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ue Internal energy per unit length of the continuum

v Global Y displacement

w Global Z displacement

x1 Position along the intrinsic beam centerline
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SUMMARY

Two multiscale continuum models for simulating protein dynamics are developed

which allow for resolution of protein peptide planes in a beam-like finite element. A cur-

vature and strain-based finite element formulation is utilized. This formulation is advanta-

geous in simulating proteins since amino acid chains may be described by a single element,

even when the protein segment considered exhibits large curvature and twist such as in the

α-helical shapes prominent in many proteins. Concurrent and hierarchical multiscale models

are developed for the curvature and strain-based beam formulation. The hierarchical multi-

scale continuum model utilizes a novel shooting method to calculate the deformed configura-

tion of the protein. An optimization algorithm determines the requisite stiffness parameters

by varying the beam stiffness used in the shooting method until deformed configurations

of test cases correspond to those produced by the LAMMPS molecular dynamics software.

Additionally, a concurrent multiscale method is detailed for evaluating protein inter-atomic

potential parameters from the curvature and strain degrees of freedom employed in the

model. This allows internal forces and moments to be calculated using nonlinear protein

potentials. Proof of concept testing and model verification for both models includes com-

paring the multiscale techniques to all-atom molecular dynamics solutions. Specifically, the

models are verified by simulating a polypeptide in a vacuum and comparing the predicted

results to those computed using LAMMPS.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Proteins play a role in every major biological function from immune response to hormone

regulation to cell division. Specifically, proteins provide the mechanisms and structure

necessary for cellular functions and are therefore considered the building blocks of life.

The ability of proteins to perform their cellular function is critical, and the protein’s three-

dimensional “native” shape determines how a protein functions [69]. It is understood that a

protein’s atomic structure and environment govern the protein’s native shape, and that this

shape is located at a global minimum of the protein’s potential energy landscape [2]. If a

cell cannot produce the correct atomic structure or an external stimuli disturbs the cellular

system, the possibility exists where the protein will misfold and not attain its correct three-

dimensional shape. These misfolded proteins lead to debilitating diseases and disorders that

currently have few cures such as Alzheimer’s disease, spongiform encephalopathies (prions

disease), Parkinson’s disease, Type II diabetes, multiple myeloma and several types of cancer

([15],[16]). The underlying mechanisms of the misfolding causing these diseases include gene

mutations causing a change in the atomic structure of the molecule [47], failure of molecular

chaperones to prevent misfolding [6], and environmental influences such as a change in pH

[28] or increased shear stress due to restricted blood flow ([8], [35]). Since protein folding

is critical to biological functions, and misfolding is a primary cause for serious illnesses,

modeling protein kinetics accurately and quickly is of academic and medical interest. The

ability to accurately and efficiently model protein dynamics and the protein folding process

will aid in the design of new therapeutic drugs to treat incurable diseases [14].

Aside from therapeutics, the utility of designing novel proteins for the development

of molecular machines provides further motivation for solving the protein folding and dy-

namics problem. In biological life, proteins are molecular machines manufactured by the
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cell to carry out cellular functions, which these proteins perform extremely efficiently. For

example, plants use molecular machines to convert solar energy into synthesized organic

compounds on a scale humans are unable to emulate [30]. Also, the genetic make-up of

life is stored in the genetic code of DNA, which is transfered using molecular machines

during cell division. During this process, protein molecular machines transfer and process

data much more efficiently than silicon based computers ([17], [30]). In addition, bacteria

contain molecular machinery that performs chemical synthesis and conversion. Examples

of such molecular machines are already used in the processing of biofuels [25] and the biore-

mediation of chemical spills [50]. Gaining an understanding of the underlying processes at

work in these molecular machines will aid in the modification of existing proteins and the

design of novel molecules for use as molecular machines.

Currently, biologists possess the ability to synthesize proteins, but cannot predict their

final conformation or how they will dynamically interact in a biological system. Several

reasons contribute to the difficulty of modeling proteins efficiently and accurately. Firstly,

proteins exhibit complex structure and a high number of degrees of freedom that make

predicting native configurations computationally expensive. In addition, the energy land-

scape that governs the folding process and drives dynamics is “rugged.” This rugged energy

landscape contains a large amount of local minimums, which makes determining the global

minimum difficult. As a result, a simulation may not find the absolute global energy con-

formation. Lastly, quantum mechanics via the Schrödinger equation govern the atomic

interactions causing the protein folding process. Implementing quantum mechanical theory

in a protein simulation is exceedingly prohibitive due to computational expense; however,

less accurate empirical potential fields employed in simulations demonstrate utility.

Recent advances in protein simulation tools demonstrate current techniques suffice for

small protein problems; however, improvement is still needed. For example, the super-

computer Anton simulated the millisecond protein folding processes of 12 small proteins

containing 10 - 80 amino acid residues [34] and the Rosetta@home research group modeled

the 1.5 millisecond folding process of a 39 residue protein [67]. These simulations used

empirical potential fields to describe atomic interactions and determined accurate tertiary
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protein structures. Although these simulations represent a major breakthrough in protein

simulations, the goal of simulating complex proteins with simulation times on the order

of seconds remains unattainable even with specialized supercomputers like Anton or dis-

tributed simulations like Rosetta@home. In order to realize simulations on this scale, new

methods for simulating protein dynamics are required.

1.2 Protein Structure

Biological proteins are polymeric chains built from amino acid monomers. These amino

acids contain 5 chemical components: a central α carbon (Cα), an α proton (H), an amino

functional group (-NH), a carboxylic acid functional group (-COOH), and a side chain group

(R). The residual side chain group differentiates the 20 common biological amino acids,

which are listed in Table 1.1. These amino acids combine to become proteins through

Table 1.1: List of primary amino acids found in proteins.

Alanine ALA Arginine ARG

Asparagine ASN Aspartic Acid ASP

Cysteine CYS Glutamine GLN

Glutamic Acid GLU Glycine GLY

Histidine HIS Isoleucine ILE

Leucine LEU Lysine LYS

Methionine MET Phenylalanine PHE

Proline PRO Serine SER

Threonine THR Tryptophan TRP

Tyrosine TYR Valine VAL

an energy-driven condensation reaction as a result of cellular function. A condensation

reaction results when an amino functional group and a carboxylic acid functional group

of two amino acids form a covalent bond between carbon and nitrogen as shown in Fig.

1.1. This results in the creation of a peptide bond between the two amino acids, and

repeating the process creates a polypeptide containing several peptide bonds. Notably,

these peptide bonds behave like a partial double bond, which have restricted rotation about

the bond. This restricted rotation results in a stable peptide plane. Figure 1.2 depicts a

polypeptide consisting of four peptide planes. These peptide planes are repeating units that

exhibit constant structure in the protein and reduce the number of degrees of freedom in
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Figure 1.1: The amino acid consists of five chemical components: the Cα, the α proton,
an amino group, carboxylic acid group, and a side chain group. Amino acids combine in a
condensation reaction to form polypeptides.

C N O H R Peptide BondC  

Figure 1.2: The polypeptide is a polymer chain of amino acids bonded with the peptide
bond.

the protein.

Geometric relationships involving atoms in the polypeptide fully define the three-dimensional

protein structure. The relationships consist of bond lengths, bond angles, dihedral angles

and improper dihedral angles. Figure 1.3 illustrates these parameters and depicts impor-

tant dihedral angles in the peptide plane. The primary contributors from these parameters,

which determine overall polypeptide structure, are the dihedral angles φ and ψ defined in

Fig. 1.3. Typically, the peptide plane remains relatively rigid during protein dynamics such
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Figure 1.3: Bond lengths, bond angles, dihedral angles and improper dihedral angles give
rise to protein structure. The dihedral angles φ, ψ and ω are located along the protein
backbone.

that the bond lengths, bond angles and dihedral angle ω of the plane remain constant. As

a result, the φ and ψ dihedral angles are the essential degrees of freedom that dictate the

position of the polypeptide backbone atoms (Cα, C, N).

Four categories denote the different structural levels of a protein: primary, secondary,

tertiary and quaternary structure. The primary structure consists of the amino acid se-

quence, which gives the list of amino acids found in the protein. For example, the primary

structure for a protein consisting of four alanine amino acids is given by ALA-ALA-ALA-

ALA. Secondary protein structure refers to commonly recurring geometric configurations

in proteins such as the α-helix and β-sheets shown in Fig. 1.4. Furthermore, the φ and ψ

dihedral angles define the secondary structures. Dihedral angles around φ = −64◦± 7◦ and

ψ = −48◦ ± 7◦ create an α-helix [5], and dihedrals angles near φ = −140◦ and ψ = 135◦

result in an anti-parallel β-sheet [22]. Hydrogen bonding and steric restrictions make these

secondary structures favorable [47]. Steric restrictions arise from the fact that atom electron

clouds cannot overlap. This causes certain dihedral angle sets to be energetically unfavor-

able. Tertiary structure refers to the three-dimensional shape of a single polypeptide chain,

while quaternary structure denotes the three-dimensional shape of two or more polypeptide

chains interacting as a single biological molecule. Hemoglobin (see Fig. 1.5a) is an example

of quaternary structure and consists of four polypeptide chain subunits bound together by
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Figure 1.4: Common secondary structures appearing in proteins are the α-helix (blue)
and the anti-parallel β-sheet (green). These secondary structures maintain stability due to
hydrogen bonding.

salt bridges, hydrogen bonds and the hydrophobic effect. The tertiary structure of one of

Hemoglobin’s molecular subunits is shown in Fig. 1.5b.

Proteins with known structures in the Protein Data Bank on average contain 633 amino

acids, while the largest protein with identified structure consists of 57792 residues with

hundreds of thousands of degrees of freedom [48]. Therefore, the large scale of the pro-

tein structure, along with the complex geometry and multiple atomic interactions, make

simulating protein dynamics and folding extremely computationally expensive.

1.3 Literature Review

1.3.1 Traditional Protein Simulation Tools

Simulation tools developed for studying proteins fall into two broad categories: simulating

protein kinetics and determining the native static shape of the protein. Simulating protein

6



(a) Hemoglobin quaternary structure (b) Hemoglobin subunit β-globin

Figure 1.5: (a) Hemoglobin has a quaternary structure containing four polypeptides (shown
here in blue, yellow, orange, and purple) and four inorganic molecules (shown as gray and
red atoms). (b) The tertiary structure of β-globin primarily exhibits α-helix secondary
structures.

kinetics concerns studying the dynamics of the system when the time history of a biological

process is desired. The primary dynamic simulation tool is molecular dynamics software

(MD), which simulates all atoms in a protein over a given number of time steps. Molecular

dynamics software packages also simulate reduced degree of freedom representations of

proteins referred to as coarse-grained models where a single unit represents several atoms.

Several molecular dynamics simulation packages exist such as LAMMPS, CHARMM, and

Amber ( [51], [10], [13]). In contrast, determination of the protein’s native shape may not

depend on the dynamic time history of the protein structure. Since the protein native shape

exists at a global energy minimum, optimization algorithms are commonly used to determine

protein structure. Examples of available protein folding programs that utilize optimization

algorithms include CHARMM, Tasser, RaptorX, and Rosetta ( [55], [49], [57]).

1.3.1.1 Molecular Dynamics

Molecular dynamics packages solve the differential equations governing the dynamics of the

multi-body protein system. The multi-body problem can represent all atoms in the protein,

or simplified coarse-grained models with groups of atoms represented by a large particle.
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The governing equation for the dynamics of the system is

Mẍ+ Cẋ+∇V (x) = DẆ (t), (1.1)

where M denotes the mass matrix for the system, C denotes a damping matrix, and V (x)

denotes the protein potential function [41]. The forcing term on the right-hand side rep-

resents random forces imposed on the protein due to collisions with the surroundings that

dissipate energy. The forcing term consists of normalized white noise Ẇ (t) and the matrix

D, termed the diffusion matrix. The diffusion matrix is related to damping using

DDT = 2kBTC (1.2)

where T denotes the temperature and kB denotes the Boltzmann constant. The damping

matrix and diffusion matrix represent coupling between the protein and its environment,

and usually contains small terms. The use of these matrices simplifies this coupling, which

is fully defined using quantum mechanics. Since implementation of the Shrödinger equation

significantly increases computational expense, C is generally defined as a small scaling of the

mass matrix γM , where the damping coefficient γ is determined from a heuristic method.

The potential field is usually determined from empirical data, and V is defined as a function

of the protein structural parameters and distances between nonbonded atoms that interact.

The stiffnesses in potential terms are generally high and for a large protein the dimensional

space of the problem is extremely large. As a result, the fastest molecular dynamics software

running on specialized supercomputers simulate dynamics on the order of microseconds per

day for average sized proteins [3]. As a result, modeling protein dynamics for seconds in

simulation time would require an impractical amount of time and computational resources.

1.3.1.2 Energy Landscape Optimization

Several molecular modeling packages exist that utilize optimization algorithms to locate the

energy minimum for the protein’s energy landscape. Two methods exist for the optimization

process: physics-based techniques and de Novo techniques. The physics-based processes run

common optimization algorithms (e.g., Monte Carlo minimization and Newton-Based Meth-

ods) on the protein potential field in an attempt to find the native state [58]. Analytical
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methods like Newton-Based methods involve following the steepest gradient to the energy

minimum. The gradient for the potential field is costly to calculate, and analytical methods

tend to converge to local minimums away from global minimums. Statistical Monte Carlo

minimization techniques apply random changes to the protein configuration and choose the

lowest energy solution. This is repeated until a minimum is reached; however, the computa-

tional cost is prohibitive due to the sampling of many random configurations. Furthermore,

modified algorithms are used which combine the analytical and statistical methods. In these

modified algorithms, statistical methods sample the entire potential domain and identify

low points in the domain. Analytical techniques then determine the true minimums located

at these points. Then, the process is repeated on the lowest energy configuration found

in the previous step until a minimum is determined [59]. As stated earlier, the energy

function occupies a large dimensional space, which makes such an optimization task nearly

impossible for most proteins. As a result, de Novo, or knowledge based methods, create

folded configurations based on known protein structures and then optimization finds the

local minimum. These de Novo methods include comparative modeling and fold recogni-

tion algorithms [21]. Comparative modeling matches residue sequences from the unknown

protein to known proteins in the protein data bank and assumes that similar sequences

imply similar structural characteristics. Fold recognition algorithms attempt to fit a speci-

fied sequence section to known structure in the protein data bank which may exhibit much

different amino acid structure. These de Novo modeling methods demonstrate superiority

in determining folded protein shapes over present day physics-based methods [58].

1.3.2 Force Fields

The force fields (also known as potential fields or energy functions) used in molecular mod-

eling ultimately determine the final shape of protein. Two popular force fields are the

CHARMM force field [36] and the Amber force field [52]. These force fields yield the energy

of the protein as a function of the atomic positions. Specifically, the force fields consist of

bonded terms and nonbonded terms. Bonded terms include energy terms based on bond
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lengths, bond angles, dihedral angles and improper dihedral angles. The bonded terms be-

have similar to linear or nonlinear springs depending on the parameter being modeled. The

stiffnesses and values used in the spring-like terms depend on the chosen force field. Non-

bonded terms capture weak interactions and electrostatic forces occurring between atoms

in close proximity to each other. Equation (1.3) gives the CHARMM potential function

based on atomic positions and protein structure parameters [37].

U(Xp) =
∑

bonds

Kb(b− b0)2 +
∑

UB

(S − S0)2 +
∑

angles

Kθ(θ − θ0)2

+
∑

dihedrals

Kχ(1 + cos(nχ− δ)) +
∑

impropers

Kλ(λ− λ0)2

+
∑

nonbond

{
ε

[(
Rminij
rpij

)12

−
(
Rminij
rpij

)6
]

+
qiqj
ε1rpij

}
.

(1.3)

The stiffnesses for the bond lengths b, bond angles θ, dihedral angles χ and improper

dihedral angles λ, are given by Kb, Kθ, Kχ and Kλ, respectively. The Urey-Bradley (UB)

term represents additional energy due to bond angles where S denotes the UB length. The

UB length is the distant between the first and third atom in a bond angle. The 0 subscript

represents equilibrium values for each potential term. The nonbonded terms consist of the

Lennard-Jones potential and the Coulomb potential where ε denotes the 6-12 Lennard-

Jones well depth, Rmin denotes the distance at the Lennard-Jones minimum, qi denotes the

partial atomic charge of atom i, ε1 denotes the effective dielectric constant, and rpij denotes

the distance between the ith and jth atom. The vector Xp denotes the position of all atoms

in the protein from which all protein structure parameters and necessary distances can be

calculated using geometric relationships [41].

1.3.3 Multiscale and Continuum Models

Continuum modeling represents a discrete system as a continuous body or fluid, and pro-

vides the starting point for multiscale modeling. For example, a continuous system with

appropriate material properties and characteristics represents the discrete nano-structures

involved with the protein folding process [44]. When modeling protein dynamics and the

protein environment, continuum models typically represent solvents, cell membranes and

the diffusion dynamics of the proteins within the cell [65]. Water is the primary solvent
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in which protein folding and dynamics occur, and the continuum representation of water

involves the local ion concentration, which is represented by Poisson-Boltzmann theory or

generalized Born methods. In cell membrane deformation, elastic material models represent

the deformation of the membrane in response to external stimuli. The continuum represen-

tation of protein diffusion is governed by protein densities and mass transport equations.

Although less common, several authors have developed continuum models which represent

protein segments. To develop these models, force-displacement curves determined from MD

or empirical data are used to calculate equivalent continuum material properties such as

Young’s Modulus or bending stiffnesses. For example, beam segments replace collagen fibers

[11] or elastic membranes replace protein membranes [56]. For example, Goyal et. al. rep-

resent DNA loops containing hundreds of atoms as continuous beams and obtain dynamic

response results efficiently [24]. When the material properties are developed using MD

simulations, the resulting continuum models are hierarchical multiscale models, since data

gathered from higher accuracy models parameterize the continuum models. Continuum

models like these greatly reduce the degrees of freedom required to model the protein of in-

terest; however, they lose atomistic resolution which governs more complex protein-protein

interactions.

Concurrent multiscale methods link models at different scales such that the models

are used simultaneously during simulations. These methods reduce the degrees of freedom

for the overall model, but maintain atomistic resolution at areas of interest. One such

method models crack growth in crystal structures at the atomistic level using a continuum

representation. In this method, a finite element like mesh locates ‘representative’ atoms

at each node, and linearly interpolates locations of atoms internal to mesh elements such

that the full atomistic energy potential can be evaluated [38]. Near crack growth, mesh

refinement allows atomistic resolution since the ‘representative’ atoms correspond to actual

atoms. Such concurrent multiscale continuum models have not been developed for modeling

protein polypeptide chains. Recent concurrent multiscale models for proteins link quantum

mechanical modeling with molecular dynamics all-atom modeling. Segments of the polypep-

tide chain undergoing enzymatic reactions are represented by quantum mechanical modeling
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while the remaining segments are represented with molecular dynamics modeling [60].

1.4 Contribution and Organization

This work presents two multiscale continuum models for modeling protein polypeptide

chains as continuous beams. The first method is a hierarchical method developed with

an intrinsic beam formulation [27]. The developed hierarchical method uses a zero-iteration

shooting method to optimize the intrinsic beam stiffnesses such that the beam correctly

models protein characteristics calculated using MD. The concurrent multiscale method, on

the other hand, embeds atomistic unit cells in the continuum model such that atomistic

potentials determine beam internal forces and moments. Chapter 2 of this works covers

the development of the zero-iteration shooting method for the intrinsic beam formulation,

which is used to determine the beam stiffnesses required for the hierarchical model. The

zero-iteration method is compared to similar shooting methods and validated with several

test cases. Chapter 3 presents the development of the hierarchical multiscale continuum

method which maintains multiscale resolution such that the position of Cα atoms and pep-

tide planes are known. Results from this method obtained under various loading conditions

are compared to values determined from MD. Chapter 4 discusses a preliminary concur-

rent multiscale method developed for modeling polypeptide chains using a finite element

discretization. Comparisons between the preliminary concurrent multiscale method and

MD are made at both the atomistic scale and the continuum level. Chapter 5 provides

conclusions and areas of future work for both models.
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CHAPTER II

THREE-DIMENSIONAL EQUILIBRIA AND STABILITY OF

NONLINEAR CURVED BEAMS USING INTRINSIC EQUATIONS

AND SHOOTING

This chapter covers the development of a novel shooting method used for calculating the

hierarchical continuum model stiffness for proteins. The shooting method calculates the

deformed configuration of helical beams subjected to follower loads with zero iterations.

Since this method requires zero iterations to solve a follower load cantilever beam problem,

it allows for computationally efficient calculation of equivalent protein stiffness inside of an

optimization process. Chapter 3 describes in detail the optimization process which varies

the intrinsic formulation stiffness terms until the deformed beam configuration matches the

deformed configuration of a protein modeled with MD. This shooting method can be applied

to any beam system, and as such this chapter presents the technique as a general method

for obtaining three-dimensional beam equilibria and buckled shapes.

2.1 Introduction

Beams are a common element in mechanical systems used in modeling a variety of ma-

chine elements. As a result, studying the nonlinear deformation of beams is of interest

to several fields of engineering such as aerospace, mechanical, biomedical, and civil engi-

neering. Several authors, including Timoshenko[63]; Barten[7]; Bisshopp and Drucker[9];

Argyris[4]; and Pai and Lee[45], have performed in-depth studies on the nonlinear defor-

mation of beams. In particular, beam problems with nonconservative follower loads are a

subset which have received renewed interest. The follower load problem was first introduced

as a study of elastic stability by Nikolai ([42], [43]) and was expanded upon by Ziegler[71];

however, this research was mainly viewed as a pure theoretical endeavor[26]. With ad-

vances in technology and material science, this category of beam problems was recognized

to have practical engineering applications. The primary examples are in the medical and
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aerospace industries. Tools and equipment in these fields have become dependent on large

flexible cables and beams, whether they be large robotic arms for spacecraft or endoscopic

surgery tools. In robotic arms, follower moments exist at joints where servos control motion.

With endoscopic tools, robotic catheters are in development which utilize shape memory

alloys to control the motion of the catheter by applying distributed follower loads to the

catheter body[66]. A commonly observed follower load phenomena is the flutter instability

experienced by airplane wings due to aeroelastic effects. Gaining a greater insight into the

nonlinear deformation of beams subjected to follower loads will aid in the design and control

of these devices.

Solutions to large deformation beam problems have been investigated using several meth-

ods such as nonlinear finite element methods[4], iterative shooting methods[68], the finite

difference method ([1], [23]), and less general analytical methods such as the elliptic integral

formulation[63]. Numerical solutions to the large deformation of beams are of particular

interest since these solution methods are applicable to general problems. In this subset of

solution methods, traditional finite element methods, finite difference methods and shoot-

ing methods require multiple iterations in order to solve the beam boundary value problem

(BVP). The finite element method must update load and stiffness matrices as the geometry

varies until the final load case is reached, which increases computational expense and sim-

ulation time[29]. Finite difference methods require convergence of a set of residuals with

the use of a Newton-Raphson technique or may employ iterative shooting methods in order

to solve a nonlinear BVP[54]. Also, finite element and finite difference methods require a

pre-processing step where the domain is discretized. For a beam defined by one independent

variable, iterative shooting methods are useful for solving nonlinear BVP’s.

Iterative shooting methods are numerical techniques for solving BVP’s posed with one

independent variable. These methods solve systems of first-order ordinary differential equa-

tions (ODE’s) over an interval [x0
1, x

f
1 ] where x1 is the independent variable. For the case of

a beam with parameters and static equilibrium equations dependent on x1, a set of fourth-

order ODE’s is reduced to a set of first-order ODE’s and a set of boundary conditions is
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defined at both x0
1 and xf1 . With iterative shooting, this set of ODE’s is treated as an ini-

tial value problem (IVP) in which multiple initial condition iterations at x0
1 are performed

in order to correctly arrive at the final conditions at xf1 . In general, one cannot define a

complete set of boundary conditions at x0
1 such that the requisite boundary conditions at

xf1 are also satisfied. As a result, an initial guess of one or more boundary conditions at x0
1

is required, followed by a minimization routine that varies the initial values at x0
1 until all

requisite boundary conditions at xf1 are satisfied[54]. The varying of the initial values gives

a different solution trajectory for each “shot,” until the requisite boundary conditions are

“hit” by the correct trajectory.

In contrast to traditional iterative shooting techniques for beam BVP’s, a method was

recently introduced by Shvartsman to solve planar cantilever beam problems subjected

to follower loads by a direct shooting method[61]. This method uses variable substitu-

tion to arrive at a set of first-order ODE’s which describe the equilibrium configuration

of a beam undergoing large deflections. Some limitations of this direct shooting method

are that it utilizes Euler-Bernoulli beam theory and has not been generalized for three-

dimensional cases. Shvartsman’s method also requires post-processing of data in order to

calculate the deformed configuration of the loaded beam since the deformed configuration’s

governing equations are not part of the first-order ODE set[39]. In the present paper, a

more general three-dimensional shooting method is introduced based on the intrinsic beam

formulation[27].

The method proposed herein is a general shooting method to solve the large deflection

problem of pre-curved, non-prismatic beams in three-dimensions. With this method, in-

trinsic beam theory with first-order shear modeling is used, allowing all relevant differential

equations to be presented in first-order form. After the specification of a constitutive law,

an ODE solver is used to find the deformed configuration of a loaded beam. For cantilever

beam BVP’s with nonconservative circulatory loading, this method gives an accurate so-

lution with no iteration. This is possible for follower loads since the system equations are

defined in a local coordinate system that rotates and translates with the beam, akin to the

follower loads. In addition, only one boundary condition or initial value is needed since the
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equations are defined in first-order form. The additional boundary condition at the fixed

end is automatically satisfied by the system equations since they enforce equilibrium.

For beam BVP’s with conservative loading and general boundary conditions, iterative

shooting is still required for the presented method. These general beam BVP’s are modeled

as a series of cantilever beams where reaction loads and external loads are both modeled

as applied loads on the cantilever. The reaction loads and the direction of the external

loads are varied until the known boundary conditions of the problem are satisfied on each

end. The entire process is explained in detail in the methods section. A unique feature of

this method is apparent when studying buckling beam problems. All stable and unstable

solutions can be found for conservative-load BVP’s as a result of the Picard-Lindelöf theorem

guaranteeing the uniqueness of the solutions to IVP’s with requisite smoothness. Due this

theorem, the follower load beam BVP defined by the intrinsic formulation gives unique

solutions for unique sets of initial conditions. As such, conservative beam BVP’s are posed

as follower load BVP’s that satisfy the conservative BVP’s final loading and boundary

conditions. Many follower load solutions may exist that satisfy a given conservative load

beam BVP. By sampling the entire initial condition subspace for the follower load BVP

that models the conservative load BVP, all solutions for the conservative load problem are

guaranteed to be found.

This paper contributes the following to analyzing the deformation of beams:

• a general procedure for finding the solutions to the nonlinear deformation of three-

dimensional pre-curved cantilever beams subjected to follower loads without the need

for iteration;

• a general procedure for determining all solutions to beam BVP’s with conservative

loading;

• a shooting method incorporating first-order shear modeling, which is particularly use-

ful for the study of thick beams.
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2.2 Methods

This section presents the intrinsic formulation’s governing equations utilized in the shooting

method. In addition, the constitutive law will be discussed, followed by a description for

implementing shooting on the equilibrium equations.

2.2.1 Kinematics

There are three configurations, as shown in Fig. 2.1, required to describe the shape of

a general three-dimensional beam for use with the intrinsic equilibrium equations. The

reference configuration, Ωref , represents a straight beam with zero curvature or strain. The

distance along the center line is defined by x1 and a material point in the cross section at x1

is defined by the triplet (x1, x2, x3), which hold true in any of the configuration states. These

material points are defined relative to the local basis of the beam in the Ωref configuration

such that a material point is located at (x1, x2, x3) in the global coordinate system XY Z.

The initial configuration, Ω0, represents the beam in an unstressed configuration which may

exhibit initial curvature and strain, K0 and γ0. The curvature vector has three components

which describe the twist and bending curvatures relative to the intrinsic basis of the beam,

B01 ,B02 ,B03 . The strain vector also has three components termed the axial and cross-

sectional shear strains (analogous to the shear strain in Timoshenko beam theory). The

deformed configuration, Ωf , represents the beam in a stressed state where internal moments

and forces are present. The final curvature and strain vectors, Kf and γf , denote the change

in curvature and strain for Ωf relative to Ωref , while the net change in curvature and strain,

K̂ and γ̂, denote the change from Ω0 to Ωf .

The intrinsic continuum model uses a unit basis to describe the beam kinematics in each

configuration. For the Ωref configuration, the Cartesian unit vectors [I1, I2, I3] are used as

the basis, while the two sets of basis vectors, [B01 ,B02 ,B03 ] and [Bf1 ,Bf2 ,Bf3 ], are used

for Ω0 and Ωf , respectively. The basis vectors in Ω0 and Ωf follow the cross-section of the

beam and are defined such that B02 and Bf2 initially correspond with I2 in Ωref , while B03

and Bf3 align with I3 in Ωref . The basis vectors B01 and Bf1 are defined by B02 ×B03 and

Bf2 ×Bf3 , completing the orthonormal set. Figure 2.2 shows these basis vectors, where it
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Z

Y

Figure 2.1: Three configurations are utilized in the intrinsic beam model. An initially
straight configuration Ωref is used to define material points in the continuum. Initial cur-
vature and strain, K0 and γ0, are used to map the material points to the initial configuration
Ω0. The deformed configuration Ωf is achieved through a similar mapping from Ω0 involving

the net curvature and strain, K̂ and γ̂.

is evident that B01 and Bf1 are not necessarily tangent to the centerline R(x1) in Ω0 and

Ωf due to the presence of strain. The spatial rate of change of the centerline position and

dx1
B1

x2

x3

), x , 2 x3R( dx1x +1

)R(x 1

Z

X

Y

B1

2B

B3

 

B3( dx1x +1 )

( dx1x +1 )

2B ( dx1x +1 )

(x1)

(x1)

(x1)

*

Figure 2.2: The basis vectors and material point position vectors used in the intrinsic beam
development. These vectors can be assigned to Ω0 or Ωf utilizing the subscripts 0 or f ,
respectively.

the basis vectors implicitly define the strains and curvatures of the beam in both Ω0 and
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Ωf [70] as shown in Eqs. (2.1) and (2.2):

R′0 = (1 + γ011)B01 + 2γ012B02 + 2γ013B03 ,

R′f = (1 + γf11)Bf1 + 2γf12Bf2 + 2γf13Bf3 ,

(2.1)

B′0i = K0 ×B0i , B′fi = Kf ×Bfi . (2.2)

The spatial derivative with respect to x1 is denoted by a prime.

2.2.2 Equilibrium Equations

An intrinsic beam formulation, developed by Hodges[27], defines the three-dimensional

equations of motion governing the temporal and spatial changes of the beam’s velocity,

angular velocity, curvature and strain:

∂F

∂x1
+ Kf × F + f =

∂P

∂t
+ Ω×P, (2.3)

and

∂M

∂x1
+ Kf ×M + (e1 + γf )× F + m =

∂H

∂t
+ Ω×H + V×P,

(2.4)

where F and M denote internal forces and moments; f and m denote external forces and

moments per unit length; P and H denote the linear and angular momentum per unit

length corresponding to linear velocity V and angular velocity Ω; and e1 denotes a unit

vector in the B1f direction ([1 0 0]T ). The following two equations are necessary constraint

equations to complete the set of four equations for the four field variables (Kf , γf , V, Ω):

∂Ω

∂x1
+ Kf ×Ω =

∂K̂

∂t
(2.5)

and

∂V

∂x1
+ Kf ×V + (e1 + γf )×Ω =

∂γf
∂t

. (2.6)

The momenta and velocities of the beam are related using the mass per unit length µ; cross-

sectional mass moments and product of inertia i2, i3 and i23; and the centroidal offsets from

the center line x2 and x3 as given by Eq. (2.7):
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



P1

P2

P3

H1

H2

H3





=




µ 0 0 0 µx3 −µx2

0 µ 0 −µx3 0 0

0 0 µ µx2 0 0

0 −µx3 µx2 i2 + i3 0 0

µx3 0 0 0 i2 i23

−µx2 0 0 0 i23 i3








V1

V2

V3

Ω1

Ω2

Ω3





. (2.7)

For the static case, these equations simplify greatly by removing time dependent terms

and derivatives. As a result, the equilibrium equations are given by

∂F

∂x1
+ Kf × F + f = 0 (2.8)

and

∂M

∂x1
+ Kf ×M + (e1 + γf )× F + m = 0. (2.9)

A constitutive law relating the internal forces and moments to curvature and strain com-

pletes the formulation. For all beams considered herein, the initial curvatures are small-

enough to warrant a decoupled constitutive model[32] of the form,





F

M





= [D]





γ̂

K̂




, (2.10)

where

D =




AE 0 0 0 0 0

0 2AG
k 0 0 0 0

0 0 2AG
k 0 0 0

0 0 0 (i2 + i3)G 0 0

0 0 0 0 i2E 0

0 0 0 0 0 i3E




. (2.11)

In Eq. (2.11), E denotes the material elastic modulus, G denotes the shear modulus defined

by G = E/(2(1 + ν)), ν denotes Poisson’s ratio, D denotes the intrinsic stiffness and k

denotes a shear correction factor based on the cross section shape. This constitutive law

is for a continuum with a symmetric cross-section and an isotropic material. For use in
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this work the constitutive law is linearized for small K̂ and γ̂; however, the formulation is

general such that a nonlinear constitutive law could be used. In the case where strain is

negligible, only the curvature-moment relations are required from Eq. (2.10). As a result,

the constitutive law becomes

{M} = [DK ]
{

K̂
}

(2.12)

where the curvature stiffness DK is

DK =




(i2 + i3)G 0 0

0 i2E 0

0 0 i3E



. (2.13)

2.3 Solving the intrinsic equilibrium equations using a shooting method

In order to use a shooting method on the equilibrium equations, the ODE set is treated as

an IVP and the equations must be rearranged into the form

y′(x1) = f(x1,y(x1)). (2.14)

Equations (2.1), (2.2), (2.8), and (2.9) are algebraically manipulated into the required form

using Eqs. (2.10) and (2.11). To facilitate initial curvatures and remove initial strains,

K0+K̂ replaces Kf and γ̂ replaces γf in the aforementioned equations. As a result, eighteen

scalar first-order nonlinear differential equations are obtained for the spatial derivatives of

K̂, γ̂, Bi, and R. There are three scalar equations each for K̂, γ̂, and R, while nine scalar

equations are required for the basis Bi. These equations express K̂
′

and γ̂ ′ in the Bi basis,

while B′i and R′ are expressed with respect to the global reference basis. To express all

quantities in a common basis, Eq. (2.2) is modified as follows:

B′i = KG ×Bi (2.15)

where

KG =
∑

(K0 + K̂)jBj . (2.16)

Appendix A presents the set of equations in full detail using the material constitutive

relationship from Eq. (2.11). Treating this ODE set as an IVP requires the specification of
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eighteen initial conditions. The R and Bi initial conditions only affect the final configuration

orientation in the global basis, and do not influence the solution for K̂ and γ̂. Therefore,

the initial conditions for R and Bi are set to arbitrary values and the Bi values must obey

the orthonormal constraint required for the basis. The beam BVP loading and boundary

conditions dictate the K̂ and γ̂ initial conditions. After specification of the initial values, a

numerical ODE solver calculates the solution to the IVP (e.g., in this work Matlab’s ODE45

solver is used).
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Figure 2.3: The shooting method for cantilever beams subjected to follower loads has four
main steps: define problem, initiate shooting from the free end with R(L) = 0 and B1f

aligned with X, integrate the ODE set until the desired length of the beam is reached,
rotate and translate the deformed configuration such that the fixed end is aligned with the
undeformed configuration.

For a cantilever beam subjected to follower loads, shooting is initiated from the free
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end of the beam and requires no iteration. As a result, a single “shot” determines the

nonlinear deformation of the beam. This is only valid for beam BVP’s with follower loads

since the basis in which the equilibrium equations are expressed translates and rotates with

the beam deformation. The equilibrium equations allow the application of point loads at

the free boundary and distributed loads along the beam. The K̂ and γ̂ initial conditions

amount to applying the point follower loads to the end of the cantilever. An algebraic

manipulation of the constitutive law defines these initial conditions as a function of the end

load using 



γ̂(L)

K̂(L)





=
[
D−1

]




F(L)

M(L)




. (2.17)

The appropriate values for m and f in Eqs. (2.8) and (2.9) apply distributed follower

loads to the beam. These distributed loads can be constant or defined as functions of

x1. Furthermore, non-prismatic cantilever beams are easily modeled when the material

properties and beam dimensions vary as a function of x1. The appropriate functions defining

these beam parameters are implemented in the constitutive law given by Eq. (2.11). The

equilibrium equations automatically enforce the fixed boundary condition at the end of the

cantilever. After numerical integration of the ODE set, a rotation and displacement applied

to the deformed configuration relocates the deformed configuration in the global basis. The

displacements of the beam are calculated with





u

v

w





= Rf −R0 (2.18)

where u is the global X-displacement, v is the global Y -displacement and w is the global

Z-displacement. The orientation of the follower loads in the global basis is given by





LX

LY

LZ





=

[
Bf1 Bf2 Bf3

]




L1

L2

L3





(2.19)

where [LX , LY , LZ ]T denotes the global force or moment vector and [L1, L2, L3]T denotes
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the applied follower force or moment vector. The flow chart in Fig. 2.3 clearly outlines this

procedure for modeling cantilever beams with follower loading.

This shooting method also generates solutions to general beam BVP’s with any com-

bination of boundary conditions, conservative loads and nonconservative loads; however,

iterative shooting must be utilized. Figure 2.4 illustrates the procedure for solving general

problems. First, the problem is converted into a series combination of cantilever beams.

For general BVP’s, the reaction loads caused by imposed boundary conditions and loading

are modeled as external loads on a cantilever beam. For example, Fig. 2.4 depicts a fixed-

fixed beam transversely loaded with conservative force Fex located at x1 = ξ. This BVP is

modeled as a cantilever beam with a reaction force FR and moment MR on the free end

in addition to Fex at x1 = ξ. The next step involves decomposing the original BVP into

the two cantilever beam problems denoted by Beam 1 and Beam 2. The initial values for

Beam 1 are an initial guess for FR and MR, while the initial values for Beam 2 include

the arrived-at values from Beam 1, namely K̂
i

R(ξ) and γ̂iR(ξ), along with an initial guess

for the orientation of Fex. An initial guess is required for Fex since conservative loads are

modeled as follower loads that are rotated in Ω0 until the follower load in Ωf is oriented in

the direction of the desired conservative load. An optimization algorithm then determines

the values for FR and MR, and the correct orientation of Fex on Beam 2, which satisfy the

original beam BVP. This optimization minimizes a cost function involving the deformed

configuration’s adherence to boundary conditions and the Ωf -orientation of the applied ex-

ternal forces. The actual form of the cost function used in the optimization depends on the

imposed boundary conditions and loads. Modification of this cost function allows modeling

of any general beam BVP.

This iterative method for general beam BVP’s possesses the unique ability to determine

all solutions to the beam problem of interest. The Picard-Lindelöf theorem guarantees the

existence and uniqueness of the solutions to an ODE set with specified initial conditions[20].

For the equilibrium beam equations utilized in this work, the function f(x1,y(x1)) appearing

in Eq. (2.14) is Lipschitz continuous in y and continuous in x1. Therefore, a unique

solution exists for any initial condition set specified for the follower load beam BVP posed
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Figure 2.4: The shooting method requires that general beam BVP’s be split into a series
combination of cantilever beams. The external loads and reaction loads are then varied
until applied loading conditions and boundary conditions are satisfied.

by the intrinsic equilibrium equations. As a result, varying the force and moment initial

conditions for a follower load beam BVP over their entire range (e.g., by rotating the applied

loads through all possible directions) and compiling the solutions that satisfy the desired

conservative load beam BVP yields all solutions for the conservative beam BVP. Specifically

for the two-dimensional Euler buckling of a fixed-free beam loaded by a conservative axial

force, rotating a follower load over the range [0, 2π] in Ω0 and determining all solutions that

satisfy the correct deformed load orientation in Ωf gives all buckled solutions to this BVP.

A later section presents results and discussion for the Euler buckling problem in detail.

After determining all solutions for a BVP, the stability of each solution can be assessed

using analytical linearization techniques on the dynamic equations[18] or a dynamic nu-

merical solver. For this work, a dynamic finite element code written specifically for the

intrinsic beam equations of motion[32] makes determining system stability trivial. First,

the general shooting method calculates the Ωf configuration for a specific load case. Then,

an automated process ports the curvatures and strains from this configuration, along with

the necessary boundary conditions and loads, into the dynamic finite element code. Since
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the finite element program accepts curvatures and strains as the nodal degrees of freedom,

the deformed geometry from shooting transfers to the finite element code with ease. Next,

the system configuration is perturbed slightly and the dynamic finite element code simu-

lates system response for an extended period of time. An exponential growth of the system

response over time demonstrates system instability, while a stable system experiences oscil-

lations proportional to the disturbance.

In situations where neglecting strain is warranted, only the curvature-moment relations

from the constitutive law in Eqs. (2.12) and (2.13) need to be substituted into the equi-

librium equations. The equations neglecting strain will be utilized in later sections where

quantitative results are compared with literature. When neglecting strain, the set of field

variables now include F instead of γ̂, which makes the application of point force loads at

the end of the beam straight forward. These equations are presented in their entirety in

Appendix A.

2.4 Results

The presented shooting method exhibits its strongest advantages when applied to cantilever

beams subjected to nonconservative follower loads - these cases do not require iteration. The

following test cases validate the method using both literature comparisons ([46], [4]) and a

unique comparison of a three-dimensional system with a commercial finite element code.

2.4.1 Follower Load Validation

2.4.1.1 Cantilever Beam Subjected to Moment Load.

The first investigation involves a point moment load on the end of a two dimensional,

initially straight beam. The results given for this case are parameterized by the beam

properties; therefore, any arbitrary beam parameters that define a beam with a symmetric

cross section and isotropic material properties will yield the presented response. Figure

2.5 illustrates the beam BVP loading and boundary conditions, and shows the deformed

configurations calculated using zero-iteration shooting. The exact solution for the curvature

for this loading case is

K̂3 =
MZ

EIZZ
. (2.20)
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Figure 2.5: The deformed configurations of a beam subjected to an increasing point moment
located at the free end calculated using the developed shooting method. The two subfigures
illustrate that K̂3 increases linearly with MZ and that K̂3 is constant along the beam arc
length as predicted by theory.

Table 2.1: Beam dimensions and material properties for straight beams used for method
validation.

Length[cm] 100.00

Area Moment of Inertia IZZ [cm4] 1.67

Area[cm2] 20.00

Young’s Modulus[ N
cm2 ] 2.10× 107

Poison’s Ratio 0.30

The subfigures in Fig. 2.5 validate the shooting solution since the predicted K̂3 is exactly

proportional to MZ
EIZZ

, and K̂3 is constant throughout the length of the beam, as required.

2.4.1.2 Straight and Pre-Curved Cantilever Beams Subjected to Point and Distributed
Forces.

The next validation results are for straight and pre-curved cantilever beams loaded by point

follower forces, and a straight cantilever beam loaded by a follower distributed force. Tables

2.1 and 2.2 present the material properties for each case and match those from [4].

Figure 2.6a presents the deformed configurations of an initially straight beam subjected

to a perpendicular, point, follower force at the free end for multiple load magnitudes. Figure
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Table 2.2: Beam dimensions and material properties for pre-curved beams used for method
validation.

Length[cm] 157.08

Area Moment of Inertia IZZ [cm4] 0.50

Area[cm2] 1.00

K03 [cm−1] 0.02

Young’s Modulus[ N
cm2 ] 7.20× 106

Poison’s Ratio 0.30

2.6b shows the deformed configurations of an initially straight beam subjected to a perpen-

dicular, distributed, follower force across the length of the beam for various magnitudes.
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Figure 2.6: The deformed configurations of straight beams with (a) perpendicular point
and (b) perpendicular distributed follower loads calculated using the presented shooting
method.

For both of these cases, the results obtained with zero-iteration shooting compare favorably

to the results obtained from the finite element analysis (FEA) work done by Argyris [4]

The quantitative results used for comparison (see Fig. 2.7) comprise of the normalized dis-

placements and the rotation φz about the Z axis for the end of the beam. It is evident from

this figure that results generated using the presented method compare well with the FEA

results presented by Argyris, other than minor disagreement in Fig. 2.7a for −uL = 1. These

quantitative comparisons validate the method’s ability to model the nonlinear deformation

of straight beams subjected to point and distributed follower forces.
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Figure 2.7: The normalized displacements and rotations for the straight beams subjected
to (a) perpendicular point and (b) perpendicular distributed follower loads compared with
the finite element results presented by Argyris [4]. The dashed lines are data from [4] while
the solid lines are results from the method presented herein.
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Figure 2.8: The deformed configurations of pre-curved beams subjected to (a) tangential
and (b) radial point follower loads calculated using the method presented herein.

Furthermore, Figs. 2.8 and 2.9 validate the ability of the shooting method to model pre-

curved beams without iteration. Two cases are considered: a follower point force tangent

to the pre-curved beam at the free end, and a follower point force perpendicular to the

pre-curved beam at the free end. As before, Fig. 2.8 depicts the final configurations

of the beam for several different load magnitudes and Fig. 2.9 compares the normalized

beam tip displacements and rotations from zero-iteration shooting to numerical results from
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Figure 2.9: The normalized displacements and rotations for the pre-curved beams subjected
to (a) tangential and (b) radial point follower loads compared with the finite element results
presented by Argyris[4].The dashed lines are data from [4] while the solid lines are results
from the method presented herein.

Table 2.3: Helix properties given by Pai and Lee[33].

Length 2Rπnc/cos(ψh)

Helix Radius[m] 0.02

Helix Pitch Angle ψh 10.00◦

Cross Section Radius r[m] 0.0010

Young’s Modulus[ N
m2 ] 200.00× 109

Poison’s Ratio 0.32

Argyris[4]. Once again, the results show strong agreement with those presented in literature,

validating the method’s ability to model pre-curved beams subjected to follower loads.

2.4.1.3 Helical Cantilever Beam Subjected to Large Follower Load.

This final follower load case study illustrates the method’s ability to solve three-dimensional,

pre-curved, cantilever beam BVP’s without iteration. A helix is loaded on the free end with

a follower force that is tangent to the centerline with a magnitude of −4.0N . Table 2.3 gives

the helix properties for this validation case. Pai and Lee used these same values in [33],

where they presented a shooting method that modeled the extension and compression of a

spring. In Table 2.3, r denotes the circular cross sectional radius of the beam, nc denotes

the number of complete turns in the helix, ψh denotes the pitch angle of the helix, and R
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denotes the radius of the projection of the helix onto the XY plane. The presented shooting

method requires that these helix parameters be converted into initial curvatures. Pai and

Lee[33] defined the initial curvatures as functions of these parameters using

K01 =
1

R
cos(ψh)sin(ψh), (2.21)

K02 = ψ′h, (2.22)

K03 =
1

R
cos2(ψh), (2.23)

where for a helix ψ′h = 0. Table 2.4 gives the numerical values used for the initial curvature

and length of the beam.

Table 2.4: Beam dimensions and material properties for the helical beam used for method
validation.

Length[m] 0.77

K01(m−1) 8.55

K02(m−1) 0.00

K03(m−1) 48.49

Figures 2.10 and 2.11 display the results for the example cantilever helix subjected to the

prescribed follower load. Figure 2.10 displays the deformed and undeformed configurations

of the helix found using shooting with no iteration. Figure 2.11 presents quantitative

results comparing the shooting method technique to a finite element solution obtained

using a nonlinear analysis option available in the commercial software Abaqus. Converged

results were obtained using 500 B32 elements. The results show that the curvatures, strains

and displacements calculated using the shooting method are in good agreement with the

finite element code; however, a small discrepancy exists between the two methods for the

X-displacement. This displacement component is an order of magnitude less than the

other displacement components. As a result, the discrepancy has little effect on the overall

displacement magnitude comparison between the two methods. This X-displacement error

results from an apparent strain coupling present in Abaqus that is not reproduced by the

constitutive law used in this work. Figure 2.11b compares the strain components from the

shooting method results to results obtained from Abaqus. These results show that Abaqus
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Figure 2.10: The shooting method outlined in this work can accurately calculate the nonlin-
ear deformation of pre-curved beams in three-dimensions with only one iteration as shown
by this deformed helix.

has three non-zero components of strain at the forced end of the helix, while the presented

constitutive law only predicts non-zero axial strain at this end. This suggests the use of a

coupled constitutive law would improve results. Note further that, if the shear strain values

predicted by Abaqus at the forced end of the helix are used as the initial conditions for the

shooting method, the shooting method produces notably better results - see light blue vice

dark blue lines in Figure 2.11.

2.4.2 Non-Follower Load Validation

To demonstrate that the presented method does not have an apparent disadvantage when

compared to traditional shooting methods, the presented shooting is used to solve standard

conservative load beam BVP’s. In addition, the ability of the method to obtain all solutions

for a load case is demonstrated, and the stability of the post-buckled shapes are studied

using a dynamic finite element method.
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Figure 2.11: The K̂, γ̂ and displacement components are compared to the same values
from the finite element code Abaqus and show good agreement. The dark blue lines are
the shooting method results, the light blue lines are the corrected shooting results and the
Abaqus results are represented by the red circles.

2.4.2.1 Post-Buckling Deformation of a Straight Axially Loaded Cantilever Beam.

Studying the post-buckling behavior of a straight cantilever beam shows that the presented

shooting method is able to solve beam problems with conventional non-follower loads. The

results for this case are parameterized by beam dimensions and material properties. Using

linear Euler-Bernoulli beam theory, the buckling loads for an axially-loaded fixed-free beam
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are well known:

Fm =
(2m− 1)2π2EIzz

4L2
(2.24)

where m = 1, 2, 3, ... denotes the buckling load number of the beam[63]. Since Euler-

Bernoulli beam theory is used for these buckling cases, the intrinsic equations neglecting

strain are used for sake of comparison. Figures 2.12 and 2.13 illustrate how buckled
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Figure 2.12: The buckled shapes are determined by varying α until the appropriate β in
the deformed configuration is achieved.
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Figure 2.13: The deformed load angle β is plotted against the follower load angle α for
three load cases showing that multiple solutions exist for η > 1. The blue, green, red and
cyan lines depict when m = 1 and η = .99; m = 1 and η = 1.5; m = 2 and η = 2.5; and
m = 7 and η = 1.18, respectively.
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solutions are determined using the proposed shooting method. For planar buckling, the

angle of the follower load relative to the local B1 vector is α, while β is the angle of the

follower load relative to the global X-direction in the deformed configuration. The goal is

to determine the post-buckled deformed configuration when β = π. These solutions are

sought since they give the solution where the load in Ωf is oriented in the negative X-

direction, which causes axial buckling for conservative loading BVP’s. Figure 2.13 presents

the resultant β as a function of α for four different axial buckling loads. Also labeled are

the necessary α’s such that β = π in Ωf . Figure 2.13 indicates only one solution exists if

η < 1, where η denotes a multiplication factor for the buckling load such that the applied

axial load is FXm= −ηFm. This solution is for α = π, resulting in axial compression of

the beam. Furthermore, Fig. 2.13 depicts multiple solutions when η > 1 as a result of

beam buckling. Note that all of the peaks in Fig. 2.13 represent a solution where the load

in the deformed configuration is oriented as desired; however, all of these solutions do not

necessarily yield unique configurations. The solutions with α > π give the same deformed

configuration shape as the solutions found with α < π, but have negative displacements.

This is due to symmetry in the problem about the X axis. In fact, in the full three-

dimensional problem, infinite solutions exist since the beam could buckle at any angle in

the Y Z plane. However, we are only concerned with the planar buckled configuration, so

these solutions are suppressed.

In order to investigate the post-buckling behavior of a cantilever beam, the deflection

of the beam and the deformed post-buckled configurations of the beam are plotted as

a function of η. Figure 2.14 shows the results from this study for FX1 , and compares the

shooting results with those obtained by Pai and Palazotto in [46]. As the load increases past

F1, or past the critical buckling load, more than one possible equilibrium solution satisfies

the BVP. For the first buckling load, this includes the unstable straight configuration and

a stable buckled shape. Figure 2.13 illustrates that for each buckling load, m+ 1 solutions

exist, which consist of m buckled mode shapes and the axially loaded unstable configuration.

Figures 2.15a and 2.16a show a set of possible post-buckled configurations for FX2 and FX3

calculated using shooting, which correspond to the 2nd and 3rd modes. Figures 2.15b and
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Figure 2.14: The (a) post-buckled shape of the beam is shown with m = 1 and increasing
load factor η along with (b) the normalized displacements results compared with work done
by Pai [46].
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Figure 2.15: The (a) post-buckled shape for the 2nd mode shape is studied with increasing
load factor η and (b) the normalized displacements compare well to those presented by [46].
The solid lines are results from shooting and the dashed lines are results from [46].

2.16b show the normalized displacements of the beam end and compare the shooting results

with results available in [46]. The studied post-buckled configurations compare favorably

to literature results. The two deformed shapes shown in Figs. 2.15a and 2.16a are only a

single possible buckling mode for the 2nd and 3rd buckling loads. The multiple solutions for

the second buckling load are investigated further. Figure 2.17 depicts another equilibrium

solution for the second buckling load other than the one depicted in Fig. 2.15a. This

alternate equilibrium solution past the 2nd buckling load with η = 2.5 is found when α =
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Figure 2.17: An alternate equilibrium solution for the 2nd buckling load with η = 2.5 is
found when α = 6.28 radians and has a much different shape than the solution when α =
5.57 radians.

6.28 radians. This shape differs from the solution illustrated in Fig. 2.15, which is found at

α = 5.57 radians. The configuration depicted in Fig. 2.17 is actually the first buckled mode

shape with larger deflection due to the increased load. It is of practical interest which, if

any, of these solutions is stable.

As described previously, the stability of the second buckling load mode shapes is tested

with the use of a special-purpose explicit finite element code [32] developed from the same

intrinsic equations. The two equilibrium positions and loads are ported to the finite element

code and allowed to simulate for an extended period of time after the application of a small

perturbation. Figure 2.18 presents the displacement of the beam end as a function of time
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Figure 2.18: The instability of the 2nd post-buckled mode shape is demonstrated by the
exponential growth of the forced-end displacement magnitude with respect to time. This
post-buckled configuration is for m = 2, η = 2.5 and α = 5.57 radians.

for the mode shape shown in Fig. 2.15. These results illustrate instability as is evident by

the exponential growth in the end displacement of the beam.
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Figure 2.19: The stability of a post-buckled equilibrium solution is demonstrated by the
steady-state oscillation of the forced-end displacement magnitude with respect to time. The
post-buckle configuration is for m = 2, η = 2.5 and α = 6.28 radians.

In contrast to this unstable solution, the buckled mode shape presented in Fig. 2.17

is a stable solution as verified by Fig. 2.19. Figure 2.19 displays the displacement of the

end of this case away from the buckled solution as a function of time. Unlike the unstable

case discussed earlier, the displacement oscillates around the stable equilibrium value at a

magnitude on the order of the applied perturbation. This oscillation is constant for a long
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period of time, indicating dynamic stability around the equilibrium point.

2.4.2.2 Deformation of Helical Beam Subjected to Compression and Extension Loads.

The shooting method is also capable of modeling more complex loading configurations

with three-dimensional geometry. In the validation case presented next, a prescribed Z-

displacement applied to the free end of a fixed-free helical spring allows for the creation

of compression and extension force-displacement curves. Tables 2.3 and 2.4 define the

helix properties and dimensions, which are the same values used for the follower loaded

helix. Pai and Lee[45] also studied this spring compression and extension case; however, a
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Figure 2.20: The deformed (black lines) and undeformed (blue lines) configurations of the
helical spring for the largest displacements in (a) compression and (b) extension.

different solution is found with the developed method. The presented method’s results are

compared to results obtained from an Abaqus model using nonlinear analysis and 500 B32

beam elements. The force-displacement curves are created with the implementation of a

multivariable minimization algorithm that uses shooting to find the correct load magnitude

and direction at the end of the helix that results in the desired displacement. For this helix

case with a prescribed Z-displacement, only the three force components at the helix free
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end govern the possible system response. Once the minimization algorithm determines the

correct values for these forces, they are projected onto the global basis to give the global

reaction forces and the force in the Z direction necessary to compress or extend the spring

to the desired displacement. Displacements up to 5R and −5R are imposed on the spring.

Fig. 2.20 illustrates the resulting deformed configurations along with the undeformed

configurations for the largest imposed displacements of −5R for compression, and 5R for

extension. Figure 2.21 compares quantitative results for the force-displacement curves ob-

tained from shooting to similar results obtained using Abaqus. Strong agreement is noted

in all comparisons, validating the ability of the presented shooting method to generate

solutions for general three-dimensional beam BVP’s undergoing large deformation.
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Figure 2.21: The force-displacement curves for the helical spring in (a) compression and (b)
extension. The solid lines are results from shooting and the circles are results from Abaqus.

2.5 Conclusions

This chapter develops a shooting method that provides numerical solutions to the intrinsic

equations governing beam equilibrium. Test cases show that the presented method avoids

iteration for pre-curved cantilever beams subjected to distributed and/or point follower

loads. In addition, a general approach for finding all solutions to static beam problems with

conservative loading is described and validated with a number of test cases. A procedure is

described which guarantees the determination of all unstable and stable solutions to beam

buckling problems. Solution stability is assessed using a dynamic finite element code based
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on the same intrinsic beam equations. Due to the method avoiding iteration in follower

load problems, it should be attractive for use in model-based control where the solution of

a system’s response to follower loads is needed in a computationally-efficient manner.
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CHAPTER III

HIERARCHICAL MULTISCALE CONTINUUM MODEL

3.1 Introduction

This chapter covers the development and validation of a hierarchical multiscale continuum

approach for modeling prototypical α-helical protein segments using the intrinsic beam

formulation. Hierarchical continuum modeling of biomolecules reduces the computational

expense of molecular simulations by substantially reducing the degrees of freedom of the

system and increasing the allowable time step. Representing a discrete atomistic system as

an elastic continuum accomplishes the reduction of the degrees of freedom. For the intrin-

sic formulation, a linear elastic helical beam represents the protein, while the appropriate

curvature stiffnesses must be found. To determine the stiffnesses, the shooting method

described in Chapter 2 calculates the deformed configuration of the beam model due to

external loading. An optimization algorithm varies the intrinsic stiffness terms until the

deformed beam configuration matches the deformed configuration of a simplified protein

modeled with the LAMMPS MD package. After development and validation of the hier-

archical continuum model for simulating α-helical protein segments, the method can be

extended for use as a general protein segment modeling tool.

For method validation, the hierarchical multiscale continuum model predicts static and

dynamic results for various load cases. The shooting method determines the predicted static

deformation of the simplified protein for two load cases which compare well to quasistatic

LAMMPS MD solutions. For dynamic simulation validation, a finite element program

[32] developed for the intrinsic beam formulation simulates the response of the hierarchical

continuum model to impulse loading. Four test cases simulated in the intrinsic FEA code

compare well to LAMMPS MD dynamics simulations. These prediction cases demonstrate

that the developed hierarchical multiscale continuum model exhibits similar stiffness and

dynamic characteristics as the LAMMPS MD model.

42



Cα C N Peptide Bond

b

b

b
1

2

3
  

 

 

 1

2

3

N = 1 N = 2 N = 3 N = 4

i= 1

i= 2

i= 3

i= 1

i= 2

i= 3

Figure 3.1: The simplified protein model has only three types of bond angles, bond lengths
and dihedral angles in its potential function.

3.2 Methods

This section introduces the simplified model that represents the polypeptide backbone,

along with relationships which calculate intrinsic formulation curvatures from φ and ψ. In

addition, the LAMMPS simulations and the optimization procedure for determining the

equivalent intrinsic stiffness are outlined.

3.2.1 Simplified Protein Backbone Model

The hierarchical continuum model utilizes a simplified polypeptide model. The simplified

model includes only the backbone atoms in order to reduce complexity during model devel-

opment. Similar simplified backbone models appear in literature for use in coarse-grained

protein simulations, and justify the adoption of such a model ([19], [64]). This simplified

model is typically studied since the backbone atom locations describe the protein tertiary

shape while allowing reduced degrees of freedom. Using corrected potentials causes the sim-

plified model to behave similarly to all-atom models. Furthermore, the overall procedures

used in development of the hierarchical continuum model are general, and easily adapted

to include all atoms in the protein. Figure 3.1 illustrates the simplified polypeptide, which

contains only backbone atoms. As seen in Fig. 3.1, the use of this simplified model reduces

the amount of bonded potential parameters to the 3 dihedral angles φ, ψ and ω; 3 bond

lengths b1, b2 and b3; and 3 bond angles θ1, θ2, and θ3.

Further simplification includes the removal of nonbonded terms from the potential, and
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the use of harmonic dihedral angle potential terms. The resulting simplified potential

function is

Us(P
N
i ) =

∑

bonds

Kbi(bi − bi0)2 +
∑

angles

Kθi(θi − θi0)2

+Kφ(φ− φ0)2 +Kψ(ψ − ψ0)2 +Kω(ω − ω0)2,

(3.1)

where PN
i denotes the backbone atom positions in an arbitrary global reference frame to

be described in detail later in the section, and the stiffness and equilibrium parameters are

given in Table 3.1. Note that the rotation equilibrium values are given in degrees, while

Table 3.1: Stiffness constants and equilibrium values used in the potential function given
by Eq. (3.1).

Stiffness Constants Equilibrium Values

Kb1 = 370
[

kcal

mole Å
2

]
b10 = 1.490[Å]

Kb2 = 320
[

kcal

mole Å
2

]
b20 = 1.430[Å]

Kb3 = 250
[

kcal

mole Å
2

]
b30 = 1.490[Å]

Kθ1 = 50.0
[

kcal
mole rad2

]
θ10 = 107.0◦

Kθ2 = 80.0
[

kcal
mole rad2

]
θ20 = 116.5◦

Kθ3 = 50.0
[

kcal
mole rad2

]
θ30 = 120.0◦

Kω = 20.5
[

kcal
mole rad2

]
ω0 = 180.0◦

Kφ = 2.00
[

kcal
mole rad2

]
φ0 = −58.00◦

Kψ = 6.00
[

kcal
mole rad2

]
ψ0 = −47.00◦

the stiffnesses have units requiring the use of radians. These units follow the convention

set by the CHARMM potential field [36], which is a commonly used potential field for

protein modeling. In fact, the equilibrium and stiffness values for the bond lengths and
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bond angles in Table 3.1 are the same as those presented by CHARMM; however, the ω, φ

and ψ stiffnesses have been increased by an order of magnitude to favor an α-helical shape.

3.2.2 Dihedral Angle to Curvature Mapping

The developed hierarchical multiscale continuum model can be used to calculate Cα atom

positions and φ and ψ dihedral angles. The continuum beam modeling the protein passes

through each Cα atom at equal intervals along the centerline in Ω0 such that material

points define the position of each atom. Since material points locate the Cα atoms in

the continuum, the position of each Cα atom is known given the deformed configuration’s

curvature and strain. Relationships that map protein φ and ψ dihedral angles to curvature

and torsion define the curvatures for the helical beam representing the protein. Inverting

the dihedral to curvature mapping defines the dihedral angles at a given point on the beam

centerline based on the beam’s curvature values. As a result, the work presented herein

retains much of the atomic resolution of the modeled protein.

The dihedral to curvature mapping requires three assumptions: the protein segment

consists of rigid peptide planes, contains repeating dihedral angles sets and exhibits a con-

stant curvature helical shape. Rigid peptide planes allow the calculation of backbone atom

positions for N peptide planes with N [φ, ψ] dihedral sets as independent variables, since

the ω dihedral, bond angles and bond lengths remain constant. To develop a relationship

mapping the dihedrals to curvatures at an arbitrary point, the repeating dihedral angle as-

sumption must hold. For example, four Cα atoms mathematically define the helical curve.

Since a polypeptide with four Cα atoms contains two [φ, ψ] dihedral sets, the dihedrals

must repeat to allow the direct mapping of φ and ψ to curvatures such that [φ, ψ] → K

for the helical beam centerline. Otherwise, [φ1, ψ1, φ2, ψ2] define K when the dihedrals

do not repeat. Additionally, the constant curvature assumption constrains the solution to

be a helical shape. When inverting the relationship to get dihedrals from curvatures, the

method is more general since locally to a point of interest the curvatures are constant, but

the dihedrals are not necessarily repeating. As a result of the constant curvatures, dihedral

angle estimates can be determined at any point of a deformed beam.
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Sugeta and Miyazawa [62] develop the basis for this relationship in their paper outlining

the calculation of helical parameters for polymer chains. In this paper, Sugeta and Miyazawa

introduce a procedure for calculating the atom positions of a repeating polymer using the

protein structure terms defined in Chapter 1. From their work, the φ and ψ dihedrals define

the position of the simplified protein backbone atoms with

PN
i (φ, ψ) = P1

1 + P1
2 + P1

3 + B +
N∑

m=2

{
[A12] [A23] [A34] Pm−1

i + B
}

(3.2)

where

A12 =




− cos θ30 − sin θ30 0

sin θ30 cosψ − cos θ30 cosψ − sinψ

sin θ30 sinψ − cos θ30 sinψ cosψ



, (3.3)

A23 =




− cos θ10 − sin θ10 0

sin θ10 cosω0 − cos θ10 cosω0 − sinω0

sin θ10 sinω0 − cos θ10 sinω0 cosω0



, (3.4)

A34 =




− cos θ20 − sin θ20 0

sin θ20 cosφ − cos θ20 cosφ − sinφ

sin θ20 sinφ − cos θ20 sinφ cosφ



, (3.5)

P1
1 =

{
P 1

1XY Z
P 1

2XY Z
P 1

3XY Z

}T
, (3.6)

P1
2 =

{
b30 0 0

}T
, (3.7)

P1
3 = P1

2 + [A12]

{
b10 0 0

}T
, (3.8)

and

B = P1
2 + P1

3 + [A12] [A23]

{
b20 0 0

}T
. (3.9)

In the preceding equations, P1
1, P1

2, P1
3 denote the location of the first, second and third

atoms in the protein, respectively. The matrices A12, A23, A34 are rotation matrices that

apply the dihedral and bond angle rotations between atoms along the polypeptide backbone.

The B vector gives the relative distance between two consecutive Cα atoms and is discussed

in detail later in the section. Combining Eqs. (3.2)-(3.9) gives the location of the ith atom
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in the N th peptide plane with respect to an arbitrary global coordinate system. The atom

coordinates P1
1 arbitrarily define the initial starting point of the protein in the global frame,

and the first bond length is oriented in the global X direction.

In addition, Sugeta and Miyazawa demonstrate how to calculate the helical terms d,

θ, and ρ from these atom positions; where d represents the translation along the helical

axis between consecutive Cα atoms, θ denotes the rotation about the helical axis between

consecutive Cα atoms, and ρ denotes the radius of the resulting helix. Figure 3.2 depicts

the helical terms for the simplified backbone and a resulting helix centerline. The following

X
YZ X

Y

X
Z

 

d

d

 

Figure 3.2: Sugeta and Miyazawa outline the procedure to calculate the helix parameters d,
θ, and ρ using the position of the Cα atoms. The blue line depicts the resulting helix defined
by these terms and the helix axis aligns with the global Z direction in this illustration.

equations implicitly define these helical terms:

cos(θ) = (C ·C′)/C2, (3.10)

ρ(1− cos(θ)) =
C

2
, (3.11)

d2 + 2ρ(1− cos(θ)) = B2, (3.12)

and

d sin(θ) = B · (C×C′)/C2, (3.13)

where B denotes the relative position vector from the 2nd Cα atom to the 3rd Cα atom as

decribed earlier, C denotes the vector that passes from the helical axis through the 2nd Cα
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atom, B′ denotes the relative position vector from the 1st Cα atom to the 2nd Cα atom,

C′ denotes the vector that passes from the helical axis through the 3rd Cα atom, and B′′

denotes the relative position vector from the 3rd Cα atom to the 4th Cα atom. The letters

B and C denote the magnitudes of the B and C vectors, respectively. Figure 3.3 illustrates

these vectors on the four Cα polypeptide used to define the mapping relationship. The

C'

C
B'

B

B''

C/2

x

yz

x

y

Figure 3.3: The vectors used to calculate the helix parameters include C, C′, B, B′, and
B′′.

helical basis xyz is oriented such that z points down the helix axis, x points toward the 2nd

Cα atom and y completes the orthonormal set. The following equations define the helix

basis unit vectors with respect to the global basis:

x̂ =
C

C
, (3.14)

ẑ =
C×C′

C2 sin θ
, (3.15)

and

ŷ = ẑ× x̂. (3.16)

The terms from Eqs. (3.10)-(3.13) define the helical curve relative to the xyz frame using

Rxyz(x1) =





ρ cos

(
x1√

ρ2+(d/θ)2

)

ρ sin

(
x1√

ρ2+(d/θ)2

)

d

θ
√
ρ2+(d/θ)2

x1





, (3.17)
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which is valid for −θ
√
ρ2 + (d/θ)2 ≤ x1 ≤ 3θ

√
ρ2 + (d/θ)2.

The Frenet-Serret curvature and twist are used to relate the Sugeta and Miyazawa

helical terms to the intrinsic formulation curvatures. Similar to the intrinsic formulation, the

Frenet-Serret equations define the orientation of a three-dimensional curve using differential

geometry,

dR

dx1
= t (3.18)

dt

dx1
= κn (3.19)

dn

dx1
= τb− κt (3.20)

db

dx1
= −τn (3.21)

where t, n and b denote the tangent, normal and binormal vectors defining the Frenet-

Serret orthonormal basis. The variables κ and τ denote the curvature and twist of the curve

centerline. Using Eqs. (3.17)-(3.21), the helix terms presented by Sugeta and Miyazawa

relate to the Frenet-Serret helix terms such that

κ2 =
ρ2

ρ2 + (d/θ)2
(3.22)

τ2 =
(d/θ)2

ρ2 + (d/θ)2
. (3.23)

Leamy [32] relates the intrinsic curvatures to the Frenet-Serret curvature and twist such

that

κ =
√
K2

2 +K2
3 (3.24)

and

τ = K1 +
1

K2
2 +K2

3

(
K ′2K3 −K ′3K2

)
. (3.25)

Since a helix exhibits constant curvature Eq. (3.25) simplifies to τ = K1. In addition,

aligning the intrinsic basis Bi with the Frenet-Serret frame such that B2 = n and B3 = b

results in K2 = 0. Therefore, the protein dihedrals define the intrinsic curvatures such that

K1(φ, ψ) =
d

θ
√
ρ2 + (d/θ)2

, (3.26)

K2(φ, ψ) = 0, (3.27)
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Figure 3.4: The contour plots give (a) K1 and (b) K3 as a function of φ and ψ using Eqs.
(3.2)- (3.28).

and

K3(φ, ψ) =
ρ√

ρ2 + (d/θ2)
. (3.28)

Figure 3.4 displays the contour plots obtained using Eqs. (3.26)-(3.28), which map φ and

ψ to K. These contour plots define the intrinsic curvatures needed for a helical beam to

represent a polypeptide consisting of repeating φ and ψ dihedral angles. In the following

validation cases, they are used to define the Ω0 beam representation of the simplified pro-

tein and can be used to calculate the dihedral angles of the polypeptide. Similarly, these

equations define the intrinsic curvatures needed to represent the simplified backbone protein

segment with a helical beam for the concurrent multiscale modeling technique described in

Chapter 4.

3.2.3 Stiffness Determination with Shooting and Optimization

An optimization algorithm calculates the equivalent protein stiffness Deq using the shoot-

ing method developed for the intrinsic beam formulation. This optimization algorithm

intelligently varies the intrinsic stiffness values used in the shooting method until deformed

configurations obtained with the shooting method match those from quasistatic LAMMPS

MD simulations. Neglecting strain reduces the number of optimization parameters and the
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equivalent stiffness takes the following form:

Deq =




D11 D12 D13

D12 D22 D23

D13 D23 D33



, (3.29)

where Deq denotes the intrinsic curvature stiffness given in Eq. (2.13) from Chapter 2. The

optimization minimizes the root mean squared deviation (RMSD) between the Cα atom

positions calculated with the shooting method and the LAMMPS MD simulations. The

RMSD is calculated with

RSMD =

√√√√ 1

N

N+1∑

m=1

∣∣∣∣Pm
1S
−Pm

1L

∣∣∣∣2 (3.30)

where Pm
1S

denotes the global Cα positions calculated with the shooting method and Pm
1L

denotes the global Cα positions calculated with LAMMPS. Similarly, a normalized percent

error comparing the shooting results to LAMMPS is an alternative metric for monitoring

solution accuracy defined by

% Error = 100
||um1S − um1L ||
||um1L ||

, (3.31)

where um1S and um1L denote the global Cα displacements calculated with the shooting method

and LAMMPS, respectively. The optimization procedure calculates Deq for multiple fol-

lower load calibration cases, and averaging these stiffness results yields a final Df
eq, which

represents the protein stiffness. The calibration cases have beam subjected to follower loads

since shooting can solve follower load problems with zero iteration, thus allowing a more

efficient optimization process.

3.2.4 Mass Properties

The mass properties for the intrinsic continuum representation of the protein must be

calculated from the discrete protein model for use in dynamic simulations. The four mass

terms considered in the intrinsic beam formulation include the mass per unit length µ and

the mass moments of inertia per unit length i1, i2 and i3 where i1 ≡ i2 + i3. An α-helical

polypeptide with a helical beam intrinsic representation is used for calculating these mass
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properties over a single peptide plane. Figure 3.5 illustrates a single peptide plane from the

α-helical polypeptide with the intrinsic centerline in blue. The following equation gives the

LPep

B1
B2
B3
a2
a3

Figure 3.5: The intrinsic beam mass properties are calculated using a2, a3 and the mass of
the first three atoms in the peptide plane.

mass per unit length of the beam:

µ =

∑3
i=1mi

LPep
, (3.32)

where LPep denotes the length of the helix segment through one peptide plane, and mi

denotes the atomic masses of the three atoms contained in the peptide plane. The length

of the helix through a peptide plane is calculated with

LPep = θ
√
ρ2 + (d/θ)2. (3.33)

The mass for one peptide plane only includes the three atomic masses of the first Cα, the

C, and the N atoms. The second Cα mass does not contribute to the mass of the current

peptide plane since it will be accounted for by the next peptide plane. The moments of

inertia per unit length are calculated from

i2 =

∑3
i=1(ai2)2mi

LPep
(3.34)

and

i3 =

∑3
i=1(ai3)2mi

LPep
(3.35)
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where ai2 and ai3 denote the distances from the centerline in the local B2 direction and B3

directions for the ith atom.

Calculating ai2 and ai3 requires the numerical solution of a transcendental equation. The

transcendental equation is required for determining the x1 centerline location for each atom.

A local basis Bi exists at the same x1 centerline location as each atom such that the atom

is located in a local B2-B3 plane. As a result, the inner product of the local vector position

of the atom with the normal of the corresponding local B2-B3 plane must be zero. Section

3.2.2 supplies the equations for calculating an undeformed protein configuration such that

Eq. (3.2) defines the atomic positions, Eq. (3.17) defines the helix representation, and Eqs.

(3.18)-(3.21) define the local basis in the xyz coordinate system. Subtracting the centerline

position of the helix Rxyz(dx1) from the position of the corresponding atom of interest gives

the vector from the Bi basis center to the atom of interest in the xyz basis,

pxyz = Pxyz −Rxyz(dx1). (3.36)

The normal of the B2-B3 plane, B1, aligns with the tangent when the helix is undeformed

such that

B1xyz(x1) =





− ρ√
ρ2+(d/θ)2

sin

(
x1√

ρ2+(d/θ)2

)

ρ√
ρ2+(d/θ)2

cos

(
x1√

ρ2+(d/θ)2

)

d

θ
√
ρ2+(d/θ)2





. (3.37)

Setting the inner product of Eqs. (3.36) and (3.37) to zero results in

−ρ
ν

sin
(x1

ν

) [
px − ρ cos

(x1

ν

)]
+
ρ

ν
cos
(x1

ν

) [
py − ρ sin

(x1

ν

)]

+
d

θν

[
pz −

d

θν
x1

]
= 0,

(3.38)

where ν =
√
ρ2 + (d/θ)2. Solving Eq. (3.38) for x1 yields the centerline location xi1 for the

ith atom of interest. The ai2 and ai3 distances are calculated using

ai2 =
[
pixyz −Rxyz

(
xi1
)]
·B2xyz

(
xi1
)

(3.39)

and

ai3 =
[
pixyz −Rxyz

(
xi1
)]
·B3xyz

(
xi1
)
, (3.40)

where the i = 1− 3 denotes the ith atom of the peptide plane.
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3.2.5 LAMMPS Modeling

Implementing follower loads in LAMMPS requires the creation of a body fixed basis located

where the applied load acts on the system. During deformation the body fixed basis is used

to update the global direction of any applied load such that the applied load behaves like

a follower load. The use of two body fixed bases facilitates the application of follower

moments. To implement the body fixed bases, a group of seven atoms is created at the

location of the applied load. This atom group creates two sets of orthonormal vectors

that align with the global system. The LAMMPS input and data files are used to set the

positions of the atoms contained in the body fixed bases, and defines them as a rigid body

group with negligible mass such that they do not affect system dynamics. Figure 3.6 depicts

both body fixed bases at the end of a simplified protein segment. The Vi vectors form a

X
YZ

V

V

V

1

2

3

-V1

-V2
-V3

Figure 3.6: The use of two body fixed bases Vi and -Vi facilitates implementation of follower
loads. The red and yellow circles denote the atoms contained in the body fixed atom group.
The black circles denote three fixed atoms, which create a fixed boundary condition for the
protein.

rotation matrix which is used to calculate the global orientation of applied follower forces
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using 



FX

FY

FZ





=

[
V1 V2 V3

]




FV1

FV2

FV3





(3.41)

where FVi denotes the body fixed forces in the Vi basis. The three unit vectors -Vi, oriented

in the opposite direction to Vi, allow the application of follower moments with the use of

force couples. To apply follower moments, equal and opposite follower forces are applied to

the ends of the appropriate Vi and -Vi vectors such that they create the desired moment.

Note that the distance between the forces in a couple using the previously described bases

is two Å which should be considered when applying a follower moment. Additionally, the

rigid body group of atoms defining both body fixed bases contains the two atoms nearest

to the forced atom as shown in yellow in Fig. 3.6. The group must contain these atoms so

that the dihedral and bond angles transfer the moment to the protein since bond lengths

cannot resist rotation.

The LAMMPS MD software requires supplemental code in order to model the quadratic

dihedral potentials defined in Eq. (3.1). Since LAMMPS is written in C++, the addition

of the quadratic dihedrals only requires the creation of a new dihedral class. The dihedral

class ‘quadratic’, developed for this simplified protein backbone, implements the quadratic

dihedral potentials given in Eq. (3.1). The Appendix B contains the source code for the

new dihedral class.

3.3 Results and Discussion

3.3.1 Stiffness Optimization Cases

Optimizing Deq for three loading cases yielded a final equivalent stiffness for the hierarchical

model validation. The three loading cases consisted of a fixed-free prototypical protein with

50 peptide planes loaded on the free end atom by a transverse follower force, an axial

follower force, and a combination of the axial and transverse follower forces. The Matlab

functions ‘fmincon’ and ‘patternsearch’ performed the multivariable optimizations, and a

linearization of the concurrent multiscale stiffness outlined in Chapter 4 provided the initial

point to begin optimization. As shown next, the three optimization cases yielded similar
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Deq stiffness components, and averaging the three matrices resulted in the final Df
eq,

Df
eq

[
KcalÅ

mole

]
=




27.27 7.97 19.79

7.97 62.02 −9.27

19.79 −9.27 165.01



. (3.42)

Figures 3.7-3.9 compare the deformed configurations of the hierarchical multiscale contin-

uum model to results obtained from LAMMPS for the three loading cases using the stiffness

defined in Eq. (3.42).

Figure 3.7 depicts the results from the transverse loading calibration case where there is

a transverse follower force Ftr = 0.0032 Kcal
moleÅ

on the last atom of the protein. The follower

force Ftr is initially in the positive X direction. The results show that the equivalent stiffness

accurately models the protein for this case, although a very minor deviation appears in the

XY plane view. The LAMMPS model of the protein exhibits coupling effects such that the

protein end displaces in the positive Y direction. The equivalent intrinsic stiffness fails to

display this behavior; however, the results are still favorable. The optimization algorithm

determined the optimal stiffness for the transverse case to be

Dtr
eq

[
KcalÅ

mole

]
=




27.29 7.89 19.67

7.89 62.01 −9.34

19.67 −9.34 164.9829



. (3.43)

The intrinsic beam model for this transverse load case locates the Cα atoms with an

RMSD = 0.715 Å and a percent error of 2.40% when compared to the LAMMPS model.

Figure 3.8 depicts the axial loading calibration case where an axial extension force

Fex = .0063 Kcal
moleÅ

initially in the positive Z direction acts on the last atom in the protein.

The results show that the equivalent stiffness accurately models the protein for this case.

The same coupling present in the transverse case also appears in this case, resulting in a

slight rotation about the Z axis. These results demonstrate strong agreement between the

LAMMPS and intrinsic beam model. The optimization algorithm determined the intrinsic
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X[Å]

 

Y
[Å
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Figure 3.7: The bending loading case results for the optimized stiffness Df
eq. The protein

is subjected to a transverse follower forces Ftr = 0.0032 Kcal
moleÅ

initially in the positive X
direction.

curvature stiffness for this axial case to be

DAx
eq

[
KcalÅ

mole

]
=




27.39 7.88 19.49

7.88 62.06 −9.36

19.49 −9.36 165.01



. (3.44)
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X[Å]

 

Y
[Å
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Figure 3.8: The axial loading case results for the optimized stiffness Df
eq. The protein is

subjected to an axial extension force Fex = .0063 Kcal
moleÅ

initially in the positive Z direction.

Additionally, the intrinsic beam model locates the Cα atoms with an RMSD = 0.834Å and

7.50% percent error when compared to the LAMMPS model for this axial load case.

Figure 3.9 depicts the combined loading calibration case where there are two follower
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Figure 3.9: The combined loading case results for the optimized stiffness Df
eq. The protein

is subjected to two follower forces: an axial extension force Fex = .0063 Kcal
moleÅ

initially in

the positive Z direction and a transverse force Ftr = .0032 Kcal
moleÅ

initially in the positive X
direction.

forces on the last atom of the protein. The follower forces are an axial extension force

Fex = .0063 Kcal
moleÅ

initially in the positive Z direction and a transverse force Ftr = .0032 Kcal
moleÅ

initially in the positive X direction. The results display agreement between the LAMMPS

and intrinsic formulation models; however, the coupling discrepancy from the transverse
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Table 3.2: Diagonal stiffness results for all loading cases.

Transverse Axial Combined D
Df
eq

D11

[
KcalÅ
mole

]
19.07 18.69 19.03 18.93

D22

[
KcalÅ
mole

]
78.25 78.25 78.27 78.26

D33

[
KcalÅ
mole

]
171.84 166.54 171.85 170.08

RMSD [Å] 0.6504 0.5719 1.3595 NA

% Error 2.12 4.70 3.62 NA

case reappears. The LAMMPS model displaces further in the positive Y direction and the

intrinsic beam model does so to a lesser degree. The optimization algorithm determined

the equivalent stiffness for the combined case to be

DComb
eq

[
KcalÅ

mole

]
=




27.12 8.15 20.20

8.15 62.00 −9.12

20.20 −9.12 165.03



. (3.45)

The intrinsic beam model for this combined load case locates the Cα atoms with an RMSD =

1.9174Å and a percent error of 5.05% when compared to the LAMMPS model.

Similar results to these cases were generated for a stiffness consisting only of diagonal

terms such as

DD
eq =




D11 0 0

0 D22 0

0 0 D33



. (3.46)

The deformed and undeformed configuration figures for these cases are omitted for brevity.

However, Table 3.2 reports the stiffness values and the RMSD results for all calibration

loading cases, where D
Df
eq denotes the average of the stiffnesses calculated for the individual

load cases. Note that the RMSD values for the diagonal matrix case have improved

slightly over the symmetric matrix cases, unexpectedly. This behavior may be explained

by the fact that the symmetric stiffness had a larger solution space than the diagonal

stiffness matrix, and that the cost function for Deq appears to be “rugged” with many local
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minimums. By varying the initial starting point, the optimization would occasionally yield

different Deq matrices; therefore, a more optimal global solution may exist that was not

identified in this preliminary model development.

3.3.2 Protein Static Deformed Configuration Prediction

Two static configuration prediction cases are used to validate the optimized stiffness values.

The first case compares the intrinsic beam model to a LAMMPS model where a follower

moment initially in the negative Y direction acts on the protein. Figure 3.10 displays the

results, where strong qualitative and quantitative agreement is evident with the RMSD

between the two models being 0.4784 and 0.4206 and percent errors of 2.09% and 1.56%

for the Df
eq and D

Df
eq intrinsic stiffnesses, respectively. The second case involves the axial
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Figure 3.10: The follower moment load case results for the optimized stiffness Df
eq.

buckling of the protein. Figure 3.11 displays the buckling results for a 50 peptide plane

simplified protein. A conservative force Fax = −0.045 Kcal
moleÅ

acts on the protein in the

negative Z direction and causes the protein helix to buckle. The deformed configuration

displays good agreement with results from LAMMPS; however, a rotational difference about

the Z axis between the two models demonstrates that a small coupling error exists. Notably,

the Z displacement of the end of the intrinsic model matches the LAMMPS model and shows
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only 10.1% and 7.67% error for Df
eq and D

Df
eq , respectively. Furthermore, the overall buckled

shapes between the two models show agreement with RMSDs of the Cα atoms equal to 2.34

Å and 1.94 Å and percent errors of 12.62% and 9.83% for Df
eq and D

Df
eq , respectively. For

these loading cases, the results agree favorably with LAMMPS MD simulations, verifying

the optimized stiffnesses.
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Figure 3.11: The buckled load case results for the optimized stiffness Df
eq. The protein

experiences a conservative axial force Fax = 0.045 Kcal
moleÅ

in the negative Z direction.

3.3.3 Dynamic Response of the Hierarchical Continuum Model

The optimized stiffness values and calculated mass values allow dynamic simulations of the

simplified protein model using the intrinsic hierarchical multiscale continuum model. The

dynamic finite element code written for the intrinsic formulation [32] accurately simulated

the dynamic test cases using 50 intrinsic beam elements. The hierarchical model with 50

elements contains 606 degrees of freedom in comparison to the 246 degrees of freedom in

an equivalent LAMMPS model. However, computational savings for the intrinsic beam

model are realized by the larger allowable times steps which for the intrinsic FEA model

are 2.44e-16 s compared to 1e-17 s in LAMMPS. The time steps could be increased further if

strains were removed from the FEA formulation since large strain stiffnesses are utilized to

keep strains small and negligible. Tests using strain stiffnesses on the order of the curvature
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stiffnesses required times steps of 2e-15 s, which are 200 times larger than the allowable

LAMMPS time step. Similar times steps should be possible for an intrinsic FEA code

where the internal force in Eq. (2.3) replaces the strain field variable since the high strain

stiffnesses are removed.

Table 3.3 contains the mesh convergence results for the D
Df
eq dynamic test cases. The

fixed-free axial test case converges at 25 elements since an axially extended helix still exhibits

constant curvature. The remaining dynamic test cases converge with 50 elements, which is

6 elements per helix turn for the modeled 25 peptide plane proteins. For these test cases,

50 elements are required for convergence since the curvature varies sinusoidally through the

arc length similar to results depicted in Fig. 3.12. The quadratic shape functions used in
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]

 

 

Figure 3.12: The curvatures for the static combined load calibration case are plotted as a
function of x1. The quadratic shape functions of the beam elements do not represent the
sinusoidal variance well.

the intrinsic beam elements cannot accurately represent the sinusoidal variance unless there

are multiple elements per helix turn. As a result, 50 elements are used in the dynamic test

cases for the stiffness validation; however, for studying protein dynamics, fewer elements

could yield desirable results. For example, if a segment of the protein is not critical to

the overall simulation results, hierarchical multiscale models with 2 to 3 finite elements

per helix turn could reasonably represent the low frequency and rigid body response of the

protein segment. This would yield a model with a similar number of degrees of freedom

as an all-atom MD model with much larger allowable time steps. Furthermore, new shape
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Table 3.3: Mesh convergence for diagonal intrinsic stiffness results. Mesh convergence for
models using the symmetric intrinsic stiffness is similar.

Fixed-Fixed
Axial

1st Frequency %Error Fixed-Free
Axial

1st Frequency %Error

25 Elements,
306 DoFs

11.08 25 Elements,
306 DoFs

-12.70

50 Elements,
606 DoFs

-4.18 50 Elements,
606 DoFs

-12.69

100 Elements,
1206 DoFs

-4.18 100 Elements,
1206 DoFs

-12.69

Fixed-Fixed
Trans.

1st Frequency %Error Fixed-Free
Trans.

1st Frequency %Error

25 Elements,
306 DoFs

12.30 25 Elements,
306 DoFs

21.15

50 Elements,
606 DoFs

9.57 50 Elements,
606 DoFs

5.00

100 Elements,
1206 DoFs

9.57 100 Elements,
1206 DoFs

5.00

functions could be implemented that accurately represent the sinusoidal variance such that a

hierarchical multiscale model with much fewer elements could accurately model the protein.

The validation of the hierarchical multiscale model’s dynamics involves comparison of

the intrinsic beam model results and LAMMPS MD simulation results. Specifically, natural

frequencies calculated from four test cases validate the ability of the developed hierarchical

continuum model to simulate the simplified protein backbone dynamics. Impulse loading

applied to the models excite the system’s natural frequencies, and Fast Fourier Transforms

(FFT) of the atomic displacement time history results yield the natural frequencies of each

test case for comparison with LAMMPS MD results. The four test cases involve the axial

impulse response of a fixed-fixed and fixed-free prototypical protein and the transverse

impulse response of a fixed-fixed and fixed-free prototypical protein.

3.3.3.1 Impulse Response of Fixed-Fixed Backbone Model

The hierarchical multiscale method reproduces the primary frequency of the protein with

error on the order of 10% or less for the two following cases. The first validation case is

a fixed-fixed simplified protein with 25 peptide planes excited with a transverse impulse

load in the center. Figure 3.13 depicts the loading and boundary conditions for this case.
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Figure 3.13: Fixed-fixed protein loaded transversely with an impulse load. The dark blue
line depicts the LAMMPS model, the light blue line depicts the intrinsic formulation model,
and the red circles show the forced atoms

Figure 3.14 displays the time history and frequency content of the response from both
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Figure 3.14: The dynamic results from the hierarchical multiscale continuum model using

D
Df
eq correspond with results from LAMMPS MD for the fixed-fixed validation case with

transverse impulse loading.

the LAMMPS model and the hierarchical multiscale model using D
Df
eq . These results give

the displacement magnitude of the center Cα atom and show favorable agreement. The

primary frequency demonstrated in the intrinsic continuum has 11.85% and 9.57% error

for the Df
eq and D

Df
eq optimized stiffnesses, respectively, when compared to the primary

frequency exhibited by the LAMMPS model.

The second validation case is a fixed-fixed simplified protein with 25 peptide planes

excited with an axial impulse loading in the center. Figure 3.15 depicts the loading and

boundary conditions for this case. Figure 3.16 displays the time history and frequency

content of the response from both the LAMMPS model and the hierarchical multiscale
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Figure 3.15: Fixed-fixed protein loaded axially with an impulse load. The dark blue line
depicts the LAMMPS model, the light blue line depicts the intrinsic formulation model,
and the red circles show the forced atoms.
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Figure 3.16: The dynamic results from the hierarchical multiscale continuum model using
Df
eq correspond with results from LAMMPS MD for the fixed-fixed validation case with

axial impulse loading.

model using Df
eq. These results present the displacement magnitude of the center Cα atom

and show favorable agreement. The four primary frequencies demonstrated in the intrinsic

continuum have percent errors less than 5% and 9% for Df
eq and D

Df
eq , respectively, when

compared to the primary frequencies exhibited by the LAMMPS model. Table 3.4

contains the four investigated frequencies for both the intrinsic beam models and LAMMPS

along with the associated percent errors.

3.3.3.2 Impulse Response of Fixed-Free Backbone Model

The hierarchical multiscale method reproduces the first primary frequency of the protein

with error on the order 10% or less for the two following fixed-free cases. The first validation
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Table 3.4: Axial Fixed-Fixed Case Results

Peak 1 Peak 2 Peak 3 Peak 4

LAMMPS Freq[Hz] 2.497e11 2.747e11 4.108e11 5.238e11

Intrinsic Df
eq Freq[Hz] 2.617e11 2.766e11 4.284e11 5.389e11

% Error 4.832 0.710 4.282 2.896

Intrinsic D
Df
eq Freq[Hz] 2.392e11 2.510e11 3.897e11 4.9021e11

% Error -4.175 -8.610 -5.148 -6.40382

Figure 3.17: Fixed-free protein loaded axially with an impulse load. The dark blue line
depicts the LAMMPS model, the light blue line depicts the intrinsic formulation model,
and the red circles show the forced atoms.

case is a fixed-free simplified protein with 25 peptide planes excited with an axial impulse

loading at the free end. Figure 3.17 depicts the loading and boundary conditions for this

case. Figure 3.18 displays the time history and frequency content of the response from both
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Figure 3.18: The dynamic results from the hierarchical multiscale continuum model using
Df
eq correspond with results from LAMMPS MD for the fixed-free validation case with axial

impulse loading.

the LAMMPS model and the hierarchical multiscale model using Df
eq. These results give
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Table 3.5: Transverse Fixed-Free Case Results

Peak 1 Peak 2 Peak 3 Peak 4

LAMMPS Freq[Hz] 2.320e10 4.700e10 5.921e10 8.302e10

Intrinsic Df
eq Freq[Hz] 2.436e10 4.901e10 6.120e10 8.605e10

% Error 5.000 4.270 3.360 3.65

Intrinsic D
Df
eq Freq[Hz] 2.346e10 4.810e10 5.995e10 8.430e10

% Error 5.000 -2.302 1.248 1.547

the displacement magnitude of the center Cα atom and show favorable agreement. The

primary frequency demonstrated in the intrinsic continuum has only -4.31% and -12.69%

error for the Df
eq and D

Df
eq stiffnesses, respectively, when compared to the primary frequency

exhibited by the LAMMPS model. Additionally, the FFT results show strong agreement

with the grouping of minor frequencies between both models.

Figure 3.19: Fixed-free protein loaded transversely with an impulse load. The dark blue
line depicts the LAMMPS model, the light blue line depicts the intrinsic formulation model,
and the red circles show the forced atoms.

The second validation case is a fixed-free simplified protein with 25 peptide planes

excited with a transverse impulse loading at the free end. Figure 3.19 depicts the loading

and boundary conditions for this case. Figure 3.20 displays the time history and frequency

content of the response from both the LAMMPS model and the hierarchical multiscale

model Df
eq. These results give the displacement magnitude of the center Cα atom and show

favorable agreement. The four primary frequencies demonstrated in the intrinsic continuum

have percent errors near 5% for both Df
eq and D

Df
eq stiffnesses. Table 3.4 contains the

first four frequencies exhibited by both the intrinsic beam models and the LAMMPS MD

simulations along with the associated percent errors.
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Figure 3.20: The dynamic results from the hierarchical multiscale continuum model using
Df
eq correspond with results from LAMMPS MD for the fixed-free validation case with

transverse impulse loading.

3.4 Conclusion

The developed hierarchical multiscale continuum model uses the intrinsic beam formulation

to model protein dynamics and statics. The developed model captures atomic resolution

by locating Cα atoms in the protein and dihedral angles can be estimated due to the

dihedral angle to curvature mapping. The optimization routine accurately calculated the

correct intrinsic stiffness such that the helical beam behaves similar to all-atom solutions

determined using LAMMPS MD. The multiscale hierarchical continuum model predicted

the static and dynamic characteristics of the protein when compared to the LAMMPS MD

results. Chapter 5 discusses future areas of improvement for the model and introduces an

incremental plan for its further development.
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CHAPTER IV

CONCURRENT MULTISCALE CONTINUUM MODEL

4.1 Introduction

Concurrent multiscale modeling techniques combine models of two differing accuracies such

that higher resolution models allow high accuracy where desired, and lower resolution mod-

els allow reduced degrees of freedom elsewhere in the model. Typically, quantum mechanics

(QM) models and MD models are combined for modeling systems where protein interactions

and chemical reactions occur. The QM models represent the protein sections where chem-

ical reactions occur, and the MD model sections represent the remaining protein segments

where locating atoms and determining protein configurations remain of interest. Similarly,

concurrent multiscale models have been developed which combine coarse-grained MD mod-

els with all-atom MD models such that the all-atom models correspond to areas where

high resolution models are needed ([53], [40]). These techniques yield accurate results and

decrease computation time significantly when compared to corresponding models that con-

sist of a complete high resolution model. However, these models still contain a prohibitive

amount of degrees of freedom and require small time steps. A possible solution is a con-

current multiscale continuum model for protein dynamics, which allows atomic resolution

for sampling internal energy while reducing the number of degrees of freedom such that the

model remains of reasonable size.

This chapter introduces a preliminary concurrent, multiscale, continuum model for sim-

ulating protein dynamics. As with the hierarchical multiscale model in Chapter 3, the

simplified backbone model is used for initial model development and a finite element pro-

gram simulates system dynamics [31]. The model maintains atomistic resolution of the

protein at points of interest, and utilizes atomistic potential terms to calculate internal

forces and moments for the continuum. The model extends the work performed by Leamy
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[31], where a similar concurrent multiscale technique accurately simulates the dynamic re-

sponse of carbon nanotubes.

4.2 Methods

This section introduces the kinematics relating the continuum field variables to the atom

positions such that the atomistic potential can be evaluated. Additionally, this section

presents the representative volume element describing the protein and a brief overview of

the finite element discretization of the protein.

4.2.1 Atomistic-based Constitutive Modeling

The concurrent multiscale continuum model evaluates atomistic potentials by calculating

the relative position between any two atoms, which may be located away from the deformed

beam centerline. An equation that relates the intrinsic curvatures and strains to global

position vectors defines the relative atom positions. These relative position vectors can be

used to determine dihedral angles, bond angles and bond lengths. The relation is formulated

through an expansion of material point position vectors R∗(x1 + dx1, x2, x3) and the Bi

basis vectors. The presented equations are limited to expansions of O(dx3
1); however, the

method requires expansions up to order O(dx9
1) for convergence.

dx1
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x3

), x , 2 x3R( dx1x +1
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*

Figure 4.1: The material point parameters used in the intrinsic beam element development
are used to calculate the relative position of atoms.

Figure 4.1 displays the vectors required to calculate the atomistic potential terms. The

position vector R∗(x1 + dx1, x2(x1), x3(x1)) gives the deformed configuration position of

any atom relative to the centerline position R(x1). The R∗(x1 + dx1) position vector is
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expressed using R(x1 + dx1) and the material points x2(x1 + dx1) = b2, x3(x1 + dx1) = b3

such that

R∗(x1 + dx1; b2, b3) = R(x1 + dx1) + b2B2(x1 + dx1) + b3B3(x1 + dx1). (4.1)

To determine R(x1 + dx1) and Bi(x1 + dx1), an expansion is applied to both R(x1) and

Bi(x1). Applying an expansion to Bi(x1) gives

Bi(x1 + dx1) = Bi(x1) + B′i(x1)dx1 + B′′i (x1)dx2
1 +O(dx3

1)

= Bi(x1) + (K(x1)×Bi(x1)dx1) +
1

2
(K(x1)×K(x1)×Bi(x1)

+ K′(x1)×Bi(x1)
)
dx2

1 +O(dx3
1)

(4.2)

Similarly, the expansion of R(x1) results in

R(x1 + dx1) = R(x1) + R′(x1)dx1 + R′′(x1)dx2
1 +O(dx3

1) (4.3)

where R′(x1) = (1 + γ11) B1(x1) + 2γ12B2(x1) + 2γ13B3(x1). Combining Eqs. (4.1)-(4.3)

yields the final expression for R∗(x1 + dx1),

R∗(x1 + dx1; b2, b3) = R(x1) + [(1 + γ11 + b3K2 − b2 +K3) dx1] B1(x1)

+ [b2 + (2γ12 − b3K1) dx1] B2(dx1)

+ [b3 + (2γ13 + b2K1) dx1] B3(dx1) +O(dx2
1).

(4.4)

Equation (4.4) results in the relative position of atom i to atom j by using rij = R∗
(
x1 + dxi1; bi2, b

i
3

)
−

R∗
(
x1 + dxj1; bj2, b

j
3

)
. As a result, R(x1) cancels out and the relative position vector is

known without any need for the global centerline position. Using this relationship, the

following equations define the protein lengths and angles required to evaluate the simplified

protein potential from Eq. (3.1) in Chapter 3:

bij = ||rij || , cos (θijk) =
rij · rjk
||rij || ||rjk||

, cos (χijkl) =
rij × rjk · rjk × rkl
||rij × rjk|| ||rjk × rkl||

and sin (χijkl) =
[(rkl × rij) · rjk] ||rjk||
||rij × rjk|| ||rjk × rkl|| .

(4.5)

In Eq. (4.5), bij denotes the bond length between two atoms, θijk denotes the bond angle

between three atoms, and χijkl denotes the dihedral angle between four atoms.
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The atomistic-based constitutive law is complete with the definition of the internal forces

and moments as a function of the energy per unit length, ue, of the continuum. The internal

forces and moments relate to the derivatives of the internal energy per unit length via

F =
∂u

∂γ
, (4.6)

and

M =
∂u

∂K
. (4.7)

In this constitutive relationship, a representative volume element (rve) locally yields the

internal energy per unit length of the continuum in terms of the protein lengths and angles

given by Eq. (4.5).

4.2.2 Representative Volume Elements

Representative volume elements connect the intrinsic formulation field variables (K,γ,Ω,V)

to the atomic potential energy at pre-defined centerline locations. The rve allows the sam-

pling and averaging of energy at the atomic level without requiring calculation of all the

atom positions, thus significantly reducing the order of the model. The rve must be a

repeating unit that is representative of the system such that at any x1 location in the

continuum an rve accurately describes the system internal energy. The left peptide plane

depicted in Fig. 4.2 represents the most general rve for a protein since it is the smallest

representative unit that defines all bonded terms in the potential from Eq. (1.3). Similarly,

C
α C N O H R Peptide Bond

 

 

Figure 4.2: The left peptide plane represents the rve used for a full protein, while the right
peptide plane represents the simplified protein rve.

Fig. 4.2 displays the peptide plane rve used for the simplified backbone protein on the right.
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The nitrogen and carbon atoms on the exterior of the peptide plane are not considered part

of the rve; however, their positions affect the φ and ψ dihedrals so their locations must be

calculated.

The internal energy of the continuum per unit length ue relates to the rve atomistic

energy potential U rves via

ue =
U rves

lrve
, (4.8)

where lrve represents the characteristic length of the rve and is equal to LPep for the de-

veloped prototypical protein model. Due to the chosen rve, three bond lengths, dihedral

angles, and bond angles determine the simplified protein rve atomistic energy,

U rves = Kb1(b1 − b10)2 +Kb2(b2 − b20)2 +Kb3(b3 − b30)2

+Kθ1(θ1 − θ10)2 +
1

2
Kθ2(θ1

2 − θ20)2 +
1

2
Kθ2(θ2

2 − θ20)2 +Kθ3(θ3 − θ30)2

+Kφ(φ− φ0)2 +Kψ(ψ − ψ0)2 +Kω(ω − ω0)2.

(4.9)

The two bond angles θ1
2 and θ2

2 are required in the energy function given in Eq. (4.9) since

the peptide plane contains only half of each angle. Figure 4.3 shows the location of each

term from Eq. (4.9) in the peptide plane, and illustrates that half of the bond angle energy

must be used. Using the chain rule, the internal forces and moments are calculated using

Cα C N Peptide Bond
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 2
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Figure 4.3: The simplified peptide plane rve contains 3 bond lengths, bond angles, and
dihedral angles. The bond lengths of the two carbon and nitrogen atoms external to the
peptide plane do not affect the rve energy.
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F =
∂U rves

∂bij

∂bij
∂γ

+
∂U rves

∂θijk

∂θijk
∂γ

+
∂U rves

∂χijkl

∂χijkl
∂γ

(4.10)

and

M =
∂U rves

∂bij

∂bij
∂K

+
∂U rves

∂θijk

∂θijk
∂K

+
∂U rves

∂χijkl

∂χijkl
∂K

, (4.11)

where the indices i, j, k and l represent consecutive atoms appearing in the rve. With

Eqs. (4.4) and (4.5), finite difference approximations yield the partial derivatives of the

protein potential parameters with respect to the deformed state variables γ and K. Due to

the high order expansion needed, the finite difference technique reduces the complexity of

the derivative calculations during numerical implementation. Equations (4.10) and (4.11)

supply the link between the continuum stiffness and atomistic potentials without the need

for bulk material properties such as Young’s modulus, thus allowing concurrent multiscale

modeling of the prototypical protein polypeptide.

Calculating the material point parameters dx1, b2 and b3 requires the same steps used

to calculate ai2 and ai3. A numerical technique solves the transcendental equation given by

Eq. (3.38) for the dx1 material point parameter in place of x1 for each atom. Then, the b2

and b3 material point parameters are calculated similar to ai2 and ai3 using

bi2 =
[
pixyz −Rxyz

(
dxi1
)]
·B2xyz

(
dxi1
)

(4.12)

and

bi3 =
[
pixyz −Rxyz

(
dxi1
)]
·B3xyz

(
dxi1
)
, (4.13)

where the i = 1− 6 denotes the ith atom of the peptide rve shown in Fig. 4.3.

The atomic positions calculated with the continuum field variables γ and K require an

8th order expansion of Eqs. (4.2) and (4.3) such that Eq. (4.4) converges. The high order

expansion is needed since the centerline through the rve is approximately 7Å in length in

the Ω0 configuration. With R(x1) located at the center of the rve, the smallest possible

centerline material point dx1 is 3.5Å; therefore, the large distance away from x1 requires the

high order expansion. Since the dx1 values calculated above use the xyz helix coordinate

system, R(x1) is located at the first Cα atom. To shift the atoms such that R(x1) is

located in the center of the rve, 1
2LPep is subtracted from each dxi1. This effectively shifts
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the location of R(x1) and minimizes the largest dxi1 material point parameter such that Eq.

(4.4) converges with the lowest order expansion possible.

4.2.3 Inner Displacements

Inner displacements allow for more realistic modeling of the rve by reducing undesired kine-

matic constraints and are imposed between time steps as to not affect the rve dynamics.

Inner displacements result from an rve energy relaxation which reduces kinematic con-

straints on the rve imposed by the chosen element shape function and Eq. (4.4). Due

to quadratic shape functions governing the field variables variation through the element,

the curvature and strain through an rve are constrained. Such a constraint can limit how

atoms move in an artificial manner. To reduce the effect of the kinematic constraints, an

energy relaxation is used to calculate the energy minimum for the current Ωf configuration

and updates material points accordingly. During inner displacement calculations, the field

variables and time remain constant resulting in quasistatic displacements.

The energy relaxation updates the material points for rve atoms 1 and 6 such that only

the φ and ψ dihedral angles are changed. The inner displacements cause the dihedrals to

update using

φ = φ+ ηd (4.14)

and

ψ = ψ − ηd, (4.15)

where ηd denotes the inner displacement value. This inner displacement form allows the

dihedral angles to rotate out of phase since the element constrains the dihedrals to rotate in

phase. A minimization of the φ and ψ dihedral energy terms yields the inner displacement

ηd, where the φ and ψ energy is

Eφ,ψ = Kφ(φ+ ηd − φ0)2 +Kψ(ψ − ηd − ψ0)2. (4.16)

The ηd is calculated by solving
∂Eφ,ψ
∂ηd

= 0 resulting in

ηd =
−Kφ(φ− φ0)−Kψ(ψ − ψ0)

Kφ +Kψ
. (4.17)
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To implement the ηd inner displacement, atoms 1 and 6 are rotated by ηd about the corre-

sponding φ and ψ bond angles, and their material point parameters are recalculated using

the process described previously. This material point update process remains valid for small

displacements since the deformed configuration is approximately equal to the undeformed

configuration, so Eqs. (3.37)-(3.40) from Chapter 3 remain valid. A procedure for updating

material points during large displacements for the use of implementing inner displacements

has not been developed.

4.2.4 Finite Element Discretization and Implementation

Leamy [31] presents a detailed derivation of the finite element formulation used for modeling

the concurrent multiscale continuum model. The important features of the finite element

formulation are reviewed here including shape function definition and implementation of

the rve. Three-noded isoparametric shape functions define the field variables such that

x1 = NI(ς)x
I
1,V = NI(ς)V

I ,Ω = NI(ς)Ω
I ,K = NI(ς)K

I ,γ = NI(ς)γ
I , (4.18)

where ς denotes a local coordinate ranging from -1 to 1, and the I = 1 − 3 superscript

represents the nodal quantities for the element. As stated previously, the developed intrinsic

beam elements utilize quadratic shape functions given by

N1 =
1

2
ς (ς − 1) , N2 = 1− ς2, N1 =

1

2
ς (ς + 1) (4.19)

where the shape functions evaluate to one at their corresponding node and zero at the other

two nodal locations. These quadratic shape functions limit the complexity of Eq. (4.4) in

higher order expansions since the derivatives of the shape functions evaluate to zero for third

order and higher spatial derivatives. With the shape functions defined, the internal forces

and moments are calculated using a Guass quadrature routine. Since the quadratic shape

functions govern the field variables, four integration points accurately calculate the integrals

defining the internal forces and moments defined in [31]. At these integration points, it is

assumed that the rves accurately represent the local atomic energy of the system. Therefore,

the rve energy is evaluated at each integration point using Eqs. (4.4) and (4.5) resulting in

the internal forces and moments at the integration points. Using these internal forces and
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moments along with the mass properties described in Chapter 3, the finite element code

simulates the concurrent multiscale continuum model dynamics.

4.3 Results

4.3.1 Step Repsonse

FX

Figure 4.4: The concurrent multiscale continuum model test case studied the step response
of the simplified protein to an axial force.

This test case documents the response of the concurrent multiscale continuum protein

model to a step force input. Figure 4.4 illustrates the test case where a step force input acts

on a pinned-free simplified protein. Specifically, three intrinsic protein elements modeled

a 24 peptide plane simplified protein with an applied step force input FX = 0.01 Kcal
moleÅ

.

The metrics used for comparison to LAMMPS MD simulations included the displacement

magnitude of the end of the protein and the simplified protein potential terms. Figures

4.5 and 4.6 display these results and compare them to results obtained from LAMMPS

MD. Figure 4.5 illustrates that the concurrent multiscale continuum model behaves in an
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Figure 4.5: The concurrent multiscale continuum model exhibits stiff behavior when com-
pared to the LAMMPS MD simulations.
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overly stiff manner since the displacement magnitude is significantly less and the response

frequency is higher.

To explain the cause of this over stiffness, Figure 4.6 compares the dihedral angle re-

sults from the continuum model without inner displacements, the continuum model with

inner displacements and the LAMMPS MD simulations. Notably, the dihedral angle mag-
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(c) LAMMPS Results

Figure 4.6: The concurrent multiscale continuum model exhibits stiff behavior when com-
pared to the LAMMPS MD simulations.

nitudes predicted by the concurrent multiscale model are an order of magnitude less than

the LAMMPS results presented by Fig. 4.6c. Additionally, Figs. 4.6a and 4.6b demonstrate

that the inner displacements behave as desired and relax the energy of the rve such that

dihedral angles vary out of phase with greater magnitude. However, the inner displacements

do not change the frequency of the continuum response nor do they affect the overall dis-

placement magnitude of the response as presented in Fig. 4.4. This leads to the conclusion
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that the method imposes additional kinematic constraint which ηd does not alleviate. The

only remaining assumption constraining the kinematics includes the use of quadratic shape

functions.

Imposing quadratic shape functions for each element creates an artificially stiff protein

element. Since quadratic shape functions define the field variables through an element, the

curvature and strain values can only vary in a quadratic nature through a single rve. This

quadratic variation does not represent the rve well since the protein potential terms through

the rve exhibit disparate stiffness values that vary by orders of magnitude. As a result, the

shape functions constrain atom movement in an rve and the system exhibits an artificial

stiffness. Figure 4.7 illustrates an rve and a representative spring model of the rve. Since the

stiffnesses in the rve vary greatly, a quadratic shape stiffens the model, while one with more

variation similar to the green curve in Fig. 4.7 could correctly model the rve. As shown

 

  1

 3 b1 b2b3

 2
11

2

 2
21

2
1

2

3

4

5

6

K i
rve

x1

K i
opt

x1

Figure 4.7: The atomistic rve can be represented by a composite spring model with varying
stiffnesses. The quadratic shape function shown in red cannot correctly capture the relative
displacement of atoms internal to the rve; however, an optimal shape function similar to
the one in green may allow the correct relative displacements.
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Table 4.1: Derivatives of the rve Potential terms with respect to Intrinsic Curvatures

Dihedral Derivative Value
[
Deg Å

]
Angle Derivative Value

[
Deg Å

]

∂φ
∂K1

1.84 ∂θ1
∂K1

0.57

∂φ
∂K2

-1.59 ∂θ1
∂K2

-1.24

∂φ
∂K3

1.75 ∂θ1
∂K3

-0.93

∂ψ
∂K1

2.10 ∂θ2
∂K1

0.59

∂ψ
∂K2

1.24 ∂θ2
∂K2

1.33

∂ψ
∂K3

1.77 ∂θ2
∂K3

-0.65

∂ω
∂K1

0.62 ∂θ3
∂K1

1.51

∂ω
∂K2

0.30 ∂θ3
∂K2

-0.02

∂ω
∂K3

-2.67 ∂θ3
∂K3

-1.19

in Table 4.1, the derivatives of the protein potential terms with respect to K demonstrate

that a change in curvature has a similar effect on dihedral angles as it does on bond angles,

thus stiffening the system. Since the bond angle derivatives are approximately equal to

the dihedral angle derivatives, a small change in curvature has similar effects on the bond

angles as it does on the dihedral angles. However, the bond angle stiffness coefficients are

much larger than the dihedral angle stiffness coefficients as shown in Table 3.1. As a result,

a small curvature change causes an inaccurate increase in the atomic potential of the rve

causing the over stiffening of the element.

Traditionally, increasing mesh density allows more variation through a continuum when

using FEA; however, with the rve implementation this is not the case. The rve only realizes

the quadratic shape function through the peptide plane since the shape functions are used

in the expansions used to derive Eq. (4.4). As a result, increasing mesh density does not

remove the kinematic constraints imposed by the shape function.

4.4 Conclusion

This chapter presents a method for simulating the dynamics of a simplified protein back-

bone using a concurrent multiscale continuum model. The method utilizes atomic potential

terms to calculate internal forces in the continuum model by using material points to locate

81



individual atoms when needed. Representative volume elements allow sampling and averag-

ing of energy through the element at integration points since the rve is representative of the

system at any point. The beam representation of the protein is discretized into three-noded

finite elements with quadratic shape functions. As a result, the quadratic shape functions

imposed on the system cause an over stiffening of the element by not allowing the required

curvature and strain variation across the rve. Since a peptide plane consists of protein

parameters with disparate stiffness coefficients, the curvatures and strains must be able to

vary considerably through an rve to accurately allow correct atom movement. Chapter 5

discusses a possible solution to overcome this artificial stiffening of the system.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

Accurately and efficiently modeling protein dynamics presents a formidable challenge; how-

ever, the solution has the potential to aid in the design of novel therapeutics for debilitating

diseases and novel molecular machines. Since proteins govern most processes in biological

life, understanding and predicting how they function in their native environment will lead

to the development of new medicines for diseases with limited treatments. Additionally,

efficient protein modeling will enable the design of novel molecular machines for uses such

as chemical processing and computing. Although the physical and chemical processes gov-

erning the protein dynamics problem are well understood, the large scale of the problem and

the extremely small time steps required create a prohibitively computationally expensive

model when using conventional modeling techniques and computing resources. Therefore,

novel models are required which can simulate proteins accurately while reducing the degrees

of freedom and increasing the allowable time steps of the problem. This thesis presents two

preliminary protein dynamics models utilizing intrinsic beam theory that work towards that

goal.

5.1 Hierarchical Multiscale Continuum Model Conclusions and Future
Work

The first proposed model utilizes a hierarchical multiscale continuum technique to simulate

the dynamics of prototypical α-helical protein segments. A novel shooting method developed

for calculating the solution to static three-dimensional intrinsic beam BVP’s allows the

efficient calculation of deformed curved beams to follower loads with zero iteration. As a

result, an optimization algorithm efficiently determines the optimal intrinsic stiffness values

for a helical beam such that the deformed configuration of the beam corresponds with the

deformed configuration of an MD model for a variety of calibration load cases. This optimal

stiffness accurately governs the hierarchical multiscale model’s response to external loading,
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as demonstrated by static and dynamic prediction results which compare well to LAMMPS

MD simulations. Furthermore, the hierarchical multiscale model produces the results with

a larger allowable time step than the LAMMPS models. The number of degrees of freedom

could be reduced significantly with the development of a specialized element which can

accurately represent the sinusoidal variance through the helix. Although these results are

promising, work must be done to improve the model and adapt it to model full proteins.

The hierarchical multiscale model could be improved and extended to model full protein

segments. The model can be improved by determining a more optimal protein stiffness. An

apparent stiffness error is evident in both the static and dynamic test cases for the developed

model since the displacement and frequency errors range from 3% to 10%. With a more

robust optimization algorithm, an equivalent protein stiffness could be located that yields

more favorable results. After the optimization technique is improved, LAMMPS MD simu-

lations of full protein α-helical segments could be used to determine the equivalent intrinsic

stiffness values for these full protein segments. The final step would require extending the

model to simulate other general protein secondary structures.

The ultimate goal is to combine this hierarchical code with an MD code in a concurrent

multiscale manner. This would involve replacing segments of an all-atom MD model with

the hierarchical multiscale model. Due to the larger allowable time steps for the hierarchical

model, the implementation of the model in this way could allow partial atomic resolution

of the entire protein backbone while decreasing computational expense. Additionally, de-

veloping a method to rebuild the entire protein at the atomistic level from the hierarchical

multiscale model would allow the transition from the hierarchical multiscale model to an

all-atom MD model during simulation. This would be useful in dynamics simulations where

protein segments that originally are stable secondary structures modeled with the hierar-

chical multiscale model become more active such that all-atom resolution is desired. The

computational expense is reduced by allowing the hierarchical models to use larger a time

step such that fewer degrees of freedom are updated each MD time step.
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5.2 Preliminary Concurrent Multiscale Continuum Model Conclusions
and Future Work

The second proposed solution to the protein dynamics problem involved the development of

a concurrent multiscale model. The preliminary concurrent multiscale model links atomistic

behavior of the protein to the bulk material properties of the continuum beam through the

use of an rve. The rve represents the internal energy of the continuum at any point and

allows the calculation of atom positions using the continuum field variables K and γ. As

a result, atomistic information is used concurrently with the continuum beam model to

simulate the model’s dynamic behavior. The rve implemented in the finite element model

caused an artificially stiff peptide plane since the finite element discretization of the protein

utilizes quadratic shape functions. These shape functions restrict the curvature and strain

variation through the rve such that the correct stiffness response cannot be modeled.

The preliminary concurrent multiscale model must be improved such that sufficient

variation of curvature and strain can be modeled through the rve. One possible solution is

to modify the shape function of a beam element such that the required variation through the

rve is satisfied. A multiscale finite element has recently been designed which facilitates the

use of arbitrary shape functions in an element such that higher variation is obtained where

desired [12]. A similar technique could be explored for use in the preliminary concurrent

multiscale technique which allows more variation through an rve.

After the artificial stiffness issue has been resolved, the concurrent multiscale continuum

model can be extended for use in modeling general proteins. This will require the addition

of side chain atoms and residues to the rve. Additionally, multiple rves should be defined

and their locations in the continuum model should be stored so that an arbitrary protein

containing any of the 20 amino acid residues given in Table 1.1 can be modeled. With

the addition of residues and side chains, a proximity search will need to be implemented

such that hydrogen bonding and other nonbonded protein potential terms can be accurately

modeled.

The concurrent multiscale model could be improved further by decreasing the compu-

tational expense of the developed protein finite element. Computational expense could
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be lessened by reducing the length of the rve such that a smaller dx1 allows a lower or-

der expansion. The current required expansion to O(dx9
1) results in a large equation for

calculating atomic potentials, and reducing the size of this equation significantly reduces

computational cost. Additionally, the stiff protein potential bond terms could be treated

as rigid bodies which would allow the use of larger time steps. With the aforementioned

improvements, the concurrent multiscale continuum model could accurately and efficiently

model proteins when compared to traditional MD modeling packages.

5.3 Mass Representation Improvement

The continuum model mass terms could be improved to better represent the discrete protein.

Two approaches should be explored: an optimization of mass terms and the development

of an implicit FEA solver for the intrinsic beam code. The products of inertia of the beam

model are non-negligible, but are ignored in order to use an explicit FEA code. This could

be accounted for by running an optimization that varied the continuum mass terms until

the frequency content of the hierarchical multiscale model more closely matches LAMMPS

results. Another solution is to reprogram the FEA code with an implicit solver so that all

mass terms can be considered.
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APPENDIX A

SHOOTING EQUATION DERIVATIVES

A.1 Explicit Definition of Derivatives for Equations with Strain

∂K̂1

∂x1
=
E
[
i2
(
K03 + K̂3

)
K̂2 − i3

(
K02 + K̂2

)
K̂3

]
G (i2 + i3)

(A.1)

∂K̂2

∂x1
=

[
Ei3

(
K01 + K̂1

)
K̂3 −G (i2 + i3)

(
K03 + K̂3

)
K̂1 − EAγ̂13γ̂11 + 2 GA(1+γ̂11)γ̂13

k

]
Ei2

(A.2)

∂K̂3

∂x1
=

[
(i2 + i3)G

(
K02 + K̂2

)
K̂1 − Ei2

(
K01 + K̂1

)
K̂2 − 2 GA(1+γ̂11)γ̂12

k
+ EAγ̂12γ̂11

]
Ei3

(A.3)

∂γ̂11
∂x1

=
2G

[(
K03 + K̂3

)
γ̂12 −

(
K02 + K̂2

)
γ̂13
]

Ek
(A.4)

∂γ̂12
∂x1

=
2G

(
K01 + K̂1

)
γ̂13 − Ek

(
K03 + K̂3

)
γ̂11

2G
(A.5)

∂γ̂13
∂x1

=
Ek
(
K02 + K̂2

)
γ̂11 − 2G

(
K01 + K̂1

)
γ̂12

2G
(A.6)

∂B1x

∂x1
=
(
K02 + K̂2

)
B2yB1z −

(
K02 + K̂2

)
B2zB1y +

(
K03 + K̂3

)
B3yB1z −

(
K03 + K̂3

)
B3zB1y (A.7)

∂B1y

∂x1
=
(
K02 + K̂2

)
B2zB1x −

(
K02 + K̂2

)
B2xB1z +

(
K03 + K̂3

)
B3zB1x −

(
K03 + K̂3

)
B3xB1z (A.8)

∂B1z

∂x1
=
(
K02 + K̂2

)
B2xB1y −

(
K02 + K̂2

)
B2yB1x +

(
K03 + K̂3

)
B3xB1y −

(
K03 + K̂3

)
B3yB1x (A.9)

∂B2x

∂x1
=
(
K01 + K̂1

)
B1yB2z −

(
K01 + K̂1

)
B1zB2y +

(
K03 + K̂3

)
B3yB2z −

(
K03 + K̂3

)
B3zB2y (A.10)

∂B2y

∂x1
=
(
K01 + K̂1

)
B1zB2x −

(
K01 + K̂1

)
B1xB2z +

(
K03 + K̂3

)
B3zB2x −

(
K03 + K̂3

)
B3xB2z (A.11)

∂B2z

∂x1
=
(
K01 + K̂1

)
B1xB2y −

(
K01 + K̂1

)
B1yB2x + (K03 +K3)B3xB2y −

(
K03 + K̂3

)
B3yB2x (A.12)
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∂B3x

∂x1
=
(
K01 + K̂1

)
B1yB3z −

(
K01 + K̂1

)
B1zB3y +

(
K02 + K̂2

)
B2yB3z −

(
K02 + K̂2

)
B2zB3y (A.13)

∂B3y

∂x1
=
(
K01 + K̂1

)
B1zB3x −

(
K01 + K̂1

)
B1xB3z +

(
K02 + K̂2

)
B2zB3x −

(
K02 + K̂2

)
B2xB3z (A.14)

∂B3z

∂x1
=
(
K01 + K̂1

)
B1xB3y −

(
K01 + K̂1

)
B1yB3x +

(
K02 + K̂2

)
B2xB3y −

(
K02 + K̂2

)
B2yB3x (A.15)

∂Rx
∂x1

= (1 + γ̂11)B1x + 2 γ̂12B2x + 2 γ̂13B3x (A.16)

∂Ry
∂x1

= (1 + γ̂11)B1y + 2 γ̂12B2y + 2 γ̂13B3y (A.17)

∂Rz
∂x1

= (1 + γ̂11)B1z + 2 γ̂12B2z + 2 γ̂13B3z (A.18)

A.2 Explicit Definition of Derivatives for Equations without Strain

∂K̂1

∂x1
=
E
[
i2
(
K03 + K̂3

)
K̂2 − i3

(
K02 + K̂2

)
K̂3

]
G (i2 + i3)

(A.19)

∂K̂1

∂x1
=
E
[
i2
(
K03 + K̂3

)
K̂2 − i3

(
K02 + K̂2

)
K̂3

]
G (i2 + i3)

(A.20)

∂K̂2

∂x1
=
Ei3

(
K01 + K̂1

)
K̂3 −G (i2 + i3)

(
K03 + K̂3

)
K̂1 − F3F1 + (1 + F1)F3

Ei2
(A.21)

∂K̂3

∂x1
=
G (i2 + i3)

(
K02 + K̂2

)
K̂1 − Ei2

(
K01 + K̂1

)
K̂2 − (1 + F1)F2 + F2F1

Ei3
(A.22)

∂F1

∂x1
=
(
K03 + K̂3

)
F2 −

(
K02 + K̂2

)
F3 (A.23)

∂F1

∂x1
=
(
K01 + K̂1

)
F3 −

(
K03 + K̂3

)
F1 (A.24)

∂F1

∂x1
=
(
K02 + K̂2

)
F1 −

(
K01 + K̂1

)
F2 (A.25)

∂B1x

∂x1
=
(
K02 + K̂2

)
B2yB1z −

(
K02 + K̂2

)
B2zB1y +

(
K03 + K̂3

)
B3yB1z −

(
K03 + K̂3

)
B3zB1y (A.26)

∂B1y

∂x1
=
(
K02 + K̂2

)
B2zB1x −

(
K02 + K̂2

)
B2xB1z +

(
K03 + K̂3

)
B3zB1x −

(
K03 + K̂3

)
B3xB1z (A.27)

∂B1z

∂x1
=
(
K02 + K̂2

)
B2xB1y −

(
K02 + K̂2

)
B2yB1x +

(
K03 + K̂3

)
B3xB1y −

(
K03 + K̂3

)
B3yB1x (A.28)

∂B2x

∂x1
=
(
K01 + K̂1

)
B1yB2z −

(
K01 + K̂1

)
B1zB2y +

(
K03 + K̂3

)
B3yB2z −

(
K03 + K̂3

)
B3zB2y (A.29)

∂B2y

∂x1
=
(
K01 + K̂1

)
B1zB2x −

(
K01 + K̂1

)
B1xB2z +

(
K03 + K̂3

)
B3zB2x −

(
K03 + K̂3

)
B3xB2z (A.30)

∂B2z

∂x1
=
(
K01 + K̂1

)
B1xB2y −

(
K01 + K̂1

)
B1yB2x + (K03 +K3)B3xB2y −

(
K03 + K̂3

)
B3yB2x (A.31)

∂B3x

∂x1
=
(
K01 + K̂1

)
B1yB3z −

(
K01 + K̂1

)
B1zB3y +

(
K02 + K̂2

)
B2yB3z −

(
K02 + K̂2

)
B2zB3y (A.32)
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∂B3y

∂x1
=
(
K01 + K̂1

)
B1zB3x −

(
K01 + K̂1

)
B1xB3z +

(
K02 + K̂2

)
B2zB3x −

(
K02 + K̂2

)
B2xB3z (A.33)

∂B3z

∂x1
=
(
K01 + K̂1

)
B1xB3y −

(
K01 + K̂1

)
B1yB3x +

(
K02 + K̂2

)
B2xB3y −

(
K02 + K̂2

)
B2yB3x (A.34)

∂Rx
∂x1

= B1x (A.35)

∂Ry
∂x1

= B1y (A.36)

∂Rz
∂x1

= B1z (A.37)
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APPENDIX B

LAMMPS ‘QUADRATIC’ DIHEDRAL CLASS

B.1 Dihedral Quadratic.h

#ifdef DIHEDRAL_CLASS

DihedralStyle(quadratic,DihedralQuadratic)

#else

#ifndef LMP_DIHEDRAL_QUADRATIC_H

#define LMP_DIHEDRAL_HARMONIC_H

#include "stdio.h"

#include "dihedral.h"

namespace LAMMPS_NS {

class DihedralQuadratic : public Dihedral {

public:

DihedralQuadratic(class LAMMPS *);

~DihedralQuadratic();

void compute(int, int);

void coeff(int, char **);

void write_restart(FILE *);

void read_restart(FILE *);

private:

double *k,*Equil;

void allocate();

};

}

#endif

#endif

B.2 Dihedral Quadratic.cpp

#include "lmptype.h"
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#include "mpi.h"

#include "math.h"

#include "stdlib.h"

#include "dihedral_quadratic.h"

#include "atom.h"

#include "comm.h"

#include "neighbor.h"

#include "domain.h"

#include "force.h"

#include "update.h"

#include "memory.h"

#include "error.h"

using namespace LAMMPS_NS;

#define TOLERANCE 0.05

#define SMALL 0.001

/* ---------------------------------------------------------------------- */

DihedralQuadratic::DihedralQuadratic(LAMMPS *lmp) : Dihedral(lmp) {}

/* ---------------------------------------------------------------------- */

DihedralQuadratic::~DihedralQuadratic()

{

if (allocated) {

memory->sfree(setflag);

memory->sfree(k);

memory->sfree(Equil);

}

}

/* ---------------------------------------------------------------------- */

void DihedralQuadratic::compute(int eflag, int vflag)

{

int i1,i2,i3,i4,i,m,n,type;

double vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,vb2xm,vb2ym,vb2zm;

double edihedral,f1[3],f2[3],f3[3],f4[3];

double ax,ay,az,bx,by,bz,rasq,rbsq,rgsq,rg,rginv,ra2inv,rb2inv,rabinv;

double df,df1,ddf1,fg,hg,fga,hgb,gaa,gbb;

double dtfx,dtfy,dtfz,dtgx,dtgy,dtgz,dthx,dthy,dthz;
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double c,s,p,sx2,sy2,sz2;

//Kyle

double dQuaEn, dihedral, QuaEn;

edihedral = 0.0;

if (eflag || vflag) ev_setup(eflag,vflag);

else evflag = 0;

double **x = atom->x;

double **f = atom->f;

int **dihedrallist = neighbor->dihedrallist;

int ndihedrallist = neighbor->ndihedrallist;

int nlocal = atom->nlocal;

int newton_bond = force->newton_bond;

for (n = 0; n < ndihedrallist; n++) {

i1 = dihedrallist[n][0];

i2 = dihedrallist[n][1];

i3 = dihedrallist[n][2];

i4 = dihedrallist[n][3];

type = dihedrallist[n][4];

// 1st bond

vb1x = x[i1][0] - x[i2][0];

vb1y = x[i1][1] - x[i2][1];

vb1z = x[i1][2] - x[i2][2];

domain->minimum_image(vb1x,vb1y,vb1z);

// 2nd bond

vb2x = x[i3][0] - x[i2][0];

vb2y = x[i3][1] - x[i2][1];

vb2z = x[i3][2] - x[i2][2];

domain->minimum_image(vb2x,vb2y,vb2z);

vb2xm = -vb2x;

vb2ym = -vb2y;

vb2zm = -vb2z;

domain->minimum_image(vb2xm,vb2ym,vb2zm);
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// 3rd bond

vb3x = x[i4][0] - x[i3][0];

vb3y = x[i4][1] - x[i3][1];

vb3z = x[i4][2] - x[i3][2];

domain->minimum_image(vb3x,vb3y,vb3z);

// c,s calculation

ax = vb1y*vb2zm - vb1z*vb2ym;

ay = vb1z*vb2xm - vb1x*vb2zm;

az = vb1x*vb2ym - vb1y*vb2xm;

bx = vb3y*vb2zm - vb3z*vb2ym;

by = vb3z*vb2xm - vb3x*vb2zm;

bz = vb3x*vb2ym - vb3y*vb2xm;

rasq = ax*ax + ay*ay + az*az;

rbsq = bx*bx + by*by + bz*bz;

rgsq = vb2xm*vb2xm + vb2ym*vb2ym + vb2zm*vb2zm;

rg = sqrt(rgsq);

rginv = ra2inv = rb2inv = 0.0;

if (rg > 0) rginv = 1.0/rg;

if (rasq > 0) ra2inv = 1.0/rasq;

if (rbsq > 0) rb2inv = 1.0/rbsq;

rabinv = sqrt(ra2inv*rb2inv);

c = (ax*bx + ay*by + az*bz)*rabinv;

s = rg*rabinv*(ax*vb3x + ay*vb3y + az*vb3z);

// error check

if (c > 1.0 + TOLERANCE || c < (-1.0 - TOLERANCE)) {

int me;

MPI_Comm_rank(world,&me);

if (screen) {

char str[128];

sprintf(str,"Dihedral problem: %d %d %d %d %d %d",

me,update->ntimestep,

atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
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error->warning(str);

fprintf(screen," 1st atom: %d %g %g %g\n",

me,x[i1][0],x[i1][1],x[i1][2]);

fprintf(screen," 2nd atom: %d %g %g %g\n",

me,x[i2][0],x[i2][1],x[i2][2]);

fprintf(screen," 3rd atom: %d %g %g %g\n",

me,x[i3][0],x[i3][1],x[i3][2]);

fprintf(screen," 4th atom: %d %g %g %g\n",

me,x[i4][0],x[i4][1],x[i4][2]);

}

}

if (c > 1.0) c = 1.0;

if (c < -1.0) c = -1.0;

dihedral=atan2(s,c);

if(dihedral < 0 && type == 1)

{

dihedral = dihedral + 2*PI;

}

dQuaEn = 2.0*k[type] * (dihedral - Equil[type]);

QuaEn = k[type] * (dihedral - Equil[type])* (dihedral - Equil[type]);

if (eflag) edihedral = QuaEn;

fg = vb1x*vb2xm + vb1y*vb2ym + vb1z*vb2zm; // dot product of 1 st bond onto -2nd bond

hg = vb3x*vb2xm + vb3y*vb2ym + vb3z*vb2zm; // dot product of 3 rd bond onto -2nd bond

fga = fg*ra2inv*rginv; // (dot product of 1st bond onto -2nd bond)/magnitude 2nd bond and mag of b1 x b2 squared

hgb = hg*rb2inv*rginv; // (dot product of 3rd bond onto -2nd bond)/magnitude 2nd bond and mag of b3 x b2 squared

gaa = -ra2inv*rg;

gbb = rb2inv*rg;

dtfx = gaa*ax;

dtfy = gaa*ay;

dtfz = gaa*az;

dtgx = fga*ax - hgb*bx;

dtgy = fga*ay - hgb*by;

dtgz = fga*az - hgb*bz;
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dthx = gbb*bx;

dthy = gbb*by;

dthz = gbb*bz;

df = -dQuaEn;

sx2 = df*dtgx;

sy2 = df*dtgy;

sz2 = df*dtgz;

f1[0] = df*dtfx;

f1[1] = df*dtfy;

f1[2] = df*dtfz;

f2[0] = sx2 - f1[0];

f2[1] = sy2 - f1[1];

f2[2] = sz2 - f1[2];

f4[0] = df*dthx;

f4[1] = df*dthy;

f4[2] = df*dthz;

f3[0] = -sx2 - f4[0];

f3[1] = -sy2 - f4[1];

f3[2] = -sz2 - f4[2];

// apply force to each of 4 atoms

if (newton_bond || i1 < nlocal) {

f[i1][0] += f1[0];

f[i1][1] += f1[1];

f[i1][2] += f1[2];

}

if (newton_bond || i2 < nlocal) {

f[i2][0] += f2[0];

f[i2][1] += f2[1];

f[i2][2] += f2[2];

}

if (newton_bond || i3 < nlocal) {
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f[i3][0] += f3[0];

f[i3][1] += f3[1];

f[i3][2] += f3[2];

}

if (newton_bond || i4 < nlocal) {

f[i4][0] += f4[0];

f[i4][1] += f4[1];

f[i4][2] += f4[2];

}

if (evflag)

ev_tally(i1,i2,i3,i4,nlocal,newton_bond,edihedral,f1,f3,f4,

vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z);

}

}

/* ---------------------------------------------------------------------- */

void DihedralQuadratic::allocate()

{

allocated = 1;

int n = atom->ndihedraltypes;

k = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:k");

Equil = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:Equilibrium");

setflag = (int *) memory->smalloc((n+1)*sizeof(int),"dihedral:setflag");

for (int i = 1; i <= n; i++) setflag[i] = 0;

}

/* ----------------------------------------------------------------------

set coeffs for one type

------------------------------------------------------------------------- */

void DihedralQuadratic::coeff(int narg, char **arg)

{

if (narg != 3) error->all("Incorrect args for dihedral coefficients");

if (!allocated) allocate();

int ilo,ihi;
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force->bounds(arg[0],atom->ndihedraltypes,ilo,ihi);

double k_one = force->numeric(arg[1]);

double Equil_one = force->numeric(arg[2]);

if (k<=0)

error->all("Incorrect dihedral potential constant");

int count = 0;

for (int i = ilo; i <= ihi; i++) {

k[i] = k_one;

Equil[i] = Equil_one*PI/180;

setflag[i] = 1;

count++;

}

if (count == 0) error->all("Incorrect args for dihedral coefficients");

}

/* ----------------------------------------------------------------------

proc 0 writes out coeffs to restart file

------------------------------------------------------------------------- */

void DihedralQuadratic::write_restart(FILE *fp)

{

fwrite(&k[1],sizeof(double),atom->ndihedraltypes,fp);

fwrite(&Equil[1],sizeof(int),atom->ndihedraltypes,fp);

}

/* ----------------------------------------------------------------------

proc 0 reads coeffs from restart file, bcasts them

------------------------------------------------------------------------- */

void DihedralQuadratic::read_restart(FILE *fp)

{

allocate();

if (comm->me == 0) {

fread(&k[1],sizeof(double),atom->ndihedraltypes,fp);

fread(&Equil[1],sizeof(double),atom->ndihedraltypes,fp);

}
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MPI_Bcast(&k[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);

MPI_Bcast(&Equil[1],atom->ndihedraltypes,MPI_INT,0,world);

for (int i = 1; i <= atom->ndihedraltypes; i++) {

setflag[i] = 1;

}

}
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