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SUMMARY

Currently, there are few analytical tools within the ballistics community to aid

in the design and performance evaluation of aerodynamically asymmetric projectiles.

The scope of this thesis is to (1) create analytical tools that are capable of quantifying

aerodynamically asymmetric projectile performance, (2) demonstrate the ability of

these models to accurately account for aerodynamic asymmetries, and (3) gain insight

into the flight mechanics of several aerodynamically asymmetric projectiles. First, a

six-degree-of-freedom (6 DOF) flight dynamic model, which uses a point-force lifting-

surface aerodynamic model, was developed to replicate flight characteristics observed

from measured results of common projectiles. A quasi-linear flight dynamic model

was then created using the machinery of Projectile Linear Theory (PLT). From this,

flight dynamic stability models were developed for linear time-invariant (LTI) and

linear time-periodic (LTP) systems. Dynamic simulation and stability trade studies

were then conducted on asymmetric variants of 4-finned, 3-finned, 2-finned, and hy-

brid projectile configurations. First, stability of symmetric projectiles are validated

and show that the classical and extended PLT model yielded identical results. Re-

sults show that aerodynamic asymmetries can sometimes cause instabilities and other

times cause significant increase in dynamic mode damping and increase/decrease in

mode frequency. Partially asymmetric (single plane) configurations were shown to

cause epicyclic instabilities as the asymmetries became severe, while fully asymmet-

ric (two plane) can grow unstable in either the epicyclic modes or the roll/yaw mode.

Another significant result showed that the LTP stability model is able to capture aero-

dynamic lifting-surface periodic affects to evaluate dynamic stability requirements for

asymmetric projectiles.
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CHAPTER I

INTRODUCTION

1.1 Background and Motivation

A number of conditions can cause standard munitions such as mortars and artillery to

miss an intended target. These conditions include variable atmospheric conditions,

firing platform motion, aiming errors, and manufacturing inaccuracies of the gun

tube, propellant, and projectile [35]. With the advent of smart weapons technologies,

guided munitions can be used to dramatically lower dispersion error and collateral

damage; however, development of these guided projectiles has presented weapons

designers with numerous complex technical challenges over the past several decades

[37]. Control mechanisms and onboard electronics suites must be small due to size

limitations and rugged to withstand extreme acceleration loads and high spin rates.

Furthermore, guided projectiles are often fired in large quantities and therefore must

be relatively inexpensive to produce. To reduce cost, smart weapons developers have

now begun to investigate more unconventional guided projectile concepts with passive

roll control capability [17][13].

1.1.1 Control Surface Implementation

Control of flight vehicles, particularly projectiles, using lifting surfaces as control

mechanisms is not a new idea and has been employed extensively in the missile com-

munity and, more recently, in the smart weapons community. A large collection

of aerodynamic data for numerous canard-equipped missile configurations has been

amassed by the U.S. Air Force [15] and used to develop aeroprediction semiempir-

ical software, according to work by Moore [27]. Aeroprediction Inc.’s AP09 code

[26] and Arrow Tech’s PRODAS software [1] have emerged over the past decade as
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industry standard projectile aerodynamic prediction tools. In the guided projectile

community, several studies and development programs have considered use of canard

mechanisms for flight control purposes onboard both fin- and spin-stabilized indirect

fire munitions. Smith et al. [38] have explored the application of canard control to a

spin-stabilized projectile for dispersion error reduction. Their design used a seeker-

based guidance system and mounted canards on a rolling bearing spinning slower than

the body in order to reduce canard actuator power and bandwidth. Later, Costello

[8][9] investigated the use of canards onboard an artillery shell for the purpose of range

extension. Example results and trade studies showed that dramatic range increases

could be accomplished using reasonably sized canards.

Numerous guided artillery projectiles developed over the past three decades have

employed canard control mechanisms. One of the first such development programs

was Copperhead [29][30], a 155 mm artillery round that used four dithering rear tail

fins for roll stabilization and maneuver control as well as four fixed canards placed

forward on the body for maneuver augmentation. Another program, the Low Cost

Competent Munition development effort conducted jointly by the U.S. Army and

Navy [44], explored the use of extendable fixed canards for use as drag brakes as

well as dithering canards for use in precise trajectory corrections. The U.S. Navy’s

Extended-Range Guided Munition [42][2] combined use of a rocket motor, tail fins,

and forward-placed canards to significantly extend the range of a 5 in. projectile for

naval guns. Most recently, the Army’s Excalibur [19] and Precision Guidance Kit

[28] development programs for 155 mm projectiles have demonstrated the feasibility

of using canard mechanisms to successfully guide cannon-launched munitions.

Clearly, control surface implementation has proven to be a useful technology thus

far; however, still more significant advancements are anticipated to be made. As

control of projectiles with asymmetric control surface configurations are researched,

a breakthrough in more accurate, yet cheaper, guided munitions might be achievable.
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In an effort to reach this end, weapons developers are now requiring design tools, such

as aero prediction methods and projectile linear theory, to be upgraded to account

for these asymmetries.

1.1.2 Projectile Linear Theory

Projectile Linear Theory has long been an analytical work horse in the ballistics com-

munity [23] and is used to reduce the complexity of the flight dynamic equations

of motion through application of a series of simplifications and assumptions. These

linearized equations of motion allow the engineer to apply concepts from Linear Sys-

tems Theory [14][24][41], which is well understood and easily implemented. Over

time, projectile linear theory has been used for stability analysis, aerodynamic coef-

ficient estimation using range data, and fast trajectory prediction. Basic projectile

linear theory has extended by various authors to handle more sophisticated aerody-

namic models [32], asymmetric mass properties, [22], fluid payloads [43][34], moving

internal parts [5][21][37], dual spin projectiles [39][11], extending flight [33], lateral

force impulses [6][20][3], and model predictive control [35]. Recently, an extended

linear theory for aerodynamically asymmetric lifting surfaces has been developed for

a specific canard configuration to investigate the effects of canard dithereing [7] and

canard stall on projectile roll and pitch damping [25].

1.2 Thesis Objectives

The work reported here aims to develop an extended linear theory for arbitrary asym-

metric lifting surface configurations and to study flight dynamic stability by perform-

ing a series of parametric trade studies. The thesis objectives are formally stated

below:

• Develop an extended projectile linear theory model for configurations with lift-

ing surfaces that are arbitrarily located and oriented on the body. Validate the

model with an industry standard code (BOOM) [10].
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• Use the new projectile linear theory model to evaluate flight dynamic stability

as a function of projectile parameters and lifting surface parameters. Investigate

if a standard linear time-invariant (LTI) system approximation is sufficient or if

a more involved linear time-periodic (LTP) stability analysis (Floquet Theory)

is necessary.

• Use the projectile linear theory to perform a series of parametric trade studies

on asymmetric projectile configurations to investigate airframe flight dynamic

stability characteristics by constructing root-locus plots to track changing sys-

tem poles.

1.3 Primary Thesis Contributions

This research is intended to aid in the design of smart weapons technoligies and

contributes to the state-of-the-art in the following ways:

• Developed an extended projectile linear theory to account for aerodynamic ef-

fects of arbitrary lifting surface projectile configurations.

• Applied Floquet Theory to the extended projectile linear theory models to ac-

count for periodic effects due to aerodynamic asymmetries in the roll angle.

• Conducted a series of trade studies to investigate the effects of several common

projectile lifting surface asymmetries on flight dynamic modes and mode shapes.
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1.4 Projectile Testbed Description

Throughout this study, the Army-Navy basic finner will be used as the projectile

testbed for all asymmetric lifting surface configurations. This projectile is commonly

used in academic studies as its flight mechanics are well known and readily available

[12]. The figure below shows a computer graphic of the basic finner projectile and

Appendix A provides further discussion and summary.

Figure 1: A 3-D renduring of the Army-Navy basic finner projectile airframe.
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CHAPTER II

FLIGHT DYNAMIC THEORY

2.1 Vector Operators

To aid in the mathematical description of the flight dynamic model, two basic vector

operators are first defined. Consider an arbitrary vector �A with vector components

(or measure numbers) expressed in some coordinate reference frame (N).

�A = ax
�IN + ay

�JN + az
�KN

The measure number operator, CN(·), and the vector cross-product operator, SN(·),

are defined below in equations (1) and (2) with respect to a reference frame N .

CN

�
�A

�
=






ax

ay

az






(1)

SN

�
�A

�
=





0 −az ay

az 0 −ax

−ay ax 0




(2)

These two operators provide for a very efficient mathematical description of the en-

suing dynamic models. A typical example is the cross-product of two vectors, which

is commonly found in velocity or acceleration expressions. The equation below il-

lustrates an identity for the cross-product of two arbitrary vectors �B and �C, using

measure number and cross-product operators.

�B × �C = SN

�
�B

�
· CN

�
�C

�
(3)
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2.2 Reference Frames

Specification of references frames and rotation sequences between frames provides

clarity and structure to the dynamic equations of motion and is therefore a logical

starting point [18]. As is convention in the aerospace industry, the attitude (ori-

entation) of a vehicle can be expressed by using a (3-2-1) single-axis, body-fixed

composite rotation sequence. Figures 2 and 3 illustrate how this rotation sequence

relates a body-fixed frame (B) to an inertial frame (I).

Rotation sequences can be thought of as representing the coordinate axes of one

reference frame (�Ix1, �Jx1, �Kx1) in terms of another reference frame (�Ix2, �Jx2, �Kx2) and

can be mathematically described by orthonormal matrices. Because these matrices are

orthonormal, their matrix inverses are equal to the transpose - a fact that can greatly

reduce computational effort. The following outline describes the (3-2-1) rotation

sequence as a series of single-axis rotations, parameterized by the Euler angles: yaw

- ψ, pitch - θ, roll - φ (see to Figure 3). Note that single-axis transformation matrices

about an axis x by angle y are notated as [Tx (y)].

• Yaw - Rotate about �KI by the angle ψ. The resulting new axis is the Interme-

diate 1 Frame (1). 




�I1

�J1

�K1






= [TK (ψ)] ·






�II

�JI

�KI






(4)

• Pitch - Rotate about �J1 by the angle θ. The resulting new axis is the No-Roll

Frame (NR). 




�INR

�JNR

�KNR






= [TJ (θ)] ·






�I1

�J1

�K1






(5)
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• Roll - Rotate about �INR by the angle φ. The resulting new axis is the Body-

Fixed Frame (B). 




�IB

�JB

�KB






= [TI (φ)] ·






�INR

�JNR

�KNR






(6)

Equations (7)-(9) define the single-axis transformation matrices, where a standard

shorthand for trigonometric functions is employed: sin(α) ≡ sα, cos(α) ≡ cα, and

tan(α) ≡ tα.

[TK (ψ)] =





cψ sψ 0

−sψ cψ 0

0 0 1




(7)

[TJ (θ)] =





cθ 0 −sθ

0 1 0

sθ 0 cθ




(8)

[TI (φ)] =





1 0 0

0 cφ sφ

0 −sφ cφ




(9)

Using substitution, the attitude of any reference frame can be represented with

respect to another. The component equations below show the overall rotation trans-

formation from inertial to body frame.





�IB

�JB

�KB






= [TI (φ)] · [TJ (θ)] · [TK (ψ)] ·






�II

�JI

�KI






(10)

Equation (10) states that the attitude of a body-fixed frame with respect to an inertial

frame can be determined given knowledge of the Euler angles. For simplicity and

understanding, a rotation transformation between any two arbitrary reference frames
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(x1) and (x2) is now described by [Tx2←x1], where the Euler angles relating the two

frames are implicitly understood. Thus for a transformation between frame (B) and

frame (I), the series of single-axis transformation matrices found in Equation (10) can

be equivalently represented as follows:

[TB←I ] = [TI (φ)] · [TJ (θ)] · [TK (ψ)] . (11)

Figure 2: An illustration of an inertial reference frame to the body-fixed reference
frame. The origin of frame (B) is located at the vehicle mass center and is free
to rotate in space. The origin of frame (I) is arbitrarily located is space but the
orientation and position of this frame is fixed in space.
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Figure 3: Illustration of Euler angle (aerospace convention) rotation sequence from
inertial frame to body-fixed frame. Starting with the projectile aligned along �II , the
projectile is first rotated by the angle ψ, then vertically by the angle θ, and finally
rotated by the roll angle φ. These three angles completely describe the attitude of
the projectile with respect to the inertial frame.
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2.3 Important Vector Definitions

Along with the Euler angles, the dynamic behavior of a projectile in free flight will be

quantified and evaluated using time history of position, velocity, and angular velocity

vectors. The following vectors are defined and will be used in the construction of the

dynamic equations of motion.

• �rO→⊕ – position from the origin of the inertial frame O to the projectile mass

center (the origin of the body frame). See Figure 2 for illustration of these

vector components in regards to projectile position.

�rO→⊕ = x�II + y �JI + z �KI (12)

• �V⊕/I – velocity of the projectile mass center with respect to reference frame (I).

Equation (13) defines the projectile velocity vector in terms of inertial frame

measure numbers, while equation (14) is an equivalent expression in terms of

body frame measure numbers.

�V⊕/I = ẋ�II + ẏ �JI + ż �KI (13)

�V⊕/I = u�IB + v �JB + w �KB (14)

• �ωB/I – angular velocity of the projectile body frame (B) with respect to reference

frame (I). Equation (15) defines the projectile angular velocity vector in terms

of Euler angle time derivatives, but note that each term is expressed with a

difference reference frame vector than the other terms. Equation (16) is an

equivalent expression in terms of body frame measure numbers.

�ωB/I = ψ̇ �KI + θ̇ �J1 + φ̇�INR (15)

�ωB/I = p�IB + q �JB + r �KB (16)
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2.4 Nonlinear Flight Dynamic Model

2.4.1 Trajectory Equations of Motion

The nonlinear flight dynamic model used in this study is a standard six-degree-of-

freedom (6DOF) model. These ordinary differential equations are widely used in

computational simulation of free flight vehicles and are reported in many sources

including: Carlucci [4], Etkin [14], McCoy [23], and Murphy [31]. Derived using the

standard Newton-Euler approach, these 12 equations of motion are provided below.

CI

�
�̇V⊕/I

�
= [TB←I ]

T · CB

�
�̇V⊕/I

�
(17)






φ̇

θ̇

ψ̇






=





1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ




· CB

�
�ωB/I

�
(18)

CB

�
�̇V⊕/I

�
=

1

m
CB

�
�F

�
− SB

�
�ωB/I

�
· CB

�
�V⊕/I

�
(19)

CB

�
�̇ωB/I

�
= [I]−1

�
CB

�
�M

�
− SB

�
�ωB/I

�
· [I] · CB

�
�ωB/I

��
(20)

Equations (17) and (18) are commonly referred to as the positional kinematic and

attitude kinematic equations of motion, respectively. Equations (19) and (20) are

direct applications of Newton’s 2nd Law of Motion in linear and angular forms. In

the latter equations, the resultant externally applied force and moment vectors are

represented by �F and �M , respectively. The symbol m represents the projectile mass

and [I] is the projectile inertia tensor matrix.

2.4.2 External Force and Moment Models

The externally applied force �F in Equation (19) can be decomposed into contributions

due to weight (W), body aerodynamics (B), and lifting surface aerodynamics (C).

Assuming that a projectile body is axially symmetric, the body aerodynamic force
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can be further split down into contributions from a steady aerodynamic (SA) force and

a Magnus (M) aerodynamic force. Superposition of these forces results in Equation

(21).

The externally applied moment �M in Equation (20) acts about projectile the mass

center and in similar fashion to Equation (21) can be broken down into contributions

from steady aerodynamics, unsteady aerodynamics (UA), and moments generated by

the Magnus force and the lifting surface forces. Equation (22) summarizes decompo-

sition of the moment contributions.

CB

�
�F

�
= CB

�
�FW

�
+ CB

�
�FSA

�
+ CB

�
�FM

�
+ CB

�
�FC

�
(21)

CB

�
�M

�
= CB

�
�MSA

�
+ CB

�
�MUA

�
+ CB

�
�MM

�
+ CB

�
�MC

�
(22)

2.4.3 Projectile Body Force and Moment Models

Equation (23) gives the weight force in the body coordinate system.

CB

�
�FW

�
= mg






−sθ

sφcθ

cφcθ






(23)

Equation (24) provides the expression for the steady aerodynamic force, which

acts at the projectile aerodynamic center of pressure (COP).

CB

�
�FSA

�
= −π

8
ρV

2
D

2






CXo + CX2 (v
2 + w2) /V 2

CNAv/V

CNAw/V






(24)

Equation (25) expresses the Magnus aerodynamic force acting on the projectile

at the Magnus aerodynamic center (MAC).

CB

�
�FM

�
=

π

8
ρV

2
D

2






0

pDCYPAw/ (2V 2)

−pDCYPAv/ (2V 2)






(25)
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Given the previous definitions of the projectile velocity vector (Equations (13) and

(14)), the projectile total velocity V can be computed from the following expression.

V = ��V⊕/I� (26)

The moment due to the steady aerodynamic and Magnus forces are expressed in

Equations (27) and (28).

CB

�
�MSA

�
= SB

�
�r⊕→Cp

�
· CB

�
�FSA

�
(27)

CB

�
�MM

�
= SB

�
�r⊕→Cp

�
· CB

�
�FM

�
(28)

The moment due to the unsteady aerodynamic force acting on the projectile is

expressed in Equation (29).

CB

�
�MUA

�
=

π

8
ρV

2
D

3






CLDD + pDCLP/ (2V )

qDCMQ/ (2V )

rDCMQ/ (2V )






(29)

Note, for finned projectiles that the Magnus force and moment expressions can

be small, since its effect is small for slowly rolling projectiles. It is included here for

model completeness and generality.

The coefficients used in this aerodynamic model are specific functions of the pro-

jectile Mach number. All aerodynamic coefficients are estimated using standard aero-

prediction techniques within the PRODAS Software Package [1].

2.4.4 Lifting Surface Aerodynamic Model

The lifting surface aerodynamic model implemented here was taken from the BOOM

canard model [10], which treats the canard aerodynamic effects as a point force act-

ing at the lifting surface aerodynamic center. The moment generated by this point

force can then be computed via cross product between the distance vector from the

projectile mass center to the canard forces application point and the canard force.
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By superposition, this model can account for an arbitrary number of lifting sur-

faces n, positioned and oriented anywhere on a given parent projectile body.

CB

�
�FC

�
=

n�

i=1

CB

�
�FCi

�
(30)

CB

�
�MC

�
=

n�

i=1

SB (�r⊕→Ci) · CB

�
�FCi

�
(31)

For the ith lifting surface, the point of action is defined by a position vector �r⊕→Ci .

CB (�r⊕→Ci) =






∆SLCi

∆BLCi

∆WLCi






(32)

Equation (32) describes the position of the ith lifting surface as stationline (SL),

buttline (BL), and waterline (WL) components. The orientation of this ith lifting

surface is defined by its own lifting surface reference frame (Ci), which is obtained by

one body-fixed rotation about an axis of the parent projectile body frame. Starting

with the canard axis aligned with the projectile body frame B, a lifting surface is

rotated about the �IB axis by the azimuthal angle (φCi). The single-axis transformation

matrix used to move from the frame Ci back to frame B is shown below in Equation

(33).

[TB←Ci ] =





1 0 0

0 cφCi
−sφCi

0 sφCi
cφCi




(33)

Strip theory is used to compute the lift and drag aerodynamic loads [14]. Equa-

tions (34) and (35) summarize the general models, where aerodynamic prediction

software is again used to estimate all coefficients as a function of Mach number only.

Note that the local aerodynamic lifting surface coefficient of equation (34) is modeled

as a linear function of αCi – the local aerodynamic angle of attack.

CLCi
= CLααCi (34)
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CDCi
= CDo (35)

Figure 4 illustrates how the aerodynamic angle of attack of the ith lifting surface is

calculated using only uCi and wCi components of the air velocity vector at the point

force application point.

αCi = tan−1

�
wCi

uCi

�
+ δCi (36)

The local air velocity vector expressed in the ith lifting surface reference frame.

CCi

�
�VCi/I

�
=






uCi

vCi

wCi






(37)

Given knowledge of �V⊕/I and �ωB/I , the ith lifting surface air velocity vector is computed

from the following expression.

CCi

�
�VCi/I

�
= [TB←Ci ]

T ·
�
CB

�
�V⊕/I

�
+ SB

�
�ωB/I

�
· CB (�r⊕→Ci)

�
(38)

Figure 4: Lifting Surface Aerodynamic Model Force Diagram
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From Figure 4, the aerodynamic force components generated by the ith lifting

surface can be calculated in the projectile body reference frame by Equation (39).

CB

�
�FCi

�
=

1

2
ρV

2
SCi [TB←Ci ]






CLCi
sin (αCi − δCi)− CDCi

cos (αCi − δCi)

0

−CLCi
cos (αCi − δCi)− CDCi

sin (αCi − δCi)






(39)

2.5 Linear Flight Dynamic Model

The 6DOF rigid body projectile model discussed above consists of 12 highly nonlinear

differential equations for which a closed form solution has not been directly found.

Significant work has been performed to simplify the equations of motion such that

an accurate analytical solution can be determined.

2.5.1 Classical Projectile Linear Theory Assumptions

In order to arrive at a set of analytically solvable ordinary linear differential equations,

the following assumptions and simplifications are made:

(1) Rather than employing a reference frame fixed to the projectile body, projectile

linear theory uses an intermediate reference frame, which is aligned with the

projectile axis of symmetry but does not roll. Lateral translational and rota-

tional velocity components described in this frame, known as the no-roll (NR)

frame or the fixed plane frame, are denoted with a ‘ ˜ ’ overscore.

CNR

�
�VB/I

�
=






ũ

ṽ

w̃






(40)

Components of the linear and angular velocity in the body-fixed frame are

computed from body frame components of the same vector through a single-

axis rotation transformation. For example, the body frame components of the
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projectile mass center velocity are transformed to the NR frame by:

CNR

�
�VB/I

�
= [TB←NR] · CB

�
�VB/I

�
(41)

(2) A change of variables is made from the velocity along the projectile axis of

symmetric, u, to the total velocity, V . Equations (42) and (43) relate V to u

and their derivatives.

V =
√
u2 + v2 + w2 =

√
ũ2 + ṽ2 + w̃2 (42)

V̇ =
uu̇+ vv̇ + wẇ

V
=

uu̇+ ṽ ˙̃v + w̃ ˙̃w

V
(43)

(3) Dimensionless arc length, s, is used as the independent variable instead of time,

t. Equation (44) defines dimensionless arc length.

s =
1

D

�
t

0

V dt (44)

Equations (46) and (47) relate time and arc length derivatives of a dummy

variable ζ. Dotted terms refer to time derivatives and primed terms denote arc

length derivatives:

ζ̇ =

�
V

D

�
ζ
� (45)

ζ̈ =

�
V

D

�2 �
ζ
�� +

ζ �V �

V

�
(46)

(4) The Euler yaw angle is assumed to be small so that

sin(ψ) ≈ ψ, cos(ψ) ≈ 1 (47)

(5) The projectile is mass balanced such that the center of gravity lies in the rota-

tional axis of symmetry:

Ixy = Ixz = Iyz = 0

IR = Ixx

IP = Iyy = Izz

(48)
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(6) Aerodynamic angles of attack are small so that

α ≈ w

V
, β ≈ v

V
(49)

(7) Quantities V and φ are large compared to θ, ψ, ṽ, w̃, q̃ and r̃ such that products

of small quantities and theory derivatives are negligible.

φ � ψ, θ

ũ ≈ V

V � ṽ, w̃

p � q̃, r̃

(50)

A more detailed discussion of the development of classical projectile linear theory is

provided by McCoy [23] and Ollerenshaw [35].

2.5.2 Extended Projectile Linear Theory Assumptions

The previous discussion is limited to projectiles that are symmetric with respect

to aerodynamics and mass/inertia properties. An extension of the classical PLT

assumptions applies to an arbitrary set of lifting surfaces, as proposed by Montalvo

[25], which causes aerodynamic asymmetries on a projectile.

(8) The total velocities experienced by lifting surfaces are approximately equal to

the projectile mass center velocity.

V ≈ VC1 ≈ VC2 ≈ ... ≈ VCn (51)

(9) Lifting surface angles of attack are assumed small such that Equation (36) can

be reduced to the following:

αCi ≈
wCi

V
+ δCi (52)
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Figure 5: Lifting Surface Velocity Triangle Diagram

(10) The trigonometric functions sin (αCi − δCi) and cos (αCi − δCi) in Equation (39)

can be linearized by utilizing a velocity diagram and defining an angle λCi .

λCi = αCi − δCi = tan

�
wCi

uCi

�
≈ wCi

uCi

(53)

sin (αCi − δCi) ≈ sin (λCi) =
wCi

V
(54)

cos (αCi − δCi) ≈ cos (λCi) =
uCi

V
(55)

2.5.3 Classical Linear Theory Equations of Motion

Application of assumptions (1)-(7) leads to a set of coupled linear differential equa-

tions, with the exception that the total velocity, V , the roll rate p, and the pitch

angle, θ, appear in nonlinear fashion in many of the equations. To remedy this, first

the assumption is made that V changes slowly with respect to the other variables

and is thus considered to be constant, V = Vo, when it appears as a coefficient in

all dynamic equations except its own. The translational and rotational kinematic

equations reduce to the following expressions.

x
� = D cos[θ] (56)

y
� =

D

Vo

ṽ +Dψ cos[θ] (57)

z
� =

D

Vo

cos[θ]w̃ −D sin[θ] (58)

φ
� =

D

Vo

p+
D

Vo

r̃ tan[θ] (59)
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θ
� =

D

Vo

q̃ (60)

ψ
� =

D

Vo

1

cos[θ]
r̃ (61)

The dynamic equations are expressed below in the quasi-linear form x� = Ax + B,

where the roll rate is also held constant, p = po, in several entries of the linearized

coefficients C∗∗. (See Appendix B for a complete summary of all classical PLT coef-

ficients.)






V �

p�

ṽ�

w̃�

q̃�

r̃�






=





CV V 0 0 0 0 0

CpV Cpp 0 0 0 0

0 0 Cṽṽ 0 0 Cṽr̃

0 0 0 Cw̃w̃ Cw̃q̃ 0

0 0 Cq̃ṽ Cq̃w̃ Cq̃q̃ Cq̃r̃

0 0 Cq̃ṽ Cr̃w̃ Cr̃q̃ Cr̃r̃





·






V

p

ṽ

w̃

q̃

r̃






+






GV

0

0

Gw̃

0

0






(62)

Observe in Equation (62) the the forcing vector B is populated in the 1st and 4th

entries by the coefficients, GV andGw̃. These coefficients account for the contributions

of gravity and are not linearly dependent on any dynamic states. Here Vo and θo are

assumed to be approximately constant through flight.

GV = −Dg sin θo
Vo

(63)

Gw̃ =
Dg cos θo

Vo

(64)
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2.5.4 Extended Projectile Linear Theory Equations of Motion

Applying the extended PLT assumptions to the lifting surface model, all six of the

total lifting surface force/moment components (X̃ �
C
, Ỹ �

C
,Z̃ �

C
, L̃�

C
,M̃ �

C
, Ñ �

C
) take a

quasi-linear form. Equation (65) shows a general form for this reduction for an

example force component F̃ �
C
.

F̃
�
C
= m[F �

V
V +

�
F

�
p
+ F

�
pppo

�
p+

�
F

�
ṽ
+ F

�
ṽp
po

�
ṽ

+
�
F

�
w̃
+ F

�
w̃p
po

�
w̃ +

�
F

�
q̃
+ F

�
q̃p
po

�
q̃ +

�
F

�
r̃
+ F

�
r̃p
po

�
r̃]

(65)

For the above general form for a lifting surface force component expression, the co-

efficients F �
∗ are constants with respect to state variables with the exception of the

projectile roll angle φ. These coefficients can also be functions of lifting surface pa-

rameters, such as: position components – CB (�r⊕→Ci); orientation – φCi and δCi ;

planform area – SCi ; and aerodynamic data – CLCi
and CDCi

. (See Appendix C for a

complete summary of all extended projectile linear theory coefficients.)

F
�
∗ = func (φ, lifting surface parameters) (66)

Incorporating the lifting surface force/moment components into the classical PLT

model greatly increases the coupling of the dynamic equations of motion; however,

the kinematic equations remain unchanged. Again, the extended linear dynamic

equations are expressed in the quasi-linear form x� = Ax + B, where the coefficient

matrix A takes the following form shown below in Equation (67).
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A =





X̃ �
V
+ C �

V V
X̃ �

p
+ X̃ �

pp
po X̃ �

ṽ
+ X̃ �

ṽp
po X̃ �

w̃
+ X̃ �

w̃p
po X̃ �

q̃
+ X̃ �

q̃p
po X̃ �

r̃
+ X̃ �

r̃p
po

L̃�
V
+ C �

pV

L̃�
p
+ L̃�

pp
po

+C �
pp

L̃�
ṽ
+ L̃�

ṽp
po L̃�

w̃
+ L̃�

w̃p
po L̃�

q̃
+ L̃�

q̃p
po L̃�

r̃
+ L̃�

r̃p
po

Ỹ �
V

Ỹ �
p
+ Ỹ �

pp
po

Ỹ �
ṽ
+ Ỹ �

ṽp
po

+C �
ṽṽ

Ỹ �
w̃
+ Ỹ �

w̃p
po Ỹ �

q̃
+ Ỹ �

q̃p
po

Ỹ �
r̃
+ Ỹ �

r̃p
po

+C �
ṽr̃

Z̃ �
V

Z̃ �
p
+ Z̃ �

pp
po Z̃ �

ṽ
+ Z̃ �

ṽp
po

Z̃ �
w̃
+ Z̃ �

w̃p
po

+C �
w̃w̃

Z̃ �
q̃
+ Z̃ �

q̃p
po

+C �
w̃q̃

Z̃ �
r̃
+ Z̃ �

r̃p
po

M̃ �
V

M̃ �
p
+ M̃ �

pp
po

M̃ �
ṽ
+ M̃ �

ṽp
po

+C �
q̃ṽ

M̃ �
w̃
+ M̃ �

w̃p

+C �
q̃w̃

M̃ �
q̃
+ M̃ �

q̃p
po

+C �
q̃q̃

M̃ �
r̃
+ M̃ �

r̃p
po

+C �
q̃r̃

Ñ �
V

Ñ �
p
+ Ñ �

pp
po

Ñ �
ṽ
+ Ñ �

ṽp
po

+C �
q̃ṽ

Ñ �
w̃
+ Ñ �

w̃p

+C �
r̃w̃

Ñ �
q̃
+ Ñ �

q̃p
po

+C �
r̃q̃

Ñ �
r̃
+ Ñ �

r̃p
po

+C �
r̃r̃





(67)

The extended PLT coefficient matrix of Equation (67) is a significant result and

offers much insight into the aerodynamic contributions of lifting surfaces during flight.

The additional physics due to arbitrary lifting surface configurations fully couples all

the dynamic states together; however, for simple symmetric fin configurations many

of the fin coefficients shown in Appendix C cancel out, thus reducing the complexity

of the coefficient matrix substantially. Further, if the lifting surface aerodynamic

effects are converted to the symmetric projectile body force and moment models of

section (2.4.3) (see example in Appendix D), then the classical linear theory equations

of motion shown in Equation (62) can be fully recovered.

A closer look at the lifting surface coefficients of Appendix C reveals that the

extended linear theory model is periodic with φ and φCi . This is encouraging that

the extended linear theory model accounts for this effect, since a known shortcoming

of the classical linear theory model is that it fails to account for periodic effects. To

illustrate this point, consider on of the coefficient expressions from Appendix C – the
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pitching moment dimensional derivative expression with respect to total velocity M �
V
.

M
�
V
= −πρD3

8IP

n�

i=1

(−cos[φ+ φCi ]CLαδCi∆SLCi + CDo(sin[φ]∆BLCi + cos[φ]∆WLCi))

(68)

Notice from the equation above that cos[φ + φCi ], sin[φ], and cos[φ] are all periodic

functions in φ, and therefore M �
V

must be a periodic function as well. In the next

chapter further assumptions will be stated that can allow for φ to be approximated as

a linear function of time. These important assumptions will allow for the extend linear

system of Equation (67) to be approximated as either a linear time-invariant (LTI)

or a linear time-periodic (LTP) system. Once these approximations are shown to be

valid, then stability analysis techniques can be used to evaluate different projectile

airframe configurations.
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CHAPTER III

STABILITY THEORY

Given the quasi-linear model previously described, the projectile flight dynamics can

be considered from the viewpoint of Linear Systems Theory [14][24][41], which offers

many analysis techniques for 1st-order linear ordinary differential equations, includ-

ing: stability theories, analytical solutions, and control systems design.

Stability for linear ordinary differential equations is evaluated by determining the

system poles for the homogeneous dynamic system below.

x
� = Ax (69)

Here, x is the PLT dynamic state vector and matrix A is defined by Equation (67),

where the non-homogeneous gravity vector �B does not contribute to system stability.

The general projectile matrix is a 12x12 matrix; however, considering only the dy-

namic equations of motion A is a 6th-order system (n = 6). A criterion for classifying

system stability is defined as follows:

• A system is stable and x(t) → {0} if:

Re (λj) < 0, for all (1 < j < n). (70)

• A system is neutrally stable if:

Re (λj) ≤ 0 and Re (λ1) = 0. (71)

• A system is unstable and x(t) is unbounded if:

Re (λj) > 0, for any (1 < j < n). (72)
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Given the stability criteria defined above, stability analysis can be used to study

the changes of system poles as system parameters are varied. Plots of these studies

are called the root locus and will be used to perform parametric trade studies in

Chapter 5.

3.1 Stability of Linear Time-Invariant (LTI) Systems

Recall in the description of the PLT model that the dynamic states V , p, and φ

do not appear linearly in the equations of motion. These states were assumed to

change slowly over time and formatted into the coefficient matrix A, making the

dynamic system quasi-linear. To approximate a LTI system, these states will be held

to constant values, thus making A constant. Chapter 4 section will address further

the validity of this assumption.

A standard method for determining the system poles of an LTI system is by solving

the eigenvalue/eigenvector problem [16] and [40] of Equation (73).

AX = λX (73)

Here the vector X is an eigenvector of matrix A with eigenvalue (system poles) λ. In

Equation (74) the eigenvalues can be calculated by solving the characteristic equation.

det (A− λjI) = 0, ∀ (1 < j < n) (74)

Upon solving Equation (74) for λj, Equation (73) can then be used to find the equiv-

alent eigenvector Xj. Calculation of Xj can be helpful in determining the influence

of λj on system state behavior, due to the orthogonality properties of eigenvectors.

Whenever an LTI approximation is sufficient for describing a dynamic system, the

above equations can be easily implemented to evaluate stability and create root locus

plots.
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3.2 Stability of Linear Time-Periodic (LTP) Systems

For projectiles, the roll angle φ is often observed to be periodic by nature and can be

closely approximated as a linear function of time t.

φ(t) = pot+ φ(0) (75)

Assuming V and p are constant, the dynamic equations of motion can be represented

by Equation (76), where φ(t) is allowed to vary within A from the previous equation.

x
� = A(t)x (76)

Further investigation into the extended linear theory lifting surface coefficients in

Appendix C reveals that φ(t) always appears inside the trigonometric periodic func-

tions, sine and cosine. Therefore the dynamic coefficient matrix A(t) is also periodic

by nature by the period, T = (2π/po).

A(t) = A(t+NT ), for N = 0± 1,±2, ...,±∞ (77)

Equation (77) implies that if the independent variable t is replaced by t+T , the system

in Equation (76) remains invariant. To evaluate the stability of this type of linear

system Floquet Theory is employed. As with any linear system, the superposition

principle can be evoked to express x(t) as a linear combination of the initial state

vector x(0).

x(t) = Φ (t) x(0) (78)

The matrix Φ (t, to) is commonly referred to as the fundamental matrix in linear

systems theory. Calculation of the fundamental matrix for any linear system can be

found by solving the following initial value problem:

d

dt
Φ (t) = A(t)Φ (t) , Φ (0) = I (79)

were the matrix I is the identity matrix and is the same size as A(t).
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Because the matrixA(t) is periodic, the fundamental matrix can also be expressed

in a special form known as the Floquet decomposition [41].

Φ (t) = P(t) · eRt ·P−1(0) (80)

Here the matrix R, referred to as the characteristic exponent matrix, is a constant

(possibly complex) matrix having the same size as A(t), and P(t) is a continuously

differentiable matrix function that also has the same size and period as A(t) and is

invertible for all t.

A principle results of Floquet theory is that the stability of Equation (76) can

be ascertained from the characteristic exponent matrix R [36]. Evaluating Equation

(80) at t = T , yields the following expression.

Φ (T ) = P(0) · eRT ·P−1(0) (81)

The matrix eRT is called the characteristic multiplier matrix. Equation (81) is a

similarity transformation and hence, the eigenvalues between Φ (T ) and eRT are pre-

served.

eig (Φ (T )) = eig
�
e
RT

�
= µj, for all (1 < j < n) (82)

The eigenvalues of eRT are µj and can be related to ηj, the eigenvalues of R, by the

relation below.

µj = e
ηjT , for all (1 < j < n) (83)

Thus, the jth eigenvalue of the characteristic exponent matrix R can be found by

algebraic manipulation of Equation (83).

ηj =
1

T
ln(µj) =

1

T
log|µj|+

1

T
(arg(µj) + 2πk) i

where k = 0,±1, ...,±∞
(84)

According to the stability criterion previously discussed, stability of the LTP system

can be determined by considering the real part of ηj. Note that imaginary part of

ηj is non-unique and other consideration is need to determine the integer value k. A

more detailed discussion of the development of Floquet theory is proved by [24].
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CHAPTER IV

MODEL VALIDATIONS

Before using the developed linear theory codes for trade studies of projectile con-

figurations, the different analysis methods are compared to validate the modeling

approach. The following list of validation cases was designed to (1) systematically

eliminate errors, (2) form a strong argument for the validity of simulation results, and

(3) provide insights into results generated by LTI and LTP model approximations.

• Case 1 – Validate the in-house 6DOF and PLT codes with an industry stan-

dard flight simulation software called BOOM [10] using a projectile with an

asymmetric lifting surface configuration.

• Case 2 – Compare the traditional body aerodynamic and canard aerodynamic

models using a symmetric projectile.

• Case 3 – Compare both classical and extended LTI models to a 6DOF trajectory

simulation for a symmetric projectile.

• Case 4 – Compare LTI and LTP models to a 6DOF trajectory simulation for

an asymmetric projectile.

• Case 5 – Generate LTI and LTP stability analysis results for a symmetric pro-

jectile flying at different roll rates.

• Case 6 – Generate LTI and LTP stability analysis results for a asymmetric

projectile flying at different roll rates.

29



4.1 Case 1 – Validation of In-House Codes

Trajectory results were generated using the standard Army-Navy finned projectile

testbed, described previously in Section (1.3), with two arbitrarily placed lifting sur-

faces in an asymmetric configuration. Figure 6 shows the lifting surface positions

and orientations along the projectile, and Table 1 summarizes the physical lifting

surface parameters. The trajectory simulations for both the derived 6DOF and PLT

models used the initial conditions in Table 3. Results from these simulations were

then compared to an equivalent simulation generated using an industry standard

flight simulation software called BOOM [10]. Figures 7–19 show the results for this

directly-fired asymmetric projectile, where excellent agreement between the codes is

observed.

The trajectory results of Figures 7, 8, and 9 show that the projectile follows a

near parabolic path in altitude, but that the aerodynamic asymmetries cause lateral

deflection in the cross range shortly after launch. The asymmetries also cause the

projectile roll angle to periodically increase after a transient time as seen in Figure

10. This transient period of approximately 0.5 (sec) can be clearly seen in the no-roll

fixed transverse velocity and angular velocity plots of Figures 15, 16, 17, and 18.

After this transient time, the oscillatory behavior in these plots becomes steady at a

near linear periodic fashion.
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Table 1: Summary of asymmetric canard parameters used in Validation Case 1.

Canard 1 Canard 2
∆SLC1 = −0.1429 (ft) ∆SLC2 = 0.2071 (ft)
∆BLC1 = 0.0698 (ft) ∆BLC2 = 0.0590 (ft)
∆WLC1 = 0.0240 (ft) ∆WLC2 = 0.0244 (ft)
φC1 = 19 (deg) φC2 = 37 (deg)
δC1 = 1.00 (deg) δC2 = −0.33 (deg)

Table 2: Summary of initial conditions used in Validation Case 1.

Kinematic States Dynamic States
x = 0.00 (ft) V = 3357.0 (ft/sec)
y = 0.00 (ft) p = 0.00 (rad/sec)
z = 0.00 (ft) ṽ = 0.00 (ft/sec)
φ = 0.00 (deg) w̃ = 0.00 (ft/sec)
θ = 1.0286 (deg) q̃ = 0.00 (rad/sec)
ψ = 0.00 (deg) r̃ = 0.00 (rad/sec)

Figure 6: A schematic of the standard finned projectile configuration with two small
asymmetric lifting surfaces, C1 and C2, which are superimposed aerodynamic models
onto the standard finned projectile aerodynamics.
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Figure 7: Validation Case 1 – Range vs Time
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Figure 8: Validation Case 1 – Cross Range vs Time
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Figure 9: Validation Case 1 – Altitude vs Time
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Figure 10: Validation Case 1 – Roll Angle vs Time
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Figure 11: Validation Case 1 – Pitch Angle vs Time
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Figure 12: Validation Case 1 – Yaw Angle vs Time
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Figure 13: Validation Case 1 – Total Mach Number vs Time
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Figure 14: Validation Case 1 – Roll Rate vs Time
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Figure 15: Validation Case 1 – Vtilde vs Time
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Figure 16: Validation Case 1 – Wtilde vs Time
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Figure 17: Validation Case 1 – Qtilde vs Time
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Figure 18: Validation Case 1 – Rtilde vs Time
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Figure 19: Validation Case 1 – Total Aerodynamic Angle of Attack vs Time

4.2 Case 2 – Full Aero vs Separated Aero Validations

Using the now validated 6DOF code, trajectory results were generated using a sym-

metric projectile to further confirm the accuracy of the lifting surface aerodynamic

model. Figure 20 illustrates how the standard finned projectile can be physically

described, using (1) the body aerodynamic model of Section (2.4.3) or (2) the lift-

ing surface aerodynamic model of Section (2.4.4). In order to obtain the projectile

description using the separated aerodynamic models, the aerodynamic data for the

standard finned projectile is divided into lifting surface and body aerodynamic effects.

Appendix D summarizes these calculations, and summarizes the results of reducing

the projectile aerodynamic data down into respective body and lifting surface model

contributions.

The trajectory results were generated for the symmetric projectile configuration

launched at Mach 0.5 with a quadrant elevation of 1.0286 (deg). Three cases were
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run for initial roll rates of 0.0, 1.0, and 10.0 (rad/sec). Figures 21–33 summarize

these results, where excellent agreement between the separated and total aerodynamic

models can be seen.

The trajectory results of Figures 21, 22, and 23 show that the differing initial roll

rates cause a small amount of deflection in the cross range but does not significantly

affect the projectile range and altitude. In Figures, 26, 29, and 32 the initial roll

rates also cause differences in the lateral oscillatory amplitude of the yaw angle and

lateral no-roll frame velocity and angular velocity states but the frequency remains

unchanged. In the vertical plane, the states pitch angle and vertical no-roll frame

velocity and angular velocity states of Figures 25, 30 and 31 show no significant

differences between all cases. Also, variation between cases in the total aerodynamic

angle of attack of Figure 33 is very small, which means that the lateral differences

are insignificant in affecting the trajectory path yet can still be accurately accounted

for by the lifting surface model.

Figure 20: Illustrations of the standard Army-Navy finned projectile, where the
externally exerted aerodynamic forces are (a) divided into body (light grey) and lifting
surface (dark grey) aerodynamics and (b) left in the compact total body aerodynamic
form.
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Figure 22: Validation Case 2 – Cross Range vs Time
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Figure 23: Validation Case 2 – Altitude vs Time
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Figure 24: Validation Case 2 – Roll Angle vs Time
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Figure 25: Validation Case 2 – Pitch Angle vs Time
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Figure 26: Validation Case 2 – Yaw Angle vs Time
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Figure 27: Validation Case 2 – Mach Number vs Time
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Figure 28: Validation Case 2 – Roll Rate vs Time
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Figure 29: Validation Case 2 – Vtilde vs Time
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Figure 30: Validation Case 2 – Wtilde vs Time
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Figure 31: Validation Case 2 – Qtilde vs Time
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Figure 32: Validation Case 2 – Rtilde vs Time
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Figure 33: Validation Case 2 – Total Aerodynamic Angle of Attack vs Time

4.3 Case 3 – Comparison of Classical and Extended LTI
Models for a Symmetric Projectile

One takeaway from the previous validation cases is that the extended PLT model,

can accurately approximate the nonlinear flight dynamics of projectiles flying at small

aerodynamic angles of attack. In extension to Validation Case 2, the current valida-

tion case will compare LTI approximations of the total aerodynamic and separated

aerodynamic models to the equivalent 6DOF trajectory results for a symmetric pro-

jectile. The LTI approximations are created by holding the quasi-linear states φo,

Vo, and po constant within the PLT matrix A of Equations (62) and (67) in Chap-

ter 2. From Chapter 3, holding these states to be constant effectively sets A to be

time-invariant, therefore creating the LTI approximations. Conveniently, the LTI

approximations of the total aerodynamic and separated aerodynamic models from

Validation Case 2 are identically the equivalent classical and extended projectile lin-

ear theory models that were derived in Chapter 2. Additionally, θo is held constant

46



in the gravity terms of PLT Equations.

Figures 34–46 compare the 6DOF, classical LTI, and extended LTI model trajec-

tory results for the symmetric standard finned projectile launched at Mach 0.5 with

a quadrant elevation of 1.0286 (deg) and a roll rate of 0.0 (rad/sec). These results

show that the LTI models closely approximate the 6DOF results through 1.0 (sec) of

flight. Observing close LTI model approximation to the 6DOF model is good in that

it establishes credibility to stability analyses. Also, in some linear control system ap-

plications, this infers better controller performance and efficiency, because the linear

matrices A and B would be updated relatively infrequently.

The most noticeable deviation is observed in the total velocity time history in

Figure 40. The nonlinear affects of this state cause error between LTI and 6DOF

models, because the quasi-linear total velocity Vo appearing in the PLT matrix A is

constant through flight. Therefore high drag projectile configurations with numerous

lifting surface appendages will introduce more error than lower drag projectiles, since

drag causes the projectile total velocity to decrease at a faster rate.

A final observation is that both LTI models generated identical results. Of course

from Chapter 2, the extended LTI model is far more generalized to account for lifting

surface aerodynamic effects; however, for symmetric projectiles the extended theory

simplifies down to classical linear theory. This result agrees with the intuition gained

from the previous validation case and confirms that while the quasi-linear states φo,

Vo, and po frequently appear within the extended PLT matrix A of Equation (67),

the extended LTI drastically simplifies for symmetric projectiles.
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Figure 34: Validation Case 3 – Range vs Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

C
r
o
s
s
 
R
a
n
g
e
 
(
f
t
)

 

 

6DOF

LTI: Classical

LTI: Extended

Figure 35: Validation Case 3 – Cross Range vs Time
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Figure 36: Validation Case 3 – Altitude vs Time
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Figure 37: Validation Case 3 – Roll Angle vs Time
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Figure 38: Validation Case 3 – Pitch Angle vs Time
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Figure 39: Validation Case 3 – Yaw Angle vs Time
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Figure 40: Validation Case 3 – Mach Number vs Time
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Figure 41: Validation Case 3 – Roll Rate vs Time
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Figure 42: Validation Case 3 – Vtilde vs Time
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Figure 43: Validation Case 3 – Wtilde vs Time
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Figure 44: Validation Case 3 – Qtilde vs Time
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Figure 45: Validation Case 3 – Rtilde vs Time
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Figure 46: Validation Case 3 – Total Aerodynamic Angle of Attack vs Time

4.4 Case 4 – Comparison of LTI and LTP Models for an
Asymmetric Projectile

In this validation case linearized dynamic models are generated for an asymmetric

projectile and compared to 6DOF simulation results. As done in the previous vali-

dation case, the LTI model was generated by setting the quasi-linear states, po, Vo,

φo, and θo to constant values of the initial conditions. Similarly, the LTP model was

generated by expressing φ as a linear function of time within the PLT matrix A, as

shown in Equation (67) of Section (3.2). Recall that by expressing φ in this form, the

extended PLT matrix A is periodic in time (since φ(t) only appears inside trig func-

tions). Thus, for LTP systems Floquet theory might be used to evaluate projectile

stability.

The projectile testbed with two asymmetrically placed lifting surfaces from Vali-

dation Case 1 is again used, as well as the initial conditions in Table 3. Figures 47–59

compare simulation results from 6DOF, PLT (quasi-linear), LTI, and LTP models. In
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contrast to the previous validation case, both the LTI and LTP models do not closely

approximate the 6DOF/PLT simulation results over the entire time interval of 1.0

(sec), but in general the LTP model outperforms the LTI model approximations.

In Figure 48, the LTP model approximates the cross range for nearly 0.5 (sec),

while the LTI model diverges after only 0.2 (sec). Figure 49 shows that the LTP and

LTI models diverge from the altitude after 0.3 (sec) and 0.4 (sec), respectively. In

Figure 50 the LTI and LTP models diverge from the roll angle after approximately

0.2 (sec), where the 6DOF model shows that the roll angle does not vary at an

approximately linear rate, as assumed by the LTP model. The Euler pitch and yaw

angle plots show that the LTP model is a better approximation of the 6DOF than

the LTI model. There is minimal divergence in the Mach number plots of Figure 53;

however, the roll rate in Figure 54 shows that both the LTI and LTP models diverge

after 0.1 (sec). Throughout the epicyclic states in Figures 54–58 the LTI and LTP

models vary in performance for this projectile.

Since the Mach number is very well approximated over the 1.0 (sec) interval,

the quasi-linear roll angle φo and roll rate po states are observed to be the primary

sources of error. Thus, the ability of the LTI and LTP models to approximate the

6DOF results is greatly reduced if the asymmetries cause irregular roll angle behavior

caused most likely by a fast changing roll rate. For asymmetric projectiles where roll

stability is designed for, an LTI model where po = 0.0 (rad/sec) could still perform

very well; however, this will need to be determined on a case-by-case basis.
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Table 3: Summary of initial conditions used in Validation Case 4.

Kinematic States Dynamic States
x = 0.00 (ft) V = 3357.0 (ft/sec)
y = 0.00 (ft) p = −3.00 (rad/sec)
z = 0.00 (ft) ṽ = 0.00 (ft/sec)
φ = 0.00 (deg) w̃ = 0.00 (ft/sec)
θ = 1.0286 (deg) q̃ = 0.00 (rad/sec)
ψ = 0.00 (deg) r̃ = 0.00 (rad/sec)
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Figure 47: Validation Case 4 – Range vs Time
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Figure 48: Validation Case 4 – Cross Range vs Time
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Figure 49: Validation Case 4 – Altitude vs Time
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Figure 50: Validation Case 4 – Roll Angle vs Time
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Figure 51: Validation Case 4 – Pitch Angle vs Time
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Figure 52: Validation Case 4 – Yaw Angle vs Time
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Figure 53: Validation Case 4 – Mach Number vs Time
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Figure 54: Validation Case 4 – Roll Rate vs Time
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Figure 55: Validation Case 4 – Vtilde vs Time
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Figure 56: Validation Case 4 – Wtilde vs Time
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Figure 57: Validation Case 4 – Qtilde vs Time
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Figure 58: Validation Case 4 – Rtilde vs Time
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Figure 59: Validation Case 4 – Total Aerodynamic Angle of Attack vs Time
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4.5 Case 5 – Stability Analysis of a Symmetric Projectile

In Validation Case 3 the extended LTI model compared favorably to the 6DOF

trajectory results for a symmetric projectile. In that case the LTP model was not

simulated because for po = 0.0 (rad/sec) the LTP model is identical in form to

the LTI model. This validation case further investigates the LTI and LTP models

for a symmetric projectile by performing eigenvalue and Floquet stability analyses.

Within the PLT matrix A, the quasi-linear states Vo and φo were set to 558 (ft/sec)

and 0.0 (rad/sec), respectively, while the roll rate was parametrically varied from

0.0 (rad/sec) ≤ po ≤ 1000 (rad/sec).

Figure 60 shows root-locus plot of LTI and LTP stability results. As seen, both

the LTI and LTP models generated nearly identical results. There are six system

poles corresponding to the six dynamic states: V , p, ṽ, w̃, q̃, and r̃. For symmetric

projectiles, the poles that correspond to the latter four dynamic states are commonly

referred to as the epicyclic poles. This behavior is confirmed upon inspection of the

eigenvalue/mode structures. Table 4 shows the projectile mode structure at p = 1000

(rad/sec) and Mach 0.5. The behavior of these epicyclic poles for rolling symmetric

projectiles is well understood [4][23] in that as roll rate increases two modes are ob-

served: a fast mode λFAST and a slow mode λSLOW . As roll rate increases, the λFAST

poles become increasingly stable, while the λSLOW poles become equally less stable.

The results generated below confirm this behavior. At a roll rate of 0.0 (rad/sec), two

epicyclic poles are equal (repeated roots), but as the roll rate increases, a fast mode

pole and its complex conjugate more farther left, which indicates increasing stability.

The two slow mode complex conjugates move further right in the left-half complex

plane, indicating decreasing stability.

Showing that the LTP and LTI stability analyses for symmetric are equivalent is

an important result. As the roll rate increases, the approximation of φ(t) as a linear

function of time is a very accurate representation of the symmetric projectile roll
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angle behavior.

Table 4: Orthonormalized eigenmatrix for p = 1000 (rad/sec) at Ma = 0.5.

Velocity Roll Fast Slow
Mode Mode Epicyclic Mode Epicyclic Mode

V 1.00 0.00 0.00 0.00 0.00 0.00
p 0.00 1.00 0.00 0.00 0.00 0.00
ṽ 0.00 0.00 0.46 0.46 0.40 0.40
w̃ 0.00 0.00 0.46 0.46 0.53 0.53
q̃ 0.00 0.00 0.04 0.04 0.04 0.04
r̃ 0.00 0.00 0.04 0.04 0.03 0.03
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Figure 60: Root Locus: Parameterized by projectile spin rate p
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4.6 Case 6 – Stability Analysis of a Asymmetric Projectile

This final validation case performs LTI and LTP stability analyses on the asymmetric

projectile configuration, used previously (shown in Figure 6). Again, the quasi-linear

states Vo and φo were set to 3357 (ft/sec) and 0.0 (rad/sec), respectively, and the roll

rate was parametrically varied from 0.0 (rad/sec) ≤ po ≤ 1000 (rad/sec).

Figure 60 shows root-locus plot of the generate LTI and LTP stability results

for the asymmetric projectile and Table 5 shows the LTI model mode structure at

p = 1000 (rad/sec). Notice from the slow mode structure that this mode is now

mildly influenced by the roll rate. As in the case of the symmetric projectile, a fast

mode is observed to move towards stability in a complex conjugate pair, while a slow

mode follows similar behavior but becomes less stable. For this projectile the LTI

and LTP models are not equivalent, as was the case for the symmetric projectile;

however, the epicyclic poles for the LTI and LTP models do approach each other as

roll rate increases.

Upon additional inspection of mode structures, a roll mode λROLL is found to

correspond to a pole that is further stable and located on the real axis, while a total

velocity mode λV is found to correspond to a pole that is also located on the real

axis. In projectile stability studies, this velocity mode is primarily driven by the base

drag coefficient CX0 and is always real and very lightly damped. Typically, projectile

performance in stability analyses is determined, where the total velocity mode is

ignored[4][23].
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Table 5: Orthonormalized eigenmatrix for p = 1000 (rad/sec) at Ma = 0.5.

Velocity Roll Fast Slow
Mode Mode Epicyclic Mode Epicyclic Mode

V 0.98 0.00 0.00 0.00 0.00 0.00
p 0.02 1.00 0.08 0.08 0.13 0.13
ṽ 0.00 0.00 0.42 0.42 0.42 0.42
w̃ 0.00 0.00 0.43 0.43 0.41 0.41
q̃ 0.00 0.00 0.04 0.04 0.02 0.02
r̃ 0.00 0.00 0.04 0.04 0.02 0.02
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Figure 61: Root Locus: Parameterized by projectile spin rate p
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CHAPTER V

TRADE STUDIES

It has been shown that extended PLT models are capable of approximating the dy-

namics of projectiles with general lifting surface configurations; however, accurate

approximation of extended LTI and LTP models to the 6DOF model is not always

guaranteed. This point was demonstrated in the case of the asymmetric projectile

of Chapter 4, where an asymmetric lifting surface configuration was arbitrarily cho-

sen without any intuition into the flight mechanics. This was an extreme case of

an aerodynamically asymmetric projectile, since the lifting surface configuration was

asymmetric in both horizontal (�IB − �JB) and vertical (�IB − �KB) planes of the pro-

jectile body frame. Often, airframes are only asymmetric in one plane, as is the case

with winged aircraft. Both types of aerodynamic asymmetries will be studied in this

chapter, but it will be shown that the second type of aerodynamic asymmetry can be

very well approximated by the extended PLT models.

Figure 62: Example illustrations of (a) a projectile configuration that is fully asym-
metric and (b) a projectile configuration that is only asymmetric with respect to one
plane (horizontal plane).
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In this chapter, parametric trade studies of various projectile configurations are

conducted, using the extended LTI and LTP stability models. As was done in the

last chapter, comparison was made between 6DOF, LTI, and LTP model trajectory

results. Dynamic simulation results will be briefly discussed in a case-by-case basis;

however, dynamic simulation results will only be shown if necessary. In this chapter

there are two distinct types of parametric stability analyses that are performed: (1)

geometrical variation (i.e. variation of fin length) and (2) quasi-linear dynamic state

variation (i.e. variation of roll rate). The latter analysis type will be used on certain

special projectile configurations to gain additional insight on dynamic stability. An

outline of the trade studies presented in this chapter include the following:

• Baseline 4-Finned Symmetric Projectile Configuration:

(1) Asymmetric variation of fin parameters.

(2) Roll angle variation of interesting configurations.

• Baseline 3-Finned Symmetric Projectile Configuration:

(1) Asymmetric variation of fin parameters.

(2) Roll angle variation of interesting configurations.

• Baseline Hybrid/Projectile Configuration:

(1) Mach number variation of the baseline configuration.

(2) Asymmetric variation of tail and wing parameters.
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5.1 Trade Study – Vary Fin Parameters Off The Baseline
4-Finned Projectile Configuration

The purpose of the following set of trade studies is to investigate the effects of varying

fin length (or equivalently fin area) with respect to a baseline 4-finned projectile. In

Figure 63 a projectile body is shown with four labeled fins, symmetrically placed at

the rear of the projectile. Table 6 summarizes nominal fin geometry, where the ith fin

length, width, azimuth angle, and cant angle are represented by bi, ci, φCi , and δCi ,

respectively.

Table 6: Summary Baseline 4-Finned Projectile Parameters

Fin# bi (ft) ci (ft) φCi (deg) δCi (deg)

F1 0.0984 0.0984 0.0 0.00
F2 0.0984 0.0984 90 0.00
F3 0.0984 0.0984 180 0.00
F4 0.0984 0.0984 270 0.00

Figure 63: Illustration of the baseline 4-finned projectile configuration.
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5.1.1 Effect of Variation of Fin F1 and F3 fin Lengths on Stability

In the following trade study, projectile dynamic stability was evaluated for simul-

taneous variation of F1 and F3 fin lengths (or equivalently fin areas). Given the

nominal fin lengths previously summarized in Table 6, stability roots were calculated

as F1 and F3 lengths varied between 0 ≤ b ≤ 4bnom. Projectile quasi-linear roll rate

and roll angle were set to 0.0 (rad/sec) and 0.0 (deg), respectively. Both subsonic

and supersonic cases were considered, where the quasi-linear total velocity was set to

558.0 (ft/sec) (Mach 0.5) in the subsonic case and 3357.0 (ft/sec) (Mach 3.0) in the

supersonic case. Dynamic simulation for this study showed that the LTI model was

sufficient to approximate the 6DOF model for at least 1.0 (sec) of flight time for val-

ues of b where the system was stable. The system was observed to grow increasingly

unstable as the fin length approached 0.0 (ft), causing discrepancy between LTI and

6DOF models as larger angles of attack were observed.

Figure 64 shows the subsonic behavior of the dynamic modes with changing F1

and F3 fin lengths, and Table 7 shows the LTI mode structure at b/bnom = 0.0. As fin

length decreases from b/bnom = 4.0, the two vertical plane epicyclic roots significantly

decrease in frequency towards zero at point A. At the value b/bnom ≈ 0.34, the

behavior of these roots changes as they split into a pair of real roots in branches

AB and AC of the locus. These branches represent damped aperiodic modes, or

subsidences. At b/bnom ≈ 0.3404, branch AC crosses over the imaginary axis, making

the system unstable. The two horizontal plane epicyclic roots are invariant in b.

These modes are related to the fins F2 and F4, which are not varied, hence leaving the

horizontal plane stability unaffected. Finally, the real-valued roll mode root becomes

very lightly damped as b approaches zero. In Figure 65, the dynamic modes of the

supersonic case are shown to behave similarly to the subsonic case, but that the

system becomes unstable more quickly at values less than b/bnom ≈ 0.528.
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Table 7: Orthonormalized eigenmatrix for b/bnom = 0.0 at Ma = 0.5.

Velocity Roll Vertical Horizontal
Mode Mode Epicyclic Mode Epicyclic Mode

V 1.00 0.00 0.00 0.00 0.00 0.00
p 0.00 1.00 0.00 0.00 0.00 0.00
ṽ 0.00 0.00 0.00 0.00 0.99 0.99
w̃ 0.00 0.00 0.99 0.99 0.00 0.00
q̃ 0.00 0.00 0.01 0.01 0.00 0.00
r̃ 0.00 0.00 0.00 0.00 0.01 0.01
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Figure 64: Root Locus: Parameterized by equal variation in F1 and F3 lengths.

Subsonic Case: Mach 0.5.
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Table 8: Orthonormalized eigenmatrix for b/bnom = 0.0 at Ma = 3.0.

Velocity Roll Vertical Horizontal
Mode Mode Epicyclic Mode Epicyclic Mode

V 1.00 0.00 0.00 0.00 0.00 0.00
p 0.00 1.00 0.00 0.00 0.00 0.00
ṽ 0.00 0.00 0.00 0.00 0.97 0.97
w̃ 0.00 0.00 0.97 0.97 0.00 0.00
q̃ 0.00 0.00 0.03 0.03 0.00 0.00
r̃ 0.00 0.00 0.00 0.00 0.03 0.03
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Supersonic Case: Mach 3.0.
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5.1.2 Effect of Roll Rate on Symmetric 2-Finned Projectile Stability

In Chapter 4 a stability analysis was performed on an axis-symmetric 4-finned pro-

jectile as roll rate was varied from 0.0 (rad/sec) ≤ po ≤ 1000 (rad/sec). That study

concluded that as roll rate was increased, the epicyclic modes split into fast and slow

modes. Here the same analysis is performed but on the unstable symmetric 2-finned

projectile, shown in Figure 66. The goal is to determine if vertical plane instabilities

can be ”rolled out” with increasing roll rate, which is commonly done to stabilize

finless projectiles. Note, the usage of the word ”symmetry” here does not imply axis-

symmetry as is the case with the 4-finned projectile, because the aerodynamic models

(coefficients) in each plane are not equivalent.

Figure 66: Illustration of a symmetric 2-finned projectile that is unstable in the
vertical plane, due to the missing horizontal fins.
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Prior to evaluating stability, dynamic simulations were run to compare LTI, LTP,

and 6DOF models for the 2-finned projectile. The fin geometry summarized in Table

6 was used for to describe the two fins. Several initial rolls rates were simulated for

the projectile launched subsonically at Mach 0.5 and a quadrant elevation of 1.0286

(deg). In these results the LTI and LTP models showed significant deviation from the

6DOF results after 0.1 seconds of flight. This is because while small angles of attack

were observed, the roll rate decreased rapidly over a short period of time, thus causing

error in the approximation of roll rate as quasi-linear. Also, in every simulation the

roll rate slowed enough at some point in time to cause unstable flight characteristics.

Thus, dynamic stability continuously changes through flight for changing po.

Often in finned projectiles, fin cant is used to induce a steady state roll rate and

increase ballistic accuracy. Setting a cant angle for the two fins, a second set of

simulations were run. The fin cant was expressed as a function of initial roll rate

to encourage a near constant roll rate through flight. At Mach 0.5 the fin cant was

found to vary linearly with the roll rate by the relation δci (deg) ≈ 0.0047po. In

these second set of simulations, the LTP model was successfully able to approximate

6DOF results for 1.0 seconds of flight, while the LTI model was still significantly

inaccurate. Figures 67 - 79 show trajectory results for a projectile fired at Mach 0.5

with po = 1000 (rad/sec) and δCi = 4.7 (deg). These figures demonstrate the ability

of the LTP model to approximate the 6DOF model when fin cant is used to encourage

near constant roll rate through flight.
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Figure 67: 2-Finned Projectile Case – Range vs Time
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Figure 68: 2-Finned Projectile Case – Cross Range vs Time
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Figure 69: 2-Finned Projectile Case – Altitude vs Time
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Figure 70: 2-Finned Projectile Case – Roll Angle vs Time
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Figure 71: 2-Finned Projectile Case – Pitch Angle vs Time
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Figure 72: 2-Finned Projectile Case – Yaw Angle vs Time
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Figure 73: 2-Finned Projectile Case – Total Mach Number vs Time
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Figure 74: 2-Finned Projectile Case – Roll Rate vs Time
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Figure 75: 2-Finned Projectile Case – Vtilde vs Time
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Figure 76: 2-Finned Projectile Case – Wtilde vs Time
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Figure 77: 2-Finned Projectile Case – Qtilde vs Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time (sec)

r
t
i
l
d
e
 
(
r
a
d
/
s
)

 

 

6DOF

LTP

Figure 78: 2-Finned Projectile Case – Rtilde vs Time
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Figure 79: 2-Finned Projectile Case – Total Aerodynamic Angle of Attack vs Time

Since the LTP model significantly outperformed the LTI model in dynamic simu-

lation, Floquet theory was used to evaluate stability. Figure 80 summarizes stability

results for the canted 2-finned projectile as roll rate was varied from 0.0 (rad/sec) ≤

po ≤ 1000 (rad/sec). Interestingly enough as roll rate increases, the epicyclic roots

are observed to split into fast and slow modes when po ≈ 1.34 (rad/sec). (Recall that

fast/slow mode epicyclic behavior was also observed in case of the axis-symmetric 4-

finned projectile stability analysis of Section 4.5.) Figure 81 shows a closer look at

the root locus for po < 1.34 (rad/sec). For small and decreasing po, all four epicyclic

roots converge in pairs towards the real axis, where two roots split and diverge to

instability. Also in Figure 81, the roll mode root is labeled and is shown be small,

real, and unchanging as roll rate is varied.

It is worth mentioning that a stability analysis was also performed for the 2-finned

projectile with zero fin cant. Nearly identical results to the canted projectile case were

observed with the exception being in the roll mode roots. The roll mode roots were
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less stable for this case but not unstable. This deviation, however, was so small that

if these the results were plotted over the results of Figure 80 for the entire root locus

the difference would not be visually noticeable.

The results of this study are significant in that the statically unstable (zero roll

stability) of the 2-finned projectile configuration can be dynamically ”rolled out”, and

then the familiar fast/slow epicyclic mode behavior is observed. Therefore by intro-

ducing fin cant and roll rate, the projectile can be said to be dynamically stabilized.
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Figure 80: Root Locus: Parameterized by projectile spin rate p at Mach 0.5.
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Figure 81: Close-up view of epicyclic root behavior as roll rate is increased.

5.1.3 Effect of Variation of F2 Fin Length on Stability

In the following trade study, projectile dynamic stability was evaluated for variation

of F2 fin length (or equivalently fin area). Given the nominal fin lengths previously

summarized in Table 4, stability roots were calculated as F2 fin length varied be-

tween 0 ≤ b ≤ 4bnom. Projectile quasi-linear roll rate and roll angle were set to

0.0 (rad/sec) and 0.0 (deg), respectively. Both subsonic and supersonic cases were

considered, where the quasi-linear total velocity was set to 558.0 (ft/sec) (Mach 0.5)

in the subsonic case and 3357.0 (ft/sec) (Mach 3.0) in the supersonic case. Dynamic

simulation for this study showed that the LTI model was sufficient to approximate

the 6DOF model for at least 1.0 (sec) of flight time for values of b where the system

was stable. In the supersonic case, the system was observed to grow increasingly
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unstable in the roll mode as the fin length approached 0.0 (ft), causing discrepancy

between LTI and 6DOF models in roll angle and roll rate.

Figure 82 shows the subsonic behavior of the dynamic modes with changing b,

and Table 9 shows the LTI mode structure at b/bnom = 0.0. Observation of the

eigenvalue/mode structures throughout this analysis showed that as the configuration

became increasingly asymmetric, cross-coupling of roll rate and horizontal epicyclic

states were observed in horizontal epicyclic and roll/yaw mode structures. When

b/bnom = 4.0, the two horizontal epicyclic roots are highly oscillatory and heavily

damped. As the fin length is varied until b/bnom = 1.0, the the dynamic roots are

observed to approach values of the vertical epicyclic roots. Reducing the fin length

down to b/bnom = 0.0, causes the dynamic roots to diminish in frequency while the

real component remains approximately constant. Also, the roll/yaw mode becomes

significantly less stable; as b/bnom diminishes from 4.0 to 0.0; however, the two vertical

epicyclic roots remain unaffected by variation of b.

Figure 83 shows the root locus for the supersonic case of parametric variation

of b. For values of fin length b/bnom > 1.0, the root locus trends are similar to the

subsonic case. As the fin length is reduced below bnom, the dynamic epicyclic roots are

observed to increase in stability, while still diminishing in frequency. The roll/yaw

mode root, however, does not remain stable for decreasing b. At approximately,

b/bnom ≈ 0.34, this root crosses over the imaginary axis drives the system unstable.

The effect of the unstable roll/yaw mode causes the system to drift away from a near

steady condition at an exponential rate. In dynamic simulation roll/yaw mode was

observed, as coupling between the roll rate and epicyclic states lead to unstable flight

characteristics with increasingly larger angles of attack.
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Table 9: Orthonormalized eigenmatrix for b/bnom = 0.0 at Ma = 0.5.

Velocity Roll/Yaw Vertical Horizontal
Mode Mode Epicyclic Mode Epicyclic Mode

V 1.00 0.00 0.00 0.00 0.00 0.00
p 0.00 0.94 0.00 0.00 0.26 0.26
ṽ 0.00 0.06 0.00 0.00 0.71 0.71
w̃ 0.00 0.00 0.94 0.94 0.00 0.00
q̃ 0.00 0.00 0.06 0.06 0.00 0.00
r̃ 0.00 0.00 0.00 0.00 0.03 0.03
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Figure 82: Root Locus: Parameterized by equal variation in F2 fin length. Subsonic

Case: Mach 0.5.
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Table 10: Orthonormalized eigenmatrix for b/bnom = 0.0 at Ma = 3.0.

Velocity Roll/Yaw Vertical Horizontal
Mode Mode Epicyclic Mode Epicyclic Mode

V 1.00 0.00 0.00 0.00 0.00 0.00
p 0.00 0.57 0.00 0.00 0.45 0.45
ṽ 0.00 0.43 0.00 0.00 0.54 0.54
w̃ 0.00 0.00 0.97 0.97 0.00 0.00
q̃ 0.00 0.00 0.03 0.03 0.00 0.00
r̃ 0.00 0.00 0.00 0.00 0.01 0.01
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Figure 83: Root Locus: Parameterized by equal variation in F2 fin length. Supersonic

Case: Mach 3.0.
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5.1.4 Effect of Variation of F1 and F2 Fin Lengths on Stability

In the following trade study, projectile dynamic stability was evaluated for simul-

taneous variation of F1 and F2 fin lengths (or equivalently fin areas). Given the

nominal fin lengths previously summarized in Table 6, stability roots were calculated

as F1 and F2 lengths varied between 0 ≤ b ≤ 4bnom. Projectile quasi-linear roll rate

and roll angle were set to 0.0 (rad/sec) and 0.0 (deg), respectively. Both subsonic

and supersonic cases were considered, where the quasi-linear total velocity was set to

558.0 (ft/sec) (Mach 0.5) in the subsonic case and 3357.0 (ft/sec) (Mach 3.0) in the

supersonic case. Dynamic simulation for this study showed that the LTI model was

sufficient to approximate the 6DOF model for at least 1.0 (sec) of flight time for val-

ues of b where the system was stable. For unstable configurations, large aerodynamic

angles of attack were observed.

Figure 84 shows the subsonic behavior of the dynamic modes with changing F1

and F2 fin lengths, and Table 11 shows the LTI mode structure at b/bnom = 0.0. First,

both epicyclic modes are observed to vary with changing b. This occurs because F1

and F2 are not positioned about a plane of symmetry, and therefore both horizontal

and vertical plane stability are affected. As b becomes large, the horizontal epicyclic

roots grow increasingly damped with smaller changes in frequency. The two vertical

epicyclic roots behave in relatively the opposite manner, becoming increasingly more

oscillatory and subtly become more damped. At values of b close to bnom the two

epicyclic modes converge upon each other. Very little change is observed in epicyclic

stability for values of b/bnom < 1.0. The roll/yaw mode shows a significant reduction

in stability as b is reduced from 4bnom towards zero, eventually becoming unstable

just before reaching b/bnom = 0.0.

In Figure 85, the dynamic modes of the supersonic case are shown to behave

similarly to the subsonic case. Epicyclic roots can now clearly be seen to diverge
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for b/bnom < 1.0 with decreasing oscillatory trends, as two roots becoming notice-

ably more damped and two becoming slightly less damped. The roll/yaw mode now

becomes increasing unstable for values less than b/bnom ≈ 0.30.

Table 11: Orthonormalized eigenmatrix for b/bnom = 0.0 at Ma = 0.5.

Velocity Roll/Yaw Vertical Horizontal
Mode Mode Epicyclic Mode Epicyclic Mode

V 1.00 0.00 0.00 0.00 0.00 0.00
p 0.00 0.89 0.00 0.00 0.26 0.26
ṽ 0.00 0.05 0.48 0.48 0.35 0.35
w̃ 0.00 0.05 0.48 0.48 0.35 0.35
q̃ 0.00 0.00 0.02 0.02 0.02 0.02
r̃ 0.00 0.00 0.02 0.02 0.02 0.02
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Figure 84: Root Locus: Parameterized by variation of F1 and F2 fin lengths. Sub-

sonic Case: Mach 0.5.
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Table 12: Orthonormalized eigenmatrix for b/bnom = 0.0 at Ma = 3.0.

Velocity Roll/Yaw Horizontal Vertical
Mode Mode Epicyclic Mode Epicyclic Mode

V 0.88 0.00 0.00 0.00 0.00 0.00
p 0.00 0.49 0.00 0.00 0.41 0.41
ṽ 0.06 0.25 0.50 0.50 0.29 0.29
w̃ 0.06 0.25 0.50 0.50 0.29 0.29
q̃ 0.00 0.01 0.00 0.00 0.01 0.01
r̃ 0.00 0.01 0.00 0.00 0.01 0.01
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Figure 85: Root Locus: Parameterized by variation of F1 and F2 fin lengths. Su-

personic Case: Mach 3.0.
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5.2 Trade Study – Vary Fin Parameters Off of the Baseline
3-Finned Projectile Configuration

The purpose of the following trade studies is to investigate the effects of varying fin

length (or equivalently fin area) off of a baseline 3-finned projectile. Figure 86 shows

an illustration of a projectile with three fins placed symmetrically at the rear of the

projectile. Table 86 summarizes fin geometry, where the ith fin length, width, azimuth

angle, and cant angle are represented by bi, ci, φCi , and δCi , respectively.

Table 13: Summary Baseline 3-Finned Projectile Parameters

Fin# bi (ft) ci (ft) φCi (deg) δCi (deg)

F1 0.0984 0.0984 90 0.00
F2 0.0984 0.0984 210 0.00
F3 0.0984 0.0984 330 0.00

Figure 86: Illustration of the baseline 3-finned projectile configuration.
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5.2.1 Effect of Variation of F1 Fin Length on Stability

In the following trade study, projectile dynamic stability was evaluated for variation

of F1 fin length (or equivalently fin area). Given the nominal fin lengths previously

summarized in Table 4, stability roots were calculated as F1 fin length varied be-

tween 0 ≤ b ≤ 4bnom. Projectile quasi-linear roll rate and roll angle were set to

0.0 (rad/sec) and 0.0 (deg), respectively. Both subsonic and supersonic cases were

considered, where the quasi-linear total velocity was set to 558.0 (ft/sec) (Mach 0.5)

in the subsonic case and 3357.0 (ft/sec) (Mach 3.0) in the supersonic case. Dynamic

simulation for this study showed that the LTI model was sufficient to approximate

the 6DOF model for at least 1.0 (sec) of flight time for values of b where the system

was stable. In the supersonic case, the system was observed to grow increasingly

unstable in the roll/yaw mode as the fin length approached 0.0 (ft).

Figure 87 shows the subsonic behavior of the dynamic modes with changing b,

and Table 14 shows the LTI mode structure at b/bnom = 0.0. The vertical epicyclic

mode roots are invariant in b, since the vertical fin F1 only affects horizontal plane

aerodynamic forces. When b/bnom = 4.0, the horizontal epicyclic mode roots are

highly oscillatory and heavily damped. As the fin length is varied until b/bnom = 1.0,

the horizontal epicyclic mode roots converge upon the vertical epicyclic mode roots.

Reducing the fin length further down towards b/bnom = 0.0, causes the horizontal

mode roots to diminish in frequency and become slightly mode damped. The roll/yaw

mode crosses the imaginary axis at b/bnom ≈ 0.38, driving the system unstable.

Figure 88 shows the root locus for the supersonic case of parametric variation of b.

For values of fin length b/bnom > 1.0, the epicyclic and roll/yaw modes vary in similar

fashion to the subsonic case. For values of b < bnom, the system becomes increasingly

sensitive to changing b. The horizontal epicyclic mode changes an oscillatory mode to

an aperiodic mode for fin lengths less than b/bnom ≈ 0.46. The roll/yaw mode crosses

the imaginary axis at b/bnom ≈ 0.64, driving the system unstable.
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Table 14: Orthonormalized eigenmatrix for b/bnom = 0.0 at Ma = 0.5.

Velocity Roll/Yaw Vertical Horizontal
Mode Mode Epicyclic Mode Epicyclic Mode

V 0.99 0.00 0.00 0.00 0.00 0.00
p 0.00 0.84 0.00 0.00 0.39 0.39
ṽ 0.00 0.16 0.00 0.00 0.60 0.60
w̃ 0.01 0.00 0.95 0.95 0.00 0.00
q̃ 0.00 0.00 0.05 0.05 0.00 0.00
r̃ 0.00 0.00 0.00 0.00 0.01 0.01
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Figure 87: Root Locus: Parameterized by variation of F1 fin length. Subsonic Case:

Mach 0.5.
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Table 15: Orthonormalized eigenmatrix for b/bnom = 0.0 at Ma = 3.0.

Velocity Roll/Yaw Vertical Horizontal
Mode Mode Epicyclic Mode Epicyclic Mode

V 0.98 0.00 0.00 0.00 0.00 0.00
p 0.00 0.91 0.00 0.00 0.23 0.23
ṽ 0.00 0.09 0.00 0.00 0.75 0.75
w̃ 0.02 0.00 0.97 0.97 0.00 0.00
q̃ 0.00 0.00 0.03 0.03 0.00 0.00
r̃ 0.00 0.00 0.00 0.00 0.02 0.02
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Figure 88: Root Locus: Parameterized by variation of F1 fin length. Supersonic

Case: Mach 3.0.
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5.2.2 Effect of Roll Rate on V-tailed Projectile Stability

Here a stability analysis is performed on an asymmetric 2-finned V-tail projectile as

roll rate was varied from 0.0 (rad/sec) ≤ po ≤ 1000 (rad/sec). Again, the goal is

to determine if dynamic instabilities can be ”rolled-out” with increasing roll rate,

which is commonly done to stabilize finless projectiles. Dynamic simulations were

run to compare LTI, LTP, and 6DOF models for the 2-finned V-tail projectile shown

in Figure 89. The fin geometry summarized in Table 6 was used for to describe

the two fins, designated as F2 and F3. Several initial rolls rates were simulated for

the projectile launched subsonically at Mach 0.5 and a quadrant elevation of 1.0286

(deg). As initial roll rate varied, a cant angle was set for the two fins to encourage

a constant, steady roll rate through flight. For a flight speed of Mach 0.5, fin cant

is proportional to the initial roll rate by the relation δci (deg) ≈ 0.0047po. The LTP

was able to successfully approximate the 6DOF trajectory results for 1.0 seconds of

flight for stable cases.

Figure 90 shows results of the LTP model stability analysis as roll rate was

varied from 0.0 (rad/sec) ≤ po ≤ 1000 (rad/sec). For small values of roll rate,

po < 0.1 (rad/sec), the system is observed to be unstable as one root is real and

positive. As roll rate increases to po ≈ 1.0 (rad/sec), the system is stable and fast

and slow epicyclic dynamic modes start to appear. Unlike the symmetric 2-finned

projectile roll rate study of Section 5.1.2, the fast mode epicyclic roots decrease in

stability, while the slow mode epicyclic roots become more stable. At a roll rate

of po ≈ 70.8 (rad/sec), the system again becomes unstable as the fast mode roots

cross the imaginary axis. Therefore, this projectile configuration can be dynamically

stabilized however, unlike the symmetric 2-finned case the V-tail configuration can

become dynamically unstable if the roll rate is large enough.
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Figure 89: Illustration of a 2-finned V-tail projectile that is aerodynamically asym-
metric about the vertical plane of the body frame.
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5.3 Trade Study – Vary Fin Parameters Off The Baseline
Hybrid Aircraft/Projectile Configuration

The purpose of the following trade studies is to investigate the effects of varying wing

and tail parameters off of a baseline hybrid aircraft/projectile. Figure 91 shows an

illustration of the baseline hybrid configuration with two wings placed behind the

projectile mass center and two fins placed at the rear of the projectile. Table 16

summarizes the nominal lifting surface geometry of the baseline configuration. The

ith wing span, chord, stationline, dihedral angle, and cant angle are represented by

Wi, Ci, SLWI , ΓWi , and αWi , respectively. The i
th fin length, width, V-tail angle, and

cant angle are represented by bi, ci, θV , and δCi .

Table 16: Summary Baseline Hybrid Aircraft/Projectile Parameters

Wing# Wi (ft) Ci (ft) ΓWi (deg) αWi (deg) SLWi (ft)
W1 0.3936 0.0984 5.0 0.00 0.35
W2 0.3936 0.0984 5.0 0.00 0.35
Fin# bi (ft) ci (ft) θV (deg) δCi (deg)
F1 0.0984 0.0984

120.0
0.00

F2 0.0984 0.0984 0.00

Figure 91: Illustration of the baseline hybrid aircraft/projectile configuration.
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5.3.1 Effect of Fight Speed on Stability

In the following trade study, projectile dynamic stability was evaluated for variation

of flight speed from 0.50 ≤ Ma ≤ 1.00. Projectile quasi-linear roll rate and roll angle

were set to 0.0 (rad/sec) and 0.0 (deg), respectively. Flight dynamic simulation for

this study showed that the LTI model was sufficient to approximate the 6DOF model

for at least 1.0 (sec) of flight time for Mach numbers where the system was observed

to be stable.

Figure 92 shows the root locus for variation in Mach number for the hybrid projec-

tile, and Table 17 shows the LTI mode structure at b/bnom = 0.0. Recall from Chap-

ter 2 that all aerodynamic coefficients are dependent upon Mach number. Therefore

within the extended PLT matrix of Equation (65) varying Mach number changes both

quasi-linear flight speed Vo and aerodynamic coefficients. As Mach number increases

from 0.5 to 0.82, little variation is seen in epicyclic roots. Two vertical plane roots

decrease in frequency for near constant damping, and two horizontal roots increase

subtly in frequency. Note that as seen in Table 17, the horizontal epicyclic mode

is significantly influenced by roll rate. The roll mode root increases significantly in

damping along the real axis during this Mach regime, however. As Mach number in-

creases above Ma ≈ 0.82, sensitivity of the vertical epicyclic mode to increasing Mach

number increases, while sensitivity in the other modes remains relatively unaffected.

At Ma ≈ 0.98, an instability occurs in the vertical plane, as epicyclic roots collide at

the real axis and change into aperiodic modes. Physically speaking, this instability

is explained by the movement of the resultant aerodynamic center along the station-

line axis (�IB). As Mach number increases, the aerodynamic center moves in front

of the projectile mass center, causing the projectile to change from a stable nose-

down tendency to an unstable nose-up tendency. During this transonic Mach regime,

horizontal plane epicyclic roots change very little, while the roll mode continues to

increase in stability along the real axis.
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Table 17: Orthonormalized eigenmatrix for Ma = 0.82.

Velocity Roll Horizontal Vertical
Mode Mode Epicyclic Mode Epicyclic Mode

V 1.00 0.00 0.00 0.00 0.00 0.00
p 0.00 0.99 0.38 0.38 0.00 0.00
ṽ 0.00 0.00 0.61 0.61 0.00 0.00
w̃ 0.00 0.00 0.00 0.00 0.92 0.92
q̃ 0.00 0.00 0.00 0.00 0.08 0.08
r̃ 0.00 0.00 0.01 0.01 0.00 0.00
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5.3.2 Effect of Variation of W1 and W2 Wing Span Lengths on Stability

In the following trade study, projectile dynamic stability was evaluated for symmetric

variation of W1 and W2 wing spans (or equivalently wing planform areas). Given

the nominal wing lengths previously summarized in Table 16, stability roots were

calculated as W1 and W2 wing spans varied between 0 ≤ W ≤ Wnom. Projectile

quasi-linear roll rate and roll angle were set to 0.0 (rad/sec) and 0.0 (deg), and

the quasi-linear total velocity was set to 558.0 (ft/sec) (Mach 0.5). Flight dynamic

simulation for this study showed that the LTI model was sufficient to approximate

the 6DOF model for at least 1.0 (sec) of flight time for values of W where the system

was observed to be stable.

Figure 93 shows the root locus for parametric variation of wing span W , and

Table 18 shows the LTI mode structure at W/Wnom = 0.0. As W is reduced, the

vertical epicyclic mode roots reduce in frequency and become lightly damped. The

horizontal epicyclic mode roots vary in frequency and stability but do not significantly

change for all values of W . The roll/yaw mode root is initially heavily damped when

W/Wnom = 1.0 but quickly drives the system unstable for values of wing span below

W/Wnom ≈ 0.46. The sensitivity of the roll/yaw mode to changing wing span length

greatly diminishes as W approaches 0.0 (ft) to the point where it almost becomes

invariant in W .
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Table 18: Orthonormalized eigenmatrix for W/Wnom = 0.0 at Ma = 0.5.

Velocity Roll/Yaw Horizontal Vertical
Mode Mode Epicyclic Mode Epicyclic Mode

V 1.00 0.00 0.00 0.00 0.00 0.00
p 0.00 0.73 0.56 0.56 0.00 0.00
ṽ 0.00 0.27 0.43 0.43 0.00 0.00
w̃ 0.00 0.00 0.00 0.00 0.95 0.95
q̃ 0.00 0.00 0.00 0.00 0.05 0.05
r̃ 0.00 0.00 0.01 0.01 0.00 0.00
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Figure 93: Root Locus: Parameterized by symmetric variation of W1 and W2 wing

spans at Mach 0.5.
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5.3.3 Effect of Variation of F1 and F1 Fin Lengths on Stability

In the following trade study, projectile dynamic stability was evaluated for symmet-

ric variation of F1 and F2 fin lengths (or equivalently fin planform areas). Given the

nominal wing lengths previously summarized in Table 16, stability roots were calcu-

lated as F1 and F2 wing spans varied between 0 ≤ b ≤ 4bnom. Projectile quasi-linear

roll rate and roll angle were set to 0.0 (rad/sec) and 0.0 (deg), and the quasi-linear

total velocity was set to 558.0 (ft/sec) (Mach 0.5). Flight dynamic simulation for this

study showed that the LTI model was sufficient to approximate the 6DOF model for

at least 1.0 (sec) of flight time for values of b where the system was observed to be

stable.

Figure 94 shows the root locus for parametric variation of fin length b, and Table 94

shows the LTI mode structure at b/bnom = 0.0. As b is reduced, the vertical epicyclic

mode roots reduce in frequency and become lightly damped. Also, the horizontal

epicyclic mode roots quickly reduce in frequency towards the real axis, approaching

each other. The system becomes unstable at approximately b/bnom ≈ 0.7114 as these

roots collide and split into aperiodic modes. The roll mode root decreases along the

real axis as b is reduced but remains significantly damped for b/bnom = 0.0.
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Table 19: Orthonormalized eigenmatrix for b/bnom = 0.0 at Ma = 0.5.

Velocity Roll/Yaw Horizontal Vertical
Mode Mode Epicyclic Mode Epicyclic Mode

V 1.00 0.00 0.00 0.00 0.00 0.00
p 0.00 1.00 0.30 0.30 0.00 0.00
ṽ 0.00 0.00 0.68 0.68 0.00 0.00
w̃ 0.00 0.00 0.00 0.00 0.94 0.94
q̃ 0.00 0.00 0.00 0.00 0.06 0.06
r̃ 0.00 0.00 0.02 0.02 0.00 0.00
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Figure 94: Root Locus: Parameterized by symmetric variation of F1 and F2 fin

lengths at Mach 0.5.
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5.3.4 Effect of Variation of V-tail Angle on Stability

In the following trade study, projectile dynamic stability was evaluated for variation of

fin V-tail angle from 45 (deg) ≤ θV ≤ 180 (deg). Projectile quasi-linear roll rate and

roll angle were set to 0.0 (rad/sec) and 0.0 (deg), and the quasi-linear total velocity

was set to 558.0 (ft/sec) (Mach 0.5). Flight dynamic simulation for this study showed

that the LTI model was sufficient to approximate the 6DOF model for at least 1.0

(sec) of flight time for values of θV where the system was observed to be stable.

Figure 95 shows the root locus for parametric variation of θV , and Table 20 shows

the LTI mode structure at θV = 180 (deg). For all values of θV , the roll mode is heavily

damped and remained unchanged, meaning that this mode is completely insensitive

and invariant to changing θV . For θV = 45 (deg), the vertical and horizontal epicyclic

modes are relatively close in stability and frequency. As θV is increased, frequency

of the vertical epicyclic mode increases with reducing sensitivity to θV , while the

damping remaans approximately constant. Conversely, the vertical epicyclic roots

reduce in frequency and increase in sensitivity for large θV . Eventually these roots

collide with each other at the real axis and become aperiodic. This occurs at θV ≈

133.53 (deg), where the system becomes unstable shortly thereafter.
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Table 20: Orthonormalized eigenmatrix for θV = 180.0 (deg) at Ma = 0.5.

Velocity Roll Horizontal Vertical
Mode Mode Epicyclic Mode Epicyclic Mode

V 1.00 0.00 0.00 0.00 0.00 0.00
p 0.00 1.00 0.30 0.30 0.00 0.00
ṽ 0.00 0.00 0.68 0.68 0.00 0.00
w̃ 0.00 0.00 0.00 0.00 0.91 0.91
q̃ 0.00 0.00 0.00 0.00 0.09 0.09
r̃ 0.00 0.00 0.02 0.02 0.00 0.00
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Figure 95: Root Locus: Parameterized by variation of θV at Mach 0.5.
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5.3.5 Effect of Variation of Wing Dihedral on Stability

In the following trade study, projectile dynamic stability was evaluated for symmetric

variation of wing dihedral angles ΓW1 and ΓW2. Stability roots were calculated as

wing dihedral varied from −45 (deg) ≤ Γ ≤ 45 (deg). Projectile quasi-linear roll

rate and roll angle were set to 0.0 (rad/sec) and 0.0 (deg), and the quasi-linear total

velocity was set to 558.0 (ft/sec) (Mach 0.5). Flight dynamic simulation for this study

showed that the LTI model was sufficient to approximate the 6DOF model for at least

1.0 (sec) of flight time for values of Γ where the system was observed to be stable.

Figure 96 shows the root locus for symmetric variation of wing dihedral Γ, and

Table 21 shows the LTI mode structure at Γ = −45 (deg). As Γ is increased from

-45 (deg) to 0.0 (deg), the vertical epicyclic roots increase in frequency and become

slightly more damped, while the horizontal epicyclic roots decrease in frequency and

become less damped. The behavior of roll mode over this range is a net increase

in damping, which maximizes at Γ ≈ −9.0 (deg). Also at Γ ≈ −9.0 (deg), the

horizontal epicyclic mode roots become very lightly damped. For increasing values

of Γ larger than 0.0 (deg), vertical epicyclic root behavior decreases in frequency

and damping. For Γ = 45 (deg), frequency and damping for these roots is equal

to what was calculated for the -45 (deg) case. Similarly, the roll mode returns to a

value near its calculated root for the -45 (deg) case but is slightly less damped. For

wing dihedral larger than Γ ≈ 23.74 (deg), behavior of the horizontal epicyclic roots

eventually drives the system to instability as these roots collide with each other at

the real axis and become aperiodic in nature.

Recall from Section 2.5.3 that the effects of gravity were observed not to be

depend upon any dynamic states and therefore do not appear in the PLT matrix A.

Instead, gravitational effects were included in a forcing vector B. Due to this fact,

hybrid configurations with negative dihedral could also be equivalently considered

have positive dihedral but with an inverted V-tail (upside down tail configuration).
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Therefore the root locus plot suggests that hybrid projectiles with inverted V-tail

fin configurations retain stability characteristics for large wing dihedral angles, while

projectiles with upright V-tail fin configurations do not.

Table 21: Orthonormalized eigenmatrix for Γ = −45.0 (deg) at Ma = 0.5.

Velocity Roll/Yaw Horizontal Vertical
Mode Mode Epicyclic Mode Epicyclic Mode

V 0.97 0.00 0.00 0.00 0.00 0.00
p 0.00 1.00 0.80 0.80 0.00 0.00
ṽ 0.00 0.00 0.20 0.20 0.00 0.00
w̃ 0.03 0.00 0.00 0.00 0.93 0.93
q̃ 0.00 0.00 0.00 0.00 0.07 0.07
r̃ 0.00 0.00 0.01 0.01 0.00 0.00
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Figure 96: Root Locus: Parameterized by symmetric variation of ΓW1 and ΓW2 at

Mach 0.5.
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5.3.6 Nonlinear Effects of Geometric Parameter Space on Stability

The parameter space characterized by lifting surface position and orientation dimen-

sions is highly nonlinear and can be sensitive to small parameter changes. In other

words, parametric variation of a single parameter about a non-nominal configuration

is not guaranteed to generate even remotely similar root loci. Consequentially, signif-

icant portions of the parameter space should be mapped out to gain a more complete

understanding how a given system behaves. The objective of this trade study is to

map out a portions of the nonlinear parameter space by generating root loci for differ-

ent wing span lengths (or equivalently wing planform areas), while varying the fin V-

tail angle. The V-tail angle is continuously varied from 0.00 (deg) ≤ θV ≤ 180 (deg),

while the wing span lengths W1 ad W2 are symmetrically changed by the discrete

values: W/Wnom = 0.0, 0.50, and 1.00. All other lifting surface parameters were set

to the nominal values previously summarized. Projectile quasi-linear roll rate and

roll angle were set to 0.0 (rad/sec) and 0.0 (deg), and the quasi-linear total velocity

was set to 558.0 (ft/sec) (Mach 0.5). Flight dynamic simulation for this study showed

that the LTI model was sufficient to approximate the 6DOF model for at least 1.0

(sec) of flight time for values of Γ where the system was observed to be stable.

Figure 97 shows the root locus for parametric variation of θV for the hybrid pro-

jectile with no wings W/Wnom = 0.0. Alternatively, this plot shows the root locus

for parametric variation of θV as a 2-finned projectile is transformed from a severely

asymmetric V-tail projectile (Section 5.2.2) to a symmetric 2-finned configuration

(Section 5.1.2). Inspection of system eigenfunctions revealed the following character-

istic modes: a total velocity mode, a roll/yaw mode, a pair of vertical epicyclic modes,

and a pair of horizontal epicyclic/roll modes. The roll/yaw mode was observed to

vary in characteristic response for changing θV . For small θV , this mode is heavily

influenced by roll rate. As θV becomes large, this mode is influenced by the horizontal

transverse velocity a moderate amount and the horizontal transverse angular velocity

107



a small amount.

For all values of θV the root locus is unstable, since at θV = 0.0 (deg) the roll/yaw

mode root and one vertical plane epicyclic root are real and positive. As θV increases,

the aperiodic vertical epicyclic mode roots converge towards each other along the real

axis and collide for a stable value. For θV ≥ 43.2 (deg), these roots split into oscilla-

tory branches and diverge with increasing frequency and stability. For increasing θV ,

the horizontal epicyclic/roll mode roots diminish in frequency and converge towards

each other, first at a near constant damping but then become more stable before meet-

ing at the real axis. For θV ≥ 153.9 (deg), these roots split into aperiodic branches.

One of these aperiodic roots continues to decrease in stability but never cross over

the imaginary axis. The roll/yaw mode root continues to increase in instability as θV

is increased.
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Figure 97: Root Locus: Parameterized by variation of θV at W/Wnom = 0.0 and
Mach 0.5.
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Figure 98 shows the root locus for parametric variation of θV for the hybrid pro-

jectile with no wings W/Wnom = 0.5. Inspection of system eigenfunctions revealed

the following characteristic modes: a total velocity mode, a roll/yaw mode, a pair of

vertical epicyclic modes, and a pair of horizontal epicyclic/roll modes. The roll/yaw

mode was observed to vary in characteristic response for changing θV . For small θV ,

the roll/yaw mode is heavily influenced by roll rate, but as θV becomes large, this

mode influences the transverse velocity a significant amount.

As θV increases, the vertical epicyclic mode roots grow in frequency and damping,

and the horizontal epicyclic/roll mode roots start to converge towards each other. The

motion of the horizontal epicyclic/roll roots is at first nearly constant in stability, but

then these roots start to drift towards increasing stability. At θV = 0.0 (deg), the

roll/yaw mode root is stable but this root eventually drives the system unstable at

θV ≥ 123.3 (deg).
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Figure 98: Root Locus: Parameterized by variation of θV at W/Wnom = 0.5 and
Mach 0.5.
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Figure 99 shows the root locus for parametric variation of θV for the hybrid pro-

jectile with no wings W/Wnom = 1.0. Discussion of this root locus was addressed

previously in Section 5.3.4.
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Figure 99: Root Locus: Parameterized by variation of θV at W/Wnom = 1.0 and
Mach 0.5.

The root loci in Figures 97-99 shows different dynamic behavior as θV was contin-

uously varied. For W/Wnom = 0.0 both vertical and horizontal epicyclic modes grew

unstable but at different extremes of the trade study. For W/Wnom = 0.5 the roll/yaw

mode was the only source for dynamic instability. Finally, for W/Wnom = 1.0 the

horizontal epicyclic/roll mode roots drive the system unstable, while the roll/yaw

mode root is invariant with respect to θV .
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CHAPTER VI

CONCLUSION

6.1 PLT Model Development Summary

A classical aerospace tool for evaluating projectile dynamics and performance called

Projectile Linear Theory has been extended to account for asymmetries caused by

lifting surface aerodynamics. This was achieved in Chapter 2 by applying a series of

assumptions and simplifications to a point-force lifting surface aerodynamic model,

and then incorporating these linearized aerodynamic effects into the classical PLT sys-

tem. The additional physics built into the extended PLT model greatly increases the

coupling of the linearized dynamic equations of motion. These additional physics are

primarily captured within the many extended theory coefficient expressions, summa-

rized in Appendix C. For symmetric lifting surface configurations, however, substantial

reduction in the model complexity was observed.

Several dynamic states were also observed to appear nonlinearly within the ex-

tended PLT coefficient of matrix A in Equation (67): total velocity–Vo, roll angle–φo,

and roll rate–po. First, the PLT model was fully linearized by assuming that these

states varied slowly in time, and can therefore be set to constant values of the initial

(launch) conditions. This model was referred to as the LTI model. Using linear sys-

tems theory, stability of LTI models is easily quantified; however, the ability of LTI

models to describe a projectile with aerodynamic asymmetries can fall short because

the periodic affects of roll angle is lost when setting φo constant in the PLT coefficient

matrix.

Additionally, it was observed that the projectile roll angle appears within the PLT

matrix in periodic form (i.e. sin(φo), cos(φo)). It is desirable to include roll periodic
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to include the accuracy of the PLT model. If the extended assumption could be made

that the projectile po was varying in a near linear fashion, then the roll angle could

be varied as a linear function of time and proportional to po. This model was referred

to as the LTP model. For LTP systems, a more advanced stability analysis technique

called Floquet theory can then be used to quantify dynamic stability.

6.2 PLT Model Validation Summary

The findings of Chapter 4 show that the in-house 6DOF and PLT codes accurately

predict projectile flight dynamic behavior. Additionally, the lifting surface model

was used to represent a symmetric projectile configuration and successfully replicate

simulation results for the equivalent projectile description using the body aerodynamic

model of Section (2.4.3).

Next, symmetric projectile LTI models were generated for the classical and ex-

tended projectile linear theories. Simulation results were shown to be equivalent and

able to closely approximate the nonlinear 6DOF model results for at least 1.0 (sec)

of flight.

A similar set of simulations was then run using an asymmetric projectile, where it

was seen that the LTP model in general outperformed the LTI model; however, both

linear theories were only able to approximate the nonlinear 6DOF model over short

periods of time (i.e. 0.2 (sec)). This was due to nonlinear state behavior in the roll

rate for this configuration. This suggests that the ability of LTP and LTI models to

accurately model asymmetric projectiles will need to be determined on a case-by-case

basis.

Finally, stability analyses were conducted on both projectile configurations as roll

rate was parametrically varied from 0.0 (rad/sec) ≤ po ≤ 1000 (rad/sec). It was

shown that for the symmetric projectile, both the LTI and LTP models generated

the same stability results. For the asymmetric projectile, differences were observed
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between the LTI and LTP stability results; however, the epicyclic modes and roll

modes following similar behavior and the two models approached each other as roll

rate increased.

6.3 Projectile Configuration Trade Studies Summary

Trade studies were conducted for a series of asymmetric projectile configurations.

These included variation of fin parameters off symmetric projectile configurations

and variation of quasi-linear states Vo and po for special configurations.

For the 4-finned baseline configuration, symmetric variation of F1 and F3 fin

lengths (or equivalently planform areas) drove vertical epicyclic roots unstable for

values of fin length less than b/bnom ≈ 0.340 in the subsonic case and b/bnom ≈ 0.528

in the supersonic case. It was shown that for the case where F1 and F3 fin length was

b ≈ 0.0 (ft) that instabilities could be ”rolled-out”, as the roll rate was increased above

po ≈ 1.34 (deg). It was also see that fast and slow epicyclic modes was appeared as

the projectile became stable. For the case of asymmetric variation of two fin lengths,

it was observed that epicyclic modes remained stable, while a roll/yaw mode appeared

and drove the system to instability for fin length values b/bnom = 0.0 in the subsonic

case and b/bnom ≤ 0.30 in the supersonic case.

For the 3-finned baseline configuration, variation of the F1 fin length (or equiva-

lently planform area) drove the roll/yaw mode root unstable for values of fin length

less than b/bnom ≈ 0.38 in the subsonic case and b/bnom ≈ 0.64 in the supersonic

case. It was shown that for the case of the V-tail projectile with θV = 120 (deg) that

instabilities could be ”rolled-out”. As po was increased above po ≈ 1.0 (deg), the

epicyclic mode roots were observed to become stable and form fast and slow mode

behavior; however, for this configuration the system would become unstable for roll

rate above po ≈ 70.8 (deg).

113



For the hybrid aircraft/projectile baseline configuration, it was observed that in-

creasing flight speed can cause horizontal epicyclic mode roots to become aperiodic

and drive the system unstable at Ma ≈ 0.82. Physically speaking, these results are

intuitive, since it is known in aircraft stability that increasing flight speed can cause

an unstable aerodynamic center location with respect to the stationline mass center.

The affect of symmetrically reducing wing span length (or equivalently wing planform

area) on stability was to drive the roll/yaw mode to become just unstable for wing

span lengths less than W/Wnom ≈ 0.46. Symmetrically reducing the fin lengths on

the hybrid configuration quickly drives the horizontal epicyclic/roll modes to insta-

bility for fin lengths below b/bnom ≈ 0.7114. Changes in the hybrid configuration

V-tail fin angle was observed to have no affect on the roll mode root, but the system

becomes unstable for θV ≈ 133.53 (deg). The wing dihedral angle study yielded the

interesting result that for large and positive values of Γ, stability could be conserved

if an inverted V-tail was used. Finally, it was observed that the parameter space can

have a highly nonlinear affect on stability root loci, and consideration must be taken

to completely understand stability characteristics in a given area of the parameter

space.
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APPENDIX A

PROJECTILE DESCRIPTION

The Army-Navy Basic finner, or sometimes called the standard finner, was used as a

testbed for this study. The figure below illustrates the relative configuration of the

projectile. Table 22 summarizes the nominal projectile properties [12].

Figure 100: Dimensional Sketch-up of the Basic Finner projectile geometry. All
dimensions are in calibers (1.0 caliber is equivalent to the projectile diameter).

Table 22: Summary Basic Finner projectile nominal properties.

D m IR IP L CG from nose
(mm) (g) (g−cm2) (g−cm2) (mm) (% /100)

30.0 1589.4 1924.07 98743.38 300 0.55
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APPENDIX B

CLASSICAL PLT MODEL SUMMARY

B.1 Dynamic Equations of Motion

Recall the general form for the PLT dynamic equations of motion take on a quasi-

linear form �x� = [A] �x + {B}, where total velocity V and roll rate p are assumed to

change slowly in several of the linearized coefficients C∗∗.





V �

p�

ṽ�

w̃�

q̃�

r̃�






=





CV V 0 0 0 0 0

CpV Cpp 0 0 0 0

0 0 Cṽṽ 0 0 Cṽr̃

0 0 0 Cw̃w̃ Cw̃q̃ 0

0 0 Cq̃ṽ Cq̃w̃ Cq̃q̃ Cq̃r̃

0 0 Cq̃ṽ Cr̃w̃ Cr̃q̃ Cr̃r̃





·






V

p

ṽ

w̃

q̃

r̃






+






GV

0

0

Gw̃

0

0






(85)

B.2 Classical PLT Coefficient Summary

The classical PLT matrix [A] is populated by the following coefficient expressions.

C
�
VV = −πρD3CX0

8m
(86)

C
�
pV =

πρD4CLDD

8IR
(87)

C
�
pp =

πρD5CLP

16IR
(88)

C
�
ṽṽ

= −πρD3CNA

8m
(89)
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C
�
ṽr̃

= −D (90)

C
�
w̃w̃

= −πρD3CNA

8m
(91)

C
�
w̃q̃

= D (92)

C
�
q̃ṽ

= −πρD4CYPA∆SLM

16IPVo

po (93)

C
�
q̃w̃

=
πρD3CNA∆SL

8IP
(94)

C
�
q̃q̃
=

πρD5CMQ

16IP
(95)

C
�
q̃r̃
= −DIR

VoIP
po (96)

C
�
r̃ṽ

= −πρD3CNA∆SL

8IP
(97)

C
�
r̃w̃

=
πρD4CYPA∆SLM

16IPVo

po (98)

C
�
r̃q̃
=

DIR

VoIP
po (99)

C
�
r̃r̃
=

πρD5CMQ

16IP
(100)
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APPENDIX C

EXTENDED PLT MODEL SUMMARY

C.1 Linearized Lifting Surface Force/Moment Components

Recall that after applying the extended PLT assumptions to the lifting surface model,

that the total generated aerodynamic force/moment take the following form.

• x-component of the total generated lifting surface aerodynamic force:

X̃
�
C
= m[X �

V
V +

�
X

�
p
+X

�
pppo

�
p+

�
X

�
ṽ
+X

�
ṽp
po

�
ṽ

+
�
X

�
w̃
+X

�
w̃p
po

�
w̃ +

�
X

�
q̃
+X

�
q̃p
po

�
q̃ +

�
X

�
r̃
+X

�
r̃p
po

�
r̃]

(101)

• y-component of the total generated lifting surface aerodynamic force:

Ỹ
�
C
= m[Y �

V
V +

�
Y

�
p
+ Y

�
pppo

�
p+

�
Y

�
ṽ
+ Y

�
ṽp
po

�
ṽ

+
�
Y

�
w̃
+ Y

�
w̃p
po

�
w̃ +

�
Y

�
q̃
+ Y

�
q̃p
po

�
q̃ +

�
Y

�
r̃
+ Y

�
r̃p
po

�
r̃]

(102)

• z-component of the total generated lifting surface aerodynamic force:

Z̃
�
C
= m[Z �

V
V +

�
Z

�
p
+ Z

�
pppo

�
p+

�
Z

�
ṽ
+ Z

�
ṽp
po

�
ṽ

+
�
Z

�
w̃
+ Z

�
w̃p
po

�
w̃ +

�
Z

�
q̃
+ Z

�
q̃p
po

�
q̃ +

�
Z

�
r̃
+ Z

�
r̃p
po

�
r̃]

(103)

• x-component of the total generated lifting surface aerodynamic moment:

L̃
�
C
= IR[L

�
V
V +

�
L
�
p
+ L

�
pppo

�
p+

�
L
�
ṽ
+ L

�
ṽp
po

�
ṽ

+
�
L
�
w̃
+ L

�
w̃p
po

�
w̃ +

�
L
�
q̃
+ L

�
q̃p
po

�
q̃ +

�
L
�
r̃
+ L

�
r̃p
po

�
r̃]

(104)

• y-component of the total generated lifting surface aerodynamic moment:

M̃
�
C
= IP [M

�
V
V +

�
M

�
p
+M

�
pppo

�
p+

�
M

�
ṽ
+M

�
ṽp
po

�
ṽ

+
�
M

�
w̃
+M

�
w̃p
po

�
w̃ +

�
M

�
q̃
+M

�
q̃p
po

�
q̃ +

�
M

�
r̃
+M

�
r̃p
po

�
r̃]

(105)

118



• z-component of the total generated lifting surface aerodynamic moment:

Ñ
�
C
= IP [N

�
V
V +

�
N

�
p
+N

�
pppo

�
p+

�
N

�
ṽ
+N

�
ṽp
po

�
ṽ

+
�
N

�
w̃
+N

�
w̃p
po

�
w̃ +

�
N

�
q̃
+N

�
q̃p
po

�
q̃ +

�
N

�
r̃
+N

�
r̃p
po

�
r̃]
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C.2 Dynamic Equations of Motion

Incorporating the quasi-linearized lifting-surface force/moment expressions into the

classical PLT model, the elements of the matrix [A] become increasingly more popu-

lated. Total velocity V , roll rate p, and projectile roll angle φ are assumed to change

slowly in several of the linearized coefficients.

A =





X̃ �
V
+ C �

V V
X̃ �

p
+ X̃ �

pp
po X̃ �

ṽ
+ X̃ �

ṽp
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ṽp
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C.3 Extended PLT Summary

The extended PLT dynamic matrix [A] is populated by the following coefficient ex-

pressions.

C.3.1 Lifting Surface Force X-Component Summary

X
�
V
= −πρD3CDo

8m
n (108)

X
�
p
=

πρD3CLα

8m

n�

i=1

δCi(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi) (109)

X
�
pp =

πρD3CLα

8mV

n�

i=1

(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)
2 (110)

X
�
ṽ
= −πρD3CLα

8m

n�

i=1

sin[φ+ φCi ]δCi (111)

X
�
ṽp

= −πρD3CLα

4mV

n�

i=1

sin[φ+ φCi ](cos[φCi ]∆BLCi + sin[φCi ]∆WLCi) (112)

X
�
w̃
=

πρD3CLα

8m

n�

i=1

cos[φ+ φCi ]δCi (113)

X
�
w̃p

=
πρD3CLα

4mV

n�

i=1

cos[φ+ φCi ](cos[φCi ]∆BLCi + sin[φCi ]∆WLCi) (114)

X
�
q̃
= −πρD3

8m

n�

i=1

(cos[φ+ φCi ]CLαδCi∆SLCi + CDo(sin[φ]∆BLCi + cos[φ]∆WLCi))

(115)

X
�
q̃p

= −πρD3

4mV

n�

i=1

cos[φ+ φCi ]CLα∆SLCi(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi) (116)
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X
�
r̃
= −πρD3

8m

n�

i=1

(sin[φ+ φCi ]δCiCLα∆SLCi − CDo(cos[φ]∆BLCi − sin[φ]∆WLCi))

(117)

X
�
r̃p

= −πρD3CLα

4mV

n�

i=1

sin[φ+ φCi ]∆SLCi(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi) (118)

C.3.2 Lifting Surface Moment X-Component Summary

L
�
p
= −πρD3(CDo + CLα)

8IR

n�

i=1

(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)
2 (119)

L
�
pp = 0 (120)

L
�
ṽ
=

πρD3(CDo + CLα)

8IR

n�

i=1

sin[φ+ φCi ](cos[φCi ]∆BLCi + sin[φCi ]∆WLCi) (121)

L
�
ṽp

= 0 (122)

L
�
w̃
= −πρD3(CDo + CLα)

8IR

n�

i=1

cos[φ+ φCi ](cos[φCi ]∆BLCi + sin[φCi ]∆WLCi) (123)

L
�
w̃p

= 0 (124)

L
�
q̃
=
πρD3

8IR

n�

i=1

(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)((CDo + CLα)cos[φ+ φCi ]∆SLCi

− CLαδCi(sin[φ]∆BLCi + cos[φ]∆WLCi))

(125)
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L
�
q̃p

= −πρD3CLα

8IRV

n�

i=1

(sin[φ]∆BLCi+cos[φ]∆WLCi)(cos[φCi ]∆BLCi+sin[φCi ]∆WLCi)
2

(126)

L
�
r̃
=
πρD3

8IR

n�

i=1

(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)((CDo + CLα)sin[φ+ φCi ]∆SLCi

+ CLαδCi(cos[φ]∆BLCi − sin[φ]∆WLCi))

(127)

L
�
r̃p

=
πρD3CLα

8IRV

n�

i=1

(cos[φ]∆BLCi − sin[φ]∆WLCi)(cos[φCi ]∆BLCi +sin[φCi ]∆WLCi)
2

(128)

C.3.3 Lifting Surface Force Y-Component Summary

Y
�
V
=

πρD3CLα

8m

n�

i=1

sin[φ+ φCi ]δCi (129)

Y
�
p
=

πρD3(CDo + CLα)

8m

n�

i=1

sin[φ+ φCi ](cos[φCi ]∆BLCi + sin[φCi ]∆WLCi) (130)

Y
�
pp = 0 (131)

Y
�
ṽ
= −πρD3(CDo + CLα)

8m

n�

i=1

sin[φ+ φCi ]
2 (132)

Y
�
ṽp

= 0 (133)

Y
�
w̃
=

πρD3(CDo + CLα)

16m

n�

i=1

sin[2(φ+ φCi)] (134)
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Y
�
w̃p

= 0 (135)

Y
�
q̃
=− πρD3

8m

n�

i=1

sin[φ+ φCi ]((CDo + CLα)cos[φ+ φCi ]∆SLCi

− CLαδCi(sin[φ]∆BLCi + cos[φ]∆WLCi))

(136)

Y
�
q̃p

=
πρD3CLα

8mV

n�

i=1

sin[φ+ φCi ](sin[φ]∆BLCi + cos[φ]∆WLCi)

· (cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)

(137)

Y
�
r̃
=− πρD3

8m

n�

i=1

sin[φ+ φCi ]((CDo + CLα)sin[φ+ φCi ]∆SLCi

+ CLαδCi(cos[φ]∆BLCi − sin[φ]∆WLCi))

(138)

Y
�
r̃p

=− πρD3CLα

8mV

n�

i=1

sin[φ+ φCi ](cos[φ]∆BLCi − sin[φ]∆WLCi)

· (cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)

(139)

C.3.4 Lifting Surface Force Z-Component Summary

Z
�
V
= −πρD3

8m

n�

i=1

cos[φ+ φCi ]CLαδCi (140)

Z
�
p
= −πρD3(CDo + CLα)

8m

n�

i=1

cos[φ+ φCi ](cos[φCi ]∆BLCi + sin[φCi ]∆WLCi) (141)

Z
�
pp = 0 (142)

Z
�
ṽ
=

πρD3(CDo + CLα)

16m

n�

i=1

sin[2(φ+ φCi)] (143)
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Z
�
ṽp

= 0 (144)

Z
�
w̃
= −πρD3(CDo + CLα)

8m

n�

i=1

cos[φ+ φCi ]
2 (145)

Z
�
w̃p

= 0 (146)

Z
�
q̃
=
πρD3

8m

n�

i=1

cos[φ+ φCi ]((CDo + CLα)cos[φ+ φCi ]∆SLCi

− CLαδCi(sin[φ]∆BLCi + cos[φ]∆WLCi))

(147)

Z
�
q̃p

=− πρD3CLα

8mV

n�

i=1

cos[φ+ φCi ](sin[φ]∆BLCi + cos[φ]∆WLCi)

· (cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)

(148)

Z
�
r̃
=
πρD3

8m

n�

i=1

cos[φ+ φCi ]((CDo + CLα)sin[φ+ φCi ]∆SLCi

+ CLαδCi(cos[φ]∆BLCi − sin[φ]∆WLCi))

(149)

Z
�
r̃p

=
πρD3CLα

8mV

n�

i=1

cos[φ+ φCi ](cos[φ]∆BLCi − sin[φ]∆WLCi)

· (cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)

(150)

C.3.5 Lifting Surface Moment Y-Component Summary

M
�
V
= −πρD3

8IP

n�

i=1

(−cos[φ+ φCi ]CLαδCi∆SLCi + CDo(sin[φ]∆BLCi + cos[φ]∆WLCi))

(151)

124



M
�
p
=
πρD3

8IP

n�

i=1

(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)((CDo + CLα)cos[φ+ φCi ]∆SLCi

+ CLαδCi(sin[φ]∆BLCi + cos[φ]∆WLCi))

(152)

M
�
pp =

πρD3CLα

8IPV

n�

i=1

(sin[φ]∆BLCi + cos[φ]∆WLCi)(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)
2

(153)

M
�
ṽ
=− πρD3

8IP

n�

i=1

sin[φ+ φCi ]((CDo + CLα)cos[φ+ φCi ]∆SLCi

+ CLαδCi(sin[φ]∆BLCi + cos[φ]∆WLCi))

(154)

M
�
ṽp

=− πρD3CLα

4IPV

n�

i=1

sin[φ+ φCi ](sin[φ]∆BLCi + cos[φ]∆WLCi)

· (cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)

(155)

M
�
w̃
=
πρD3

8IP

n�

i=1

cos[φ+ φCi ]((CDo + CLα)cos[φ+ φCi ]∆SLCi

+ CLαδCi(sin[φ]∆BLCi + cos[φ]∆WLCi))

(156)

M
�
w̃p

=
πρD3CLα

4IPV

n�

i=1

cos[φ+ φCi ] (sin[φ]∆BLCi + cos[φ]∆WLCi)

· (cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)

(157)

M
�
q̃
=− πρD3

8IP

n�

i=1

((CDo + CLα)cos[φ+ φCi ]
2∆SL2

Ci

+ CDo(sin[φ]∆BLCi + cos[φ]∆WLCi)
2)

(158)
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M
�
q̃p

=− πρD3CLα

8IPV

n�

i=1

cos[φ+ φCi ]∆SLCi(sin[φ]∆BLCi + cos[φ]∆WLCi)

· (cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)

(159)

M
�
r̃
=− πρD3

16IP

n�

i=1

(CLα∆SLCi(sin[2(φ+ φCi)]∆SLCi + 2δCi(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi))

+ CDo(sin[2(φ+ φCi)]∆SL2
Ci

− 2cos[2φ]∆BLCi∆WLCi + sin[2φ](−∆BL2
Ci

+∆WL2
Ci
)))

(160)

M
�
r̃p

=− πρD3CLα

16IPV

n�

i=1

∆SLCi(−cos[φCi ](−3cos[φCi ] + cos[2φ+ φCi ])∆BL2
Ci

+ (sin[2φ] + 3sin[2φCi ])∆BLCi∆WLCi + sin[φCi ](3sin[φCi ] + sin[2φ+ φCi ])∆WL2
Ci
)

(161)

C.3.6 Lifting Surface Moment Z-Component Summary

N
�
V
=

πρD3

8IP

n�

i=1

(sin[φ+φCi ]CLαδCi∆SLCi+CDo(cos[φ]∆BLCi−sin[φ]∆WLCi)) (162)

N
�
p
=
πρD3

8IP

n�

i=1

(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)((CDo + CLα)sin[φ+ φCi ]∆SLCi

− CLαδCi(cos[φ]∆BLCi − sin[φ]∆WLCi))

(163)

N
�
pp =− πρD3CLα

8IPV

n�

i=1

(cos[φ]∆BLCi − sin[φ]∆WLCi)(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)
2

(164)

N
�
ṽ
=− πρD3

8IP

n�

i=1

sin[φ+ φCi ]((CDo + CLα)sin[φ+ φCi ]∆SLCi

− CLαδCi(cos[φ]∆BLCi − sin[φ]∆WLCi))

(165)
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N
�
ṽp

=
πρD3CLα

4IPV

n�

i=1

sin[φ+ φCi ](cos[φ]∆BLCi − sin[φ]∆WLCi)

· (cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)

(166)

N
�
w̃
=
πρD3

8IP

n�

i=1

cos[φ+ φCi ]((CDo + CLα)sin[φ+ φCi ]∆SLCi

− CLαδCi(cos[φ]∆BLCi − sin[φ]∆WLCi))

(167)

N
�
w̃p

=− πρD3CLα

4IPV

n�

i=1

cos[φ+ φCi ](cos[φ]∆BLCi − sin[φ]∆WLCi)

· (cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)

(168)

N
�
q̃
=
D3πρ

16IP

n�

i=1

(CLα∆SLCi(−sin[2(φ+ φCi)]∆SLCi + 2δCi(cos[φCi ]∆BLCi + sin[φCi ]∆WLCi))

+ CDo(−sin[2(φ+ φCi)]∆SL2
Ci

+ 2cos[2φ]∆BLCi∆WLCi + sin[2φ](∆BL2
Ci

−∆WL2
Ci
)))

(169)

N
�
q̃p

=
πρD3CLα

16IPV

n�

i=1

∆SLCi(cos[φCi ](3cos[φCi ] + cos[2φ+ φCi ])∆BL2
Ci

− (sin[2φ]− 3sin[2φCi ])∆BLCi∆WLCi − sin[φCi ](−3sin[φCi ] + sin[2φ+ φCi ])∆WL2
Ci
)

(170)

N
�
r̃
=− πρD3

8IP

n�

i=1

((CDo + CLα)sin[φ+ φCi ]
2∆SL2

Ci

+ CDo(cos[φ]∆BLCi − sin[φ]∆WLCi)
2)

(171)

N
�
r̃p

=
πρD3CLα

8IPV

n�

i=1

sin[φ+ φCi ] ∆SLCi(cos[φ]∆BLCi − sin[φ]∆WLCi)

· (cos[φCi ]∆BLCi + sin[φCi ]∆WLCi)

(172)
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APPENDIX D

SUMMARY OF SEPARATING BASIC FINNER

AERODYNAMIC MODELS

Using an industry standard aero-prediction software Prodas [1], decomposition of

symmetric projectile aerodynamics is accomplished according to the models discussed

in section 2.4.3. According to the Prodas User’s Manual, decomposition of the Army-

Navy finner aerodynamic coefficients can be expressed by the following:

• The total projectile axial force coefficient CX0, found in Equation (24), can

be broken down into contributions from the 4 fins CX04F and the cylindrically

shaped projectile body CX0B .

CX0 = CX0B + CX04F (173)

The axial force coefficient for a single fin CX01F can be found by taking a quarter

of CX04F .

CX01F =
1

4
CX04F (174)

• The total projectile normal force coefficient CNα , found in Equation (24), can

be broken down into contributions of an in-plain 2-fin set CNα2F and the cylin-

drically shaped projectile body CNαB .

CNα = CNαB + CNα2F (175)

The normal force coefficient for a single fin CNα1F can be found by taking half

of CNα2F .

CNα1F =
1

2
CNα2F (176)
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• The single fin lift and drag coefficients, found in Equation (39) can be approxi-

mated for small angles of attack, according to McCoy [23] by:

CLα1F ≈ CNα1F + CX01F (177)

CDo1F ≈ CX01F (178)

In order to ensure that the aerodynamic moments are equivalent between the two

models, position vector components for the ith lifting surface computation point must

be calculated. This can be done by a moment balance equation about the projectile

mass center. Figure 101 illustrates aerodynamic COP points for both models.

Using aerodynamic theory previously discussed, Equation (179) summarizes the

total aerodynamic moment for the total aero case, and Equation (180) shows and

equivalent expression for the separated aero case.

CB

�
�MA

�
= SB (�r⊕→COP ) · CB

�
�FA

�
(179)

CB

�
�MA

�
= SB (�r⊕→COPB) · CB

�
�FB

�
+

4�

i=1

SB

�
�r⊕→COPFi

�
· CB

�
�F4F

�
(180)

For convenience, the ith lifting surface computation points will be described by

two lengths, transverse location ei and axial location fi, which is measured from the

butt of the projectile. Expanding out the moment balance expressions yields identical

expressions in the transverse planes and a moderately complicated expression in the

roll plane; however, assuming from linear theory that the lifting surface angles of

attack are small allows for the following approximation.

αFi = −p ei

V
+ δFi (181)

The final expression for the transverse location ei with δFi = 0.00 (deg) was found to

be:

ei = D

�

− Clp

8CLα

(182)
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Figure 101: Dimensional Sketch-up of the Basic Finner projectile geometry that
illustrates the different aerodynamic computation points used by the two models.

From Prodas, the axial location fi can easily be found, but the stationline location

of the new cylindrical body aero location SLCOPB can be found by:

SLCOPB =
CNα

CNαB

· SLCOP − CNα2F

CNαB

· fi (183)

Table 23 summarizes the fin parameters for the standard Army-Navy fin configuration,

where Table 24 summarizes the Mach number dependent fin aerodynamic data. Note

that parameters ei and fi have been normalized by the fin chord length c, which can

be used to scale fin size at a constant aspect ratio. For the standard fin configuration

c = D.
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Table 23: Summary Standard Finner Fin Parameters

Canard 1 Canard 2
∆SLC1 = SLCG−D

�
f

c
(Ma)

�
(ft) ∆SLC2 = SLCG−D

�
f

c
(Ma)

�
(ft)

∆BLC1 = D
�
e

c
(Ma)

�
(ft) ∆BLC2 = 0.00 (ft)

∆WLC1 = 0.00 (ft) ∆WLC2 = D
�
e

c
(Ma)

�
(ft)

φC1 = 0.00 (deg) φC2 = 90.0 (deg)
δC1 = 0.00 (deg) δC2 = 0.00 (deg)

Canard 3 Canard 4
∆SLC3 = SLCG−D

�
f

c
(Ma)

�
(ft) ∆SLC4 = SLCG−D

�
f

c
(Ma)

�
(ft)

∆BLC3 = −D
�
e

c
(Ma)

�
(ft) ∆BLC4 = 0.00 (ft)

∆WLC3 = 0.00 (ft) ∆WLC4 = −D
�
e

c
(Ma)

�
(ft)

φC3 = 180 (deg) φC4 = 270 (deg)
δC3 = 0.00 (deg) δC4 = 0.00 (deg)
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Table 24: Summary Standard Finner Fin Parameters

Ma CDo CLα e/c f/c
0.01 0.043196899 3.864198234 0.6384 0.899410325
0.4 0.043687773 4.321947918 0.7189 0.898935912
0.6 0.043943027 4.556683794 0.7602 0.89873009
0.7 0.052150438 4.854114079 0.8219 0.899220818
0.75 0.056273778 5.002829221 0.8527 0.899442685
0.8 0.060377484 5.151563998 0.8835 0.899654213
0.85 0.069213213 5.387654686 0.9223 0.900152426
0.875 0.073631078 5.505680395 0.9416 0.900389
0.9 0.078048942 5.623706104 0.961 0.90061171
0.925 0.080994186 5.743440054 0.9804 0.900714011
0.95 0.083939429 5.863174004 0.9999 0.900808405
0.975 0.086884672 5.983025764 1.0195 0.900897428
1 0.089829915 6.102877524 1.039 0.900986517

1.025 0.090202979 6.216662083 0.948 0.900891432
1.05 0.090576043 6.330446642 0.857 0.900803198
1.1 0.083448555 6.569266588 0.675 0.900090161
1.2 0.074121952 6.135118118 0.6323 0.899815441
1.35 0.068192196 5.379800705 0.5969 0.900079663
1.5 0.063322727 4.596208957 0.5645 0.900566027
1.75 0.056745017 4.397719206 0.562 0.900178227
2 0.05350525 2.957436419 0.5269 0.902479601

2.25 0.050324387 2.693189207 0.5232 0.902746672
2.5 0.04712389 2.4290009 0.5195 0.903060797
3 0.042706025 1.924794914 0.507 0.904298607
3.5 0.040860339 1.537986319 0.5035 0.90623344
4 0.039034289 1.151158088 0.4999 0.909467086
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