheting component, as

shown in Figure 74. In mathematical terms this is,

∆γα
∣∣∣
ratch

= γα
∣∣∣
end of cycle

− γα
∣∣∣
beginning of cycle

(85)

and

∆γα
∣∣∣
cyc

= ∆γα
∣∣∣max

over cycle
−∆γα

∣∣∣
ratch

(86)
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Figure 74: Plastic deformation employed to calculate the FIP with and without holding
time. The numbers and dots correspond to a change in loading direction.

6.1.2 Intergranular FIP calculation

The FIPint introduced in equation (16) requires calculate of the stress normal to the GB

(σGBn ) using the stress tensor (σ) as

σGBn = ~m · σ · ~m (87)

in which ~m represents the unit vector normal to the GB. Due to the discrete character of

the mesh, the boundary is ill-defined, so the direction of the GB needs to be smoothed to

compute the normal stress. Therefore, for each element neighboring a grain, the boundary

is taken as the normalized sum of the unit vectors from faces shared with the other grain.

This method is represented for a 2D case in Figure 75, and in mathematical terms becomes

~m =

∑
i ~ni

|∑i ~ni|
, (88)

where ~ni corresponds to the unit vector normal to the faces of the elements shared by

two grains. To inform the FE in ABAQUS about the GB locations, the Mesh Generator

described in 5.2.1 produces and stores the information in a file, which indicates with the

number ±1 the faces of each element (coordinates 1 to 6) that belong to a boundary and

its direction (i.e., sign indicates the direction with respect to global coordinates).
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Figure 75: Schematic 2D representation of the equivalent direction of the GB for specific
elements in the boundary. Each grain is represented with a different color.

6.1.3 Damage model implementation

The implementation of the elastic stiffness degradation model introduced in Chapter 4

requires interaction between the UEXTERNALDB and the UMAT subroutines. The former

determines which elements should be cracked according to section 4.4 and for those elements

sets, a value of 1 in a global variable representing d̃. The UMAT adjusts the degradation of

the stiffness tensor to achieve convergence, in accordance to section 4.4.1. Figure 76 depicts

an example of the effect of adding damage up to d̃ = 0.99 on the maximum principal stresses.

The damaged elements present stress below 100 MPa (in dark gray) while the neighboring

elements present a low to moderate increase in the stress, which is less than a factor of two.

For small cracks, the stress intensification does not resemble LEFM singularity models and

is greatly affected by the microstructure.

To further verify and validate the damage model, a few realizations were carried out

increasing the damage parameter d̃ up to a value of 0.999. The increment in damage

increased the run time without any significant change in the FIP for the first grains to

crack. Furthermore, for the particular example in Figure 76, the maximum principal stress

showed the same distributions, with maximum values of approximately 2100 MPa, and the

values for the damaged elements are less than 10 MPa. Hence, these results suggest that

increasing d̃ up to 0.99 is an acceptable balance between accuracy and computational work.
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Figure 76: Example of the effect of adding damage to the bands with minimum life. This
simulation corresponds to a cube with 52 grains loaded up to 1% strain along Z axis under
periodic boundary conditions. The damage elements have much lower stresses (in dark
gray), while some of the neighboring elements show an increment due to the local stress
intensification (in yellow and orange).

6.2 Fatigue model for RR1000

6.2.1 Mechanical irreversibility factor

The mechanical irreversibility factor φ in Equation (12) is controlled by the environment,

the type of loading, and the loading history. For Ni-base superalloys at low to moderate

temperatures or high frequencies (e.g., higher than 10Hz), diffusion of foreign atoms will

be limited, and the main source of irreversibility would be the interaction among defects,

particles, etc. (pure mechanical irreversibility [45]); this type of mechanical irreversibility

is present even in tests under vacuum. On the other hand, for higher temperatures or low

frequencies (e.g., lower than 10−4 Hz), mechanical irreversibility may be controlled by a

corrosive mechanism, for example, development of a layer of oxides and subsequent brittle

fracture [45]. In between those temperature and frequency extremes, defects and foreign

atoms contribute to nonlinear and coupled irreversible mechanisms that extend the crack.

To account for the effect of the shape of the loading cycle on the mechanical irreversibility

factor, this research follows the work from Tong and coworkers [45, 226, 200]. In this series
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Figure 77: Definition of the loading periods that influence the mechanical irreversibility
factor.

of papers, the authors analyzed the effect of different loading frequencies and dwell times

in long cracks in RR1000 and showed that the loading half-cycle contributes more to crack

extension than dwell or unloading half-cycles. Moreover, they introduced the equation

da

dN
= Cexp

(
− Q

RT

)
(0.9t1 + t2 + 0.1t3)(0.5−ξ)∆Km, (89)

in which t1, t2 and t3 correspond to periods of time in the loading cycle, as defined in

Figure 77. Following the analysis in section 4.1.2.2, Equation 89 can be interpreted as

the multiplication of two factors: the driving force (∆Km) and an irreversibility factor

φ = Cexp
(
− Q

RT

)
(0.9t1 + t2 + 0.1t3)(0.5−ξ).

The modified Paris law in Equation 89 does not distinguish between intergranular and

transgranular failure, but it attempts to characterize both failure mechanisms with a single

correlation. This approach seems too ambitious since it fails to match the experimental data

at very low or high accumulated time 0.9t1 + t2 + 0.1t3 (see black line in Figure 78, adapted

from [200]), which corresponds to the cases of pure transgranular or intergranular failure,

respectively. Hence, this investigation proposes that the irreversible factor φ depends on the

sum 0.9t1 + t2 + 0.1t3, but the exponent (0.5− ξ) differs for transgranular or intergranular

failure, resulting in a two-slope curve as shown schematically in orange (intergranular-

dominated failure) and in blue (transgranular-dominated failure) colors, in Figure 78. A

rough estimation of the slopes of the colored segments in Figure 78 results in ξtrans = 0.2
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Figure 78: Crack growth rates as a function of 0.9t1 +t2 +0.1t3. The black line corresponds
to the model in Equation (89), while the blue and orange lines correspond to the proposed
decoupling of transgranular and intergranular failure. Adapted from [200].

and ξint = 0.05. So the irreversible factors become, for transgranular failure,

φtrans = C exp
(
− Q

RT

)
(0.9t1 + t2 + 0.1t3)( 1

2
−0.2), (90)

in which the factor exp
(
− Q

RT

)
carries an Arrhenius-type of the dependence with the tem-

perature that represents the mobility of defects and foreign atoms. For intergranular failure,

the Arrhenius dependence has the contribution from the maximum principal stress (PS) as

proposed by Miller et al. [132]:

φint = Cint exp
(
− Q−BintPS

RT

)
(0.9t1 + t2 + 0.1t3)( 1

2
−0.05). (91)

This formulation is equivalent to that proposed in Equation 17 since φint carries all the

parameters besides the FIPint in that equation.

6.2.1.1 Grain size influence on transgranular fatigue life

As mentioned in Chapter 4, the correlation between the FIP and the fatigue life depends on

multiple microstructure attributes, among which grain size is dominant for superalloys. To

account for this, the nucleation regime (Equation 11) depends on the microstructural length

scale dgr, which is usually associated with the mean grain size. However, superalloys have

shown that neighboring grains with low disorientation (i.e., less than 15◦) tend to cooperate

as a single supergrain to nucleate cracks more easily [39, 127, 154]. To account for the effect
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of clusters of low disorientation grains, the microstructural parameter dgr is defined as the

size of the current grain plus a contribution of the first neighbor grains that depends on the

disorientation. The misorientation of each grain with its neighbor is calculated among all

planes, and if the minimum of those values (the disorientation θdis) is lower than 20◦, the

disorientation factor (ω) is computed using

ω =
〈

1− θdis
20

〉
(92)

Thus, ω equals 1 when there is no disorientation (i.e., the grain and the neighbor have exactly

the same orientation and should be a single grain), and it equals 0 if the disorientation

is 20◦ or larger. The threshold of 20◦ was set based on the limit usually considered to

distinguish between low and high angle GBs (10◦ to 20◦). As a result, the calculation of

the disorientation factor for randomly oriented grains showed non-zero values in fewer than

10% of the GBs.

Equation (92) is a linear approximation of the disorientation between grains employed

to estimate the enhancement of plastic deformation at low disorientation GBs. Then, the

microstructural length scale dgr is calculated as

dgr = Dst +
n∑
i

ωiDnd
i, (93)

in which Dst is related to the length of the band considered and Dnd
i relates to the size of

all the n neighboring bands. The values of Dst and Dnd
i are calculated for each averaging

band as the square root of the area of the band (similar to the approach by Murakami

[145]), allowing differentiation among bands in grains that are not spherical and allowing the

contribution from bands in neighboring grains that are only in direct contact. Equation (93)

proposes a first order Taylor expansion of the dependence of dgr on the Dnd
i using ωi as the

proportionality coefficients without further evidence due to the lack of experimental data.

Thus, the point is made that newer experimental data may allow a better representation of

the effect of clusters of grains with low misorientation on fatigue life.

Following Equations (11) and (93) the nucleation life is written as

Nnuc =
αg

Dst +
∑n

i ω
iDnd

i
(FIPα)−2, (94)
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The influence of the microstructure in the MSC regime has been defined as the A(βi)

factors in Equation (13). The simplest contribution from the grain size can be introduced

by defining

β =
( dgr
drefgr

)η
, (95)

which follows the dependence on grain size proposed by Alexandre et al. [4] and represents

the effects of strain localization. Here drefgr corresponds to a reference grain size related to

the mean grain size of the material employed to calibrate the fatigue model, and η measures

the intensity of the grain size effect and usually ranges between 1 and 2 superalloys. dgr is

calculated from Equation (93) for each band allowing us to distinguish crack growth paths

within a grain and in neighboring bands with low angle misorientation.

The MSC regime is characterized by the MSC growth law

da

dN

∣∣∣α
msc

= φtrans

〈[Dst +
∑n

i ω
iDnd

i

drefgr

]η
A(FIPα)−∆CTDth

〉
, (96)

which, combined with Equation 90, becomes

da

dN

∣∣∣α
msc

= C exp
(
− Q

RT

)
(0.9t1+t2+0.1t3)( 1

2
−0.2)

〈[Dst +
∑n

i ω
iDnd

i

drefgr

]η
A(FIPα)−∆CTDth

〉
,

(97)

Note that, because the microstructural length scale dgr is based on the cross section

of the slip planes (Dst and Dnd
i), the fatigue model can assess the influence of the shape

of grains, i.e., spherical versus elongated grains. Furthermore, the crystal plasticity model

does not carry an intrinsic length scale, so the grain size effect introduced here accounts for

the dependence of the bulk on the microstructure plus the the intensification of the driving

force due to the localization of the strain discussed in Chapter 3.

6.3 Fatigue model calibration

6.3.1 U-notch beam specimens

The fatigue experimental data for RR1000 in the literature is limited and almost always

refers to the bore microstructure with ALA grains about 10−20 µm [161, 160, 133]. Hence,

the fatigue model will be calibrated using fatigue data from the bore region, so the model

is expected to perform better for that microstructure. The calibration of the fatigue model
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Figure 79: Three-point bending specimen with an U-notch employed by Pang [160] for
experimental characterization of small fatigue cracks in RR1000. Dimensions are in mm.
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Figure 80: Applied load in experiments and simulations (1-1-1-1). Here, R=0.1 and the
nominal applied maximum stress is about 840 MPa.

involves determining proportionality factors between the driving forces and fatigue damage

evolution and represents the degree of mechanical irreversibility. The experimental data

chosen for calibration belongs to Pang et al. [161, 160], who employed U-notch specimens

shown in Figure 79 to measure fatigue life to nucleate a crack and the small crack regime.

The load applied to the U-notch specimens corresponds to a nominal stress of about 840

MPa, undergoing (1-1-1-1) loading and R=0.1, as shown in Figure 80.

Figure 81 [160] presents experimental data at room temperature from Pang’s work,

which is used to calibrate the irreversibility constant in the nucleation regime. By assuming

that the crack starts at an ALA grain of 16 µm, we can estimate the number of cycles to

crack the first grain to be about 100000. This value is only a rough estimate applicable

to Pang’s specimens and loading conditions (Figure 82), and it may need to be refined to

account for statistical variations. Experimental results at 650◦C show a similar trend, and

cracks formed after about 100000 cycles.

To quantify the FIPs that developed during the test, the experimental conditions were
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Figure 81: Crack growth of the fastest growing crack in RR1000 at room temperature
(modified from [160]).
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Figure 82: Crack growth of the fastest growing crack in RR1000 at room temperature
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Figure 83: FEM model of the U-notch bending specimens with explicit grains colored and
refinement towards the notch.

reproduced in a 1:125 scale FEM model, shown in Figure 83, but using a 1:1 scale for the

grain size (the model has much larger grains in comparison to the specimen). The loading

consisted in applying (1-1-1-1) type of cycles with R=0.1 and a peak force of 10400N in

the Y-axis direction, distributed in 26 nodes along the Z-axis. One of the extremes of the

specimen was not allowed any displacement while the other had displacement restriction

along the Y-axis (Figure 83). The mesh is refined towards the notch, where it presents

elements of aspect ratio close to 1 and side length of about 0.6 µm. The constitutive model

corresponds to that presented in the previous chapter, with a grain distribution following

a lognormal law [146] and with a mean grain size of about 5 µm and ALA grains about

10− 20 µm.

Since the computational model is 125 times smaller than the actual specimen, the num-

ber of grains sustaining high stresses and strains is 125 times smaller than in the real

specimen (this scales with the length of the notch). Thus, to achieve equal highly stressed

volumes in the simulations compared to that in the specimen, 125 realizations of the sim-

ulation were carried out. Figure 84 presents the stresses and strains resulting from one

of the realizations after applying five loading cycles to the specimen. The peak stress is
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Figure 84: Stress and strain normal components along the X direction resulting from the
U-notch bending specimen. The results match those presented by Pang et al. [160]

comparable to that resulting from Pang’s simulations [160] using an elastic constitutive

model. Since the grains in simulations are much larger with respect to the notch than in

experiments, the model does not scale the stress gradient. Such difference may have some

influence on the number of grains and elements under the stress intensification that will be

neglected.

The fatigue simulations followed the procedure described in Figure 49, but due to the

irregular mesh, dgr is computed as the diameter of the grain and not the square root of

the area of the bands. Note that the band that forms the crack and those that extend the

crack in the MSC regime are determined based on the expected life and not the maximum

FIP, so the fatigue calculations were redone after the entire fatigue model was calibrated.

Based on the 125 simulations carried out after the calibration, Figure 85 presents a series of

histograms showing the distribution of the FIPs for the first five grains to fail (nucleation

grain plus four grains failed under the MSC regime). Note that these results represent the

distribution of extreme values, since each simulation contributes a single value (the FIP of
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Figure 85: Distribution of maximum averaged FIP for the first five grains that failed (from
left to right).

the grain that failed) to each histogram. In all cases, the distributions are not symmetric,

though for the nucleation regime the distribution asymmetry seems to be less pronounced.

Because the tails of the FIP distributions dominate the fatigue problem, a quantitative

comparison of the FIPs among grains 1 to 5 in Figure 85 cannot be based simply on mean

values. Hence, this research employs boxplots, since they are a simple and an organized

way of comparing data samples that do not need to fit data to an assumed distribution.

For example, suppose a sample of variable X that ranges from Xmin to Xmax as shown to

the right of Figure 86; a boxplot represents the lower (Q1) and upper (Q3) quartiles of the

distribution of variable X with the bottom and top of a box, respectively, and the medium

quartile (Q2) with a line near the middle of the box. The whisker length (dotted lines)

satisfies that Q3 + c(Q3−Q1) and Q1− c(Q3−Q1), with c usually between 1 and 2, and

the data outside those limits correspond to the outliers and are represented with circles.

The whisker extends up to the most extreme data value that is not an outlier. One final

caveat is that the boxes sometimes are presented as fully colored boxes (not hollow), and
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Figure 86: Example of a boxplot. The lower (Q1) and upper (Q3) quartiles of sample of
X are represented with the bottom and top of the green box, respectively, and the medium
quartile (Q2) with the line near the middle of the box. The whisker length (dotted lines)
satisfies that Q3 + c(Q3−Q1) and Q1− c(Q3−Q1), c usually between 1 and 2.

the second quartile extends outside the box. This alternative style will be employed to

compare overlapping boxplots.

Figure 87 compiles the information from the histograms in Figure 85 using boxplots.

The boxes (full lines) in Figure 87 describes the FIP distribution for grains 1 to 5. The

whisker length (dotted lines) satisfies that Q3 + 1.5(Q3−Q1) and Q1− 1.5(Q3−Q1), and

the data outside those limits correspond to the outliers and are represented with circles.

Clearly, the dispersion of the FIPs increases in the MSC regime and the lower, medium ,

and upper quartiles of the data decrease by about 40 % in the transition from cracking the

first to the second grain (Nucleation to MSC regime). However, the data for the grains

cracked in the MSC regime (grains 2, 3, 4 and 5) are comparable.

The importance of Figure 87 is that it shows that the driving force for fatigue crack

growth decreases significantly after crossing the first GB. This reduction is the con-

sequence of a regularized “crack tip singularity effect” (i.e., effect of cracking

the first grain on redistributing the stress) combined with the probability of
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finding a highly activated slip band in an adjacent grain connected to the one

that failed in the first grain. In other words, cracking one grain does not affect the sur-

rounding grains enough to reach, on average, the same driving force for the nucleation grain.

These findings are in complete agreement with the crack growth rates measured by Pang

at room temperature and 650◦C [160], but they may not be completely general, since the

geometry of the specimen may have an influence; indeed, simulations and experiments have

shown that cracks tend to extend along the notch more easily than through the remaining

ligament.

6.3.2 Estimation of constants

6.3.2.1 Transgranular nucleation regime

The constants of the mesoscale model can be calibrated using the experimental data intro-

duced early in this chapter. Because the available information is limited, only an approx-

imated calibration is attempted, and the results should match the order of magnitude of

future experiments.

The irreversibility constant for the nucleation regime, αg, is calculated following Equa-

tion (94),

αg = Nnuc
Dst + ωDnd

(FIPα)−2 , (98)

by assuming that:

• Nnuc = 100000, as discussed based on Figure 81,

• Dst = 16 µm, which corresponds to the size of the ALA grain for the material testes

and implies that the largest grains nucleate the crack,

• ω = 0 since most of the time the disorientation is larger than 20◦ as estimated from

simulation of random crystallographic orientation, and

• FIPα = 0.0051, which is the extreme value obtained for the grain that nucleates the

crack in U-notch specimen simulations;

These assumptions result in αg= 41.6 cycles µm
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Figure 87: Boxplot compiling the FIP distributions for each grain in Figure 85. For each
grain, the plot represents the lower (Q1) and upper (Q3) quartiles of their FIP distributions
with the bottom and top of the green boxes, respectively, and the medium quartile (Q2)
with the line near the middle of the box. The whisker length (dotted lines) satisfies that
Q3 + 1.5(Q3−Q1) and Q1− 1.5(Q3−Q1) and extends up to the most extreme data value
in that range. The data outside those limits are represented with circles. Note how the FIP
decreases significantly (about 40 %) after crossing the first GB.
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6.3.2.2 Transgranular MSC regime

The calibration of the MSC regime is based on the measurements of the crack growth rates

in Figure 82. This Figure presents an initial decreasing crack growth rate that corresponds

to the nucleation regime in the ALA grain. While the crack approaches the GBs (crack

lengths about 11 µm, 17 µm, and 23 µm), the crack growth rate decreases by up to about

10−4µm/cycle. Upon crossing the boundaries, the crack growth rate jumps up to about

3x10−4µm/cycle to 7x10−4µm/cycle. Thus, under the particular conditions analyzed, we

may estimate the minimum crack growth rate to be about 10−4µm/cycle, and the average

maximum rate, when a grain begins to crack, to be about 5x10−4µm/cycle.

The calibration of the constant C in Equation (97) assumes that:

• Dst = 8 µm, which corresponds to the mean grain size (drefgr ) in the material tested,

making this value the most probable second grain to crack. This further implies that

β = 1.

• A = 2 µm and b ∼ 1, based on the results in Figure 71. These constants scales the

FIP with the ∆CTD.

• Q = 241 kJ
mol , after Tong et al. [200].

• ω = 0, since most of the time the misorientation is larger than 20◦ as estimated from

simulation of random crystallographic orientation,

• ∆CTDth = 5x10−4µm, which is about the dimension of the Burgers vector, assumed

to be the minimum ∆CTD in the MSC regime, and

• FIPα = 0.0035 corresponds approximately to a 40% reduction in the FIP employed

for calibrating the nucleation regime. Such a percentage corresponds to the average

reduction of the FIP from nucleating in the first grain to growing in the MSC regime,

as obtained from the U-notch simulations (Figure 87). Note that using the average

proportion of the nucleation extreme FIP, and not the extreme value of the FIP for

the second grain, moderates the variability due to the irregular mesh.
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Because the mesoscale framework estimates the FIPα before cracking the current grain,

the driving force corresponds to the crack growth rate measured right after crossing a GB,

and before it starts decreasing the elastic stiffness of the band that extends the crack. The

constant C results from replacing the parameters mentioned in Equation (96),

C = 5x10−4 µm

cycle

[
exp
( −241

8.31 923

)
(0.9 + 1 + 0.1)( 1

2
−0.2)[2 µm 0.0051− 5x10−4µm]

]−1

,

C = 0.0645
1

cycle
. (99)

Then, the transgranular irreversibility factor, including the temperature and loop shape

influence becomes φtrans = 0.077, which is within the range measured by Shyam and Milli-

gan [187]. Thus, approximately 1 out of 13 dislocations coming out of the crack tip do not

return and annihilate after a loading cycle.

6.3.2.3 Intergranular failure

Since RR1000 experimental data are scarce for fully intergranular failure and almost nonex-

istent for small cracks, the model is expected to provide a rough estimation of the life. The

calibration of the intergranular failure model requires that a value be set for constants λ1

and λ2 in Equation (16), and PS, Bint and Cint in Equation (91). Then, we assume that,

1. λ1 ∼ λ2 ∼ 2 and Bint = 0.02 m3

Kmol after Miller et al. [132],

2. For the U-notch specimens simulated, the average intergranular crack growth rate

should be about 5x10−5 µm
cycle . This value is based on Figure 78, which shows that for

(1 1 1 1) loading, the intergranular crack growth rate should be about an order of

magnitude slower than that for transgranular failure (compare blue and orange lines),

and

3. The average FIPint (using only non-null values) for all GBs was computed from U-

notch specimens and resulted in FIPint = (2.7x10−4)λ. Similarly, the maximum prin-

cipal stress presented a maximum value about PS ∼ 1600 MPa.
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Hence, following Equations (17) and (91),

Cint = 5x10−5 µm

cycle

[
exp
(
− 241− 0.02 1600

8.314 923

)
(0.9 + 1 + 0.1)( 1

2
−0.05)(2.7x10−4)2

]−1

,

Cint = 8.01
µm

cycle
(100)

6.3.3 Sub-grain evolution of the FIP

The mesoscale FIP (FIPαmeso = FIPαo · g(a)) introduced in Equation (23) in Chapter 4

estimates the evolution of the driving force as the crack grows through a grain. Contrary

to LEFM, the study of small crack problems cannot employ a single function g(a) for

every possible alloy, microstructure, loading condition, etc. Thus, this research proceeds to

characterize the function g(a) for RR1000 alloy under the HCF loading regime by evaluating

the change of the FIP while the crack extends inside the grains, here referred as the sub-

grain evolution. The algorithm is designed to introduce damage only to one element in

between loading cycles (i.e., not as a mesoscale framework that damages the entire grain

at once) and to update the driving force on the remaining ligament of the grain. Figure

88 presents a schematic comparison of the subgrain and mesoscale methodologies to extend

the crack along bands within grains. The subgrain methodology can assess the evolution of

the FIP as the crack extends through the grain, but it demands a larger number of loading

cycles that result in a significantly increase in computational work.

Figure 89 summarizes the algorithm for the subgrain methodology. The crack extends

one element per two cycles until a predefined number of loading cycles is reached (maximum

number of loading cycles). The prediction of the band along which the crack extends does

not change within each grain and is based on the values of the FIP before cracking the

grain, but the next element to crack is defined based on the local values of the FIP. The

purpose of applying two loading cycles each time the crack extends is to redistributed stress

and strain fields.
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Figure 89: Algorithm showing the tasks performed by the UEXTERNALDB subroutine
developed to evaluate subgrain crack growth.
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6.3.3.1 Sub-grain evolution in U-notch specimens

Because the mesh of the U-notch specimen is not regular, the number of elements in bands

within grains varied significantly, so only those simulations that had damaged a minimum

of 12 elements along the bands that failed were considered in the sub-grain analysis. Figure

90 presents the sub-grain evolution of the driving force for the first five grains that cracked

in about 50 realizations of U-notch specimen simulations. The magnitude ã is the number

of cracked grains in a sequence and is defined by

ã = i− ai (101)

where ai is the fraction of the area cracked (between 0 to 1) in the ith grain to fail. For

example, when three grains are fully cracked and the 4th grain is half-cracked, i = 4 and

ai = 0.5, resulting in ã = 3.5.

The results show that the FIPα at ã=0 (i.e., FIPα0 in Equation (23) used to predict

the minimum nucleation life of each band) presents a narrow range (less than a factor of

3) compared to the variability of the initial FIPα on the subsequent grains (i.e., FIPα0 in

Equation (23) that corresponds to the FIP @ ã=1.0, 2.0, 3.0 ...). Such a fact suggests that

the variability in the small crack regime depends significantly on the extension to subsequent

grains rather than cracking the first grain.

The sub-grain evolution of the FIPα was nondimensionalized using the initial value

of the FIPα before cracking each grain (i.e., FIPα0 ); note that the nondimensionalization

parameter changes for every new grain cracked. The results in Figure 91 depict a decreasing

evolution of the driving force within each grain, except maybe for the first grain (ã between

0 and 1), which presented in some simulations a temporary increase of the driving force.

Indeed, the black lines in Figure 91 attempt to represent the mean and boundary values for

the driving force following the equation,

FIPα

FIPα0
= g(a) =

(
1− Pgami

)
, (102)

which is inspired after Equations (18) and (19); the simulations seem to validate this type

of average evolution.
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The constant Pg in Equation (102) can be computed either as a fixed value that repre-

sents the mean sub-grain behavior, or as a value that varies according to statistical distri-

butions. However, as shown in section 6.3.5, the mesoscale model requires the exponent m

to be a fixed value to be able to compute the life of a grain and not only the crack growth

rate. Therefore, both constants will be treated as constants.
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Figure 90: Evolution of the FIP as a crack grows within a grain for U-notch specimen for
50 realizations. Each data point represents that the crack extended by one element, while
the value of the FIP corresponds to the average over the remaining undamaged elements of
the band.
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Figure 91: Evolution of the nondimensionalized FIP as a crack grows within a grain with
the proposed subgrain estimation superimposed for U-notch specimens. Data is equivalent
to that in Figure 90, which corresponds to 50 realizations.
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6.3.4 Regular mesh with periodic boundary conditions

The evolution of the FIP is assessed using cubic regular meshes created with the Mesh Gen-

erator. The models have 3375 elements, 52 grains undergoing 0.9% range, strain-controlled

triangular cyclic loading, Rε = 0.1, and periodic loading conditions. The loading periodic-

ity is achieved by requiring that the sum of forces and moments on opposite faces be equal

to zero, but these are not truly periodic boundary conditions, since grain distributions on

opposite faces are not identical.

Figure 92 summarizes the statistics of the FIP0 averaged along bands and computed

using the mesoscale model (the entire grain is cracked simultaneously). The whisker length

(doted lines) are proportionally shorter in this case (Q3 + 1.0(Q3−Q1) and Q1− 1.0(Q3−

Q1)) since the distributions have a narrower scatter, which is attributed to the regular

mesh and refined grains. Similar to the results for the U-notch specimen in Figure 87,

the dispersion of the FIPs in Figure 92 increases in the MSC regime. Moreover the three

quartiles of the MSC data (grains 2, 3, 4 and 5) decrease by about 40 % with respect to the

first grain (Nucleation). Figure 92 demonstrates that the driving force for fatigue

crack growth decreases after crossing the first GB due to a regularized crack

effect and limited plastic slip in band adjacent to the crack.

6.3.4.1 Sub-grain evolution using a regular mesh

Although the subgrain evolution in U-notch simulations resemble the experimental data,

the non-regular mesh and the notch itself can affect the results and introduce an abnormal

variability of the FIPs. Hence, the subgrain evolution analysis was reproduced employing

the regular mesh previously described. Figure 93 presents the resulting evolution of the

FIP as the crack grew inside the grains out of 30 realizations. Similar to Figure 90, the

FIP that minimizes the nucleation life (i.e., ã=0) presents a very narrow range (less than

a factor of 2), while the initial values of the FIP on the subsequent grains can vary orders

of magnitude. These results demonstrates that the variability of the small crack regime

depends more on the extension to subsequent grains than on the nucleation on the first

grain.
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Figure 92: Boxplot compiling the FIPs computed from models with regular meshes. The
lower (Q1) and upper (Q3) quartiles correspond to the bottom and top of the green boxes,
respectively, and the medium quartile (Q2) corresponds to the line near the middle of the
box. The whisker length (dotted lines) satisfies that Q3+1.0(Q3−Q1) and Q1−1.0(Q3−Q1)
and extends up to the most extreme data value in that range. The data outside those limits
are represented with circles. Note how the FIP decreases significantly (about 40 %) after
crossing the first GB.

Figure 94 presents in more detail some of the evolutions of the FIP in Figure 93 (same

colors and markers for each simulation) along with additional simulations in the black data

points that are identical except that the damage parameter d1 increased up to a value

of 0.999 (demanding more computational work). The agreement among both colored and

black data points further shows that limiting the increment of the damage parameter d1 up

to 0.99 does not affect the quality of the results.
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Figure 93: Evolution of the FIP as a crack grows within a grain for 30 realizations. Each
data point represents that the crack extended one by element and the FIP is averaged over
the remaining elements of the band with minimum life.

Figure 95 presents the evolution of the FIP in Figure 93 (same colors and markers

for each simulation), nondimensionalized by the value of the FIP before cracking, which

changes for every new grain cracked. The results present a significant difference between

the first grain to crack (ã between 0 and 1) and the following grains, showing that the life

estimation for the first grain to crack needs to be calculated differently from the subsequent

grains to fail, which follow a more predictable behavior. The black continuous line in Figure

95 follows Equation (102), using Pg = 0.5 and m = 2, which is proposed to describe the
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Figure 94: Overview of a few cases of the evolution of the FIP in Figure 93. Black data
points correspond to simulations of the same microstructure, but damage incrementation
up to 0.999, which results in almost exactly the same sub-grain evolution of the FIP.

164



mean behavior of the subgrain evolution of the FIP in the MSC regime. To evaluate such

an assumption, Equation (102) was fit to the evolution of the FIP within each grain, and

the resulting values of the constants Pg and the exponent m were analyzed in Figure 96

and Figure 97, respectively. These Figures present histograms of the values of Pg and m

for each grain that failed and show, again, that the nucleation regime stands out with a

different behavior from the subsequent grains to fail. Overall, the Pg presents a relatively

planar distribution between 0 and 1, while the mean value of m is about 2 to 3. Note that

best-fitting was carried out, limiting the values of Pg and m between 0 and 10, which results

in a negative concavity for the sub-grain FIP evolution.
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Figure 95: Evolution of the nondimensionalized FIP as a crack grows within a grain with
the proposed subgrain estimation superimposed. Data is equivalent to that in Figure 90.
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Figure 96: Distribution of the coefficient Pg in Equation (102) for the first five grains
cracked.
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cracked.)
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To further explore the nature of the approximation introduced by Equation (102) in

the mesoscale model, the simulations in section 6.3.4 were reproduced using the mesoscale

model to estimate the failure of the first five grains, followed by a subgrain analysis. Figure

98 presents the non-dimensionalized behavior of the FIP; the first five grains to fail are

calculated using the mesoscale model with Equation (102) and Pg = 0.5 and m = 2,

while the following grains show the subgrain evolution that is approximated with the same

evolution law. Even after the crack has extended over 10 grains, the average subgrain

behavior seems to consistently follow Equation (102).

For each grain, the value of the FIP before a new grain is damaged (FIP0) has a cen-

tral importance, since it controls the fatigue life prediction. Hence, Figure 99 presents

the boxplot with the distributions of the FIP0 calculated with the sub-grain or mesoscale

methodologies from the simulations in Figure 95 (hollow boxplot) and Figure 98 (full box-

plots). Both methodologies predict exactly the same distributions for the nucleation regime

(1st grain), since the grains are not cracked yet and for the following grains show negligi-

ble differences; indeed, for grains two to five, sub-grain and mesoscale results have almost

identical lower and medium quartiles of the FIP distributions, and only the upper quartile

appears to be slightly higher for the sub-grain model. Accordingly, grains 6 to 10 also have

slightly high upper quartiles and extreme values when compared to the first grains.

The significance of Figure 99 is that the subgrain and the mesoscale models result

in statistical distributions of FIP0 that are almost identical, supporting the use

of Equation (102) to model the average subgrain evolution. Since the nucleation

calculation is the same for both methods, the location of the crack is identical, but the

extension to the second, third and fourth grain occurred exactly through the same grains

in 83%, 66% and 53% of the cases, respectively. These values do not consider the fact that

the same grains in both methods might be cracked in different sequences, which reduces the

differences in the crack paths between sub-grain and mesoscale models to about a third of

the cases after five grains cracked.
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Figure 98: Evolution of the normalized FIP within a grain as a crack grows after the fifth
grain, and the proposed subgrain estimation in black line. The first four grains to crack
were computed using the mesoscale model.
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Figure 99: Boxplot compiling the data from sub-grain and mesoscale simulations. The
lower (Q1) and upper (Q3) quartiles correspond to the bottom and top of the green boxes,
respectively, and the medium quartile (Q2) corresponds to the line near the middle of the
box. The whisker length satisfies that Q3 + 1.5(Q3 − Q1) and Q1 − 1.5(Q3 − Q1) and
extends up to the most extreme data value in that range. The data outside those limits
are represented with circles. Note the good agreement in the distributions from sub-grain
(hollow boxes) and mesoscale (full boxes) simulations for grains 2 to 5.
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6.3.5 Life estimation in the MSC regime

The number of cycles to nucleate a crack is estimated by Equation (94), but for the MSC

regime the mesoscale model computes the crack growth rate within each grain. To complete

the formulation for life estimation, the crack growth rate needs to be integrated with respect

to the crack length.

In the case of transgranular failure, the crack growth rate depends on the normalized

crack length ai that varies between zero and one (from uncracked to fully cracked grains).

After combining Equations (97) and (102), the crack growth rate depends on ai, m and Pg

dai
dN

∣∣∣α
msc

= φtrans

〈Dst +
∑n

i ω
iDnd

i

drefgr
2FIPα0 (1− Pg(ai)m)−∆CTDth

〉
. (103)

To integrate this equation, the sub-grain parameters in Equation (102) are considered as

constants, m = 2 and Pg = 0.5. An alternative approach could compute Pg based on a

statistical distribution, however, m should still be considered a constant to facilitate the

analytical integration of Equation (103), for example:

1∫
0

dai
dN

∣∣∣α
msc

=
1√
c1c2

atan

(
Dst

√
c2

c1

)
(104)

where,

c1 = φtrans
Dst +

∑n
i ω

iDnd
i

drefgr
2FIPα0 −∆CTDth (105)

and

c2 =
1

2
φtrans

Dst +
∑n

i ω
iDnd

i

drefgr
2FIPα0

(
Dst +

n∑
i

ωiDnd
i

)
(106)

Equation (104) estimates the MSC life for transgranular failure for each slip direction in

each band. Hence, the path followed by the crack is defined by the band that has the

minimum life among all the bands that have at least one element neighboring the current

crack perimeter; this is referred as being in contact with the crack.

In a scenario in which a crack has passed completely through a grain and is extending

on its neighboring grains, it is possible that transgranular crack growth occurs in multiple

grains, simultaneously. To account for this situation, the simulations keeps a record of the

number of cycles undergone since the crack first reached the ith GB (NHistory). This history
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is then subtracted to the life predicted for each band that is connected to the ith GB, since

it is assumed that the crack has started growing before, but some other grain cracked faster.

Hence, for each band the simulation computes,

N
∣∣∣α
msc

= NComputed

∣∣∣α
msc
−NHistory (107)

This strategy keeps track of the life consumed by those grains that neighbor the crack but

did not crack, rendering them more prone to failure.

Similarly, the estimation of intergranular life requires the integration of the crack growth

rate in Equation 17. However, as discussed before, due to the distributed nature of the

Zener-Stroh mechanism the life is calculated for each element, and only afterwards averaged

over the GB sector. Consequently, the integral assumes that the FIPint is constant along

the element (does not depend on the length of the crack), which implies that the rate can

be approximated by a discrete difference. Hence,

N
∣∣∣inter
msc

= lelement

[
φintexp

{
−Q−B〈σ

GB
max〉

RT

}
∆t(1/2−ξ)FIPint

]−1
, (108)

in which lelement is the size of the element. Thus, the expected intergranular life of each

portion of GB is calculated by averaging the life N
∣∣∣inter
msc

for all the elements in one grain

that are in contact with another grain.

Figure 100 presents a summary of the algorithm that computes the intergranular and

transgranular MSC lives. Before predicting the MSC life of the following grain to crack, the

FIPs are updated by applying two loading cycles.
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- Update stress-strain fields.

- Degrade the elastic stiffness tensor in those elements
belonging to the band with minimum transgranular MSC
life. If the element is under compression, the elastic stiffness
tensor is not degraded (crack closure).

- Calculate transgranular MSC life based on Equation (104)
for all the bands neighboring the crack (within one element
of distance).

No

Yes

- The algorithm continues calculating MSC lives and
extending the crack until a predefined number of grains are
cracked.

Nucleate the crack

Apply two

loading cycles

Evaluate MSC

transgranular life

Evaluate MSC

intergranular life

Extend the
crack along a

transgranular band

Cracked
enough
grains?

End

- Calculate intergranular MSC life based on Equation (108)
for all the grain boundaries neighboring the crack.

Subtract history to

transgranular life

- For each of the previous life estimations, subtract the
number of cycles that passed since the band became within
one element of distance to the crack (Equation (107)).

Figure 100: Summary of the MSC life calculation algorithm for transgranular and inter-
granular failure.
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6.4 Assessment of the effect of annealing twins on FIPs

The experimental fatigue literature shows extensive evidence that twins can be, but not

always, favorable sites for fatigue crack nucleation [24, 172, 58]. In the particular case

of FCC metals and alloys with low SFE, coherent symmetric Σ3 annealing twins are the

most prone to enhance the fatigue crack initiation driving force [128, 129]. This type of

twin corresponds to a rotation of the lattice orientation of 60◦ with respect to the 〈1 1 1〉

plane, which forms a 180◦ rotation of the lattice about the twin plane normal. Heinz and

Neumann [72] studied the effects of twin boundaries in FCC alloys developing anisotropic

elastic models and found that twins can be the source of a local stress concentration effect.

In the case of twin laminae, the stress concentration displaces dislocations along the slip

plane and leads to stronger strain localization, which increases the probability of nucleating

a crack at a twin.

This section assess the effect of Σ3 twin on the driving force to nucleate a crack. The

algorithms developed to average FIPs along bands was adapted to introduce explicit Σ3

twins in grains; a twin is defined by adding a rotation (that depends on the type of twin

boundary) to the Euler angles on those elements along one or multiple bands. This is, the

Euler angles of the twin are deduced from the rotation matrix of the twin,
[
Rtwin

]
, which is

computed by multiplying the rotation matrix for a 60◦ rotation along the 〈1 1 1〉 direction[
R60◦@〈1 1 1〉

]
by the rotation matrix resulting from the original Euler angles for the lattice[

Rlattice
]
, i.e., [

Rtwin
]

=
[
Rlattice

][
R60◦@〈1 1 1〉

]
(109)

The rotated Euler angles are then employed for defining the initial orientation of the lattice

in elements within the twins.

6.4.1 Twins in Single crystals

A set of simulations was designed to assess twins in single crystals. The simulations render

3D single crystal cubes loaded under shear, and the lattice orientation is such that the

〈1 1 1〉 vector lies along the X axis (see Figure 101). The model contains 21952 elements,
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Figure 101: Schematic representation of the five cases analyzed. Some elements in bands
associated with the 〈1 1 1〉 slip plane normal (horizontal) have a crystallographic orientation
that simulate twins. The simulations are fully 3D, and the upper and lower boundary layers
are displaced along the Z axis, but they are constrained not to move along the X and Y
axes. The other faces of the cubic mesh are free to displace and have no boundary constraint
Cases: 1) no twin, 2) grain corner twin, 3) one band is a complete-parallel twin, 4) four
bands form a complete-parallel twin, 5) ten bands form a complete-parallel twin.

representing a 700 nm-side cube subdivided in bands of 25nm. Since the bands are aligned

with the slip planes, the bands associated with the 〈1 1 1〉 slip plane normal divide the

cubic mesh in 28 planes along the X axis (see Figure 101).

The loading consisted in displacing the upper and lower boundary surfaces of the crystal

7 nm in opposite directions along the Z axis. These surfaces are not allowed to move in

the X and Y axes, while the other faces of the cubic mesh are free to displace and have no

boundary constraint. A total of five strain-controlled triangular cycles were applied with a

fatigue ration of Rε = 0.1.

Five cases were analyzed as presented in Figure 101:

• No twin: the entire crystal is oriented for single slip,

• Grain corner twin: half crystal is oriented for single slip, and half as a Σ3 twin,

• One band is a complete-parallel twin: only one band is oriented as a Σ3 twin,

• Four bands form a complete-parallel twin: four bands are oriented as a Σ3 twin.
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• Ten bands form a complete-parallel twin: ten bands are oriented as a Σ3 twin.

These cases are based on the twin configurations described by Meyer and Murr [126],

for twins that extend along the entire cross-section of grains. Table 6.4.1 summarizes

the orientation of the slip plane normal and slip directions before and after rotating the

orientation for single slip and twin orientation. Note that slip plane 1 has a slip direction

along the z axis, so it should be the most activated plane in models without twins. The

FIPs and their averages for each slip system on each band are evaluated after 4 loading

cycles using the methodology described in section 6.1.1.

Figure 102 presents the averaged FIP for each band on simulations without twins (Case

1). The slip plane number is indicated above the barplot, and as expected, the first slip

plane dominates plastic deformation. Note that for such slip plane, the applied boundary

conditions modulate the FIP with a slight negative concavity, which suggests that a crack

would initiate in the middle of the crystal. Figure 103 presents the averaged FIP for each

band on simulations in which a half crystal is twinned (Case 2), and shows a change in the

planes activated (the twin activates plane 3), but also a significant increment in the FIPs

magnitudes in the twinned region. The boundary conditions exert a slight influence on the

FIP distribution that may affect the locations of cracks.

Figure 104 presents the averaged FIP for each band on simulations in which only one

band is twinned (Case 3). Compared to Figure 103, slip plane 1 has FIPs slightly higher,

but these are still below the FIP for the twin in slip plane 3. Note that the latter is lower

than in Figure 104, which suggests that the width of the twin plays a role. The effect of

the boundary conditions is consistent with the previous cases.

Figures 105 and 106 present the averaged FIP for each band on simulations in which

four bands and ten bands are twinned, respectively (Cases 4 and 5). Compared to Figure

103, Figures 105 and 106 present comparable FIPs for slip plane 1 within the twin, but

below the FIPs for slip plane 3. Note that the latter have values slightly higher than those

in Figure 104. The effect of the boundary conditions is consistent with the previous cases,

but the borders of the twins seem to have a higher driving force.

The simulations of single crystals with twins showed that FIPs tend to increase by a
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Figure 102: Bar plots of the averaged FIP for 12 octahedral slip systems corresponding to
case 1 (no twin). Note that the first slip plane dominates plastic deformation.
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Figure 103: Bar plots of the averaged FIP for 12 octahedral slip systems corresponding to
case 2 (half crystal twinned).
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Figure 104: Bar plots of the averaged FIP for 12 octahedral slip systems corresponding to
case 3 (only one band twinned).
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Figure 105: Bar plots of the averaged FIP for 12 octahedral slip systems corresponding to
case 4 (four bands twinned).
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Figure 106: Bar plots of the band averaged FIP for each of the 12 slip systems corresponding
to case 5 (ten bands twinned).
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factor of 2 or less within the twins. Secondly, the width of the twins affects the FIPs; very

thin twins intensify the FIP less than wider twins, with the worst case being when half a

crystal is twinned. These results suggest that deformation twins have a less detrimental

effect on fatigue life than annealing twins, since the latter are usually much wider. Further-

more, the borders of the twins show a local increment of the driving force, which has been

found in experiments [149]. However, the loading boundary conditions may influence the

location of the maximum FIP.

6.4.2 Twins in polycrystals

The effect of twins in FIP distributions in polycrystals is analyzed by including twins to

the polycrystalline models considered in sections 6.3.4. Each simulation contains 10 grains

(out of 52) with twins in half the grain volume. The twins were introduced by adding

a rotation of 60◦ along the [1 1 1] axis to the crystallographic direction of each twinned

grain. The results are based on the analysis of the grains that contained twinned bands.

The average FIPs on each slip system on each band are evaluated by the end of the third

loading cycle. A total of 30 equivalent realizations were modeled, corresponding to 1560

grains. For comparison, exactly the same models were reproduced without the twins (that

corresponds to FIP results after nucleating a crack in sections 6.3.4); these simulations

allow comparison of the FIP on bands with twins or their neighbors. To avoid considering

bands that undergo essentially elastic deformation, only bands with expected nucleation

lives below 109 cycles were considered.

Figure 107 presents two histograms with the distributions of FIPs for the bands within

the twin, and the same bands on simulations without twins but exact same microstruc-

ture. The data suggest that the twin enhances the driving force along the bands, and the

enhancement is less than an order of magnitude. Similarly, Figure 108 depicts the distribu-

tions of FIPs for bands that are not twinned (but within grains that have twins), and the

same bands on simulations without twins; the data show almost no influence of the twins.

Overall, these results are in agreement with the trends found in single crystal simulations.

The histograms in Figures 107 and 108 show the general trends of the FIP averaged along
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Figure 107: Distribution of the FIP for those bands containing a twin, and the correspond-
ing band on simulations without twins.
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Figure 109: Comparison between the FIP in bands with twins and the FIP of the exact
same band in simulations with the exact same microstructure but without twins.

bands. However, they cannot show the relation between the FIP of a band in simulations

with twins, and the FIP of the exact same band in simulations with identical microstructure

but without twins. Thus, Figure 109 plots the FIP from a band that is twinned versus the

FIP of the exact same band in simulations without twins. The correlation between both

FIPs is poor, which suggests that simulations with explicit twins may predict crack initiation

in bands that present much lower FIPs in simulations with the same microstructure, but

without twins.

Similarly, Figure 110 plots the FIPs from bands that are non-twinned, but belong to

a grain with twins versus the FIP of the exact same band in simulations without twins.

In this case, the FIPs show a linear correlation, which implies that simulations without

explicit twins can predict the accurately the FIPs of those bands that are not be twinned,

but belong to grains with twins.

To conclude the analysis of twins, the results have shown that FIPs are intensified by

twins, and wider twins have a more pronounced effect. The FIPs were intensified by less
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Figure 110: Comparison between the FIP in bands without twins, but in a grain with twins,
and the FIP of the exact same band in simulations with the exact same microstructure but
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than an order of magnitude, which is lower than the intrinsic variability found in the FIP.

Therefore, this research will treat the effects of twins as a special case of strain localization,

which is considered in the mesoscale model by Equation (95). If twins are not explicitly

modeled, this methodology should adequately predict the magnitudes of the FIPs, although

the location of a crack may be inaccurate.

6.5 Preliminary conclusions

This Chapter adopts the general framework for fatigue crack formation and MSC growth

introduced before and works out the details of the formulation for RR1000 superalloy,

including a first order calibration of the parameters involved. The most important findings

include,

• The introduction of damage only exerts a moderate influence on the neighboring

elements. This fact suggests that for small cracks, the stress intensification on a grain

due to crack growth is moderate, does not resemble the LEFM model, and is greatly

affected by the microstructure.

• The calibration of the fatigue model can be attempted using limited experimental data

belonging to small fatigue cracks and long cracks, which are essentially employed to

calibrate the proportionality factor between crack growth rate and FIPs.

• When considering multiple realizations, the values of the fatigue driving force that

nucleates cracks presents a very narrow range (about a factor of two), while it can

vary orders of magnitude on the subsequent grains. This finding suggests that the

variability of the small crack regime depends more on the extension to subsequent

grains than on the nucleation within the first grain.

• The analysis of the sub-grain evolution showed that the mean behavior of the fa-

tigue driving force presents a decreasing trend that can be approximated by FIPα =

FIPα0
(
1− Pga2

i

)
, ai representing the fraction of the grain that has been cracked.
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• When the subgrain and mesoscale analyses were applied to the same set of microstruc-

tures the distributions of FIP0 showed minimum differences, which were a fraction of

the overall variability of the fatigue process. This results validate the mesoscale frame-

work as a modeling technique that requires lower computational work.

• The analysis of twins showed that, the wider the twin, the more intensified the FIP

becomes. The FIPs were intensified by less than an order of magnitude, which can be

considered as a special case of strain localization. However, models without explicit

twins may not predict the location of a crack accurately.
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CHAPTER VII

APPLICATION: FATIGUE ANALYSIS OF RR1000

MICROSTRUCTURES WITH ALA GRAINS

Having built, verified and validated a computational tool to assess fatigue initiation and

early crack growth, this thesis proceeds to apply that tool to study the early fatigue life of

RR1000 microstructures containing ALA grains [133, 63]. This chapter introduces multiple

realizations of models with one ALA grain surrounded by smaller grains. The parametric

study includes changing the size of the ALA grain, the assessment of the transgranular and

intergranular failure and the transition between fatigue Stage I/Stage II.

7.1 Running the computational tool

The simulations have been developed under Linux-based ABAQUS V6.9, running in Ubuntu

10.04 (Lucid Lynx) on an 8-core Intel machine with 12GB RAM and Linux Intel FORTRAN

compiler ifort V11. Such a system is able to perform mesoscale simulations comfortably up

to about 8000 elements, requiring less than 24 hours in simulations that apply about 30

loading cycles up to 1% strain range. However, most of the simulations in this Chapter were

actually run at Georgia Tech Partnership for Advanced Computing Environment (PACE),

which has hundreds of CPUs and GBs in RAM available. The PACE facility allowed the

computer algorithm to be tested, at least partially, using ABAQUS Linux-based versions

V6.7, V6.10 and V6.11 with successful results. The models were also evaluated under

Windows environments, which showed notably less efficiency in the administration of the

RAM.

In general, the simulations showed robust and consistent convergence speed, and the

few cases in which ABAQUS aborted simulations correspond to either a crack arrest (the

crack extension takes over 109 cycles) or a prolonged hold period. This latter case required

the reduction of the maximum allowable time increment, at least for the loading steps
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with constant applied strain. Because the study of microstructures containing ALA grains

requires a statistical analysis, the target size for the models is chosen between 1000 and

6000 elements. This range provided the best balance between accuracy of the simulations

and computational speed in order to achieve between 30 to 60 realizations for each type

of microstructure. This task resulted in thousands of computing hours that required the

use of computer clusters to run even relatively low-demand simulations. The same type of

simulations conducted explicitly over the summed volume with cycle-by-cycle growth would

likely require a supercomputer.

7.2 Models for ALA grain analysis

The simulation of microstructures with ALA grains was performed by models produced

with the Mesh Generator (introduced in section 5.2.1), in which one ALA grain [133, 63]

is centered in a cubic mesh with periodic boundary conditions undergoing strain controlled

triangular loading. The periodic boundary conditions increase the constraints on the mesh

and mitigate the boundary effects, but they also affect the loading after some crack extension

(due to stress redistribution), so the crack growth should be limited to a few grains.

The microstructures employ three ALA grain sizes, 70 µm, 106 µm and 142 µm sur-

rounded by grains about 10 µm to 30 µm, and a reference microstructure composed only

of grains about 10 µm to 30 µm. To make the comparison of FIPs equivalent among mi-

crostructures, all the meshes possess elements of 9 µm size; hence, with increasing ALA

grain size, the number of bands in the ALA grain increase, but they all represent the

same length scale. Furthermore, the surrounding grains have the same refinement for all

microstructures, and they usually contain between 1 and 10 elements.

Table 9 presents the parameters employed to create the microstructure models contain-

ing one ALA grain, shown in Figure 111. All the meshes correspond to cubes with periodic

conditions, as in the case of Bore 15 µm, but for the sake of clarity, only the ALA grains in

orange and a few of the surrounding grains are represented. A strain history is applied by

displacing the cube face with normal along the Z direction and periodic loading conditions.

As discussed in section 6.3.4 the loading is periodic, but it does not have truly periodic
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Table 9: Model parameters to create the models for studying microstructures with ALA
grains and the resulting mesh attributes in bold. The remaining parameters in the Mesh
Generator kept their default values, which are based on the calibration of the model.

Bore 15 µm ALA 70 µm ALA 106 µm ALA142 µm

Cube X, Y, Z length [µm] 90 90 126 162

Large grain 1 [µm] 0 70 106 142

Large grain 2 and 3 [µm] 0 (only one ALA grain)

d gr ref [µm] 8

Band period [µm] 9

Mesh size [µm] 9

Band jump [µm] 9.05

Grain size [µm] 10, resulting in 10 µm to 30 µm grains

µ (lognorm dist.) -0.1

σ (lognorm dist.) 0.4

Max. applied strain [%] 1

Applied strain rate [%/s] 0.5

Rε 0.1

t2=t4 [s] (see Figure 77) 0 for triangular or 100 for trapezoidal loading

Number of elements 1000 1000 2274 5832

Number of grains 174 174 478 1015

boundary conditions since grain distributions on opposite faces are not identical. Note that

for increasing ALA grain size, the volume not occupied by the ALA grain increases and so

does the number of grain surrounding, since the grain size is constant. Furthermore, the

size of the cubic mesh (first row in Table 9) is big enough to fit at least one grain in between

the outside limits and the ALA grain. This characteristic attempts to shield the effects of

the periodic boundary conditions on the ALA grain.

Figure 112 presents bar plots for the grain sizes calculated based on spherical grains

with equivalent volume for the Bore 15 µm and ALA 70 µm microstructures generated

with the Mesh Generator application. Both distributions have a total of 8700 grains from
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Figure 111: Different microstructures simulated. All models correspond to cube meshes
with periodic boundary conditions strained along Z axis, but some grains were removed for
clarity. In all the models the element size is equivalent to 9 µm, and the ALA grain (in
orange) is surrounded by 10− 20 µm grains, similar to Bore 15 µm.
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50 realizations and start at 9 µm, which corresponds to the element size. ALA 106 µm and

ALA 142 µm microstructures present distributions similar to that for ALA 70 µm, and they

are therefore omitted. Because the mesh is discrete, the grain size can only take a finite

number of values that become closer with increasing grain size. This characteristic causes

the granularity of the data (note the empty spaces in between bars) and the decreasing

distance between bars.

7.2.1 Subgrain FIP evolution in ALA grains

Equation 102 is the basis for the mesoscale model, but it was validated only for microstruc-

tures with unimodal distributions of grain size. Hence, 30 simulations were developed using

the ALA 106 µm microstructure and the sub-grain evolution algorithm explained in Figure

89. The resulting nondimensionalized evolution of the FIP is presented in Figure 113. Note

that only 6 simulations out of 30 actually cracked an ALA grain, as shown by the dense-

color lines between 0 and 1, and their evolution is in agreement with the results in Figure

95. Although non-ALA grains usually have less than 10 elements and the evolution of the

FIP is not well resolved, the cloud of points lies around the black lines that represent Equa-

tion 102. These results demonstrate that the mesoscale model is adequate to evaluating

ALA grains, and that the subgrain model in Equation 102 introduces a refined evolution

of FIP without the need for refined meshes. Hence, the strategy is to use meshes with low

refinement to estimate the FIP0 and later to impose the subgrain evolution that has been

deduced using more refined meshes.
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Figure 112: Bar plots presenting grain size distributions for Bore 15 µm and ALA 70 µm
microstructures generated with the Mesh Generator application, which employs a lognormal
distribution. The size is calculated based on spherical grains with equivalent volume out
of 50 realizations, each with 174 grains. ALA 106 µm and ALA 142 µm microstructures
present similar distributions to that for ALA 70 µm.
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Figure 113: Evolution of the nondimensionalized FIP as a the crack growth within a grain
for a microstructure with ALA grains about 106 µm after 30 realizations. Black lines
correspond to the subgrain estimation proposed by Equation (102), with Pg = 0.5 and
m = 2. Results are equivalent to those in Figure 95. ALA grains failure result in more
refined curves than for the surrounding grains.
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7.3 Transgranular fatigue life assessment of ALA grains

Having verified the adequacy of Equation (102), a total of 50 realizations, using the mesoscale

model, assessed the early fatigue life of each microstructure in Figure 111 and each loading

condition in Table 9. Figure 114 presents the resulting crack length vs. life; each data

point corresponds to an extension of the crack by one grain, and the total crack length

is computed as the square root of the meandering cracked area. Furthermore, the dotted

lines connect data points belonging to the crack extension in the same realization, and the

slopes represent the crack growth rate. The cases in which the slope is almost vertical cor-

respond to cracks growing simultaneously on neighboring grains, as considered in section

6.3.5, Equation (104) in particular.

The data for the Bore 15µm lie in a single cloud of points in Figure 114, but the

simulations containing ALA grains present the data divided in two clouds: on top lie the

simulations that have nucleated a crack in the ALA grain while at the bottom are those that

nucleated in the surrounding grains. These two groups show similar minimum nucleation

lives, since they are both dominated by the size of the ALA grain, either because the crack

nucleates in it, or because the ALA has low misorientation with the grain that nucleates

the crack and enhances the driving force.

Overall, we observe that fatigue life variability is controlled by nucleating the crack or

extending it to the first or second grain (after this, the average slope is consistent among the

realizations). Indeed, despite the nucleation and MSC regimes that follow different correla-

tions with the FIP, they both play a role in controlling the minimum life. Furthermore, the

life in the MSC regime for the first or second grains shows significant differences with that

for the subsequent grains, even though they share the fatigue correlation. Hence, these

results shows that not only the nucleation, but the extension of the crack to

the first few grains has an important role in controlling the fatigue life. A similar

finding was pointed out in the previous chapter with regard to the variability of the FIP.

Another interesting fact is that, even though the local driving force on each grain is

assumed to decrease with increasing crack length, the collective growth along the first
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grains presents an increasing crack growth rate with the crack length. This suggests that

it is the increase in the number of grains sampled by the crack front rather

than in the driving force that is responsible for the monotonically increasing

dependence of the macroscopic crack growth rate on crack length. Indeed, the

FIP has been characterized as proportional to the macroscopic crack length [120, 130, 185],

which is equivalent to say that the driving force is proportional to the crack tip perimeter

for circular or penny-shaped cracks. The results are consistent with the work of Navarro and

de los Rios [147] and the concept of reaching similitude in Fracture Mechanics, but further

characterization of the evolution of the driving force would require the study of longer cracks

using a specific specimen geometry (i.e., rather than periodic boundary conditions).

Figure 115 compares the results for all microstructures in a single semilog plot, and

shows clearly that the larger the ALA grain, the lower the fatigue life. Furthermore, the

gray lines present a rough extrapolation of the minimum life until the crack reaches 120 µm.

The confidence interval is obtained from using the ranges of slopes from the results. Table

10 and Figure 116 summarize some of the most important statistics from Figure 115. As

expected, the minimum nucleation life always occurs for ALA grains and decreases with

increasing ALA size. However, the maximum nucleation life in an ALA grain out of 50

realizations is roughly constant, which explains how the wider dispersion of life results in

microstructures with ALA grains. Similarly, the maximum nucleation life corresponds to

the grains surrounding the ALA grain and decreases with increasing ALA size due to the

neighboring grain contributions. Note that the number of simulations that have nucleated

in an ALA grain is limited and further simulations would be required for a significant

statistical assessment of the life distribution.

7.3.1 Influence of mesh refinement on transgranular fatigue life estimation

Because the element size is 9 µm in all cases in Figure 111, the microstructures show

very refined ALA grains composed of hundreds of elements surrounded by coarse bore-type

grains composed of 2 to 10 elements. To assess the quality of the life estimation of the coarse

grains, a new set of models was developed, similar to Bore 15 µm, but using elements of
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Figure 114: Life vs crack length for the four microstructures analyzed, each with 50 real-
izations. The upper group of points in ALA grain simulations correspond to realizations in
which the crack nucleated in the ALA grain.
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Figure 115: Comparison of the life vs crack length for the four microstructures analyzed,
each with 50 realizations. Data correspond to that presented in Figure 114, but now on a
single plot in semilog scale. Dotted lines correspond to an engineering linear extrapolation
to reach a crack of 120 µm using a the range of slopes from the different realizations.

Table 10: Statistics for nucleating a crack out of 50 realizations for each microstructure.

Bore 15 µm ALA 70 µm ALA 106 µm ALA142 µm

Min. nuc. life 102217 82984 46350 35574

Max. nuc. life in ALA grain - 190952 178010 177492

Max. nuc. life in any grain 281278 303060 256844 217362

5% probability of nucleation 115050 105000 54405 41845

Number of cracked ALA grain 0 7 6 11

199



 120µm crack

2 5% probability of nucleation

� Nucleation

50 realizations for each microstructure

M
in
im

u
m

li
fe

ALA grain size [µm]

0 50 100 150
104

105

106

107

Figure 116: Minimum life to nucleate a crack (�), 5% probability to nucleate a crack
(2) and an engineering estimation of the life to reach a crack length of 120 µm (•) for
different microstructures, based on 50 realizations each. The error bars correspond to
linear extrapolation using a variety of slopes from different realizations.
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Figure 117: Comparison between coarse and refined meshes for Bore 15 µm microstructures
after 50 realizations each. Both clouds of data points overlap and share similar minimum
nucleation lives. The refined mesh seems to have a slightly wider distribution of results.

5 µm in size. The input parameters for the Mesh Generator are similar to the Bore 15 µm

in Table 9, except for the band period, mesh size and band jump, which are all equivalent

to 5 µm. Furthermore, the models have 174 grains, and a total of 5832 elements (compared

to 1000 elements).

Figure 117 compares the life computations for 50 realizations of the coarse and refined

Bore 15 µm microstructures and shows no major differences among both clouds of data

points. The results for the refined mesh seem to present a slightly narrower spread of

results for longer lives, but further statistical analysis would be required to ascertain this

fact. More important, both distributions exhibit similar minimum nucleation lives and early

MSC growth, which supports the use of the coarse mesh in the study of microstructures

with ALA grains.
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7.4 Stage I-Stage II transition

One of the assumptions of the mesoscale model is that transgranular-dominated fatigue

cracks grow along a single crystallographic plane inside a grain, which was proposed based

on experimental evidence. To assess the validity of such hypothesis, multiple parameters

could be computed to measure the tendency of the transition to Stage II, for example:

• Crack orientation: determine the normal direction of the bands that fail and compare

them with the loading direction. The alignment of the normals with the loading

direction implies a transition into Stage II,

• Multislip: compare the life (FIP) of the band that fails with the life (FIPs) of the

bands in the same grain, but with different normals. If the latter are much smaller

(larger) than the former, then the crack could change into another slip plane inside

the grain (i.e., Stage II),

7.4.1 Crack orientation

As shown in Figure 3, after the crack has grown along many grains, it tends to rotate

into mode I loading (opening mode). To evaluate this behavior, a set of simulations was

designed with 8000 elements, 239 grains undergoing 1% range, strain-controlled triangular

cyclic loading, Rε = 0.1, and periodic loading conditions. On each simulation, between 20

and 40 grains are cracked, which demanded days of computational work; therefore, the

number of realizations is limited. The orientation of the macroscopic crack is defined by the

local orientation of multiple cracked bands. Hence, the angle between the loading direction

and the macroscopic crack for each grain needs to be integrated or averaged over multiple

grains. Figure 118 A) presents the evolution of the angle between the loading direction and

the cracked band plane normal for one simulation, and Figure 118 B) to F) presents the

smoothed results using moving averages with the specified window.

Figure 118 shows a tendency towards the opening mode, which would be a zero angle

between the loading and the crack normal. The angle decreases at an approximate average

slope between 0.25◦ to 0.5◦ per cracked grain, which implies that a fully Stage II crack
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Figure 118: The evolution of the angle between the loading direction and the cracked band
plane normal for one simulation, and the smoothed results using moving averages with the
specified window.

would develop after cracking between 200 to 400 grains. These results should be considered

as a qualitative description more than a quantitative one, since further statistics would

be required. Furthermore, simulations showed that the orientation can be affected by the

periodic boundary conditions, especially if the crack nucleates or approaches the boundary.

To exemplify the growth of a crack, Figure 119 presents the mesh employed for calcu-

lating the results in Figure 118. To the left of Figure 119 about 20 of the bands that form

the crack are presented; each band from each grain has a different color. This Figure shows

the complexity of the crack growth pattern, the degree of refinement of the grains, and how

easily a crack can approach the boundary, which affects the orientation of the crack.
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Figure 119: Mesh employed in the assessment of the crack orientation. On the left, the
crack composed by bands in multiple grains (each grain in a different color). On the right,
the entire mesh.

7.4.2 Multislip

The rotation of the normal plane directions into opening mode usually takes several grains

to develop and does not indicate the transition inside a grain, but a macroscopic transition;

hence this is not the best methodology to assess whether a crack would shift to another

plane within a grain. In contrast, the comparison of FIPs or fatigue lives of bands can

measure the transition withing a grain, but the latter is preferred since it includes grain

size and strain localization effects.

To test the hypothesis in the mesoscale model that cracks do not deviate from one slip

plane, the life of the actual band along which the crack grows in a grain is divided by the

minimum life among every other band in the same grain. This calculation is performed for

every new grain cracked in the MSC regime, once it has been determined along which grain

the crack extends, but before adding any damage. Indeed, because the crack extends along

bands that must be connected to the crack, another band in the grain, not connected to the
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crack, may result in shorter life predictions. For grain i, the stage ratio (SR) is defined as

SRi =
Life of the band that failed in grain i

Minimum life of every other band in grain i
, (110)

with the additional condition that the bands should belong to a grain that failed in the MSC

regime and should not have the same normal direction. Hence, a stage ratio larger than one

means that there is another band in the grain that has a lower MSC life estimation, but it

does not neighbor the crack, which prevents the crack from growing along that band.

Figure 120 presents four boxplots, each corresponding to a different microstructure, with

the distributions of stage ratios for the first seven grains to fail. For clarity, values larger

than 5 were omitted, and the number of those cases is indicated for each microstructure.

Similarly, the first grain is not considered because the model nucleates the crack in the band

with minimum life, making SR always below 1. For the remaining grains, the upper quartile

has values below 2, which implies that in at least the 75% of the cases, the minimum life of

any band in the grain that cracked differs by less than a factor of two with the actual life

computed for the band that failed. A SR value larger than one would not imply directly that

the predictions of the mesoscale model are inaccurate, since the transition into multiple slip

planes would take a certain number of additional cycles. Hence, the relatively low percentage

of cases that have SR values significantly larger than 1 suggests that the hypothesis that

cracks follow a single slip plane is adequate.

Figure 121 now compares the effect of mesh refinement on SR by overlapping two box-

plots (hollow and full boxes) with the distributions for the first grains to fail. The refined

meshes show narrower distributions of SR, and significant lower upper quartiles, which are

constantly below a value of 1.20 and have a lower number of outliers. Therefore, the re-

finement of the mesh intensifies the Stage I character that is imposed by the mesoscale

model.
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Figure 120: Boxplots showing the stage ratios for the first seven grains to fail in the
microstructures analyzed. Although some outliers have values larger than 2, they correspond
to a relatively small number of cases. Values larger than 5 were omitted, and the number
of cases is indicated for each microstructure.
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Figure 121: Comparison of SR between coarse (hollow boxes) and refined meshes (full
boxes) for Bore 15 µm microstructures. The refined mesh shows a stronger Stage I character
that is actually imposed by the mesoscale model.
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7.5 Intergranular fatigue life assessment of ALA grains

The intergranular fatigue life in the MSC regime was also assessed for microstructures with

ALA grains. As mentioned in the description of the mesoscale model, the intergranular life

is computed after the crack is nucleated, and considers only the GB sectors neighboring the

crack, which extends only along transgranular paths. For each GB sector, the intergranular

life is calculated, and the minimum of those is considered as the intergranular life for the

current crack length. Because the transgranular lives of grains are on the order of 103 to

104 cycles, only intergranular lives below 2x105 were considered.

Figure 122 presents the evolution of the minimum intergranular fatigue life for those

grains neighboring the crack as a function of transgranular crack length. Dark points corre-

spond to those cases in which the minimum intergranular life of the GBs sectors neighboring

the crack are below the minimum transgranular life to extend the crack by a grain; hence,

the transition into intergranular failure is expected to occur for the dark points. Although

the calibration of the actual lives could be somewhat inaccurate, we can still learn from the

distributions of lives. For example, all the microstructures simulated tend to transition into

intergranular failure only after a few grains have cracked, regardless of the length of the

crack. These results suggest that the transition into intergranular failure is not dominated

by the length of the crack but by the intergranular life of the boundaries. Hence, if the life of

any boundary on grains neighboring the crack is above about 104cycles, the transition into

intergranular failure tends to be suppressed. An additional observation is that even though

the formulation does not carry any intrinsic length scale, the intergranular life decreases

with increasing ALA grains.

7.5.1 Influence of mesh refinement on intergranular fatigue life estimation

Figure 123 compares the evolution of the minimum intergranular fatigue life for refined

and coarse meshes. Light gray and dark points correspond, for refined and coarse meshes

respectively, to cases in which the minimum intergranular life is below the minimum trans-

granular life to extend the crack by a grain. These results show that the refined and coarse

mesh simulations provide similar estimates of the intergranular life transition.
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Figure 122: Minimum intergranular life as a function of transgranular crack length. Dark
points correspond to those cases in which the minimum intergranular life of the GBs sectors
neighboring the crack is below the minimum transgranular life, suggesting the tendency for
transition of failure mode. Only intergranular lives below 2x105 were considered.
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Figure 123: Comparison of the minimum intergranular life between coarse and refined
meshes for Bore 15 µm microstructures. Light gray (dark) points correspond to those cases
in which the minimum intergranular life of the GBs sectors neighboring the crack is below
the minimum transgranular life of the refined (coarse) mesh, suggesting the tendency for
transition of failure mode. Only intergranular lives below 2x105 were considered.
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7.6 100s hold time effect

Finally, this section presents the results corresponding to ALA 106 µm undergoing 1% strain

controlled trapezoidal loading (1-100-1-100) and Rε=0.1. A total of 30 realizations were

performed, and the results are presented in Figure 124, which shows a significant decrease

in the life when compared to the triangular loading results without hold. The transgranular

fatigue life seems to have been reduced by about 20%, mainly in the MSC regime, which

presents slopes (crack growth rates) that are steeper. Furthermore, the nucleation of the

crack and the extension into the first or second grain still control the fatigue life.

Figure 125 presents the intergranular life for ALA 106 µm with 100s hold time compared

to the results from triangular loading without hold time. Here, most of the simulations

tend to transition into intergranular failure, which is observed to start when the GBs have

intergranular lives about 2x103 cycles. These results are in agreement with the expected

detrimental effects of hold times in superalloys.
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Figure 124: Life vs. crack length for ALA 106 µm without (•) and with (�) 100s hold time
for 30 realizations. Note that the slopes are more steep in the case with hold time due to
the increase of irreversibility.
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Figure 125: Minimum intergranular life ALA 106 µm without (•) and with (�) 100s hold
time as a function of transgranular crack length for 30 realizations. Dark points correspond
to those cases in which the minimum intergranular life of the GBs sectors neighboring the
crack is below the minimum transgranular life, suggesting the tendency for transition of
failure mode. Only intergranular lives below 2x105. were considered.
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7.7 Preliminary conclusions

This chapter employed computational tools based on the mesoscale model to study the

formation and MSC growth of fatigue cracks in microstructures containing one ALA grain

of different sizes and a reference microstructure without ALA grains. The results support

the following conclusions.

• The FIP within an ALA grain still follows the sub-grain evolution proposed in the pre-

vious chapter, providing further evidence that the mesoscale model can be employed

for analyzing microstructures with ALA grains.

• Crack formation and early growth is controlled by the ALA grain, either because the

crack nucleates in such a grain or because ALA grains assist in the plastic deformation

of neighboring grains.

• The nucleation regime and the MSC regime for the first few grains control the fatigue

life. Afterwards, crack growth rates increase and cracks tend to grow within multiple

grains simultaneously. Furthermore, ALA grains tend to influence more strongly the

lower tail of the nucleation distribution lives rather than the tail of maximum values.

• The transition from fatigue Stage I to Stage II was assessed, and the results showed

that in the majority of the cases the Stage I hypothesis in the mesoscale model is

adequate for the cases analyzed. Furthermore, the refinement of the mesh intensifies

the Stage I character, which is actually a feature imposed by the mesoscale model to

coarse meshes.

• Intergranular life was also assessed, and the results showed that the transition from

transgranular to intergranular failure occurs when the GB sectors presented lives below

a certain value.

• The detrimental effects of a hold period during loading were quantified as transgran-

ular and intergranular failures, and they are in agreement with the expected behavior

for superalloys.
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

The formation and early growth of fatigue cracks in the high cycle fatigue regime is influ-

enced by microstructural features such as grain size and morphological and crystallographic

texture. However, most fatigue models do not predict the influence of the microstructure

on early stages of crack formation, or they employ parameters that should be calibrated

with experimental data from specimens with microstructures of interest. These post facto

strategies are adequate to characterize materials, but they are not fully appropriate to aid

in the design of fatigue-resistant engineering alloys. Indeed, the prediction of fatigue life

associated with the growth of MSCs is still an open challenge that impacts mechanical

design.

The review of the current understanding of the development of small fatigue crack

argued that traditional homogeneous-based fracture mechanics cannot describe the early

behavior of fatigue cracks because they are based on far-homogenized field magnitudes and

not local measurements. The alternative is to employ fatigue driving forces based on the

crack tip local fields. The ∆CTD is one such local driving force that can be directly linked

to the mechanically irreversible mechanisms at the crack tip. Since, the computation of

the ∆CTD is experimentally and computationally complex, a variety of alternatives for the

driving forces have been proposed.

The Fatemi-Socie based FIPs showed experimentally good correlation for ascertaining

the early fatigue life of metals with low to medium SFE and planar slip. In spite of this

fact, the quality and foundations of these FIPs have received limited attention. Therefore,

the first objective considered was to evaluate the role of FIPs as fatigue crack driving force

for cracks in single crystals with and without idealized slip band heterogeneities. For this

analysis, simulations of Cu were employed, since it is the most studied material in fatigue

damage. The comparison between the ∆CTD and the Fatemi-Socie FIP was performed
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explicitly for several multiaxial loading conditions, and the results demonstrate that the

∆CTD correlates almost linearly Fatemi-Socie FIP. Furthermore, the crack tip geometry

exerted only a secondary influence on the driving forces as well as the mesh refinement.

Mesh refinement can affect the value of computed FIPs to a greater extent than ∆CTD,

and the effect seems more intense for mixed loading. To mitigate such problems as well as

the variability of the mesh, averaged FIPs along slip bands demonstrate reduced variability

and dependence on the mesh refinement than local maximum magnitudes.

A notable result is that the shape of the correlation was not significantly affected by

introducing slip bands. Indeed, specimens with slip bands followed a similar trend from that

shown by homogeneous specimens, with the driving force enhanced. Such a localization of

plastic strain in a slip band can exert significant influence on the ∆CTD, particularly for

higher values, and appears to affect the threshold ∆CTD. These findings are a fundamental

support for simulations of small fatigue cracks using FIPs, since they justify that ∆CTD

and Fatemi-Socie FIPs averaged along bands are correlated measures of the driving force,

but the latter is computationally less demanding.

Chapter 4 introduced local correlations between crack growth rates and FIPs based

on the hierarchical approach to fatigue modeling, which allows the estimation of the life

consumed in different stages as the crack extends. Since this formulation does not have an

intrinsic length scale, the computation of the fatigue driving force could be performed for

every element, demanding intense numerical work.

The local model was extended as a mesoscale framework that is able to calculate fatigue

life over hundreds of microns. To limit the computational demands, the mesoscale scheme

takes the grain as the minimum unit to crack (instead of an element) and assumes that

the evolution of the driving force inside the grains follows a function g(a) that depends

on the length of the crack within the grain, a. The scaling factor is calculated after only

a few loading cycles, which requires that the microstructure does not change significantly

throughout the fatigue life.

Once the crack has extended over a grain or more, the stress and strain redistribution

can affect the driving force on the neighboring uncracked grains. To account for this effect,
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various strategies were reviewed among which the damage approach was preferred. This

methodology degrades the elastic stiffness tensor without affecting the crystal plasticity cal-

culations, and it is based on a 4th rank damage tensor that guarantees that the stress tensor

is symmetric. Although the formulation describes correctly the behavior of an equivalent

cracked element, the implementation in FE simulations may present additional complexi-

ties, in particular regarding the convergence of the strongly anisotropic damaged stiffness

tensor.

The concepts discussed in the previous chapters regarding the study of early fatigue

life and microstructure were later applied in the study of RR1000 superalloy with dual

microstructure fatigue crack formation. Such task required discussing the nature of the

RR1000 superalloy for turbine disk applications and the details of the crystal plasticity

constitutive formulation for RR1000. This analysis pointed out that crystal plasticity mod-

els for superalloys that consider cube slip to account for the zig-zag cross slip mechanism

may fit adequately to macroscopic stress-strain and stress-time experimental data, but they

can still present non-physical behavior such as the dominance of cube slip plastic deforma-

tion or stresses incompatible with zig-zag mechanism.

The modeling of dual microstructures needs to account for a larger number of moments

of the grain size distribution than unimodal distributions. Hence, this work proposed to

perform a statistical analysis using SVE. This allows the quality of an estimation of the

fatigue behavior to be scaled with the computational effort. Furthermore, a Mesh Generator

application has been developed to feed the FEM solver with a complex microstructure that

may include ALA grains.

Similar to the previous analysis using Cu, the correlation between the FIP and the

∆CTD for RR1000 is approximately one-to-one. Since the constitutive models for both

metals are completely independent, the similarity in the correlation suggests a fundamental

relation between the driving force measurements.

The general framework for fatigue life estimation is later applied for estimating the

early life of RR1000 superalloy. Simulations showed that the fully anisotropic damage

models can introduce numerical instabilities that are overcome by employing a simplified
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isotropic degradation of the stiffness tensor adjusted dynamically according to the increase

of damage. The introduction of damage only exerts a moderate influence on the neighboring

elements, which suggests that for small cracks, the stress intensification on a grain due to

crack growth is moderate, does not resemble singularity models and is greatly affected by

the microstructure.

Multiple realizations of equivalent unimodal microstructures showed that the fatigue

driving force for nucleating cracks presents a very narrow range (about a factor of two)

while it can vary by orders of magnitude for extending the crack on the subsequent grains.

Thus, the variability of the small crack regime depends more on the extension to subsequent

grains than on the nucleation of the first grain. Furthermore, the analysis of sub-grain

evolution showed that the mean behavior of the fatigue driving force presents a decreasing

trend that can be approximated by a power law of the fraction of the grain that has been

cracked.

The comparison of sub-grain and mesoscale analyses using similar microstructures showed

negligible differences in the driving forces employed to estimate fatigue lives, validating the

mesoscale framework as a modeling technique that requires lower computational work. Fur-

thermore, the analysis of crystals with annealing twins showed that, the larger the twin,

the more intensified the FIP becomes. The FIPs were intensified by less than an order of

magnitude, which can be considered as a special case of strain localization. Hence, models

without explicit twin may not predict the location of a crack accurately.

The work presented in Chapters 2 to 6 is the basis that justifies the life estimations for

RR1000 dual microstructures in Chapter 7. The Mesh Generator application generated the

models analyzed with the mesoscale model to study the early fatigue life of microstructures

containing one ALA grain of different sizes and a reference microstructure without ALA

grains. The results showed that the shape of the sub-grain evolution does not strongly

depend on the microstructure, and that ALA grains still follow the sub-grain evolution

proposed, justifying the use of the mesoscale model for analyzing microstructures with

ALA grains.

The early fatigue lives is controlled by the ALA grain, either because the crack nucleates
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in such a grain or because ALA grains assist in the plastic deformation of neighboring

grains. Furthermore, both the nucleation and the MSC regimes for the first couple of

grains present the lowest crack growth rates and take a central portion of the fatigue life.

Afterwards, crack growth rates are increased and cracks tend to grow on multiple grains

simultaneously. Furthermore, ALA grains tend to affect the minimum nucleation lives more

than the maximum values.

Intergranular life was also assessed, and the results showed that the transition from

transgranular to intergranular failure occurs when the GB sectors presented lives below a

certain value, regardless of the size of the crack. The detrimental effects of a hold period

during loading were quantified for transgranular and intergranular failure.

8.1 Most significant innovative aspects of this work

The key innovations achieved in this work are summarized below:

• The Fatemi-Socie based FIP correlates almost linearly with the ∆CTD in single crys-

tals under multiple loading conditions. This relation was found for two unrelated

FCC constitutive models, which supports that the magnitudes have a fundamental

relation.

• The localization of plastic strain in a slip band influences the fatigue driving force.

However, the shape of the correlation between the FIP and the ∆CTD is not sig-

nificantly affected by introducing slip bands, which supports the validity of using

homogenized constitutive models for estimating the driving force.

• The use of averaged FIPs along bands oriented with the slip planes reduced the vari-

ability and mesh dependence of the fatigue driving force compared to pointwise mea-

sures.

• The evolution of the fatigue driving force within a band in a grain decreases as the

crack grows in the grain, which is in agreement with other simplified models and

experimental results in the literature. This characterization provides a definition of

the Microstructrual Fracture Mechanics fatigue driving force.
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• The mesoscale framework developed is capable of calculating fatigue life over hundreds

of microns using a crystal plasticity constitutive model containing explicit grains.

The model divides the grains in bands that are the minimum unit that crack, and

the comparison of results with more detailed models validated the results from the

mesoscale framework.

• The fatigue driving force for nucleating cracks presents a very narrow range (about

a factor of two) while it can vary orders of magnitude for extending the crack on the

subsequent grains. Thus, the variability of the fatigue small crack regime depends

more on the extension of a fatigue crack to subsequent grains rather than on the

nucleation of a fatigue crack on the first grain.

• Crystal plasticity models for superalloys that consider cube slip to account for the zig-

zag cross slip mechanism may fit adequately to macroscopic stress-strain and stress-

time experimental data, but they can still present non-physical behavior such as the

dominance of cube slip plastic deformation or stresses incompatible with zig-zag mech-

anism.

• The algorithms developed are capable of predicting the early fatigue life for idealized

microstructures in 3D under multiaxial loading. This tool pioneers the modeling of

3D growth of MSCs in polycrystalline microstructures.

• ALA grains control the early fatigue lives, either because the crack nucleates in such

a grain or because ALA grains assist in the plastic deformation of neighboring grains.

Furthermore, both nucleation and MSC regime for the first couple of grains present

the lowest crack growth rates and take a central portion of the fatigue life.

8.2 Open issues and further improvements

This research has successfully constructed a multi-stage methodology from fundamentals

up to the application for industrial needs. For the sake of covering this wide range, some

matters were overlooked by assuming certain simplifications. Among the most important

subjects are improving the constitutive model and the fatigue model.
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The crystal plasticity formulation (and most models available) may not reproduce accu-

rately the partition of strain among the slip planes. This problem affects the quantification

of the fatigue driving force because plastic strain tends to spread in multiple planes, even

worse when considering cube slip that results from the zig-zag mechanisms. Furthermore,

the transition into multiple slip (Stage I to Stage II) is controlled by the activation of mul-

tiple slip planes, which affects the evaluation of the transition between stages. A possible

solution is to limit the number of planes that can be activated at a time, but the selection

rule may introduce significant complexities.

A second deficiency of the constitutive model is the lack of strain localization in smooth

specimens (i.e., not caused by geometric stress concentrators). To compensate for this

problem, the fatigue model considers a dependence of the driving force on the grain size

(Equation 95) that models the strain localization effects. However, this model is a sim-

ple correction of a complex problem, which requires further experimental and theoretical

characterization.

One of the difficulties with modeling strain localization is the need for an intrinsic length

scale, which is not currently included in the constitutive model. However, the definition of

the bands in which the FIPs are averaged introduces a length scale into the fatigue model

that could be extended to the constitutive formulation. Therefore, a natural extension of

this work would explore non-local (integral) constitutive equations in which the bands are

the integral volumes. This type of formulation may consider integral ISVs that describe the

evolution of the bands as one entity. This would be particularly well fitted for modeling

slip bands.
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APPENDIX A

ALTERNATIVE FIP CALCULATION

In order to compute the value of the FIP, the range of plastic strains should be estimated

over one loading cycle. Chapter 3 computed the FIP based on the range of the plastic

strain tensor and in section 3.3.3 compared the results with the FIP computed using the

methodology by McDowell and coworkers [171]. For completeness, this appendix introduces

the details of the latter calculation.

McDowell and coworkers [171] calculated the maximum plastic shear strain, γpmax, at

the peak point in the loading cycle using that,

γpmax =
∣∣∣εp1∣∣max − εp3∣∣max∣∣∣ sgn(εp1|max), (111)

in which εp1
∣∣
max

εp3
∣∣
max

are the maximum and minimum ordered principal plastic strains at

peak load, respectively. Each eigenvalue has associated two respective eigenvectors ν1 and

ν3, which define the plane of maximum plastic strain at peak load π as,

π =
ν1 + ν3

||ν1 + ν3||
(112)

This plane locates at an angle of 45◦ to the eigenvectors.

For proportional loading, if it is assumed that the ordered principal plastic strains at

the minimum point of the loading cycle have eigenvectors coincident with ν1 and ν3 (this

is not generally true for non-proportional loading), then the minimum plastic shear strain

on the same plane is given by

γpmin =
∣∣∣εp1∣∣min − εp3∣∣min∣∣∣ sgn(εp3|min), (113)

Here the subscript min refers the point in the loading cycle with minimum load. Equations

(111) and (113) are different because the sign of the eigenvalues can change with the fatigue

ratio R. Note that general loading conditions requires to compute the plastic strain ranges

on each multiple planes to estimate the value of the maximum range.
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Then, the range of plastic strain is computed as,

∆γp = γpmax − γpmin =

=
∣∣∣εp1∣∣max − εp3∣∣max∣∣∣ sgn(εp1|max)−

∣∣∣εp1∣∣min − εp3∣∣min∣∣∣ sgn(εp3|min), (114)

which requires computing four eigenvalues. As mentioned in section 3.2.4.2, the methodol-

ogy employed in Chapter 3 only computes two eigenvalues belonging to the plastic strain

tensor range.
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APPENDIX B

THE UEXTERNALDB SUBROUTINE

The external database user subroutine (UEXTERNALDB) is in charge of performing all

the calculations that are connected with the fatigue model, and it runs after every step has

converged. This subroutine performs the following tasks:

• Reads the information about the mesh generated along with the input file by the

Matlab scripts and translates it into arrays that can be interpreted in ABAQUS,

• Calculates the value of the fatigue indicators locally and over averaged volumes,

• Calculates the number of cycles to transgranular failure for each band using the ade-

quate life law (i.e, nucleation, MSC),

• Calculates the intergranular life for each grain boundary sector,

• Keeps track of the neighboring grains that are candidates to crack next and allows

only them to fail.

B.1 UEXTERNALDB subroutine functioning

The simulation starts by initializing the variables that contain the additional informa-

tion (beside ABAQUS input file) regarding the geometry; i.e., the Neighbor grains.txt,

Boundary el.txt and Boundaries dir.txt files are read and saved as arrays in global mem-

ory. Since information is exchanged between the UMAT and the UEXTERNALDB sub-

routines, the initialization lasts for two time increments and comprises the if-loop for which

time(2).eq.0.0. Later, on the second time increment of the first step ((kinc.eq.2).and.

(kstep.eq.1)), the code reads the files Min dist.txt and Grains.txt and writes the files disAn-

gle.txt.

At the beginning of each even number step, the extreme values of the accumulated plastic

strains (variables gamma cum element min and max) are set to zero, and the values of the
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latest even-step plastic strains are replaced with the current values. This calculation is done

by the end of the first time increment after the crack has been extended to a new grain, and

its objective is to account for the ratcheting effect. The subroutine continues calculating

the averaged FIPs for all steps after the second time increment (if loop kinc.gt.2). This

calculation is performed for every time increment, which allows the maximum and minimum

plastic strains to be determined over the cycle, whose difference results in the maximum

plastic strain range ∆γα
∣∣∣max

over cycle
in Figure 74.

To limit the computational work, lives are computed only by the end of certain load-

ing cycles; this is when the remaining time to complete the loading step is less than half

the current time increment. The computation of the nucleation life is performed under

if kstep.eq.Eval Nuc, while the MSC lives are computed if (kstep.gt.Eval Nuc).and.

(mod((kstep-1),(int(Eval MSC))/2).eq.0). Once the simulation has concluded, the

following text files will be found on the running folder:

• FIP.txt: This files summarizes the values of the FIP0, employed for computing the

life of the bands that failed. The columns describe FIP and the number of elements

cracked.

• life.txt: This file summarizes the life of the first grain to fail under the nucleation

regime, and the subsequent grains under the MSC regime (MSC1, MSC2, etc.). The

content has four columns: the expected life, the number of the grain that contains

the band that failed, the number of the bands and the slip direction failed.

• life Nuc.txt: This file summarizes the life to nucleate a crack in all grains. The content

has five columns: expected life of the bands (only of those shorter than 108), the

number of the grain that contains the band failed, the number of band, the slip

direction and the value of the band-averaged FIP.

• life MSCi.txt: This file summarizes the life to grow a crack along the ith grain to fail in

the MSC regime. Similar to the previous file, the content has five columns: expected

life of the bands in grains neighboring those that have already failed, the number of
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the grain that contains the band failed, the number of band, the slip direction and

the value of the band-averaged FIP.

• disAngle.txt: Lists the contributions from neighboring grains. The misorientation

(3rd column) between two grains (1st and 2nd columns) lead to a neighboring grain

contribution (Dnd) in the 4th column.

• d gr nd.txt: Similar to disAngle.txt, lists the contributions from neighboring grains,

but for each band. Columns 1, 2 and 3 state the grain, the band number and the slip

plane, and the 4th column states the neighboring grain contribution (Dnd).

B.2 Variables and arrays

To store and access information at different times from different subroutines, ABAQUS indi-

cates that the FORTRAN common block should be employed. Thus, a series of global vari-

ables (i.e., static memory) were defined in named common blocks in the Common Block.txt

file. This file is called from the UMAT and the UEXTERNALDB subroutines, which as-

sures that all the subroutine use the exact same definition for the common block. Indeed,

FORTRAN requires the definition of these variable to be done carefully, in decreasing order

of memory size.

Since global variables can be the source of multiple errors, this appendix presents a list

of the global variables employed by the algorithms. Below “Name” refers to the name of

the common block in which the variable is allocated, while the amount of space allocated

in memory is indicated in between brackets.

Name: KUEXT0

Elem pos(num elem,5): [integer*4] For all normal vectors, Elem pos(i,1 to 4) stores the

number of band that contains the ith element. Elem pos(i,5) stores the grain that con-

tains the ith element.

Name: KUEXT1
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Cnum(num grains,max num layers,4): [real*4] Contains, for each band of each grain, the

number of elements in it. The third coordinate indicates to the four normal vectors of the

octahedral slip planes.

Cnum fail(num grains fail+1): [real*4] Contains the number of the grains that have been

cracked. A total of num grains fail+1 grains fail in the MSC regime.

Name: KUEXT2

gamma dot element(num elem,num octa sys): [real*8] The shear rate calculated as a local

variable in the UMAT is made available as a global variable.

gamma cum element(num elem,num octa sys): [real*8] The accumulated shear strain for

each slip plane calculated in the UMAT is made available as a global variable.

gamma cum element max(num elem,num octa sys): [real*8] The maximum value of the ac-

cumulated shear strain.

gamma cum element min(num elem,num octa sys): [real*8] The minimum value of the ac-

cumulated shear strain.

gamma cum init even step(num elem,num octa sys): [real*8] The accumulated shear strain

at the beginning of the cycle used to discount the ratcheting effect.

sigma gl(num elem,num octa sys): [real*8] The normal stress on each slip plane calcu-

lated as a local variable in the UMAT is made available as a global variable.

dam elem(num elem): [real*8] Global damage variable that determines if the grains are

damaged (value=1) or undamaged (value=0)

Name: KUEXT3

N nuc(num grains,max num layers,num octa sys): [integer*8] Stores the expected life to

nucleate a crack for all bands and slip directions.

N msc(num grains,max num layers,num octa sys): [integer*8] Stores the expected life to

currently grow a MSC crack for all bands and slip directions.

N history(num grains,num grain fail): [integer*8] Stores the consumed life once the

band becomes in contact with the crack. It has a zero value if the band is not in contact
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with the crack.

N msc min(4,num grain fail): [integer*8] Stores the minimum life to grow a MSC crack

and the corresponding grain, band and slip direction.

NGrain failed(num grain fail+1): [integer*8] The maximum number of grain failures

that will be analyzed.

Nstep failed(num grain fail+1): [integer*8] Stores in which step the crack has extended

to the next grain.

N nuc min(4): [integer*8] Stores the minimum life to nucleate crack.

Nfailed:[integer*8] Correspond to the number of grains currently cracked.

Name: KUEXT4

Neighbor1(num grains*2*num grains): [integer*8] Temporary variable.

Neighbor grains(num grains,num grains): [integer*8] Neighbor grains(i,j) stores the

number of the neighboring grain j, around grain i.

Neighbor num(num grains): [integer*8] The number of grains (meaning quantity) that

neighbor the ith grain.

Name: KUEXT5

N El GB(num elem,6): [integer*8] For each of the six faces of the element, stores the num-

ber of the neighboring grain. If the face neighbors the same grain, it stores a value of zero.

Name: KUEXT5b

N int(num grains,num grains): [integer*8] N int (i,j) stores the intergranular life of

grain i, on the boundary with grain j, using the elements that neighbor on grain i (Note

that it is not symmetric).

N int local(num elem): [integer*8] Stores the intergranular life of each element. If it is

not a boundary element, it stores 19.

Name: KUEXT5c
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Nun int(num grains,num grains): [integer*8] Num int (i,j) stores the number of ele-

ments in grain i that neighbor grain j.

Name: KUEXT7

Spk2 gl(num elem,3,3): [real*8] Corresponds to the 2nd Piola-Kirchhoff stress passed as

a global variable.

GB dir(num elem,6): [real*8] For each face on each element, stores the direction of the

grain boundary.

S prin max(num elem): [real*8] Maximum principal stress.

Name: KUEXT8

Min dist(num grains,num grains,max num layers,max num layers,4,4): [real*8] Stores

the data in the Min dist.txt file and corresponds to the connectivity among bands.

Name: KUEXT9

disAngle(num grains,num grains): [real*8] Stores the misorientation angle among grains.

disAngleMax(num grains,num grains): [real*8] Temporary variable to stores the misori-

entation angle among grains.

Grs(num grains,4): [real*8] Temporary variable used to calculate the misorientation angle

among grains.

Name: KUEXT10

d gr nd(num grains,max num layers,num octa sys): [real*8] Contribution of the neigh-

boring grains on the current band size.

Name: CONSTANTS

This block defines constants that are defined at the beginning of the simulations, such

as temperature, Boltzmann constant, the initial values and constants for the constitutive

model.
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APPENDIX C

MESH GENERATOR APPLICATION

The Mesh Generator introduced in Chapter 5 has been tested under ABAQUS V6.7, V6.9

and Matlab 7.9 R2009b, both in Linux and Windows systems. Because the application

employs ABAQUS python commands to create meshes, ABAQUS should be installed in

the system. The expected time required to create the default model (3375 elements) is

approximately 200 seconds, but it can take hours for models with more than 10000 elements.

The application runs in Matlab, which prompts a graphic user interface similar to that

shown in Figure 126. This interface allows defining the parameters described below, whose

default quantities (shown inside the boxes in the GUI) correspond to RR1000 Bore mi-

crostructure. The parameters required in the mesh generator GUI (default values are in

brackets) are as follows:

Name for ABAQUS input file: Name of the input file to be created.

Header lines[8]: This corresponds to the number of lines in the header of the input file.

This can change with ABAQUS version. For ABAQUS 6.9 it should be equal to 9 while for

ABAQUS 6.7 it should be equal to 8.

Model parameters

Definition of mesh attributes

Cube X length [15 µm]: Dimensions of the cube to model in microns along the X axis.

Cube Y length [15 µm]: Dimensions of the cube to model in microns along the Y axis.

Cube Z length [15 µm]: Dimensions of the cube to model in microns along the Z axis.

Band period [1 µm]: Thickness of the bands over which transgranular FIPs will be averaged.

This value should be equal or larger than the mesh size.
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Figure 126: Graphic user interface of the Mesh Generator application.
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Mesh size [1 µm]: Size to seed the part in microns. This value depends on the number of

elements attempted for the whole model.

Band jump [1 µm]: Maximum distance between bands used to consider them as connected.

This value should be equal or larger than the mesh size.

Number of grains to crack [5]: Total number of grains that are cracked in sequence.

Lognormal distribution of grains to be created

Grain size [2 µm]: Approximate grain size radius in microns. Note that the actual value of

the grain distributions is larger due to the addition of unassigned elements.

µ [-0.1]: Mean of the lognormal grain size distribution.

σ [0.4]: Standard deviation of the lognormal grain size distribution.

Loading

Max. applied strain [1 %]: Nominal cyclic strain applied in percentage.

Applied strain rate [0.05 %/s]: Nominal cyclic strain rate applied in percentage per second.

t2 [0]: Corresponds to the hold time. A zero value corresponds to triangular loading while

another value will result in trapezoidal loading with such value as the holding time.

Definition of parameters for the nucleation regime

α [41.6]: Irreversibility factor employed in the nucleation regime.

Definition of parameters for the transgranular MSC regime

ξtrans [0.2]: Irreversibility exponent for transgranular failure.

C [0.0645]: Irreversibility constant for transgranular failure.

∆CTDth [5.0 10−4 µm]: ∆CTD threshold.

Afs[2]: Proportionality factor employed in the transgranular failure model.

Pg [0.5]: Constant employed in estimating subgrain FIP evolution.
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Definition of parameters for the intergranular MSC regime

ξint [0.05]: Irreversibility exponent for intergranular failure.

Cint [8.01]: Irreversibility constant for intergranular failure.

Bint [0.02]: Constant employed in the intergranular failure model,

λ [2]: Intergranular failure coefficient for the FIPint.

ALA grains size

This box specifies the diameter of grains 1, 2 and 3 (center, bottom and right respectively)

without following the lognorm distribution. Thus, this option allows defining three arbi-

trarily big grains surrounded by finer grains that follow the lognorm distribution. When a

value “0” is specified on any of the three grains, the program does not employ this option

and the volume is filled with grains following the lognorm distribution.

Big grain 1 [4 µm]: Diameter of the grain centered in the cube.

Big grain 2 [3 µm]: Diameter of the grain centered below Big grain 1.

Big grain 3 [0 µm]: Diameter of the grain centered to the right of Big grain 1.

Material parameters
Definition of global mechanical properties

Yield strength [750MPa]: Yield strength
Q = 241 kJ

mol : Activation energy.
Fatemi-Socie constant, k [0.5]: Constant multiplying the normal stress in the FIP for trans-
granular failure.
d gr ref [8 µm]: Reference grain size.
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