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SUMMARY

Understanding the behavior of complex, large-scale, interconnected systems in a

rigorous and structured manner is one of the most pressing scientific and technological

challenges of current times. These systems include, among many others, transporta-

tion and communications systems, smart grids and power grids, financial markets

etc. Failures of these systems can have potentially enormous social, environmental

and financial costs.

In this work, we investigate the failure mechanisms of load-sharing complex sys-

tems. The systems are composed of multiple nodes or components whose failures

are determined based on the interaction of their respective strengths and loads (or

capacity and demand respectively) as well as the ability of a component to share its

load with its neighbors when needed. Each component possesses a specific strength

(capacity) and can be in one of three states: failed, degraded or functioning normally.

The states are determined based on the load (demand) on the component.

We focus on two distinct mechanisms to model the interaction between compo-

nents strengths and loads. The first, a Loss of Strength (LOS) model and the second,

a Customer Service (CS) model. We implement both models on lattice and scale-free

graph network topologies. The failure mechanisms of these two models demonstrate

temporal scaling phenomena, phase transitions and multiple distinct failure modes

excited by extremal dynamics. We find that the resiliency of these models is sensitive

to the underlying network topology. For critical ranges of parameters the models

demonstrate power law and exponential failure patterns.

We find that the failure mechanisms of these models have parallels to failure

8



mechanisms of critical infrastructure systems such as congestion in transportation

networks, cascading failure in electrical power grids, creep-rupture in composite struc-

tures, and draw-downs in financial markets. Based on the different variants of failure,

strategies for mitigating and postponing failure in these critical infrastructure systems

can be formulated.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Understanding the behavior of complex, large-scale, interconnected systems in a rig-

orous and structured manner is one of the most pressing scientific and technological

challenges of current times. While individual components of a system may be well un-

derstood and characterized, there is relatively little understanding of neither the long

run time-behavior of large-scale interconnected systems nor the nature of cascading

failures in complex systems. In modern times, these are of immense concern due to

the enormous economic, infrastructure and social costs of complex system failures.

In this work, an attempt is made to understand the failure mechanisms of com-

plex interconnected systems. Of particular interest is characterizing the extremal

dynamics, mechanisms of cascading failure and the degree of damage and time-to-

failure distributions of complex systems. Also of interest is identifying techniques for

mitigating, postponing, and reversing the onset of failure.

A significant body of research has accumulated in recent years in the study of

complex networks. These are networks whose structure is large-scale and dynami-

cally evolving in time [16]. Unlike the traditional research cited in [16], the focus here

is from the perspective of system reliability [84, 11, 65, 72]. The particular emphasis is

on the study of time-to-failure and degree of damage distributions, rather than steady-

state patterns and mean time-to-failure characteristics. A system reliability approach

enables mapping of the time-to-failure distributions to the traditional failure-time

parametric distributions studied in statistical reliability theory [58, 14, 15]. The util-

ity in this approach is the predictive capability acquired in predicting the various

10



failure modes and pertinent distributions of complex systems. Assuming that the

underlying physical mechanisms of failure are correctly identified, selecting a para-

metric distribution effectively provides a means of representing the underlying failure

dynamics of the system and thus significantly reduces the need for experimental data.

1.2 Literature review

The study of the structure and dynamics of complex systems [73, 37, 16] has attracted

a great deal of interest in recent years. These are systems that are composed of a large

number of interconnected components. These systems include but are not limited

to: social networks, chemical and biological systems such as protein, neural and

genetic networks, engineered systems such as the power grid, Internet, transportation

and communication networks etc. The structural analysis of complex systems is

mainly concerned with characterizing the topology of the underlying network, i.e.

the wiring of the components that compose the system. On one hand, characterizing

the topology of the network allows researchers to identify the structural properties

of the network and develop realistic node connectivity models for real networks. On

the other hand, studying the dynamics of complex systems allows one to understand

the collective behavior of the system as it evolves in time. Study of the dynamics of

complex systems relies on capturing the dynamics of individual components and the

dynamical interaction of these components with each other.

The robustness of complex systems to failure in both static and dynamic contexts

has received significant attention in the literature. Failures in terms of static node

or component removals have been studied in [1, 32, 33]. Dynamic failure scenarios

have also been studied in a variety of contexts: capacity constraints and propagating

failures due to shared load [68, 69], cascading failures in power grids [55, 31], jam-

ming transition in air transportation networks [56], and congestion in communication

networks [36, 40].
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From a more theoretical or conceptual perspective of the dynamical evolution of

complex systems, Self-organized criticality (SOC) has been put forth as one explana-

tion for the complexity in nature [5]. SOC describes the dynamics of complex systems

which have a “critical-point” as an attractor [7, 6, 75]. SOC is typically observed in

non-equilibrium dynamical systems with spatial degrees of freedom which naturally

evolve into a self-organized critical-point. These systems possess a key state pa-

rameter, such as density or temperature, which characterizes the underlying generic

and random system. A specific value of density or temperature is associated with

the system at the critical-point. The characteristic signatures of systems exhibit-

ing SOC are: self-similarity, phase transitions, power laws, punctuated equilibria,

universality classes and other signatures. Power laws have been discovered in infor-

mation/communication networks [78, 76, 77, 99, 18], biological systems [51, 50], and

social networks [35, 46, 3, 39, 102]. It has been observed that many real networks

display power law shaped degree distributions, P (k) ∼ Ak−γ [9, 10]. The widespread

observation of power laws has been interpreted as evidence for SOC and edge of chaos

(EOC) [59] phenomena.

However, other authors have provided alternate explanations to how complexity

arises in nature that are at variance with SOC. For example, Carlson and Doyle [20,

21] have proposed Highly Optimized Tolerance (HOT) as an alternative to SOC. HOT

systems are optimized, through natural selection or engineering design, to provide

robust performance at designed-for-uncertainties. In their work, Carlson and Doyle

illustrate several essential characteristics of complexity in nature that are absent in the

SOC framework but present in HOT [20]. For example, like SOC, HOT also produces

power-laws. However, in SOC the power-laws are associated with the critical density,

where as in HOT, power-laws are present for values higher than the critical density.

The mechanisms for producing power-law distributions in HOT are different from the

mechanisms for criticality in SOC.
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Carlson and Doyle [20, 21] cite the Internet as one example in which power laws are

ubiquitous. It is tempting to view the Internet as a collection of independent agents

who adaptively self-organize into a complex state. However, the internal details of the

Internet are highly structured with sophisticated control protocols that are extremely

robust to the main sources of uncertainty. The different layers of the Internet, which

sit one on top of the other, create the illusion of apparent simplicity, which is exactly

the opposite of SOC and EOC. Furthermore, the power-laws of the Internet are

independent of density (which in this case is the congestion level) which can vary

enormously over the network. This suggests that criticality may not be relevant.

Unlike SOC/EOC, where external forces only initiate events and the mechanism

which gives rise to complexity is self-contained, HOT takes into account the fact that

engineering designs are developed and biological systems evolve in a manner which

rewards successful strategies subject to a specific form of external stimulus. Using

HOT states, which are essentially added design configurations to percolation and

sand-pile models, the authors retain maximum yield well beyond the critical point.

To capture the structural properties of complex systems, a natural approach is to

model system connectivity using graph theory [17, 104]. In this case, the nodes of the

graph represent the components of the system and edges represent the wiring of the

system and the interaction of the components with each other. While graph theory

constitutes a natural framework to characterize the structural topology of complex

networks, a simpler and nearly canonical form of a complex system is represented by

Cellular Automata (CA) [106]. Cellular automata consists only of nodes with links

implied implicitly. In cellular automata of complex systems, each node of the network

represents an agent that can be in any one of a finite number of states. At each time

step, the state of the agent is computed based on its previous state and the state of its

neighbors. Cellular Automata is a relatively new simulation approach that simulates

physical processes that are discrete both in time and in space [24]. Broadly, CA can
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be categorized into two types: deterministic, using deterministic evolution rules and

probabilistic, using probabilistic evolution rules. Cellular Automata has been used

to simulate statistical physical phenomena such as forest fires, urban traffic jams

and flows, growth of dendrite [60], durability of concrete in aggressive environments

[13], multi-pit corrosion [82], wind damage in forest planning [107], rock failures [2],

creep rupture [25], and meso-scale damage evolution in structures [64, 108]. Cellular

automata has also been used in connection to self-organized criticality behavior to

model landslides, forest fires, and earthquakes [97]. In general, cellular automata is

mostly concerned with steady-state patterns and averages properties such as mean

time-to-failure and expected transient time.

A model employing cellular automata techniques, the Universal Failure Model

(UFM), is proposed in [101] to model the failure dynamics of complex systems. The

UFM consists of a large number of components performing a common function. Each

component possesses a specific strength or load capacity and can be in one of three

states: failed, damaged or functioning normally. The states are determined based on

the demand load on the component. If the demand exceeds the capacity or strength

of the component than the component fails and the components load is redistributed

among its neighbors. Utilizing the UFM, specific shapes of distributions for time-to-

failure and cumulative damage (thus making possible the study of cascading failure

mechanisms in complex systems) can be studied, thus enabling a mapping to the

traditional failure-time parametric distributions such as: Log-normal, Weibull, Ex-

ponential, Gamma, Birnbaum-Saunders distributions etc.

1.3 Objectives

The objective of this work is to use the UFM to model failure dynamics of complex

systems. In particular, the object is to identify distinct patterns of failure propagation

as functions of the input parameters.
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First, we will investigate the UFM in a lattice configuration. Later we will relax

our assumption on the lattice network topology and investigate the failure mechanism

of the UFM in a scale-free graph network topology. We will explore different variants

of the UFM; and for reasons to be described in detail in the next chapter, we will refer

to the different flavors of the UFM as the LOS (Loss of Strength) or CS (Customer

Service) model.

Second, we will investigate congestion phenomena in both lattice and scale-free

network setting from the perspective of communication and transportation systems.

We will investigate congestion phenomena in the context of a Customer Service (CS)

model. We will describe in detail the CS model in the next chapter.

With these objective in mind the outline of this thesis is described next.

1.4 Outline

The thesis is organized in the following chapters:

• In chapter II, we introduce the LOS and CS models. We study the failure

mechanisms of both the LOS and CS models on lattice and scale-free graph

network topologies.

• In chapter III, we provide a mathematical treatment of the LOS and CS models.

• In chapter IV, we provide additional discussion of the properties of the LOS

and CS models that were not covered in chapters II and III.

• In chapter V, we extend the LOS and CS models to study practical applications.

We use the LOS model in creep-rupture studies and compare it to the model

proposed by Mahesh and Phoenix [62]. We use the CS model in air traffic

congestion management studies and relate it to the aggregate flow models of

Sridhar et. al. [93]. We conclude by employing the CS model to interpret
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metropolitan road traffic congestion using metro Atlanta traffic congestion as

an example.

• In chapter VI, we investigate complex systems from a multi-agent system per-

spective. To model the dynamics of individual agents in the system we use

the Dubins vehicle model [38]. This provides a realistic framework to study

congestion phenomena for air transportation systems.

• In chapter VII, we conclude with a summary of our results, contributions and

possible directions for future work.

16



CHAPTER II

FAILURE MECHANISMS OF LOAD-SHARING

COMPLEX SYSTEMS

In this chapter we discuss the failure mechanisms of load-sharing complex systems.

Most of the material in this chapter has been published in Physical Review E in [88].

Here we reproduce that material.

2.1 Introduction

In the last decade a significant body of research has accumulated in the study of

complex systems, their structure and dynamics [73, 16]. Static robustness in terms

of node removals have been explored in [1, 32, 33]. But most real networks undergo

dynamic failures where the failure of a single or multiple nodes might trigger cascades

of failure through the network. Dynamical redistribution of flow have been considered

in different real world networks: power grids [55, 31], air transportation networks [56],

and communication networks [36].

Many physical systems fail as their capacity or strength degrades over time under

constant load or load increases over time as strength remains fixed. For example,

loss of strength phenomena is observed in stress-rupture or creep rupture [62], tire

wear, and level of fluid in a hydraulic system [58]; whereas load buildup is commonly

considered in fiber-bundle models on complex systems [66, 54]. Failure occurs when

component load is greater than its strength. Component failure due to overloading

is a serious threat in networks: a single component failure and its subsequent load

redistribution can trigger cascades of failures through the network, ultimately bringing

down the entire system [66, 55].
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On the other hand, many communication and transportation systems exhibit con-

gestion phenomena as data or customer traffic density increases beyond certain thresh-

olds. Congestion or jamming phenomena for critical values of traffic density has been

demonstrated in models of transportation [71, 87, 70] and communication networks

[74, 89, 98]. Traffic flow models for air transportation systems have been explored in

[56, 86, 93]. Congestion in one part of the network has the effect of rerouting traffic

to other parts of the network resulting in slowing down or clogging traffic in the entire

system.

In this work we explore two different models of interaction between component

strength and load to understand the failure mechanisms of complex systems. The

first one is a Loss of Strength (LOS) model where components lose strength over time

following prescribed rules. The second one is a Customer Service (CS) model where

component demand is modeled through customer or data traffic arrival rate. For

both models we investigate the strength-load interaction both at and below critical

loading levels [66, 67]. At critical loading levels and above the entire system abruptly

collapses, which we refer to as the critical state.

First, we describe the general system setup. We implement both models on two

different network topologies: individual components organized in a n × n lattice or

a scale-free (SF) network of n2 components following a power law degree distribution

P (k) ∼ Ak−γ, with exponents 2 < γ < 3. The SF network is constructed using

the Barabási-Albert (BA) algorithm [9, 10]. The BA SF model is a growth and

preferential attachment algorithm where at each iteration step a new node is attached

to “m” existing nodes in the network, where m is a constant input parameter. At the

end of the iteration steps, a scale-free network of average degree 〈k〉 = 2m is obtained.

We generate BA SF networks for m ∈ (2, 4, 6) which results in average degree 〈k〉 ∈

(4, 8, 12). These choices of 〈k〉 cover a range of communication, biological and social

networks in the real world [16]. In both network topologies each component can be
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in one of three possible modes: fully operational, stressed, and failed. We denote by

(i, j) the location of a component in the lattice. For the scale-free configuration we

number the components from 1 to n2. Next we describe the LOS model in the lattice

configuration.

2.2 The LOS model

For the LOS model on a lattice topology each component is initialized with a specific

strength Sij. Component loads Lij are initialized with the same value and during the

simulation are not exogenously varied. If Lij ≤ ηSij, where η ∈ (0, 1) is a parameter

to control strength degradation threshold, then the component is fully operational

and strength does not degrade. If ηSij < Lij ≤ Sij then the component at (i, j) is

considered stressed and loss of strength takes place over time. We consider deter-

ministic loss of strength for components [58]. The components strength degradation

follows the relationship Stij = −αt + St
′
ij where α is the strength degradation rate

parameter, t is the time and St
′
ij denotes the strength at time t = t′ when component

LOS commences. If Lij > Sij then the component fails and the load is redistributed

equally to the components immediate neighbors in the system. Once a component

fails it is removed from the network.

The objective of the Sij and Lij initializations is to capture the interaction dynam-

ics of component strength and load. The simulations work in the following way, first

all component loads are set to a specific value Lij = L where L ∈ [0.5..4]. During a

simulation L is not exogenously varied. For each load setting L, 30,000 Monte-Carlo

simulations are carried out and Sij is reinitialized for each simulation. To generate

a mix of strong and weak components, Sij is initialized from a real uniform distri-

bution U [6, 10]. To initiate LOS dynamics, for each simulation 4-5 components are

initialized to a stressed mode Lij > ηSij where deterministic loss of strength takes

place. As L is steadily increased, we arrive at critical ranges of L where interactions
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between components Lij and Sij trigger LOS dynamics and load redistributions for

increasingly greater number of components. This allows us to capture the failure

mechanisms of the system. In the simulations t = k∆t with ∆t = 0.1, k = 1..500,

n = 12, η = 0.7 and α = 0.2. The components at the boundary are initialized to very

high strength to prevent failure. Since boundary components do not fail we do not

need to deal with their load redistributions.

In the SF network case each component has neighbors following a power-law degree

distribution. The simulation initializations for LOS SF network model is the same as

the lattice configuration except with n2 = 100 and for each simulation we generate

a BA SF network. Also by construction all components for the LOS model on a SF

network have neighbors so special handling of boundary components is not necessary.

2.3 The CS model

Next we describe the CS model on a lattice configuration. For the CS model we have

taken a “Eulerian” [57] point of view for component flow dynamics as opposed to

the standard “Lagrangian” point of view of our references. Component demand is

modeled as a customer or data arrival rate λ. Although traffic in real communication

networks is non-Poissonian [89, 79], as a first step we follow [86, 74] and model

customer demand as a Poisson process with rate λ. The rate λ is the same for all

components and does not vary during a simulation. Thus the system is in effect

subjected to a uniformly distributed globally varying load. Component capacity is

modeled through a fixed customer departure rate γij. In addition, each component

possesses an associated queue qij for extra storage capacity. At a given time step if λ ≤

γij then the component is fully operational. If λ > γij then the excess demand (λ−γij)

is redistributed to the fully operational neighbors of the component. Excess demand is

transferred sequentially to the neighbors with the largest spare capacity (γij−λ) > 0

where (i, j) denotes the location of the neighbors. If component demand redistribution
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is successful then the component remains fully operational. The component excess

demand redistribution might be partially or completely unsuccessful. In that event,

the remaining excess demand is placed in the queue qij for processing in the next time

step. If the remaining excess demand is placed in qij successfully then the component

at (i, j) is considered stressed. If the remaining excess demand overwhelms qij then

the component is considered congested (failed) as it is not able to service the traffic

demand. Once a component is congested it is taken off the grid.

Similar to the LOS model, we capture the interaction between component capac-

ity and demand for the CS model through critical ranges of λ that trigger demand

redistribution and congestion. In our simulations, component capacities γij are ini-

tialized by sampling from a integer uniform distribution U [8, 12] to generate a mix

of strong and weak components. We run 30,000 Monte-Carlo simulations for each

integer value of λ ∈ [5, 11]. For each simulation the system is initialized with new

capacities γij. Each simulation is run for t = k∆t = 500 time steps where ∆t = 1.

The queue size is set to q = 6 and n = 12. For our ranges of λ the queue essentially

provides components additional time to prevent failure. Boundary components have

queue’s set to large values to prevent component failure and avoid load redistribution.

For the CS model on a SF network we have n2 = 100 and due to circular boundary

conditions special handling of boundary components is not necessary.

Before presenting our results we note a important difference between the CS and

LOS models. In the LOS model, a component’s load redistribution is the final step

before it fails: once LOS dynamics is initiated the component will fail and an attempt

will be made to redistribute its load. In the LOS model a component can undergo, at

most, one load redistribution. In the CS model a component is essentially renewed

through successful excess demand redistribution. The component fails only if the load

redistribution is unsuccessful and the associated component queue qij is overwhelmed.

In the CS model a component can complete multiple excess demand redistributions
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and remain fully operational.

Another important point is regarding failed component load that is not success-

fully redistributed. In both models we shed the load and consider it lost. This is

common in the context of internet traffic where packets are routinely discarded when

routers are congested [49]. Similarly, power grid substations have mechanisms which

take them offline during capacity/demand imbalances 1.

2.4 Results

Next, we define two quantities measured in the simulations. During each simulation

components fail as the system evolves in time. We denote by ‘TF’ (Terminal Failure)

the number of component failures at the end of a simulation. TF is a measure of the

degree of system failure. We denote by ‘TT’ (Terminal Time) the time step when

the penultimate component failure occurred. TT can be interpreted as the time the

system achieves a pseudo steady-state.

The TF and TT distributions for different values of load initialization for the LOS

model on a lattice configuration are shown in Figs. 1 and 2. At loading L = 0.5

the system is far from critical. At these loading levels component failures are mainly

due to components that were initialized to commence LOS and their subsequent load

redistributions to weak components. At these loading levels the systems are resilient

to chains of cascading failure triggered by load redistribution, this fact is indicated

by Fig. 1(a).

As the initialization load is increased, transition load conditions can be identified

for L = 2, 2.5. The bi-modal distributions in Fig. 1(g), 2(a) resemble bathtub like

curves that are commonly observed in reliability of complex systems [65]. In Fig. 2(a)

half the simulations represent systems with all components failing. The other half

1M.J. Wald, R. Perez-Pena, N. Banerjee, The New York Times, August 16, 2003
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Figure 1: LOS model distributions. TF distributions (left column); TT distributions
(right column).
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Figure 2: LOS model distributions. TF distributions (left column); TT distributions
(right column).
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represent systems constituting partial component failures. This implies for approxi-

mately 50% of the simulations the system strength topology is such that cascading

chains of load redistributions are triggered which eventually bring down the entire

system. For the other 50% of simulations the system strength topology is strong

enough to withstand the load redistributions thus avoiding a cascading chain of fail-

ures. Transition load settings are similar to ‘tipping points’ or ‘critical thresholds’

[94, 63]. In our simulation framework, at tipping-points systems may or may not,

depending on system strength topology, descend into catastrophic failure.

2.4.1 Scaling phenomena

Recalling that TF represents the degree of system failure for a given simulation, let

T̃F denote “smoothed” versions of TF. T̃F exhibits temporal scaling phenomena for

the LOS model for load values lower than the transition load on both the lattice and

SF networks of 〈k〉 = 12. T̃F is constructed in the following way. Referring to the

TF and TT distributions in Figs. 1 and 2, each point in the TF distribution has a

associated point in the TT distribution. For a particular system loading L, we bin the

TF distribution in groups of 4 in ascending order and denote them by T̃F i with value

set to the minimum TF value in the bin 2. For each bin we find the corresponding

values in the TT distribution and compute their mean, denoted 〈TT 〉i. We illustrate

the temporal scaling phenomena of T̃F in Fig. 3 for different values of loading for

the LOS model in both lattice and SF network configurations. In Fig. 3, T̃F versus

〈TT 〉 is plotted in a log-log scale. Each circle in the figures represents the mean of a

TT distribution conditioned on a T̃F i.

From these figures the following scaling relation is established for loading values

far below the critical load,

2The results still hold if we set the value to the mean or max of the bin. The objective of binning
is to smooth or denoise the data
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Figure 3: T̃F temporal scaling for the LOS model, lattice configuration (top row)
and SF network (bottom row). The plots are on a base 10 log-log scale.

〈TT 〉 = κT̃F
τ

(1)

Table 1 tabulates the numerical values for κ and τ for different values of load.

At low values of load, Figures 3(a) and 3(c), the logarithm of T̃F scales linearly

versus the logarithm of 〈TT 〉. As the initial load setting is increased, a breakpoint

develops and the T̃F ’s separate into two different log-log linear scales, as illustrated

in Figs. 3(b), 3(d). The slopes of the figures indicate the second group of T̃F ’s have

faster transition dynamics to 〈TT 〉 compared to the first T̃F group. Table 1 also

tabulates the break point T̃F when the switch to faster transition dynamics occurs

and the residual error of the data fit.
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2.4.2 Critical behavior

All systems in the LOS lattice configuration undergo complete failure at the critical

load L = 4, as seen in Fig. 2(g) and T̃F is characterized by a first-order phase

transition into the critical state [Fig. 5(a)]. We define the critical load as the load

required for complete system failure, TF = 99 or 100, with probability greater than

0.95. For the LOS model on SF networks the critical load is slightly higher at L = 4.5

for 〈k〉 = 12, L = 5 for 〈k〉 = 8 and L = 5.5 for 〈k〉 = 4. Here we recall that

component strengths are initialized from a real uniform distribution U [6, 10] with

η = 0.7, meaning that for L > 6 × 0.7 = 4.2 a considerable number of components

will be initialized in the stressed mode Lij > ηSij. To induce system failure in LOS

SF networks, with decreasing 〈k〉 more and more components need to be initialized

to commence failure dynamics. The implication is that the LOS model is increasingly

resilient to system failure with decreasing average network connectivity 〈k〉. This

result is in agreement with [1] which demonstrate that scale-free networks are more

resilient to random errors or failure 3 compared to other network topologies.

The TT distribution fit for the LOS model at the critical loads is shown in Fig. 4.

The LOS model on a lattice configuration for L = 4 is shown in Fig. 4(a). In the

lattice configuration the LOS model fits a power law distribution Prob(TT ) = αTT−β

with β = 3.5 and α = 105.9. The LOS model on SF networks with L = 4.5, 〈k〉 = 12

is shown in Fig 4(b). With probability 0.97 the model fits a power law distribution

Prob(TT ) = αTT−β with β = 2.6 and α = 104.2. The LOS model on SF networks

with L = 5, 〈k〉 = 8 is shown in Fig 4(c) and L = 5.5, 〈k〉 = 4 is shown in Fig 4(d).

As can be seen from the figures, at the critical load as average degree 〈k〉 decreases

the TT distributions loose their power-law scaling. Implying, at the critical load, the

3In the literature there is a distinction between errors and attacks. Attacks target specific nodes
where as random nodes are susceptible to errors. In this work we commence LOS dynamics for
random components
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Figure 4: LOS model TT distributions at the critical load. Note the breakdown in
power law scaling with decreasing average network connectivity.

LOS model loses power-law scale invariance in system failure time distribution with

decreasing average network connectivity 〈k〉.

2.4.3 Phase diagram

The phase diagram of the LOS lattice model is shown in Fig. 5. The LOS lattice

model demonstrates phase diagrams similar to both first-order and second-order phase

transitions. At the critical load L = 4, cascades of load redistributions induce massive

failure causing all systems to fail as shown in Fig. 2(g). The corresponding first-order

phase diagram is shown in Fig. 5(a). The loading at L = 4 is such that cascading

load redistributions induce failure with minimal LOS dynamics. At transition loadings
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Figure 5: Phase transition of the LOS lattice model

L = 2, systems undergoing complete failure [refer to Figs. 1(g), 2(a)] exhibit second-

order phase transitions as shown in Fig. 5(b). For second-order phase transitions, the

transition to complete system failure is a gradual process involving repetition of LOS

dynamics and load redistributions cascading from one component to the next.

Here we note that first and second-order phase transitions for traffic congestion

in complex networks were also reported in [36, 40]. In [36], the authors show that

by increasing the probability of node congestion (from η̄ = 0.05 to η̄ = 0.95, where

η̄ is a parameter to control node congestion probability) the traffic flow phase dia-

gram switches from second-order to first-order. On the other hand in [40], the first

or second-order phase transitions depend on the particular traffic routing protocol

utilized (shortest-path routing versus traffic-aware routing). In comparison for the

LOS model, by increasing the load from L = 2 to L = 4, the component failure phase

diagram switches from second-order to first-order.

2.4.4 Failure modes and extremal behavior

The TF and TT distributions for the CS model on a lattice configuration are shown

in Fig. 6. The CS model on a SF network demonstrates qualitatively similar distri-

butions. Loadings λ = 6, 7 correspond to transition loadings for these systems. The

multi-modal nature of the TF distributions in Figs. 6(c), 6(e) indicate that multiple
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failure modes are present in the distributions. Multi-modal distributions have been

observed in nature in the eruption of geysers [4] and sizes of ants [103].

To isolate and identify the different failure modes, we filter the TF distributions

based on the capacities of the failed components. Recall that in simulating the CS

model we initialize component capacities from a integer uniform distribution U [8, 12].

In Fig. 7(a) we color code the TF distribution for λ = 6 [Fig. 6(c)] based on the

capacities of the failed components. From Fig. 7(a) the composition of the different

failure modes becomes clear. The TF distribution for λ = 6 is composed of a failure

mode where only components of capacity= 8 fail, a second failure mode where only

components of capacity= (8, 9) fail, a third failure mode where only components of

capacity= (8, 9, 10) fail and so on. Similarly we can filter the TF distribution for

λ = 7.

It is also of interest to understand the dynamics that are exciting the multiple

failure modes for transitions loadings λ = 6, 7. Motivated by Extreme Value Theory

[47, 44] one explanation lies in the demand dynamics. Although the average demand

on the system is λ = 6 or 7; the CS model is sensitive to the extremal behavior of the

demand dynamics. Extremal events have been modeled in areas as diverse as finance

[41] to earthquake characterization [83]. In Fig. 7(b) we plot the extremal behavior of

the demand dynamics as a function of TF for λ = 6. The figure is constructed in the

following way: in Fig. 7(a) for each TF ∈ [1, 100], we first determine the maximum

demand seen by each of the systems in their associated window [0, TT ]. For each TF

∈ [1, 100] we then compute and plot, the mean maximum demand (shown in blue),

the maximum maximum demand (shown in red) and the minimum maximum demand

(shown in green).

In Fig. 7(b) we can clearly observe the staircase like growth trend of mean max-

imum demand as a function of TF and the step function growth of the associated

min/max bounds of maximum demand. It is our opinion the extremal behavior of
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Figure 6: CS model distributions. TF distributions (left column); TT distributions
(right column).
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the demand dynamics 4 in conjunction with the structure of the component capacity

topology is responsible for exciting the multiple distinct failure modes observed in

Fig. 7(a).

For example in Fig. 7 consider the interval TF ∈ [10, 25]; mean maximum demand

in this interval roughly corresponds to around 14 with components of capacity= 8

failing. Noting that the queue size is 6, we can understand why components of

capacity= 8 are being overwhelmed by the mean maximum demand (8 + 6 = 14) in

this interval. However, in addition to the specific sequence and number of extremal

demands, relatively stronger neighborhood capacity topologies are partly responsi-

ble for the left side of the bell shape and relatively weaker neighborhood capacity

topologies are partly responsible for the right side of the bell shape in the interval

TF ∈ [10, 25]. For a specific level and sequence of extremal demand, a relatively

stronger neighborhood capacity topology provides components a greater opportunity

to survive through load sharing. We could construct similar arguments for the other

bell curve like waves in Fig. 7 such as the interval TF ∈ [30, 50] where components of

capacity= (8, 9) are failing and mean maximum demand is approximately 15.

The result in Fig. 7 is similar in spirit to results in [61], where the authors show

using shell models of turbulence that large fluid velocity fluctuations propagating from

shell to shell cause multiscaling in the shell velocity variation distributions. In other

words the velocity variation distribution is composed of two separate regions, the

first due to “small” but “usual” velocity fluctuations and the second due to “large”

but “rare” velocity fluctuations. Comparing to our results in Fig. 7, we can see the

extremal demand dynamics exciting different scales of failure in the TF distribution.

The TT distribution fit for the CS lattice model at the critical load λ = 11 is

shown in Fig. 8. At the critical load the CS model fits a exponential distribution

4The number, size and sequence of extreme demand constitute the extremal behavior of the
demand dynamics.
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Prob(TT ) = 1
µ
e−TT/µ with parameter µ = 19.06 [Fig. 8(b)]. The CS model on SF

networks demonstrates similar results. In communication and transportation appli-

cations M/M/1 queues have arrivals according to Poisson processes and service time

distributions are exponential [12]. Although individual components in the CS model

resemble M/D/1 queues, at critical demand rates the load sharing capability of the CS

model is rendered redundant and the structure of the component capacity topology

causes the system to demonstrate exponential distribution failure times. Here we also

note that exponential and sub-exponential distributions have been widely reported

in financial applications such as draw-downs of the stock market, major currencies

and major financial indices [90, 52]. The relationship between the extremal dynamics

of the CS model and market draw-downs presents an interesting subject for future

investigation.

2.5 Accuracy of Monte Carlo simulations

We simulated LOS and CS models for each parameter setting of L and λ on both

lattice and scale-free network configurations for 30 000 cases. Simulations were con-

ducted on two Intel Pentium 64-bit desktops. For each setting, simulations were

conducted multiple times. Regardless of the desktop used the simulation results were

always identical. Since the results were identical over multiple runs and over different

desktops, we concluded 30 000 cases were a sufficient numbers of runs.

Also we would like to point out, the shapes of the distribution would not change

if the number of runs were increased. Numerical precision of the distributions would

increase from increased number of simulations but qualitatively the shapes would

remain the same. Ultimately, we are analyzing the behavior of the systems.

2.6 Discussion

To summarize, we have used the concept of component strength and load interac-

tion to investigate the failure mechanisms of complex systems utilizing two different
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strength/load interaction models. The LOS model explores strength/load interaction

through a loss of strength mechanism. The CS model explores capacity/demand in-

teraction through customer or data arrival/departure rate mechanism. At low levels

of loading which correspond to lower network utilization, the failure mechanisms in

the LOS model follow predictable trends [Eq. 1 and Fig. 3]. The failures in the sys-

tems can be managed and network resources are sufficiently allocated. The system is

resilient to cascading failure triggered by load redistribution.

At transition loadings or ‘tipping-points’, both models demonstrate increasingly

unpredictable behavior with system volatility and increasing disorder. Systems may

or may not descend into catastrophic failure and extremal dynamics excite multi-

ple failure modes in systems. The results imply that at these loadings the system

resources (characterized by the system strength topology) need to be allocated ap-

propriately to avoid catastrophic failure.

For critical loads system failure is reached through phase transitions. At criticality,

depending on the strength/load interaction mechanism, systems demonstrate power

law or exponential temporal failure patterns.
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CHAPTER III

MATHEMATICAL MODEL DEVELOPMENT

In the previous chapter, we provided a simulation based analysis of the failure mech-

anisms of the LOS and CS models. In this chapter, we provide a mathematical

treatment of the LOS and CS models. First, we analyze the cascading failure mech-

anism of the LOS model. Next, we provide a Markov chain formulation of the CS

model. We conclude by comparing the results of the Markov chain formulation with

the results obtained from the CS model simulations.

3.1 Cascading failure property of the LOS mechanism

We define cascading failure as the failure process where a components failure and

subsequent load redistribution initiates the failure process for it’s neighbor; the neigh-

bor’s failure and subsequent load redistribution initiates the failure process for the

neighbor’s neighbor; and the cycle keeps repeating in this manner.

It is of interest to us to mathematically define the conditions determining the

presence or absence of cascading failure for components possessing LOS dynamics. We

will first investigate these conditions for components in a 1d or chain configuration and

then discuss the extension of our results to lattice and other network configurations.

Consider a 1d or chain arrangement of components where each component can un-

dergo the LOS mechanism as shown in Fig. 9(a). Assume initially the LOS mechanism

is initiated for only one component and the subsequent load redistribution triggers

the neighboring component to commence LOS. Repetition of this process results in a

progression of cascading failures over time. If a component’s load redistribution fails

to initiate a neighbor’s LOS mechanism then the cascading failure process terminates.

We consider two cases, the first where a component at the boundary of the chain
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initiates cascading failure as shown in Fig.9(a). The second is when a component in

the interior of the chain initiates cascading failure as shown in Fig.10(a).

3.1.1 1d cascading failure initiated by a boundary component

Consider Fig. 9, the initial conditions on the components are L1 ≥ µS1 and Li < µSi

for i ∈ [2, 7]. Therefore component 1 commences LOS, fails at a future point in

time and redistributes its load to component 2. If the load redistributions triggers

LOS for component 2 then it too will fail some time later. Subsequently if the load

redistribution from component 2 triggers LOS for component 3 than component 3 will

also fail. If this process keeps repeating a chain of cascading failure results. If at any

time a load redistribution does not trigger LOS for it’s neighbor then the cascading

failure process stops and all nodes downstream survive.

Mathematically we can express the cascading failure conditions for the 1d system

in Fig. 9 as a set of equations shown in Eq. 2. In this equation set, component load

due to redistribution is accounted for in the summation
∑

.

Initial Conditions: L1 ≥ ηS1 and Li < ηSi for i ∈ [2, 7] (2a)

Node 2: Load redistribution from L1, L2 +
1∑

i=1

Li > ηS2 (2b)

Node 3: Load redistribution from L2, L3 +
2∑

i=1

Li > ηS3 (2c)

Node 4: Load redistribution from L3, L4 +
3∑

i=1

Li > ηS4 (2d)

Node 5: Load redistribution from L4, L5 +
4∑

i=1

Li > ηS5 (2e)

Node 6: Load redistribution from L5, L6 +
5∑

i=1

Li > ηS6 (2f)

Node 7: Load redistribution from L6, L7 +
6∑

i=1

Li > ηS7 (2g)
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1 2 3 4 5 6 7

time

(a) Cascading failure initiated at node 1

1 2 3 4 5 6 7

time

(b) Node 1 fails. Node 2 commences LOS.

1 2 3 4 5 6 7

time

(c) Node 2 fails. Node 3 commences LOS.

1 2 3 4 5 6 7

time

(d) Node 3 fails. Node 4 commences LOS.

1 2 3 4 5 6 7

time

(e) Node 4 fails. Node 5 commences LOS.

1 2 3 4 5 6 7

time

(f) Node 5 fails. Node 6 commences LOS.

1 2 3 4 5 6 7

time

(g) Node 6 fails. Node 7 commences LOS.

Figure 9: Cascading failure initiated by a boundary component. Solid nodes indicate
fully operational components. Dashed nodes indicate LOS or Failure. The plots show
the progression of failure in time.
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Eq. 2a defines the initial configuration. Eq. 2b defines the condition for component

2 to fail after component 1 has failed. Eq. 2c defines the condition for component 3

to fail after component 2 has failed and so on.

In equation set 2 if any one of the equations failed to hold then components

downstream of the penultimate load redistribution would not fail. For example, if

Eq. (2d) fails to hold than the cascading failure process terminates and components

4 through 7 would survive.

If the inequalities in Eq. 2 hold sequentially then there is a important observation

regarding the load that is redistributed. In Eq. 2 as cascading failure progresses

from component to component, the load due to redistribution, the load terms in the

summation
∑

, increase sequentially. For example the load due to redistribution in

Eq. 2d is greater than the load due to redistribution in Eq. 2c which in turn is greater

than the load due to redistribution in Eq. 2b. An appropriate analogy here would

be to tidal waves or tsunami’s in nature. As tidal waves approach the shore their

height keeps steadily increasing, similarly as cascading failure progresses the load due

to redistribution keeps steadily increasing.

From these set of equations we observe that, provided knowledge of the distri-

bution of component strength and load, we can a-priori calculate whether cascading

failure will be present or not if any of the components undergo LOS dynamics. We

can also a-priori calculate the number of components that will fail.

To summarize, for failure initiated at a boundary component of a 1d n-component

system, we can write the cascading failure conditions compactly as,

Initial Conditions: L1 ≥ ηS1 and Li < ηSi for i ∈ [2, n] (3a)

Node k: Load redistribution from Lk−1, Lk +
k−1∑

i=1

Li ≥ ηSk for k ∈ [2, n] (3b)
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If Eq. 3b holds sequentially with increasing k then the n-component system will

undergo cascading failure.

3.1.2 1d cascading failure initiated by a interior component

In a similar fashion we can derive the cascading failure conditions for the component

configuration in Fig. 10. Here the initial conditions are given by L4 ≥ ηS4 and

Li < ηSi for i ∈ [1, 7] and i 6= 4. In this case, cascading failure might progress in 2

directions, to the left and right of component 4. After component 4 fails, its load is

redistributed to components 3 and 5 as shown in Fig. 10(b). If components 3 and

5 commence LOS and fail then their load is redistributed to components 2 and 6 as

shown in Fig. 10(c). In Fig. 10 cascading failure is progressing in 2 directions.

4 5 6 7321

timetime

(a) Cascading failure initiated at node 4.

4 5 6 7321

timetime

(b) Node 4 fails. Nodes 3 and 5 commence LOS.

4 5 6 7321

timetime

(c) Nodes 3, 5 fail. Nodes 2 and 6 commence LOS.

4 5 6 7321

timetime

(d) Nodes 2, 6 fails. Node 1 and 7 commence LOS.

Figure 10: Cascading failure initiated by a interior component. Solid nodes indicate
fully operational components. Dashed nodes indicate LOS or Failure. The plots show
the progression of failure in time.

For cascading failure on the right of component 4, the set of equations are given

by Eq. 4. In this equation set, component load due to redistribution is accounted for
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by the terms in the brackets ( ).

Initial Conditions: L4 ≥ ηS4 and Li < ηSi for i ∈ [5, 7] (4a)

Node 5: Load redistribution from L4, L5 + (
L4

2
) > ηS5 (4b)

Node 6: Load redistribution from L5, L6 + (
5∑

i=5

Li +
L4

2
) > ηS6 (4c)

Node 7: Load redistribution from L6, L7 + (
6∑

i=5

Li +
L4

2
) > ηS7 (4d)

For cascading failure on the left of component 4, the set of equations are given by

Eq. 5.

Initial Conditions: L4 ≥ ηS4 and Li < ηSi for i ∈ [1, 3] (5a)

Node 3: Load redistribution from L4, L3 + (
L4

2
) > ηS3 (5b)

Node 2: Load redistribution from L3, L2 + (
3∑

i=3

Li +
L4

2
) > ηS2 (5c)

Node 1: Load redistribution from L2, L1 + (
3∑

i=2

Li +
L4

2
) > ηS1 (5d)

From the above equations we can derive the mathematical conditions for failure

progression for a 1d n-component system with failure initiated at a interior compo-

nent p,

Initial Conditions:

Lp ≥ ηSp for p ∈ (1, n) and Li < ηSi for i ∈ [1, n] and i 6= p (6a)
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Cascading failure conditions to the right of component p:

Node p+ 1:Load redistribution from Lp, Lp+1 + (
Lp
2

) ≥ ηSp+1(6b)

Node k: Load redistribution from Lk−1, Lk + (
k−1∑

i=p+1

Li +
Lp
2

) ≥ ηSk for k ∈ [p+ 2, n](6c)

Cascading failure conditions to the left of component p:

Node p− 1:Load redistribution from Lp, Lp−1 + (
Lp
2

) ≥ ηSp−1(6d)

Node k: Load redistribution from Lk+1, Lk + (

p−1∑

i=k+1

Li +
Lp
2

) ≥ ηSk for k ∈ [1, p− 2](6e)

3.1.3 Cascading failure in 2d or 3d

From the mathematical equations for cascading failure in 1d, it is clear that the equa-

tions for cascading failure in 2d or 3d can become quite complicated. For example,

in 1d cascading failure might progress in at most 2 directions. However for a 2d lat-

tice configuration, for each component cascading failure might progress in 8 possible

directions. It is clear that the number of paths the cascading failure process might

take for a lattice configuration of components will quickly become countably infinite.

The same argument applies for components arrangement in a graph network.

However, the mathematical equations for 1d cascading failure from the previous

sections provide us adequate insight on the time progression of cascading failure in

systems and provide us a guideline on how to initialize 2d or 3d systems to achieve

desired failure directions and patterns. For example, suppose it is desired to have

failure progression in a particular direction in a 2d system. In this case the system

could be initialized with strengths Sij following a “canyon” topology and the loads

Lij initialized accordingly. The result would be that failure would follow the route

of the canyon. This is similar to a flowing river in a canyon, which only follows the

route dictated by the topology of the canyon.
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From the above discussion it is clear, we can initialize the 2d or 3d system as

appropriate to achieve the desired directions and patterns of failure.

3.2 Markov formulation of the CS model

For networks where components undergo failure through the CS mechanism we can

model the CS mechanism through Discrete Time Markov Chains.

Consider a network where component demand is the same for all component. Let

D be a discrete random variable whose probability mass function (pmf) is given by

pD(i) = P (D = i), where i ∈ (0, 1, 2, 3, ...). For ease of notation for the rest of

the discussion we write D = i as Di. Let C denote the capacity of a particular

component and CLj the capacity of the jth neighbor where j ∈ [1, n] and n is the

number of neighbors of the component. Also let k denote the length of the queue and

q the queue occupancy where q ≤ k.

For ease of derivation let us consider a component which has 2 neighbors as de-

picted in Fig. 11. In the figure, four cases are pointed out. Let us assume for all cases

that queues are unoccupied.

• Case 1) In figure 11(a), the demand on the component is less than or equal it’s

capacity Di ≤ C hence the component does not need to share its load with it’s

neighbors.

• Case 2) In figure 11(b), the demand is greater than the component capacity

D > C but less than the capacity of neighbor’s D ≤ CL1 < CL2.

• Case 3) In figure 11(c), the demand is greater than the component’s capacity

and also the neighbor 1’s capacity Di > C > CL1 but less than the capacity of

neighbor 2 implying load sharing with neighbor 2 is possible but not neighbor 1.

For case 2 and 3, we would like to compute the probability that the neighbor’s

possess sufficient excess capacity and/or the queue k has sufficient vacancy to
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accommodate the excess demand Di − C.

• Case 4) Finally in figure 11(d), the demand is greater than capacity of the com-

ponents and both neighbor’s, in this case we would like to know the probability

that there is enough space in the queue to meet the excess demand.

3.2.1 CS mechanism Markov chain model

From the above discussion we can define 4 states that a component can reside in. Let

Co define the state that the component is able to meet it’s demand without resorting

to load sharing with neighbor’s or utilizing the queue. Let CL denote the state that

the demand is greater than component capacity but the excess demand Di − C is

completely satisfied through load sharing with neighbor’s. Let Bk denote the state

where excess demand is met through a combination of load sharing and utilizing the

queue or purely through utilizing the queue. Finally, let F denote the state where

the excess demand is not met through load sharing and the queue. Note, F is an

absorbing state and component remains in F once it enters F . Figure 12 depicts the

Markov chain model for the CS mechanism.

3.2.1.1 Transition probabilities for state Co

Next, we derive the state transition probabilities. We do this for the general case of n

neighbors. Let S denote the set of the neighbor’s out of n that are available for load

sharing. Let p,determined using equations 7, 8, denote the total number of neighbor’s

that are available for load sharing.

p =
n∑

ω=1

I(ω) (7)

I(ω) =





1 : ω ∈ S

0 : ω /∈ S
(8)
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Figure 11: Distribution plot for different D, C, CL
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Figure 12: DTMC

It follows from fig 11(a), if the component is in state Co then it will remain in

state Co with the transition probability:

PCo→Co = P (D < C) =
C∑

r=0

pD(r) (9)

If Di > C than the component will attempt to share the excess demand with

available neighbors. Assume there are neighbors available with excess capacity who

can fully satisfy the excess demand, this situation is depicted in figure 11(b). In that

case the transition probability from Co to CL is given by equations 10, 11 1. Note

that Eq. 11 is essentially a maximization over the random variable D for the given

constraints.

1We would like to thank Prof. Panagiotis Tsiotras for his comments on mathematical notation
for this problem.
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PCo→CL
= P (D − C ≤ (

n∑

ω=1,ω∈S

Cω − pD)) =

g∑

r=C+1

pD(r) (10)

where the parameter g is the solution to the equation:

g = sup{y : y − C ≤ (
n∑

ω=1,ω∈S

Cω − py)} (11)

s.t.

C < y < CLω |ω∈S

If the component is able to meet excess demand with load sharing then it tran-

sitions to state CL. There might be situations where the excess demand is partially

met through load sharing and the remainder is successfully placed in the queue. In

that case the component transitions to state Bk. Figures 11(c) and 11(d) depict a

possible situation where this might arise. The transition probability from state Co to

Bk is given by the equations 12, 13.

PCo→Bk
= P (D − C −

n∑

ω=1,ω∈S

(Cω − pD) ≤ k) =

f∑

r=g+1

pD(r) (12)

where the parameter f is determined from equation:

f = sup{y : y − C − (
n∑

ω=1,ω∈S

Cω − py) ≤ k} (13)

s.t.

C < y < CLω |ω∈S

Finally there might be situations where load sharing is not possible and the queue

does not have adequate capacity to meet the excess demand. In that case the com-

ponent transitions to state F . Figure 11(d) depicts a possible case when this might

occur. The transition probability from state Co to state F is given by equation 14.
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PCo→F = P (D − C − (
n∑

ω=1,ω∈S

Cω − pD)− k > 0) =

bic∑

r=f+1

pD(r) (14)

Here bic denotes the floor function.

3.2.1.2 Transition probabilities for state CL

If the component is in state CL the transition probabilities are given by the equation

set 15.

PCL→Co = PCo→Co

PCL→CL
= PCo→CL

(15)

PCL→Bk
= PCo→Bk

PCL→F = PCo→F

3.2.1.3 Transition probabilities for state Bk

If the component is in state Bk then in computing the transition probabilities we

need to take into account the queue occupancy q (q ≤ k). We assume the component

capacity C > k, the queue capacity. The transition probability from Bk to Co is given

by equation 16.

PBk→Co = P (D < C − q) =
C∑

r=0

pD(r) (16)

The transition probability from Bk to CL is given by Eq. 17.
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PBk→CL
= P (D − (C − q) ≤ (

n∑

ω=1,ω∈S

Cω − pD)) =

g∑

r=C+1

pD(r) (17)

where the parameter g is the solution to the equation:

g = sup{y : y − (C − q) ≤ (
n∑

ω=1,ω∈S

Cω − py)} (18)

s.t.

C < y < CLω |ω∈S

The transition probability from Bk to Bk is given by Eq. 19.

PBk→Bk
= P (D − (C − q)−

n∑

ω=1,ω∈S

(Cω − pD) ≤ k) =

f∑

r=g+1

pD(r) (19)

where the parameter f is determined from equation:

f = sup{y : y − (C − q)− (
n∑

ω=1,ω∈S

Cω − py) ≤ k} (20)

s.t.

C < y < CLω |ω∈S

The transition probability from Bk to F is given by Eq. 21.

PBk→F = P (D − (C − q)− (
n∑

ω=1,ω∈S

Cω − pD)− k > 0) =

bic∑

r=f+1

pD(r) (21)

Here bic denotes the floor function.

Although we derived the transition probabilities for queue occupancy q, we can

derive the transition probabilities for each slot that the queue is occupied. So for a

queue of size k, we can derive 4 ∗ k transition probabilities. In this way we can track

the queue occupancy through its occupancy state. For example if the queue size is

k = 3, we would have states B1, B2, B3 to track its occupancy. This is the preferred

approach when numerically solving the equations for the transition probabilities.
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3.2.1.4 Transition probabilities for state F

State F is an absorbing state. If it is reached than the components remain in state

F with probability 1.

Using these transition probabilities we can construct the discrete time Markov

chain shown in Fig 12.

3.2.2 Absorbing Markov Chains

It is clear from the description of the CS model Markov chain in the previous section

that at high enough demand rates that the Markov chain is an absorbing Markov

chain. In the next sections, we will work out some examples using the equations

developed in the previous section. But before that we will present the equations of

absorbing Markov chains that we will use subsequently. These equations are taken

from the book “Finite Markov Chains” by Kemeny and Snell and specifically from

chapter 3, “Absorbing Markov Chains” published by Springer-Verlag [53].

Let P denote the transition matrix of an absorbing Markov chain with t transient

states and r absorbing states. Then matrix P can be partitioned as,

P =



Q R

M Ir


 (22)

where Q is a t× t matrix, R is a t× r matrix,M is a r× t zero matrix and Ir is a

r × r identity matrix.

With P partitioned in the above manner we can calculate the fundamental matrix

N using the following equation,

N =
∞∑

k=0

Qk = (It −Q)−1 (23)

where It is a t× t identity matrix.
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We can then calculate the expected number of steps before being absorbed when

starting in transient state i. This is given by the ith entry of the vector,

t = N1 (24)

where 1 is column vector of all 1s of length t.

Many other properties of absorbing Markov chains can be computed such as the

variance on number of visits, variance on number of steps, transient probabilities,

absorbing probabilities etc. But for our purposes the equations above suffice for now.

3.2.3 Examples

We now demonstrate the CS mechanism Markov chain formulation using 2 simple

examples. The examples provide insight on how the CS mechanism is operating.

3.2.3.1 Example 1

Consider a system composed of 3 components arranged in a ring configuration as

shown in Fig. 13. We label the components as 1, 2 and 3. In this configuration each

node has two neighbors for load sharing. We will derive the transition probability

matrix for component 1. Assume component 1 has capacity C = 5, component 2 has

capacity CL1 = 10 and component 2 has capacity CL2 = 12. The queue size is k = 3.

The demand D is modeled as a discrete uniform random variable with pmf pD(i) = 1
14

with support i ∈ {1, 2, ..14}.

For load sharing purposes we assume component 1 has higher priority then com-

ponent 2 and 3 and component 2 has higher priority then component 3. Also we

assume in deriving the transition probabilities that the queue’s in component 2 and

3 are not occupied.

Using equations 9 through 14 we derive the following transition probabilities for

state Co.
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3

Figure 13: Ring of load sharing components

PCo→Co = 5/14

PCo→CL
= 3/14

PCo→B1 = 1/14

PCo→B2 = 0

PCo→B3 = 1/14

PCo→F = 4/14

Using equations 15 we derive the following transition probabilities for state CL.

PCL→Co = 5/14

PCL→CL
= 3/14

PCL→B1 = 1/14

PCL→B2 = 0

PCL→B3 = 1/14

PCL→F = 4/14

Using equations 16 through 21 with q = 1 we derive the following transition

probabilities for state B1.
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PB1→Co = 4/14

PB1→CL
= 4/14

PB1→B1 = 0

PB1→B2 = 1/14

PB1→B3 = 0

PB1→F = 5/14

Using equations 16 through 21 with q = 2 we derive the following transition

probabilities for state B2.

PB2→Co = 3/14

PB2→CL
= 5/14

PB2→B1 = 0

PB2→B2 = 0

PB2→B3 = 1/14

PB2→F = 5/14

Using equations 16 through 21 with q = 3 we derive the following transition

probabilities for state B3.
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PB3→Co = 2/14

PB3→CL
= 6/14

PB3→B1 = 0

PB3→B2 = 0

PB3→B3 = 1/14

PB3→F = 5/14

The state transition matrix P is given by.

P =




0.3571 0.2143 0.0714 0 0.0714 0.2857

0.3571 0.2143 0.0714 0 0.0714 0.2857

0.2857 0.2857 0 0.0714 0 0.3571

0.2143 0.3571 0 0 0.0714 0.3571

0.1429 0.4286 0 0 0.0714 0.3571

0 0 0 0 0 1.0000




(25)

Since we have an absorbing Markov chain, we can calculate the fundamental

matrix, denoted by N.

N =




2.1439 0.7916 0.2097 0.0150 0.2270

1.1439 1.7916 0.2097 0.0150 0.2270

1.0058 0.8007 1.1290 0.0806 0.1452

0.9292 0.8772 0.1290 1.0092 0.2166

0.8578 0.9487 0.1290 0.0092 1.2166




(26)

We can also calculate the expected number of steps before being absorbed when

starting in transient state i. This is given by the vector,
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t =




3.3871

3.3871

3.1613

3.1613

3.1613




(27)

3.2.3.2 Example 2

Consider a system composed of 3 components arranged in a ring configuration as

shown in Fig. 13. We label the components as 1, 2 and 3. In this configuration each

node has two neighbors for load sharing. Assume component 1 has capacity C = 8,

component 2 has capacity CL1 = 10 and component 3 has capacity CL2 = 12. The

queue size is k = 6. The demand D is modeled as a Poisson random variable with pmf

pD(i) = λi

i!
e−λ with support i ∈ {0, 1, 2, ...} with λ = 9. It is clear that component 1

is the weakest member of the ring network and we expect it to fail first.

For load sharing purposes we assume component 1 has higher priority then com-

ponent 2 and 3 and component 2 has higher priority then component 3.

Using equations 9 through 21 we derive the following probability transition ma-

trix for component 1. The states of the Markov chain are given by in sequence

Co, CL, B1, B2, B3, B4, B5, B6 and F . Here F is the absorbing state. Also we assume

in deriving the transition probabilities that the queue’s in component 2 and 3 are not

occupied when considering load sharing for component 1.
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P =




0.4557 0.2503 0 0.0970 0 0.0728 0.0504 0.0324 0.0415

0.4557 0.2503 0 0.0970 0 0.0728 0.0504 0.0324 0.0415

0.3239 0.2635 0.1186 0 0.0970 0 0.0728 0.0504 0.0739

0.2068 0.3806 0 0.1186 0 0.0970 0 0.0728 0.1242

0.1157 0.4717 0 0 0.1186 0 0.0970 0 0.1970

0.0550 0.4007 0.1318 0 0 0.1186 0 0.0970 0.1970

0.0212 0.4344 0 0.1318 0 0 0.1186 0 0.2940

0.0062 0.4494 0 0 0.1318 0 0 0.1186 0.2940

0 0 0 0 0 0 0 0 1




(28)

Since we have an absorbing Markov chain, we can calculate the fundamental

matrix, denoted by N.

N =




5.3753 3.5006 0.1269 1.0559 0.0908 0.8490 0.5278 0.5140

4.3753 4.5006 0.1269 1.0559 0.0908 0.8490 0.5278 0.5140

4.0464 3.3724 1.2409 0.8988 0.2107 0.7114 0.5496 0.4960

3.7352 3.3340 0.1197 1.9760 0.0906 0.8011 0.4239 0.5179

3.3602 3.1764 0.0938 0.7963 1.2017 0.6273 0.5136 0.3803

3.2341 3.0759 0.2599 0.7534 0.1034 1.7384 0.3935 0.5002

2.8443 2.8009 0.0835 0.8412 0.0605 0.5586 1.4707 0.3431

2.7712 2.7943 0.0796 0.6649 0.2266 0.5326 0.3496 1.4571




(29)

We can also calculate the expected number of steps before being absorbed in the

absorbing state F when starting in any of the transient states, Co, CL, B1, B2, B3, B4, B5, B6.

This is given by the vector,
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t9 =




12.0402

12.0402

11.5262

10.9985

10.1495

10.0587

9.0028

8.8759




(30)

Repeating the example but this time with λ = 11, we get the expected number of

steps before being absorbed in the absorbing state F as the vector,

t11 =




4.0041

4.0041

3.6897

3.4082

3.0377

2.9928

2.6104

2.5647




(31)

3.2.4 Comparison to simulation results

Now let us compare the theoretical results of the 3-node ring Markov chain model

from Example #2 to results obtained from simulating CS model on different network

configurations. For the simulations we consider four types of network configurations:

a 3-node circular 1d ring, a 10-node circular 1d ring, a 144 node 2d lattice and a 100

node scale-free network. The 3-node and 10-node circular ring is the same as Fig. 13

but with 3 and 10 nodes respectively.
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For the last three network configurations, the component capacities are initialized

from a integer uniform distribution U [8, 12]. For the 3-node ring configuration, com-

ponent capacities are set to 8, 10, 12 respectively. These capacity initializations are

similar to the theoretical 3-node ring example. Components with capacity= 8 are

the weakest links in the networks. The queue size is set to k = 6. The 3-node, 10-

node circular ring network and the scale-free network by construction possess circular

boundary conditions. For the lattice, queue size at the boundary is set very high to

ensure components at the boundary do not fail. So for both the lattice and scale-free

network at most 100 nodes can fail. We simulate all four network configurations for

500 time steps and carry out 30,000 Monte Carlo simulations.

In fig. 14 we show the time distributions for the first component failure for the

lattice configuration for λ = 9, 11. Referring to Eq. 30, the first entry in the t9-vector

is 12.04. This is the expected number of time steps before entering the absorbing

state F from state Co. Co is the initial state of a component with queue empty. In

the simulations for the lattice configuration at λ = 9, we obtained a mean time to

first failure of 7.8. This is shown in fig. 14(a).

Similarly, referring to Eq. 31, the first entry in the t11-vector is 4.004. This is

the expected number of time steps before entering the absorbing state from state Co,

which is the initial state of a component with buffer empty. In the simulations for

lattice configuration at λ = 11, we obtained a mean time to initial failure of 3.25.

This is shown in fig. 14(b).

In table 2 we tabulate for different values of λ, the mean time to first component

failure for the four different network configurations obtained from simulations. We

also tabulate the mean time to first component failure predicted by the 3-node ring

markov chain model from Example #2. The theoretical and simulation results ap-

pear to be in good agreement. As λ increases the error between the theoretical and
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Figure 14: Time to first component failure out of 100 components for the CS model

simulation results decreases. Also the simulations feature a greater number of com-

ponents, so as expected, the mean time to first component failure in the simulations

is of lower magnitude then the theoretical predictions.

In table 2 we observe that there is some difference in results between the 3-node

Markov chain and 3-node simulation model. The difference in results between the 3-

node Markov chain and the 3-node ring simulation model can be accounted for by the

fact, that in the computing the transition probability matrix for the theoretical model

we did not take into account the queue occupancy of neighbors. In calculating the

transition matrix, we assumed that neighbors queue were empty. We only took into

account the actual capacity of the neighbors and their difference with the demand.

This approximation was chosen because the number of states in the transition matrix

increases greatly if the queue occupancy of neighbors is taken into account. However,

even with this approximation, the agreement between the 3-node ring Markov chain

model and 3-node ring simulation model is quite good from λ = 8 to λ = 13.
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CHAPTER IV

LOAD SHARING, PUNCTUATED EQUILIBRIA AND

FAILURE PROGRESSION CHARACTERISTICS

In this chapter we will extend our discussion of the CS and LOS extremal models to

include additional properties and dynamics that were not discussed in the previous

chapters. First, we will describe in more detail the load sharing properties of the

CS model. Next, we will discuss SOC signatures of the CS model by drawing an

analogy with the SOC signatures of the Bak-Sneppen evolution model. Finally, we

will conclude the chapter with a discussion on the failure progression dynamics of the

LOS model. We will show that failure progression of the LOS model is composed

of different scales of failure progression. We will also show that the switch in the

scales of failure progression can be reliably captured using ‘change-pont’ detection

algorithms.

4.1 Renewal through load sharing for the CS model

Previously we have commented on the differences between the load sharing properties

of the CS and LOS models. In the LOS model, a component’s load redistribution is the

final step before it fails. Once LOS dynamics is initiated the component will fail at a

later point in time and on failure will attempt to redistribute its load to its neighbors.

In the LOS model a component can undergo, at most, one load redistribution. In

the CS model a component is essentially renewed through successful excess demand

redistribution. The component fails only if the load redistribution is unsuccessful and

the associated component queue qij is overwhelmed. In the CS model a component

can complete multiple excess demand redistributions and remain fully operational. In
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this section we will analyze the load sharing properties of the CS model for a deeper

understanding of the system dynamics.

In Fig. 15 we plot the load redistributions of the CS model for λ = 6. The plots

are constructed in the following way. Each component in the CS model is initialized

with capacity from a uniform distribution U [8, 12]. In a simulation, for components of

a specific capacity, we compute the total number of load redistributions completed by

the components collectively. We do this for all 30,000 Monte Carlo simulations. Next,

for components of a specific capacity, for each TF ∈ [0, 100] we sum the total number

of load redistributions completed by the components. We do this for all components

that failed and also for components that failed or survived. In Fig. 15(a) we plot the

total load redistributions for components of capacity= 8 as function of TF in blue.

We also plot in red,the total load redistributions for components of capacity= 8 that

failed as a function of TF. We repeat this process for components of capacity= 9

in Fig. 15(b), for components of capacity= 10 in Fig. 15(c) and for components of

capacity= 11 in Fig. 15(d). Similarly the load redistribution plots for λ = 7 are shown

in Fig. 16.

From Figs. 15 and 16 the renewal nature of the CS model load sharing becomes

clear. For example, consider Fig. 15(c). In the figure we observe that up to TF=50,

components of capacity= 10 complete large number of load redistributions but do not

fail. From approximately TF=50 onwards we see that large number of components of

capacity=10 complete load redistributions but at some point in time they fail. This is

because from TF=50 onwards the extremal demand dynamics overwhelms the com-

ponents. Nevertheless below TF=50, the components are able to renew themselves

through load sharing and survive. Similar observations and analysis are possible for

all the load sharing plots in Figs. 15 and 16, thus making clear the renewal nature

of CS model load sharing.
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(b) Capacity = 9

0 20 40 60 80 100
0

2

4

6

8

10

12

14
x 10

4

TF

T
ot

al
 R

ed
is

tr
ib

ut
io

ns

Lambda = 6

 

 

All capacity 10 components
Failed capacity 10 components

(c) Capacity = 10
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Figure 15: Load sharing for λ = 6
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(b) Capacity = 9
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(c) Capacity = 10
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Figure 16: Load sharing for λ = 7
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4.2 Extremal dynamics of the CS model

In chapter II we have illustrated the extremal dynamics of the CS model for λ =

6. Now we present the extremal dynamics of the CS model for λ = 7 in Fig. 17.

Similar to the steps we took for λ = 6, we filter the TF distributions based on the

capacities of the failed components to isolate and identify the different failure modes.

In Fig. 17(a) we color code the TF distribution for λ = 7 [Fig. 6(e)] based on the

capacities of the failed components. From Fig. 17(a) the composition of the different

failure modes becomes clear. The TF distribution for λ = 7 is composed of a failure

mode where only components of capacity= 8 fail, a second failure mode where only

components of capacity= (8, 9) fail, a third failure mode where only components of

capacity= (8, 9, 10) fail and so on.

Similar to our findings for λ = 6, the CS model for λ = 7 is sensitive to the ex-

tremal behavior of the demand dynamics. The number, size and sequence of extreme

demand constitute the extremal behavior of the demand dynamics. In Fig. 17(b) we

plot the extremal behavior of the demand dynamics as a function of TF for λ = 7.

The figure is constructed in the following way: in Fig. 17(a) for each TF ∈ [1, 100],

we first determine the maximum demand seen by each of the systems in their asso-

ciated window [0, TT ]. For each TF ∈ [1, 100] we then compute and plot, the mean

maximum demand (shown in blue), the maximum maximum demand (shown in red)

and the minimum maximum demand (shown in green).

In Fig. 17(b) we can clearly observe the staircase like growth trend of mean max-

imum demand as a function of TF and the step function growth of the associated

min/max bounds of maximum demand. The extremal behavior of the demand dy-

namics in conjunction with the structure of the component capacity topology is re-

sponsible for exciting the multiple distinct failure modes observed in Fig. 17(a).

As an example in Fig. 17 consider the interval TF ∈ [30, 50]; mean maximum de-

mand in this interval roughly corresponds to around 15 with components of capacity=
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Figure 17: Extremal behavior of the CS model for λ = 7 (Color Online)
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8, 9 failing. Noting that the queue size is 6, we can understand why components of

capacity= 8, 9 are being overwhelmed by the mean maximum demand (9+6 = 15) in

this interval. However, in addition to the specific sequence and number of extremal

demands, relatively stronger neighborhood capacity topologies are partly responsi-

ble for the left side of the bell shape and relatively weaker neighborhood capacity

topologies are partly responsible for the right side of the bell shape in the interval

TF ∈ [30, 50]. For a specific level and sequence of extremal demand, a relatively

stronger neighborhood capacity topology provides components a greater opportunity

to survive through load sharing. We could construct similar arguments for the other

bell curve like waves in Fig. 17 such as the interval TF ∈ [50, 70] where components

of capacity= (8, 9, 10) are failing and mean maximum demand is approximately 16.

4.3 Comparison of the extremal dynamics of the CS model
and the Bak-Sneppen evolution model

In this section we describe a self-organized critical (SOC) signature of the CS model.

We do this by first presenting the SOC signature of the Bak-Sneppen evolution model.

We then draw an analogy between the SOC signature of the Bak-Sneppen model and

the extremal dynamics of the CS model. Through this exercise we establish the SOC

behavior of the CS model.

The Bak-Sneppen evolution model is a self-organized critical (SOC) model dis-

cussed in detail in [6, 75]. Here we would like to discuss the similarity between the

self-organization of the Bak-Sneppen model to the critical state and the extremal dy-

namics of the CS model. In the Bak-Sneppen evolution model, independent random

numbers fi are assigned to each site of a d-dimensional lattice of linear size L. The fi

are chosen from a uniform distribution U [0, 1]. At each update step, the site with the

smallest random number fmin is located. This site is the extremal site. That site and

its 2d nearest neighbors are then assigned new random numbers drawn from the same

uniform distribution, such that the new random numbers are greater than the current
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minimum fmin, fi > fmin. Thereafter in the next update step, the new fmin in the

system is located. After many update steps the system reaches a statistically station-

ary state in which the density of random numbers in the system vanishes for f < fc

and is uniform above fc. In the thermodynamic limit L → ∞, no random number

with f > fc is ever the extremal site [75]. In one dimension, all the random numbers

in the system have values above the self-organized threshold fc = 0.66702± 0.00003.

To follow the transient process of the Bak-Sneppen evolution model, [75] tracks

the value of the minimal random fmin as a function of sequential time s. Fig. 18(b)

shows the signal fmin as a function of s during the transient process. In the figure,

the staircase like solid line is an envelope function that tracks the increasing peaks

in fmin. The solid staircase line is computed in the following way. At time 0, the

first minimum value fmin(0) is identified. By definition there are no random numbers

smaller than fmin(0) in the system. The quantity fmin(0) is defined to be the initial

gap, G in the distribution of f ’s, i.e. G(0) = fmin(0). After s updates, a larger gap

G(s) > G(0) opens up, i.e. the new minimum fmin(s) is larger then the previous

minimum fmin(s − 1). The current gap G(s) is the maximum of all the minimum

random numbers chosen, fmin(s′), for all 0 ≤ s′ ≤ s. In Fig. 18(b) the solid staircase

line shows the gap G(s) as a stepwise increasing function of s. As shown in [75],

clearly when the gap jumps to a new higher value for fmin, there are no sites in the

system with random numbers less than the gap. Since the random numbers are chosen

from a flat distribution P (f), all the random numbers in the systems are uniformly

distributed in the interval [G(s), 1] at the moments in time when the gap jumps. The

gap function G(s) is tracking the evolution of the system to its statistically stationary

state fc.

Based on the above SOC signature of the Bak-Sneppen evolution model, we are

now in a position to draw an analogy to the CS model extremal dynamics. In
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Fig. 18(a) the CS model extremal dynamics for λ = 6 is shown again. The con-

struction of the figure was explained in detail in chapter II. In Fig. 18(a) as the

system organizes into its critical state of TF = 100, we observe the staircase like step

functions of mean maximum demand (in blue), maximum maximum demand (in red)

and minimum maximum demand (in green). These functions are also developing as

an envelope function similar to the envelope function G(s) in Fig. 18(b).

Fig. 18(a) demonstrates a clear link between the degree of system self organization,

characterized by TF, and the extremal dynamics of maximum demand. For the

class of systems we are studying using CS model dynamics for λ = 6, the path to

the SOC state characterized by TF, demonstrates behavior similar to punctuated

equilibria. In punctuated equilibrium models such as the Bak-Sneppen evolution

model, the system evolves to the critical state, not in a slow and steady path, but in

bursts of activity that are separated by long periods of little activity in terms of the

evolution of species. In Fig. 18(a), the punctuated equilibriums correspond to the TF

values. These TF values are reached through the corresponding extremal dynamics

of maximum demand which occurs rarely (with much lower probability) compared

to the average demand dynamics. As the systems evolve through the TF values to

TF=100, the maximum demand dynamics also evolves as an envelope function similar

to the envelope function G(s) in Fig. 18(b). From this discussion we conclude that the

class of CS model systems considered, for λ = 6, also demonstrate SOC signatures.

A similar analysis is also possible for the λ = 7 case.

4.4 Failure progression dynamics in the LOS model

Figure 19 illustrates the profile of “failed cells” versus time for some representative

simulations for the LOS model. For these simulations we set the strength of com-

ponents to the constant Sij = 6 and the load Lij is initialized from a Gaussian dis-

tribution N (3, 0.5). For these simulations, we set the Chebyshev-distance parameter
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r = 1. It can be seen in figure 19, as the simulation progresses, there are breakpoints

in the mean slope of the “failed cells” profile. I.e, there exists a critical time when

the “rate-of-failure” trajectory switches to an increased slope.
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Figure 19: Profile of “Failed cells” versus time

To detect when this switch to an increased slope occurs it is necessary to first

smooth the data. Figure 20 illustrates smoothing the “failed cells” time profile using

Matlab’s curve fitting toolbox. The data was smoothed using Local Weighted Linear
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regression techniques.
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Figure 20: Smoothing via “Local weighted linear regression”.

After smoothing the data, the data is fit using Linear interpolation and then the

first derivative is approximated. The first derivative approximation is illustrated in

figure 21.
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Figure 21: Fitting using “linear interpolation” and then taking a 1st derivative

4.4.1 Change-point detection

Detecting time points at which the properties of time-series data change are referred

to as change-point detection problems. Change-point detection has been widely re-

searched in areas such as Signal processing, Wavelet analysis, Graphics and Financial

time series research etc. These techniques also go by other names such as: Step

74



detection, Jump detection, Edge detection etc. In our case, the intent is to detect

the “critical time” when the mean slope of the “failed cells” profile transitions to an

increased value. We would like to detect the change-point when the system dynamics

switch to a accelerated rate-of-failure.

A change-point detection algorithm based on the Gradient-Threshold method was

implemented. Using first derivative information it is possible to estimate the “critical

time” when the mean slope of the “failed cells” switches. Figure 22 shows the dis-

tributions for 100k Monte-Carlo runs after the implementation of the change-point

detection algorithm. The change-point distribution is plotted (in blue) to the left

of the time-to-failure distribution (plotted in black). The mean-to-mean difference

between the time-to-failure distribution and the change-point time distribution is 5-6

time steps.
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Figure 22: Distributions for time-to-failure (in black) and change-point (in blue)

4.4.2 Change-point conditional distributions

Also plotted in figure 23 is the “change-point conditional distributions”. These plots

are generated in the following way. First, from the simulation data all failures at

a particular time step (for example: system failures at time step 18) are extracted.

Then change-point distribution for this extracted data set is plotted. Figure 23 shows

75



this “conditional change-point distributions” for time-to-failures at time steps: 18, 21,

26 and 28.
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detection conditioned on Time-to-
Failure=26

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distribution for Change Point Detection given Time−To−Failure=28

P
ro

ba
bi

lit
y

(d) Distribution for Change-Point
detection conditioned on Time-to-
Failure=28

Figure 23: Conditional distributions for change-point detection.

Also it is informative to view the time evolution of the number of failures for

a specific case in a table. Referring again to figures 20(a) and 21(a), we note the

time-to-failure is at time unit 22. The change-point is detected at time unit 15. Thus

the change-point is detected 7 time units before the actual system failure. Table 3

tabulates the number of failed cells at these time points. At time unit 15, the number

of failed cells is 15. At time unit 21 and 22, the number of failed cells is 74 and 103

respectively. The failure criteria is 75 failed cells.
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Table 3: # of failed cells at time 15, 21 and 22
Time unit #of Failed Cells
15 15 Change-point detected
21 74
22 103 System failure detected
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CHAPTER V

APPLICATIONS

In this chapter we will discuss the relationship between the extremal models presented

in the previous chapters to real world applications in creep-rupture studies, air-traffic

management and road traffic congestion.

5.1 Creep-rupture studies using the LOS model

The failure of a component after long-term exposure under constant load is called

stress-rupture or creep-rupture. In multi-phase materials, such as fiber-matrix com-

posites, the failure process has several aspects. Under high levels of steady stress,

such materials demonstrate time-dependent mechanical degradation. Randomly dis-

tributed local flaws which grow stochastically in time eventually lead to microcracks

in the fiber-matrix composite. In turn, the local stress loss in these microcracks lead

to load redistribution to neighboring fiber elements. This results in accelerating the

flaw growth in the neighbors and thus causing microcracks in the neighbors. Ulti-

mately several such microcracks join together forming a catastrophic crack. In this

chapter we will see that the statistical nature of the failure process and choice of

fiber-matrix composite parameters lead to not only highly variable composite lifetime

distributions but also to different failure modes.

5.1.1 Creep-rupture model of Mahesh/Phoenix

Mahesh and Phoenix introduced a creep-rupture model for fiber-matrix composites in

[62]. As described in [62] the statistics of fiber failure are governed by the breakdown

model of Coleman [30] which embodies a Weibull hazard functional of fiber load

history imparting power-law sensitivity to fiber load with exponent ρ, and Weibull
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lifetime characteristics with shape parameter β. Fiber load redistribution at breaks

are calculated using a “shear-lag” mechanics model which [62] has found to be more

realistic than idealized load sharing rules such as equal, global or local load sharing.

The study in [62] is concerned with the “avalanche” regime of failure as discussed by

Curtin and Scher in [34] where the composite lifetime follows weakest-link scaling.

The “avalanche” regime of failure will also be our focus for the LOS model. We

shall compare the failure mechanisms of the LOS model and the Mahesh/Phoenix

model in this “avalanche” regime. The study by Mahesh/Phoenix reveals two distinct

failure modes within the avalanche regime. For small ρ, fiber failure is is not very

sensitive to load level and the fiber-matrix composite demonstrates ‘tough’ behavior.

In the ‘tough’ regime, random fiber failures cause progressive distributed damage

until a critical volume fails along with its catastrophic extension. For large ρ, fiber

failure is very sensitive to load level and the fiber-matrix composite fails in a ‘brittle’

manner. In the ‘brittle’ regime, there is a gradual growth of a cluster of mostly

contiguous fiber breaks, these then abruptly transitions into a catastrophic crack. As

we shall see subsequently, depending on the chosen model parameters, the LOS model

demonstrates both ‘tough’ and ‘brittle’ failure modes.

5.1.2 Different rules for load sharing

The model by Mahesh and Phoenix [62] adopts a “shear-lag” mechanics model for

load sharing in fiber-matrix composites. The authors have found that the shear-lag

mechanics model is more realistic than idealized rules for load sharing such as equal,

global or local load-sharing.

Equal load sharing rules were the first to be considered in the literature for the

fiber-bundle lifetime models in [27, 28, 29, 30, 80]. In equal load-sharing when a fiber

fails its load is redistributed equally to the surviving fibers in the bundle.

The concept of equal load-sharing was extended by Ibnabdjalil and Phoenix in
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[48] to incorporate the idea of global load-sharing. Global load-sharing is a more con-

tinuous version of equal load-sharing in which the load of a failed fiber is divided and

transferred equally onto a fairly large number of surviving fibers which are determined

over a certain characteristic distance from the failed fiber.

In addition to equal and global load-sharing rules there are also local load-sharing

rules. Here the load of a failed fiber is transferred laterally to its nearest neighbors

and fibers further away feel little overload. Tierney in [95] and Phoenix and Tierney

in [81] have considered local load-sharing rules in their fiber-matrix composite lifetime

model.

5.1.3 Load sharing based on the Chebyshev-distance parameter

Before presenting the failure mechanism relationships between the LOS model and

the creep-rupture model of Mahesh/Phoenix, we discuss the load redistribution mech-

anism in the LOS model which is controlled by the Chebyshev distance parameter

r.

When a node fails, the corresponding load is transferred to the adjacent nodes.

The load is redistributed to the neighboring nodes according to the Chebyshev dis-

tance r. For the LOS model the Chebyshev-distance parameter r is set to 1 by default.

This means only nodes immediately neighboring the failed node will be considered

for load redistribution. The Chebyshev-distance parameter can be modified to values

other than 1. For example, if r = 2 then only neighboring nodes up to a Euclidean

distance of 2 from the failed node is considered for load redistribution. The effects of

varying the parameter r will be investigated in this section.

Fig. 24 illustrates how Chebyshev distances are considered. In Fig. 24, the red

node at the center has failed at the current time step and the load is redistributed

to the neighboring nodes. The nodes immediately bordering the red node, labeled

‘1’, are at a Chebyshev distance r = 1. Also labeled in the figure are nodes that
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are at Chebyshev distances r = 2 and r = 3 from the red node. Nodes at the same

distance from a failing node are said to be at the same Chebyshev level. Hence,

Fig. 24 illustrates 3 different Chebyshev levels.
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Figure 24: Illustration of Chebyshev distances of the green nodes from the red node.

Next we discuss the exact mechanism of load redistribution. The load can be

redistributed equally among nodes or following different weighting schemes. These

weighting schemes can be thought of as load redistribution policies. Three different

weighting schemes are considered for redistributing the load of the failed node to

the neighboring nodes. The loads from failed nodes are not redistributed to failed

neighboring nodes. Also the different load redistribution schemes do not take into

account the local existing loads at neighboring nodes that are fully operational or

stressed.

In weighting scheme #1, the load is redistributed equally to all fully operational

or stressed nodes regardless of the Chebyshev distance from the failing node. For

r = 1, this scheme would correspond to local-load sharing. On the other hand for

r > 1, this would correspond approximately to equal load-sharing.
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Table 4: Load redistribution weighting scheme #3 for the different Chebyshev levels
Chebyshev distance (r) Level 1 Level 2 Level 3 Level 4 Level 5
1 1
2 0.6 0.4
3 0.5 0.3 0.2
4 0.4 0.3 0.2 0.1
5 0.4 0.25 0.15 0.1 0.1

In weighting scheme #2, the load is first distributed equally to the different Cheby-

shev levels, then the distributed load is divided equally among the “not failed” nodes

existing at that particular Chebyshev level. For r > 1 this scheme would correspond

approximately to variants of global load-sharing.

In weighting scheme #3, each Chebyshev level is assigned a specific weight wi and

the load is assigned to each level according to those weights. Note,
∑n

i=1wi = 1,

where n is the number of Chebyshev levels. The “not failed” nodes at a particular

level then divide the load equally among themselves. Typically Chebyshev levels at a

greater distance are assigned a lower weight or proportion of the load while Chebyshev

levels closer to the failed nodes are assigned a higher proportion of the load. For r > 1

this scheme would correspond approximately to variants of global load-sharing.

Fig. 25 illustrates these three different weighting scheme on a per node basis for

the case when the number of Chebyshev levels r = 4. Table 4 tabulates one possible

option for weighting scheme #3 for different Chebyshev levels r = 1..5.

Depending on the system size n and how the system is decomposed (e.g the size of

the fiber bundles in the fiber-matrix composite model), using the Chebyshev distance

r and the different weighting schemes, it is possible to model the different load sharing

rules. For example with r = 1 and weighting scheme #1 it is possible to model local

load-sharing. On the hand with r = 4 and weighting scheme #3 it is possible to

model a variant of global load-sharing. With r = 4 and weighting scheme #1 one

could tentatively model equal load-sharing.
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Figure 25: Different Load redistribution weighting schemes on a per node basis for
Chebyshev distance r = 4.

5.1.4 Comparison between the LOS model and the Mahesh/Phoenix model

To compare the failure mechanisms of the LOS model with the failure mechanisms

demonstrated by the Mahesh/Phoenix creep-rupture model, we will initialize the

LOS model parameters such that we obtain similar failure patterns as obtained by

the Mahesh/Phoenix model.

For LOS model we have the following parameters that we need to tune appropri-

ately. The parameter η ∈ (0, 1) is the strength degradation parameter. η controls the

threshold when loss of component strength initiates. For low values of η, for example

η = 0.3, components will be overcome by lower amounts of load but components will

spend greater lengths of time in LOS dynamics. For high values of η, for example
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η = 0.8, higher amounts of load will be needed to overcome components but compo-

nents will spend comparatively less time in LOS dynamics. In general, the parameter

η controls the level of load required to initiate LOS dynamics and also the time a

component engages in LOS dynamics. At this point we could postulate that higher

values of η might lead to ‘brittle’ failure since failure will take place abruptly with

little precursory activity in the form of LOS dynamics. On the other hand, low values

of η might lead to ‘’tough’ behavior as component failure will occur after multiple

components have undergone considerable LOS dynamics.

The second parameter we will tune is the Chebyshev-distance parameter r. For the

simulations to be presented we have used weighting scheme #3 as shown in Table 4. In

the simulations we consider Chebyshev distances r = 1, 3, 5. For r = 1, we essentially

model local-load sharing. For r = 3, 5 we are essentially modeling global load-sharing

which is a more refined and continuous version of equal load-sharing as discussed

previously.

Since we would like to model fiber-matrix composite creep-rupture with the LOS

model we need to set the component strength appropriately. In strength, fibers,

strands and pressure vessels tend to follow a Weibull distribution [81]. Experimental

values for the Weibull shape parameter range from 5 to 9 for fibers and from 25

to 35 for strands and pressure vessels. In failure time, strands and pressure vessels

also appear to follow a Weibull distribution [96]. Based on this information, in the

simulations, we initialize the LOS model component strength by sampling from a

Weibull distribution with scale parameter 9 and shape parameter 25. Consequently,

we are attempting to mimic the strength behavior of pressure vessels with the LOS

model. In conjunction with the parameters η and r, we will next discuss the similarity

of the failure mechanisms of the LOS model and the Mahesh/Phoenix model.
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5.1.5 Simulation setup

For each setting of the parameters η and r we run 30,000 monte-carlo simulations. We

set the system size to n = 10. The system strength and r is initialized as described

in the previous section. For the parameter η, we investigate the values 0.5, 0.7 and

0.9. With η = 0.5, components will spend greater amounts of time in LOS dynamics

compared η = 0.9. However, the load required to initiate LOS dynamics will greater

for η = 0.9 compared to η = 0.5.

Following Mahesh and Phoenix, we are particularly interested in analyzing the

‘avalanche’ regime of failure which is characterized by components failing in a chain

or cascade one after the other. In the ‘avalanche’ regime, we capture the failure time

for the complete system or 100 components and also the failure time for the first 20

components to fail. The ‘avalanche’ regime is reached by identifying the loads that

causes the entire system to collapse for a given setting of system strength, η and r. In

particular, we are interested in establishing whether we can capture tough and brittle

failure modes in the ‘avalanche’ regime and also whether the failure time distributions

agree with those in the literature.

5.1.6 η = 0.5, 0.7 with Chebyshev distance r = 1

5.1.6.1 Tough failure regime

First, we set η = 0.5 and run 30,000 simulations for each value of r = 1, 3, 5. For each

value of r, we identify the minimum load required for complete system failure. By

increasing the load above this minimum load, we identify the different failure modes.

We then repeat this process for η = 0.7.

The Chebyshev distance setting r = 1 corresponds to local load-sharing. For r = 1

and η = 0.5, we observe complete system failure for the minimum load L = 3.75. The

corresponding failure time distributions are shown in Fig. 26. Similarly for r = 1

and η = 0.7, we observe complete system failure for minimum load L = 4.5. The
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corresponding failure time distributions are shown in Fig. 27. In both cases, the failure

time distributions follow a Log-normal distribution. This result is in agreement with

Mahesh and Phoenix where they demonstrate for small ρ, the composite failure time

follows a Log-normal distribution. They have identified this failure mode as ‘tough’

behavior. In this regime, fiber failure is is not very sensitive to load level. In the

‘tough’ regime, random fiber failures cause progressive distributed damage until a

critical volume fails along with its catastrophic extension.

In the ‘avalanche’ regime, the small ρ parameter of Mahesh/Phoenix corresponds

to our low values of load L = 3.75 for η = 0.5 and L = 4.5 for η = 0.7. These loads

are high enough to initiate LOS dynamics in some components in the system. When

these components fail, their load is redistributed to neighboring components which

then initiate LOS dynamics. This cycle of LOS dynamics and load redistribution

keeps on repeating in cascade from one component to the next until the entire system

fails. Thus for our system, the value of load L = 3.75 for η = 0.5 and L = 4.5 for

η = 0.7 corresponds to the ‘tough’ failure regime.

5.1.6.2 Brittle failure regime

As the loads are iteratively increased we observe the failure mechanism transition

from the tough failure mode to a brittle failure mode. At loads greater than L = 5.5

for η = 0.5 we observe that the failure time distribution follows a Weibull distribution.

This is shown in Fig. 28. Also at loads greater than L = 6 for η = 0.7 we observe that

the failure time distribution follows a Weibull distribution. This is shown in Fig. 29.

At these load setting the load is high enough that components fail with minimum

LOS dynamics. Once a component fails its load redistribution is sufficient enough

to cause neighboring components to fail and redistribute their load thus triggering a

cascade of failures. The entire system abruptly collapses in a ‘brittle’ manner. Load

settings greater than L = 5.5 for η = 0.5 and L = 6 for η = 0.7 correspond to the
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Figure 26: Log-Normal fit. r=1, η = 0.5
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Figure 27: Log-Normal fit. r=1, η = 0.7
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large ρ settings of Mahesh and Phoenix. They have also found that for large ρ, fiber-

matrix composite failure time follows a Weibull distribution. For large ρ, the fiber is

very sensitive to load level and the fiber-matrix composite fails abruptly.
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Figure 28: Weibull fit. r=1, η = 0.5
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Figure 29: Weibull fit. r=1, η = 0.7
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5.1.7 η = 0.5, 0.7 with Chebyshev distance r = 3 and r = 5

5.1.7.1 Tough failure regime

Chebyshev distance r = 3 and r = 5 with weighting scheme #3 corresponds to a

form of global load-sharing as described in Ibnabdjalil and Phoenix [48]. Global

load-sharing is a more continuous from of equal load-sharing. For load settings in

the ’avalanche’ regime we can identify two different failure modes for the parameter

settings η = 0.5, 0.7 for r = 3, 5.

For both η = 0.5, 0.7, at low load settings the failure time distribution follows

a normal distribution for both r = 3, 5. For η = 0.5, this is shown in Fig. 30 for

r = 3 and Fig. 31 for r = 5. Similarly for η = 0.7, the normal distribution failure

times are shown in Fig. 32 for r = 3 and Fig. 33 for r = 5. This is in agreement

with [80], where the author established that the lifetime of a equal load-sharing fiber

bundle is asymptotically normally distributed. This result makes intuitive sense since

as the Chebyshev-distance for load redistribution is increased to r = 3 or r = 5, the

components in the system are provided greater opportunities to survive through load

sharing. Thus, even though the system does ultimately collapse at these low load

settings, the failure mode is more dispersed and spread over greater lengths of time.

And the failure time distribution is under lied by the normal distribution.

The minimum load settings exciting the avalanche failures observed for the dis-

tributions in Figs. 30, 31, 32, 33 correspond to the tough or dispersed failure

regime.

5.1.7.2 Brittle failure regime

Next, by iteratively increasing the load we arrive at load settings that cause the

system to transition from the tough failure regime to the brittle failure regime for

η = 0.5, 0.7 at r = 3, 5.

For both η = 0.5, 0.7, at high load settings the failure time distribution follows a
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Figure 30: Normal fit. r=3, η = 0.5
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Figure 31: Normal fit. r=5, η = 0.5
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Figure 32: Normal fit. r=3, η = 0.7

93



200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

450

Time to Failure of 20 nodes

F
re

qu
en

cy

Load =  5.00, r = 5 and η =  0.7

 

 

Number of samples =6421

(a) L = 5

200 400 600 800 1000

0.0001
0.00050.001
0.005
0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99
0.995
0.9990.9995

0.9999

Time to Failure of 20 nodes at Load =  5.00, r = 5 and η =  0.7

P
ro

ba
bi

lit
y

Probability plot for Normal distribution

 

 

Number of samples =6421

(b) L = 5

200 400 600 800 1000 1200

0.0001
0.00050.001
0.005
0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99
0.995
0.9990.9995

0.9999

TT90 at Load =  5.00, r = 5 and η =  0.7

P
ro

ba
bi

lit
y

Probability plot for Normal distribution

 

 

Number of samples =6421

(c) L = 5

Figure 33: Normal fit. r=5, η = 0.7
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Figure 34: Weibull fit. r=3, η = 0.5

Weibull distribution for both r = 3, 5. For η = 0.5, this is shown in Fig. 34 for r = 3

and Fig. 35 for r = 5. Similarly for η = 0.7, the Weibull distribution failure times are

shown in Fig. 36 for r = 3 and Fig. 37 for r = 5. This results makes intuitive sense

because as the load is increased the, the advantage gained by redistributing the load

over increased Chebyshev distances is diminished. So even though r = 3 or r = 5,

for high load settings the system fails in a brittle manner. Correspondingly the high

load settings for the distributions in Figs. 34, 35, 36, 37 correspond to the brittle

failure regime.

5.1.8 η = 0.9 with Chebyshev distance r = 1, r = 3 and r = 5

The failure behavior of the system at η = 0.9 is very interesting since for this pa-

rameter value the system engages in minimal LOS dynamics. At this setting, large

values of load are required to initiate LOS dynamics and then components spend
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Figure 35: Weibull fit. r=5, η = 0.5
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Figure 36: Weibull fit. r=3, η = 0.7
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Figure 37: Weibull fit. r=5, η = 0.7
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Figure 38: Power Law fit. r=1, η = 0.9

minimum time in the loss of strength process. Consequently the load redistribution

is sufficient to trigger failure in neighboring components which in turn trigger chains

of load redistribution and failure. Through out this process component time spent

in LOS is minimum. Also at η = 0.9, the effects of the chebyshev parameter r is

diminished. For all values of r, we observe the system collapsing through a power-law

distribution.

5.1.8.1 Chebyshev distance r = 1

For r = 1, the power-law distribution for system failure time is shown in Fig. 38.

The power-law distribution is observed for load values greater than L = 6.5. Below

L = 6.5, the system is resilient and cascading failure is not triggered. This is due to

the high threshold value of η = 0.9.
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Figure 39: Weibull fit. r=3, η = 0.9

5.1.8.2 Chebyshev distance r = 3

For r = 3, we do observe a transition in failure time distribution. From a Weibull

distribution for L = 6 to a power-law distribution for L = 7. The Weibull distri-

bution for failure time is shown in Fig. 39 and the power-law distribution is shown

in Fig. 40. However, even though we have different distributions for the failure time

at these loads, the system is still collapsing in the brittle failure regime. This is

due to the high threshold value of η = 0.9 which is resulting in little LOS dynamics

taking place. However failure is taking place mainly due to cascading chains of load

redistributions from one component to the next which is causing the entire system to

collapse abruptly in a brittle manner.

Again due to the high threshold value η = 0.9, the system is resilient and cascading

failure is not triggered for load values lower than L = 6 for r = 3.
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Figure 40: Power Law fit. r=3, η = 0.9
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5.1.8.3 Chebyshev distance r = 5

Also for r = 5, we observe a transition in failure time distribution. From a Log-normal

distribution for L = 7 to a power-law distribution for L = 7.5. The Log-normal

distribution for failure time is shown in Fig. 41 and the power-law distribution is

shown in Fig. 42. However, even though we have different distributions for the failure

time at these loads, the system is still collapsing in the brittle failure regime. This is

due to the high threshold value of η = 0.9 which is resulting in little LOS dynamics

taking place. However failure is taking place mainly due to cascading chains of load

redistributions from one component to the next which is causing the entire system to

collapse abruptly in a brittle manner.

Again due to the high threshold value η = 0.9, the system is resilient and cascading

failure is not triggered for load values lower than L = 7 for r = 5. We also note the

load required for the ‘avalanche’ failure for r = 5 is slightly higher than the loads for

r = 1, 3. This indicates there is some sensitivity to the load redistribution chebyshev-

distance. The system is slightly more resilient when r = 5 compared to when r = 1, 3.
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Figure 42: Power Law fit. r=5, η = 0.9

5.2 Air traffic management using the CS model

In this section we discuss the relationship between the CS model and Aggregate flow

models described in air traffic management literature [86, 92, 93]. We will detail how

the aggregate flow models can be reformulated in a form that completely matches the

CS model description.

5.2.1 Aggregate flow models for air traffic management

We refer the reader to [86, 93] for a detailed description on Aggregate flow models

for air traffic management. Here we only provide the details necessary to demon-

strate the method of reformulating the Aggregate flow model to match the CS model

specification.
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(a) Continental United State airspace

(b) Center network model

Figure 43: Continental United States airspace center model. Reproduced from [93].

The airspace in the continental United States is divided into 20 centers. This is

shown in Fig. 43(a). The flow relationship between neighboring centers is shown via

links in Fig. 43(b). Fig. 43 is reproduced from [93]. It is clear from Fig. 43 that the

centers lend themselves to a graph theoretic network structure.

The flow through a center i is composed of a inflow component and a outflow com-

ponent. The inflow is composed of the number of aircraft departures (takeoffs from
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Figure 44: Aircraft flow contributions in center i. Reproduced from [93].

airports in the center i) and the number of aircraft entering center i from neighboring

centers j. The outflow is composed of the number of aircraft arrivals (landings at

airports in center i) and the number of aircraft leaving the center i to neighboring

centers j in a time interval ∆t. This flow mechanism is depicted in Fig. 44.

Utilizing the principle of conservation of flow in a center, the number of aircraft

in center i at the next time instant k + 1 can be related to the number of aircraft in

the center at the current time k through the difference equation Eq. 32,

xi(k + 1) = xi(k)−
N∑

j=1

βijxi(k) +
N∑

j=1,j 6=i

βjixj(k) + di(k) (32)

The number of aircraft in center i is denoted by xi(k). Departures from airports

within center i are denoted by di(k). The fractions βij and βji are transition proba-

bilities obtained as described in [86]. βij represents the transition probability of an

aircraft from center i traveling to center j. βji represents the transition probability

of an aircraft from center j entering center i.

From the above description of the aggregate flow model, the inflow and outflow
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into each center becomes clear and we can visualize flow in the centers through Fig. 45.

The flow in Fig. 45 is similar to component inflow/outflow in the CS model. Using

Eq. 32, the aggregate flow model can be reformulated in terms of inflow and outflow

for a CS model component, these terms are shown in Eq. 33.

Inflow =
N∑

j=1,j 6=i

βjixj(k) + di(k) (33a)

Outflow =
N∑

j=1,j 6=i

βijxi(k) + βiixi(k) (33b)

In Eq. 33 the inflow and outflow is composed of the number of aircraft entering

and exiting a center. Eq. 32 and Eq. 33 together completely specify the aggregate

flow model in a CS model component framework. The number of components would

be equal to the number of centers that are considered for analysis. In Fig. 46 we show
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Figure 46: Continental United States airspace centers on a graph network represen-
tation. Reproduced from [86].

the centers in the continental United States using a graph network representation

which is reproduced from [86]. In the previous chapters we have implemented the

CS model on a scale-free network topology. Clearly using Eqs. 32, 33 and Fig. 46 we

can model the aggregate flow model for the continental United States in a CS model

framework on a graph topology. Note, so far the only thing we have done is to take

the aggregate air traffic model and reformulate it in a framework that fits the CS

model description. All simulations, analysis and results of the aggregate flow model

demonstrated in [86, 91, 92, 93, 22] would also hold in the CS model framework.
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5.2.2 Air traffic congestion management using the CS model representa-
tion

In this section we investigate the possibility of using the CS model framework for air

traffic management developed in the previous section for congestion management in

the national airspace system (NAS).

Demand-Capacity imbalances in the national airspace system (NAS) have been

reported to cause 215,000 hours of reportable delay [45] between January 2003 and

October 2004. Also from the same reference the cost of these delays to airlines have

been calculated to be around $700 million. The impact of airport capacity constraints

on the NAS delays have been studied in [23]. The authors investigate the impact of

arrival or departure capacity reduction at each of the major airports in the NAS on the

arrival and departure delays at other major airports in the continental United States.

The FAA’s Air Traffic Control System Command Center (ATCSCC) regularly utilizes

playbook reroutes, ground delay programs (GDPS), ground stops (GSs), miles-in-trail

restrictions to mitigate congestion resulting from these demand-capacity imbalances

[45].

For congestion management using the CS model air traffic framework we invision

using the load sharing property of the CS model to deal with demand-capacity im-

balances in the national air space system. A hypothetical congestion management

system would work in the following way. The load would be shared within centers by

shifting the number of aircraft between them. To understand how this would work we

refer the reader again to Fig. 45. Suppose a center i is weather impacted. In that case

both the arrival and departure capacity of center i would be reduced. This means the

terms A and D in Fig. 45 would undergo a net decrease as would term C but term B

would remain the same. This would result in a demand-capacity imbalance at center

i. Also the load sharing capacity of center i to accept arriving aircraft would decrease.

The demand due to term B would be load shared with the neighboring centers in
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the system assuming those centers themselves have not undergone a aircraft arrival

capacity reduction. It is our opinion using this scheme it would be possible to study

in a structured and aggregate way the impact of demand-capacity imbalances in the

national airspace system arising due to weather or other factors.

To test whether this scheme would provide insight and knowledge on congestion

management in the national airspace system, as part of future investigations we pro-

pose to use the NAS data from [93, 23] in the framework discussed above. It is

our opinion, using real aircraft arrival-departure data from [93, 23] would allow us

to fully measure the capabilities of the CS model air traffic congestion management

framework.

5.3 Road traffic congestion studies using the CS model

In this section we provide an example of how the CS model could be used to develop

policy to manage and mitigate road traffic congestion. This example is motivated by

the so called “Atlanta Snow Jam 2014” traffic congestion event1.

The “Atlanta Snow Jam 2014” traffic congestion event occurred on Tuesday, Jan-

uary 28th, 2014. A snow storm was forecast for regions south of the metro Atlanta

area. However, the storm arrived early and changed direction slightly. Eventually the

metro Atlanta area experienced two and half inches of snow starting around noon.

State, city and businesses decided to let employees leave around 1 pm. Schools also

decided to send students home around 1 pm. What resulted next was traffic con-

gestion and gridlock chaos of epic proportions. Commutes that usually took 30-45

minutes ended up taking 10-15 hours in bumper to bumper traffic. Many school

children spent the night in the cold in their school buses without adequate heating,

warm clothes and food. In addition, school children who didn’t make it onto school

buses spent the night bedding down in their schools.

1Alexis Stevens, “Metro commuters recount their hours-long trip home”, The Atlanta Journal-
Constitution, January 29, 2014
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In hind sight, it became clear that allowing such a large number of vehicles on

Atlanta roads at the same time was a monumentally incorrect decision. This resulted

in tremendous psychological trauma for those involved and also endangered the lives of

school children, the sick and the elderly who were stuck in traffic. However, no policy

was in place at the state, city and local levels for the different responsible agencies to

communicate and decide on not permitting such a large number of vehicles to enter

Atlanta roads at the same time.

In this section, we use the CS model to provide a traffic congestion interpretation

that allows policy makers to observe how the number of vehicles, above a particular

threshold introduced at the same time in metropolitan roads, might result in massive

congestion. By using the CS model with parameters set to values corresponding to

real-world traffic rates and capacities, policy makers possess a tool by which to decide

on the level of traffic to introduce to metropolitan area roads at the same time.

The interpretation works in the following way. Consider the maximal dynamics

of the CS model from Chapter II which we reproduce again in Fig. 47(a) and 47(b).

The figures correspond to the mean traffic arrival rate λ = 6. We interpret the

components of the CS model as corresponding to “segments of metropolitan roads”.

In this interpretation we do not track the source and destination of traffic. Interpret

“Max Demand” as “Maximum number of vehicles observed in a time sample over a

observation window”.

In Fig. 47, interpret TF=100 to correspond to massive congestion which is a low

probability event. An example would be the congestion that was observed during the

“Atlanta Snow Jam” event. Interpret a regular metropolitan traffic commute day as

TF=15 which represents normally observed congestion. Note we could also interpret

TF=10 or TF=20 as a regular commute day. From Fig. 47(b), we can clearly see that

the “Max Demand” responsible for TF=100 is much larger than the “Max Demand”

for TF=15. Implying that maximal traffic dynamics is responsible for the level of
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congestion. For both cases the average traffic λ = 6 is the same.

Based on the above analysis, policy makers could adapt the CS model parameters

to real-world traffic rates and capacities of different metropolitan areas. CS model

components would represent road segments of interest. They could then forecast the

threshold value of vehicles which would cause different levels of congestion in the

metropolitan area of interest. Based on the forecasts, policy could be formulated to

manage and mitigate traffic congestion in the metropolitan area of interest.
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CHAPTER VI

MOTION PLANNING FOR DISTRIBUTED

MULTI-AGENT SYSTEMS USING THE DUBINS

VEHICLE MODEL

In this chapter, we implement the Markov-Dubins vehicle model to study air traffic

congestion phenomena for distributed multi-agent systems. We extend the Markov-

Dubins vehicle model to 3-dimensional space and time. The model is implemented

using the NETLogo programming language. We refer to the implementation as NET-

Dubins. We demonstrate NETDubins for multi-agent simulations utilizing user de-

fined trajectories, optimal trajectories and helical maneuvers. We provide an example

of using NETDubins for simulating notional air traffic vectoring at Los Angeles In-

ternational Airport.

6.1 Introduction

NETDubins is a trajectory generation toolbox written in the NETLogo programming

dialect. NETDubins is designed for multi-agent system simulations in a 3D environ-

ment. The toolbox was implemented as part of NASA’s NextGen research effort.

The algorithm employed by the toolbox is based on the Markov-Dubins vehicle

model, which is a 2D vehicle. The implemented algorithm extends the Markov-Dubins

model to incorporate vehicles in a 3D world. This extension allows for the generation

of 3-dimensional trajectories for multi-agent simulations.

Although the toolbox is implemented for use in NETLogo, a MATLAB version

of the code exists. The MATLAB version is mainly used as a test bed for rapid

prototyping and debugging of new procedures and concepts.
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6.2 History

The Markov-Dubins model deals with the problem of curvature-constrained, shortest

paths in the plane with prescribed initial and terminal positions and orientations.

As described in [8], this problem can be traced back to the end of the nineteenth

century when the Russian mathematician A. A. Markov first posed the problem for

joining pieces of railway tracks. Characterizing the minimal path completely was

only done recently by Dubins [38] and by Reeds and Shepp [85]. Another way of

solving this problem, using optimal control theory, has recently been proposed in

[19]. In this effort synthesizing the shortest or optimal path is achieved through

purely geometric techniques. This is because, sophisticated mathematical libraries

that are available in MATLAB are not readily available in NETLogo. Examples

include Linear Algebra, Optimization, Differential equation libraries, which although

not readily available in NETLogo can be developed with necessary investment. The

object for this development is for a toolbox to generate trajectories for multi-agent

systems using NETLogo’s existing software infrastructure.

6.3 2-Dimensional Theory

Given two oriented points in the plane, (xi, yi, θi) and (xf , yf , θf ) , it is required to

determine the shortest path of bounded curvature (ρ) joining them. The Markov-

Dubins kinematic model is given by the following equations where (κ) is the control

input:

ẋ = cosθ

ẏ = sinθ (34)

θ̇ = κ/ρ

Each oriented point can travel in either a clockwise (denoted CWi and CWf ) or

counter-clockwise (denoted CCi and CCf ) circle. Between the two departure circles
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circle combination

and the two arrival circles there are four possible departure/arrival circle combina-

tions.

There exists four tangents between two circles that don’t intersect at any point

and also do not lie within each other. Two of these tangents intersect and are referred

to as “cross tangents” (denoted CTT and CTB). The other two tangents are referred

to as “outer tangents” (denoted OTT and OTB).

For a given initial orientation θi, due to the directional constraint on motion, the

vehicle can proceed along two of the four tangents. For example, in Figure 48 the

vehicle can only proceed along tangents CTB and OTB. Of these two tangents the

vehicle can arrive at orientation θf only along tangent OTB otherwise the directional

constraint on motion would be violated. This implies for a given departure/arrival

circle combination there exists only one optimal path from a orientation θi to a

orientation θf . Since there are four possible circle combinations, there exists four

optimal paths. The shortest path is selected from these four optimal paths.

Below in Figure 49, the four optimal paths are shown for the oriented points of

Figure 48. Of these four optimal paths Figure 49(c) corresponds to the shortest path.
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6.4 Extension to 3-Dimensions

Given two points with coordinates and orientation, (xi, yi, zi, ψi) and (xf , yf , zi, ψf ),

it is required to find the shortest path. In this case it is assumed the orientations, ψi

and ψf , correspond to the ”heading” of the vehicle in a 3D environment or the angle

between the positive y-axis and the projection of the velocity vector on the 2D plane

in a right handed system. The radius, 1/ρ, relates to the ”roll” of the vehicle. With

these assumptions, the shortest 3D path of the vehicle, d3d, is determined through

the Pythagorean theorem and the ”Flight path angle”, γ, is determined through

trigonometry.

First, the 3D geometry is projected on to the 2D plane, from (xi, yi, zi, ψi) and

(xf , yf , zi, ψf ) to (xi, yi, ψi) and (xf , yf , ψf ). Then, as described in section 6.3, the

shortest 2d path, d2d, is determined. The length of the shortest path, d2d, and the

altitude drop, zi−zf , is used to calculate the length of the shortest 3D path, d3d, and

the flight path angle, γ as:

d3d =
√
d22d + (zi − zf )2

γ = cos−1(
d2d
d3d

)

With the prescribed heading information, ψ (from the 2D analysis) and the com-

puted flight path angle, γ, it is possible to move around optimally in the 3D world.

The examples in the next sections illustrates this.

Subsequently, the kinematics for the ”Extended Markov-Dubins” model is given

by the equations:

ẋ = cosψ

ẏ = sinψ (35)

ż = ˙d2dtanγ

ψ̇ = κ/ρ
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6.4.1 Dealing with limits on Pitch or Flight Path Angle

In many cases it is desirable that the Pitch or Flight path angle of a vehicle not

exceed a certain threshold, denoted γlimit. The toolbox deals with this scenario in the

following way. First, a shortest path is computed. If the trajectory γ violates γlimit,

then the radius’s are increased until γ satisfies γlimit. The radius’s also have an upper

limit imposed on them, denoted rlimit. If γlimit is not satisfied even though rlimit has

been reached, in that case a helical maneuver is executed. The helical maneuver is

discussed in section 6.8

6.5 Computational algorithm

6.5.1 Directional Vector and Circle center determination

The position and orientation of the initial and final point is given. Using this infor-

mation the directional vector of the orientation is determined. The directional vector

is tangent to both the clockwise and counter-clockwise circle. Moving ±90o in either

direction of the directional vector for a length of 1/ρ (the circle radius) provides the

circle centers for both the clockwise and counter-clockwise motion.

6.5.2 Tangent calculation algorithm

Previously, we have described the procedure for determining the circle centers and

the radius of the circles. For a given departure/arrival circle configuration we can

calculate the possible four tangents. Travel is possible for only one of these tangents

for a given departure/arrival circle combination. Using rules from trigonometry we

can calculate the position and orientation of the two “cross tangents” and the two

“outer tangents”.

6.5.3 Travel tangent deduction algorithm

A given departure/arrival circle combination results in four possible tangents. Of

these four tangents, motion is possible only across one of these tangents. Using
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initial and final heading information, the orientation information of the four tangents

and vector cross product rules it is possible to deduce the tangent that will be utilized

for vehicle motion. The travel tangent deduction algorithm is illustrated in Fig. 50.

6.5.4 Motion planning algorithm

Once the trajectory has been determined, motion can be scheduled along the path.

The path is composed of three separate components. These are the departure arc,

the travel tangent and arrival arc. The motion planning algorithm is illustrated in

Fig. 51.

6.6 Example: Shortest path maneuver

Figure 52(a) and Figure 52(b) demonstrates the shortest 3d path using the algorithm

described in section 6.4.

6.7 Example: User selected optimal trajectory

A user can select which one of the four departure/arrival circle combinations the

vehicle should traverse. These four combinations are demonstrated in Figure 52(c)

and Figure 52(d) for the same initial and final position and orientation.

6.8 Example: Helical maneuver

The user also has the option of executing a helical maneuver if desired. Currently the

helical maneuver is invoked based on the γlimit parameter. The procedure works as

follows, if the γlimit constraint is not satisfied by γ even after increasing the radius’s of

the departure/arrival circle combination than the vehicle initiates a helical maneuver

from (xi, yi, zi, ψi) to (xi, yi, zt, ψi). In the helical maneuver γlimit is not violated. Then

the vehicle follows a optimal/shortest path from (xi, yi, zt, ψi) to (xf , yf , zf , ψf ). zt is

at an altitude such that γlimit is not violated. Figure 53 illustrates a spiral maneuver.

The helical maneuver can be modified as necessary.
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6.9 Example: LAX CDA (Continuous Descent Approach)
vectoring maneuver

Continuous Descent Approach (CDA) is a method by which aircraft approach airports

prior to landing. It is designed to minimize fuel consumption and noise compared

to the conventional landing. A description of CDA is provided in [26]. The hazard

scenarios of CDA at Los Angles airport (LAX) has been modeled in [42, 43]. A

diagram of the LAX CDA is shown in Figure 54.

In [42, 43] a simulation model implemented in NETLOGO ([105]) for the LAX

CDA approach is described. This simulation model is used as a test bed in the

subsequent discussion. Due to conflict arising between incoming aircraft on the LAX

CDA a vectoring maneuver is executed for conflict resolution as a last resort. This

vectoring maneuver has been modeled using the NETDubins toolbox.

Each vectoring trajectory is modeled by concatenating two optimal paths. First,

a required trajectory length (based on airspeed) that will de-conflict the aircraft is

established. This trajectory is broken into two individual components and the point

where the two trajectories are concatenated (the ”join-point”) is established. The first

trajectory moves the aircraft from the CDA vectoring start point to the join-point.

The second trajectory moves the aircraft from the join-point to the CDA trajectory

merge point. The calculation of the join-point is discussed next.

6.9.1 Trajectory join-point calculation

Figure 55 illustrates the trajectory join-point calculation. The trajectory ”join-point”,

denoted by J, is calculated using trigonometric techniques. Let the vectoring start

and end points be A and B respectively. First, A and B are projected on to the 2d

plane and the 2d distance between A and B, dAB, is calculated. In the same manner

the required 2d trajectory length, TL, is calculated.

From Figure 55, we must have TL = s1 + s2. First, the parameter θ is selected.
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Next the first segment length, s1, is calculated using the following formula derived

from trigonometric relations:

s1 =
T 2
L − d2AB

2(TL − dAB cos θ)

Once s1 is known, the coordinates of J can be calculated as,

Jx = Ax + s1 cos θ

Jy = Ay + s1 sin θ

The z coordinate of J is determined using the ratio s1/TL which is used to determine

the corresponding drop in altitude.

In Figure 55, θ explicitly controls h due to the constraint TL = s1 + s2. The

parameter effect of θ on h is demonstrated in Figure 56. Making θ smaller makes h

larger. In Figure 56 all the trajectories length are approximated by fitting triangles

and are of equal length. In the simulations θ is picked so that h is minimized but the

aircraft does not fly ”backwards”.

Figure 57 illustrate two trajectories, A and B, that are of equal lengths in a

triangle approximation. The synthesized lengths of A and B are within 3% of each

other. Trajectory A was generated by setting θ = 60o and trajectory B was generated

by setting θ = 90o. Trajectory A has higher h than trajectory B.

6.9.2 Optimization algorithm to enforce kinematic constraints

The kinematics of the extended Markov-Dubins vehicle is given by equation 35. The

aircraft kinematic constraints are enforced using the standard aircraft performance

metrics: Load factor, n, Bank angle, φ, Flight path angle, γ and Turn radius, R.

Refer to [100] for an excellent discussion on turning flight in descending altitude. For

the CDA vectoring maneuver the constraints are taken to be:

γ ≤ 3o

φ ≤ 25o
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For γ ∈ (0, 3), we have cosγ = 0.99 ≈ 1, hence γ dependence is weak. The equations

for the performance metrics are given by:

cosφ =
cosγ

n
(36)

From equation 36, minimization of φ can be done by minimizing n. From Newton’s

equations for 3d turning flight, we can derive the following expression for the turning

radius, R:

R =
(V cosγ)2

g
√
n2 − cosγ2

(37)

Here V is the true airspeed of the vehicle. Solving for n2, we have

n2 =
(V cosγ)4

(Rg)2
+ cosγ2 (38)

=⇒ n2 ≈ (V )4

(Rg)2
+ 1

Thus maximizing R and minimizing V will minimize n and a basis for an optimization

algorithm is established.

The implemented optimization algorithm works in the following way. First, a

upper bound on the turning radius R is established based on the true airspeed V of

the vehicle and the Bank Angle φ constraint. Then the turn radius is incrementally

decreased in a loop while checking that the Bank angle φ and Flight path angle γ

constraints are met. This algorithm was chosen due to the geometry of the LAX CDA

approach. As mentioned in section 6.3, the optimal path algorithm only works in the

case of non-intersecting departure/arrival circle combinations. A algorithm based on

radius decrease implies less computation to synthesize a optimal trajectory.

Using this approach, Figures 58(a) and 58(b) shows synthesized trajectories with

V = 265 knots, R = 2.4 nautical miles, φ = 23o, γ = −2.3oand n = 1.08. Figures 58(c)

and 58(d) shows synthesized trajectories for V = 400 knots, R = 5.2 nautical miles,

φ = 24o, γ = −2.4oand n = 1.09.
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Figure 50: Illustration to describe travel tangent deduction algorithm.
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Figure 51: Illustration to describe motion planning algorithm.
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(a) Top view: Shortest 3d path (b) Side View: Shortest 3d path

(c) Top view: Four different optimal paths
selected by user

(d) Side View: Four different optimal paths
selected by user

Figure 52: Figures (a) and (b) illustrate the shortest path maneuver, figures (c) and
(d) illustrate the optimal path maneuvers.
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Figure 53: Helical Maneuver initiated by Dubins vehicle

Figure 54: Diagram of the LAX CDA approach
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Trajectory A

Trajectory B

J

A
B

Figure 57: Trajectories A and B are of approximately equal length. Trajectory A
was generate by setting θ = 60o and trajectory B was generated by setting θ = 90o

(a) Top view: Vectoring
(yellow trajectory) at 265
knots

(b) Side View: Vectoring
(yellow trajectory) at 265
knots

(c) Top view: Vectoring
(yellow trajectory) at 400
knots

(d) Side View: Vectoring
(yellow trajectory) at 400
knots

Figure 58: Modeling of vectoring for CDA approach at LAX.
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CHAPTER VII

CONTRIBUTIONS AND FUTURE WORK

7.1 Contributions

• In this work we investigated two different extremal models characterizing dif-

ferent failure mechanisms. The first one, a Loss of Strength (LOS) model where

component strength undergoes degradation when component load reaches a

certain threshold. The component fails when component load is greater than

component strength. After the components fails its load is redistributed to its

neighboring components.

The second one, a Customer Service (CS) model where component demand is

modeled as arriving customers to components and components possess fixed

capacity to service arriving customers. The component demand/capacity inter-

action dictates load sharing with neighboring components. If demand exceeds

capacity and unsuccessful load sharing results in component queue’s being over-

whelmed then the component fails and is removed from the network.

• We implemented both models on lattice and scale-free graph network topologies.

The models exhibits different failure mechanisms depending on the network

topology.

• At critical loads, the LOS model on a lattice network exhibits power-law failure

time distributions. On scale-free graph networks, at critical loads with decreas-

ing network connectivity, the LOS model loses power-law scaling in failure time

distribution. At critical loads, the CS model exhibits exponential failure time

distributions.
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• The LOS model demonstrated greater resilience in scale-free graph network

topologies compared to lattice topologies. For scale-free graph topologies, the

LOS model demonstrated greater resilience with decreasing network connectiv-

ity.

• We established parallels between the SOC signatures of the Bak-Sneppen evolu-

tion model and the CS model. Similar to the Bak-Sneppen model, the CS model

demonstrates punctuated equilibrium in its evolution to the critical state.

• Transition loadings, i.e. tipping points, excite different modes of failure for both

the LOS and CS models. At transition loadings, both models, may or may

not, descend into different scales of failure. Hence, we characterize transition

loadings as ‘tipping-points’ for the systems.

• We described a Markov chain formulation of the CS model. We demonstrated

that the Markov chain formulation agreed with the simulation results for the

CS model.

• We provided a mathematical framework for cascading failure in the LOS model.

We identified the conditions required for triggering, and also for mitigating, cas-

cading failure in the LOS model. This description has potential for mitigating

cascading failure in real systems such as smart grids and power grids.

• We used the LOS model to study creep-rupture phenomena in fiber-matrix

composite structures. We established parallels between our results for the LOS

model creep-rupture framework and the Mahesh and Phoenix creep-rupture

model.

• We provided a framework for studying air traffic congestion management using

the CS model. Specifically we described methods of reformulating aggregate
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flow models for air traffic management in terms of the CS model on a graph

network topology.

• We interpreted metropolitan road traffic congestion using the CS model. Specif-

ically we provided a general description on mapping CS model parameters to

real-world traffic rates and capacities. Using more detailed models developed

based on this description, policy-makers and responsible agencies would be able

to forecast and manage traffic congestion in metropolitan areas of interest.

7.2 Future work

A number of directions for future studies of complex system failure mechanisms are

outlined next.

• In this work we considered networks of relatively small sizes for both lattice and

scale-free graph topologies. A logical next step would be to increase the size of

the network. This would facilitate studies of real networks such as the Internet,

power grids and transportation networks which tend to be large.

• In this work we analyzed the CS model using Markov chain theory. One draw-

back of Markov chain theory is the explosion in state space when considering

large networks. On the other hand, mean-field theory provides a compact but

powerful means to study multi-component systems. Thus modeling the CS

model utilizing mean-field theory is a logical next step.

• In our work we have described, mathematically and in simulations, the cascad-

ing failure property of the LOS model. In electrical power grids, blackouts often

occur when several components (generators) fail simultaneously or in quick suc-

cession thus inducing cascading failure events and ultimately shutting down the

entire system. Thus the LOS model can be potentially used to study cascading

failure events in electrical power grids and smart grids.
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• In our work we have noted the parallels between the failure mechanisms of the

CS model and draw-downs in financial markets. It is worth investigating the

exact nature of the relationship between the CS model and models in financial

applications which demonstrate similar failure patterns.
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