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SUMMARY 

An understanding of the motion of soft capsules in microchannels is useful for a 

number of applications. This knowledge can be used to develop devices to sort biological 

cells on their size and stiffness. For example, cancer cells have different stiffness from 

healthy cells and thus can be readily identified. Additionally, devices can be developed to 

detect flaws in synthetic particles. 

Using a 3D hybrid lattice Boltzmann and lattice spring computational method, the 

motion of rigid and soft capsules in a pressure-driven microfluidic flow was probed. The 

effect of inertial drift is evaluated in channels with different Reynolds numbers. Other 

system parameters such as capsule elasticity and channel size are also varied to determine 

their effect. The equilibrium position is also obtained. 

The equilibrium position of rigid and soft capsules depends on the relative particle 

size. If the capsule is small, the equilibrium position is found to be closer to the channel 

wall. Conversely, for larger capsules, the equilibrium position is closer to the channel 

centerline. The capsule stiffness affects the magnitude of the cross-stream velocity. For a 

given Reynolds number, the equilibrium position of softer capsules is closer to the 

channel centerline. However, it is found that the equilibrium position of soft capsules is 

weakly dependent for Reynolds numbers 1-100. 
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CHAPTER 1 
 

INTRODUCTION 

1.1 Introduction & Motivation 

Separation and sorting of particles and living cells has numerous applications in 

the areas of medical research, diagnostics, and treatment. Synthetic particles are being 

utilized for innovative methods for targeted drug delivery [2, 3]. The sorting of these 

particles is useful in identifying flaws in their preparation to assure the particle meets 

design tolerances. A common way of sorting cells and particles is within microfluidic 

flows [1, 4-6]. 

 Microfluidic flows are actively used medical diagnostics methods such as flow 

cytometry. In flow cytometry, discussed further in Section 1.1, cells are suspended in a 

sheath fluid flowing in a microchannel and identified using a laser. When the cells are 

interrogated by the laser, the cells scatter the light and emit a fluorescence. This 

fluorescence is filtered and collected and the data is stored for further analysis by 

software. Microfluidic systems are typically characterized by their small channel size (up 

to 1000 µm) and flow volumes. However, the flow rate of these systems can be relatively 

high. For example, in flow cytometry, the flow rate can be up to 10 m/s [1]. 

 While these methods are effective, there are limitations in the implementation. 

For example, the throughput in flow cytometry is limited by the serial nature of its 

design. Additionally, markers or stains may need to be added to the samples in order to 

facilitate detection [1].  

 The ability to distinguish cells by size and stiffness is useful in cell type 

identification. For example, the red blood cell and white blood cell counts are a common 
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metric gathered in blood testing. An indicator of stiffness could aid in the isolation of 

cancer and malaria cells in a sample [7-10]. 

 In this thesis, an alternative method is presented for the marker less identification 

of cells and particles based on their size, stiffness, and the flow rate based on their 

position in a microchannel. Using computer-based models discussed in Chapter 2, the 

motion of rigid and soft particles is explored. Primarily, the equilibrium position of the 

particle is determined and related to the particle properties. The computational setup, 

validation, and results of simulations with a hybrid lattice-Boltzmann/Lattice Spring 

Model are discussed in Chapter 3. The effects of size, stiffness, and deformation are 

explored across a range of Reynolds numbers. Moreover, the size and stiffness can be 

used to hydrodynamically focus particles based on their position within the channel. 

Additionally, simulations involving droplets were performed in Chapter 4 and related to 

the results presented in Chapter 3.  

1.1.1 Flow Cytometry 

Flow cytometry is the measurement of various physicochemical characteristics of 

suspended cells. Cells suspended in a sheath fluid are subject to a flow in a capillary tube. 

The sheath fluid generally has a viscosity similar to water. The cross sectional sizes and 

flow velocities of the capillary tubes can range greatly [1]. For example, a cylindrical 

channel with a radius of 100 µm has approximately 1 m/s flow rate [1]. This translates to 

Reynolds number, an indicator of the relative importance of the inertial forces compared 

with the viscous forces, of 100. These cells are then hydrodynamically focused such that 

they flow past a laser in a single file. A schematic of flow detection is shown in Figure 

1.1. 
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Figure 1.1. Schematic of sample detection in flow cytometry [1]. 

As each cell flows past the laser, they scatter the light at different angles and emit 

fluorescence. The combination of the angle and the fluorescence indicates properties of 

cell such as size, shape, cell surface markers, and other properties [1]. This method can 

be used to detect up to 25,000 cells per second. 

While effective, this method of identifying cells does have some disadvantages. 

The cells must be hydrodynamically focused such that a single cell must be presented 

before the laser individually.  Furthermore, the serial nature of the device limits the 

throughput in which cells can be interrogated. The preparation of cell samples can be 

burdensome. The process of cell preparation involves placing them through a centrifuge 

and the staining of samples using special stains which adds complexity and cost [11].  If 

an error is made in cell preparation, this can lead to false detections. Therefore, well-

trained individuals are needed for both cell sample preparation and operating the 
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machine. Specialized training is necessary for the operation and interpretation of the 

results [12]. Furthermore, the cost of flow cytometers can be greater than $30,000 [13] 

not including cost of stains and preparation equipment. 

A method to overcome some of these limitations is to utilize inertial drift 

(discussed in Section 1.2) to identify cells. Using inertial drift, the cells can be 

hydrodynamically separated based on their size and stiffness. Their position within the 

channel can be used to identify the cells based on their mechanical properties or size.  

1.2 Background 

This thesis explores the separation of particles using hydrodynamic effects within 

a microfluidic channel. These flows are typically operated in regimes where the Reynolds 

number is low which implies the viscous effects are stronger than the inertial effects 

acting upon the particle. Therefore, the inertial effects are commonly neglected in these 

regimes.  

There have been a number of experiments and research [18-22] that imply that the 

inertial effects may not be neglected.  Specifically, in the experiments carried out by 

Segre & Silberberg [14],[15], rigid polymethylmethacrylate spheres were released in an 

annulus and found to congregate in a distance of 0.63 of the channel radius. This 

experiment implies that there was the sphere migration due to inertial drift. Further 

discussion of the inertial drift effect is in Section 1.2.1. 

 The cause the particle equilibrium at 0.63 of the channel radius is due to a number 

of forces. The effect of the particle rotation is discussed in Section 1.2.2, but ultimately 

this influence does not dominate the particle motion. The reason particle equilibrates at 

the distance of 0.63 of the channel radius is primarily related to two effects. First, there is 
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a lift induced on the particle due to the fluid inertial driving the particle away from the 

center. This lift force is discussed further in Section 1.2.3. This lift force drives the 

particle towards the particle wall. When the particle approaches the wall, wall effects 

become dominant driving the particle towards the channel center. The wall effects are 

discussed further Section 1.2.4. At the point where these two effects are equally strong is 

where the capsule achieves an equilibrium position within the flow. 

1.2.1 Segre & Silberberg Experiments 

 Segre & Silberberg ran experiments on polymethylmethacrylate spheres in 

suspensions. The spheres were released in a pipe of relatively low Reynolds numbers 

varying from 2 to 700. They explored various concentrations with volume fractions 

ranging from 0.005 to 0.068. When the spheres entered into the annulus, they were 

unordered. As the spheres progress downstream in the annulus, the concentration of 

sphere spiked at a position of about 63% of the annulus radius. The result from one of 

their samples is shown in Figure 1.2. 

 

Figure 1.2. Sample data from Segre & Silberberg. Spheres enter an inlet in an 
annulus with no ordered concentration. Further downstream, the concentration is 

highest at 0.63. 
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They labeled this effect a tubular pinch. Additionally, they found that for Reynolds 

numbers greater than 30, the radial equilibrium position moved towards the pipe wall. 

This effect was later explored by Cox, Leal, and Matas [16-18] among others.  

 The effects observed by Segre & Silberberg can be caused by particle-particle 

interactions and particle-fluid interactions. If the particle concentration is high, this will 

induce a particle migration towards the channel centerline [19]. The particle-fluid effects 

due to inertia cause a lateral migration toward the wall. If the volume fraction of particles 

decreased to about 0.1, particle-fluid effects work in competition of the particle-particle 

effects causing the tubular pinch observed by Segre-Silberberg [18] . 

1.2.2 Particle Rotation 

 In order to explain the phenomenon observed by Segre & Silberberg, numerical 

analysis and experiments were performed using rigid spherical particles. Rubinow & 

Keller [20] suggested that particle radial migration may occur due to the rotation of the 

particle as shown in Figure 1.3. 

 

Figure 1.3. Illustration of particle rotation. The arrows represent a flow moving 
from left to right. The particle is rotating clockwise with angular velocity Ω. 

  
Due to the rotation of the particle and the flow, the velocity relative to the particle on top 

is higher than that below it. This results in a lower pressure on the top of the particle and 

will induce a radial migration towards the channel centerline. Because Segre & 
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Silberberg observed radial migration away this explanation does not appear to be 

operative. 

  Another attempt to explain the radial velocity is that due to secondary flows 

induced by the presence of the particle itself. Cox & Brenner [16] developed a theory 

describing radial migration of both neutrally buoyant and non-neutrally buoyant spheres 

in tubes. In their analysis, they assumed that both the Reynolds and migration velocity are 

very small. They concluded that the inertial effects are not due to local effects associated 

with the body and that the migration speed is independent of rotation for neutrally 

buoyant particles. 

1.2.3 Velocity Profile Curvature 

One explanation the particle migrates towards the wall is due to the curvature of 

the velocity profile in the channel as shown in Figure 1.4. The parabolic velocity profile 

results in a force that pushes the particle away from the centerline of the channel toward 

the channel wall. At any given position in the parabolic profile, the fluid velocity near the 

centerline of the channel is always higher than that closer to the wall. 

 

Figure 1.4. Illustration of parabolic velocity profile in channel with capsule. 
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However, the magnitude of fluid velocity relative to the particle is always higher 

closer to the channel wall as shown in Figure 1.5. The higher velocity towards the 

channel wall results in a lower pressure on the wall side of the particle. This lower 

pressure results in a force that drives the capsule towards the channel wall.  

 

Figure 1.5. Flow velocity relative to capsule when far away from wall. 

 Segre & Silberberg noticed that the equilibrium position was at a distance of 0.63 

of the tube radius away from the annulus centerline. If the curvature effects alone were 

the cause of the inertial migration, the particle would at some point come in contact with 

the channel wall. Thus, there is another effect that impacts the equilibrium position of the 

particle. 

1.2.4 Wall Effects 

 Ho & Leal [21] further studied these phenomena both numerically and 

experimentally using neutrally buoyant rigid spheres in Couette and Poiseiulle flows. In 

their experiments, they observed two major effects. The first effect was observed 

experimentally where the rigid spheres were subject to simple shear in a Couette flow. 

They observed that the spheres migrated away from the wall due to the shear by the wall. 

Because of the presence of the wall, the flow slows down near the wall due to the no-slip 
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condition. This slowdown in velocity causes generates a pressure gradient forcing the 

particle away from the wall. The second effect was the outward force caused by the 

velocity profile illustrated in Figure 1.4. Consequently, a sphere within a 2D Poiseuille 

flow was found to achieve an equilibrium position near 0.6 of the channel half-height 

away from the channel centerline. Matas [18] later shows that the wall repulsive force is 

greatly reduced with increasing Reynolds number.  

 Thus, the cross-stream migration of particles is the result of two contributing 

effects. The first effect is due to the curvature of the velocity profile that moves the 

capsule toward the channel wall. The other is a force, which pushes the particle away 

from the wall. When these contributions are equal, there is no net lift force on the particle 

in the direction normal to the stream flow. This results in a zero cross-stream drift 

velocity and the particle is in a stable equilibrium position. 

 Schonberg & Hinch [22] performed a mathematical analysis of a sphere in 

Poiseuille flow. In their computation, they used characteristic lengths shown in Figure 

1.6. 

 

Figure 1.6. Channel dimensions for Schonberg & Hinch [22]. 

Two parameters that Schonberg and Hinch used to define their system were the Reynolds 

number based off the channel height and the particle Reynolds number. They are, 
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 Using these results, they plotted the migration velocity for the spheres at channel 

Reynolds numbers of 1, 75, and 150 shown in Figure 1.7. Schonberg compared the 

results to experiments and found good agreement. Their data were used in the validation 

of our computational model. 

 

Figure 1.7. Particle migration velocity as a function of position for different 
Reynolds numbers. Analytical results produced by Schonberg & Hinch [22]. 
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The above research suggests that the inertial migration of a particle has a dependency 

on the particle size. However, none of these analyses address the case where the particles 

are soft and free to deform. The effect of deformation of small particles is explored in this 

thesis in chapter 3. The knowledge of how inertial migration is affected by such system 

characteristics as the Reynolds number, particle size, and particle deformability (in the 

case of elastic particles) can be used to develop particle and cell separation devices [4]. 
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CHAPTER 2 
 

METHODOLOGY 

Using computer-based simulations, the motion of rigid and soft particles is 

modeled.  These physic-based numerical models predict specific aspects of the system. 

The hydrodynamic interaction is modeled using a lattice-Boltzmann model (LBM). The 

lattice-Boltzmann Model is discussed in Section 2.1. The capsule is modeled a network 

harmonic springs using the Lattice Spring Method (LSM) discussed in Section 2.2. The 

LSM is used to simulate the rotation and deformation of the capsule encapsulated in the 

fluid modeled by the LBM. These two numerical models are coupled together to 

accurately simulate the interaction of the fluid on the particle, and vice versa. The 

coupling of the LBM is discussed further in Section 2.3. This hybrid LBM/LSM model is 

incorporated in the simulation performed in Chapter 3 that simulates the capsule motion 

throughout a range of microchannels. Furthermore, the stiffness of the capsule is varied 

to determine the impact of the deformation on the motion of the capsule. Finally, droplets 

are simulated using a Binary LBM discussed in Section 2.4. 

2.1 Lattice-Boltzmann Method (LBM) 

One of the core techniques of the simulation environment in this study is the 

Lattice Boltzmann method (LBM). This method is used to simulate the hydrodynamic 

interactions among solid particle, channel walls and a viscous fluid using a set of density 

distribution functions describing microscopic “fluid particles”. Cumulatively, these 

microscopic interactions govern the behavior observed on the macroscopic scale. Since 

simple microscopic behavior is modeled, simulations of complex environments can be 

carried out with reduced computational effort compared to traditional methods. 
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Furthermore, the LBM can be easily parallelized and can handle complex geometries. 

Thus, this method constitutes an efficient solver for the Navier-Stokes equations in 

complex geometries.  

The microscopic behavior modeled via collision and propagation of fluid particle 

distributions at each discrete location in space (node). At each time step, fluid particles 

enter a node, collide, and propagate as shown in the in Figure 2.1 

 
Figure 2.1. Capsule propagation, collision, and final steps. 

The evolution of this behavior is governed by the discretized lattice Boltzmann 

equation [23]. In this equation, the local distribution function, ),( trfi , is propagated 

across each lattice vector ic
  at each time step tΔ . The right hand of the expression, 

describes the collision operation. The collision step is linearized with a single relaxation 

parameterτ . The final term is the equilibrium distribution function 0
if .  

fi (r +
ciΔt, t +Δt)− fi (r, t) = −

1
τ
( fi − fi

0 )  (5) 

 

By taking the moments of the capsule distribution function ),( trfi , we obtain the 

mass density, momentum density, and momentum flux defined by (6-8). The variable u


  

represents the local fluid velocity at each node. 

∑= ifρ  (6) 
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j = ρu

= fi

ci∑  (7) 

iii ccf
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 At each node, the local distribution function is totaled across all the possible 

directions the fluid capsules can move. The equilibrium distribution function is: 

f 0 = aci ρ +

j • ci
cs
2 +

ρ
uu : (ci

ci − cs
21

)

2cs
4

"

#
$

%

&
'  

(9) 

 

The coefficient ica  is used to compensate for the fact that, for each time step, particles 

propagating to nodes at 45 degrees travel a greater distance than those that propagate to 

nodes at 0, 90, 180, and 270 degrees. In each direction (i), appropriate values of the 

coefficient a are: 

3
10 =a  

(10)
 

18
11 =a  

(11)
 

36
12 =a  

(12) 

 

By taking moments of the local equilibrium distribution function, we obtain the following 

relationships. 

∑ = ρ0
if  (13) 

ucf ii


ρ=∑ 0  (14) 

fi
0ci∑ ci = P1


+ ρ
uu  (15) 

 

 The equation of state that definesP is as follows. The adiabatic speed of sound, cs ,  

is equal to √(c2/3). 
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P = ρcs
2  (16) 

The viscosity of the fluid is governed by the relaxation parameter. In order to 

maintain numerical stability of the system, the kinematic viscosity ν  must be below 

Δx2/Δt. The kinematic viscosity of the fluid is given by: 

⎟
⎠

⎞
⎜
⎝

⎛ −= 12
6
1
τ

ν  
(17) 

 

2.2 Lattice Spring Method (LSM) 

The lattice spring method (LSM) is utilized to model the neutrally buoyant 

compliant capsule. An elastic solid is modeled using a network of harmonic springs that 

are connected across nodes of equal spacing. The energy associated with each node at 

position ri  is: 

∑ −=
i

eq
ijijs rrkE 2)(

2
1  

(18) 

In the above equation, rij is the magnitude of the distance between the nodes i and 

node j. The equilibrium distance between nodes is represented by eq
ijr . The variable k  

represents the spring constant. The total force acting on each node is 

ij
i ij

eq
ijij

s r
r
rr

kF •⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= ∑  

(19) 

 

The system dynamics are captured by integrating Newton’s equation of motion 

using the velocity Verlet algorithm. 

2

2

t
r

MF i
i ∂

∂
=  

(20) 
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To integrate this equation, we first calculate the total force, which is comprised of 

both the spring force and the force exerted by the fluid, for each node. The mass of each 

node is represented iM . 

The neutrally buoyant capsule’s spherical shell is constructed from two concentric 

layers of LSM nodes. The nodes are distributed across each layer using the Delaunay 

triangulation technique. A distance LSxΔ  that is equal to the average length of a triangular 

bond separates the surfaces. They are connected by springs between the nearest and next 

nearest neighbor nodes. The solid density is given by cρ : 

33
2

LS

i
c x

M
Δ

=ρ  (21) 

 

Important physical properties such as Young’s modulus,E , and the speed of 

sound need to be further stated to quantify in the system. The Young’s modulus of the 

shell can be approximated by, 

E = 5k
2ΔxLS

 (22) 

 

and the speed of sound is given by, 

M
kxcs
3

Δ=  
(23) 

 

In order to maintain stability in the system, appropriate values for the time step 

and node spacing need to be selected. The Courant number,Cr , governs the stability of 

the system. A stable system has a Courant number of less than one.  

LS

s

x
tc

Cr
Δ

Δ
=  

(24) 
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To avoid large fluctuations in the fluid force, the lattice spring node spacing, LSxΔ , is set 

larger than the lattice Boltzmann node spacing, xΔ . 

2.3 LBM/LSM Coupling 

When undergoing motion, forces due to the hydrodynamic interactions with the 

viscous fluid influence the solid capsule. The hydrodynamic forces are due to the fluid 

pressure and viscous stresses. At each surface node, the force due to the moving solid 

must be applied to the fluid, and conversely, the fluid forces must be applied to the lattice 

spring nodes. This is performed in a sequential manner beginning with resolving the 

lattice spring method and then the lattice Boltzmann method. 

In the initial step, the lattice spring method is employed while applying the forces 

acting on the LSM nodes due to the springs and surrounding fluid. The node positions 

and velocities are determined by solving Newton’s equations of motion using the Verlet 

algorithm. Thus, the velocities of the nodes along the solid/fluid interface are determined. 

Using these velocities, a bounce-back boundary condition is applied and the propagation 

step for the lattice Boltzmann method is run on the fluid. The final step of the lattice 

Boltzmann method, collision, is computed and the entire process repeats again. 

The fluid particle distributions that are affected by the solid surface are subject to 

a “link” bounce back boundary condition [23]. This method is of second order accuracy 

[23]. A link is a path from a LBM node to a surface connecting neighbor LSM nodes,  

which cuts the link. The fluid interacts with the solid at nodes placed between the lattice 

Boltzmann node as shown in the following figure. The quantities d, and r2 are defined by 

211 rrrr −−= bd  (25) 

tiΔ+= crr 12  (26) 
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Figure 2.2. Illustration of interpolation bounce back boundary rule. 

The node at which the fluid originates is defined to be r1. For d=1/2, these fluid 

particles will arrive back at node r1 after precisely one time step with a velocity that is 

opposite in direction to their original velocity. However, when 21≠d , fluid particles 

will end up at positions that do not coincide with a regular lattice node and some sort of 

interpolation is needed[24]. We follow the interpolation scheme that was developed by 

Bouzidi et al. [25]  

Specifically, for 21<d  we apply the following boundary rule that accounts for 

the component of the boundary velocity in the direction of the fluid capsule’s velocity  

( ) ( ) ( ) ( ) ( ) ( )tructr
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When 21>d , we calculate a new distribution after it is bounced from the solid 

as follows 
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 Here, the subscript k  stands for fluid particles with a velocity in the opposite 

direction of the incoming particles, i.e. ik cc 
−= . The velocity bu

  is obtained through a 

linear interpolation between the velocities of the LSM nodes near the intersection point. 

This scheme conserves the mass and momentum with second order accuracy and yields a 

no-slip boundary condition at the solid-fluid interface.  



 19 

As a result of the bounce-back process, the fluid exerts a force on the solid. This 

force is taken to be equal to the rate of exchange in momentum that takes place as the 

fluid particles are reflected at the interface, i.e., 

( ) ( ) ( )[ ] ( ) ( )[ ]{ }
t
xctrttrftrtrfttrF kikiiibb Δ
Δ

−Δ+−−=Δ+
3

1111
*

2
1 ,,,,, 

ραρα c  
(29) 

 

The terms ( )tri ,1


ρα  compensate for the ambient pressure, ensuring that the force 

on the interface is zero when the entire system is at rest. The force bF


 is distributed as a 

load to the neighboring LSM nodes, while conserving the normal and tangential force on 

the fluid-solid interface. 

2.4 LBM for Binary Fluids 

There are several methods for applying the lattice Boltzmann method to binary 

fluids [26-32]. The primary difference between models is in the collision step. The 

models can be modified to adjust for large density ratios and other characteristics in the 

flow. In this study, we model neutrally buoyant droplets in a shear flow. For these 

simulations, the single fluid LBM model described in the previous section can be 

effectively expanded to capture the hydrodynamics of binary fluids using a free energy 

model. As such, a energy-based binary LBM model was selected [28]. 

To extend the lattice Boltzmann method for binary fluids, additional terms must 

be introduced. First, the distribution function for two species, A and B, has to be 

quantified. Second, the attraction between the two fluids needs to be modeled in order to 

best approximate the interaction between the two fluid species. Finally, the pressure must 

be quantified for a mixed fluid.  

Certain characteristics of the binary fluid are required to model this environment. 

The mass densities of the each of the two fluid species is represented by Aρ  and Bρ . The 
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local mass density is defined as (30). The local order parameter φ  is defined in equation 

(31).  

BAtr ρρρ +=),(  (30) 

),(),(),( trtrtr BA ρρφ −=  (31) 

The two fluid species and their interface are quantified using the free energy functional, 

∫ ⎟
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⎜
⎝

⎛ ∇+=
2

2
φ

κ
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(32) 

Where free energy density ( )φψ  is defined by, 

ψ = ρcs
2 − lnρ − aLBB

2
ϕ 2 +

bLBB
4
ϕ 4  

(33) 

In the expression above, the parameters aLBB , b;LBB , and κ  are used to define the 

interfacial tension and thickness. The values of b;LBB , and κ  must be positive. The value 

of aLBB  is used to define whether the system is homogeneous or multiphase where a 

negative value indicates a homogenous system. In a multiphase system, the local order 

parameter will approach an equilibrium value of 0φ+  and 0φ− . The equilibrium value is 

determined by, 

ϕ0 =
aLBB
bLBB

 
(34) 

Finally, the interface thickness (ξ) and the surface tension (σ) are given by, 

ξ = 5 κ
2aLBB

 
(35) 

σ =
8κaLBB

3

9bLBB
2  

(36) 
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 Similar to the single fluid LBM, the overall process involves collision and 

propagation and is captured using a discretized Boltzmann equation. However, with the 

introduction of a second fluid, a second equation is required. Instead of a separate 

function for each fluid species, the equations are given in terms of total mass density iρ

and the order parameter iφ . They are, 

( )eqiiiii trtrtttct ρρ
τ

ρρ
ρ

−−=Δ+Δ+= ),(1),(),(  (37) 

( )eqiiiii trtrtttct φφ
τ

φφ
φ

−−=Δ+Δ+= ),(1),(),(  (38) 

 

The equilibrium distributions for total mass density and the order parameter are 

represented by iρ  and iφ , respectively. The first relaxation parameter, ρτ , is used to 

determine the shear viscosity of the fluid. It is given by, 
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(39) 

A second relaxation parameter φτ  is introduced for the local order parameter. The values 

of φτ  and ρτ  were set equal for all the simulations. As with the single fluid LBM, ic  

represents the local velocity the node direction i. The equilibrium distributions when i=0 

(fixed) are, 
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Otherwise, they are defined by, 
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where I


is the identity matrix and A  is given by, 
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For i≠0, u  represents the fluid velocity, µ represents the chemical potential, and ΓLBB  is 

a coefficient related to the mobility. The mobility is defined by, 

M =
ΓLBB 2τϕ −1( )

2
 

(45) 

 

Mobility controls the strength of diffusion. Setting the correct mobility is crucial 

to obtaining realistic results in the simulations. At each time step, the two fluids interact 

and diffuse through the interface and achieve equilibrium. The mobility number must be 

set such that the interface relaxes to equilibrium within each time step. If the mobility 

number is too high, residual diffusion will improperly affect the results. If the value is too 

low, the interface will not achieve equilibrium by the end of the time step. The mobility 

number was chosen using verified values by Kendon [33].  

 Figure 2.3 shows a droplet formed by fluid A (shown in blue) with a value of -1. 

The outer fluid 2 (shown in red) has a value in -1. The region where the value changes 

from -1 to 1 is the interface region.  
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Figure 2.3. Droplet modeled using binary lattice-Boltzmann method. The red region 
is fully saturated with fluid A and has a value of 1. The blue region is saturated with 

fluid B and has a value of -1. 
 

 

The final terms needed to resolve the system are the chemical potential energy,µ , 

and the pressure tensor P


, 
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CHAPTER 3 
 

NEUTRALLY BUOYANT SOLID CAPSULE 

In an effort to explore the impact of different mechanical properties on cells and 

synthetic particles, simulations were performed using the methodology described in 

Chapter 2. Specifically, the effect of the capsule size and compliance on cross-stream 

inertial drift is explored to acquire the particles position within the channel. These cells 

and particles were modeled as neutrally buoyant fluid-filled capsules that are spherical 

when they are not deformed. The capsules are modeled using LSM while the fluid is 

modeled using LBM. We specifically probe the effect of capsule size and compliance on 

the cross-stream inertial drift and equilibrium position. The background behind the 

domain size and characteristics is discussed in Section 3.1. The computational setup and 

model validation is described in further detail in Sections 3.2 and 3.3, respectively. The 

result obtained from the simulations is discussed in Section 3.4 and the proof of concept 

is discussed in Section 3.5. 

3.1 System Parameters 

 In order to sort cells by size and stiffness, the mechanical properties of cells must 

be known. The cell types that will be considered are red blood cells (RBCs) and white 

blood cells (WBCs). The mechanical properties of RBCs have typically been explored 

using micropipette experimentation.  These experiments have shown that the elastic shear 

modulus of RBCs are approximately 0.01 dyne/cm [34]. The diameter of a human RBC is 

approximately 8 µm.  

 White blood cells have different mechanical properties and are larger than RBCs. 

While there are several different types, the most commonly occurring is the neutrophil. 
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The neutrophil is typically between 10-12 µm in diameter. The tensile modulus of 

neutrophils is approximately 0.024±0.003 dyne/cm [35]. 

 When composing the system, appropriate channel dimensions were selected for 

the sorting of capsules. A channel height of 100 µm [1] is appropriate for capsule sorting.  

When utilizing a channel height 100 µm, this leaves a ratio of the channel height to cell 

size of approximately 10. The flow rate for this configuration is approximately 0.1 m/s. 

Assuming the sheath fluid has properties similar to water, the Reynolds and capillary 

numbers for this system are, 

Re =UmaxH
ν

~10  
(49) 

1.0~Re
2

max

H
aU

p ν
=  

(50) 

1~2max

EhH
aUCa µ

=  
(51) 

 

Where Umax  is the maximum flow velocity, H is the channel height, E is the Young’s 

Modulus, h is the shell thickness, and a  is the capsule radius. 

3.2 Computational Setup 

The simulation environment consists of a fluid filled neutrally buoyant capsule 

with radius R placed within a micro-channel. The microchannel has a solid horizontal 

wall placed at the y=0 position. A second solid wall is placed at a position y=H where H 

signifies the channel height. There are no walls along the x- and z-direction and a 

periodic boundary condition is placed at the boundaries of each of x- and z-direction 

boundaries. The computational domain size was set such that the length (x-direction) was 

50a, width (z-direction) was 2H, and the height (y-direction) was varied. This domain 
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size is shown to be valid in Section 3.3.2. A pressure gradient is applied along the x-

direction to drive the flow. Figure 3.1 illustrates the computation domain that was utilized 

for all simulations within this chapter. 

 

Figure 3.1. Channel compuational domain. 

The neutrally buoyant capsule is modeled using the lattice spring method (LSM).  

The capsule is constructed with two shells/layers of lattice spring nodes with a distance of 

0.28R apart. Each layer is comprised of 642 nodes. Between each node is a harmonic 

spring whose spring constant is set to achieve a desired Young’s Modulus for the capsule.  

The spring constant k is determined by the equation, 

k = 2
5
(E)(ΔxLS )  

(52) 

Where E is the Young’s Modulus, k represents the spring constant, LSxΔ is the node 

spacing. This value of k  is set for all spring-connected nodes on the surface and those 

normal to the surface. Diagonal springs are set for a value of (2/3) k . 
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 The fluid is modeled using the lattice Boltzmann method (LBM). The system is 

setup such that the density is ρ =1 and the time setup is 1=Δt . The relaxation parameter 

is 1=τ , which results in a fluid viscosity of 6/1=ν . The same fluid viscosity is used 

within the fluid filled capsule. The flow is set into motion by imposing a body force that 

is proportional to the pressure gradient necessary to achieve the desired Reynolds 

number. The Reynolds number is varied between 10 and 40. The centerline velocity of 

the fluid by, 

dx
dPHU

µ8

2

max =  
(53) 

 

 

The Reynolds number defined the same as Schonberg & Hitch in equation (1).   

The simulations begin with a capsule of radius 10 in the center of the flow domain 

in the x- and z- directions. The y-position is a varied parameter where capsules are 

released at different positions within the channel in order to explore the impact of inertial 

drift in the micro-channel. The fluid and capsule are completely at rest at the initial time 

step.  

3.3 Validation 

The validation of the computational domain is necessary to ensure that the results 

produced are numerically accurate and consistent. As with most CFD, the grid needed to 

be validated that the results obtained from simulations converge on a solution. The 

verification of the computational grid is discussed in Section 3.3.1. Additionally, the 

model is validated against experiment  in Section 3.3.2. 
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3.3.1 Grid Verification 

The simulations discussed in this chapter explore the impact of deformation of 

soft capsules on the inertial drift of the capsule in micro-channel flow. The primary 

properties determined are both the equilibrium position of the capsule within the channel 

and the deformation of the capsule itself. Grid validation was performed to determine 

how the density of the grid affects the results obtained from simulations. The first 

validation step was exploring the impact of varying the grid resolution for rigid particles. 

This was accomplished by varying the channel radius and height, but leaving the ratio of 

the channel height to capsule diameter was 5. For example, a capsule with diameter of 8 

was placed in a channel height 40 and a capsule with diameter of 24 was placed in a 

channel height of 120. Since the distance between lattice-Boltzmann nodes is set to 1, 

these channels have, respectively, 40 and 120 lattice-Boltzmann nodes between the 

opposing walls. The error normalized with the channel height is shown in Figure 3.2. The 

solution converges when the LBM nodes per capsule radius is larger than 8. This is 

assumed to be close to the correct resolution. In our simulations we use grids with 10 

LBM nodes per capsule radius, which gives the error in the relative equilibrium position 

less than 0.05% of the channel height.  

 

Figure 3.2. Position error of capsule while maintaining channel aspect ratio of 5. 
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3.3.2 Comparison with Schonberg & Hinch 

The dynamic behavior was modeled for a capsule in a wide channel and 

compared the results with the theoretical results of [22]. A single rigid capsule was 

placed in different heights y/H within a channel. The heights were varied from 0.05 to 

0.5. The simulation was set for a large channel H/a=60. After the capsule is released and 

reaches a steady motion, its cross-stream drift velocity is measured. The comparison 

between our results and the theoretical results from the literature is shown in Figure 3.3. 

We also use these simulations to find the capsule equilibrium position, which is the point 

where a capsule velocity approaches zero. The equilibrium position is determined by 

taking two near zero velocities with opposite directions and linearly interpolating 

between them. 

Figure 3.3 shows that the capsule had drift velocities that change with the lateral 

distance from the wall. In this figure, the capsule lateral position is normalized by the 

channel height. When the capsule is near the wall, the capsule has a drift velocity towards 

the channel centerline. This is due to increased shear along the channel wall.  When the 

capsule is far away from the wall and near the channel center, the capsule has a negative 

velocity due to the curvature in the parabolic velocity profile. Furthermore, the simulation 

predicts the capsule equilibrium position where the velocity is equal to zero at wall 

distance of 0.182. The theoretical value predicted by Schonberg is 0.185, a difference of 

just 1.6%. In addition, the simulation is capable of producing the same velocity curve 

predicted by [22]. 
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Figure 3.3. Comparison between theoretical predictions for equilibrium position 
with that computed by simulation. 

 

3.4 Results and Discussion 

A number of simulations were performed with rigid and soft capsules. The effect 

of the channel height and Reynolds number on inertial migration for rigid capsules and 

comparison with experimental results is discussed in Section 3.4.1. Additionally, soft 

capsules were explored to determine how varying system parameters such as channel 

height and Reynolds number impact the system. This is discussed further in Section 

3.4.2. The relationship between the deformation and equilibrium position is discussed in 

Section 3.4.3.  

The system can be characterized using the capillary number that relates the 

viscosity of the fluid to the stiffness of the capsule. The capillary number of the system is 

related to the deformation of the capsule in Section 3.4.4. Finally, the effects varying the 
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viscosity of the internal fluid of the capsule while keeping the outside fluid viscosity 

constant is explored in Section 3.4.5. 

3.4.1 Effect of Channel Height on Inertial Migration for Rigid Capsules 

One of the sorting parameters of interest is sorting particles and cells by size. The 

effect of varying the channel size relative to the capsule radius was explored using 

channel aspect ratios, H/a, ranging between 4 and 20. In particular, we study the 

influence of channel height on the inertial drift of the capsule and it’s influence on the 

equilibrium position, y/H.  

Figure 3.4 shows the normalized drift velocity with respect to the distance from 

the wall for different channel aspect ratios. The Reynolds number was kept a constant 

value of 10 for these simulations. Firstly, we find that the magnitude of normalized drift 

velocity decreases with decreasing aspect ratio. Secondly, the equilibrium position of the 

capsule is sensitive to the channel aspect ratio. As the channel aspect ratio increases, the 

equilibrium position moves closer to the channel wall. Thus, there is a clear relationship 

between the channel aspect ratio and the inertial drift velocity leading to changes in 

equilibrium positions. Therefore, rigid particles can be sorted based on their size relative 

to the channel height. 
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Figure 3.4. Normalized drift velocity as a function of wall distance for various 
channel height aspect ratios (H/a) for rigid capsules. They Reynolds number for the 
flow is 10. Each line represents a different channel height aspect ratio. The aspect 

ratios of each line are 5 (square), 10 (diamond), 20 (triangle), and 60 (circle). 
 

 In Figure 3.5, the equilibrium position is plotted as a function of the channel 

aspect ratio. We find that the equilibrium position approaches to the channel center line 

for narrow channels, and it is close to the predictions of [22] when the channel is wide, 

resulting in a large channel aspect ratio. In this figure, we also show how the equilibrium 

changes if the Reynolds number is increased to 40. The difference between curves for 

Re=10 and Re=40 is small, indicating that there is a weak dependency of inertial drift on 

Reynolds number.  

This relationship between the channel aspect ration and equilibrium position has 

been experimentally verified. The Di Carlo group at UCLA provided the experimental 

data for the equilibrium position of droplets [36]. Oil droplets with an internal viscosity 

of 970 cP were submerged in water and released in the channel. At the outlet, the droplet 

equilibrium position was recorded using a Phantom v7.3 high speed camera. The samples 
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were injected using a syringe pump and had a flow rate of 25 µl/min to 450 µl/min. Due 

to the high viscosity the droplets maintained a nearly spherical shape during experiments. 

We performed simulations using a computational setup that matches the experimental 

setup. Specifically, the aspect ratio of the channel, 2:1, is the same as the experimental 

channel where the smaller side is the direction of migration of the capsule. Note that the 

experiment is at a Reynolds number of 20 while the simulation varies from 10 to 40. 

There is close agreement between the results produced by our simulations and the 

experiment. Again, we find that the equilibrium position moves towards the centerline 

with a lower aspect ratio H/a.  As the aspect ratio gets very large, we see that the 

equilibrium position approaches the theoretical results reported in [15] . 

 

Figure 3.5. Comparison of equilibrium position of rigid capsules with experimental 
results. 

 
This data of rigid capsules indicates that particles can be sorted based on their size 

using inertial drift. For example, suppose 10µm and 20 µm solid beads need to be sorted 

in a channel with a height of 100 µm. If the Reynolds number of the flow is 10, the 10 
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µm bead will have an equilibrium position of 23.5 µm from the wall. The larger bead will 

have an equilibrium position of 27.5 µm from the wall. 

3.4.2 Effect of Channel Height on Inertial Drift for Soft Capsules 

 In Section 3.4.1, it was shown that the equilibrium position of rigid capsules 

moves away from the centerline of the channel for increasing heights. In this section, the 

equilibrium position of soft capsules is probed in a similar fashion. In order to measure 

the deformation of compliant capsules, the method of measuring deformation needs to be 

established. The deformation of compliant capsules can be difficult to quantify. While 

subject to the forces within the flow, the capsule is free to deform in any direction and 

rotate. Since the deformed capsule is commonly shaped similar to an ellipsoid, the 

change in geometry is quantified in those terms. This simplifies measurement of 

deformation and allows comparison with both theoretical and experimental results. The 

deformation is quantified using the following equation: 

D =
Lmax − Lmin
Lmax + Lmin

 (54) 

A detailed figure is shown below. 

 

Figure 3.6. Ellipsoid geometry. 
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 When a pressure gradient is imposed, the capsule begins moving along the 

channel. At the same time, the capsule moves normal to the channel wall with a cross-

steam velocity proportional to the imposed Reynolds number of the flow. As with the 

rigid capsule, when the capsule approaches the wall, the capsule is subject to wall effects 

due to an increase in shear. The combination of inertial drift and shear forces drive the 

capsule to move towards the off-center equilibrium position. For deformable capsules, 

the increased shear near the wall results in a larger deformation. The deformation results 

in an increased lift force proportional to the level of deformation encountered.  

 In order to quantify the effect of the deformation on the equilibrium position, 

simulations were set up with soft capsules with compliance values. Compliance is 

defined by, 

Φ =
4µ 2

ρdGs

 
(55) 

where Gs  is the two-dimensional shear modulus, 

Gs =
0.5Eh
1+ν( )

 (56) 

A flow was imposed with a Reynolds number of 10. The deformation and equilibrium 

position were determined for each capsule with different compliance. The results of these 

simulations are shown in Figure 3.7. 

As with rigid capsules, increasing the channel height results in the capsule 

equilibrium position moving away from the centerline of the channel. Furthermore, the 

equilibrium position of soft capsules is closer to the centerline than the equilibrium 

position of rigid capsules. As the elasticity of the capsule decreases, the equilibrium 

position of the capsule moves closer to the centerline. 



 36 

 

 

Figure 3.7. Equilibrium position as a function of particle compliance, Φ. Each line 
represents a channel aspect ratio H/a of 10 (circle), 6 (triangle), and 4 (diamond). 

 
 For the application of soft cell and particle sorting, a softer cell or particle of a 

similar size can be distinguished from another rigid particle. While not a sole indicator, 

cancer cells have a different stiffness than healthy cells [10]. The cells can be separated 

by their stiffness by submerging them into microfluidic flow so they may be further 

interrogated. 

3.4.3 Effect of Deformation 

In Section 3.4.2, the equilibrium position of soft capsules has been shown to vary 

from that of rigid capsules. Soft capsules have equilibrium positions closer to the channel 

centerline than rigid capsules. The differences between soft and rigid capsules can be 

attributed to the deformation that the soft capsules exhibit under viscous stresses while in 

the channel. When a soft capsule is near a wall, it is subject to an increased shearing rate 

that increases the deformation. If the Reynolds number is increased, this also increases 
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the shear in the flow causing the capsule to deform. The equilibrium position of the 

capsule is dependent on the deformation or shape of the capsule. Figure 3.8 shows the 

equilibrium position of soft capsules in relation to deformation calculated using equation 

(54) for Reynolds numbers 10 and 40. Figure 3.8 implies that when deformation 

increases, the equilibrium position within the channel moves towards the centerline.  

Furthermore, as the Reynolds number is increased, the deformation of the capsule 

also increases. But, this increased deformation does not yield a higher equilibrium 

position as maybe expected. For example, in a channel with an aspect ratio of 10, the 

deformation is 0.01 for a Reynolds number of 10 and 0.032 for a Reynolds number of 40. 

The equilibrium position of these capsules is approximately the same. 

 

Figure 3.8. Comparison between equilibrium position for channel aspect ratio of 4 
(diamond), 6 (triangle), and 10  (circle). Reynolds number equal to 10 (filled 

symbols) and 40 (unfilled symbols). 
 

For further comparison, Figure 3.9 shows the equilibrium position of the capsule 

as a function of capsule compliance, Φ , for various Reynolds numbers. Firstly, this 

shows that equilibrium position stays the same, despite the capsule is more deformed in 
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that position at a higher Reynolds number. This implies capsule compliance, not shape 

defines the equilibrium position of the capsule. Secondly, we find that more compliance 

capsules migrate towards the channel centerline. Lastly, this figure implies that cells and 

synthetic particle cannot be distinguished by simply increasing the Reynolds number of 

the flow. 

 

Figure 3.9. Particle equilibrium position as a function of particle compliance Φ  for 
10Re =c  and different particle aspect ratios A . The circles, triangles, and diamonds 

show data for H/a=10, 6, and 4, respectively. 

3.4.4 Relationship Between Deformation and Capillary Number 

The capillary number can be used to relate the dominance of the viscosity of the 

flow to the capsule compliance. While channel capillary number, Cac , can be utilized to 

characterize the system, the local capillary number is highly significant. The local 

capillary number, LCa , considers the local magnitude of the shear rate at the position of 

the capsule during simulation. 

The relationship of the deformation and the local capillary number for a channel 

aspect ratio of 5 is shown in Figure 3.10. Furthermore, the deformation of a capsule is in 

pure shear is shown to be practically identical. Therefore, the non-uniformity of the flow 
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shear rate does not affect capsule shape in wide channels. We also find that the 

deformation of capsules is slightly smaller than that predicted by a linear theory for thin 

spherical shells in a shear flow [37] represented by the dashed line. This difference can be 

attributed to the effect of bending rigidity of elastic capsules that is included in our 

numerical model, but is not accounted for by the linear theory. Thus, we can expect that 

capsules with lower bending rigidity will experience slightly larger deformations and, 

therefore, may equilibrate somewhat closer to the channel centerline. 

 

Figure 3.10. Capsule deformation for various local capillary numbers for channel 
aspect ratio, H/a=5. The empty symbols show the results for actual channel flow, 

while the filled symbols are for pure shear flow. 
 

3.4.5 Equilibrium Position of Capsules with Different Viscosity Ratios 

Simulations with soft capsules with different viscosity ratios were performed to examine 

the impact of the viscosity on the equilibrium position. A fluid-filled neutrally buoyant 

capsule was set up with a viscosity described by equation (35). Three different viscosity 

ratios, defined by the following equation, were used in the simulations. 
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Γ =
νc

νo

 (57) 

Where Γ  is the viscosity ratio, 

€ 

ν c is the viscosity within the capsule, 

€ 

νo
  

and is the 

viscosity of the outer fluid. The outer fluid’s viscosity was kept at a constant value of 1/6 

and the inner fluid viscosity was varied. 

The relaxation parameter in equation (35) was varied such that the viscosity of the inner 

fluid was 2, 3, and 5 times larger than the viscosity of the outer fluid. The specific 

relaxation parameter, 

€ 

τ , is 1.5, 2, and 3. 

The stiffness of the capsules was varied. The effect of the viscosity ratio is most 

prominent with the softest capsules. Simulations were run for an Eh range between 0.005 

and 0.25. The capsule with Eh=0.005 was too soft resulting in the capsule collapse. Also, 

when the value of Eh was 0.05 and larger, the simulation yielded similar results to the 

prior case where the viscosities of the internal capsule and outer fluids were equal. This 

occurs because the deformation of the shell becomes insignificant and therefore the effect 

of internal fluid is less prominent. The three remaining Eh values are 0.0098, 0.015, and 

0.025. The equilibrium position of the soft capsules with the viscosity ratios previously 

mentioned is shown in Figure 3.11. 

This figure is plotted in terms of capillary number and shows its impact on the 

equilibrium position of the capsule for various viscosity ratios. As the capillary number is 

increased, the stiffness of the shell decreases. As was observed in section 3.3.5, 

increasing the capillary number results in larger deformation of the capsule. As previous 

data suggests, a larger deformation leads to the capsule approaching the centerline of the 

capsule. 
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   Figure 3.11 shows that the viscosity of internal fluid has a profound impact on the 

equilibrium position. For low capillary numbers, the deformation of the capsules is 

relatively small, which results in small variation of the equilibrium position with 

viscosity ratio. However, as the capillary number increases, the increased deformation 

leads to a wider variation of equilibrium positions for a given capillary number. More 

specifically, as the viscosity ratio increases, the equilibrium position of the capsules 

moves away from the centerline of the channel. By increasing the viscosity ratio of the 

capsule, the deformation of capsule’s shell is suppressed, which results in a capsule that 

behaves similar to one that is rigid. 

 

Figure 3.11. Equilibrium positions based on capsule capillary number for capsules 
of different viscosity ratio, Γ , for channel flow where Re=40. 

3.5 Application of Inertial Migration to Cell Sorting 

The data discussed in Section 3.4 show that capsules can be sorted by both size 

and stiffness. Furthermore, the data suggests that the equilibrium position of the capsules 

is independent of the flow rate. Therefore, the creation of a device to sort cells and 

synthetic particles based on their physical and mechanical properties is feasible. A proof-
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of-concept device [13] that sort leukocytes and erythrocytes has been developed by the 

Di Carlo Laboratory is shown in Figure 3.12. 

This device capitalizes on the phenomena discussed in Sections 3.4.1 and 3.4.2. 

The equilibrium position of the capsule is dependent on the channel size, where a large 

channel will produce more pronounced differences in equilibrium positions than smaller 

ones. The cells enter small channels upstream so that they become ordered and later 

interrogated to determine the cell type. 

 Figure 3.12(a) shows unordered cells entering a chamber and then separated into 

individual parallel micro-channels. As the cells progress downstream, the position of 

each cell will achieve an equilibrium position shown in Figure 3.12(b). Using inertial 

drift, the Di Carlo group has been able to differentiate cell types at a rate of 1,000,000 

cells/sec using conventional microscopic analysis and high speed imaging [13].  

 

Figure 3.12: Di Carlo Experiment [13]. A group of unordered cells are sorted in 
channels (a) and reach an equilibrium position downstream of inlet (b). 
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CHAPTER 4 
 

DROPLETS 

4.1 Introduction 

In the previous section, we have shown that capsule deformation has a significant 

influence on capsule cross-stream inertial migration. In this section we compare 

deformation of fluid filled capsules with liquid droplets in pure shear flow. This 

information may be useful for extending our results for deformable capsules to liquid 

droplets. 

4.2 Computational Setup 

 The binary fluid model as described in Section 2.4 was used for simulations that 

involved liquid droplets.  The droplet was placed in the center of a three dimensional 

channel between two walls moving in the opposite directions at a constant speed, U. The 

channel configuration is shown in Figure 4.1. 

 

Figure 4.1. Computational setup for droplet subject to shear testing. 
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The droplet radius (a) for all tests remained a constant value of 10. The channel 

height (H) is equal to 100. The wall velocity was varied to set the required magnitude of 

the capillary number defined below. The capillary number is defined in terms of the shear 

rate (γ ), the viscosity of the fluid (µ ), and the surface tension of the droplet (σ ). 

σ
µγaCa =  

 

(58) 

The system parameters that govern the interface thickness and surface tensions were 

obtained from [33]. The specific values are shown in Table 1. 

Table 1. Binary LBM Parameters 

σ  aLBB ,bLBB  κ  M  
0.0083 0.00125 0.008 10 
0.0021 0.00313 0.002 8 
0.0042 0.00625 0.004 4 
0.042 0.0625 0.04 0.5 
0.055 0.083 0.053 0.1 

 

4.3 Model Validation – Phase Separation 

One of the validation tests was performed to verify the phase separation of a 

binary fluid. In this test, two fluids mixed throughout the domain.  A random distribution 

of fluid was distributed across the entire domain with order parameters ranging from 1 

(fluid A saturated) to -1 (fluid B saturated). The distribution was set such that the mean 

value of the order parameter was 0 across the domain signifying that there is an equal 

quantity both fluids in the domain as shown in Figure 4.2 (left).   

The 3D domain size was 50 lattice Boltzmann units in each direction. There were 

125,000 nodes total within the domain. Periodic boundary conditions were applied in all 

directions. The results of the simulation are shown in Figure 4.2 (right). As expected, the 

fluid begins to phase separate and begins to form a droplet. 
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Figure 4.2. Two fluid phase separation test: Initial (left) and Final (right) state. 

4.4 Model Validation – Shear Test 

Testing was performed to validate the droplet in shear. The droplet is placed in a channel 

setup as described in Section 4.2. The initial state of the droplet is shown in Figure 4.3. 

 

Figure 4.3. Droplet setup in channel. A region fully saturated with fluid A (red) has 
a value of 1, or fluid B (blue) with a value of -1. 

According to [38], assuming a small deformation, the theoretical deformation of a droplet 

subject to shear is a function of the capillary number of the system. The theoretical 

deformation of the capsule is, 
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The capillary number is defined in equation 58. The viscosity of fluid A and fluid B are 

defined as aµ  and bµ , respectively. The dimensions Lmax and Lmin refer to the length of 

the semi-major and semi-minor axes of an ellipsoid. This definition matches the 

definition of the deformation of a capsule in equation (54). In the simulation, the 

viscosities of the fluid inside and outside the droplet were identical. In this case, the 

deformation for the droplet changes linearly as the capillary number increases. 

32
35CaD =  

(60) 

A 2-D (left) and 3-D (right) rendering of a capsule deformed 0.018 is shown in the 

following Figure 4.4. 

 

Figure 4.4. Rendering of droplet deformed by 1.8%. The 2D view (left) and 3D view 
(right) as shown. 

 
The comparison between the theoretical results predicted by Taylor and that of the 

simulation are shown in Figure 4.5. The simulations produce results similar to that of the 

theory.  This confirms that for capillary numbers below 0.1 the linear theory is 

sufficiently accurate to describe the deformation of droplets in shear flow.  
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Figure 4.5. Comparison between droplet (plus sign) deformation produced by 

simulations and theoretical deformation (dotted line) predicted by [38]. Capsules 
are shown at different Reynolds number of 6 (circle), 12 (triangle), and 24 (square). 
The original data are represented by filled symbols and the adjusted data are shown 

by unfilled symbols. 

4.5 Comparison Between Droplets and Capsules 

The relationship between droplets and capsules needs to be established in order to 

attempt to translate the results for solid capsules to liquid droplets. Capsules and droplets 

both deform under shear. For small deformations, where the deformation is less than 0.1, 

the deformation of droplets is close to theory. For capsules, the deviation exceeds greatly 

the prediction of the theory developed for droplets. The comparison between the 

deformation of droplets and capsules as a function of capillary number is shown in Figure 

4.5. This figure also shows the theoretical prediction. 

As can be observed above, the difference between the capsule deformation and 

theory is significant. This is due to the difference in the definition of interfacial properties 

of droplets and capsules. We found however that this range of capillary numbers, the 

capsule deformation is independent of the Reynolds number.  
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In order to adjust for this difference, a correction factor was determined to match 

the results between capsules and droplets. The data for the capsule were correlated to that 

droplets and a line of best fit was determined. The adjusted data are also shown in Figure 

4.5. In this case the capsule capillary number was multiplied by a correction factor given 

by: 

CaCadj 65.3=  (61) 

By correcting the capillary number for capsules to match the deformation of droplets, we 

can expect that the results for inertial migration of deformable capsules can be used to 

estimate the effect of inertial migration of droplets with a comparable deformability 

characterized by capillary number. 
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CHAPTER 5 
 

CONCLUSIONS & FUTURE WORK 

5.1 Conclusions 

The effect of inertial drift on equilibrium position of capsules subject to laminar 

Poiseuille flow in microchannels has been explored under a number of conditions. The 

impact of system parameters such as the Reynolds number, capillary number, and 

channel height has also been quantified. The data obtained from the simulations can be 

potentially extended to droplets using a correction factor that translate deformation of 

capsules and droplets with identical capillary numbers defining their compliance. 

 It is found that the equilibrium position for rigid capsules is weakly dependent on 

the channel Reynolds number. The primary method to control the equilibrium position of 

rigid capsules is to change the channel aspect ratio, either by adjusting the size of the 

capsule or the channel height. By keeping the capsule radius fixed and increasing the 

channel height, the capsule moves further away from the channel centerline. Conversely, 

by decreasing the channel height, the capsule equilibrium position moves closer to the 

channel center. For the purposes of sorting rigid capsules by size in channel flow, it is 

expected that the small capsules will be further away from the channel centerline. 

 For soft capsules, the equilibrium position depends on both capsule elasticity and 

channel height. As observed with the rigid capsules, the capsules move closer to the 

centerline with a smaller channel aspect ratio. Since the soft capsules are free to deform, 

the deformation has an impact on the equilibrium position as well. For softer capsules, 

the deformation is greater which results in the capsules moving closer the channel 

centerline. When the Reynolds number is varied, the equilibrium position stays 
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approximately the same. But, the deformation at that equilibrium position is higher for 

larger Reynolds numbers.  

 This data suggests that cells and synthetic particles can be focused by their 

properties with equipment sensitive enough to detect the differences in equilibrium 

position. It can be used to differentiate cell types by size and stiffness. Further research 

needs to be done on exploring wider ranges of channels and Reynolds numbers. 

Furthermore, droplet models need to be enhanced so that the inertial drift velocity and 

equilibrium position can be quantified in a similar manner to capsules. 

5.2 Future work 

In this thesis, the affect of capsule compliance on inertial drift velocity and 

equilibrium position was explored. It was observed that the softer capsules achieved an 

equilibrium position closer to the channel centerline than rigid particles. One of the 

observations obtained was that the capsule stiffness, not Reynolds number, is the 

governing factor in driving the equilibrium position closer to the channel centerline. This 

effect is observed across Reynolds numbers 1-100. This implies that forces that set the 

equilibrium position scale similarly with the Reynolds number. The importance of 

understanding these forces is critical in a further understanding of how the stiffness 

impacts the lift of the capsule. 

Further exploration is necessary to determine the impact of capsule concentrations 

on the capsule equilibrium position. This thesis is limited to dilute systems. An 

understanding of capsule-capsule interactions is necessary for the development of devices 

with high concentrations of cells or synthetic particles. 
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A major assumption for all simulations was the capsule was spherical and 

undeformed at the start of the simulations. Additional research exploring capsules that 

have non-spherical shapes is necessary to determine the impact on inertial drift.  

Additionally, this thesis attempted to relate the deformation of droplets to the 

results obtained from capsules. Additional work is necessary to strengthen this 

relationship. This includes repeating the simulations performed in Chapter 3 with droplets 

instead of capsules.  
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