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SUMMARY 

 

 Arrays of nanotubes/rods made of appropriate materials can yield unique radiative 

properties, such as large absorption and optical anisotropy, with broad applications from 

high-efficiency emitters and absorbers for energy conversion to the polarization 

conversion via anisotropic responses. The objective of this dissertation is to investigate 

the radiative properties (including reflection, absorption, and scattering) of arrays formed 

by aligned carbon nanotubes (CNTs) and silver nanorods (AgNRs).  

 The CNT arrays used in the present study consist of multi-walled CNTs 

synthesized vertically on silicon substrates using thermal chemical vapor deposition. 

Their close-to-unity absorptance is demonstrated by measuring the directional-

hemispherical reflectance (DHR) within the visible and near-infrared spectral ranges 

using an integrating sphere (IS). The bidirectional reflectance distribution function 

(BRDF) and angle-resolved reflectance were measured with a three-axis automated 

scatterometer (TAAS) at the 635-nm wavelength. The results demonstrate that high-

absorptance CNT arrays may be diffusely or specularly reflecting and have important 

applications in radiometry. Compared with the commercially available specular blacks, 

the specular CNT sample investigated in this dissertation has an even higher absorptance 

while maintaining similar specularity. By treating the vertically aligned CNT array as an 

effective homogenous and uniaxial medium, the effective medium theory (EMT) is used 

to elucidate the mechanism of the high absorption for this high-aspect-ratio configuration. 

The anisotropic reflectance and transmittance coefficients are developed from the basic 

Maxwell equation to explain the high absorption and polarization dependence. The 
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effective ordinary and extraordinary optical constants of the specular CNT sample are 

determined by fitting the angle-resolved reflectance from theoretical prediction with 

those obtained from measurements.  

 The AgNR array used in the present study was fabricated using oblique angle 

deposition, which results in inclined Ag nanorods that can be modeled as an effective 

homogenous and optically anisotropic thin film. This AgNR thin layer has either a 

dielectric or metallic response for a given polarization. The spectral and directional 

radiative properties of AgNRs grown on different substrates, including a glass slide with 

a silver film and compact disc gratings, were characterized with the IS and TAAS at the 

635-nm and 977-nm wavelengths for different polarizations. The results are analyzed 

with theoretical modeling based on the EMT, rigorous coupled-wave analysis, and 

anisotropic thin-film optics. The theoretical investigation not only provides a better 

understanding of the optically anisotropic responses of nanostructures but also allows 

their effective properties to be quantitatively determined, which in turn can be used to 

optimize the parameters of material fabrication. The results of this dissertation help gain a 

better understanding of the radiative properties of anisotropic nanostructures for potential 

applications in high-efficiency energy conversion, radiometric devices, and optical 

system.  



 1 

CHAPTER 1 

INTRODUCTION 

 

The worldwide efforts in research activities on micro/nanostructured materials 

have recently led to great collections of nanostructures with readily controllable 

geometries and compositions. Numerous nanostructured materials exhibit fascinating 

radiative and optical properties that could have significant impact on the future of energy 

conversion [1-7], plasmonic and photonic devices [8-10], and sensing and imaging [11-

16]. Examples include three-dimensionally (3D) confined nanostructures, such as 

quantum dots for light imaging and biochemical diagnostics, and metallic nanoparticles 

for plasmon absorption enhancement [17-19]; as well as two-dimensionally (2D) 

confined nanostructures, i.e., nanowires, nanotubes, or nanorods with high aspect ratios. 

The latter kind of structures, which were studied extensively since 1990s, have unique 

properties: the 2D confinement of their exceptional structures with cross-sections of a 

few nanometers and length scales upwards of several micrometers, results in the free 

propagation of electrons, holes, or photons along the third dimension. Arrays formed by 

nanowires/tubes/rods have been extensively studied and many insights have been gained 

on tuning their optical and radiative properties. Such structures behave as effectively 

homogenous media (typically with the nanowires/tubes/rods as the intrusions and 

surrounding medium as the host) with tunable properties adjusted through the controlling 

of their size and dimensions [20,21].  

 



 2 

1.1 Highly Absorbing Arrays of Carbon Nanotubes  

Among this important class of 2D confined nanostructures, carbon nanotube 

(CNT) arrays belong to the so-called "black" materials with extremely low reflectivity or 

superb high absorption [22-25]. The discovery of hollow, nanometer-size CNTs was 

attributed to Iijima in 1991 [26,27]. The high absorption of CNTs is partially attributed to 

the  band's optical transition that results in strong absorption of visible light [1] and is a 

typical feature for conventional carbon-based black paints. On the other hand, it is well 

known that the reduction of an object's refractive index to unity can eliminate its optical 

reflection entirely. Hence, arrays comprised of vertically aligned CNT (VACNT) with a 

low packing density (or volume filling fraction) can have low effective refractive indices, 

which not only reflect light weakly but also absorb light significantly [28]. These 

combined features described above makes CNT arrays, with close-to-unity absorptance, 

good candidates for high-efficiency absorbers or emitters for energy conversion [1,4], 

radiometers or bolometers for space-borne infrared systems [29,30], solar cells [3], stray 

light shields and detector coatings for optical and photonic devices [24,31-34], and 

calibration standards and backing materials for radiation measurements [25]. According 

to Lehman et al. [31,32], CNTs may be used as thermal-absorption coatings on 

pyroelectric detectors in the near-infrared (NIR) with a higher damage threshold and 

larger thermal conductivity as compared with conventional gold black or carbon-based 

paints. Recently, inorganic solar cells based on patterned CNT arrays have been reported 

to exhibit high efficiency for photovoltaic systems [3,35]. In addition, some research 

groups have demonstrated the possibility of making absorbers from CNT bundles for 

cryogenic bolometers [30]. Moreover, the close-to-unity absorptance and emittance of 
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CNTs in the NIR region with good thermal stability in an inert environment may enable 

their applications as superior emitters or absorbers for thermophotovoltaic systems and 

absolute radiometry [36].  

In order to facilitate these promising applications, knowledge of the optical and 

radiative properties of CNTs for thermal radiation in the visible and NIR spectral regions 

is required. Both single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) arrays 

have been fabricated with various techniques and their properties have been extensively 

studied. Lehman et al. [2,31,32] has been working on the usage of CNTs as coatings for 

pyroelectric detectors and high-power laser radiometers. A reasonably uniform spectral 

responsivity of the CNT samples in Lehman's studies was achieved in the wavelength 

region from visible to infrared (IR). Later, de Heer et al. [37] synthesized CNTs with 

either vertical or parallel alignment and measured their optical and electronic properties 

using an ellipsometer in the spectral range from ultraviolet (UV) to visible. Subsequently, 

they further [38] characterized the effective refractive index of CNT carpets by fitting the 

measured reflectance in the visible and NIR ranges. However, the reflectance of CNTs in 

their study was relatively high due to the small thicknesses, which resulted in fluctuations 

in the spectra due to interference of the semi-transparent CNT carpets. Yang et al. [1] 

recently demonstrated the absorptance of low-density MWCNT arrays can be as high as 

99.95% at the incident wavelength of 633 nm by measuring the directional-hemispherical 

reflectance (DHR, or Rdh) at four visible wavelengths (478 nm, 488 nm, 514 nm, and 633 

nm) and the bidirectional reflectance distribution function (BRDF) for normal incidence 

at  = 633 nm. Nevertheless, the polarization of the birefringent VACNT arrays and 

scattering effect were not discussed in their work. Later, they further studied the VACNT 



 4 

sample with extremely low reflectance of 0.0003 over a broad infrared wavelength of 3 

m <  < 13 m ("bandwidth limit" of the ultralow reflectivity). And they attributed the 

low reflectance to the unique interlocking surface of the CNT array, consisting of both a 

global randomness which is on the order of several hundred nanometers and  a short-

range randomness due to the nanotube size [39]. Mizuno et al. [4] reported a SWCNT 

forest with a nearly constant and near-unity absorptance of 0.98  0.99 across a wide 

spectral range from UV (200 nm) to far IR (200 m) and they attributed the high 

absorption of the SWCNT forest to its sparseness and good alignment of CNTs. Besides 

the experimental investigations, a variety of theoretical modeling studies have also been 

conducted focusing on the prediction of the dielectric function of VACNT arrays on the 

basis of the effective medium theory (EMT). García-Vidal et al. [28,40] calculated the 

effective dielectric function and optical absorption of aligned dilute CNT arrays using the 

EMT in the UV and visible spectral regions. Wu et al. [41] modeled the optical properties 

of CNT arrays by implementing the EMT and a Fourier expansion method. T de los 

Arcos et al. [38] fitted the measured reflectance interference fringes of thin CNT arrays 

(either aligned or randomly orientated) on TiN substrates with the EMT prediction.  

1.2 Anisotropic Arrays of Inclined Silver Nanorods  

 Another important type of 2D confined nanostructure is an array comprised of 

obliquely aligned metallic nanorods with high aspect ratio (length-to-diameter). These 

kinds of metallic nanorod arrays with engineered dimensions, shapes, and surrounding 

media have been reported to have anisotropic radiative properties and hold promise for 

surface enhanced Raman spectroscopy (SERS) [42-44]. The array anisotropy arises from 

the high-aspect-ratio structure, which forms an effectively homogenous but anisotropic 
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medium. Therefore, the EMT described previously can be adopted to characterize the 

effective radiative properties of the array depending on the incidence polarizations. 

Furthermore, the effective optical and radiative properties of such structures can be easily 

tailored by varying the geometric dimensions, such as the rod diameter, length, spacing, 

shape, etc. [20,45]. On the other hand, the localized surface plasmonic resonance (LSPR) 

effect is responsible for the enhancement of SERS of metallic nanorod arrays. The 

mechanism has been ascribed to either a local plasmon mode in the gap between two 

metallic nanorods or a multimode plasmon resonance [46].  

 A number of theoretical and experimental investigations of the optical and 

radiative properties of metallic nanorod arrays have been performed and explained with 

different mechanisms. In addition to the EMT [47-49], finite-difference time-domain 

method [50], anisotropic wave propagation in uniaxial media [51-53], and negative 

refraction [54-57] have been applied for studies of the metallic nanorod arrays. Among 

various kinds of metals, silver and gold are unparalleled for their plasmonic properties, 

and have relatively stable features thus, arrays formed by silver or gold nanorods (AgNR 

or AuNR) are good candidates for plasmonic devices [58-63] and can be used in 

conjugation with various biomolecules for biorelated applications [12,13]. Byun et al. 

[62,63] experimentally demonstrated the enhancement of SPR biosensors with AuNR 

gratings. Smith [49,51] theoretically studied the anisotropic wave propagation inside the 

uniaxial medium formed by oblique columnar thin films containing metal and voids 

based on the EMT. Fu et al. [47] and Mendoza-Galván et al. [52] fabricated inclined 

AgNR arrays and applied the EMT simulation to analyze the anisotropic spectral 
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responses of the AgNR samples. Pietrobon et al. [60] produced pentagonal AgNRs with 

tunable plamonic properties for applications in optics and functional self-assembly.  

 In addition, integration of multiscale micro-nano structures has gained more and 

more attention, some researchers have exerted tremendous efforts on exploring the 

potential applications of multiscale hybrid structures in various fields [18,64,65]. Chen et 

al. [18] fabricated AuNR gratings that can excite SPR to create optical anisotropy and 

enhance the emission of CdSe quantum dots. Zengraf et al. [64] reported a hybridized 

plasmonic waveguide design with metallic nanowires. Guo et al. [65] demonstrated direct 

coupling between plasmonics and photonic nanowires for nanoplasmonic circuits with 

less loss and subwavelength confinement. Several researchers have recently demonstrated 

the possibility of fabricating materials with negative refractive index by embedding a 

metallic nanowire array in a dielectric medium [55-57]. Podolskiy et al. [66] applied 

coupled-dipole equations to metallic nanowire systems in seeking of their resonance and 

negative responses. Jen and his collaborators [55,56] deposited thin films comprising 

inclined AgNRs on fused silica substrate and measured the polarization-dependent 

reflection and transmission coefficients in the visible regime for normal-illumination 

conditions. Subsequently, they extracted the effective relative permittivity and 

permeability of the AgNR films based on the measurement results, and concluded this 

nanostructure can be used for negative refraction. Menon et al. [57] demonstrated the 

possibility of fabricating negative index metamaterials using metal-dielectric 

nanocomposites for imaging applications. However, most of the studies only factor the 

normal incidence cases when correlating the negative index to the AgNR array properties 

and do not include the scattering effect. 
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1.3 Motivations and Objectives 

For the first 2D confined nanostructure of VACNTs, most of the CNT arrays 

involved in pertinent studies are diffuse like, presumably due to surface roughness and 

inhomogeneity in the arrays. Geohegan et al. [67] performed in situ laser measurements 

of VACNTs, and observed a reduction of specular reflectance as time evolves due to 

absorption and scattering. The extremely dark VACNT arrays reported by Yang et al. [1] 

was Lambertian like. However, in certain applications, such as blackbody cavities for 

absolute radiometry, radiation thermometry, and baffle design, specular black is often 

preferred over diffuse black [29,34,68]. Furthermore, to better understand the effective 

optical constants, samples with relatively smooth surfaces are desirable. Although some 

conventional black paints or appliqués exhibit specular reflection [22,23], detailed studies 

of highly absorbing CNT arrays with specular reflection are rarely seen. Therefore, 

investigations of the radiative properties of VACNT arrays with surface features from 

diffuse to specular, and the effects of growth mechanisms to the array radiative properties 

are two of the major topics in this dissertation [69-71].    

 As has been suggested, several unique aspects of the CNT and AgNR projects 

which are the main topics of this dissertation are presented here: first, unlike pertinent 

studies based on diffuse-like CNT arrays, a highly absorbing VACNT array with specular 

surface is investigated. Comparisons of the VACNT array and other black materials 

indicate this VACNT array is more specular than any other commercially available black 

materials. Such specular VACNT arrays allow the determination of their surface 

roughness and effective optical constants through measurements and modeling. Second, a 

novel hybrid micro-nanoscale structure was proposed and fabricated by depositing 
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inclined AgNRs on top of a commercial compact disc (CD). The anisotropic diffraction 

features were measured and analyzed with the Rigorous Coupled-Wave Analysis (RCWA) 

[72-74] in seeking of related potential applications in anisotropic grating and plasmonic 

devices with tunable properties. Third, the formulation of reflectance and transmittance 

coefficients at an anisotropic interface and thin-film optics for multi-layer structures with 

anisotropic layers are derived from the Maxwell equations and is further modified by 

considering the roughness effect. Finally, a direct fitting method is proposed to determine 

the optical constants of the nanorod array by matching those theoretically predicted 

values with measurement results. Reasonable agreements are obtained on the effective 

optical constants from the EMT prediction and direct fitting, both of which form a major 

portion of the theoretical modeling of this dissertation.   

The objective of this dissertation is to characterize and investigate the radiative 

and optical properties of anisotropic arrays comprised of highly absorbing VACNTs or 

inclined AgNRs, including reflectance, absorptance, transmittance, diffraction, and 

scattering, through both measurement and theoretical modeling. Chapter 2 presents the 

theoretical background necessary for subsequent chapters, including BRDF, EMT, wave 

propagation in anisotropic (specifically uniaxial) media, thin-film optics, and surface 

plasmon. Chapter 3 provides details of the general instrumentation of major equipments 

and measurement setups used for the studies presented in subsequent chapters. Chapter 4 

describes a detailed investigation of the reflection and scattering from VACNT arrays 

with two growth mechanisms: tip growth and base growth. The DHR and polarization-

dependent BRDFs are measured and the EMT is used to elucidate the mechanisms of the 

close-to-unity absorptance of the VACNT samples. Chapter 5 elucidates the radiative 
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properties of three VACNT samples with surface features from highly specular to diffuse 

synthesized on silicon substrates with different growth conditions. Their spectral 

reflectance and angle-resolved reflectance are characterized by an integrating sphere (IS) 

and a laser scatterometer, respectively. The effective optical constants of the specular 

VACNT array are obtained with the direct fitting method. In Chapter 6, the inclined 

AgNRs are grown on top of a 500-nm-thick Ag film, which strongly absorbs the visible 

incident light. Hence, the three-layer anisotropic wave propagation model is used to 

analyze the measurement results of the angle-resolved reflectance and DHR at 635-nm 

wavelength. The anisotropic responses to the incident polarizations (dielectric and 

metallic) are clearly observed. Chapter 7 discusses the anisotropic diffraction, BRDF, and 

scattering of two samples consisting of AgNRs deposited on CD gratings with different 

orientations with respect to the CD grating direction. RCWA is applied to model the 

diffraction efficiency of AgNR-on-CD samples with effective grating profiles. Finally, 

Chapter 8 summarizes the results and provides several recommendations for future 

research.  



 10 

CHAPTER 2 

THEORETICAL BACKGROUND 

 

 This chapter provides a summary of the basic theoretical background relevant to 

the modeling in subsequent chapters of this dissertation. Some fundamental definitions 

typically used for characterization of the radiative properties of a real surface, including 

the BRDF, DHR, and scattering, are introduced first. Then the EMT is briefly discussed 

for clarification of the property homogenization of the nanorod array structure and how 

the effective optical constants and dielectric functions are obtained with this approach. 

After that, the anisotropic features of wave propagation in uniaxial media are explained 

followed by formulations of the reflectance and transmittance coefficients at an 

anisotropic interface and the thin-film optics for three-layer model. Furthermore, the 

fundamental concepts of surface plasmons are presented for better understanding of the 

potential applications of AgNR arrays in photonic and plasmonic devices.  

2.1 Radiative Property Definitions 

 When light strikes a real surface with irregularities or surface roughness, the 

energy is partially transmitted through the surface, specularly reflected along the specular 

reflection direction, and scattered in the off-specular directions. Correspondingly, the 

radiation redistribution from a real surface consists of a peak around the direction of 

specular reflection, an off-specular lobe, and a diffuse component caused by scattering. 

The surface roughness is a relative concept varying with incident wavelengths and angles. 

A rough surface appears to be smoother when the incident wavelength becomes longer, 
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and for a fixed wavelength, the surface tends to be more specular at larger angles of 

incidence. 

 The BRDF is a fundamental radiative property which can fully describe the 

energy redistribution (reflection or scattering) from a real surface at a given wavelength 

and widely used in thermal science [75-78]. It depends on the surface characteristics and 

the material refractive index and is a function of the angles of incidence and reflection (or 

scattering). The derivation of BRDF notation was proposed by Nicodemus et al. [79] for 

defining and measuring the reflectance from a surface that was neither completely 

specular nor perfectly diffuse. It should be noted that a more generic form is the 

bidirectional scattering distribution function (BSDF) which has subsets of BRDF, BTDF, 

BVDF for reflective, transmissive, and volume (bulk scattering) samples. For simplicity, 

here we use BRDF as the combined term for both reflection and scattering associated 

with the angles of reflection or scattering to be used. The geometry to illustrate the 

definition of BRDF is shown in Fig. 2.1, where the surface lies in the x-y plane and its 

surface normal is along the z-axis. In radiometric terms, the BRDF can be defined as the 

ratio of reflected (or scattered) radiance (intensity) to the incident irradiance (flux in 

watts) at a surface [76,79,80], i.e., 

1r
r i i r r

i i i

( , , , , )  (sr )
cos

dL
f

L d
    






                                      (2.1) 

 In Eq. (2.1), i i( , )  and r r( , )   are the polar and azimuthal angles of the incident 

and reflected or scattered light, respectively. iL is the incident radiance within an element 

solid angle id  (power per unit solid angle per unit projected source area), i i icosL d  is 

the incident irradiance (power per unit projected area), and rdL  is the reflected or 
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scattered radiance. Note that both radiance and irradiance are spectral properties thus the 

BRDF also depends on the incident wavelength of .  

 

Figure 2.1 Geometry for the definition of BRDF  

 

 A special case is the BRDF in specular directions corresponding to i r  , which 

is related with specular reflectance (Rsp). Another important concept regarding the surface 

radiative properties is the directional-hemispherical reflectance (DHR or Rdh), which can 

be obtained theoretically by integrating the BRDF over the hemisphere in front of a 

surface, as indicated by the blue curves in Fig. 2.1. Rdh is the summation of Rsp and the 

diffuse component (Rdiff) caused by scattering. In measurements, the characterization of 

Rsp, Rdh, and Rdiff as the difference between the former two, are generally used to 

characterize the roughness.  Here it should be noted that Rdiff from a real surface might 

consist of both surface scattering due to surface roughness and volume (bulk) scattering 

due to the inhomogeneity of the material possessing that surface [81-83]. Depending on 

material features, Rdiff might be dominated by either surface scattering or volume 
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scattering or both; for example, if the penetration depth of the material in consideration is 

small, then volume scattering will be less important.           

2.2 Effective Medium Theory 

 The radiative features depend on the material properties, i.e., homogeneity versus 

inhomogeneity, and optical isotropy versus optical anisotropy. The VACNT arrays or 

inclined AgNR arrays studied in this thesis are essentially inhomogeneous since they are 

composites of air and nanorods. When the characteristic length of nanorod arrays is 

considerably small compared with the incident wavelength, the inhomogeneity effect can 

be neglected. Optically the material behaves as an effectively homogenous medium with 

the effective properties averaged over both air and nanorods. The EMT is a 

homogenization method widely used for characterizing the optical properties of an 

inhomogeneous medium with different material constituents based on the field average 

[84-86]. In general, two types of approximations are adopted for the EMT calculation, 

Maxwell Garnett (MG) and Bruggeman (BR) [85,86]. Both approximations provide 

expressions for the dielectric function of a homogeneous medium with properties 

effectively equivalent to those of the inhomogeneous medium but with different 

approaches. In the MG approximation, the effective properties of a composite medium 

are obtained by treating one constituent of the composite as the host and all other 

constituents as embedded grains which do not contact one another. The BR 

approximation equally treats all constituents as grains imbedded in an otherwise 

homogenous "effective" medium which is assumed to possess the average properties of 

the composite. The former is inherently asymmetric depending on which constituent is 

chosen as the host; hence it is valid for dilute systems (usually the constituent with the 
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highest concentration is chosen as the host). While the latter is symmetric since it treats 

all constituents in an equivalent way thus it is not restricted to a particular range of 

constituent concentrations. Following derivation based on the field average as presented 

in Carr et al. [84], the effective dielectric function of a multi-composite system can be 

expressed as 

eff h h

h eff h h h1( ) ( )
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g g

   
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   
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where h ,
 i , and eff  are the dielectric functions of the host medium, the i-th constituent, 

and the effective dielectric function to be determined, respectively. g  is a depolarization 

factor depending on the geometric and shape parameters of the composite, N is the 

number of constituents in the composite, and fi is the volume filling ratio of the i-th 

constituent defined as the volume of the i-th constituent divided by the total composite 

volume. Note that fi satisfies the summation rule with 1if  . For the nanorod arrays 

with two constituents (a and b) considered in this thesis, Eq. (2.2) becomes 
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 For the MG approximation, the host is one of the constituents, let us use b 

medium with h b   which results in that the last term in Eq. (2.3) can be dropped  
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 While for the BR approximation, the host is the effective medium with h b  , 

thus the left term drops and Eq. (2.3) can be simplified as  
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 In Eqs. (2.4) and (2.5), the dielectric function of each constituent can be obtained 

from tabulated values in handbooks, i.e., "Handbook of Optical Constants of Solids" 

edited by Palik [87], or empirical models such as the Drude model for conductors and the 

Lorentz model for dielectrics. fi can be determined by sample characterization using 

scanning electron microscopy (SEM) and weighing etc.. The depolarization factor g is a 

geometry-dependent parameter. In this study, both the CNTs and AgNRs can be treated 

as elongated ellipsoids with high aspect ratios, and g with the polarization along or 

perpendicular to the rod axial direction can be calculated as [83]:  
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and                                        O E
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1

2
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                   perpendicular                      (2.7) 

where  
2

1 /e D L   is the eccentricity determined by the average length (L) and 

diameter (D) of the rods. The subscripts "E" and "O" denote the extraordinary and 

ordinary waves propagating inside a uniaxial medium which will be discussed more in 

the next subsection. 

 The effect of the geometric depolarization factor to the radiative properties of the 

effective medium can be explicitly approved through a theoretical derivation of the 

effective dielectric function with the MG approximation. Here the BR approximation is 

not adopted since it is an implicit method with physically meaningful solutions to be 

determined through solving a quadratic equation (to be discussed more in Chapter 7).  

Assume that the EMT is applied to arrays formed by metallic nanorods, i.e., an effective 
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medium composed of air and AgNRs, whose dielectric function can be described by the 

Drude model  

2
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 In Eq. (2.8),   is the dielectric constant taking into account of the contributions 

other than those from the free electrons, which are significant at high frequencies. p is 

the resonance frequency. The effective dielectric function predicted by the MG 

approximation for both ordinary and primary extraordinary waves with associated g is 
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Rearranging Eq. (2.9), it gives 
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 Note that in the above set of equations, 1 , p1  and o  are the effective 

dielectric constant, plasma frequency, and resonance frequency, respectively. Eq. (2.10) 

is a typical Lorentz model for dielectrics, and will be reduced to the Drude model for 



 17 

metals with o 0  . For infinite long nanorods, Eg = 0 and Og = 0.5. Eq. (2.10) 

essentially predicts a metallic behavior of the effective medium with  1 1 f f       

and 
2 2
p1 pf   for primary extraordinary waves and a dielectric behavior for ordinary 

waves as expressed by Eq. (2.10) with Og  = 0.5. However, for nanorods with finite 

length, even with small values of Eg , the dielectric function of metallic nanorod array 

with extraordinary waves is described by a Lorentz model, which predicts the metallic 

behavior with n   near the resonance frequency.   

2.3 Wave Propagation inside Uniaxial Media 

 The nanorod array can be treated as an effectively homogenous and uniaxial 

medium with its optical axis (c ) along the rod axial direction. Light traveling inside this 

medium has different responses depending on the polarization. To facilitate the 

understanding of wave propagation in a uniaxial medium, we present a derivation starting 

from the Maxwell equations to determine the wavevector magnitude inside the medium. 

 The Maxwell equations applicable for wave propagation inside both isotropic and 

anisotropic media are: 

e D                                                              (2.14a) 

0 B                                                               (2.14b) 

t


  



B
E

                                      
                   (2.14c) 

t


  



D
H J

                                   
                  (2.14d) 

 Related constitutive equations are: 
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0 D E                                                              (2.15) 

0 B H                                                            (2.16)
  

0J E                                                               (2.17) 

 In those equations above, E , H , D , B , and J  are the electric field in V/m, 

magnetic field in A/m, electric displacement in C/m
2
,  magnetic induction in Wb/m

2
, and 

electric current density in A/m
2
, respectively. e  is the charge density in C/m

3
 and 0  is 

the DC electric conductivity in A/(V-m). 0 = 8.854×10
12

 F/m and 0 = 4π×10
7

 N/A
2
 

are the electric permittivity and magnetic permeability of free space, respectively.   is 

the relative permittivity (dielectric function) and   is the relative permeability of the 

medium in tensor form. For a plane wave in a nonconducting, nonmagnetic, and source-

free medium, 1   reduces to a scalar, and 0 e 0   . Eqs. (2.14a) to (2.14d) become: 

0 k E H                                                         (2.18a) 

0   k H E                                                    (2.18b) 

0 k E                                                             (2.18c) 

0k H                                                             (2.18d) 

where k is the wavevector. The anisotropic dielectric function is a 2nd-rank tensor. The 

expression of   in a local coordinate is defined by the principal crystal directions 

 , ,x y z    and can be expressed as 
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 For easier expression, the tilde as a notation for complex quantities is omitted in 

the following derivation. In general, for biaxial media with two optical axes, 

x y z      . However, for the special case of uniaxial (or birefringent) media with 

only one optical axis along z' axis ( c z ), the off-diagonal elements in the dielectric 

tensor vanish  
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                                              

(2.19b)  

where O  and E  are the principal dielectric functions and On  and En
 
are the principal 

indices of refraction for ordinary and extraordinary waves, respectively.     

  

Figure 2.2 (a) Coordinate transform from global to local coordinates; (b) Directions 

associated with wave propagation in a uniaxial medium. The black vertical lines 

correspond to the constant phase front. 

 

 The dielectric tensor elements in global coordinate (x, y, z) can be expressed using 

the principal dielectric functions in local coordinate (x', y', z') through a coordinate 

transform. Ordinary waves in uniaxial media behave isotropically with On  as the 
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refractive index; while for extraordinary waves, the refractive index varies upon 

propagation direction and lies in between nO and nE. To better understand the anisotropic 

features of extraordinary wave propagation, we consider a case that c  lies in the xz 

plane with the normal component of wavevector along z axis. The angle of  between c  

and z axis is the angle for coordinate rotation, which equals the inclination angle of 

nanorods, as shown in Fig. 2.2(a). In uniaxial media, D , E , and the wavevector k  are 

coplanar, but E  and k  are not mutually perpendicular. While the magnetic field ( H ) is 

always perpendicular to k  and E  for nonmagnetic materials; hence, the energy flow 

direction (denoted by the poynting vector s , also the direction of group velocity) deviates 

from the phase propagation direction ( k , also the direction of phase velocity), as 

illustrated in Fig. 2.2(b). 

 For the configuration in Fig. 2.2(a), the optical-axis vector can be represented as 

ˆ ˆ ˆˆ ˆsin cosx y zc x c y c z x z     c                                      (2.20) 

 The dielectric function in the global coordinates is 

xx xy xz

yx yy yz

zx zy zz

  

   

  

 
 

  
  
 

                                                (2.21) 

 Then the diagonal and off-diagonal tensor elements in Eq. (2.21) can be written as: 

              2 2 2 2
O E Oii in n n c                                                 (2.22a) 

          2 2
E Oij i jn n c c                                                    (2.22b) 

where i, j = x, y, and z, respectively. Note that On  and En
 
are defined in Eq. (2.19). 

Substitution of Eqs. (2.22a) and (2.22b) into Eq. (2.21) gives 
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  
 

  
    

                (2.23) 

 Note that 
T   has only 6 independent elements. Substituting Eq. (2.23) into 

Eq. (2.18b), the components of electric field xE  and zE  can be solved as          
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0

1 x xz z zz
x y

xx zz xz

k k
E H

 
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                      (2.24a) 

2
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1 x xx z xz
z y

xx zz xz

k k
E H

 

   


 


                                     (2.24b) 

 Substituting the above expressions of xE  and zE into Eq. (2.18a) gives  

          

   
2

2 2 2

2
0

2 0z zz x xz z x xx xz xx zzk k k k
c


     

 
     

  
                    (2.25)

 

 This is a quadratic equation of zk  with two solutions as 

                                  
 2 2 2

0( )x xz xx zz xz zz x

z
zz

k k k
k

    




   

                        

 

(2.26) 

Here, 0 0k c
 
and  

22
O E O Exx zz xz n n        are used. The positive and negative 

square roots in Eq. (2.26) correspond to forward and backward waves, i.e., incident and 

transmitted waves for positive sign and reflected waves for negative sign at an interface. 

The tangential component of wavevector (kx) is the same for each medium if a multi-

layer structure is used due to the phase matching condition at interfaces. 

2.4 Reflectance and Transmittance Coefficients at Anisotropic Interfaces  

 At an interface, transverse-electric polarization (TE, also called s polarization) 
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and transverse-magnetic polarization (TM, also called p polarization) correspond to E 

and H perpendicular to the plane of incidence (POI), which contains both the wavevector 

and surface normal ( n̂ ). Note that at normal incidence, there is no difference between TE 

and TM since n̂k  . In general, at an interface between two anisotropic media, pure TE 

and TM polarizations do not exist due to the coupling between the ordinary and 

extraordinary waves, which means incidence with one polarization in medium 1 

generates both TE and TM waves in medium 2. However, if one of the principal axes of 

  tensor for both media are normal to the POI, polarizations are decoupled. The 

configuration shown in Fig. 2.3 belongs to decoupling cases with the optic axes of both 

media ( 1c and 2c ) lying in the POI (the xz plane). For this configuration, ordinary and 

extraordinary waves correspond to the TE and TM polarizations, respectively. Ordinary 

waves behave similarly to waves propagating in isotropic media and satisfy the Snell law. 

Using the surface admittance definition stated in Ref. [88] , ,/j x j y jY H E  with j = 1 

and 2 for media 1 and 2, respectively, the reflectance and transmittance coefficients at the 

interface between two uniaxial media for TE polarization are 

2
1O i 2O 1O is 1 2

12
2

1 2 1O i 2O 1O i

cos (sin )

cos (sin )

Y Y
r

Y Y

    

    

 
 

  
                      (2.27a) 

and                         
1O is 1

12
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1 2 1O i 2O 1O i

2 cos2

cos (sin )

Y
t

Y Y

 

    
 

  
                         (2.27b) 

where                             

2 2 2
0 1O 0

1 1O i
0 0

cos
xk n k k

Y  
 

 
                                 (2.27c) 

and                          

2 2 2
0 2O 20

2 2O 1O i
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(sin )
xk n k k

Y   
 

 
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(2.27d) 
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Correspondingly, the reflectance and transmittance for TE polarization are 

2
s s
12 12R r

           

 and                
2

s s
12 12 2 1Re / ReT t Y Y             (2.28) 

 In Fig. 2.3(a), TM incident waves with H  along the y-axis correspond to 

extraordinary waves only  H c . Here, the reflectance and transmittance is re-derived 

for extraordinary waves to facilitate the understanding of anisotropic wave propagation. 

 

Figure 2.3 (a) Schematic of an anisotropic interface between two uniaxial media; (b) 

Optical axis orientation, local coordinates along principal crystal directions and global 

coordinates of medium 1; (c) Optical axis orientation, local coordinates along principal 

crystal directions and global coordinates of medium 2. 

 

 The individual wavevector and magnetic field for incidence, reflection, and 

transmission are 

Incidence:                               
1 1i i
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                                                  (2.29a) 
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Reflection:                              
1 1i i

r r

r 1

ˆe

ˆˆ

x zk x k z

z x

H y

k z k x





 


 

H

k

                                                 (2.29b) 

Transmission:                         
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                                                (2.29c) 

 As mentioned before, the sign convention of kz is positive for forward waves 

(incident or transmitted) and negative for backward waves (reflected), respectively. Note 

that in Eqs. (2.29a) to (2.29c), the time-harmonic terms of 
ie t 

are removed for 

convenience. Matching the tangential components of    0 0  y yH z H z     at the 

interface results in 

   p p
i r t 12 121H H H r t                                             (2.30)                                    

 Substituting Eqs. (2.29a) to (2.29c) into Eq. (2.18b), one can get the tangential 

components of the electric field of both media at the interface, whose expressions are 

similar to Eq. (2.24a). The continuity of the tangential components of the electric field 

with    0 0x xE z E z    
 
results in   
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 The surface impedance x yZ E H  for incidence, reflection, and transmission 

waves are defined as   
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Reflection:     
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Transmission:     
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 It is easy to see that Eq. (2.31) can be reorganized as         

  
p p

1 1 212 12Z Z r Z t                                                     (2.33)

    

   

 Combining Eqs. (2.30) and (2.33) and solving for p
12r  and p

12t , it follows that          
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 Here, the positive/negative sign convention for surface impendence follows the 

same rules for the wavevector. 1zk  and 2zk  can be calculated using Eq. (2.26) together 

with related uniaxial material dielectric functions based on Eq. (2.22). Applying the 

conservation of power flow carried by extraordinary waves at the interface, one obtains 

  

2
p p
12 12R r

                   

 and              
 
 

2 2p p
12 12

1

Re

Re

Z
T t

Z




                  (2.35) 

2.5 Thin-Film Optics for Anisotropic-Layer Structures 

 The effective homogenous layer formed by nanorods can be treated as a semi-

infinite medium if the penetration depth of the nanorod layer is much less than the layer 

thickness. For this case, Eqs. (2.28) and (2.35) are sufficient to characterize the radiative 

properties of the nanorod layer. When the layer thickness is comparable or less than the 

wavelength of incident radiation, the wave interference effects must be considered to 

correctly predict the radiative properties of multilayer structures of thin films. Here, the 

three-layer model of a thin film on a semi-infinite substrate is presented for better 

understanding of the anisotropic wave propagation in uniaxial media. 
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Figure 2.4 Configuration of the three-layer model of a uniaxial thin film on an optically 

semi-infinite substrate: (a) Isotropic propagation of ordinary waves corresponding to TE 

polarization; (b) Anisotropic propagation of extraordinary waves corresponding to TM 

polarization. 

 

 Considering light incident from a nonabsorbing and optically isotropic medium 

( 1 ) at an angle of i  
to a uniaxial layer ( 2O  and 2E ) deposited on a substrate which is 

optically isotropic and semi-infinite ( 3 ), as indicated in Fig. 2.4. The optical axis lies in 

the POI (x-z plane) and the normal component of wavevector propagates along z axis. 

For TE polarization, ordinary waves behave isotropically with nO as the index of 

refraction, hence the thin-film optics formulation is similar to that of the wave 

propagation in an isotropic medium for TE polarization, and is summarized below: 
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 (2.36)  

where j = 1, 2O, and 3, respectively.     
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(2.37)

 

where i, j are two consecutive variables of the series [1, 2O, and 3].                              
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where 
s 22
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   and d2 is the thickness of the uniaxial layer.  
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Notice that 0 1 isinxk k    is the same for each interface due to phase matching.  

 For TM polarization, the calculation of reflectance and transmittance is based on 

surface impedance.  
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where i, j are two consecutive variables of the series [1, 2, and 3].                                                                            
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where p 1 i 2O 2E 2 0 02
2 2

sin2 xz
z

zz

n Z cd
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 
 are the phase angles in the 

uniaxial layer corresponding to propagating and reflecting waves, respectively. Based on 

Eqs. (2.22a) and (2.22b), xz and zz  can be determined as 

 2E 2O sin cosxz         and      
2 2

2O 2Esin coszz             (2.43) 
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 The reflectance and transmittance for the structure illustrated in Fig. 2.4(b) are 

calculated to be 

                    
2

p p
123 123R r            and          

 
 

2
3p p

123 123
1

Re

Re

Z
T t

Z
                        (2.44) 

 The theoretical foundations of this dissertation are presented in this chapter, 

which are later implemented into the modeling for various samples to analyze the 

measurement results. The CNT and AgNR samples investigated in this dissertation can 

be treated as effectively homogenous and uniaxial media with surface roughness and bulk 

inhomogeneity. The sample radiative properties can be studied by analyzing related 

BRDF, angle-resolved reflectance, DHR, and scattering. In addition, the EMT provides a 

way to estimate the effective properties of the CNT and AgNR samples which are 

optically uniaxial. The reflectance, transmittance, and absorptance of different samples, 

which can be modeled as either semi-infinite media or multi-layer structures, will be 

calculated based on the anisotropic thin-film optics formulation. 
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CHAPTER 3 

MEASUREMENT INSTRUMENTATION 

 

This chapter provides a general description of the measurement instruments and 

setups used for subsequent chapters, including an optical laser scatterometer for 

measuring BRDF, angle-resolved reflectance, and diffraction peaks, and an IS along with 

a monochromator for measuring the DHR.     

3.1 Optical Laser Scatterometer 

Optical scatterometers or reflecrometers are typical instruments for BRDF 

measurements. In this dissertation, a three-axis automated scatterometer (TAAS) is used 

to characterize the radiative properties of samples formed by both the VACNT and 

inclined AgNR arrays. TAAS was originally developed by Shen [89] to measure the 

BRDF of rough silicon wafers for accurate temperature measurement and control in rapid 

thermal processing (RTP), and semiconductor surface metrology and inspection. In the 

present work, the TAAS setup is adjusted and improved to increase the signal-to-noise 

ratio for low-level measurements and better accuracy.  

The so-called "three-axis" in the name of the TAAS setup means the rotation axes 

of three movable stages, which are used to vary the angles of incidence and observation. 

Note that the observation angles can be angles of reflection, scattering, or diffraction, 

depending on the measurement purpose. Figure 3.1 shows a schematic of the 

experimental arrangement of the TAAS, including a light source assembling, a 

goniometric table, a detection and data acquisition system. Two photos of the TAAS are 

also depicted in Fig. 3.2 for easier visualization of three movable stages and the light 
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source assembling. A compact fiber-coupled diode laser system serves as the light source 

providing coherent and highly collimated incident light at certain wavelengths. A 

thermoelectric laser controller is used to maintain the laser operation temperature for 

better laser power stability. A 12-hour drift test shows that the standard deviation of the 

laser power fluctuation is less than 0.22%. An optical fiber and an adjustable laser holder 

provide flexibility for optical access and alignment, as well as the convenience of 

replacing diode lasers with different wavelengths. The laser diode is modulated at 400 Hz 

through an oscillating signal sent from a lock-in amplifier (EG&G 7265DSP) to the diode 

laser controller to reduce the effect of background radiation and stray light without using 

a mechanical chopper. During the measurement, the laser beam first passes through a 

collimator consisting of a pair of lenses and a small aperture, and then through a polarizer 

dial which is used to produce linearly polarized incident light. After that, the beam is 

divided into two portions by a beamsplitter: the transmitted portion with higher power is 

directed to the sample and the reflected beam goes to a stationary reference detector, 

which is used to monitor the laser fluctuation and improve the source stability. The 

sample is loaded on a holder attached with Stage 1. The rotation of Stage 1 varies the 

angle of incidence. A sample detector attached with Stage 2 is used to collect the light 

reflected or scattered from the sample surface. The rotation of Stages 2 and 3 allows the 

sample detector to move precisely in the upper hemisphere above the goniometric table. 

Two types of measurements can be conducted with the TAAS based on the sample 

detector movement: in-plane measurements and out-of-plane measurements. For in-plane 

measurements, the sample detector is confined within the POI, which is parallel to the 

goniometric table (the x-z plane) and illustrated as the dashed black circle in Fig. 3.1; 
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while for out-of-plane measurements, the sample detector can move above the POI. Both 

the reference and sample detectors are silicon detectors with the spectral working range 

from 350 to 1100 nm. The signals collected by both detectors are sent to two trans-

impedance pre-amplifiers with a large dynamic range from 10 to 10
9
 , and later to the 

lock-in amplifier which provides the modulation signal for the laser controller. The 

output of the lock-in amplifier and two step motors are connected to a desktop with the 

LabView environment for data acquisition and automatic rotary-stage control.  

 

 

 

Figure 3.1 Schematic showing the experimental arrangement of the TAAS. The dashed 

circle represents the projection of the upper hemisphere on the goniometric table, which 

also indicates the sample detector movement for in-plane measurement.   
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Figure 3.2 Two photos of the TAAS for easier visualization: (a) Three movable stages; (b) 

The light source assembling. 

 

 Since the output signal of the detector is proportional to the power received, the 

measurement equation of BRDF with the TAAS setup can be expressed as [89,90] 

sample
r i r

reference r r

( , , )
cos

S
f C

S
  





                                        

(3.1) 

where Ssample and Sreference are the output signals of the sample detector and the reference 

detector, respectively; C is a constant to compensate for the beamsplitter ratio and the 

different responsivities of two detectors, and r  is the solid angle of the sample 

detector, which is 0.000184 sr and corresponds to a 0.45


half-cone angle as viewed from 

the laser spot on the sample. Such a small detector solid angle provides high accuracy for 

the TAAS measurements. Note that for in-plane measurements conducted in the present 

work, the azimuthal angle is confined to be either 0

 or 180


 depending on whether the 

sample detector projection is on the x side or x side, as can be seen from Fig. 3.1; 

hence the dependence of BRDF on the azimuthal angle is neglected when Eq. (2.1) is 

converted to the measurement equation. It should be noted here that the BRDF within ±3

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of the retroreflection direction cannot be measured since the sample detector blocks the 

incident beam at this position ( i r   and i r  ). Besides BRDF, angle-resolved 

reflectance and diffraction efficiency can also be characterized with the TAAS following 

corresponding procedures, which will be further explained in the following chapters.  

The maximal output power of the diode laser (single-mode) is around 3 mW at the 

output of the optical fiber, and will be further reduced after passing through the 

collimator, polarizer, and beamsplitter. To reduce the random system error, the detector 

signals are usually averaged over several consecutive measurements for a given position 

with a fixed set of i  and r . In addition, some other approaches are adopted to improve 

the signal-to-noise ratio for low-level measurements of highly absorbing samples, i.e., 

VACNT arrays, and will be discussed in detail later. The relative uncertainty of the 

TAAS was estimated to be 5% with 95% confidence level for the BRDF greater than 0.01 

by intercomparison with a reference standard instrument in NIST [89]. However, the 

uncertainty is expected to increase due to unavoidable stray light and the reduction of 

signal-to-noise ratio if the VACNT samples are used with extremely small reflectance.   

3.2 Integrating Sphere for DHR Measurement 

Ideally, the directional-hemispherical reflectance can be obtained from the TAAS 

measurements by collecting the BRDFs over the whole hemisphere. However, practically 

it is not feasible due to the large amount of measurements. Therefore, an IS is a good 

alternation for measuring Rdh. Figure 3.3 shows a schematic of the experimental setup for 

spectral and directional-hemispherical radiative property measurements with a custom-

designed IS from Sphere Optics, Inc. [91]. A photo of the IS system is also presented in 

Fig. 3.4 for better visualization. The light source is a tungsten-halogen lamp with a broad 
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spectral range from visible to NIR. Monochromatic light is achieved by interchanging 

several filters on a filter wheel which acts as a "transmission window" and a 

monochromator (Oriel Instruments Cornerstone 130) with two gratings inside. The root 

mean square (rms) power fluctuation of the monochromator is less than 1%. The lamp 

beam which contains multi-wavelengths is diffracted by the grating (1200 lines/mm) into 

various directions depending on wavelengths with the required wavelength being allowed 

to pass through the exit slit. The beam width is determined by the width of the exit slit of 

the monochromator, and the beam height can be reduced by blocking both the upper and 

lower portions of the slit. A resolution of 10 nm (characterized at 500 nm) can be 

achieved with this monochromator. A mechanical chopper synchronized to a lock-in 

amplifier is used to modulate the signal at 400 Hz to avoid stray light. Two optical lenses 

with a 25-mm diameter and a 100-mm focal length are used to focus the beam at different 

locations of the IS based on the purposes of measurements and sample properties.  

 

Figure 3.3 Schematic of the IS setup for spectral and directional-hemispherical 

reflectance measurement with the center-mount configuration. The light source is a 

tungsten-halogen lamp with a broad spectrum from visible to NIR. Monochromatic light 

is produced by a filter wheel and monochromator.   
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Figure 3.4 A photo of the IS system showing the light source, filter wheel, 

monochromator, chopper, focus lenses, and the sphere.   

 

The IS is a 200-mm-diameter sphere imbedded in a cube, which has 25-mm-

diameter ports on all sides. The inner wall of the IS is coated with polytetrafluoroethylene 

(PTFE), which is a nearly perfect diffuse reflector with a reflectance of approximately 

0.988 in the wavelength region of interest [92,93]. Monochromatic beam enters the IS 

through the entrance port and is focused on the sample surface. The sample can be 

mounted on a rotary holder through the top port of the IS (center-mount configuration), 

or on the back port (back-mount configuration), or on the front port (front-configuration) 

for different measurement purposes. If the center-mount configuration is used, by rotating 

the sample holder, the beam can be directed either onto the back wall of the sphere to 

obtain the reference signal or onto the sample to obtain the sample signal. For the other 

two configurations, the sample signal and reference signal are obtained by loading and 

removing the sample from corresponding ports, respectively. The light reflected and 

scattered by either the sample or the reference hits on the PTFE coating and finally goes 
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to a detector through multi-reflection. The detector for signal collection is located at the 

bottom port of the IS and is covered by a baffle placed above to prevent the direct 

illumination of the first reflected light from the sample. To ensure that the DHR 

measurement covers both the visible and part of the NIR spectra, two types of detectors 

are used, which are a silicon detector with the working spectral range from 400 to 1000 

nm and a germanium detector with the working spectral range from 1100 to 1800 nm. 

The detector signal is amplified by a trans-impedance pre-amplifier, and then sent to a 

lock-in amplifier collecting signals at the chopping frequency of 400 Hz. The ratio of the 

sample signal to the reference signal gives the Rdh for samples with the back-mount 

configuration, Tdh for samples with front-mount configuration, and Rdh  Tdh for samples 

with center-mount configuration. Based on Kirchhoff's law, the absorptance can be 

determined. Note that if the sample is opaque, then both the center-mount and back-

mount configurations measure Rdh. However, the center-mount configuration provides an 

easy way for varying the angle of incidence by rotating the sample holder as compared 

with the back-mount configuration.  

The size of lamp beam spot on the sample suspended in the sphere center is 

approximately 6 mm  6 mm with good focus. Hence, measurements with large angles of 

incidence are limited by the sample size which should be less than 1 inch × 1 inch as 

required by the port dimensions. Replacement of the tungsten-halogen lamp with a 

thermoelectrically-cooled diode laser at a certain wavelength provides more space for 

variation of incidence angles because of its small beam size (3 mm in diameter). While 

the laser source is less capable for continuous spectral property measurement, it has some 

advantages over the lamp source. Besides the larger variation range of incidence angles, 
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the diode laser provides more stable and higher optical power than the lamp connected 

with a monochromator, resulting in noise reduction. For the IS-Laser operation, the lock-

in amplifier is connected to the diode laser controller to modulate the frequency 

electrically; hence, no chopper is needed. In addition, a linear polarizer can be placed 

between the diode laser and the IS to measure the reflectance with p or s polarization 

separately. 

 

Figure 3.5 Calibration of IS by comparing the measurements with theoretical calculation 

of the spectral and directional-hemispherical radiative properties of a bare silicon wafer.   

 

A number of facts can affect the accuracy of the integrating sphere measurements 

and, therefore, calibration and corrections are often necessary to reduce the measurement 

uncertainty [94]. A double-side polished silicon wafer with a thickness of 400 m is used 
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to calibrate the IS with the center-mount configuration. At wavelengths longer than 

approximately 1050 nm, silicon becomes semitransparent, and the ratio of the sample 

signal to the reference signal gives the sum of Rdh and Tdh, as shown in Fig. 3.5. The 

wafer is tilted for about 7 so that the light specularly reflected by the silicon wafer would 

not escape from the entrance port. The measurement results agree well with those 

predicted, using the empirical formulation of bare silicon from Lee et al. [95]. The 

average standard deviation of the results from IS measurement and those from theoretical 

modeling is approximately 1.3%. Slightly larger differences exist at the ends of the 

spectrum but are still less than 4%.  

 Detailed instrumentation of the TAAS and IS setups is provided in this chapter,. 

Generally speaking, TAAS characterizes the angular properties of samples, such as 

BRDF, diffuse component of reflectance, and angle-resolved reflectance at a certain 

wavelength, and IS measures the spectral DHR in the visible and NIR ranges. Related 

calibration procedures and uncertainty estimation under typical operation conditions are 

also presented. The actual measurement uncertainties may vary for different samples and 

will be explained in details in subsequent chapters.  
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CHAPTER 4 

HIGHLY ABSORBING CARBON NANOTUBE ARRAYS: TIP 

GROWTH VS. BASE GROWTH 

 

 The nanostructured material described in this chapter is arrays formed by 

VACNTs. In general, CNTs can be divided into two categories: SWCNTs and MWCNTs 

depending on their wall numbers. An SWCNT can be conveniently illustrated as a 

graphene sheet of honeycomb structure rolled along a certain chiral direction [96]. 

Depending on the chiral direction, the SWCNT can be either semiconducting or metallic. 

An SWCNT has only one shell with a diameter usually less than 2 nm. An MWCNT, 

which is similar to an SWCNT for the individual wall structure, usually consists of 

multiple concentric cylindrical shells of wrapped graphene layers coaxially arranged 

around a central hollow with a constant separation between adjacent layers [97-99]. The 

typical diameter of an MWCNT lies between 2 to 30 nm. Arrays formed by CNTs are 

highly absorbing for two reasons: one is the material properties of carbon -band 

absorption, and the other is the low array density of CNTs imbedded in air. The 

extremely high absorption of several vertically aligned MWCNT samples is demonstrated 

by an experimental study as described in this chapter along with the effect of growth 

mechanisms on the CNT radiative properties. 

4.1 Sample Fabrication and Characterization 

 There have been a large number of manufacturing processes with different metal 

catalysts in various temperature ranges for CNT growth, among which, thermal chemical 
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vapor deposition (TCVD) is a synthesis method with easily controlled parameters and 

ability for manufacturing relatively large areas with high throughput [100]. This method 

was first described by Baker [101] in carbon filament formation. First the hydrocarbon 

feedstock is pyrolytically dissociated into carbon and hydrogen. The carbon then 

dissolves into, and forms a saturated solution with the metal nanoparticle before it 

precipitates on the surface to form a nanotube. The growth continues through addition of 

small C-C particles until the catalyst particle is eventually poisoned by impurities or 

stable carbide formation.  

 The samples were prepared by Dr. Ready's group in GTRI. The CNTs were 

synthesized on double-side polished (100) silicon substrates, approximately 400 m in 

thickness and 25 mm × 25 mm in area. During the fabrication process, an iron catalyst 

layer of approximately 10 nm was deposited by a resistively heated thermal evaporation 

system at 4.3  10
4

 Pa. Iron wire with 127 m diameter and 99.999% purity was used as 

the catalyst source. Vertically aligned MWCNTs were synthesized in a programmable 

furnace as described by Camacho et al. [3]. The substrate was heated to 820

C, and 

Argon gas was introduced into the furnace as a carrier gas at a flow rate of 1000 standard 

cubic centimeters per minute (sccm). After 13 minutes of temperature ramp, a gas 

mixture of 1000 sccm methane, 120 sccm ethylene, and 500 sccm hydrogen was 

introduced with various soak times. Afterward, the tube furnace was quenched to 676

C 

in ten minutes under a 1000 sccm flow of Argon. In the end, the furnace was cooled to 

room temperature and the sample was removed. Figure 4.1 depicts the fabrication 

systems with a schematic of the synthesis setup and a photo of the TCVD chamber, gas 

supply, and computer based programming controller.    



 41 

 

Figure 4.1 Illustrations of fabrication systems: (a) A schematic of the synthesis setup; (b) 

A photo of the TCVD chamber, gas supply, and programmable computer controller.    

   

Depending on the interaction of the catalyst nanoparticle and substrate, two 

growth mechanisms exist for the CNT fabrication [101]: base (or root) growth and tip 

growth, as can be seen from Fig. 4.2. Base growth is characterized by a strong catalyst-

substrate adhesion; however, in tip growth, substrate-catalyst adhesion is rather weak. Liu 

et al. [102] showed that carbon deposits on the CVD reactor sidewalls can affect the 

growth of CNT arrays through the re-deposition of carbonaceous byproducts from 

previous CNT growth runs. It is found that samples grown with a high concentration of 

carbon byproduct on the reactor sidewalls are prone to tip growth. The re-deposition of 
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carbonaceous impurities from the reactor sidewalls on the Si substrate may have 

weakened the adhesion of the iron catalyst nanoparticles, causing them to be carried up 

from the Si substrate during the CNT growth.  

 

Figure 4.2 Two growth mechanisms: (a) Root growth with metal catalyst on bottom; (b) 

Tip growth with metal catalyst on top.     

 

In total, there were six samples fabricated. Samples 4, 5, and 6 are tip-growth 

dominant as observed by SEM images. In order to remove the carbon byproducts, the 

CVD reactor was cleaned by heating the chamber to slightly less than 1000

C in ambient 

atmosphere. The removal of these sidewall impurities results in better adhesion between 

the iron catalyst nanoparticles and the substrate. Samples 1, 2, and 3 were prepared after 

cleaning of the sidewalls and are base-growth dominant. Figure 4.3 displays the SEM 

images of a base-growth and a tip-growth VACNT sample. As shown in Fig 4.3(a), the 

tip-growth sample has noticeable iron catalyst nanoparticles (white) at the top of the 

CNTs. On the other hand, the SEM image of the surface of the base-growth sample 

shown in Fig. 4.3(b) looks like dark clouds, suggesting a high degree of surface 

roughness. 
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Figure 4.3 SEM images: (a) Sample 5, which is tip-growth dominant with catalyst 

nanoparticles at VACNT tips; (b) Sample 2, which is base-growth dominant.   

 

Table 4.1 lists the parameters of fabricated samples, including the thickness (d) 

and the density of VACNT carpet, as well as the volume (filling) fraction denoted by f. 

The thickness was calculated based on the average from the SEM pictures taken at 

different locations, and the standard deviation is also shown to indicate the uniformity of 
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the sample. For Samples 1 to 3, the SEM images were obtained by dicing corresponding 

samples under the same growth conditions, while for Samples 4 to 6, the SEM images for 

individual samples were taken from their side edges. The thickness was obtained by 

averaging more than 40 measured points for each sample. The nonuniformity in the CNT 

thickness is associated with misalignment and other defects, as can be seen clearly from 

the SEM image of Sample 2 as shown in Fig. 4.3(b). The variations in the sample 

parameters are caused by the intentional variations in the fabrication parameters, such as 

the flow rates of the reaction gases, the growth temperature, soak time, and the size of the 

catalyst nanoparticles as well as other particles in the furnace. The weight was measured 

with an analytical balance by removing the CNTs from the substrate, after the reflectance 

of the samples was measured. By assuming that the density of the VACNTs is the same 

as that of graphite (2.2 g/cm
3
), we used the ratio of the sample density to that of graphite 

to estimate the volume fraction of the VACNT carpet. Due to the thickness 

nonuniformity and the uncertainty in the weight measurement, the estimated uncertainty 

is up to 50% in density and volume fraction.  

Table 4.1 Parameters of the VACNT samples used in the present study. 

Sample  

# 
Growth mechanism 

Thickness         

d (m) 

Density             

(g/cm
3
) 

Volume 

fraction    f 

(%) 

1 base-growth 86  10  

2 base-growth 107  18  

3 base-growth 141  9  

4 tip-growth 56  13  

5 tip-growth 54  8  

6 tip-growth 88  14  
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The values in Table 4.1 show that the densities of Samples 4 and 5 are much 

higher than those of Samples 1 to 3; this may be explained by the iron catalyst 

nanoparticles and other carbonaceous impurities for the tip-growth samples (Samples 4 

and 5). For base-growth samples, the iron catalyst nanoparticles are presumed to remain 

on the substrates, when the CNTs were removed for the weight measurement. It is not 

clear why the density of Sample 6 (tip growth) is the lowest among all measured samples. 

However, it was noted that the surface of Sample 6 had been damaged after spectroscopic 

measurements and was not uniformly covered by CNTs before the weight measurement. 

A large portion of the substrate surface was not covered by CNTs, resulting in a much 

lower estimated density. Hence, the density for Samples 4, 5, and 6 may not reflect the 

actual density of the VACNTs. Nevertheless, the density and volume fraction of these 

samples are listed in Table 1 for reference only. The volume fraction for Samples 1 to 3 

varies in the range from 2% to 4%, which is comparable with the values reported by 

Yang et al. [1].  

 

Figure 4.4 TEM image of the MWCNTs under the same growth conditions as those of the 

measured samples. 
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The diameters of the VACNTs were measured with transmission electron 

microscopy (TEM), by scraping the VACNTs from the silicon substrate onto a lacey 

carbon grid and imaging on a JEOL 100CX2 TEM operated at 100 kV. Figure 4.4 

presents the TEM image of a CNT sample under the same growth conditions as those of 

the measured samples. From the TEM images, the average diameter of the VACNT 

samples is around 25 nm. 

4.2 Measurement Results and Discussions  

4.2.1 Directional-Hemispherical Reflectance  

The IS with a grating monochromator as described in Chapter 3 was used to 

measure the spectral, directional-hemispherical reflectance of those six CNT samples. 

The measurement spectral range was from 400 to 1800 nm with an increment of 25 nm 

provided by the tungsten-halogen lamp with continuous broad spectra as the light source. 

Two detectors were used: a silicon detector for the wavelength range from 400 to 1000 

nm and a germanium detector for the wavelength range from 1100 to 1800 nm. The 

center-configuration was adopted for reflectance measurement since all samples were 

essentially opaque. This was verified by placing the sample in front of the entrance port 

of the sphere and the obtained transmittance signal of the samples was negligible. 

The measured Rdh spectra of the six CNT samples are shown in Fig. 4.5 in the 

wavelength region from 400 to 1800 nm. Since the CNT samples exhibit a much lower 

reflectance (less than 3%), it is difficult to achieve high accuracy in the reflectance 

measurement. As to be seen from the BRDF measurement results in the later discussions, 

the CNT samples scatter light toward the whole hemisphere with a large specular peak 

and significant retroreflection. Therefore, the samples are neither diffuse nor specular. 
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Hence, in the DHR measurement, each CNT sample was tilted by about 7 to reduce the 

fraction of light being reflected back to the entrance port. Based on previous study and 

the view factor of the entrance port to the whole sphere, approximately 1.5% of the light 

reflected by a diffuse sample will escape from the entrance port [93]. Because of 

retroreflection, the percentage of light escaping the entrance aperture is estimated to be 

larger around 2-4%. Corrections were not made because it is difficult to quantify the 

exact amount of reflected light that escapes the aperture. A major uncertainty arises from 

the lower signal-to-noise ratio and sample nonuniformity. A black shielding tube was 

placed in front of the entrance port to prevent stray light from entering the sphere. The 

noise level was found to be a few percent of the signal when the reflectance is less than 

1%. Repeated measurements of the sample suggested that the relative standard deviation 

was within 5%. The relative expanded uncertainty in Rdh is estimated to be 15% for the 

CNT samples. The error bars indicate the uncertainties for Sample 1 and Sample 4. The 

measurement results are not good enough and not shown in Fig. 4.5 for the spectral range 

of 1000 nm <  < 1100 nm, because of the instrument limits of the grating, filter, and 

detector when used as a combination. There is some discontinuity between 1000 and 

1100 nm due to the change of measurement configurations, i.e., different detectors and 

gratings of the monochromator, especially for Samples 4 and 5. It should be noted that 

while the responsivity of the germanium detector is about one order of magnitude lower 

than that of silicon at 1000 nm, the change of the gratings results in about one order of 

magnitude enhancement of the light intensity in the long wavelength region. Hence, the 

signal-to-noise ratio is similar in different spectral regions. 
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Figure 4.5 Rdh of six CNT samples measured with the IS in the spectral ranges from 400 

to 1000 nm and from 1100 to 1800 nm. The usage of different grating and detector 

combinations results in the discontinuities of the curves from 1000 to 1100 nm. 

 

The most noticeable feature in the reflectance spectra shown in Fig. 4.5 is the 

reflectance peak near  = 600 nm for tip-growth dominant samples (#4, 5 and 6). This is 

attributed to the iron impurities on top of the CNTs. Visual inspection reveals that the 

surfaces of Samples 4 to 6 appear somewhat brownish, unlike the pure black look of 

Samples 1 to 3. In general, the reflectance decreases slightly toward longer wavelength. It 

can be seen that Sample 1 exhibits the lowest reflectance, which is less than 1% in the 

measured spectral region and less than 0.5% for  > 1200 nm, suggesting that the 

absorptance dh1 R    is between 0.991 (at  = 400 nm) and 0.996 (at  = 1800 nm). 

The high absorptance with excellent spectral uniformity is ideal for thermal detectors and 

emitters. The variations of the reflectance among different samples are not related to the 
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thickness, because the thickness of the CNTs is much greater than the photon penetration 

depth such that the CNTs can be treated as semi-infinite. The entanglement of VACNTs, 

iron and other impurities, nonuniformity of the sample surface, and measurement 

uncertainty may be responsible for the sample-to-sample variations.  

4.2.2 Bidirectional Reflectance Distribution Function  

The BRDFs of CNT samples were measured with the TAAS at the 635-nm 

wavelength for different polarizations. Due to the high absorption of CNTs which 

decreases the signal-to-noise ratio, several approaches were implemented before each 

measurement in order to increase the power received by the sample detector. First, the 

optical fiber was adjusted for each polarization to maximize the output power by 

improving the coupling between the optical fiber polarization and polarizer [90]. Second, 

a black screen was used to separate the light source assembling and the sample-detector 

area during the BRDF measurements to further decrease the effect of stray light. Last, the 

sample holder was wrapped with black carbon tapes so that light incident on the sample 

holder will be largely absorbed instead of being reflected and going to the detector.    

The measured BRDFs of two representative samples are shown in Fig. 4.6, at 

incidence angles of 0

, 30


, and 60


 for both s and p polarizations. The value of r rcosf   , 

which is the so-called cosine corrected BRDF generally used in previous studies, is 

plotted for clarity and to facilitate the discussion. The reflection angles covered  80

 

with respect to the surface normal of the sample. Recall that Sample 1 is base-growth 

dominant with a very low reflectance (approximately 0.7% at  = 635 nm) and Sample 4 

is tip-growth dominant with a relatively higher reflectance (approximately 2.2% at  = 

635 nm). Although the BRDF of Sample 1 is much lower than that of Sample 4, the 
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BRDFs of both samples exhibit similar angular and polarization dependence. The BRDFs 

of Samples 2, 3, and 5 were also measured and similar trends were observed but not 

shown in the figure.  

 

Figure 4.6 BRDF measurements of Sample 1 (a,b) and Sample 4 (c,d) at different 

incidence angles for both s polarization (left) and p polarization (right). The inset of Fig. 

4.6(b) shows the geometry of bidirectional reflection. 

 

If the reflection from the sample surface were perfectly diffuse, the scatted light 

would follow the Lambertian law such that the BRDF would be independent of the 

observation angle. On the other hand, a specular surface would reflect light in the 
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specular direction only. The scattering from the VACNT samples is much more 

complicated however. At normal incidence, there exists a peak around r 0 .    This could 

be caused by specular reflection and/or retroreflection. Furthermore, the trend of the 

BRDF depends on the polarization even at normal incidence. At i 30   , there exists a 

much larger specular peak for s polarization than for p polarization. This appears to 

follow the Fresnel equations of reflection at a smooth interface [76]. For Sample 1, there 

exist split peaks near the specular observation angle of r 30    for both polarizations. 

Split specular peaks were previously observed for a gold film coated on microrough 

silicon samples and explained by diffraction from the rough surfaces [103]. 

Retroreflection can be seen in a large region of observation angle (even though the 

measurement was not done at i r i3 3         
 
due to beam blocking) for 

i 30  and 60   . The cause of retroreflection may be associated with scattering by 

catalyst nanoparticles and/or by the enclosed cup on the CNT tips, since Rayleigh 

scattering by small particles can have a strong backward component in the scattering 

phase function. At i 60  , there exists strong forward reflection that overshadows the 

specular peaks, especially for s polarization. This is consistent with the observation of 

volume scattering samples [104]. While the exact reasons need further investigation, 

scattering by rough surfaces, by small particles, and by volumetric defects seems to have 

interplayed, leading to the distinct features in the measured BRDF of the VACNT 

samples. 
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Table 4.2 Comparison of the absorptance dh1 R    from integration of BRDF at normal 

incidence and from the integrating sphere measurement at  = 635 nm.  

 

 

 

 

 

 

 

 

 

At normal incidence, Rdh can be estimated by integrating the BRDFs averaged 

over the two polarizations, by assuming that the samples are isotropic with respect to the 

azimuthal angle. Note that BRDF was not measured for Sample 6 due to surface damage 

after integrating sphere measurements. For the other five samples, except for Sample 1, 

the integrated reflectance is higher than that measured with the IS by less than 1020%. 

This is anticipated because the reported R values from the IS measurement may be 

slightly lower due to the loss of the reflected light through the entrance port, while the 

BRDF results may be slightly higher than the actual values due to stray light. For Sample 

1, due to its low reflectance, the reflectance obtained from integration of the BRDF is 

approximately 1%, which is about 43% higher than that measured with the sphere. 

Despite the relatively large difference in the reflectance, the two methods give very close 

agreement in terms of the absorptance of the samples, with a difference of 0.2% to 0.3% 

Sample 

# 

Integrating 

Sphere 

 (%) 

Integration 

of BRDF 

 (%) 

Relative 

Difference 

(%) 

1 99.3 99.0 0.3 

2 98.7 98.5 0.2 

3 98.7 98.4 0.3 

4 97.8 97.6 0.2 

5 97.6 97.3 0.3 

6 98.3  -  - 
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for all five samples, as shown in Table 4.2. An absorptance of greater than 98.5% was 

achieved for three base-growth samples as demonstrated by IS measurements. 

4.3 Theoretical Modeling  

Without considering scattering and surface roughness, the CNT carpet may be 

treated as a homogeneous thin film with effective optical constants. The optical 

properties of such idealized system may allow one to estimate the maximum achievable 

absorptance and also provide quantitative information on the absorption coefficients and 

penetration depths for various wavelengths and volume filling factors. The EMT 

introduced in Chapter 2 is a homogenization method of characterizing the optical 

properties of inhomogeneous media based on the average of the electric fields [85,86].  

 A VACNT can be considered as a graphene sheet (a single layer of graphite with 

the hexagonal lattice) wrapped into a seamless cylinder along different rolling directions. 

Due to birefringency, the dielectric function of graphite consists of two components:   

and   which correspond to the cases that the polarization is normal (ordinary rays) and 

perpendicular (extraordinary rays) to the c-axis of graphite, respectively. Here the c-axis 

of graphite is in the same direction of the surface normal to a graphene sheet [87], which 

is shown in Fig. 4.7(a). By assuming that the dielectric function of a VACNT is uniform 

within the whole tube and locally identical to that of graphite, the dielectric constants of 

an individual VACNT can be obtained after a coordinate transformation from Cartesian 

coordinates to cylindrical coordinates, neglecting the hollow core of the VACNT [28]. 

Then, the effective dielectric function of a VACNT carpet can be calculated based on the 

general MG approach which gives the effective dielectric function as [40]   
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and                                                 E
eff 1f f                                                         (4.2) 

 

 

Figure 4.7 Schematic showing the polarization-dependent dielectric functions of (a) 

Single graphene sheet; (b) VACNT array. 

 

 Since the VACNT-air layer is anisotropic, it reflects differences in the dielectric 

function for differently polarized incident light. The superscripts "O" and "E" in Eqs. (4.1) 

and (4.2) denote two effective principle dielectric functions when the incident electrical 

field is normal or parallel to the effective optical axis c along the nanotube direction, 

respectively, as can be seen from Fig. 4.7(b). The overall effective dielectric function can 

be obtained by 

2 O E
eff eff eff eff eff( ) (1 )n i x x                                             (4.3) 

where x specifies the fraction of contributions by the two effective dielectric functions. 

For ideal VACNT samples at normal incidence, x = 1 and the effective dielectric function 

is dominated by O
eff since the electric field is always perpendicular to the CNTs 
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regardless the polarizations. In practice, however, certain contribution from E
eff  must be 

included due to the imperfect alignment and entanglements of VACNTs.  

 

 

Figure 4.8 Effective optical constants calculated from EMT as a function of f for different 

combination factors at  = 536 nm: (a) Refractive index; (b) Extinction coefficient. 

 

 Figure 4.8 shows the effective refractive index effn  and extinction coefficient 

eff  of VACNT carpets calculated based on Eqs. (4.1) to (4.3) as functions of the volume 

fraction f for different x values at  = 635 nm. The optical constants of graphite for both 

polarizations are taken from Palik [87]. It can be seen from Fig. 4.8, both effn  and eff  

increase with f and decrease as x increases. Taking f = 0.03 and x = 0.9 as an example, the 

calculated eff 1.03 n   and eff 0.02   resulting in a small radiation penetration depth 

eff/ (4 ) 2.5 m   , which is much smaller compared with the thicknesses of all 

samples. The reflectivity at the interface between air and VACNT carpet at normal 

incidence can be calculated by [76] 

                                   
2 2

eff eff
2 2

eff eff

( 1)

( 1)

n

n







 


 
                                                     (4.4) 
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 Because eff effn  ,   is close to zero when effn  is close to 1. At  = 635 nm 

for f = 0.03 and x = 0.9, one obtains  = 0.12%; for f = 0.03 and x = 1, one obtains  = 

0.06%.  

 

Figure 4.9 Spectral reflectance calculated from thin-film optics using the effective optical 

constants calculated from EMT for different f and x. 

 

The general formulation for the reflectance calculation is to treat both the CNT 

carpet and silicon substrate as thin films [76]. The reflectance (R) spectra for several 

combinations of f and x are shown in Fig.4.9, assuming that the thickness of the VACNTs 

is 80 m and the thickness of the silicon substrate is 400 m. Note that the discontinuity 

around 600 nm is due to the tabulated optical constants. For f = 0.03 and x = 0.9, the 

radiation penetration depth of the CNT carpet is about 17 m at  = 1800 nm, resulting in 

some interference effect in the reflectance. However, the overall transmittance is still less 
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than 1%. For all other cases, R  . Clearly, larger f yields higher reflectance and, with 

the same f, larger x results in higher reflectance and smaller penetration depth. Note that 

the volume fraction for base-growth samples (#1, 2, and 3) is 24% (Table 4.1). 

Comparing Fig. 4.9 with Fig. 4.5, it can be seen that the calculated reflectance is much 

lower than the measured. Furthermore, the calculated reflectance increases slightly at 

longer wavelength, while the measured spectra exhibit an opposite wavelength 

dependence due to the scattering from a rough surface. 

As discussed earlier, scattering by rough surface, small particles including the 

CNT tips, and volumetric defects (such as misalignment) and nonuniformity may 

significantly alter the bidirectional distribution of the reflected light and the measured 

samples are more diffuse than specular. Hence, it can be concluded that scattering 

dominates the reflection and the reflection by the air-CNT carpet interface plays a minor 

role in the fabricated samples. The strength of Rayleigh scattering decreases with 

wavelength. This may be the reason why the measured reflectance decreases toward 

longer wavelengths. The EMT calculation suggests that further reduction of scattering 

and improvements in the sample quality can result in VACNT carpet with even higher 

absorptance in the visible and infrared. 

4.4 Conclusion  

 In this chapter, the high absorptance (greater than 97%) in the visible and NIR 

regions is achieved by synthesizing multi-walled VACNTs on silicon substrates with 

TCVD method. For tip-growth dominant samples, a wide specular peak appears in the 

reflectance spectra at around  = 600 nm due to metal impurities on top of the MWCNTs. 

For a base-growth sample with a CNT height of around 80 m, the measured absorptance 
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exceeds 0.992 at wavelengths from 400 to 1800 nm. The polarization-dependent BRDFs 

at the wavelength of 635 nm reveal different scattering mechanisms of the MWCNT 

samples, including surface scattering (both specular and diffuse), small particle scattering 

(retroreflection), and volume scattering (forward scattering at large incidence angles). 

Modeling with EMT suggests that interface reflection is relatively small compared with 

light scattering; hence, further increase of the absorptance is possible if scattering by 

impurities and defects can be reduced. This study will facilitate promising applications of 

CNTs in energy conversion and thermal detectors.  
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CHAPTER 5 

HIGHLY ABSORBING CARBON NANOTUBE ARRAYS: 

SPECULAR VS. DIFFUSE 

 

While VACNT arrays with low effective refractive indices can have close-to-

unity absorptance, so far the reported VACNT arrays have been essentially diffuse, 

including those six VACNT samples investigated in Chapter 4. In certain applications, 

such as blackbody cavities for absolute radiometry, radiation thermometry, and baffle 

design, specular black is often preferred over diffuse black [23,34]. This chapter reports a 

systemic investigation of VACNTs of high absorptance in the visible and near-infrared 

and with various surface features from nearly specular to highly diffuse. In addition, the 

specular VACNT sample allows the effective optical constants to be extracted from the 

specular reflectance measurements with a fitting method. 

5.1 Sample Fabrication and Characterization 

Multiwall VACNT specimens were synthesized on a 100-mm-diameter Si wafer 

using a thermal CVD technique by Dr. Cola's group with an Axitron Black Magic system. 

Figure 5.1 depicts the fabrication procedures and a photo of the Black Magic system with 

a PC monitor. The catalysts were made by coating a trilayer of 30-nm Ti, 10-nm Al, and 

3-nm Fe in sequence [105].
 
Process gases were C2H2 and H2 mixed at the flow rates of 

100 and 160 sccm for Samples 1 and 3. While for Sample 2, the flow rates for C2H2 and 

H2 gases were 100 and 700 sccm, respectively. N2 was used as a carrier gas with variable 

flow rates. The growth pressure measured before the gas exit into the vacuum pump was 

70 kPa for Samples 1 and 3, and 0.13 kPa for Sample 2. The growth time was 10 min for 
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Samples 1 and 2, and 2 min for Sample 3. The substrate temperature was maintained at 

750°C during the CNT growth for all three samples.  

 

Figure 5.1 (a) Schematic of the VACNT sample fabrication procedures; (b) A photo of 

the Axitron Black Magic system. 

 

The samples were diced into smaller pieces before the SEM imaging and IS 

measurements. For BRDF measurements, most samples were measured both before 

dicing and after dicing at similar locations on the sample and the repeatability of 

measurement results is within the uncertainty. Based on the SEM images, the average 

thicknesses of Samples 1 to 3 statistically estimated from random locations (around 40 

locations for each sample) were approximately as 166 m, 48 m, and 34 m, 

respectively. The density was obtained by weighing the mass of the CNTs using an 

analytic balance and measuring the covering areas of the substrates. The volume fraction,  

f, can be calculated by comparing the CNT array density to the graphite density which is 

taken as 2.2 g/cm
3
. Table 5.1 lists the fabrication conditions as well as the parameters of 

each sample. From Table 5.1, the sample thickness is larger with a longer growth time 

but the relationship between thickness and growth time is not linear. In addition, when 

the growth time stays the same, pressure and gas flow rate of H2 seem to affect the mass 
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of deposited CNTs. The uncertainties of density and volume fraction are estimated based 

on a 10% thickness uncertainty and 10% area uncertainty due to the somewhat irregular 

shape and the substrate is not fully covered with CNTs. The mass uncertainty is estimated 

less than 7% based on the instrument resolution. The relative uncertainty of density is 

around 15% mainly due to the uncertainties in thickness and area.  

Table 5.1 Growth conditions and measured parameters for the CNT samples. 

Sample  

# 

Pressure 

(kPa) 

Process Gas 

C2H2 : H2 

(sccm) 

Growth 

Time 

(min) 

Thickness 

(m) 

Density 

(g/cm
3
) 

f 

(%) 

1 70 160 : 100 10 166  16 0.067  0.010 3.0  0.5 

2 0.13 100 : 700 10 48  5 0.129  0.019 5.9  0.9 

3 70 160 : 100 2 34  3 0.190  0.028 8.6  1.3 

 

Several SEM images of the fabricated VACNT arrays are depicted in Fig. 5.2. 

Figures 5.2(a) to 5.2(c) are side views of Sample 1 with the most specular surface imaged 

at different regions. From the low-magnification image of the entire array as shown in 

Fig. 5.2(c), it can be seen clearly that the CNTs of Sample 1 with an average thickness of 

around 160 m are well aligned and very uniform. The high-resolution image of Sample 

1 at the tip region demonstrates good alignment near the tip of the CNTs, as can be seen 

from Fig. 5.2(a). Figure 5.2(b) was taken from the middle region and some bending and 

entanglement of CNTs can be seen in the image. Due to the resolution limit of the SEM 

imaging, it is hard to distinguish the differences between individual samples based on the 

side view of the entire arrays; hence, only Sample 1 is selected as the representative.  
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However, the comparison of SEM images with similar magnification of Samples 1 and 2  

with top surfaces viewed at an inclined angle shows certain different surface features.  

 

 

 

Figure 5.2 Representative SEM images: (a) Side view of Sample 1 for top region; (b) 

Side view of Sample 1 for middle region; (c) Side view of Sample 1 for the entire region; 

(d) Inclined view of Sample 1 whose side is well aligned and top is relatively smooth; (e) 

Inclined view of Sample 2 whose surface is less smooth. The scale bars correspond to 

different magnifications. The lower right corner shows two photos of Samples 1 and 2, 

respectively. 
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Figures 5.2(d) and 5.2(e) are inclined views near the top of Samples 1 and 2, 

respectively, with nearly the same magnification as indicated by the scale bars. Sample 1 

has a fairly flat surface formed by the tube tips and the array is pretty uniform as shown 

by the edge. When Sample 2 is viewed from the side along the edge, the array uniformity 

is comparable with that of Sample 1. However, its surface appears cloudy and wavy over 

a large area, suggesting the surface of Sample 2 is relatively rough. Since the top view of 

Sample 3 with the same magnification has similar features as that of Sample 2, its images 

are not presented here. In addition, when these samples are examined by naked eyes, the 

surface of Sample 1 is shinny and displays different colors when the angle of observation 

is varied, which may be due to interference and diffraction effects caused by surface 

roughness, tip scattering,
 
and optical anisotropy, though the exact reason needs further 

investigation; the surface of Sample 2 is dark color and not as smooth; the surface of 

Sample 3 is purely dark, diffuse, and nearly isotropic when tilted. The trend in 

appearance suggests that Sample 1 is more specular, presumably due to the better 

uniformity, smoothness, and alignment. Two photos of Samples 1 and 2 are presented in 

the lower right corner of Fig. 5.2 to visualize the purely black appearances of CNT 

samples, which is an indication of their close-to-unity absorptance.  

5.2 Measurement Results and Discussions 

5.2.1 BRDF for Comparison of Surface Features  

The BRDF measurements were taken at the wavelength of  = 635 nm for all 

three CNT samples with both polarizations. Here, only the in-plane measurements 

( o
r 0   and 180


) were considered; in other words, the movement of the sample detector 
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was confined within the POI as indicated by the dashed circle in Fig. 3.1. Similar to 

previous measurements of CNT samples, precautions were applied to reduce stray light 

and to improve the signal-to-noise ratio for low-level measurements [69,70]. 

The BRDF measurement results are plotted in Fig. 5.3, in which the ordinate with 

the same scale for all three samples is the product r rcosf  , often called the cosine 

corrected BRDF in relevant publications. The cosine corrected BRDF is independent of 

r  for an ideal diffuse surface and can be viewed as proportional to the power that the 

sample detector received for given incidence power and solid angle. Since the interest of 

this study is to investigate the BRDF of the VACNT arrays near the specular peaks, only 

the forward reflectance were considered within a certain range of r around the direction 

of specular reflection. The interval of r  
was taken as 0.2


 near the specular reflection 

angle and 5

 for off-specular measurements. The incidence angles for BRDF 

measurements were set to be 0

, 30


, and 60


 corresponding to three curves of individual 

samples for one polarization. At normal incidence, the BRDFs within 3

 of the specular 

direction could not be measured due to the blockage of the incident beam by the sample 

detector. Therefore, to resolve the specular peak at normal incidence, i  was set to 4º and 

the specular peak was shifted by 4

 in r  to match up with the off-peak BRDF at i  = 0


. 

On the other hand, BRDFs at normal incidence exhibit symmetry for both negative and 

positive reflection angles; and hence the average values of BRDFs measured within two 

ranges of r from 80

 to 3


 and from 3


 to 80


 were used to present r  from 3


 to 80


.  

In order to reduce the random error, the collected signals were averaged over 30 

measurements for each position. For the specular peaks in Sample 1, the standard 
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deviation is within 5%, but for very small BRDF values, the standard deviation of the 30 

measurements can be as large as 30% due to the low signal-to-noise ratio. Additional 

uncertainty sources could arise from optical misalignment of the setup, stray light, and 

variation of illumination location due to sample nonuniformity. The overall uncertainty in 

the BRDF is estimated to be 10% near the specular peak when the corrected BRDF is 

higher than 10 sr
1

, but increases to 40% when the corrected BRDF is less than 0.001 sr
1

 

due to low signal-to-noise ratio and stray light. 

As can be seen from Fig. 5.3, specular peaks with different magnitudes and 

sharpness exist for individual samples at all incidence angles and for both polarizations. 

For Sample 1, the corrected BRDF drops more than 5 orders of magnitude from the peak 

to the smallest values; while for Sample 2, the peaks are about one order of magnitude 

lower than those of Sample 1. As for Sample 3, the peaks at near normal incidence are 

obscure and these at oblique incidence are much lower and broader that those for Sample 

2. The sharpness of specular peaks in BRDF for different samples is consistent with their 

appearance as shown in SEM images, indicating a increase of surface roughness from 

Samples 1 to 3. Also, the peak magnitudes are higher for s polarization than for p 

polarization for all samples; this is consistent with the reflection characteristics (i.e., 

Fresnel reflection) for a smooth interface. For Sample 3, the magnitudes of specular peak 

at i  
= 0


 and 30


 are on the order of 10

3
, but suddenly increases by 2 orders of 

magnitude at i  
= 60


, indicating the diffuse sample tends to be more specular at large 

incidence. This suggests that light scattering from these CNT samples is dominated by 

surface roughness and at larger incidence angles, the surface appears less rough. 
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Figure 5.3 BRDFs measured at the 635-nm wavelength for all three samples at incidence 

angles of 0

, 30


, and 60


. In the plots, "s-pol" and "p-pol" represent s polarization and p 

polarization, respectively. The specular peaks at normal incidence are obtained by 

shifting the measured BRDF at 4
 

incidence angle.  
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Figure 5.4 Comparison of specular blacks: (a) Lord/Z302 from Snail's work (highlighted 

with blue curves); (b) Specular CNT array of Sample 1 (blue curves with hollow circle 

markers). The BRDF plots are for s polarization. The incident wavelengths are 632.8 nm 

and 635 nm for Lord/Z302 and Sample 1, respectively; and the incidence angles are i = 

5

 and normal incidence for Lord/Z302 and Sample 1, respectively.  

 

At (near) normal incidence, the full width at half maximum of the specular peak 

for Sample 1 is less than 1

. In addition, within ± 2


, the BRDF of Sample 1 is reduced by 

2 orders of magnitude from the peak value. The width and sharpness of BRDF for 

Sample 1 are comparable with those of Lord/Z302 (also known as Chemglaze Z302 or 



 68 

Aeroglaze Z302), a typical specular black paint used in high-accuracy radiometers [106]. 

Figure 5.4 compares the BRDFs of Sample 1 (blue curves with hollow circle markers) 

and Lord/Z302 (solid blue curves) for s polarization as measured by Snail et al. [23]. The 

measurements of Lord/Z302 were done at the wavelength of 632.8 nm and at the 

incidence angle of 5

, which were quite close to those used in the TAAS measurements. 

It is shown clearly that while the specular peaks of both Sample 1 and Lord/Z302 are 

comparable on both sharpness and magnitude, however, the BRDF for Sample 1 at large 

reflection (or scatter) angles is about a factor of 2 to4 lower than that for Lord/Z302, 

suggesting that Sample 1 has an even lower reflectance or higher absorptance. 

5.2.2 Directional-Hemispherical Reflectance 

The IS was used to characterize the DHR of specular CNT samples from 400 to 

1000 nm. Before measurements, the calibration and uncertainties of the IS with both the 

center-mount and back-mount configurations were verified again for accurate 

measurements of specular CNT samples. In an earlier study, calibration of the center-

mount configuration was done with a silicon wafer, whose reflectance is greater than 

50% [91]. For highly absorbing samples, however, a large portion of the optical energy 

that is multiply reflected by the sphere wall may be absorbed by the sample itself. The 

fraction that is absorbed may not be fully compensated between the background 

measurement and the sample measurement, since the sample orientation is different and 

the sample is neither ideally specular nor perfectly diffuse. It is found that a large sample 

(about 25  25 mm
2
) would give a much lower reflectance. By reducing the sample size 

to approximately 18  18 mm
2
, the measured reflectance was increased by 30% to 50%. 

The DHR measured with center-mount configuration using the diode laser is very close 
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to that obtained using the monochromator at the 635-nm wavelength. On the other hand, 

when the measurement is compared to that obtained with back-mount configuration using 

the diode laser, the measured reflectance is increased by 25% to 35%, which is closer to 

the DHR calculated by integrating the BRDF at normal incidence, under the assumption 

that the CNT samples are optically isotropic with respect to the azimuthal angle. 

However, it is difficult to focus the monochromator light to the sample in the back-mount 

configuration due to the limit of beam size in the current setup with the tungsten-halogen 

lamp as the light source. In addition, the back-mount configuration is subject to its own 

uncertainties; therefore, from the laser measurement and the standard deviations, it is 

estimated that the spectral DHR measurements have a relative uncertainty of 30%, which 

results in only 0.1% to 0.2% relative uncertainties in the absorptance ( dh1 R   ) using 

Kirchhoff’s law. The DHR and absorptance at the 635-nm wavelength obtained from 

both the integration of BRDFs at normal incidence and direct measurements with the IS 

are summarized in Table 5.2. 

Table 5.2 Rdh and absorptance of three samples obtained using different methods at the 

wavelength of 635 nm. 

Sample 

# 

Center Mounting Back Mounting BRDF Integration 

Rdh (%)  (%) Rdh (%)  (%) Rdh (%)  (%) 

1 0.42 99.58 0.58 99.43 0.64 99.36 

2 0.16 99.84 0.20 99.80 0.21 99.79 

3 0.10 99.90 0.13 99.87 0.18 99.82 

 

Figure 5.5 shows the spectral Rdh measurements from 400 to 1000 nm for samples 

with reduced sizes using the center-mount configuration. The laser measurement results 



 70 

using back-mount configuration are shown as markers for comparisons in Fig. 5.5. The 

error bars for 30% relative uncertainty are labeled at three wavelengths of 500, 700, and 

900 nm for different samples. Since the spectral resolution is very high (10 nm interval in 

wavelength), the spectral Rdh values measured with the monochromator are shown as 

continues curves instead of individual markers.  

 

Figure 5.5 Spectral DHR measured using the integrating sphere with center-mount 

configuration (curves) and back-mount configuration (markers). The sample was cut to 

about 18  18 mm
2
 in size to compensate the difference in the sample signal and 

background signal. The error bars represent an expended uncertainty of 30%.  

 

Within the measured spectral region, Sample 3 has the lowest reflectance ranging 

from 0.0007 to 0.002, followed by Sample 2 whose Rdh ranges from 0.001 to 0.002. On 

the other hand, Sample 1 has the highest Rdh, ranging from 0.003 to 0.005. Rdh for Sample 

1 exhibits some interference fringes, which are attributed to the density variation near the 
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tip of the CNTs, within 1-2 m thickness near the surface of the CNT array. Such a thin 

layer can be treated as a thin film with different refractive index from the lower portion of 

CNT array which acts as a semi-infinite medium, hence interference may occur. This 

density variation was previous observed, and explained with a collective mechanism for 

the evolution and termination of CNT growth as discussed by Bedewy et al.[107]. 

However, similar phenomenon does not exist for Samples 2 and 3 due to the reduction of 

coherence when light gets reflected by rougher surfaces [76]. The interference effect also 

contributes to the glossy and colorful appearance of the surface of Sample 1 as seen by 

naked eyes. It is worth noting that Rdh for Sample 3 tends to decrease as wavelength gets 

longer; this may be due to the fact that scattering by roughness becomes weaker at longer 

wavelength [70,83]. Other effects such as the change of the effective refractive index and 

the effective surface roughness may also play a role. The trend for Sample 2 is not as 

distinguishable, but Rdh slightly increase with wavelength as opposite to that for Sample 3. 

5.2.3 Angle-Resolved Specular Reflectance 

The specular reflectance, Rsp, was measured with the TAAS by setting the sample 

detector at the position of r i   , and can be related to BRDF by sp r r rcosR f   . It 

should be noted that the laser beam diameter is approximately 3 mm as measured at the 

illumination area on the sample, which is much smaller than the detector aperture whose 

diameter is 8 mm. This allows the specularly reflected power to be fully captured by the 

signal detector. In general, the measurements were taken at various incidence angles from 

5

 to 80


 with an interval of 5


, however, the resolution was increased when the incidence 

angle is getting closer to the Brewster angle for p polarization to fully present the dip 

feature. The measurements (markers) and theoretical calculation (curves) for both 
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Samples 1 and 2 with two polarizations are shown in Fig. 5.6. Sample 3 was not 

measured since it is hard to distinguish the specularly reflected energy from the scattered 

energy due to its large surface roughness. The specular reflectance is plotted in 

logarithmic scale so that the extremely small reflectance at the Brewster angle for both 

samples with p polarization can be easily differed. For Sample 1 with the smallest surface 

roughness, while the specular reflectance increases monotonically with i  for s 

polarization, it reaches a minimum for p polarization. The incidence angle at which the 

specular reflectance is minimal is defined as the Brewster angle of 44

 Notice that the 

Brewster angle between two isotropic media must be greater than 45

 for incidence from 

the optically rarer medium. At the Brewster angle, the specular reflectance can be as 

small as 0.0001. While for Sample 2 with a less specular surface, the dip around the 

Brewster angle is rather broad and the trends of reflectance plots for both s and p 

polarizations are very similar, indicating the reflected light from Sample 2 becomes less 

coherent due to the rougher surface.   

 

Figure 5.6 Specular reflectance measurements with the TAAS at the wavelength of 635 

nm and at various incidence angles: (a) Sample 1 with the most specular surface; (b) 

Sample 2 with a less specular surface.  
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5.3 Theoretical Modeling for Effective Optical Constants 

As mentioned previously, the CNT array may be treated as an effectively 

homogenous and uniaxial medium, whose optical constants are described by two 

complex refractive indices, O
eff O On n ik   for ordinary waves and E

eff E En n ik   for 

primary extraordinary waves. For a special case that the optical axis c of the VACNT 

array is perpendicular to the sample surface, the tilting angle of  is 90

. By treating the 

CNT layer as a semi-infinite medium and setting  = 90

, Eqs. (2.28) and (2.35) can be 

utilized to calculate the reflectance at the air-VACNT interface for s and p polarizations, 

individually. Note that when the incident medium 1 is isotropic air with 1O 1E 1   , the 

surface admittance and surface impedance of medium 1 are  1 0 0 icosY k     and 

 1 0 i1 cosZ   . Correspondingly, Eqs. (2.28) and (2.35) can be reorganized as below 

with the modification of surface roughness effect [108,109]:     

     
 

 

2
2

O 2
i eff i

s,sp sp
2

O 2
i eff i

cos sin

cos sin

n
R C

n

 

 

 
  

  
 

  
 

,          for s polarization      (5.1) 

and                    
 

 

2
2

O E E 2
eff eff i eff i

p,sp sp
2

O E E 2
eff eff i eff i

cos sin

cos sin

n n n
R C

n n n

 

 

 
  

  
 

  
 

, for p polarization    (5.2) 

 Note that the only difference of Eqs. (5.1) and (5.2) as compared with Eqs. (2.28) 

and (2.35) is the specularity parameter 
2 2 2 2

sp rms iexp 16 cos ( )C      
 

, or simply 

called specularity, which takes into account of the surface roughness effect. The total 

reflectance as expressed by Eqs. (2.28) and (2.35) without the specularity modification 
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should be for a perfectly smooth surface only; however, by introducing the specularity, 

the left-handed sides of Eqs. (5.1) and (5.2) become the specular components of the total 

reflectance from a surface with moderate roughness. The specularity is based on the first-

order approximation of Rayleigh scattering, which is valid when the roughness 

characteristic length is much smaller compared with the incident wavelength [83].  

 To determine the effective optical constants for both polarizations, a direct fitting 

based on the least-squares method is applied to find the minimal relative difference 

between the reflectance values from the model calculation and the TAAS measurements. 

First, the objective function as a link of both calculation and measurement is defined as: 

 
2

cal, meas,

meas,1

1 N
j j

jj

R R
F

N R

 
  
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 

                                    (5.3) 

where subscripts “cal” and “meas” stand for calculated and measured,  j denotes the 

number of the data point for each incidence angle, and N is the total number of 

measurements. Second, O
effn  and rms  are treated as adjustable parameters with 

individual ranges as initial values, and are substituted into Eq. (5.1) to calculate the 

specular reflectance at each incidence angle used in the specular reflectance measurement 

for s polarization. The calculated s,spR  and measured specular reflectance with the TAAS 

are plugged into the objective function. Mapping the initial ranges of O
effn  and rms  to 

get the smallest value of the objective function, which in turn determines the optimized 

values of O
effn  and rms . Third, the fitted O

effn  and rms  are used along with Eq. (5.3) 

to minimize the objective function for p-polarized reflectance following similar 

procedures for s polarization in order to obtain E
effn .  
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Figure 5.7 Measured and calculated (with best fitted parameters) specular reflectance 

versus incidence angle for both polarizations. The Brewster angle is around 44

, which is 

less than 45

 as the lower limit of incidence from air to an optically isotropic medium. 

 

 The best fitting gives the smallest objective function, Fmin = 7% for s polarization 

and Fmin = 15% for p polarization. To estimate the uncertainties of the fitted effective 

optical constants, a 10% variation of Fmin for s polarization and 20% variation of Fmin for 

p polarization are added to their original values and used as the new optimized values of 

the objective function. The corresponding ranges of the effective optical constants are 

used as individual uncertainties. The values obtained from fitting are nO = 1.19±0.03, 

kO=0.043±0.009, nE = 1.33±0.08, kE = 0.03±0.01, and rms 52 10 nm   . The specular 

reflectance values calculated with the best fitted values of the effective optical constants 
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for both polarizations and surface roughness are plotted as a function of incidence angles, 

which is depicted in Fig 5.7. Excellent agreements between measurements and theoretical 

calculations are obtained, especially on the Brewster angle locations.  

 In addition, Atomic force microscopy (AFM) was used to obtain the surface 

profile of the specular CNT array, and the root-mean-square roughness was found to be 

rms 57 nm with a scanning area of 10 m  10 m and rms 61 nm with a scanning 

area of 25 m  25 m. Hence, the average values of surface roughness measured from 

AFM fall within the uncertainty range of rms
 
from fitting. It should be noted that the 

parameter spC  increases with i  and varies from 0.35 at i 0    to 0.90 at i 72    with 

rms
 
= 52 nm as the best fitted value. Based on the extinction coefficients from fitting, 

the optical penetrate depth of the specular CNT layer is less than 2 m, which is much 

smaller than the average thickness of the CNT array. Hence, it is appropriate to treat the 

CNT array as a semi-infinite medium. 

 The EMT has also been used to explain the low refractive index of CNT arrays. 
 

While the values of optical constants obtained by fitting fall in the range predicted by 

EMT, it is difficult to quantitatively predict O
effn  and E

effn  using EMT because the 

misalignment and nonuniformity of the CNT arrays and the lack of knowledge of the 

inherent dielectric function and structure of the multiwall CNTs. Since it is difficult to 

nail the dip location of the Brewster angle for Sample 2 due to the less coherent features 

of the reflected light caused by a larger surface roughness, the direct fitting method was 

applied to Sample 1 only. Furthermore, by assuming the specular CNT array is optically 

isotropic with respect to the azimuth direction, the integration of BRDFs at normal 
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incidence gives the directional-hemispherical reflectance to be 0.0064 ± 0.0026, which 

agrees reasonably well with Rdh = 0.0058 ± 0.0018 as measured with the IS using the 

back-mount configuration at  = 635 nm. 

5.4 Conclusion 

In summary, the optical properties of three vertically aligned multi-walled CNT 

arrays with different surface features from specular to diffuse are examined by measuring 

the BRDFs at the wavelength of 635 nm and the DHR within the wavelength region from 

400 to 1000 nm. Specular peaks with different magnitudes and widths are observed from 

the measured BRDFs. The sharpness of the peak around the specular direction indicates 

the surface roughness variation of the CNT samples from nearly specular to highly 

diffuse. The high absorption of the CNT samples is demonstrated by the near unity 

(0.9950.999) absorptance obtained from the DHR measurements. The specular CNT 

array is attributed to the excellent alignment and sample uniformity and its ordinary and 

extraordinary optical constants are quantitatively obtained through a direct fitting for 

individual polarizations. This study not only suggests a method for determining the 

anisotropic optical constants and surface roughness of VACNT, but also opens up 

opportunities in applying VACNT arrays with specular surfaces to absolute radiometry 

and space-borne spectrometry. 
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CHAPTER 6 

ANGLE-RESOLVED PROPERTIES OF INCLINED SILVER 

NANORODS ON SILVER FILM 

 

In this chapter and subsequent chapters, we are interested in the anisotropic 

radiative and optical properties of the second type of the 2D confined nanostructures, 

inclined AgNRs deposited on different substrates, including glass slides with Ag films 

and CD templates. The inclined AgNRs have recently been reported to be highly 

anisotropic, with either metallic or dielectric characteristics, and have various 

applications [52,61,110,111]. So far, related studies have been focused on the anisotropic 

reflection and/or transmission, whereas diffraction and scattering from anisotropic AgNR 

arrays are still lacking. Therefore, in this chapter, AgNRs were grown on flat substrates 

consisting of 1-mm thick glass slides with Ag films. The anisotropic reflectance of 

inclined AgNR arrays was characterized at the wavelengths of 635 and 977 nm. The 

specular reflectance at various incidence angles and the BRDFs at normal incidence were 

measured with the TAAS. The AgNR array is modeled as an effectively homogenous and 

optically uniaxial thin film and analyzed with the EMT to elucidate the dielectric or 

metallic response. The well-known thin-film optics formulation is modified to include 

optical anisotropy and roughness scattering. By comparison of the calculated results with 

experiments, the anisotropic optical constants and polarization-dependent effective 

roughness of the AgNR array are determined. On the other hand, due to the structural 

inhomogeneity, scattering by nanorods is expected to play a significant role, giving rise 

to complicated effects including both surface and volume scattering, as well as diffraction 
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[81,82,112,113]. Hence, discussions on the scattering features of AgNR arrays are also 

presented in this chapter.  

6.1 Sample Preparation and Characterization 

The samples of inclined AgNRs deposited on a thin Ag film were fabricated by 

Dr. Zhao's group at the University of Georgia using an OAD method inside a custom-

designed electron-beam evaporation system, which is a physical vapor deposition 

technique to produce aligned nanorod arrays with high yield and controllable structural 

parameters [42]. Figure 6.1 shows a schematic of the OAD method. Unlike the 

conventional metal film deposition, in which the substrate is usually placed horizontally 

facing down the deposition source, the substrate in OAD is rotated to a large angle with 

respect to the deposition vapor. Due to a geometric shadowing effect caused by the 

oblique deposition angle, the random nucleation islands from the initial deposition act as 

shadowing centers to form metallic nanorods [114,115]. A 1-mm-thick glass slide was 

used as the substrate on which the AgNRs were deposited. Commercially available Ag 

(99.999%) and Ti (99.995%) pellets were used as source materials for the thin-film and 

nanorod deposition. A quartz crystal microbalance directly facing the source material was 

used for monitoring the deposition rate.  Prior to the AgNR growth, a 20-nm Ti adhesive 

layer was deposited onto the glass substrate, followed by a 500-nm Ag film. For the Ti 

and Ag film deposition, the substrate was placed horizontally facing down the deposition 

source, then the substrate was rotated by 86

 for the growth of nanorods. Due to the 

geometric shadowing effect induced by the large vapor incidence angle, the random 

nucleation centers act as shadowing seeds that result in a preferable growth of the 
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nucleation centers towards the incident vapor, ultimately forming an array of tilted 

nanorod structures [114,115] .  

 

Figure 6.1 Schematic of the OAD setup. 

 

Two SEM images of the top and cross-section views of the obliquely aligned 

AgNR array are shown in Figs. 6.2(a) and (b). Statistical estimation over 50 AgNRs from 

the SEM images gives the average length L, diameter D, and tilting angle β with respect 

to the substrate surface normal to be 1550 350L    nm, 100 30D  
 
nm, and 

o70 6   , respectively. The average gap between two adjacent rods (center to center) is 

approximately 250 ± 50 nm, giving a volume filling ratio f (the ratio of the volume 

occupied by rods to the total array volume) between 0.15 and 0.30. The SEM images 

suggest that the shapes of the AgNRs are not perfectly cylindrical. The formed AgNRs 
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exhibit somewhat irregular shapes, such as needles, corrugations, bifurcations, and 

fusions. However, these imperfections may not be very sensitive to the incident light 

since the dimensions of the irregular shapes are rather small compared with the laser 

wavelength. Overall, the samples are fairly smooth and the reflected/scattered light is 

largely along the specular direction (to be discussed later). 

 

Figure 6.2 SEM images of the AgNRs: (a) Top view; (b) Side view showing the oblique 

alignment. The tilting angle is estimated to be 70 6     from substrate surface normal. 

The average length and diameter are L = 1550 ± 350 nm and D = 100 ± 30 nm, 

respectively. 
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 As far as the material’s stability, while Ag does not get oxidized easily in air, 

silver sulfide (Ag2S) can form if the sample is exposed in air for an extensive duration. 

The AgNRs make the contact area much larger than a flat Ag film and get darker after 3-

5 weeks. When the sample is stored in a sealed glass container, it can last 4-6 months or 

longer without changing the color. All the measurements were carried out before the 

AgNR sample changes color. Hence, the effect of silver sulfide can be neglected. 

6.2 Angle-Resolved Reflectance, BRDF, and DHR Measurements 

 The TAAS was used to measure the BRDF and angle-resolved specular 

reflectance [89]. Two laser diodes at wavelength  = 635 and 977 nm were used 

interchangeably to provide a collimated and stable light source. For BRDF measurements, 

only the in-plane measurements at normal incidence are considered for AgNR-on-Ag 

film Samples. In other words, the movement of the sample detector is confined within the 

POI, following the dashed black circle as indicated in Fig. 3.1. In general, the BRDF for 

an isotropic material at normal incidence is independent of polarization. However, due to 

the anisotropy of the AgNR array, the BRDF depends on the polarization even at normal 

incidence. The sample was measured in two different orientations by rotating the sample 

with respect to its surface normal by 90º as shown in Fig. 6.3. Note that the incident beam 

points toward the positive z axis. Orientation 1 corresponds to the case that the sample 

surface is in the x-y plane and the optical axis c of the AgNR array, which is parallel to 

the rod, lies in plane of incidence (x-z plane). For Orientation 2, c is neither parallel nor 

perpendicular to the plane of incidence; rather, it lies in the y-z plane. Incident waves 

with s (or p) polarization correspond to the case when the electric field (or magnetic field) 

is perpendicular to the plane of incidence.  
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Figure 6.3 Schematic of the sample loading orientations: (a) Orientation 1 corresponds to 

the case when the optical axis of AgNR array lies in plane of incidence; (b) Orientation 2 

corresponds to the case when the sample loaded with Orientation 1 is counterclockwise 

rotated along the z-axis by 90

. 
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 The specular reflectance, spR , were measured by positioning the signal detector at 

the specular direction with r i  . Note that the specular reflectance is related to the 

BRDF by sp r r rcosR f   . It should be noted that the laser beam diameter is 

approximately 3 mm, which is much smaller than the detector aperture whose diameter is 

8 mm. This allows the specularly reflected power to be fully captured by the signal 

detector. The overall uncertainty for the specular measurement is estimated to be 5%; 

whereas for BRDF, the uncertainty becomes larger for lower signals. 

 The DHR measurement was performed at 635 nm with the IS with the back-

mount configuration [93]. To measure the directional-hemispherical reflectance, the 

integrating sphere was rotated by 3

 (near normal incidence) to prevent the specularly 

reflected light from escaping through the entrance port. The reflectance of the sample is 

obtained by correcting the ratio of the sample signal and the reference signal with the 

reflectance of the PTFE reference, which is 0.988 in the spectra of interest [104]. Details 

on the instrumentation of DHR measurements are presented in Chapter 3. The overall 

relative uncertainty of the integrating sphere measurement is estimated to be 10%. 

6.3 Measurement Results and Discussion 

6.3.1 BRDF Measurement  

 Figure 6.4 depicts the measured BRDF of the AgNR-on-Ag film sample for both 

polarizations at normal incidence and 635-nm and 977-nm wavelengths. It should be 

noted that the specular peak at 4

 incidence is taken as the normal incidence value (by 

ignoring retroreflection) since the BRDF within 3

 of the specular direction cannot be 

measured due to the blockage of the incident beam by the signal detector.  
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Figure 6.4 Measured BRDFs of the AgNR array at the wavelengths of 635 and 977 nm 

for both polarizations. AgNRs tilt to the negative x-axis for Orientation 1 and are 

projected to the positive y-axis for Orientation 2.    
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 The range of r  
extends from 80


to 80


where the negative sign is used when 

r  is on the same side as the incident beam. At normal incidence with Orientation 1, s 

polarization (or p polarization) corresponds to ordinary (or extraordinary) wave 

propagation in the AgNR array with the electric (or magnetic) field perpendicular to the 

rods. Because Orientation 2 is rotated by 90º, s and p polarizations correspond to 

extraordinary and ordinary waves, respectively. Due to the oblique alignment of rods, the 

AgNR array exhibits anisotropic responses regarding different polarizations with a 

dielectric behavior for ordinary waves and a metallic behavior for extraordinary waves. 

This anisotropy can be seen clearly from Fig. 6.4, where the magnitudes of specular 

peaks associated with ordinary waves are one order of magnitude lower than those 

associated with extraordinary waves. In general, the surfaces exhibit specular peaks, 

suggesting that the roughness and inhomogeneity scale should be much smaller than the 

wavelength. 

Another noticeable feature of the BRDF plots is the bump at 635 nm with 

Orientation 1, which exists for both polarizations at r  
from 20


 to 40


. Note that in this 

case AgNRs are tilted towards negative r . The bumps are presumably due to a 

combined effect of diffraction and scattering from the AgNR surface for p polarization, 

since the AgNR layer is essentially opaque. For s polarization, bulk inhomogeneity can 

also play a role. The location of the bump suggests a characteristic spatial period on the 

order of the AgNR length. Due to the small magnitude and relative flatness of the bump, 

the diffraction effect will not be further analyzed. It should be noted that the bump does 

not show up in the BRDF plots at  = 977 nm, since the sample surface tends to be 

smoother at longer wavelengths. The resulting scattering is essentially incoherent. 
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Furthermore, the magnitudes of the specular peaks at 977 nm are higher than those at 635 

nm due to the smaller optical roughness and inhomogeneity at longer wavelengths. In 

addition, the BRDF plots for Orientation 2 are nearly symmetric. This is because the 

optical axis c is perpendicular to the x-axis for Orientation 2 and the incidence is normal 

to the surface. The slight asymmetry may be caused by the irregular shape of individual 

AgNRs and imperfect alignment of the nanorods. 

6.3.2 Specular Reflectance and DHR  

 The measured specular reflectance is plotted in Fig. 6.5 at incidence angles from 

5

 to 75


for Orientation 1 at both wavelengths, except for  = 977 nm with p polarization. 

In this case, the incidence angle is extended to 78

 to illustrate the dip around 75


. Note 

that the incident beam is parallel to the rod at o
i 70   . Due to the anisotropic 

responses of the AgNR array, specular reflectance for s polarization (dielectric behavior) 

is expected to be smaller than that for p polarization (metallic behavior). However, this is 

only true at smaller incidence angles. At large incidence angles, the reflectance for p 

polarization tends to drop at the principal angle [76]. Furthermore, the angle between the 

electric field and the optical axis c varies with i , which makes the metallic behavior less 

prominent for large incidence angles. For s polarization, interference plays an important 

role in the reflectance. Moreover, surface roughness affects the specular reflectance 

differently for different polarizations and incidence angles. A detailed analysis of the 

specular reflectance is deferred to Section 6.4. 
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Figure 6.5 Angle-resolved specular reflectance measured for both polarizations with 

Orientation 1: (a)  = 635 nm; (b)  = 977 nm. Note that s or p polarization corresponds 

to ordinary or extraordinary wave propagation in the AgNR layer. 
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 The directional-hemispherical reflectance was measured for Orientation 1 at the 

wavelength of 635 nm. The results are dh 0.67R  for s polarization and dh 0.81R 
 
for p 

polarization. Higher Rdh value is obtained for the metallic behavior than for the dielectric 

behavior. Similarly, using the exponential relation described in Chapter 5, when the 

surface roughness is much smaller than the wavelength, the specularity can be calculated 

by [71,116] 

2 2 2
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dh
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  



 
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                                         (6.1) 

where  is the surface roughness and  is the wavelength in vacuum. In Eq. (6.1), the 

specular reflectance is for normal incidence. Using the specular reflectance measured at 

i  = 4, the values of  = 113 and 77 nm are calculated from Eq. (6.1) for s and p 

polarizations, respectively. The larger roughness for s polarization may be attributed to 

the bulk inhomogeneity, resulting in a polarization-dependent roughness parameter. 

Again it should be noted that Eq. (6.1) is only a first-order approximation. When volume 

scattering is included,  should be viewed as a lumped roughness parameter, rather than 

the root mean square roughness of the surface of the AgNR layer. More sophisticated 

theory on light scattering is needed to model the combined surface scattering and volume 

scattering problems [81,82,112]. However, for simplicity, Eq. (6.1) is used in the analysis 

to model the angle-resolved specular reflectance, similar to the previous work on carbon 

nanotube arrays [71], as presented in the subsequent section. 

6.4 Theoretical Modeling 

 The purpose of the analysis presented in this section is to develop a theoretical 

model that can describe the angle- and polarization-dependent specular reflectance of the 



 90 

AgNR sample, which is represented by the three-layer system along with Eqs. (2.39) to 

(2.44) as described in Chapter 2.  

6.4.1 Three-Layer Model for AgNR-on-Ag Film Samples  

 For the theoretical modeling, only Orientation 1 is considered here since 

polarization coupling exists for Orientation 2, making the analysis much more complex 

for oblique incidence due to the tilting direction. At 635- or 977-nm incidence, the skin 

depth of bulk silver is calculated to be approximately 12 and 11 nm using Palik's data 

[87]; therefore, the 500-nm Ag film is thick enough to be treated as optically opaque. 

Correspondingly, the three-layer model is essentially a uniaxial medium of the AgNR 

layer with a thickness of 2 cosd L    = 530 nm, sandwiched between two semi-infinite 

media of air and bulk Ag. The dielectric property of the AgNR layer is described by a 

dielectric tensor of 2  as expressed by Eq. (2.23) in Chapter 2, in which, the angle  

between the optical axis c and the z-axis is the same as the tilting angle of nanorods 

characterized by the SEM image. Figure 6.6 depicts the structure of the three-layer model 

and indicates the anisotropic reflectance and transmittance coefficients at each interface. 

Phase matching conditions require that the wavevector kx is the same regardless of the 

medium. Note that for p polarization, the magnitudes of 2zk  and 2zk  in medium 2 are 

different except for normal incidence. Hence, at the interface between media 2 and 3, the 

reflection and incidence angles are not the same, as illustrated by the wavevectors 2


k  

and 2


k in Fig. 6.6(c). As mentioned previously, the + or – sign signifies forward or 

backward propagation, respectively.  
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 For Orientation 1 used in specular reflectance measurements with c lying in plane 

of incidence, ordinary and extraordinary waves are decoupled and they correspond to s 

and p polarizations, respectively [53]. For a plane wave incident with s polarization, the 

electric field is always perpendicular to the optical axis. The waves inside the AgNR 

layer behave the same as those in an isotropic medium with an effective dielectric 

constant O
eff . For p polarization, however, extraordinary waves exist in the AgNR layer. 

In this case, the reflectance and transmittance coefficients must be modified following the 

formulation presented in Chapter 2. 

 

Figure 6.6 Schematic of wave propagation inside a three-layer system with the middle 

layer being uniaxial: (a) A three-layer system; (b) A prolate-spheroid-shaped AgNR; (c) 

Wave propagation in the three-layer system, showing the wavevector in each layer, and 

the reflectance and transmittance coefficients at each interface.  
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 Considering the three-layer model as depicted in Fig. 6.6(c), reflectance and 

transmittance for s polarization can be easily calculated using thin-film optics for 

isotropic media with ordinary dielectric function or optical constants; whereas for p 

polarization, the formulation needs to be modified. By matching the tangential 

amplitudes for both the electric and magnetic fields at the air-AgNR and AgNR-Ag 

interfaces, Eq. (2.40) of the surface impedances used to calculate the reflectance and 

transmittance coefficients for TM polarization with plane incident waves from air ( 1 1  ) 

to the AgNR/Ag system can be simplified as [51,53]: 
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where,  
22 O

2O O O effin n      and  
22 E

2E E E effin n      are the effective complex 

refractive indices of medium 2 (AgNR layer) corresponding to ordinary and primary 

extraordinary waves. 2
3 3n   is the complex dielectric constant of medium 3 (the Ag film) 

and is taken from Palik [87] by interpolation. Note that the z-component of the 

wavevector in medium 1 or 3 is 
2 2

1 1 0 icosz xk k k k     or 
2 2

3 0 3 isinzk k n   , 

respectively. Substitution of Eqs. (6.2a) to (6.2c) into Eqs. (2.38), (2.39), (2.42), and 

(2.44), the angle-resolved reflectance can be calculated at various incidence angles for 

both polarizations.   
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6.4.2 Determination of Effective Optical Constants with Fitting  

It should be noted that reflectance calculated from the anisotropic wave 

propagation in uniaxial media described above is for smooth surfaces only. By 

multiplying the specularity defined in Eq. (6.1), the model reflectance can be converted to 

the specular reflectance of a rough surface by assuming   . Similarly as in the 

specular CNT work presented in Chapter 5, the dielectric function and corresponding 

optical constants of the AgNR layer can be obtained by a least-squares method to find the 

minimal relative difference between measured and calculated specular reflectance, as 

described by the objective function [71]: 
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j j
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  
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where subscripts “cal” and “meas” stand for calculated and measured specular reflectance, 

and N is the total number of data points. Notice that the reflectance for s polarization 

depends on ordinary optical constants only, and reflectance for p polarization depends on 

both ordinary and extraordinary properties. Therefore, the fitting is applied for s 

polarization first to determine 2On  and  (for s polarization). Then, 2On  is fixed and the 

reflectance for p polarization is fitted to determine 2En  and  (for p polarization). As 

mentioned previously, different roughness parameters are used for different polarizations 

and wavelengths in order to obtain the least F.  
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Figure 6.7 Comparison of the specular reflectance measured from TAAS and that 

calculated with the best fitted parameters. In the calculation, the thickness of AgNR array 

is fixed at 530 nm based on L = 1550 nm and  = 70º. The best fitted optical constants for 

both polarizations and wavelengths are summarized in Table 6.1. 

 

 The agreement between fitting and experimental results is shown in Fig. 6.7 for 

comparison. Note that the measurement results are the same as those shown in Fig. 6.4. 

The calculation without roughness is shown as dotted line in Fig. 6.7. Without 

introducing roughness in the model, the calculated reflectance is much higher than the 

measured, especially at smaller incidence angles. Hence, roughness is needed in order to 

fit the measured specular reflectance. For s polarization, the interference effect modifies 
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the angular-dependent reflectance significantly, although the feature becomes less distinct 

in experiments due to roughness. For p polarization, the principal angle can be clearly 

seen in the measured reflectance at  = 977 nm but the measured reflectance at 635 nm 

exhibits almost monotonic increase with the incidence angle. This is again caused by 

roughness as shown in Fig. 6.7(b). With the exception of Fig. 6.7(c), the fitted reflectance 

agrees well with the measured values.  

The roughness parameter obtained from the fitting is  = 90 nm for s polarization 

at both wavelengths. This is 20% smaller than the previously calculated value of 113 nm 

based on the ratio of the measured Rsp and Rdh. For p polarization at  = 635 nm,  = 63 

nm, which is 18% smaller than that based on the measured specularity Csp. The difference 

of about 20% is anticipated due to the uncertainties in the fitting and experiments. 

However, for p polarization at  = 977 nm, the fitted  = 37 nm is much smaller. It 

should be reiterated that the use of specularity is only a first-order approximation, and the 

scattering mechanism cannot be simply described by the small-roughness surface 

scattering model.  

The values and the uncertainty of the fitted ordinary and extraordinary optical 

properties are summarized in Table 6.1 at both wavelengths. For s polarization, the best 

fitting corresponds to the smallest F of 14% at 635 nm and 12% at 977 nm; while for p 

polarization, the best fitting gives F as 4% at 635 nm and 2% at 977 nm. The larger F for 

ordinary waves is attributed to the interference effect at the AgNR-Ag film interface, 

which induces phase change not considered by the simple roughness model. The fitting 

uncertainty is estimated according to the experimental uncertainty by relaxing each 

parameter until the objective function F deviates appreciably from the optimal value. A 
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10% increase for s polarization and 30% increase for p polarization of the objective 

function with respect to the smallest F result in the relative variation ranges of 

O O E E, , ,  and n n   to be 3%, 30%, 5%, and 15% (with respect to the best fitted values), 

respectively; this indicates that the ordinary extinction coefficient O is more sensitive to 

the fitting compared with other optical constants. The dielectric behavior (ordinary) when 

 << n and the metallic behavior (extraordinary) when n <  can be clearly seen. The 

uncertainty of the fitted Table 6.1 also shows the predicted optical constants based on the 

EMT theory to be discussed in the next section. 

Table 6.1 Comparison of the optical constants of the inclined AgNR array obtained from 

specular reflectance fitting and the EMT predictions at  = 635 and 977 nm. The optical 

constants of bulk silver are taken from Palik [87]. For = 635 nm, the values are n = 

0.135 and  = 4.01; for = 977 nm, the values are n = 0.206 and  = 6.59. 

  

(nm) 
 On  O  En

 E  

635 

Fitting 1.41±0.04 0.06±0.02 0.59±0.03 1.62±0.24 

MG 1.34 0.004 0.09 1.97 

BR 1.70 0.05 0.075 1.76 

MG* 1.33 0.03 0.89 1.94 

BG* 1.51 0.14 0.74 1.79 

977 

Fitting 1.58±0.05 0.03±0.01 1.10±0.06 2.17±0.33 

MG 1.31 0.001 0.20 3.98 

BR 1.48 0.005 0.11 3.12 

MG* 1.31 0.01 1.81 3.59 

BG* 1.46 0.034 1.05 3.13 

   
* Calculated by increasing n of bulk silver by a factor of 10. 
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6.4.3 Determination of Effective Optical Constants with the EMT  

 In order to check the reasonableness of the fitted optical constants, the EMT 

described in Chapter 2 is used to estimate the ordinary and extraordinary dielectric 

functions of the AgNR array. The original equation of the EMT, Eq. (2.3) in Chapter 2 

should be modified with Aga  and airb  , in which Ag  are the dielectric function 

of bulk Ag at 635 and 977 nm taken from Palik [87]. f is the volume filling ratio of 

AgNRs, and g is a depolarization factor that depends on the array geometry and 

polarization. The modified equation represents the Bruggeman, BR, approximation when 

the host is the effective medium ( h eff  ) or the Maxwell-Garnett, MG, approximation 

when the host is air ( h air  ) [117]. Detailed discussions about two approximations are 

provided in Chapter 2. For the MG approximation, the effective dielectric function of the 

AgNR layer can be expressed in an explicit form as presented by Eq. (2.9). For the BR 

effective medium approximation, a quadratic equation given in Eq. (6.4) below needs to 

be solved and the physically meaningful solution for which  effIm 0   should be taken. 

  
 2
eff eff Ag(1 ) 0g B g                                           (6.4) 

where Ag( ) (1 )B g f f g     . For prolate-spheroid-like AgNRs as shown in Fig. 

6.5(b), the depolarization factor g depends on the principal crystal direction is 

perpendicular (ordinary, along x' or y') or parallel (extraordinary) to the optical axis, 

which can be calculated using Eqs. (2.6) and (2.7) along with the geometric parameters of 

the nanorods. While the calculated values of O 0.4949g   and E 0.0102g   for the AgNR 

structure is close to the values of O 0.5g   and E 0g   for a infinitely long cylinder, the 
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resulting effective dielectric function can have some difference in some cases. In the 

EMT modeling, the filling fraction f is chosen to be 0.25.  

 The optical constants predicted from both the MG and BR approximations are 

also listed in Table 6.1 for both wavelengths and polarizations. For simplicity, only the 

refractive index and extinction coefficient are listed. Note that the dielectric constant can 

be easily calculated from 2 2( ) i2n n     . The trends of dielectric behavior 

(ordinary) and metallic behavior (extraordinary) can be seen in the optical constants 

predicted by both EMT approximations. While the differences between the two EMT 

approximations and the fitted values are relative small for nO and E, the disagreement in 

O or nE can be more than an order of magnitude. For example, at  = 635 nm, the fitted 

O = 0.06, which agrees with the value of 0.05 predicted by the BR approximation, but 

the value of 0.005 predicted by the MG approximation is an order of magnitude smaller. 

On the other hand, at  = 977 nm, both EMT approximations predict a much smaller O 

than the fitted value.  

Considering the inhomogeneity in the nanorods, which may resulting in increased 

loss and scattering rate of the electrons [117], the EMT is also calculated by increasing 

the n value of bulk silver by a factor of 10. This gives the same effect as in the free 

electron model by increasing the scattering rate. The calculated optical constants are also 

shown in Table 6.1 and marked with MG* and BR*. The resulting nE and O are very 

close to the fitted value. While EMT is a useful tool, there are variations between the 

EMT models. The irregular shapes and entanglement of the AgNRs may challenge the 

applicability of the EMT. Furthermore, accurate determination of the parameters to be 

used in the EMT such as the filling ratio, the geometry, and the optical properties of 
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nanostructured metal are also difficult. On the other hand, the fitting method presented in 

the preceding section based on the anisotropic thin-film optics and angle-resolved 

specular reflectance is a convenient way of estimating the anisotropic optical constants of 

the AgNR layer. The resulting optical constants are consistent with those predicted by the 

EMT approximations, while the quantitative values may be somewhat different. 

6.5 Conclusion 

In this chapter, the anisotropic responses of the AgNR array to different 

polarizations were experimentally demonstrated through the BRDF and angle-resolved 

specular reflectance measurements. By incorporating roughness effect in a modified thin-

film optics formulation considering anisotropic dielectric function, the theoretical 

analysis elucidates the dependence of dielectric (ordinary) versus metallic (extraordinary) 

behaviors of the AgNR array on the sample orientation, incidence angle, and polarization. 

The anisotropic AgNR array can be treated as an effectively homogenous layer with 

polarization-dependent optical constants obtained by fitting the measured angle-resolved 

specular reflectance. The optical constants obtained from the fitting method are consistent 

with the EMT predictions. This work will not only facilitate the applications of AgNR 

arrays in polarization-dependent optical and photonic devices, but also offer a simple 

approach to determine the optical constants of anisotropic thin films.  
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CHAPTER 7 

DIFFRACTION OF INCLINED SILVER NANORODS ON CD 

 

This chapter focuses on the anisotropic diffraction from a novel hybrid micro-

nanoscale structure comprised of inclined AgNRs on a CD template. The reflectance 

values of individual diffraction peaks were measured with the TAAS and further 

compared with the values predicted from the RCWA calculation. The anisotropic 

diffraction is explained by the dielectric versus metallic behaviors of the inclined AgNR 

arrays corresponding to ordinary and extraordinary wave propagation.   

7.1 Sample Fabrication and Characterization 

7.1.1 Sample Fabrication by Oblique Angle Deposition 

 

Figure 7.1 (a) Locations of Samples 1 and 2 with respect to the CD substrate (not to 

scale); cartoons showing the cross-sectional profiles of the effective grating formed by 

AgNRs: (b) Sample 1; (c) Sample 2. 
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The AgNR-on-CD samples used in this study were fabricated in Dr. Zhao's group 

at the University of Georgia using the OAD method, as described in Chapter 6. In the 

present study, the inclined AgNRs were deposited on a commercial (MAM-A Mitsui) 

700 MB Gold CD-R, which was approximately 150 mm in diameter with a track pitch 

(grating period) of 1.5 m [118,119]. The Au film coated on the CD gratings was 

reported to be 50 nm in thickness [118]. Prior to the AgNR deposition, the thin 

polycarbonate protective coating was removed by immersing the CD into concentrated 

nitric acid and rinsing the CD with deionized water. Then the CD was dried and loaded 

onto the substrate holder in the deposition chamber of an electron-beam evaporation 

system. Similarly as described in Chapter 6, a deposition source of 99.999% pure Ag 

pellets was positioned right below the center of the CD. The chamber was evacuated to a 

pressure of about 5×10
3

 Pa and the CD substrate was rotated manually by controlling a 

motor to form an angle of 86

in between the surface normal of the CD substrate and the 

deposition vapor direction. The OAD results in aligned AgNRs downwards tilting to the 

deposition source.  

Since the CD grating has the circular track, the incident vapor direction with 

respect to the grating direction varies at different CD locations. We are interested in two 

particular locations as shown in Fig. 7.1(a): Sample 1 was cut from the lower portion 

where the evaporated nanorods are perpendicular to the CD gratings and Sample 2 was 

cut from the right portion where the nanorods are parallel to the CD gratings. Figures 

7.1(b) and 7.1(c) are two cartoons showing the expected morphologies of inclined 

AgNRs on the gratings for Samples 1 and 2, respectively. The dashed red lines depict the 

contours of the resulting grating structures. A full period of the effective grating can be 
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considered as a combination of a triangle and a rectangle for Sample 1 and as the regular 

rectangular grating with a wider ridge (nearly 0.9 m) than the groove (nearly 0.6 m) 

for Sample 2. Note that the ellipses representing the AgNR cross-sectional areas are 

intentionally dislocated to indicate the imperfect alignment of the AgNRs of Sample 2.  

7.1.2 Morphology Characterization Based on SEM Images  

The morphology of the AgNR-on-CD samples was characterized with SEM. 

Figure 7.2 presents several SEM images of the bare CD (a) and Samples 1 and 2 (b  g). 

From Fig. 7.2(a), a full period of the bare CD consists of a 0.9 m ridge and a 0.6 m 

groove. For each sample, three SEM images taken at different radial locations are 

displayed: the radius increases from locations b to d for Sample 1 and from locations e to 

f for Sample 2, as indicated in the top-right schematic of the CD substrate. Note that the 

SEM images of Sample 1 are rotated counterclockwise by 90

 so that AgNRs which 

originally tilt downwards are tilting towards right in Figs. 7.2(b) to 7.2(d). Note that due 

to the curvature of CD tracks, the grooves on the CD are slightly curved, although this 

feature is hard to distinguish in the SEM images. As can be seen from the SEM images, 

both samples tend to form a periodicity over large areas as predetermined by the CD 

grooves. For Sample 1, the surface morphologies are fairly similar for different locations, 

and all show periodic nanorod structures. However, there appears to be a clear radial 

dependent morphology for Sample 2: closer to the center of the CD, the surface is 

covered uniformly by AgNRs; with the increase of the radius, the periodic feature starts 

to show and the periodicity is more prominent at larger radii. The radial dependence can 

be explained by the increased shadowing effect experienced by the CD grooves with the 

increased radii. For locations close to the CD center, the vapor incident direction is 
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parallel to the groove, and there appears to have no periodicity in Fig. 7.2(e). When the 

radius becomes larger, the vapor direction is not parallel to the groove any more. There is 

a vapor component perpendicular to the groove which generates the shadowing effect in 

the direction normal to the groove. Such an effect enhances the periodic appearance of 

the AgNRs deposited on the CD gratings. This perpendicular component of incoming 

vapor becomes larger and larger with the increase of the radii making the period structure 

more prominent. 

Due to this vapor component, at large radii, the major axis of the nanorods of 

Sample 2 tends to point slightly leftward with respect to the groove direction. This effect 

is presented as a red triangle in Fig. 7.2(g): the vertical vector parallel to the CD grooves 

indicates the normal component of the incoming vapor, the horizontal vector represents 

the perpendicular component of incoming vapor, and the hypotenuse is along the tilting 

direction of AgNRs. It should be noted that not all the AgNRs are perfect cylinders and 

some irregular shapes formed during growth can also be seen from the SEM images, such 

as needles, corrugations, and rod bifurcations. During the measurements discussed in the 

following sections, the laser spot was located near the centers of Samples 1 and 2, as 

shown in the images of Figs. 7.2(c) and 7.2(f). Similar to the previous studies [42,120], 

the average length, diameter, and tilting angle of AgNRs, statistically estimated over 50 

AgNRs from SEM images, are L = 1200 nm, D = 100 nm, and β = 70

 with respect to the 

substrate surface normal, respectively. More detailed discussion on the geometrical 

parameters of two gratings will be presented in Section 7.3 for RCWA modeling. 
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Figure 7.2 SEM images presenting the sample morphologies for sample characterization: 

(a) Bare CD gratings with a period around 1.5 m; (b)(d) Sample 1 with AgNRs 

perpendicular to CD gratings; (e)(g) Sample 2 with AgNRs parallel to CD gratings. 

Images (b), (c), and (d) are rotated by 90 degrees (counterclockwise with respect to the 

original position). The red triangle in Fig. 7.2(g) indicates the directions of incoming 

vapor, its normal component, and the CD gratings. 
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7.2 Sample Loading Orientations for Measurements   

To fully characterize the radiative behavior of the AgNR-Grating Hybrid structure, 

we have carried out three types of radiometric measurements. One is the diffraction 

measurement with the TAAS, another is the DHR measurement with the IS system, and 

the third one is the measurements of diffuse component of reflection (also with the 

TAAS). The pig-tailed diode laser of 635 nm was used as the light source for all the 

measurements. Considering the anisotropy of AgNR-on-CD samples and the effective 

grating profiles also has their own polarization directions, it is important to clarify the 

sample loading orientations for measurements. 

 

Figure 7.3 Sample loading orientations for both the diffraction and diffuse component 

measurements with TAAS. The CD gratings are along y-axis for both samples and 

incident light is along negative z-axis. The POI is the x-z plane. 

 

In the diffraction and diffuse component measurements, the same sample loading 

orientations were adopted for the TAAS setup, as indicated in Fig. 7.3. For both samples, 
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the CD grating is along the y-axis. AgNRs are tilted towards positive x-axis for Sample 1 

and negative y-axis for Sample 2. TE (s polarization) or TM (p polarization) waves 

correspond to the electric or magnetic field being vertically polarized along the y-axis, 

which is perpendicular to the POI (the x-z plane). Recall that polarization decoupling 

occurs at an anisotropic interface (Chapter 2) when the optical axis either lies in the POI 

or is perpendicular to it [53]; hence, using the sample loading orientations described 

above, for Sample 1 with its optical axis (along the rod axial direction) lying in the POI, 

TE (or TM) incidence generates the ordinary (or extraordinary) wave propagation inside 

the AgNR array only; while for Sample 2, whose optical axis is neither within the POI 

nor perpendicular to it (lying in the y-z plane), ordinary and extraordinary waves are 

coupled and pure s and p polarizations do not exist. Some assumptions will be introduced 

in the theoretical modeling section to reduce the difficulties of simulating such complex 

coupling cases.   

 

Figure 7.4 IS setup with back-mount configuration for DHR measurements of the AgNR-

on-CD samples. 
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Figure 7.4 presents the IS setup for the DHR measurements of the AgNR-on-CD 

samples with the IS system, in which the back-mount configuration was used for both 

samples to reach the maximal symmetry [93]. Both the sample and reference were loaded 

on the back port and covered the port half by half (up and down), as indicated in Fig. 7.4. 

In general, there is no polarization-dependence for isotropic samples at normal incidence; 

however, the oblique orientation of AgNRs gives rise of the sample anisotropy even at 

normal (or near normal) incidence. Therefore, a polarizer was positioned before the IS to 

produce linearly polarized incident light with either TE or TM polarization.  

7.3 Theoretical Modeling  

7.3.1 Determination of the Effective Optical Constants    

 The AgNR array may be considered as an effectively homogenous medium when 

both the rod diameter and the separation between adjacent rods are much smaller than the 

incident wavelength. On the other hand, the oblique alignment of AgNRs makes such a 

medium optically anisotropic with the optical axis c parallel to the rods and at an angle of 

 with respect to the surface normal. As discussed in Section 2.3, wave propagation in 

uniaxial media can be characterized as ordinary and extraordinary waves corresponding 

to the electric field and magnetic field normal to the optical axis, respectively. A special 

case is the so-called primary extraordinary waves, when E c  holds in addition to H c . 

Previous studies demonstrated that ordinary wave propagation in the AgNR array has a 

dielectric behavior while extraordinary wave propagation exhibits to a metallic behavior 

[44,120]. As discussed previously, the sample loading orientations used in diffraction 

measurements can affect the wave propagation in the AgNR array. For Sample 1with its 
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optical axis lying in the POI, TE incidence generates ordinary wave propagation inside 

the AgNR array for all diffraction orders, since the electric field is always perpendicular 

to the effective optical axis, which is along the rod direction. The situation is more 

complicated for TM incidence for Sample 1 as well as for Sample 2 which belongs to the 

coupling cases. The discussion will be deferred to the subsection of RCWA modeling.  

 The refractive indices for both dielectric and metallic behaviors can be obtained 

from the EMT as described in Chapter 2. Rewrite Eq. (2.4) for silver [49]: 

Ageff

eff Ag
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1 ( 1) 1 ( 1)
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g g
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 
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                                               (7.1) 

Note that in Eq. (7.1), air is treated as the host with air 1   and AgNRs are treated as the 

filler. The effective dielectric function is related to the complex refractive index by 

 
22

eff eff in n    . The dielectric function of Ag can be expressed with the Drude 

free electron model [76]: 
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                                    (7.2) 

 For bulk sliver at room temperature, the parameters in the Drude model can be 

approximated as follows: scattering rate  = 2.7×10
13

 rad/s, plasma frequency p

 

= 

1.39×10
16

 rad/s, and a high-frequency constant  = 3.4 [75]. Due to size effect of 

nanostructure as compared to bulk material, the scattering rate may increase significantly 

[121]. To take into account this size effect, we use a value of ten times bulk scattering 

rate or Ag from Modest or 2.7×10
14

 rad/s as a first-order approximation [83]. The factor 

of ten as chosen so that reasonable agreements between the IS measurements and RCWA 

modeling can be obtained. However, it is neither a fitting nor an optimized value for the 
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structure of interest. The volume filling fraction f is taken to be 0.4 from previous work 

[47]. The depolarization factor g depends on the geometry of the AgNRs and can be 

calculated using Eqs. (2.6) and (2.7) along with the geometric parameters of the AgNRs.  

 Using the approach described above, the effective optical constants of the AgNR 

array at the wavelength of 635 nm are estimated to be O
eff 1.6 i0.011n  

 

for ordinary 

waves and E
eff 0.20 i2.9n    for primary extraordinary. It should be noted that for 

ordinary waves, the electric field is perpendicular to the optical axis; hence, the medium 

behaves like a dielectric with a refractive index of 1.6 and is slightly absorbing. When the 

electric field is parallel to the optical axis, the medium behaves like a metal with a large 

extinction coefficient of  and a refractive index less than unity. 

7.3.2 Rigorous Coupled-Wave Analysis  

The diffraction properties of the two AgNR-grating hybrid structures are modeled 

by the RCWA in combining with the effective optical constants predicted from the EMT. 

The RCWA theory is widely used for diffraction analysis of periodic 

micro/nanostructured surfaces. It is an exact solution of Maxwell’s electromagnetic 

equations which satisfies the principle of conservation of energy, and can provide 

numerical solutions of Maxwell's electromagnetic-wave equations with high accuracy by 

increasing the number of terms in the numerical simulations [72-74].  

In this study, the RCWA calculation is performed following the method described 

by Moharam et al. [72] and detailed discussions of the RCWA calculation for the AgNR-

grating structures can be found in Ref. [122]. Both Samples 1 and 2 are modeled as a 

four-medium structure, as illustrated in Fig. 7.5. The incident medium is air, denoted as 

Medium 1; Medium 2 is the uniaxial AgNR array with effective polarization-dependent 
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optical constants predicted from EMT; Medium 3 is the Au layer whose optical constants 

can be obtained from the tabulated data in Palik [87]; and Medium 4 is the semi-infinite 

CD substrate, which is made of polycarbonate and has a frequency independent refractive 

index of CDn = 1.6 [123]. While the polycarbonate is semitransparent, due to its thickness, 

surface roughness, and close-to-air refractive index, the reflection from the interface 

between the CD substrate and the backside air can be neglected. 

The effective grating formed by Sample 1 is modeled as a combination of 

triangular and rectangular profiles. To approximate the triangular profile, a full period of 

Sample 1 is divided into a large number of rectangular sub-layers with equal depth but 

varying widths, as illustrated in Fig. 7.5(a). The number of 100 sub-layers was chosen 

such that the result converges to within 5% relative error. For Sample 2 with rectangular 

profile, no sub-layer division is needed and thus few layers are used according to the 

number of interfaces, which is the usual approach in previous works [72]. In both cases, 

161 Fourier diffraction orders are used and the relative differences between 161 versus 

221 diffraction orders are less than 5%. The numerical error itself is expected to be 

smaller than the error arising from the approximation in the geometry and effective 

optical constants as discussed in the subsequent paragraphs.  

Figures 7.5(b) and 7.5(c) depict the detailed geometric parameters used for 

RCWA calculations for Samples, respectively. For both Samples 1 and 2, the ridge and 

groove of the CD grating are taken as a = 900 nm, b = 600 nm, respectively; the 

thickness of thin Au coating is Auh = 50 nm, and the normal film thickness of the AgNR 

array is calculated as AgNR cosh L   , which gives 410 nm. To simply the calculation, 

AgNRs are omitted from the groove region since based on the average diameter and 
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spacing obtained from the SEM images, there should be only one nanorod deposited 

within the groove region. On the other hand, the RCWA modeling used here is applicable 

for binary layers; this implies difficulties of the RCWA modeling will rise from the 

inclusion of any nanorod in the groove region, which makes the grating a tertiary layer 

which is composed of CD polycarbonate, air, and the AgNR. Hence, the groove region of 

the substrate is devoid of nanorods as a layer of pure air with CDh = 100 nm.  

 

Figure 7.5 (a) Division of the triangular grating into multiple rectangular slices parallel to 

the substrate surface for implementation of RCWA; (b) Effective grating Sample 1; (c) 

Effective grating of Sample 2. Geometric parameters are L = 1200 nm, a = 900 nm, b = 

600 nm, Auh = 50 nm, CDh = 100 nm,  = 70

, and AgNR cosh L    = 410 nm. 
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It should be emphasized that, in the RCWA model, each medium is treated 

isotropic, although the effective index of AgNR layer varies with the polarization. For 

Sample 1 with TE wave incidence, this is satisfied because the electric field is always 

perpendicular to the optical axis. Hence, for TE wave incidence, only ordinary wave 

propagation exists inside the AgNR array with the refractive index of O
eff 1.6 i0.011n   . 

When the TM wave incidence is considered, both the electric field and the optical axis 

are in the POI defined by the x-z plane. At normal incidence,
 
E D c   and H c  for the 

0th order of diffraction, hence the primary extraordinary refractive index should be used. 

However, for other diffraction orders, both the electric field and the electric displacement 

have a nonzero z-component; the actual refractive index should be for the general 

extraordinary waves which deviate from that for the primary extraordinary waves. To 

simplify the complexity of implementation of RCWA for anisotropic materials, the 

refractive index of the AgNR layers is approximated as the primary extraordinary index 

of E
eff 0.20 i2.9n  

 
for characterization of the metallic response of extraordinary waves.  

For Sample 2 with the AgNRs nearly parallel to the CD gratings, the optical axis 

is in the y-z plane but neither lying in the POI nor perpendicular to it. Therefore, as 

discussed previously, the ordinary and extraordinary waves are coupled so that both 

polarizations exist even though the incident wave is purely TE or TM polarized. This 

fundamental difficulty is dealt with by assuming that all the nanorods are parallel to the 

CD gratings hence they are well aligned in the y-axis direction with the tilting angle  

modified to be 90

. With this assumption, the electric field of TE wave incidence is 

parallel to the optical axis along the y-axis, resulting in the metallic characteristics of the 

AgNR layer with the primary extraordinary refractive index of E
eff 0.20 i2.9n   . For the 
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TM wave incidence, the electric field will stay within the POI, therefore always 

perpendicular to the optical axis with 90

. Hence, the AgNR array of Sample 2 

should exhibit dielectric characteristics with O
eff 1.6 i0.011n  

 
for TM incidence.  

Table 7.1 Summary of the effective refractive indices predicted from the EMT (to be 

used in the RCWA modeling) for both Samples 1 and 2 with different polarizations. 

 
Sample 1 Sample 2 

TE TM TE TM 

effn  1.6+i0.011 0.20+i2.9 0.20+i2.9 1.6+i0.030 

 

Considering the actual situation of Sample 2 which is polarization coupled, as 

well as the entanglement and misalignment of AgNRs, a polarization mixing effect needs 

to be taken into account of. Following the approach described by Eq. (4.3), a combination 

factor of x is used to partially compensate the mixing effect. x = 0.98 is chosen so that a 

better overall agreement on the total reflection energy from the RCWA modeling and 

DHR measurements can be achieved. Calculation shows that using the above approach, 

there is not much appreciable change in the optical constants for TE wave incidence; 

however, for TM wave incidence, the extinction coefficient of Sample 2 increases to 0.3. 

Table 7.1 summarizes the refractive indices to be used in the RCWA analysis.  

7.4 Results and Discussion  

7.4.1 Diffraction Measurement   

Due to the periodicity of the AgNR-on-CD samples, the diffraction becomes 

dominant and the intensity of individual diffraction peaks shows polarization-dependent 

effect since the samples are essentially anisotropic. Figure 7.6 shows the schematics of 
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the sample loading orientation and the diffraction distribution for diffraction 

measurements.  

 

Figure 7.6 (a) Schematic of sample loading orientation: AgNRs tilting towards positive x-

axis for Sample 1 and tilting towards negative y-axis for Sample 2. Incident beam is 

along the negative z-axis. TE (or TM) incidence corresponds to E or H being 

perpendicular to the POI (x-z plane). CD gratings are curved and along the y-axis; (b) The 

diffraction order is positive for negative x-axis and negative for positive x-axis. m = 0 

diffraction peak is in the retroreflection direction.   

 

The solid black lines in Fig. 7.6(a) depict the CD gratings along the y-axis. Since 
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the CD gratings have curvature, the black lines are intentionally slightly curved to 

illustrate this feature. The normal incidence beam, represented as a red dot in Fig. 7.6(a), 

is along negative z-axis. A TE or TM incident polarization corresponds to an incidence 

plane wave with the electric or magnetic field linearly polarized along the y-axis (i.e., 

perpendicular to the POI). The positive diffraction orders are defined for light diffracted 

towards the negative x-axis, as shown in Fig. 7.6(b). The relationship between diffraction 

angles and the grating period can be expressed by the backwards grating equation, 

isin sin
Λ

m m


                                                           (7.3) 

where  is the incident wavelength in air,  is the grating period, m is the diffraction 

order, and m is the diffraction angle (in radian), which is negative for m < 0. At normal 

incidence, the 0th order diffracted light is along the retroreflection direction, and during 

the TAAS measurements, the detector that collects the signal reflected from the sample 

blocks the incident beam. Hence, similar to the specular CNT measurement, we used the 

incidence angle of 4 degree to capture the 0th order diffracted power. At 635-nm normal 

incidence, five orders of diffraction beams can be observed as shown in Fig. 7.6(b). For 

m = ±1 and ±2, the measured m averaged over both positive and negative orders are 

approximately 25

 and 58


 An average grating period calculated based on the measured 

diffraction angles and Eq. (7.3) is 1.495 m, which is very close to that obtained from 

SEM images (1.5 m).  

7.4.2 Beam Elongation Effect 

Due to the curvature of CD gratings, the diffraction spot was elongated along the 

y axis and this elongation effect is more prominent for higher diffraction orders. Figure 



 116 

7.7 depicts this effect with some representative photographs taken for the diffraction 

pattern of Sample 1. Photos of Sample 2 show similar features; hence are not presented 

here. These pictures were taken by placing a marked target plate in front of the sample 

detector holder; therefore these pictures were at equal distance from the sample center.  

 

Figure 7.7 Photographs of diffraction peaks of Sample 1 with TM incidence indicating 

the elongation effect. The smallest dimension of the scale bar on the target plate is 5 mm. 

 

This elongation effect may be explained by treating the illuminated area on the 

sample as discretized line sub-gratings rather than a continuous and curved grating. These 

line sub-gratings are slightly titled with respect to the y-axis due to the CD curvature, 

which is shown in Fig. 7.8(a). The different orientations of the sub-gratings result in the 

divergence of diffraction beam along the y-axis direction through propagation. The 

vertical dimension of the elongated diffraction beam spots ( ml  for the m-th diffraction 

order) can be estimated by using a simple geometric relation as  

0

0 0 0

  or   m
m m

m

l dRd
l

r R r



  ,                                             (7.4) 

where d = 2.5 mm is the diameter of the laser spot on the sample, r0 = 40 mm is the 

radius of the CD gratings at the center of the laser spot, and R0 = 510 mm is the distance 

between the laser spot and the target plate located in front of the sample detector holder, 
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which is the radius of the dashed circle showing the sample detector movement in Figs. 

3.1 and 7.8(b). For m = ±1 and ±2, the lengths of elongated diffraction beam spots 

estimated from Eq. (7.4) are 14 and 33 mm, respectively, which roughly agree with those 

observed from the photographs shown in Fig. 7.7, where the distance between two 

adjacent marks of the scale bar on the target plate is 5 mm.  

 

Figure 7.8 Schematic showing the beam elongation effect: (a) Approximation of curved 

and continuous CD gratings as discretized sub-gratings with different orientations; (b) 

Geometric parameters indicating the relationship between the vertical dimensions of 

diffraction beam spots and the diffraction angles.     
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Figure 7.9 Illustration of the sample detector movement for the adding-up method. 

 

 Considering that the aperture of the sample detector is only 8 mm in diameter, 

which is smaller than the vertical dimensions of diffraction spots; we moved the sample 

detector up and down by 7.2 mm (90% of the aperture diameter) three times for m = ±1 

and five times for m = ±2 to capture all the diffracted power for each diffraction order, as 

shown in Fig. 7.9. Because of the diffracted beam is an elongated cylinder with circular 

ends, the adding-up method described above should provide a good approximation of the 

total diffracted power. The diffraction efficiency or reflection of each diffraction peak 

Rpeak, for each diffracted beam is the total diffracted power divided by the incident power. 

7.4.3 Reflectance of Diffraction Peaks 

 Using this sample loading approach and neglecting the misalignment of nanorods, 

incidence of TE (or TM) polarization for Sample 1 and TM (or TE) polarization for 

Sample 2 should result in ordinary (or extraordinary) wave propagation inside of the 

AgNR array. Hence, we expect the reflectance of diffraction peaks (also called diffraction 

efficiency) will be higher for extraordinary waves than for ordinary waves. The 

reflectance results measured with the adding-up method for different orders of diffraction 
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(Rpeak) at normal incidence and the wavelength of 635 nm are tabulated in Table 7.2 as 

well as graphed in Figs. 7.10 (Sample 1) and 7.11 (Sample 2). For ordinary waves (TE 

waves for Sample 1 and TM waves for Sample 2), the AgNR arrays behave as a dielectric 

with smaller values of Rpeak; while for extraordinary waves (TM waves for Sample 1 and 

TE waves for Sample 2), the AgNR arrays are metal-like with a reflectance which is 

about one order of magnitude higher than that for ordinary waves. This observation 

agrees with previous studies of the dielectric-metal behaviors of inclined  nanorods [120]. 

Due to the asymmetry of the combined grating profile consisting of a triangle and 

rectangle, the diffraction power distributions of Sample 1 for both polarizations are not 

symmetric with respect to m = 0. In general, it appears that more power is diffracted 

toward + orders than  orders. The trend seems to be captured by RCWA, although 

discrepancies exist, as can be seen from Fig. 7.10. 

For Sample 2, the asymmetry of diffraction power distribution with respect to m = 

0 is not as obvious as that of Sample 1. The measured result shows that Rpeak values for m 

= ±2 of Sample 2 are fairly close: for example, 
 2

peakR


 = 0.017 and 
 2

peakR


 = 0.015 for TE 

incidence. Here, the subscript in parentheses indicates the diffraction order. Although a 

larger differences exist for m = ±1, such that 
 1

peakR


 = 0.23 and 
 1

peakR


 = 0.11, this 

difference is much smaller as compared to that of Sample 1, for which, 
 1

peakR


 = 0.0028 

and 
 1

peakR


 = 0.063 for TE incidence. The larger difference for Sample 2 may be 

attributed to the sample non-uniformity, misalignment, and impurities.  

 



 120 

 

 

Figure 7.10 Plots of diffraction peak measurements and theoretical calculation using 

RCWA of Sample 1 at the 635-nm wavelength: (a) TE incidence; (b) TM incidence. 
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Figure 7.11 Plots of diffraction peak measurements and theoretical calculation using 

RCWA of Sample 2 at the 635-nm wavelength: (a) TE incidence; (b) TM incidence. 
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On the other hand, since the RCWA model for Sample 2 uses a rectangular 

geometry, the predicted diffraction efficiencies are symmetric as shown in Fig. 7.11. The 

trend of calculation results agrees reasonably well with that of the diffraction 

measurements by neglecting the asymmetries of measurement results caused by 

experimental uncertainties and sample non-uniformity as mentioned early. Further, the 

assumption of  = 90

, used in the RCWA modeling for Sample 2 in order to decouple 

the polarizations, might cause the predicted trend to deviate more from the measurement. 

Detailed values of Rpeak for both samples with individual orders are listed in Table 7.2 for 

direct comparisons. 

Table 7.2 Reflectance of diffraction peaks from TAAS measurements for both Samples 1 

and 2 with different polarizations and diffraction orders. 

Rpeak 
Sample 1 Sample 2 

TE TM TE TM 

m = 2 0.0006 0.001 0.017 0.003 

m = 1 0.0028 0.017 0.232 0.025 

m =  0.029 0.287 0.105 0.013 

m =  0.063 0.287 0.111 0.010 

m =  0.0076 0.032 0.015 0.005 

 

Considering the assumptions and simplifications on both the geometric structures 

and the anisotropic optical constants obtained from the EMT, the overall agreement 

between the RCWA and the diffraction measurements seems to be satisfactory. Here, we 

are interested in the trends of diffracted power distribution rather than the absolute values 

of the magnitudes of individual diffraction orders. As discussed earlier, probably the best 
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agreement between the RCWA and the measurement should exist for Sample 1 with TE 

incidence. For all other cases, strictly speaking, the AgNR array cannot be treated as an 

isotropic medium. It may be interesting to consider the sum of all the diffracted power 

between the RCWA model and the diffraction measurements. However, the results show 

that the RCWA models always give a higher reflectance. This is because scattering is not 

considered in the RCWA model. Hence, the sum of all reflectance values for all five 

diffraction orders predicted by RCWA should represent the situation where scattering is 

neglected or the directional-hemispherical reflectance. This is verified by measuring Rdh 

as discussed in the following section.  

7.4.4 DHR and the Scattering Effect 

The values of Rdh measured with an IS incorporated with a monochromator at 635 

nm are listed in Table 7.3 and compared with 
 

sum peak
0, 1, 2

m

m

R R
  

   which is defined as 

the summation of diffraction peak reflectance for all five orders and can be obtained from 

the RCWA modeling. It can be seen that the measured Rdh values agree well with those 

predicted by the RCWA modeling. Generally speaking, the measured Rdh is less than the 

calculated Rsum, except for Sample 1 with TM wave incidence. The lower IS 

measurement results may be caused by the signal loss from the entrance and back ports of 

the IS. While the reason for higher IS measurement results of Sample 1 with TM 

incidence might be due to the assumption used in the RCWA calculation which does not 

consider the sample anisotropy. From Table 7.3, the largest difference is less than 12% 

(TE wave incidence for Sample 1). This may be due to the dielectric nature and the 

difficulties in choosing proper scattering rate in the EMT. Considering the assumptions 
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used in the model which neglect the effects of geometry, anisotropy, and coupling, as 

well as the uncertainties in the IS measurement which is estimated to be 15% within 95% 

confidence level, the agreement is very good. Note again that the metallic behavior gives 

a much higher DHR than the dielectric behavior. The AgNR grating allows the switch 

between dielectric and metallic behaviors for individual polarizations by changing the 

orientations of the nanorods. 

Table 7.3 Comparison of reflectance obtained from measurements and model prediction. 

The generalized specularity and effective roughness of Samples 1 and 2 are also listed. 

  
Sample 1 Sample 2 

TE TM TE TM 

Rsum from RCWA 0.64 0.84 0.92 0.48 

Rdh from IS 0.57 0.86 0.86 0.46 

Rsum from TAAS 0.10 0.62 0.48 0.056 

Generalized specularity 0.18 0.76 0.56 0.12 

[nm] 66 29 38 73 

 

The RCWA modeling is valid for smooth surfaces only since it does not take into 

account the scattering caused by surface roughness or volume inhomogeneity of the 

AgNR array. Note that Rsum measured with TAAS include only the diffracted component, 

while the Rdh measured with the IS include both the diffracted and diffuse components. 

Hence, the difference between Rsum and Rdh can be used to estimate the effective 

roughness factor , which approximates both surface scattering due to surface roughness 

and volume scattering due to inhomogeneous dielectric functions in the medium using the 

simple exponential relation [71,82] 



 125 

2 2 2
i

2
sum dh exp 16 cos ( ) //R R      

 
                                    (7.5) 

 The ratio presented in Eq. (7.5) may be considered as a generalized specularity 

[76]. At 635-nm wavelength and normal incidence,  calculated from Eq. (7.5) based on 

measured reflectance values is approximately 70 nm for ordinary and 33 nm for 

extraordinary (averaged over two samples). These values are on the same order of the 

average diameter of the nanorods and appear to be reasonable from the first-order 

approximation. For extraordinary waves when the AgNR array has a metallic behavior, 

the radiation penetration depth is very small and surface roughness may dominate the 

scattering. On the other hand, additional scattering may occur due to the bulk 

inhomogeneity, giving rise to an increase in and a reduction in the generalized 

specularity. Kassam and Hodgkinson [112] also pointed out the polarization-dependent 

roughness of a thin film consisting of columnar structures. The use of the generalized 

specularity model in Eq. (7.5) presents a simply way to separate the diffraction and 

diffuse components using an effective roughness. The Rsum values measured with TAAS 

are also presented in Table 7.3 along with the effective roughness and specularity 

parameters.   

 In order to better analyze the scattering feature, the diffuse components of both 

samples were further characterized with TAAS by measuring the out-of-plane BRDFs 

along various scattering directions [89]. The results are plotted in Fig. 7.12 at normal 

incidence for both samples and polarizations. The measurements were performed for five 

fixed azimuthal angles ( = 0

, 45


, 90


, 135


, and 180


) and for r from 5


 to 80


at an 

increment of 5

Here,  = 0


 and 180


 correspond to in-plane measurements (solid black 

dots and hollow red diamonds), hence, the BRDF plots are discontinuous to exclude the 
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contribution from diffraction peaks. The removed BRDFs correspond to r= 25

30


and 

35


which are affected by the ±1 diffraction orders and r = 55

60


 and 65

 
which are 

affected by the ±2 diffraction orders. However, relatively larger BRDFs can still be 

observed when r is close to m due to the peak broadening effect. Overall, the diffuse 

components for both samples with different polarizations show a weak dependence on the 

azimuthal angle, as depicted by the nearly flat distributions of BRDFs in Fig. 7.12, which 

indicates the isotropic feature of scattering for both samples. 

Based on Fig. 7.12, Sample 

2 tends to be more isotropic with the variation of BRDF magnitudes is from 0.5 to 0.15 

sr
1

, which is smaller than that of Sample 1 from 0.5 to 0.25 sr
1

. The reason can be 

attributed to the asymmetric grating profile of Sample 1 which results in more light 

scattered to the direction with 90


<  < 180

, as can be seen from Figs. 7.12(a) and 

7.11(b) with higher BRDF magnitudes for cases of  = 135

 (hollow black circles) and 

180

 (hollow red diamonds). For samples studied in this work, the roughness is on the 

same order of magnitudes as the rod diameter, both of which are unconceivable to the 

incident wavelength. Therefore, the periodic distribution of scattering intensity due to 

diffraction from columnar rods (in nanometer scale) [112] were not observed for both 

AgNR-on-CD samples. Rather, the diffraction peaks captured in TAAS measurements 

were caused by the CD features (in micrometer scale). Some of the features in the diffuse 

component may be attributed to anisotropic diffraction and need to be further studied. 

However, challenges exist in how to quantitatively distinguish bulk scattering from 

surface scattering in this hybrid micro-nanostructured system [81,112].  
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Figure 7.12 BRDF measurements with TAAS: (a) Sample 1, TE polarization; (b) Sample 

1, TM polarization; (c) Sample 2, TE polarization; (d) Sample 2, TM polarization. Five 

azimuthal angles were measured with the polar angle varying from 3

 to 80


 for each 

value. Note the plots for  = 0

 (black solid dots) and 180


 (red hollow diamonds) are 

discontinuous at locations where r is close to m for m = ±1 and ±2 due to the diffraction 

peaks. The measurements indicate a fairly isotropic distribution of the diffuse component 

(scattering). 

 

7.5 Conclusion 

In this chapter, AgNR arrays grown on CD grating templates have been fabricated 

using the OAD technique. These hybrid micro-nanoscale structures have inclined 

nanorods with high aspect ratios perpendicular or parallel to CD gratings. The AgNR 
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arrays are uniaxial with anisotropic responses to incident light polarizations. The sample 

anisotropy is demonstrated by the polarization-dependence Rpeak and Rdh measured at the 

635-nm wavelength. Both dielectric and metallic behaviors corresponding to ordinary 

and extraordinary waves are observed. The AgNR array can be considered as a 

homogeneous and uniaxial medium with effective ordinary and extraordinary optical 

constants estimated from the EMT. A simplified RCWA model is used to predict the 

diffraction behaviors of the hybrid gratings. Reasonable agreements on measurements 

and numerical modeling have been achieved. These hybrid AgNR-grating structures can 

be used to engineer anisotropic gratings, whose optical and radiative properties are 

adjustable by adapting the geometric dimensions of the nanorod array, for example, 

aspect ratio and volume filling fraction. Furthermore, the AgNR-grating structures can be 

used to control the dielectric or metallic behavior for each polarization by changing the 

orientations of the nanorod. This work opens up the possibilities of using AgNRs to 

better solutions to energy conservation and optical applications, and also provides 

directions to investigate the directional and polarization dependence on the optical and 

radiative properties of micro/nanostructures, which in turn can be used to tune the 

parameters of material fabrication.  
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CHAPTER 8 

CONCLUSIONS AND FUTURE RECOMMENDATIONS  

 

This dissertation provides an experimental and theoretical investigation of the 

radiative properties of nanostructured materials for potential applications in energy 

conversion, radiometry, optical systems, and photonic and plasmonic devices. Two types 

of typical 2D confined nanostructures, i.e., nano-arrays comprised of VACNTs or 

inclined AgNRs, were considered. Their radiative and optical properties, including the 

directional-hemispherical reflectance, BRDF, angle-resolved reflectance, absorptance, 

diffraction, and scattering, were experimentally investigated. On the other hand, arrays 

formed by nanorods or nanotubes have high aspect ratios, therefore effectively, they can 

be treated as homogenous and uniaxial media with optically anisotropic properties. The 

EMT and anisotropic thin-film optics modified with roughness effect are theoretically 

performed to elucidate the mechanisms of the radiative responses of the CNT and AgNR 

arrays and to determine their effective optical constants. The uniqueness and major 

conclusions of this dissertation are summarized below. 

1. Very high absorption of VACNT samples, grown with two different growth 

mechanisms: tip growth and base growth, was experimentally demonstrated by 

measuring their BRDFs with TAAS at 635 nm and spectral DHR with an IS system from 

400 to 1800 nm. The spectral peak at around 600 nm in the DHR measurements for 

Samples 4 to 6 is explained by the oxidation of iron catalyst particles induced by the tip-

growth mechanism of the VACNT growth. The EMT calculation indicates the CNT 

samples are essentially opaque (i.e., the radiation penetration depth is much smaller than 
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the height of the VACNT) within the visible spectra and their high absorptance can be 

attributed to the high absorption of graphite and the low-density array configuration 

which results in a low refractive index close to that of air.  

2. The radiative properties of three highly absorbing VACNT arrays with different 

surface roughnesses from specular to diffuse were investigated. The measured BRDFs of 

three samples exhibit specular peaks with varying magnitudes and widths, indicating the 

surface features are from nearly specular to highly diffuse. The comparison of BRDFs 

unveils that the most specular CNT array investigated in this dissertation has a higher 

absorptance than a commercially available specular black (Lord/Z302) while maintaining 

similar specularity. In addition, the near-unity (0.9950.999) absorptance of all three 

CNT samples was determined by the DHR measurements in the spectral range from 400 

to 1000 nm. The measured DHR of the most specular CNT sample shows some fringes 

due to the partially coherent interference, which also results in a colorful appearance of 

the specular CNT sample viewed at oblique angles. Furthermore, the specular surface 

allows the effective optical constants of the CNT array to be quantitatively determined by 

directly fitting the angle-resolved specular reflectance measured with TAAS. In addition, 

a Brewster angle of 44

 is observed from the angle-resolved reflectance measurements 

and further explained by the sample anisotropy. This study demonstrates that VACNT 

arrays can be a promising candidate for highly specular black surfaces with certain 

applications in blackbody cavities, absolute radiometry, and space-borne spectrometry.  

 3. The BRDF, DHR, angle-resolved reflectance, and scattering features of the 

AgNR-on-Ag film sample were experimentally characterized at both 635- and 977-nm 

wavelengths for both polarizations, through which, the anisotropic responses of the 
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AgNR samples were directly verified. Due to the large absorption of the Ag film, the 

three-layer anisotropic thin-film optics modified with the roughness effect is applied to 

the AgNR-on-Ag film sample. By fitting the specular reflectance calculated from the 

three-layer model with those measured using TAAS, the polarization-dependent optical 

constants are calculated to be nO=1.41±0.04, O=0.06±0.02, nE=0.59±0.03, and 

E=1.62±0.24 at 635-nm wavelength and nO=1.58±0.05, O=0.03±0.01, nE=1.10±0.06, 

and E=2.17±0.33 at the 977-nm wavelength. Furthermore, scattering due to both the 

surface roughness and bulk inhomogeneity of the inclined AgNR array exhibits 

somewhat polarization dependence. A simplified exponential model based on the first-

order approximation is used to estimate the roughness effect, which indicates a larger 

roughness for ordinary waves. One possible explanation is that when ordinary wave 

propagates in the AgNR array, the dielectric behavior results in a larger penetration depth, 

hence, bulk scattering becomes more prominent for this case.  

4. The anisotropic diffraction effect of a novel hybrid micro-nanoscale structure 

consisting of inclined AgNRs on top of CD gratings was explained by the ordinary versus 

extraordinary wave propagation in uniaxial media. Due to the shadowing effect induced 

by the OAD technique, AgNRs on two samples have different orientations with respect to 

the CD gratings: parallel or perpendicular, corresponding to either dielectric (ordinary) or 

metallic (extraordinary) behavior of the AgNR array, respectively. Hence, the dielectric 

or metallic behavior of the AgNR-grating structures can be easily controlled by 

interchanging the nanorod orientations and/or varying the incident polarizations. The 

anisotropic diffraction features is analyzed using a simplified RCWA model incorporated 

with the effective optical constants predicted by the EMT for both polarizations. 
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Reasonable agreements on measurements and numerical modeling have been achieved. 

These hybrid AgNR-grating structures hold promise in anisotropic gratings with tunable 

radiative properties by adapting the geometric dimensions of the nanorod array, which is 

superb to the bulk uniaxial media currently used for conventional anisotropic gratings.  

The first step regarding the future work will be the direct implementation of the 

methods described in this dissertation for several on-going projects, such as the 

investigation of the effects from penetration depth and entanglement on the radiative 

properties of semitransparent CNT arrays and the potential applications of doped silicon 

nanowires for solar absorption.  

Furthermore, it is desired to improve the scattering model. Due to the nano-array 

structure and bulk inhomogeneity, scattering plays a more important role for nano-arrays 

than the regular thin-film-like structures. A more comprehensive scattering model taking 

into account of both surface roughness and bulk inhomogeneity is especially critical for 

cases when the nano-arrays are semitransparent, such as nanorod arrays with short 

lengths, ordinary wave propagation, or long-wavelength incidence. Another aspect 

regarding the theoretical modeling would be the elevation of anisotropic thin-film optics 

to an advanced level including the polarization coupling. By doing so, more sample and 

polarization orientations can be adopted. The polarization-coupling cases may exhibit 

some interesting phenomena, which can be theoretically analyzed with the coupling 

model. In addition, the coupling model also provides a good approach to compensate the 

uncertainties caused by the sample and/or optical misalignment, i.e., for Orientation 1 in 

Chapter 6, the optical axis is slightly off from the POI due to the imperfect optical 

alignment. The next step will be incorporation of the anisotropic model to multilayer 
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thin-film optics formulation. This will produce a general model applicable for multilayer 

structures with one or several optically anisotropic layers. 

The sample morphology and structure can significantly affect the measurement 

results. Hence, it will be interesting to look into the radiative properties of nanostructures 

with varying geometric parameters, such as length, diameter, tilting angle, shape, density 

(volume filling fraction), alignment, etc. In addition, sample preparation with well-

controlled growth conditions and sample characterization are also important to improve 

the measurement repeatability and to provide accurate input parameters for theoretical 

modeling. Moreover, this study should be extended to include broader spectral ranges and 

various materials. Accurate knowledge of the optical and radiative properties of materials 

in the NIR and MIR spectra is crucial for understanding the physics of materials, for the 

control of material processing, and for thermal energy conversion. Hence, investigations 

on the radiative properties of CNT and AgNR arrays at longer wavelengths should be 

conducted in the future. In addition, nanowires/rods/tubes made of other materials, for 

example, doped silicon, zinc oxide, and gold, are also worthy of consideration for future 

research.  
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