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SUMMARY 

 

Cell adhesion to extracellular matrices (ECM) is essential to numerous 

physiological and pathological processes.  Cell adhesion is initiated by binding of the 

transmembrane integrin family of receptors to an ECM ligand such as fibronectin (FN).  

Once bound, integrins cluster together and form focal adhesions (FA).  FAs serve as 

structural links and signal transduction elements between the cell and its extracellular 

environment.  While a great deal of progress has been made in identifying the 

biochemical components that comprise focal adhesions and the roles they play in 

migration, cell spreading, and signaling, the contributions of these proteins to mechanical 

interactions between the cell and its environment remain poorly understood. 

 A FA adhesion protein of particular importance is vinculin.  When localized to 

focal adhesions, vinculin forms a ternary complex with talin and 1-integrin.  This 1-

integrin-talin-vinculin complex plays a central role in the regulation of FA assembly and 

cell spreading and migration.  Nevertheless, the specific contribution to adhesive force 

generation of the 1-integrin-talin-vinculin complex remains poorly understood. 

 The objective of this project was to analyze the role of vinculin in the cell 

adhesion strengthening process.  Our central hypothesis is that vinculin modulates 

adhesion strength via regulating the size and/or composition of the integrin-talin-vinculin 

complex.  We used a novel combination of biochemical reagents and engineering 

techniques along with quantitative and sensitive adhesion strength measurements to 

provide new insights into how the structure of vinculin contributes to cell adhesion 

strength.  
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CHAPTER 1 

INTRODUCTION 

 

 

 

SPECIFIC AIMS 

Cell adhesion to extracellular matrices (ECM) is essential to numerous 

physiological processes including cell migration, embryonic development, and proper 

inflammatory responses. Abnormalities in adhesion can lead to pathological conditions 

such as cancer metastasis and impaired wound-healing.  Cell adhesion is initiated by 

binding of the transmembrane integrin family of receptors to an ECM ligand such as 

fibronectin (FN).  Once bound, integrins cluster together and nascent focal complexes 

develop consisting of a coordinated mixture of signaling and scaffolding proteins.  These 

structures, under application of force generated by the internal contractile machinery, 

further develop into larger, more sophisticated structures termed focal adhesions (FA).  

FAs serve as structural links and signal transduction elements between the cell and its 

extracellular environment.  While a great deal of progress has been made in identifying 

the biochemical components that comprise focal adhesions and the roles they play in 

migration, cell spreading, and signaling, the contributions of these proteins to mechanical 

interactions between the cell and its environment remain poorly understood. 

 A FA adhesion protein of particular importance is vinculin, a ubiquitously 

expressed actin-binding protein that is found both at sites of cell-cell and cell-matrix 

junctions.  First identified in 1979, research during the past thirty years has vastly 

increased our understanding of the functional and biochemical roles of vinculin.  When 
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localized to focal adhesions, vinculin forms a ternary complex with talin and 1-integrin.  

This integrin-talin-vinculin complex plays a central role in the regulation of FA assembly 

and cell spreading and migration.  Nevertheless, the specific contribution to adhesive 

force generation of the integrin-talin-vinculin complex remains poorly understood. 

 The objective of this project is to analyze the role of vinculin in the cell adhesion 

strengthening process.  Our central hypothesis is that vinculin modulates adhesion 

strength via regulating the size and/or composition of the integrin-talin-vinculin complex.  

We base this hypothesis on previous work in our lab demonstrating that levels of bound 

integrin and focal adhesion assembly strongly modulate adhesion strength and recent 

evidence that suggests vinculin, talin, and integrin form a ternary complex that regulates 

the dynamics of focal adhesions. The rationale for this project is that use of a novel 

combination of biochemical reagents and engineering techniques along with quantitative 

and sensitive adhesion strength measurements will provide new insights into how the 

structure of vinculin contributes to cell adhesion strength.  Using these methods, we will 

address the objective of this project with the following specific aims: 

 

1: Examine role of vinculin in FAK-mediated steady-state adhesion strength   

 FAK, an essential non-receptor tyrosine kinase, plays pivotal roles in migratory 

responses, adhesive signaling, and mechanotransduction.  Previous work in our lab 

indicated that FAK regulates both short and long-term adhesive force generation in 

fibroblasts.  We demonstrated that FAK influences short-term adhesion strength by 

modulating integrin activation, however, it remained unclear how FAK modulated 

steady-state adhesion strength. 
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We hypothesized that FAK modulates long-term adhesion strength by controlling 

vinculin localization to sites of focal adhesions.  Using a combination of RNAi 

knockdown of vinculin, RNAi knockdown of FAK, various biochemical assays, and a 

spinning disk for measuring adhesive strength, we analyzed the contributions of vinculin 

in modulating force transmission across focal adhesions during FAK-mediated steady-

state adhesion strength. 

 

2: Examine the contributions of vinculin in actin-myosin contractility induced adhesion 

strength 

 Actin-myosin contractility modulates focal adhesion assembly and stress fiber 

formation.  These processes regulate cell behaviors including migration, neurite 

extension, cytokinesis, muscle cell contraction, cell cycle progression, angiogenesis, and 

differentiation.  To date, the contributions of actin-myosin contractility to adhesive 

interactions have been characterized by migration and spreading assays, leaving in a gap 

in knowledge regarding how cell-generated contractile forces and focal adhesion 

assembly regulate adhesion strength.   

 Our working hypothesis was that actin-myosin contractility would modulate 

adhesion strengthening by changing levels of matrix-bound integrins and assembly of 

focal adhesions.   Using a hydrodynamic adhesion assay in combination with chemical 

contractility inhibitors and various biochemical assays we analyzed the contributions of 

contractility to fibroblast adhesion strengthening.    
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3: Examine the specific contributions of the head and tail domains of vinculin to cell 

adhesion strength 

 Steady-state adhesion strength measurements in the presence or absence of FAK 

demonstrated the FAK modulates adhesion strength by regulating vinculin localization to 

focal adhesions.  In addition, actin-myosin contractility modulates adhesion strength 

through assembly of vinculin-containing focal adhesions.  These results demonstrate the 

importance of vinculin in generating adhesive forces, however, the relative contribution 

of specific domains of the vinculin molecule, remain unclear. 

Our working hypothesis was that vinculin modulates adhesion strength by 

modulating the size, composition, and cytoskeleton connectivity of the integrin-talin-

vinculin complex. We engineered cells to express wild-type and various mutants of 

vinculin and used them in combination with a hydrodynamic adhesion assay and various 

biochemical techniques to understand the relative contributions of the head and tail 

domains of vinculin. 

4: Characterize the force-dependent dynamics of vinculin in focal adhesion 

 Focal adhesions (FAs) sense and respond to mechanical forces.  The molecular 

mechanism(s) involved in this process, however, have yet to be determined.  At sites of 

focal adhesions, vinculin adopts an open, active conformation and binds to talin and F-

actin.  The interaction between talin and vinculin has recently been proposed as a 

potential force-sensing unit.  In addition, it is now known that vinculin transfers force in 

focal adhesions and that the dynamic behavior of the protein is dependent on the spatial 

location in the cell.  To date, however, there exists no direct evidence that vinculin 

dynamics are modulated by the force applied to the focal adhesions.     
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 Our working hypothesis was that force transferred through focal adhesion 

increases the dynamic stability of the vinculin molecule in focal adhesions.  The rationale 

for this hypothesis is that as the force applied to a focal adhesion increases, so too does 

the force transferred across the vinculin molecule, making it less able to dissociate from 

its binding partners (talin and F-actin).  We developed a novel technique combining 

fluorescent recovery after photobleaching (FRAP) with traction force measuring devices 

to characterize how vinculin dynamics are modulated by force across focal adhesions. 

 

Project Significance 

Cell adhesion to the extracellular matrix is required for embryogenesis and the 

proper organization, maintenance, and repair of tissues as it allows for the development 

of mechanical forces and intracellular cues that regulate cell survival and migration 

(Danen and Sonnenberg, 2003; De Arcangelis and Georges-Labouesse, 2000). The 

absolute embryonic lethality of the deletion of a wide variety of adhesion related genes, 

including integrin receptors, extracellular matrix and focal adhesion components, 

indicates the necessity of cell adhesion in development (George, 1993; Stephens et al., 

1995; Xu et al., 1998a).  Abnormalities in adhesion are responsible for a wide-variety of 

pathological states including deficient immune response, blood clotting, and tumor 

metastasis (Wehrle-Haller and Imhof, 2003).  Integrin-mediated anchorage of cells to the 

ECM is a complex process that comprises integrin-ligand binding, clustering of bound 

receptors, and linkage to the contractile cytoskeleton of the cell (Critchley, 2000; Geiger 

et al., 2001).  Specifically, the linkage between integrins and the actin-cytoskeleton is 

mediated by FAs.  These supramolecular structures are composed of both structural 
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(talin, vinculin, -actinin) and signaling (FAK, paxillin) molecules and are critical 

regulators of both adhesion force generation and cell migration (Bershadsky et al., 2006). 

A FA component of particular importance is vinculin, a 116-kDa cytoskeleton-associated 

protein found in the majority of cell and tissue types. Vinculin plays an essential role in 

both development and proper cardiac function in mice studies (Xu et al., 1998a; Zemljic-

Harpf et al., 2007).  Cell culture experiments suggest that vinculin plays important roles 

in migration, adhesion, survival, and proper focal adhesion dynamics.  Importantly, 

vinculin has no known enzymatic activity and therefore must exert influence on adhesion 

processes by directly interacting with partner proteins.  While significant progress has 

been made in identifying how vinculin modulates its interactions with its numerous 

binding partners, little is known about how the protein contributes to the generation of 

adhesion forces.  As an outcome of the proposed investigations, we analyzed the specific 

contribution of vinculin to the generation of cell adhesive forces.  Furthermore, using our 

unique combination of reagents and measurement tools, we identified the importance of 

specific structural domains of the vinculin molecule to the generation of cell adhesion 

force.   

The proposed work is significant because it provides novel insights as to the 

relative influence of the head and tail domains of vinculin to the modulation of force 

transfer between the external matrix and the internal cytoskeleton.  These studies add an 

important dimension to our existing knowledge of the dynamics, regulation, and function 

of adhesion complexes.  In addition, the results of these experiments will provide a new 

context for understanding the role of vinculin in many physiologic and pathologic 

processes.   
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CHAPTER 2 

LITERATURE REVIEW 

 

 

Adhesion Force Generation 

Adhesion to ECM components such as FN and collagen, is primarily mediated by 

the integrin family of heterodimeric () receptors (Hynes, 2002).  Integrin-mediated 

adhesion is a highly coordinated process that is first initiated by activation and binding of 

the integrin to its ECM ligand (Choquet et al., 1997; Faull et al., 1993; Friedland et al., 

2009).  Once bound, integrins rapidly cluster together and generate linkages to the actin 

cytoskeleton  mediated by the supramolecular structures termed focal adhesions (FA) 

(Geiger et al., 2001).  Morphologically, FAs are elongated, streak-like  structures 

typically 3-10µm in length located near the periphery of the cell. There, they mediate 

strong adhesion to the ECM by modulating force transfer between integrins and the actin 

cytoskeleton.  In addition to their structural role, FAs serve as signaling platforms that 

control various functions including differentiation, proliferation, and apoptosis (Sastry 

and Burridge, 2000).  Importantly, FAs are not static, rigid structures.  Rather, they are 

highly dynamic units that assemble and disassemble in response to a wide variety of 

mechanical and chemical stimuli.  Initial formation of FA is stimulated by the small 

GTPase Rho-A, while full maturation of focal adhesions is driven by actin-myosin 

contractility by an unknown mechanism (Amano et al., 1997; Chrzanowska-Wodnicka 

and Burridge, 1996).   
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 The generally accepted model for adhesive force generation, proposed by McClay 

and Erickson, proposes a two-step process; namely initial ligand binding followed by 

rapid strengthening (Lotz et al., 1989).  The strengthening arises from (i) increases in 

cell-substrate contact area (spreading) (ii) receptor recruitment to anchoring sites 

(recruitment and clustering), and (iii) interactions with cytoskeletal elements that lead to 

enhanced force distribution among bound receptors (focal adhesion assembly).  This 

model has been validated in several independent experimental systems (Balaban et al., 

2001; Choquet et al., 1997; Hato et al., 1998; Maheshwari et al., 2000). 

 

Vinculin 

 Vinculin, a 116-kDa protein, was first identified in 1979 in cultured chicken 

gizzard smooth muscle cells as a protein that localized to sites of close contact to the 

substrate at the termini of microfilaments (Geiger et al., 1980).  It has since been the 

focus of various areas of scientific research with the overall goal to understand both its 

physiologic relevance and how its unique structure regulates its function (Bakolitsa et al., 

2004; Borgon et al., 2004; Cohen et al., 2006; Gingras et al., 2006; Izard et al., 2004; 

Izard and Vonrhein, 2004).   

 

Molecular structure  

 Vinculin consists of five domains, each of which is built from four-helix bundles.  

The first three four-helix bundles, domains 1-3 (D1-D3), interact and form the globular 

head of the protein.  The fourth and fifth domains of the protein are similar in structure to 
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D1 and D2, except that D5 is connected to D4 by a long, proline-rich strap.  D5 is 

designated as the tail of vinculin (Vt). 

  Importantly, Vt binds strongly (Kd <10
-9

) to the pincer-like pocket formed by Vh 

(Bakolitsa et al., 2004).  This high affinity interaction is the result of two specific 

interactions between Vt and D1 and Vt and D4 (Cohen et al., 2005).  When Vt is bound 

to Vh, the protein is in an inactive state, meaning that sites for many of its binding 

partners (talin, actin, etc.) are masked (Figure 1A).  Vinculin activation involves 

dissociation of the Vt and Vh domains, revealing its full spectrum of binding sites (Figure 

1B). There are two competing models that describe the activation process of vinculin.  

The first postulates that vinculin is activated through a combinatorial pathway in which 

the coincidence of talin and F-actin are required for vinculin activation (Chen et al., 2006; 

Cohen et al., 2006).  This model is attractive because recent evidence suggests that in the 

closed-conformation, there is an exposed binding site in Vt for F-actin, which may be 

involved in activation (Ziegler et al., 2006).  Alternatively, several studies using isolated 

fragments of vinculin and talin have suggested that a single ligand, such as talin, is 

capable of activating the vinculin molecule (Bois et al., 2006; Izard et al., 2004; Izard and 

Vonrhein, 2004).  Interpretation of the latter model is limited by the use of protein 

fragments as opposed to the former, which makes use of full-length vinculin and talin. 

  

Functional roles  

 Vinculin is found in numerous cells and tissues, but has the most interesting 

organization in skeletal and cardiac muscle costameres (Pardo et al., 1983a, b) and 

cardiac intercalated disks (Koteliansky et al., 1984).  Here, vinculin forms a 
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subsarcolemmal lattice of transmembrane connections termed costameres.  These 

functional units physically connect myofibrils to the muscle cell membrane and 

extracellular matrix (Craig and Pardo, 1983; Sparrow and Schöck, 2009).  Importantly, 

focal adhesions that form when cells are cultured on stiff, 2-D substrates, are structurally 

and compositionally analogous to costameres (Samarel, 2005), thus making the study of 

FA on 2-D surfaces an appropriate model system for our analysis.   

 Several model systems indicate that vinculin plays an important physiologic role 

in force transmission, most notably in cardiomyocytes.  Mice heterozygous for vinculin 

are predisposed to stress-induced cardiomyopathy (Zemljic-Harpf et al., 2004), while 

deletion of the vinculin gene in mice is embryonically lethal (Xu et al., 1998a).  Cardiac 

specific knockout of vinculin and the vinculin homolog meta-vinculin disrupts cellular 

junctions and causes sudden death or dilated cardiomyopathy (Zemljic-Harpf et al., 2007) 

while ischemic events in mice models lead to disorganization of vinculin (Steenbergen et 

al., 1987).  In humans, diseases that lead to cardiac stress have shown to involve 

irregularities in vinculin levels and localizations (Vasile et al., 2006).  These effects are 

consistent with the paralysis and disrupted muscle organization in nematodes following 

deletion of the vinculin gene (Barstead and Waterston, 1991).  Taking together, these 

studies indicate that vinculin plays an important role in force transfer.    

 Interestingly, cultured cells do not require vinculin for survival, proliferation, or 

even FA formation (Xu et al., 1998b).  Cells lacking vinculin are more motile presumably 

as a result of their documented faster FA turnover (Xu et al., 1998b).  Furthermore, 

vinculin-null cells exhibit altered stiffness (Alenghat et al., 2000; Mierke et al., 2008) and 

disruptions in Rac-mediated lamellipodia protrusion (Goldmann and Ingber, 2002), cell 
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shape, spreading (Coll et al., 1995; DeMali et al., 2002; Xu et al., 1998b), and apoptosis 

(Subauste et al., 2004).  Further evidence of the functional role of vinculin in cells comes 

from FRET experiments demonstrating that vinculin exists in an inactive state in the 

cytoplasmic pool, but becomes activated at sites of FAs (Chen et al., 2005).   

 Importantly, extensive research has identified the numerous potential binding 

partners of vinculin including talin (Burridge and Mangeat, 1984), -actinin (Belkin and 

Koteliansky, 1987; Kroemker et al., 1994), paxillin (Turner et al., 1990), VASP (Brindle 

et al., 1996), vinexin/ponsin (Kioka et al., 1999; Mandai et al., 1999), and F-actin 

(Jockusch and Isenberg, 1981; Johnson and Craig, 1995). However, it remains largely 

unclear how in vitro binding corresponds to in vivo interactions.  For example, it was 

recently shown that vinculin head domain recruits paxillin to FA independent of vinculin 

tail, despite the known binding site for paxillin being located on vinculin tail (Humphries 

et al., 2007).  Recent evidence suggests that the head domain of vinculin regulates 

integrin dynamics through a yet to be determined pathway while the tail domain is 

responsible for linking FAs to the actin cytoskeleton (Humphries et al., 2007).  It remains 

to be determined how the different domains of vinculin contribute to cell adhesion 

strength. 

 

Spinning Disk Assay for Adhesion Strength Measurements 

 The spinning disk device, developed by García et al (Garcia et al., 1997) has been 

successfully integrated into studies in our lab over the last decade to measure the 

adhesion strength of a population of cells (Gallant et al., 2005; Garcia et al., 1998; García 

et al., 1998; Michael et al., 2009).  The device applies a well-defined range of shear 
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forces to adherent cells and provides a robust and sensitive measure of their adhesion 

strength.  Briefly, substrates containing cells seeded on islands of controlled size and 

spacing are mounted on the device and spun at constant speed in spinning buffer.  Fluid 

flow over the cells on the disk produces a detachment force that is proportional to the 

radius from the center of the disk and is given by the following equation: 

 

 

 

In this system, cells at the center of the disk are exposed to negligible detachment force, 

while cell detachment increases towards the outside of the disk as higher shear force is 

applied.  Thus, in a single sample, a linear range of detachment forces is applied to a 

population of cells (approximately 75,000 cells per 25mm disk).  Following spinning, 

cells are fixed, stained, and counted at sixty-one radial positions.  On average, 

approximately ~6000 cells are counted per sample.  The fraction of adherent cells ( ) is 

then calculated by dividing the number of cells at each radial position by the number of 

cells at the center of the disc, where negligible detachment force was applied.  The 

detachment profile (  vs. ) is then fit to the sigmoid: 

 



  0.8r  3      where    shear stress; r  radial position from center  

                                          fluid density;   fluid viscocity;  = rotational speed 



f



f



f 
f0

1 eb(  50)
 where f0  normalized asymtote; 

                                  b  slope at inflection point; 

                                   50  50% cell detachment
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We define  as the mean shear stress.  Mean shear stresses are determined in response 

to various testing conditions including various ECM substrates, cell type, adhesive area, 

and adhesive time points. 

 

Generation of Cell Adhesive Force:  Contributions of Adhesive Area, Integrin 

Binding, and Focal Adhesion Assembly 

 Previous work in our lab has examined the contributions of adhesive area, integrin 

binding, and FA assembly to the generation of cell adhesive forces.  Gallant and 

coworkers engineered micropatterned substrates to control cell-substrate adhesive area 

and eliminate the contributions of cell shape and spreading to adhesion strengthening.  

Microcontact printing of self-assembled monolayers of alkanethiols on gold was used to 

create FN-coated, cell adhesive domains within a non-fouling/non-adhesive background.  

Fibroblasts were cultured on substrates with adhesive areas varying from 2-20µm in 

diameter and for different lengths of time.  Adhesion strength analysis was performed 

using the spinning disc and the data was analyzed in the context of integrin binding and 

FA assembly (Gallant et al., 2005). 

 These studies allowed for the development of quantitative relationships between 

functional (adhesive strength generation) and biochemical (integrin binding, FA 

assembly) events.  The results revealed a strong correspondence between the biochemical 

and functional outputs, demonstrating that these processes are tightly coupled.  

 

Role of Focal Adhesion Kinase in Adhesion  



 50
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 Focal adhesion kinase (FAK) is a widely expressed non-receptor protein tyrosine 

kinase that plays essential roles in adhesive interactions by functioning as a scaffold for 

focal adhesion components, including Src, Cas, talin, and paxillin (Hanks et al., 1992; 

Polte and Hanks, 1995; Schaller et al., 1992; Schaller et al., 1999) and by providing 

signals that promote survival by blocking apoptotic pathways (Xu et al., 2000).  FAK is 

essential for many physiologic processes including development and organogenesis 

(Furuta et al., 1995).  Tissue specific knock-outs have revealed important roles for FAK 

in angiogenesis, branching tubulogenesis, innervations and mylenation, cardiac 

development, and blood-testis barrier function (Braren et al., 2006; Forrest et al., 2009; 

Peng et al., 2008; Shen et al., 2005; Siu et al., 2009; Watanabe et al., 2008; Wei et al., 

2009). 

 FAK modulates cell migration via focal adhesion turnover dynamics (Owen et al., 

1999; Wang et al., 2001; Webb et al., 2004).  FAK also plays a role in lamellipodia 

protrusion and actin cytoskeleton polymerization (Siesser et al., 2007).  Combined, it is 

clear that the contributions of FAK to cell motility and FA dynamics are well defined.  

However, there lacks a general understanding of how FAK contributes to the generation 

of adhesive forces.  We recently reported that FAK modulates short-term adhesion 

strength by promoting integrin activation (Michael et al., 2009).  This work also 

demonstrated that FAK modulates long-term adhesion strength and implicated vinculin as 

a key component of force modulation. 

 

Role of Actin-Myosin Contractility in Adhesion 
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 Contractile forces generated inside the cell regulate migration, neurite extension, 

cytokinesis, muscle cell contraction, cell cycle progression, angiogenesis and 

differentiation (Griffin et al., 2004; Mammoto et al., 2009; Mammoto et al., 2004; 

McBeath et al., 2004; Parizi et al., 2000; Polte et al., 2004; Tanaka and Sabry, 1995; 

Wozniak et al., 2003).  Contractility results from dynamic interactions between actin 

filaments and myosin, which are regulated via phosphorylation of myosin light chain 

(MLC) (Kaibuchi et al., 1999; Worthylake and Burridge, 2003).  Rho GTPases control 

the formation of stress fibers and focal adhesion assembly by modulating MLC 

phosphorylation and generating actin-myosin contractility (Amano et al., 1997; 

Chrzanowska-Wodnicka and Burridge, 1996; Totsukawa et al., 2000).  When activated 

by serum factors, such as lysophosphatidic acid (LPA), Rho acts through its effector Rho-

kinase (also termed ROCK), to enhance the contraction of smooth muscle cells as well as 

nonmuscle cells by either inactivation of myosin phosphatase (Kimura et al., 1996) or 

direct phosphorylation of MLC (Totsukawa et al., 2000).  Contractile forces can also be 

modulated by MLC kinase (MLCK), which promotes assembly of actin-myosin filaments 

and MLC phosphorylation (Gallagher et al., 1997). 

 The equilibrium of forces within a cell represents a balance of internal contractile 

forces and anchoring forces to the underlying substrate (Ingber, 2003; Zhu et al., 2000).  

This complex and dynamic balance is governed by the size and distribution of cell-

substrate adhesive structures, cytoskeletal architecture, and spatiotemporally-regulated 

internal contractile forces.  The contributions of actin-myosin contractility to adhesive 

interactions have been characterized primarily in spreading and migration assays.  While 

these functional measurements have identified key roles for actin-myosin contractility in 
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focal adhesion assembly, stress fiber formation, and migratory forces (Amano et al., 

1997; Chrzanowska-Wodnicka and Burridge, 1996; Worthylake and Burridge, 2003), 

relatively little is known about how actin-myosin contractility and focal adhesion 

assembly regulate cell adhesive forces.   
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CHAPTER 3 

FOCAL ADHESION KINASE-DEPENDENT REGULATION OF 

ADHESIVE FORCES INVOLVES VINCULIN RECRUITMENT TO 

FOCAL ADHESIONS* 

 

 

Abstract 

Focal adhesion kinase (FAK), an essential non-receptor tyrosine kinase, plays 

pivotal roles in migratory responses, adhesive signaling and mechanotransduction.   

FAK-dependent regulation of cell migration involves turnover dynamics as well as actin 

cytoskeleton polymerization and lamellipodia protrusion.  Whereas roles for FAK in 

migratory and mechanosensing responses have been established, the contribution of FAK 

to the generation of adhesive forces is not well understood.  Using FAK-null cells 

expressing wild-type and mutant FAK under an inducible tetracycline promoter, we 

analyzed the role of FAK in the generation of steady-state adhesive forces using 

micropatterned substrates and a hydrodynamic adhesion assay.  FAK expression reduced 

steady-state strength by 30% compared with FAK-null cells.  FAK expression reduced 

*Modified from  

(1)  Dumbauld DW
1
, Michael KE

1
, Hanks SK, García AJ. Focal adhesion kinase-

dependent regulation of adhesive forces involves vinculin recruitment to focal adhesions.  

Biol. Cell. 2010. 

(2)  Michael KE, Dumbauld DW, Burns KL, Hanks SK, García AJ.  Focal adhesion-

kinase modulates cel adhesion strengthening via integrin activation.  Mol Biol Cell. 

2009.    
1
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vinculin localization to focal adhesions by 35% independently of changes in integrin 

binding and localization of talin and paxillin.  RNAi knock-down of vinculin abrogated 

the FAK-dependent differences in adhesive force.  FAK-dependent changes in vinculin 

localization and adhesive forces were confirmed in human primary fibroblasts with FAK 

knocked down by RNAi.  We demonstrate that FAK reduces steady-state adhesion 

strength by modulating vinculin recruitment to focal adhesions.  These findings provide 

new insight into the role FAK plays in regulating the mechanical interactions between a 

cell and the extracellular matrix. 

Introduction 

Mechanical interactions between a cell and its environment regulate 

morphogenesis, tissue homeostasis and remodeling and pathogenesis (Benlimame et al., 

2005; Hynes, 2002; Kumar and Weaver, 2009; Wozniak and Chen, 2009).  Cell adhesion 

to ECMs  provides adhesive forces mediating migratory processes, tissue structure and 

organization, and mechanotransduction responses (Danen and Sonnenberg, 2003; Hynes, 

2002; Ingber, 2003).  Adhesion to ECM components such as fibronectin and laminin, is 

primarily mediated by the integrin family of heterodimeric αβ receptors (Hynes, 2002).  

After activation and ligand binding, integrins rapidly associate with the actin cytoskeleton 

and cluster together to form the transmembrane portion of focal adhesions, discrete 

supramolecular complexes that contain structural proteins, such as vinculin, talin, and α-

actinin, and signaling molecules, including FAK, Src, and paxillin (Geiger et al., 2001).  

Focal adhesions function as structural links, providing strong adhesive forces, and signal 

transduction platforms between the cell and its extracellular environment.  These 

adhesive complexes are highly dynamic structures that are actively remodeled during cell 
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migration (Gupton and Waterman-Storer, 2006; Ridley et al., 2003).  

Assembly/disassembly of focal adhesions is regulated by numerous pathways in response 

to external stimuli, including growth factors and mechanical force (Greenwood et al., 

1998; Ridley and Hall, 1992; Riveline et al., 2001).  Whereas the biochemical 

connections in adhesive interactions have been extensively characterized (Zaidel-Bar et 

al., 2007), the interplay between molecular composition and adhesive forces remains 

poorly understood. 

 FAK, a widely expressed non-receptor protein tyrosine kinase, plays central roles 

in adhesive interactions by functioning as a scaffold for focal adhesion components, 

including Src, Cas, talin, and paxillin (Hanks et al., 1992; Polte and Hanks, 1995; 

Schaller et al., 1992; Schaller et al., 1999; Xing et al., 1994).  FAK functions as an 

integrator of integrin-mediated signaling to regulate cell migration, survival, cell cycle 

progression and differentiation (Ilic et al., 1995; Owen et al., 1999; Zhao et al., 1998) 

(Quach et al., 2009; Renshaw et al., 1999; Sieg et al., 2000; Tomar et al., 2009; Webb et 

al., 2004).  FAK expression is essential to development and organogenesis.  Deletion of 

the FAK gene results in early embryonic lethality due to defects in cell migration (Furuta 

et al., 1995).  Tissue-specific knockout of FAK produces functional defects in 

angiogenesis/vasculogenesis, branching tubulogenesis, innervation and myelination, 

cardiac development, and blood/testis barrier function (Braren et al., 2006; Forrest et al., 

2009; Peng et al., 2008; Shen et al., 2005; Siu et al., 2009; Watanabe et al., 2008; Wei et 

al., 2009).  FAK has also been implicated in tumor invasion and metastasis (Chan et al., 

2009; Shibue and Weinberg, 2009).  Finally, FAK has emerged as an important 
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mechanotransducer (Clemente et al., 2007; Leucht et al., 2007; Pirone et al., 2006; 

Schober et al., 2007; Wang et al., 2001; Young et al., 2009). 

 FAK-dependent regulation of cell migration involves focal adhesion turnover 

dynamics (Owen et al., 1999; Wang et al., 2001; Webb et al., 2004).  In addition, FAK 

modulates actin cytoskeleton polymerization and lamellipodia protrusion (Serrels et al., 

2007).  Whereas roles for FAK in migratory and mechanosensing responses have been 

established, the contribution of FAK to the generation of adhesive forces is not well 

understood.  We recently demonstrated that FAK promotes integrin activation to enhance 

the generation of cell-ECM adhesive forces (Michael et al., 2009).  These FAK-

dependent enhancements in integrin activation and adhesive strengthening only occurred 

during the early stages of the adhesive process.  In the present study, we analyzed the 

steady-state adhesive interactions and demonstrate that FAK reduces steady-state 

adhesion strength by modulating vinculin recruitment to focal adhesions.  These findings 

establish a multifaceted role for FAK in the generation of cell-ECM forces. 

Materials and Methods 

Cells and reagents 

Tet-FAK cells were maintained as described previously (Owen et al., 1999).  

Primary human dermal fibroblasts were kindly provided by A.P. Kowalcyzk (Emory 

University).  The FAK siRNA construct has been described (Benlimame et al., 2005).  

Retrovirus packaging and transductions were performed as described previously (Byers et 

al., 2002).  Monoclonal antibodies against vinculin (clone V284; Millipore), talin (clone 

8d4; Sigma), paxillin (clone Z035; Zymed) and tensin (clone 5; BD Biosciences) were 
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used for immunostaining.  Antibodies against vinculin (clone V284; Millipore) and FAK 

(06-543 polyclonal; Millipore) were used for Western  

blotting. 

Micropatterned substrates 

Micropatterned substrates were generated by microcontact printing of self-

assembled monolayers of alkanethiols on gold (Gallant et al., 2005).  Arrays of CH3-

terminated alkanethiol [HS-(CH2)11-CH3; Sigma] circles were stamped on to Au-coated 

glass coverslips using a PDMS stamp (Slygard 184/186 Elastomer-kit).  The remaining 

exposed areas were functionalized with a tri(ethylene glycol)-terminated alkanethiol [HS-

(CH2)11-(CH2CH2O)3-OH; ProChimia Surfaces].  Patterned substrates were coated 

with  human plasma fibronectin (20ug/mL), blocked with 1% heat-denatured BSA.  This 

process results in an array of fibronectin-coated circular islands 5µm in diameter spaced 

75µm apart to promote single cell attachment to each island. 

Adhesion strength assay 

Adhesion strength was measured using our spinning disc system (Gallant et al., 

2005; Garcia et al., 1998).  Micropatterned substrates with adherent cells were spun in 

PBS+2mM dextrose for 5 minutes at constant speed.  The applied shear stress (τ) is given 

by the formula 

            

where r is the radial position from the center and ρ, µ, ω are the fluid density, viscocity, 

and rotational speed, respectively.  In some experiments, the spinning buffer was 
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supplemented with 5% dextran to increase the fluid viscosity.  After spinning, cells were 

fixed in 3.7% formaldehyde, permeabilized in 1% Triton X-100, stained with ethidium 

homodimer-1 (Invitrogen) and counted at specific radial positions using a 10X objective 

lens in a Nikon TE300 microscope equipped with a Ludl motorized stage, Spot-RT 

camera and Image-Pro 6.3 analysis system.  A total of 61 fields (80-100) cells per field 

before spinning were analyzed and cell counts were normalized to the number of cells in 

the center of the disk.  The fraction of adherent cells (f) was then fitted to a sigmoid curve  

  
 

               
 

where τ50 is the shear stress for 50% detachement and b is the inflection slope.  τ50 

characterizes the mean adhesion strength for a population of cells. 

Focal adhesion assembly 

For staining of focal adhesion components, cells were permeabilized in 

cytoskeleton-stabilizing buffer (0.5% Triton X-100 + 50 mM NaCl + 150 mM sucrose + 

3 mM MgCl2 + 20 µg/ml aprotinin + 1 µg/ml leupeptin + 1 mM PMSF + 50 mM Tris, 

pH 6) for 10 min, fixed in 3.7% formaldehyde for 5 min, blocked in 5% fetal bovine 

serum, and  incubated with primary antibodies against focal adhesion components 

followed by AlexaFluor-labeled secondary antibodies (Invitrogen).  Images were 

captured using a Nikon 100X objective (1.3 NA) and Spot RT Camera/Software. Focal 

adhesion area fractions and intensities were quantified using calibrated image analysis 

software (ImagePro 6.3, Media Cybernetics). 

RNA knock-down of vinculin 



  23 

 

siRNA pooled sequences encoding for mouse vinculin (M-060130-00-0010) and a 

non-targeting (D-0 01210-01) negative control were purchased from Dharmacon.  FAK-

inducible cells were transfected using a Nucleofector II (Amaxa).  For each sample, 2 

million cells were resuspended in 100 µl of nucleofector solution MEF 2 with 1000 nM 

siRNA and 2.5 µg of pMAX GFP plasmid and co-transfected using program T-20 (60% 

transfection efficiency).  Twenty-four hours after transfection, cells were FACS-sorted 

for GFP expression and cultured in appropriate tetracycline condition for 48 h.  The 

spinning disk assay, Western blot, and immunostaining were performed 72 h after initial 

transfection. 

Statistical analysis 

Non-linear regression analysis was performed using SigmaPlot 2001 software 

(SPSS).  Analysis of variance (ANOVA) statistical analyses were performed using 

SYSTAT 11 software.    

Results 

FAK reduces steady-state adhesion strength 

To examine the role of FAK in adhesive force responses, we used FAK-null cells 

engineered for tetracycline-regulated expression of wild-type and mutant FAK (Tet-FAK 

cells)(Owen et al., 1999).  In these cells, FAK is expressed to high levels in the absence 

of tetracycline, whereas FAK expression is repressed in the presence of tetracycline in the 

culture media.  In the present study, Tet-FAK cells were maintained in the off-condition 

(FAK-) and FAK expression was induced at 48 hours prior to any experiment to ensure 

steady-state FAK levels (FAK+).  We analyzed two independent clones with equivalent 
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results and present results for one clone (clone 46 for wild-type FAK).   

Western blot analyses demonstrated that FAK is expressed at high levels in the 

absence of tetracycline, while FAK expression is repressed in the presence of tetracycline 

(Fig. 3.1C).  This inducible behavior in response to tetracycline is specific for FAK as no 

differences in expression levels were detected between these two culture conditions for 

other proteins, including vinculin (Fig. 3.1C).  In addition, we further examined levels of 

the FAK family member Pyk2 for potential compensatory effects in the absence of FAK.  

It has been reported that loss of FAK expression results in upregulation of Pyk2 levels 

(Lim et al., 2008).  However, we did not observe differences in Pyk2 protein levels in 

response to inducible FAK expression in Tet-FAK cells (Fig. 3.1C).  Thus while Pyk2 

upregulation was associated with the establishment of FAK-/- cells and is maintained in 

Tet-FAK cells (Owen et al., 1999), any differences in the cell behavior resulting from 

induced FAK expression in the Tet-FAK cells cannot be attributed to further changes in 

Pyk2 expression.    

To analyze cell adhesive responses, Tet-FAK cells were cultured overnight on 

fibronectin-coated micropatterned substrates (5 µm diameter circles, 75 m center-to-

center spacing) to ensure equivalent adhesive area and cell shape between FAK+ and 

FAK- conditions.  Tet-FAK cells readily adhere and remain constrained to the 

micropatterned area as single cells, consistent with previous analyses with other cell 

types (Gallant et al., 2005).    

We measured the steady-state levels of adhesion strength for FAK+ and FAK- 

cells at 24 hours using a hydrodynamic adhesion assay that provides direct and sensitive 

population-based measurements of adhesive force (Gallant et al., 2005).  We previously 
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demonstrated that steady-state adhesion is reached by 4 hours in this cellular system 

(Michael et al., 2009).  For this adhesion assay, coverslips containing micropattered cells 

are placed and spun on a rotating disk submerged in buffer at prescribed speeds.  The 

disk rotation generates a well-defined 3-D fluid flow that applies a controlled 

hydrodynamic force to adherent cells.  The hydrodynamic force increases linearly with 

radial position along the surface of the coverslip, such that cells at the center of the 

substrate experience negligible forces whereas the applied detachment force increases 

toward the outer edge of the disk, resulting in decreasing cell numbers.  In this manner, a 

linear range of forces is applied to a large cell population and adhesive strength 

measurements are obtained for > 6,000 cells in a single experiment.  After spinning, 

adherent cells are fixed and stained, and cell numbers at different radial positions are 

quantified using a motorized microscope stage and image analysis system.  The fraction 

of adherent cells (f) is calculated by dividing the number of cells in each field by the 

number of cells at the center of the coverslip, where negligible forces are applied. The 

detachment profile is then fit to a sigmoid curve to obtain the shear stress for 50% 

detachment.  The shear stress for 50% detachment (50) represents the mean adhesive 

force.  Figure 3.1A shows typical detachment profiles (gray circles (FAK+) and squares 

(FAK-) represent cell densities at a specific radial position and fitted points (filled circles 

(FAK+), empty circles (FAK-)) and sigmoid fit.  The right-ward shift in the detachment 

profile for the FAK- cells compared to the FAK+ condition indicates a higher adhesive 

force.  The 50 values over several independent experiments were averaged (Fig. 3.1B).  

FAK- cells exhibited a 33% increase in adhesion strength compared to FAK+ cells (p < 

0.00005).  This finding indicates that FAK reduces steady-state adhesive forces. 
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Figure 3.1.  FAK modulates steady-state levels of adhesion forces.  (A)  Adhesive 

profiles showing the fraction of adherent cells as a function of applied shear stress for 

FAK-expressing (FAK+) and FAK-null (FAK-) cells.  Experimental values (FAK+, grey 

circles; FAK-, grey squares) were fitted to a sigmoid curve (fit values:  FAK+, filled 

circles; FAK-, empty circles) to obtain the shear stress for 50% detachment, indicated by 

vertical lines.  (B)  Mean adhesion strength values showing increased adhesive forces for 

FAK- cells (mean +/- S.D.).  1 dyne = 10
-5

N.  (C)  Tetracycline-regulated expression of 

FAK in FAK-null cells.  In the absence of tetracycline (-tet), FAK expression is 

activated.  Addition of tetracycline to the culture media (+tet) represses FAK expression.  

No differences in expression levels for Pyk2 or vinculin were observed between tet 

conditions.  Representative Western blots (top) and quantification of protein levels 

(normalized to FAK-null condition [+tet], bottom) are shown. 
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FAK modulates steady-state adhesive force via vinculin recruitment to the adhesive 

interface 

The reduction in steady-state adhesion strength for FAK-expressing cells could 

arise from (i) a decrease in the number of integrin/ECM bonds, (ii) modified 

position/distribution of bonds, (iii) reduction in the coupling of integrin/ECM bonds to 

the cytoskeleton (e.g., focal adhesion assembly), or (iv) change in the conformation state 

of the bound integrins.  We previously demonstrated that integrin α5β1 binding to 

fibronectin provided the dominant adhesion mechanism in this cellular system (Michael 

et al., 2009). Biochemical analyses of integrin binding revealed no differences in the 

numbers of bound integrin for FAK+ and FAK- cells at steady state, and no differences in 

integrin localization within the adhesive interface were observed by immunostaining 

(data not shown).  In addition, we previously demonstrated that there were no differences 

in the activation state of β1 between FAK+ and FAK- conditions at steady-state (Michael 

et al., 2009).  We therefore postulated that the differences in steady-state adhesive force 

arise from differences in focal adhesion assembly.  We have demonstrated that focal 

adhesion assembly, independently from integrin binding, contributes significantly to 

adhesion strength (Gallant et al., 2005).  Immunostaining for vinculin demonstrated 

localization of this cytoskeletal protein around the periphery of the micropatterned 

contact area for both FAK+ and FAK- cells (Fig. 3.2A).  We conducted a comprehensive 

analysis of vinculin localization focusing on fractional area, intensity (density), and the 

product of intensity and area (Fig. 3.2A).   FAK+ cells exhibited a significant (35%) 

reduction in the adhesive area occupied by vinculin compared to FAK- cells.  There are 

no differences in mean intensity between FAK+ and FAK- cells.  The differences in the 
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density & area product between FAK+ and FAK- are attributed to differences in focal 

adhesion area.  Differences in recruitment to the adhesive area were specific for vinculin 

as no differences in staining were detected between FAK+ and FAK- cells for talin, 

tensin, and paxillin (Fig. 3.2B,C). 

Recruitment of focal adhesion components to integrin clusters is expected to 

increase adhesive force by efficiently distributing mechanical loads among bound 

integrins.  In fact, we previously demonstrated that vinculin recruitment to focal 

adhesions enhances adhesion strengthening by 30% in fibroblasts (Gallant et al., 2005).  

We therefore carried out RNAi knock-down experiments to determine the contributions 

of vinculin to steady-state adhesion strength in FAK+ and FAK- cells.  Tet-FAK cells 

were co-transfected with a GFP plasmid and siRNA duplexes for either vinculin (VCL) 

or non-targeting control sequence (NT) via nucleofection.  After 24 h, cells were sorted 

for GFP expression and cultured in the appropriate tetracycline condition for 48 h prior to 

cell adhesion analyses.  siRNA VCL knock-down reduces vinculin levels by 80% in 

FAK+ and FAK- cells (Fig. 3.3A); the non-targeting control sequence has no effects on 

vinculin levels.  Immunostaining analyses demonstrated that vinculin knock-down 

eliminates the differences in vinculin localization between FAK+ and FAK- cells at 24 h 

(Fig. 3.3B), whereas significant differences in vinculin localization are still evident 

between FAK+ and FAK- cells for the non-targeting control siRNA.  Notably, vinculin 

knock-down abrogates differences in steady-state adhesion strength between FAK+ and 

FAK- cells (Fig. 3.3C).  Interestingly, no significant differences in vinculin recruitment 

or adhesion strength were observed between siRNA-treated and control FAK+ cells.  We 

attribute this finding to residual vinculin localization to focal adhesions since only 15-
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20% of the total vinculin pool localizes to focal adhesions (Gallant et al., 2005).  Vinculin 

exhibits a high affinity for localization to focal adhesions and other investigators have 

experienced difficulties in completely eliminating vinculin localization from focal 

adhesions via RNAi approaches (S.W. Craig, personal communication). Taken together, 

these results demonstrate that FAK regulates steady-state adhesive force by modulating 

vinculin localization to focal adhesions. 
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Figure 3.2.  FAK modulates vinculin localization to the adhesive interface.  (A)  

Immunostaining for vinculin recruitment to the micropatterned adhesive area, showing 

differences in the vinculin-containing focal adhesion area (scale bar, 2 µm).  

Quantification of vinculin-occupied adhesive area, intensity, and area-intensity product 

shown in the left, middle, and right panels, respectively.  (B)  Immunostaining (talin) and 

quantification of focal adhesions (FA) components recruited to micropatterned adhesive 

area, showing no difference between FAK+ and FAK- cells. 
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Figure 3.3.  FAK regulates steady-state adhesive forces by modulating vinculin 

localization to focal adhesions.  (A)  RNAi knock-down reduced vinculin levels by 80% 

in FAK+ and FAK-.  NT, non-targeting control.  (B)  Vinculin knock-down eliminated 

differences in steady-state vinculin recruitment to the adhesive area between FAK+ and 

FAK- cells.  (C)  Vinculin knock-down eliminated differences in steady-state adhesion 

strength between FAK+ and FAK- cells.  1 dyne  = 10
-5

N. 
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FAK knock-down in human dermal fibroblasts increases adhesive force and vinculin 

recruitment 

We next examined the effects of FAK expression on adhesion strength and 

vinculin recruitment in primary fibroblasts to rule out any artifacts associated with the 

Tet-FAK cells.  Human dermal fibroblasts were transduced with FAK siRNA-puromycin 

or control puromycin retrovirus, and puromycin-resistant cells were selected.  Fibroblasts 

transduced with FAK siRNA retrovirus exhibited a 95% reduction in FAK expression 

compared to control cells, whereas vinculin and Pyk2 levels remained unchanged (Fig. 

3.4A).   

Measurements of adhesion strength for micropatterned cells showed 35% higher 

levels for fibroblasts with knocked-down FAK expression compared to control cells (Fig. 

3.4B).  This relative increase in adhesion strength is in excellent agreement with the 

results for the Tet-FAK cells.  Furthermore, consistent with our observations for Tet-FAK 

cells, FAK knock-down enhances vinculin, but not talin, localization to the adhesive area 

(Fig. 3.4C).   
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Figure 3.4.  FAK knock-down in human dermal fibroblasts modulates adhesive forces.  

(A)  FAK siRNA-puro retrovirus efficiently reduced FAK levels compared with control.  

No significant differences in Pyk2 or vinculin expression levels were detected.  (B)  

Knock-down of FAK increases cell adhesion strength.  (C)  FAK knock-down enhances 

vinculin, but not talin, recruitment to the adhesive interface.  1 dyne = 10
-5

N. 

 

Discussion 

We demonstrate that FAK reduces steady-state adhesive force via vinculin 

localization to focal adhesions.  Vinculin localization to the adhesive interface most 

likely modulates adhesive force by altering the local distribution of forces at the adhesive 
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interface (Gallant et al., 2005; Gallant and Garcia, 2007).  This work provides new 

insights into the role of FAK in the generation of adhesive forces involved in mechanical 

interactions between a cell and its environment.  We recently demonstrated that during 

the early stages of adhesion FAK enhances the adhesion strengthening rate by 

upregulating integrin activation to enhance integrin binding (Michael et al., 2009).  These 

FAK-dependent changes in integrin activation and binding and adhesive force generation 

were only observed in the early stages (<1-2 hour) of the adhesion process.  In the present 

study, we demonstrate that, as the adhesive process reaches steady-state, FAK has an 

opposite effect in adhesive forces by reducing adhesion strength.  This down-regulation 

in adhesive force arises from a separate mechanisms involving vinculin localization to 

focal adhesions. Once localized to focal adhesions, vinculin is proposed to be the primary 

functional link between focal adhesions and the actin cytoskeleton (Humphries et al, 

2007).  Taken together, these results indicate that FAK plays a multi-faceted, time-

dependent role in adhesive force generation.  These time-dependent, mechanism-distinct 

roles for FAK in adhesive force generation may be related to the biochemically distinct 

stages in cell adhesion to fibronectin recently established by Sheetz and colleagues 

(Zhang et al., 2008).  Whereas we demonstrate significant contributions for FAK in 

adhesive force generation, previous studies with deformable substrates did not reveal a 

role for FAK in the development of traction forces (Wang et al., 2001; Pirone et al., 

2006).  We attribute these seemly contradictory observations to fundamental differences 

among cellular forces. We propose that mechanical interactions between a cell and its 

environment involve diverse force components (e.g., traction/propulsive, contractile, 
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tensile, adhesive). Importantly, these factors are not equal and should therefore be 

considered as distinct entities that together comprise cellular forces.    

The mechanism by which FAK regulates the steady-state levels of vinculin 

localization to the adhesive area has recently been shown to be dependent on FAK-

mediated paxillin phosphorylation (Pasapera et al., 2010).  Specifically, myosin II 

activity enhances FAK-mediated phosphorylation of paxillin on tyrosines 31 and 118 and 

enhances vinculin recruitment to focal adhesions.  Importantly, phospho-memetic 

mutations of paxillin enhance vinculin recruitment in a myosin-II independent manner.  

That fact that, in our system, FAK-null cells increase adhesion strength by enhancing 

vinculin recruitment to focal adhesions at first seems contradictory to the Pasapera 

finding.  A closer examination of the Pasapera data reveals that FAK Y397 

phosphorylation is not solely responsible for paxillin phosphorylation, and thus, vinculin 

recruitment to focal adhesions (Pasapera et al., 2010).   Interestingly, in a separate study, 

fluorescence recovery after photobleaching experiments demonstrated that vinculin 

exchange dynamics within focal adhesions are directly coupled to phosphorylation of 

tyrosine 1065 ((Mohl et al., 2009)).  Specifically, phosphorylation of vinculin decreases 

as focal adhesions mature and stabilize.  We postulate that, in addition to phospho-

paxillin-enhanced recruitment, it is possible that FAK phosphorylation of vinculin 

modifies the dynamics of vinculin in focal adhesions.   
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CHAPTER 4 

CONTRACTILIY MODULATES CELL ADHESION STRENGTH 

THROUGH FOCAL ADHESION KINASE AND ASSEMBLY OF 

VINCULIN-CONTAINING FOCAL ADHESIONS
* 

 

 

 

Abstract 

Actin-myosin contractility modulates focal adhesion assembly, stress fiber 

formation, and cell migration. We analyzed the contributions of contractility to fibroblast 

adhesion strengthening using a hydrodynamic adhesion assay and micropatterned 

substrates to control cell shape and adhesive area.  Serum addition resulted in adhesion 

strengthening to levels 30% higher than serum-free cultures.  Inhibition of myosin light 

chain kinase or Rho-kinase blocked phosphorylation of myosin light chain to similar 

extents and eliminated the serum-induced enhancements in strengthening.  Blebbistatin-

induced inhibition of myosin II reduced serum-induced adhesion strength to similar 

levels as those obtained by blocking myosin light chain phosphorylation.  Reductions in 

adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and 

talin from focal adhesions without changes in integrin binding.  In vinculin-null cells, 

*Modified from  

(1)  Dumbauld DW
1
, Shin HN

1
, Gallant ND, Michael KE, Radhakrishna H, García AJ.  

Contractility modulates cell adhesion strengthening through focal adhesion kinase and 

assembly of vinculin-containing focal adhesions.  J Cell Physiol. 2010.  
1
 – authors contributed equally to this work 
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inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% 

reduction in adhesion strength, indicating that the effects of contractility on adhesive 

force are vinculin-dependent.  Furthermore, in FAK-null mouse embryonic fibroblasts 

engineered to express FAK, inhibitors of contractility reduced serum-induced adhesion 

strengthening as well as eliminated focal adhesion assembly.  In contrast, in the absence 

of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly.  

These results indicate that contractility modulates adhesion strengthening via FAK-

dependent, vinculin-containing focal adhesion assembly. 

Introduction 

Integrin-mediated cell adhesion to the extracellular matrix (ECM) plays central 

roles in various cellular processes including survival, cell cycle progression, and the 

expression of tissue-specific phenotypes (Danen and Sonnenberg, 2003; Hynes, 2002).  

Cell adhesion comprises the coordinated evolution of binding of integrin receptors to 

adhesive domains in ECM ligands, integrin clustering, interactions with the actin 

cytoskeleton, and focal adhesion assembly (Geiger et al., 2001; Sastry and Burridge, 

2000).  Focal adhesions are discrete adhesive plaques that contain numerous structural 

(e.g., vinculin, talin, and -actinin) and signaling elements (e.g., FAK, Src, paxillin, and 

p130CAS).  Focal adhesions have emerged as putative mechanosensors for extracellular 

stimuli (Riveline et al., 2001; Wang et al., 2001).  For example, external forces exerted 

on integrins enhance focal adhesion assembly and increase the strength and rigidity of the 

linkage between integrins and the actin cytoskeleton (Choquet et al., 1997; Geiger et al., 

2009; Riveline et al., 2001; Wang et al., 1993).  Moreover, focal adhesion assembly plays 

a key role in the generation of strong traction forces.  Following initial integrin binding, 
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recruitment of focal adhesion components, such as vinculin and talin, result in graded 

increases in traction forces (Balaban et al., 2001; Galbraith et al., 2002; Tan et al., 2003).  

Focal adhesion assembly also contributes to cell adhesion strengthening by distributing 

bond forces along the cell-substrate interface (Gallant et al., 2005; Lotz et al., 1989).  

Nevertheless, the specific contributions of focal adhesion size and distribution to 

adhesion strength, independently from integrin-ligand bond strength and cytoskeletal 

architecture, remain poorly understood. 

 Contractile forces generated inside the cell regulate migration, neurite extension, 

cytokinesis, muscle cell contraction, cell cycle progression, angiogenesis and 

differentiation (Griffin et al., 2004; Mammoto et al., 2009; Mammoto et al., 2004; 

McBeath et al., 2004; Parizi et al., 2000; Polte et al., 2004; Tanaka and Sabry, 1995; 

Wozniak et al., 2003).  Contractility results from dynamic interactions between actin 

filaments and myosin, which are regulated via phosphorylation of myosin light chain 

(MLC) (Kaibuchi et al., 1999; Worthylake and Burridge, 2003).  Rho GTPases control 

the formation of stress fibers and focal adhesion assembly by modulating MLC 

phosphorylation and generating actin-myosin contractility (Amano et al., 1997; 

Chrzanowska-Wodnicka and Burridge, 1996; Totsukawa et al., 2000).  When activated 

by serum factors, such as lysophosphatidic acid (LPA), Rho acts through its effector Rho-

kinase (also termed ROCK), to enhance the contraction of smooth muscle cells as well as 

nonmuscle cells by either inactivation of myosin phosphatase (Kimura et al., 1996) or 

direct phosphorylation of MLC (Totsukawa et al., 2000).  Contractile forces can also be 

modulated by MLC kinase (MLCK), which promotes assembly of actin-myosin filaments 

and MLC phosphorylation (Gallagher et al., 1997). 
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 The equilibrium of forces within a cell represents a balance of internal contractile 

forces and anchoring forces to the underlying substrate (Ingber, 2003; Zhu et al., 2000).  

This complex and dynamic balance is governed by the size and distribution of cell-

substrate adhesive structures, cytoskeletal architecture, and spatiotemporally-regulated 

internal contractile forces.  The contributions of actin-myosin contractility to adhesive 

interactions have been characterized primarily in spreading and migration assays.  While 

these functional measurements have identified key roles for actin-myosin contractility in 

focal adhesion assembly, stress fiber formation, and migratory forces (Amano et al., 

1997; Chrzanowska-Wodnicka and Burridge, 1996; Worthylake and Burridge, 2003), 

relatively little is known about how actin-myosin contractility and focal adhesion 

assembly regulate cell adhesive forces.  This lack of quantitative understanding of 

adhesion strengthening limits the interpretation of functional studies of structural and 

signaling focal adhesion components.  Cell spreading and migration assays do not 

provide direct measurements of adhesion strength and generally serve as implicit 

indicators of adhesion strength due to the complex spatiotemporal relationships between 

migration/spreading and adhesion strength.  For instance, cell migration speed exhibits a 

biphasic dependence on adhesion strength (Palecek et al., 1997).  In the present study, we 

used a robust quantitative cell adhesion assay in combination with micropatterned 

substrates to control adhesive area in order to examine the role of actin-myosin 

contractility in cell adhesion strengthening. 
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Materials and Methods 

Reagents  

Human plasma fibronectin and Dulbecco‟s phosphate buffered saline (PBS) were 

obtained from Invitrogen (Carlsbad, CA).  Bovine serum albumin, mouse anti-talin and 

anti-biotin antibodies, and H-7 were purchased from Sigma (St. Louis, MO).  Mouse 

antibody against glyceraldehyde-3-phosphate dehydrogenase (GAPDH), rabbit anti-

paxillin, and rabbit anti-5 antibodies were obtained from Chemicon (Temecula, CA).  

Biotin-conjugated donkey anti-rabbit and donkey anti-mouse antibodies were obtained 

from Jackson ImmunoResearch (West Grove, PA).  Rabbit anti-FAK and mouse anti-

vinculin antibodies were purchased from Upstate Biotechnology (Lake Placid, NY).  

Rabbit anti-myosin light chain (MLC) 2 (Santa Cruz Biotechnology, Santa Cruz, CA) and 

rabbit anti-phospho-MLC (Abcam, Cambridge, MA) antibodies were also used.  Hoechst 

33258, AlexaFluor 488-conjugated antibody against mouse IgG, ethidium homodimer, 

and rhodamine phalloidin were purchased from Molecular Probes (Eugene, OR).  

Poly(dimethylsiloxane) (PDMS) elastomers and curing agents were obtained from Dow 

Corning (Midland, MI).  Inhibitors (Y-27632, HA-1077, blebbistatin, and cytochalasin D 

(CD)) were purchased from Calbiochem (La Jolla, CA). 3,3´-

Dithiobis(sulfosuccinimidylpropionate) (DTSSP) was purchased from Pierce Chemical 

(Rockford, IL).  Tri(ethylene glycol)-terminated alkanethiol (HO(CH2CH2O)3-

(CH2)11SH) was purchased from ProChimia Surfaces (Sopot, Poland).  All other reagents 

including hexadecanethiol (H3C(CH2)15SH) were purchased from Sigma. 



  41 

 

Micropatterned Substrates 

Micropatterned arrays of adhesive islands within a non-adhesive background were 

prepared by microcontact printing of self-assembled monolayers of alkanethiols on gold-

coated glass coverslips .  A master template featuring circular holes (10 m diameter) 

with a 75 m center-to-center spacing was prepared on a Si wafer.  UV light was exposed 

to a photoresist-coated Si wafer through an optical mask (Gallant and Garcia, 2007a)with 

the desired pattern.  The UB-exposed area was then etched away, leaving a template mold 

of recessed wells of the pattern.  The template was coated with (tridecafluoro-1,1,2,2,-

tetrahydrooctyl1)-1-trichlorosilane under vacuum for 30 minutes to facilitate removal of 

the template from a PDMS stamp following the curing process.  PDMS precursors 

(Slygard 186:184, 10:1) and curing agents were vigorously mixed at 10:1 ratio, poured 

over the template in a 100 mm diameter glass Petri dish, placed under vacuum for 30 

minutes to remove air bubbles, and cured overnight at 65C.  Following curing, the 

PDMS stamp was peeled from the master template and sonicated in 70% ethanol for 30 

minutes.  Glass coverslips were cleaned in O2 plasma using a plasma etcher (Plasmatic 

Systems, North Brunswick, NJ) for 4 min and coated with Ti (100 Å) followed by Au 

(150 Å) using an electron beam evaporator (Thermonics, San Leandro, CA).  For 

stamping, the PDMS stamp was sonicated in 70% ethanol for 15 minutes, dried, and 

placed onto a glass slide for rigid backing.  The Au-coated glass coverslip was cleaned 

under a stream of N2 and laid down on a glass slide.  The patterned face of the PDMS 

stamp was brushed with 1.0 mM hexadecanethiol (in absolute ethanol) using a cotton 

swab, blown dry under a stream of N2 and overlaid onto the Au-coated glass coverslip for 

20 seconds.  Conformal contact of the stamp with the Au substrate generated CH3-
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terminated circular patterns on the glass coverslip that readily allow protein adsorption 

and cell adhesion.  The coverslip featuring hexadecanethiol islands was subsequently 

incubated in 1.0 mM ethanolic solution of (HO(CH2CH2O)3-(CH2)11SH) for 4 hours to 

create non-fouling domains around the cell-adhesive islands.  The micropatterned 

substrate was then rinsed twice with 70% ethanol and PBS, coated with fibronectin (20 

g/mL) for 30 minutes, then blocked with heat-inactivated serum albumin (1% w/v) for 

30 minutes, and incubated in PBS overnight to elute non-specifically adsorbed 

fibronectin from non-adhesive regions (Capadona et al., 2003).   

Cell Culture and Inhibitor Treatment  

Murine NIH3T3 fibroblasts (CRL-1658) were purchased from the American Type 

Culture Collection (Manassas, VA) and cultured in DMEM containing 10% newborn calf 

serum, penicillin (100 unit/mL), and streptomycin (100 g/mL).  Vinculin-null and 

vinculin +/+ mouse embryo fibroblasts were a kind gift from Eileen Adamson and have 

been previously described (Xu et al., 1998a).  Vinculin-/- and vinculin+/+ mouse embryo 

fibroblasts were cultured in DMEM supplemented with 10% FBS, sodium pyruvate (1 

mM), penicillin (100 units/mL), streptomycin (100 g/mL), and non-essential amino 

acids (1 mM).  Tet-FAK fibroblasts were engineered to express FAK under a 

tetracycline-regulated promoter have been previously described (Owen et al., 1999).  In 

the presence of tetracycline, FAK expression is repressed, whereas in the absence of 

tetracycline, high FAK levels are induced.  Tet-FAK cells were cultured in DMEM 

supplemented with 10% FBS, sodium pyruvate (1 mM), penicillin (100 unit/mL), 

streptomycin (100 g/mL), amphotericin B (0.25 g/mL), and non-essential amino acids 

(1mM) in the absence or presence of tetracycline (1.0 g/mL) for two days prior to cell 
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seeding.  Cells were enzymatically lifted from the culture dish using trypsin/EDTA and 

seeded onto micropatterned substrates at 225 cells/mm
2
.  Cell cultures were maintained 

for 16 hours in serum-containing media prior to analysis of steady state adhesion (Gallant 

et al., 2002).  For pharmacological treatments, cultures were incubated for 30 minutes 

prior to analysis in Y-27632 (50 M), H-7 (500 M), HA-1077 (50 M), blebbistatin 

(250 M), and CD (1 M).  For serum-free studies, cells were cultured in DMEM 

supplemented with 1% serum albumin and 0.1% ITS. 

Adhesion Assay 

Adhesion strength was measured using our spinning disc system.  Micropatterned 

substrates with adherent cells were spun in PBS+2mM dextrose for 5 minutes at constant 

speed.  The applied shear stress (τ) is given by the formula 

            

where r is the radial position from the center and ρ, µ, ω are the fluid density, viscocity, 

and rotational speed, respectively.  In some experiments, the spinning buffer was 

supplemented with 5% dextran to increase the fluid viscosity.  After spinning, cells were 

fixed in 3.7% formaldehyde, permeabilized in 1% Triton X-100, stained with ethidium 

homodimer-1 (Invitrogen) and counted at specific radial positions using a 10X objective 

lens in a Nikon TE300 microscope equipped with a Ludl motorized stage, Spot-RT 

camera and Image-Pro 6.3 analysis system.  A total of 61 fields (80-100) cells per field 

before spinning were analyzed and cell counts were normalized to the number of cells in 

the center of the disk.  The fraction of adherent cells (f) was then fitted to a sigmoid curve  
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where τ50 is the shear stress for 50% detachement and b is the inflection slope.  τ50 

characterizes the mean adhesion strength for a population of cells. 

Protein Expression and Phosphorylation  Levels 

Cultures were rinsed in PBS and lysed for 20 min at room temperature in RIPA 

buffer (150 mM NaCl, 1% Triton X-100, 1% deoxycholate, 0.1% SDS, 150 mM Tris, pH 

7.2) containing Na3VO4 (0.04% w/v) and protease inhibitors (10 g/mL leupetin, 10 

g/mL aprotinin, and 350 g/mL PMSF).  The protein content of total cell lysates was 

determined by microBCA assay (Pierce, Rockford, IL).  Identical amounts of cell lysates 

were mixed in sample buffer (50 mM Tris-HCl pH 6.8, 100 mM DTT, 2% SDS, 10% 

glycerol, and 0.1% bromophenol blue) and separated by SDS-PAGE (8% or 16% gels).  

After transferring to nitrocellulose membranes, proteins were visualized by incubating in 

primary and secondary antibodies and ECF substrate (Pierce, Rockford, IL).  Relative 

amounts of proteins were quantified by image analysis. 

Focal Adhesion Assembly 

For immunostaining of focal adhesion proteins, adherent cells were rinsed with 

PBS, fixed in ice-cold formaldehyde (3.7% in PBS) for 3 min, permeablized for 15 

minutes in cold 0.5% Triton X-100 containing protease inhibitors ( 20 g/mL aprotinin, 1 

g/mL leupeptin, and 350 g/mL PMSF).  After incubating in blocking buffer (5% FBS, 

0.1% Tween 20, 0.02% NaN3 in PBS) for 1 h at 37C, samples were incubated in primary 

antibodies for 1 h at 37C, followed by AlexaFluor488-conjugated secondary antibody, 

rhodamine phalloidin, and Hoechst 33258 for 1 h at 37C.  For quantification of proteins 

localized to focal adhesions, micropatterned cells were analyzed by a modified wet 
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cleaving method (Keselowsky and Garcia, 2005).  Briefly, cultures were rinsed with PBS 

(Ca
2+

/Mg
2+

 free) containing protease inhibitors.  A dry nitrocellulose sheet (PROTRAN 

BA85, Schleicher & Schuell) was then overlaid onto the cells for 1 min and rapidly 

removed to isolate cell bodies from basal cell membranes containing focal adhesions.  

Remaining adhesive structures on surfaces were scraped into sample buffer (100 L).  

Western blotting was used for quantitative analysis of recovered focal adhesion proteins. 

Integrin Binding  

Integrin binding was quantified via a cross-linking/extraction/reversal procedure 

(Garcia et al., 1999; Keselowsky and Garcia, 2005).  After rinsing cultures three times 

with PBS, DTSSP (1.0 mM in cold PBS + 2 mM dextrose) was incubated for 30 minutes 

to cross-link integrins to their bound ligands.  The cross-linking reaction was quenched 

by addition of Tris (50 mM in PBS) for 15 minutes.  Uncross-linked cellular components 

were then extracted in 0.1% SDS containing 10 g/mL leupeptin, 10 g/mL aprotinin 

and 350 g/mL PMSF.  Cross-linked integrins to their bound ligands were visualized by 

immunostaining with 5 integrin-specific antibodies.  Alternatively, bound integrins were 

quantified by Western blotting following cleaving of the cross-linker in 50 mM DTT and 

0.1% SDS for 30 minutes at 37C. 

Statistics  

Data are reported as mean  standard deviation.  ANOVA was used with a 95% 

confidence interval (SYSTAT 8.0, SPSS, Chicago, IL).  If ANOVA detected significant 

differences, Tukey HSD multiple comparison tests were performed to establish treatment 

effects. 
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Results 

Acto-myosin contractility regulates adhesion strength 

Cells were plated on fibronectin-coated micropatterned substrates with 

dimensions smaller than a cell diameter in order to control adhesive area and cell shape.  

This approach allows isolation of focal adhesion assembly from changes in cell 

spreading/shape and provides for direct comparisons among experimental groups.  We 

previously reported that NIH3T3 fibroblasts remained viable for several days when 

adhering to micropatterned circular islands with dimensions ranging from 2 to 20 m 

diameter (Gallant et al., 2005).  Cells maintained a round morphology (Fig. 4.1A), and 

their contact area and focal adhesions were constrained to the micropatterned domain. 

The 75 m center-to-center spacing of islands restricted a single cell to occupy one 

adhesive island, preventing interactions with neighboring cells.  To further validate our 

cell patterning system, we compared the adhesion strength of unpatterned, spread cells 

with those constrained to 10µm adhesive islands in the presence or absence of serum and 

LPA (Fig. 4.2A).  No significant differences were detected between the patterned and 

unpatterned cells and their respective treatment groups.   
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Figure 4.1.  (A) Phase contrast image of adherent NIH 3T3 cells cultured for 16 h on 

micropatterned substrate (scale bar: 10µm).  (B) Characteristic detachment profiles 

showing the fraction of adherent cells (f) versus applied shear stress (τ). The shear stress 

for 50% detachment (indicated by arrows in the profile), τt50, represents the mean 

adhesion strength. Adhesion strength is 632dyne/cm
2
 for untreated control cells, and is 

shifted left-ward to 451dyne/cm
2
 for cell treated with Y-27632 (50µM). 

 

 We measured adhesion strength using a spinning disk device that applies a range 

of well-defined hydrodynamic shear forces to adherent cells (Garcia et al., 1998).  For a 

particular sample, the fraction of adherent cells (f) is plotted as a function of the applied 

shear stress ().  From this detachment profile, the shear stress for 50% detachment (50), 

which represents the mean cell adhesion strength, is determined.  Fig. 4.1B depicts 

typical detachment profiles showing the fraction of adherent cells vs. applied shear stress.  

We chose a 16 hour culture time point for analysis of long-term adhesion strength 
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because it was previously demonstrated that the adhesion strength of NIH3T3 fibroblasts 

on micropatterned substrates reached constant values by 4 h and remained constant for up 

to 16 hours (Gallant et al., 2005).  Equivalent levels of adhesion strength were observed 

in serum- and LPA-treated cultures (640  55 dyne/cm
2
) (Fig. 4.2A).  These values are 

30% higher than those for cells cultured under serum-free conditions (450  80 

dyne/cm
2
). 

 Because actin-myosin contractility is driven by phosphorylation of MLC, which is 

regulated by MLCK and Rho-kinase (Gallagher et al., 1997), we used pharmacological 

inhibitors that impair phosphorylation of MLC to examine the contributions of 

contractility to adhesion strength.  Y-27632 is a specific inhibitor of Rho-kinase 

(Narumiya et al., 2000).  H-7 inhibits phosphorylation of MLCK, which in turn potently 

blocks phosphorylation of MLC (Volberg et al., 1994).  HA-1077 has a broad negative 

influence on both Rho-kinase and MLCK activity (Yanase et al., 2003).  Inhibitor dosage 

and exposure time were selected from published reports and preliminary experiments 

showing no gross adverse effects.  To examine the contributions of actin-myosin 

contractility inhibitors to cell adhesion strengthening, we measured adhesion strength of 

cells exposed to contractility inhibitors for 30 minutes prior to spinning.  In general, 

inhibitors of Rho-kinase and MLCK significantly reduced adhesion strength for cells 

adhering in the presence of serum as demonstrated by a left-ward shift in the detachment 

profile (Fig. 4.1B).  Adhesion strength values for each inhibitor (409  845 dyne/cm
2
 for 

Y-27632, 468  80 dyne/cm
2
 for H-7, and 473  84 dyne/cm

2
 for HA-1077) were 30-

35% lower than those for untreated controls in the presence of serum (640  55 

dyne/cm
2
) (Fig. 4.2B).  Although Y-27632 and HA-1077 are known inhibitors of Rho-
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kinase and actin-myosin contractility, Rho-kinase has other targets and, therefore, may 

alter cell-matrix adhesion by a mechanism not directly related to contractility (Amano et 

al., 2000).  As an alternative to inhibiting MLC phosphorylation, additional experiments 

were performed in the presence of blebbistatin, a specific inhibitor of myosin II activity 

that acts via a distinct mechanism (Kovács et al., 2004).  Blebbistatin also reduced serum-

induced cell adhesion strength to similar levels (480  110 dyne/cm
2
) as the agents that 

reduce MLC phosphorylation via inhibition of Rho-kinase and MLCK (Fig. 4.2B).  

Additional experiments under serum-free conditions revealed that these contractility 

inhibitors do not reduce adhesion strength below levels for untreated, serum-free samples 

(Fig. 4.2B).  Taken together, these results show that actin-myosin contractility accounts 

for the increases in adhesion strength resulting from serum stimulation.  Finally, 

treatment with cytochalasin D (CD) was included for comparison as CD is expected to 

modulate adhesion strength via a different mechanism, namely disruption of actin 

filament polymerization.  Cells treated with CD exhibited significantly lower adhesion 

strength (270  36 dyne/cm
2
) than cells treated with any of the contractility inhibitors or 

cells cultured under serum-free conditions. 

 Following treatment with these inhibitors, phosphorylation of MLC was analyzed 

by Western blotting.  For equivalent total MLC levels, relative amounts of 

phosphorylated MLC in cells treated with inhibitors were significantly decreased 

compared to untreated controls (Fig. 4.2C).  There were no differences in MLC 

phosphorylation levels among inhibitor treatments as determined by quantification of the 

Western blots in Figure 4.2C .  These results confirm essential roles of MLCK and Rho-

kinase in MLC phosphorylation.  In addition, since all inhibitor treatments reduced MLC 
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phosphorylation to the same level despite distinct mechanisms of action in blocking 

actin-myosin contractility, this result suggests that cell adhesion strength is regulated by 

overall levels of phosphorylated MLC rather than specific effects of Rho-kinase or 

MLCK. 

 To elucidate the mechanism by which cell detachment occurred on 10µm islands 

of fibronectin under the applied forces, cells were spun and stained for vinculin, F-actin, 

and DNA.  For control untreated samples, cells at the center of the disk, which experience 

low detachment forces, stained positive for vinculin and F-actin (not shown) in a manner 

similar to unstressed cells.  However, at the periphery of the substrate where detachment 

forces are highest, minimal traces of vinculin (Fig. 4.2D) and F-actin were observed.  

This negative staining indicates that cell detachment took place at the junction between 

focal adhesions and the underlying substrate, resulting in removal of the entire cell 

without gross failure.  Similar staining patterns were observed for cells treated with 

contractility inhibitors (Fig. 4.2D).  In contrast, cultures treated with CD displayed 

significant cytoskeletal debris and vinculin at the periphery of the sample following 

detachment (Fig. 4.2D).  This residual cytoskeletal debris indicates gross cell failure at 

points above focal adhesions due to loss of cellular integrity arising form impaired actin 

polymerization.  Taken together, these results indicate that inhibition of MLC 

phosphorylation and contractility does not reduce adhesion strength by compromising 

cellular integrity and that cell detachment under these conditions occurs at the focal 

adhesion-substrate interface. 
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Figure 4.2:  Adhesion strength for patterned and spread (unpatterned) NIH 3T3 

fibroblasts cultured under serum-containing or serum-free conditions, and treated with 

LPA and serum supplemented with Y-27632 (50µM) for 30min. Adherent cells were 

spun and analyzed to determine adhesion strength. *P < 0.04 relative to serum containing 

controls (mean ± standard deviation, n=3–5).  (B) Adhesion strength for micropatterned 

NIH 3T3 fibroblasts cultured under serum-containing or serum-free conditions, and 

treated with pharmacological agents for 30min: Y-27632 (50µM), H-7 (500µM),  HA-

1077 (50µM), blebbistatin  (250µM), or CD (1µM). Adherent cells were spun and 

analyzed to determine cell adhesion strength. *P < 0.05 and #P < 0.01 relative to no 

treatment controls (mean±standard deviation, n=3–5).  Dashed line represents adhesion 

strength for cells cultured under serum-free conditions.  (C)  Western blotting (left) for  

MLC and phosphorylated-MLC in cells cultured in serum-containing media on 

micropatterned substrates for 16 h and treated with Y-27632 (50µM), H-7 (500µM), and 

HA-1077 (50µM) for 30min and quantification (right) of protein levels (n=3).  (D)  

Immunostaining for vinculin on adherent cells on micropatterned islands (10mm 

diameter) of fibronectin located on the periphery of the disk following application of 

detachment forces. Cells on edge of disk are exposed to maximal detachment force. 

Cells treated with vehicle, Y-27632 (50µM), or CD (1µM) (scale bar: 10µm). 
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Reduction in cell adhesion strength correlates with dissolution of focal adhesions 

independently of changes in integrin binding 

 The reduction in adhesion strength as a result of inhibiting MLC phosphorylation 

is consistent with the role of MLC-mediated contractility in focal adhesion assembly and 

stress fiber formation.  Two mechanisms have been proposed for the regulation of focal 

adhesion assembly by contractility (Balaban et al., 2001).  Tension generated by actin-

myosin contractility on adhesion sites may regulate recruitment and assembly of focal 

adhesion components.  Alternatively, contractile forces may trigger changes in integrin 

binding affinity or bond density within the focal complex.  To explore these two 

possibilities, we first determined whether actin-myosin contractility modulates integrin 

binding to ECM.  We have previously shown that NIH3T3 adhesion to these 

micropatterned FN islands is mediated by integrin 51 (Gallant et al., 2005). 

Immunofluorescence staining confirmed that bound 51 integrins were present 

throughout the contact area with a preferential localization to the periphery of the 

adhesive area (Fig. 4.3A).  Equivalent staining patterns were observed between control 

and cells treated with contractility inhibitors, suggesting no differences in integrin 

intensity or distribution.  To confirm these observations, bound integrins were quantified 

using a biochemical cross-linking/extraction method that isolates integrins bound to 

fibronectin (Garcia et al., 1999; Keselowsky and Garcia, 2005).  Following recovery of 

bound integrins by cleaving the cross-linker and analysis by Western blotting, no 

differences in bound 51 integrins were detected among control and experimental 

groups (Fig. 4.3B).  These results indicate that integrin binding activity is not altered by 

changes in actin-myosin contractility. 
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Figure 4.3 Inhibitors of MLC phosphorylation do not alter integrin binding to 

micropatterned substrates.  Cells were cultured on micropatterned substrates for 16 h and 

treated with inhibitors: Y-27632 (50µM), H-7 (500µM), HA-1077 (50µM), blebbistatin 

(250µM) for 30min. Bound integrins were cross-linked with DTSSP.  After extracting 

cells, the bound integrins were recovered and analyzed by Western blotting. (A) 

Immunofluorescence staining for α5 integrin subunit following the cross-

linking/extraction showing localization of integrins mostly at the periphery of the 

substrate.  Counter-staining with Hoechst 33258 and rhodamine–phalloidin confirmed 

complete extraction of unbound cellular components (not shown) (scale bar: 10µm).  (B)  

Relative amounts of bound α5 were quantified by Western blotting and image analysis. 

 

 To investigate the recruitment and localization of focal adhesion components to 

adhesive plaques in response to changes in actin-myosin contractility, two independent 

but complementary approaches were used.  Immunostaining for vinculin showed that 

untreated cells on micropatterned substrates formed discrete focal adhesion clusters 

throughout the adhesive island (Fig. 4.4A).  Vinculin was spatially segregated and 

constrained to the circular adhesive domain of micropatterned islands, which was 

consistent with the localization of F-actin (data not shown).  In the absence of inhibitors, 

the localization of vinculin also corresponded to that of bound 51 integrins.  These 

adhesive structures were similar to those previously observed for the same cells cultured 
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on micropatterned substrates (Gallant et al., 2005).  In general, treatment of cells with 

inhibitors of MLC phosphorylation resulted in disassembly of focal adhesions (Fig. 

4.4A).  Treatment with Y-27632 and HA-1077 resulted in minimal vinculin clustering in 

the center of the micropatterned (Fig. 4.4A).  Treatment with H-7 inhibited formation of 

vinculin-containing focal adhesions at both the center and the periphery of the adhesive 

area.  Similar changes in the localization of the structural protein talin were also observed 

(Fig. 4.4A).  In control, untreated cells, talin localized to punctuate structures constrained 

to the circular adhesive island with a preferential distribution toward the periphery of the 

adhesive domain.  Inhibitors of MLC phosphorylation disrupted talin clustering to 

various degrees with the most significant effects elicited by Y-27632.  Consistent with 

the dissolution of focal adhesions containing vinculin and talin, inhibitors of Rho-kinase 

and MLCK also blocked stress fiber formation.  The dissolution of focal adhesions by 

inhibitors of MLC phosphorylation was also confirmed by internal reflection microscopy 

(IRM) in cells adhering to FN-coated glass substrates. In IRM, areas of „close‟ (> 15 nm) 

cell-substrate contact appear as dark patches (Izzard and Lochner, 1976, 1980). Untreated 

NIH3T3 cells spread and formed close contacts with the substrate, as demonstrated by the 

dark line structures (Fig. 4.4B).  In contrast, cells treated with Y-27632 for 30 minutes 

lacked areas of close contacts between the cell membrane and the glass substrate (Fig. 

4.4B).  These results indicate that, upon addition of inhibitors of MLC phosphorylation, 

focal adhesions disassemble.  To further characterize the changes in focal adhesions, we 

used a wet-cleaving biochemical technique in which basal cell membranes containing 

focal adhesive structures are mechanically isolated and analyzed by Western blotting 

(Gallant et al., 2005; Keselowsky and Garcia, 2005).  Inhibitors of MLC phosphorylation 
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dramatically reduced the localization of vinculin and talin to focal adhesions compared to 

control cells (Fig. 4.4C and D).  There were no differences in protein levels for either 

vinculin or talin in whole cell lysates, demonstrating that the decreases in vinculin and 

talin arise from dissolution of focal adhesions.  These results are in excellent agreement 

with our immunostaining observations.  These findings indicate that inhibitors of MLC 

phosphorylation reduce adhesion strength via dissolution of focal adhesions 

independently of changes in integrin binding. 
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Figure 4.4 Inhibitors of MLC phosphorylation modulate recruitment of vinculin and talin 

to adhesive structures onmicropatterned substrates. Fibroblasts were cultured on 

micropatterned substrates for 16  h and treated with Y-27632 (50µM), H-7 (500µM), and 

HA-1077 (50µM) for 30 min.  Controls received fresh media without inhibitors. The cells 

were then fixed, extracted, and stained for vinculin, talin, or actin (scale bar: 10µm).  (B)  

Inhibition of MLC phosphorylation reduces focal adhesion formation. Fibroblasts were 

cultured overnight on glass substrates coated with10µg/ml FN and treated with indicated 

condition 30min before IRM imaging.  (C) Inhibitors of contractility modulate 

recruitment of vinculin and talin to focal adhesions.  Western blotting for vinculin and 

talin recruited to focal adhesions as analyzed by wet-cleaving method.  (D) Relative 

amounts of localized vinculin and talin were analyzed by Western blotting 

(mean±standard deviation, n=3 from two independent experiments). *P < 0.05 

relative to no treatment controls, which received fresh media without inhibitors. 
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   We next examined the role of vinculin in contractility-induced increases in 

adhesion strength.  Vinculin binds between the actin cytoskeleton and integrins and has 

been implicated in modulating focal adhesion turnover and transmitting mechanical 

forces (DeMali, 2004; Humphries et al., 2007; Mierke et al., 2008).  Using vinculin-null 

(vinc-/-) and vinculin-expressing (vinc+/+) mouse embryonic fibroblast cells (MEFs), we 

investigated the role of vinculin in contractility-mediated adhesive force generation.  

First, we confirmed that the spinning disk detachment profiles for these cells were 

consistent with those of the NIH3T3 cell lines (Fig. 4.5A).  Next, we analyzed the effect 

of the MLC phosphorylation inhibitor Y-27632 on adhesion strength.  Consistent with 

our data for NIH3T3 cells, vinculin-expressing MEFs showed a 20% reduction in 

adhesion strength upon exposure to Y-27632 for 30 minutes compared to untreated 

controls (Fig. 4.5B).  In contrast, vinculin-null MEFs showed no decrease in adhesion 

strength upon exposure to Y-27632 for 30 minutes (Fig. 4.5B).  In addition, there were no 

differences in adhesive force between vinculin-expressing cells treated with Y-27632 and 

vinculin-null cells. Immunofluorescence staining showed that bound 51 integrins were 

present throughout the contact area with a preferential localization to the periphery of the 

adhesive area (Fig. 4.5C).  Importantly, no differences in the intensity or localization of 

bound integrins could be detected between the treatment groups indicating that adhesion 

strength differences did not arise from differences in integrin binding. These findings 

indicate that vinculin expression is required for contractility-induced increases in 

adhesion strength. 
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Figure 4.5 Loss of vinculin abolishes differences in adhesion strength because of 

contractility independent of bound integrin levels.  (A)  Characteristic detachment profile 

for vinculin +/+ and vinculin -/- MEFs showing the fraction of adherent cells (f) versus 

applied shear stress (t). These cells exhibit the same detachment profiles as the NIH3T3 

cells.  (B) vinculin+/+ and vinculin -/- MEFs were cultured for 16 h on micropatterned 

surfaces and treated with Y-27632 (50µM) for 30 min prior to spinning. The no-treatment 

group received fresh media without inhibitor. Addition of inhibitor resulted in a 20% 

decrease in adhesion strength for the vinculin +/+ cells.  No differences in adhesion 

strength were detected for the vinculin -/- cells. *P < 0.03 relative to no treatment 

vinculin +/+ MEFs.  (C)  Immunoflourescence staining for α5 integrin subunit following 

cross-linking/extraction showing localization of integrins mostly at the periphery of the 

substrate (scale bar: 10µm). Treatment with Y-27632 (50µM) for 30min did not 

significantly alter integrin binding. 
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Effects of MLC phosphorylation on cell adhesion strength are FAK-dependent 

FAK is a central regulator of focal adhesions and adhesive interactions (Hanks et 

al., 1992; Ilic et al., 1995).  Furthermore, it is well established that inhibition of 

contractility reduces tyrosine phosphorylation of focal adhesion components, including 

FAK (Chrzanowska-Wodnicka and Burridge, 1996).  In addition, we recently 

demonstrated that FAK regulates the early stages of the adhesion strengthening process 

via changes in integrin activation (Michael et al., 2009).  To examine the effects of 

contractility on FAK phosphorylation in micropatterned cells, protein and 

phosphorylation levels in the presence of inhibitors of MLC phosphorylation were 

analyzed by Western blotting.  Consistent with the effects on MLC phosphorylation and 

adhesion strength, all contractility inhibitors tested reduced phosphorylation of FAK at 

the autophosphorylation site Y397 compared to untreated controls with no differences in 

total FAK levels (Fig. 4.6).  These results are in excellent agreement with previous 

observations for spread cells (Chrzanowska-Wodnicka and Burridge, 1996). 
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Figure 4.6 FAK phosphorylation is regulated by inhibitors of MLC phosphorylation.  

Cells were cultured on micropatterned substrates for 16 h and treated with inhibitors for 

30min. (A)  Western blotting for pFAK [Y397] and total FAK.  Relative amounts of (B) 

pFAK [Y397] and (C) total FAK.  The results represent two independent experiments 

with mean±standard deviation (n=3).  *P < 0.05 relative to no treatment controls that 

received fresh media without inhibitors. 

 

 The role of FAK in contractility-mediated adhesion strengthening was examined 

using Tet-FAK cells.  Tet-FAK cells are stable clones derived from FAK-/- mouse 

embryo fibroblasts engineered to express FAK under a tetracycline-responsive promoter 

(Owen et al., 1999).  In the presence of tetracycline, FAK expression is repressed and 

these cells have no FAK (FAK–); removal of tetracycline from the culture media results 

in expression of FAK (FAK+) to similar levels as wild-type fibroblasts (Fig. 4.7A).  This 

inducible system allows examination of the effects of FAK in the same cell population, 
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without non-specific effects from dominant-negative constructs or clonal variation.  Tet-

FAK cells, induced and non-induced to express FAK, adhered to fibronectin-coated 

micropatterned substrates in a similar fashion as NIH3T3 fibroblasts.  Consistent with our 

observations with NIH3T3 fibroblasts, the Rho-kinase inhibitor Y-27632 reduced MLC 

phosphorylation for Tet-FAK cells in the presence and absence of FAK without changing 

levels of total MLC (Fig. 4.7B).  Higher Y-27632 concentrations were required to reduce 

MLC phosphorylation in cells without FAK, consistent with higher expression levels of 

Rho-kinase in these cells (Chen et al., 2002).  Adhesion strength in the presence and 

absence of inhibitors of contractility was determined using the spinning disk assay.  In 

FAK+ cells, treatment with Y-27632 reduced adhesion strength by 30% compared to 

untreated cells (Fig. 4.7C).    Furthermore, treatment with Y-27632 also reduced 

localization of vinculin to focal adhesions (data not shown).  The decrease in adhesion 

strength and reduced localization of vinculin to focal adhesions are in excellent 

agreement with the 35% decrease in adhesion strength observed in NIH3T3 fibroblasts 

(Fig. 4.2A) and reductions in vinculin localization to focal adhesions (Fig. 4.4D).  

Remarkably, in FAK– cells, inhibition of MLC phosphorylation by Y-27632 did not 

reduce cell adhesion strength (Fig. 4.7C) or alter focal adhesion assembly (data not 

shown).  We note that the FAK- and FAK+ control conditions are normalized values, not 

meant for direct comparison.  These results indicate that the contractility-mediated cell 

adhesive forces require FAK expression. 
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Figure 4.7 Rho-kinase modulates cell adhesion strength via FAK.  (A)  Tet-FAK cells 

with inducible FAK expression. In the absence of tetracycline (tet), FAK expression is 

induced at high levels, while expression is repressed in the presence of tet. Tet-FAK cells 

expressing FAK (FAK+) and cells without FAK (FAK-) were cultured on micropatterned 

surfaces for 16 h and treated with Y-27632 (50 or 100µM) for 30min.  (B) Inhibitor of 

Rho-kinase reduced adhesion strength in the presence of FAK, but adhesion strength was 

not altered in the absence of FAK. *P < 0.05 relative to untreated controls of 

corresponding FAK condition. 
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Discussion 

We tested the hypothesis that actin-myosin contractility regulates cell adhesion 

strengthening via modulation of focal adhesion assembly.  While previous reports have 

shown that Rho-mediated actin-myosin contractility drives focal adhesion assembly and 

regulates cells spreading and migration (Arthur and Burridge, 2001; Chrzanowska-

Wodnicka and Burridge, 1996), the specific contributions of contractility to cell adhesion 

strengthening are not well understood.  Recent evidence supports a complex relationship 

between the state of contractility in a cell and its adhesion to the underlying matrix 

(Griffin et al., 2004).  Moreover, it is not clear how localized, directional traction forces 

involved in migration are integrated to regulate overall levels of adhesion strength.  

Although the size of focal adhesion structures shows correlation to the level of traction 

force generated (Balaban et al., 2001; Galbraith et al., 2002; Tan et al., 2003), focal 

adhesion size does not solely control adhesion strength (Tan et al., 2003), as integrin-

ligand bond strength, actin cytoskeleton architecture, and the spatiotemporal distribution 

of focal adhesions also regulate adhesion strength (Gallant et al., 2005).  In order to 

control cell adhesive area and position as well as cell shape, we examined adhesion 

strength for cells cultured on micropatterned substrates.  This approach allows for direct 

comparisons of adhesive force among experimental groups by eliminating differences in 

adhesive area/distribution and cell morphology.  Adhesions strength was quantified using 

a hydrodynamic detachment assay that applies a wide range of forces and provides 

sensitive measurements of adhesion strength (Garcia et al., 1999).  Equivalent levels of 

adhesion strength were observed between serum- and LPA-treated cultures (data not 

shown).  These values are 30% higher than those for cells cultured under serum-free 



  64 

 

conditions.  Since LPA induces Rho-dependent contractility (Chrzanowska-Wodnicka 

and Burridge, 1996), this result suggests that activation of contractility enhances adhesion 

strength.  To impair actin-myosin contractility, cells were treated with pharmacological 

agents that inhibit either Rho-kinase (Y-27632) or MLCK (H-7 and HA-1077).  Due to 

their high specificity and our ability to precisely control timing and concentration of 

dosage, we use chemical inhibitors of contractility throughout this study.  We note that 

several previous studies have relied exclusively on the use of these same inhibitors (Chen 

et al., 2002; Chrzanowska-Wodnicka and Burridge, 1996; Delanoe-Ayari et al., 2004; 

Totsukawa et al., 2000).   Treatment with any of these inhibitors eliminated the serum-

induced enhancements in adhesion strength by >95% to levels indistinguishable from 

serum-free cultures.  Furthermore, these inhibitors did not reduce adhesion strength for 

cells cultured in the absence of serum, indicating that the effects of serum stimulation on 

adhesion strength were regulated by actin-myosin contractility.  Moreover, blocking 

myosin II activity with blebbistatin, which acts through a different mechanism, had 

equivalent effects on adhesion strength.  These results demonstrate that actin-myosin 

contractility is responsible for serum-induced enhancements in adhesion strength.  

Despite distinct mechanisms of action in blocking actin-myosin contractility (Rho-kinase 

vs. MLCK vs. myosin II activity), all inhibitors tested reduced adhesion strength to 

similar values.  Since all inhibitor treatments reduced MLC phosphorylation to the same 

levels, this result suggests that cell adhesion strengthening arising from serum or LPA 

stimulation is regulated by overall levels of phosphorylated MLC.  Consistent with our 

observations, Chrzanowska-Wodnicka and Burridge showed that inhibition of MLC 

phosphorylation via different mechanisms leads to inhibition of Rho-induced focal 
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adhesion assembly and stress fiber formation (Chrzanowska-Wodnicka and Burridge, 

1996). 

 Treatment with these inhibitors of contractility also resulted in the dissolution of 

focal adhesions as indicated by reduced localization of vinculin and talin to adhesion 

structures, in agreement with previous reports (Chrzanowska-Wodnicka and Burridge, 

1996).  Both inhibitors of Rho-kinase and MLCK reduced recruitment of talin and 

vinculin to adhesive plaques to similar levels, consistent with their effects on adhesion 

strength.  Although distinct roles and spatial activities for Rho-kinase and MLCK in 

spread fibroblasts have been reported (Totsukawa et al., 2000), we observed no 

significant differences between these two regulators of MLC phosphorylation, possibly 

due to the constrained micropatterned adhesive domains.  Because no differences in 

integrin binding in response to treatment with contractility inhibitors were observed, we 

attribute the contractility-mediated differences in adhesive force to changes in focal 

adhesion assembly.  Indeed, experiments with vinculin-null cells demonstrated that 

vinculin was required for the contractility-dependent differences in adhesive force. 

Recruitment of vinculin and other structural components to adhesion plaques enhances 

adhesion strength by increasing the local membrane stiffness thereby modulating bond 

stressing in the contact area (Gallant and Garcia, 2007b; Gallant et al., 2005; Goldmann 

and Ingber, 2002; Wang et al., 1993).  Interestingly, inhibition of MLC-driven 

contractility did not alter integrin binding, in terms of bound density and distribution, to 

the ECM.  In contrast to our observations, Friedland et al. recently reported that 51 

integrins do not cross-link to FN when cells were serum-starved overnight and exposed to 

inhibitors of contractility (Friedland et al., 2009).  The differences between this study and 
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the present findings may be attributed to differences in available adhesive area (fully 

spread vs. micropatterned) and the duration of exposure to both serum-free conditions 

and inhibitors.  Taken together, our results indicate that actin-myosin contractility 

modulates recruitment of cytoskeletal elements to adhesion plaques independently of 

integrin binding.  A possible mechanism for this recruitment is that contraction-driven 

forces applied to the adhesion plaque concentrates or “focuses” cytoskeletal elements 

(e.g., vinculin, talin) into clusters (Palecek et al., 1997; Wolfenson et al., 2009).  

Alternatively, application of forces to integrins or integrin-associated elements may lead 

to conformational changes favorable to the recruitment of focal adhesion proteins, such 

as vinculin (del Rio et al., 2009; Hytonen and Vogel, 2008).  In contrast to our 

observations, Chrzanowska-Wodnicka and Burridge reported that contractility also 

modulates integrin distribution in spread fibroblasts (Chrzanowska-Wodnicka and 

Burridge, 1996).  The discrepancy between this study and the present findings may be 

attributed to differences in available adhesive area (fully spread vs. micropatterned cells). 

 Inhibitors of contractility also down-regulated tyrosine phosphorylation of FAK, 

consistent with previous reports (Chrzanowska-Wodnicka and Burridge, 1996; Gallagher 

et al., 1997; Wozniak et al., 2003).  Given the central role of FAK in focal adhesion 

turnover (Ilic et al., 1995; Webb et al., 2004), we examined the role of FAK in 

contractility-mediated adhesion strengthening using cells with inducible expression of 

FAK.  In the presence of FAK, inhibitors of contractility reduced serum-induced 

adhesion strengthening as well as eliminated focal adhesion assembly, in excellent 

agreement with our observations for NIH3T3 fibroblasts.  In the absence of FAK, 

however, these inhibitors did not alter adhesion strength or focal adhesion assembly.  
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These results indicate that actin-myosin contractility modulates adhesion strengthening 

via FAK-dependent organization of focal adhesions.  While it is well established that 

FAK plays central roles in modulating focal adhesion turnover and cell motility (Ilic et 

al., 1995; Ren et al., 2000; Webb et al., 2004), this is the first report demonstrating a 

direct role for FAK in serum-dependent increases in steady-state adhesive force.  This 

finding contrasts with the view that modulation of FAK activity (phosphorylation) is a 

downstream event following contractility-driven focal adhesion assembly (Chrzanowska-

Wodnicka and Burridge, 1996).  Our results implicate FAK in regulating adhesion 

strengthening via focal adhesion assembly.  This function is distinct from the role of FAK 

in modulating focal adhesion turnover (Webb et al., 2004) and promoting directional 

persistence in motility and reorientation in response to mechanical forces (Wang et al., 

1993).  Furthermore, the FAK-dependent effects of contractility on adhesion 

strengthening contrast the actions of FAK and contractility on cell spreading and 

migration.  Chen et al. reported that inhibition of Rho-kinase by Y-27632 in FAK-/- 

fibroblasts induced spreading and enhanced cell motility with concomitant reorganization 

of focal adhesions (Chen et al., 2002).  These authors concluded that Rho-kinase leads to 

formation of actin-myosin filaments at the periphery of FAK-/- cells, which generate 

contractile forces that reduce cell migration.  These results are consistent with the 

observation that FAK suppresses Rho activity to promote focal adhesion turnover (Ren et 

al., 2000).  The distinct effects of the interplay of contractility and FAK on migration and 

adhesion strengthening highlight the complex interactions in these two adhesive 

processes.  Finally, we note that we recently established a role for FAK in the modulation 

of initial adhesive forces via changes in integrin activation (Michael et al., 2009).  The 
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role of FAK in the contractility-mediated changes in steady-state focal adhesion assembly 

and adhesion strengthening described in the present study appears to be distinct from 

these earlier adhesive processes.   

 In summary, we demonstrate that actin-myosin contractility controls serum-

dependent cell adhesion strengthening.  Phosphorylation of MLC, either via Rho-kinase 

or MLCK, was central to the strengthening process by modulating focal adhesion 

assembly and required vinculin to achieve maximum adhesion strength.  Notably, the 

effects of MLC phosphorylation on adhesion strengthening were mediated by FAK, 

implicating this adhesion kinase in the generation of strong adhesive forces.  
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CHAPTER 5 

CONTRIBUTIONS OF VINCULIN HEAD AND TAIL DOMAINS TO 

INTEGRIN BINDING, FOCAL ADHESION ASSEMBLY, AND 

ADHESION STRENGTH 

 

 

 

Abstract 

Vinculin, a 116 kDa focal adhesion (FA)-associated protein, plays an essential 

role in various cellular processes including migration, adhesion, and 

mechanotransduction.  Vinculin-dependent regulation of FA dynamics requires a 

conformational change involving release of strong binding between the head and tail 

domains of the protein.  Once activated, vinculin regulates FA dynamics by binding to 

talin with its head domain and F-actin with its tail domain.  While significant progress 

has been made in identifying how vinculin modulates its interactions with its numerous 

binding partners, little is known about how the protein contributes to the generation of 

adhesion force.  Using vinculin-null cells expressing wild-type and mutant vinculins 

under an inducible tetracycline promoter, we analyzed the role of vinculin in the 

generation of steady-state adhesive forces using micropatterned substrates and a 

hydrodynamic adhesion assay.  Vinculin expression increased adhesion strength by an 

average 25% in two separate vinculin-null fibroblast cell lines.  Mutations inhibiting 

strong head-tail interactions (T12), resulting in a constitutively open vinculin 
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conformation, increased adhesions strength by 50% over null controls.  Surprisingly, 

expression of tail-less vinculin (VH) increased adhesion strength to the same level as 

wild-type vinculin, suggesting that vinculin localization to FA, independently from 

binding to actin, contributes significantly to adhesive force.  It also indicates, however, 

that interactions of the tail domain with the actin cytoskeleton are required for maximal 

vinculin enhancements to adhesive force.  Analysis of fibronectin (FN)-bound integrins 

showed that both T12 and VH mutations increased the area of integrin staining by 200% 

compared to WT vinculin and null controls.  T12 and VH mutations also increased the 

amount of talin and vinculin localization to micropatterned islands over both WT and null 

controls indicating that vinculin modulates adhesion strength by increasing both integrin 

binding and focal adhesion assembly.  Adhesion strength comparisons among cells 

transiently transfected with head, tail, or a combination of head and tail demonstrated that 

the physical linkage between the head and tail domains of vinculin is critical for 

achieving maximum adhesion strength.  These findings provide new insights into the role 

of vinculin in regulating mechanical interactions between the cell and the extracellular 

matrix. 

Introduction 

Cell adhesion to extracellular matrix (ECM) provides adhesive forces mediating 

migratory processes, tissue structure and organization, and mechanotransduction 

responses (Danen and Sonnenberg, 2003; Fu et al., 2010; Hynes, 2002).  Adhesion to 

ECM components such as fibronectin and laminin, is primarily mediated by the integrin 

family of heterodimeric αβ receptors (Hynes, 2002). Integrin-mediated adhesion is a 

highly coordinated process initiated by activation and binding of the integrin to its ECM 
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ligand (Choquet et al., 1997; Faull et al., 1993; Friedland et al., 2009).  Once bound, 

integrins rapidly cluster together and generate linkages to the actin cytoskeleton mediated 

by the supramolecular structures termed focal adhesions (FA) (Geiger et al., 2001).  

Morphologically, FAs are long, flat structures typically located near the periphery of the 

cell. There, they mediate strong adhesion to the ECM by modulating force transfer 

between integrins and the actin cytoskeleton (Gallant et al., 2005; Riveline et al., 2001; 

Tan et al., 2003)(Vogel and Sheetz, 2006).  In addition to their structural role, FAs serve 

as signaling platforms that control various functions including differentiation, 

proliferation, and apoptosis (Sastry and Burridge, 2000).  Focal adhesions are highly 

dynamic structures that are actively remodeled in response to external and stimuli 

including growth factors and cues from the extracellular matrix (Greenwood et al., 1998; 

Ridley and Hall, 1992; Riveline et al., 2001)  These supramolecular structures constitute 

a central hub in the mechanostranduction machinery, exhibiting force-responsive changes 

in shape, size, and composition (Bershadsky et al., 2006).   

Vinculin, a 116 kDa F-actin binding protein, is an important regulator of FA 

dynamics (Cohen et al., 2006; Humphries et al., 2007).  In order to associate with FA, a 

conformational change in the vinculin must occur.  This change constitutes release of 

strong binding between the head and tail domains of the protein, revealing a talin binding 

site on the head domain and an F-actin binding site on the tail (Cohen et al., 2006).  

Importantly, the head and tail of the vinculin molecule are connected via a pro-line rich 

strap which spatially constrains the two portions of the protein to close proximity of each 

other, giving rise, in part, to the strong association constant between the two domains 

(Bakolitsa et al., 2004; Cohen et al., 2005).  The exact mechanism of head and tail 
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separation has yet to be fully elucidated (Cohen et al., 2005; Cohen et al., 2006; Izard et 

al., 2004). Once activated, vinculin regulates FA dynamics by binding to talin with its 

head domain and F-actin with its tail domain (Chen et al., 2005; Humphries et al., 2007).  

Activated vinculin is only found in FA (Chen et al., 2005).  Once localized to FAs, the 

molecule can transmit force between talin and F-actin (Grashoff et al., 2010).  It is 

important to note while no detectable strain is applied to the protein when it lacks a tail 

(Grashoff et al., 2010), this does not imply that this same protein cannot contribute to 

adhesion strength.  As our lab as shown (Gallant et al., 2005), only 30% of adhesion 

strength comes from focal adhesion assembly.  The other 70% is matrix-bound integrins 

(Gallant et al., 2005).  The spatial localization of the FA within the cell modulates the 

level of mechanical tension across the molecule as well as its dynamics with the adhesion 

(Grashoff et al., 2010; Wolfenson et al., 2009).  Despite extensive characterization of the 

structure of vinculin and its role in cellular processes including regulating FA dynamics 

and cell migration, the contribution of vinculin to the generation of adhesive forces has 

yet to be fully characterized.  For instance, previous work has shown that talin binding is 

critical for vinculin activation and localization to FAs (Cohen et al., 2006), however, how 

this integrin-talin-vinculin complex, independent from binding the actin cytoskeleton, 

modulates adhesion strength is unknown.  The functional importance of vinculin tail 

binding to the cytoskeleton is complex.  On one hand the integrin-talin complex, by itself, 

can bind the actin cytoskeleton directly, potentially minimizing the importance of 

vinculin connection (Critchley, 2004).  On the other, experimental work has 

demonstrated that the retrograde flow of FAs is dependent on the ability of vinculin to 

bind both talin and the contractile cytoskeleton (Humphries et al., 2007), suggesting that 
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the mechanical coupling of vinculin between integrin-talin complex and the cytoskeleton 

is important for proper focal adhesion function.   

In the present study, we use a robust, quantitative cell adhesion assay in 

combination with micropatterned substrates to control adhesive area along with cells 

engineered to express wild-type vinculin to characterize the contribution of vinculin to 

adhesion strength.  Structural mutants of the protein were used in combination with 

various biochemical techniques to characterize the functional contributions to adhesion 

strength of the head and tail domain of the protein.  We demonstrate that both the head 

and tail domain of vinculin contribute to the generation of adhesive forces and that the 

physical connection between the two in required for generation of maximum adhesion 

strength. 

 

Materials and Methods 

Cells and reagents 

Mouse embryonic fibroblasts (MEF1 and MEF2) were a kind gift from Eileen 

Adamson (Burnham Institute, La Jolla, CA).  Monoclonal antibodies against vinculin 

(clone V284; Millipore), talin (clone 8d4; Sigma) were used for immunostaining and 

Western blotting.  Monoclonal antibody against extracellular domain of β1-integrin 

(9EG7, Millipore) was used for integrin binding study.  Polyclonal antibody against β1-

integrin (ab1950, Chemicon) was used for adhesion blocking study (note this antibody is 

no longer available).   Poly(dimethylsiloxane) (PDMS) elastomers and curing agents 

were obtained from Dow Corning (Midland, MI).  

Dithiobis(sulfosuccinimidylpropionate) (DTSSP) was purchased from Pierce Chemical 
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(Rockford, IL).  Tri(ethylene glycol)-terminated alkanethiol (HO(CH2CH2O)3-

(CH2)11SH) was purchased from ProChimia Surfaces (Sopot, Poland).  All other reagents 

including hexadecanethiol (H3C(CH2)15SH) were purchased from Sigma.  Human plasma 

fibronectin was purchased from Invitrogen (Carlsbad, CA).  VH-CFP and vinT-YFP 

constructs were a kind gift from Christoph Ballestrem (The University of Manchester, 

UK). 

 

Retroviral vectors for eGFP-vinculin expression 

Retroviral plasmids pTJ66-tTA and pXF40 were previously described (Gersbach 

2006).  eGFP-C1 WT, T12, VH vinculin plasmids were a kind gift from Susan Craig 

(Johns Hopkins School of Medicine, Baltimore, MD).  One AgeI restriction site was 

inserted into the multiple cloning site of pXF40, the retroviral expression vector.  The 

oligonucleotides 5‟-AGCTTGTCAGCTACCGGTGCTACTGCA-3‟ and 5‟-

AGCTTGCAGTAGCACCGGTAGCTGACA-3‟ (AgeI sequences underlined) were 

annealed together, creating HindIII-compatible overhands at each end.  This product was 

then ligated into a linearized pXF40 vector which had been digested with HindIII.  

Finally, the eGFP- vinculin constructs were digested from the pEGFP-C1 with AgeI and 

SalI and ligated into the SalI and AgeI-digested pXF40 vector.  The pXF40-eGFP-

Vinculin vectors transcribe the eGFP-vinculin gene from the tetracycline-inducible 

promoter (Fig. 5.1A).  All vectors were verified by sequencing the ligation points.  

 

Retroviral Transduction with eGFP-Vinculin into Vinculin-null Mouse Embryonic 

Fibroblasts 
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Retroviral stocks were produced by transient transfection of helper virus-free 

Phoenix amphotropic producer cells with plasmid DNA as previously described (Byers, 

2002).  Vinculin-null mouse embryonic fibroblasts (cell lines 1 & 2) were cultured and 

plated on tissue culture polystyrene at 2 x10
4
 cells/cm

2
 24 h prior to retroviral 

transduction.  Cells were transduced with 0.2 ml/cm
2
 of equal parts pTJ66-tTA and 

pXF40-eGFP-Vinculin retroviral supernatant supplemented with 4 µg/ml hexadimethrine 

bromide (Polybrene) and 10% fetal bovine serum, and centrifuged at 2500 r.p.m. (1200 

g) for 30 min in a Beckman model GS-6R centrifuge with a swinging bucket rotor. 

Retroviral supernatant was replaced with growth media (DMEM, 10% fetal bovine 

serum, 100U/ml penicillin G sodium, 100 µg/ml streptomycin sulfate, 1% non-essential 

amino acids, 1% sodium pyruvate).  Five days after transduction, eGFP expressing cells 

were FACS sorted, expanded, and either used for experimentation or cyropreserved in 

liquid nitrogen for later use.  Expression of vinculin constructs was verified by Western 

blot and immunofluorescence microscopy. 

 

Micropatterned substrates 

Micropatterned substrates were generated by microcontact printing of self-

assembled monolayers of alkanethiols on gold (Gallant et al., 2002).  Arrays of CH3-

terminated alkanethiol [HS-(CH2)11-CH3] circles were stamped on to Au-coated glass 

coverslips using a PDMS stamp (Sylgard 184/186 Elastomer-kit).  The remaining 

exposed areas were functionalized with a tri(ethylene glycol)-terminated alkanethiol [HS-

(CH2)11-(CH2CH2O)3-OH].  Patterned substrates were coated with human plasma 

fibronectin (2 g/mL), blocked with 1% heat-denatured BSA.  This process results in an 
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array of fibronectin-coated circular islands 5µm in diameter spaced 75µm apart to 

promote single cell attachment to each island. 

Adhesion Strength Assay 

Adhesion strength was measured using our spinning disc system (Gallant et al., 

2005; Garcia et al., 1997; Garcia et al., 1998).  Micropatterned substrates with adherent 

cells were spun in PBS + 2mM dextrose for 5 minutes at constant speed.  The applied 

shear stress (τ) is given by the formula 

            

where r is the radial position from the center of the patterned coverslip and ρ, µ, ω are the 

fluid density, viscosity, and rotational speed, respectively.  In some experiments, the 

spinning buffer was supplemented with 5% dextran to increase the fluid viscosity.  After 

spinning, cells were fixed in 3.7% formaldehyde, permeabilized in 1% Triton X-100, 

stained with ethidium homodimer-1 (Invitrogen) and counted at specific radial positions 

using a 10X objective lens in a Nikon TE300 microscope equipped with a Ludl motorized 

stage, Spot-RT camera and Image-Pro 6.3 analysis system.  A total of 61 fields (80-100) 

cells per field before spinning were analyzed and cell counts were normalized to the 

number of cells in the center of the disk.  The fraction of adherent cells (f) was then fitted 

to a sigmoid curve  
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where τ50 is the shear stress for 50% detachment and b is the inflection slope.  τ50 

characterizes the mean adhesion strength for a population of cells. 

Integrin Binding 

Integrin binding was quantified via a cross-linking/extraction  procedure (Garcia 

et al., 1999; Keselowsky and Garcia, 2005).  After rinsing cultures three times with PBS, 

DTSSP (1.0 mM in cold PBS + 2 mM dextrose) was incubated for 30 minutes to cross-

link integrins to their bound ligands.  The cross-linking reaction was quenched by 

addition of Tris (50 mM in PBS) for 15 minutes.  Uncross-linked cellular components 

were then extracted in 0.1% SDS containing 10 g/mL leupeptin, 10 g/mL aprotinin 

and 350 g/mL PMSF.  Cross-linked integrins to their bound ligands were visualized by 

immunostaining with β1 integrin-specific antibodies. 

 

Focal Adhesion Assembly 

For staining of focal adhesion components, cells were permeabilized in 

cytoskeleton-stabilizing buffer (0.5% Triton X-100: 10 mM PIPES buffer, 50 mM NaCl, 

150 mM sucrose, 3mM MgCl2, 0.5% (v/v) Triton X-100, 1 mM PMSF, 1 μg/mL 

leupeptin, 1 μg/mL aprotinin, 1 μg/mL pepstatin) for 10 min, fixed in 3.7% formaldehyde 

for 5 min, blocked in 5% goat serum, and incubated with primary antibodies against focal 

adhesion components followed by AlexaFluor-labeled secondary antibodies (Invitrogen).  

Images were captured using a Nikon Eclipse E400 equipped with a 60X APO (1.4 NA) 

TIRF objective and Spot RT Camera/Software. Focal adhesion area fractions were 

quantified using a custom MATLAB image analysis script. Briefly, original images of 
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immunostained cells were first background subtracted and then pixel intensity 

thresholded to determine focal adhesion area. 

 

Transient Transfection of Vinculin-eGFP constructs 

MEF1 cells were transfected using a Nucleofector II (Amaxa).  For each sample, 

2 million cells were resuspended in 100 µl of nucleofector solution MEF 2 with 2.5 µg of 

plasmid DNA coding for indicated vinculin-eGFP construct.  Plasmid containing cell 

suspension was loaded into Nucleofector cuvette and transfected with program T-20.  

Immediately after transfection, cells were transferred to 1.5mL centrifuge tube containing 

500 µL of pre-warmed RPMI 1640 (Invitrogen) and incubated for 15 minutes to 

minimize cell death.  Cells were then transferred into 100 mL plates containing normal 

growth media (1% P-S, 1% NEAA, 1% Sodium Pyruvate, 10% fetal bovine serum, 

Dulbecco's Modified Eagle Medium).  Cells were fluorescence active cell sorted (FACS) 

72 hours after transfection for eGFP expression and seeded onto micropatterned surfaces.  

The next day, the spinning disk assay and immunostaining were performed. 

 

Adhesion Blocking  

Cells were trypsinized from dish, quenched in serum containing media, pelleted, 

and resuspended in appropriate blocking antibody or isotype control for 15 minutes with 

gentle rocking.  Cells were seeded on micropatterned substrates for 15 min prior to 

visualization. 

Western blotting 
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Cells were washed with PBS and lysed in cold radioimmunoprecipitation assay 

(RIPA) buffer (1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 

150 mM Tris-HCl pH 7.2, 350 g/ml phenylmethylsulfonyl fluoride, 10 g/ml leupeptin, 

10 g/ml aprotinin, and 1 mM sodium orthovanadate) for 20 min. Lysates were pipette 

up and down ~25 times to shear the DNA and then clarified by centrifugation at 10,000g 

for 10 min. Protein concentration was then determined using a Micro BCA protein assay 

kit (Pierce, Rockford, IL). Equal amounts of protein (25 µg) were boiled in Laemmli 

sample buffer (2% SDS, 10% glycerol, 100 mM DTT, 60 mM Tris-HCl pH 6.8, and 

0.001% bromophenol blue) for 10 min and separated by SDS-PAGE. Proteins were 

transferred by electrophoresis onto nitrocellulose membranes and blocked with Blotto 

(5% non-fat dry milk, 0.02% sodium azide, 0.2% Tween 20 in PBS w/o Ca2+/Mg2+) 

overnight at 4ºC.  Membranes were then incubated with appropriate antibodies in Blotto 

for 1 h at room temperature under gentle rocking.  Membranes were washed in TBS-

Tween (20 mM Tris HCl pH 7.6, 137 mM NaCl, 0.1% Tween 20) for 30 min and 

incubated in near-infrared conjugated-secondary antibodies (LiCor Biosciences, Lincoln, 

NE) for 30 minutes followed by 30 min washing in TBS-Tween.  Membranes were 

imaged with a LiCor Odyssey Imager (LiCor Biosciences, Lincoln, NE).  

Statistical Analysis 

Non-linear regression analysis was performed using SigmaPlot 2001 software 

(SPSS).  Analysis of variance (ANOVA) statistical analyses were performed using 

SYSTAT 11 software.    
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Results 

Inducible retroviral system for vinculin-eGFP expression  

 Because of the central role of vinculin in regulating adhesive interactions, we 

developed an inducible expression retroviral system to express wild-type and mutant 

vinculins in vinculin-null cells.  Our inducible system is based on the well-characterized 

tetracycline inducible promoter (Gossen et al., 1994).  In the absence of 

anhydrotetracycline (aTc), a more potent version of tetracycline, the tetracycline-

controlled transactivator (tTA) binds the tet operon and activates transcription of the gene 

of interest.  However, in the presence of sub-toxic levels of aTc, the antibiotic binds tTA, 

blocking binding of the tet operon and subsequent transactivation.  Two independent 

vinculin-null mouse embryonic fibroblast cell lines were transduced simultaneously with 

pTJ66-tTA and pXF40-WT-Vinculin-eGFP retroviral supernatants (Fig. 5.1A).  A 

significant advantage of this system is that it allows for direct comparison of the effects 

of vinculin in the same cell population.  Vinculin-eGFP positive cell populations were 

enriched by fluorescence-activated cell sorting for a minimum of three sequential rounds 

(data not shown).  Western blotting using vinculin specific antibodies confirmed 

expression of vinculin-eGFP constructs in both lines of transduced vinculin-null MEFs 

(Fig. 5.1B).  Culturing MEF2 cells in the presence of anhydrotetracycline (aTc, 

100ng/mL) significantly lowered the levels of vinculin-eGFP expression.  . We next 

examined proper localization of vinculin-eGFP to focal adhesions by fluorescence 

microscopy (Fig. 5.1C).  Briefly, MEF1 and MEF2 cells were seeded overnight on 

fibronectin (FN) coated coverslips.  The following day, cells were fixed with 4% 

paraformaldehyde, mounted on glass slides and visualized using a fluorescence 
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microscope equipped with an eGFP-specific filter cube (Fig. 5.1C).  MEF1 cells are 

smaller, migrate faster, and replicate more rapidly than MEF2 cells (data not shown).  In 

addition, the general morphology of MEF1 cells is more fibroblastic than MEF2 cells.   

In both cell lines, eGFP-vinculin properly localized to FA. 

 

Figure 5.1 Development of retroviral vinculin expression system .  (A)   Retroviral 

vectors.  The tetracycline-controlled transactivator (tTA) is constitutively expressed by 

pTJ66-tTA.  Vinculin-eGFP expression is controlled via the tet operon of pXF40-Vinc-

eGFP.  (B)  Western blot of expression for talin and vinculin in two separate vinculin-null 

mouse embryonic fibroblast (MEF) lines.  MEFs were tranduced and a stable population 

expressing vinculin-eGFP was selected.  (C)  Vinculin-eGFP properly localizes to focal 

adhesions in spread MEFs on fibronectin-coated glass substrates (scale, 10µm). 
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Micropatterned substrates to control adhesive area and cell shape 

FN-coated micropatterned substrates with dimensions smaller than a cell diameter 

in order to control adhesive area and cell shape were produced using micropatterned self-

assembled monolayers of alkanethiols on gold using standard procedures (Fig. 5.2A) 

((Gallant et al., 2002)).  First, a PDMS stamp was created by casting PDMS pre-polymer 

and curing agent into a rigid mold with recessed features.  Following heat-induced 

curing, the PDMS stamp is released from the mold.  Next, the stamp is inked with 

methyl-terminated alkanethiol and then brought into conformal contact with an Au-

coated glass coverslip.  Once in contact, the methyl-terminated alkanethiol molecules 

transfer from the stamp to the Au-surface to form a patterned self-assembled monolayer 

(SAM).  Non-printed areas of the Au-substrate are backfilled with tri(ethylene glycol)-

terminated alkanethiol to create a protein adsorption resistant SAM.  The entire substrate 

is washed and incubated with FN, which preferentially adsorbs to the patterned, methyl-

terminated SAMs (Fig. 5.2B, inset 1).  This approach allows isolation of focal adhesion 

assembly from changes in cell spreading/shape and provides for direct comparisons 

among experimental groups.  We previously reported that NIH3T3 fibroblasts remained 

viable for several days when adhering to micropatterned circular islands with dimensions 

ranging from 2 to 20 m diameter (Gallant et al., 2005).  Vinculin-null MEF1 cells, re-

expressing vinculin-eGFP maintained a round morphology, and their contact area and 

focal adhesions were constrained to the micropatterned domain of 10 m diameter circles 

(Fig. 5.2B, inset 2). The 75 m center-to-center spacing of islands restricted a single cell 

to occupy one adhesive island, preventing interactions with neighboring cells. 
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Figure 5.2 Micropatterned substrates for control of cell shape, spacing, and area.  (A)  

Workflow for generating islands of fibronectin (FN) in cell adhesion-resistant 

background.  PDMS (1:10, 186:184) is cast into a silicon template to create stamp.  

Stamp is inked with protein adsorption-promoting alkanethiol and transferred to the 

surface of an Au-coated substrate, forming a patterned self-assembled monolayer (SAM).  

Non-printed areas are backfilled with tri(ethylene glycol)-terminated alkanethiol to create 

a protein resistant SAM.  Finally, FN is passively adsorbed to surface to promote cell 

adhesion.  (B)  Islands of FN promote controlled cell adhesion.  Anti-FN antibody was 

used to visualize FN localized to microcontact printed circular islands (10µm in diameter, 

spaced 75 µm apart) (scale 75µm).  (Inset 1)  FN adsorbs specifically to patterned islands 

with undetectable amounts of protein in between (scale bar, 10µm).  (Inset 2)  Vinculin-

eGFP localized to FN-coated islands (scale bar, 10µm).   

 

Vinculin increases steady-state adhesion strength over vinculin-null controls 

 We measured the steady-state adhesion strength of MEF1 and MEF2 cell 

expressing vinculin variants using a spinning disk device that applies a range of well-
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defined hydrodynamic shear forces to adherent cells (Garcia et al., 1998) (Fig. 5.3A).  

For a particular sample, the fraction of adherent cells (f) is plotted as a function of the 

applied shear stress ().  From this detachment profile, the shear stress for 50% 

detachment (50), which represents the mean cell adhesion strength, is determined (Fig 

5.3B).  MEF1 and MEF2 cells were seeded overnight on 15 µm-diameter islands of FN. 

The following day, adhesion strength of measurements were made using the spinning 

disk apparatus.  Re-expression of vinculin-eGFP in vinculin-null MEF1 cells increased 

adhesion strength by 22% over the null controls.  Expression of vinculin-eGFP in 

vinculin-null MEF2 cells increased adhesion strength by 27%.  We verified that these 

increases in adhesion strength were due to vinculin expression by culturing stably 

expressing vinculin-eGFP MEF2 cells in 100 ng/mL of anhydrotetracycline to inhibit 

expression (Fig 5.1B).  Under these conditions, adhesion strength of MEF2 cells returned 

to the level of vinculin-null MEF2 control cells (Fig. 5.3C).  This result is consistent with 

previous results in our lab demonstrating that vinculin attributes approximately 25% to 

cell adhesion strength in NIH3T3 cells (Gallant et al., 2005). 
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Figure 5.3. Re-expression of vinculin-eGFP in vinculin-null fibroblast increases steady-

state adhesion strength.  (A)  Spinning disk assay for adhesion strength measurements.  

Cells seeded onto micropatterned substrates (Figure 5.2) are loaded into spinning disk 

machine and subjected to fluid-induced shear stress.  The applied shear stress (τ) is given 

by the formula in figure where r is the radial position from the center and ρ, µ, ω are the 

fluid density, viscocity, and rotational speed, respectively.  (B)  Characteristic 

detachment profile generated by spinning disk machine.  Cell numbers at difference 

radial positions (inverted triangles) are quantified using a motorized microscope stage 

and image analysis system.  The fraction of adherent cells is calculated by dividing the 

number of cells in each field by the total number of cells at the center of the disk, where 

negligible forces are applied.  The detachment profile (cell adherent fraction versus shear 

stress τ) is then fit (black squares connected by line) to a sigmoid curve to obtain the 

shear stress for 50% detachment, which represents the mean adhesive force.   (C)  Re-

expression of vinculin-eGFP in vinculin-null MEFs increases adhesion strength by 22% 

and 27% in MEF 1 and MEF2, respectively (* p < 0.04, # p<0.05).  Addition of 

100ng/mL of aTc reduces adhesion strength. 

 

MEF1 adhesion to FN-coated micropatterned islands is β1-integrin mediated 
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Previous work in our lab examining NIH3T3 fibroblast adhesion to FN-coated 

micropatterned islands demonstrated that the α5β1-integrin receptor mediated adhesion in 

our system (Gallant et al., 2005).  We confirmed this result with our vinculin-eGFP 

expressing MEF1 cells.  Specifically, vinculin-eGFP MEF1 cells were trypsinized, 

quenched in serum containing media, and resuspended in DPBS supplemented with 2mM 

dextrose and 100 g/mL of β1-specific blocking antibody or isotype control.  Cells were 

incubated in suspension with antibodies under gentle rocking conditions for 15 minutes.  

Cells were then seeded in serum-free media for 15 min before visualization (Fig. 5.4).  

No attached cells were visible on surfaces in the presence blocking antibody whereas 

isotype control exhibited extensive numbers of attached cells to FN-coated islands (Fig. 

5.4). 

 

Figure 5.4 Adhesion of MEFs on FN coated substrates is α5β1 integrin specific.  Cells 

were trypsinized from dish, quenched in serum containing media, pelleted, and 

resuspended in appropriate antibody for 15 minutes with gentle rocking.  (B)  Blocking 

α5β1 integrin binding to fibronectin coated islands eliminated cell attached to 

micropatterned islands (15µm diameter) compared to isotype control (A).  scale bar, 

100µm. 

 

Disruption of vinculin head-tail interaction to constitutively open conformation increases 

steady-state adhesion strength 
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Vinculin exists in the cytoplasm in a closed, inactive conformation (Fig. 5.5A).  

The 880amino acid, talin-binding head domain of the protein is tightly bound (Kd 10
-9

) to 

the F-actin binding tail (Chen et al., 2005; Cohen et al., 2006) (Fig. 5.5A).  Once 

localized to sites of focal adhesions, the molecule opens via separation of the head and 

tail domain by a yet-to-be-determined mechanism.  This activated vinculin molecule 

binds several structural and signaling FA molecules including talin and paxillin.  

Mutations to specific residues on the tail domain reduce the binding strength of the head-

tail interaction by 100-fold  (Cohen et al., 2006) (Fig.5.5A).  To examine the 

contributions of the open conformation of vinculin on adhesive forces, we generated 

vinculin-null MEF1 cells stably re-expressing head-tail interaction mutant-vinculin (T12-

eGFP).  We seeded wild-type vinculin-eGFP (WT-eGFP) and T12-vinculin-eGFP (T12-

eGFP) MEF1 cells on glass coverslips coated with FN overnight.  The following day, 

cells were fixed and mounted onto microscopy slides for visualization of vinculin 

molecules.  T12-eGFP expressing cells exhibited increased number and size of FAs 

compared to WT-eGFP expressing cells, consistent with previous reports (Cohen et al., 

2006; Humphries et al., 2007) (Fig. 5.5B).  We measured the steady-state adhesion 

strength of WT-eGFP and T12-eGFP cells on micropatterned substrates.  Compared to 

vinculin-null parental control cells, expression of WT-eGFP increased adhesion strength 

by 25% whereas T12-eGFP increased adhesion strength by 50% over null control cells 

(Fig. 5.5C).  This result indicates that the head-tail autoinhibitory interaction between the 

head and tail domain is critical for proper modulation of cell adhesion strength.  The 

increase in adhesion strength over WT could be due to increases in total amounts of 

integrin-talin complexes or higher association of T12 with integrin-talin complexes.   
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Figure 5.5.  Disruption of vinculin head-tail interaction leads to increase in number of 

focal adhesions and cell adhesion strength.  (A)  Cartoon depiction of vinculin inactive 

(closed) and active (open) state and the dissociation constant associated between each 

condition.  Notice the T12 mutant (yellow dot represents area of tail-domain containing 

mutations) has 100-fold decrease head-tail interaction (B)  WT-eGFP and T12-eGFP 

constructs expressed in MEF1 vinculin-null fibroblasts seeded on FN-coated (10ug/mL) 

FN (scale bar, 10µm).  (C)  Steady-state adhesion strength of cells on 15µm-diameter 

islands.  WT-eGFP increases adhesion strength 25% compared to null while T12-eGFP 

increases adhesion strength 50% over null (* p <0.05 compared to null).  

 

Vinculin head domain, independent of interactions with the cytoskeleton, increases 

adhesion strength 
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 When localized to focal adhesions, vinculin is in an open, active confirmation 

allowing it to transfer force (Grashoff et al., 2010).  Removal of the F-actin binding tail-

domain of vinculin eliminated force transferring ability of molecule (Grashoff et al., 

2010), presumably because the molecule needs to be anchored to binding partners at both 

the N-terminal head and C-terminal tail.    We generated vinculin-null MEF1 cells stably 

re-expressing head only-vinculin (VH-eGFP) for analyzing the effect of tail-less vinculin 

on cell adhesion strength (Fig. 5.6A).  We seeded VH-eGFP MEF1 cells on glass 

coverslips coated with FN overnight.  The following day, cells were fixed and mounted 

onto microscopy slides for visualization of vinculin molecules.  Similar to T12-eGFP 

(Fig. 5.5B), VH-eGFP expressing cells exhibited increased number and size of FAs 

compared to WT-eGFP expressing cells, consistent with previous reports (Humphries et 

al., 2007) (Fig. 5.6B).  We measured the steady-state adhesion strength of VH-eGFP cells 

on micropatterned substrates.  Compared to vinculin-null parental control cells, 

expression of WT-eGFP and VH-eGFP both increased adhesion strength by 25% (Fig. 

5.6C).  This result is surprising because it suggests that a significant amount of vinculin-

mediated adhesion force is directly attributable to binding the integrin-talin-complex and 

is not dependent on direct interaction with the actin cytoskeleton.  Furthermore, these 

results underscore the importance of connection to the cytoskeleton for full adhesion 

strength gains to be achieved.  Stated differently,  the ability of VH to form higher 

numbers of FAs does not increase adhesion strength over the WT molecule.  However,the 

T12 head-tail interaction deficient mutant increases adhesion strength by 25% over VH 

despite having similar, increased numbers of FAs, implicating the tail domain of vinculin 

is critical for cell adhesion strength.  Taken together, these results demonstrate, for the 
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first time, the critical importance of vinculin head binding to the talin-integrin complex, 

independent of vinculin interaction with the cytoskeleton, in the generation of adhesive 

forces. 

 

Figure 5.6.  Disruption of vinculin head-tail interaction leads to hypertrophied focal 

adhesions and increase in cell adhesion strength.  (A)  Cartoon depiction of vinculin head 

domain (VH) only (1-880) which lacks the F-actin binding domain.    VH mutant does 

not exhibit autoinhibitory behavior and can always bind talin.  (B)  VH-eGFP constructs 

expressed in MEF1 vinculin-null fibroblasts seeded on FN-coated (10ug/mL) FN (scale 

bar, 10µm).  (C)  Steady-state adhesion strength of cells on 15µm-diameter islands.  VH-

eGFP increases adhesion strength 25% compared to null which is same increase as WT-

eGFP (* p <0.05 compared to null).  

 

Vinculin-dependent increases in adhesion strength correlate with both increases in 

integrin binding and focal adhesion assembly 

 Two potential methods by which vinculin increases adhesion strength are (1) by 

changing the integrin bond numbers, distribution or clustering and (2) by modulating the 

recruitment and assembly of focal adhesions.    To explore these two possibilities, we 
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first determined if vinculin and vinculin mutants modulated integrin binding and 

localization to the extracellular matrix (ECM).  Previous work in our lab demonstrated 

that, in our micropatterned system, approximately 70% of steady-state adhesion strength 

is attributable to α5β1-integrin receptors binding to FN (Gallant et al., 2005).  FN-bound 

integrins were visualized using a cross-linking and extraction method(Keselowsky and 

Garcia, 2005) to covalently cross-link bound integrins to FN using the cell impermeable 

bifunctional reagent sulfo-DTSSP.  After detergent extraction of uncross-linked cellular 

components, immnostaining for β1 integrin was performed.  We previously demonstrated 

that this technique provides specific staining of bound integrin and shows equivalent 

localization  of β1 integrin to focal adhesions as conventional immunostaining (Garcia et 

al., 1999; Keselowsky and Garcia, 2005), indicating that the cross-linking/extraction 

method does not alter integrin distribution.  In addition, an advantage of this technique is 

that it removes non-specific nuclear staining that can impede visualization of the integrins 

on the micropatterned islands.  Furthermore, our abilty to control cell shape allows us to 

compare the quantities of surface-bound integrins between cell treatment groups (Gallant 

et al., 2005; Michael et al., 2009).  Immunostaining of FN-bound integrins demonstrated 

that T12 and VH vinculin mutants increase the area and intensity of integrin staining in 

compared to WT and null conditions (Fig. 5.7A).  We quantified these increases in 

integrin area (Fig. 5.7B) and intensity (Fig. 5.7C).  T12 and VH increased integrin area 

by over 200% compared to both WT and null controls.  This result demonstrates that the 

head domain of vinculin modulates the quantity and localization of the integrin-talin 

complex.  Similarly, the intensity of integrin staining of T12 and VH conditions was 

significantly higher than null control.  Interestingly, while the area of integrin staining 
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between WT and null was the same, the intensity of WT integrin staining was greater 

than the null control (Fig. 5.7C).  In addition, vinculin mutants modulated the distribution 

of integrin staining.  FN-bound integrin localized to a narrow rim on the outer edge of the 

pattern for null and WT conditions.  T12 and VH vinculin mutants exhibited a similar 

staining pattern on the rim of the adhesive area, while having a less predictable pattern of 

integrin staining in the inner portions of FN-coated islands.  Vinculin modulates the 

assembly and disassembly kinetics of focal adhesions (Cohen et al., 2006; Wolfenson et 

al., 2009), and these mutants disrupt the physiologic interactions of vinculin for focal 

adhesions, leading to mislocalized FAs and FN-bound integrins (Humphries et al., 2007; 

Mohl et al., 2009).  Taken together, these data suggest vinculin is an important modulator 

of the density and localization of FN-bound integrins. 
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Figure 5.7.  Vinculin modulates the spatial localization and intensity of surface-bound 

integrins.  (A)  Surface-bound integrins were visualized using a cross-linking and 

extraction technique, followed by immunostaining (scale bar, 5µm).  (B)  Integrin 

staining area-fraction was calculated by measuring the total area of pixels above a 

specific threshold (applied to all conditions) divided by the total cell area (n=60 cells for 

each condition).  (C)  In the same manner as (B), the mean intensity of the integrin-area 

fraction was calculated,  (* p < 0.05 compared to null condition). 
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 To investigate the recruitment and localization of focal adhesion components to 

the adhesive plaque, immunofluorescence staining was performed.  It has been 

demonstrated that talin is required for vinculin to localize to focal adhesions (Zhang et 

al., 2008).  In addition, a single amino-acid mutation in the talin binding head domain of 

vinculin (A50I) inhibits interaction with talin (Bakolitsa et al., 2004; Cohen et al., 2005).  

Furthermore, it has been suggested that vinculin directly modulates focal adhesion 

formation by directly interacting with talin (Cohen et al., 2006; Humphries et al., 2007).  

Therefore, we focused our analysis of focal adhesion components on talin and vinculin.  

MEF1 cells expressing the indicated vinculin molecule (WT, T12, and VH) were seeded 

overnight on FN micropatterned substrates.  Immunostaining for talin showed that 

expression of WT, T12, and VH vinculin variants in vinculin-null cells increases the 

amount of talin localized to focal adhesions compared to vinculin-null controls (Fig. 5.8 

A,B).  Talin was spatially segregated and constrained to the circular adhesive area of the 

micropatterned islands.  These adhesive structures were consistent with previous work in 

our lab using the same system (Gallant et al., 2005).  Also consistent with previous 

findings (Cohen et al., 2006; Humphries et al., 2007), the exposed head domain of both 

VH and T12 vinculin mutants increased talin localization to the adhesive interface 

compared to WT.  Spatial localization of vinculin strongly correlated with the talin 

localization results (Fig. 5.8 A,B).  Both VH and T12 vinculin mutants increased vinculin 

localization compared to WT control.  In addition, T12 mutant vinculin occupied a large 

percent of the patterned island than VH.  Taken together, increases in integrin binding 

and focal adhesion assembly correlate well with the corresponding increases in adhesion 

strength.   
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Figure 5.8. Vinculin modulates spatial localization and area of focal adhesions.  (A)  

Immunofluorescence staining for talin (red, top row) and vinculin-eGFP in MEF1 

fibroblasts seeded onto micropatterned substrates.  (B)  Area of talin staining as a percent 

of total cell area (* p < 0.05 compared to null).  (C)  Area of vinculin staining as a percent 

of total cell area (* p < 0.05 compared to WT). 

 

 

Physical connection between the head and tail domain of vinculin is required for 

maximum adhesion strength 

 The head domain of vinculin modulates focal adhesion assembly via direct 

binding of talin (Cohen et al., 2006; Humphries et al., 2007).  The tail domain is 

important for efficient linkage between the actin cytoskeleton and focal adhesions 

(Humphries et al., 2007).  Our results indicate that the head-tail interaction mutant, T12, 
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results in the highest level of adhesion strength.  Surprisingly, expression of F-actin 

binding deficient VH molecule results in adhesion strength comparable to WT, despite 

increases in focal adhesion assembly and integrin binding.  This result suggests that 

vinculin must bind to the cytoskeleton in order to achieve maximum adhesion strength.  

Vinculin has recently been shown to transfer force between talin and F-actin in focal 

adhesions (Grashoff et al., 2010), suggesting that the physical linkage between the head 

and tail domain might be important for generating adhesion strength.  We tested the 

hypothesis that the physical linkage between the head and tail domain of vinculin was 

required for maximum adhesion strength. 

 We transiently transfected the head domain (VH), head-tail binding deficient 

(T12), tail only (vinT) and a control eGFP vector into MEF1 vinculin-null cells (Fig. 

5.9A).  72 hrs after transfection, fluorescent cells were enriched with FAC sorting and 

seeded on micropatterned islands.  Fluorescence microscopy showed that vinculin 

mutants localized to FN-patterns in a similar way to those expressed in the retroviral 

system (Fig. 5.8A).  We co-transfected the head (VH-CFP) and tail (vinT-YFP) and, 

72hrs later, sorted for fluorescence expressing cells.  Enriched cells were immediately 

seeded onto patterns (Fig. 5.9B).  The VH-CFP and vinT-YFP molecules constitute the 

entire vinculin molecule, without the physical linkage between the head and tail domain.  

Fluorescence microscopy showed that the VH-CFP domain localizes to FN-micropatterns 

consistent with VH-eGFP (both transient and retroviral expression systems) (Fig. 5.9B).  

When co-expressed with VH-CFP, the tail domain (vinT-YFP) does not strongly co-

localize with the VH-CFP protein.  This finding is consistent with published results, as 

expression of the vinculin tail has been previously shown to decorate F-actin fibers and 
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does not strongly localize to focal adhesions (Humphries et al., 2007).  Adhesion strength 

measurements were performed to quantify the contribution of these constructs to cell 

adhesion (Fig. 5.9C).  Expression of tail only (vinT-YFP) increased adhesion strength to 

the same level of head only (VH-eGFP).  This result is unexpected as the tail domain of 

vinculin does not directly connect to the integrin-tailin complex.  Rather it was been 

shown to decorate F-actin filaments, but not to strongly localize to FAs or α-actinin rich 

lamellopida protrusions (Humphries et al., 2007; Kroemker et al., 1994; Menkel et al., 

1994).  Our own experiments with tail-only expression on a cell traction force 

measurement device indicate that even focal adhesions under high force cannot localize 

tail domain (Fig. 6.6).  There are two possible explanations for this result.  First, it is 

possible that the tail domain enhances actin cross-linking, thereby increasing the overall 

stiffness of the membrane, would more able to resist the peeling detachement mechanism 

inherent in our measurement assay (Gallant and Garcia, 2007a).  An alternative 

explanation is that increases in actin bundling modulate the size, clustering, or 

distribution of the integrin-talin complexes.   

These results implicate important roles for both the head and tail domain of 

vinculin.  Independent expression of the vinculin head and tail constructs increases 

adhesion strength to those similar to WT levels.  Surprisingly, VH accomplishes this 

independently of the action cytoskeleton, but rather, via enhancements in integrin binding 

and focal adhesion assembly.  The tail domain, by contrast, cannot directly bind the 

integrin-talin complexes, and modulates adhesion strength via a separate mechanism.  

One possible explanation is that the tail domain increases membrane stiffness via 

enhanced bundling of the actin cytoskeleton  (Mierke et al., 2008) (Le Clainche et al., 
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2010) which improves resistant to the cell detachment by peeling, mechanism inherent 

our system, by more evenly distributing detachment forces (Gallant and Garcia, 2007a).  

An alternative explanation is that vinculin tail indirectly modulates the size, location, or 

density of the integrin-talin complexes.  This is unlikely because there is little evidence to 

suggest that tail localizes to focal adhesions (Humphries et al., 2007).   

The head and tail domains of vinculin are both important for the generation of 

adhesion strength, consistent with our earlier findings.  In addition, expression of the 

head-tail binding mutant, T12-eGFP, showed the maximum adhesion strength (20% 

higher than tail-only and head-only).  Interestingly, the co-expression of the head (VH-

CFP) and tail domain (vinT-YFP) did not increase adhesion strength above those of head-

only or tail-only.  This result demonstrates that the physical connection between the head 

and tail domain represents an important functional domain of the vinculin molecule in 

adhesion force generation.      
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Figure 5.9. Physical linkage between the talin-binding head and F-actin-binding tail of 

vinculin is essential for maximum adhesion strength.  (A)  Indicated eGFP constructs 

were transiently transfected into MEF1 cells and seeded on micropatterned islands.  

Cartoon representation of vinculin constructs to show the physical linkage between the 

head and tail domains of vinculin.  (B)  Plasmids encoding for Head domain (VH-CFP) 

and tail domain (vinT-YFP) were co-transfected into MEF1 cells and seeded on 

micropatterned islands.  Cartoon representation of the lack of physical connection 

between the head and tail domain.   Line profile of VH-CFP and vinT-YFP overlay 

demonstrates that vinT does not strongly co-localize with FA-associated VH-CFP.  (C)  

Adhesion strength of indicated constructs transfected in MEF1 cells (eGFP, 210 

dyne/cm2; vinT-YFP, 342 dyne/cm2; VH-eGFP, 332 dyne/cm2; vinT-YFP + VH-CFP, 

339 dyne/cm^2; T12-eGFP 405 dyne/cm2)  (# p < 0.9 compared to T12-eGFP; * p < 0.05 

compared to T12-eGFP). 



  100 

 

Conceptual model of adhesive patch force combined with collective view of adhesion 

strength, integrin binding, and focal adhesion assembly data reveals importance of 

vinculin head and tail domains in force generation 

 To better understand the effects of vinculin on adhesion strength, we summarized 

the increases over the vinculin-null condition in adhesion strength, integrin area, and FA 

assembly in Table 5.1.  Expression of the WT and VH domains increased adhesion 

strength by 25% each, while integrin area and focal adhesion assembly increased 167% 

and 172% for VH while remaining unchanged and 28% for WT, respectively.  This result 

suggests that the talin-binding head domain, VH, increases adhesion strength both by 

increasing the number of bound integrin and focal adhesion assembly.  It also suggests 

that vinculin modulates adhesion strength by its linkage to the cytoskeleton because WT 

has the same level of adhesion strength despite having lower amounts of integrin area and 

FA assembly.  This result is supported by a comparison between T12 and VH.  

Specifically, when expressed in vinculin-null MEFs, T12 and VH vinculin mutants both 

increase integrin area and FA assembly to similar levels.  T12 increases adhesion strength 

by 50% compared to vinculin-null controls, while VH increases by 25%, suggesting that 

the ability of the vinculin molecule to connect the integrin-talin-vinculin complex to the 

cytoskeleton is critical for full adhesion strength increases.  This data also suggests that 

vinculin modulates adhesion strength by increasing the number of matrix-bound integrin, 

enhancing focal adhesion assembly, and increasing the connectivity of the integrin-talin-

vinculin complex to the cytoskeleton. 
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Table 5.1.  Effects of vinculin domains (percent increase over null) 

  

 
 

 

 In order to expand our understanding of the experimental results for vinculin-

modulated adhesion strength, we present an engineering analysis of the dependence of 

adhesion strength generation on the number of bound integrins, focal adhesion assembly, 

and cytoskeleton connectivity.  The model is based on previous work in our lab which 

demonstrated excellent agreement between predicted adhesion patch force data and 

experimental results (Gallant and Garcia, 2007a).  Importantly, an advantage of the 

model is that it is based on parameters that can be measured experimentally, thus 

allowing for comparison between experimental results and model predictions. 

 We use a modified membrane peeling model that that assumes bond loading of 

matrix-bound integrin receptors is highly non-uniform and can thus be modeled by an 

exponential decay function with maximum bond forces generated at the perimeter of the 

cell which then rapidly decay towards the center (Fig. 5.10A).  The total adhesive patch 

force is calculated by the sum of individual adhesive patches consisting of bound 

integrins (B) linked together by the fraction of bonds mechanically linked by focal 

adhesion assembly (χ).  The model accounts for differences in membrane stiffness by 

modulating the sensitivity (κ) of the exponential dependence of segment loading (Fig. 

5.10B).   We populate the above parameters with a values derived from our own 

experimental data as well as data from the literature.  Specifically, the number of bound 

integrins, B, used in the model (1600 for Null and WT, and 2500 for T12 and VH) were 



  102 

 

chosen based on the integrin staining data presented in Fig. 5.7 as well as estimations of 

maximum amount of total bound integrins (3000) from Gallant 2005 (Gallant et al., 

2005).  Increases in cytoskeleton stiffness resulting from vinculin-mediated linkage of 

integrin-talin-vinculin complexes to the cytoskeleton were modeled by varying the 

exponential dependence of segment loading from 1 (no vinculin linkage, Null and VH) to 

2 (vinculin linkage, WT and T12) (Table 5.2).  Finally, we varied the levels of integrin 

bonds associated with FAs based on our experiment data of focal adhesion assembly (Fig. 

5.8).  Specifically, minimum amount of FA assembly requires one-third of integrins to be 

focal adhesion bound (Coussen et al., 2002), so we assigned this value (.33) to the 

vinculin-null condition (Table 5.2).  We assigned a focal adhesion fraction of 0.5 to WT, 

T12, and VH vinculin constructs based on our experimental results showing increased 

assembly compared to null (Table 5.2). 

 The results of the conceptual model of adhesive patch force agree well with our 

experimental results of adhesion strength.  The model predicts that expression of T12 

vinculin increases the adhesive patch force by 99.8% over the vinculin-null condition 

while expression of vinculin WT and T12 increase adhesive patch force by 50.2% and 

45.5%, respectively (Fig. 5.10C).  Our own experimental results demonstrate that WT 

and VH increase adhesion strength over null by 25% while T12 increases adhesion 

strength by 50% (Fig. 5.10D).  Comparing the predicted to the experimental results, we 

see good agreement in the relative gains in adhesion strength given by each vinculin 

construct over the vinculin-null condition.  The conceptual model is useful for 

interpreting our experimental results as it predicts that vinculin can increase adhesive 

patch for by increasing the levels of bound integrin, increasing the percent of integrins 
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bound to FAs, and by increasing the stiffness of the cytoskeleton by linking it to the 

integrin-talin-vinculin complexes.     

 

Figure 5.10. Conceptual model of adhesion strength. (A)  Conceptual model of adhesive 

patch force generation.  (B)  Exponential dependence of adhesive patch force on 

individual integrin bond strength (f), number of integrin bonds (B), fraction of bonds 

associated with FAs (χ), and exponential dependence of segment loading (κ).  (C)  

Predicted adhesive patch force gains as a percent over vinculin-null condition.  (D)  

Experimentally determined adhesion strength values with percent gains over vinculin-

null condition shown. 

 

 

 

 

Table 5.2.  Parameters for conceptual model of adhesion strength 
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Discussion 

 We demonstrate that vinculin increases adhesion strength via enhancements in 

integrin binding/localization and focal adhesion assembly.  Mutations reducing the head-

tail interaction (T12) of the molecule result in additional increases of adhesion strength 

by further increasing the number of matrix-bound integrins as well as the assembly of 

talin and vinculin-containing focal adhesions.  Importantly, vinculin mutants lacking the 

F-actin tail domain (VH) increase adhesion strength to levels of wild-type (WT), but fail 

to achieve the same adhesion strength of T12 mutants.  This result is surprising because 

both VH and T12 exhibit similar levels of integrin binding and focal adhesion assembly, 

consistent with previous reports (Humphries et al., 2007).  The major structural 

difference between the two mutants is that T12 retains the ability to bind actin while VH 

does not.  This structural difference suggests that the binding of vinculin to the 

cytoskeleton is essential for maximum adhesion force generation, independent of integrin 

binding and focal adhesion assembly. High-resolution, 3-D imaging of the nanoscale 

architecture of the adhesive plaque demonstrated that vinculin head domain localizes to 

talin in the region sandwiched between with integrins below and the actin cytoskeleton 

above (Kanchanawong et al., 2010).  While the authors did not directly measure the 

location of the tail domain of vinculin, it is reasonable to assume that the molecule orients 

itself such that the tail binds the actin cytoskeleton.  The assumption is supported by 

direct evidence that vinculin tail is required for efficient linkage of adhesive complexes to 

the actin cytoskeleton (Humphries et al., 2007).  In addition, vinculin tail efficiently 

cross-links and bundles actin filaments (Janssen et al., 2006; Menkel et al., 1994).  

Therefore, one possible explanation for our finding that the tail domain is required for 
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maximum adhesion strength is that discrete focal adhesions are mechanically coupled 

together by their vinculin-dependent linkage to the cytoskeleton.  These mechanically 

coupled adhesions would thereby increase adhesion strength by requiring that all linked 

adhesions fail simultaneously.  A similar model has been proposed to describe focal 

adhesion-induced increases in adhesion strength (Gallant and Garcia, 2007a).  In this 

model, independent clusters of integrins adhesive patches are linked together by focal 

adhesions.  Mechanically linked adhesive patches fail simultaneously, instead of 

individually, thereby increasing cell resistance to detach forces.  Stated briefly, we 

hypothesize that vinculin is required for efficient coupling of the focal adhesions to the 

actin cytoskeleton and that this coupling to the cytoskeleton mechanically links discrete 

focal adhesions, thereby increasing the resistance to adhesion strength.  Implicit in this 

model is the importance of the physical linkage between the head and tail domain of the 

vinculin molecule.  Importantly, this simple model also explains why head adhesion 

strength to above null, but not the levels of actin-binding T12.    

We therefore hypothesized that the proline-rich strap that physically links the 

talin-binding head and actin-binding tail is essential for achieving maximum adhesion 

strength.  We directly tested this hypothesis by co-transfecting vinculin head and tail 

constructs.  The constructs themselves represent the entire vinculin molecule in which the 

head and tail domains are not linked together.  Consistent with our model, co-expression 

of head and tail constructs were not able to achieve the same level of achieve strength as 

the full-length, head-tail interaction mutant, T12.  Importantly, transfecting cells with 

only the tail of vinculin increased adhesion strength compared to the null condition.  This 
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result independently supports our view that the actin-bundling tail of vinculin is 

important for generating adhesion strength.  

Finally, we employed the use of a previously validated (Gallant and Garcia, 

2007a) conceptual model of adhesion force generation.  Based on a modified membrane 

peeling model, it assumes bond loading of matrix-bound integrin receptors is highly non-

uniform and can thus be modeled by an exponential decay function with maximum bond 

forces generated at the perimeter of the cell which then rapidly decay towards the center 

(Fig. 5.10A).  The model considers the affects of numbers of bound integrins, extent of 

focal adhesion assembly, and cytoskeleton modulated membrane stiffness.  Using 

parameters derived from our experimental data as well as the adhesion strength literature, 

the predicted adhesive patch force increases over null condition for each of the vinculin 

constructs (WT, T12, and VH) correlated strongly with our experimental results (Fig. 

5.10C,D).  The model predictions thus support our interpretation of the experimental 

data; namely, that vinculin increases adhesion strength by a combination of increasing the 

number of integrin-FN bonds, increasing FA assembly, and by physically linking the 

integrin-talin-vinculin complex to the cytoskeleton.   

In conclusion, we have demonstrated that vinculin increases adhesion strength 

when expressed in vinculin-null cells.  We showed that the gains in adhesion strength are 

attributable to increases in FN-bound integrins and focal adhesion assembly.  Reduction 

in the strength of the head-tail interaction (T12) increases FN-bound integrins, focal 

adhesion assembly, and adhesion strength 25% higher than wild-type vinculin.   

Expression of the head domain only (VH) also increases FN-bound integrins and focal 

adhesion assembly, however, the adhesion strength is the same as wild-type.  We 
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hypothesized that vinculin tail linkage to the cytoskeleton allows for maximum adhesion 

strength by mechanically linking independent focal adhesions.  Adhesion studies with co-

expression of independent head and tail domains support this model and demonstrate that 

the physical connection between the head and tail is essential for achieving maximum 

adhesion strength.  
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CHAPTER 6 

Force-Dependent Dynamics of Vinculin Recruitment to Focal Adhesions 

 

 

 

Abstract  

 The conversion of mechanical forces into chemical signals is a fundamental 

cellular process that occurs at supramolecular structures called focal adhesions (FAs).  

Integrin-mediated adhesion to the extracellular matrix gives rise to the assembly of force-

sensing FAs.  Despite considerable characterization of the structural and morphological 

changes to FAs in response to force, the exact molecular interactions that are responsible 

for the behavior remain unknown.  Recent experimental and computational evidence has 

suggested that the binding interaction between talin and vinculin might be regulated by 

force.  Direct evidence that force-induced binding interactions are relevant, in-cellulo, 

does not yet exist.  Herein, we present a novel approach for characterizing the force-

dependent dynamics of focal adhesion associated proteins.  Using this system, we 

demonstrate that the dynamics of vinculin recruitment to FAs are linearly dependent on 

the level of force applied to the focal adhesion.  Specifically, as force applied to the FA 

increases, so too does the stability of vinculin in the FA.  This result supports a simple 

model in which cytoskeleton generated tension across vinculin modulates its binding 

interactions within FAs.  However, we also provide surprising evidence to contradict this 

model by showing that the force applied to focal adhesions modulates the dynamic 
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recruitment of vinculin, independent of its interaction with the cytoskeleton.  We 

therefore hypothesize that cytoskeleton generated force applied across talin exposes one 

or more vinculin binding sites (VBS) that are important for the force-dependent dynamics 

of recruitment of vinculin to FAs.   Taken together, a model emerges wherein vinculin 

dynamics are dually regulated both by direct application of cytoskeleton generated force 

across vinculin and by force induced exposure of VBS on talin. 

 

Introduction 

Cells have the remarkable ability to detect and respond to their mechanical 

environment (Sastry and Burridge, 2000).  Forces, both externally and internally 

generated, modulate cell behavior and structure.  Apart from a few well characterized 

systems, how mechanical forces are converted into chemical signals remains largely 

undefined (Riveline et al., 2001).  Focal adhesions are supramolecular structures that 

serve both as sites of force transfer between the extracellular matrix and cytoskeleton and 

as signaling platforms (Balaban et al., 2001; Riveline et al., 2001).  These dynamic, 

complex structures link ECM-bound, transmembrane integrin receptors to the actin 

cytoskeleton.  The processes by which FA grow, modulate shape and size, and control 

disassembly are all modulated by the stiffness of the underlying substrate (Sniadecki et 

al., 2007; Vogel and Sheetz, 2006).  While it is clear that force modulates focal adhesions 

the structure and function of FAs, the manner in which they accomplish this is unclear.   

The integrin-talin-vinculin complex serves as a critical force bearing linkage 

between the internal cytoskeleton and the extracellular matrix (Gallant et al., 2005; 

Humphries et al., 2007; Zhang et al., 2008).  Previous work in our own lab has 
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demonstrated the importance of this complex to the generation of adhesion forces 

(Gallant et al., 2005).  Importantly, all three of the individual proteins in the complex 

have been shown to respond to force.  For example,  integrin-ligand catch-bonds describe 

how integrins increase their affinity for ligands upon application of force (Kong et al., 

2009).  In addition, molecular dynamics of force application to both vinculin and talin 

have uncovered potential force-regulating binding pathways that could mediate 

interactions between the two proteins (Golji and Mofrad, 2010; Lee et al., 2008).  By 

applying tensile force to individual talin molecules, del Rio et al provided physical 

evidence that cryptic vinculin-binding sites become exposed which promote binding of 

the vinculin head domain (del Rio et al., 2009).  While these studies on isolated, single 

molecules provide insight into the potential force induced interactions of vinculin and 

talin, how these relationships unfold in the context of a living cell is unclear.   

Herein we present a novel approach for measuring the force mediated, dynamic 

behavior of focal adhesion-associated proteins.  We used micro post array deflections 

substrates to measure cell the force transferred across individual focal adhesions (Fu et 

al., 2010; Tan et al., 2003).  Simultaneously, we measured the dynamic behavior of 

fluorescent vinculin molecules expressed in vinculin-null mouse embryonic fibroblasts 

using fluorescence recovery after photobleaching.  This unique approach allowed us to 

characterize, for the first time, the force-dependent behavior of vinculin in focal 

adhesions.  We show that vinculin turns over more rapidly in focal adhesions under low 

force compared to slower vinculin recovery at high forces.  Importantly, we show that the 

relationship between applied focal adhesion force and vinculin recovery is linearly 

dependent.  This result supports a simple model in which cytoskeleton generated tension 
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across vinculin modulates its binding interactions within FAs.  However, we also provide 

surprising evidence to contradict this model by showing that the force applied to focal 

adhesions modulates the dynamic recruitment of vinculin, independent of any direct 

application of cytoskeleton generated force to the molecule.  Combined, these results 

suggests a model by which the dynamic recruitment of vinculin to focal adhesions is, at 

least in part, modulated by force applied to other focal adhesions molecules. 

 

Materials and Methods 

Reagents 

 Human plasma fibronectin (FN), fetal bovine serum, Dulbecco‟s modified eagle‟s 

medium (high glucose) and Dulbecco‟s phosphate buffered saline (dPBS) were obtained 

from Invitrogen (Carlsbad, CA).  Poly(dimethylsiloxane)(PDMS) elastomers and curing 

agents were obtained from Dow Corning (Midland, MI).  Inhibitors (blebbistatin and 

calyculin-A) were purchased from Sigma-Aldrich (St. Louis, MO).  1,1'-dioleyl-3,3,3',3'-

tetramethylindocarbocyanine methanesulfonate (Δ9-DiI) was purchased from  Invitrogen.  

F127 Pluronic was purchased from Sigma-Aldrich (St. Louis, MO).   

 

Fabrication Flow - Micro post array deflection substrates (mPADs) 

mPAD devices were fabricated in accordance with the protocol developed by the 

laboratory of Chris Chen, University of Pennsylvania (Yang et al., 2011). PDMS molds 

were created by pouring 1:10 Sylgaurd 184 (Dow Corning) over the silanized mPAD 

silicon master (a kind gift from JP Fu lab, Univeristy of Michigan) and placed in a 110ºC 

convection oven for 1 hour.  Molds were allowed to cool and then were peeled from the 
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masters and cut into individual device molds.  These individual molds were then UVO 

cleaned (Jelight Model 342) for 10 minutes to promote the formation -OH groups on the 

surface of the mold.  The molds were then transferred into a desiccator and 100 µL (two 

or three drops) of (tridecafluoro-1,1,2,2,-tetrahydrooctyl1)-1-trichlorosilane (Sigma) was 

placed onto a microscope slide.  The desiccator was then placed under constant vacuum 

for 24 hours to promote the vapor phase silanization of the surface.  After the molds were 

silanized, a drop of 1:10 PDMS was put on top of the each mold, and degassed for 30 

minutes.  During degassing, round 22mm coverslips were treated with atmospheric 

plasma to promote covalent bind to the coverslip prior to peeling.  After the molds were 

sufficiently degassed to remove air bubbles, the molds were inverted onto the plasma 

treated coverslips and placed into a 110ºC convection oven for 20-24 hours.  After full 

curing, the final device was created by peeling the mold, and inverting it into a bath 

EtOH followed by sonication to recover collapsed posts.  Devices were dried under 

super-critical CO2 (Tousimis PVT-3) to generate fully recovered mPAD devices.  

Detailed protocol can be found in Nature Protocols ((Yang et al., 2011)). 

 

mPAD Device Prep Flow 

  A standard silicon wafer was silianized and 1:30 Sylguard 184  was cast on top 

and cured at 110ºC for minimum one hour.  PDMS was peeled from the wafer and cut 

into square stamps smaller than the device area.  Stamps were cleaned by sonication in 

EtOH for 5 min to remove loose PDMS flakes and debris.  Under cell culture hood, 

stamps were dried under stream of N2.  Next, human plasma fibronectin (50 µg/mL) was 

adsorbed on the top surface of the stamps for 1 hour.  Excess FN was removed by 
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submerging stamps in ultrapure diH2O.  Stamps were removed and dried under a gentle 

stream of N2.  Fully recovered mPAD devices were then trimmed with razor blade to 

remove excess PDMS.  mPAD devices were then treated with UVO cleaner for 10 min to 

prepare surface for microcontact printing.  FN-coated, flat PDMS stamps, were then 

inverted onto the tops of mPAD devices (transfer of FN from flat stamp to top of the 

mPAD occurs within seconds).  Without removing the FN stamp, mPAD devices were 

transfer into 100% EtOH, to allow for removal of the FN stamp without collapsing posts.  

Devices were then washed as follows:  1X 70% EtOH, 4X diH2O, and transferred into 

5µg/mL Δ9-DiI and incubated for 1 hour.  Devices were then washed 2X in 100% H2O 

followed by 1X rinse in dPBS (Ca
2+ 

 and Mg
2+ 

free)  and transferred to 1-2% Pluronics 

F127 (Sigma) and incubated for 30 minutes to block non-specific protein adsorption.  

Devices were rinsed 3X in 100% dPBS (Ca
2+ 

and Mg
2+ 

free) three times.  Prepared 

devices were transferred into 6 well plates and seeded with cells at a density of 20,000 

cells /cm
2
.  After waiting until the desired number of cells have seeded, non-seeded cells 

were washed off.  Cells were allowed to spread on mPADs overnight. 

 

Fluorescence recovery after photobleaching (FRAP) 

 A confocal microscope (Nikon C1) and an inverted microscope (Nikon TE 300) 

equipped with a Coherent Sapphire solid-state 488 laser under the control of Nikon EZ-

C1 software were used for FRAP experiments.  Cells were seeded overnight on FN-

coated mPAD devices.  Prior to imaging, devices were mounted into a on-stage incubator 

(LiveCell II, Pathology Devices, Westminster, MD) maintained 100% humidity and 5% 
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C02.  A custom microscope enclosure was used to thermally stabilize the microscope at 

37ºC.  

FRAP experiments were performed as follows.  Cell-seeded mPAD device was 

loaded into an Attofluor cell chamber (Invitrogen, Carlsbad, CA) and allow to equilibrate 

for >20 minutes.  A 60X APO TIRF (1.49 NA) objective (Nikon) was used for imaging.  

Initial fluorescence intensity was measured using low laser power (1.5-2.5%) followed by 

photobleaching of a 0.85um-diameter circle inside FAs at 10% laser power for 1 zoomed 

pass (256x256 pixels inside of circle).   The fluorescent recovery was monitored every 7-

seconds (10 seconds for VH and T12) until plateau in recovery was reached (5 pre-bleach 

and 30 post-bleach images).  Images were imported into MATLAB and background 

subtraction and bleaching correction were applied to data from the region of interest.  

Curves were fit to single exponential recovery model by assuming a reaction dominated 

system and disregarding any effects of diffusion. 

 The characteristic recovery time for a molecule under pure diffusion is given by: 

  
  

  
 

where τ, r, and D represent the first-order characteristic recovery time, radius of 

photobleached spot, and the diffusion constant of the molecule (Sprague and McNally, 

2005).  We used a bleach radius of 0.42µm which, for BSA (77kDa, D=66 µm/s
2
), yields 

as recovery time of 0.001s.  While vinculin (116 kDa) is larger than BSA, it is unlikely 

that the diffusion effects contribute to our recovery measurements.  This assumption is 

supported by recent results showing similar recovery time for different size 

photobleached spots, indicating a reaction, not diffusion, dominated system (Wolfenson 

et al., 2009). 
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Post deflection measurements were taken immediately following FRAP recovery.  

Specifically, the top and bottom of the posts were sequentially captured.  ImageJ (NIH, 

Bethesda, MD) was used to measure the center-to-center distance between the top and 

bottom of the tethered post.  The resulting force was calculated using Euler-Bernoulli 

beam theory approximation where 

F =  
 

  
  

  

  
   

in which F,E,D,L, and υ are the bending force, Young‟s modulus, pillar diameter, pillar 

height, and resulting deflection of the post (Yang et al., 2007). 

For studies with chemical inhibitors, appropriate concentration (1M blebbistatin 

and 0.1nM calyculin-A) were added to samples 30 minutes prior to measurements. 

 

Retroviral vectors for eGFP-Vinculin WT  

Retroviral plasmids pTJ66-tTA and pXF40 were previously described ((Gersbach 

et al., 2007)).  eGFP-C1 WT vinculin and eGFP-C1 VH vinculin plasmids were a kind 

gift from Susan Craig.  One AgeI restriction site was inserted into the multiple cloning 

site of pXF40, the retroviral expression vector.  The oligonucleotides 5‟-

AGCTTGTCAGCTACCGGTGCTACTGCA-3‟ and 5‟-

AGCTTGCAGTAGCACCGGTAGCTGACA-3‟ (AgeI sequences underlined) were 

annealed together, creating HindIII- compatible overhands at each end.  This product was 

then ligated into a linearized pXF40 vector which had been digested with HindIII.  

Finally, the eGFP-vinculin constructs were digested from the pEGFP-C1 with AgeI and 

SalI and ligated into the SalI and AgeI-digested pXF40 vector.  The pXF40-eGFP-
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Vinculin WT and VH vectors transcribe the eGFP-vinculin gene from the tetracycline-

inducible promoter.  All vectors were verified by sequencing the ligation points.  

 

Retroviral Transduction of eGFP-Vinculin vectors into Vinculin-null Mouse Embryonic 

Fibroblasts 

Retroviral stocks were produced by transient transfection of helper virus-free 

ΦNX amphotropic producer cells with plasmid DNA as previously described ((Byers et 

al., 2002)).  Vinculin-null mouse embryonic fibroblasts, a kind gift from Eileen 

Adamson, were cultured and plated on tissue culture polystyrene at 2x10
4
 cells/cm

2
 24 h 

prior to retroviral transduction.  Cells were transduced with 0.2 ml/cm
2
 of equal parts 

pTJ66-tTA and pXF40-eGFP-Vinculin retroviral supernatant supplemented with 4 

µg/mL hexadimethrine bromide (Polybrene) and 10% fetal bovine serum, and centrifuged 

at 2500 r.p.m. (1200 g) for 30 min in a Beckman model GS-6R centrifuge with a 

swinging bucket rotor. Retroviral supernatant was replaced with growth media (DMEM, 

10% fetal bovine serum, 100U/mL penicillin G sodium, 100 g/mL streptomycin sulfate, 

1% non-essential amino acids, 1% sodium pyruvate).  Five days after transduction, eGFP 

expressing cells were FACS sorted, expanded, and either used for experimentation or 

cyropreserved in liquid nitrogen for later use.  Expression of vinculin constructs was 

verified by Western blot and immunofluorescence microscopy (data not shown). 

 

Results 

Microfabriated post array detector system (mPADs) for cell traction force measurements 
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 Cells continually sense, respond to, and modulate their mechanical environment.  

Physical cues from the extracellular matrix control cell behaviors such as migration, 

proliferation, and differentiation.  Here, we use microfabricated post array detector 

systems (mPADs), originally developed by the laboratory of Chris Chen (U of 

Pennsylvania), to measure cell generated traction forces (Fu et al., 2010).  The effective 

stiffness of each device can be tuned by changing the height of the individual pillars and 

there exists a well-characterized library of devices that are freely available 

(http://www.seas.upenn.edu/~chenlab/micropostform.html).  We screened devices with 

three different spring constants (3.8, 11.5, 18.2 nN/µm) in order to determine the stiffness 

range that promoted optimal cell spreading and traction force generation with our 

vinculin-null mouse embryonic cells (MEF1) (data not shown).  Based on these results, 

we chose mPADs with a post height of 6.1µm, post diameter of 1.83µm, and post-to-post 

spacing of 2µm, resulting in an effective spring constant of 18.2 nN/µm.  We seeded 

vinculin-null MEF1 cells re-expressing vinculin-eGFP (Fig. 5.1) on FN-coated mPADs 

(Fig. 6.1A).  Devices were mounted in an Attofluor cell chamber (Invitrogen), allowed to 

equilibrate for > 20 min on a Nikon TE300 equipped with an environmental chamber, 

and then imaged.  Vinculin-eGFP co-localized to the tops of FN-coated posts (Fig. 6.1A) 

and showed preferential focal adhesion formation at the distal edges of the cell, consistent 

with MEF1 vinculin-eGFP on glass surfaces (Fig. 5.1C).  An image of both the base and 

top of posts was captured and a composite image of post bottom (blue), post top (red), 

and vinculin-eGFP was created (Fig. 6.1B).  Cell traction forces applied at each post were 

calculated by importing the image stack into a custom MATLAB code, kindly provided 

by Chris Chen (Fig. 6.1C).  Consistent with previous results, maximum cell traction 

http://www.seas.upenn.edu/~chenlab/micropostform.html
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forces occurred at the distal edge of the cell and were directed, in general, towards the 

center of the cell (Fu et al., 2010).  Cells remained viable on mPADs for greater than 4 

days.  

 

Figure 6.1.  Microfabricated post array detector system (mPADs).  (A)  Vinculin-null 

MEF re-expressing WT-eGFP-vinculin spread on mPADs coated with 50µg/mL of 

fibronectin (FN).  (B)  Merged images of post bottom (blue), post top (red), spread cell 

expressing vinculin-eGFP.  Notice how FAs localize with tops of posts. (scale bar, 

20µm).  (C)  Blue arrows representing cell traction force applied to each post.  Forces 

range for 0-20nN.    

 

Fluorescent recovery after photobleaching measurements on mPADs 

 Focal adhesions (FAs) sense and respond to mechanical forces (Balaban et al., 

2001).  The exact molecular mechanism involved in this process, however, have yet to be 

determined.  Vinculin exists in the cytoplasm in an inactive, autohibited conformation 

(Chen et al., 2005).  At sites of focal adhesions, the protein adopts an open, active 

conformation and binds to talin and F-actin (Chen et al., 2005).  The interaction between 
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talin and vinculin has recently been proposed as a potential force-sensing unit (Golji and 

Mofrad, 2010).   Physical evidence for force-mediated interaction between vinculin and 

talin has recently been demonstrated (del Rio et al., 2009).  In addition, fluorescence 

recovery after photobleaching has recently shown that the dynamic behavior of vinculin 

in focal adhesions is dependent on the spatial location of the adhesion (Wolfenson et al., 

2009).  Furthermore, a force sensing vinculin molecule demonstrated that vinculin 

experiences higher forces at the leading edge of migratory cells compared to the rear, 

retracting edge (Grashoff et al., 2010).  To date, however, there exists no direct evidence 

that the dynamics of vinculin recruitment to FA are modulated by the force.   

 To address this issue, we combined fluorescent recovery after photobleaching 

(FRAP) with traction force measuring mPAD devices to characterize how the dynamics 

of vinculin recruitment to FA are modulated by force across focal adhesions.  We 

measured the dynamics of vinculin-eGFP containing focal adhesions subjected to various 

levels of force (Fig. 6.2A).  Vinculin-eGFP containing adhesions localized directly to the 

tops of individual posts.  Importantly, only focal adhesions that were distinctly associated 

with a single post were analyzed, allowing for direct measurement of force applied across 

an adhesion (Fu et al., 2010). Arrowheads adjacent to the focal adhesion subjected to 

FRAP indicate the magnitude and direction of cell traction force (Fig. 6.2A).  Raw 

images of time series FRAP recovery demonstrate minimal x-y-z stage drift and minimal 

focal adhesion rearrangement during recovery (Fig. 6.2A).  Normalized percent recovery 

data was computed from raw images using custom MATLAB code.  Normalize recovery 

curves demonstrated the capability of our technique to measure the dynamics of vinculin 

recruitment to FA independent of the amount of force applied to the post (Fig. 6.2B). 
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Figure 6.2.  Fluorescence recovery of vinculin-eGFP on mPADs.  (A)  Time-lapse 

recovery of vinculin-eGFP focal adhesions on mPADs.  FAs (arrow heads) were 

bleached and recovery was monitored (scale bar = 10µm).  (B)  Normalized recovery for 

low (5.7nN, filled circles), moderate (13.0nN, filled triangles), and high (38.2nN, filled 

squares) forces as measured by deflection of FA-associated post.   Lines indicate first-

order fit to respective data points. 
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Vinculin association with focal adhesions increases as force applied across focal 

adhesion increases 

Using our novel technique of combining FRAP and traction-force measuring 

devices, we characterized the dynamics of vinculin in focal adhesions under different 

amounts of force.  A total of 22 focal adhesions in three independent experiments were 

used to generate the force versus normalized recovery time in Fig. 6.3.  We restricted our 

analysis to focal adhesions that were both located on the periphery of the cell and 

confined, geometrically, to only one post.  In addition, we performed only one FRAP per 

cell in order to minimize any confounding effects resulting from exposure to the  

photobleaching laser power.  This approach allowed for the most direct measurement of 

focal adhesion applied force.    A linear least-squares fit was applied to the data 

describing the relationship between vinculin dynamics and applied force through a focal 

adhesion (slope significantly non-zero, p <0.0001).  At small forces, vinculin exhibits 

faster dynamics, while at higher forces, focal-adhesion associated vinculin exchanges 

more slowly.   

We tested the force-dependent correlation of vinculin recovery by modulating the 

contractile state of the cytoskeleton.  Specifically, we used well-characterized chemical 

inhibitors to modulate the amount of myosin II mediated cytoskeleton tension.  First, 

vinculin-eGFP cells were exposed to a low concentration (1µM) of the myosin II ATPase 

inhibitor blebbistatin (Straight et al., 2003).  This concentration relaxed cell generated 

contractile forces without complete abrogation of focal adhesions, thus allowing us to 

perform FRAP measurements (Fig. 6.4, blue dotted line).  Importantly, previous reports 

in the literature have indicated that this concentration is sufficient to modulate cell 
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migration speed and adhesion strength (Gupton and Waterman-Storer, 2006).  Vinculin-

eGFP recovery times in cells exposed to blebbistatin demonstrated excellent agreement 

with our previous results.  Next, cell traction force was increased by addition of low-

levels of calyculin-A (100 pM), a potent type II phophatase inhibitor that blocks myosin 

II phosphatase, thus enhancing myosin II activity (Ishihara et al., 1989).  A histogram of 

measured forces revealed that this concentration reduced the occurrence of low traction 

forces (Fig. 6.4A, red dotted line).  The characteristic recovery time as a function of force 

closely matched our results in the absence of inhibitors (Fig. 6.4B).  Taken together, the 

data indicate that the rate of vinculin dissociation in focal adhesion decreases as the 

amount of force applied across the adhesion increases.  This result supports a simple 

model by which cytoskeleton generated tension across vinculin modulates its binding 

interactions within FAs. 
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Figure 6.3.  Disassociation of vinculin from focal adhesions slows as force applied to 

adhesion increases  (A)  Characteristic recovery time, τ(1/2), plotted as a function of FA 

force.  Each data point represents a single FA recovery in a cell.  Fitted line is a linear 

least squares fit with the slope (s/nN) and r-squared values indicated.  Slope is 

significantly non-zero,  p < 0.0001.   
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Figure 6.4.  Effect of myosin II-mediated contractility modulating drugs on vinculin 

turnover.  (A)   Histogram of the number of FRAP experiments performed at specified 

force.  Cells were treated with the myosin II  inhibitor, Blebbistatin (1µM), to reduce 

cytoskeleton generated tension.  Likewise, cells were treated with calyculin A (0.1nM) to 

enhance myosin II activity.  (B)  Vinculin WT-eGFP characteristic recovery time plotted 

as a function of measured FA force in the absence (black dots) or presence of myosin II 

inhibiting (Blebbistatin, blue squares) or enhancing (calyculin A, red triangles) drugs.   
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Force dependent recovery of vinculin head domain 

 To test the model that cytoskeleton generated tension across vinculin modulates 

its binding interactions within FAs, we investigated the force dependent behavior of the 

talin-binding vinculin head domain which lacks the actin-binding tail domain.  

Importantly, this mutant cannot bind the actin cytoskeleton directly and, therefore, force 

from the cytoskeleton cannot be transferred through the protein (Grashoff et al., 2010).  

We predicted that this mutant form of vinculin would exhibit force-independent dynamic 

interactions with focal adhesions.   

MEF1 cells expressing VH-eGFP (Fig.5.6) were seeded onto FN-coated mPADs 

and allowed to adhere overnight (Fig. 6.5).  Similar to WT-eGFP, VH-eGFP expressing 

MEF1 cells spread and developed contractile forces on mPADs.  In addition, VH-eGFP 

demonstrated the ability to form punctuate focal adhesions that were localized and 

constrained to individual posts (Fig. 6.5A).  Compared to VH-eGFP cells seeded on FN-

coated glass substrates, cells on mPADs spread to a similar area and exhibited a similar 

increase in the number of focal adhesions, compared to WT.  We measured the force 

dependent characteristic recovery time of VH-eGFP constructs and plotted the results 

against the previously captured WT-eGFP data (Fig. 6.5B).  In contrast to WT, recovery 

of VH-eGFP was more dependent on the applied force across the adhesion.  A linear 

least-squares fit had a slope of 16.7 (s/nN) compared to 2.69 (s/nN) for WT.  More 

experiments with the VH-eGFP mutant are required to confirm this preliminary finding. 

This is result is very surprising as it provides evidence to contradict the simple 

model that the dynamics of vinculin recruitment to focal adhesions are solely dependent 

upon the cytoskeleton-generated tension applied through the molecule.  It also suggests 
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that, in addition to the auto-inhibition head-tail interaction (Cohen et al., 2005), the force 

applied to the focal adhesion is also an important regulator of vinculin dynamics.  We 

show that the force applied to focal adhesions can modulate the dynamic recruitment of 

vinculin, independent of any direct application of cytoskeleton generated force to the 

molecule.  A simple explanation for this result is that cytoskeleton generated force is 

transferred to focal adhesion causes force-induced exposure of vinculin binding sites on 

talin.   
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Figure 6.5.  Force dependent turnover of head and tail domain of vinculin.  (A)  

Vinculin-null MEF1 cells expressing VH-eGFP on glass (left) and on mPAD device 

(right) (scale 20µm).  (B)  Characteristic recovery times of VH-eGFP compared to WT-

eGFP.  (C)  Parameters of lines for linear least squares fit of WT-eGFP and VH-eGFP 

data. 

 

Dynamics of vinculin-tail domain cannot be correlated to force measurements 

 Because the focal adhesion dynamics of the talin-binding head domain (VH-

eGFP) showed a strong relationship to the applied force, we next analyzed the force 
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dependent dynamics of the vinculin tail (vinT-YFP).  The head and tail domain of 

vinculin cooperate to maintain vinculin in an inactive confirmation until it becomes 

activated at sites of focal adhesions.  In addition the tail domain contains the F-actin 

binding domain.  We transfected YFP-conjugated tail domain (vinT-YFP) into vinculin-

null MEF1 cells and seeded cells onto glass substrates (Fig. 6.6A).  vinT-YFP localized 

to the distal tips of cell extensions and also bound to F-actin fibers, consistent with 

previous findings (Humphries et al., 2007).  When seeded onto mPADs, vinT-YFP did 

not localize to discrete posts.  In contrast, vinT-YFP failed to form any punctuate 

adhesions and, instead, exhibited diffuse staining in the cytoplasm (Fig. 6.6B).  In 

addition, vinT-YFP did not localize (green arrow) to the distal areas of the cell, where 

maximum post deflection occurred (red arrow showing deflected post) (Fig. 6.6B, inset).  

We captured a total of 6 FRAP measurements of the vinT-YFP molecule.  VinT-YFP 

exhibited a fast average characteristic recovery time of 20 s.  These recovery times are 

consistent with previous reports (Humphries et al., 2007) suggesting proper vinT-YFP 

function.   
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Figure 6.6.  Recovery time versus force measurements cannot be made with vinculin-

tail-YFP (vinT-YFP) because vinT-YFP structures span multiple posts and do not 

localize to deflected posts.  (A)  vinT-YFP construct transiently transfected into MEF1 

vinculin-null cells and seeded onto FN-coated glass coverslips.  Cells were fixed with 4% 

paraformaldehyde and mounted on glass slides followed by visualization with 

fluorescence microscopy (scale 10µm).  vinT-YFP transfected MEF1 cells seeded onto 

mPAD device.  In constrast to WT-eGFP and VH-eGFP vinculin molecules, the vinT-

YFP does not localize to tops of mPAD pillars (scale bar 10µm).  In addition, inset shows 

how the vinT-YFP signal attenuates (green arrowhead) approximated 4µm from distal 

deflected posts(red arrow head) (scale 10 µm).  

 

Discussion 

 We describe a novel method for measuring force-mediated focal adhesion protein 

dynamics.  This method utilizes micro arrayed posts to measure cell generated traction 

force.  This approach to measuring force is advantageous because it decouples changes in 

substrate stiffness from changes in the microscopic material properties that could affect 
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ligand binding and cell response (Fu et al., 2010).  In addition, the technique allows for 

direct measurement of the force applied to focal adhesions that co-localize with 

individual posts (Fu et al., 2010; Tan et al., 2003).  We measured the dynamic behavior 

of focal adhesion associated proteins using fluorescence recovery after photobleaching.  

The fluorescence recovery of vinculin protein inside of the photobleached spot is 

dominated by the exchange dynamics between vinculin binding partners, rather than 

diffusion (see materials and methods).  By measuring the time-dependent intensity of 

fluorescence recovery, we determined the characteristic recovery time of FA-associated 

vinculin as a function of force.  The assumption that recovery is dominated by 

interactions with binding partners is reasonable based on our own calculations (see 

methods) and, in addition, recent results that used difference sizes of photobleached spots 

demonstrated that both vinculin and talin dynamics in focal adhesions are reaction-

dominated (Wolfenson et al., 2009).  We used this novel technique to test the hypothesis 

that the dynamics of vinculin recruitment to focal adhesions are modulated by force. 

 We first demonstrate that vinculin-null cells engineered to express vinculin-eGFP 

constructs adhere and spread on mPADs (Fig. 6.1).  Importantly, vinculin-eGFP localizes 

to the tops of posts and form discrete, independent focal adhesions.  This observed FA 

morphology allows us to directly measure the force applied through individual focal 

adhesions.  In contrast, expression of the head-tail interaction vinculin mutant (T12) 

developed adhesions that spanned multiple posts, making it difficult to interpret how 

measured forces across multiple deflected forces are distributed through the focal 

adhesion. 
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 We next demonstrate the feasibility of our measurement technique across of range 

of posts deflections (Fig. 6.2).  Vinculin association and accumulation within focal 

adhesions can be modulated by substrate stiffness and changes in substrate strain 

(Balaban et al., 2001).  Therefore, it is possible that at low force levels, vinculin 

accumulation might be beneath detectable threshold for proper execution of FRAP 

experiments.  Time-lapse images of low-force focal adhesions e demonstrate that, indeed, 

our technique has the sensitivity to measure recovery times on posts transferring as low 

as 1 nN of force (Fig. 6.2A).   The % recovery of fluorescence signal for three different 

forces (Fig. 6.2B) demonstrates that our system is capable of a FRAP measurements 

through a wide-range of forces.   

 We next characterized the force-dependent recruitment of vinculin to focal 

adhesions.  Our results indicate that the dynamic recruitment of vinculin to focal 

adhesions is linearly correlated to applied FA force.  Specifically, at low force, vinculin 

protein exhibits the fastest recovery time, while at high force, the recovery time is 

significantly slower (higher characteristic recovery time) (Fig. 6.3).  To confirm the 

results, we used chemical inhibitors to modulate the overall traction force of the cell.  

Small amounts of blebbistatin (1µM) reduced the contractile state of the cell (Fig. 6.4A), 

but did not fully dissolve vinculin containing focal adhesions.  Force versus recovery 

time measurements of focal adhesion exposed to blebbistatin correlated well with our 

non-inhibitor data (Fig. 6.4B), suggesting that force modulates vinculin dynamics within 

focal adhesion.  Cytoskeleton tension was increased by the addition of low levels of 

calyculin-A (100 pM).  This potent type II phophatase inhibitor blocks myosin II 

phosphatase, thus enhancing myosin II activity (Ishihara et al., 1989) and cell traction 
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forces.  At low concentrations (<1nM), calyculin-A is relatively specific for myosin II 

phosphatase, thus minimizing the chance our results are due to off target effects that 

might regulate vinculin dynamics (Gupton and Waterman-Storer, 2006).  Force-recovery 

curves for calyculin-A enhanced contractility demonstrated close alignment with our 

inhibitor-free data.    Taken together, these data constitute the first in-cellulo 

measurements describing the relationship between applied force and the dynamics of 

vinculin recruitment to FAs.  These results provide important, new insights into the 

mechanotransduction pathways that allow FAs to be force responsive. 

The data also indicate that vinculin dynamics in focal adhesion are linearly related 

to the amount of force applied across the adhesion.  In agreement with previous reports 

(Balaban et al., 2001; Grashoff et al., 2010), this result supports a simple model by which 

cytoskeleton generated tension applied across vinculin modulates its binding interactions 

within FAs.   

To test the model that cytoskeleton generated tension across vinculin modulates 

its binding interactions within FAs, we investigated the force dependent behavior of the 

talin-binding vinculin head domain which lacks the actin-binding tail domain.  

Importantly, this mutant cannot bind the actin cytoskeleton and, therefore, force from the 

cytoskeleton cannot be transferred through the protein (Grashoff et al., 2010).  We 

predicted that this mutant form of vinculin would exhibit force-independent dynamic 

interactions with focal adhesions.  In contrast to WT, recovery of the vinculin head 

domain was more dependent on the applied force across the focal adhesion.  A linear 

least-squares fit had a slope of 16.7 (s/nN) compared to 2.69 (s/nN) for WT.   
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This is result is very surprising as it provides evidence to contradict the simple 

model that the dynamics of vinculin recruitment to focal adhesions are solely dependent 

upon the cytoskeleton-generated tension applied through the molecule.  We show that the 

force applied to focal adhesions can modulate the dynamic recruitment of vinculin, 

independent of any direct application of cytoskeleton generated force to the molecule.   

A simple explanation for this result is that cytoskeleton generated forces are transferred 

to focal adhesions causing force-induced exposure of vinculin binding sites (VBS) on FA 

proteins that, in turn, modulate vinculin dynamics.  Recent experimental results 

supporting this model demonstrated that applied tensile force to individual talin 

molecules exposed cryptic vinculin-binding sites which promoted binding of the vinculin 

head domain (del Rio et al., 2009).  We therefore hypothesize that cytoskeleton generated 

force applied across talin exposes one or more vinculin binding sites (VBS) that are 

important for the force-dependent dynamics of recruitment of vinculin to FAs.  Taken 

together, a model emerges wherein vinculin dynamics are regulated both by direct 

application of cytoskeleton generated force across vinculin and by force induced 

exposure of VBS on talin. Further experimental data are required to confirm or reject this 

hypothesis.     

 Finally, we demonstrate a technical limitation of measuring force-induced focal 

adhesion dynamics.  Specifically, we transfected vinculin tail domain in vinculin-null 

cells and attempted to measure the relationship between force and tail dynamics.  As can 

be seen from cells seeded on traction force measurement devices, vinculin tail did not 

localize to individual posts.  Therefore, while we could measure both force and recovery 

time, the two could not be correlated because the tail did not localize to discrete posts 
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(Fig. 6.6).  It is interesting to note that while the vinculin tail did localize to focal 

adhesions when cells are plated on glass, we did not observe the same localization on the 

mPADs.  The stiffness difference between the two substrates could account for this 

observation.  A possible explanation is that there is a minimum amount of force applied 

to a FA in order to recruit the vinculin tail.  Further experiments, beyond the scope of this 

work, are required to test this hypothesis. 
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CHAPTER 7 

Conclusions and Future Directions 

 

 

 

The objective of this project was to analyze the role of vinculin in the cell 

adhesion strengthening process.  Our central hypothesis was that vinculin modulates 

adhesion strength via regulating the size and/or composition of the integrin-talin-vinculin 

complex.  The rationale for this project was that use of a novel combination of 

biochemical reagents and engineering techniques along with quantitative and sensitive 

adhesion strength measurements would provide new insights into how the structure of 

vinculin contributes to cell adhesion strength.  

In Chapter 3 we demonstrate that focal-adhesion kinase (FAK) regulates steady-

state adhesion strength by regulating vinculin localization to focal adhesions.  In Chapter 

4, we demonstrate that actin-myosin contractility controls cell adhesion strengthening 

through focal adhesion kinase and the assembly of vinculin-containing focal adhesions.  

Both of these results pointed to vinculin as being an important regulator of adhesive 

force.  Indeed, previous work in our lab suggested that the assembly of vinculin-

containing focal adhesions contributed 20% to the generation of cell adhesion strength.     

Chapter 5 describes our efforts to further analyze the role of vinculin in the cell 

adhesion strengthening process.  As such, we demonstrate that vinculin increases 

adhesion strength when expressed in vinculin-null cells.  We show that the gains in 

adhesion strength are attributable to increases in FN-bound integrins and focal adhesion 
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assembly.  Reduction in the strength of the head-tail interaction (T12) increased FN-

bound integrins, focal adhesion assembly, and adhesion strength 25% higher than wild-

type vinculin.   Expression of the head domain only (VH) also increases FN-bound 

integrins and focal adhesion assembly, however, the adhesion strength is the same as 

wild-type.  We hypothesized that vinculin tail linkage to the cytoskeleton allows for 

maximum adhesion strength by mechanically linking independent focal adhesions.  

Adhesion studies with co-expression of independent head and tail domains support this 

model and demonstrate that the physical connection between the head and tail is essential 

for achieving maximum adhesion strength.  A logical extension of this work would 

involve a more detailed study of the structure-function relationship of the integrin-talin 

complex.  Using similar approaches as were applied in Chapter 5, a detailed study of how 

the functional domains of talin and integrin modulate adhesion strength would provide 

new insight to better understand how the integrin-talin-vinculin complex works together 

to generate cell adhesion strength. 

Chapter 6 describes the development of a novel approach for characterizing the 

force-dependent dynamics of focal adhesion associated proteins.  Using this system, we 

demonstrate that the dynamics of vinculin recruitment to FAs are linearly dependent on 

the level of force applied to the focal adhesion.  This result supports a simple model in 

which cytoskeleton generated tension across vinculin modulates its binding interactions 

within FAs.  However, we also provide surprising evidence to contradict this model by 

showing that the force applied to focal adhesions modulates the dynamic recruitment of 

vinculin, independent of its interaction with the cytoskeleton.  Combined, these results 

suggests a model by which the dynamic recruitment of vinculin to focal adhesions is, at 
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least in part, modulated by force applied to other focal adhesions molecules.  A natural 

extension of this work would be to further test the hypothesis that the dynamic 

recruitment of vinculin to focal adhesions is modulated both by direct application of force 

across the vinculin molecule and by force applied to other focal adhesion molecules.  An 

obvious candidate is the vinculin and integrin binding molecule, talin.  Talin has been 

implicated in stretch induced exposure of vinculin binding sites (VBS).  Future studies 

could focus on characterizing the specific role of these VBS in force-mediated dynamic 

recruitment of vinculin to focal adhesions.  
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