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SUMMARY 

High power Gallium Nitride (GaN) based field effect transistors are used in many 

high power applications from RADARs to communications.  These devices dissipate a 

large amount of power and sustain high electric fields during operation.  High power 

dissipation occurs in the form of heat generation through Joule heating which also results 

in localized hot spot formation that induces thermal stresses.  In addition, because GaN is 

strongly piezoelectric, high electric fields result in large inverse piezoelectric stresses.   

Combined with residual stresses due to growth conditions, these effects are believed to 

lead to device degradation and reliability issues. 

This work focuses on studying these effects in detail through modeling of 

Heterostructure Field Effect Transistors (HFETs) and metal oxide semiconductor hetero-

structure field effect transistor (MOSHFETs) under various operational conditions.  The 

goal is to develop a thorough understanding of device operation in order to better predict 

device failure and eventually aid in device design through modeling. 

The first portion of this work covers the development of a continuum scale model 

which couples temperature and thermal stress to find peak temperatures and stresses in 

the device.  The second portion of this work focuses on development of a micro-scale 

model which captures phonon-interactions at the device scale and can resolve local 

perturbations in phonon population due to electron-phonon interactions combined with 

ballistic transport.  This portion also includes development of phonon relaxation times for 

GaN.  The model provides a framework to understand the ballistic diffusive phonon 

transport near the hotspot in GaN transistors which leads to thermally related degradation 

in these devices. 
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CHAPTER 1 

INTRODUCTION 

1.1 Importance of Gallium Nitride HFETs 

Continual demand for improvement in amplifier technology is driving the recent 

explosion in Gallium Nitride (GaN) Heterostructure Field Effect Transistors (HFETs).  

Today's communications devices must operate over longer ranges, maintain high 

bandwidth, and facilitate small directional antenna size.  Long range communications 

devices require high enough power to overcome losses in transmission.  High bandwidth 

and small antenna devices are dependent on low wavelength, high frequency 

electromagnetic waves, such as microwaves, which are broadly defined as having 

frequencies between 300 MHz and 300 GHz.   

 

Figure 1.1.  AlGaN/GaN HFET applications include wireless and satellite communications,  solid-state 

radar, and solid state power electronics for hybrid or fuel-cell vehicles. 

Current high bandwidth communications technologies that use high power 

amplifiers in the microwave spectrum are mobile phone or data networks like GSM 

(operating usually from 0.85 to about 2.3 GHz), WiMAX data networks (between 2 and 

11 GHz),  and satellite communications systems (about 4 to 40 GHz).  In addition to 
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communications, modern radar systems use amplifiers generating microwaves at high 

powers, with applications in air traffic control, weather, and the military.  Another 

application of GaN based HFETs is in power electronics used in hybrid electric vehicles 

or power distribution as the focus shifts towards achieving higher efficiencies.  GaN 

based HFETs used as amplifiers can operate at high enough powers and frequencies to 

replace some non-solid state components in these technologies and promise to afford 

better efficiencies, smaller size and better integration.  While for lower power 

applications other materials are more appropriate, no other materials are capable of 

operating in the kW range for a wide range of frequencies, see Figure 1.2. 

 

Figure 1.2.  Power vs. frequency plot showing applicability of various material systems.  GaN is capable of 

operating at higher powers and frequencies than any other material system. 

1.2 Introduction to Gallium Nitride Heterostructure Field Effect Transistors 

GaN HFETs are transistors used as the active component in amplifiers.  The 

effectiveness of amplifiers based on GaN lies in a combination of features which make 
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this material uniquely suited to these applications.  GaN has a wide electronic band-gap 

(      ), which leads to high breakdown fields on the order of           allowing 

devices based on GaN to run at high voltages before impact ionization occurs.  In 

addition, GaN is highly piezoelectric material and forms spontaneous polarization 

charges which facilitate the formation of an HFET.  HFETs are FETs that operate without 

using doping to form a current channel.  Instead the current channel is formed by taking 

advantage of band-shifting at the interface between two dissimilar materials, AlGaN and 

GaN.  The orientation of the layers in these devices causes a buildup of electrons at the 

AlGaN/GaN interface forming a thin sheet of electrons known as the two-dimensional 

electron gas (2DEG) with electron densities on the order of   
  
  - [1] which are five 

times higher than comparable GaAs devices.  The channel has high electron mobilities 

because there are no dopants present as there are in standard FETs, and therefore there is 

less ionized impurity scattering.  Both the high electron densities and carrier mobilities 

contribute to high current and power throughput in GaN HFETs.  GaN also has a high 

thermal conductivity (250 W/m/K [2]), which helps to dissipate heat, and it is thermally 

stable at high temperatures (up to 600 ºC [3]).  All of these features are critical to 

obtaining high efficiencies in amplification[4].  A typical device structure is shown with a 

representation of the 2DEG in Figure 1.3. 

When a voltage is applied to the source and drain, current flows through the open 

channel.  Applying an electric field to the gate causes changes in the electron 

concentration in the 2DEG, which closes or opens the channel, thereby shutting off or 

encouraging electron flow.  The effectiveness of the gate in controlling the current flow 

in the channel is quantified by the transconductance which is the ratio of drain current to 

effective gate voltage.  
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Figure 1.3.  Typical schematic cross-section of an AlGaN/GaN HEMT device showing the 2DEG, AlGaN 

layer, GaN layer, source (S), gate (G) and drain (D). 

GaN HFETs are typically larger than corresponding silicon devices, with gate to 

drain spacing on the order of 5 to 20 µm, as compared to 50-100nm[5].  In addition they 

are typically constructed with alternating source gate drain contacts into multi-finger 

devices with finger widths around 100 to 150 µm (width represents the longer dimension, 

counter-intuitively, while length is parallel to the direction of electron flow).  Figure 1.4 

shows a top view of a 6 finger HFET under a microscope with the source, gate, and drain 

connections labeled. 

 

Figure 1.4.  Microscope image of a 6 finger GaN HFET with source, gate and drain connections labeled. 

During operation GaN HFETs can dissipate considerable amounts of power, 

beyond 40 W/mm at 4 GHz[6], which specifies power per unit width of channel in the 

device.  Most of this power is dissipated by high speed electrons interacting with the GaN 

crystal lattice and causing generation of high energy longitudinal optical (LO) 

phonons[7].  This interaction occurs most where electron velocities are highest, which 

AlGaN (30 nm) 

GaN (3 µm) 

S G D 

          
          

          
          

          

2DEG 

Gate connection 

Source Connection 

Drain Connection 



 

 5 

occurs where electric fields are highest.  Peak electric fields in GaN devices occur in the 

channel at the drain side of the gate, and most of the voltage is dropped over a small area, 

causing high peak temperatures.  More recent device designs include a field plate, which 

spreads the drop in voltage over a larger area, reducing peak electric fields and thereby 

increasing the size of the hotspot[6, 8].  This improves many of the electrical and thermal 

characteristics of the device, leading to the possibility of higher powers[9].  Figure 1.5 

shows an SEM image of a field plated HFET with the hot spot identified on the drain side 

of the gate by a red dot.   

 

Figure 1.5.  Cross-section SEM image of a GaN HFET, with field plate (FP) above the source and gate; the 

red dot shows the location of the hotspot[5]. 

In addition to having a large amount of power dissipated in a small region, non-

equilibrium phonon effects are believed to affect device temperatures.  The LO phonons 

generated by fast moving electrons decay relatively slowly and have relatively low 

velocities, and so they build up around where they are generated causing what is known 

as a phonon hotspot in the active region of the device.  The slow decay of LO phonons 

can be attributed to the phonon band structure of GaN.  In order for a phonon to decay, it 

must either combine with other phonons, or split into other phonons, respectively called 

fusion and fission processes.  These processes obey simple momentum and energy 

conservation rules.  Because Gallium and Nitrogen have a relatively large mass ratio of 

4.98, there is a gap in the energy spectrum of phonons in GaN, meaning that intermediate 

S
G

D
FP
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energy phonons which would contribute to decay of high energy phonons are not present.  

This hinders the decay of high energy modes and leads to their longer lifetimes. 

The phonon hotspot is small but is likely to have much higher lattice temperatures 

than the surrounding area during device operation.  In fact some groups have performed 

experiments which indicate optical phonon temperatures are as high as 1000 K in 

operational AlGaN/GaN HFETs[10].  The slow decay of LO phonons into other phonon 

modes that have higher velocities that can carry heat more effectively leads to what is 

known as a phonon bottleneck[2, 11].  Quantifying the size and temperature of the hot 

spot as well as the magnitude of the phonon bottleneck is difficult by measurements since 

the dimensions of the hotspot are small and in any case the hot spot is usually blocked 

from optical pathways by the gate and/or field plate in the device.  None of these non-

equilibrium effects are captured with a traditional Fourier diffusion model.   

 
Figure 1.6.  Phonon Dispersion curves for Gallium Nitride as calculated by ABINIT; also showing a 

representation of the decay of LO phonons into lower energy modes (red arrows), and the phononic 

bandgap (shaded red area).  

1.3 Reliability Issues in GaN HFETs 

As yet, GaN HFETs have not seen extremely widespread application at high 

powers mostly due to reliability concerns[12].  Devices degrade relatively quickly after 
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fabrication under heavy electrical stress.  Kim et. al. looked at the degradation of 

AlGaN/GaN HFETs under DC and RF stresses of different magnitudes[13].  Figure 1.7 

shows the result of running three devices under different stress conditions.  Current 

appears to degrade significantly over a time scale of operation of only a matter of hours 

in some cases, especially for high bias conditions. 

 

Figure 1.7.  Current degradation in AlGaN/GaN HFETs under DC operation[13]. 

The reliability issues in GaN HFETs are multi-faceted and not well understood.  It 

is likely that thermal degradation, thermal stress, inverse piezoelectric stress, and residual 

stress all play a role in device reliability. 

  1.3.1 Electrical Degradation 

One of the key electrical degradation mechanisms that has been proposed is hot-

electron degradation; that is, rapidly moving electrons can gain high enough kinetic 

energy to be ejected from the 2DEG into the AlGaN or passivation layers and cause 

permanent damage and change device operating parameters.  This effect leads to what are 

known as traps which open up undesired current pathways.  However, it is not clear that 
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this is actually being observed in AlGaN/GaN HFETs in the same way that it is being 

observed in other III-V FETs such as GaAs FETs[14].   

  1.3.2 Thermal Degradation 

The reliability of many devices and materials systems can be fairly well 

understood by looking at an activation energy of failure and tying the operating 

temperature to a Mean Time to Failure (MTTF) to estimate device lifetime via the 

Arrhenius equation.  Testing devices at elevated temperatures until failure and then 

extrapolating the results to lower temperatures through use of the Arrhenius equation is a 

commonly accepted way to predict failure time.  However, this approach gives mixed 

results in GaN HFETs with some studies concluding that device lifetime is related to 

operating temperature, while others conclude it is not.  Figure 1.8 shows a log-log plot of 

failure rate of GaN HFETs running at 6 W/mm for three different channel temperatures 

from Sozza et. al.[15], which does not show any clear trends in the temperature 

dependence of failure rate. 

 

Figure 1.8.  Failure rates GaN HFETs run at 6 W/mm for 3000 hrs[15].  There is not an obvious 

temperature trend.   
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It is possible that some of these effects are derived from the method some 

experimentalists use to derive the channel temperature.  Most are unable to measure the 

channel temperature directly, and must measure the temperature of the device away from 

the channel and back-calculate the channel temperature via some kind of thermal 

simulation[15-17].  Deviations in the simulation results from the actual channel 

temperature will lead to unpredictable failure rates.  In addition the models they use to 

predict peak temperatures do not account for any non-equilibrium effects and it is not 

clear how hot phonons contribute to device failure.  What is clear is that simple Fourier 

type thermal effects are not the only drivers in device failure. 

There are likely several ways in which increased temperature leads to device 

failure.  These phenomena include channel relaxation and channel donor passivation[3], 

gate-drain surface charge accumulation (which can be greatly reduced by surface 

passivation)[12, 17], and metal contact diffusion (which seems to be resolved)[12].  

  1.3.3 Mechanical Degradation 

In addition to degradation related to device temperature, there are mechanically 

related degradation phenomena.  Mismatched thermal expansion coefficients between 

layers lead to build up of stress with changes in temperature.  This effect combines with 

compressive stresses resulting from localized heating.  In addition, since the AlGaN and 

GaN layers are strongly piezoelectric, when an electric field is applied, these materials 

strain significantly.  The peak of the electric field occurs vertically at the drain side of the 

gate, and can be on the order of 7.3 MV/cm[18] due to the extreme thinness of the 

AlGaN layer.  This leads to lateral strains on the order of 0.0015 which could be enough 

to relax the lattice and introduce electron traps, thereby reducing the sheet carrier charge 

and the device performance[18-19].  Makaram et. al.[20], among others, have verified the 

formation of pits at the drain side of the gate through the use of TEM imaging (see Figure 

1.9) after operation under pinch-off, which suggests that this effect is a major cause of 
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device failure.  This effect is likely much more pronounced when the devices are in a 

pinch-off condition (highly negative gate voltage, highly positive drain-source voltage), 

since the electric fields are higher.  

 

Figure 1.9.  AFM scan showing pitting at the drain side of the gate (after it has been etched off) in a GaN 

HFET after stressing in a highly pinched off state[20].   

Finally, residual stress contributes significantly to the background stress level 

within GaN HFETs.  These residual stresses come from a number of sources: thermal 

expansion mismatch between adjacent layers during cooling after high temperature 

growth and lattice mismatch of interfacing materials.  There is inherent epitaxial strain 

throughout the AlGaN layer since it is thin and has a slightly smaller lattice constant 

(3.15 Å) than GaN (3.169 Å) and is therefore under tensile strain when epitaxially grown 

on GaN[21].  This effect is actually at least partially responsible for the formation of the 

2DEG since AlGaN and GaN are piezoelectric materials[22].  Stress related degradation 

phenomena include tensile failure like brittle fracture and changes in the 2D electron gas 

due to changes in the piezoelectric polarization charge at the interface of AlGaN and GaN 

in heterostructured devices.  At this point, very few studies have investigated the 

connection between stress, electrical performance, and device degradation. 

1.4 Research Overview 

This work seeks to expand the understanding of coupled GaN HFET physics in 

order to improve their reliability through the use of computer simulation.  With 
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continuum scale temperature and stress, modeling methods have been previously 

developed, but the strongly coupled nature of the physics and the small scales and large 

aspect ratios at hand demand better modeling techniques than have previously been 

employed.  In other cases, the physics are fairly well understood but modeling methods 

have not yet been fully developed for the GaN material system. 

Chapter 2 of this thesis further introduces GaN HFETs and discusses much more 

about the materials, structure, and measurement and modeling techniques used to study 

them. 

Chapter 3 focuses on studying continuum level effects such as the peak 

temperatures and stresses within the devices while they operate under different conditions 

with the software package COMSOL combined with an electrical device simulator 

Sentaurus, which solves the drift diffusion and hydrodynamic electron models.  The main 

outcomes of the continuum scale modeling include the following items. 

 The effect of different bias conditions on the shape of the heat generation 

region, which has not been studied before, is determined accurately.  

Previous studies have assumed a constant heat generation region of 

varying size that is fitted to experiments on the devices and cannot predict 

some effects. 

 The effect of inclusion of temperature dependent thermal conductivities is 

studied. 

 The effect of using different oxide materials for gate insulation in 

MOSHFETs is investigated.  Limited modeling has been performed on 

this in the past. 

 The thermal expansion mismatch and thermal gradient stress contributions 

to device stress are studied, forming part of the picture of the device stress 

state during operation. 
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Chapter 4 focuses on quantifying further the effect of the phonon bottleneck 

discussed above through micro-scale thermal modeling that accounts for ballistic phonon 

transport and phonon dispersion effects.  In GaN devices the peak equivalent phonon 

temperatures of the hotspot are not known with a high degree of certainty.  There are 

three commonly used general methodologies for modeling phonon transport.  The first is 

Molecular Dynamics simulation, wherein individual atoms and their interactions are 

modeled in a time dependent system that calculates atomic coordinates vs. time.  This 

type of modeling is prohibitively computationally expensive for larger domains the size 

of GaN HFETs, although the accuracy of the results are unrivaled.  The second method is 

Monte Carlo simulation which aims to solve the full scattering Boltzmann Transport 

Equation by modeling only a random small sample of the full phonon interactions and 

extrapolating the results to determine temperature and other quantities.  This method is 

also computationally very expensive since a huge number of interactions must be 

modeled in order to extract reasonable results.  The third method is to approximate the 

scattering term in the BTE and then discretize and solve it as one would any partial 

differential equation.  Particularly, the directional propagation of the phonons is 

discretized, see Figure 1.10.   

 

Figure 1.10.  Representation of the discretization of directional phonon propagation.   

The different directional discretization schemes are really methods of performing 

an integral over the entire solid angle with different quadrature schemes.  These 

quadrature schemses are important in the accuracy of the BTE solution.  Furthermore, the 
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in the case of models that account for some level of phonon dispersion, the phonon 

spectrum must also be discretized, commonly into bands or ranges of frequency, see 

Figure 1.11. 

 

Figure 1.11.  Representation of the discretization of the phonon spectrum into frequency ranges or bands.  

In this case the phonon spectrum is divided into 9 bands, one of which falls entirely in the bandgap, 

resulting in an empty band (between approximately 337 and 530 cm
-1

) 

Christensen constructed a two fluid Lattice Boltzmann Method (LBM) model 

which captured some dispersion effects and some ballistic effects and offered a first 

insight into the nature of phonon transport within GaN[2, 23].  The two fluid model 

represented optical phonon modes as a non-propagating reservoir mode, and the acoustic 

modes as the propagating modes that were allowed to propagate in 8 discrete directions.  

Both of these are big assumptions; optical modes do have some measure of mobility in 

GaN, there are as many interacting phonon modes as there are atoms in a crystal, and 

phonons propagate in many more than 8 directions within a material.  This model 

therefore resulted in a large overestimation of peak temperatures within the devices[2].  

In addition to developing the first micro-scale model in GaN, Christensen developed a 

multi-scale coupling procedure for the LBM which greatly reduced computational time 

for large domains.  This procedure coupled a LBM domain to a Fourier diffusive domain 
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so that the majority of a device could be modeled with traditional heat transport, while 

the hot-spot region where non-equilibrium and ballistic effects are important could be 

modeled with LBM. 

A large amount of effort has been expended trying to capture dispersion effects 

within Silicon devices using a variety of sub-continuum thermal modeling techniques, 

including Lattice Boltzmann Method (LBM), Finite Volume Discrete Ordinates Method 

(FVDOM), Monte Carlo, and Molecular Dynamics (MD) simulations.  Mazumdar and 

Majumdar investigated phonon transport in Si including dispersion and polarization 

effects with Monte Carlo modeling[24].  This work used relaxation time information 

derived from the work of Klemens and Holland[25-27], and matched well with 

experimental measurements of heat transport within thin Si films, although in that study 

the contribution of the optical phonon modes was neglected.  Extensive work has been 

done by Narumanchi, Murthy, and Amon in the area of sub-micron heat transport in 

Silicon accounting for phonon relaxation information.  Narumanchi et. al.[28] developed 

a fully dispersive model for Silicon again based on relaxation time information from 

Klemens and Holland.  They compared the diffusive, grey, two fluid, and their full 

dispersion model in simulations of Silicon transistors and conclude that diffusive and 

grey models under predict, while the two fluid model greatly over predicts the hotspot 

temperatures[29].  Chapter 2 includes more discussion of the micro-scale thermal 

modeling that has been done in the past. 

Chapter 4 of this thesis focuses on determining relaxation times and using them to 

calculate full phonon interactions in combination with the use of FVDOM in order to 

quantify with more accuracy the peak temperatures and deviation from equilibrium of 

higher energy phonon modes.  COMSOL Multiphysics is used in one part of the study to 

obtain gray phonon solutions with quick development time and the benefit of using 

preexisting meshing code which should make it possible to solve the BTE in complicated 

geometries.  An in-house code is also constructed in MATLAB which solves a form of 
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the BTE which includes dispersion effects using the FVDOM.  This code is capable of 

resolving temperatures of different phonon modes within a device given the generation 

within any phonon modes.  The main outcomes of the micro-scale thermal modeling 

portion of the work include the following items. 

 A micro-scale heat transport model is developed using COMSOL 

Multiphysics which includes multi-scale coupling.  This model is the first 

of its kind coupling DOM to a Fourier domain. 

 A band-to-band model is developed whereby information about 

complicated three phonon interactions are compressed into a smaller, more 

tractable form for use in a computer model that can make some predictions 

about the effect that the phonon bottleneck has on peak device 

temperatures. 

 The high energy optical mode dispersion information is accurately 

determined for input into the calculation of phonon interaction terms.  This 

is achieved through use of an ab. initio software code ABINIT. 

 Various advances are made in implicit numerical solution methods for the 

FVDOM including use of the Generalized Minimum Residual Method 

(GMRES) for improved speed and smaller memory usage.  This is an 

improvement over existing methods which are based on inefficient explicit 

Gauss-Seidel iteration. 

 The effect of selection of different quadrature schemes is analyzed and 

discussed at some length, specifically their accuracy at different scales. 
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CHAPTER 2 

GALLIUM NITRIDE HFETS 

2.1 Introduction 

Having introduced the topic of study, it is necessary now to understand some 

more details about these GaN HFET devices.  This chapter further introduces GaN 

HFETs and highlights some important points about their structure, materials, 

measurement, and modeling analysis. 

2.2 GaN HEMT Structure and Materials 

As has already been discussed, GaN is ideal for high current and high power 

applications because it has a high breakdown field, electron mobilities, and saturation 

velocities[4].  In addition, AlGaN/GaN junctions facilitate the formation of a two 

dimensional electron gas due to polarization fields and a conduction band 

discontinuity[1], and GaN has a relatively high thermal conductivity of around 250 

W/m/K[2].  The large sheet charge density combined with the high mobility of GaN 

(2000 cm
2
/Vs[4]) allows for high speed and high frequency operation.  Combined with 

the large breakdown fields, large voltages and large powers can be obtain in AlGaN/GaN 

heterostructures.  These properties make AlGaN/GaN device systems ideal for high 

power RF amplifiers, with applications such as RADAR and communications. 

A typical HEMT device structure is shown in Figure 2.1.  There are many 

variations of this configuration, including different substrate materials (such as Si[30], 

Sapphire[31], and Diamond[32]), different stacking orders of GaN and AlGaN layers 

including various device capping structures, addition of other layers for further control of 

the 2DEG density, and different Ohmic and Schottky contact materials. 

 



 

 17 

 
Figure 2.1.  Typical AlGaN/GaN HEMT device structure (not to scale). 

The substrate material is extremely important.  It must facilitate growth of GaN, 

have a high thermal conductivity, and be stable at high temperatures.  Silicon Carbide 

(SiC) is the most common substrate material, having a fairly similar lattice constant to 

GaN (3.07 Å to 3.169 Å), allowing for growth with a reasonable number of defects, and a 

high thermal conductivity (on the order of           at room temperature) which 

allows heat to dissipate quickly and efficiently out of the device.  A lower cost alternative 

to SiC is Sapphire, which has been used extensively, but it has poor thermal properties 

(          ) and a larger lattice mismatch (       ).  Some groups are experimenting 

with growing GaN HFETs directly on Silicon, which has the advantage of CMOS 

integration.  Silicon is also lower cost, but has a lower thermal conductivity than SiC 

(142 W/m/K) and a poor lattice mismatch of up to 20% and significantly different 

thermal expansion coefficients[33].  More recently, GaN on diamond has been 

investigated because of diamond's excellent thermal properties (            ).  This 

leads to excellent heat dissipation and can lower peak device temperatures which leads to 

improved performance and reliability[34].  The substrate layer is typically on the order of 

80 to 300 microns thick, and is bonded to a packaging layer (typically Copper Tungsten 

or Copper Molybdenum) with solder or thermal epoxy.   

The rest of the device is typically grown with Metal Oxide Chemical Vapor 

Deposition (MOCVD) for the AlN, GaN and AlGaN layers, while Plasma Enhanced 

CVD (PECVD) is used to overlay the passivation.  First, an extremely thin nucleation or 

Passivation (SiN) 

Ohmic Contact 

(Ti/Al/Ni/Au) 

AlGaN 

GaN 

Nucleation Layer (AlN) 

Substrate (SiC) 

Source Gate Drain 



 

 18 

buffer layer of AlN is grown on top of the substrate to facilitate growth of the GaN layer 

with thickness typically on the order of 5-20 nm[35].  This nucleation layer produces 

higher quality, thinner GaN layers, which improve device performance by reducing 

substrate leakage current.  However, there are some questions as to the thermal effects of 

nucleation layers, whether they play a large role in device temperatures or not.  Interface 

mismatch and defects around the interface can cause phonon scattering and greatly 

decrease thermal conductivity in those regions.  Thermal Boundary Resistance (TBR) for 

GaN on SiC is on the order of               [36] to               [37], and 

studies conclude that further work needs to be done in order to improve performance of 

GaN-SiC interfaces by decreasing defect density in the interface region[38]. 

The GaN and AlGaN layers are then grown to thicknesses of 1-3 microns and 

approximately 30nm [12] respectively.  Both spontaneous and piezoelectric polarization 

play a role in formation of the two dimensional electron gas (2DEG).  GaN and AlGaN 

are highly asymmetric crystals with inherent polarity.  In addition, they are highly 

piezoelectric, meaning an electric field is induced within them upon application of a 

strain.  When a thin AlGaN layer is grown on GaN, because of the lattice mismatch, a 

strain is induced in the AlGaN which along with the spontaneous polarization of both 

materials leads to the formation of a layer of electrons at the interface of the GaN and 

AlGaN[21-22, 39].  This layer of electrons becomes a current carrying sheet with 

extremely high electron mobilities.  The mobilities are significantly higher than in FET 

devices because no doping of the GaN is required and therefore there is less ionized 

impurity scattering[4].  The piezoelectric nature of the GaN and AlGaN layers also leads 

to the development of stresses during device operation. 

There are two types of metal contacts, Ohmic contacts (at the source and drain), 

where current is designed to flow in and out of the device, and Schottky contacts (at the 

gate), which applies the controlling electric field to switch on and off the device.  Ohmic 

contacts are typically a stack of two to four metals of different thicknesses annealed 
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together.  Metal configurations used in Ohmic contacts include Ti/Al/Pt/Au, Ti/Al/Ni/Au, 

Al/Ti, and Al/Ti/Ta, among many others[40-43].  Schottky contacts are designed to apply 

an electric field but prevent any current from flowing, and are typically also formed from 

a stack of metals which interacts with the semi-conductor so that there is no current flow 

due to a large difference in inherent work functions of the metal and semiconductor.  

Metal configurations used to form Schottky contacts include Ni/Au, Pt/Au, and 

Mo/Au[16, 42].  In some configurations, instead or in addition to a Schottky contact, gate 

insulation is used to reduce leakage current and allow operation under higher gate 

biases[44].  These additionally insulated devices are referred to as Metal Oxide 

Semiconductor HFETs (MOSHFETs).  Not much effort has been expended in 

understanding the effect of residual stresses caused by deposition of the metal contacts, 

although it is likely that they do induce stresses on the AlGaN and GaN and possibly 

create stress concentrations that can determine the location of defect formation.  

Finally, most devices are passivated in order to eliminate surface effects that limit 

the RF current and breakdown voltages in these devices.  This passivation is typically a 

layer of  Si3N4 on the order of 350 nm thick deposited on the surface of the device[45].  

Passivation is also likely to contribute to device stress[46]. 

In some devices, in order to reduce the peak electric field at the drain side of the 

gate, one or more field plates are added, which smooth out the electric field profile and 

allow for higher voltages before breakdown.  This is advantageous for driving devices at 

higher powers.  This field plate(s) can be connected to the gate or to the source.  

Unfortunately, field plated devices make device measurement even more difficult, since 

they cover a larger portion of the active region of the device.  Figure 2.2 shows gate and 

source connected field plated devices[6, 8-9]. 
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Figure 2.2.  Schematics of a) gate connected and b) source connected field plates in AlGaN/GaN 

HFETs[4]. 

2.3 GaN HFET Measurement 

For the purposes of device design and diagnostics as well as for predicting device 

lifetimes it is highly desirable to know the internal operating conditions of these devices, 

such as temperature and stress.  Direct measurement of these properties is extremely 

important in understanding how AlGaN/GaN HFETs operate.  These parameters affect 

reliability, as shall be described in the next sections.   

2.3.1 Thermal Measurement 

Some techniques being used to measure temperature in AlGaN/GaN HEMTs are: 

Raman Spectroscopy[47], Photoluminescence[48], electrical techniques such as forward 

voltage[49], and more recently AFM techniques are being developed that back channel 

temperature out from surface thermal expansion (unpublished work).  These methods all 

have their merits and issues.  The most utilized method is Raman Spectroscopy which 

can measure temperature within a few degrees Celsius with a resolution on the order of 

one micron.   In addition it is capable of extraction of phonon information and stress 

magnitudes[50-51].   
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Raman works by probing the sample with a laser (e.g., 488 nm for GaN) and 

observing the scattering response of the crystal.  When the energetic photon interacts with 

the crystal it typically excites an electron to a higher energy state.  This electron then 

either immediately relaxes back to its equilibrium state by emitting a photon of energy 

equal to that of the incident laser (referred to as Rayleigh scattering), or it decays into or 

absorbs a phonon and then emits a photon of different energy (stokes and anti-stokes 

scattering).  The change in energy between the probing photon and the returning photon 

can reveal valuable information about the energy and population of phonons within a 

material.  With a change in device temperature, the energy of phonon modes shifts due to 

anharmonic effects.  This dependence allows temperature to be extracted from Raman 

spectroscopy results.  The change in phonon energy is also dependent on other factors 

such as stress and electron occupation, but by making a few assumptions and observing 

the shift in energy as well as scatter it is possible to deconvolute these effects and predict 

temperature quite accurately under a wide range of conditions. 

Some reports in literature of temperature measurement of AlGaN/GaN HFETs 

with Raman include Kuball et. al. demonstrating the viability of the method with spatial 

resolutions of around 1μm and temperature resolution of less than 10 ºC[47] and 

application of the technique to measuring a multi-finger AlGaN/GaN HFET with 

temperatures on the order of 220 ºC for an 8 finger device operating at 7 W/mm and 120 

W/mm for a 4 finger device operating at 9 W/mm[52].  Beechem et. al. demonstrate the 

necessity of accounting for the local stress state in Raman measurements[51]. 

However, Raman, like other methods, still cannot probe the active region of the 

device during normal device operation, due to the presence of the field plate and gate 

directly above the hot spot.  Some experimentalists get around this by using Raman 

spectroscopy from the bottom of the device through the SiC substrate[53], which has 

many issues in itself, the first being that the devices cannot be operated under realistic 

conditions.  In addition to being unable to probe the most active region of the device 
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under realistic operating conditions, the probing Raman laser penetrates a certain distance 

into the material being measured and therefore the information extracted is a volumetric 

average of where the laser is incident. 

2.3.2 Stress Measurement 

Stress is more difficult to measure than temperature, and measurement of 

mechanical stresses is less common, although stresses can easily have as much impact on 

device performance as temperature.  Jungwoo et. al. look at degradation while 

mechanically bending a device in order to investigate the dependence of degradation on 

mechanical strain, and show strain is an important contributing factor to device 

failure[54].  Other studies were performed by Kuball's group in combination with thermal 

and stress modeling, which will be discussed in Section 2.4.  Peak thermal and 

piezoelectric stresses are on the order of -0.35 GPa and 0.2 GPa respectively for a 20 

W/mm device[55]. 

Raman is also the most common method for measuring stress.  The phonon modes 

of a material are dependent on the deformation of the crystal lattice which occurs under 

most stress conditions.  Raman can detect these changes and predict the relative change 

in stress of a crystal.  The main difficulty with this technique is that Raman only allows 

one to determine the relative change in stress, but unless accurate values for phonon 

frequencies of unstressed GaN are available, absolute stresses are difficult to predict.  

This is still useful for determining the change in stress as a result of temperature shifts or 

inverse piezoelectric effects.  Sarua et. al. [56] and Beechem et. al.[51] among others use 

Raman to study the piezoelectric stress and strain in AlGaN/GaN HFETs. 
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2.4 GaN HFET Modeling 

2.4.1 Thermal Modeling 

A fair amount of effort has been expended on thermal modeling of GaN/AlGaN 

HEMT devices.  Initial efforts began with construction of analytical models of HEMT 

devices resulting in reasonably accurate estimations of device temperatures for very 

specific device configurations[57-58].  These studies have the advantage of being 

parameterized and provide some insight into the effect of heat generation and material 

parameters on peak temperatures and thermal resistances.  However, temperature 

dependent thermal conductivities, full device simulations, and some changes in geometric 

configuration are difficult to capture in these models. 

Some further studies improve upon these works by including more advanced 

geometries and temperature dependent thermal conductivities.  Park et. al. compare 

results from a 3-dimensional analytical model that includes effects from 5 different layers 

using an in house code PAMICE to results from liquid crystal thermography 

measurements[59].  Eastman et. al. carry out nonlinear three-dimensional heat spreading 

simulations to aid in electrical device simulation to aid in experimental design[35].  

Heller includes thermal effects with temperature dependent thermal conductivities in a 

3D ANSYS model which predicts temperature evolution and degradation over time 

within a GaN/AlGaN HEMT[60].  Heller  et. al. also construct a 2D/3D device model 

that does include effects of changing heat generation size on peak temperatures[61].  This 

model splits the domain into two regions, one of which is an electro-thermal model 

including the GaN epitaxy modeled in two dimensions using DESSIS, and the other a 

three dimensional model including just the substrate.  The effect of multiple fingers with 

varying heat generation along the fingers and temperature dependent thermal 

conductivities are investigated.  This results in the temperature profile shown in Figure 

2.3 for a device running at an average of 6.79 W/mm. 
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Figure 2.3.  Temperature distribution for typical AlGaN/GaN HEMT showing close up of hotspot for a 

device running at 6.79 W/mm from [61]. 

Less effort has been expended on capturing micro-scale effects in AlGaN/GaN 

HFETs.  Wang et. al. look at the size dependence of thermal conductivity of GaN 

nanowires using Molecular Dynamics (MD) with a Stillinger-Weber potential, seeing 

good agreement with experimental data[62], however this type of analysis is not 

particularly useful for determining peak temperatures in AlGaN/GaN HFETs because the 

computational demands are far too large given the device sizes in consideration.  

Christensen et. al. develop a multiscale model based on the Lattice Boltzmann Method 

(LBM) that can capture some dispersion effects with a two fluid model by assuming that 

heat in AlGaN/GaN transistors is generated in a high energy non-propagating optical 

phonon reservoir mode and then these phonons relax into heat carrying acoustic phonons 

that transport heat away from the optical mode[23].  This model has the disadvantage of 

significantly overestimating the peak temperatures because it overestimates the phonon 

bottleneck by assuming optical modes are non transporting and also that they have the 

same relaxation time as the acoustic modes.  In addition, the LBM has been known to 

suffer from a lack of directional resolution in more ballistic transport regimes. 

As little work as has been done in GaN, much more has been done in Silicon on 

micro-scale heat transport and many of the methods are applicable within the GaN 

material system.  Majumdar et. al. introduced the Equation of Phonon Radiative 

Transport (EPRT) that connected the methods of radiation heat transport to those of 
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mico-scale heat transport[63].  In addition Mazumder and Majumdar[24] began exploring 

heat transport that included dispersive effects with a Monte Carlo model that captured 

dispersion and polarization information in Silicon with relaxation time information being 

derived from the analytical expressions developed by Klemens and later expanded upon 

by Holland[25-27].  Building upon this work, Narumanchi et. al. developed a Finite 

Volume Discrete Ordinates Method (FVDOM) code that captured energy conserving heat 

transport at the micro-scale[28].  They again used relaxation time expressions from 

Klemens[64] and were able to fit the thermal conductivity of Si with minimal fitting 

parameters.  Figure 2.4 shows the temperature distributions obtained from a Fourier, 

grey, two-fluid and full dispersion model from [29] showing how grossly the two-fluid 

model overestimates and how much hotter a full dispersion  model is than a grey or 

Fourier model.  The full dispersion model developed by Narumanchi et. al. enforces 

energy conservation by assuming that modes interact at a given interaction temperature, 

and band-to-band relaxation times are symmetric, meaning that all the energy that passes 

out of one mode is exactly captured by energy passing into other modes.   

While these models seem to represent with good accuracy the effect of non-

equilibrium phonons in peak temperatures in transistors, the expressions developed by 

Klemens, Han, and Holland are not applicable in GaN where there is significantly more 

anisotropy.  This thesis work develops a framework for finding band-to-band relaxation 

times or interaction strengths that do not depend on specific dispersion shapes and that 

should be truly representative of underlying three phonon processes. 
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Figure 2.4.  Temperature distributions in a Silicon Transistor for a) the Fourier Model, b) Grey BTE 

model, c) two-fluid BTE model, and d) full dispersion BTE model from [29]. 

2.4.2 Stress Modeling 

Less effort seems to have been expended on stress modeling in AlGaN/GaN 

HFETs than thermal modeling.  Stress modeling includes the effects of thermal 

expansion stresses as well as inverse piezoelectric stresses.  Thermal expansion stresses 

include lattice mismatch and thermal gradient stresses and require knowledge of the 

temperature field within the device, which implies that thermal modeling is performed 

alongside the stress modeling.  Inverse piezoelectric stress requires a knowledge of the 

electric field which is inside the device, which implies electrical modeling has been 

performed.  Both of these modeling techniques rely on knowing the amount of residual 

stress in the devices in order to calculate absolute stress values. 
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Sarua et. al. study a coupled piezoelectric model during pinch-off.  The shape of 

the results from their model match well to stress measurements using Raman, but the 

magnitudes are off by an order of magnitude[56].  Figure 2.5 shows the piezoelectric 

stress distribution within an AlGaN HFET operating at a source drain bias of 40 V as 

measured by Raman spectroscopy and as calculated from a coupled electro-mechanical 

model. 

 

Figure 2.5.  Piezoelectrically induced Strain     and stress     in the GaN layer in an AlGaN/GaN HFET 

as measured by shift in the E2 phonon mode and by simulation.  They disagree by an factor of 10 but the 

shape of the simulation appears to be correct.  From [56]. 

A second study by Sarua et. al. looked at thermal gradient and inverse 

piezoelectric stresses with a finite difference model and Raman measurements and 

concluded that they are opposing in sign and thermal expansion can actually cause a 

lower net stress near the drain side of the gate during on operation[55].  Gao performs 

coupled electro-thermal-mechanical simulations of AlGaN/GaN HFETs to determine 

stresses in the AlGaN layer are on the order of 3 GPa for most bias conditions[65].  Jogai 

et. al. examined the strain in the AlGaN layer in an analytical electro-mechanical model 

and concluded that piezoelectric coupling effects are somewhat important in determining 
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strain and electric field within the AlGaN layer[22].  At the very least their study 

represents the complexity of the electro-mechanical system at hand.  Mastro et. al. 

simulate the effect of passivation layers on AlGaN/GaN HEMT devices and conclude 

that SiN deposited with PECVD at high frequency induces tensile stresses in the SiN 

which, due to the discontinuity in the film at the gate, can cause large stress gradients at 

the gate edges in the AlGaN[46].  These stress concentrations lead to strain relaxation in 

the AlGaN and modification of the 2DEG concentration and therefore the electrical 

properties, which can lead to reliability and performance issues. 
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CHAPTER 3 

CONTINUUM SCALE MODELING 

3.1 Introduction 

This chapter of the thesis focuses on studying continuum level effects such as the 

peak temperatures and stresses within the devices while they operate under different 

conditions with the software package COMSOL combined with an electrical device 

simulator Sentaurus, which solves the drift diffusion and hydrodynamic electron models.  

This chapter attempts to determine the effect of different bias conditions on the shape of 

the heat generation region, which has not been studied in detail before.  Previous studies 

have assumed a constant heat generation region of varying size that is fitted to 

experiments on the devices and cannot predict some effects.  In addition, limited study 

has been made of the thermal and mechanical operating conditions of AlGaN/GaN 

MOSHFET devices, which are examined here.  Temperature, as well as the thermal 

expansion mismatch stress and thermal gradient stress contributions to device stress are 

studied, forming part of the picture of the device conditions during operation. 

Continuum-scale implies the object of study is large enough to ignore atomic 

effects so that macro-scale physics models can be used, such as the Fourier law of heat 

conduction, linear elastic continuum mechanics, and linear piezo-electric effects.  All of 

the analysis in this section is performed using a commercial finite element solver called 

COMSOL Multiphysics.  The advantage of continuum-scale modeling is obviously in the 

simplicity and availability of commercial codes which are capable of performing the 

simulations required with little development time. 

First, this chapter covers a brief discussion of COMSOL multiphysics, the main 

software package used in the analysis.  Next the approach used in heat transport modeling 

in GaN HFETs is briefly introduced and the equations solved are introduced.  Next, the 
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approach used in modeling thermally related stress is presented.  Finally, the following 

case studies are performed with analysis of the results: 

 The effect of using temperature dependent thermal conductivities within 

the GaN and SiC layers is analyzed. 

 The effect of changing the drain to source bias on the peak temperature 

and stress is modeled. 

 The effect of adding different oxide materials and using different oxide 

thicknesses under the gate on the peak temperature and stresses in 

AlGaN/GaN MOSHFETs is investigated.  Insulated gate structures are 

being pursued as a way to reduce gate leakage currents and improve power 

output from the device. 

 Finally, the effect of changing the bias conditions under constant power is 

analyzed.  It would not be possible to observe this effect with most 

modeling procedures that have been used in the past to capture the size of 

the heat generation region.  It is postulated that the changes in electric 

field gradient will change the region of heat dissipation and impact the 

temperature in devices.  Such effects have yet to be considered in a full 

three dimensional device model in GaN. 

3.2 COMSOL Multiphysics 

COMSOL Multiphysics is a general purpose Finite Element Solver.  It contains a 

graphical user interface which has full CAD, meshing, and post-processing capabilities.  

COMSOL contains a number of preset applications modes, which include Heat Transfer, 

Solid Stress/Strain, and Piezoelectric (and Inverse Piezoelectric) effects.  Generally, 

when using COMSOL, one specifies the geometry in question, selects material 

parameters, meshes the domain and selects the type of elements, selects a solver or 
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solvers, and then solves and postprocesses the results.  All of this can be done from 

within the COMSOL interface[66]. 

3.3 Heat Transport Modeling 

Heat Transport in the continuum has been studied for hundreds of years since 

Newton first established his law of cooling in 1701[67] and Fourier wrote his famous 

Théorie analytique de la chaleur in 1822[68-69].  Fourier's law of heat transport is 

extremely widely used, although it is not accurate at small scales where boundary effects 

play a large role in heat transport properties.  However, it is far simpler and easier to 

implement than the more detailed methods which are discussed in Chapter 4 of this 

thesis.  It is used here to gain insight into how power input, power distribution, and 

device dimensions affect the temperature distribution, and to obtain a temperature 

distribution for coupling to a stress model. 

One of the main differences between all of the models in literature is the treatment 

of the shape of the heat generation region; a few approaches have been employed.  Some 

investigators use a square constant heat generation region embedded next to the gate 

contact on the drain side[70], while others use a constant heat flux or dual heat source on 

the top surface of the device[35, 57].  These approaches, while they may be tweaked to 

match experimental results, do not accurately capture the size of the heat generation 

region which is important in determining peak temperatures in these devices.  These 

approaches are zero dimensional in that the total heat generation is calculated and then 

applied uniformly to an arbitrary or empirically fitted area. 

Within this body of work an approach is used that captures the spatial distribution 

of the heat generation in one dimension as opposed to zero dimensions.  The heat 

generation region from Sentaurus simulations is a two dimensional field which gives the 

spatial variation of heat generation in the x-z plane.  Sentaurus is a two dimensional 

simulator that does not capture variations in the y direction, and it is assumed the heat 
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generation is constant along the width of the finger.  In addition, since the spatial 

resolution of the Sentaurus model is significantly higher in two dimensions than is 

possible in the three dimensional continuum model within COMSOL, it is necessary to 

find a way to couple this high resolution field to a lower resolution finite element model.  

The method used here is a one dimensional integration in the z direction which flattens 

the two dimensional field into a one dimensional heat generation as a function of x 

position.  Then this one dimensional function is applied uniformly along the width of the 

finger to the surface of the GaN layer.  This is reasonable because the heat generation 

field from Sentaurus is concentrated exclusively along the AlGaN/GaN interface and is 

spatially at least an order of magnitude larger in the x direction than in the z direction, see 

Figure 3.1. 

 

Figure 3.1.  Shape of heat generation region as calculated by Sentaurus for 20nm of SiO2 under the gate at 
VDS=14 V in W/µm3.

There are some inaccuracies introduced by assuming that the heat generation is 

constant along the width of the finger or across different fingers.  In an actual device, 

temperatures are lower at the edges of fingers or in fingers that are further from the 

middle of the device, since they are further from the center of heat generation, but there 

will be higher current flow and therefore more Joule heating[48].  However it has been 

shown that this effect is small enough to be ignored[61]. 
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After flattening, the heat generation region is applied to the surface of the GaN in 

the thermal model.  The applied heat generation profile for a MOSHFET with 20nm of 

SiO2 is shown in Figure 3.2.  This flattening is performed within COMSOL with the use 

of projection coupling. 

 

Figure 3.2.  Flattened heat generation profile applied to the surface of the GaN layer in the thermal-

mechanical model of a MOSHFET with 20nm of SiO2.   

COMSOL solves the Fourier diffusion equation 

           (3.1) 

where   is the temperature and   is the generation at any point given the device boundary 

conditions, which are described in Section 3.5.  In all of these studies the generation from 

Sentaurus is applied as a heat flux boundary condition on the top surface of the device, 

while the volumetric generation term   is set to zero.  This is realistic because the 

generation region is extremely thin and almost directly under the top of the device. 
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3.4 Thermal Stress Modeling 

There are several different kinds of stress effects that likely play a role in the 

reliability of GaN HEMT devices.  All of these stresses act at once and form a complex 

system which is dependent strongly on growth conditions, operational temperatures, and 

electrical conditions.  It is one of the goals of this work to further the understanding of 

thermal stresses in order to aid in failure prediction and improve device reliability. 

Most of this work focuses on determining thermal gradient and CTE mismatch 

stresses for a variety of different bias conditions.  Residual and inverse piezoelectric 

stress models are under development at this time.  There are several major hurdles to 

overcome in the prediction of residual and piezoelectric stresses.  Inverse piezoelectric 

stress is dependent on electric field which peaks in the AlGaN layer.  The AlGaN layer is 

so thin that it is difficult to capture in a full 3D stress model.  2D models can be 

employed with a plane strain approximation, but will tend to over-predict stresses 

significantly due to constraint of expansion and contraction in the third direction.  

Residual stresses are dependent strongly on growth and processing conditions and the 

interactions of the materials at the interfaces.  It is not difficult to predict the contribution 

that thermal expansion has to residual stress, but predicting the formation of dislocations 

and defects that relieve stresses as well as inter-metallic layer formation at the interfaces 

makes the residual stress problem one not suited to the current modeling methodology.  

However, preliminary results suggest that there could be significant stress concentrations 

at the edges of the metallic contacts due to larger thermal expansion coefficients in 

Ti/Al/Nu/Au stack (     
- 
   for the Ohmic versus       

- 
   for GaN). 

COMSOL solves the coupled linear elastic thermal-mechanical constitutive 

equation for the displacements given boundary conditions and temperatures within the 

device, 

        (3.2) 
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where   is the six dimensional stress vector,     is the six dimensional elastic strain, and 

  is a 6-by-6 elasticity matrix which depends on the material.  The elastic strain is related 

to the total strain by the following equation. 

              (3.3) 

Here the thermal strain is determined by the thermal expansion coefficients 

                  (3.4) 

where      is a vector form of the thermal expansion coefficients which can include 

anisotropic thermal expansion, which is included in this model.  The initial strain,   , is 

assumed to be zero.  At free surfaces the stress is constrained to be zero, while at 

interfacing layers, the strain must be equal.  The result from COMSOL is a stress field 

which represents the thermal gradient and thermal mismatch stresses inside GaN.  The 

stresses presented here do not include inverse piezoelectric or residual stresses which are 

likely to considerably change the stress state within AlGaN/GaN HFETs. 

3.5 Model Configuration 

The basic device configuration for the model set up is described here, with 

changes described where they are applicable.  The model was selected to have device 

dimensions matching typical AlGaN/GaN HFET devices on SiC.  A typical device stack 

consists of a 30 nm thick AlGaN layer on top of a 3 µm GaN layer on top of a 200 µm 

SiC substrate attached to a Tungsten Copper package with a generic solder material of 

thickness 40µm.  In all of the models the AlGaN layer was neglected because it is so thin 

it does not contribute significantly to stresses in the AlGaN, and it is at the top of the 

device so it does not contribute significantly to thermal resistance.  Stresses in the AlGaN 

layer can be determined by assuming the AlGaN layer is strained exactly as the top of the 

GaN layer is strained. 
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Figure 3.3.  Model set-up of GaN, SiC, Solder and then some of the package is shown below.  Note the 

size of the GaN layer which is reduced in size to save memory since the outer edges do not contribute to the 

thermal resistance of the package.  The coordinate system is shown. 

 

Figure 3.4.  Basic device configuration for most of the cases, changes are described where applicable. 

The base of the copper-tungsten package was set to 300 K and free to move 

physically (i.e. no thermal stress would occur as a result of package expansion being 

confined at the base).  The substrate was assumed to be 1300µm by 980µm and in a real 

device the GaN and AlGaN layers would be deposited on top with the same dimensions.  

In the model however, the GaN layer was adjusted to a much smaller size in order to save 

memory since far away from the active region the GaN layer is not contributing 

significantly to the thermal resistance.  This is visualized in Figure 3.3, along with the 

coordinate system used for the rest of this chapter.  The GaN layer was typically modeled 

as a 200 µm by 200µm by 3µm layer on the surface of the SiC substrate.  For the 
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purposes of these studies here single finger devices were modeled, since the effect of 

finger spacing or count was not being investigated.  The symmetry of the device at the 

center of the finger was taken advantage of by splitting the model in half with a 

symmetry plane. 

The device was meshed in COMSOL with tetrahedral elements.  Automatic 

adaptive mesh refinement was used on all the models in order to resolve the peak 

temperature and stress areas with better resolution.  A grid independence study was 

performed on the peak stress value to ensure that the solution was converged.  Cubic 

lagrange elements were used for every study.  A typical device mesh after refinement 

included approximately 73,000 elements with over 600,000 degrees of freedom for a 

coupled thermal and stress model.  For good resolution of the temperature profile in plots 

such as Figures 3.9 and 3.13 a higher resolution model was used with manual refinement 

of the area of interest, and over 600,000 elements with over 1.2 million degrees of 

freedom.  For most of the models the workstation used to perform the simulations had 

enough memory to perform a direct solution to avoid convergence issues, however with 

the larger simulations an iterative solver the Geometric Multigrid and GMRES was used.  

This did have significant convergence issues and the solver had to be tweaked to obtain 

convergence.   A visualization of a typical device mesh is shown in Figure 3.5. 
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Figure 3.5.  A visualization of the mesh. Note the refinement around the peak temperature region along the 

device finger.  Coloration is showing mesh quality, with 1 being highest and 0 being lowest, as measured 

by aspect ratio. 

For most of the studies here, the electrical simulations were performed in 

Sentaurus Device under steady state conditions yielding a heat generation region which 

was then applied to the device in COMSOL to find peak temperatures.  This coupling 

was one-way, meaning that some of the effects of self-heating on electron transport were 

not captured.  Sentaurus does include a limited thermal model with a small thermal 

domain, and was also calibrated with experiments on devices to ensure that the current 

and power were accurate for a given bias. 

3.6 The Impact of Temperature Dependent Thermal Conductivities 

The thermal conductivity of GaN decreases as a strong function of increasing 

temperature, which leads to nonlinear behavior in the peak temperatures in GaN devices 

with increasing device power.  It was desirable to quantify this effect in order to know 

how important it is to use temperature dependent thermal conductivities in continuum 

scale modeling of high power GaN HEMTs. 

A study was performed on a Transmission Line Measurement (TLM) device 

model to determine the effect of temperature dependent conductivities on peak 
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temperatures and thermal stresses.  TLMs are used to test electrical properties of the GaN 

HEMT structure through evaluation of current flow of the two dimensional electron gas.  

They are essentially AlGaN/GaN HFETs with no gate metallization.  The TLM device 

had a 20µm source-drain spacing.  For the comparison, constant conductivities of GaN 

and SiC at room temperature of          -  and         -  respectively were used.   

Figure 3.6 shows the difference in using constant conductivities vs. more accurate 

temperature dependent thermal conductivities for a wide range of device powers for the 

gateless TLM.  For this study a constant heat generation region was applied to the area 

between the contacts of the TLM to simulate joule heating in this region. 

  
Figure 3.6. Peak temperature in a TLM as predicted by a constant conductivity and a temperature 

dependent conductivity are shown with squares and triangles respectively.  Temperature dependent 

conductivities significantly affect peak temperature predictions at higher powers. 

At higher powers the effect of using temperature dependent thermal conductivities 

is significant.  The peak temperature error in using constant thermal conductivities will 

grow beyond 10% for powers above approximately 30 W/mm, and beyond 30% above 

about 50 W/mm.  The peak temperature occurs at the center of the channel, 

approximately at the centroid of heat generation in the device.  As expected, using 
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temperature dependent thermal conductivities also affects peak thermal stress in these 

devices. 

 

 

Figure 3.7.  Peak thermal stress in a TLM as predicted by constant conductivities and temperature 

dependent conductivities are shown with squares and triangles respectively.  Using temperature dependent 

conductivities significantly affects results at higher powers. 

At the current level of development with AlGaN/GaN technology, power levels 

are usually low enough that constant temperature thermal conductivities can be used in 
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continuum scale modeling with minimal error, as has been done in literature for the most 

part.  However, with some next generation devices showing power levels on the order of 

40 W/mm, it will become important to use temperature dependent thermal conductivities 

in studying these devices.  Furthermore, this model includes only a single finger device, 

which will be colder than a multiple finger device for the same total gate length and 

power density.  It may be important to use temperature dependent thermal conductivities 

even with lower power devices if the peak temperatures are high. 

3.7 Effect of Increased Device Bias 

To begin to understand the effect of changing electrical conditions in the device, 

the first study to be done is to vary device drain to source bias while keeping everything 

else steady.  The basic device outlined in Section 3.5 was run in COMSOL with drain to 

source voltages of between 2 and 14 V.  The gate to source voltage was maintained at 0 

V to keep the channel open.  The heat generation information was taken from Sentaurus 

Device simulator and input into COMSOL and the resulting temperature profile and 

stress profiles were calculated.  In a basic un-field-plated HFET, as expected, the peak 

temperature increases with increasing source drain bias.  This is due to increased 

electron-phonon interactions as a result of higher electron velocities from the higher bias.  

When the bias on the device increases, the electric field across the channel increases 

which accelerates electrons.  These faster moving electrons interact with the crystal 

lattice more frequently and impart more energy through Joule heating.  This causes a 

temperature rise where the electrons are flowing the fastest, which in these devices is on 

the drain side of the gate.  This temperature rise then causes thermal expansion which 

brings about thermal stresses.  These stresses come from the thermal expansion 

coefficient mismatch between GaN and SiC and the thermal gradient.  When material in 

the device is heated, it expands, unless it is constrained by surrounding material.  In that 

case, it becomes compressively stressed.  Figure 3.8 shows the increase in device 
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temperature and stress as a function of the increased device bias.  Figure 3.9 shows the 

location of the peak x and y stresses in the device, near the drain side of the gate.   

 

Figure 3.8.  Peak device temperature and stresses in an HFET as a function of applied source-drain bias.  

Peak temperature is shown by solid squares, peak stress in the x and y direction are shown by hollow 

diamonds and triangles respectively. The peak temperatures and stresses are linear for low biases and 

device powers. 

 

Figure 3.9.  Spatial distribution of a)    and b)   , directional compressive stresses in GPa in HFET device 

at VDS=14 V.  Stresses are concentrated at the hottest section of the device, and are not biaxial. 
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3.8 Effect of Different Oxide Materials and Oxide Thicknesses 

HFETs use Schottky contacts at the gate which utilize a difference in the work 

function of the metal contact and the AlGaN layer at the surface of the HEMT device to 

prevent current flow through the gate contact.  However, high gate biases can induce a 

gate current which adversely affects device performance.  Some groups have proposed 

using an oxide material between the gate metal and the AlGaN surface of the device 

forming a so called Metal Oxide Semiconductor Heterostructure Field Effect Transistor 

(MOSHFET) in order to further insulate the gate from the channel and prevent gate 

leakage currents[44, 71].  Several oxides and insulators such as, SiO2, Al2O3, ZrO2, 

Si3N4, and Sc2O3 have been used under the gate, giving rise to devices with lower gate 

leakage currents and hence increased output power[72-76].  This improvement comes at 

the cost of reduced gate transconductance, but it is assumed that the improvement in 

device performance is worth this cost.  The goal of this study is to understand the effect 

that the oxide material and thickness has on the thermal performance of these devices.  

Al2O3, AlN, SiN, and SiO2 with thicknesses between 10 and 20nm are modeled here to 

investigate device performance and specifically how changes in the electrical operation 

affect peak temperatures and stresses.  Here the same procedure as in the previous section 

is followed again.  The device is electrically simulated within Sentaurus and the heat 

generation region is applied to the thermal domain in COMSOL.  The peak temperature 

for a number of different oxides and bias conditions are plotted in Figure 3.10.  In 

addition, the peak stress for the x and y directions for a number of bias conditions and 

oxide materials are plotted in Figures 3.11 and 3.12 respectively.  The stress in the z 

direction is not included because it is significantly lower than the x and y direction 

stresses.  These peak stresses occur at the point of peak temperature, just on the gate side 

of the drain.  The spatial distribution of stresses for an SiO2 MOSHFET running at 14V 

drain source bias is shown in Figure 3.13. 



 

 44 

 
Figure 3.10.  Peak temperatures of MOSHFETs with different oxide materials of thickness 10nm are 

shown for source-drain biases between 2 and 14 V.  The HFET temperature is shown for reference. 

 

Figure 3.11.  Peak stress in the x direction within AlGaN/GaN MOSHFETs.  Again the HFET is included 

for reference. 
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Figure 3.12.  Peak stress in the y direction within AlGaN/GaN MOSHFETs.  Again the HFET is included 

for reference.  y direction stresses are significantly higher than x direction stresses. 

 

Figure 3.13.  Spatial distribution of a)    and b)   , directional compressive stresses in GPa in an SiO2 

MOSHFET device at VDS=14 V.  Again, stresses are concentrated at the hottest point within the device. 

 In addition to investigating different Oxide Materials, the electrical, thermal, and 
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shows the peak temperatures in a MOSHFET as a function of increasing oxide thickness.  

Increasing oxide thickness appears to increase 2DEG electron density which in turn 

increases current flow in the devices leading to higher joule heating and higher 

temperatures as seen here.  Changing the oxide material also changes the 2DEG density 

and mobility and leads to altered current flow under the same bias conditions[77].  Here 

the AlN is not plotted because there were convergence issues in the electrical model 

which prevented the results from being realistic, and so they were omitted.  Peak stresses 

in the x and y directions are shown in Figures x and x.  Again the shape of the curve is 

the same as for the temperature, indicating that stress is linearly related to temperature as 

is expected with a model with linear thermal expansion coefficients. 

 
Figure 3.14.  Peak temperatures of MOSHFETs with different oxide layer thicknesses for a source-drain 

bias 14V. 
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Figure 3.15.  Peak stresses in AlGaN/GaN MOSHFETs with different oxide layer materials and 

thicknesses for source-drain bias 14V. 

The thermal model did not actually include the oxide material, since its effect 

thermally is negligible as it is on the surface of the device, is extremely thin, and does not 

contribute significantly to heat transport away from the active region.   

3.9 Effect of changing bias conditions under constant power 

Since the electric field conditions in the device controls the Joule heating, it was 

postulated by Eric Heller of the Air Force Research Laboratory that changing the bias 

condition could impact device temperature (personal communication).  For the same 

device power, the peak temperature of the device increased considerably for higher 

source-drain biases.  To maintain the same device power with higher source-drain biases 

the gate must be pinched off considerably and this causes the heat generation region to 

shrink and become more concentrated near the drain edge of the gate.  This effect has 

been modeled in this work.  The electro-thermal coupling procedure used in this work 

-0.35

-0.33

-0.31

-0.29

-0.27

-0.25

-0.23

-0.21

8 10 12 14 16 18 20 22

P
ea

k
 S

tr
es

s 
(G

P
a)

Oxide Thickness (nm)

Al2O3
SiN
SiO2

   

   



 

 48 

allows this effect to be captured.  Without capturing the changing size of the heat 

generation region, the model would predict the same temperature for constant powers.  

Again the same procedure as in the previous sections was used: Sentaurus Device 

simulates the device electrically and determines the intensity of the heat generation 

within the device, which are then passed to COMSOL which calculates temperature and 

thermally induced stress.  It is expected that the trend in temperature changes match 

closely with the temperature trend measured by Ramen spectroscopy on a device that was 

operated under the same conditions. 

A slightly modified device geometry was used for this study to more closely 

match some experimental devices.  The source-gate and gate-drain spacing were 9 and 

8.5 µm respectively, while the gate was  3 µm in length.  The AlGaN and GaN layers 

were 20nm and 2.05µm thick respectively.  The device geometry is shown in Figure 3.16. 

 

Figure 3.16.  Active region device structure for the constant power device study.  Contact separation is 

larger than in the device modeled in previous sections. 

The effect of the changing bias conditions on the heat generation can be seen 

clearly in Figure 3.17, which shows the flattened heat generation throughout the AlGaN 

and GaN layers within the HEMT (here the 2 dimensional generation profile has been 

integrated in the y direction to yield a one dimensional generation profile that can then be 

applied uniformly on the top surface of the device). 
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Figure 3.17.  Heat generation shape as a function of gate bias.  Note the increasing peak of heat generation 

near the gate edge. 

Since the integrated power is not perfectly resolved when it is passed into 

COMSOL, it is necessary to normalize the generation so that all the different bias 

conditions are running at exactly the same power, in order to isolate the effect of the 

changing heat generation region shape.  The power generation at any point is modified by 

the following formula 

           
     

     
 

  
 (3.5) 

where       is the adjusted power generation at a point  ,      is the raw generation at 

that point passed from Sentaurus,    is the drain current and     is the drain-source 

voltage.  This ensures that any numerical errors or meshing errors do not affect the peak 

device temperature as calculated using COMSOL. 
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Next, the generation profiles for several different bias conditions were run for the 

given device geometry, including the effect of a WCu package on the device.  The peak 

temperature and the bias conditions are shown in Figure 3.18. 

 

Figure 3.18.  Peak temperature for different Vgs at a constant power of 3 W/mm. 

It appears that after Vds goes beyond 20 V or Vgs goes below -1.5 V the peak 

temperature flattens off.  It should be noted that these induced temperature rises also lead 

to compressive thermal stresses due to the thermal gradient which increases linearly with 

peak temperature.  Figure 3.19 shows the peak thermal stress within the device.  The peak 

temperature increases by as much as 100% while the stress in the x and y directions 

increases by as much as 200% and 220% respectively. 
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Figure 3.19.  Peak Thermal Stress induced for different Vds at constant power of 3 W/mm 
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CHAPTER 4 

MICRO-SCALE THERMAL MODELING 

4.1 Introduction 

While continuum-scale modeling has led to a fairly detailed understanding of 

device performance and a general grasp of device operating temperatures as well as their 

distributions, some aspects of device degradation are not understood well without 

accounting for micro-scale effects in thermal transport, specifically, out-of-equilibrium 

phonon generation, and ballistic effects in and around the hot spot.  It is the goal of this 

chapter of the thesis is to determine as closely as possible the effect of inclusion of out-

of-equilibrium phonons on the peak temperature in these devices. 

This chapter is laid out as follows.  First, micro-scale heat transport is introduced, 

along with methods of characterizing phonon information, and modeling heat transport at 

nano and micro-scales.  Next, a solution method based on the Finite Volume Discrete 

Ordinates (FVDOM) method is developed using the scripting interface in COMSOL 

multiphysics.  This method is verified against several analytical case studies.  Finally, a 

detailed model that includes phonon interaction effects is developed, verified against 

several analytical solutions and then it is used to perform a preliminary simulation on an 

AlGaN/GaN HFET. 

4.2 Micro-scale Heat Transport 

Heat transport at the fundamental level occurs as the transmission of vibrations of 

atoms that make up the thermal medium.  In a crystal (like GaN) where the atomic 

structure is well defined the atoms vibrate in predictable ways, and it is possible to 

develop a system of mathematics to rigorously calculate transmission of these vibrations.  

This science is called Lattice Dynamics and is concerned with the exploration of 

vibrational frequencies and amplitudes of atoms in crystal lattices.  Due to quantum 
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mechanical effects these atomic crystal vibrations are quantized into particle like packets 

of energy called phonons. 

It is important to understand how these phonon frequencies relate to their 

wavelengths in order to determine not only the speed of transmission of these phonons, 

but also the amount of energy they carry, and how they interact.  The atoms within a 

crystal lattice are held in their positions with interatomic electrostatic forces and electron 

interactions.  Atoms tend to reside near the equilibrium point where repulsive and 

attractive forces are equal to one another, but are able to oscillate around this equilibrium 

point.  In order to quantify these vibrations, a harmonic model can be built where the 

atoms in a system move as if they were attached by springs to one another.  By also 

assuming that the motion of these atoms is periodic according to some wavelength 

      , where   is the wave vector of a certain vibrational mode, solving the 

harmonic system is a reasonable mathematical problem thanks to some tricks developed 

by Ewald for calculation of the lattice energy in a periodic configuration[78].  Given an 

accurate enough interatomic energy potential function, this simple model is accurate 

enough to determine a large set of properties. 

In GaN there are two atoms in the unit cell, Gallium and Nitrogen, which are 

configured generally in the Wurtzite crystal structure when GaN is grown on Silicon 

Carbide (SiC) substrates. 
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Figure 4.1.  Gallium Nitride Wurtzite Atomic Structure 

In the Wurtzite form, GaN has four atoms in its unit cell, which each have three 

degrees of freedom, leading to 12 individual polarizations of phonons, meaning that for 

any wave-vector, there are 12 different distinct energy levels that can be occupied by 

lattice vibrations in an ideal crystal.  It is possible to calculate the energies or vibrational 

frequencies of all of these polarizations for every wavelength of phonon in the crystal 

using lattice dynamics.  Figure 4.2 shows these energies as calculated by the ab. initio 

program ABINIT. 
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Figure 4.2.  Phonon Dispersion curves for Gallium Nitride as calculated by ABINIT.  

Because of the large discrepancy in mass of the two different types of atoms in 

GaN (Gallium and Nitrogen have a mass ratio of approximately 4.98) there develops a 

large phononic band-gap as can be seen in figure 4.2.  This band-gap actually causes 

some problems for heat transport because it reduces the pathways for higher energy 

optical phonons to decay into acoustic phonons. Since higher energy modes are the 

phonons which predominantly interact with electrons, these are generated inside HFET 

devices[7].  However, they have low thermal conductivities and must decay into acoustic 

phonons before heat can be carried away from generation regions.  This is referred to as a 

phonon bottleneck.  This effect has not been quantified within the context of a GaN 

device, and one of the goals of this chapter is to determine how pronounced this effect is 

and whether it can contribute significantly to device reliability. 

The Boltzmann Transport Equation (BTE) is known to effectively predict the 

motion of phonons within a crystal, and is the basis for much of the modeling of micro 

and nano-scale heat transport.  The BTE for phonons is 

 
    

  
           

    

  
 
          

 (4.1) 
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where     is a function of position, and time, and describes the distribution or density of 

phonons in the lattice and   is the phonon group velocity.  The time dependent term on 

the right hand side represents the general scattering term which is difficult to determine 

accurately, while this is clearly the most important term.  Without the scattering term the 

BTE cannot capture any of the important behavior of heat transport. 

The BTE is a collection of Partial Differential Equations (PDEs) and is difficult to 

solve, mainly due to the as yet undefined scattering term.  Some methods that are used 

are Monte Carlo Simulations, Lattice Boltzmann Method (LBM), and the Discrete 

Ordinates Method (DOM). 

Monte Carlo Simulations work by statistically capturing only a small percentage 

of the actual interactions occurring within a material, but capturing enough of them to get 

a good idea of the device's behavior.  This approach requires a large sample of phonons 

to be simulated, and is therefore computationally demanding. 

The Lattice Boltzmann Method for phonons has been studied in detail in this 

group[2] and will not be discussed at length here.  The basic premise is to discretize the 

domain using a finite difference technique and allow phonons to propagate only within 

this prescribed lattice.  This method captures most basic phonon physics, but is not as 

rigorously derived as the DOM, and has issues with ray effects when dealing with 

complicated geometries or small domains.  The LBM has its roots in rare gas dynamics 

and fluid dynamics, but is equally applicable to solution of heat transport in crystalline 

materials.  The DOM, the method of choice in this work, originated in solution of 

radiation heat transfer problems, where ballistic effects are dominant.  In the scale of 

devices being examined here, ballistic effects play an important role.   

A commonly used approximation for the scattering term is the relaxation time 

approximation with elastic scattering where 
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 (4.2) 

where     is the relaxation time of a mode    and    
  is the equilibrium distribution of 

mode   , or the density of mode    when all modes are in equilibrium.  This 

simplification does not generally capture the inelastic effects within a material, and while 

it may preserve some aspects of the phonon dispersion, it will not capture true band-to-

band transition rates in an out-of-equilibrium scenario. 

A further simplification of this expression assumes that all modes in a particular 

direction can be represented by a single directional energy, so that the BTE becomes 

 
  

  
      

    

 
 (4.3) 

where now there is a single relaxation time  .  This is called the gray assumption and 

while this BTE preserves some ballistic effects it cannot capture the effect of dispersion 

within a material.   

The COMSOL solution method presented below exclusively uses the DOM with 

a grey phonon approximation.  It also uses the Equation of Phonon Radiative Transport 

(EPRT) introduced by Majumdar in [63] which is a form of the BTE with the occupation 

number     replaced with a directional phonon intensity   which is a function of 

frequency, propagation direction, and position within they crystal.  The EPRT is given by 

 
 

 

  

  
  

  

  
 

    

  
 (4.4) 

where   is the cosine of the angle between phonon propagation direction and the   

direction. 

4.3 Phonon Dispersion 

In order to calculate how phonons interact with one another and how heat is 

transported within a material the properties of phononic vibration must be characterized.  

While some experimental methods exist for determining phonon frequencies, such as 
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neutron scattering, these methods are expensive, time consuming and limited in their 

resolution.  It is possible however to predict phonon properties by simulating the motion 

of atoms in a crystal lattice via molecular dynamics or lattice dynamics calculations.  The 

input for these calculations is an accurate representation of the potential energy of the 

atoms within a system with respect to their positions relative to one another.  Some 

previous works in GaN have used a Tersoff potential with the General Utility Lattice 

Program (GULP)[2, 79].  This has the disadvantage of not being able to resolve high 

energy optical modes accurately because of the polarization of GaN.  Outside of the GaN 

literature, works in Silicon typically use a simplified phonon dispersion along the [100] 

direction as all the information for an input into a phonon dispersion model[29], while a 

more recent work in Si has used the Environment-Dependent Interatomic Potential 

(EDIP) to accurately extract the thermal conductivity of Si with no fitting parameters[80].  

This potential is available for Silicon only at this time, but it is capable of providing third 

order potential functions for calculating the anharmonic scattering strengths for three 

phonon interactions.  This thesis uses the ab. initio program ABINIT for calculation of 

the phonon dispersion.  At this time ABINIT does not seem capable of providing third 

order potential terms, although this feature is expected to become available shortly. 

ABINIT is a first principles code for calculating total energy of molecules and 

periodic solids within Density Functional Theory (DFT), which gives rise to the ability to 

calculate a wide range of other parameters.  It has been used effectively to determine 

structural, electrical, and vibrational properties of all kinds of materials, including III-V 

nitrides[81-83].  This work follows for all effective purposes the work of Pereira, et 

al[84] for parameters for GaN.  Troullier-Martins LDA pseudopotentials were used 

following the lead of Stampfl and Van de Walle[85]. 

First the atomic structure must be optimized to ensure the atoms are at their 

equilibrium positions for calculation of the energy derivatives.  This structural 

optimization is performed in two steps in ABINIT, firstly to determine the optimal atomic 
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coordinates given an initial lattice spacing, and then to optimize the lattice spacing as 

well as the atomic coordinates.  This was performed with an initial guess of          

and           with internal coordinate        [86], using space group 186 (which 

corresponds to the Wrutzite GaN group C6v
4
-P63mc).  A 4x4x4 Monkhorst-Pack grid[87] 

with a cutoff energy of 80 Hartree was used which resulted in optimized lattice 

parameters of           and           and internal coordinate        . 

After structural optimization, ABINIT can calculate the second derivatives of 

total energy for a given q-point grid.  These q-points were generated by forming an 

evenly spaced grid over the Irreducible Brillouin Zone, including the Gamma point, and 

then using that grid as an input to the ABINIT derivative database analysis tool.  ABINIT 

then gives the energies of the phonons with wave vectors at each q-point and 

polarization.  Multiple different grid resolutions were investigated to ensure that 

properties of interest were grid independent.  Figure 4.2 shows the phonon energy along 

the high symmetry directions in GaN, but phonon information is available for all points 

and polarizations within the Brillouin zone. 

4.4 COMSOL Solution 

COMSOL is a powerful general PDE solver which can be used to solve the BTE 

using the discrete ordinates method.  This was first shown as viable in one dimension by 

Sihn and Roy[88].  COMSOL allows for quick deployment of a solution as the equation 

discretization and meshing are taken care of automatically.  It is also reasonably powerful 

and can handle non-linearities in the equations in an easy and robust way.  Unfortunately, 

this power comes at a cost in that imposition of boundary conditions and modification of 

solver settings is limited since the code is closed source.  In addition, there is significant 

overhead in the way that COMSOL solves the equations and solving in sequential way is 

not possible.  This section describes implementation of the grey BTE in COMSOL and 

shows some verification. 
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4.4.1 EPRT in COMSOL 

The Equation of Phonon Radiative Transport, introduced in equation 4.4, must be 

discretized in the space and directional domains before it can be solved.  This is done by 

introducing   independent variables which represent the phonon intensities in   discrete 

directions of phonon propagation as in [88] and [89].  Then the equilibrium phonon 

intensity equation above becomes a weighted sum, which can be expressed in COMSOL 

as an expression: 

         

 

   

 (4.5) 

where    are weights or solid angles for integration.  These weights can be determined 

according to [90] such that if the angular domain is split uniformly in the azimuthal and 

polar directions the weights are 

    
 

  
          

   
  
 

   
  
 

   
   

  
 

   
  
 

 
 

  
        

  

 
   (4.6) 

where   and   are shown in figure 4.3.  This method of discretization is referred to as the 

Control Angle Discrete Ordinates Method (CADOM).  More methods of ordinates 

selection and control angle discretization will be discussed in Section 4.5.2. 

 
Figure 4.3.  Polar and Azimuthal angles of discretization. 

COMSOL requires the equations to be expressed in the 'weak' form[91] given by 
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(4.7) 

The sub domain contribution to the 'weak' form of the gray EPRT is 

                          

 

   

  

 

   (4.8) 

where    is the weight or test function for this variable (direction), and is the same as the 

shape function for the element,   is the group velocity,   is the relaxation time, and    is 

the phonon intensity in the discrete     direction.  Again, this simply states that the PDE 

must be orthogonal to the weight function, or shape function, over the domain of interest.  

The rest of the terms in the weak form depend on the boundary conditions. 

4.4.2 Temperature Boundary Conditions 

For a temperature boundary condition, one must relate the phonon intensity that is 

leaving the boundary to the temperature.  The temperature can be related to the 

equilibrium phonon intensity as in [63, 89] by 

         
 

    

 (4.9) 

So the inward facing phonon intensities, where               , (     is the outward 

facing normal) are given by 

          
 

    

 (4.10) 

It is possible to write this as a boundary weak term as 

              
 

    

 

 

   

    

 

   (4.11) 

where   , a function of position, is given by 
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  (4.12) 

and again    is the weight or test function equal to the shape function for each element.  

This constraint method requires that the inward phonon intensities reflect the exact 

temperature at the boundary, however, it doesn't guarantee that the temperature of the 

domain approaches the temperature of the boundary as the distance from the boundary 

approaches zero, since outward facing phonon intensities are not constrained.  If the 

region near the boundary is in equilibrium, the temperature in that region should be the 

same as the boundary temperature, however if the region near the boundary is out of 

equilibrium, the boundary temperature might not exactly match the constraint 

temperature due to temperature slip at the boundaries. 

4.4.3 Heat Flux Boundaries 

Heat flux boundaries are similar to temperature boundaries.  Again, using 

expressions from [88] and [63] to write the heat flux one obtains 

             

 

   

        (4.13) 

where      is the vector heat flux. 

To implement this in COMSOL one must relate each inward facing phonon 

intensity to the boundary heat flux. First the Boltzmann equation is substituted into the 

heat flux expression. 

                                    

 

   

 (4.14) 

Expanding this expression and splitting the summation one gets 

                    

 

   

                          

 

   

 (4.15) 
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Here the first term cancels since the net flux of the equilibrium intensity must be 

zero since it is the same in all directions.  Now using Einstein notation for convenience, 

the flux is 

           
                (4.16) 

where indices that appear twice in a term are summed, and     represents the  th 

direction cosine in the  th dimension.  Since the    terms are orthogonal over the solid 

angle (i.e.     
          when    ), all the non-diagonal terms are zero, and one can 

write 

           
            

  (4.17) 

Finally,  assuming that the directional intensity gradients are all approximately 

equal to the equilibrium intensity gradient, it is possible to solve for        to get 

         
  

        
  

   

 (4.18) 

Now, using the Boltzmann equation and assuming the solution is diffuse, the 

gradient of the directional intensities can be adequately represented by the gradient of the 

equilibrium intensity,  

        
     

        
  

    

   (4.19) 

Now considering that at the boundary an inward facing heat flux       is 

specified,  

                 (4.20) 

the final boundary constraint expression is 

        
          

        
  

    

   (4.21) 
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where again the dimension index i is summed in the last term.  This can be written in 

weak form as 

             
          

        
  

          

   

 

   

  

 

   (4.22) 

where    is defined as above. 

4.4.4 Reflection Boundaries 

Both specularly reflecting and diffusely reflecting boundaries may be desired.  It 

is possible to constrain these using a weak term, although a point-wise constraint 

implementation is also possible. 

For diffuse reflection this reduces to the simple constraint that 

       (4.23) 

for inward facing phonon directions, such that               .  This constraint can be written 

as one weak term 

            

 

   

    

 

   (4.24) 

where    is defined as above. 

Specular reflection is slightly more complicated in that  

       (4.25) 

is enforced, where    is the intensity of the source of the reflection. 

  
Figure 4.4.  Reflection boundary condition geometry 



 

 65 

In general the reflection direction        of    is related to the direction         of    by 

[89]. 

                                    (4.26) 

When the directions are discretized there is no guarantee that there will be a 

phonon intensity direction that exactly matches the reflection condition, so it may be 

necessary to interpolate between multiple directions, or select the closest direction. 

The current implementation includes specular reflection that finds the closest 

reflection vector.  The weak term for specular reflection is 

            

 

   

    

 

   (4.27) 

4.4.5 Coupling to a Fourier Domain 

Modeling an entire device with this COMSOL DOM method would be extremely 

costly, considering the dimensions of a AlGaN/GaN HFET.  In order to reduce the 

computational requirements, it is possible to simulate the non-equilibrium or non-ballistic 

portion of the device with the Fourier method while maintaining the accuracy introduced 

with this method near the region of the hot spot.  This requires coupling two regions with 

different governing physics.  Coupling the DOM solution domain to a Fourier domain is 

not difficult using this COMSOL method, and this is the first implementation of a multi-

scale DOM to Fourier coupling published, to the knowledge of the author.  The Fourier 

weak form for implementation in COMSOL is 

            

 

              

 

                

 

 (4.28) 

where   is the thermal conductivity,   is the temperature,    is the shape function for the 

Fourier domain,   is the Fourier domain,    is the boundary of the Fourier domain, and 

     is the outward facing normal vector at the boundary of the Fourier domain.  Where the 
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boundary of the Fourier domain coincides with the boundary of the discrete ordinates 

domain, one must couple the two with a weak boundary expression.  This expression 

ensures that the flux from the discrete ordinates domain is matched by a boundary flux 

into the Fourier domain, and also that the distribution of discrete ordinates intensities are 

appropriate.  This distribution is derived by using the Boltzmann equation and assuming 

local equilibrium.  Take the discrete Boltzmann equation in a particular direction   

                       (4.29) 

Now assume that        , and substitute         
 

    
, which yields 

         
 

    

           

              (4.30) 

 

One must write the boundary expression so that it ensures that this expression is 

true for all inward facing phonon intensities; the outward facing phonon intensities are 

not prescribed, but do play a role in coupling the total flux to the Fourier flux.  The flux 

on both sides of the boundary must be equal, so that 

        

 

   

                      (4.31) 

Using these expressions one can write the weak form for a Fourier-DOM 

boundary as 

            

 

   

                          
 

    

           

              

 

   

  

 

 (4.32) 

The first term in the integral is the contribution of the flux from the DOM going 

into the Fourier domain, and the last terms are the contribution of the flux going from the 

Fourier domain into the DOM domain.   
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4.4.6 Verification 

Several different test cases are presented in order to demonstrate the viability of 

this method for solving the BTE in two dimensions.  The test cases are two cases that 

were considered by Christensen in his thesis[2], a square domain with one non-

homogenous boundary condition (a heat flux and a prescribed temperature boundary 

condition are considered) and a long rectangular domain with specular or diffusely 

reflecting edges to test the effect of reflection boundaries.  The square domain is 

compared to analytical solutions in the diffuse case, and the reflection boundary 

condition results are compared with analytical solutions from [92].  The test cases were 

all run for GaN with one group velocity of         , one relaxation time of           

and a volumetric specific heat of                  .  The thermal conductivity for use 

in the analytical calculation was calculated from kinetic theory to be 

   
 

 
     (4.33) 

where   is the volumetric specific heat.  The linear system solver SPOOLES and 3rd 

order Lagrange elements were used with all other settings left default. 

4.4.6.1 Diffuse Analytical Comparison 

The square domain tested is large enough to be fully diffuse so one can verify the 

results against an analytical solution of Fourier's heat transfer equation.  Solve 

      (4.34) 

                      (4.35) 

             (4.36) 

and for a prescribed temperature condition one obtains 

             (4.37) 

while for a prescribed heat flux condition one obtains 
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        (4.38) 

The domain was assumed to have a Knudsen number of      making it fully 

diffuse (           ).  The domain was split into 924 freely meshed triangular 

elements as shown in figure 4.5. 

 

 
Figure 4.5.  Meshing for square domain case 

4.4.6.2 Temperature Boundary Condition 

The analytical Fourier solution temperature distribution is given by 

    
       

 
 

 

 
                     

   

 
      

   

 
 

 

   

    (4.39) 

The boundary temperatures    and    were set to     and       respectively.  

The COMSOL solution matches the analytical solution as was visually verified by 

plotting the temperature distribution along a vertical cross section with    
   and 

along the top of the domain at     as shown in figures 4.6 and 4.7.  The 100 term 
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analytical solution at the top boundary oscillates considerably due to the discontinuities at 

the corners. 

 
Figure 4.6. Heat flux and Temperature distributions for a vertical cross section of the domain at    

   

for the COMSOL solution and the analytical solution. 
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Figure 4.7.  Heat flux and Temperature at the boundary of the domain where     for the COMSOL 

solution and the analytical solution.  The analytical solution is oscillatory at the boundary due to 

discontinuities at the corners. 

4.4.6.3 Heat Flux Boundary Condition 

The analytical Fourier solution gives a temperature of 

    
  

 

 

  
 

 

  
                     

   

 
      

   

 
 

 

   

    (4.40) 

The comparison between the COMSOL solution and the analytical solution is 

shown for a vertical cross section of the domain in figure  4.8, and for the top of the 

domain in figure 4.9.  The heat flux prescribed at the top of the domain was       , 

which comes to               divided along the length of the boundary. 
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Figure 4.8.  Heat flux and Temperature distributions for a vertical cross section of the domain at    

   

for the COMSOL solution and the analytical solution.  

In both a heat flux and a temperature non-homogenous boundary condition the 

COMSOL DOM solution matches the analytical solution aside from oscillations due to 

discontinuities in the boundary conditions. 
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Figure 4.9.  Heat flux and Temperature distributions for     at the top of the domain for COMSOL and 

the analytical solution.  Again the analytical heat flux solution is oscillatory due to a heat flux discontinuity 

at the corners. 

4.4.6.4 Reflective Boundary Condition Comparison 

In order to test the accuracy of the implementation of reflective boundary 

conditions, the COMSOL Discrete Ordinates solution is compared with Flik and Tien's 

solution.  The domain is a long rectangle with the top and bottom boundaries set to 

diffuse or specular reflection.  The effective thermal conductivity is compared with the 

theoretical thermal conductivity size effect as given by [92].  The specular boundary 

condition should not reduce the conductivity at all, while the diffuse case should reduce 

the conductivity according to 
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where              and as always        where   is the phonon mean free 

path,   is a characteristic length, in this case, the film thickness, and   is a fitting 

parameter (Flik and Tien choose    ). 

The effective conductivity for the COMSOL calculations was calculated by 

selecting a sub-region of the rectangular domain well away from the side walls to remove 

any effect of the edges and using the following equation. 

       

  
  

 (4.42) 

Figure 4.10 shows the reduction in thermal conductivity as the domain is made 

thinner. 

 
Figure 4.10.  Comparison of COMSOL Discrete Ordinates solution for thin film reduction of conductivity 

vs. Flik and Tien's analytical result [92].  Two diffuse cases are shown, D8 representing 8 directions and 

D32 representing 32 directions. 

As expected the thermal conductivity for the specularly reflecting case is not at all 
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decreases for the diffuse case because the diffusion reflection condition reflects some of 

the phonons backwards.  The thinner the domain, the more phonons make contact with 

the wall and are reflected back. 

4.5 Finite Volume Solution 

Although COMSOL has its advantages, the overhead in running such a large 

number of degrees of freedom is too large to allow further study to be done, specifically 

on band to band transition processes in Gallium Nitride.  Therefore, it is necessary to 

develop an in-house solution and write the code from scratch.  The method selected for 

solution of the BTE is the Finite Volume Method with the Discrete Ordinates Method 

(DOM) for discretizing in the directional domain. Within this model, an attempt has been 

made to maintain as much accuracy as possible about phonon transition probabilities in 

order to capture the pathway of energy from electrons to slower moving optical phonon 

modes to fast moving acoustic phonon modes. 

4.5.1 Model Derivation 

4.5.1.1 Cannonical Boltzmann Equation 

The development of the finite volume model which includes polarization and 

dispersion begins with one of the most fundamental forms of the Boltzmann Equation, 

which describes the evolution of individual phonon modes within a crystal lattice.  This 

equation can be linearized and in steady state is referred to as the canonical form of the 

Boltzmann equation.  Srivastava[93] gives the canonical form of the linearized 

Boltzmann equation as 

                
        

    

 (4.43) 
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where     is the mode group velocity,     is the occupation number of the mode, and the 

scattering matrix on the right hand side given by 

 

    
       

 

 
                      

      
     

               
            

        
 

              

                           
        

   
               

  
              

      
   

(4.44) 

or, splitting the diagonal and off diagonal portions, 

     
                    

    (4.45) 

where     is the diagonal portion, and     
    is the off-diagonal portion of the interaction 

matrix.        is a measure of the disequilibrium of phonon mode     .  This equation 

describes the distribution of phonons of a particular mode   and polarization   within a 

domain.      
    is a scattering matrix, which describes the rate of phonon transition 

between a mode   and polarization   and a mode    and polarization   .  The matrix is 

calculated by considering all three-phonon interactions that are possible, using Fermi's 

golden rule to calculate the transition probabilities.  Here the    terms are the intrinsic 

transition probabilities which will be discussed in detail later.  The canonical Boltzmann 

equation relates the gradient of the particle distributions and the particle velocities to their 

scattering rate with one another.   

4.5.1.2  Interaction Probabilities Calculation 

It is necessary to calculate the interaction probabilities that represent how the 

phonon modes scatter with one another.  Srivastava[93] gives expressions for individual 

terms     
           

 and          
      

 by using the isotropic continuum model 
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In these expressions          
      

 is the interaction probability of a fusion process where 

              ,     
           

 represents the interaction probability of a fission process 

where                ,      represents the equilibrium occupation number of a given 

mode   ,        
       is the scattering strength for this phonon process,             represents 

the delta function that enforces conservation of momentum,                      

represents the delta function that enforces conservation of energy,   is the density,   is 

the total crystal volume, and    is the phonon speed. 

Following Christensen[2] and Srivastava, among others, the scattering strength is 

represented by the Gruneisen parameter,  , which represents a measure of the change of 

the frequencies of the phonons with changing temperature, the solid density and the 

modal speeds of the phonons, 

         
       

 
 

   

   
    

    
     

  (4.48) 

Keeping in mind that (under the isotropic continuum assumption)         , and using 

   
  

   
, it is then possible to write the two interaction probabilities for fusion and fission 

processes as 

          
      

 
  

    
                                                                       (4.49) 

     
           

 
  

    
                                                                       (4.50) 

Upon insertion of a Gaussian peak instead of the delta functions the following 

expressions are obtained. 

          
      

 
   

    

          

 
                                        

                 

        
 

 

  (4.51) 

     
           

 
   

    

              

 
                                        

                 

    
 

 

  (4.52) 
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As discussed before both of the three phonon processes can be represented by a 

single scattering matrix given in eq. 4.44 that represents nominal transition rates between 

phonons of different modes and polarization given their deviation from equilibrium. 

To eliminate the sum over       in eq. 4.44 one should be able to write      

         where   is a reciprocal lattice vector.  Then the scattering matrix becomes 

 

    
       

 

 
                      

      
     

               
            

        
 

          

                           
        

   
               

  
              

      
   

(4.53) 

and now there is no longer a delta function for momentum conservation in the  s in eqs. 

4.51 and 4.52 so the interaction rates become 

          
      

 
   

    

          

 
                             

                 

        
 

 

  (4.54) 

     
           

 
   

    

              

 
                             

                 

    
 

 

  (4.55) 

Expanding sums from     
    above 

 

    
    

 

 
                        

      
     

               
            

        
 

          

                             
        

   
               

  
              

      
 

          

 

(4.56) 

where the two terms are the diagonal and off diagonal portions of the matrix written as 

     
                    

    (4.57) 

The diagonals,    , are given by 

     
 

 
              

    
     

           
          

      
 

       

 (4.58) 

where now          .  The off diagonals,     
   , are given by 
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 (4.59) 

and now           , or          .  This should make it possible to eliminate the 

final sum, giving 

     
                  

    
   

           

  
          

      
 

   

 (4.60) 

4.5.1.3 Grouped Phonon Model 

In this work the goal is to capture how different phonon energies interact so that 

the effect of out of equilibrium phonons can be captured.  It is impossible to consider 

every single phonon mode within a finite domain since there will be as many phonon 

modes as atoms in the crystal.  Therefore this work considers a grouped phonon transport 

model where the phonon modes are represented as groups of phonons with associated 

energy.  This grouped phonon model considers that the phonon dispersion is split into 

energy bands, as shown in Figure 4.11, where phonons within each band are considered 

to have the same equivalent temperature. 

 

Figure 4.11.  The phonon dispersion for GaN as calculated by ABINIT split into 9 bands where all the 

phonon modes within each band are considered for the purposes of this model to have the same equivalent 

temperautre. 
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The canonical BTE is converted to energy form by multiplying by        where 

    is the phonon frequency and   is the volume of the unit cell.  It is necessary to divide 

by   in order to obtain energy density, in units of     , not Brillouin zone energy.  Then 

the BTE becomes 

  
    

  
          

    

 
     

        

    

 (4.61) 

with     being the phonon energy.   

Now, the isotropic grouped BTE should take a similar form, where now modes 

are represented by their respective groups, and the directionality of modes is lost, instead 

being captured isotropically by a continuous distribution of phonon energies around the 

solid angle.  The scattering term on the right hand side now must include scattering from 

all directions of all groups.  The grouped BTE is can be given by 

  
    

  
               

   

   
                   

    

    (4.62) 

This equation includes the directional delta function which indicates directionally 

isotropic scattering.  In this equation any disequilibrium in one direction will not affect 

other directions except through changing the lattice temperature, in contrast to how 

different modes interact; each mode can interact with other modes in specific ways.  In 

this way the equation is directionally isotropic.  Without this delta function the 

contributions from the individual modes would cancel and no band-to-band interactions 

would be captured.  In this expression         indicates the directional delta function, 

which is defined by 

 
 

  
                

  

      (4.63) 

To solve the grouped BTE, the group-wise phonon properties must be related to 

the individual phonon mode properties.  These group-wise properties are the group 
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frequency   , the interaction matrix     , how the disequilibrium term    relates to the 

energies of the groups   , and the group velocity   . Now, to find the different grouped 

variables, several assumptions are made.  First, it is assumed the sum of the modal 

energies equals the group energy 

        

    

 (4.64) 

and that the number of total phonons is conserved 

        

    

 (4.65) 

This gives the requirement that the frequency of a group is a phonon occupation number 

weighted average of the frequencies of the constituent modes. 

This leads to the natural decision that the grouped phonons should all be of 

similar frequency.  As shall be seen later, in this model the phonons are grouped into 

bands by frequency. 

4.5.1.4 Group-wise Interaction Matrix, Group-wise Expression Derivation 

Next, to calculate the group wise interaction matrix, it is assumed the contribution 

to the group-wise scattering term from each individual mode is the conserved, so that 

               
        

           

 (4.67) 

In this way, all interactions within a group should be captured.  The above simply states 

that all phonon interactions between phonons in group   and group    are captured.  

Somehow the group-wise disequilibrium    must be related to the modal disequilibrium 

   .  It must be assumed that all modes in a group are 'equally out of equilibrium' 

meaning they have the same equivalent lattice temperature   .  In a sense, this means that 

    
           

        
 (4.66) 
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if these modes were the only modes within the material, that material would be in 

equilibrium at temperature   .       is defined by Srivastava by the following expression 

 
    

 

    
    

   
       

 
(4.68) 

where   is the lattice temperature.  If the occupation of a mode can also be described by 

the commonly accepted Bose-Einstein distribution for phonons[78] 

 
    

 

    
    

     
   

 
(4.69) 

where     is the equivalent lattice temperature of mode   , then it is possible to equate 

the two and define the modal disequilibrium     in terms of modal temperature and 

lattice temperature 

     
    

   
 

    

     
 (4.70) 

Now, linearizing this expression in    , it is found that the modal disequilibrium can be 

roughly given by 

          
           

    
 (4.71) 

This equation will only be valid for small temperature differences, and the relative error 

in this approximation is given by  

   
        

   
 

   

 
   (4.72) 

This error grows above an acceptable level pretty quickly as the group 

temperature deviates from the lattice temperature, and so this model will not accurately 

capture large variations in temperature.  Further study needs to be done on the effect of 

this linearization procedure.  However, at the present time this model is simple and will 
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capture the effect of mode-to-mode transitions and offer insight into the behavior of out 

of equilibrium phonons. 

Enforcing the group temperature equivalence ensures that the temperature of the 

individual phonons are equal to the temperature of the group those phonons are in, as 

given by 

        (4.73) 

so that the disequilibrium term for a mode can also be related to the group temperature. 

     
          

    
 (4.74) 

By equivalence, the group-wise disequilibrium term can also be related to the group 

temperature. 

    
         

    
 (4.75) 

Substituting these expressions into the scattering equivalence expression eq. 4.67, it is 

found that 

     

           

    
       

   
             

    

           

 (4.76) 

               
        

           

 (4.77) 

so that the group-to-group interaction matrix is simply a weighted average of the 

appropriate elements of the full interaction operator 

            
   

     

   
           

 (4.78) 

It is occasionally convenient to relate the diagonal portion of the group-wise matrix to the 

diagonal portion of the full scattering matrix by 
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 (4.79) 

and the off-diagonal portions relate by 

             
   

     

   
 

           

 (4.80) 

so that the total group-wise scattering matrix is given by the combination of the diagonal 

and off diagonal portions of the matrix 

                  (4.81) 

4.5.1.5 Linearization of Perturbation Terms 

In order to solve the group BTE the group-wise disequilibrium terms       must 

be related with      .  It is known from above that the disequilibrium term 

approximately relates to the temperatures and frequencies of the group, 

       
            

    
 (4.82) 

where       is a directional temperature which is a representation of the temperature of 

band    in direction  .  It is also known that the energy relates to the temperature via the 

specific heat with 

            
     

    

                (4.83) 

       
     

  
      (4.84) 

where    is the group specific heat, usually in units       .  This is obviously an 

approximation of constant specific heats which is another big assumption within this 

framework.  The group specific heat is simply the sum of the modal specific heats, 
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 (4.85) 

In the same way the lattice temperature relates to the total lattice energy and the total 

specific heat capacity by 

   
 

 
      (4.86) 

where   is the total specific heat capacity given by 

      

 

 (4.87) 

From these expressions it is possible to write the disequilibrium term as a function of 

group energy and lattice energy 

       
   

    
  

     

  
 

 

 
  (4.88) 

   here represents the lattice temperature but for the linearity of the model it is pre-

selected to be the temperature at which the scattering matrix is calculated, and is not 

dependent on the group-wise energies      . 

This model has been developed in a strictly linear way, with constant specific 

heats and the assumption that the disequilibrium term can be linearly related to 

temperature.  This model at this time also includes no impurity or boundary scattering.  

Boundary scattering will be implemented directly with geometry using the discrete 

ordinates method in the following sections, but isotope/defect scattering could play an 

important role in the reduction of the thermal conductivity especially at lower 

temperatures.  While these are big assumptions, lifting them is likely to be much more 

complicated, and these expressions will be useful to discover behavior of the model and 

band-to-band behavior.  In the future work section it is suggested that lifting these 

constant property assumptions is pursued. 
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4.5.1.6 Directional Discretization, Scattering Matrix Development 

If the new linearized perturbation term (eq. 4.88) is substituted into the isotropic 

band-to-band BTE (eq. 4.62), and a generation term is added, the steady state BTE 

becomes 

                
    

      
  

                 
       

   
 

 

 
 

    

          (4.89) 

where       is generation given in units of     .  The integral over the solid angle can 

be directly evaluated to give 

                
    

      
  

         
      

   
 

 

 
 

  

       (4.90) 

Now, following the discrete ordinates method (DOM) by integrating over selected control 

angles, and cancelling weight factors that appear on both sides, the discretized band-to-

band BTE is 

            
    

      
  

         
    

   
 

 

 
 

  

     (4.91) 

where subscripts   indicate discrete directions, the total energy is simply the sum of all 

the weighted band-wise directional energies,  

                

      

 (4.92) 

and the generation term is the generation term evaluated at the direction cosine 

            (4.93) 

If       is not a function of  , as is often the case, then 

        (4.94) 

which is assumed to be the case for the rest of this document.  If there is a directionally 

dependent generation field, these expressions may need to be modified. 
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It is desirable to put the BTE into the form 

                          

    

    (4.95) 

Where         is a scattering matrix which describes the evolution of scattering effects 

with respect to changing band-wise energy distributions.  This form of the equation is 

fully linear and should be relatively easy to solve.  To put the BTE into this form, the 

discretized band-to-band BTE (eq. 4.91) is expanded as follows. 
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     (4.97) 

So, by comparison it is not difficult to see that the scattering matrix should be 

         
    

    
  

 
       

   
     

   

 
          

   

  (4.98) 

4.5.1.7 Scattering Matrix Correction 

There are several conditions that the scattering matrix must meet in order to 

ensure physicality of the model.  To ensure conservation of energy, the scattering terms 

on the right hand side should all sum to zero, so that there is no creation or destruction of 

energy due to scattering.  This leads to 

                   

      

   (4.99) 

for any energy distribution    .  Substituting in the scattering matrix and performing 

some trivial algebra, one obtains 



 

 87 

            

  

     
       

   
 

             

 
 

   

   (4.100) 

so to conserve energy in all cases, 

      
     

    
            

   

     

 

   (4.101) 

In addition, the model should not allow unphysical movement of phonons, 

specifically, two conditions must be prevented.  First, the total contribution of all of a 

bands forcing terms must never act to push the band beyond any other bands out of 

equilibrium.  This can be stated by considering that if all bands are at a given deviation 

from equilibrium, the total sum of the forcing terms must be positive (pushing the band 

towards equilibrium).  This is written as 

         

  

   (4.102) 

for all bands  .  Furthermore, the band-to-band interaction matrix must have strictly 

positive diagonals and strictly negative off-diagonals; this is because it is not physical for 

a band that is below equilibrium to force another band in the other direction away from 

equilibrium.  In addition, the net in-scattering term must contribute to a return to 

equilibrium. 

As calculated      will not necessarily meet these conditions, primarily because 

the interaction strengths of the phonons are being represented by a single Gruneisen 

parameter for all modes and not with the third derivative of energy term which represents 

the true strengths of interactions between phonon modes.  However, it is possible to 

calculate a new       which is very close to the originally calculated      but that also 

meets these conditions as accurately as possible.  An iterative procedure is performed on 

the interaction matrix      until it meets these requirements.  Firstly, any off-diagonal 
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elements that are above zero are zeroed out.  Then, the conservation condition is enforced 

by writing eq. 4.101 in matrix form as 

      (4.103) 

where   is the stacked columns of     , and   is a      matrix which represents the 

conservation condition.  To find       it is necessary to find an    which meets the 

condition above which is as close to   as possible.  If   is a linear basis for the null 

space of  , then one finds   such that 

        (4.104) 

is minimized, then find 

       (4.105) 

This can achieved by finding the    in the null space of   which is closest to  .  In this 

implementation, the null space of   is found by MATLAB's null operator which uses 

Singular Value Decomposition, and then the over-determined system is solved using 

MATLAB's backslash division operator which uses QR decomposition to solve the least 

squares system.  Then, the physicality of the forcing terms must be adjusted in a similar 

way so that eq. 4.102 is met.  Finally, it is necessary to adjust the new       so that 

thermal conductivity is maintained, which can be done by multiplying       by a constant.  

This process is repeated until all three conditions are satisfactorily met.  This results in a 

matrix that is somewhat modified from the original matrix, but that meets the required 

conditions for the model to conserve energy and behave physically. 

To illustrate the need to modify the interaction matrix so that the model conserves 

energy and behaves physically, several band-to-band test cases were run with: 

a)  the raw matrix,  
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b)  a partially corrected energy conserving matrix that behaves non-

physically, 

c)  a partially corrected matrix that meets eq. 4.102 but has positive off-

diagonals, and finally  

d)  a corrected matrix that meets all these conditions.   

The test case run was a one dimensional slab with a thin generation region with a 

total of   
        in the center where all the heat is input into the highest energy mode.  

The quadrature set used was Sn with     with 500 cells, and 5 bands.  To check 

physicality the equivalent temperatures of each direction and mode are compared.  No 

modes should extend below the boundary temperature or above the generation band 

temperature. 

Figure 4.12 shows the temperature of each band and direction within the solution 

over the whole domain for case a, where the raw scattering matrix is used.  It looks 

physical and performs well except that it is non-conservative as can been seen in Figure 

4.16.  Correcting the conservation issue leads the matrix to become non-physical, in that 

some band temperatures are pushed below the boundary temperatures, which is 

physically impossible, see Figure 4.13.  Correcting the summation of the forcing terms 

according to 4.102 gives a slightly better result that still appears non-physical near the 

generation region, see Figure 4.14.  Finally, after all three corrections are in place, the 

matrix is conservative and physically reasonable, giving the results seen in 4.15.  It looks 

like some of the phonon modes have almost collapsed onto one another, which is 

possibly not a physical effect, and the resulting change in temperature distribution is not 

known. 
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Figure 4.12.  Band and direction-wise temperatures for case a.  This looks physical, but note in Figure 4.16 

it is highly non-conservative. 

 

Figure 4.13.  Band and direction-wise temperatures rises for case b.  Note how some phonon temperatures 

are below the boundary temperature and above the generation band temperature.  
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Figure 4.14.  Band and direction-wise temperatures rises for case c.  Note that there are strange dips in the 

      -  mode near the generation region due to some negative interaction terms. 

 

Figure 4.15.  Band and direction-wise temperatures rises for case d, the final corrected matrix.  This 

appears completely physical, and is conservative.  There does appear to be some grouping and the curves 

look qualitatively different from those in case a. The peak phonon temperature is lower than in the other 

cases. 
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Figure 4.16.  Heat fluxes for the different cases.  All are conservative except case a. 

 

Figure 4.17.  Total temperature rise for each case.  There is a fairly large discrepancy between the raw case 

and the modified cases, most likely due to the non-conservative nature of the raw solution, since a large 

portion of the energy being input into the domain is being destroyed, and therefore the temperature is 

significantly lower. 
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The main question with all of these matrix corrections is: is the final scattering 

matrix even close to what was originally determined by the interaction expressions 

derived above, and does it physically represent what is occurring within a GaN crystal?  

The answer is hard to know.  There is some limited information that can be used to 

determine how accurate a scattering matrix is.  It is possible to compare the lifetime of a 

band to known phonon lifetimes from literature.  Solving the transient zero-dimensional 

BTE (eq. 4.106) for an initial perturbation in the highest energy band (where the        

resides), it is possible to see the decay of nearby phonon modes back to equilibrium 

neglecting any spatial effects. 

  
    

  
         

  

 (4.106) 

    , the zero-dimensional scattering matrix, is given by 

      
    

    
  

 
       

   
 

 

 
          

   

  (4.107) 

Discretizing in time the fully implicit form of the equation is 

    
      

          
   

  

          (4.108) 

which can then be solved stepping through time given an initial phonon distribution.   

The phonon spectrum was split into 9 separate frequencies and the        mode 

was excited and allowed to decay.  The result of running case a and case d, and 

comparing to the upper and lower bounds from literature (             and  

             )plotted in Figure 4.18.  The matrix adjustment clearly affects the phonon 

decay by making it interact more strongly with the other phonons and relax more quickly, 

but the decay rate is still within the bounds from literature.  It must be noted that the 

Raman measurements of these phonons are of the zone-center phonons while the model 

is capturing decay from phonons of all wave-vectors, and also capturing the effects of 
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some other phonon modes like the       .  Comparing the band containing the        , 

      , and          again the decay is within the bounds of these phonon mode 

relaxation times.  Finally, comparing the band containing the      w  mode shows that 

the un-corrected case is within the bounds of the literature but the corrected matrix has a 

relaxation time that is faster than the lowest bound in literature, around 5.5 ps which is 

about half the lowest literature value given by [50].  The decay of the band containing the 

     w  mode and those of the literature bounds are plotted in Figure 4.19. 

 

Figure 4.18.  Transient response of two scattering matrices, a and d for an excited band that contains the 

       mode plotted against the literature bounds for the relaxation of the phonon excitation. 
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Figure 4.19.  Transient response of the band containing the      w  mode.  Note that case a is not 

conservative and so is decaying to an incorrect final energy, but case d is outside the bounds of the      w  

phonon relaxation time. 

4.5.1.8 Thermal Conductivity, Group velocities 

To find the thermal conductivity related with this model, one must find a diffuse 

expression of energy expressed in terms of the gradient of the energy, and substitute this 

into the heat flux expression.  First, the discretized BTE (eq. 4.91) is rearranged 

  
       

   
    

  

 
 

 
          

   

          

    

 
    

    

    
        (4.109) 

This rearranged Boltzmann equation can be written in matrix form as 

          (4.110) 

where    is a matrix given by 

        
       

   
 (4.111) 

(where the notation       indicates the element in row   and column  ),    is a column 

vector, dependent on direction  , given by 
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     (4.112) 

  is a column vector defined by 

       
         

 
   

          

    

 (4.113) 

and    is a column vector dependent on direction, given by 

     
 
 

    
  

    
          (4.114) 

In the diffusive regime, where conductivity is well defined, the energy gradient of all the 

modes is equivalent to the specific heat of that mode times the temperature gradient, 

      
    

  
        (4.115) 

which allows    to also be given in terms of temperature gradient by the expression 

     
 
 

    
    

    
        (4.116) 

Heat flux in a material is related to directional band-wise phonon energy by the 

following integral expression 

    
 

  
              

   

 (4.117) 

which in discretized form is 

              

  

 (4.118) 

This equation can also be written in the matrix vector form adopted above, which is 

         
   

 

 (4.119) 

where   is a column vector of group velocities given by 
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         (4.120) 

An expression for energy can be found by solving the matrix form of the BTE (eq. 4.110) 

for the phonon energy    in each direction   

              (4.121) 

Substituting this into the heat flux expression, one can find 

         
          

 

 (4.122) 

               

 

       
 

 

  (4.123) 

Now, the first term drops out, because          (see section 4.5.2), but the second 

term gives the thermal conductivity. 

                

 

      (4.124) 

Returning to tensor form to extract the temperature gradient, one finds 

    
    

  

  
    

              

   
  

       

  

   (4.125) 

which, since             , gives the thermal conductivity 

   
 

 

    
  

  
    

              

   
   

 (4.126) 

The conductivity for the band-wise case is not difficult to find, since   is 

relatively small.  Calculation of the full conductivity using the same expressions but with 

the full scattering matrix     
    is difficult, since the matrix   is so large.  Thankfully, the 

band-to-band conductivity is not much different from the Single Mode Relaxation Time 

(SMRT) conductivity[80], so that can be used to calibrate the final parameter, group-wise 
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group velocity.  Under a SMRT assumption, where the off diagonal terms in the 

scattering matrix are dropped, the full conductivity is given by 

   
 

 

    
  

  
 

   
    

 

      
 

  

 (4.127) 

which gives relaxation times in the group-wise case to be 

    
    

    

      
 

 (4.128) 

and in the full case to be 

     
    

     

        
 

 (4.129) 

since the full thermal conductivity in the SMRT case is given by 

   
 

 
    

       
  

 (4.130) 

Then it is possible to determine group-wise group velocities so that they conserve 

bulk thermal conductivity. 

    
 

 
  

      
 

 
    

       
    

 (4.131) 

   
  

 

    
    

       
    

 (4.132) 

This approach allows accurate calculation of grouped phonon parameters that will closely 

represent the fully dispersive model. 

4.5.1.9 Reduction to Single Mode Relaxation Time (SMRT) Model 

The group-wise BTE can be reduced to the standard SMRT model with a 

relaxation time approximation.  The group-wise BTE again is given by 

                
    

      
  

         
      

   
 

 

 
 

  

 (4.133) 
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In the SMRT, the off-diagonal terms are neglected, so that the scattering matrix is given 

by  

             (4.134) 

so that the BTE becomes 

                
    

      
  

           
      

   
 

 

 
 

  

 (4.135) 

                
    

      
  

     
     

  
 

 

 
  (4.136) 

Now, substituting the relaxation time given by eq. 4.128 one finds 

                
  

  
 
     

  
 

 

 
  (4.137) 

Now, if an equilibrium energy for each band is defined by the ratio of that band's specific 

heat to the total specific heat times the total lattice energy  , as in 

   
  

  

 
  (4.138) 

then the SMRT BTE is 

                
        

 

  
 (4.139) 

This model obviously will not conserve energy, since the scattering terms on the right 

hand side will not sum to zero for all energy distributions and so energy will be created or 

destroyed by each band, unless the relaxation times (and specific heats used to calculate 

  
 ) of all the bands are exactly the same or the model has only one group and so is gray. 

4.5.2 Quadrature Selection 

As mentioned before, the DOM was first developed for solution of radiation heat 

transfer problems.  There are several different ways to discretize the directional space and 

perform the approximation to the integral over the solid angle in equation 4.90.   
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4.5.2.1 Control Angle Quadratures 

The first method, the Control Angle or Finite Volume Discrete Oridinates method 

(CADOM or FVDOM) which was discussed in Section 4.4.1 and is discussed by Chai et. 

al.[96] is especially flexible in that the resolution can be extended to reduce ray effects.  

CADOM is the method of choice of some groups specifically those solving the BTE in 

Silicon devices[89]. 

The difficulty with CADOM is that it does not strictly conserve the moments, 

        

 

     (4.140) 

in the same way that other quadratures can.  In the limit of an infinite number of 

directions, CADOM does conserve this expression, but for any practical number of 

discrete directions, the flux is not conserved.  This can be an issue when comparing the 

solution to the an analytical solution and expecting the fluxes to match exactly.  There are 

ways to correct the direction cosines or group velocities of the phonons in order to 

enforce matching with bulk conductivity, but the ballistic effects of which have been 

investigated in Section 4.5.8.1.  It has been common in Lattice Boltzmann Method 

solvers to correct the thermal conductivity for the dimensionality of the problem, because 

the moments in eq. 4.140 are not conserved, and in fact the thermal conductivity of a 

LBM style model will be exactly     times greater than the actual thermal conductivity 

as calculated from kinetic theory using the phonon properties of the LBM model.  Heino 

uses a dimensionality factor on the thermal conductivity in order to match the LBM 

model to the bulk conductivity[97]. 

In a CADOM model, one correction proposed here is to adjust the lengths of the 

direction cosines.  Considering that eq. 4.140 must be conserved in order to match the 

bulk conductivity, this is enforced by finding a factor    that makes   
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     (4.141) 

true for the particular ordinate set, where   represents a dimension x,y, or z.  Solving for 

  one finds 

     
 

       
 

 

 (4.142) 

which can be used to correct the direction cosines so that fluxes and conductivity exactly 

match in the diffuse case.  In the results below an analysis of this quadrature correction is 

made in the ballistic case against an analytical solution. 

4.5.2.2 Sn Quadratures 

 Better than correcting cosines in the CADOM is finding a set of ordinates that 

matches these second moments in all cases.  Such a quadrature sets have been 

investigated in literature extensively.  Sn quadratures, used extensively in radiation heat 

transfer match these requirements and perform well compared to CADOM for 

comparable numbers of discrete directions for reducing ray effects[98].  The development 

of Sn quadratures is based on conservation of flux, moment, and various other rotation 

invariance conditions which are discussed by Lemonnier[99]. 

4.5.2.3 DCT and other more exotic quadratures 

Other quadrature sets have been investigated which conserve higher order 

moments and have higher symmetry constraints and lower rotational invariance.  Koch 

and Becker[100] evaluate several different quadrature schemes to determine which has 

the lowest error, namely Equal Weight Quadrature schemes[101], Lebedev's quadrature 

schemes[102], various geometrically based quadrature schemes, and Koch's DCT 

quadrature sets[103]. 
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4.5.3 Finite Volume Equation Discretization 

Using the finite volume method it is possible to discretize and solve the BTE.  

First, the domain is discretized into control volumes.   

 
Figure 4.20.  Discretization nomenclature for the FVDOM method here. 

Then, the BTE is integrated over the control volume 

               

  

  

  

  

  

                 

    

  

  

  

  

  

  

       

  

  

  

  

  

 (4.143) 

          
    

  
    

    

  
   

  

  

  

  

  

                 

    

  

  

  

  

  

  

       

  

  

  

  

  

 (4.144) 

          
     

              
     

                   
 

    

       
        (4.145) 

Using upwinding, and dividing by      we can write the equation in the form 

    
    

     
    

     
    

     
    

     
    

                
 

    

   
    (4.146) 

with 

    
                   (4.147) 

    
                  (4.148) 
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                   (4.149) 

    
                  (4.150) 

    
                                                                    (4.151) 

In the QUICK scheme, a second order scheme developed by Leonard[104], the 

equation is derived in a similar way with the upwind face being defined by 

   
     

  
   
     

 

 
 

   
     

      
 

 
 

4.5.4 Boundary Conditions 

4.5.4.1 Temperature Boundary Conditions 

Temperature boundary conditions require that inward facing fluxes are equal to a 

given energy equivalent to the temperature.  In general, 

           
     

      
  

    

 (4.152) 

In this model, the inward facing energy at a boundary face is given by 

    
        (4.153) 

4.5.4.2 Diffuse Reflection Boundary Conditions 

At a diffusively reflecting boundary the inward facing flux should be equal to the 

equilibrium energy at the boundary.  This can be defined in several ways, but for the 

purposes of this model, the reflection occurs within each band, meaning the inward 

facing energy of a certain band is given by the integral over the solid angle of the 

energies within that band at the boundary.  So at a boundary, energy is not scattered 

between energy bands.  This reflection condition can be described by 
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    (4.154) 

So, in discrete terms, the inward facing boundary flux is given by 

    
           

  

 (4.155) 

Now, for UDS, at the boundary, the outward facing contribution to this sum can be given 

by upwinding, while the inward facing contribution is given by the reflection condition, 

so we have 

    
           

 

  

           
  

  

        (4.156) 

where      if       , otherwise,     .  It is now possible to solve for    
  , 

    
   

        
 

     

               
 (4.157) 

For QUICK scheme reflection we have a similar sum,  

    
           

   

  

           
  

  

        (4.158) 

except that the outward facing contribution needs to be calculated from the quadratic 

upwinding method, so that     
    is given by 

     
        

  
    
            

     

 
 

     
      

           
 

 
 

 

 
    
  

 

 
     
  

 

 
    
      (4.159) 

where     
      is the second cell from the wall and     is the direction that corresponds to 

the direction    mirrored about the reflecting face.  This is a partially specular reflection 

scheme because it includes some reflection from the same direction.  To enforce full 

diffusivity would also require that the reflection portion      
  is also an average of all 

directions.  However, this assumption improves the simplicity of the model for what is 

expected to be very little difference in the final result.  This gives 
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        (4.160) 

and solving for    
   we get 

    
   

     
 
     

  
 
      

  
 
     

           

               
 (4.161) 

This term contributes in two places: the equation for the boundary cell, and the equation 

for the second cell from the wall. 

In effect, these reflection equations calculate the inward facing energies by 

finding the average of the outward facing energies in all directions at the given point and 

band. 

4.5.5 Solution Methods 

4.5.5.1 Explicit Methods 

The simplest solution method is to rearrange the discrete equation and sweep over 

the domain solving for energies in a sequential way, using a Gauss-Seidel method 

    
  

   
    

     
    

     
    

     
    

                
 

      

   
  (4.162) 

Some of the neighbor coefficients will be zero, which can be exploited when determining 

sweeping direction for a given equation.  It should also be possible to rearrange the 

equations into a Tri-diagonal Matrix Algorithm.  For details see [105]. 

4.5.5.2 Fully Implicit Methods 

It is possible to form a fully implicit form of the equations.  Form sparse diagonal 

matrices  
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 (4.163) 

and form diagonal matrices 

          

       

 
       

  (4.164) 

Next, form the full coefficient matrix 

   

 
 
 
 
 

                             

                            

   
                                              

 
 
 
 

 (4.165) 

With the full energy vector 

   

 
 
 
 
 
 
 
 
     

   

    
   

 

    
     

    
   

 

            

     

 
 
 
 
 
 
 
 
 

  

    

    

 
            

  (4.166) 

Finally, the right hand side is formed by taking into account boundary conditions, so that 

the full matrix equation is given by 

      (4.167) 

 

This equation quickly becomes intractable, even though   is very sparse.  

Consider using    quadratures with    , yielding 12 directions, and using a 9 band 

frequency discretization, with 100x100 cells, the system has 12x9x100x100 or 1,080,000 
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degrees of freedom.  The full   matrix will have approximately 120,960,000 nonzero 

elements, which equates to 1,845 MB of storage in double precision.  On some smaller 

systems it is possible to form the entire   matrix and solve using direct or iterative 

methods.  The GMRES iterative solver is one option for 1-D systems[106].  

Preconditioning is achieved by performing incomplete LU decomposition on the spatial 

portion of the      matrix in each direction and band, 

            (4.168) 

so that the preconditioning matrices are 

     

     

   
             

  (4.169) 

and 

     

     
   

             

  (4.170) 

Then the preconditioned system becomes 

       
           

    (4.171) 

or 

   
    

       
    

    (4.172) 

There are alternate ways to form the full matrix system, and convergence of them 

has not been studied closely, but this method works quite well for small systems. 

There are likely other ways to use iterative solvers to solve these equations 

implicitly without forming the entire   matrix, which have also not been studied but are 

likely to be fairly quick if implemented in a low level code.  For instance, implementing 

GMRES on a function        . 
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4.5.5.3 Semi-Implicit Methods 

Semi-implicit methods appear to be the fastest for larger systems, although 

convergence becomes poor for highly diffusive problems.  Essentially, instead of solving 

the entire system in one step, each direction and band are solved sequentially until 

convergence.  This involves moving the out-of-band scattering terms to the right hand 

side, which gives equations 

                 

    

                      (4.173) 

Now again it is possible to use LU decomposition on the individual     matrices before 

the main iteration in order to speed up the solution process.  The solver finds 

        
     

            

    

                       (4.174) 

repeatedly until the residual of the full system is reduced below a relative tolerance, i.e. 

we have for the full system 

              (4.175) 

where    is the relative tolerance of the solution. 

 If the complete LU decomposition is too memory intensive to perform, a partial 

LU decomposition can be performed and then a preconditioned GMRES or another 

iterative solver can be used to find the solution to eq. 4.173. 

4.5.6 Implementing Boundary Conditions 

4.5.6.1 Temperature B.C.s 

Temperature boundary conditions are extremely straightforward to implement in 

any of these solver schemes.  At a boundary cell, instead of a contribution to the     

matrix, the coefficient will contribute to     by the amount       
 , where     is the 
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appropriate coefficient.  For the QUICK scheme the contribution of second neighbors 

also has to be considered. 

4.5.6.2 Reflection B.C.s 

Reflection boundary conditions are slightly more difficult.  The boundary 

contribution must be calculated but it is dependent on the outgoing fluxes since they are 

being reflected.  For a single boundary with a reflection condition, it is possible to form a 

matrix expression where the contribution from reflection to the right hand side is given 

by 

             
         

      

  

 (4.176) 

where    
   

 is a scalar which is given by 

    
    

   

               
 (4.177) 

where     is the appropriate boundary coefficient for this boundary cell.     is a diagonal 

matrix given by the appropriate sparsity pattern for the boundary, i.e., a 1 in the position 

for cells that contain the reflection condition, and a 0 for cells that do not.  Finally,    
   

 is 

a scalar given by 

    
           (4.178) 

where again      if       , otherwise,     . 

The QUICK scheme reflection implementation is similar except that two 

summations are required to include the effect of the second neighbor. 

For more general reflection boundary conditions with multiple boundaries that 

reflect, a full reflection matrix     is constructed which gives the contribution from 

reflection on the right hand side in band    as 
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               (4.179) 

however forming a full matrix in this sense is expensive in terms of memory and 

computational power, so the first formulation is favorable in the case of one wall that is 

reflective. 

4.5.7 Verification 

After development of the model some verification is in order to ensure that it is 

producing reasonable results.   

4.5.7.1 One dimensional Grey Transport 

Firstly the one-dimensional transport is compared with the analytical thermal 

transport solution in a one dimensional plane wall case.  The analytical solution is taken 

from radiation heat transport in the work of Heaslet and Warming[107].  Here the left and 

right boundaries are set to temperatures of 301 K and 300 K respectively.  For the DOM 

solution the domain was split into 500 finite volume cells and Sn quadratures with     

and the one band (grey) model was used.  Good agreement is seen between the DOM 

model and the analytical solution. 
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Figure 4.21.  Comparison of DOM solution to Analytical solution.  Kn between 0.1 and 100 are compared. 

Next the transport is verified in the diffuse case against a one dimensional Fourier 

model.  In the diffuse case the Knudsen number is well below 0.01.  There are a number 

of variables which affect how closely the model can match the diffuse result, but it is 

expected as the Knudsen number approaches 0 the DOM solution approaches the diffuse 

heat flux.  Other variables determining how closely the diffuse solution is matched are 

the solver tolerance and the number of finite volume cells used for the simulation.  Here 

the solver tolerance was selected to be       and the solution used 1000 cells with Sn 

quadratures with    .  Increasing the tolerance and number of cells both have an effect 

on how closely the solution matches to the diffuse result.  Below the difference between a 

the diffusive solution (using Fourier's law) and the DOM solution for decreasing (more 

diffusive) Knudsen numbers is shown in Figure 4.22.  The error is given by the ratio of 

the norm of the difference between the heat flux of the DOM solution and the Fourier 

solution and the norm of the Fourier solution, 
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(4.180) 

 

 

Figure 4.22.  The absolute error between the DOM and the Fourier solution for decreasing Knudsen 

numbers (more diffusive regimes).  As the Knudsen number approaches zero the error should decrease to 

zero. 

There appears to be some flattening out of the error which is a result of the solver 

tolerance and the number of cells selected for the simulation which give somewhat of an 

upper bound to the accuracy of the solution. 

For the selection of different ordinate sets which do not conserve the second 

moment of flux, the flux will never be exactly equal to the Fourier solution for any finite 

number of discrete ordinates. 

4.5.7.2 Two dimensional Grey Transport 

While the ballistic nature of two dimensional transport is hard to verify since 

there are no analytical solutions, it is possible to compare the diffusive regime to a 

Fourier solution and confirm that the model is matching transport at large scales.  The 

two dimensional case analyzed in Section 4.4.6 is looked at again here with the same 
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conditions.  The equivalent temperature for a Knudsen number of      and a         

mesh is shown in Figure 4.23.  In this case, Sn quadratures were again used with    .  

The difference between the Fourier and DOM solution is not discernable from the 

contour plots. 

  

Figure 4.23.  The DOM solution (a) is compared to a Fourier solution (b) in the case of Knudsen number 

     and a         mesh.  The difference is not discernable here. 

In order to take a closer look at how the DOM is matching the Fourier solution for 

low Knudsen numbers, Figure 4.24 shows the temperature and heat flux for the Fourier 

and DOM models directly compared and again shows excellent agreement.  The solution 

time for these models was on the order of 15 seconds.  
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Figure 4.24.  The Temperature (on left) and heat flux in the x-direction (on right) are shown as compared 

to the Fourier solution (green dots).  Excellent agreement is seen except at the boundaries in the heat flux. 

4.5.7.3 Boundary Scattering Reduction in Thermal Conductivity 

The reduction in thermal conductivity is another good test for the performance of 

reflective boundary conditions, as seen in Section 4.4.6.4.  The reduction in thermal 

conductivity for three different Sn quadrature sets             are shown in Figure 

4.25 and compared to an analytical solution by Flik et. al.[92].  The mesh was        

cells and the solver tolerance was set to      which was determined to be mesh 

independent (increasing mesh to        and tolerance to      made no discernable 

difference. 
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Figure 4.25.  Reduction in thermal conductivity as a function of Knudsen number for a thin film.  Sn 

quadratures with             are shown. 

It seems that for low Knudsen numbers the conductivity reduction is slightly 

underestimated (conductivity is higher) while for higher Knudsen numbers the reduction 

is overestimated (conductivity is lower) by the DOM model presented here.  It does 

appear that increasing the resolution of the quadrature set is slowly pushing the solution 

towards Flik and Tien's solution. 

4.5.7.4 One Dimensional Grey Generation 

In order to ensure that the model can capture heat generation accurately a constant 

heat generation region is inserted into a one dimensional plane wall model and the fluxes 

are compared for a single band case and for the multiple band case.  Initially a UDS 

scheme was tested, but it was determined that for reasonable grid spacing UDS did not 

conserve flux, as can be seen in Figure 4.27, which prevents it from converging to the 

Fourier temperature distribution in the diffuse limit (see Figure 4.26).  For more ballistic 
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solutions the UDS scheme becomes more conservative, but in a semi-diffuse regime the 

UDS solution is not accurate when generation is present in a domain. 

  

Figure 4.26.  Temperature profiles for the one dimensional test case for different Knudsen numbers with a 

constant small generation region of          .  Note that for smaller Knudsen numbers (more diffusive 

transport) the UDS scheme deviates significantly from the QUICK scheme DOM solution and the Fourier 

solution.  It is expected that the ballistic DOM solution gives rise to higher temperatures than the Fourier 

solution due to temperature slip. 
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Figure 4.27.  Comparison of heat flux profiles for the one dimensional test case for different Knudsen 

numbers with a small heat generation region of          .  The QUICK solution is completely collapsed 

onto the Fourier solution for all Kn which is what one expects since the energy being generated in the 

domain must be carried out.  The QUICK scheme heat flux does have oscillations at the boundaries and 

near the edges of the heat flux region. 

As good as the QUICK scheme is at ensuring conservation for reasonable grid 

spacing, it does have oscillations at the boundaries and near discontinuities in the 

underlying heat generation.  This kind of oscillation could be resolved with a third order 

SMART scheme or other flux limiting scheme that prevents local minima and maxima 

from being generated near discontinuities[28, 108].  However, implementation of that 

kind of scheme would require restructuring the solver significantly and was not attempted 

at this time. 

4.5.7.5 Phonon Properties and Relaxation Times 

The phonon relaxation times can be calculated from the diagonal portion of the 
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are within the realistic range of parameters, except for the        and        modes, 

where the relaxation time is being overestimated significantly.   

Table 4.1.  Relaxation Times for  -point modes 

Mode                , this work       , literature 

         137 36.1 10.1 [50], 70 [109] 

140 37.0 

         329 3.6 Raman inactive 

        540 1.9 0.46 [50], 0.63 [110], 5.1 [95] 

        556 3.9 0.94[95], 0.95 [50] 

          560 4.2 1.4 [50], 2.5 [95], 2.56 [110], 5.8 [109] 

          564 4.5 Raman inactive 

        686 2.5 0.75 [95], 0.8, 0.86 [110], 1.5 [109], 0.35-2.5 [94] 

        714 1.2 0.56 [95], 0.66 [110] 

 

4.5.8 Results 

4.5.8.1 One Dimensional Analysis of Ordinates Set Selection 

Ordinate selection plays a role in the accuracy of ballistic and transient transport 

in the DOM.  We focus here on the ballistic portion of transport, and compare various 

ordinate sets to an analytical solution provided by Heaslet and Warming[107].  The 

solution of three ballistic transport cases, Kn=1,10, and 100 were compared for a number 

of ordinate sets.  The total squared error was calculated for each solution, and the results 

are plotted in Figure 4.28.  As expected the error decreases with an increase in the 

number of directions.  Probably the most interesting result here is that the corrected 

ordinate set performed as well as the uncorrected ordinate set, suggesting that there is not 

a penalty in correcting the CADOM quadratures with the method presented in Section 

4.5.2.1. 
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Figure 4.28.  Ballistic error for Knudsen numbers 1, 10 and 100 for various quadrature sets.  Three of the 

best performing DCT quadratures were selected.   

 

4.5.8.2 Band-to-Band HFET Modeling 

A limited test of a AlGaN/GaN HFET is executed.  The domain modeled is much 

smaller and more simple than the domain in an actual device, and is shown in Figure 

4.29.  The domain was split into a mesh 100x143 cells maintaining a unity aspect ratio.  

The model used the 8 band discretization of the phonon spectrum illustrated in Figure 

4.11.  This 8 band discretization resulted in the phonon properties displayed in Table 4.2. 
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Table 4.2.  Phonon properties for the 8 band model  

     
                     

      

70 5420 0.059 

160 4051 0.976 

237 4265 0.264 

305 2548 0.366 

573 1972 0.331 

612 4623 0.308 

671 1036 0.102 

694 1054 0.166 

 

The generation region as calculated for an AlGaN/GaN HFET from Sentaurus for 

Vds=14V and Vgs=0V was input into the model's highest energy band where all the 

longitudinal optical phonons lie.  This is the same bias condition as modeled with the 

continuum scale model with more realistic boundary conditions in Section 3.7, except 

that in this case only the generation within the GaN region was captured.  The AlGaN 

region was not modeled here since the phonon properties of AlGaN have not been 

accurately studied and the physics of thermal transport across the AlGaN/GaN interface 

are not yet captured by this model.  Sn quadratures were used with n=3 resulting in a total 

of 1,372,800 degrees of freedom.  The solution was performed with the semi-implicit 

solver and took approximately 6 hours to complete. 
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Figure 4.29.  Simplified device domain run in the band to band phonon model.  The top boundary is 

insulated while the other three boundaries are set to 300 K.  This domain is much smaller than an actual 

device but includes the entire active area.  

The case run is approximately 8.5 W/mm, putting it on the high end of the power 

spectrum for AlGaN/GaN HFET devices.  The resulting equivalent temperature 

distribution is shown as a contour plot in Figure 4.30.  The peak temperature occurs on 

the drain side of the gate next to the AlGaN/GaN boundary where the peak generation 

region is.  This temperature profile is significantly different from a Fourier style solution 

in this domain, as shown in Figure 4.31.  A horizontal cut along the top of the domain of 

the equivalent Band to Band temperature and the Fourier temperature is shown in Figure 

4.32a, while a vertical cut is shown in Figure 4.32b.  Finally, the individual band 

temperatures are plotted with the equivalent total temperature and Fourier temperature in 

Figure 4.33 for the horizontal cut line across the top of the domain. 
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Figure 4.30.  Contour plot of the equivalent temperature within the device.  Source (S), Gate (G), and 

Drain (D) structures are shown for reference.  The peak temperature occurs in the channel on the drain side 

of the gate.  The horizontal and vertical red dashed lines indicate the locations of the cuts for Figure 4.32. 

 

Figure 4.31.  Contour plot of the temperature deviation from a traditional Fourier model. 
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Figure 4.32.  Comparison of a the equivalent temperatures in a band to band model and a Fourier model 

shown along a) a horizontal line and b) a vertical cut going through the hot spot as shown by dashed red 

lines in Figure 4.30. 
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Figure 4.33.  Comparison of phonon temperatures within the 8 band BTB Model. 
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the process used in correcting the interaction matrix, which might destroy some important 

information about the band-to-band transitions.  It might be necessary to implement 

information about the third derivative of energy in order to accurately capture the 

interaction strengths and bring the raw scattering matrix into better compliance with the 

conservation and physicality conditions. 
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CHAPTER 5 

SUMMARY AND FUTURE WORK 

This work investigates temperature and stress effects within AlGaN/GaN HEMT 

and MOSHEMTs during operation in order to better understand the lack of reliability 

currently seen in this material system.  AlGaN/GaN HEMT and MOSHEMTs are 

currently limited by their reliability.  The causes of degradation are still under 

investigation.  It is believed that peak temperatures, non-equilibrium effects, ballistic 

effects, CTE mismatch stress, thermal gradient stress, epitaxial residual stress, and 

inverse-piezoelectric stresses all play a role in degradation.  This complicated system is 

studied in some detail in this work, specifically peak temperatures as a result of changing 

generation region size and shape, thermal stresses as a result of CTE mismatch and 

thermal gradients, and ballistic and non-equilibrium effects. 

Key contributions of this work include the following: 

 The effect of including an accurate heat generation region extracted from 

an electrical device simulator was studied in detail.  This avoids the issue 

of having to fit the size of the generation region to experimental peak 

temperature data and can offer insight onto why certain bias conditions 

yield higher temperatures than others at the same power conditions: 

specifically, higher pinch-off conditions imply a smaller generation region 

near the drain side of the gate and higher peak temperatures as a result. 

 It was determined that using temperature dependent thermal conductivities 

in GaN modeling can significantly affect peak temperatures, especially at 

higher powers. 

 Thermal gradient stress modeling indicates that the stresses within 

AlGaN/GaN HEMTs are not biaxial in nature, and that stresses along the 

width of the channel are higher than stresses along with length of the 



 

 127 

channel due to the aspect ratio of the channel and the cylindrical shape of 

the heat generation region. 

 A method for solving the DOM in COMSOL was developed, and 

furthermore, a method for coupling this model to a Fourier domain was 

formulated. 

 A method was developed to compress phonon interaction strength data 

into a usable form for calculation of phonon group energies within 

devices.  In addition a method was developed to ensure that these 

compressed interaction strengths represent energy conserving and 

physically reasonable processes. 

 Good agreement was seen between phonon lifetimes as measured by 

Raman Spectroscopy and those determined from the phonon interaction 

expressions and energies calculated from the ab. initio program ABINIT 

with only one fitting parameter for the thermal conductivity of GaN. 

 A semi-implicit solver method was developed that allows for rapid 

solution times for reasonably sized problems.  In addition, an iterative 

solver method based on this implicit method was developed which allows 

for rapid solution of even large problems thanks to the Generalized 

Minimum Residual method (GMRES).   

 It was determined that for the Finite Volume Discrete Ordinates Method, 

for reasonable grid spacings, it is necessary to use a third order scheme in 

order to accurately capture heat generation without losses. 

 Ballistic and diffusive results in the Discrete Ordinates Method are 

dependent on quadrature selection.  Quadrature sets that do not conserve 

the second moment (eq. 4.140) do not match diffusive heat flux results 

accurately.  In addition, quadrature selection affects ballistic transport 

accuracy. 
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 A correction procedure for control angle quadratures was proposed which 

forces them to conserve the second moment and also performs as well as 

uncorrected quadrature sets in the ballistic regime.  This has never been 

shown before, and allows for CADOM quadratures to be used with 

accuracy at all scales and any arbitrary number of directions. 

 A Fourier model does not accurately capture the peak temperatures within 

a GaN HEMT, in fact, due to ballistic and dispersive effects, peak 

temperatures are likely to be significantly higher than predicted by a 

Fourier model.  The test cases presented here confirm that and the model 

here builds a framework upon which to begin studying in more detail the 

temperature deviation of the high energy modes and the added thermal 

resistance from the phonon bottleneck between high energy optical modes 

and lower energy acoustic modes. 

In addition to these contributions, this work also introduces a few items for further 

consideration which will develop the model further and facilitate better predictions and 

matching with experimental data.  These include: 

 Further work needs to be done to form a complete stress model of these 

devices.  A partially developed residual stress model is currently under 

development.  That model, which was not presented here, includes the 

effect of the thermal contraction of layers after growth.  However, the total 

residual stress is likely to include many more contributions than just from 

thermal expansion mismatches between layers.  In addition, an inverse-

piezoelectric model was partially developed in COMSOL which used the 

electric field data from the device simulator Sentaurus as input to 

determine inverse piezoelectric stress and strain. These models should be 

developed further in order to gain insight into the complete stress state of 

AlGaN/GaN HEMTs.   
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 The phonon interaction strength model could be significantly improved.  

While this work included advances suggested by previous work such as 

inclusion of high energy optical modes thanks to the use of ab. initio 

lattice dynamics program ABINIT, it still leaves out the third order 

derivative of energy which give the interaction strengths of the three 

phonon processes and would provide orders of magnitude more accuracy 

in determining band-to-band interactions. 

 Anisotropy of the phonon model could be included.  At this point the 

model is isotropic meaning that the phonon interactions directional biases 

are washed out.  The dispersion curves do not mandate this, so extension 

of the model to include anisotropic interactions would not be a large piece 

of work.  Then the effect of the anisotropy in thermal conductivity in GaN 

could be more fully investigated. 

 Temperature dependence of the band-to-band model should be included.  

The current work does not include temperature dependence of the phonon 

interaction strengths or any phonon properties, some of which are fairly 

strong functions of temperature.  There are several ways this could be 

included, but it adds a significant amount of complexity to the model and 

was not attempted at this time.  However, for accurate results, and 

probably for matching to experiments for higher power results, this is 

critical. 

 Boundary scattering effects at the interfaces within AlGaN/GaN HFETs 

should be considered.  Probably the most important interface is the 

GaN/AlN/SiC interface, but the AlGaN/GaN interface could also be 

important. 
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 Defect scattering and isotope scattering was not included in this model, 

but could be included in the future to more fully capture the temperature 

dependence of the thermal conductivity. 

 The band to band model could include coupling with a Monte Carlo 

electrical simulator which would give detailed information about the 

generation of high energy optical phonon modes.  This will be necessary 

before the band resolution can be increased. 

 The computational model could be modified to include the SMART 

scheme which is a third flux limiting scheme which will hopefully 

eliminate oscillations near boundaries and generation discontinuities.  This 

is not trivial as the flux limiters are nonlinear and the current equations are 

strictly linear.  The solution method would need to be significantly 

modified and probably re-developed in a lower level code in order to 

improve speed.  Implementing a non-linear solver in MATLAB of 

comparable speed to the current solver is probably difficult or impossible. 

 The Finite Volume DOM model at this point cannot handle large domains 

due to memory and computational time constraints.  Extending the model 

so that it couples to a Fourier style domain at the boundaries has been 

proposed and executed with a Lattice Boltzmann Method code by 

Christensen[2] and a similar method could be used with the DOM code in 

order to increase the domain size.  This has already been partially 

developed for the COMSOL portion of the code but needs to be developed 

for the Finite Volume discretization code. 
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APPENDIX A 

MATERIALS PROPERTIES 

Table A.1. Gallium Nitride Material Properties   

Thermal Conductivity[2]                     

Specific Heat Capacity[2]                  

Elastic Moduli[111] 
                                        
                                        

 Thermal Expansion 

Coefficients[112] 

   - x                   

   - x                   

Density[113]                 
Piezoelectric Constants[114]                                                

Dielectric Constants[115]    - x           - x        

 

Table A.2. Silicon Carbide Material Properties   

Thermal Conductivity[116]                           

Specific Heat Capacity[113]                   

Elastic Moduli[117] 
                                        
                                       

Thermal Expansion 

Coefficients[118] 

   - x                   

   - x                   

Density[119]                 
Piezoelectric Constants[120]                                                  
Dielectric Constants[121]    - x            - x         

 

Table A.3. Copper Tungsten Material Properties   

Thermal Conductivity[122] 
                  

              

                        
Specific Heat Capacity                 

Elastic Moduli                     

Thermal Expansion Coefficients          -        
Density                 
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