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SUMMARY 

The spectral and directional control of radiative properties by utilizing engineered 

micro/nanostructures has enormous applications in photonics, microelectronics, and 

energy conversion systems. The present dissertation aims at: (1) design and analysis of 

micro/nanostructures based on wave interference and magnetic resonance effects to 

achieve tunable coherent thermal emission or enhanced optical transmission; (2) 

microfabrication of the designed structures including multilayered thin films and 

patterned structures; and (3) development of a high-temperature emissometer to 

experimentally demonstrate coherent thermal emission from fabricated samples using 

spectrometric techniques at temperatures from 300 to 800 K. 

An asymmetric Fabry-Perot resonant cavity, sandwiched by a thick Au film and 

an ultra-thin Au film of few nanometers, was studied as a potential coherent emission 

source based on the wave interference effect. The coherent emission behavior from 

fabricated samples was successfully demonstrated from room temperature up to 800 K. 

The reflectance was measured at room temperature using a Fourier-transform infrared 

spectrometer, and then the emittance can be indirectly obtained from Kirchhoff’s law. A 

high-temperature emissometer was built to measure the thermal emission of fabricated 

multilayer samples at elevated temperatures, and the temperature effect on the emission 

peaks was discussed. To facilitate the computation of thermal emission from layered 

structures with nonuniform temperature distributions, the direct (fluctuational 

electrodynamics) and indirect (matrix formulation) approaches were analyzed and 

unified, resulting in a generalized Kirchhoff’s law. 
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A comprehensive investigation was performed to understand and potentially 

utilize the magnetic resonance effect for tailoring radiative properties in periodic grating 

microstructures. Contrary to the conventional explanations using the coupled-surface-

plasmon-polaritons or Fabry-Perot-cavity resonance effect, the effect of magnetic 

resonance was identified to be responsible for the resonant transmission/absorption in 

metallic grating structures. By using capacitor-inductor circuit models and rigorous 

coupled-wave analysis, good agreement on the resonant conditions was shown, through 

which the physical mechanism as magnetic resonance was verified. Another finding was 

to identify phonon-mediated magnetic polaritons (MPs) in microstructures made of polar 

materials, and to predict extraordinary radiative properties in the infrared region as their 

counterparts in metallic microstructures. Based on the excitation of MPs, an innovative 

coherent thermal emitter was designed and extended in particular for thermophotovoltaic 

(TPV) applications. The spectral selectivity and directional insensitivity associated with 

MPs offer unique emission spectra favored in TPV systems to improve the conversion 

efficiency. The unique characteristics of magnetic polaritons were, for the first time, 

experimentally demonstrated from fabricated microstructured surfaces at room 

temperature as well as elevated temperatures. Both experimental and theoretical studies 

suggest that the resonance wavelength can be tuned with strip widths for different 

applications, and the emittance peak changes little with temperature, indicating that high 

performance can be achieved without much degradation at elevated temperatures. 

The fundamental understanding and experimental results obtained from the 

dissertation will facilitate the design and applications of micro/nanostructures in energy 

systems to harvest solar energy as well as recover waster heat. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Tailoring the spectral and directional radiative properties has enormous 

applications in photonic and energy conversion systems, such as photodetectors, solar 

cells and solar absorbers, thermophotovoltaic (TPV) devices, and radiation filters and 

emitters [1,2]. The radiative properties of subwavelength periodic structures, such as one-

dimensional (1D) slit arrays [3], annular apertures [4], and subwavelength apertures [5], 

have been intensively studied after the observation of significant optical transmission 

enhancement through 2D hole arrays [6] and directional thermal emission from 1D Si 

gratings [7]. The extraordinary optical transmission in subwavelength could realize the 

plasmonic nanolithography beyond the diffraction limit with 2D hole arrays [8] or 

metallic slit arrays [9]. It is also known that, any object at a temperature above absolute 

zero will emit thermal radiation due to the random thermal motion of charges, such as 

electrons in metals or ions in polar materials. In most cases, bulk solids emit thermal 

radiation in a broad spectrum with quasi-isotropic angular behavior. In other words, 

thermal emission is usually incoherent. Spectral and directional control of thermal 

emission could enhance the conversion efficiency and power throughput in energy-

harvesting systems, especially TPV devices. The depleting reserves of conventional 

energy sources and increasing environmental impact such as the greenhouse effect have 

resulted in an urgent need for high-efficiency renewable energy sources [10]. TPV 

devices provide a viable solution since they can generate electricity directly from heat 

which could come from waste heat, the sun, or burning of fossil fuel. 
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1.2 Literature Study 

Micro/nanostructures may enable coherent emission based on several different 

physical mechanisms such as surface plasmon/phonon polaritons (SPPs/SPhPs), cavity 

resonance, Wood’s anomaly, wave interference and magnetic resonance. Hesketh et al. [7] 

measured selective thermal emission from doped Si gratings due to cavity resonances. 

Greffet et al. [11] showed that SiC gratings exhibit both temporal and spatial coherences 

due to excitation of SPhPs. Temporal or spatial coherence refers respectively to the 

spectral or directional selectivity in emittance. Dahan et al. [12] reported extraordinary 

coherent emission observed from SiC microstructures at 770 K, by coupling the 

resonance cavity modes with SPhPs. Layered structures such as photonic crystal on a Ag 

film have also been demonstrated to have coherent emission characteristics for both 

polarizations, arising from excitation of surface waves at the PC-Ag interface [13,14]. 

However, the coherent emittance peaks associated with SPPs or surface waves are 

usually very sharp and the amount of radiative energy is quite limited. Narayanaswamy 

and Chen [15] also theoretically demonstrated the excellent selective emission 

characteristics from 1D metallodielectric photonic crystals with alternating tungsten and 

alumina films at optical frequencies. In addition, cavity resonance and Wood’s anomaly 

were also suggested to result in transmission/absorption enhancement in subwavelength 

nanoslit arrays [16]. 

Electromagnetic metamaterials have become a hot research area in the recent 

decade. In order to obtain the metamaterials, or negative index materials, permittivity () 

and permeability () must be simultaneously negative at the same frequency region [17]. 

Since most naturally occurring materials do not respond to magnetic fields at optical 
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frequencies, artificial micro/nanostructures have to be designed to induce magnetic 

responses at optical frequencies [18-24]. Though metamaterials have potential 

applications such as optical cloaking [25] and high-resolution imaging beyond diffraction 

limit [26-28], the role of magnetic resonance in controlling radiative properties is little 

understood. 

Recently, several research groups have investigated the role of magnetic 

resonance on the extraordinary optical transmission through periodic structures. Ortuno et 

al. [29] pointed out that magnetic response and a negative effective permeability can be 

achieved in double-layer metallic hole arrays due to the internal SPPs. When the 

thickness of the dielectric separation layer is less than SPP attenuation length, SPPs at the 

two inner interfaces can couple with each other inside the dielectric layer, and exhibit 

different dispersion relation with the traditional SPPs at a single interface. Mary et al. [30] 

showed the resonant magnetic response behavior in double-layer fishnet structures. The 

electric field counter propagates with strong magnetic field confinement in the dielectric 

gap between two metal films, which was related to the excitation of so-called gap surface 

plasmon modes. Similar to the SPP which results from the coupling of surface plasmons 

or phonons with light, the concept of magnetic (plasmon) polaritons (MPs) was proposed 

by Li et al. [31] to indicate the coupling between the incident light and magnetic 

resonances inside subwavelength periodic structures. Subsequently, Li et al. [32] 

investigated the optical transmission through hole arrays perforated in trilayer structures 

and revealed the dispersion property of multiple MP modes. Note that magnetic response 

has been employed to realize optical negative-index metamaterials, which exhibit exotic 

properties and potential applications such as cloaking and superlens [33]. 
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Debate on the physical origin of enhanced transmission/absorption in 1D and 2D 

periodic grating structures has existed over a decade. The physical mechanism of 

enhanced transmission or emission has been intensively investigated as either due to 

SPPs [3,34] or due to a Fabry-Perot or cavity-like resonance [35-38]. The theory of 

coupled SPPs propagating along the slit walls cannot explain the grating height 

dependence [39]. The oversimplified Fabry-Perot-like model breaks down for very 

narrow slits [37,40].
 

Several groups have studied the enhanced optical transmission in double-layer 

nanoslit arrays. Chan et al. [41] experimentally demonstrated extraordinary optical 

transmission through double nanoslit layers in close proximity with different lateral 

displacement between the two layers. Cheng et al. [42] performed a numerical study of 

the electromagnetic field distributions to explore the underlying mechanism of the 

extraordinary optical transmission in double-layer gratings. Both studies concluded that 

the origin lies in the coupling of evanescent waves between two single grating layers. The 

Fabry-Perot-like guided mode was also suggested to be responsible for the strong field 

confinement in the gaps between strips in the same layer [42].  However, the effect of 

magnetic resonance was not addressed. It should be noted that double-layer grating 

structure is also a candidate of negative-index metamaterials [43]. Hence, understanding 

the role of magnetic polaritons in this structure is critical for its future applications. 

Wave interference effect has been discovered long time ago, and has facilitated 

the development and wide application of optics [44,45]. Interference effects in planar 

structures can also be utilized to achieve coherent emission, such as in a resonance cavity 

with highly reflective coatings [46-48]. The reflector can be made of a metallic layer, 
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doped Si, or Bragg mirrors. An asymmetric Fabry-Perot cavity resonator, evolved from 

the well-known optical etalon, has been indirectly shown to exhibit spectral and 

directional selectivity of emittance [13]. The Fabry-Perot structure has been widely used 

in spectroscopy, laser applications, and wavelength and frequency standards [45]. Back to 

1940s, similar structures have been theoretically studied as reflection and transmission 

filters [49]. Laroche et al. [50] also analyzed a system called the Salisbury screen to 

enhance the emission of silicon surfaces. However, experimental observation from such a 

structure is lacking to further address its potential applications. To practically realize 

high-temperature coherent emitters based on the Fabry-Perot structures, it is imperative to 

investigate how the emittance spectrum will change with temperature, especially at 

elevated temperatures, as well as other issues such as chemical stability and thermal 

stress. Recently, Zhang and Wang [51] reviewed some measurement results and 

modeling methods of spectral-directional radiative properties of micro/nanostructures, 

which can be controlled based on different physical mechanisms. 

The determination of the emissivity of layered structures is critical in many 

applications, such as radiation thermometry, microelectronics, radiative cooling, and 

energy harvesting [2,52]. Two different approaches, “direct” and “indirect” methods, are 

commonly used for computing the emissivity of an object. Several studies have directly 

computed the thermal emission of layered structures by solving Maxwell’s equations 

with the help of the fluctuation-dissipation theorem and dyadic Green’s functions [15,53-

55]. Based on the direct method Narayanaswamy and Chen [15] analyzed thermal 

emission from one-dimensional (1D) metallodielectric photonic crystals, and excellent 

selective emission characteristics were seen in the optical frequencies. Luo et al. [56] 
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performed a numerical simulation to directly calculate the normal emissivity of 2D 

photonic crystals at a uniform temperature with the fluctuation-dissipation theorem, and 

Kirchhoff’s law was validated by the equivalence between the normal emissivity from the 

direct method and the normal absorptivity from the indirect method. Besides the far-field 

thermal emission, the direct method has been also extensively used to investigate the 

near-field radiative heat transfer [57-59] and to trace energy streamlines [60,61]. 

Although mathematically intensive, the direct method demonstrates the statistical nature 

of thermal emission and, in principle, can predict thermal emission from a layered 

structure with a temperature gradient between two semi-infinite media.  

On the other hand, emissivity can also be indirectly obtained from Kirchhoff’s 

law, by calculating the absorptivity of a structure under a uniform temperature from the 

spectral directional-hemispherical reflectance R and transmittance T according to energy 

conservation [1]. If the structure is opaque, the emissivity    is simply 1R. The indirect 

method has been widely used in predicting the emissivity, especially for inhomogeneous 

structures such as surface relief gratings. Lee et al. [62] proposed a coherent thermal 

emission source by exciting magnetic resonance and the emissivity was indirectly 

calculated based on rigorous coupled-wave algorithm. Wang et al. [63] experimentally 

investigated the spatial and temporal coherence of thermal emission from an asymmetric 

Fabry-Perot resonance cavity by measuring the spectral directional-hemispherical 

reflectance, and the results agree well with theoretical predictions. However, the indirect 

method used in these studies was under the assumption that all layers are at the same 

temperature. It has been pointed out by some researchers [53,64] that the indirect method 

would be problematic in dealing with temperature nonuniformity inside the structure. 
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When layered structures suffer from temperature non-uniformity, the validity of 

Kirchhoff’s law and the indirect method is under question. For a body in a 

nonequilibrium environment, the validity of Kirchhoff’s law of thermal radiation has 

been discussed by Baltes [65]. 

 

1.3 Objectives 

This dissertation is devoted to theoretically and experimentally investigate the 

roles of wave interference and magnetic resonance in tailoring the radiative properties of 

micro/nanostructures for energy applications. Two different structures are analyzed, 

designed, fabricated and characterized, and comparisons are made on their radiative 

properties between model predictions and experimental data. The first structure is a 

multilayered thin-film structure, called an asymmetric Fabry-Perot resonant cavity, 

sandwiched by a thick Au film and an ultra-thin Au film of few nanometers, in which 

wave interference effect can occur. The other one is a periodic grating structure deposited 

on layered thin films, in which magnetic resonance can be excited under particular 

conditions. These structures hold great promises for energy-harvesting applications. The 

objectives of this thesis are: (1) design and analysis of micro/nanostructures based on 

wave interference and magnetic resonance effects to achieve tunable coherent thermal 

emission or enhanced optical transmission; (2) microfabrication of the designed 

structures including multilayered thin films and patterned structures; and (3) development 

of a high-temperature emissometer to experimentally demonstrate coherent thermal 

emission from fabricated samples using spectrometric techniques at temperatures from 

300 to 800 K.  
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This dissertation is organized as follows. Chapter 2 presents the theoretical 

background for calculating the radiative properties of layered structures and periodic 

grating structures which the work in sequent chapters is based on, as well as reviews the 

concepts of magnetic polaritons and surface plasmon/phonon polaritons. Chapter 3 

discusses the experimental methods for measuring the radiative properties of 

microstructures at both room and elevated temperatures with an emphasis on the 

development of high-temperature emissometry facility. Chapter 4 focuses on the 

experimental demonstration of coherent thermal emission from fabricated asymmetric 

Fabry-Perot cavity resonator samples at both room- and high-temperatures along with the 

discussion based on theoretical calculations. In addition, the validity of Kirchhoff’s law 

in layered structures with nonuniform temperature distributions is verified through 

unifying the direct and indirect methods on calculating the thermal emission from such 

structures. Chapter 5 clarifies the role of magnetic resonance in resonant 

transmission/absorption in simple metallic gratings, double-layer nanoslit arrays and 

gratings made of polar materials by the theoretical study using the rigorous coupled-wave 

analysis and LC circuit models. Moreover, coherent thermal emitters by excitation of 

magnetic polaritons are proposed with unique characteristics suitable for TPV 

applications. In Chapter 6, fabricated coherent emitters are experimentally demonstrated 

to possess those unique characteristics based on room- and high-temperature 

measurements to further ensure their promising practical applications with excellent 

performance under high temperature environment. Chapter 7 summarizes the major 

findings and conclusions of this dissertation work as well as recommends some research 

topics for future studies. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 

This Chapter provides the formulation, methods, and concepts necessary for the 

analysis of radiative properties of micro/nanostructures in this dissertation. To start with, 

the formulae to calculate the reflectance and transmittance of asymmetric Fabry-Perot 

resonant cavities are presented in Section 2.1. Section 2.2 reviews the direct method 

based on fluctuational electrodynamics and the indirect method based on matrix 

formulation for calculating the thermal emission from layered structures. Section 2.3 

briefly discusses the rigorous coupled-wave algorithm (RCWA) for calculating the 

radiative properties of 1D periodic grating structures. Section 2.4 explains the concept of 

magnetic polaritons and the inductor-capacitor (LC) model to predict magnetic resonance 

conditions, and finally the dispersion of surface plasmon/phonon polaritons in periodic 

structures is visited in Section 2.5. 

 

2.1 Radiative Properties of Asymmetric Fabry-Perot Resonant Cavities 

Wave interference effect has been extensively applied in optical devices. One 

excellent example is the Fabry-Perot interferometer, also known as an optical cavity or 

etalon, which has been widely used in spectroscopy, laser applications, and wavelength 

and frequency standard [45]. An asymmetric Fabry-Perot resonant cavity with a thick Ag 

substrate has been theoretically shown as a promising coherent emission source with both 

spatial and temporal coherency characteristics [13]. The proposed Fabry-Perot resonance 

cavity is schematically shown in Fig. 2.1. It is different from the conventional Fabry-

Perot resonator made of two parallel reflectors separated at a finite distance, because the 
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bottom metal layer can be treated as semi-infinite and is opaque to incident radiation. In 

other words, the geometry of proposed structure is asymmetric with respect to the 

dielectric cavity. In general, high reflection from the boundaries of the resonance cavity 

is essential for the sharp spectral peak at the resonance condition [45]. In the present 

study, SiO2 is employed to form the optical cavity and Au is chosen as the reflective 

coating on both sides of the cavity. 
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Figure 2.1 Schematic of the asymmetric Fabry-Perot resonance cavity, with illustration of 

the reflection and transmission coefficients at the boundaries. 

 

Figure 2.1 also illustrates the reflection and transmission coefficients at the 

boundaries of the Fabry-Perot resonator. It should be noted that a a and t r  are respectively 

the transmission and reflection coefficients from air to SiO2, and b b and t r  are 

respectively the transmission and reflection coefficients from SiO2 to air, assuming that 

SiO2 is semi-infinite. These coefficients depend on the complex refractive index and the 

thickness of Au, according to Airy’s formulae. Furthermore, s s and t r  are the Fresnel 
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transmission and reflection coefficients at the interface between SiO2 and Au. All the 

transmission and reflection coefficients are polarization dependent and the expressions 

can be found from [1] for either TE wave or TM wave. According to Airy’s formulae, the 

reflection and transmission coefficients of the Fabry-Perot resonator can be expressed 

after superposition as follows [1,44] 
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where c c c2 cos /n d     is the phase shift upon traveling inside the cavity with the 

refractive index nc and the thickness dc. As shown in Fig. 2.1, c  is the refraction angle in 

the dielectric cavity. The spectral-directional reflectance and transmittance of the Fabry-

Perot cavity can be calculated from the reflection and transmission coefficients as 

 *R rr  (2.3) 
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where Re( ) indicates the real part of a complex quantity, the asterisk denotes the 

complex conjugate, and ni and ns are the complex refractive indices of air and Au, 

respectively. The square of the reflection and transmission coefficients can be simplified 

using Eqs. (2.1) and (2.2) as follows: 
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and 
 

a s
2 2

b s b s 21 4 sin
tt

 

    

 
 

 (2.6) 

where jr   and  *
j jt t   with j representing a, b, or s as the corresponding subscript, 

a b a b  ,t t r r    1 a s(2 ) / 2         and 2 b s(2 ) / 2      , with j jarg( )r   

and a b a barg( )t t r r    .  In the proposed structure, the thickness of bottom Au layer is 

set to be much greater than the radiation penetration depth (i.e., photon mean free path); 

thus the bottom Au layer can be assumed semi-infinite. Note that T represents the fraction 

of energy transmitted into the Au layer and will eventually be absorbed. Since the bottom 

Au layer is opaque, the spectral emissivity of the Fabry-Perot cavity can be obtained as 

1 R     according to Kirchhoff’s law [1], where R is calculated from Eq. (2.5). 

However, the thickness of the top Au film should be on the order of the radiation 

penetration depth to enable resonance inside the cavity. 

 

2.2 Methods to Calculate Thermal Emission from Layered Structures 

Fluctuational electrodynamics, developed by Rytov [66] in 1950s, originates from 

the stochastic nature of thermal emission, and has been used to directly investigate 

emission, propagation and absorption of thermal radiation in both near- and far-field 

regimes. The basic concept is that, at temperatures above absolute zero, the random 

motion of charges, such as electrons in metals or ions in polar materials, generates a 

spatial- and time-dependent fluctuating current ( , )tj x  that results in an electromagnetic 

field. The fluctuating current can be decomposed into the frequency domain ( , )j x  using 

the Fourier transform. The electromagnetic field at any location is a superposition of 
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contributions from all point sources in the radiating region. Thus, the induced electric and 

magnetic fields due to the fluctuating current density can be expressed as volume 

integrations with the assistance of dyadic Green’s function 

 3
0( , ) ( , , ) ( , )

V

i d   


   E x G x x j x x      (2.7) 

 3( , ) ( , , ) ( , ) '
V
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

   H x G x x j x x         (2.8) 

where   is the angular frequency, 0  is the permeability of vacuum, V   is the volume 

that contains the fluctuating sources, ( , , )G x x  is the dyadic Green’s function for the 

electric field, and x  is the space variable. The dyadic Green’s function is a spatial 

transfer function between a current source j  at location x  and the resultant electric field 

at x . The spectral radiative energy flux can be expressed by the time-averaged Poynting 

vector as [1] 

 *1
( , ) Re[ ( , ) ( , )]

2
   S x E x H x    (2.9) 

where   is ensemble average and * denotes complex conjugate. To obtain the spectral 

energy flux, it is important to know the ensemble average of the spatial correlation of 

fluctuating currents, which is given by the fluctuation-dissipation theorem. Thermal 

emission into the vacuum from a layered structure with a known temperature distribution 

can thus be calculated. As shown in Fig. 2.2(a), each layer is assumed to be at a 

temperature jT  with a frequency-dependent dielectric function j  and a thickness jd . 

Detailed discussion about the direct approach can be found in several references 

[15,53,57,59,67]. The emphasis of the present study is on how to deduce the spectral 

directional emissivity, through which the direct and indirect methods can be related. 
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By substituting the electric and magnetic fields given in Eqs. (2.7) and (2.8) into 

Eq. (2.9), the time-averaged Poynting vector can be expressed in terms of Green’s 

functions after replacing the time-averaged fluctuational currents ( , ) ( , )m nj j  x x  

with the fluctuation-dissipation theorem. Following Ref. [59], the spectral energy heat 

flux from any arbitrary emitting layer j to vacuum, which is basically the time-averaged 

Poynting vector, has a form of 

    
/

, 02

1
, ,

c
j j jq T Z d


      


             (2.10) 

Here,   is the parallel component of wavevector and is the same for all layers due to the 

phase-matching condition; ( , )jZ    is called the exchange function [59], which must be 

evaluated by the dyadic Green’s functions for multilayered structures [15,53,58,68] rather 

than the Green function for two parallel semi-infinite media [59,69]; and ( , )jT   is the 

mean energy of a Planck oscillator at frequency   at thermal equilibrium temperature jT  

and is given by [59] 
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exp( / ) 1

j
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k T
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 





             (2.11) 

where 2  is the Planck constant and Bk  is the Boltzmann constant. Only thermal 

emission in the far field is considered, therefore the upper limit of integration in Eq. (2.10) 

is set to / c  to include propagating waves only and c is the speed of light in vacuum. 
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Figure 2.2 Schematic representation of a multilayered structure for the study of thermal 

emission based on (a) the direct method and (b) the indirect method. 

 

Though the direct method provides a valuable way to investigate thermal 

emission from layered structures, numerical solutions can be computationally intensive. 

Alternatively, the indirect method only involves the calculation of reflectance and 

transmittance of a considered structure and this can be much easier to use and faster to 

compute for complicated structures. This is particularly true for a structure with a 

uniform temperature. In order to establish the equivalence between the indirect and direct 
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methods for nonuniform-temperature structures, detailed derivation of how to calculate 

the spectral directional absorptivity of an individual layer is given as follows based on the 

matrix formulation [1]. 

Consider a linearly polarized electromagnetic wave incident at a polar angle 

 from vacuum to the multilayered structure shown in Fig. 2.2(b). Each layer is assumed 

to be isotropic and homogeneous as in the direct method. Furthermore, the complex 

permeabilities j  are included in the following, so that the formulation for TE waves can 

be easily extended to TM waves later. For a TE wave at an angular frequency  , the 

electric field in the jth layer can be written as 
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i x t
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Note that jA  and jB  are the amplitudes of the forward and backward waves at the 

interfaces; jd  is the jth layer thickness;  1 2,3,..., 1j j jz z d j N    ; and j  is the z-

component of the wavevector which can be solved from 2 2 2 2/j j j c      . The 

magnetic field can be obtained from the Maxwell equation, 
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After obtaining the electric and magnetic fields, the Poynting vector can be calculated. 

The z-component Poynting vectors in each layer can be expressed as 
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. After applying the boundary conditions, the field 

amplitudes of adjacent layers are related by 
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Here, jP  is called the propagation matrix and is given by 
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jD  is the dynamical matrix and is given (for TE waves) by 
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From Eq. (2.15), it can be shown that 
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The transmission and reflection coefficients can be expressed as 
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Thus, the spectral directional-hemispherical reflectance and transmittance can be 

obtained as 

 

2
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(2.20a) 
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For TM waves, Eqs. (2.14) through (2.20) are still applicable by interchanging  to . 

According to Kirchhoff’s law, the emittance of the layered structure at a uniform 

temperature is 

 1 R T            (2.21) 

 

2.3 Rigorous Coupled-Wave Analysis 

 The rigorous coupled-wave analysis (RCWA) is a numerical modeling algorithm 

for calculating diffraction efficiencies of periodic gratings by solving Maxwell’s 

equations for different polarization, angle of incidence and wavelength. The dielectric 

function of the inhomogeneous grating region is expanded with Fourier series, and the 

number of Fourier terms is coupled with the total number of the considered diffraction 

order. A brief algorithm on the RCWA for the conical diffraction on 1D grating is given 

below, and details can be found in Refs. [16,70]. 

 Figure 2.3 shows a plane wave with wavevector k incident on a binary grating, 

where the space is divided into three regions: Region I (vacuum), Region II (grating), and 

Region III (substrate). Since the grating region is composed of media A and B, its 

dielectric function, composed of A and B, is a periodic function of x. The geometry of 
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Figure 2.3 Schematic of a 1D grating with a period , width w, and height h for arbitrary 

plane wave incidence [16]. 

 

gratings is defined by the period (), thickness or height (h), and the width (w). The 

filling ratio of medium A is given by f = w/. The direction of incident wave is expressed 

by the azimuthal angle () and the zenith angle (). The plane of incidence is defined by 

the direction of incidence and the z axis, except at normal incidence when the y-z plane is 

taken as the plane of incidence. For linearly polarized incident wave, the polarization 

status is determined by , the angle between the electric field vector and the plane of 

incidence. In Region I, after omitting the time harmonic term exp(it), the incident 

electric-field vector E is given by 

  i exp x y zik x ik y ik z  E E  (2.22) 

where Ei is the incident electric field vector at the origin, and the components of the 

incident  wavevector  are  given  by sin cosxk k   , sin sinyk k   , and coszk k  , 
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with 2 /k   . The incident electric field can be normalized so that 
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According to the Bloch-Floquet condition [44], the wavevector components of the 

jth diffraction order in Region I are given by 
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As required by the phase-matching condition, the parallel components of wavevector xjk  

and yk  must be the same for the diffracted waves in all three regions. In Eq. (2.24c), 

superscript r refers to the reflected diffraction. We may denote the reflected wavevectors 

by ( , , )r
rj xj y zjk k kk  and the transmitted wavevectors by ( , , )t

tj xj y zjk k kk . For 

transmitted diffraction, r
zjk  can be replaced by t

zjk  after substituting III IIIk k   for k in 

Eq. (2.24c). From Eq. (2.24b), the y component of the wavevector is the same for all 

diffraction orders. Hence, the wavevectors for all diffracted waves end on the semi-

circles, which are intersects of the plane of constant yk  and the hemispherical surfaces 

with a radius Ik  and IIIk  in each half plane. Taking 0z   or Region I for example, the 

reflected wavevectors form a half-conical surface. Furthermore, the x components of the 

wavevectors vary by multiples of 2 /   according to Eq. (2.24a). For higher diffraction 
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orders, the z component of the wavevector becomes purely imaginary, such that the 

diffracted waves are evanescent. If = 0º or 180º, all the reflected and transmitted 

diffraction rays lie in the same plane as the plane of incidence. The electric field in region 

I can be expressed as the sum of the incidence and all reflected waves (including 

evanescent waves) and that in region III can be expressed as a sum of all transmitted 

waves (including evanescent waves). 

The magnetic fields in Regions I and III can be obtained from Maxwell’s equation, 

1
0( )i  H E . In Region II, the electric and magnetic fields can be expressed as a 

Fourier series. Due to the periodicity, the dielectric function in Region II can also be 

expressed in a Fourier expansion 
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It is essential to express the inverse of the dielectric function in Region II as a separate 

Fourier expansion, i.e., 

 
inv inv1 2

( ) exp
( )

p
p

p
x i x

x


 



 
   

 
  (2.25b) 

where ord
p  and inv

p  are the pth Fourier coefficient for the ordinary and inverse of ( )x  

as defined in Eqs. (2.25a) and (2.25b), respectively; and in general, inv ord1p p  . In the 

numerical calculation, an upper limit of p can be set such that 0, 1, 2,... 2p q    , 

which means that there are a total of 4 1q   terms in the Fourier series.  

Sufficient diffraction orders must be employed in the RCWA calculation. A total 

of 101 Fourier components are demonstrated to be sufficient and thus are used to 

represent the dielectric function in the grating region for the calculations in Chapters 5 
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and 6 [16]. The spectral-directional reflectance R of the grating can be obtained as the 

sum of the diffraction efficiencies for all reflected diffraction orders, while the 

transmittance T is the sum of the diffraction efficiencies for all transmitted diffraction 

orders. The absorptance is thus 1 R T    . Other methods, such as the finite-

difference time domain, have also been used to compute the radiative properties of 

micro/nanostructures [71]. In this dissertation, RCWA is used to calculate the radiative 

properties of grating structures. 

 

2.4 Magnetic Polaritons and Inductor-Capacitor Model 

 Magnetic polaritons, referring to the coupling of the magnetic resonance inside a 

micro/nanostructure with the external electromagnetic waves, have been brought into 

attention recently due to the fast advancement in the metamaterial research area. It is 

known that, when a time-varying magnetic field is introduced parallel to the axis of a 

spiral metallic coil, an oscillating current will be produced in the structure and an induced 

magnetic field is created according to Lenz’s law.  

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

 

Figure 2.4 Structures that serve as “magnetic atoms”: (a) split-ring resonators [18]; (b) 

single split-ring resonators [19]; (c) U-shape resonators [20]; (d) short-wire, short-rod, or 

short-strip pairs [21-23]; (e) fishnet structures [24].   

 

 Based on this diamagnetic response, Pendry et al. [18] proposed a split-ring 

resonator, the first structure to possess negative  in the microwave region as shown in 
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Fig. 2.4(a) Single-split-ring [19] and U-shape [20] unit cells as shown in Figs. 2.4(b) and 

2.4(c) were later introduced to scale the magnetic resonance to the near infrared. 

Researchers also showed that, such a diamagnetic response can be achieved in a short-

strip (or short-rod, short-wire) pair, as shown in Fig. 2.4(d), with anti-parallel currents 

induced in the strips. Podolskiy et al. [21] showed that from paired-wire composites both 

negative  and  can exist in the near-infrared and visible frequencies, resulting in 

negative refractive indices. With the rapid development in nanofabrication techniques, 

negative refractive index was also experimentally observed from a double-layer periodic 

gold nanorod array [22] and a paired-copper-wire structure [23], respectively. Fishnet 

structures [24] consisting of perforated metal films separated by a dielectric spacer as 

shown in Fig. 2.4(e), were also shown to exhibit negative refractive indices, and negative 

refraction in the near infrared was experimentally demonstrated with a similar structure 

composed of 21 alternating Ag and MgF2 layers [72]. 

 To excite the magnetic resonance or to achieve negative refractive indices at 

desired frequencies, the accurate prediction on the resonant conditions is very important. 

Equivalent optical circuitry theory has been widely used recently to predict the electric 

and magnetic resonant conditions in facilitating the design and analysis of metamaterials 

[73]. The inductor-capacitor (LC) model is usually employed where the resistance 

elements are usually neglected. The kinetic inductance accounting for the contributions 

from the drifting charge carriers cannot be neglected for micro/nanostructures since their 

critical dimension is comparable with or even smaller than the wavelength of interest [74].  

 Figure 2.5(a) schematically illustrates the charge distribution between two 

conducting metal strip separated with a vacuum gap of b when the fundamental mode of 
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Figure 2.5 (a) Schematic of the charge distribution when the fundamental mode of 

magnetic resonance is excited between two conducting metal strips; (b) the equivalent LC 

model at magnetic resonance, where red arrows indicate the induced currents. 

 

magnetic resonance is excited. The strips have a height h, width w, and length l in the 

direction perpendicular to the paper. Note that the magnetic resonance can only be 

excited when there is an oscillating magnetic field perpendicular to the paper according 

to Lenz’s law. The magnetic resonance will induce electric currents flowing at the 

opposite surfaces of the metal strips with opposite directions. Due to the induced currents, 

charges will not distribute uniformly but with a gradient at the surface, and negative and 

positive charges will accumulated at two ends, indicated by “” and “+” markers in the 
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figure, respectively. The equivalent LC circuit model is shown in Fig. 2.5(b). The 

capacitance between two strips can be expressed as that between two parallel plates by 

 m,1 1 d 0 /C c hl b   (2.26) 

where d  is the relative permittivity of the filling dielectric ( d 1   for vacuum in this 

case), 0  is the free-space permittivity, and 1c  is a numerical factor accounting for the 

nonuniform charge distribution at the metal surfaces. Typically, 10.2 0.3c   and in the 

calculation 1c  is set to be 0.22 following Ref. [75]. m,1L  represents the inductance of two 

parallel strips and can be expressed as  

 m,1 00.5 /L hb l  (2.27) 

 where 0  is the vacuum permeability and l  is the strip length in the y direction. The 

contribution of the drifting electrons towards the inductance is given by  

 2
e,1 0 p/( )L h S    (2.28) 

where p  is the plasma frequency (e.g., 161.364 10  rad/s  for Ag) [74]. If the width w is 

larger than the power penetration depth / 4    where   is the extinction coefficient 

of the metal, the effective cross-sectional area of the metal strip is approximated as 

S l   by assuming that all induced electric current flows at the depths within  near the 

metal surface; otherwise, S wl  . The total impedance of the LC circuit is given by 

 
1

tot,1 m,1 e,1 m,12 ( ) ( )Z i L L C     
 

 (2.29) 

By setting tot,1 0Z  , the magnetic resonance frequency for the fundamental mode is 
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     (2.30) 
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which is independent of l . Furthermore, if w  , the resonance frequencies for higher 

orders can be approximated by doubling or tripling the fundamental resonance frequency.  

 The study of metamaterials nowadays mainly focuses on the invisible cloaking 

[25] and subwavelength imaging beyond diffraction limit by using superlenses [26] and 

hyperlenses [28], and little has been addressed on the optical properties and the 

application of energy conversion and harvesting. Magnetic polaritons have been 

employed to achieve extraordinary optical transmission through a diatomic chain of slit-

hole resonators [76], and their effect on the optical transmission through hole arrays 

perforated in trilayer structures was investigated [31,32,77]. However, whether or not 

magnetic polaritons exist in 1D periodic grating structure and how the radiative 

properties would be affected is still not known. 

 

2.5 Surface Plasmon/Phonon Polaritons 

Plasmons are quasiparticles associated with oscillations of plasma, which is a 

collection of charged particles such as electrons in a metal or semiconductor [78]. 

Plasmons are longitudinal excitations that can occur either in the bulk or at the interface. 

The field associated with a plasmon is confined near the surface, while the amplitude 

decays away from the interface. Such a wave propagates along the surface, and it is 

called a surface electromagnetic wave. Surface plasmons can be excited by 

electromagnetic waves and are important for the study of optical properties of metallic 

materials, especially near the plasma frequency, which usually lies in the ultraviolet. The 

excitation of SPPs has been intensively studied and is responsible for the extraordinary 

optical transmission through 2D hole arrays [6] and the thermal emission peaks observed 
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from the 1D Si gratings [7]. SPPs also play important roles in near-field microscopy [79], 

plasmonic nanolithography [8], and biosensing applications [80].  

The requirement of evanescent waves on both sides of the interface prohibits the 

coupling of propagating waves in air to the surface plasmons. Prisms and gratings are 

commonly used to couple propagating waves in air with surface plasmons. In addition to 

the requirement of evanescent waves on both sides of the interface, the polariton 

dispersion relations given below must be satisfied [81]:  

 1 2

1 2

0z zk k

 
      for TM waves (2.31a) 

 1 2

1 2

0z zk k

 
      for TE waves (2.31b) 

This means that the sign of permittivity must be opposite for media 1 and 2 in 

order to couple a surface polariton with a TM wave. A negative Re() exists in the visible 

and near infrared for metals like Al, Ag, W, and Au. When Eq. (2.31a) is satisfied, the 

excitation of surface plasmon polariton (SPP) interacts with the incoming radiation and 

causes a strong absorption. Lattice vibration in some dielectric materials like SiC and 

SiO2 can result in a negative Re() in the middle infrared. The associated surface 

electromagnetic wave is called a surface phonon polariton (SPhP). On the other hand, a 

magnetic material with negative permeability is necessary for a TE wave to be able to 

couple with a surface polariton. Some metamaterials can exhibit negative permeability in 

the optical frequencies and negative index materials exhibit simultaneously negative 

permittivity and permeability in the same frequency region. Therefore, both TE and TM 

waves may excite SPPs with negative index materials [81] or with bilayer materials of 

alternating negative  and , the so-called single negative materials [82]. 
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The condition for the excitation of surface polaritons is that the denominator of 

Fresnel’s reflection coefficient be zero. A pole in the reflection coefficient is an 

indication of a resonance. One can solve Eq. (2.31a) for a TM wave to obtain [1] 

 1 1 2 2
2 2
1 2

/ /

1/ 1/
xk

c

   

 





 (2.32) 

This equation is called the polariton dispersion relation, which relates the frequency with 

the parallel component of the wavevector. For nonmagnetic materials, it becomes 

 1 2

1 2

xk
c

 

 



 (2.33) 

One should bear in mind that the permittivities are in general functions of the 

frequency. For a metal with a negative real permittivity, the normal component of the 

wavevector is purely imaginary for any real kx, because 2 2/ 0c  . Thus, evanescent 

waves exist in metals regardless of the angle of incidence. Figure 2.6(a) shows the 

dispersion curve (the unfolded one) to excite the SPP at a Ag/vacuum interface. Note that 

the optical constant of Ag is taken from the data in Ref. [83] at room temperature. 

When the plane of incidence is perpendicular to grooves, only TM waves can 

excite SPPs in metallic gratings. Figure 2.6(b) is a schematic of a free-standing 1D binary 

grating structure in vacuum, with a period , strip width w, slit width b, and grating 

height h. Due to the periodicity, the Bloch-Floquet condition [1] gives the parallel 

component of wavevectors of the jth diffraction order as , 2 /x j xk k j   , where kx = 

(/c)sin is the parallel component of the wavevector in vacuum and  is the angle of 

incidence. Based on the Bloch-Floquet condition, the dispersion relation of SPPs can be 

folded at kx = j into the region kx ≤  as the dash curve shown in Fig. 2.6(a) for a  
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Figure 2.6 (a) Dispersion curves for the excitation of SPPs at an Ag/vacuum interface 

(the folded curve for grating period  = 0.5 um); (b) Schematic of a free-standing binary 

Ag grating structure with a period , grating height h, strip width w, and slit width b.  

 

Ag grating with  = 0.5 m. The excitation condition for SPPs can be determined by the 

intersection location of the dispersion curve with a specific angle of incidence. Therefore, 

the excitation condition for SPPs in grating structures is strongly dependent on the 

grating period and direction.  
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CHAPTER 3 

INSTRUMENTATION FOR ROOM- AND HIGH-TEMPERATURE 

MEASUREMENTS OF RADIATIVE PROPERTIES 

 

This Chapter describes the instrumentation and experimental methods used in 

following chapters for characterizing the radiative properties of fabricated 

micro/nanostructure samples at both room and elevated temperatures, such as asymmetric 

Fabry-Perot resonant cavities and subwavelength grating structures as coherent thermal 

emitters. Section 3.1 presents how the spectral specular reflectance is measured with a 

Fourier-transform infrared (FT-IR) spectrometer at specific angles by using different 

reflectance accessories. Section 3.2 briefly introduces a laser scatterometer which 

measures the reflectance with various angles of incidence at a single wavelength. A high-

temperature emissometry facility is developed as one of the main tasks and contributions 

of this dissertation. The experimental setup and procedures are discussed in detail in 

Section 3.3 along with some theoretical analysis. Finally, Section 3.4 presents the 

emittance of a SiC sample at 800 K measured with the emissometer, based on which the 

accuracy of the direct emittance measurement facility is demonstrated.   

  

3.1 Spectral Reflectance Measurements  

 An FT-IR spectrometer (ABB Bomen FTLA2000), as shown in Fig. 3.1(a), was 

used to measure the spectral reflectance of the samples at near normal incidence (10°), as 

well as incidence angles of 30° and 45° using suitable specular reflectance accessories. 

Figure 3.1(b) shows the near normal incidence reflectance accessory. At 10° incidence, 

the difference between TE and TM waves is negligibly small and the beam from the FT-
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IR source is assumed to be unpolarized (i.e., average of the two polarizations). A wire-

grid IR polarizer was used to measure the reflectance for TE and TM waves at different 

angles of incidence, as shown in Fig. 3.1(c) along with the 30° reflectance accessory. The 

polarizer was intentionally tilted during the measurements to eliminate multiple 

reflections [84].  

(a)

(b) (c)

Polarizer

(a)

(b) (c)

Polarizer

 

Figure 3.1 Pictures of (a) the FT-IR spectrometer, (b) 10° and (c) 30° specular reflectance 

accessory. Note that a polarizer can be mounted on the accessory to select different 

incident wave polarizations. 
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 An internal near-IR source (a quartz-halogen lamp with a tungsten filament) and 

an infrared source (SiC Globar) were used with a deuterated triglycine sulfate (DTGS) 

pyroelectric detector, which has an excellent linearity from 500 cm
1

 up to 13000 cm
1

 in 

wavenumber. Before the measurement, the sources were turned on for more than one 

hour to reach thermal stability. The optical path of the spectrometer, including the 

reflectance accessory, was purged with N2 gas to reduce water vapor and CO2 absorption. 

A mirror made of a 200-nm-thick Au film deposited on a Si substrate was used as the 

reference. To ensure the radiometric accuracy of FT-IR spectrometers, several procedures 

were conducted such as taking 100% line and background signal measurement. The 

stability of the IR signal from 2 to 19 m with the mirror was within ±0.5%, and the 

background signal (with an open aperture of 9-mm diameter when removing the mirror) 

was less than 0.5% of the reference signal with the mirror. During the experiment, the 

sample and Au mirror were interchanged to measure the relative reflectance of the 

sample with respect to that of the Au mirror. Each spectrum was the average of 32 scans 

with a resolution of 4 cm
1

. The reflectance of the sample was obtained by averaging five 

repeated measurements and then corrected by multiplying the Au mirror reflectance of 

0.985, calculated from the optical constants of Au in Ref. [83]. The overall uncertainty in 

reflectance was estimated to be 0.02, considering various possible sources of error, such 

as beam divergence, misalignment, background signal, and repeatability. 

 

3.2 Angle-Resolved Reflectance Measurements 

To experimentally study the directional radiative properties of the constructed 

Fabry-Perot resonance cavities, a laser scatterometer [85,86] was used to measure the 
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specular reflectance at different incidence angles for each polarization. The scatterometer 

is also called three-axis automated scatterometer (TAAS) since it has three movable 

stages to change the incidence and observation directions, which can be automatically 

controlled by a computer under the LabVIEW environment.  
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Figure 3.2 Schematic of the laser scatterometer system. 

 

The experimental setup is illustrated in Figure 3.2. A thermoelectric-cooled diode 

laser system was employed using a laser diode at the wavelength of 891 nm with a full-

width-at-half-maximum (FWHM) bandwidth of 3 nm. A lock-in amplifier connected 

with a diode laser controller modulates the output power at 400 Hz. The output laser 

power is approximately 1 mW with a stability of a few tenths of a percent. The laser 

beam passed through a small iris and was collimated through a pair of lenses before 

going through a near-IR polarizer. A beamsplitter divided the ray into two beams: a 

transmitted beam that was in the same direction as the incidence and a reflected beam 

that was in the horizontal plane but perpendicular to the incidence. The transmitted beam 
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was incident on the sample and the signal reflected by the sample was received by a 

movable Si detector. The reflected beam from the beamsplitter was sent to a stationary 

reference Si detector. The majority of the laser power is transmitted with a transmittance 

of about 85% for the TE wave and 95% for the TM wave. The synchronous voltage 

signals from the two detectors were collected by the lock-in amplifier through a trans-

impedance preamplifier. The effect of background radiation (i.e., stray light) can be 

eliminated by only picking up the phase-locked signals at 400 Hz. The specular 

reflectance of the Fabry-Perot sample was measured at the incidence angles from 2° to 

75° with 1° increment, except that in the range between 32° and 50°, where the increment 

was set at 0.2° in order to resolve the reflectance valley (emissivity peak). The 

uncertainty of the angle-resolved reflectance measurement was estimated to be 0.02 by 

calibration using a bare Si sample and by evaluation of the standard deviation of repeated 

measurements. 

 

3.3 High-Temperature Emissometry Facility 

FT-IR spectrometers have been frequently used for direct emittance 

measurements [87-93] and sometimes also for radiometric temperature measurements 

[89,92,93]. The optical layout of the high-temperature emissometry facility is presented 

in Fig. 3.3(a), and the main components include a heater assembly, blackbody source, 

optical components, and FT-IR, which was used to collect the emission spectra from 

either the sample or the blackbody [94]. Figure 3.3(b) shows the configuration of the heat 

assembly. The sample was compressed on a copper disk, which was nickel-plated to 

prevent oxidation. The nickel-plated copper disk maintained a uniform temperature 
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Figure 3.3 (a) Optical layout of the high-temperature emissometer, consisting of a 

blackbody, a heater assembly mounted on a rotary stage, an FT-IR spectrometer, and 

optical components; (b) Schematic of the heater assembly. 
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underneath the sample. Note that the wafers used in the present study were double-side 

polished with high smoothness. The copper surface was also polished before nickel 

plating to reduce thermal contact resistance (TCR). A coil heater was located at the back 

of the copper disk with an alumina plate inserted in between for electrical insulation. A 

K-type thermocouple probe (Omega KMTXL) with oxidation-resistive sheathing up to 

1150°C was embedded inside the copper disk for sample temperature measurement. A 

PID temperature controller maintained the sample temperature within ±1 K of the set 

point. The heater assembly was placed in refractory materials and mounted in a metal box. 

The sample temperature can reach 1000 K with a power input around 140 W, about 15% 

of which leaves the sample surface by convection and radiation. The front cover of the 

heater assembly was water-cooled with an aperture of 25-mm diameter to expose the 

sample. The heater assembly was mounted on a rotary stage to change the emission angle. 

The rotary stage was computer controlled with LabVIEW for rotation on both sides with 

a step resolution of 0.01º.  

A blackbody (MIKRON M360), with an accuracy of ±1 K and a stability of ±0.5 

K, was used as the reference source. A flip mirror with 90º rotation was used to 

interchange the emission source between the sample and the blackbody. The optical setup 

used an ellipsoidal reflector and an off-axis paraboloidal reflector similar to the work of 

Zhang et al. [95]. The longer focus of the ellipsoid was on either the sample surface or 

the opening of the blackbody cavity. The shorter focus of the ellipsoid overlaps with that 

of the paraboloid. The emitted ray from either the sample or the blackbody, after being 

reflected by the flip mirror, the ellipsoidal reflector, and the paraboloidal reflector, 

became collimated with about 25 mm in diameter and was then directed into the FT-IR  
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Figure 3.4 Pictures of (a) the entire high-temperature emissometry facility; (b) the optical 

parts; (c) the He-Ne laser used for optics alignment; and (d) the laser spot on the sample 

surface which approximates the emitted area from sample to be collected. 

 

through a side port. The distance between the ellipsoidal foci is 514 mm and the 

paraboloid focal length is about 60 mm. The half-cone angle of the collected beam from 

the sample is approximately 3. An iris was placed at the focus of the paraboloidal 

reflector to limit the collecting area on the sample and adjusted the amount of radiation 
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going into the spectrometer. An IR polarizer next to the iris was used to allow either 

transverse electric (TE) waves, where the electric field is perpendicular to the optical 

table, or transverse magnetic waves, where the magnetic field is perpendicular to the 

optical table, to pass through. The DTGS detector can be used at temperatures higher than 

about 700 K. A liquid-nitrogen cooled indium antimonite (InSb) detector with a higher 

detectivity can be used at temperatures above 500 K in the spectral range from 2.0 m to 

5.5 m. Before the direct emission measurement, the internal IR source inside the FT-IR 

was turned off for a couple of hours for cooling down. Figure 3.4(a) shows a picture of 

the entire high-temperature emissometry facility. 

The optics alignment turned out to be challenging for IR optics. Hence, a He-Ne 

laser at wavelength of 632 nm, as shown in Fig. 3.4(c), was placed at the spectrometer’s 

position by removing the FT-IR to align the optical components shown in Fig. 3.4(b). 

The laser beam was first expanded to approximately 25 mm in diameter with two convex 

lenses, and then the collimated beam was sent to the paraboloidal reflector. The optical 

components were aligned by tracing the laser beam backwards from the paraboloidal 

reflector to the sample surface or the blackbody. Figure 3.4(d) shows the laser spot during 

the alignment on the sample surface, which approximates the active area from which the 

thermal radiation from the sample surface is collected. 

 To ensure uniform heating and protect the sample from thermal shock, the heating 

process was divided into several intermediate steps with incremental set temperatures, 

and the temperature was maintained for 30 min after each set point was reached before 

proceeding to the next step. The stability of the thermal radiation from the blackbody or 

the sample surface was checked to be within ±0.5% before measuring the emission 
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spectrum. An average of 100 scans with a resolution of 4 cm
1

 was used for each 

emission spectrum. By turning the flip mirror, the emission spectrum from the sample 

surface or the blackbody can be individually collected with the spectrometer. The 

blackbody spectrum and the sample spectrum are denoted as B B( , )S T  and S S( , )S T , 

respectively, where ST  and BT  are the sample and blackbody temperatures, and   is the 

frequency or wavenumber. The background spectrum A A( , )S T , where TA = 21ºC is the 

room (ambient) temperature, was collected by removing the heater assembly. An 

alternative way is to turn the heater off and let it cool down to ambient temperature. 

Assuming that B ST T , one obtains the spectral emittance of the sample from the 

following measurement equation: 

 S S A A

B S A A

( , ) ( , )
( )

( , ) ( , )

S T S T

S T S T


 
 

 


 


     (3.1) 

During the experiment, the blackbody was set at the same temperature with the 

thermocouple (TC) reading, i.e., B TCT T ; however, the surface temperature of the 

sample would be somewhat lower than that of the copper plate underneath the sample. 

Based on the one-dimensional heat transfer model, the temperature difference 

TC SΔT T T   can be obtained from the energy balance at the steady state, 

 4 4
S A S S A

Cu Cu c Sub Sub films

Δ
( ) ( )

0.5 / /

T
h T T T T

d k R d k R
    

   
  (3.2) 

where h is the convection coefficient at the sample surface, S is the total-hemispherical 

emissivity of the sample, cR  is the TCR between the sample and the copper disk, dCu and 

kCu are the thickness and the thermal conductivity of the copper disk, dSub and kSub are the 

thickness and the thermal conductivity of the substrate, and filmsR  accounts for the 
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thermal resistance of the multilayered films including thermal boundary resistances 

between the films and that between the film and the substrate. In Eq. (3.2), since TC was 

inserted in the middle of the copper disk, the thermal resistance of copper is based on half 

the thickness only. With the estimated natural convection coefficient 215 W/m -Kh   and 

taking S 0.85   (which is near the higher end of measured samples), the heat loss from 

the sample surface is less than 20 W for TC 800 KT  . The lateral dimensions of the 

sample were 25.4  25.4 mm
2
. The copper plate thickness is 3.2 mm and, with its thermal 

conductivity exceeding 360 W/m-K,  one obtains 2
Cu Cu0.5 / 4.4 mm -K/Wd k  . For a 

substrate thickness of less than 400 m and thermal conductivity higher than 40 W/m-K,  

one obtains 2
Sub Sub/ 10 mm -K/Wd k  . Note that for Si, the thermal conductivity is 

around 40 W/m-K  at 800 K; on the other hand, SiC would have a much higher thermal 

conductivity exceeding 200 W/m-K at 800 K [96]. For the Fabry-Perot structure, filmsR  

includes both the contact resistance and the resistance of the films, especially the SiO2 

layers. The thermal boundary resistance for the deposited films is on the order 

20.001 to 0.02 mm -K/W  for each interface [97] and thus can be neglected. The 

resistance estimated by the SiO2 films gives films 1R   2mm -K/W . For bare Si on 

polished copper with applied pressure, the value of cR= 250 mm -K/W  is taken from the 

room-temperature measurement [98] and is expected to decrease as temperature increases. 

Clearly, the dominant resistance is cR , which could give rise to a temperature difference 

up to 1.3 K at TC 800 KT  , while a temperature difference T less than 1.6 K was 

obtained taking into accounts all the resistances. In the present study, due to the 
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difficulties in determining the TCR between the sample and the copper plate, no 

correction for the surface temperature of the sample is made. The temperature error will 

result in an uncertainty in emittance of less than 1.5% for wavelengths from 2.5m to 

20m. The overall uncertainty of the emittance measurement is estimated to be 0.03. 

 

3.4 High-Temperature Emittance of SiC 

To test the setup, a 6H-SiC wafer (n-type doped with a resistivity of 0.02 to 0.1 

Ω-cm) was used as a reference [94]. The thickness of the SiC wafer is 330 m, and the 

lateral dimensions are 20  20 mm
2
. The SiC wafer appears greenish due to doping. 

Figure 3.5 shows the measured spectral emittance of the SiC wafer at both room 

temperature (10º, indirect) and 800 K (0º, direct) from 700 to 1200 cm
1

, where the SiC 

wafer is essentially opaque. The emittance at the room temperature was measured before 

and after heating. The slightly increased emittance may be explained by the formation of 

a thin oxide layer at the surface when heating in air [92], along with the uncertainty in the 

reflectance measurement. The emittance at room and elevated temperatures has a similar 

trend. The peak emittance is 0.986 at room temperature and 0.962 at 800 K, respectively. 

Note that the SiC wafer used in the present study was doped, and the peak emittance for 

SiC with high resistivity (i.e., low doping concentration) is expected to be essentially 

unity [83,99]. The corresponding wavelength when the emittance approaches unity is 

called the Christiansen wavelength, which can be used for calibration of emittance 

measurements [1,100]. Emittance peaks of a few percent below unity have also been 

observed by others for SiC samples with different crystalline structures [92]. 
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Figure 3.5 Measured emittance spectra of the SiC sample for 10 deg at 294 K (before and 

after heating) and for normal direction at 800 K. The emittance at 294 K is obtained 

indirectly from the measured reflectance using Kirchhoff’s law, while the emittance at 

800 K is directly measured with the emissometer.  

 

The variation in the emittance of SiC at different temperatures is mainly due to 

the temperature-dependent scattering rate [90]. While emissivity and reflectivity are often 

used for a smooth semi-infinite medium [101], reflectance and emittance are used in the 

present study without distinguishing the surface conditions. At normal incidence, the 

spectral reflectance can be calculated from [1] 

 
2 2

SiC 2 2

( 1)

( 1)

n
R

n

 


 




  (3.3) 

where the refractive index n and extinction coefficient  of SiC can be obtained from the 

Lorentz model for phonon oscillators as  



43 

 
2 2

2 LO TO
SiC 2 2

TO

( ) ( ) 1n i
i



 
       

 
   

  
  (3.4) 

The parameters at room temperature are taken from [1,99] as follows: the high-frequency 

constant 6.7  , longitudinal optical-phonon frequency 1
LO 969 cm  , transverse 

optical-phonon frequency 1
TO 793 cm  , and scattering rate 14.76 cm  (N.B., 

1 111 cm 1.884 10  rad/s   ). Following Ref. [90], the scattering rate was used as the only 

adjustable parameter to minimize the sum of the squared differences between the 

theoretical and experimental emittance, 

   
2

,theo ,exp
1

N

i i
i

f  


    (3.5) 

where N is the number of experimental data points. The scattering rates obtained from the 

least-squares fitting are 7.98 cm
1

 at 294 K (before heating) and 20.96 cm
1

 at 800 K, 

respectively. The scattering rate increases with temperature almost proportionally; this 

agrees with the observation made by [90] and is consistent with the phonon scattering 

mechanism [1]. The slightly higher scattering rates obtained in the present study at both 

temperatures may be attributed to the higher doping concentration which gives rise to 

additional impurity scattering. 

 The emittance of SiC for TE or TM waves was also measured at 800 K for 30º 

emission angle to demonstrate the capability of the emissometer to measure the 

polarization-dependent emittance, as shown in Fig. 3.6. The directional symmetry of the 

emissometer was checked by measuring the emittance at both +30º and 30º angles of 

emission, and the largest difference is 0.009 for TE waves and 0.024 for TM waves, 

respectively. The average emittance at +30º and 30º is shown in Fig. 3.6 for each 
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Figure 3.6 The measured 30° emittance of the SiC sample at 294 K (before heating) and 

800 K: (a) TE waves; (b) TM waves. 
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polarization. Note that the emittance at room temperature (before heating) was obtained 

with the indirect method and also shown for comparison. The temperature dependence at 

30º for both polarizations is similar as that for normal direction. The difference can be 

attributed to the temperature effect on the scattering rate of SiC. Also, the peak emittance 

is somewhat higher for TM waves than TE waves due to the relatively smaller reflectivity 

of TM waves between SiC and air at 30º. 
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CHAPTER 4 

COHERENT THERMAL EMISSION FROM ASYMMETRIC 

FABRY-PEROT RESONANT CAVITIES 

 

This Chapter experimentally demonstrates the coherent thermal emission from 

asymmetric Fabry-Perot resonant cavity samples through room- and high-temperature 

measurements, along with the theoretical discussion on the underlying physics of wave 

interference effect. Section 4.1 describes the fabrication process of the Fabry-Perot cavity 

samples. The spectral-directional reflectance of fabricated samples at room temperature 

was measured in the near-infrared region with the FT-IR spectrometer and the 

scatterometer to demonstrate both temporal and spatial coherences of thermal emission, 

which is discussed in detail in Section 4.2. To further investigate the thermal properties 

under high temperature environment, Section 4.3 presents the high-temperature 

measurement results as well as the modeling results to facilitate understand the behaviors. 

At last, Section 4.4 shows that the direct and indirect methods on predicting the thermal 

emission from layered structures suffering from a temperature gradient are theoretically 

unified and a generalized Kirchhoff’s law is obtained. The equivalence is demonstrated 

with a Fabry-Perot cavity structure under nonuniform temperature distributions. 

 

4.1 Sample Fabrication 

To experimentally demonstrate that the proposed Fabry-Perot cavity structure 

shown in Fig. 2.1 can be used as a coherent emission source, several samples were 

fabricated on Si substrates and their spectral and directional radiative properties were 

measured [63]. The Si wafers are of 100 mm in diameter and 400 m in thickness. A thin 
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Ti film and a 200-nm Au film were subsequently deposited on the polished side of the Si 

substrate, after proper surface cleaning, using an e-beam evaporator without breaking its 

vacuum environment. A quartz crystal microbalance monitored the deposition thickness. 

The thin Ti film (about 20 nm) serves as an adhesive layer to prevent the Au film from 

peeling off. As long as the thickness is much greater than the penetration depth, this Au 

film can be treated as an opaque layer or a semi-infinite medium. Thus, the exact 

thicknesses of these bottom layers are not important. After the sample was cooled down 

in the e-beam evaporator, it was taken out and placed into a plasma-enhanced chemical 

vapor deposition (PECVD) chamber. SiO2 thin film was deposited at 250°C on the 

sample and on a bare Si piece as well. The thickness of the dielectric layer was measured 

from the reference Si piece using a reflectometer (Nanospec Film Analyzer 3000). The 

measurements indicate that the SiO2 layer has less than 5% variation in thickness relative 

to the designed value. Afterwards, the sample was placed back into the e-beam 

evaporator and coated with a thin Au film (less than 30 nm). Because the quartz crystal 

monitor could not precisely determine the deposited thickness for very thin Au films, 

several trial-and-error tests were made in order to find the appropriate Au thickness for 

the Fabry-Perot resonance cavities. Because the resonance frequency and the minimum 

reflectance value are very sensitive to the thicknesses of the SiO2 cavity and top Au film, 

the exact thicknesses of dielectric layer and Au film are determined later by fitting the 

reflectance measured by the FT-IR spectrometer. Three samples (1, 2, and 3) with 

different SiO2 cavity thickness and Au film thickness were fabricated to study the 

thickness effect. The samples were diced into 25 mm by 25 mm square pieces for 

measurements of the radiative properties. 
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4.2 Room-Temperature Reflectance Measurements 

The measured reflectance spectra of the three samples at near normal incidence 

( i 10   ) are shown in Fig. 4.1. At this incidence angle, polarization effect is negligible. 

In the frequency range from 3000 cm
1

 to 13000 cm
1

 in wavenumber, there are two 

sharp reflectance dips arising from resonances in the dielectric cavity. It should be noted 

that due to the low signal-to-noise ratio at high frequencies, the spectra beyond 11000 

cm
1

 exhibit large fluctuations. To further reduce the measurement noise, the reflectance 

at frequencies above the second valley was averaged over 21 consecutive data points (i.e., 

10 points on the left and 10 points on the right) with respect to their central frequency. 

The plots shown in Fig. 4.1 are the spectra after the noise reduction. In order to determine 

the dielectric and Au film thicknesses of each sample, Eq. (2.5) was used to calculate the 

spectral reflectance at i 10    with dc and df as the adjustable parameters. In the 

calculation, the optical constants of Au and SiO2 were taken from Ref. [83]. The initial 

values were obtained from the measured film thicknesses. The location of the resonance 

frequency is more sensitive to the SiO2 thickness, while the magnitude of the reflectance 

minimum is more sensitive to the Au film thickness. The best fitting results can be 

obtained by iteratively modifying dc and df and comparing the calculated spectra with that 

measured. The fitting parameters are tabulated in Table 4.1 for each sample, along with 

the free spectral range and the quality factor of the resonance as discussed below.  

The free spectral range  is the frequency interval between the two consecutive 

resonance dips. It can be seen that Samples 2 and 3 have similar SiO2 thickness and free 

spectral range. For a dielectric film inside air, the free spectral range is determined by 

resonances  inside  the  film and can be calculated  from c c c1 (2 cos )n d   , assuming 
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Figure 4.1 Spectral reflectance of the fabricated Fabry-Perot resonators in the near-IR 

spectral region at i 10   : (a) Sample 1; (b) Sample 2; (c) Sample 3. 
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the refractive index of the dielectric is frequency independent [1]. Taking the average 

refractive index of SiO2 as 1.44, the above equation gives for Sample 1  = 5623 cm
1

, 

which is more than 10% greater than the actual  of 5050 cm
1

. This is caused by the 

phase shift upon reflection at the SiO2 cavity boundaries. From Eqs. (2.5) and (2.6), the 

modulation of the transmittance and reflectance is determined by the modified phase 

angles 1 and 2. The maxima of T occur when the denominator of Eq. (2.6) is at its 

minima, that is,   

  m222 sb2   (4.1) 

where m is an integer. Equation (4.1) states that the resonance occurs if total phase shift 

in the cavity are multiples of 2, where standing waves exist in the cavity.  

Table 4.1 The measured free spectral range and quality factors, along with the fitted SiO2 

and Au film thicknesses based on the measurement results at an angle of incidence of 10 

Sample 

No. 

Free spectral 

range  

(cm
1

) 

SiO2 

thickness   

dc (nm) 

Au film 

thickness   

df (nm) 

Quality factor 

Q at the 1
st
 

resonance  

Quality factor 

Q at the 2
nd 

resonance   

1 5050 622 21 49.5 21.7 

2 5576 553 20 34.4 13.9 

3 5587 559 30 53.2 25.3 

 

As mentioned earlier, the absorptance of the bottom Au layer is Ts  because it 

is opaque. The multiple reflections result in strong absorption in the top Au film as well, 

though at a nearby frequency. The absorptance of the top Au film is TR 1f  

because the SiO2 layer is nonabsorbing in the spectral range of interest. The absorptance 

of the top Au film and bottom Au layer is shown in Fig. 4.2, which was calculated based 
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on the fitting parameters for Sample 1. Interestingly, the absorptance  of the Fabry-Perot 

structure has a minimum on the right of the maximum, this explains why the reflectance 

R exhibits a maximum on the right of the minimum and the reflectance dip is asymmetric, 

as can be seen from Fig. 4.1. One can see from Eq. (2.5) that the reflectance minimum is 

determined by its numerator at the frequency that satisfies  )2/1(1  m . It can be 

shown that the phase difference between 21  and   is close to /2. Hence, the reflectance 

minimum occurs near the resonance condition given in Eq. (4.1). It should be noted that 

while there exist minima in T at frequencies where  )2/1(2  m , it does not 

significantly affect  (or R) as can be seen from Fig. 4.2. As a matter of fact, away from 

the resonance condition, very little of the incident energy can reach the bottom Au layer; 

subsequently, the reflectance of the Fabry-Perot resonator is essentially the same as the 

reflectance when the SiO2 layer is semi-infinite; that is, *
aaa rrRR  . 
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Figure 4.2 Absorptance spectra calculated based on the geometric parameters for Sample 

1 ( nm 21 and nm 622 fc  dd ) for unpolarized waves at i 10   . 
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The existence of reflectance dips suggests that the Fabry-Perot resonators can be 

used to construct coherent emission sources, since 1 R    . A measure of the sharpness 

of the emissivity peak, or the reflectance dip, is the quality factor defined as Q =  

for Fabry-Perot resonance cavities, where is the full width at half maximum, or 

minimum [45]. The Q factors for 10º angle of incidence at the two resonance frequencies 

are tabulated in Table 4.1 for each sample. Generally speaking, the peak width tends to 

broaden towards higher frequencies. This is why the quality factor at the second 

resonance frequency is about half of that at the first resonance frequency. Because 

Sample 2 has a thinner SiO2 layer, the resonance frequencies increase, resulting in a 

lower Q factor for Sample 2. Samples 2 and 3 have similar SiO2 thickness but Sample 3 

has a thicker Au film. It can be seen that the Q factor is enhanced with increasing Au film 

thickness. However, the peak emissivity for Sample 3 at the first resonance frequency is 

not as high as can be seen from Fig. 4.1.  

The effect of Au film thickness on the peak emissivity is further investigated near 

the resonance frequencies. The absorptance at the resonance wavenumbers around 5500 

cm
1

 and 11000 cm
1

 is calculated for different film thickness df for given dc = 560 nm at 

i 10   . Note that the exact resonance frequency will vary somewhat with df. As shown 

in Fig. 4.3, there exist thickness values where the absorptance peak is maximized. 

However, the maxima of f, s, and  do not occur at the same df. It is interesting to see 

that more energy is absorbed by the thin Au film than by the bottom Au layer. For the 

first resonance, the spectral-directional emissivity is close to unity when df = 12.5 nm. In 

this case, about 80% of the energy is absorbed by the Au film. For the second resonance 

near 11000 cm
1

, a close-to-unity emissivity peak is achieved when df = 25 nm. In this  
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Figure 4.3 Absorptance for unpolarized waves at i 10   , with respect to the top Au film 

thickness df, by the thin Au film and by the opaque Au layer for dc = 560 nm at the 

resonance wavenumber: (a) around 5500 cm
1

; (b) around 11000 cm
1

. 

 

case, about 60% of the energy is absorbed by the Au film. Because the deposited Au film 

thickness for the three samples is closer to 25 nm than 12.5 nm, the first reflectance dip is 

more sensitive to the Au film thickness than the second dip as seen from Fig. 4.1. 
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Figure 4.4 Spectral reflectance of Sample 1 in the near-IR spectral region at 30° and 45° 

incidence, respectively: (a) TE wave; (b) TM wave. 
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The spectral reflectance of the Fabry-Perot resonator at other incidence angles is 

also investigated. Figure 4.4 shows the measurements of Sample 1 at 30º and 45º angles 

of incidence for TE and TM waves, respectively. The model prediction based on the 

previously obtained thicknesses dc and df for Sample 1 agree with the experiments well. 

However, the predicted reflectance minima are much lower than those measured. This 

may be due to partial coherence of the FT-IR spectrometer caused by beam divergence 

[102]. The resonance frequencies shift toward high frequencies for both polarizations. 

This is mainly due to the cosc terms in the phase shift . The free spectral range  is 

tabulated in Table 4.2 for both the measurement and prediction for each case. The relative 

difference between the measured and predicted  is within 2.5%, suggesting that the 

fitting results are pretty reliable. Similar to the resonance frequencies,  also increases 

with the angle of incidence. It can also be seen that toward large incidence angles, is 

larger for TE wave than for TM wave; this is due to the phase shifts associated with the 

reflection at the cavity boundaries. 

Table 4.2 Comparison of the free spectral range  (cm
1

) obtained from the spectral 

reflectance measurement and from the model at i   10°, 30°, and 45° for Sample 1  

 i 10° 30° TE 30° TM 45° TE 45° TM 

Experiment 

 (cm
1

)  
5050 5306 5246 5692 5546 

Model

 (cm
1

)  
5142 5422 5376 5798 5688 

Relative difference 1.8% 2.1% 2.4% 1.8% 2.5% 
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Figure 4.5 Spectral reflectance of Sample 1 at  = 891 nm: (a) TE wave; (b) TM wave. 

The insets show the polar plots of the spectral emissivity, 1 R    . 

 

Besides temporal coherence demonstrated by the spectral reflectance 

measurement, the spatial coherence for Sample 1 is shown in Fig. 4.5 by the angle-

resolved reflectance measurement at  = 891 nm. Reflectance dips are clearly observed at 
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the resonance polar angle: 0 = 38.4° for the TE wave and 43.0° for the TM wave. The 

polarization-dependent reflection and transmission coefficients at the boundaries are 

responsible for the variation of resonance angle between the two polarizations. The 

spectral-directional emissivity, calculated from 1 R     is shown as insets, where the 

right side is from the measurement and the left side is from model calculation using the 

same fitting parameters for Sample 1. Contrary to the FT-IR measurement at large 

incidence angles, due to the highly collimated laser beam and the high angular resolution, 

the reflectance dips or emissivity peaks match very well with those predicted. The 

relative difference between the measurement and model in terms of the resonance angle 

is within 2%. It can also be observed that the resonance is much sharper for TE waves 

than for TM waves. The narrow angular lobes of the spectral-directional emissivity 

shown in the polar plots clearly demonstrate spatial coherence of the considered Fabry-

Perot resonance cavity. The coherence length, defined as  coh c/ cosL      , is used 

as a measure of the spatial coherence [102,103]. Note that   is the FWHM of the 

emissivity peak, and the estimated   from the directional measurement is 4.8º and 9.8º 

for TE and TM waves, respectively. Thus, the calculated coherence length is 4.85  and 

2.54  for TE and TM waves respectively, suggesting that TE waves have better spatial 

coherence than TM waves for the considered Fabry-Perot resonance cavity structure.  

To further investigate the frequency and directional dependence of the emissivity 

of the proposed structure, the contour plots of the calculated emissivity based on the 

fitting parameters of Sample 1 are shown in Fig. 4.6 for TE and TM waves. In Fig. 4.6, 

darker colors represent lower emissivity, whereas brighter colors correspond to higher 

emissivity. The multiple emissivity peaks due to the resonance can be clearly seen as the  
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Figure 4.6 Contour plots of the spectral-directional emissivity of the considered Fabry-

Perot resonator with the fitting parameters of Sample 1: (a) TE wave; (b) TM wave. The 

triangles represent the reflectance dips measured by the FT-IR spectrometer, while the 

circles indicate the reflectance dips obtained by the laser scatterometer. 
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brightest curves called resonance bands, which exhibit strong spectral and directional 

selectivity. For comparison, the measurement results of Sample 1 are also plotted as 

triangles (FT-IR) and circles (TAAS), and very good agreement between the 

measurement and model can be seen. 
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Figure 4.7 Calculated reflectance for each polarization at the interface as a function of 

incidence angle for Au film thickness of 21 nm: (a) at 5000 cm
1

; (b) at 10000 cm
1

. 
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As the incidence angle increases, the resonance bands are getting narrower for TE 

waves but wider for TM waves. Besides, there are regions beyond the resonance bands 

where the emissivity for TM waves is noticeably larger, especially at large incident 

angles. This is due to polarization-dependent reflectivity at each interface since larger 

reflectivities at the cavity boundaries would result in sharper resonance peaks [1,45]. To 

further explain this, the reflectivities, *
aaa rrR   and *

bbb rrR  , are plotted in Fig. 4.7 as 

functions of the incidence angle i for both polarizations at  = 5000 cm
1

 and  = 10000 

cm
1

, respectively. While the reflectivity *
sss rrR   between SiO2 and the bottom Au 

layer is also important, it does not change very much, since the refraction angle inside 

SiO2 is limited to approximately 44º when  90i . At the air-Au film and SiO2-Au film 

interfaces, there exist large differences in the reflectivity between TE and TM waves at 

incidence angles greater than 60. While the reflectance for TE wave increase 

monotonically with the incidence angle, the reflectance for TM wave is reduced 

significantly as the incidence angle increases. This is why the resonance bands are much 

sharper for TE waves than for TM waves. The broader resonance bands of TM waves 

result from the lower bR ; on the other hand, the reduction of aR  of TM waves at large 

incidence angles is responsible for the increase in the emissivity outside the resonance 

bands. It can be seen by comparing Figs. 4.7(a) with 4.7(b) that the reflectivity ( aR  or 

bR ) for given polarization and incidence angle is relatively larger at lower frequency, 

which can explain why the resonance band at the first resonance (lower frequency) is 

narrower than that at the second resonance (higher frequency) shown in Figs. 4.1, 4.4, 
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and 4.6. Since a thicker Au film will result in higher aR  or bR , this is why Sample 3 has 

a smaller   than Sample 2. 

 

4.3 Direct Emittance Measurements at Elevated Temperatures 

To practically realize high-temperature coherent emitters based on the Fabry-

Perot structures, it is imperative to investigate how the emittance spectrum will change 

with temperature, especially at elevated temperatures, as well as other issues such as 

chemical stability and thermal stress. The high-temperature emissometry facility was 

employed to measure the spectral emittance of a Fabry-Perot cavity resonator at 600 K 

and 800 K for different emission angles and polarization states [94]. Modifications were 

made to the sample structure for improved chemical stability over diffusion and oxidation. 

The emittance spectra at room temperature were indirectly obtained by measuring the 

spectral reflectance using a Fourier-transform infrared (FT-IR) spectrometer. Theoretical 

modeling was carried out to help understand how temperature affects the emission 

characteristics of the Fabry-Perot structure. 

The fabrication process is similar to that described earlier using thin-film 

deposition techniques. PECVD was used to grow the SiO2 cavity, while an electron-beam 

evaporator with different sources was used to thermally deposit the metallic layers under 

the vacuum condition. Several modifications were made to the previous design to ensure 

high-temperature stability, as described in the following.    

The structure of the fabricated Fabry-Perot cavity resonator is depicted in Fig. 4.8. 

For emittance measurements, wavevector K is reversed to indicate the angle of emission 

with respect to the surface normal. It should be noted that the radiative properties are 
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Figure 4.8 Schematic of the fabricated Fabry-Perot cavity resonator (not to scale), 

indicating the directions for indirect measurements. For direct emittance measurement, 

the direction of emission follows the reversed wavevector K. 

 

independent of the azimuthal angle. The multilayered films were deposited on a double-

side polished Si wafer whose thickness is about 400 m. The polished front side is 

required to create the Fabry-Perot structures and the polished back side helps reduce TCR 

between the sample and the copper disk. After depositing a 30-nm Ti adhesive layer, a 

40-nm Pt layer was deposited as a barrier layer to prevent the diffusion of Au into Si at 

temperatures higher than 360°C. The existence of the Pt layer is crucial to ensure that the 

structure stays intact at high temperatures. A 200-nm Au layer was then deposited in the 

same e-beam evaporator, by rotating the sources without breaking the vacuum. The peak 



63 

wavelengths of the emittance spectrum are mainly determined by the thickness of the 

cavity. In order to obtain high signal-to-noise ratio in the thermal emission measurement, 

the cavity thickness dc was designed to be around 1.5 m for the emittance peak to lie 

between 3.5 and 5 m, where the blackbody emission peak occurs for temperatures from 

600 to 800 K according to Wien’s displacement law. On the other hand, the amplitude of 

the peak emittance is sensitive to the thickness of the top thin Au layer df and it was 

optimized to be around 10 nm to maximize the emission peak. To prevent Au film from 

degradation in the ambient (even with nitrogen gas purge, it cannot completely remove 

the oxygen and other traces in air), a 100-nm SiO2 layer was deposited on top of the thin 

Au film. Since the SiO2 films were deposited with a PECVD system, the sample had to 

be transferred between the two systems. A number of tests were performed to come out 

with the present design that appears to be stable at temperatures up to 1000 K even in 

ambient air. The thickness of the SiO2 cavity was measured ex situ with a reflectometer 

(Nanometrics NanoSpec 3000) to be 1550 nm ± 50 nm.  

 Figure 4.9 depicts the emittance of the Fabry-Perot cavity resonator sample for 

near-normal direction (10°) at 294 K and that for normal direction at 600 K and 800 K 

from both measurement and model prediction. Note that the results at 600 K from the 

emissometry measurement are limited from 1800 to 4000 cm
1

 due to the cut-off 

frequencies of the InSb detector. There exist two emission peaks which are located 

according to the approximate Fabry-Perot equation, ( )
m c c/ (2 )q q n d  , where nc ( 1.5) is 

the refractive index of SiO2 and q is the order of the cavity resonance. The predicted 

emission peaks for 1.55 mcd   are at about 2200 and 4400 cm
1

, respectively. The 

actual resonance conditions also depend on the phase shifts at the interfaces and will be 
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Figure 4.9 The emittance spectra of the Fabry-Perot cavity resonator sample for 10° at 

294 K and for normal direction at 600 K and 800 K from (a) measurement and (b) 

modeling. The emittance was directly measured at 600 K with an InSb detector and     

800 K with a DTGS detector. 
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discussed later. Both the experiment and prediction demonstrate the two emission peaks, 

whose frequencies vary somehow with temperature, indicating the spectral selectivity of 

thermal emission. From the experimental results, it can be seen that the width of the 

emittance peaks is broadened and peak value is lowered at elevated temperatures. For 

example, the emittance maximum at the first peak (q = 1) is 0.845 at room temperature, 

and decreases to 0.742 at 600 K and 0.652 at 800 K. Besides, the peak location tends to 

shift toward lower frequencies from 2183 cm
1

 at 294 K to 2149 cm
1

 at 800 K.   

 A theoretical model considering the temperature-dependent properties is 

developed to better understand the temperature effect. The matrix formulation method 

was used to calculate the spectral directional reflectance of a multilayered structure as 

well as the emittance according to Kirchhoff’s law [1]. Since the 200-nm Au film is 

essentially opaque within the frequency range of interest, the Pt and Ti layers and the Si 

substrate have no influence on the reflectance or emittance of the structure. The 

calculation was thus simplified by assuming the thick Au layer to be semi-infinite. The 

frequency-dependent optical constants of SiO2 were taken from the tabulated data in Ref. 

[83], and were assumed temperature-independent. Similar assumptions were used 

previously and found to be reasonable [104]. For the Au film, the Drude model was used 

to describe its dielectric function as 

 

2
p

Au 1 2 2
( ) 1i

i


   

 
   

 
 (4.2) 

where p is the plasma frequency and  is the scattering rate [1]. The plasma frequency is 

proportional to the square root of the electron number density, and was taken as 

161.37 10 rad/s  (i.e., 72700 cm
1

) for bulk Au. The bottom Au layer can be treated as a 
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bulk; however, ultra-thin Au films from the thermal evaporation process are usually not 

continuous. This suggests a smaller electron number density, resulting in a lower 

effective plasma frequency [105]. Thus, the plasma frequency for the 10-nm Au film was 

estimated to be 161 10 rad/s  in the calculation. To better approximate the losses in the 

thermally deposited thick Au film, its scattering rate at room temperature was obtained by 

fitting the imaginary part of the dielectric function   which accounts for the losses with 

the tabulated data from Palik [83]. The scattering rate for the bulk Au at room 

temperature was obtained as 137.31 10 rad/s , which agrees with the value in the 

literature [106]. On the other hand, additional losses due to the electron-boundary 

scattering must be considered for the 10-nm Au film, since the film thickness is 

comparable to the electron mean free path and there also exist grain boundaries. The 

scattering rate for the ultra-thin Au film at room temperature was taken as 

141.10 10 rad/s , which is 50% higher than the value for the bulk. Furthermore, the 

plasma frequencies were assumed independent of temperature, whereas the scattering 

rates were estimated by a linear relationship, i.e., 0( )/ /294T T   , where 0  is the 

scattering rate at 294 K, because the electron-phonon scattering rate increases linearly 

with temperature above room temperature [1,107].  

 The predicted normal emittance at different temperatures is shown in Fig. 4.9(b). 

The peak location can be determined by Eq. (4.1) at resonances. Note that the phase shift 

 in the dielectric cavity depends little on temperature. Interestingly, the emittance peaks 

of the designed structure show asymmetric shapes, comparing with the nearly symmetric 

transmittance peaks of the conventional Fabry-Perot cavities which are widely used in 

interferometers [45]. This is due to the different phase shifts involved respectively in the 
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emittance (or reflectance since 1 R    ) and transmittance, rather than due to the 

structural asymmetry. The asymmetric reflectance dips or absorptance peaks of the 

asymmetric Fabry-Perot structures were also observed and discussed previously at room 

temperature measurements. The predicted emittance spectra for the first peak exhibit 

peak broadening, shifting, and reduction as temperature increases. The temperature effect 

on the emittance can be understood by the increased scattering in the Au films. 

Additional calculation indicates that the emittance peak is more sensitive to the scattering 

rate of the thin Au film than that of thick Au layer, since more losses occur within the 

ultra-thin layer [63]. From the modeling, the shift of the emittance peak location with 

higher temperatures is apparent, and can be explained by the change of phase angles b  

and s  since both br  and sr  vary with temperature. 

The trend agrees well with the experimental observation, however, the measured 

spectra contain broader peaks. This may be due to a number of reasons such as the 

inhomogeneity of the thin Au film, surface roughness, as well as beam divergence. More 

interestingly, the first peak at 294 K almost has the same width with the one at 600 K 

from the measurements, but the calculation shows the increasing scattering rate at higher 

temperatures would broaden the peak. This indicates some mechanisms which may 

reduce the scattering at high temperatures during the experiment, such as the annealing 

effect which enlarges the grain size in the ultra-thin film and makes the film smoother. It 

appears that the peak shift is not as clear in the experiments due to partial coherence. The 

calculation also suggests peak broadening and shifting with higher temperatures at the 

second resonance peak, similar to the temperature effect on the first peak. It should be 

noted that, the increasing temperature will not necessarily cause the diminishing of the 
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emittance peak. At the second resonance peak, the predicted peak maximum increases 

when temperature is changed from 294 K to 600 K. In addition, the measurement results 

show much broader peaks than the calculation at the second resonance peak, which is 

mainly due to the partial coherence effect resulting from the inhomogeneity of the ultra-

thin Au film. As observed previously, the partial coherence effect tends to be stronger at 

shorter wavelengths [108]. In fact, the peak broadening may be beneficial for energy 

system such as TPV emitters in which a sharp emission peak is not preferred due to 

limited radiative energy and low throughput [10].  

 

Figure 4.10 The emittance of the Fabry-Perot cavity resonator sample at 30°. (a) 

Measurement for TE waves; (b) Measurement for TM waves; (c) Prediction for TE 

waves; (d) Prediction for TM waves. 
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The emittance of the Fabry-Perot cavity resonator sample was also studied at 30° 

emission angle with different temperatures. Figures 4.10(a) and 4.10(b) show the 

measurement results for TE and TM waves, respectively, and emittance peaks were 

observed as well for both polarizations. Clearly, when the temperature increases from 294 

K to 800 K, the emittance peaks become broader and the resonance frequencies also 

slightly shift to lower wavenumbers. The resonance frequencies are higher than those for 

normal direction, due to the cosine term in the phase shift. From 0° to 30°, the emittance 

maximum for TM waves increases but that for TE waves decreases. Take 800 K as an 

example. The emittance peaks at 2149 cm
1

 with a maximum of 0.652 at normal 

incidence, while the maximum at 30° is 0.617 at 2299 cm
1

 for TE waves and 0.695 at 

2270 cm
1

 for TM waves, respectively. The change of the resonance frequency with 

emission angles indicates the selectivity of spatial direction, i.e., spatial coherence. 

Figures 4.10(c) and 4.10(d) present the calculated emittance for both polarizations at 30° 

with the same parameters used for the normal direction. The peak broadening with 

increasing temperature can be seen from the modeling, which arises from the increased 

scattering rates of Au films. The peak maximum also decreases as the temperature 

increases at the first resonance but slightly increases at the second resonance.  

 Interestingly, an additional emittance peak can be seen at 1250 cm
1

 only for TM 

waves, as shown in Figs. 4.10(b) and 4.10(d). To help understand the occurrence of this 

peak, the emittance at room temperature was calculated for TM waves at 30° when 

cd  , that is, the thick Au layer and Si substrate are replaced with a semi-infinite SiO2 

layer. This structure contains the top SiO2 layer, the thin Au film, and a semi-infinite 

SiO2 medium, which is labeled as the SiO2-Au-SiO2 structure. Figure 4.11(a) compares 
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Figure 4.11 (a) Comparison of the calculated emittance of a three-layer structure with 

SiO2-Au-SiO2 (semi-infinite) and the considered Fabry-Perot structure at 30 deg for TM 

waves; (b) The optical constants of SiO2 from Palik [83]. 
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the calculated emittance for the SiO2-Au-SiO2 structure with that for the Fabry-Perot 

structure from 1000 to 3000 cm
1

. It can be seen that the Fabry-Perot resonance around 

2270 cm
1

 disappears for the SiO2-Au-SiO2 structure, but the peak at 1250 cm
1

 exists in 

both structures. Additional calculations show that when the emission angle increases, this 

peak location shifts slightly and the peak amplitude increases to a maximum when the 

emission angle reaches 73°. Therefore, the emission peak at 1250 cm
1

 is attributed to a 

cancelling effect of the reflection coefficients at the air-SiO2 and SiO2-Au interfaces, as a 

result of the unique optical constants of SiO2 in this region. In addition, an emission dip 

can be seen around 1100 cm
1

 for both normal direction and 30° measurements 

regardless of the polarization state. The cause of this dip is the frequency-dependent 

optical constants of the SiO2. Figure 4.11(b) plots the refractive index n and extinction 

coefficient  of SiO2 from Palik [83]. Due to the phonon absorption, the extinction 

coefficient  peaks around 1100 cm
1

, where  >> n. Therefore, only the SiO2 near the 

surface emits due to the small penetration depth, which results in a reduction of emittance.  

 After the sample was heated to 800 K, some cracks occurred in the Fabry-Perot 

sample as shown in Fig. 4.12(a), which is an image from a 3D confocal microscope 

(Olympus LEXT OLS4000). Those cracks are spaced about half a millimeter apart and 

intersect with each other. The formation of the cracks was due to the excess thermal 

stress induced by the coefficient of thermal expansion (CTE) mismatch among different 

materials. The CTEs at room temperature are 2.5×10
6

 1/K for Si, 0.4×10
6

 1/K for SiO2, 

and 14×10
6

 1/K for Au, respectively [109]. To address whether or not the cracks degrade 

the sample’s performance as a selective emitter, the emittance of the Fabry-Perot sample 

was indirectly measured at room temperature after cooling. Figure 4.12(b) compares the 
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Figure 4.12 (a) An image of the cracks in the Fabry-Perot cavity resonator sample after 

the heating at 800 K from a 3D confocal microscope; (b) Measured emittance (10°) of the 

Fabry-Perot sample at room temperature before and after heating up to 800 K. 

 

near-normal emittance at 300 K before and after the heating. It can be seen that the 

coherent emission characteristics remain after heating, but the peaks slightly shift toward 

higher frequencies. This should be mainly due to the annealing effect on the material 

properties rather than cracking. 
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4.4 Generalized Kirchhoff’s Law 

The room- and high-temperature measurements have clearly shown that the 

temporal and spatial coherence characteristic of the Fabry-Perot resonant cavity as a 

coherent emission source. However, in practice under high temperature environment, 

coherent sources may endure nonuniform temperature distribution. Therefore, whether or 

not the indirect method from Kirchhoff’s law 1 R     is still valid under such a 

condition must be clarified. 

 To derive the spectral directional emissivity from each layer at a uniform 

temperature Tj shown in Fig. 2.2, let us start with the spectral heat flux given in Eq. (2.10) 

from the direct method in Section 2.2 [110]. Due to ( / )sinc   , the spectral heat flux 

can be re-written as 

 
   

2
2 /2

, 0 03 2
, , cos sin

2
j j jq T d Z d

c

 



       


   

 
  (4.3) 

where   is the azimuthal angle, and sin d d d     is the differential solid angle. Note 

that the spectral heat flux can also be obtained by integrating the spectral intensity I  

over the hemisphere, that is, 
2 /2

0 0
cos sinq d I d

 
        . Hence, the spectral 

intensity from the jth layer to vacuum can be extracted by comparison of these two 

expressions, giving 

      
2

, 3 2
, , ,

2
j j jI T Z

c



     


          (4.4) 

in watts per square meter per unit frequency interval (rad s
1

) per unit solid angle (sr), i.e., 

[W m
2

 s rad
1

 sr
1

]. The spectral directional emissivity of the jth layer can be defined as 

the ratio of the spectral intensity to that of a blackbody at the same temperature jT , viz. 
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where    2 3 2
,b , , /8j jI T T c       is the blackbody intensity for one polarization in 

vacuum. 

On the other hand, by using the transfer matrix method introduced in Section 2.2, 

the absorptivity for the jth layer at a uniform temperature Tj can be obtained as well. 

Similar to Eq. (2.18), the amplitudes of the forward and backward waves in the jth layer 

can be related to those in the incident medium through 
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From Eq. (2.19), we know 1 1/r B A , so the amplitudes Aj and Bj in the jth layer can be 

related to A1 by  

 1 1j jA C A ,  where 1 1
1 11 12jC r  Q Q  (4.7a) 

and 2 1j jB C A ,  where 1 1
2 21 22jC r  Q Q   (4.7b) 

The spectral directional absorptivity of jth layer  2,3,..., 1j N   can be expressed as 
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 (4.8) 

where 1
in 1 1

02
S A A





  is the incident radiant flux in the z direction, and 

 2Re

1 1
j ji d

e


   , 
 2Re

2 1
j ji d

e





   and 
 2Im

3 1
j ji i d

e


   . Note that ,N T   . 

For TM waves, Eqs. (4.6) through (4.8) are still applicable by interchanging   to  . It 
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should be noted that , j  depends on the angle of incidence, even though only the z-

component of the Poynting vector appears Eq. (4.8). The absorptance of the multilayered 

structure is 

 
1

,
2

1
N

j
j

T R    




                   (4.9) 

Only if all media are at the same temperature, the conventional Kirchhoff’s law 

can be applied such that     , where    is the summation of , j   given in Eq. (4.5). 

The direct method provides a physically sound way to calculate thermal emission 

from an individual layer, as if the rest of the structure were at absolute zero temperature. 

The spectral directional emissivity of a layer can be obtained by comparing the spectral 

intensity to that of a blackbody at the same temperature as given in Eq. (4.5). 

Furthermore, the emitted intensity of the whole structure can be treated as a superposition 

of the intensities emitted by each layer. However, analytical expressions of the exchange 

functions in a multilayer structure are difficult to obtain. Numerous examples have been 

evaluated and in all cases, it is found that , ,j j    , within the limitation of 

computational accuracy, when they are evaluated from Eq. (4.5) using the direct method 

and Eq. (4.8) using the indirect method, respectively. 

Note that the exchange function ( , )jZ    is calculated based on the dyadic 

Green’s function ( , , )j G x x  between the emitting layer j ( 1j  ) and the vacuum 

( 1j  ). In the expression of ( , , )j G x x , there are four coefficients A, B, C and D 

representing different patterns of electric and magnetic field propagation from the source. 

These coefficients can be determined by the same matrix formulation as that used in the 
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indirect method [15,53,57,58,68]. Francoeur et al. [67] recently gave a detailed derivation 

for thermal radiation from a 1D layered structure by combining the dyadic Green’s 

functions and the scattering matrix method, which can remedy the numerical instability 

problem when the traditional transfer matrix method is applied to the near-field thermal 

radiation. One of the important equalities in all the matrix formulations is the principle of 

reciprocity. If the exchange function is defined between any two layers j and k, then one 

must have jk kjZ Z . This is to say that the absorptivity of each layer should be equal to 

the emissivity, since vacuum can be treated as a blackbody. Without further ado, it can be 

asserted that the spectral directional emissivity in Eq. (4.5) must be the same as the 

spectral directional absorptivity in Eq. (4.8) for the same layer. 

 This equality , ,j j     is referred to as the generalized Kirchhoff’s law. The 

thermal emission or the spectral intensity from the entire layered structure can be 

obtained by the superposition of the contributions from each layer as 

   

 ,sum 1 , ,b
2

, , ,..., ( , )
N

N j j
j

I T T I T     


       (4.10) 

According to the equality, the spectral intensity can be also calculated from the 

indirect method with the absorptivity of each layer. Therefore, the direct and indirect 

methods are unified on predicting the thermal emission from layered structure with 

nonuniform temperature distributions, and the indirect method may offer a more 

convenient way since no Green’s function is involved. 

The emissivity of a nonuniform temperature structure cannot be defined, unless a 

reference temperature is specified. Such a definition provides an effective emissivity with 

respect to a blackbody at an arbitrarily specified reference temperature. On the other hand, 
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the brightness temperature ( , )T   , at which a blackbody has the same spectral intensity, 

is a more fundamental property to characterize thermal emission [1]. The brightness 

temperature is a function of frequency and the direction. It has been used for thermal 

emission from layered structures in the microwave region [55], where blackbody 

intensity is approximately proportional to the absolute temperature according to the 

Rayleigh-Jeans formula. Subsequently, T  can be written as a superposition of weighted 

temperatures of individual layers [111]. In general, the brightness temperature can be 

calculated from the spectral intensity of the structure obtained from either the direct or 

indirect method, and can be expressed as [112] 
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           (4.11)  

Besides spectral directional emissivity and spectral intensity, direct method offers 

a way to calculate other important physical quantities in analyzing thermal emission as 

well, such as spectral energy density and local density of states [1,59,113]. The spectral 

energy density of the electromagnetic field in a nonabsorbing layer k (which can be 

vacuum or a lossless dielectric medium) due to the emission from layer j is given as [1] 

          0 0( )
, , , , ,

4 4

k
jk j j j ju

   
         x E x E x H x H x  (4.12) 

where ( )k   is the dielectric function of the kth layer. The spectral energy density can be 

understood as the electromagnetic energy per unit volume per unit angular frequency, and 

is the product of the local density of states ( )jkD   and the mean energy of the Planck 

oscillator, thus, 

     ( , )jk jk ju D T                (4.13) 
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Here, ( )jkD   represents the number of modes per unit frequency interval per unit 

volume. It should be noted that the energy density and LDOS in a nonabsorbing layer is 

independent of z for propagating waves. In other words, the energy density or LDOS is 

uniform inside the kth layer. In the near field where evanescent waves exist, energy 

density or LDOS is strongly dependent on the location z near the surfaces/interfaces 

[114]. Since ( )jkD   is integration over all the ’s, it can be written in a form similar to 

Eq. (2.10) as 

  
/

0
( , )

c
jk jkD X d


                   (4.14) 

where ( , )jkX    can be evaluated using the dyadic Green’s function between the jth and 

kth layer [15,53,58,68], similar to the exchange function ( , )jZ   mentioned previously. 

Let ( , )jkD    be the LDOS per unit solid angle so that 

2 /2

0 0
( , )sinjk jkD d D d

 
       . It can be shown that 
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
            (4.15) 

By definition, the unit of ( , )jkD    is [m
3

 s rad
1

 sr
1

]. The definition of LDOS in terms 

of the solid angle is important for the study of anisotropic thermal emission in a given 

direction. 

Thermal emission from an asymmetric Fabry-Perot resonance cavity as shown in 

Fig. 2.1 is taken as an example of layered structures with nonuniform temperature. This 

structure exhibits coherent emission characteristics [63] and may have applications in 

advanced energy systems. The thicknesses are taken as f 21nmd   and c 622 nmd  [63]. 
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The dielectric functions of Au and SiO2 are taken from Palik [83] at room temperature 

and are assumed to be independent of temperature for the convenience of calculation. In 

the considered frequency (or wavenumber) range from 3000 cm
1

 to 13000 cm
1

, SiO2 is 

essentially lossless and the emission from SiO2 is negligible. In the simulation, it is 

assumed that the top Au film and the bottom Au layer are each at a uniform temperature 

with 1 800 KT   and 2 1000 KT  , respectively. This is a reasonable assumption due to 

the high thermal conductivity of Au and the low thermal conductivity of SiO2. A 

relatively large value is chosen for the illustration purposes. 

The contribution from each emitting layer to the spectral intensity of the Fabry-

Perot resonance cavity can be calculated from the direct method. The spectral intensities 

from top and bottom Au films calculated from Eq. (4.4) are shown in Fig. 4.13 at 

0 deg  , along with their sum that represents the intensity emitted by the layered 

structure according to Eq. (4.10). The blackbody intensities at 800 K and 1000 K are also 

plotted for comparison. In this spectral region, the intensity decreases with increasing 

frequency according to Planck’s law. All the emission spectra contain two peaks at 

wavenumbers slightly higher than 5000 cm
1

 and 10000 cm
1

, respectively, while the 

spectrum for the thin Au film exhibit a minimum near each peak. The sharp peaks in the 

spectral emission are associated with the temporal coherence as discussed extensively 

previous sections. The intensity from the bottom Au layer dominates at both peaks due to 

its higher temperature. 

The spectral directional absorptivity in each layer can be calculated from Eq. (4.8) 

based on the indirect method at an arbitrary angle of incidence, and is exactly the same as 

the corresponding spectral directional emissivity calculated from Eq. (4.5), i.e., the direct 
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Figure 4.13 Calculated normal spectral intensity emitted by the Fabry-Perot structure 

shown in Fig. 2.1 from the direct method. Note that f 21nmd   and  1 800 KT 
 
for the 

thin Au film, c 622 nmd   for the SiO2 cavity, and 2 1000 KT   for the bottom Au film. 

 

method. The spectral intensity in Fig. 4.13 can be also obtained from the indirect method 

by multiplying the absorptivity with the blackbody intensity since the spectral  directional 

absorptivity equals the emissivity at each layer. Figure 4.14(a) shows the emissivity (or 

absorptivity) spectra at normal incidence for the top and bottom Au films along with that 

of a 200-nm Au film that can be treated opaque. The emissivity spectra show 

peaks/valleys similar to the intensity spectra. However, the top Au film has higher peak 

emissivity values of 0.59 and 0.68, compared with 0.25 and 0.32 for the bottom Au layer. 

If the temperature were uniform, then the contribution of the thin Au film would be twice 

as large as that of the opaque Au layer. As shown in Fig. 4.14(a), the normal emissivity 
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Figure 4.14 (a) The spectral normal absorptivity from the indirect method (or emissivity 

from the direct method) of each Au film in the Fabry-Perot structure, and that of a free-

standing Au film; (b) the spectral directional absorptivity (or emissivity) as a function of 

emission angles for both polarizations at a wavelength of 900 nm. 
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of an opaque Au film is between 0.18 and 0.30. With the addition of the SiO2 and of the 

thin Au film on top of it, the emissivity of the opaque Au layer is significantly modified. 

This suggests that the emissivity or absorptivity is not an intrinsic property of the material, 

but is strongly dependent on the geometry and other materials in the structure. 

Figure 4.14(b) plots the directional dependence of the emissivity (or absorptivity) 

for both polarizations at a wavelength of 900 nm. As is shown, the emissivity for both top  

and bottom Au layers is enhanced within confined emission angles, around 36º for TE 

waves and 40º for TM waves. Similar to the spectral dependence shown in Fig. 4.14(a), 

the top Au film exhibits higher peak emissivity than the bottom Au layer for both 

polarizations. The emissivity peaks are sharper for TE waves than that for TM waves, 

which is because the polarization-dependent reflectivity at the interfaces of the Au film is 

larger for TE waves, as discussed in Section 4.2. 

 

Figure 4.15 Calculated LDOS inside the SiO2 cavity at 0 deg   for contributions from 

the top Au film and bottom Au layer. 
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 The emission peaks can be understood by wave interferences inside the SiO2 

optical cavity. In near-field radiation, LDOS is often used to explain the surface wave 

resonance [114], but has never been used to study the interference effect or bulk 

polaritons [81]. The LDOS inside the SiO2 film calculated from Eq. (4.15) are plotted in 

Fig. 4.15 at different wavenumbers at normal direction for the same Fabry-Perot structure. 

It should be noted that at 0 deg  , the LDOS of planar structures is independent of the 

polarization states. Hence, the result is true for both TE and TM waves. The two curves 

correspond to the contributions to the LDOS by the thin Au film and by the opaque Au 

layer, respectively. Since the material properties are assumed to be temperature 

independent, the LDOS is not a function of temperature. It can be seen that the two peaks 

in the LDOS match well with the spectral emission peaks. Nearly two orders of 

magnitude enhancement in LDOS exists in the SiO2 cavity near 5000 cm
1

 and 10000 

cm
1

, suggesting that the increase in LDOS is associated with the emission peaks. It is 

interesting to notice that the LDOS in SiO2 contributed by the top Au film layer has no 

dips, unlike the emissivity or emission spectrum. Additional calculations indicate that the 

LDOS in vacuum (not shown in the figure) originating from an emitting layer j is 

proportional to 2
, j  . Hence, the spectral intensity and energy density are proportional 

to each other in vacuum as expected for far-field thermal radiation. It should be noted that 

only the propagating waves are considered in the calculation of LDOS. 

Another parameter to characterize thermal emission is the brightness temperature 

or radiance temperature [1,2,52,55]. Figure 4.16(a) plots the spectral dependence of 

brightness temperature at 0 deg   calculated according to Eq. (4.11). The brightness 

temperature increases with frequency in general, with two peaks of 871 K near 5000 cm
1
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Figure 4.16 The brightness temperature calculated for the Fabry-Perot structure: (a) as a 

function of wavenumbers at 0 deg  ; (b) as a function of emission angles for both 

polarizations at a wavelength of 900 nm. 
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and 932 K near 10000 cm
1

. The first peak is sharper than the second one, similar to the 

intensity spectrum shown in Fig. 4.13.  

 The directional dependence of the brightness temperature is calculated at the 

wavelength of 900 nm for both TE and TM waves, as shown in Fig. 4.16(b). The 

brightness temperature increases with emission angle from 744 K (at 0 deg  ) up to a 

peak value of 935 K or so for both polarizations. The peak location corresponds to the 

peak intensity of the layered structure and is different for different polarizations. Note 

that the brightness temperature for TE waves exhibits a sharper peak at smaller emission 

angles. At 40 deg  , the brightness temperature for TE waves is much smaller than that 

for TM waves. The brightness temperature finally reduces to zero at the grazing angle for 

both polarizations. 
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CHAPTER 5 

MAGNETIC POLARITONS IN GRATING 

MICRO/NANOSTRUCTURES 

 

This Chapter theoretically investigates the role of magnetic resonance in tailoring 

the radiative properties, such as extraordinary optical transmission and coherent thermal 

emission. To begin with, Section 5.1 clarifies the physical mechanism of magnetic 

polaritons (MPs) rather than coupled SPPs or Fabry-Perot-like cavity resonance on 

resonant transmission or absorption in 1D simple metallic grating structures. Section 5.2 

further elucidates the effect of MPs in double-layer slit arrays to achieve extraordinary 

optical transmission at specific wavelength, and the displacement effect is discussed as 

well. Based on the similarity between metals and polar materials, MPs can be excited 

with the assistance of phonons to control radiative properties at infrared regime in grating 

structures made of SiC, which is discussed extensively in Section 5.3. With the gained 

fundamental understanding, Section 5.4 proposes a coherent thermal emitter with spectral 

selectivity by placing a dielectric spacer between a metallic grating layer and a metallic 

film, where MPs can be excited. With the unique characteristic of MPs, Section 5.5 

designs a thermal radiator particularly for TPV applications with wavelength selectivity 

and directional insensitivity, which are highly desired in TPV systems to improve 

conversion efficiency and power throughput. In this Chapter, RCWA is used to 

rigorously calculate the radiative properties of different grating structures, where LC 

models are employed to predict the magnetic resonance conditions. The behavior and 

physics with the MPs are extensively discussed from field distributions and dispersion 

relations, and geometric effects on the MPs are studied as well.   
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5.1 Resonant Transmission/Absorption through Simple Metallic Gratings 

Consider a 1D binary grating surrounded by vacuum as depicted in Fig. 2.6(b), 

with a height h , period  , and slit width b  (or the strip width w b  ) [115]. A TM 

wave of wavelength  is incident at a polar angle  . Rigorous coupled-wave analysis 

(RCWA) is used to compute the reflectance R and transmittance T, and the absorptance is 

1 R T    . Figure 5.1(a) shows the contour plot of the sum of the absorptance and 

transmittance, i.e., 1 R , in the frequency range from 2,500 to 25,000 cm
1

 for a Ag 

grating with 400 nmh  , 500 nm  , and 50 nmb  . The region outside the light line 

in the lower-right corner is left blank. The bright bands, at which the reflectance is 

minimal, indicate resonance behavior. Figure 5.1(b) plots R, T and  for the same 

structure at normal incidence. It can be seen that the reflectance minimum is 

accompanied by the maxima in T and . The first two resonances, denoted by MP1 and 

MP2, are the fundamental mode and the second harmonic of magnetic polaritons. The 

next mode is a SPP, followed by the third magnetic polariton, MP3. It appears that the 

excitation of MP1 results in large transmittance. As the order of MP gets higher, the peak 

absorption increases, while the transmittance enhancement is weakened. This was also 

shown similarly in Refs. [40,116]. As seen from Fig. 5.1(a), MP2 and MP3 for this 

structure interact strongly with SPP excited at the interfaces between the grating and 

vacuum. As a consequence, MP3 is not clearly observed in Fig. 5.1(b). Because R has the 

largest contrast, 1 R  is chosen to show the polariton dispersion relation.  
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Figure 5.1 (a) Contour plots of the sum of absorptance and transmittance (i.e., 1–R) for a 

Ag grating with period = 500 nm, h = 400 nm, and b = 50 nm. Triangle marks indicate 

the frequency of the fundamental mode predicted by the LC circuit model according to 

Eq. (2.30). (b) The radiative properties at normal incidence for TM waves for the same 

structure. 
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The SPP dispersion shown in Fig. 5.1(a) is essentially an inclined line close to the 

light line and then bended due to the Bloch-Floquet condition in the gratings [1]. On the 

other hand, the nearly flat magnetic polariton curves are similar to those observed for 

double-layer gratings or gratings over a film [117]. The difference is a 90° rotation of the 

polar angle  . These flat dispersion curves cannot be explained by coupled SPPs or the 

cavity-like resonance. Due to the oscillating magnetic field in the y-direction, an electric 

current is induced in the x-z plane, resulting in a diamagnetic behavior. The magnetic and 

electric field distribution is similar to that shown in Ref. [3] and will be discussed in 

detail in sequent sections. The field distribution reveals that, at the resonance, the 

magnetic field is strongly localized inside the slit between two neighboring metallic strips, 

and the induced electric current flows along the metal surface. It is worth mentioning that, 

due to the interaction of MP and SPP, the curves of MP2 and MP3 in Fig. 5.1(a) split into 

two branches and are not always flat, especially near intersections with the SPP curve.  

The periodic oscillations in the spectral property look indeed like the Fabry-Perot 

cavity resonance [63]. However, as elaborated below, it is the magnetic polariton that can 

offer a quantitative explanation of the resonance condition. Equivalent optical nanocircuit 

theory has been established as a useful tool for the design and analysis of metamaterials 

[73]. Since the strip width is much larger than the penetration depth , the LC circuit 

model for two parallel strips discussed in Section 2.4 can be employed to predict the 

magnetic resonance frequency for the fundamental mode. Based on Eq. (2.30), the 

resonant condition at MP1 for the structure is calculated and presented as triangles in Fig. 

5.1(a). Clearly, the prediction by LC model matches well that from RCWA calculations. 
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Figure 5.2 Demonstration of the geometric effects on the magnetic resonance conditions: 

(a) grating height effect, (b) grating period effect, and (c) slit width effect. Triangle marks 

are calculated from the LC circuit model in Eq. (2.30). 
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The geometric effects on the resonance conditions are illustrated in Fig. 5.2 for 

Ag gratings by individually changing h,   or b from the base parameters given in Fig. 

5.1, while fixing the other two. The contour plots show 1 R  at normal incidence. When 

the grating height is varied, five MPs can be observed in Fig. 5.2(a), and their resonance 

frequencies decrease as h increases. Moreover, SPP is excited about 20,000 cm
1

 that is 

nearly independent of h, as the SPP excitation frequency should not change for fixed 

grating period and incidence angle. Because SPP interacts with all five MPs, the 

resonance frequencies for both SPP and MPs shift near the intersections. The calculated 

resonance frequencies by LC circuit model for the fundamental mode at several h  values 

are depicted as triangles, which match well with the RCWA result for the dispersion 

curve of MP1. Hence, the height dependence of enhanced transmission or absorption can 

be fully explained by MPs. On the contrary, neither coupled SPPs nor Fabry-Perot-like 

resonance models could quantitatively describe the dispersion of MPs. The relatively 

large error at 0.2μmh   is mainly caused by the strong interaction with the SPP. The 

inverse proportionality between resonance frequency R  and the grating height h  can be 

deduced from Eq. (2.30). In addition, nearly evenly spaced MP dispersion curves suggest 

that the higher-order harmonics can be predicted by multiplying R  by the order number.  

Figure 5.2(b) shows the effect of the grating period on the resonance condition by 

changing   while fixing b. Note that this can also be viewed as the strip width effect 

since w b   also changes. While the period has a strong effect on SPP frequency, the 

MP resonance frequency is not affected by   and w. Furthermore, the result from the LC 

circuit model, again represented by the triangle marks, agrees well with the dispersion 

curve for MP1. As mentioned before, as long as the metal strip width w  is much greater 
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than the penetration depth  , it has little effect since the radiation from both the left and 

right sides cannot penetrate through the strip. Hence, the coupling of localized magnetic 

polaritons between neighboring slits can be neglected. This is also the reason why the 

previous analysis for a single slit can apply to periodic subwavelength slit arrays [37,40]. 

In addition, as   further increases, another SPP curve emerges due to the second 

diffraction order of the gratings. The two SPP branches are indicted as SPP1 and SPP2 in 

Fig. 5.2(b). The higher orders of magnetic resonance, MP2 and MP3, are truncated by 

SPP1 and SPP2, and hence, their resonance conditions are altered. Even for MP1, it 

begins to shift towards lower frequencies for 0.6μm  , where the interaction with SPP 

becomes stronger. For small grating period, say 100 nm  , w is so small that radiation 

can penetrate through the gratings, resulting in high transmittance.  

The effect of slit width on the magnetic resonance is shown in Fig. 5.2(c).  Since 

the period is kept as 500 nm, the SPP curve is nearly flat around 20000 cm
1

, except that 

it is truncated into several sections due to the interaction with MPs. Although Fabry-

Perot-like model considers the slit width dependence [37], the predicted resonance 

frequency decreases as b increases. When b approaches zero, the predicted resonance 

frequency is the highest and equal to the uncorrected Fabry-Perot frequency. From Fig. 

5.2(c), the resonance frequency for MPs decreases dramatically as the slit width is 

reduced to zero. Microwave measurements have confirmed that the resonance frequency 

should decrease as b decreases for very narrow slit [40]. Clearly, the resonance 

conditions predicted by the LC model compare well with the dispersion curve. However, 

the LC circuit model starts to deviate from the RCWA calculation for 350 nmb  . This 

is because the period is fixed at   500 nm. Further increasing b results in a relatively 
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small w, and thus, the coupling of magnetic polaritons between neighboring slits may 

become significant. In practice, the gratings need to be fabricated on a dielectric substrate, 

which will slightly modify the dispersion relations of MPs and introduce an additional 

SPP mode between the grating and the substrate.  

 

5.2 Extraordinary Optical Transmission in Double-Layer Nanoslit Array 

In this section, the thermal radiative properties of aligned double-layer nanoslit 

arrays, shown in Fig. 5.3(a), are numerically studied with the RCWA algorithm in the 

frequency range from 2,500 cm
1

 to 25,000 cm
1

 [118]. The whole structure is assumed 

to be infinitely extended in the y direction. Silver is selected as the material for the strips 

and SiO2 is used for the dielectric spacer. Note that d is the thickness of the spacer.  

 

Figure 5.3 (a) Schematic of an aligned double-layer nanoslit array made of Ag with SiO2 

dielectric spacer; (b) cross-sectional view of a misaligned nanoslit array with a lateral 

displacement . 
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The radiative properties at normal incidence are discussed first as well as the 

comparison with the structure without the spacer. With the aid of electric and magnetic 

field distributions, the behavior at the enhanced transmission or absorption associated 

with the excitation of magnetic resonances is presented. The dispersion relations are 

depicted in contour plots to illustrate the behavior of MPs at oblique incidence. The LC 

model is used to verify the magnetic resonance. The effect of a lateral displacement  in 

misaligned nanoslit arrays, as shown in Fig. 5.3(b), is discussed as well. 

5.2.1 Radiative Properties at Normal Incidence 

The grating period is taken as  = 500 nm and the width of strips is set to be w = 

350 nm. The two nanoslit layers have identical thickness of h = 70 nm and are separated 

by a distance d = 30 nm with the SiO2 spacer. Only TM waves are considered here. 

Figure 5.4(a) shows the radiative properties of the structure at normal incidence 

calculated from the RCWA. Large variations exist in the calculated radiative properties, 

predominantly with reduced R and enhanced  or T at certain frequencies, such as around 

5,286 cm


, 14,670 cm


, 17,156 cm

 and 20,000 cm


 (corresponding to absorption 

peaks). The one at 20,000 cm


 is due to the excitation of SPP at the air/Ag interface, 

which has been discussed in Section 2.5. The enhanced absorption and/or transmission at 

several other frequencies can be explained by the excitation of different MP modes, 

marked as MP1, MP3, and CMP (coupled MP to be discussed later) in Fig. 5.4(a). 

Detailed description and explanation of MPs in double-layer nanoslit arrays are given in 

the following subsections by means of electromagnetic field distributions, dispersion 

relations, as well as the equivalent LC circuit model. 
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Figure 5.4 Radiative properties at normal incidence. (a) A double-layer nanoslit array 

with the following parameters: 500 nm  , 350 nm,w   70 nmh  , and 30 nmd  ; 

(b) A single-layer nanoslit array with the same grating period, width, and height. 

 

Figure 5.4(b) shows the calculated radiative properties of a single-layer nanoslit 

array with the same , h, and w as for Fig. 5.4(a). The comparison of Figs. 5.4(a) and 

5.4(b) demonstrates how MPs change the radiative properties in the double-layer nanoslit 

array with great absorption/transmission enhancement at certain frequencies. For instance, 
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at 14,670 cm


 where MP3 is excited, the transmission is enhanced by six times with the 

addition of another layer to the single layer. It is worthy of mentioning that MPs can also 

be excited in the single-layer nanoslit array, because the magnetic field can be strongly 

localized in the gap between neighboring metal strips, as discussed in Section 5.1. Here, 

gap magnetic polariton (GMP) is used for the mode at 18,640 cm
1

. Multiple GMPs with 

different anti-nodes of the magnetic field can be excited in deep nanoslit arrays. 

Moreover, the absorption peak due to SPP also exists at 20,000 cm


 in the single-layer 

nanoslit array since the period is not changed. 

 

5.2.2 Field Distribution at Magnetic Resonance 

The electromagnetic field distributions at the magnetic resonance frequencies are 

calculated with RCWA, as shown Fig. 5.5, to help understand the physical mechanisms. 

The metallic strips and dielectric spacer with two unit cells are delineated in the figure. 

Note that waves are incidence normally from the top to the bottom. The shaded contour 

(color online) represents the logarithmic of the square of the magnetic field, and arrows 

indicate the electric field vectors. The circles/ovals indicate the current loops with arrows 

pointing the electric field direction. 

Figure 5.5(a) shows the field distribution at 5,286 cm


, corresponding to MP1. 

There exists strong magnetic field confinement in the dielectric spacer between the upper 

and lower Ag strips, around an order of magnitude greater than that of the incident wave.  

The electric vector loop suggests the diamagnetic behavior as an eddy current induced by 

oscillating magnetic fields. By virtue of the eddy current in the metallic strip (near the 

surfaces adjacent to the dielectric), positive and negative charges are accumulated at two 
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ends, where the magnetic field decays much faster into the strips than at the center. Since 

only one anti-node of the magnetic field is formed between the upper and lower Ag strips 

in a unit cell, the magnetic resonance at this frequency is characterized as the 

fundamental mode or the first-order MP. 

 

Figure 5.5 Electromagnetic field distributions at different resonance frequencies in the 

nanoslit array at normal incidence: (a) MP1 at 5,286 cm


; (b) MP3 at 14,670 cm


; (c) 

CMP at 17,156 cm

 (d) SPP at 20,000 cm


. The contour represents the logarithmic of 

the square of magnetic field, arrows indicate electric field vectors, and loops illustrate 

induced electric currents. 

 

Figure 5.5(b) shows the field distribution at 14,670 cm


. Three current loops with 

alternating directions, corresponding to the anti-nodes of magnetic field, are induced in 

the spacer. This indicates a third harmonic MP mode, denoted as MP3. The maximal 
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transmission associated with MP3 in the double layer of slits is about 6.6 times of that in 

a single layer of slits at the same frequency. It should be noted that transmission can also 

be suppressed to near zero by magnetic resonances at specific frequencies, as can be seen 

from Fig. 5.4(a).  

At 17,156 cm

where the third absorption peak occurs, an additional anti-node of 

magnetic field is formed, as indicated in Fig. 5.5(c), with a current loop in the gap 

between the left and right Ag strips. Consequently, the term coupled magnetic polariton 

(CMP) is cast to indicate this specific mode since anti-nodes exist both in the gap 

(between left and right Ag strips) and in the spacer (between upper and lower Ag strips).  

It should be pointed out that the electromagnetic field distribution for the SPP is 

totally different from those of MPs. SPPs are essentially the coupling between the 

incident electromagnetic waves with collective excitations of charges such as electrons 

near the surface of a metal. The field associated with SPP is localized at the 

dielectric/metal interface, and the amplitude decays away from the interface into both the 

metal and dielectric (which can be air) medium. As shown in Fig. 5.5(d), where SPP is 

excited between air and the Ag grating, the field amplitude decays into the metal at both 

top and bottom air/Ag interfaces. The comparison of the field distributions reveals the 

distinct characteristic of MPs, that is, the field amplitude decays from inside out, since 

MPs are strongly localized between metal strips in the spacer (or the gap).  

The energy density distributions at the magnetic resonance frequencies 

corresponding to MP1 and MP3 are shown in Figs. 5.6(a) and 5.6(b), respectively. The 

energy density, calculated in air and the dielectric, is shown as the contour. The arrows 

represent the Poynting vectors, which indicate the direction of energy flow. The method 
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Figure 5.6 Energy density in the nanoslit array outside the Ag strips: (a) MP1 at 5,286 

cm


, and (b) MP3 at 14,670 cm


. The contour represents energy density and arrows 

stand for Poynting vectors. 

 

for calculating the energy density and Poynting vector can be found from Refs. [16,119]. 

As the electromagnetic energy is transmitted through the double-layer nanoslit array, a 

large amount of energy is trapped in the spacer between the metal strips. The energy 

density is localized and can be two orders of magnitude higher than that of the incident 

wave. The strong confinement of the energy density agrees well with the observed 
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electromagnetic field distribution. This results in strong absorption at the magnetic 

resonances. In terms of transmission, there exist a maximum and a minimum about each 

MP, as seen from Fig. 5.4(a). 

 

5.2.3 Dispersion Relation 

The spectral-directional absorptance and transmittance of the same structure as for 

Fig. 5.4(a) is shown in Fig. 5.7(a) and 5.7(b), respectively, as contours in the kx 

coordinates. The dispersion relation offers rich information regarding the effects of SPP 

and MPs on the radiative properties of nanoslit arrays.  

The SPP dispersion curve, which can be predicted by coupling Eq. (2.33) with the 

grating equation, matches well with the inclined narrow band shown in Fig. 5.7(a). Note 

that the SPP dispersion curve is close to the light line and then folded into the region 

/xk    according to the Bloch-Floquet condition. SPP induces notable directional 

dependence and spectral selectivity. Other dispersion curves with somewhat broader 

absorption peaks are attributed to the excitation of MPs with different modes. Based on 

the absorption spectrum at normal incidence, MP1, MP3, and CMP modes can be easily 

identified, while the second (MP2) and fourth (MP4) harmonic modes are only seen at 

oblique incidence. The lack of even harmonic modes at normal incidence may be 

attributed to the symmetric field distribution between the upper and lower Ag strips, 

leading to zero net current from the two opposite current flows. The flat MP dispersion 

curves, especially as seen for MP1, is a unique characteristic of MPs. The flat dispersion 

curve suggests that the resonance frequency is a weak function of kx or the incidence 

angle. Note that  the dispersion  curves of  MP2  and  MP3 are split  and  that  of  CMP is 



101 

 
Figure 5.7 Contour plots of the spectral-directional (a) absorptance and (b) transmittance 

as a function of frequency and the x-component wavevector (kx dispersion relation) for 

a nanoslit array with the same parameters as those for Fig. 5.4(a). 

 

suppressed at certain  and kx due to the intervening of SPP. The insensitiveness to the 

incidence angle can be understood in terms of diamagnetic response. As long as an 
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oscillating magnetic field exists along the slits (y direction), no matter what angle the 

electric field is incident on a double-layer nanoslit array, the electric currents can be 

induced near the surfaces of the metal strips (x-z plane) to excite the magnetic resonance. 

Theories like coupled SPPs or coupled evanescent waves cannot fully account for the 

unusual spectra at oblique angles. 

Bright bands in the contour plot of Fig. 5.7(b) indicate enhanced transmission 

around MPs. This is more prominent for MP3, where a spectral broadening of the 

enhanced transmission is achieved and the resonance frequency is insensitive to the 

incidence direction. However, dark bands indicating suppressed transmission are also 

seen, suggesting that MPs work in both ways. The transmittance can be enhanced to as 

high as 0.85 or suppressed to near zero at certain frequencies. Therefore, MPs are one of 

the main physical mechanisms behind the extraordinary optical transmission in double-

layer nanoslit arrays. Owing to their unique characteristic of directional independence, 

MPs may have promising applications in direction-sensitive optical devices, where SPP 

cannot be implemented. Moreover, MPs hold broader absorption or transmission bands 

than those associated with SPPs, and may be advantageous in applications of broadband 

absorption or transmission. In practice, the considered structure can be fabricated on SiO2 

substrate, and the gap in the bottom layer of slit can be filled with SiO2 rather than air. A 

similar structure embedded in SiO2 has already been fabricated by Chan et al. [41]. 

 

5.2.4 The LC Circuit Model and Geometric Effect 

Although the electromagnetic field distribution provides illustrative explanation 

of magnetic resonances, quantitative evidences are required to further support the 
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argument. In this section, an equivalent LC circuit is employed to describe the electric 

current flow for the fundamental mode (MP1) in double-layer nanoslit arrays such that 

the magnetic resonance frequency can be analytically predicted from the circuitry 

impedance analysis.  

 

Figure 5.8 An equivalent LC circuit model the double-layer nanoslit array for the 

prediction of the magnetic resonance condition of the fundamental mode: (a) original 

circuit corresponding to the periodic structure, (b) simplified circuit for a unit cell. 

Arrows indicate the current flow direction. 

 

The LC circuit method has provided researchers an effective way to find the 

magnetic or electric resonance conditions in micro/nano structures [75]. Figure 5.8(a) 
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shows the equivalent LC circuit for the considered periodic structure where magnetic 

resonance occurs. Note that in the figure, the LC circuit is periodic and infinitely 

extended to the both sides, whereas the arrows represent electric current flows in a unit 

cell of the double-layer nanoslit array. Here, Lm,2, the inductance of two parallel plates 

separated by a distance d, has a similar form of Eq. (2.27) as 

 0
m,2

0.5 wd
L

l


  (5.1) 

The contribution of drifting electrons cannot be neglected for the nanometer structure and 

is given by  

 e,2 2
0 p

w
L

A 
  (5.2) 

where A  is the cross-sectional area of the metal strip for current flow. When h  , 

A hl ; but when h  , an effective cross-sectional area A l  should be used. Here, 

  is set to be 13 nm for simplicity because it only varies by ±1 nm in the considered 

frequency range. The parallel-plate capacitance between the upper and lower Ag strips is  

 1 d 0
m,2

c wl
C

d

 
  (5.3) 

The parallel-plate capacitance Cg is used in the present study to account for the 

contribution of the air gap between the left and right Ag strips, viz.  

 0
g

hl
C

b


  (5.4) 

Due to the periodicity, location 1 and 2 are equivalent such that they can be merged 

together, so are location 3 and 4. As a result, the periodic circuitry is simplified to a 

closed one as Fig. 5.8(b). Note that, the impedance associated with Cg is parallel to that of 



105 

(Lm,2+Le,2) and their combination is in series with the impedance of Cm,2. After electric 

impedance analysis, the total impedance for the closed circuitry can be expressed as  

 
 
 
m,2 e,2

tot,2 2
m,2g m,2 e,2

2 2

1

i L L i
Z

CC L L






 

 
 (5.5) 

The magnetic resonance occurs when Ztot,2 = 0, so the magnetic resonance frequency of 

the fundamental mode can be obtained as 

 R,2

m,2 e,2 m,2 g

1

( )( )L L C C
 

 
  (5.6) 

Since the inductances Lm,2 and Le,2 are inversely proportional to l while the capacitances 

Cm,2 and Cg are proportional to l, ωR,2 is independent of the strip length l. 

Based on Eq. (5.6), the resonance frequency of MP1 in the double-layer nanoslit 

array with the same parameters as those for Fig. 5.4(a) is predicted as 4,845 cm
1

, which 

has a relative difference of 8.3% compared to the RCWA calculation. Considering the 

approximations made in the RCWA with regards to c1 and A, this agreement is 

reasonable. Further comparisons are made between RCWA and the LC model by varying 

the geometric parameters as discussed in the next following.  

The geometric effects on the magnetic resonance conditions are illustrated in Fig. 

5.9 by individually changing w, b, d, or h from the base values given in Fig. 5.4(a). Note 

that changing either w or b will affect the period . The contour plots show the 

absorptance  at normal incidence calculated from the RCWA method. The calculated 

ωR,2 from the LC model are depicted as filled triangles in Fig. 5.9. Note that the LC 

circuit model can predict the magnetic resonance condition for the fundamental mode but 

not the absorptance. 



106 

 

Figure 5.9 Geometric effects on the magnetic resonances in the aligned double-layer 

nanoslit array indicated by the contour plots of spectral-directional absorptance at normal 

incidence as a function of frequency  and one varying geometric parameter: (a) strip 

width w; (b) slit width b; (c) spacer thickness d; (d) grating height h. Green triangles 

indicate the MP resonance frequency calculated from the LC circuit model for the 

fundamental mode. 

 

As shown in Fig. 5.9, the calculation of the resonance frequencies of MP1 based 

on the LC model generally agree with the RCWA results. In Fig. 5.9(a) where the strip 

width effect is examined, the reduction of resonance frequency with increasing w shown 

by the contour plot confirms the prediction from the LC model. Note that increasing w 

will result in an increase in Lm,2, Le,2, and Cm,2. At large strip width, say 600 nmw   

where Cm,2 is 18 times larger than Cg, the latter can be neglected and thus ωR,2 becomes 
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inversely proportional to w. The higher-order MPs, SPP, and CMP curves are also 

indicated in Fig. 5.9(a). Recall that the even-order harmonic modes of MPs cannot be 

excited at normal incidence due to symmetry. Since Cg accounts for the electromagnetic 

interaction between neighboring unit cells, negligible Cg suggests the decoupling between 

unit cells. As a result, the resonance frequency for the m
th

-order MPs can be estimated by 

( )
R,2R

m
m  . From the RCWA calculation, the ratio of the resonance frequencies 

between MP3 and MP1 is 2.78 for 350 nmw   and 2.95 for 600 nmw  . However, 

since Cg is comparable to Cm,2 for small w, the inverse proportionality between the 

resonance frequency and w does not hold due to the strong coupling across the gap.  

 The effect of slit width on the resonance frequency of MP1 is shown in Fig. 5.9(b). 

Since the gap capacitance Cg is inversely proportional to the slit width b, ωR,2 will 

increase with b. On the other hand, for b further increases, Cg becomes negligible 

compared to Cm,2; therefore, the dependence of ωR,2 on b diminishes. The slit width is 

directly related to the coupling between the left and right strips. The further apart the 

strips, the weaker the interactions between neighboring unit cells. When 200 nmb  , Cg 

is one fifteenth of Cm,2. The trend of the resonance frequency of MP3 is similar to that of 

MP1 with nearly triple the frequency. From Figs. 5.9(a) or 5.9(b) one can see that the 

SPP frequency decreases with increasing w or b, as a result of increasing grating period. 

Figure 5.9(c) illustrates the effect of spacer thickness d. The resonance frequency 

of MP1 rapidly increases with d for d < 50 nm, but then the trend slows down with 

further increase in d. Note that for very small d, e,2 m,2L L  and m,2 e,2C C ; hence, 

ωR,2 will increase with d. For sufficiently large d on the other hand, e,2 m,2L L  and 
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m,2 gC C ; therefore ωR,2 will decrease with increasing d. Calculations show that there is 

a plateau in ωR,2 for 50 nm < d < 150 nm. Besides, for large d, the absorptance values 

corresponding to MPs are significantly reduced due to the weak electromagnetic coupling 

across thick spacers. The excitation frequency of the SPP at the air/Ag interface remains 

around 20,000 cm


 when d is changed. The SPP curves are truncated due to the 

interaction between the SPP and other resonance modes. When d > 100 nm, SPP between 

Ag and SiO2 as well as bulk polaritons (guided waves) inside the SiO2 layer between the 

gratings can be excited in the frequency region of interest. Since the present study 

focuses on magnetic resonances, these modes are not plotted in Fig. 5.9(c). Note that 

CMP mode can be identified based on the resonance frequency in Fig. 5.4(a) with the 

base parameters. Furthermore, GMP mode appears with small spacer thickness or thick 

nanoslit layers. At d = 0, the double-layer nanoslit array reduces to a single-layer nanoslit 

array with a thickness of 140 nm, whose GMP mode occurs at 16,544 cm
1

. It should be 

noted that coupled SPP between the SPPs at the Ag/SiO2 interfaces does not appear in the 

considered spectral range. 

The effect of grating height (or nanoslit layer thickness) h is presented in Fig. 

5.9(d). The contour plot of  shows that the resonance frequency of MP1 increases 

rapidly for thin nanoslit layers and, after reaches a maximum, decreases gradually for 

thicker nanoslit layers. The LC model predicts the correct trend but with some 

discrepancies especially for small h values. For   h < , m,2 gC C  and e,2 m,2L L . The 

dependence of ωR,2 on h arises from the inverse proportionality between e,2L  and A with 

a relation of R,2 h  . But for h  , A and Le,2 are taken as independent of h. Hence, 



109 

ωR,2 will slightly decrease as h further increases due to the increase of gC . Note that 

m,2 gC C within the considered range of h. In the LC model calculation, it is simply 

assumed that the electric current only flows within the depth of  away from the metal 

surface when h   or within the entire thickness h otherwise. As a matter of fact, due to 

the nonuniform charge distribution from the surface into the metal, the assumption seems 

to underpredict the average current depth for h   and overestimate it for h  , leading 

to the deviation from the RCWA calculation. This explains why the resonance 

frequencies of MP1 are underestimated by the LC model in most cases as compared with 

the contour plots obtained from RCWA shown in Fig. 5.9. Besides, the accuracy of the 

LC model is subject to the approximation of the factor c1. As discussed previously, the 

resonance frequency of MP3 can be estimated by triple that of MP1 when Cg is negligibly 

small. This agrees well for small h as shown by the contour in Fig. 5.9(d). However, as 

grating height increases, MP3 becomes weak for h > 70 nm and its resonance frequency 

drops quickly since Cg becomes comparable to Cm,2. In fact, LC circuit can also be used 

to model the electric current loops for MP3 mode, but its resonance condition is not as 

easy to solve as MP1 from the circuitry impedance analysis. The faster descending MP3 

curve may be attributed to the more dominant role of Cg in determining the resonance 

frequency than that for MP1. In addition, GMP emerges for h > 140 nm and can interact 

with CMP to enhance absorption around h = 180 nm at some specific frequencies. 

 

5.2.5 Lateral Displacement Effect 

The alignment between the layers in a double-layer nanoslit array can 

significantly affect the radiative properties and may be a useful way in controlling the 
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radiative properties in practice [41]. Figure 5.10 shows the contour plots of normal 

absorptance and transmittance in terms of the frequency  and the normalized lateral 

displacement /. The results are calculated with RCWA based on the geometry shown 

in Fig. 5.3(b). The spectral radiative properties at normal incidence for  = 0.25and  = 

0.5 are plotted in Fig. 5.11 for clarity.  

 
Figure 5.10 Lateral displacement effect on the magnetic resonance for misaligned double-

layer nanoslit arrays: (a) absorptance and (b) transmission at normal incidence as contour 

plots in terms of the frequency  and lateral displacement .  
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In Fig. 5.10, the lateral displacement changes from zero to one period, and the 

contour plots show symmetry with respect to the centerline corresponding to half-period 

misalignment. Note that only the results at frequencies between 4,000 cm
1

 and 16,000 

cm
1

 are presented to facilitate the discussion of the lateral displacement effect, since 

strong interactions among different MP and SPP modes appear at higher frequencies. 

Three major absorption peaks can be seen in Fig. 5.10(a), two of which are recognized as 

MP1 and MP3 based on the results for the aligned case ( = 0 or  The resonance 

frequency at MP1 increases with the degree of misalignment, whereas MP3 shows little 

dependence on . Interestingly, MP2 can also be excited in misaligned double-layer 

nanoslit arrays, since geometrical symmetry no more exists. The frequency for MP2 first 

increases with misalignment and then decreases as  approaches 0.5. 

It should be noticed that around  = 0.5 the absorption at all three MP modes are 

so weak such that extraordinary transmission with a maximum of 0.835 can be achieved 

with a broad spectral band as shown in Figs. 5.10(b) and 5.10(b). Notice that there is no 

direct line of sight for this misaligned case and the extraordinary phenomena is indeed a 

resonance effect caused by the excitation of MPs. Enhanced transmission associated with 

MPs can be seen in other regions as well with specific frequencies and lateral 

displacement. When Fig. 5.11(a) is compared with Fig. 5.4(a), the absorptance peaks are 

shifted to the frequencies of 6,990 cm
1

, 13,452 cm
1

 and 17,656 cm
1

, while the SPP 

mode at 20,000 cm
1

 is unaffected. For  = 0.5 as shown in Fig. 5.11(b), a broad 

transmission band appears with double peaks at 10,690 cm
1

 and 14,572 cm
1

 in the near 

infrared. This is consistent with Fig. 5.10(b). 



112 

 

Figure 5.11 Calculated radiative properties at normal incidence when the double-layer 

nanoslit arrays are misaligned by (a) one-quarter period, and (b) half period. 

 

The field distributions at the absorption peaks for misaligned double-layer 

nanoslit arrays are shown in Fig. 5.12 for the cases of  = 0.25and 0.5. Recall that the 

field distributions are shown in Fig. 5.5 for the aligned case. The electromagnetic field at 

6,990 cm
1

 with  = 0.25 is confined only in the overlapping region between the upper 

and lower metal strips, as shown in Fig. 5.12(a), indicating a reduced effective metal strip 
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width. MP1 is identified as the only anti-node in the spacer. Similarly at 13,452 cm
1

 as 

shown in Fig. 5.12(b), MP2 mode is confirmed with a reduced effective strip width. The 

situation is different when  = 0.5. At 10,690 cm
1

 as shown in Fig. 5.12(c), the 

electromagnetic field is confined at the both ends of the strips, and the small overlapping 

region yields weak field localization that is responsible for the transmission enhancement. 

At 14,572 cm
1

, a GMP mode is visualized by the induced currents in the gaps as shown 

in Fig. 5.12(d). When one nanoslit layer is laterally displaced, the charge distribution in 

the misaligned double-layer nanoslit array will change and cause the magnetic resonance 

condition to vary. As a result, intervention among different modes of MPs, GMPs, and 

CMPs would occur with lateral displacement. 

 
Figure 5.12 Different MP modes illustrated by the electromagnetic fields in misaligned 

double-layer nanoslit arrays at normal incidence: (a) at 6,990 cm


; (b) 

at 13,454 cm


; (c) at 10,690 cm

 (d) at 14,572 cm


. 
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Based on the observation in the field distribution, an effective metal strip width as 

Δw w    (when Δ 0.5Λ ) is used in Eq. (5.6) to estimate the resonance frequency of 

MP1 with different degrees of lateral displacement, as depicted as triangles in Fig. 

5.10(a). The agreement with the RCWA results indicates that the magnetic resonance is 

indeed responsible to the change of the radiative properties. However, the prediction 

begins to deviate at  = 0.3 and the discrepancy reaches the largest at  = 0.5. This 

may be due to the fact that the LC model shown in Fig. 5.8 cannot represent the charge 

distribution when one metal strip starts to overlap with two strips in the other layer. 

 

5.3 Phonon-Mediated Magnetic Polaritons 

As the counterpart of surface plasmon polariton, surface phonon polariton has 

wide applications in coherent thermal emission [90], transmission enhancement [120], 

near-field radiative heat transfer [121,122], and near-field thermal imaging [79]. An 

intriguing question arises naturally: whether or not the magnetic polariton has its 

counterpart in polar materials and what potential applications it may have. Actually polar 

materials such as SiC exhibit a negative real part of permittivity within the phonon 

absorption band or called the reststrahlen band [1], based on which the similarity between 

surface plasmon and phonon polaritons exists.  

The geometries of the slit array and the deep grating made of SiC are shown as 

insets in Figs. 5.13(a) and 5.13(b), respectively [123]. For the deep grating, the 

underlying SiC is treated as a semi-infinite medium. The RCWA computes the spectral 

directional reflectance for TM waves. For the deep grating structure, the spectral-

directional emittance can be calculated from 1 R     according to Kirchhoff’s law. The 
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frequency-dependent dielectric function of SiC SiC( ) i       is obtained from the 

Lorentz-oscillator model, described in Eq. (3.4). 

 

Figure 5.13 Microstructures made of SiC and calculated radiative properties. (a) 

Calculated spectral-directional reflectance R (dashed) and transmittance T (solid) at 

normal incidence for (a) the slit array structure, shown as inset along with the LC circuit 

model; (b) the deep grating structure, shown as inset along with the LC circuit model. 
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Figures 5.13(a) and 5.13(b) show the calculated radiative properties for the 

corresponding structure represented in the insets in the reststrahlen band of SiC at normal 

incidence. The period  is 5 m and the strip width w is 4.5 m for both structures, while 

the height h is 3 m for the slit array and 1 m for the deep grating, respectively. 

Reflectance dips can be seen in the spectra of both structures. A transmittance peak 

occurs at 836.5 cm
1

 with a magnitude of 0.676, indicating transmission enhancement by 

the slit array. Two emittance peaks can be seen in Fig. 5.13(b): the first at 852.5 cm
1

 has 

a peak value of 0.734 and the second at 928.7 cm
1

 has a smaller peak of 0.244. The 

emission peaks can be applied as selective coherent thermal emission sources. It should 

be mentioned that both structures are highly reflective for TE waves within the 

reststrahlen band, similar to those metallic grating [16]. For the case when the plane of 

incidence is not perpendicular to the grooves, however, both TE and TM waves can have 

a magnetic field component that is parallel to the grooves. This in turn can result in the 

excitation of magnetic polaritons. 

To gain a better understanding about how the radiative properties vary spectrally 

and directionally, contour plots of transmittance for the slit array and emittance for the 

deep grating are shown in Figs. 5.14(a) and 5.14(b), respectively, as functions of the 

wavenumber and the parallel wavevector component kx. In Fig. 5.14(a), a flat bright band 

(labeled as MP1) appears around 836.5 cm
1

, implying that the transmission enhancement 

for the slit array is independent of . Similarly, two flat emittance bands, labeled as MP1 

and MP2 in Fig. 5.14(b), show up for the deep grating, corresponding to the emittance 

peaks in Fig. 5.13(b). 
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Figure 5.14 Contour plots of the radiative properties as functions of wavenumber and the 

parallel wavevector component. (a) Transmittance for the slit array shown in Fig. 5.13(a). 

(b) Emittance for the deep grating shown in Fig. 5.13(b). The dispersion curves of surface 

phonon polaritons at the SiC-vacuum interface are also shown and indicated as SPhP. 

Triangles show the frequency of the fundamental mode of magnetic polariton (MP1) 

predicted from the LC circuit model. 
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Based on Eq. (2.33), the dispersion of the SPhP can be calculated and agrees 

reasonably with the inclined band that intersects MP2. Additional bands at higher 

frequencies are due to multiple folding of SPhP. Obviously, SPhP cannot be excited by 

propagating waves at frequencies below 913 cm
1

. In the following, LC circuit models 

are used to explain magnetic resonances in the SiC microstructures. 

Here, a modified LC model is used considering the dielectric properties of polar 

materials to verify the magnetic resonance in the SiC microstructures. The equivalent LC 

circuits for one unit cell are depicted on the structures in the insets of Figs. 5.13(a) and 

5.13(b), neglecting resistive elements. Though the structures are periodic, each slit (or 

groove) can be considered as an isolated unit cell if the width of the strip or ridge is much 

greater than the radiation penetration depth within the phonon absorption band. Thus, the 

resonance condition of the entire structure can be obtained simply from the LC circuit for 

a single slit or groove. 

 The LC circuits are somewhat different for the two structures shown in Figs. 

5.13(a) and 5.13(b). For the slit array, the capacitance between left and right strips can be 

approximated as a parallel-plate capacitance given by Cm,1 in Eq. (2.26). The inductance 

L1 consists of two contributions. The first one is the mutual inductance obtained from 

parallel-plate inductance as Lm,1 given by Eq. (2.27). The other one arises from kinetic 

inductance that originates from the kinetic energy of mobile charge carriers, such as free 

electrons in metals or ions (bound electrons) in polar materials. At optical frequencies, 

the dimension of micro/nanostructures is comparable or smaller than the wavelength, and 

the contribution from the kinetic inductance becomes comparable to or even larger than 

the magnetic inductance [74]. 
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 The frequency-dependent complex conductivity of SiC can be expressed as 

i     . The complex impedance 
k( )k kZ R i L   is inversely proportional to the 

conductivity, i.e., 1

k eff[( ) ]Z s i A     . Here, s is the distance the induced current 

circulates in the open loop and Aeff is the effective cross-sectional area for the induced 

electric current due to the skin effect and nonuniform charge distribution. Since     

for SiC in the absorption band, one obtains k eff/ ( )L s A  . Using the relationship 

0     [1], the kinetic inductance can be approximated as 2

k 0 eff/ ( )L s A    . 

Note that the real part of the dielectric function of SiC is negative forTO < < LO. By 

assuming that the induced current flows near the strip surface within a depth 

approximately equal to the power penetration depth  the kinetic inductance for the slit 

array can be expressed as  

 2

k,1 0/ ( )L h l       (5.7) 

Note that the penetration depth  for SiC is less than 1 m in the frequency range from 

781.4 cm
1

 to 953.8 cm
1

 with a minimum of 53.4 nm at 794.3 cm
1

. Similar to Eq. (2.29), 

the total impedance of the LC circuit shown in Fig. 5.13(a) can be expressed by 

 tot,1 m,1 k,1 2

m,1

1
2Z i L L

C




 
    

 

 (5.8) 

The magnetic resonance condition R,1 for the fundamental mode of magnetic polaritons 

can be obtained by finding the root of Ztot,1 = 0. Note that it is an implicit equation since 

   and  are frequency-dependent. Similarly, the magnetic resonance condition for the 

deep grating can be solved by zeroing 

 tot,3 m,3 k,2 2

m,3

1
Z i L L

C




 
    

 
 (5.9) 
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where Lm,3 = 0hb/l is the magnetic inductance based on the coil inductance, 

  2

k,2 02 / ( )L h b l       is the kinetic inductance of the cavity, and Cm,3 = c20hl/b is 

the gap capacitance. Again, a numerical factor c2 is introduced to account for the 

nonuniform charge distribution between the ridges of the grating. Since there is only one 

capacitor Cm,3 in the circuit for the deep grating, rather than two Cm,1 for the slit array, the 

reasonable range for c2 can be estimated as twice of that of c1. Note that the magnetic 

resonance conditions are independent of the length l, i.e., the dimension in the y direction. 

 The exact values of the numerical factors c1 and c2 are difficult to determine 

without knowing the detailed charge distribution near the strip surfaces. Here, c1 = 0.22 

and c2 = 0.55 are chosen for the LC models to fit well the resonant conditions of MP1 in 

Fig. 5.13. It is expected that c2 ≠ 2c1 since the charge distribution in the deep grating 

should be different from that in the slit array due to the existence of SiC substrate. The 

fundamental modes of the magnetic polariton predicted by the LC circuit model are at 

833.1 cm
1

 for the slit array and 858.5 cm
1

 for the deep grating, respectively, and are 

indicated as triangles in Figs. 5.14(a) and 5.14(b). The magnetic resonance frequency is 

independent of kx, and this distinguishes magnetic polaritons from the Fabry-Perot-type 

cavity resonance. 

 Figure 5.15 shows how the magnetic resonance frequencies change with one 

varying geometric parameter such as height h, slit width b or period while other 

parameters are kept at base values as those in Fig. 5.13. The contour plots obtained from 

RCWA at normal incidence exhibit multiple bright bands, indicating either transmission 

or emission enhancement for slit arrays or deep gratings respectively. In Figs. 5.15(a) and 

5.15(b), the resonance frequency decreases with increasing height for a specific mode, 
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suggesting that the frequencies for the enhanced transmission or emission peaks can be 

tuned by varying the height. The LC model prediction for the fundamental mode (MP1) 

is shown with triangles, which match well with the resonance band obtained from RCWA. 

 

Figure 5.15 Geometric effects on the magnetic polaritons for (a, c, e) the slit array and (b, 

d, f) the deep grating: (a, b) height h effect, (c, d) slit width b effect, and (d, f) period  

effect. The MP1 resonance frequency calculated from the LC model is shown as triangles. 
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At high frequencies, the LC prediction deviates from the RCWA result, because of the 

interaction with SPhPs similar to those observed for metallic slit arrays as discussed in 

Sections 5.1 and 5.2. Higher-order modes of magnetic polaritons also occur for thicker 

slit arrays or deeper gratings, marked as MP2 and MP3 in the figures. 

 The slit width effect on the resonance frequency can be seen from Figs. 5.15(c) 

and 5.15(d) for both structures. Larger slit width will result in increased resonance 

frequency. The LC circuit model prediction agrees well with RCWA results at low 

frequencies. However, the existence of SPhPs around 940 cm
1

 causes the suppression of 

magnetic polaritons at higher frequencies, resulting in larger discrepancies between 

RCWA and LC calculations. 

 Furthermore, under the assumption that the strip width is much larger than the 

penetration depth,  the  LC  model  predicts  that  the  period  should  have  no  influence  

on  the  resonant condition of magnetic polaritons for both structures. This can be seen 

from the triangles that are aligned horizontally in Figs. 5.15(e) and 5.15(f) for slit arrays 

and deep gratings, respectively. However, large deviations between RCWA results and 

LC model prediction on the resonance frequency of MP1 can be seen for small  values. 

This is because the individual slit or groove cannot be treated isolated anymore for small 

strip width, and the assumption for the LC model is not valid. As the period increases, the 

contour plots based on RCWA calculation show that the resonance frequency of MP1 

decreases. This again is attributed to the interaction with SPhPs. Due to the folding of 

SPhP dispersion curves, the excitation condition for SPhPs at normal incidence will shift 

to lower frequencies for larger grating periods. Even though the simple LC model is not 

able to consider the interaction with SPhPs, it predicts the resonant condition of MP1 
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within 3% from RCWA results for the periods from 3 m to 10 m. Subsequently, the 

magnetic polaritons are suppressed to lower frequencies. In general, the LC prediction 

agrees well with RCWA calculations, demonstrating that magnetic polaritons are indeed 

responsible for the transmission or emission enhancement in the SiC structures. 

 

Figure 5.16 Electromagnetic field patterns for magnetic polaritons (not to scale): the 

fundamental mode (MP1) for (a) the slit array at 836.5 cm
1

 and (b) the deep grating at 

852.5 cm
1

; the second harmonic mode (MP2) at the same frequency as MP1 for (c) the 

slit array but with h = 6.64 m and (d) the deep grating but with h = 4.28 m. The 

corresponding transmittance or emittance values are indicated in the figures. 

 

 The electromagnetic field distributions calculated by the RCWA at the excitation 

frequencies are plotted in Fig. 5.16 at normal incidence. Figures 5.16(a) and 5.16(b) show 

the field patterns for MP1 excited at 836.5 cm
1

 for the slit array and at 852.5 cm
1

 for the 

deep grating, with the same geometries used in Fig. 5.13. The field distribution reveals 

strong magnetic field confinement (up to an order of magnitude greater than that of the 
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incidence wave) inside the slit or groove between the neighboring SiC strips or ridges. 

The electric field circulates around the slit or groove to form a loop, denoted by ovals 

with arrows indicating the direction, associated with the antinode of the magnetic field. 

This is the typical characteristic of the diamagnetic response. The number of induced 

electric loops or that of antinodes of the magnetic field indicates the order of the 

magnetic polaritons. The transmission or absorption (emission) enhancement arises as a 

result of the field confinement. 

 The field distributions for MP2 are shown in Figs. 5.16(c) and 5.16(d), but with 

different heights (h = 6.64 m for the slit array and h = 4.28m for the deep grating) in 

order to obtain the same resonance frequency as MP1 for the corresponding structure. 

Similar behavior for the magnetic and electric fields can be seen with two antinodes, 

indicating the second-harmonic mode of magnetic polaritons. It should be emphasized 

that MP2 helps localize more energy than MP1 into the cavity region, so that emittance as 

high as 0.981 can be achieved for the deep grating at MP2. Coherent thermal emission 

using dielectric deep grating structures has been proposed [12],
 
but the underlying 

mechanism was attributed to cavity resonance modes without considering magnetic 

polaritons. The insight gained in this work is useful for the design of deep gratings as 

coherent thermal emission sources. 

 The field distributions of magnetic polaritons in the SiC microstructures show 

similar features as that in similar metallic structures: strong magnetic field localization 

and induced electric currents. Nevertheless, there exists a fundamental difference. In 

metals, the induced electric current is caused by the motion of free charges such as free 

electrons, whereas in polar materials, the vibration of ions or bound charges at high 
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frequencies creates the electric current. In other words, magnetic polaritons excited inside 

polar materials are mediated by optical phonons. Examples of such materials include 

SiO2, CaF2, GaAs, GaN, MgF2, MgO, ZnSe, Al2O3, TiO2, SrTiO3, etc. Proper selection of 

materials will allow tuning the transmittance and reflectance spectra for infrared 

applications, as well as building coherent thermal emission sources at high temperatures 

for energy harvesting. 

 

5.4 Coherent Thermal Emission by Excitation of Magnetic Polaritons 

 From the discussion above, the magnetic resonance has been confirmed as a 

physical mechanism to control the radiative properties of single- and double-layer grating 

structures. Based on the excitation of magnetic polaritons, an innovative coherent 

emission source is designed in the near infrared region by simply replacing the bottom 

Ag grating layer with an opaque Ag film from the previous double-layer slit array in Fig. 

5.3(a) [62]. The thicknesses for the top Ag grating layer and the SiO2 dielectric spacer are 

both changed to 20 nm, and the strip width is set to be the half of grating period  = 500 

nm. Figure 5.17 shows the spectral reflectance at  = 25° calculated from the RCWA for 

TM waves, and an oblique angle is considered here to show the second mode of magnetic 

polaritons. For comparison, the reflectance of a simple Ag grating on the opaque Ag 

substrate (the case when dielectric spacer thickness d = 0) is also calculated to 

demonstrate the effect of the existence of the dielectric spacer. The proposed coherent 

emission source exhibits four reflectance dips, one of which is at the same frequency with 

that from the simple grating. These two sharp reflectance dips are both due to the 

excitation of SPP at the Ag/vacuum interface, and their excitation frequency 13780 cm
1
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agrees well with the prediction from the SPP dispersion curve as described in Eq. (2.33). 

Other three reflectance dips at 5670 cm
1

, 11490 cm
1

, and 16095 cm
1

 are associated 

with the fundamental, the second and the third harmonic mode of magnetic polaritons.      

 

Figure 5.17 The spectral directional reflectance at  = 25º for the proposed grating with a 

spacer structure as a coherent emission source; the reflectance for the case without spacer 

is also plotted for comparison. 

 

 The underlying mechanism of magnetic metamaterials can be explained as 

follows. The oscillating magnetic field produces a current in the metal strip in the x 

direction and another near the surface of the metal film in the opposite direction. The 

anti-parallel currents result in a diamagnetic response.  The diamagnetic response is then 

coupled to the metallic film to cause a magnetic polariton with a fundamental mode at the 

wave number around 5,670 cm
1

. Magnetic polaritons of the second and higher order 

harmonics can also be excited. Magnetic polaritons, however, are distinct from the 

surface plasmon such that the resonance frequencies depend strongly on the strip width 
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but remain almost unchanged with the grating period . This is because the magnetic 

polariton is not induced by the diffracted evanescent waves but induced by the magnetic 

element formed in the modulated structure. 

P

P

 

 (a)

(b)

 

Figure 5.18 Contour plot of the spectral-directional emissivity of (a) the simple grating 

and (b) the Ag grating and Ag film separated by a SiO2 spacer. The geometric parameters 

are the same as those in Fig. 5.17. At , surface plasmon resonance is labeled as 

SPP, while the magnetic polaritons are labeled as MP1, MP2, and MP3 for the 

fundamental, second, and third harmonic modes, respectively. 
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 Figure 5.18 shows the contour plot of the spectral-directional emissivity   cfor 

the simple grating (a) and the proposed structure with the spacer (b) in terms of  and the 

parallel wavevector component kx (divided by 2). As can be seen clearly from Fig. 

5.18(a), the grating results in folding of the dispersion curves at kx = /, 2/, etc. The 

emissivity is greatly enhanced when surface plasmons are excited. The branch at < 

18,200 cm
1

 corresponds polaritons coupled with the 1 diffraction order and the high-

frequency branch is associated with the +1 diffraction order [78]. The intersection of the 

surface plasmon dispersion line and the inclined white line, representing  = 25, is 

marked as SPP and corresponding to the reflectance dip shown in Fig. 5.17 due to surface 

plasmon resonance. In general, the resonance condition of SPPs depends strongly on both 

 and kx; thus, the emissivity peak exhibits the spectral and directional selectivity [11]. 

 The contour plot of the emissivity for the grating with spacer exhibits several 

additional bands with enhanced emissivity as shown in Fig. 5.18(b). The surface plasmon 

dispersion is very similar to that shown in Fig. 5.18(a). The multiple magnetic polariton 

branches correspond to the fundamental, second, and third harmonic resonances and their 

intersection with the line  = 25 are denoted by MP1, MP2, and MP3, which are 

associated with the reflectance dips at  = 5,670, 11,490, and 16,095 cm
1

, respectively 

shown in Fig. 5.17(b). In contrast to the surface plasmon, kx has little effect on resonance 

conditions for the magnetic polaritons because the magnetic resonance conditions are 

largely determined by w rather than . Furthermore, the magnetic polaritons are localized 

in the vicinity of metal strips and are not coupled with each other due to the 250-nm air 

gap [32]. Hence, the emissivity peak resulted from the magnetic polariton becomes nearly 

independent of the emission angle and exhibits diffuse characteristic that is desirable for 
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thermophotovoltaic emitters. It should be noted that the resonance frequency can be 

easily tuned by varying the strip width w. 

 Figure 5.18(b) reveals additional interesting aspects of different modes of 

magnetic responses. The even-order magnetic polaritons (such as the second harmonic 

mode) can only be excited at oblique incidence, whereas the odd-order magnetic 

polaritons can be excited at normal incidence. Furthermore, surface plasmons can 

strongly interact with magnetic polaritons at certain  and kx values. The interaction of 

surface plasmons with magnetic polaritons can result in either enhancement or 

suppression of the emissivity. It can be inferred from Fig. 5.18(b) that if the surface 

plasmon dispersion curve intersect an even-order magnetic polariton, the corresponding 

emissivity is suppressed and the magnetic polariton dispersion line splits in to two curves, 

as illustrated in Fig. 5.18(b) for the second-harmonic magnetic polariton mode. On the 

other hand, the odd-order magnetic polaritons constructively interact with the surface 

plasmon, resulting in high emissivity values and a spectral broadening of the emissivity 

peak, as illustrated in Fig. 5.18(b) for the third-harmonic magnetic polariton mode. The 

above conclusions are drawn from numerous calculations with various geometric 

parameters not shown here. 

 In order to further investigate the physical mechanism of the magnetic polariton, 

the magnetic field distribution inside the considered structure is calculated by the RCWA 

and plotted in Fig. 5.19. The three figures correspond to the resonance conditions MP1, 

MP2, and MP3 shown in Fig. 5.18(b) at the incidence angle of  = 25. Here, the z axis is 

pointed upwards so that the Ag strips appear to be below the Ag film. As shown in Fig. 

5.19(a) for the fundamental mode of the magnetic response, anti-parallel currents in the 
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Figure 5.19 Contour shows the square of the magnitude of complex magnetic field in 

logarithmic scale and the arrows indicate the electric fields when the magnetic polariton 

is excited for conditions corresponding to MP1, MP2, and MP3 shown in Fig. 5.18(b). (a)  

MP1,  = 5,670 cm
1

; (b) MP2,  = 11,490 cm
1

; (c) MP3,  = 16,095 cm
1

. 
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metallic strips and the substrate confine strong magnetic field inside the dielectric spacer. 

The considered structure acts similarly to the metal strip pairs regarding the magnetic 

field distribution. However, the semi-infinite metal substrate employed here results in the 

enhanced absorption at resonance conditions. Although the magnetic field is not 

symmetric with respect to the center of the metallic strip, the second and third order 

magnetic resonances are clearly demonstrated such that two and three anti-nodes of the 

magnetic field are formed in the dielectric spacer underneath the metal strip, respectively. 

The corresponding electric field distribution further confirms the magnetic induction 

around the anti-nodes of the magnetic field distribution. Hence, the effective permeability 

of the considered structure exhibits a resonance like dispersion according to the electric 

and magnetic fields distribution in the dielectric spacer. It should be noted that the 

effective permeability can be calculated by averaging the magnetic moment of current 

loops [124]. As illustrated in Fig. 5.19(b), there are two induced current loops with 

opposite direction for the second harmonic mode. Therefore, the averaged magnetic 

moment is zero at normal incidence due to the symmetry, suggesting that even-order 

harmonic modes can only be excited at oblique incidence. In contrast to the magnetic 

polariton, the surface plasmon polariton (not shown in Fig. 5.19) generates enhanced 

magnetic field along the interface between the dielectric and metal film, as well as along 

the interface between metal strips and air. Furthermore, the field between the metal strips 

and the film is not enhanced when surface plasmon is excited. 

 

5.5 A Selective and Diffuse Emitter for Thermophotovoltaics 

A particular application of coherent thermal emitters is to serve as wavelength-

selective emitters in TPV systems to enhance the energy conversion efficiency. A TPV 



132 

emitter can be heated up by various sources such as waste heat, the sun, or burning of 

fossil fuel, and emitted thermal radiation is received by a TPV cell with proper energy 

bandgap where photocurrent is generated by creating electron-hole pairs. They are also 

quiet, portable, pollution-free, and low-maintenance. However, low power throughput 

and poor conversion efficiency are the major challenges for TPV energy converters. 

Near-field thermal radiation has been proposed to enhance the power generation 

by bringing the emitter and receiver in close proximity [58,125], while the conversion 

efficiency can be improved by controlling the emission spectrum and directions. An ideal 

emitter should have emittance as high as possible above the bandgap and as low as 

possible below the bandgap (wavelength-selective) over the whole hemisphere, i.e., 

insensitive to the direction (diffuse-like). A number of microstructures have been studied 

to improve the performance of TPV emitters based on different physical mechanisms, 

such as 1D complex grating [126], 1D photonic crystal (PC) made of tungsten and 

alumina [15], 2D tungsten grating with thermally excited surface plasmons [127], 2D 

deep microcavities with cavity resonance modes [128], and 3D woodpile-like PC [129]. 

Tungsten is usually selected as the emitter material due to high melting point and good 

corrosion resistance. 

Here, a novel TPV emitter consisting of a 1D tungsten grating structure shown in 

Fig. 5.20(a) with a SiO2 spacer on a tungsten film is proposed by excitation of MPs. The 

geometric parameters used to illustrate the MP-enhanced TPV emitter are  = 600 nm,    

h = 60 nm, f = 0.5, and d = 60 nm. The entire structure is deposited on an opaque 

tungsten film, and can be fabricated with nanoimprint, interference lithography or 

electron-beam lithography techniques [130]. The spectral-directional emittance can be 
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calculated with RCWA for TM waves in which MPs can be excited. Optical constants for 

tungsten and SiO2 are obtained from tabulated data with interpolation [83]. 

 

Figure 5.20 (a) Schematic of the TPV emitter made of a tungsten grating and SiO2 spacer. 

The parameters used for the calculation are h = d = 60 nm, = 600 nm, and f = 0.5. (b) 

Normal emittance of the proposed emitter, a simple grating, and a 1D complex grating 

from Ref. [126] for TM waves. 

 

Figure 5.20(b) shows the calculated normal emittance spectra (solid curve) of the 

proposed TPV emitter. Note that thermal emission for 0.6μm   is negligibly small at 

temperatures lower than 2000 K. The emittance exhibits wavelength-selective behavior 

with values higher than 0.8 in the spectral range of 0.62μm 1.98μm   but drops 
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quickly to below 0.2 for 2.4μm  . This is highly desired for TPV applications to make 

use of short-wavelength photons as much as possible while minimizing the thermal 

leakage due to long-wavelength photons below the TPV cell’s bandgap. The high 

emittance at short wavelength exists due to two close-to-unity peaks: one at 0.73 m and 

the other at 1.83 m. The emittance for a simple grating that does not have a SiO2 spacer 

is also shown (dotted curve) for comparison. It peaks at 0.63m due to the excitation of 

SPP at the air-tungsten interface but drops sharply as the wavelength increases. The 

resonance condition of SPP can be confirmed by its polariton dispersion relation [1]. The 

peak at 0.73 m for the emitter is also associated with SPP, while the slight shift is due to 

the interaction with MPs. By comparison, the importance of the peak at 1.83 m can be 

seen as lifting up the emittance spectrum to higher values in a wider spectral range 

simply by inserting a 60-nm SiO2 spacer. 

For comparison, the emittance of a 1D complex grating discussed by Chen and 

Zhang [126] is also plotted in Fig. 5.20(b) (dotted curve). The MP-enhanced emitter has 

higher emittance for 1.55μm 2.96μm,   indicating better performance when coupled 

with TPV cells with energy bandgaps around 2 m. However, it is complicated to obtain 

actual conversion efficiency and generated electric power, since the radiative heat 

transfer between the emitter and cell must be analyzed with the coupling of charge 

transport [58] and heat transport problems [125]. 

The emittance peak at 1.83 m plays a crucial role to enhance the radiation 

energy above the bandgap and thus possible higher power throughput and conversion 

efficiency. Understanding the mechanism of this peak is critical for the successful TPV 

emitter design. Figure 5.21(a) presents the electromagnetic field distribution at 
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wavelength of 1.83 m and normal direction. The tungsten strip, SiO2 spacer, and 

tungsten substrate in one period are delineated in the figure. Clearly, an electric current 

loop is formed and strong magnetic field is confined between the upper tungsten strip and 

the lower tungsten film, indicating a diamagnetic response and excitation of the magnetic 

polaritons, i.e., coupling between the external electromagnetic waves and magnetic 

resonance inside the structure. Similar MP behaviors have been extensively discussed in 

preceding sections with different grating structures. 

 

Figure 5.21 (a) Electromagnetic field distribution at wavelength of 1.83 m and normal 

direction where MP is excited. (b) The LC circuit model for the fundamental mode. 
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According to the charge distribution suggested by the field distribution, a LC 

circuit model can be used to predict the magnetic resonance condition described in Fig. 

5.21(b) where arrows indicate the electric currents. Compared with the LC circuit for the 

double-layer slit array in Fig. 5.8(b), the only difference is the disappearance of the lower 

gap capacitance Cg since the bottom slit array is replaced with a thin film. Therefore, the 

parallel-plate inductance Lm,2, the parallel-plate capacitance Cm,2, and the gap capacitance 

Cg can be calculated from Eqs. (5.1), (5.3) and (5.4), respectively. However, the kinetic 

conductance is obtained with a similar form of Eq. (5.7) as [123] 

 2

k,3 eff 0 m/( )L w h l      (5.10) 

where m   is the real part of the dielectric function of the metal, the effective thickness heff 

for electric currents is assumed to be the power penetration depth  of tungsten if h   

or the grating height h otherwise. The resonance condition for the fundamental MP mode 

can be found by zeroing the total impedance as  

   m,2 k,3

tot,4 m,2 k,32 2

g m,2 k,3 m,2

2

1 ( )

L L
Z L L

C L L C


 


   

 
 (5.11) 

Since the penetration depth  and m   are wavelength-dependent, the resonance condition 

can only be solved implicitly by setting tot,4 0Z  . 

 The resonance condition for MPs can be tuned by changing the strip width. Figure 

5.22(a) shows the normal emittance as a function of wavelength and strip width from the 

RCWA calculation. One bright resonance band with high emittance values can be seen 

around the wavelength of 0.7 m, and its flatness indicates the independence of strip 

width. This resonance band is associated with the excitation of SPP. The resonance 

wavelengths for another bright band increase with wider strips, and match well the 
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resonance condition of MP predicted by the LC model shown as triangular marks. Due to 

the coupling between SPP and MP, emittance in the spectral range between their 

resonance wavelengths is enhanced (> 0.7) when 100 nm 350 nmw  , forming a wide 

high-emittance spectral band. MP and SPP start to decouple when the strip becomes even  

 

Figure 5.22 Contour plots of emittance of the TPV emitter (a) as a function of wavelength 

and strip width and (b) as a function of wavelength and emission angle. 



138 

wider and as a result, emittance is enhanced only around the resonance wavelengths of 

MP and SPP. Therefore, the strip width offers tunability of proposed TPV emitter to suit 

specific TPV cell bandgap and working temperatures. Moreover, by predicting the 

resonance wavelength of MP, the LC model may provide design guidelines to estimate 

high/low emittance band edges. 

 Beside the spectral selectivity in emittance, another important feature for an 

excellent TPV emitter is directional insensitivity of the emission peaks to maximize the 

efficiency since the thermal emission is hemispherical in reality. As discussed in 

preceding sections, the directional independence is an intrinsic characteristic of MPs: the 

resonance wavelength changes little with emission angles as long as the time-harmonic 

magnetic field is along the grating grooves. Thus, the excitation of MPs is well suitable 

for TPV applications. Figure 5.22(b) shows the contour plot of the emittance of the MP-

enhanced TPV emitter as a function of wavelength and emission angles. The emittance 

remains high values (> 0.8 mostly) at shorter wavelength for emission angles up to 75º or 

so and starts to drop beyond 2 m. The two bright bands indicate emittance peaks. The 

first one is close to 2 m and is attributed to the excitation of MP. Its flatness suggests 

directional independence; hence, high emittance can be obtained in a large range of 

emission angles. The other one at shorter wavelength has an inclined band, and matches 

the excitation condition of SPPs at the air-tungsten interface. Again, SPPs are highly 

sensitive to directions in gratings. The performance of the MP-enhanced emitter is 

comparable with the multilayer coated triangular gratings [71] but much easier to 

fabricate. 
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CHAPTER 6 

EXPERIMENTAL DEMONSTRATION OF COHERENT THERMAL 

EMISSION ENABLED BY MAGNETIC POLARITONS 

 

This Chapter describes an experimental demonstration of coherent emission in the 

infrared region (1000  3000 cm
1

) by excitation of MPs inside subwavelength grating 

structures from room temperature to 800 K. Samples with different patterns are fabricated 

in order to study the geometric effect on the MPs, as described in Section 6.1. The 

influence of the geometry on the emittance peak locations and directional behavior is 

examined in Section 6.2 through room-temperature reflectance measurements. Section 

6.3 directly demonstrates the coherent emission characteristics of the MP-enabled 

emitters at elevated temperatures using the high-temperature emissometer. To help 

interpret the measurement results and understand the underlying physics, theoretical 

calculations using the RCWA coupled with a temperature-dependent Drude model and 

LC model are performed. 

 

6.1 Sample Fabrication 

 The coherent thermal emitter samples were fabricated with microfabrication 

techniques in Nanotechnology Research Center at Georgia Tech. A double-sided polished 

100-mm silicon wafer with a thickness of 400 m was used as the substrate due to its 

high thermal conductivity. As illustrated in Fig. 6.1, the sample fabrication process 

mainly involved five steps: (a) thin films deposition; (b) pattern transfer with UV light 

exposure through a photomask; (c) pattern formation after resist development; (d) 

metallization by evaporating Au onto sample surface; (e) resist stripping or lift-off.  
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Figure 6.1 Schematic of fabrication process for the subwavelength grating structures as 

coherent thermal emitters: (a) thin film deposition; (b) exposure with photomask; (c) 

resist development; (d) metal evaporation; and (e) resist stripping, also called lift-off. 

 

 Before the thin films deposition, the wafer surface was thoroughly cleaned with 

acetone and isopropyl alcohol (IPA) solvents, followed by the DI water rinse and N2 

blow dry, such that the surface is free of any particles. This ensures the success of pattern 

transfer later. First, an electron-beam evaporator (CVC 5000) was used to deposit 30-nm 

Ti and 200-nm Au films in sequence onto the sample surface without breaking the 

vacuum condition. The deposition was performed when the chamber pressure was lower 
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than 2×10
-6

 Torr, and a quartz crystal sensor was used to control the deposition rate (0.1 

nm/s and 0.2 nm/s, respectively) and monitor the film thickness. Note that for high-

temperature measurements, an additional 40-nm Pt film was deposited between the Ti 

and Au as a barrier layer to prevent the inter-diffusion between Si and Au at temperatures 

higher than 360C. Then, the sample was removed to a plasma-enhanced chemical vapor 

deposition (PECVD) chamber, and a layer of SiO2 of 200 nm was deposited on top of the 

Au film. The thickness of the SiO2 layer was measured by a reflectometer (Nanospec 

Film Analyzer 3000) with a Si piece which was placed in the chamber along with the 

sample. Next, a layer of negative photoresist (Futurrex NR9-1500PY) was spun coated at 

4000 rpm for 45 s. This specific type of photoresist was selected due to its negative-

sloping side wall profile which facilitates the lift-off process, superior resolution, fast 

development time, and easy stripping at room temperature. After prebaked at 150C for 

120 s on a hotplate, the sample was exposed by 365-nm UV light using a mask aligner 

(Karl Suss MA-6) through a photomask in a hard contact mode. The exposure dose for 

1.4-m-thick photoresist is around 270 mJ/cm
2
. The photomask has three different 1D 

grating patterns intentionally designed to study the grating period and strip width effect 

on the excitation of magnetic polaritons, and each pattern has an active area of 23.4 mm 

by 28 mm. After post-baked at 100C for 120 s on a hotplate, the sample was developed 

for 10 s in the RD6 solution (Futurrex), followed by the DI water rinse and N2 blow dry. 

So far, the grating patterns on the photomask have been transferred to the photoresist. To 

make the Au grating, the sample was placed into the electron-beam evaporator for 

metallization with a targeting thickness of 200 nm with a deposition rate of 0.2 nm/s. 

Note that the top surface of photoresist and the exposed area of SiO2 layer will be 
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covered by Au. Lastly, the photoresist along with unwanted Au strips was stripped off by 

soaking the sample in acetone solvent for 15 min at room temperature. The coherent 

thermal emitter samples were obtained as the structures shown in Fig. 6.1(e). 

 

Figure 6.2 Top view images of MP coherent emitter samples with different patters: (a) 

Pattern 1 with  = 7 m and w = 3.5 m; (b) Pattern 2 with  = 7 m and w = 2.5 m; 

and (c) Pattern 3 with  = 6 m and w = 2.7 m. Images were taken with a 3D confocal 

microscope, and the bright regions are the Au grating ridges. 



143 

 A 3D confocal microscope (Olympus LEXT OLS4000) was used to characterize 

the grating dimensions in different patterns. Figure 6.2 shows the top views of three 

different patterns, where the bright regions are the Au grating ridges. Pattern 1 and 

Pattern 2 have the same grating period ( 1 2 7 μm    ) but different strip width 

( 1 23.5μm, 2.5μmw w  ), while Pattern 2 and Pattern 3 have almost the same strip 

width but different period ( 3 36μm, 2.7 μmw   ).  

 

Table 6.1 Geometry of different samples from characterization which are used for 

RCWA and LC model calculations 

 Pattern 1 Pattern 2 Pattern 3 

Top SiO2 coating 80 nm 

Au grating period 7 m 7 m 6 m 

Au grating strip width 3.5 m 2.5 m 2.7 m 

Au grating thickness 170 nm 180 nm 190 nm 

SiO2 spacer thickness 200 nm 

Au film 200 nm 

Ti adhesive layer 30 nm 

Si substrate 400 m 

 

The period and strip width values estimated from the images are listed in Table 

6.1 along with other geometric values for all three patterns. Note that grating thicknesses 

are different because the deposition rate in the electron-beam evaporator is not uniform 

within a large deposition area. Also, the grating profile from the 3D microscope image is 

not ideally rectangular but more like trapezoidal shape. The top surface of Au strips is not 

ideally smooth either. Before the measurements for the radiative properties, the sample 

was coated with 80-nm SiO2 using PECVD for protecting the top thin Au lines, and was 
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then diced such that each pattern was 25 mm by 25 mm in size. Note that the fabrication 

process is highly repeatable such that same patterns from different batches have almost 

the same geometry. 

 

6.2 Geometric Effect from Reflectance Measurements 

Figure 6.3(a) shows the room temperature reflectance of coherent emitter samples 

with different patterns measured at 10° incidence angle for TM waves only using an FT-

IR spectrometer. According to previous studies, magnetic polaritons can be only excited 

at TM waves for 1D gratings, and the grating are basically highly reflective at TE waves, 

which was observed from the reflectance measurement as well (not shown here). In the 

figure, reflectance dips with minima less than 0.1 are clearly seen for all three patterns 

but at different resonance frequencies: 1290 cm
1

 for Pattern 1, 1408 cm
1

 for Pattern 2, 

and 1385 cm
1

 for Pattern 3. Since all the patterns are opaque, reflectance dips are 

essentially emittance peaks which indicate the spectral selectivity of the thermal emission. 

Note that Pattern 1 and Pattern 2 have the same grating period but different strip width, 

while Pattern 2 and Pattern 3 have close strip with but different period. From the figure, 

the strip width seems to have much more impact on the resonant frequency than the 

period since the resonant peaks for Pattern 2 and Pattern 3 are very close considering they 

have very close strip width. Also, the resonance frequency decreases with longer strips 

based on the experimental observation from the figure. Besides those major reflectance 

dips, some small reflectance dips are also noticeable at higher frequencies (from 1650 

cm
1

 to 2000 cm
1

) for all the patterns, and the resonance frequencies are also different 

for each one.  
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Figure 6.3 The reflectance measurement results at room temperature for MP coherent 

emitter samples with different patterns at (a) 10° and (b) 30° incidence angles, 

respectively. The results are for TM waves only.      
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The reflectance at 30° incidence angle for TM waves was also measured at room 

temperature to show the behavior at oblique angles. First of all, the major reflectance dips 

observed at 10° incidence angle still exist with little frequency shift: 1290 cm
1

 for 

Pattern 1, 1406 cm
1

 for Pattern 2, and 1393 cm
1

 for Pattern 3. Interestingly, the 

reflectance minima for Pattern 2 and Pattern 3 do not change much from those at 10°, 

which indicate excellent emission performance with emittance higher than 0.8. The 

reflectance minima for Pattern 1 increases up to around 0.32, but interestingly, another 

reflectance dip with the minimum as low as 0.18 appears at 1728 cm
1

. In addition, a 

small reflectance dip occurs at 30° incidence angle for all the patterns at the same 

frequency of 1230 cm
1

. 

Au



h

dSiO2
Au

w

Au



h

dSiO2
Au

w

 
 

Figure 6.4 The structure used for theoretical modeling. Note that there is a layer of SiO2 

between the Au grating strips, and it has the same thickness (80 nm) with the SiO2 

coating atop of Au strips.  

To understand the physical mechanism behind the existence of those reflectance 

dips (or emission peaks) and the emission behavior of proposed thermal emitters both in 

temporal and spatial aspects, theoretical modeling is of great necessity. Figure 6.4(a) 

depicts the grating structures for the calculation. The layers underneath the 200-nm Au 
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layer can be neglected since it is opaque in the IR region of interest. Note that, the 80-nm 

SiO2 coating from PECVD should be on all the surfaces including the sidewalls, but the 

coating on the sidewalls is much thinner than the strip width such that it can be neglected 

to simplify the modeling. Note that, the Au grating grooves is filled with 80-nm SiO2 and 

air. Also, the profile of the grating ridges, which is actually trapezoidal shape from the 

3D microscope imaging, is assumed to be rectangular. The reflectance angle j  for the 

jth diffraction order can be calculated from the grating equation [1]: 

 isin sin /j j      (6.1) 

Calculation based on the above equation indicates that in the 10° and 30° reflectance 

measurements, only the specular component (0
th 

diffraction order) is collected by the 

detector since all other diffraction orders cannot fall into the incident beam cone with a 

half-cone angle around 3°. Therefore, only the specular reflectance is calculated from the 

RCWA for comparison with the experimental data. Note that the surface roughness effect 

is not considered in the calculation. The geometric values listed in Table 6.1 for three 

patterns were used for the calculation.  

 Figures 6.5(a) show the comparison between and measurements (red curve with 

markers) and the theoretical calculation (blue dash curve) for the reflectance of Pattern 1 

at 10° incidence. The RCWA predicts a large reflectance dip near the resonant location of 

the one observed from the measurement with a little offset of 20 cm
1

. The predicted dip 

has a close-to-zero reflectance minimum, which is even smaller than that from the 

measurement. The difference in the resonance locations and reflectance minima is mainly 

due to the approximation made in the modeling, such as rectangular ridge profile and 

neglecting sidewall coating, and some experimental factors such as not 100% TM 
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Figure 6.5 The comparison between the measurements (red curve with markers) and the 

RCWA calculation (dash curve) on the reflectance for (a)(b) Pattern 1, (c)(d) Pattern 2; 

and (e)(f) Pattern 3. The RCWA calculation is based on the geometric parameters from 

the fabrication listed in Table 6.1, and specular reflectance (0
th

 order) is only compared. 



149 

polarized waves and sample imperfection. This major reflectance dip is actually due to 

the excitation of the fundamental mode of magnetic polaritons, labeled as “MP1”, which 

will be discussed later. At longer frequency there are two additional small dips from the 

calculation: a sharp one at 1728 cm
1

 and the one at 1780 cm
1

. The first one is due to the 

excitation of SPP (+1 order) in the grating structure. The resonant condition for SPP for 

TM waves at an interface between a dielectric and a metal can be predicted by Eq. (2.33). 

Due to the periodicity in gratings, SPP dispersion curve can be folded according to the 

grating period, and multiple SPPs can be excitation due to different diffraction orders. 

However, this small dip is not seen from the measurement, which is mainly due to the 

beam divergence in the reflectance measurement since the resonance frequency for SPP 

changes with the direction. The other dip can be seen from both modeling and 

measurement around the same location (around 1790 cm
1

), and results from the 

excitation of the second order of magnetic polaritons, namely “MP2”, which will be 

discussed later as well. However, there is a quite deviation at frequencies beyond 1650 

cm
1

 between the calculation and measurements. In general, the modeling agrees well 

with the measurements on the reflectance spectrum, and their deviations are mainly 

associated with the approximations in the calculation and some experimental limitations.  

For the 30° incidence, a good agreement can be clearly seen between the 

calculation and measurements in Fig. 6.5(b) with four apparent reflectance dips. The one 

around 1300 cm
1

 is MP1 which has the same frequency with that at 10° incidence. The 

directional insensitivity is one of the main characteristics for magnetic polaritons. Also, 

the calculation and measurement have an excellent agreement on the large dip at 1728 

cm
1

, which is MP2. Note that there is a small frequency shift for MP2 between 10° and 
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30° incidence, and it is mainly because the coupling with SPP at 10° incidence changes 

the MP2 condition a little bit. For 30° incidence, SPP (+1 order) shifts to 1898 cm
1

 from 

the calculation, and the measurement confirms this with a smaller dip mainly due to the 

beam divergence. The last dip around 1250 cm
1 

is nothing to do with MP or SPP, and 

was observed from a direct emittance measurement of an asymmetric Fabry-Perot cavity 

resonator in Section 4.3 and was discussed in Fig. 4.11. Due to the unique optical 

constants of SiO2 in this region, the reflection coefficients at the air-SiO2 and SiO2-Au 

interfaces cancel with each other, resulting in a reflectance dip. Also, due to the coupling 

with this dip, the reflectance dip with MP1 is degraded compared with the much larger 

one at 10° incidence. Table 6.2 lists the resonance frequencies for MP1 from the 

reflectance measurements, the RCWA calculation, and the LC model for all three patterns 

for comparison. 

 

Table 6.2 Resonance frequency for MP1 from measurements, RCWA calculation, and the 

LC model at room temperature 

Frequency (cm
1

) Pattern 1 Pattern 2 Pattern 3 

Measurement    

10 deg 1290 1408 1385 

30 deg 1290 1406 1393 

RCWA    

10 deg 1312 1396 1374 

30 deg 1306 1394 1364 

LC Model    

Air gap 1317 1420 1386 

SiO2 gap 1317 1419 1386 
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The RCWA calculation also demonstrates good agreement with the measurement 

for Pattern 2 for both incidences, as shown in Figs. 6.5(c) and 6.5(d) respectively. Since 

Pattern 2 has the same grating period with Pattern 1, the reflectance dips associated with 

the SPP should occur at the same frequencies. The calculation gives 1704 cm
1 

and 1878 

cm
1 

for the SPP excitation suggested by the sharp dips in 10° and 30° incidence 

respectively, compared with 1728 cm
1

 and 1898 cm
1

 for Pattern 1. The slight difference 

is due to the coupling effect between SPP and MP2 in Pattern 1, and the small dip in 

Pattern 1 rather than the large and sharp one in Pattern 2 is also attributed to the same 

cause. However, the measurements only show small dips for the SPP due to the beam 

divergence. According to the previous theoretical studies, the strip width has more impact 

on the resonant conditions of MPs than the grating period, which was clearly 

demonstrated here. Note that Pattern 2 has a smaller width and the resonant frequency for 

MP1 shifts to higher frequencies compared with that for Pattern 1. The modeling and 

measurement results agree very well on the MP1 dip for both incidences. Also, the MP1 

dip at 30° incidence is comparable with that the 10° incidence, thanks to the less coupling 

between SPP and MP1 in Pattern 2. The reflectance dip around 1250 cm
1 

for the 30° 

incidence occurs again for Pattern 2 as well as Pattern 3, which is due to the same cause 

for Pattern 1.     

Pattern 3 has a different grating period from the other two. The calculation 

indicates an abrupt change in the reflectance at 1420 cm
1 

for the 10° incidence, as shown 

in Fig. 6.5(e). This is imputed to the excitation of SPP (-1 order) with 6μm  . As a 

result, the right-hand side of the reflectance dip from the measurement experiences a 

sharp turn at this frequency and the curve is out of the harmonic shape. Besides, another 
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SPP is excited at 1950 cm
1 

assisted by the wavevector from +1 diffraction order, which 

is sensed by the measurements as a small reflectance dip around the same location. On 

the other hand, the calculation clearly demonstrated that, the MP1 for Pattern 3 occurs at 

almost the same frequency with that for Pattern 2, since their strip widths are almost the 

same. When having the 30° incidence, the MP1 dip stays, while the SPP (-1 order) dip 

shifts to 1100 cm
1

. Note that MP2 dips for Pattern 2 and Pattern 3 at 30° incidence are 

pushed towards higher frequencies beyond 2000 cm
1

 due to smaller strip width, which is 

the reason why they do not appear in the figures. Furthermore, MP2 strongly couples 

with SPP (+1 order) in the spectral range from 2000 cm
1

 to 2500 cm
1

, and the modeling 

cannot predict well the measurement results considering the aforementioned 

approximations and factors. As a result, the large difference between the modeling and 

measurement from 1600 cm
1

 to 2000 cm
1

 as seen from Fig. 6.5(f).  

Above findings from both measurements and calculation indicate that by 

changing the strip width, the reflectance dips or emittance peaks can be spectrally tailored 

to achieve coherent thermal emission control. Figure 6.6(a) provides a full scope on how 

the strip width affects the emittance at normal incidence from RCWA calculation. The 

geometric parameters for Pattern 1 was used for the calculation, and emittance from a 

total of 101 diffraction orders rather than the specular reflectance is presented as the 

contour with the brighter as the higher values. The frequency range is extended to 3000 

cm
1

 for demonstrating the behavior at higher frequency as well. First of all, two flat and 

sharp bands are clearly seen, which are associated with different branches of SPPs (±1 

order for the lower-frequency one, and ±2 order for the lower-frequency one). As 

discussed above, SPP highly depends on the grating period and direction, and the 
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independence on the strip width is clearly shown in the figure. The lower resonance band 

associated with MP1 decreases with wider strips, which is consistent with the observation 

from the reflectance measurement of three different patterns. The peak emittance of MP1  

 

Figure 6.6 Contour plots of (a) the normal emittance as a function of wavenumber and 

strip width, and (b) the emittance from the -kx dispersion. Triangles are the resonant 

conditions for MP1 predicted by Eq. (5.11). The calculation is from RCWA with 

parameters for Pattern 1.  
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is as close as to unit for strips wider than 2.5 m but becomes lower for shorter strips 

after the interaction with SPP (±1 order). Moreover, the third harmonic mode of MPs 

occurs at higher frequencies, and the resonant condition in general decrease with larger 

strip width but is more sensitive for 3μmw  . 

 The LC circuit model shown in Fig. 5.21(b) can be used to verify the excitation of 

MP1, and Eq. (5.11) predicts its resonant conditions. The gap between neighboring Au 

strip in the structure shown in Fig. 6.4 is partially filled with SiO2 and air. Table 6.2 lists 

the prediction by the LC model on the resonant conditions of MP1 for all three Patterns, 

considering the gap completely filled with either air or SiO2. It turns out that the gap 

materials of either air or SiO2 do not change the resonance frequencies, and those 

predicted values by the LC model agree well with the experimental and RCWA results. 

In addition, the LC model prediction with different strip width is also plotted as triangles 

in Fig. 6.6(a) for comparison with RCWA calculation, and matches well with each other. 

Recall that the LC model is based on the magnetic resonance, and the agreement 

undoubtedly verifies the physical mechanism as excitation of magnetic polaritons for the 

extraordinary emittance enhancement. 

The dispersion relation presented in Fig. 6.6(b) reveals the behaviors of MPs and 

SPPs at different directions as well as their effects on the emittance. The geometry of 

Pattern 1 was used again for the calculation. Due to the periodicity of grating structures, 

multiple SPP branches are excited as inclined bright bands, indicating high dependence 

on both frequency and directions. These SPP resonance bands from RCWA match well 

with folded dispersion curves predicted by Eq. (2.33). On the other hand, the resonance 

associated with MP1 results in a flat dispersion curve, suggesting a diffuse-like emission 
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behavior; this is a unique characteristic due to the excitation of magnetic polaritons. The 

resonance condition predicted from the LC model as triangles also matches well the 

RCWA calculation, confirming the nature of magnetic resonance inside the structure. At 

higher frequencies, the second and third orders of MPs can be also excited. Note that the 

even order of MPs cannot be excited at normal direction due to the structure symmetry. 

Because of the interaction with multiple SPP branches, MP2 and MP3 resonance bands 

are divided into several parts, and the coupling is so strong when the MPs are in close 

proximity of SPPs such that their resonance conditions are somehow modified. In 

particular, emittance values at MP3 are only high for small angles near normal direction 

(< 5°), and then decreases a lot due to the coupling with the SPP (-2 order) for larger 

angles. On the other hand, the coupling with MP2 almost divides the SPP (+1 order) 

curve into half. As a result, the emittance values at SPP decrease a lot (reflectance 

increases) at 10° direction, which is also observed at 1728 cm
1

 in Fig. 6.5(a). In addition, 

there is a bright resonance band below MP1 for angles larger than 25° or so, which is 

associated with the reflectance dips around 1250 at 30° incidence explained in Fig. 6.5. 

Since this resonance is very close to MP1, the emittance enhancement with MP1 is 

weakened at larger angles by their coupling effect. 

 

6.3 Direct Observation at Elevated Temperatures 

Though the reflectance measurements have clearly shown the coherent emission 

behavior at room temperature, for real-world applications the coherent emitters must 

work under high temperature environment where the properties may be different from 

room temperature. Therefore, the direct demonstration of coherent emission at elevated 
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Figure 6.7 The emittance at 700 K for different directions measured with the high-

temperature emissometer using (a) a DTGS detector and (b) an InSb detector. An IR 

polarizer is used and the results are for TM waves only. 
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temperature is necessary to address potential applications. In order to ensure the chemical 

stability at elevated temperatures, another sample was fabricated with a 40-nm Pt barrier 

layer deposited between the Ti and Au layers using the electron-beam evaporator to 

prevent the diffusion between Si and Au at high temperatures. This sample is used for the 

high temperature measurement and its geometry is almost the same with the Pattern 1 

listed in Table 6.1. The high-temperature emissometry facility and measurement methods 

have been discussed in Section 3.3. 

Figures 6.7(a) and 6.7(b) show the measured emittance at 700 K for different 

directions using the emissometry setup with different detectors, respectively. The DTGS 

detector gives good signal-noise ratio from 1000 cm
1

 to 2000 cm
1

, whereas the InSb 

detector provides much better response from 2000 cm
1

 to 3000 cm
1

. A large emittance 

peak appears at 1296 cm
1

 with a maximum of as high as 0.82 at normal direction, and 

the peak maximum decreases but the peak location does not shift when the emission 

direction changes from 0° to 30°. By comparison with Figs. 6.5(a) and 6.5(b), it is clearly 

that this emittance peak is associated with MP1, and the directional independence is also 

demonstrated at high temperatures. As discussed previously, the peak decreasing at larger 

angles is because of the interaction between the MP1 and the minor peak around 1250 

cm
1

. Also, the emergence of the MP2 at 1769 cm
1 

for normal direction to oblique 

angles is also directly observed, consistent with the measurements and theoretical 

calculations at room temperature. Figure 6.7(b) presents the strong coupling between the 

MP3 peak and SPP (+1 order) when they come closer with larger emission angles. At 

normal direction, the MP3 peak at 2437 cm
1 

is far away from the SPP (+1 order) at 2847 

cm
1

,
 
and thus has an emittance peak as high as 0.56. However, due to its high sensitivity 
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Figure 6.8 The normal emittance at different temperatures measured with the high-

temperature emissometer using (a) a DTGS detector and (b) an InSb detector. An IR 

polarizer is used and the results are for TM waves only. 
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on the direction, the SPP (+1 order) shifts to lower frequencies and interacts with MP3. 

As a result, the MP3 peak decrease quickly to 0.17 with a 10° change and the peak 

location is pushed slightly to lower frequencies. Note that the coupling between different 

plasmonic modes has recently been a hot research area, and may find applications in 

optical detection and novel plasmonic devices [131-133]. 

Figure 6.8 presents how the normal emittance changes with the temperature from 

the direct measurements. Because of different detectors’ detectivity, emittance was 

collected by the DTGS detector only for temperatures above 700 K, while emittance can 

be obtained from 500 K with the InSb detector, as shown respectively in Figs. 6.8(a) and 

6.8(b). Amazingly, the emittance associated with the MP1 peak is almost the same for 

temperatures of 700K and 750K, and the emittance peak with MP3 little changes when 

the temperature increases from 550K to 700K. Though there is slightly peak increasing 

and peak shifting with the temperature, it is within the experimental uncertainty. The 

experimental observation clearly shows that the emittance associated with MPs little 

change with temperature, and the peak can be as high as 0.8 at high temperatures. 

Compared with other potential coherent emitters such as Fabry-Perot cavity resonators 

whose emittance peaks decrease at high temperatures due to increased scattering loss as 

discussed in Section 4.3, this is a great advantage to be a coherent emitter with high 

performance.  However, the MP1 peak shifts and decreases significantly at 800 K, and 

the MP3 peak has a noticeable change at 750 K and a more significant one at 800 K. 

After examined under the microscope, the sample after heating was found to have some 

morphological change in the Au layer under the SiO2 spacer. In other words, the optical 

property of the Au film has changed, which is believed to be responsible for the 
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degrading at 800 K. In fact, after the photolithography process during the sample 

fabrication, the color of the Au layer at the region where experienced UV-light exposure 

has a visible change, becoming darker compared with the unexposed region. Note that the 

Fabry-Perot cavity resonators were fabricated in a similar way as MP coherent emitter 

samples but without photolithography and lift-off processes, and were chemically intact 

at 800 K during the high temperature emittance measurements. Further investigation is 

needed to address this problem so that the MP coherent emitter could work properly at 

temperatures higher than 750 K.  

To better understand the temperature effect on the MPs, the theoretical emittance 

at elevated temperatures was calculated using the RCWA coupled with the temperature-

dependent Drude model for bulk Au’s optical constants given by Eq. (4.2). At elevated 

temperatures, the plasma frequency is assumed unchanged, and the scattering rate has a 

linear dependence on the temperature, i.e., 0( )/ /300T T   , since the electron-phonon 

scattering dominates the scattering process at high temperatures. Note that the thicknesses 

for the Au film and Au grating strips are much larger than the penetration depth, so both 

can be assumed as bulk. The optical constants of SiO2 are assumed independent of 

temperatures.  

With the same geometric parameters for Pattern 1, the normal emittance at 

different temperatures is shown in Fig. 6.9. Four emittance peaks, associated with MP1, 

SPP (-1 order), MP3, and SPP (+1 order) can be seen respectively at 1316 cm
1

, 1424 

cm
1

, 2422 cm
1

, and 2854 cm
1

, and the peak locations agrees quite well from the 

measurements. The increasing temperature has no influence on the peak locations at all, 

and the peak maxima little changes with the temperatures as well, which is consistent  
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Figure 6.9 Theoretical calculation of the temperature effect on the normal emittance for 

the MP coherent emitters. The parameters for Pattern 1 are used for calculation. 

 

with the experimental observation in Fig. 6.8. Note that the emittance has a close-to-unity 

at MP1 within the considered temperature range, and the MP3 peak gets a little bit 

broadening with slightly lowered maxima from the calculation, which is due to stronger 

scattering effect in the metals. Interestingly, the stronger scattering does not degrade the 

emittance peaks associated with MPs compared with ones caused by interference effect in 

the Fabry-Perot cavity resonators, indicating excellent performance as coherent thermal 

emitters at high temperatures. However, the measurements indicate that the peak 

maximum increases and the location shifts slightly at MP3 as the temperature goes high, 

which is different from the theoretical calculation. In fact, the changes from the 

measurements are very slightly, which is mainly due to the measurement uncertainties. 

Additional measurements also showed that the similar trend as the calculation at MP3 

was obtained with other MP coherent emitter samples. 
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CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS 

 

 This dissertation theoretically and experimentally investigates the role of 

magnetic resonance and wave interference effects in tailoring thermal radiative properties 

of micro/nanostructures. The temporal and spatial coherence of thermal radiation of 

asymmetric Fabry-Perot resonance cavities is demonstrated at room temperature by 

measuring the spectral and angle-resolved reflectance using the FT-IR spectrometer and a 

laser scatterometer, respectively. Sharp reflectance dips are observed for both 

polarizations at several incidence angles. While the resonance frequencies are mainly 

determined by the cavity thickness, the phase shift due to reflection at the boundaries can 

modify the resonance frequency to some extend. The top Au film thickness dominantly 

affects the minimum reflectance or peak emissivity values. Narrow angular lobes of the 

emissivity are also shown by the angle-resolved reflectance measurement at  = 891 nm, 

which indicates strong directional selectivity and spatial coherence of the sample. The 

measurement results can be well understood by a detailed theoretical model with fitted 

film thicknesses. The asymmetric Fabry-Perot resonators have a great advantage in terms 

of the fabrication as compared with the binary gratings and the truncated photonic crystal 

structures.  

 An emissometer facility is designed, built, and tested with a SiC wafer for direct 

measurements of the emittance in the infrared. While inexpensive, this setup allows 

directional-spectral emittance measurements for a given polarization at temperatures up 

to 800 K or even higher. A modified Fabry-Perot cavity resonator is fabricated for 
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spectral control of thermal emission at elevated temperatures. Proper barrier layers and a 

surface protection coating are included to achieve thermal and chemical stability. The 

direct emittance measurements of the structure at elevated temperatures demonstrate 

resonance features and wavelength selectivity. The broadening of the emittance peaks 

with increasing temperature is explained by the increased scattering rate in the Au films; 

such broadening may be advantageous in some energy conversion devices, such as TPV 

emitters. This study demonstrates the feasibility of using layered structures as 

wavelength-selective emitters at high temperatures.  

 Moreover, this dissertation unifies the direct and indirect methods in predicting 

thermal emission. This allows the thermal emission from and the brightness temperature 

of a multilayered structure with a nonuniform temperature distribution to be evaluated 

using the indirect method. The equivalence between the spectral directional emissivity 

and absorptivity of each layer can be viewed as the generalized Kirchhoff’s law. Thermal 

emission and emissivity from each emitting layer in a Fabry-Perot resonance cavity are 

evaluated to demonstrate the equivalence of the direct and indirect methods. As a 

consequence of optical resonance, the enhancement in LDOS in SiO2 cavity is nearly two 

orders of magnitude around 5000 and 10000 cm
1

, where the spectral emission peak 

occurs. The brightness temperature also reveals the emission peaks and can be used to 

characterize thermal emission from a nonuniform temperature structure. 

 Another structure studied in this dissertation is periodic gratings deposited on 

multilayered thin films. The physical mechanism of transmission/absorption 

enhancement in deep gratings is unambiguously identified as due to magnetic polaritons 

in this dissertation. This is supported by the fact that the resonance frequencies predicted 
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by the LC circuit model match well with those calculated by RCWA simulation. 

Furthermore, it is found that the MP resonance frequency is independent of the incidence 

angle  and strip width w but depends strongly on the grating height h and slit width b. 

These features cannot be fully explained by coupled SPPs or the Fabry-Perot cavity 

resonance. Therefore, it can be concluded that MPs can be excited and are responsible for 

extraordinary optical transmission in double-layer nanoslit arrays. The electromagnetic 

field distributions visually show the distinct features of MPs as circulating electric 

currents and strong magnetic field confinement between the metallic strips. The magnetic 

responses can also explain the behavior at oblique angles, especially the unique 

characteristic of MPs as directional independence. The analytical prediction from the LC 

circuit model agrees well with the RCWA calculations with varying geometric 

parameters. The misalignment between the two nanoslit layers provides another way to 

tailor thermal radiative properties besides tuning the geometric parameters.  

 The existence of magnetic polaritons inside dielectric grating structures made of 

SiC is theoretically identified. Strong field localization can be achieved with magnetic 

polaritons, resulting in transmission enhancement or coherent thermal emission. The flat 

dispersion curve associated magnetic polaritons indicates that the resonance is 

omnidirectional. The formation of magnetic polaritons is assisted by phonons in polar 

materials rather than free charges in metals. The geometric effect on the magnetic 

resonance conditions offers guidance for tailoring the radiative properties of 

micro/nanostructures toward desired frequencies. The understanding on phonon-mediated 

magnetic polaritons may facilitate the design of novel energy conversion devices and 

metamaterials in the infrared region. 
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 Based on the understanding of magnetic resonance, an innovative coherent 

thermal emitter is designed by excitation of magnetic polaritons. Multiple modes of the 

magnetic polariton have been identified according to the electric and magnetic fields 

distribution in the dielectric spacer. It is evident that the magnetic polariton can strongly 

interact with the surface plasmon, resulting in either enhancement or suppression of the 

emissivity for different magnetic polariton orders. In particular, a wavelength-selective 

and diffuse TPV emitter is envisioned by excitation of MPs in a nanostructure made of 

tungsten gratings with a SiO2 spacer. This emitter design may enable high conversion 

efficiency and power throughput when paired with proper TPV cells.  

 Finally, this dissertation offers an experimental demonstration of coherent thermal 

emission by excitation of magnetic polaritons at both room and elevated temperatures 

from fabricated subwavelength grating structures. The resonance condition associated 

with magnetic polaritons depends on the strip width rather than the grating period, which 

offers a way to design coherent emitters whose emittance peaks can be tuned to a specific 

frequency of interest for particular applications. While interactions can exist between 

MPs and SPPs, the omnidirectional behavior for the MP emittance peaks is undoubtedly 

verified. The MP emittance peaks little change from room temperature to elevated 

temperatures up to 750 K with the Au gratings, and furthermore, the operating 

temperature can be increased using materials that are more stable at high temperatures.  

The detailed analysis and experimental results in this dissertation not only 

enhance the understanding of the wave interference and magnetic resonance effect in 

achieving tunable coherent thermal emission and extraordinary optical transmission, but 

also facilitate future optimization design for their practical applications in energy 
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conversion systems, plasmonic devices, nanophotonics, and nanolithography. In the 

future, optimization of the metallic and dielectric materials with matched CTEs in 

asymmetric Fabry-Perot resonators is needed to reduce the thermal stress for applications 

at even higher temperatures. For the coherent emitter assisted by magnetic polaritons, 

other fabrication techniques such as nanoimprinting and e-beam lithography and suitable 

materials can be employed to build the coherent emitters with desired performance at 

working temperatures above 800 K. Magnetic polaritons in the 1D grating structures can 

only be excited for TM waves, which limits the performance in practical applications 

because of the nature of randomly polarized thermal emission. Therefore, the 

investigation of magnetic polaritons in 2D structures is needed with suitable 

computational methods such as 2D RCWA and FDTD. To further enhance the 

conversion efficiency and power throughput especially in TPV systems, the radiative heat 

transfer between a coherent emitter by excitation of magnetic polaritons and a TPV cell at 

nanometer distances should be explored. While challenges remain, the practical 

applications of the structures proposed in this dissertation and similar 

micro/nanostructures as engineered surfaces for energy harvesting will result in 

technological advances in the near future.     
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