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Summary 

 

Thermomechanical fatigue life prediction is important in the design of Ni-base superalloy 

components in gas turbine engines and requires a stress-strain analysis for accurate results. 

Crystal viscoplasticity models are an ideal tool for this stress-strain analysis of Ni-base 

superalloys as they can capture not only the anomalous yielding behavior, but also the non-

Schmid effect, the strain rate dependence, and the temperature dependence of typically large 

grained directionally-solidified and single crystal alloys. However, the model is difficult to 

calibrate even for isothermal conditions because of the interdependencies between parameters 

meant to capture different but similar phenomena at different length scales, many tied to a 

particular slip system. The need for the capacity to predict the material response over a large 

temperature range, which is critical for the simulation of hot section gas turbine components, 

causes the determination of parameters to be even more difficult since some parameters are 

highly temperature dependent. Rapid parameter determination techniques are therefore needed 

for temperature-dependent parameterizations so that the effort needed to calibrate the model is 

reduced to a reasonable level.  

Specific parameter determination protocols are established for a crystal viscoplasticity 

model implemented in ABAQUS through a user material subroutine. Parameters are grouped to 

reduce interdependencies and a hierarchical path through the groups and the parameters within 

each group is established. This dual level hierarchy creates a logical path for parameter 

determination which further reduces the interdependencies between parameters, allowing for 

rapid parameter determination. 



 

 

 

Next, experiments and protocols are established to rapidly provide data for calibration of 

the temperature-dependencies of the viscoplasticity. The amount of data needed to calibrate the 

crystal viscoplasticity model over a wide temperature range is excessively large due to the 

number of parameters that it contains which causes the amount of time spent in the 

experimentation phase of parameter determination to be excessively large. To avoid this lengthy 

experimentation phase each experiment is designed to contain as much relevant data as possible. 

This is accomplished through the inclusion of multiple strain rates in each experiment with strain 

ranges sufficiently large to clearly capture the inelastic response.  

The experimental and parameter determination protocols were exercised by calibrating 

the model to the directionally-solidified Ni-bas superalloy DS-CM247LC. The resulting 

calibration describes the material’s behavior in multiple loading orientations and over a wide 

temperature range of 20 °C to 1050 °C. Several parametric studies illustrate the utility of the 

calibrated model. 
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Chapter 1. Introduction 

 

Ni-base superalloys are used extensively in gas turbine engines. Their anomalous 

yielding behavior allows them to sustain higher loads at higher temperatures than most other 

metal alloys and their relatively high fracture toughness makes them more feasible than ceramics 

and refractory metals. However, the design of these alloys is far from trivial. Since they typically 

contain upwards of ten alloying elements (Reed, 2006), the number of possible combinations is 

quite large. The design of these alloys attempts to maximize fatigue life, fracture toughness, 

oxidation resistance, and creep resistance. To fully characterize a material for comparison of 

these properties requires a large amount of testing and an accurate knowledge of the stress-strain 

response of the material. The stress-strain response of a Ni-base superalloy is especially 

important in the prediction of fracture and fatigue life (Yue et al., 1997), since traditional 

methods of resolved shear stress, normal stress, and equivalent stress fail to accurately predict 

crack growth and fatigue lives. Predictive models could be used to estimate material 

performance, but the complex stress-strain behavior of Ni-base superalloys causes traditional 

models fail to accurately represent their behavior across a wide range of conditions such as strain 

rate, temperature, and material structure and orientation. Additional difficulty in modeling the 

behavior of these alloys is created from the wide temperature ranges which gas turbine 

components experience. Since the temperature difference between startup and shutdown can be 

in excess of 900 °C (Reed, 2006) any model used to predict material behavior must be calibrated 

over a wide temperature range for it to become viable for thermomechanical fatigue (TMF) 

predictions. The advanced crystal viscoplasticity (CVP) model in Shenoy et al. (2005) and 
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Shenoy (2006), which has an intricate flow rule and multiple parameter evolution equations, is 

able to capture the material’s dependence on these factors, making it a desirable tool for use in 

life prediction and stress-strain modeling. In addition, since the components in these gas turbine 

engines are typically single crystal (SC) or directionally solidified (DS) where the grain size is 

fairly large, inelastic deformation is largely due to dislocation motion through a crystal lattice, 

upon which CVP models are based. This CVP model is therefore an ideal tool for the simulation 

of stresses and strains resulting from temperature-dependent loadings as it includes temperature-

dependence, is strain rate sensitive, and captures the underlying cause of material deformation 

and can account for the anomalous yielding in these alloys. 

This CVP model however is challenging to calibrate even to isothermal data and requires 

copious amounts of time to achieve acceptable TMF predictions. The number of parameters 

contained in the CVP model is one reason that its calibration is so difficult. Additionally since 

the model is primarily phenomenological there is no clear relationship between individual 

parameters and specific material behaviors. This causes interdependencies which have the affect 

of further increasing the difficulty of calibration. These factors limit the applicability of the 

model and cause it to be ill-fitted for use in industrial applications. Therefore techniques for 

rapidly determining the material parameters for a wide temperature range are needed so that the 

model becomes an economical as well as efficient tool for predicting material behavior. 

In the following work a systematic approach to parameter determination is laid out. 

Chapter 2 reviews the literature and background information needed for the completion and 

understanding of this work. Chapter 3 details the CVP model and its attributes, showing the 

effect of each parameter and how the model captures specific behaviors. Chapter 4 shows the 

tools needed for rapid parameter determination, including the grouping, parameter determination 
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path, and parameter sensitivity to data types. Also expressly shown in Chapter 4 is the method 

for rapid isothermal parameter determination as well as the method for converting isothermal 

parameter values into temperature dependent parameters. Chapter 5 contains the experimental 

data requirements and the design of experiments along with the list of experiments conducted in 

the completion of this work. Chapter 6 explains the experimental setup and shows the data 

acquired from the experiments. In Chapter 7 the results of the isothermal parameterizations and 

the predictions of TMF data are shown. Chapter 8 contains a parametric study of the calibrated 

CVP model where predictions of different loadings and loading types are compared. Finally 

Chapter 9 contains the conclusions of this work and recommendations for future research. The 

appendices are included for additional information on specific aspects of the CVP model which 

are not integral to its functioning and as a resource for additional parameter determination tools. 
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Chapter 2. Literature Review 

 

This chapter focuses on preparing the reader for the information contained in the 

following chapters. Since knowledge of crystal plasticity (CP) and crystal viscoplasticity (CVP) 

is key to understanding this work, this chapter focuses on these topics. First a brief history of CP 

and CVP models is given. Then the general formulation of CVP is discussed and examples of 

some types of models are shown and explained. Implementation of CVP models in finite element 

analyses is discussed next with the different benefits and costs of each one. Finally different 

approaches in the literature to parameter determination are examined. 

2.1 Crystal Viscoplasticity Model Development 

Crystal plasticity and viscoplasticity are rooted in the 1938 paper by Taylor in which he 

proposed that plastic deformation occurs by dislocation motion through the crystal lattice 

(Taylor, 1938). The theory was not implementable at the time since the computational power did 

not exist to apply the theory (Asaro, 1983): it was not until 1943 that the first finite element (FE) 

simulations were performed (Courant, 1943). Even so the first crystal plasticity simulations were 

performed in 1982 by Pierce et al. (1982) who greatly simplified his model by only using two 

symmetric slip systems. In fact it was not until Becker (1991) that simulations based upon the 12 

octahedral slip systems of a face centered cubic (FCC) crystal were performed. Since then the 

form of CVP models has increasingly become more complex with increased computing power 

available for implementation. The following is a brief review of the major changes in CVP 

models, with a focus on the developments related to the model of Shenoy et al. (2005), which is 

used in this work. 
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The early formulations of CP and CVP models relied on the J2 stress invariant as the 

primary cause of plastic deformation, which corresponds to a Von Mises criterion. While this 

works well for static analyses of polycrystalline metals, it is inconsistent with the formulation of 

CVP since dislocation motion has been shown to be caused by the resolved shear stress (Frost 

and Ashby, 1982). Therefore the resolved shear stress on a slip system the J2 stress invariant as 

the overstress, which is the stress that exceeds any yield stress or back stress. 

Another change in CVP models was brought about by the understanding that creep and 

plasticity were both caused by the same phenomena. Early models treated the plastic and creep 

strains separately, however, with the understanding that the same stress causes these different 

effects, these strains were combined in the 1970s to form what is termed “unified” viscoplastic 

formulations (Chaboche and Rousselier, 1983; Chan et al., 1985; Walker and Jordan, 1985). The 

formulation of both creep and plasticity in a single term causes the treatment of these strains to 

be more consistent with the deformation of metals. 

Early CVP models focused on power law equations for implementing the plastic strains. 

These equations are well suited for capturing the creep behavior of metals since this behavior 

follows a linear trend when plotted with log-log axes. However Ni-base superalloys exhibit strain 

rate insensitivity at higher strain rates and lower temperatures, so these power law formulations 

fail to accurately describe the behavior of this class of materials under these conditions. The 

pairing of an exponential with a power law, as in the Shenoy et al. (2005) model which is able to 

capture both the rate-sensitive and rate-insensitive behaviors, was first published by Nouailhas 

(1989) who used it as a unified J2  plasticity model. The model was calibrated to an austenitic 

stainless steel with good results in both cyclic hysteresis and creep, even though the hardening 

rules were simple compared to current formulations.  
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The ability to recreate temperature-dependent loadings with CVP models is important for 

fatigue life prediction of Ni-base superalloys. However the early evolution equations for 

hardening and state variables were not formulated consistently for the prediction of temperature-

dependent loadings since the equations of most CVP models are based in thermodynamics and 

the arbitrary addition of temperature as a variable was inconsistent with the formulation of the 

equations. Therefore a major milestone was reached when McDowell (1992) extended the model 

of Moosbrugger and McDowell (1990), which also has a paired power law and exponential, to 

allow for temperature-dependent loadings by the addition of temperature rate terms in the 

evolution equations. 

2.2 Formulation of Crystal Viscoplasticity Models 

In general most crystal plasticity and viscoplasticity models follow the same initial 

formulation: they are based on dislocation motion through a crystal structure (Asaro, 1983) and 

they are fundamentally dependent on continuum mechanics. The essence of this formulation is to 

assume that deformation is achieved through stretching and rotation of the crystal lattice. An 

isothermal deformation is therefore separable into two distinct deformation gradients, F
p
 and F

*
, 

as shown in Figure 2.1 where F
*
 stretches the lattice and F

θ
 performs lattice rotation. However 

for temperature-dependent simulations F
*
 is separable into elastic and thermal deformations, F

e
 

and F
θ
 respectively (Srikanth and Zabaras, 1999) as is shown in Figure 2.2. The total 

deformation gradient of the lattice, F, is obtained through multiplication of the separate 

deformation gradients, 

 � � �� � �� � �	 (2.1) 

where the order of deformation is right to left. 
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Figure 2.1: Kinematics of crystal deformation through dislocation slip (Asaro, 1983) 

 

 

Figure 2.2: Addition of thermal deformation to the constitutive relations (Srikanth and 

Zabaras, 1999) 

 

In the normal formulation of model updates the total strain is specified. The thermal 

strain is then calculated and subtracted from the total strain to get the mechanical strain. The 
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plastic strain is then determined based upon the state of stress in the material and the elastic 

strain is finally determined by subtracting the plastic strain from the mechanical strain. 

 
� � 
�
� � 
	 � 
� (2.2) 

ε
e
 is the elastic strain, ε

Tot
 is the total strain, ε

θ
 is the thermal strain, and ε

p
 is the plastic strain. 

The deformation gradients are determined in the same order as the strains. The total 

deformation gradient, F
Tot

, is found by, 

 
�
� � � � � � � � 12 � � ���
�� � ��
� � �� � � (2.3) 

 ��
�� � ��
� � 2�� � ��
� � �� � � (2.4) 

where � is the Green’s strain and ��
��
 is the transpose of ��
�. N is a direction vector. The 

thermal deformation gradient is determined through the coefficient of thermal expansion (CTE), 

β, where a finite step between temperatures is used (Srikanth and Zabaras, 1999). 

 ����	 � e� ���	  (2.5) 

Here the subscripts “i” and “i+1” represent the old and new F
θ
 respectively. This update 

procedure is necessary for the implementation of the thermal strains since the coefficient is itself 

a function of temperature. The plastic deformation gradient is calculated by summing the 

inelastic strains from each slip system. 

 �� � � ��"� � #� � $� � %� � & γ� (�)*(+,*(�-
(.�  (2.6) 

Here L
p
 is the velocity gradient which can be decomposed into the rate of plastic stretch, D

p
, and 

the rate plastic of spin, W
p
. The vectors )*( and ,*( are unit vectors in the slip direction and slip 

plane normal direction, respectively, and N is the total number of slip systems with α being a slip 

system. 
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As mentioned previously one of the major characteristics of CVP models is the use of the 

Schmid stress (Schmid and Boas, 1950), or critical resolved shear stress (CRSS) as the activation 

parameter for slip systems. Schmid’s law states that a slip system is potentially active when the 

resolved shear stress on the slip plane in the slip direction (the Schmid stress) reaches a critical 

value, the CRSS. The shear stress on a slip system in the slip direction, τ
α
, is related to the 

remote stress, σ, by, 

 /0 � m2( � 3 (2.7) 

where α the slip system, ν is the slip direction, and m2( is the Schmid factor, using the convention 

of Kocks (1970). However, when loaded uniaxially in a particular direction the Schmid stress on 

a particular slip system is not trivial to define. The Schmid factors for the twelve primary 

octahedral and six cubic slip systems considered in the Shenoy et al. (2005) CVP model are 

therefore shown in 2.1 for uniaxial loadings in the [1 0 0], [0 1 1], and [1 1 1] directions. The 

Schmid factors for the cubic slip systems can be seen to be zero for uniaxial loading in one of the 

principal crystal directions. 
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Figure 2.3: Schmid factors for [1 0 0], [0 1 1], and [1 1 1] loading directions on primary 

octahedral and cubic slip planes 

 

Using these Schmid factors to calculate the shear stress on a slip system the rate of 

inelastic shear strain can then be determined. There are a myriad of formulations for the 

calculation of γ� . These equations are termed “flow rules” since the plastic flow is determined 

through them. The most commonly used type of flow rule is the power law equation, an example 

of which is (Asaro, 1983),  

 γ� �(� � a� �(� Z[�(�g�(�\ ][�(�g�(�]�� ^⁄ �"�
 (2.8) 

where α is a slip system, τ
(α)

 is the overstress on the slip system, g
(α)

 is the drag stress which 

describes isotropic strain hardening and is allowed to evolve with γ� �`�, a� �(� is the reference strain 

rate, and m is the flow exponent. Some other examples of power law flow rules can be found in 
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the literature (McGinty and McDowell, 1999; Almroth et al., 2002; Almroth et al., 2004). Dual 

power law functions (Shenoy et al., 2008), 

 ( )ααn
α

αα
1

n
α

αλαα
0α χ‐τsgnD χ‐τγD κ‐χ‐τγγ 21














+= &&&  (2.9) 

are used to capture both the rate dependent and rate insensitive regions of material deformation. 

There are two flow exponents, n1 and n2 which control the rate insensitive and rate dependent 

regions respectively. There are also two reference inelastic shear strain rates, γ�0 and γ�1 to 
control the activation of the separate regions. The rate insensitive term has a threshold stress, 

κ
α
, while the rate dependent term does not so that the stress may be recovered until the back 

stress, χ
α
, is reached. The drag stress, D

α
, captures the flow resistance in the material that can be 

overcome by energy fluctuations. Another example of an additive power law flow rule can be 

found in Chaboche (1989). Power laws combined with an exponential are used (Shenoy et al., 

2005), 

 ( )ααα
αv0α

αv0α τsgnτexpτ�T�γγ χ−













Θ=

nn DBD&&  (2.10) 

These also are able to capture the rate sensitive and insensitive regions. However, a main 

difference is that the rate insensitivity can be much higher than the dual power law equations. 

Also this equation tend to be stiffer, e.g. more difficult to solve when implemented. Additional 

examples of flow rules with exponentials can be found in the literature (Nouailhas, 1989; 

Ramaswamy et al., 1990; Sheh and Stouffer, 1990; Stouffer et al., 1990; McDowell, 1992; 

Bhattachar and Stouffer, 1993; Rowley and Thornton, 1996). Hyperbolic sine functions are also 

used (Miller, 1976), 



 

12 

 

 j� � k lsinh �σno ��.pqr
 (2.11) 

where B is the reference inelastic shearing rate, K is the drag stress, and σv is the viscous 

overstress. These contain both the rate sensitive and rate insensitive regions in the single term 

which simplifies the form of the flow rule, but they do not give the versatility of either the dual 

power law or the power law with the exponential.  

The power law relationship is commonly used in the flow rule of CP and CVP models 

since it accurately captures the creep behavior of metals, although at higher strain rates the 

inelastic shear strain rate no longer follows the power law relationship. This can be neglected, 

however if the strain rates are assumed to be low enough to lie in the power law region of the 

material. An example of a more complicated power law flow rule can be found in Walker and 

Jordan (1985), 

 

γ� � os"t u�vwxs � ywxs �|vwxs � ywxs |t"�

� & {||�v��s � y��s �|v��s � y��s |t"�}
�.^

� 2{w~�vw~s � y^}s �|vw~� � yw~� |t"�
� 2{x~�vx~s � yx~s �|vx~s � yx~s |t"�� 

(2.12) 

where non-Schmid factors are additionally accounted for through αii, αmz, and αnz,. The Kr is the 

drag stress, ω is the back stress, p is the flow exponent, r is the slip direction of the resolved 

shear stress, vwxs , and the subscripts m, n, and z are the locations in the stress tensor. In their 

formulation, as with others (Asaro, 1983; Walker and Jordan, 1985; McGinty and McDowell, 

1999) the drag stress and back stress are allowed to evolve with inelastic deformation. 
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Most of the above equations are phenomenological in nature. However, there is another 

method of formulating CVP models; basing the state variables on microstructural phenomena 

such as dislocation density, dislocation initiation and cancellation, and grain boundary 

considerations (Arsenlis and Parks, 1999; Arsenlis and Parks, 2002; Balasubramanian and 

Anand, 2002; Evers et al., 2002; Arsenlis et al., 2004; Evers et al., 2004; Ma et al., 2006b; Ma et 

al., 2006a; Shenoy et al., 2008). Phenomenological models are more widely used. These seek to 

recreate certain aspects of material behavior by considering the kinetics and kinematics of 

deformation, implicitly accounting for microstructure attributes. When applying 

phenomenological models to some areas, such as small scale deformations or interface 

mechanisms, the constitutive equations are often insufficient (Roters et al., 2010). The physically 

based constitutive equations which explicitly consider microstructure phenomena tend to be 

more complex and thus more difficult to implement, but as mentioned above are able to 

transcend some of the problems associated with phenomenological models. 

2.3 Implementation of Crystal Viscoplasticity Models 

With their complex flow rules and even more convoluted evolution equations the 

implementation of a CVP model is no trivial matter. Yet this is crucial to the efficient operation 

of the model. There are three distinct methods for solving the constitutive equations; explicit, 

semi-implicit, and implicit. Within each of these methods there are multiple starting points for 

solving an increment in time and strain. 

In explicit algorithms the stress required to reach a particular strain is calculated and the 

inelastic deformation resulting from this stress is found. This solution is then assumed to be 

accurate and the analysis progresses to the next time step. Explicit is the easiest to formulate 

since it does not require checking a solution, but rather, as stated above, assumes that the 
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solution found on the first iteration is accurate. Small time steps are used to ensure that the 

solution of the iteration is not far from the true solution. This method is able to evaluate a time 

step very quickly since it does not require iteration, but it requires very small time steps and does 

not ensure an accurate solution.  

Implicit is more difficult to implement than explicit, although it results in the most 

accurate solution. The implicit method uses a predictor-corrector scheme where a prediction of 

the stress required to obtain a particular strain is generated. The method then solves for the 

inelastic deformation using this prediction. The inelastic deformation is then used to correct the 

stress and a new stress prediction is created with which the inelastic deformation is again 

calculated. This is repeated until the difference between the calculated stress and predicted stress 

is within a level of tolerance. This method is more robust than the explicit method since it, in 

theory, can take very large steps in time and strain and still converge to an accurate solution. Its 

accuracy comes at a price, however since it is more difficult to implement and takes longer to 

implement a single time increment. Comparing explicit and implicit methods by the time needed 

for similar accuracies, the implicit method will usually perform better. 

Semi-implicit is halfway between explicit and implicit where an initial guess is made, but 

only one iteration is used to attempt convergence. As with the explicit method this does not 

ensure an accurate solution. It does, however give a better result than the explicit method without 

sacrificing as much of the speed that makes it attractive as implicit algorithm does. Difficulty 

arises however in determining the best way to update the initial guess since the method only 

gives one opportunity for improvement. 

There are in general five different starting points for the implicit method, which uses a 

predictor-corrector scheme. These are represented in Figure 2.4 which also shows the order of 
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updating the prediction. The symbol S in this case represents the second Piola-Kirchoff stress 

which can be converted to a shear stress on a slip system and used to calculate the inelastic 

deformation. The Piola-Kirchoff stress can be found from the Cauchy stress, σ, by, 

 SSSS�J��"�����σ�����"� (2.13) 

where J is the Jacobian, F
-1

 is the inverse of F, and F
-T

 is the transpose of F
-1

. The most common 

starting points are Fe, Fp, S, or γ� , and should result in identical solutions. However in choosing a 

starting point one must consider that the Jacobian matrix will need to be inverted when using the 

Newton-Raphson method, and that the equations may be more or less difficult to evaluate. The 

size of the Jacobian is equal to the number of independent variables of the item used as the 

prediction. Thus for S there are six due to symmetry, for Fp there are eight since the volume is 

conserved, for Fe there are nine, and for γ�  there are twelve or more for FCC crystalline metals, 

depending on the number of slip systems. However using γ�  produces much better stability since 

there are small variations in stress associated with variations in γ�  as it gets larger. The inverse is 

true for the other three, which results in less stability. 

 

Figure 2.4: Order of updates in implementation of CVP models (Roters et al., 2010) 
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2.4 Parameter Determination 

Determining material parameters for the various CVP models is not a trivial task. Added 

to this is the lack of information on how each model functions or what each parameter’s role is. 

Even though each model is calibrated to represent experimental data, the authors rarely give 

more than a brief explanation of the calibration procedures (Nouailhas, 1989; Sheh and Stouffer, 

1990; McDowell, 1992; Huber and Tsakmakis, 2001; Almroth et al., 2002; Yaguchi et al., 

2002a; Yaguchi et al., 2002b; Mucke and Bernhardi, 2003; Almroth et al., 2004; Tong, 2004; 

Shenoy et al., 2006; Shenoy, 2006; Wang et al., 2006; Christ and Bauer, 2011). This section 

presents a limited review of the methods that have been published, such as neural networks, 

genetic algorithms, and optimization schemes. 

Sheh and Stouffer (1990) determined the material parameters for a CVP model with an 

exponential flow rule,  

 j����`� � ��exp ���� � Z�(�
�τ(� � Ω�(���

r��� τ(� � Ω�(�
�τ(� � Ω�(�� (2.14) 

where Z�̀ �
is the drag stress, Ω�̀ �

 is the back stress, τ
αβ

 is the resolved shear stress, γ� ���`�
 is the 

local slip rate, n11 is the strain-rate sensitive exponent, and D1 and A1 are scale factors. The back 

stress evolution,  

 Ω� �(� � ���j����`� �r�� �sign�j����`� � � Ω�(������� � ��τ� (� (2.15) 

has both elastic and inelastic portions. n12, F1, G1, and ΩSAT1 are fitting parameters. The drag 

stress evolution equation,  

 Z�̀ � � ��̀ � � ��τ�̀ � � ���τ�̀�� � ��τ�̀�
 (2.16) 
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contains has mostly non-evolving terms, except for ��̀ �
 which is the measure of work 

hardening. V1, V2, and V3 are fitting parameters which modify the shear stresses [�̀ �
, [�̀ �

 , and 

[�̀ �
. The approach to determining the parameters was to run simulations and compare the results. 

Parameters were determined using different sets of data in the process shown in Figure 2.5. 

Specifically the strain-rate sensitivity exponent,  n11,   orientation dependence factors, V1, V2, and 

V3, saturated state variable values, QSAT
1
 and H11, were determined using saturated data. Strain 

hardening and inelastic recovery data were then used to evaluate the back stress constants G1, 

n12, and F1. Finally since the material stabilized quickly the hardening equation was not utilized. 

 

Figure 2.5: Parameter determination loops for an exponential flow rule (Sheh and Stouffer, 1990) 
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Huber and Tsakmakis (2001) use a neural network to identify parameters for a 

viscoplasticity model. To capture the material behavior of a ferritic steel a series of twenty 

experiments of three types, tension, cyclic, and creep, were performed. A neural network was 

then trained to determine the model parameters from simulations by adjusting the neural network 

until the outputs matched the simulations sufficiently well. The network was then used to 

determine model parameters from simple experimental histories. The calibrated model was able 

to model the experimental behavior with a high degree of accuracy.  

Others too have used neural networks to determine model parameters for a range of 

materials (Sumpter and Noid, 1996; Yagawa and Okuda, 1996). Some of the benefits of neural 

networks include (Yagawa and Okuda, 1996): 

• A nonlinear mapping of input data to output data in the network can be constructed 

through a learning process of some sample input versus output relations. 

• The trained network can predict the output data satisfactorily even for unlearned input 

data, provided the training data is sufficiently extensive.  

• The trained network produces parameters quickly while requiring minimal computing 

power. 

However, the effort required to tune them is extensive and will need to be shortened before 

neural networks become an effective parameter determination tool. 

One of the methods used to determine model parameters for simple CP models has been 

genetic algorithms (GAs) (Goldberg, 1989; Carroll, 1996), although no references were found 

which applied directly to NI-base superalloys (Xie et al., 2004; Venkataramani et al., 2006). GAs 

operate by evaluating possible parameter combinations based on their fitness, which is an error 
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evaluated between the result of the parameter set and experimental data. First a random set of 

parameter combinations are selected. The best combinations are then selected for use in the next 

round and new possibilities are created by (1) reproduction, (2) crossover, and (3) mutation. This 

process continues until the best combination is better than the acceptable level. Because of the 

many different combinations considered throughout the course of the algorithm it is an effective 

method for determining parameters for simple models. However, because the method requires 

many parameter-based predictions it is ill-fitted for use with CVP models since they in general 

are not fast in generating the predictions, and in general contain more parameters than CP models 

which increases the number of combinations needed for convergence. This leads to long 

convergence times on CVP models for this method while the result can be more quickly 

achieved through other methods. 

Tong (2004) calibrates a Chaboche type model (Chaboche and Rousselier, 1983) to 

cyclic and creep data for a NI-base superalloy. To determine the parameters he first generates an 

estimate, and then uses an iterative optimization scheme to find a final parameter set. This is 

illustrated in Figure 2.6. The main problem with this method is that the number of iterations 

required to reach a final parameter set, and thus the time required to complete the algorithm, is 

highly dependent on the accuracy of the initial parameters. Therefore an accurate method of 

creating the initial parameter set is still required. Tong does not fully define such a method, but 

does state that parameters are separated and initialized based upon data that they are most 

sensitive to.  
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Figure 2.6: Parameter determination algorithm from Tong (2004) 

 

Song (2010) uses an iterative approach combined with a parameter clustering to optimize 

the parameters for a macroscale viscoplastic model similar to the one used in this work. Figure 

2.7 shows the process flow diagram that was used. The first part of his algorithm is a parameter 

clustering which can be seen in the figure as the parameter sets. These allow him to separate 

parameters into groups which are related to specific behaviors. By selecting individual clusters 

for optimization each cluster can be fitted to match experimental data. In addition to his 

clustering of parameters Song splits his optimizations into three distinct levels: 1) part of an 

experiment such as a creep hold where a specific parameter is determined, 2) a single experiment 

where multiple parameters are simultaneously considered, and 3) multiple experiments where all 

clusters are established. Note that level three can include multiple temperatures and strain rates. 
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However a limited temperature range was used and the method loops back on itself to the extent 

that the number of times a parameter is modified is excessive. 

 

 

Figure 2.7: Hierarchical optimization scheme from Song (2010) 
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Chapter 3. Crystal Viscoplasticity Model Description and 

Implementation 

 

The crystal viscoplasticity model used in this research was developed by Shenoy (Shenoy 

et al., 2005; Shenoy, 2006). The following is a more in-depth explanation of the flow rule and 

evolution equations, along with examples of the functionality of each portion of the model. Also 

included in this chapter is a description of the implementation of the CVP model in ABAQUS 

and a list of parameters needed for running simulations. 

3.1 Crystal Viscoplasticity Model Description 

In the development of the model it was calibrated to GTD-111 (Shenoy et al., 2005; 

Shenoy, 2006), a directionally solidified Ni-bas superalloy. The flow rule, 

 ( )αα1
α
αv0α

αv0α χτsgnDτexpDτΘ�T�γγ −
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

=
+nn B&&  (3.1) 

is a power law multiplied by an exponential. As discussed in the previous chapter the power law 

term captures the creep regime while the exponential captures the rate insensitive regime. The 

flow rule is plotted in Figure 3.1 using arbitrary parameter values. The Macaulay brackets, ���, 
act to keep the flow rule turned off when the τv is negative. The drag stress, D

α
, is a measure of 

the flow potential of the material as it effectively accounts for the component of flow resistance 

than can be overcome by thermal fluctuation (Shenoy, 2006). γ �0 is the reference inelastic shear 

strain rate and [ǹ . The rate insensitive region is set by B0 and “n+1” collectively. However, since 

the flow exponent, n, also governs the power law creep region, B0 effectively is the only 
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parameter free to control this region. The temperature dependent diffusivity function, Θ(T), is 

controlled by a single parameter; the dislocation activation energy, Q0. This function controls the 

difference between the inelastic shear strain rates for identical τv values at different temperatures, 

which can be easily seen in the difference between the flow rule lines in Figure 3.1. 

 

Figure 3.1: Flow rule for arbitrary parameter values 

 

The drag stress, D
α
, does not evolve, but rather scales, 

 D( � �* ��* (3.2) 

by the shear modulus, µ, where µ0 is the shear modulus at 0K. The viscous overstress, τv, in Eq. 

(3.1) is found by, 
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 τn( � |[` � �`| �  ` ��* (3.3) 

where χ
α
 is the back stress and κ

α
 is the threshold stress. The back stress evolution equation, 

 �� ` � ¡¢|j� `| � ¡¢£|j� `|�` � Z 1¤¢
¥¤¢¥T � 1¡¢

¥¡¢£¥T \ �`T� � ¡¢¦Θ§¨�T�|χ(|s©ªχ( (3.4) 

where,  

 ¤¢ � ¡¢¡¢£ (3.5) 

models the evolution of the dislocation structure within the material and has a temperature rate 

term to allow for consistency in temperature-dependent loadings. The first term, with the rate of 

evolution parameter, hχ, represents hardening due to dislocations piling up on obstacles while the 

second captures the dynamic recovery which is the reduction in dislocation density due to 

annihilation of dislocations of opposite sign. The third term, with the temperature rate, accounts 

for the evolution of back stress due to temperature changes and is required if the model is to be 

temperature dependent (McDowell, 1992).  The final term models the dynamic thermal recovery 

of the back stress. The threshold stress is composed of rate-independent and rate-dependent 

parts, 

 κ( � κ«( � κ�( (3.6) 

The rate-independent portion of the threshold stress is, 

 κ«( �  *�T� � ¡��τ��( � ¡¨�τ¨�( � ¡«¬|τ«¬( | (3.7) 

where the non-Schmid factors, hpe, hse, and hcb, are contained, along with the temperature 

dependence, κ0. The rate-dependent portion of the threshold stress, 
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 κ�( � ¡* & ­`�®j��® �-ª¯°±
�.� ¡²¦ ` & ®j� �® �-ª¯°±

�.� ¡¦Θ³¨�T�� ` �  �´��µ (3.8) 

captures the cyclic hardening of a material and is therefore related to the transient response 

between initial cycling and steady-state hysteresis. However, because the behavior of interest in 

this research is steady state behavior, which is important for fatigue life prediction, the rate-

dependent equation is set to zero and the threshold stress is initially assumed to be constant. 

Finally the Arrhenius equation, 

 Θ�T� � ¶·̧
exp ¹� º*RT¼ … … … … … … … … … T ¾ Tw2exp ¹� 2º*RTw lln ¹Tw2T¼ � 1q¼ … … T ¿ Tw2

À (3.9) 

can be found in Eq. (3.1) ,  Eq. (3.4), and Eq. (3.8) where the activation energy, Q0 can be 

different in each case. However, this has been found unnecessary and a single Arrhenius 

equation is implemented in the model. These equations are summarized in Table 3.1. 
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Table 3.1: Summary of equations for the CVP model 
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Where τn( � |[` � �`| �  ` ÁÁÂ  and  D( � �* ÁÁÂ 

Θ�T� � ¶·̧
exp ¹� º*RT¼ … … … … … … … … … T ¾ Tw2exp ¹� 2º*RTw lln ¹Tw2T¼ � 1q¼ … … T ¿ Tw2

À 
Evolution Equations: 

Back Stress: 

χ� ( � ¡§|γ� (| � ¡§Ã|γ� (|χ( � Z 1¤§
¥¤§¥T � 1¡§

¥¡§Ã¥T \ χ(T� � ¡§¨Θ§¨�T�|χ(|�©ªχ( 

where ¤¢ � ÄÅÄÅÆ 

Threshold Stress: 

κ( � κ«( � κ�( 

κ«( �  *�T� � ¡��τ��( � ¡¨�τ¨�( � ¡«¬|τ«¬( | 
κ�( � ¡* & ­`�®j� �® �-ª¯°±

�.� ¡²¦ ` & ®j� �® �-ª¯°±
�.� ¡¦Θ³¨�T�� ` �  �´��µ 

 

The superscript α in each of the equations represents a slip system. The CVP model uses 

eighteen slip systems (Shenoy et al., 2002): twelve octahedral Ç111È�110�, and six cubic 

Ç100È�110� slip  systems where some of each are depicted in Figure 3.2. This is based upon the 

cubic crystal structure of Ni-base superalloys. Since the octahedral slip systems are more closely 
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packed than the cubic slip systems most of the dislocation motion occurs on theses slip systems 

and they are active over the entire temperature range. Dislocation motion along the cubic slip 

systems has been observed at high homologous temperatures although there is speculation about 

the exact nature of this mechanism. Bettge and Osterle (1999) have shown that the slip on these 

planes is actually caused by zigzag motion of dislocations on octahedral planes in a cubic slip 

channel as shown in Figure 3.3. In the model’s implementation, however, it is assumes that slip 

is occurring on the cubic slip systems when activated, and therefore has separate parameters for 

these slip systems. The activation of any slip system occurs when the critical resolved shear 

stress exceeds the threshold stress. When a slip system becomes active the flow rule is utilized to 

determine the rate of inelastic strain needed to satisfy dynamic equilibrium.  

 

 

Figure 3.2: (a) Octahedral slip systems and (b) Cubic slip systems. Note that only one plane for 

each type is shown (Shenoy, 2006) 

 

a) b) 
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Figure 3.3: Zigzag motion of dislocation slip in cubic channels (Bettge and Osterle, 1999) 

 

As stated above, the non-Schmid effects are accounted for through the threshold stress. 

Schmid’s law states that a slip system is potentially active when the resolved shear stress on the 

slip plane in the slip direction (the Schmid stress) reaches a critical value, the CRSS. However in 

Ni-base superalloys other shear components also affect the mobility of dislocations at high 

homologous temperatures (Qin and Bassani, 1992b). If the yield surface is assumed to be 

symmetric in tension and compression then the critical shear stress depends on a single extra 

shear stress, τcb. If there is a tension-compression asymmetry then there are two additional terms, 

τpe and τse. τpe is the shear stress on a primary octahedral slip plane, τse is the shear stress on a 

secondary octahedral slip plane, and τcb is the shear stress on the Ç100È cross-slip plane (Qin and 

Bassani, 1992a). Figure 3.4 shows the orientation of each shear stress (Qin and Bassani, 1992b). 

The size of the yield surface is affected by hcb while hpe and hse shift the position of the yield 

surface. This can be clearly seen since the absolute value is only taken for τcb in Eq. (3.7). The 

effect of the non-Schmid factors is shown in Figure 3.5 where hpe has been set to a small value.  
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Figure 3.4: Orientation of non-Schmid shear stresses (Qin and Bassani, 1992b) 

 

 

Figure 3.5: Effect of hpe on a cyclic hysteresis loop 
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3.2 Crystal Viscoplasticity Model Implementation 

The model is implemented in ABAQUS v6.9 as a User MATerial subroutine (UMAT). 

The UMAT from the work of McGinty (2001) was modified by Shenoy (2006) for the 

implementation of the CVP model used in this work. However, the UMAT that Shenoy 

employed was not written for efficient modification of parameter values. Thus the UMAT was 

modified to allow rapid modification of parameters to aid in rapid calibration. Additionally, the 

UMAT contained errors in implementation that were corrected during this project. All of these 

changes and others can be found listed in Appendix A. Since the UMAT has been updated some 

of the parameter values for GTD-111 (Shenoy et al., 2006; Shenoy, 2006) will no longer yield 

correct results with the current UMAT. Specifically any threshold stress evolution parameters, 

non-Schmid factors, or threshold stress temperature dependence will no longer produce with the 

new UMAT a model response which corresponds to any data. Because of this disparity 

subsequent use of the term UMAT will only refer to the modified version used in this work 

except where expressly stated. 

The UMAT is fully implicit and uses j�  as the starting point shown in Figure 2.4. The 

initial inelastic shear strain rate is assumed to be zero and the state of stress is estimated by an 

elastic increment. To do this the strain it is given must first be converted into a deformation 

gradient through Eq. (2.4). To simulate an isothermal loading history the state of total strain at a 

point in time is given and the UMAT linearly interpolates the strain and time from its original 

deformation state to the final state. Predicting thermal deformations requires the inclusion of the 

thermal strain. The thermal deformation gradient is therefore found through Eq. (2.5). In both 

isothermal and temperature-dependent cases the amount of mechanical deformation that is 

plastic is determined using a fully implicit algorithm with a combined Newton-Raphson and 
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linear search algorithm for rapid convergence to a solution (McGinty, 2001). The elastic portion 

of the mechanical deformation gradient is finally determined from the other deformation 

gradients, 

 �� � ��
� · �	� � ���
  (3.10) 

Three Euler angles, φ1, Φ, and φ2, are used in the UMAT to describe the orientation of 

the crystal structure with respect to the loading. The Roe convention, as defined by McGinty 

(2001), is used where the first rotation is about the global Z-axis, the second rotation is about the 

new local Y’-axis, and the final rotation is about the new local Z’’ axis as shown in Figure 3.6. 

Loading can be specified along any of the original axes, however with this angle definition it is 

convenient to apply loads in the original y-direction, Y. A rotation can then orient the material 

coordinate system such that loading is applied in an arbitrary direction with respect to the 

material coordinates. Since the model uses cubic symmetry the direction of solidification can be 

set in any of the three material coordinate axes, X, Y, and Z, with caveat that the angles are 

defined appropriately. Since determination of Euler angles for a specific loading direction is not 

trivial Appendix B has been included to assist in finding these angles. 
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Figure 3.6: Euler angle convention (McGinty, 2001) 

 

For analyses containing multiple grains, which is required for non-longitudinal loading in 

DS alloys, the UMAT uses the Taylor approximation to describe the interaction between grains. 

This method is shown in Figure 3.7 (Shenoy, 2006) where the arrows represent grain 

orientations. Rather than representing individual grains in a geometric model, multi grain 

simulations are performed by considering a unit cube with one orientation at a time. The same 

total deformation is then applied to each grain, which allows the simplification of the 

intergranular constraints because there are no strain discontinuities between grains. Because the 

grain orientations are unique the stress for each grain is dissimilar from any other. The global 

stress is found by taking the average of the stresses from each grain.  
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Figure 3.7: Taylor approximation for grain interactions (Shenoy, 2006) 

 

3.3 Model Parameters 

The model parameters for GTD-111 (Shenoy et al., 2005) are listed in Table 3.2. They 

have been arranged by equation with the parameters in the flow rule shown together, back stress 

parameters shown next, threshold stress parameters listed next, and elastic constants and Euler 

angles listed last. As mentioned previously the modifications to the UMAT may cause these 

parameter values to yield incorrect results. Specifically, modifications to the UMAT have 

antiquated the threshold stress parameters. All other parameter values are still valid however. 

The largest group by far in the table is the threshold stress, but as explained above, most of these 

parameters are assumed to be identically zero. All of these model parameters are inserted into an 

ABAQUS input file and run as a simulation. Appendix C gives a detailed description of the input 

file and each of the required fields. Appendix C also contains for reference a list of model 

parameters and code variables with the form of their temperature-dependence specified. 
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Table 3.2: Model parameters and GTD-111 values 

Parameter Parameter name GTD-111 value 

γ�0 Reference inelastic shear strain rate 1.15e9 (s
-1

) 

D0 Drag stress 102 (MPa) 

n Flow exponent f(T) 

B0 Rate independent drag stress modification 0.05 

µ Shear modulus = C44 

µ0 Shear modulus at 0K 166000 (MPa) 

Q0 Dislocation activation energy 309000 (KJ/mol) 

Tm Melting temperature 1699 K 

χ
α 

Back stress - 

hχ Hardening coefficient 4
th

 order polynomial 

hχd Dynamic recovery coefficient f(hχ, Rχ) 

Rχ Steady state back stress for high j�  4
th

 order polynomial 

hχs Static thermal recovery coefficient Exponential 

rχs Static thermal recovery exponent Quadratic polynomial 

κ
α
 Threshold stress -  *̀ �Ê� Threshold stress temperature dependence Two 4

th
 order polynomials 

hpe Primary slip system non-Schmid factor Quadratic polynomial 

hse Secondary slip system non-Schmid factor Quadratic polynomial 

hcb Cubic slip system non-Schmid factor Quadratic polynomial 

h0 Rate of evolution of threshold stress coeff. 0 

q
αα 

Sensitivity of κ
α
 to j� ` 1 

q
αβ 

Sensitivity of κ
α
 to j� � 1.4 

hκs Threshold stress dynamic recovery term 0 

hs Static thermal recovery coefficient 0 

κth Threshold stress recovery threshold 0 

rs Static thermal recovery exponent 0 

C11 

Stiffness constants 

Quadratic polynomial 

C12 Quadratic polynomial 

C44 Quadratic polynomial 

φ1 First Euler angle Function of orientation 

Φ Second Euler angle Function of orientation 

φ1 Third Euler angle Function of orientation 

 

Additional input parameters are required for the analysis of multiple grains. Since Euler 

angles for each grain are required, the number of Euler angles input to the model would exceed 

ninety for simulations containing more than thirty grains. Rather than input these angles directly 
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they are specified in a text file in units of degrees. The location of the text file is then specified 

inside the UMAT. Appendix B shows more detail on how this is accomplished. 
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Chapter 4. Protocols for Rapid Parameter Determination 

 

Calibrating the model across a temperature range is challenging without an in-depth 

knowledge of the model and its behavior because the parameters must behave smoothly with 

respect to temperature to prevent anomalous kinks in the response and to improve convergence.  

Thus if temperature dependent material parameters are desired it is necessary to develop methods 

and protocols which act as guidelines for parameter determination. The process depends on the 

specific functional relationships of one CVP model as well as the class of material being 

calibrated. These protocols are established for the Shenoy et al. (2005) model, described in 

Chapter 3, and Ni-base superalloys. The flow of this chapter is shown in Figure 4.1 where a 

grouping of parameters is first presented which reduces the perceived interdependencies between 

parameters. Next a dual level hierarchical ranking of groups and parameters is presented which 

defines a systematic path for parameter determination. This is followed by defining a specific 

type of data for the calibration of each parameter. The calibration of the model to an isothermal 

temperature is then explicitly demonstrated. Finally the determination of temperature-dependent 

parameters from isothermal values is illustrated. First, however, a brief overview of the process 

will be given.  
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Figure 4.1: Strategy for parameterization 

 

The process for isothermal parameter determination is shown in further detail in Figure 

4.2. The threshold stress is calibrated first, along with Rχ and hχ, to match the yield and saturation 

stresses. The flow exponent is determined next using creep or stress relaxation data, and the 

threshold stress and steady state back stress are mathematically adjusted to account for the 

change in n. The drag stress is the next parameter to be determined, and the strain rate 

dependence is used in this case along with the hardening behavior. Again κ and Rχ are 
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mathematically adjusted to retain the calibration to the yield and saturation stresses. Finally γ �0 is 

determined using the strain rate dependence. As will be shown this procedure reduces the 

interdependencies experienced between parameters and allows the rapid determination of 

parameters for isothermal temperatures. 

 

 

Figure 4.2: Flow diagram for isothermal parameter determination 

 

The methodology for developing temperature-dependent parameters from the isothermal 
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the highest temperature. The limit of the quasi-rate independent region is then calibrated through 

B0. Finally the isothermal experiments are predicted with the new temperature dependent 

parameters and checked for consistency with experimental data. If the isothermal calibrations are 

satisfactory with this new parameter set then the calibration is complete. Otherwise the 

isothermal parameterizations are reinitialized and the process is repeated. 

 

Figure 4.3: Process flow diagram for temperature-dependent parameter determination 
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the interdependencies observed during model calibration. Therefore the following groups are 

formed so that the interaction between parameters in separate groups is minimized. 

Group 1: Elastic Constants and Coefficient of Thermal Expansion; C11, C12, C44, and β 

The elastic constants are the most important group of parameters. Every other group 

depends on this group, with only small changes in stiffness leading to significant changes in the 

amount of cyclic inelastic strain. The thermomechanical fatigue response also relies heavily on 

these parameters since the material response of Ni-base superalloys tends to be mostly elastic 

even when life is considered in the low cycle fatigue regime. This dependency is twofold. First 

any evaluation of the error between a model prediction and an experiment will contain additional 

error from the mismatch in moduli if the stiffness constants are incorrect. Secondly, the shape of 

the hysteresis loop for temperature-dependent, as well as isothermal, simulations is highly 

sensitive to the stiffness constants because of the accumulated affect of any error. This is 

demonstrated in Figure 4.4 where the only difference is the stiffness constants. Thus it is of the 

utmost importance that this group not only be parameterized with precision but also that the 

methods of doing so be well understood. 
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Figure 4.4: Effect of modulus on cyclic hysteresis loops for (a) an isothermal prediction and (b) 

an out of phase TMF prediction from 100 °C to 950 °C 

 

The first set of parameters in this group is the stiffness constants, C11, C12, and C44. Since 

each parameter is assumed to be best fit by a second order polynomial there are nine total 

parameters associated with these three variables. 

 C�� � C11_1 Ì T� �  C11_2 Ì T � C11_3  (4.1) 

 C�� � C12_1 Ì T� �  C12_2 Ì T � C12_3 (4.2) 

 CÍÍ � C44_1 Ì T� �  C44_2 Ì T � C44_3 (4.3) 

The temperature, T, must be in units of Kelvin since the UAMT assumes that this is what is 

given. This is true for all other temperature-dependent inputs as well. The procedure for 

determining these values is different for single crystals and DS specimens and will be discussed 

in a further section.  

The coefficient of thermal expansion (CTE) is the next parameter in this group. It is 

placed here since it has a considerable influence on the proper simulation of temperature-
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dependent loadings, but is affected by none of the other parameters. The CTE is allotted four 

coefficients for a third order polynomial, 

 Î � ec1 Ì T� � ec2 Ì T� � ec3 Ì T � ec4 (4.4) 

because its behavior is slightly ill fit by a quadratic polynomial. Again, the temperature must be 

in Kelvin.  

Table 4.1 shows the input parameters contained in this group. Note that the shear 

modulus is entered twice: once for C44 and once for µ. In theory the drag stress should scale with 

the shear modulus (Shenoy, 2006), however the implementation in the UMAT allows the drag 

stress to scale to a separate polynomial. This was not found to be necessary during the calibration 

to DS-CM247LC.  Note also that the shear modulus at 0K, µ0, is set equal to C44_3. Since there 

is in general no data available for the shear modulus at temperatures even near 0K, the value of 

this parameter cannot be set experimentally. Thus to initialize this parameter the polynomial for 

the shear modulus can be extrapolated to room temperature. In general extrapolation of a 

polynomial outside of the calibration data by one third of the total calibrated range is not a good 

practice since the behavior of polynomials is notoriously unpredictable outside of the calibrated 

range. However since the polynomial for this parameter is in general very smooth the 

extrapolation of its polynomial should result in an acceptable approximation of the shear 

modulus at 0K. This may not be valid in all cases and the behavior of the polynomial for the 

shear modulus should therefore be checked for smoothness prior to implementing this 

relationship. The UMAT allows for a quadratic fit to each parameter since the elastic constants 

tend to behave smoothly.  
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Table 4.1: Group 1 parameters and inputs 

Parameter 
UMAT 

variables 

Suggested 

Value 

C11 

C11_1 

NA 

C11_2 

C11_3 

C12 

C12_1 

C12_2 

C12_3 

C44 

C44_1 

C44_2 

C44_3 

µ 

pmeuc1 C44_1 

pmeuc2 C44_2 

pmeuc3 C44_3 

µ0 pmeu_zero C44_3 

Tm Tmelt NA 

β 

ec1 

NA 
ec2 

ec3 

ec4 

 

Group 2: Yield Stress; κ0, and Rχ 

The yield stress is an important parameter to calibrate accurately because it controls the 

stress at which the rest of the plasticity parameters become active. Therefore the calibration of 

every other group, with the exception of those in Group 1, depends heavily on this group. The 

yield stress group consists of two main parameters,  *(�T�, and Rχ. These control the point where 

the material stress-strain response transitions from a purely elastic behavior to one which 

includes plastic deformation through dislocation motion. Additional parameters are the non-

Schmid factors hpe, hse, and hcb, which capture asymmetry of the yield surface and can be used to 

model the orientation dependence of the yield surface.  
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The temperature dependence of the threshold stress,  *(�T�, is one of the more difficult 

parameters to fit a polynomial through. Because of the anomalous yielding behavior which Ni-

base superalloys exhibit there is an increase in this parameter at temperatures near 750 °C and a 

sharp decrease in its value afterwards (Reed, 2006). This sharp transition from a gradually 

increasing parameter to a rapidly decreasing trend causes it to be ill-fitted for representation by a 

single polynomial. Therefore this parameter is allotted two polynomials: one to capture the 

temperature dependent behavior between room temperature and around 750 °C and another to 

capture the rapidly decreasing behavior above at high temperatures. 

κ*(�T�Ï
Ð � g0_l1 Ì TÍ � g0_l2 Ì T� � g0_l3 Ì T� � g0_l4 Ì T � g0_l5 (4.5) 

κ*(�T�´�Ñ´ � hg0_1 Ì TÍ � hg0_2 Ì T� � hg0_3 Ì T� � hg0_4 Ì T � hg0_5 (4.6) 

The subscripts “low” and “high” designate the low and high temperature polynomials, 

respectively, and the temperature, T, is in Kelvin. The transition temperature between these two 

polynomials is controlled through an input parameter, Ttrans. These two polynomials should not 

only have identical values at this transition temperature but also similar slopes. Therefore, when 

creating these two polynomials, it is important to choose their behavior in such a way as to 

encourage such a transition. Data from the longitudinal direction should be used to calibrate this 

parameter since the activity of cubic slip systems can cause the yield stress to vary with 

orientation. 

The non-Schmid factors, hpe, hse, and hcb for the threshold stress capture the dependence 

of dislocation motion on non-Schmid shear stresses. Specifically the glissile to sessile core 

transformation is affected by shear stresses on primary cross slip planes, τpe, secondary cross slip 

planes, τse, and the cubic plane, τcb (Qin and Bassani, 1992b).  Since their effect is the shift or 

expansion/contraction of the yield surface based upon orientation, which is in general small 
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compared to the temperature dependence of the threshold stress, they are less important than 

 *(�T�. If they are excluded from the initial parameterizations then the threshold stress may be 

slightly incorrect in different orientations, but the responses should not significantly differ from 

experimental data in the longitudinal direction. Also if they are excluded the anisotropy of the 

saturation stress will not be captured in any orientation, but again this effect is in general small. 

To calibrate these parameters fully, experimental data from the longitudinal direction, where 

octahedral slip systems are exclusively active, and the transverse or other off-axis orientation 

direction, where cubic slip has been activated, is required.  

Rχ is the magnitude of the steady state value of the back stress. This can be clearly seen 

by examining the back stress evolution equation in Eq. (3.4). Since for isothermal analyses the 

temperature rate, T� , is zero and since at high strain rates the static thermal recovery, Ω§(, is 

negligibly small these can both be neglected. Inserting Rχ in for χ
α
 results in, 

χ� ( � ¡§|γ� (|sgn�τ( � χ(� � ¡§ÃÒ¤§Ó|γ� (| (4.7) 

χ� ( � ¡§|γ� (|sgn�τ( � χ(� � ¡§Ã Ô ¡§¡§Ã sgn�τ( � χ(�Õ |γ� (| (4.8) 

χ� ( � ¡§|γ� (|sgn�τ( � χ(� � ¡§sgn�τ( � χ(�|γ� (| � 0 (4.9) 

where the rate of evolution of the back stress, χ �α, is easily seen to go to zero. Thus when the 

magnitude of the back stress is equal to Rχ the back stress has reached saturation and thus Rχ is 

the saturation value of the back stress at high strain rates. This parameter is easily determined 

then by matching the saturation stress of experimental data at high strain rates. 

Table 4.2 shows the input parameters for the yield group. Each of the non-Schmid factors 

is given a quadratic polynomial, 
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¡�� � h_pe1 Ì T� � h_pe2 Ì T � h_pe3 (4.10) 

¡¨� � h_se1 Ì T� � h_se2 Ì T � h_se3 (4.11) 

¡«¬ � h_cb1 Ì T� � h_cb2 Ì T � h_cb3 (4.12) 

where again the temperature is in Kelvin. The polynomial for Rχ, 

¤§ � Rx_1 Ì TÍ � Rx_2 Ì T� � Rx_3 Ì T� � Rx_4 Ì T � Rx_5 (4.13) 

also must be in units of Kelvin, and generally has been found to increase to around 850 °C and 

then gradually decrease for NI-base superalloys. 

 

Table 4.2: Group 2 parameters and inputs 

Parameter 
UMAT 

variables 

Range of 

Values 

Rχ 

Rx_1 

0-200 

MPa 

Rx_2 

Rx_3 

Rx_4 

Rx_5 

 *(�T�Ï
Ð 

g0_l1 

0-200 

MPa 

g0_l2 

g0_l3 

g0_l4 

g0_l5 

 *(�T�´�Ñ´ 

hg0_1 

0-200 

MPa 

hg0_2 

hg0_3 

hg0_4 

hg0_5 

hpe 

h_pe1 

0-0.3 h_pe2 

h_pe3 

hse 

h_se1 

0-0.3 h_se2 

h_se3 
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Table 4.2 (continued) 

Parameter 
UMAT 

variables 

Range of 

Values 

hcb 

h_cb1 

0-0.3 h_cb2 

h_cb3 

Rχ
cub 

R_x_oct 
100-200 

MPa 

Ttrans T_trans 1023K 

 

Group 3: Hardening; hχ, and D0 

The hardening group contains the most sensitive parameters, hχ and hχd  (Shenoy, 2006). 

However, in this parameterization hχd is controlled indirectly through Rχ, 

¤ § � ¡ §¡ §Ã (4.14) 

 which has already been placed in Group 2. An additional parameter in this group is the drag 

stress, D0, which affects hardening by normalizing the shear stress on each slip system.  

The rate of back stress evolution, hχ, controls the rate at which the back stress, and 

therefore the stress, reaches its saturation value. A high value for this parameter can seem to 

extend the elastic region of the simulation, while a very small value can cause a sharp transition 

immediately following the yield point with slow, almost linear, hardening afterward as is shown 

in Figure 4.5. This parameter should be calibrated by matching the rate of evolution of the back 

stress at high strain rates. 
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Figure 4.5: Effect of hχ on back stress evolution 

 

The drag stress, D0, is included in this group because it determines the sensitivity of the 

model to changes in the viscous overstress. It captures the component of flow resistance which is 

possible to overcome with the addition of thermal energy (Shenoy, 2006). A large value of the 

drag stress will cause a change in the viscous overstress to result in a smaller change in the 

inelastic shear strain rate, γ� , than a low drag stress. Confusion may be generated by the 

placement of this parameter in the hardening group since in most recent CVP models it is used as 

a yield parameter. The use of the drag stress in this manner can be justified through examination 

Figure 4.6  where the yield stress is elevated when the drag stress is increased. However, 

examination of the literature shows that it is also utilized as a hardening parameter (Asaro, 1983) 

as well as a viscous parameter (Nouailhas, 1989). The effect on hardening can also be seen in 

Figure 4.6, where as the drag stress increases the amount of hardening after yield is increased. Its 

effect as a viscous parameter is demonstrated in Figure 4.7 where the lines are isothermal values 

of the flow rule. Therefore the drag stress has been grouped as a hardening parameter since this 

is the data type by which it was found to be most easily determined.  
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Figure 4.6: Effect of D0 on a model prediction without back stress 

 

 

Figure 4.7: Effect of D0 on the flow rule 
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¡§ � h_x1 Ì TÍ � h_x2 Ì T� � h_x3 Ì T� � h_x4 Ì T �  h_x5 (4.15) 

The drag stress however has a single variable since its temperature dependence is controlled 

through the shear modulus as shown in Eq. (3.2). 

 

Table 4.3: Group 3 parameters and inputs 

Parameter 
UMAT 

variables 
Range of values 

hχ 

h_x1 

1x10
4
 – 5x10

5
 MPa 

h_x2 

h_x3 

h_x4 

h_x5 

hχ
cub 

hx_oct 1x10
4 

- 1x10
5
 MPa 

D0 d_zero 80 - 120 MPa 

D0
cub 

d_zero_oct 40 - 80 MPa 

 

Group 4: Flow Rule; n, γ �0, Q0, and B0 

The flow rule group consists of parameters that can be found in Eq. (3.1). These 

parameters govern the strain rate dependence of the CVP model and are crucial for both 

capturing the strain rate dependence of experimental data and for generating accurate predictions 

of strain rates outside of the calibrated range. 

 The first parameter in this group is the flow exponent, n. As can be clearly seen in Figure 

4.8, the value of n greatly affects the stress-strain relationship. Consider a test specimen 

experiencing plastic deformation of j� � 1 Ö 10"Í 1/s, and assume that the temperature is 

sufficiently high to place this strain rate in the creep regime. 

1 Ì 10"Í � j�*Θ ¹τn(D(¼r (4.16) 
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If all other flow rule parameters are constant the viscous overstress, τn(, must be large for Eq. 

(4.16) to be satisfied for small values of n. Similarly, τn( must be smaller for large values of n to 

achieve the same inelastic shear strain rate. Thus the model will predict a lower stress for a 

higher flow exponent if all other parameters remain constant.  

 

 

Figure 4.8: Effect of n, keeping all else constant 

 

As the temperature increases the strain rate dependence should increase which 

corresponds to a decrease in the flow exponent. Finding values for n that fit a smooth function is 

somewhat less difficult than for the back stress and threshold stress parameters because the 

model is less sensitive to this parameter and so the tolerance is larger. The behavior of n with 

respect to temperature should conform to the following trends: It should be fairly flat in the rate 

insensitive region between room temperature and 650 °C. At the other extreme, as the material 

approaches its melting temperature it will tend towards behaving as a Newtonian fluid (n = 1). In 

addition to these constraints, the model assumes that this parameter is constant outside the range 
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of a range set within the UMAT. The temperature-dependence of this parameter is therefore 

implemented through a 3
rd

 order polynomial. 

× � Ølow_exp1 Ì T� � Ølow_exp2 Ì T� � Ølow_exp3 Ì T � Ølow_exp4 (4.17) 

where the temperature is in Kelvin. The polynomial should have a slope of zero at both of these 

temperatures so that the transition from the temperature dependent behavior to the constant value 

is smooth. Figure 4.9 shows an acceptable polynomial for the flow exponent, n. 

 

 

Figure 4.9: Proper polynomial for n  

 

The next parameter in this group is B0 which is a unitless quantity in the flow rule 

exponential. This parameter has its most pronounced effect on the fastest strain rates since it 

modifies the exponential term of the flow rule. Its effect on the flow rule is to shift the rate 

insensitive region to the left and right, as shown in Figure 4.10, while leaving the steady state 

creep region undisturbed. It can be thought of as a modification to the drag stress for the 

exponential term. Since the parameter is not in itself temperature dependent it should be set using 

the lowest temperature and fastest strain rate where the response is known to be rate insensitive. 
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Note that the value of this parameter should never be greater than unity. Also note that as the 

parameter is decreased it becomes less sensitive. 

 

 

Figure 4.10: Effect of B0 on flow rule 

 

The final two parameters in this group are the reference inelastic shear strain rate, j�*, and 

the dislocation activation energy, Q0. The effect of these two parameters is very distinct from 

that of any other. j�* has the effect of shifting the entire flow rule up or down on the plot shown 

in Figure 4.11 by increasing or decreasing its value respectively. Q0 also has a similar affect on 

this plot, but in addition it has the effect of increasing or decreasing the separation of the 

isothermal lines in Figure 3.1. The dislocation activation energy should be initially set to the 

experimental dislocation activation energy where available. Usually this is a starting point, 

however, and its value should be adjusted to give correct observed temperature dependence of 

the strain rate. 
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Figure 4.11: effect of γ �0 
 

The parameters listed in this group are shown in Table 4.4. They are listed in order 

sensitivity in the model. The flow exponent, n, causes large changes in other parameters based 

upon changes in its value which is why it is listed first. γ� * and Q0 are next since they are 

important for capturing the strain rate dependence for all stresses. Finally B0 is listed last since it 

only affects the rate insensitive region of the flow rule.  

 

Table 4.4: Group 4 parameters and inputs 

Parameter 
UMAT 

variables 
Range of values 

n 

flow_exp1 

3-10 
flow_exp2 

flow_exp3 

flow_exp4 j�* gamma_dot_zero 10
5
 - 10

10
 1/s 

Q0 q_energy 2.5x10
5
 – 5.0x10

5
 MPa 

B0 b_zero 0.001 - 1 

B0
cub 

B_zero_oct 0.001 - 1 
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Group 5: Creep; n, hχs, and rχs 

The creep group is the final group. Since creep behavior is only significant at very slow 

strain rates (≈1.0x10
-5

/s), it can be neglected at the higher strain rates while the other material 

parameters are determined. Once the model is behaving correctly at the faster strain rates, its 

creep behavior should be adjusted. 

Parameters that most affect creep behavior are the flow exponent, n, and the back stress 

static thermal recovery variables, hχs and rχs. The back stress terms are the most sensitive 

variables, but care must be taken to not only model the stress relaxation behavior, but also the 

very slow cycling behavior. This is because the back stress can be modified through hχs and rχs to 

model the relaxation behavior, but this is not valid if the stress-strain response is not correct 

afterwards. Figure 4.12 illustrates a correctly calibrated model with a region of stress relaxation 

denoted as Region 1. Note that if only the back stress is used to calibrate the model to the creep 

behavior in Region 1, it may diverge from the desired response in Region 2 shown on the figure 

since the static thermal recovery of the back stress could cause its saturation level to be 

significantly lower than that needed for calibration of the saturation stress. 
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Figure 4.12: Creep behavior of DS-CM247LC 

 

The creep group parameters are listed in Table 4.5. Each of the back stress static thermal 

recovery parameters is given three inputs. However the static thermal recovery coefficient, hχs, is 

modeled as an exponential 

¡¢¦ � h_xs1 � h_xs2 Ì Úh_xs3Ì� (4.18) 

while rχs is fit with a quadratic polynomial, 

Û§¨ � r_xs1 Ì T� � r_xs2 Ì T � r_xs3 (4.19) 
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Table 4.5: Group 5 parameters and inputs 

Parameter 
UMAT 

variables 

Range of 

values 

n 

flow_exp1 

3-10 
flow_exp2 

flow_exp3 

flow_exp4 

hχs 

h_xs1 

NA h_xs2 

h_xs3 

rχs 

r_xs1 

1-4 r_xs2 

r_xs3 

hχs h_xs_oct NA 

rχs
cub 

r_xs_oct 1-4 

 

4.2 Hierarchical Ranking of Groups and Parameters 

After having grouped parameters by function and dependencies it is necessary to define 

an order of parameterization. This is done by examining the CVP model’s sensitivity to changes 

in parameter values and the number of interdependencies which exist in each parameter. 

Taking the first criterion, each group is ranked by the percent change in each parameter 

required to cause a significant change a model prediction, where a significant change is defined 

as the difference in stress for cyclic calculations relative to the same percent change in the 

threshold stress. Since the model is very sensitive to the yield stress and hardening groups these 

are ranked first according to this criterion. The elastic constants and CTE are ranked next. 

Finally the flow rule is next to last and the creep group is least sensitive. 

Taking the second criterion, each parameter group is ranked by the number of parameters 

outside of its group upon which it depends. Figure 4.13 shows the interdependencies which exist 

between groups where an arrow pointing towards a group indicates that the parameters at the end 

of the arrow depend on parameters at the beginning of the arrow. Dashed arrows indicate a 
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weaker dependence than solid arrows. The elastic constants do not depend on any other group, 

but every other group depends on this group. Therefore the elastic constants are ranked first by 

this criterion. The yield stress and hardening groups both have the same number of dependencies, 

but the strength of these dependencies differs so that the yield group is ranked before the 

hardening group.  The groups with the most dependencies are the flow rule and creep groups, 

however the creep group affects fewer groups and so is ranked lower. 

 

 

Figure 4.13: Interdependencies between parameter groups 

 

The combined ranking from these two criterion results in weighting the elastic constants 

and CTE first, yield and then hardening groups next, flow rule group next, and finally the creep 

group.  

Evaluating the parameters in each group is the next step towards creating the dual level 

hierarchy. Considering the elastic constants and CTE, the CTE can be neglected for isothermal 
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analyses and therefore is ranked below the elastic constants. In the yield group the threshold 

stress is calibrated first so that the saturation back stress value, Rχ, can be correctly calibrated. In 

the hardening group the rate of evolution of the back stress, hχs, is calibrated first. However the 

consideration of the drag stress, D0, presents a quandary since it depends strongly on the flow 

exponent, n. Therefore the order of groups is violated slightly by determining the value of n 

before determining D0. The next parameter to be considered is γ� * since it depends most heavily 

on the drag stress. Finally the creep parameters are determined; first rχs and then hχs. This is 

shown in Figure 4.14 where the thicker arrow emphasizes the jump between groups mentioned 

previously. 

 

Figure 4.14: Hierarchical path for rapid parameter determination 

 

However this hierarchical grouping method, as shown in Figure 4.14, would neglect the 

interdependencies between parameters by not adjusting them based upon calibration parameters 

upon which they depend. Therefore a set of scripts and functions has been written which corrects 

specific parameters based upon changes in other parameters. The flow diagram for this 
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implementation is shown in Figure 4.15 where the dashed lines indicate the use of codes to 

modify κ0 and Rχ. These codes were implemented in MATLAB and can be found in Appendix D. 

 

 

Figure 4.15: Process flow for an isothermal parameterization 

 

4.3 Definition of Data Types for Parameter Determination 

In the calibration of parameters of the CVP model it is necessary to define sections of 

data to which each parameter is most sensitive. These can then be used in the calibration of 

separate parameters so that multiple parameters are not determined using identical data which 

would cause interdependencies to be accentuated. Firstly, the elastic portions of an experiment 

are used to determine the modulus of elasticity. Moduli in multiple directions are needed to find 

the stiffness constants. The shear modulus can be found either from additional off-axis testing or 
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torsion experiments. Calibration of the threshold stress requires the initialization of plastic 

deformation. Therefore the yield stress of an experiment is determined using a tight offset and 

this value is used to calibrate the threshold stress. The saturation back stress, Rχ, needs 

experimental data with high strain rates where the saturation stress is clearly showing. The rate 

of back stress evolution requires knowledge of the hardening behavior of the material and so 

requires the section of data between yield and saturation. The flow exponent requires creep holds 

or stress relaxation data. For creep holds a sufficiently high strain rate must be used prior to the 

hold so that there is a significant amount of creep. Stress relaxation data is easily collected by 

switching from a fast strain rate to a slow strain rate or a strain hold. Calibration of the drag 

stress requires knowledge of the size of the inelastic flow potential. The calibration of B0 requires 

data with a strain rate sufficiently high to access the rate insensitive region of the flow rule. The 

calibration of γ� * is accomplished by correctly calibrating the saturation stresses for a range of 

strain rates. Similarly the dislocation activation energy, Q0, is calibrated to the saturation stresses 

of several strain rates, but in this case multiple temperatures are required. The creep parameters, 

hχs and rχs, are calibrated to creep or stress relaxation data, but are done so by matching the 

change in magnitude of the back stress between the beginning of the creep hold and its end. This 

is done by first measuring the displacement of the yield surface for cyclic hysteresis loops 

without strain or stress holds. Then the displacement of the yield surface is found after a hold. 

The difference between the two is due to static thermal recovery of the back stress and can be 

used to calibrate hχs and rχs. However multiple creep hold times are needed for this 

implementation, which is infeasible given other testing constraints which will be discussed later 

in this work. Therefore these terms are calibrated using the saturation stress of very slow strain 

rates.   
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To summarize the above data requirements: 

• Modulus of elasticity in two directions, and shear modulus or Poisson’s ratio 

• Appreciable yielding 

• Saturated hardening 

• Creep or stress relaxation 

• Minimum of three strain rates, each an order of magnitude different 

4.4 Isothermal Parameter Determination 

Since it is difficult to isolate parameters in a TMF experiment, isothermal experiments 

are used to determine internal state variable evolution and to calibrate the temperature-

dependence of the CVP model. These parameter values are then combined with the result being 

temperature-dependent parameter behavior. Isothermal parameter determination is therefore 

crucial to finding temperature-dependent parameters. The order of parameter determination is 

defined in section §4.2 and the data from which each parameter is determined is identified in 

§4.3. Therefore this section shows in detail the methodology used for determining isothermal 

parameters. Note that since the simulations are all isothermal during the initial parameter 

determination, it is unnecessary to input all of the coefficients of the temperature-dependent 

polynomials. By adjusting only the last coefficient of the polynomial and setting the rest to zero 

the number of input parameters is reduced to around twenty. Once parameter values have been 

determined for all temperatures, polynomials can be created and used in subsequent parameter 

calibration. 
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Group 1: Elastic Constants and Coefficient of Thermal Expansion; C11, C12, C44, and β 

As mentioned previously there are separate methods for finding the elastic stiffness 

constants for SC and DS alloys. For single crystal specimens the stiffness values can be obtained 

from the elastic modulus, E, Poisson’s ratio, ν, and the shear modulus, G. The stiffness tensor, C 

is the inverse of the compliance tensor, S, which is shown in Figure 4.16 (Mucke and Bernhardi, 

2003) for cubic symmetry. Therefore the stiffness constants can be easily found by inserting E, ν, 

and G into S and inverting the tensor. Alternatively the same process can be employed through 

 Ü�� � Ý Ì �1 � Þ��1 � Þ� Ì �1 � 2Þ� (4.20) 

 Ü�� � Ý Ì Þ�1 � Þ� Ì �1 � 2Þ� (4.21) 

 ÜÍÍ � � (4.22) 

which are the equations that result from inverting S.  

 

 

Figure 4.16: Equations for material compliance tensor, S, for cubic symmetry (Mucke and 

Bernhardi, 2003) 

 

For DS alloys, which are transversely isotropic, the procedure above cannot be used to 

obtain the stiffness constants because Poisson’s ratio measured between the transverse and 
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longitudinal directions is not equivalent to the one measured between principal lattice directions. 

The equations for the elastic and shear moduli are (Kuhn and Sockel, 1989), 

 
1E	,à � S�� � 2�S�� � S�� � 0.5 Ì SÍÍ� Ì J (4.23) 

 
1G	,à � S�� � 4�S�� � S�� � 0.5 Ì SÍÍ� Ì J (4.24) 

where, 

 J � sin��θ�cos��θ� � sinÍ�θ�8 41 � cos �4ρ�5 (4.25) 

and the angles θ and ρ are defined as in Figure 4.17. The elastic modulus in the longitudinal 

direction, EL, and the shear modulus measured in the longitudinal direction, GL, can easily be 

found by inserting θ = 0 and ρ = 0 into Eq. (4.25) and then evaluating Eq. (4.23) and (4.24), 

respectively. This results in, 

  
1Eå � S�� (4.26) 

 
1Gå � SÍÍ (4.27) 

Evaluating the elastic modulus in the transverse direction requires setting θ = 90° and integrating 

over ρ from 0-90°, 

 E� � æ dρS�� � 2�S�� � S�� � 0.5 Ì SÍÍ� Ì J
Íp°
*  (4.28) 

However, this leads to the formula, 

 E� � èEåE�*���é� �⁄
 (4.29) 

where E(011) is the modulus in the [0 1 1] direction. Inserting Eq. (4.23), with θ = 45 and ρ = 0, 

into Eq. (4.29) results in, 
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 E� � ¹ 8GåEå6Gå � Eå � 2GåEåS��¼� �⁄
 (4.30) 

Solving for the only remaining stiffness constant, S12,  

 S�� � 2EåE�� � 12Gå � 1Eå (4.31) 

Thus, the stiffness constants, C11, C12 and C44, can be found to functions of only the elastic and 

shear moduli in the longitudinal direction and the elastic moduli in the transverse direction, 

Ü�� � S�� � S��S��� � S��S�� � 2S���
� GåEå�E��èE�� � 4GåEåé�4GåEå� � E���Gå � Eå�� �4GåEå� � E���4Gå � Eå�� 

(4.32) 

Ü�� � �S��S��� � S��S�� � 2S���

� GåEåE�� �4GåEå� � E���2Gå � Eå���4GåEå� � E���Gå � Eå�� �4GåEå� � E���4Gå � Eå�� 

(4.33) 

ÜÍÍ � � (4.34) 

In the case of DS-CM247LC, EL, ET, and GL were supplied by Siemens and data obtained from 

the experiments performed were used to validate these values. 
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Figure 4.17: Definition of angles for elastic constant determination (Fahrmann et al., 1999) 

 

The Coefficient of Thermal Expansion (CTE), β, is not needed for isothermal analyses so 

the procedure for determining this parameter is listed in the next section.  

Group 2: Yield Stress; κ0, and Rχ 

The parameters contained in this group are Rχ, and κ0. Since this group is the most 

sensitive to other parameters the values determined during the initial parameterization will be 

modified numerically based upon changes in other parameters. The calibration process is as 

follows.  

The first parameter to be determined in this group should be the threshold stress, κ0. Any 

experimental data set with cyclic plasticity can be used here, although slower strain rates are 

preferred since the hardening rate is much slower which causes the yield stress to be more clearly 

defined. The goal is to adjust the point where the model predicts initial yielding until it matches 

some yield criteria. A very tight yet resolvable offset of 0.02% is used for yield stress 

determination. Figure 4.18 shows the calibration of κ0. The threshold stress can be estimated 

mathematically using the yield stress, however given the speed at which the model can be run it 
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is usually more efficient to calibrate the threshold stress visually starting from a value of zero 

and working upwards. This is not true for simulations which require lengthy runtimes, however. 

 

Figure 4.18: Calibration of κ0 to normalized data 

 

The steady state value of the back stress, Rχ, is the next parameter in this group to be 

determined. This is found by setting hχ to a very large number (1.0x10
10

 MPa) and adjusting the 

value of Rχ until the saturation stress is matched. By setting hχ to a large number the back stress 

evolves very quickly to its steady state. The evolution can be so fast in fact that the response 

appears elastic up until the saturation stress. The calibration is illustrated in Figure 4.19. To 

calibrate this parameter the fastest strain rate should be used since this data will not be biased by 

the inclusion of static thermal recovery of the back stress. The evolution equation for the back 

stress can, in the case of fast strain rates, be simplified to the first two terms as in Eq. (4.7) which 

simplifies the determination of Rχ. If the data does not contain sufficient plastic deformation to 

achieve the saturation stress then the value of Rχ can still be determined, however it is more 

difficult. The easiest solution in this case is to extrapolate the data and make an educated guess 
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as to what the saturation stress is and then calibrate to this extrapolation. Alternatively Rχ and hχ 

can be simultaneously determined, but this is undesirable since it leads to a solution which is not 

unique. 

 

Figure 4.19: Calibration of Rχ to normalized data 

 

As the magnitude of the steady state back stress, Rχ controls the maximum displacement 

of the yield surface. This means that the Bauschinger effect is controlled by this parameter. After 

calibration to the saturation stress this parameter should be checked to assure that yielding occurs 

in the correct location upon strain reversal. The locations indicated in the hysteresis loop shown 

in Figure 4.20 demonstrate the areas where this parameter has its most pronounced effect. The 

region of the hysteresis loop denoted by an ellipse targets where Rχ should be calibrated. The 

back stress also controls the Bauschinger effect, however, so the dashed circle contains the 

region where yielding should occur upon reversal. 
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Figure 4.20: Calibration check of Rχ  

 

Group 3: Hardening; hχ, and D0 

The first parameter to be calibrated in this group is hχ. This parameter can be determined 

by slowly reducing its value from the value used during the calibration of Rχ until the hardening 

behavior is approximately correct. It is important to note that for the initial calibration this 

parameter should be determined with reasonable accuracy since its value was found to not 

change significantly with other parameters. Again, however, this parameter will be revisited as a 

final step in the calibration of the model. 
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Figure 4.21: Calibration of hχ to normalized data 

 

The other parameter in this group, D0, depends heavily on the flow exponent. Therefore it 

is determined after n. The drag stress should be determined such that the threshold stress at the 

highest tested temperature is positive. Looking at the flow rule in Eq. (3.1) it is noted that the 

drag stress is used to normalize the shear stress on a slip system. A large drag stress will allow a 

larger stress prior to appreciable yielding and a lower drag stress will cause the change in shear 

stress to be small for the same change in γ� . Using this behavior, the change in stress from yield 

to saturation and the hardening in between should be used to calibrate the drag stress. This 

should have already been calibrated using Rχ, but the hardening behavior will be impossible to 

correctly calibrate if the drag stress is too high. Therefore the drag stress should be set to a value 

where the hardening is over predicted and then slowly decreased until the hardening behavior is 

adequately described and the saturation stress is accurate. This process requires numerical 

modification of Rχ and κ0(T), and the scripts to accomplish this are shown in Appendix D.  
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Group 4: Flow Rule; n, γ �0, Q0, and B0  

The first parameter to be determined in this group is the flow exponent, n. It can be 

estimated using the saturation stress of several strain rates in experimental data if the inelastic 

shear strain rates lie in the power law regime of Figure 3.1. By plotting the saturation shear 

stress, τsat, found through, 

 τ¨ê� � 0.4082483 Ì σ¨ê� (4.35) 

for longitudinal experiments, versus the inelastic saturation shear strain rate, γ� ¨ê�, on a log-log 

plot it is possible to determine an approximate value for n as is shown in Figure 4.22 where the 

exponent in the trend line is the approximate value for n. The coefficient is the Schmid factor for 

[0 0 1]. However it is more accurate to determine the value of this parameter from creep data 

since at most temperatures there are not sufficient data points to construct n from the saturation 

stresses because the inelastic strain rates in the power law creep regime are too low. In this case 

the inelastic deformation can be plotted against the shear stress relaxation. It should follow a 

power law curve and a fit to this curve produces a value for the exponent. This method should be 

used with care, however, since the experimental data will contain the dynamic thermal recovery 

of the back stress which could bias the flow exponent.  
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Figure 4.22: Calibration of n from saturation stresses at high temperatures 

 

The next step is to determine the correct value for the combination of j�*and Q0. Since 

this function is inherently temperature dependent the procedure used here is to determine a value 

of j�*which gives an appropriate value to the equation and correct later for the temperature 

dependence. To determine j�* it is necessary to plot the flow rule on a log-log plot. The value of 

j�* can shift the entire flow rule up and down on this plot as can be seen in Figure 4.11. The 

correct value of j�* has been found when the flow rule, in the power law region, matches the data 

sufficiently well. Determining Q0 requires multiple temperatures and the process for achieving 

this is described in the next section.  

The final parameter to be determined in this group is B0. This parameter should be set 

such that the rate insensitive region of the flow rule matches the behavior of the data as well as 

possible. It may be observed that at high temperatures the data may not enter the rate insensitive 

region fully. The value of B0 should therefore be determined at low temperatures where the rate 

dependence is limited. 
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Group 5: Creep; n, hχs, and rχs 

The parameters in this group are determined using creep and very slow strain rate data. 

Where available the values of hχs and rχs are determined using creep and stress relaxation from 

dwells in hysteresis loops. Since the back stress is recovered during periods of this nature it is 

possible to determine hχs and rχs. Ideally these parameters should be determined using strain 

recovery at zero load after rapid loading (Nathal and Ebert, 1985). Since no strain recovery data 

was available, however, these parameters were determined using the saturation stress for slow 

strain rates. 

Group 6: Non Schmid factors; hpe, hse, and hcb 

Since all other parameters from each group have been determined the only remaining 

parameters are the non-Schmid factors, hpe, hse, and hcb. The calibration of these parameters 

requires data from material directions other than [0 0 1] or longitudinal. This can be clearly seen 

since the determination of hpe and hse cannot be simultaneously performed on data in the 

longitudinal direction since the magnitude of the shear stress on the active octahedral systems is 

equivalent. Additionally the shear stress on the cubic slip systems is approximately zero causing 

hcb to have no effect in this orientation. Therefore hcb should be calibrated using transverse data 

so that the size of the yield surface is correct. hpe and hse should be determined simultaneously 

using longitudinal and transverse data such that the shift in the hysteresis loop in both directions 

is correct. 

The cubic non-Schmid shear stress, τcb, is negligibly small in longitudinal loadings and 

thus hcb can only be calibrated using off-axis data. To calibrate this parameter to DS-CM247LC 

transverse simulations were compared to experimental data. The parameter hcb affects the 

threshold stress equally whether the shear stress on the slip system in the slip direction is 
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negative or positive due to the absolute value operation in Eq. (3.7). This causes a symmetric 

change in threshold stress. Therefore this parameter should be calibrated after  *(�T� by taking 

the data from the transverse direction and matching the difference in tensile yield stress and 

compressive yield stress. Note that for a single crystal the [1 1 1] direction should be used to 

calibrate this parameter since the cubic Schmid factors are larger in this orientation than in the  

[0 1 1] direction. However data from the [0 1 1] direction can be used to calibrate this parameter 

since it would activate some cubic slip systems. 

The parameters hpe and hse affect the non-symmetric behavior of the yield stress and 

therefore the saturation stress. This can be clearly seen by applying a positive or negative stress 

to the unit cube. The result is that the threshold stress will be offset from its previous value by an 

amount directly proportional to the shear stress generated by the normal stress as is shown in 

Figure 3.5. In other words a positive shear on the primary or secondary slip planes in the slip 

directions will result in an increase in the threshold stress while a negative shear stress will result 

in a reduction of the threshold stress for positive values of hpe and hse. Because the relationship 

between these two shear stresses on these planes will depend upon crystal orientation with 

respect to loading the coefficients hpe and hse should be calibrated such that the offset of the yield 

or saturation stress is accurate for two different orientations. For the calibration of DS-CM247LC 

the longitudinal and transverse directions were used to calibrate these two parameters. If data 

does not exist for multiple directions then these parameters become redundant and one should be 

set to zero.  

 



 

75 

 

4.5 Temperature Dependent Parameter Determination 

The procedure for determining temperature dependent parameters is to first obtain 

parameter values at points in temperature from isothermal analyses and then to construct 

polynomials which follow the parameter behavior with respect to temperature. This may seem 

like a simple extension of the above procedure but unfortunately it is not. Some of the variability 

that exists in the model during an isothermal calibration disappears when the temperature 

dependence is included. Additionally, as the temperature range increases the variability of the 

model parameters decreases causing calibrations for large temperature ranges to be considerably 

more difficult than isothermal calibrations. Attempts were made to reduce this variability during 

the isothermal calibrations but it cannot be eliminated. The challenge comes from needing to find 

parameter values which nicely fit the behavior of a polynomial where smoothness is crucial. 

Figure 4.23 shows two sets of parameter values for κ0. The polynomial fit in Figure 4.23(a) does 

not represent how the threshold stress should change with temperature, while the fit in Figure 

4.23 (b) does a good job of representing the temperature-dependent behavior of the threshold 

stress as the maximum is around 750 °C (1023K) and the slope of the polynomial is strongly 

negative above this temperature. 



 

76 

 

  

Figure 4.23: Illustration of (a) poor polynomial representation and (b) good polynomial 

representation to normalized data. 

 

The first step in creating temperature dependent parameters is to calibrate the temperature 

dependence of the elastic properties. Implementing the temperature dependence of the stiffness 

constants, however, is fairly simple. One need only to plot the values obtained from isothermal 

experiments with respect to temperature and apply a 2
nd

 order polynomial to the plot. The result 

should be very smooth polynomials like the ones shown in Figure 4.24.  

 

(a) (b) 
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Figure 4.24: Behavior of C11 with respect to temperature 

 

The stiffness constants are not as easy to obtain as one might think. Several published 

values for the stiffness of Ni-base superalloys are shown in Figure 4.25 – Figure 4.27 (Alers et 

al., 1960; Ledbetter and Reed, 1973; Kuhn and Sockel, 1989; Ichitsubo et al., 2002; Shenoy et 

al., 2005; Ma et al., 2008). It is generally assumed that the stiffness values for these alloys should 

not vary significantly from that of pure Nickel (Reed, 2006), however, in reality the stiffness 

values shown cover a large range . Neither the Young’s modulus, shown in Figure 4.28, nor the 

shear modulus however, show the same variation as do the stiffness constants. This suggests that 

the methods for determining the stiffness constants may not be as trivial as thought.  
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Figure 4.25: C11 values from multiple sources 

 

 

Figure 4.26: C12 values from multiple sources 
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Figure 4.27: C44 values from multiple sources 

 

 

Figure 4.28: Young’s modulus in [0 0 1] direction for a range of DS and SC Ni-base superalloys 

and Nickel 
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The CTE is not difficult to obtain once an understanding of its derivation is secured. The 

implementation of thermal strain in the model follows that proposed by Srikanth and Zabaras 

(1999), which is slightly more complicated than the traditional approach. The data used to 

calibrate this parameter is the thermal strains from stabilized temperature cycling. It is tempting 

to use the thermal strain data from a high temperature isothermal experiment, however this in 

general is not a reliable measurement of the thermal strain since the temperature across the gage 

section is not uniform. Since the cyclic stabilization of the thermal strain is necessary prior to 

TMF experiments, however, it is intelligent to use this data where possible.  

The equation by which the thermal deformation gradient is updated is shown in Eq. 

(3.10). For a finite number of steps the deformation gradient on the n
th

 step can be calculated 

from the undeformed state as, 

 �x	 � e���ì�Ì �e���ìí��Ì � Ì … Ì e�����Ì �Â�*	 

(4.36) 
 � exp î& ÎΔTr

|.� ð �*	 

where �x	 is the thermal deformation gradient on the n
th

 interval and �*	 is the initial thermal 

deformation gradient for the step. If an infinite number of steps are used then the sum in the 

exponent can be approximated by an integral which results in, 

 �x	 � exp � æ Î���dx�
�Â

� �*	 (4.37) 

The thermal strain, ε
θ
, can be calculated from the thermal deformation gradient, �xñ, by, 

 �	 � � � � � � � 12 � � ��x	� � �x	 � �� � � (4.38) 
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where N is a unit vector in the reference configuration, � is the thermal Green’s strain, �x	�
 is the 

transpose of �x	, and I is the identity matrix. Eq. (4.37) can be inserted into Eq. (4.38) which 

results in  

 �	 � 12 � � ò�exp � æ Î�x�dx�
�Â

� �*	�� � exp � æ Î�x�dx�
�Â

� �*	 � �ó � � (4.39) 

 � 12 � exp �2 æ Î�x�dx�
�Â

� � � ôÒ�*	Ó� � �*	 � �õ � � (4.40) 

 � 12 �exp �2 æ Î�x�dx�
�Â

� � 1� (4.41) 

Taking the natural log of both sides and rearranging gives, 

 
lnè2ε	 � 1é2 � æ Î�x�dx�

�Â
 (4.42) 

Taking the partial derivative of this with respect to temperature results in, 

 Î�Ê� � ¥ln�2÷�´ � 1�2 � ¥T � ¥ø¥T (4.43) 

where a is the function ln(2εth-1)/2. By plotting a with respect to temperature, as is shown in 

Figure 4.29, a 4
th

 order polynomial can be fit to the result. The CTE, β, is then the partial 

derivative of the polynomial with respect to temperature, which is shown in Figure 4.30. Table 

4.6 shows the relationship between the CTE and the polynomial coefficients where ai is the 

coefficient of the i
th

 term in the polynomial. The values for the CTE from Figure 4.29 are shown 

in Table 4.6 as additional illustration of the process for finding them.  
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Figure 4.29: Plot of a vs. T 

 

 

Figure 4.30: Polynomial for β 
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Table 4.6: Relationship between calculated and model parameters 

Model 

Parameter 

Polynomial 

Coeffs. 

Value from 

Figure 4.29 

ec1 =  4*a1 -5.803x10
-14 

ec2 =  3*a2 1.233x10
-9 

ec3 =  2*a3 -1.270x10
-6 

ec4 =  1*a4 1.068x10
-3 

 

One of the most challenging temperature dependent parameters to calibrate is the 

threshold stress. Since the yield stress of Ni-base superalloys increases up to around 750 °C the 

threshold stress should follow the trend that it increases up to about this point. Afterwards, 

however, it quickly drops off. This behavior is difficult to match with a single polynomial which 

maintains smoothness across the entire temperature range and so it has been found necessary to 

describe this parameter with two separate temperature dependent polynomials. The temperature 

at which the model transitions from one polynomial to the other has been included as an input 

parameter as shown in Table 4.2. At the transition temperature both polynomials should have the 

same value and approximately the same slopes. In order to obtain smoothness a trade-off 

between κ0 and Rχ must sometimes be employed where the yield stress is traded with the steady 

state value of the back stress such that the saturation stress remains the same.  

 ¤§��� � ¤§� � �*� � *� �  *���� (4.44) 

Here i represents the calibrated result, i+1 represents the new parameters, µ is the shear modulus 

in MPa at the current temperature, and µ0 is the shear modulus at 0K. The result of these 

transformations is the plot on the right of Figure 4.23 which produces a smooth polynomial. Note 

the slope of the polynomial on the right as it approaches 550 °C is approximately zero. This is 

done since the plasticity parameters are assumed constant below 550 °C in this parameterization, 

which will be validated in a later chapter. 
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Previously j�* was determined for each isothermal temperature. However obtaining a 

single value for this parameter as well as for Q0 requires experimental data from multiple 

temperatures. To determine both j�* and Q0 they should be thought of as a single temperature 

dependent function.  

 Φ�T� � γ� *θ�T� � γ� * Ö ¶·̧
exp ¹� º*RT¼ … … … … … … … … … … T ¾ Tw2exp ¹� 2º*RTw lln ¹Tw2T¼ � 1q¼ … . … … T ¿ Tw2

À (4.45) 

As can be seen Q0 controls the temperature dependence. To calibrate Q0, the flow rule at the 

highest temperature should first be correctly calibrated using γ� * as is shown in Figure 4.31. The 

dashed lines are the flow rule, and the isolated symbols are the saturation stresses of 

experiments. It is observed that in this figure the dislocation activation energy is obviously much 

too small to capture the temperature dependence of the rate dependence. Therefore the value of 

Q0 is increased until the isothermal lines at each temperature match the experimental data as 

shown in Figure 4.32. To accomplish this γ� * must be simultaneously modified by 

 γ� *��� � γ� *� exp Zº*��� � º*�Φ \ (4.46) 

where “i+1” are the new parameter values and “i” is the value used in Figure 4.31. Φ is the 

temperature dependent function which changes at half the melting temperature as in Eq. (4.45). 

Note that the activation energy of NASAIR 100 (Nathal and Ebert, 1985) which is an alloy 

modified from MAR-M247 for single crystal applications, was used as an initial value in the 

calibration of DS-CM247LC. 
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Figure 4.31: Model calibrated at highest temperature using γ �0 

 

 

Figure 4.32: Model calibration after adjusting Q0 and mathematically correcting γ �0 
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As noted above, finding temperature dependent parameters can be difficult. It should be 

anticipated that the initial isothermal parameters will not create an adequate temperature 

dependent behavior. Therefore an iterative approach should be used where isothermal 

parameterizations are continuously performed in tandem with polynomial creation as shown in 

Figure 4.3.  

4.6 Discussion of Parameter Optimization 

In the course of determining parameters for the CVP model, one must realize that there 

exists no unique solution that completely captures a material’s behavior. This is a consequence 

of the phenomenological nature of the model. Thus when a parameter set has been determined 

from the above procedures, one must ask if there could be a separate set of parameters which 

more accurately capture the material behavior. To answer this question an optimization 

algorithm could be used to find optimal parameters based upon an evaluation criteria similar to 

what Song (2010)  has done. This should not, however, be viewed as a shortcut to material 

parameters since the initial parameter set has a significant effect on the outcome of the 

optimization. Hence, one cannot skip the parameterization phase and go directly to solving an 

optimization problem. Any robust automated procedure must take small steps to hone in on a set 

of parameters. 

In this work the author attempted to use ModelCenter® (Phoenix Integration v9.0) to find 

optimal parameters for DS-CM247LC. However, because the initial parameter values were not 

sufficiently accurate and because the error evaluation techniques were not adequately 

sophisticated, the time for convergence was on the order of days for a single parameter when the 

same accuracy could be achieved by hand in minutes. Due to time constraints the author was not 
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able to focus on reducing the time of convergence. However, based upon this experience a set of 

requirements is outlined below. 

The setup of an isothermal optimization should follow the procedure described in this 

chapter for isothermal parameterizations. A series of individual optimizations should be 

constructed within an optimization such that the parameter groups are determined individually as 

is shown in Figure 4.33. This method is similar to that shown in Song (2010) except that the 

levels of optimization have been sequenced rather than looped. There are two levels in the 

process. Level 1 is where the parameter groups are optimized, and level 2 is where the 

parameters are optimized.  

 

 

Figure 4.33: Isothermal optimization of parameters 
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To evaluate the error between the model predictions and experiments there must be a 

consistent way of determining the differences between the two. There are several possibilities for 

strain controlled experiments; 

1) Take the difference between values of stress at discrete points in strain. 

2) Take the difference between values of strain at discrete points in stress. 

3) Take the difference between values of stress at discrete points in time. 

4) Take the difference between values of strain at discrete points in time.  

5) Take the difference between values of inelastic strain at discrete points in time. 

Of those listed the two best are 1) and 3) since taking the difference between values of stress 

gives an appreciable error even for small deviations. The second option is acceptable for stress 

controlled experiments, however since the model is run by inputting a strain value, this criterion 

is difficult if not impossible to implement because the controlled strain must be adjusted to 

achieve convergence. The fourth option does not yield acceptable results for strain controlled 

experiments because it would result in the evaluation of the exactness of the experimental 

controller. The fifth option is an acceptable criterion for creep holds and strain holds if there is an 

accurate measurement of the inelastic strain. However this measurement is hard to achieve 

without significant noise cluttering the signal and making errors difficult to reduce. Regardless of 

which criterion is used, it will need to find identical x-values for comparing y-values. This can 

easily be accomplished through interpolation of the experimental data to find y-axis values for 

points of x-axis values which were used in the model prediction. This is shown graphically in 

Figure 4.34 where the experimental data has been interpolated to match the strain values for the 

model prediction. 
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Figure 4.34: Interpolation of strain and stress for comparison with the CVP model 

 

Two different error definitions have been chosen from the proposed five listed above. 

Definition 1) is chosen for most of the error evaluations because it allows the evaluation of the 

model parameters based upon the same criterion which fatigue lives are calculated: stress and 

strain. However this criterion cannot be used for stress relaxation where there exists a single 

value of strain, or small range of strain, with multiple values of stress. In these cases the third 

criterion, where the difference between values of stress at discrete points in time is taken, is used.  

Once a criterion has been selected for error evaluation the error can be calculated 

between the experimental and model response through an objective function. One good choice 

for an objective function is, 

 ÝÛÛúÛ � 1û & ü�ε�� îý�þ��ε�� � ý¨�w�ε��èý�þ�éwêþ Ö 100ð��

|.�  (4.47) 

where N is the total number of data points used for comparison, w(εi) is the weighting that has 

been assigned to the data, σexp is the experimental stress, and σsim is the simulation stress 
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(DeMarco et al., 2010). It uses the sum of the squares method, includes a weighting for emphasis 

of importance, and it normalizes the stress so that values of different magnitudes may be 

compared. This last benefit is important in the evaluation of the error between the model 

response and experiments because a wide range of stress magnitudes are seen when the strain 

rate and temperature dependencies are considered. Accurate optimization of creep parameters, 

for example, will not be achieved quickly if the error is evaluated identically to that of the 

hardening parameters without normalization.  

The weighting can be assigned in multiple ways. One way is to assign weighting based 

upon how important the data is. With this method certain aspects of the data can be accurately 

parameterized while leaving others more roughly calibrated. Another way to assign the 

weighting is by how sensitive the model is to a certain parameter. With this technique the 

weighting can be increased for those parameters which only cause small changes in the model 

with large changes in their value, such as γ �0. This would cause the optimization to work harder 

on the less sensitive parameters. The weighting can also be used to single out a parameter for 

optimization if its interdependencies can be neglected. This can be done by setting the weight to 

all other error evaluations, except the one most sensitive to a single parameter, to zero.  
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Chapter 5. Experimental Protocols for Efficient Calibration 

 

The design of experiments is important not only in the calibration of the CVP model, but 

also in reducing the time and effort of calibration. Typical testing regimens can consume 

upwards of six months since separate experiments are run for each set of control conditions, such 

as temperature, strain rate, and initial microstructure. Additionally the hysteresis response of low 

cycle fatigue test data of Ni-base superalloys often does not contain the significant cyclic plastic 

strain needed to calibrate the CVP model. Therefore it is necessary to set forth a list of 

requirements which when placed on the collection techniques of experimental data result in a 

dataset adequately detailed for the efficient calibration of the CVP model for use in 

thermomechanical fatigue predictions. In this chapter a list of the minimum requirements is 

defined and the experiments that were selected to fulfill these requirements and used in this study 

are provided. These do not in general fulfill the requirements for calibration of the model for use 

in thermal processing or high rate deformation. 

5.1 Minimum Data Requirements 

There exists a minimum amount of data that is required to accurately calibrate the crystal 

viscoplasticity model to a specific material which depends on the specific material traits desired 

for calibration. Table 5.1 shows a summary of the requirements for an accurate, complete, 

temperature-dependent parameterization of the CVP model. The following is a discussion of 

what motivates each requirement. 
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Table 5.1: Requirements for calibration data 

Requirement Reason 

Elastic modulus in at least two directions 
Calibration of the stiffness 

constants, C11, C12, C44 

Thermal strain vs. temperature data Calibration of the CTE 

Multiple material directions 
Calibration of octahedral and 

cubic slip parameters 

Cyclic response 
Bauchinger effect, asymmetry 

of the yield surface 

Minimum of three strain rates 
Calibration of the strain rate 

dependent parameters 

Large plastic strain range: ~0.4% 
Proper calibration of internal 

state variable evolution 

Stabilized hysteresis 
Evolution of internal state 

variables 

Minimum of six temperatures 
Temperature-dependent 

polynomial creation 

 

The first requirement is the most obvious. The elastic constants need to be determined 

from data. This is exceedingly important for thermomechanical loading since small errors in the 

elastic response can lead to large errors in the cyclic plastic strain prediction, particularly when 

the amount of applied plastic strain is small in comparison to elastic strains. Even a small 

deviation in the elastic modulus can cause a large error in the model response as seen in Figure 

4.4. Therefore, for each isothermal testing temperature a separate test or a section of a test should 

be devoted to determining the elastic modulus and Poisson’s ratio. It is noted here that the elastic 

modulus in the transverse direction can vary as much as 30% for DS alloys (Siemens, 2010). 

This variation is caused by the grain size in the transverse direction; if the extensometer is placed 

across a large grain the measurement of strain can be significantly biased. 

The second requirement is that the coefficient of thermal expansion be determined 

accurately. The process for determining the value of the CTE is listed in section 4.5 and requires 
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stabilized cyclic data of thermal strain versus temperature. Because the stabilized cycling of 

temperature is required for TMF experiments the data is most conveniently recorded from free 

expansion thermal cycling before the start of a TMF experiment, after steady state thermal 

cycling conditions have been achieved.  Note that, as mentioned in Chapter 4, the half 

temperature cycle created by raising an elevated temperature experiment from room temperature 

to its testing temperature is not sufficiently accurate for the calibration of the CTE and should not 

be used unless the temperature change rate is slow enough to ensure uniform temperature 

distribution throughout the gage section. 

The third requirement is that the material be tested in several different material directions. 

Since the loading of a component is in general not aligned with the [0 0 1] direction it is 

important to determine the stress-strain response of the material in several directions and to 

calibrate the model to them. This allows the activity of different slip systems to be determined 

along with the directional dependence of the elastic constants. Suggested testing directions are 

shown in Table 5.2, Table 5.3, and Table 5.4 for different alloy crystal structures. 

 

Table 5.2: Single Crystal required orientations 

Single Crystal 

Direction Reason 

[0 0 1] 12 octahedral slip systems active 

[0 1 1] 4 octahedral slip systems active, 6 cubic slip 

systems mildly active 

[1 1 1] 6 octahedral and 3 cubic slip systems active 

[1 2 3] Single slip system active 
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Table 5.3: Directionally-Solidified required orientations 

Directionally Solidified 

Direction Reason 

L Only octahedral slip systems active 

T Both octahedral and cubic slip systems active 

45° Both octahedral and cubic slip systems active 

 

Table 5.4: Polycrystalline required orientations 

Polycrystalline 

Direction Reason 

any Response is averaged in all directions 

 

The next requirement is that the data include the cyclic response. This is important for 

selection of the hardening parameters (Huber and Tsakmakis, 2001): the Bauschinger effect as 

well as the evolution of back stress and threshold stress are contained in this data. Additionally 

the stabilized cyclic response is needed for selection of material parameters which are relevant to 

fatigue life predictions.  Included in the cyclic response should be a significant amount of 

plasticity so that the inelastic parameters can be clearly identified. 

Since as mentioned previously a materials deformation response is time dependent, 

multiple strain rates or dwells must be included in the data acquisition. Looking at the flow rule, 

there are three regions of interest: slow strain rates, medium strain rates, and fast strain rates. 

Since the material response is strain rate insensitive at very high strain rates only one strain rate 

is required to determine the material response in this region. However, at least two strain rates 

are needed to determine the slope of the flow rule at slower strain rates. Thus three strain rates is 

the minimum number required to determine the strain rate dependence of a Ni-base superalloy. 

As can be seen in Figure 3.1 a large change in strain rate is needed to affect a relatively small 
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change in shear stress. Thus each of the chosen strain rates should be at least an order of 

magnitude different from each other. 

As mentioned above a significant amount of plasticity is required to calibrate the 

plasticity parameters χ, D0, j�*, Q0, and B0.  Typically low cycle fatigue tests for fatigue life 

prediction contain inelastic strain ranges less than 0.2%, however this data does not contain 

significant amounts of information about the evolution of the state variables. Therefore a 

minimum plastic strain range of 0.4% is suggested for the efficient and accurate calibration of 

the state variables. This suggestion is based upon the strain hardening of DS-CM247LC. If no 

strain hardening is observed in a material, then the inelastic strain range can and should be 

reduced. The important aspect of this requirement is to include enough plasticity so that the 

internal state variables reach a saturation value. However, care must be taken to not include too 

much plasticity since this will cause premature failure in the experiment. This is discussed in the 

next requirement. Additionally, the yield surface must be crossed at a minimum of six points so 

that there is a sufficient number of data points for the creation of the temperature dependent 

polynomials fitted through hχ(T), Rχ(T), κ0(T). If the temperature range of interest is small 

(O(200 °C)) fewer data points can be used since the order of the polynomials can be reduced. 

Finally, a stabilized hysteresis is needed for each strain rate at each temperature. This is 

important since the steady state material response is needed to determine the evolution of the 

state variables. Thus a stabilized hysteresis loop is needed in order for the model to reasonably 

be expected to accurately describe the material response. Depending on the intended application 

of the model, the transient response may or may not be of interest. If the focus is developing 

modeling tools for life prediction, modeling the stabilized response is often sufficient. The 

variables dealing mostly with the transient behavior can then be turned off which simplifies the 
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model. If it is desirable to determine the transient response, which might be needed for 

thermomechanical processing simulations where the initial deformation response is important, 

then several cycles prior to stabilization are needed. This could add significant amounts of time 

to the parameterization process since the simulations must be several times longer than for the 

stabilized response and the number of parameters considered increases. Because the suggested 

amount of plasticity causes the life of the specimen to be low, typically less than 50 cycles, care 

must be taken in designing the test plan such that a sufficient number of cycles is included to 

capture the material behavior. While a stabilized hysteresis loop is required it may be impossible 

to obtain at each strain rate if the life of the specimen is exceeded by the number of cycles 

needed to obtain the steady state response. If this is the case there are several options. The first is 

to split strain rates into different tests. This should reduce the required number of cycles per test 

to be under the expected life. The second option is to reduce the inelastic strain range which 

would cause the life of the specimen to increase. This is an option only if the steady state 

response of the state variables can be inferred from the data. For instance, a stabilized hysteresis 

is never reached in Figure 5.1 for the medium or fast strain rates yet because the stress-strain 

relationship is strain rate insensitive at low temperatures the steady state response can be inferred 

from the slow strain rate. 
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Figure 5.1: Example of stress-strain relationship at low temperature which does not reach 

cyclically stabilized hysteresis 

  

5.2 Experiments 

A set of experiments was designed to fulfill the above requirements. Experiments were 

separated by temperature and one isothermal experiment was conducted at each temperature. 

Figure 5.2 shows the strain history that was designed to fulfill the above requirements. Each 

isothermal experiment contains three strain rates for calibration of the flow rule in both the rate 

dependent and insensitive regions. Additionally a compressive creep hold is included in each 

experiment. The strain rates are organized such that the creep hold follows the fastest strain rate 

and is then followed by the slowest strain rate. This causes the amount of creep to be more 

significant than if placed anywhere else in the experiment. Five cycles are completed at both of 

the faster strain rates to allow the material to achieve cyclic hysteresis. The total time of each of 

the isothermal experiments is shorter than 4.5 hours.  
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Figure 5.2: Strain history designed for calibration experiments

 

Table 5.5 shows the test plan for the longitudinal direction. The strain ranges were 

selected to produce the required inelastic strain range, and the temperatures were selected to 

produce adequate points for polynomial creation.
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Strain history designed for calibration experiments 

shows the test plan for the longitudinal direction. The strain ranges were 

selected to produce the required inelastic strain range, and the temperatures were selected to 

produce adequate points for polynomial creation. 

Table 5.5: Isothermal longitudinal test plan 
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selected to produce the required inelastic strain range, and the temperatures were selected to 
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Table 5.6 and Table 5.7 show the test plan for non-Longitudinal isothermal testing and 

TMF testing respectively. The strain ranges for the transverse and off-axis test were adjusted 

with the knowledge that the modulus will be different from the longitudinal direction. Only three 

tests were performed in each of these directions since the parameters that become active in these 

directions are assumed to be non temperature-dependent. Additionally cube slip is active at 

higher temperatures (Bettge and Osterle, 1999), so the experiments used for calibration were the 

ones at 950 °C. The strain ranges for the TMF tests were determined from previous experiments 

(Kupkovits, 2009). 

 

Table 5.6: Off-axis testing matrix 
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3 Strain Ramp T 2000 1.0E-04 1.0E-03 1.4 -1 950 

4 Strain Ramp 45° none 1.0E-04 1.0E-03 1.4 -1 400 

5 Strain Ramp 45° 2000 1.0E-04 1.0E-03 1.6 -1 750 

6 Strain Ramp 45° 2000 1.0E-04 1.0E-03 1.4 -1 950 
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Table 5.7: TMF test matrix 
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Chapter 6. Experimental Methods 

 

The experiments listed in the previous chapter were performed on DS-CM247LC and 

used to calibrate the CVP model shown in Table 3.1. The following presents the experimental 

setup used and the data that was acquired. 

6.1 Experimental Setup 

The experiments listed in Table 5.5, Table 5.6, and Table 5.7 were conducted on DS-

CM247LC. The total time required to run each of the experiments was 22 days spread over five 

months with each isothermal experiment lasting approximately four hours and TMF experiments 

lasting between one and five days. Strain rates of 5.0x10
-3

/s, 1.0x10
-4

/s, and 4.0x10
-6

/s were used 

for the fast, medium, and slow strain rates, respectively. These strain rates were chosen based 

upon data from DS-GTD-111 (Shenoy, 2006) and from data on DS-CM247LC (Kupkovits, 

2009). 

A dog bone specimen with the dimensions shown in Figure 6.1 was used for all 

experiments, where the units are in inches. The experimental set up for all experiments was as 

follows; a 44.5 kN (10 kip) axial servo-hydraulic MTS® testing machine with water cooled grips 

(MTS® model 646) was used along with TestStar controller software (Testware SX® 4.0D). The 

load cell resolution of the machine was ±0.22 kN. Temperature feedback was provided by two 

26-gage K-type thermocouples having 0.404 mm (0.159 in) diameter leads which were spot 

welded just above and below the specimen gage section as is shown in Figure 6.2. The specimen 

was heated by an Ameritherm® single phase 2 kW radio frequency induction heater with a 
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control resolution of ±1 °C which was controlled by a PID controller (Watlow® model 945A-

2FK5-A000) with closed-loop feedback control. A high temperature extensometer (MTS® 

model 632.52E-14) with 5.0 mm diameter alumina extension rods and a 1.0” gage length was 

used to obtain strain measurements. For the thermomechanical experiments the controller PID 

values were determined for each test such that the error between the desired temperature and 

actual temperature was within the ASTM specification E8/E 8M-08 (ASTM, 2008). Data 

acquisition rates were determined such that there was a minimum of two hundred data points per 

half cycle. 

 

 

Figure 6.1: Specimen drawing and dimension specification 
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Figure 6.2: Diagram of inserted specimen 

 

6.2 Experimental Data 

Figure 6.3 - Figure 6.12 show the experimental data obtained from the longitudinal and 

transverse calibration experiments listed in Table 5.5 and Table 5.6, respectively. The plots show 

the data separated by temperature so that the strain rate dependence is emphasized. Each cycle is 

shown in the figures so that the cyclic hysteresis is evident. This data was used in model 

calibration. By comparing Figure 6.3 to Figure 6.4 it can be seen that the stabilized cyclic 

response does not differ significantly between these two temperatures with the exception that the 

elastic modulus is different. This was used to simplify the temperature-dependent parameters by 

keeping them constant between these two temperatures. The experiment at 750 °C is the first to 

experience quantifiable strain rate sensitivity as can be seen in Figure 6.5. The higher 

temperature experiments reach a stabilized cyclic hysteresis at each strain rate much faster than 

the lower temperature experiments. Experiments which do not complete the slowest cycle, seen 

in Figure 6.3and Figure 6.7 were stopped due to adverse changes in the experimental 
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environment. However, these experiments were not re-run since the data contained in them was 

sufficient for calibration purposes. 

 

 

Figure 6.3: Calibration experiment response in the longitudinal direction at room temperature  

 

 

Figure 6.4: Calibration experiment response in the longitudinal direction at 650 °C  
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Figure 6.5: Calibration experiment response in the longitudinal direction at 750 °C  

 

 

Figure 6.6: Calibration experiment response in the longitudinal direction at 850 °C 
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Figure 6.7: Calibration experiment response in the longitudinal direction at 950 °C 

 

 

Figure 6.8: Calibration experiment response in the longitudinal direction at 1050 °C 
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Figure 6.9: Calibration experiment response in the transverse direction at 400 °C 

 

 

Figure 6.10: Calibration experiment response in the transverse direction at 750 °C 
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Figure 6.11: Calibration experiment response in the transverse direction at 950 °C 

 

 

Figure 6.12: Experimental stress relaxation data in the transverse and 45° off-axis directions for 

compressive strain holds 
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Figure 6.13 - Figure 6.15 show the 45° off-axis experimental data which was obtained 

from the experiments listed in Table 5.6. This data was not used in the calibration process and 

was therefore available for model validation. The experiment at 400 °C experienced serrated 

yielding which decreased in severity as the experiment progressed, and was greater in 

compression than in tension. 

 

  

Figure 6.13: Validation experiment in the 45° off-axis direction at 400 °C 
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Figure 6.14: Validation experiment in the 45° off-axis direction at 750 °C 

 

 

Figure 6.15: Validation experiment in the 45° off-axis direction at 950 °C 
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Figure 6.16 and Figure 6.17 show the data from the TMF experiments listed in Table 5.7. 

Each one has a temperature range of 100 – 950 °C. The first one has a cycle time of 1700s, and 

the second one has a cycle time of 6600s due to repeated strain holds. The strain and temperature 

profile for the second experiment is shown in Figure 6.18. In both cases the experiments were 

run to failure, where it is defined as fracture. Due to the large cyclic plastic strain, the cyclic peak 

stresses, shown in FIGYY, never stabilized so the load drop criterion could not be used. 

 

 

Figure 6.16: OP TMF experiment with temperature range 100-950 °C, 1750s cycle time, no 

holds 
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Figure 6.17: OP TMF experiment with temperature rage 100-950 °C, 110 minute cycle time, 

with six 800s holds per cycle 

 

 

Figure 6.18: Strain and temperature history for second OP TMF experiment 
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Figure 6.19: Peak cyclic stress for second OP TMF experiment 
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Chapter 7. Parameterization Results 

 

After performing the calibration procedures outlined in Chapter 4, the model was 

calibrated to the test data obtained for DS-CM247LC shown in Chapter 6. The parameterization 

process resulted in a model which accurately predicted the test data at multiple temperatures, 

strain rates, and orientations. The calibrated model was then used to predict material behavior in 

an additional loading direction as well as thermomechanical loading and both were compared to 

experimental data. These results are described in this chapter. 

7.1 Isothermal Calibration Results 

The model was first calibrated to isothermal experiments in the longitudinal direction. 

Figure 7.1 shows these calibrations, which have been separated by temperature. Note that the 

model does a good job of simulating all three strain rates used at each temperature. The best 

isothermal result is at 950 °C and the worst is at 750 °C. 

The model was then calibrated to transverse data. Figure 7.2 shows the results of this 

calibration. The parameters determined during this stage were the cubic back stress parameters, 

hχ
cub

, Rχ
cub

, hχs
cub

, and rχs
cub

, cubic drag stress, D0
cub

, and the cubic B0
cub

 along with the non-

Schmid factors hpe, hse, and hcb. Additional temperature dependence in the cubic parameters was 

not required for accurate representation of the data and so was omitted to reduce complexity. The 

Euler angles for this calibration procedure are φ1 = 90°, Φ = 0° to 81°, and φ2 = 0° which are 

shown in Table 7.1. The loading directions resulting from these angles are shown in Figure 7.3, 

where “x”, “y”, and “z”, denote the global coordinate system and the dashed lines are the ten 

loading directions. The direction of solidification for these Euler angles is in the material y-
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direction as shown in the figure. The initial parameterizations were performed using ten grains 

which according to Shenoy (2006) is sufficient for DS alloys. Initial analyses of model 

performance were conducted with thirty grains, but the simulation times were found to be two 

and a half times longer than those with only ten grains. Additionally the difference in model 

response with ten and thirty grains was negligibly small, so ten grains was used for the remaining 

analyses. The results of the calibration agree well with the experimental data at all temperatures. 

 

Table 7.1: Euler angles used for calibration to transverse experiments 

φ1 Φ φ2 

90 0 0 

90 9 0 

90 18 0 

90 27 0 

90 36 0 

90 45 0 

90 54 0 

90 63 0 

90 72 0 

90 81 0 
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Figure 7.1: Correlation of model and calibration experiments in the longitudinal orientation 
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Figure 7.2: Correlation of model and calibration experiments in the transverse orientation 

 

 

Figure 7.3: Illustration of Euler angles used to determine transverse response 
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first Euler angle to 45°, and randomly varying the second Euler angle. The maximum allowed 

time step is a critical value during these simulations because the modulus of elasticity is larger in 

the non-longitudinal directions than in the longitudinal direction which results in larger 

increments of stress in the elastic prediction. The results are shown in Figure 7.5. Note that in 

Figure 7.5 (b) there is excessive hardening and the yield stress is too high. It is postulated the 

specimen used at 950 °C may have contained a limited number of grains which biased the 

experiment. This could be verified with additional testing, but has not been done. 

 

 

Figure 7.4: Illustration of Euler angles used to determine 45° off-axis response 
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Figure 7.5: Comparison between 45° off-axis test data and predicted response at (a) 750° C and 

(b) 950° C 

 

The calibration of the CTE, β, was achieved using the thermal cycling of a TMF 

experiment and Eq. (4.42) & (4.43). The thermal cycling data is shown in Figure 7.6 with the 

prediction resulting from this calibration. The model prediction matches the experimental data 

well. 

 

 

Figure 7.6: Comparison between thermal cycling and predicted response between 100 – 950 °C 
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7.2 Thermomechanical Simulations 

Finally the calibrated model was compared to the thermomechanical cyclic response as 

shown in Figure 7.7. It was found that the model accurately predicted the maximum and 

minimum stresses of the experiment, but did not accurately predict the entire deformation 

history. Of particular importance is the behavior going from compression to tension, or high 

temperature to low temperature. Here the experimental data shows a more sharp transition from 

elastic behavior to plastic behavior, while the model predicts a gradual transition, beginning at a 

much lower stress. The cause of this errant prediction is thought to come from dynamic strain 

aging (Christ and Bauer, 2011) which causes dislocation arrangements to differ from high 

temperature deformation to low temperature deformation. The theory here is that the deformation 

at higher temperatures causes dislocation patterns which restrict deformation at lower 

temperatures and cause isothermal calibrations to wrongly predict yielding in TMF loadings. 

Presently the CVP model does not capture this mechanism. 
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Figure 7.7: Comparison between experimental and predicted response for OP TMF between 100 

and 950 °C 
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Chapter 8. Parametric Study 

 

The CVP model is capable of simulating much more complex loadings than just the fully-

reversed constant amplitude LCF and TMF tests used to calibrate and validate the model. To 

demonstrate the predictive power of the CVP model it was run with a series of control points 

which lie outside of normal constraints, but for which there exists considerable experimental 

precedents. Isothermal LCF is first considered, followed by TMF calculations. The following is a 

description of this study and a discussion of the results. 

8.1 LCF Predictions 

Two LCF predictions are run with 600s strain holds included; one at 750 °C and one at 

950 °C. To further emphasize the difference between them each contains a cycle without a strain 

hold as is shown in Figure 8.1. As can be seen in Figure 8.2, at 750 °C there is a much smaller 

range of cyclic plasticity than at 950 °C for both the cycle with and without the strain hold. 

Additionally, at 750 °C a smaller change in cyclic plasticity between the cycle with the hold and 

the one without is observed than at 950 °C. This result is expected since the amount of stress 

relaxation is greatly increased in the 200 °C between these two temperatures. 
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Figure 8.1: Strain history for isothermal model predictions with strain holds 
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The temperature and strain rate used were 850 °C and 5.0x10
-3

 s
-1

, respectively. The results are 

shown below in Figure 8.3. When fully reversed the cyclic response is stable after the first cycle, 

while when Rε=-∞, with half the strain amplitude, the response exhibits ratcheting due primarily 

to the accumulated creep deformation.  

 

 

Figure 8.3: Comparison of LCF at 850 °C and a strain rate of 5.0x10
-3

 s
-1

 with Rε of (a) -1, and 

(b) -∞ 
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however, a select few who have performed TMF experiments outside of this range (Esmaeili et 

al., 1995; Okazaki and Sakaguchi, 2008; Kupkovits, 2009). Tmin is set at this relatively high 

temperature for experimental expediency: dropping Tmin causes cycle times to lengthen since the 

cooling rate of the specimen is directly proportional to the difference between the specimen 

temperature and ambient temperature. Forced convection can be used to lower the Tmin without 

increasing the cycle time, but it is difficult to control such that uniform temperature distributions 

in the gage section are maintained. The justification for using a Tmin of 550 °C when the 

minimum operating temperature of gas turbine engines is around room temperature is that the 

yield stress does not change between these temperatures. It has been shown, however, that the 

effect of reducing Tmin is to include a significant amount of additional cyclic plasticity 

(Kupkovits et al., 2010). Since fatigue life decreases with increasing cyclic plasticity and since 

actual components experience Tmin at around room temperature, it is important to include the 

actual Tmin in life prediction of turbine blades. This is demonstrated in Figure 8.4 where the Tmin 

of the cycle has been decreased from 550 °C to 100 °C with a Tmax held constant at 950 °C. For 

comparison purposes the mechanical strain rate is held constant at 1x10
-6

/s between the two 

cases. Each case is initially started at its mean temperature: 525 °C for Tmin = 100 °C and 750 °C 

for Tmin = 550 °C. The temperature change rate was dictated by the mechanical strain rate and 

was 1 °C/s for Tmin = 100 °C and 0.5 °C/s for Tmin = 550 °C. 
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Figure 8.4: Comparison of TMF with Tmax of 950 °C, R = -1, and (a) Tmin= 550 °C and (b) Tmin= 

100 °C  
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Figure 8.5: Temperature and strain history for (a) OP, (b) IP, and (c) counter clockwise diamond 

cycle types 
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Figure 8.6: Comparison of TMF model predictions with different cycle types: (a) IP, (b) OP and 

(c) diamond. All analyses are 100-950 °C, with half cycle times of 850s. 

 

Again, because an Rε ratio of -1 is not representative of most actual loadings in turbine 

blades several predictions have been made with Rε ratios of 0 and -∞, and then compared to an 

Rε of -1. These are shown in Figure 8.7. The temperature change rate and starting temperature of 

each was 1 °C/s and 525 °C, respectively. All have approximately the same cyclic plasticity and 

stabilized stress range, although there is significantly more accumulated plasticity for both the Rε 

of -∞ and 0 in the early cycles. 
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Figure 8.7: Comparison of 100-950 °C TMF cycles with a mechanical strain range of 1.2x10
-2

 

and Rε of (a) -1, (b)-∞, and (c) 0 
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Chapter 9. Conclusions and Recommendations 

 

9.1 Conclusion 

In this work a method for rapidly determining parameters for the crystal viscoplasticity 

model over a wide temperature range was developed. These protocols and procedures reduce the 

time needed to determine material parameters, allowing for the models use in industry, where 

previous calibration times restricted its application. Components of this method are listed below 

and include: parameter grouping, a hierarchy of parameters and groups, a roadmap for isothermal 

parameter determination, and a method for transitioning from isothermal parameters to 

temperature dependent ones. 

• A roadmap for rapidly determining temperature-dependent parameters for the CVP 

model was created. Parameters of the CVP model are grouped by function and 

dependence resulting in the categories of elastic constants and CTE, yield stress, 

hardening, flow rule, and creep. This grouping allows for the separation of parameters 

whose function is related to a certain data type which reduces the interdependencies 

which exist between parameters. A hierarchical pathway through the groups was 

constructed to reduce the dependence of each group on others. Additionally the 

parameters within each group are ranked according to sensitivity and interdependence so 

that an order of parameterization is created where there is limited iteration between 

parameters. Finally a type of data is defined for use in the calibration of each parameter. 

This allows each parameter to be calibrated to data towards which it is most sensitive, 

and restricts multiple parameters from being determined from identical data. 
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• A series of calibration protocols were established which result in the accurate calibration 

of the model to experimental data. Parameter values are first determined at points in 

temperature from isothermal experiments. Polynomials are then created to describe the 

behavior of each parameter with respect to temperature. Finally, parameters which are 

not temperature-dependent are determined through calibration across the entire testing 

temperature range. The result is an efficient method for determining temperature-

dependent parameters across a range of temperatures that has not previously been 

attempted. 

• Calibration experiments for use with the above protocols were created and performed. A 

total of eight experiments, six longitudinal and two transverse, are performed for the 

calibration of the model. Four additional experiments, two at 45° off-axis from the 

direction of solidification and two TMF, are conducted for validation of the calibrated 

model. Each calibration experiment contains a minimum of three strain rates at least a 

decade apart from each other. Additionally a significant amount of plasticity is included 

in each experiment so that the calibration of the plasticity parameters and internal state 

variables is efficiently and accurately achieved. 

• The CVP model was calibrated to the directionally solidified Ni-base superalloy DS-

CM247LC between room temperature and 1050 °C. This temperature range is larger 

than any other CVP calibration temperature range previously attempted and allows the 

simulation of loadings with temperature ranges similar to those experienced in the hot 

section of gas turbine engines. To achieve the temperature dependence necessary to 

describe this temperature range the protocols and procedures above were utilized. All of 

the calibration experiments are accurately simulated with the calibrated model. The 45° 
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off-axis experiments are well predicted at 750 °C, but are over predicted at 950 °C. The 

TMF experiments are well predicted by the calibrated model. 

9.1 Recommendations 

Since the scope and depth of this research was limited by time constraints it is necessary 

to list further research which could be completed to improve the function of the model and its 

predictive capability. These suggestions are given below. 

• Since, as mentioned above, the model does not correctly represent the evolution of the 

back stress under TMF conditions, it is suggested that this be addressed in further model 

modifications. It is postulated that the proper model modifications will not be difficult to 

implement since the back stress rate equation is separate from the rest of the model. 

However, determining how the modification should be implemented and what form they 

should take are not trivial matters.  

• The model does not currently explicitly include microstructure attributes as material 

parameters. This necessitates the calibration of the model to multiple material 

microstructures for a single material composition. In particular it is desirable for the 

volume fraction and morphology and distribution of sizes of γ’ to be explicit parameters. 

Presently these effects are implicitly lumped in the more sensitive parameters of the 

model. Including these material attributes as parameters would allow a single calibration 

to describe a range of microstructures and thus allow simulation of actual components. 

One step in this direction is the modification of the model to account for changes in the 

microstructure due to rafting. 

• The UMAT currently uses the Newton-Raphson method to converge to a solution. 

Although this method is in general faster when compared to other methods it is not 
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bounded and relies on the slope of the error. These characteristics cause the model to not 

guarantee a solution and to converge proportionally to the slope of the error. For instance, 

when the temperature is low enough for the material behavior to be quasi rate 

independent the Newton-Raphson method does not converge quickly because the slope of 

the error function is exponentially steep. It may therefore be more efficient to use a 

bounded method at these low temperatures which would ensure convergence and which 

would allow the specification of a finite search space. One such method would be 

bisection, which is both relatively fast and robust. Bounded methods are not projected to 

work well at higher temperatures however where the range of possible solutions could 

span several decades. Therefore it is proposed that a combination of the Newton-Raphson 

and a bounded search method be used such that rate insensitive behavior is solved by the 

bounded method and rate dependent behavior is solved by the Newton-Raphson method. 

• The main goal of this research was to accelerate the calibration of the CVP model. One 

thought is to use optimization methods to make iteration of parameter determination 

quicker. This was attempted, but due to time constraints and difficulty in implementation 

it was not feasible to construct optimization protocols which would further enhance the 

calibration process. However, the codes listed in Appendix D for adjustment of the 

threshold stress, Code 2 and Code 3, and back stress, Code 4 and Code 5, parameters 

based upon changes in other parameters could be utilized in an optimization scheme to 

correct previously calibrated parameters for new parameter trial values. This would allow 

the hierarchy and parameter determination protocols used in this work to also be 

applicable to optimizations. Therefore it is suggested that future work focus on 

establishing optimization codes which would reduce the extent of human intervention in 
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the process of model calibration. A simple model for these optimizations is given in 

Chapter 4. 

• All of the experiments performed in this work are uniaxial in nature. However it is 

possible to use tension-torsion experiments to separate the back stress from its strain rate 

dependence. This could be used to get a more accurate look at the back stress evolution 

and separate it from its interdependencies with other parameters. It is therefore 

recommended that further research include this type of testing so that the back stress 

parameters achieved through the parameterization procedures described in this work may 

be validated.  
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Appendix A.  UMAT modifications 

 

At the beginning of this work the author was supplied with a UMAT written by McGinty 

(2001) and modified by Shenoy (2006). This UMAT will from this point forward be referred to 

as UMAT
06

. In the course of designing parameter determination protocols and determining 

material parameters for DS-CM247LC it was found necessary to modify this UMAT
06

. The 

UMAT which resulted from these modifications will from this point on be termed UMAT
11

. This 

appendix lists a detailed description  of the major modifications made to UMAT
06

. 

• The UMAT
06

 was modified to allow the input of temperature dependent polynomials 

directly from the input file. The UMAT
06

 required that the polynomials be hard-coded 

into the temperature dependent subroutine. Because this does not allow for the easy 

modification of the parameters for use in optimizations and because this implementation 

of the temperature dependence would require a unique user material subroutine for 

different materials or microstructures, it was modified such that the temperature 

dependent polynomials are controlled from the input file. While this makes reading 

parameters from the input file difficult it gives full control of the CVP model’s 

temperature dependence to the user without modification of the UMAT
11

. This 

modification has no effect on the result of the model. 

• The internal variable storage of the UMAT
06

 was adjusted to allow for the analysis of 

multiple grains. Initially the internal variable array, which saves internal state variable 

values for each slip system, was hard-coded to contain the strains, stress, and temperature 

after the internal state variables of the first grain. However a second grain would first 
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errantly use these values as initializations and then save over them. Thus these values 

were moved to the beginning of the array where they would not be errantly used or 

erased.  

• Correct implementation of the threshold stress was achieved through another 

modification. The UMAT
06

 implemented the temperature dependence of the threshold 

stress by multiplication of the shear modulus as shown in the following equation. 

 τn( � |τ( � χ| � κ( µ � κ*(�T�
µ*  (A.1) 

This is valid only if κ
α
 is equal to unity and the rest of the threshold stress components are 

turned off. In other words, this is not valid if any non-Schmid factor, hpe, hse, and hcb, is 

non-zero, as well as if any of the threshold stress evolution parameters, h0, hκs, and hs, are 

non-zero. Therefore the UMAT
06

 was modified to match the model shown in Table 3.1 

where the temperature dependence of the threshold stress is added to  «(. 

• The calculation of the thermal strain was corrected. In the UMAT
06

 the thermal strain is 

calculated at the beginning of each elastic prediction by Eq. (4.38) where F
θ
 is found by 

Eq. (3.10). However at the end of each iteration the thermal strain was calculated from 

the total and mechanical strain by, 

 ε�´ � ε� � εw�«´ (A.2) 

where εT is the total strain and is an input, and εmech is the mechanical strain which is 

calculated during the iteration. Since the thermal strain can be calculated directly from 

inputs of temperature and CTE, this evaluation of the thermal strain caused numerical 

errors which were easily visible; the thermal strain would be non-zero for isothermal 

loadings. Thus the evaluation of thermal strain was modified from Eq. (A.2) to match that 

of Eq. (4.38). There still exists a minor inaccuracy in mechanical strain, but this is due to 
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the inexact solution of the inelastic shear strain rate. To reduce the error in the 

mechanical strain one only needs to reduce the tolerance on the solution of the inelastic 

shear strain rate. 

• The UMAT
06

 was modified to eliminate input parameters for parameter derivatives. In 

UMAT
06

 the derivatives in the back stress temperature rate term were inserted as input 

parameters. While this is valid so long as the polynomials which are input are derivatives 

of the parameters, this is redundant as it requires the input of additional polynomial 

coefficients. Additionally the polynomials which were in use in UMAT
06

 were not 

derivatives of the back stress polynomials. Therefore the derivatives were implemented 

through the quotient rule and the extra polynomial coefficients were eliminated. 
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Appendix B.  Euler Angle Determination 

 

 

 

The determination of Euler angles for input into the CVP model is not trivial. Therefore a 

MATLAB code for Euler angle determination has been created and is shown in Figure B.1. 

Additionally a script which runs the Euler angle function and plots the result is shown in Figure 

B.2. Note that the codes will only return two angles. This is because the transformation of a 

vector in three dimensional space to any other orientation requires only two perpendicular 

angles. Three angles are required only if the rotation of the vector is important. Since the model 

uses cubic symmetry the use of this angle is unnecessary in most cases. For this reason the 

determination of this angle is not included, although it is noted that it is possible to use this angle 

when it is convenient to do so.  

Since multiple grains with random orientations in the transverse direction are needed in a 

DS alloy to model loading in non-longitudinal directions multiple sets of Euler angles are needed 

for simulation of these loadings. Take for instance the loading of a DS specimen at 45° from the 

direction of solidification. The random orientation of grains in the transverse direction makes the 

determination of a single angle for loading impossible. The approach therefore is to use the first 

Euler angle to rotate the coordinate system to a point where the loading (in the global y-axis) is 

45° from the direction of solidification (a rotation of 45°). The second Euler angle can then be 

assigned an array of random values which represent individual grains in an experimental 

specimen. The result is shown in Figure 7.4 where the dashed lines are the resulting directions of 

loading. Note that each load is 45° from the direction of solidification (in the case the material y-

axis). This description is not unique since the rotation is over-constrained by three angles. 
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Figure B.1: MATLAB function for Euler angle determination 

 

function [Alpha, Beta, Gamma] = FindEulerAngles(Vector) 
% This function computes the Euler angles for use in the Crystal 
% Viscoplasticity UMAT.  
 
normVec = Vector/(sum(Vector.^2))^.5; 
x = [1 0 0]; 
y = [0 1 0]; 
z = [0 0 1]; 
  
Alpha_rad = acos(dot(normVec,y)); 
Alpha = -Alpha_rad/pi*180; 
  
Rz = [cos(Alpha_rad) -sin(Alpha_rad) 0; sin(Alpha_rad) cos(Alpha_rad) 0; 0 
0 1]; 
X = Rz*x'; 
Z = Rz*z'; 
normW = Rz*normVec'; 
  
Wx = dot(normW,X); 
Wz = dot(normW,Z); 
  
Wxz = [Wx 0 Wz]; 
if sum(Wxz) ~= 0 
    WXZ = Rz*Wxz'; 
    normWXZ = WXZ/(sum(WXZ.^2))^.5; 
    normX = X/(sum(X.^2))^.5; 
    normWXZx = dot(normWXZ,normX); 
    theta = acos(normWXZx)/pi*180; 
else 
    theta = 180; 
end 
Beta = theta-180; 
  
Gamma = 0; % this is an arbitrary angle. 
% Because only two angles are needed to define a transformation of a vector 
% to another arbitrary direction the value of gamma is always zero. 
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Figure B.2: Script for finding and plotting Euler angles for specified loading direction 

 

As mentioned previously the grain orientations for loading of multiple grains are supplied 

to the UMAT
11

 through an external text file which contains the grain orientations in units of 

degrees. This is accomplished on line 326 of the UMAT
11

 through an “open” command. 

Therefore the location of the text file must be correctly specified within the UMAT
11

. Figure B.3 

% Initialize loading direction Ex: [1 0 0] 
a = [1 2 3]; 
  
d = (a(1)^2+a(2)^2+a(3)^2)^.5; 
A = a/d; 
  
[Alpha Beta Gamma] = FindEulerAngles(A); % Find Euler angles 
  
O1 = Alpha*pi/180; % Convert to radians 
O2 = Beta*pi/180;  % Convert to radians 
O3 = Gamma*pi/180; % Convert to radians 
  
c1 =cos(O1); c2 =cos(O2); c3 =cos(O3); 
s1 =sin(O1); s2 =sin(O2); s3 =sin(O3); 
  
R = [ c1*c2*c3 - s1*s3, - c3*s1 - c1*c2*s3, c1*s2;... 
    c1*s3 + c2*c3*s1, c1*c3 - c2*s1*s3, s1*s2; -c3*s2, s2*s3, c2]; 
  
% original (global) coordinates  
x = [1 0 0]; y = [0 1 0]; z = [0 0 1]; 
  
% Rotate coordinate system to new orientation 
X = R*x'; Y = R*y'; Z = R*z'; W = R*A'; 
  
c = [0;0;0]; 
v1 = [c X]; v2 = [c Y]; v3 = [c Z]; v4 = [c W]; 
  
% Plot original (global) coordinates 
plot3([0 1 0 0 0 0 0 0], [0 0 0 1 0 0 0 0], [0 0 0 0 0 1 0 0],... 
    'LineWidth',3) 
hold on 
% plot resulting coordinate system after rotation 
plot3(v1(1,:),v1(2,:),v1(3,:),v2(1,:),v2(2,:),v2(3,:),... 
    v3(1,:),v3(2,:),v3(3,:),v4(1,:),v4(2,:),v4(3,:)) 
  
grid on; xlabel('x'); ylabel('y'); zlabel('z'); axis equal 
hold off 
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shows a proper file specification, and Figure B.4 shows the corresponding file for loading ten 

grains at 45° from the direction of solidification. 

 

 

Figure B.3: File specification in UMAT
11

 for multiple grain orientations 

 

 

 

Figure B.4: Angle specification from external file for multiple grains  
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Appendix C.  ABAQUS input file 

 

The input parameters have been organized in the ABAQUS input script for easy location 

and insertion. Figure C.1 shows the parameter input section of a sample input file with the 

important aspects highlighted. The box under *DEPVAR is the number of positions in the statev, 

which stands for “state-variable”, array. This value should be determined by Eq. (C.1) where N is 

the number of grains in the simulation.  

 �Ý���¤ � 24 � û Ì 48 (C.1) 

Setting this value to a little more than the result of Eq. (C.1) is not detrimental, however setting it 

to less will cause the simulation to crash. The large box in Figure C.1 contains all of the input 

parameters necessary to simulate a loading history. Each line of parameter values is preceded by 

a comment line specifying what each parameter is. The order of parameters must not be changed 

unless the UMAT is modified accordingly. The dashed box at the bottom of the figure contains 

the starting temperature for the history. This value should be set to the initial temperature at 

which the thermal strain is zero.  
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Figure C.1: Parameter input section of a sample input file 

 

Figure C.2 shows a sample step specification portion of an input file with the important 

aspects highlighted. The box directly under “*STATIC” contains time values which dictate how 

the step is to be performed. The first value is the initial time increment for the step. This should 
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be set to a small number for the first step and set to less than the maximum time increment of the 

previous step otherwise. ABAQUS only allows a 1.5x increase is time increment so if the initial 

time increment of a step is larger than the previous maximum time increment by more than 1.5x 

the analysis will crash. The next value is the total time that the step should consume and can be 

used to control the strain rate. The third value in this line is the minimum time increment allowed 

in the step. This value should be small enough to ensure convergence of the simulation. The final 

value is the maximum allowed time increment. This value is critical to ensuring convergence of 

the model and in keeping the analysis from crashing. Because most steps will start as an elastic 

increment the UMAT is allowed to increase the time step until it reaches the maximum value. 

Once the threshold stress is exceeded the UMAT still uses the elastic solution as its initial 

prediction and then corrects for plasticity. This initial elastic stress however can cause the 

predicted inelastic shear strain rate to overshoot with errors being larger than the overflow value. 

Thus the first action taken if an error code of 144 or 693 is generated should be the reduction of 

the maximum time increment. The box underneath “*TEMPERATURE” contains the 

temperature at the end of the step. The next box down contains the ending value of the total 

strain. It is emphasized here that the loading history is controlled through total strain unlike 

thermomechanical testing which is controlled through mechanical strain. Thus for 

thermomechanical predictions the thermal strain must be included in the input strain. The dashed 

box which comes next contains the data output interval in seconds. This value is only important 

for those who wish to use the CAD file which is generated during the analysis. Because this file 

is difficult to access it is not used in this calibration of the model. Rather the “.dat” text file is 

used. This file contains the result of each increment performed during the analysis and is not 

affected by the output time interval. Because the output of data to the CAD file is time 
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consuming and can slow an analysis down significantly the output interval is set to a large 

number so that a minimal amount of time is spent generating the “.odb” file. Finally the box at 

the bottom of the figure contains the data which is output to the “.dat” text file. The letters 

“SDV_” specify the statev array in the UMAT, and the number represents the position in the 

array. There are a number of options here: anything that can be accessed in the CAD file can be 

output as text from here. In the figure the first value is the stress in the loading direction, σ22, and 

subsequent values are the total strain, mechanical strain, elastic strain, plastic strain, thermal 

strain, and temperature, respectively.  

 

Figure C.2: Step specification section of a sample input file 
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As noted the parameter values in Figure C.1 have a comment line above them specifying 

what each parameter is. However, these are the code names and do not necessarily have an 

obvious connection to the model parameter symbols. Therefore Table C.1 is included below to 

assist in converting between code names and model symbols. Additionally for reference the 

parameter values for PWA-1484 are included. 

 

Table C.1: Parameter code names and symbols 

Code name 
Model 

Symbol 
Units 

GTD-111 

Parameter 

Value 

T-dependence 

implementation 

gamma_dot_zero j�* 1/s 1.15*10
9 

NA 

q_energy Q0 KJ/mol 309000 KJ/mol 

qaa 
q

αβ 
- 

1 

qad 1.4 

pmeu_zero µ0 

MPa 

166000 MPa 

a_zero χ0 0 

b_zero B0 0.05 

d_zero D0 102 MPa 

g_zero κ0 0 

a_zero_oct χ0 oct 0 

b_zero_oct B0 oct 0.05 

d_zero_oct D0 oct 55 

g_zero_oct κ0 oct 0 

h_x_oct hχ oct 11000 MPa 

R_x_oct Rχ oct 1000 MPa 

h_xs_oct hχs oct odd units 0 

r_xs_oct rχs oct - 0 

h_zero_oct h0 oct MPa 0 

h_ks_oct hχs oct - 0 

h_s_oct hs oct odd units 0 

g_th_oct κth oct MPa 0 

r_s_oct rs oct - 0 

 



 

147 

 

Table C.1 (continued) 

Code name 
Model 

Symbol 
Units 

GTD-111 

Parameter 

Value 

T-dependence 

implementation 

C11_1 

C11 

MPa 

-2.985E-02 

Polynomial 

C11_2 4.266E+00 

C11_3 1.873E+05 

C12_1 

C12 

0 

C12_2 0 

C12_3 6.998E+04 

C44_1 

C44 

-9.054E-02 

C44_2 1.250E+02 

C44_3 9.398E+04 

ec1 

CTE 1/K  

-2.57E-14 

ec2 7.86E-11 

ec3 -5.31E-8 

ec4 1.63E-5 

n_1 

n NA 

NA 

n_2 NA 

n_3 NA 

n_4 4 to 5 

hx1 

hχ 

MPa 

1.539E-05 

hx2 -6.188E-02 

hx3 9.061E+01 

hx4 -5.715E+04 

hx5 1.319E+07 

R_x1 

Rχ 

4.329E-09 

R_x2 -1.793E-05 

R_x3 2.684E-02 

R_x4 -1.721E+01 

R_x5 4.120E+03 

h_xs1 

hχs odd units 

0 

Exponential h_xs2 0 

h_xs3 0 
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Table C.1 (continued) 

Code name 
Model 

Symbol 
Units 

GTD-111 

Parameter 

Value 

T-dependence 

implementation 

r_xs1 

rχs NA 

0 

Polynomial 

r_xs2 0 

r_xs3 5 

h_0_1 

h0 
MPa 

0 

h_0_2 0 

h_0_3 0 

h_ks_1 

hκs - 

0 

h_ks_2 0 

h_ks_3 0 

g0_l1 

κ0(T) 

low 

temp 

MPa 

0 

g0_l2 3.347E-06 

g0_l3 -7.646E-03 

g0_l4 5.869E+00 

g0_l5 -1.454E+03 

hg0_1 

κ0(T) 

high 

temp 

-1.252E-07 

hg0_2 6.024E-04 

hg0_3 -1.082E+00 

hg0_4 8.595E+02 

hg0_5 -2.546E+05 

h_s1 

hs odd units 

0 

h_s2 0 

h_s3 0 

r_s1 

rs 

- 

0 

r_s2 0 

r_s3 0 

h_pe1 

hpe 

0 

h_pe2 0 

h_pe3 0 

h_se1 

hse 

0 

h_se2 0 

h_se3 0 

h_cb1 

hcb 

0 

h_cb2 0 

h_cb3 0 
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Table C.1 (continued) 

Code name 
Model 

Symbol 
Units 

GTD-111 

Parameter 

Value 

T-dependence 

implementation 

gth1 

κth MPa 

0 

Polynomial gth2 0 

gth3 0 

Tmelt Tm 

K 

1776 

NA 

Tpl_C - 823 

T_trans - 1023 

Tth_C - 823 

Euler1 φ1 

degrees 

90 

Euler2 Φ 0 

Euler3 φ2 0 

num_grains - - 1 
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Appendix D.  MATLAB codes 

 

Codes have been developed to assist in determining parameter values for the CVP model 

used in this work. This appendix shows these. 

Figure D.1 shows a MATLAB function for calculating the shear stress needed to cause a 

specific inelastic strain rate. It can be used for estimating both κ0(T) and Rχ. Inputs are the 

inelastic shear strain rate for a slip system, which can be found from the strain rate for saturated 

hardening by, 

 γ� � 0.306221 Ì ε�  (D.1) 

where ε � is the strain rate for an experiment, and the flow rule parameters, n, B0,  �* ÁÁÂ, and 

Θ(T). 
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Code 1 

 

Figure D.1: MATLAB function to find shear stress needed to cause a given inelastic shear strain 

rate 

 

Figure D.2 and Figure D.3 combined create a tool for determining the threshold stress 

given changes in other parameters. They work by adjusting the threshold stress until the 

function tauv = find_tauv_given_g_dot(g_dot,guess,n,B0,Da,C)  
%% function to find a value for tauv that results in the desired Epl_dot. 
%  Note that RECURSION is used here!!! 
% 
% INPUTS: 
%   g_dot - gamma_dot for steady state test 
%   guess - 1x3 vector of shear stress guesses 
%      guess(1) - lower bound of shear stress (=0) 
%      guess(2) - start point 
%      guess(3) - upper bound of shear stress (=400) 
%   n - flow exponent 
%   B0 - rate independent modification to the drag stress 
%   Da - drag stress (=D0*pmeu(T)/pmeu0) 
%   C - first term in flow rule (=gamma_dot_0*exp(-Q/R/T) for T>Tm/2) 
% 
% OUTPUT: tauv - shear stress required to cause the inelastic rate of 
%                 deformation 
  
Tolerance = 1e-12; 
  
psr_try(2) = C*((guess(2)/Da)^n)*exp(B0*(guess(2)/Da)^(n+1))*sign(g_dot); 
Error(2) = g_dot - psr_try(2); 
if abs(Error(2))<Tolerance %done!! 
    tauv = guess(2); 
else 
    psr_try(1)=C*((guess(1)/Da)^n)*exp(B0*(guess(1)/Da)^(n+1))*sign(g_dot); 
    psr_try(3)=C*((guess(3)/Da)^n)*exp(B0*(guess(3)/Da)^(n+1))*sign(g_dot); 
    Error = [(g_dot-psr_try(1)),Error(2), (g_dot-psr_try(3))]; 
     
    E1 = Error(1)*Error(2); 
    E2 = Error(2)*Error(3); 
    if E1<0 % the initial guess was too high 
        guess = [guess(1), (guess(1)+guess(2))/2, guess(2)]; 
    elseif E2<0 % the initial guess was too low 
        guess = [guess(2), (guess(2)+guess(3))/2, guess(3)]; 
    else % High bound was too low - increase bound slowly 
        guess = [guess(3) guess(3)+9 guess(3)+10]; 
    end 
    tauv = find_tauv_given_g_dot(g_dot,guess,n,B0,Da,C); % Recursion 
end 
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saturation inelastic shear strain rate from the first set of parameter values matches the saturation 

inelastic shear strain rate from the new parameter values. 

 

Code 2 

 

Figure D.2: Script for finding new values of κ0 if other parameters change: Note that it requires 

the function find_K0_given_Edot() 

 

 

% Initialize parameters 
g_dot_0_o = 1.15e9; % Old value of g_dot_0 
Q0_o = 309000;      % Old value of Q0 
D0_o = 90;          % Old value of D0 
n_o =  5;           % Old value of n 
B0_o = .05;         % Old value of B0 
k_o =  100;         % Old value of threshold stress 
  
g_dot_0 = 1.15e9;   % New value of g_dot_0 (same as above if no change) 
Q0 = 400000;        % New value of Q0      (same as above if no change) 
Da = 95;            % New value of D0      (same as above if no change) 
n =  4;             % New value of n       (same as above if no change) 
B0 = .05;           % New value of B0      (same as above if no change) 
  
tau_ys = 250; % yield shear stress: converted stress at first yield 
Temp = 823; % temperature in degrees K 
Tm = 1700; % Melting temp in degrees K 
  
R = 8.314; 
if Temp>Tm/2 
    Flow_o = g_dot_0_o*exp(-Q0_o/R/Temp); 
    Flow = g_dot_0 * exp(-Q0/R/Temp); 
else 
    Flow_o = g_dot_0_o*exp(-2*Q0_o/R/Tm*log((Tm/2/Temp)+1)); 
    Flow = g_dot_0 * exp(-2*Q0/R/Tm*log((Tm/2/Temp)+1)); 
end 
  
% calculate old value of the inelastic shear strain rate 
g_dot_old = Flow_o*(((tau_ys-k_o)/D0_o)^n_o)*exp(B0_o*((tau_ys-
k_o)/D0_o)^(n+1)); 
  
guess = [0, k_o, k_o+100]; 
K0_new = find_K0_given_Edot(g_dot_old,guess,tau_ys,n,B0,Da,Flow); 
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Code 3 

 

Figure D.3: Function find_K0_given_Edot(): for use with script in Figure D.2 

 

 

Figure D.4 and Figure D.5 combined create a tool for determining the saturation back 

stress given changes in other parameters. They work by adjusting the saturation back stress until 

the saturation inelastic shear strain rate from the first set of parameter values matches the 

saturation inelastic shear strain rate from the new parameter values. 

  

function K0_new = find_K0_given_Edot(g_dot,k,t_ys,n,B0,Da,C) 
  
Tolerance = 1e-12; 
  
psr_try(2) = C*(((t_ys-k(2))/Da)^n)*exp(B0*((t_ys-
k(2))/Da)^(n+1))*sign(g_dot); 
Error(2) = g_dot - psr_try(2); 
if abs(Error(2))<Tolerance %done!! 
    K0_new = k(2); 
else 
    k_try(1) = C*(((t_ys-k(1))/Da)^n)*exp(B0*((t_ys-
k(1))/Da)^(n+1))*sign(g_dot); 
    k_try(3) = C*(((t_ys-k(3))/Da)^n)*exp(B0*((t_ys-
k(3))/Da)^(n+1))*sign(g_dot); 
    Error = [(g_dot-k_try(1)),Error(2), (g_dot-k_try(3))]; 
     
    E1 = Error(1)*Error(2); 
    E2 = Error(2)*Error(3); 
    if E1<0 % the initial guess was too high 
        k = [k(1), (k(1)+k(2))/2, k(2)]; 
    elseif E2<0 % the initial guess was too low 
        k = [k(2), (k(2)+k(3))/2, k(3)]; 
    else % High bound was too low - increase bound slowly 
        k = [k(3) k(3)+9 k(3)+10]; 
    end 
    K0_new = find_K0_given_Edot(g_dot,k,t_ys,n,B0,Da,C); % Recursion 
end 
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Code 4 

 

Figure D.4: Script for finding new values of Rχ if other parameters change: Note that it requires 

the function find_Rx_given_Edot() 

  

% Initialize parameters 
g_dot_0_o = 1.15e9; % Old value of g_dot_0 
Q0_o = 309000;      % Old value of Q0 
D0_o = 100;          % Old value of D0 
n_o =  5;           % Old value of n 
B0_o = .001;         % Old value of B0 
K0_o = 100;         % Old value of K0 
Rx_o =  100;         % Old value of threshold stress 
  
g_dot_0 = 1.15e9;   % New value of g_dot_0 (same as above if no change) 
Q0 = 400000;        % New value of Q0      (same as above if no change) 
Da = 95;            % New value of D0      (same as above if no change) 
n =  4;             % New value of n       (same as above if no change) 
B0 = .05;           % New value of B0      (same as above if no change) 
K0 = 100;           % New value of K0      (same as above if no change) 
tau_sat = 250; % yield shear stress: converted stress at first yield 
Temp = 823; % temperature in degrees K 
Tm = 1700; % Melting temp in degrees K 
  
R = 8.314; 
if Temp>Tm/2 
    Flow_o = g_dot_0_o*exp(-Q0_o/R/Temp); 
    Flow = g_dot_0 * exp(-Q0/R/Temp); 
else 
    Flow_o = g_dot_0_o*exp(-2*Q0_o/R/Tm*log((Tm/2/Temp)+1)); 
    Flow = g_dot_0 * exp(-2*Q0/R/Tm*log((Tm/2/Temp)+1)); 
end 
% calculate old value of the inelastic shear strain rate 
g_dot_old = Flow_o*(((abs(tau_sat-Rx_o)-K0_o)/D0_o)^n_o)*... 
    exp(B0_o*((abs(tau_sat-Rx_o)-K0_o)/D0_o)^(n+1)); 
% look through the range to see if there is more than one solution 
Rx = 0:2:Rx_o+200; Error = zeros(1,length(Rx)); 
for i = 1:length(Rx) 
    Error(i) = g_dot_old - Flow*(((abs(tau_sat-Rx(i))-K0)/Da)^n)*... 
        exp(B0_o*((abs(tau_sat-Rx(i))-K0)/Da)^(n+1)); 
end 
% Find correct solution location 
found = 0; 
for i = 1:length(Error)-1 
    if Error(i)>0 && Error(i+1)<0 
        found = found +1; 
        Cross(found) = i; 
    elseif Error(i)<=0 && Error(i+1)>=0 
        found = found +1; 
        Cross(found) = i; 
    end 
end 
guess = [Rx(Cross(1)-2), Rx(Cross(1)), Rx(Cross(1)+2)]; 
Rx_new = find_Rx_given_Edot(g_dot_old,guess,K0,tau_sat,n,B0,Da,Flow); 
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Code 5 

 

Figure D.5: Function find_Rx_given_Edot(): for use with script in Figure D.4 

 

 

  

function Rx_new = find_Rx_given_Edot(g_dot,Rx,k,t_sat,n,B0,Da,C) 
  
Tolerance = 1e-25; 
  
Rx_try(2) = C*(((abs(t_sat-Rx(2))-k)/Da)^n)*... 
    exp(B0*((abs(t_sat-Rx(2))-k)/Da)^(n+1))*sign(g_dot); 
Error(2) = g_dot - Rx_try(2); 
if abs(Error(2))<Tolerance %done!! 
    Rx_new = Rx(2); 
else 
    Rx_try(1) = C*(((abs(t_sat-Rx(1))-k)/Da)^n)*... 
        exp(B0*((abs(t_sat-Rx(1))-k)/Da)^(n+1))*sign(g_dot); 
    Rx_try(3) = C*(((abs(t_sat-Rx(3))-k)/Da)^n)*... 
        exp(B0*((abs(t_sat-Rx(3))-k)/Da)^(n+1))*sign(g_dot); 
    Error = [(g_dot-Rx_try(1)),Error(2), (g_dot-Rx_try(3))]; 
     
    E1 = Error(1)*Error(2); 
    E2 = Error(2)*Error(3); 
    if E1<0 % the initial guess was too high 
        Rx = [Rx(1), (Rx(1)+Rx(2))/2, Rx(2)]; 
    elseif E2<0 % the initial guess was too low 
        Rx = [Rx(2), (Rx(2)+Rx(3))/2, Rx(3)]; 
    else % High bound was too low - increase bound slowly 
        Rx = [Rx(3) Rx(3)+9 Rx(3)+10]; 
    end 
    Rx_new = find_Rx_given_Edot(g_dot,Rx,k,t_sat,n,B0,Da,C); % Recursion 
end 
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