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CHAPTER I

INTRODUCTION

1.1 Motivation

Although most modern, highly-computerized flight decks are known to be robust to

small disturbances and failures, humans still play a crucial role in advanced decision

making in off-nominal situations, and accidents still occur because of poor human-

automation interaction. In complex safety critical human integrated systems, loss

of control or automation surprises often trace their origin to disparities between the

human agent’s mental representation of a system and the actual states/dynamics

of the system and its environment [4, 21]. In addition to the physical state of the

environment, operators now have to extend their awareness to the state of the au-

tomation itself which supposes an active monitoring action [24, 25]. To guarantee

the accuracy of this knowledge, humans need to know the dynamics or approximate

versions of the dynamics that rule the automation. A general insight about Newton’s

laws and good monitoring skills are no longer sufficient to guarantee completely safe

behaviors of such systems involving complex automation-human interactions [24, 25].

Comprehensive and detailed training about automated flight systems is also not suf-

ficient since an excessive complexity might still lead the pilot to misunderstand the

automation’s behavior.

The operator’s situation awareness can decline because of a deficient mental model

of the aircraft and an excessive workload. A local absence of knowledge or some con-

fusion due to too much complexity can be responsible for a faulty mental model.
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Excessive workload can be caused by the operator’s attempt to understand the au-

tomation’s complex behavior in off-nominal situations or by a poorly designed par-

tition of tasks. Generally, automated systems and related training programs should

be analyzed in the light of their impact on the operator’s mental model and situation

awareness.

Accident	  /	  Poor	  performance	  

Lack	  of	  knowledge	  

Poor	  situa8on	  awareness	  

Faulty	  mental	  model	  

Excessive	  complexity	  

Excessive	  workload	  

Poor	  team	  work	  

Poor	  training	   Poor	  automa8on	  design	  

Figure 1: Non-environmental causes and effects of accidents due to poor human-
automation interaction. The paths are a possible summary of AF447’s final report
conclusions.

Usual mechanisms to investigate the influence of new automation on human

automation interaction includes extensive use of simulation and human-in-the-loop

(HITL) experimentation. But HITL experiments are expensive, time-consuming and

consequently can only evaluate a limited set of scenarios. Therefore we need to im-

prove our simulation capabilities by developing realistic, computational human agent

models that account for human limitations.

This work describes the creation of a computational human agent model simu-

lating the cognitive constructs of situation awareness and mental models known to

capture the symptoms of poor human-automation interaction and provide insight

into more comprehensive metrics supporting the validation of automated systems in

aviation.
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1.2 Requirements

Concepts of mental models and situation awareness are broad and ill-defined in the

literature.To address a computational approach, this work will need to clearly define

and scope the terminology. As situation awareness and mental models will be modeled

and implemented to support the simulation of HAI as comprehensively as possible,

the operational definition of these concepts will project theoretical notions onto a set

of computational objects. The implementation should allow the analysis of aviation

incidents such as the crash of the flight AF 447 which gives important examples of

poor human-automation interaction, excessive workload, lacunary mental models and

resulting low situation awareness. Such a case study can therefore be used to pro-

vide a list of requirements, scope concepts and define objectives about what needs to

be included in the computational agent model. The accident report of the Bureau

dEtudes des Accidents (BEA) mentions the unusually high workload throughout the

document. This high workload is said to be partially responsible for the degradation

of the situation awareness and communications between pilots. A first requirement

would be to have an accurate and reliable indicator for workload. Then, should it be

degraded by a high workload or a loss of sensors, the report points out the impor-

tance of the pilot’s mental representation of the aircraft’s state. Therefore, our system

should include constructs allowing analysts to diagnose situations where the pilot’s

belief is clearly different from the actual aircraft situation. This capacity should be

encapsulated within the broader concept of Situation Awareness as a mirrored mental

version of the aircraft state, sampled from the instruments through observation. In

the absence of instruments, pilots rely on their knowledge of the dynamics of the plane

to analyze the situation. The report stated a lacunary knowledge of high atmospher-

ical flight dynamics by one of the crew members that could explain a poor situation

awareness. Thus the agent model has to take into account the pilot’s mental model

of continuous aircraft dynamics to predict and prevent this kind of accident. Another
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possibility to support the accident scenario is the absence of acknowledgement from

the pilots of the system switching to an alternate control law as a consequence of

the loss of airspeed indication. High workload or lacunary knowledge of mode tran-

sitions might be responsible for such a misunderstanding. This latter interpretation

adds discrete dynamics such as autopilot modes and their knowledge by pilots as an

important part of mental models influenced by the current workload with a strong

impact on situation awareness. Therefore, mental models of discrete dynamics must

also be accounted for. Finally, the transcript of the communications between pilots

indicates that the pilots lost confidence in their instrument and in their ability to

identify the problem. The computational agent model described in this work should

discuss and model the relative confidence maintained by pilots of their own belief of

the aircraft state against their observations as well as a method to optimally fusion

both sources of information.

1.3 Background and Definitions

A computational approach of roughly bounded cognitive concepts often finds itself

striving to achieve two conflicting goals: comprehensiveness and operationalizabil-

ity. Therefore, the first objective of this work is to conceptually define and clearly

bound the underlying concepts and their interactions. How does situation aware-

ness interact with the mental model. To what extent are they conceptually different?

How does learning shape mental models? Can clear non-overlapping definitions be

derived? The second objective is to identify, for each concept, key components and

their relationships. Which part of situation awareness is impacted by mental models?

How does SA provide a feedback to alter mental models? And even within SA, which

level relies on another level? After mental models and learning processes have been

clearly defined, their key components and interactions identified, the third objective is

to find reasonable compromises between preserving the original theoretical concepts
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and satisfying the implementation constraints. Since this work is part of a larger

project, the result should also fit into the general work modeling philosophy.

1.3.1 Background - Situation Awareness

In 1988, Starter and Woods introduced the concept of situation awareness without the

support of an accurate definition [33]. In 1995, situation awareness was extensively

studied by Endsley [9, 8] and given a formal definition, broken down into three differ-

ent levels describing perception (L1), comprehension (L2) and anticipation (L3). The

literature contains many examples of methodologies supporting the measurement of

situation awareness in situ including the “situation awareness global assessment tech-

nique” (SAGAT) developed by Endsley [7, 9]. Such measurement methods provide

insight but do not directly indicate how to model situation awareness in computa-

tional simulations. That situation awareness is believed to be measurable by freezing

a task [7] and simply querying the operator’s knowledge is encouraging. Indeed, it

means that situation awareness is intelligible and might be subject to simulation.

However, a computational framework for simulating situation awareness is missing

and an attempt to sketch the outlines of such an approach will be a part of this work.

The definition we will endorse in that work is a synthesis of the literature review

adapted to our computational needs :

Definition 1.1 The operator’s situation awareness describes his or her subjective

understanding of the current state of the world which encompasses the immediate

belief of the state and the degree of confidence about this state.

1.3.2 Background - Mental models

Starter et al. mention that the distinction between situation awareness and the

concept of mental models seems to be blurred by the work of different authors [33].

Both concept do not have the same point of reference and “adequate mental models

are one of the prerequisites for achieving situation awareness.” Indeed mental models
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support the acquisition and maintenance of situation awareness. Endsley pointed out

that: “It is first necessary to distinguish the term situation awareness, as a state of

knowledge, from the processes used to achieve that state”. This work fully embraces

this remark; this chapter focuses on a computational approach to model a human

agent’s knowledge and understanding of the state of the world whereas processes

used to maintain and achieve situation awareness will be developed further in the

following chapters under the term mental models. This section reviews the literature

about mental models to try to clarify this distinction.

In 1961, Forrester defined mental models as a “Verbal description, mental image”

of the system [11]. Ten years later he added “Selected concepts and relationships

used to represent the real system.” This image of mental models as a mental repre-

sentation of the system is generally agreed upon [11, 26, 23, 31, 6], but the definitions

differ on the boundaries. Richardson [31], for example describes a mental model as a

set of different types of cognitive structures including perception and decision making

whereas Morecroft limits his concept to one particular type [23]. These discrepancies

between definitions led Doyle to qualify mental models as “ill-defined” by the system

dynamics community [6]. Another important contributor to the mental model litera-

ture is Johnson-Laird whose work treats the construction and manipulation of mental

models in a context of probabilistic thinking. Other cognitive psychologists discuss

the use of such mental models [6, 14] especially regarding expert human agents. On

the other hand, Human Computer Interaction(HCI) is a field that reached a rough

consensus regarding mental models. HCI practitioners were able to explain errors

that novices make while interacting with automation by using incorrect mental mod-

els [27]. Javaux explained Sarter and Wood’s results regarding human-automation

interaction in highly-computerized aircraft [34, 35] introducing metrics to measure

the complexity of mental models [17].

Synthesizing this literature review and adapting it to our computational needs
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leads to defining mental models as follows :

Definition 1.2 The operator’s mental model of a system is a subjective version of the

system’s discrete and continuous dynamics representing his/her current knowledge of

the system.

Learning	   Mental	  model	   Situa1on	  awareness	  
shapes maintains 

Short term Long term 

Figure 2: Preview of the overall structure of this work

1.4 Potential contributions

1.4.1 A human integrated work modeling framework

The cognitive engineering community uses work as a unit of analysis of socio-technical

systems involving Human-Automation Interaction where work is defined as a purpose-

ful activity acting on a dynamic environment and in response to the demands of this

environment [28, 30, 1, 37]. Cognitive Work Analysis (CWA) is a comprehensive work

modeling framework providing several methods to analyse the work domain, tasks,

team cooperation and other cognitive aspects. However, such a framework does not

provide computational means to verify the consistency of the system or the relevance

of the team design. Pritchett et al. [28] formulated a list of functional requirements

of a modeling framework to support the design of socio-technical systems such as the

suitability to computational simulation to assess emergent behaviors and the ability

to capture the way agents abstract the work. These arguments led to the creation

of Work Models that Compute (WMC) [28]. This work will build on this modeling

framework, extend it to implement the concepts of situation awareness and mental

models and provide an easy way to design and analyze human integrated systems,
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output metrics related to performance and human agents, and identify potential poor

design as far as human-computer interaction is concerned.

1.4.2 Evaluating training design and system complexity

Most accident reports from agencies such as National Transportation Safety Board

(NTSB) or the french Bureau d’Etudes des Accidents (BEA) regarding accident inves-

tigations involving human-automation interaction incidents contain recommendations

to improve the training procedures such as adding scenarios to simulator sessions, re-

inforcing the knowledge of specific procedures and automations behavior. However,

the more training is needed to manage the system’s automation, the more workload

the operator undergoes to adequately monitor and understand the current state. The

pilot might understand and know perfectly the dynamics ruling the flight deck system

but his limited mental resources might not be sufficient to retrieve and process this

knowledge, especially in off-nominal situations. Therefore, adding more training is

not always a good solution. By modeling and capping the workload and including

training as a design variable, we can identify flaws that prevent the validation of sys-

tems requiring unreasonable training and potentially generating a dangerous amount

of workload. This work shows that the simulation of mental models and situation

awareness provide more realistic means to generate and measure workload as well as

the consequences of high workloads.

1.4.3 Evaluating operational procedures accounting for implicit learning

Although an agent’s knowledge of a system highly depends of the initial training

phase, agents’ representation of complex systems also changes over time as a result

of daily procedures and experience. This phenomenon is also called implicit learn-

ing or at the neurologic level hebbian learning, a theory that explains how repeated

scenarios strengthen or weaken the knowledge of certain rules and therefore modify

the operator’s mental model on a long term fashion. Implicit learning is not well
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captured by HITL experiments since it requires simulating thousands of hours of

operation. Javaux [16] describes a computational method to simulate the impact of

implicit learning on pilots’ knowledge of autopilot modes and transitions. This work

proposes to integrate and implement Javaux’s approach into a broader design and

analysis framework to study potential interactions between automation design, oper-

ational procedures and identify the emergence of dangerous situations and implicit

learning patterns.

1.4.4 Evaluate new control algorithms versus pilot’s situation awareness

Pilots have a good knowledge of flight dynamics and a reasonable understanding of

linear control principles that allow them to fly manually and operate the autopilot

safely. Incidents can still occur in off-nominal situations where the autopilot is au-

tomatically shut down or is controlling a damaged aircraft. Researchers are working

on loss-of-recovery control algorithms that would allow to automatically or semi-

automatically recover from loss-of-control situations. These algorithms are highly

non-linear since they operate in emergency situation and their introduction requires

new validation metrics. One of these new metrics should describe the safety of the

interaction of such a system with the pilot to prevent misunderstanding and poor

situation awareness. This work develops a method to evaluate the situation aware-

ness of pilots as a reaction to these new algorithms in off-nominal situations where

measuring workload and accounting for human factors is essential and which could

lead to more comprehensive validation metrics.

1.5 Overview

As a summary, the goal of this work is to define a computational method to simu-

late situation awareness and mental models and integrate them into the overarching

approach used by WMC to design and analyse socio-technical systems. Chapter II
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describes the principles of work simulation and details the logic behind the model-

ing and simulation framework WMC and Chapter III presents a test case. Chapter

IV introduces the concept of situation awareness as a frame to model the agent’s

understanding, and proposes a computational approach. Chapter V focuses on the

operators mental model as far as discrete dynamics are concerned whereas Chapter

VI covers continuous mental models. Finally, Chapter VII summarizes how this work

impacted the development of WMC.
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CHAPTER II

SCOPE AND EXISTING FRAMEWORK

This thesis is part of a broader research project whose purpose is to simulate work in

complex socio-technical systems through the development of the modeling and simula-

tion framework Work Models that Compute (WMC). Following cognitive engineering

design concepts, this framework separates the modeling of the work to be done from

agent models. The work is modeled as a collection of actions and the environment

by resources. At runtime, automation and human agents receive actions from work

models and execute them according to their workload limitations.

The latter modeling structure has many advantages but fails to capture behaviors

based on a subjective representation of the world. To account for agents with a differ-

ent training or experience, part of the knowledge of the work has to be contained in

the human agent models and must be vulnerable to potential long-term modifications.

This subjective representation of the work constitutes the agents mental model.

Accounting for subjective mental models allows the development of new validation

methods for highly automated systems, particularly in loss-of-control scenarios. In

such off-nominal situations, the understanding of the pilot is crucial and has to be

accounted for in simulation. This suggests the implementation of additional mental

constructs within agent models sampling the actual state the world and providing a

subjective base for decision making.

This work proposes a rigorous, generic method to allow the work to be subjec-

tively executed by human agents accounting for different training and operational

experience. The knowledge of the work reaches the human agent at two levels: the

long-term knowledge of the dynamics of the system that can be lacunary, i.e mental
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models and the short-term understanding of the situation comprised of subjective

copies of the current state of the world also called situation awareness.

2.1 Modeling situated work - Work Model that Computes

The cognitive engineering community uses work as a unit of analysis of socio-technical

systems involving Human-Automation Interaction where work is defined as a pur-

poseful activity acting on a dynamic environment, and in response to the demands

of this environment [28, 30, 1, 37]. This definition is a starting point for Rasmussen

and later Vicente who developed an extensive theory of cognitive system engineer-

ing called Cognitive Work Analysis (CWA) that provides several modeling methods

allowing different analysis such as abstract multi-level modeling, task analysis and

team design. However, such a framework does not provide quantitative means to

verify the consistency of the system or the relevance of the team design. This type

of analysis does not support the identification of unexpected behavior emerging from

low-level constraints such as workload saturation. Pritchett et al. [28] formulated

a list of functional requirements of a modeling framework to support the design of

socio-technical systems such as the suitability to computational simulation to assess

emergent behaviors and the ability to capture the way agents abstract the work.

These arguments led to the creation of Work Models that Compute (WMC) [28].

Feigh et al. also used WMC and focused on the development of an advanced human

agent model [10]. Although these papers present a quantitative method that allows

the investigation of poor human-automation interaction and identify some emergent

behaviors through simulation, the agent model currently included in WMC neither

maintains a mental representation of the world nor implements a subjective under-

standing of the system and does not comprehensively implement concepts such as

perception, comprehension of the situation, and projection of the agents in a near

future. This chapter will describe several concepts necessary to fully understand this
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thesis and the constraints imposed by such a modeling approach that had to be taken

into consideration.

2.2 Work models and agent models in WMC

In WMC, the product of the modeling of a socio-technical system is called a work

model. It is independent of any agent’s implementation and is to be created by the

designer of the system. A work model includes several different levels of modeling, as

shown in figure 3 and eventually results into the creation of resources that describe

the state of the system and its environment and actions which are the low-level

representation of the work and act on resources.

Mul$-‐level	  abstract	  
system	  design	  

Low-‐level	  
implementa$on	  

Team	  work	  design	  
(func$on	  alloca$on)	  

Figure 3: The creation of a work model can be broken down into three steps.

On the other hand, WMC allows the modeling of agents’ behavior independently

of any socio-technical system. The result of this effort is called an agent model and

can be plugged in to any work model for simulation purposes. The agent model does

not contain any information about the work but describes how the agent executes

the actions whose actual content, i.e which resources are modified is received from

the work model during the simulation. Figure 4 provides a comprehensive overview

of the interaction between WMC’s modeling components.

2.2.1 Work modeling

2.2.1.1 Work domain description

The first step to design a work model is to create a multi-level abstraction hierarchy

introduced by Rassmussen [29] that represents the work from expressing the goals at
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Simula'on	  
components	  

Modeling	  components	  

Work	  model	  Scenario	  

Ac0on_List	  

SimCore	  

	  

plays 

Agent	  model	  

Resources	  

Ac0ons	  

sends  
action 

Agent	   Agent	  

Agent	   Agent	  

schedules 

Clock	  

instantiates 

instantiates 

Ac0on	  1	  

Ac0on	  2	  

Ac0on	  3	  

Figure 4: This diagram illustrated WMC’s simulation and modeling components and
how they interact.

a high-level point of view to the formulation of intermediary functions and a low-level

enumeration of actions as shown in Figure 5. This representation helps the designer

to identify the interactions between different levels of modeling and serves both task

analysis and team design.

Figure 5: Creating the abstraction hierarchy is the first step in the creation of a work
model. This figure shows the abstraction hierarchy of an aircraft+crew system
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2.2.1.2 Low-level environment description: actions and resources

The lowest level of the abstraction hierarchy is used to create the resources needed

to describe the environment and the tasks/dynamics that need to be executed to

simulate the system and achieve the overarching goals.

Resources can be computationally represented by any type of variable (double,

integer, boolean) and can describe either the state of the system like the airspeed

of an aircraft or higher level information such as the currentConfiguration of a

nuclear plant.

Actions are responsible for reacting to changes in the environment, i.e resources

and changing them. For instance, Actions representing system dynamics will take a

subpart of the world’s state as input and update it according to a set of differential

equations. On the other hand, actions acting on configuration variables will analyze

the values of several resources and potentially change the system’s setup such as the

teamwork strategy.

2.2.1.3 Team work, function allocation

Finally, the work model needs to assign all the actions to the agents available. System

dynamics of vehicles will be assigned to a simple agent whereas actions that implement

some piece of analysis can be either given to human operators or automation agents.

This step of the work modeling is called function allocation. Kim’s work [18] is a good

example of how to study function allocation with WMC. Function allocation can also

be changed during the simulation responding to changes in the general strategy.

2.2.2 Agent modeling

As illustrated by figure 4, agent models are separated from the work modeling. There-

fore the agent modeling task is narrowed down to the description of how the agent
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manages the actions that has been assigned to it. An automation agent might be

modeled as executing incoming actions almost immediately where a human agent is

likely to prioritize and delay actions according to the current workload. As a sum-

mary, agent models do not describe the content of the actions but the constraints and

mechanisms responsible for actual execution. Section 2.3 will describe the human

agent model in detail.

2.3 Human agent modeling

Several human agent models are available in WMC from a very basic human agent

to an advanced performance model. Human agent models describe how an action

received from the work model is handled. The action contains the description of the

task itself and handles to the input and output resources. Basic human agents in

WMC are comprised of several constructs illustrated in Figure 6 : an active action

list, a delayed and an interrupted action list. Actions can be transferred from one list

to another according to their priority attribute and an eventual saturation of each

list. More advanced human agents can also forget actions that have been delayed

or interrupted for too long as well as identifying upcoming actions and eventually

change of strategy.

This advanced agent model allows the measurement of metrics such as the total

workload as a function of time or the workload per type of action (monitoring, actual

taskload, teamwork).

A big part of this work is an effort to make the human agent models more realistic

and diagnostic by giving them the ability to learn about the work model that they

are interacting with by allowing the simulation of situation awareness and evolution

of mental models.
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Advanced	  Human	  Model	  

Interrupted	  ac3on	  list	  

Delayed	  ac3on	  list	  

Ac3ve	  
Ac3on	  List	  

Forgo;en	  ac3on	  Incoming	  ac3on	  

Executed	  ac3on	  

Figure 6: The creation of a work model can be broken down into three steps.
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CHAPTER III

TEST CASE

3.1 Case study : Boeing 747-400 in continuous descent ap-
proach at LAX airport

The main field of application of this work is human-automation interaction with a

particular interest in HAI in the flight deck. Therefore a work model describing

an aircraft and its flight crew was chosen to evaluate this work. The work model

presented in this section has been adapted from the Boeing 747-400 + crew work

model used in [28, 18, 10]. Several modifications that were made to serve the purpose

of this work will be described as well.

3.1.1 Description of the work model

The abstraction hierarchy of the continuous descent arrival aircraft model is comprised

of two main goals: Fly Fuel and Time Efficiently and Fly and Land Safely.

Both are then decomposed into lower level goals such as Maintain Aircraft Maneuvering

which is further broken down into two functions: Manage Lateral Route and Manage

Aircraft Energy. The lowest level of the hierarchy contains the actions for which

some examples are given in the abstraction hierarchy shown in Figure 7.

The pitch and auto throttle autopilot modes of the Boeing 747-400 have been

implemented as well as the different engagement/disengagement actions available on

the Mode Control Panel (Figure 8). Automated mode activation in the Approach

mode is also part of the work model.

A guidance module is present and allows modes such as VNAV to fly a lateral

and vertical descent profile from a sequence of waypoints pre-computed by the Flight
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Figure 7: Portion of the abstraction hierarchy of the aircraft model used.

Management System.

The actions and functions handling Air Traffic Control(ATC) operations used to

be implemented within the same model to study function allocation in Kim’s work

[18]. Since then, the ATC module was separated and now exists as a stand-alone

work model that communicates with whatever aircraft located in a given sector. This

effort along with the creation of communication actions made the interaction between

Aircraft and ATC more realistic and supports large-scale simulation with multiple

controllers and aircraft.

Figure 8: Mode Control Panel (MCP) used by pilots to engage/disengage pitch and
autothrottle autopilot modes.
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3.1.2 Scenario

The scenario on which the Aircraft work model is being tested is a continuous descent

approach (CDA), as part of the Next Generation Air Traffic Operations principles.

The aircraft and its crew operate on the RIIVR2 Standard Terminal Approach Route

(STAR) of Los Angeles International Airport (LAX).
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Figure 9: Trajectory obtained with WMC, START is the first waypoint, TOD is the
top of descent and RW25L represents the runway.

Kim [18] tested four different task partitions between the pilot and the automa-

tion as part as her function allocation analysis, this thesis uses the most automated

allocation as the basis for evaluation the impact of this work since the growing impor-

tance of automation is believed to induce a poor situation awareness in off-nominal

situations. In the nominal descent scenario, controllers will clear the aircraft to the

next altitude a few miles before reaching the next path leg. If a late clearance is

issued, the aircraft will level off at the lowest altitude it has been cleared to until the
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reception of the clearance, once clear the aircraft will catch up on the descent path

with a higher vertical speed and airspeed.

3.1.3 Mental model in a monitoring role

During this simulation, the pilots do not touch the yoke and only monitor the behav-

ior of the automation in the nominal scenario. The crew might have to dial and press

buttons on the MCP in response to unexpected ATC requests, but that is the extent

of the pilot’s interaction with the cockpit. Since no manual piloting is involved, this

work does not include manual control schemes as part of the mental model of the

pilot. Moreover, we make the reasonable assumption that pilots do not have a precise

knowledge of the optimal control dynamics of the autopilot but maintain a good com-

prehension of which control loops are active in a specific mode and their approximate

impact on the aircraft’s motion. For example, the fact that both autopilot pitch and

throttle inputs are used in VNAV SPD, whereas no speed protection is offered by the

V/S pitch mode are assumed to be known and part of the initial mental model of the

flight crew since they appear in the operational training manuals.

While operating with the autopilot, the crew monitors variables of interest and

compares them against expectations issued from the knowledge of the current autopi-

lot mode. In the vertical navigation modes, the autopilot uses a combination of thrust

and pitch inputs to reach or maintain a target state value (level,climbing,descending)

with optimal performance while respecting the flight envelop. When the Vertical

Navigation auto flight system is on, the crew is less likely to consider the open-loop

dynamics of the aircraft as this would require an active monitoring of the values of

inputs calculated by the autopilot which are actually not visible on the MCP panel.

Instead the pilot formulates a mental representation of the goal state and monitors

the progression of the aircraft towards this goal. Therefore, basic kinematics and
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Figure 10: Principal Flight Display (PFD) used by pilots to monitor important
states of the aircraft such as Airspeed(left tape), Altitude (right), attitude(center)
and modes (top)

general knowledge of the modes will be part of the initial mental model of the pilots

in the simulation.
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CHAPTER IV

A COMPUTATIONAL APPROACH TO SITUATION

AWARENESS

4.1 Situation Awareness

The concept of situation awareness (SA) was extensively developed by Endsley [8, 9] as

an attempt to explain poor decision making and performance related to human inter-

action with complex dynamic systems. As theorized by Endsley, situation awareness

not only describes the awareness of “numerous pieces of data” but also an “advanced

level of understanding” as well as the “projection of future system states in the light

of the operators goal.” This characterization breaks SA into three levels (L1, L2, L3)

respectively related to perception, comprehension and projection. However, the static

knowledge of procedures and checklists does not fit well into this frame although they

also support decision making. SA only gathers the dynamic factors of the immediate

knowledge of the system.

4.1.1 Situation Awareness Level 1, Perception

SA L1 measures the perception of various elements of the environment. On the flight

deck, these elements include instruments, external disturbances and their changing

rate. For example, a pilot checking his altimeter and integrating visual and aural cues

is an attempt to maintain L1 SA. The quality and comprehensiveness of the perception

of relevant pieces of data is the first step towards a good situation awareness and the

next levels strongly rely on it. An operator achieving a good SA L1 will have efficient

and comprehensive monitoring patterns for relevant states and their history.
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4.1.2 Situation Awareness Level 2, Comprehension

SA L2 exploits the data collected through SA L1 to provide an understanding of the

current state. A good SA L1 has the pilot monitor his airspeed frequently during

the final approach where SA L2 is his ability to turn this knowledge into identifying

a close to overspeed or stalling situation. Also SA L2 allows the operator to infer

certain states from the observation of others by the awareness of coupled dynamics

and rules of the system. For example, if a pilot observes a positive vertical speed, he

will expect the altitude to increase.

4.1.3 Situation Awareness Level 3, Projection

SA L3 corresponds to the projection of the knowledge acquired through L1 and L2 to

a near future. Air traffic controllers aware of the current motion of multiple aircraft

and understanding the common flight paths for that sector might be able to predict

a future traffic congestion and act in advance to alleviate it. In a rapidly changing

environment SA L3 is therefore crucial for efficient decision making. Moreover, SA

L3 certainly relies on an accurate perception and understanding of the current state

(L1 and L2).

4.2 A Computational approach

The three levels of situation awareness form an efficient base of projection of the

operators understanding continuum as far as human-automation interaction is con-

cerned. Methods like SAGAT [9] attempt to assess SA from HITL experiments but

can lead to biased measurements as the operator is aware of being monitored. More-

over, running HITL experiments is expensive and needs a operational prototype of

the system. Therefore, SA cannot be taken into account early in the design phase.

Simulating SA through a computational approach would allow to use human agent

models to detect earlier potential issues and dangerous situations due to a poor design
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or training. However, integrating this concept into a computational work modeling

approach is not straightforward. As computer scientists still struggle at implement-

ing the concept of human comprehension, this work does not ambition to propose

a comprehensive computational model of human understanding but simply aims to

model and implement constructs that account for parts of SA L1, L2 and L3. These

constructs will be integrated in an advanced human agent model. They are indepen-

dent from the work model where all knowledge of the work domain is encoded and

thus can be applied to various kinds of systems. The implementation of situation

awareness into a human agent model is a first necessary step to make simulations of

human-automation interactions more realistic and diagnostic. This chapter describes

the data structures required to simulate situation awareness within the agent model

in WMC, the processes responsible for initializing and maintaining the different levels

of SA will be described in the next chapter.

4.2.1 Perception and workload (SA Level 1)

Situation awareness Level 1 mostly describes the comprehensiveness and accuracy of

the operator’s perception of available cues about the state of the system [9, 8]. Did the

driver see the car in his right side-mirror? Did the pilot hear the aural stall warning?

Certain monitoring schemes such as the T-scan for pilots are part of the training and

are performed on a recurrent basis depending of the available mental workload. If the

pilot is otherwise engaged, e.g when talking on the radio or to his copilot, he might

skip one of these monitoring actions and his SA will begin to degrade. Monitoring

actions can be created within WMC as part as the work model and contribute to

workload saturation. This way, the existing framework already serves the purpose of

SA Level 1.

Situation awareness intrinsically conflicts with the work modeling paradigm de-

scribed in the last chapter. Indeed it supposes that an instance of the agent model
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would carry some knowledge about the world whereas agents in WMC were initially

designed to handle the execution of actions receiving their content from the work

model implementation. Accordingly, new constructs were needed, this work intro-

duces mental resources that are mental copies of the actual world resources and are

updated by monitoring actions. This mental representation of the world is automat-

ically generated as the agent experiences new monitoring actions and thus does not

require a specialized agent model for a particular work model.

Workmodel	  
Pilot	  

monitorAirspeed
ac3on	  

Airspeed	   Airspeed	  belief	  

Figure 11: Symbolic representation of a work model with an Airspeed resource, the
corresponding monitoring action that acts on an instance of a human agent model
and updates its belief. The monitoring action ”gets” the actual value of the airspeed
and ”sets” the belief in consequence.

4.2.2 Mental representation and comprehension (SA Level 2) : Bayesian
Approach

4.2.2.1 Belief system

Situation Awareness Level 2 describes the comprehension of the perceived cues, the

identification of variables of interest (close to dangerous boundaries for instance)

necessary to feed the decision-making process in response to environmental inputs

[9, 8]. An important aspect of SA L2 is to account for the operator’s degree of belief

of the state of the system as a consequence of the perception of numerous cues. Expert

human agents are hypothesized to maintain a belief of the state of the system as well

as a degree of confidence that can be high for variables directly monitored on trustful

instruments and very low in case of inconsistent or out-of-date information. A novice

operator is more likely to apply procedures and rules all the time whereas a more

experienced agent will selectively consider risks and other contextual information
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whereas the expert will use his degree of confidence to reason with bayesian decision-

making. Such an approach not only uses the last monitored value of a variable as a

basis for decisions but also the degree of belief that one has about it.

To account for expert behaviors, we can introduce the mental state of the system

as a set of probability distributions. Each of individual state probability distribution

represents the comprehension of an actual variable of the system and is centered

on the current belief of its value and stretched in or out as confidence decreases or

increases.
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Figure 12: Example of mental state belief representing the altitude

Figure 12 shows an example of such a bayesian model for the internal represen-

tation of the pilot regarding the altitude. The connection between SA L1 and L2

is modeled by the impact of monitoring actions or the absence of up-to-date data

from monitoring actions on the shape of the probability distribution of a given men-

tal state. When the human agent monitors a state variable from an instrument, the

mean of the probability distribution immediately shifts to the new observed value

whereas the shape of the probability distribution narrows. For simplicity, will first

assume normally distributed belief variables. The validity of such an assumption is

discussed later in this chapter. Moreover, this work assumes that the operator trusts
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his instruments such that the consequence of a monitoring action on the gaussian be-

lief probability is to set the mean to the observed value. Since we consider a gaussian

distribution the shape of the believed variable is fully captured by the mean and the

standard deviation. The consequence of the monitoring action is also to improve the

confidence the operator has in his belief which will be computationally translated by

bringing the standard deviation back to a reset value corresponding to the sensors

accuracy or the reading error as illustrated in 13.

An important remark is that the belief distributions translates a bayesian rather

than frequentist interpretation of probabilities. This means that the pilot does not

sample from the distribution by accessing his working memory but simply reads the

expected value, i.e the mean. The standard deviation does not represent his inability

to remember or access to the actual value but his confidence in the value of this

variable.
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Figure 13: Example of mental state belief representing the speed before (left) and
after(right) a monitoring action

4.2.2.2 Evolution of the belief between monitoring actions

Another interaction between SA L1 and L2 is the absence of monitoring action that

decreases the degree of confidence of the operator and affects his decision making

process. The process of decreasing confidence is continuous whereas the impact of
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events such as monitoring actions from instruments is discrete. Confidence in the

knowledge of a state variable will decrease as a function of time and potentially of

the knowledge of known boundaries of the derivative of the state.

4.2.2.3 Coupled dynamics

Such an implementation allows the operators belief of a certain state to be updated

as a consequence of the observation of this state through monitoring actions. Another

aspect of SA L2 is the understanding of how the value of a certain state, e.g vertical

speed, impacts the rest of the system, e.g altitude. Therefore, the belief of a state

variable system must be able to be updated by the perception of another state vari-

able. The knowledge of specific dynamics coupling different variables is discussed in

the following chapter about mental models as it is not part of the concept of SA but a

process to maintain it. Figure 14 illustrates the evolution of the altitude belief state

without monitoring but as the result of coupled dynamics and growing uncertainty.
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Figure 14: Altitude belief state as a result of the knowledge of a negative vertical
speed and the absence of monitoring action
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4.2.2.4 Gaussian assumption

We decided to project one’s belief of a state to a two dimensional space (Current

believed value, degree of confidence), assuming a gaussian distribution does not imply

a loss of information. Moreover, using a gaussian representation has many advantages.

First, it is easy to manipulate and memory-efficient. Indeed, we only need to store the

mean and the standard deviation. Furthermore, this work will address mental models

and model-based observers such as Kalman filter which assume normally distributed

variables. We will discuss this assumption in section 4.4.
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Figure 15: The operator’s belief is generally centered on the actual value of the state
it represents. When sensors are not available anymore, the belief can diverge from
the actual value and even be multi-modal. In the AF447 accident case, the pilot did
not know whether he was in an overspeed or stall situation.

4.3 Situation Awareness Metrics

Situation awareness is the interface between the operator’s internal processes and

the external world. Endsley’s extensive theory of SA’s measurement techniques [9]

provides insight into what could be good situation awareness metrics but also puts

emphasis on the limitations of these techniques. Indeed, most of them involve sub-

jective measures from subject matter experts participating in a simulation, which is

randomly paused for assessment. This work models several aspects of SA that allows
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us to assess it in real time without interrupting the simulation as we define relevant

metrics.

4.3.1 Standard deviation

As we stated in the background section of the introduction chapter, situation aware-

ness is not totally assessed by the accuracy of the state’s belief, i.e the mean of the

state’s density function but also through the standard deviation which described the

confidence on the operator. Thus, a good indicator for instantaneous situation aware-

ness is the breadth of the density function. The representation of situation awareness

as a result of events such as monitoring actions is shown on figure 16. We see that

monitoring events strongly decrease the uncertainty of the pilot whereas internal

dynamics have the expected effect: increasing the uncertainty around an evolving

expected value. Indirect dynamics represent the effect of the monitoring of coupled

variables described in chapter 6. Here the monitoring of the vertical speed has an

influence on the situation awareness of the altitude state.

4.3.2 Mean error

As Endsley [9] proposes to measure the operator’s SA by assessing his knowledge of the

world’s state at discrete “freeze” events, we can continuously assess the discrepancy

between the agent’s belief of the world x̂ and the actual state x. Therefore, we can

introduce the total root mean square error as an aggregated metric to describe the

overall situation awareness of a specific state over a certain amount of time:

E =

√∫ t1

t0

(x̂− x)2 (1)

and define SA1 as a metric describing the accuracy of SA L1/L2 during a specific

time window as
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Figure 16: Evolution of SA during the approach phase of the test case scenario.
’Confidence’ spans an area of three standard deviations below and above the mean
value of the mental belief (mental altitude).

SA1 =
1

E
=

1√∫ t1
t0

(x̂− x)2
(2)

that goes to infinity when x = x̂.
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4.4 Non-gaussian distribution and cognitive dissonance

However, in some situations, human operators can have a multi-modal belief of certain

variables that can lead to inconsistent actions or so-called cognitive dissonances. In

the AF-447 accident report by the BEA, the experts conclude several times that the

pilot flying hesitated between identifying an overspeed or stalling situation leading to

non-consistent action sequences and eventually to the crash of the aircraft. In such

a situation, the mental representation of the speed of the aircraft cannot be fully

captured by a gaussian variable. Indeed bayesian decision making picks a decision

policy that minimizes the risk with respect to the entire belief distribution. Allowing

multi-modal probability distribution, like a sum of gaussian distributions can provide

this capability while keeping a sparse belief representation as illustrated in Figure 15.

4.5 Summary

In this chapter we have introduced a simple probabilistic way of projecting situation

awareness L1 and L2 onto a computational basis. We also identified the main pro-

cesses responsible for updating SA such as monitoring actions, mental simulation of

the system dynamics and the fact that confidence decreases between two monitoring

events. The next chapters will describe these processes in details, how they interact

with situation awareness and how this work implements them in the context of mental

models.
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CHAPTER V

SITUATION AWARENESS AND MENTAL MODELS OF

DISCRETE DYNAMICS

As explained in chapter 4, situation awareness provides a frame to project the under-

standing of the operator on a computational basis. This section will outline the new

constructs needed by the human agent model to update situation awareness over time

as a result of discrete dynamics. The last part of this chapter also approaches the

long term modification of discrete mental models as an extension of Javaux’s work

about implicit learning of autopilot mode transitions [16]. Discrete dynamics rule the

behavior of discrete variables or modes such as flap setting or pitch mode. Such

dynamics can be represented finite state machines with transition rules. A transition

rule can be represented as a boolean expression where literals stand for conditions

on state variables. Transition will occur if the resulting condition is satisfied. One of

the contributions of this work is to predict dangerous consequences of high workload

or lacunary mental models. This chapter proposes a computational approach to dis-

crete mental models and integrates them into simulation. The plastic representation

proposed by Javaux and extended in this work also allows the simulation to account

for faulty mental models as a result of high workload or long term modifications.

5.1 A tree-based representation for discrete rules

Javaux’s work illustrates how the pilot’s knowledge of discrete rules such as automa-

tion mode transitions can impact situation awareness and therefore have to be part

of the mental model [16]. An inaccurate knowledge of automatic mode transitions of

the autopilot can lead to a problematic mode confusion. Transitions between modes
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invoke complex engagement conditions and some of them are met rarely enough that

most pilots forget their importance [16]. To simulate this plasticity, we can model

such mode transitions as a set of weighted conditions composing a boolean expres-

sion. The weights represent the perceived importance of each condition. The current

workload establishes a threshold and conditions with lower weights are not retrieved

into the operator’s working memory [16], i.e the operator forgets these conditions.

Depending of the current workload, the operator is not likely to remember half-

forgotten conditions [16]. Thus a threshold under which conditions with a low per-

ceived importance will not be retrieved to working memory is set as a function of

workload as illustrated in figure 18. A tree is a flexible data structure allowing the

simulation tool to prune the boolean expression during a simulation run depending

on the weights as shown in figure 19.

Rule	  condi+on	  tree	   Effects	  

&

|	  

VNAV_SPD	   VNAV_ALT	  

ALT	  >	  MCP_ALT	  +	  10	  

VNAV_PATH	  ON	  

VNAV_SPD	  OFF	  

VNAV_ALT	  OFF	  

0.2 0.8 

1 

Figure 17: Example of a transition rule. & represents the operator AND and —
stands for OR. VNAV SPD, VNAV ALT and VNAV PATH are autopilot pitch modes,
MCP means Mode Control Panel.

5.2 Mental model’s plasticity or implicit learning

Initial training can be considered as the primary method to establish a good mental

model in the agent. Although Doyle qualifies mental models as relatively enduring

[6], they are not static. Experience will alter one’s mental model and thus impact the
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Rule	  condi+on	  tree	   Effects	  

&

|	  

VNAV_SPD	   VNAV_ALT	  

ALT	  >	  MCP_ALT	  +	  10	  

VNAV_PATH	  ON	  

VNAV_SPD	  OFF	  

VNAV_ALT	  OFF	  

0.2 < 0.5 0.8 

1 
High Workload 
Threshold = 0.5 

Figure 18: The same transition rule as in Figure 19 but with a high workload setting
an arbitrary threshold to 0.5. The transition between VNAV SPD and VNAV PTH
is not retrieved in this case.

maintenance of a good situation awareness. This section defines the long-term plas-

ticity of mental models that makes them vulnerable to unconscious learning processes

and describes how plasticity and learning are incorporated into the agent model.

5.2.1 Implicit learning of rules

Javaux’s work [16] about how learning shapes the user’s knowledge of a system ex-

plains the relatively poor knowledge of pilots when it comes to remembering transition

rules between autopilot modes. He proposed using finite State Machines to formalize

the modes and their transition conditions. A transition rule Ri is activated when a

certain number of conditions Cj are satisfied. In order to implement implicit learning,

Javaux introduces weights wi,j that represent the perceived importance of the condi-

tion Cj with respect to the rule Ri. Our work builds upon this idea using transition

trees for computational simplicity.

Rule	  condi+on	  tree	   Effects	  

&

|	  

VNAV_SPD	   VNAV_ALT	  

ALT	  >	  MCP_ALT	  +	  10	  

VNAV_PATH	  ON	  

VNAV_SPD	  OFF	  

VNAV_ALT	  OFF	  

0.2 0.8 

1 

Figure 19: Example of a transition tree.
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This alteration of knowledge can be captured by the concept of hebbian learning

[15, 2, 5] based on the Hebb’s rule known as a reference to explain synaptic plasticity

in neuroscience, stated by Donald Hebb in 1949 and often summarized as “Cells that

fire together, wire together”. A general formula representing hebbian learning is:

∆wi = ηxiy (3)

where xi represents an input signal, y the output signal and wi the strength of the

synapse or connection between xi and y. However, his equation is almost never used

in this form because unstable by nature. Moreover this equation holds for neurons

that continuously integrate the inputs. Therefore we need to adapt it for discrete

transition scenarios with complex condition trees. The input signal xi of a discrete

rule is the state of the conditions (true or false) that has to be satisfied to trigger the

transition. The output signal y is binary: either the conditions are satisfied and the

transition is triggered (y = true) or not (y = false).

For computational reasons we want the weights wi to stay between 0 and 1 so we

added the stabilizing factors 1− wi and wi in the following equations:

∆wi = η × h(xi, y) (4)

where function h is described in Table 5.2.1 with

 h+ = (1− wi)

h− = −wi

(5)

Assuming a perfect initial training, weights wi start with a value of 1. Then any

time the transition scenario, i.e condition tree is queried, an increment of h+ will
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parent node xi y h
AND True True h+
AND True False h−
AND False False h+
AND False True h−
OR True True h+
OR True False h−
OR False False h+
OR False True h−

Figure 20: Mapping of the hebbian function h with respect to xi an input condition,
parent the operator overarching xi and y the overall response of the condition tree.

be assigned to conditions that played or may have played an active role in either

activating or inhibiting the transition. For example, a false condition under an AND

node will be partially or fully responsible for not triggering the transition whereas

if the same condition that is always satisfied will be negatively impacted if it rarely

triggers the transition. This would be the case for safety conditions such as the bank

angle of the aircraft between −15 deg and 15 deg that tends to be forgotten by pilots.

5.3 Test case

5.3.1 Evolution of weights

Long term modifications of mental models due to operational practices, i.e frequencies

of occurrence of transition scenarios between different autopilot modes are believed

to be captured by Hebbian learning as described in section 5.2. Figure 22 shows the

evolution of weights for four conditions c1, c2, c3, c4 involved in the transition scenario

described in Figure 21 with different frequencies following the rule described in table

5.2.1.

We observe that the weight related to condition C4, i.e w4 is constant and equals

1 although the frequency of C4 being true is 83%. This is explained by the fact that

C4 is always crucial in the final result of the transition rule. If C4 is true, then the

rule is satisfied, otherwise, the rule is not satisfied. This statement does not hold for
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&

|	  

VNAV_PTH	   VNAV_SPD	   VNAV_ALT	  

ALT	  >	  MCP_ALT	  +	  10	  

C1 C2 C3 

C4 50% 
33% 

17% 

83% 

Figure 21: Example of transition rule with the frequencies at which conditions are
met. These frequencies were arbitrarily derived from pilot common practices de-
scribed in the B747 Training manual.

conditions C1, C2 and C3 which are child nodes of an OR operator. Therefore, their

perceived importance decreases at a rate depending on their frequency, following the

Hebbian rule described earlier in this chapter.
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Figure 22: Evolution of the weights for the conditions of the rule described in Figure
21.
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As the workload increases, the threshold required on the weight for a condition to

be retrieved increases. Consequently, conditions C2 and C3 will be more likely to be

forgotten. This process was implemented in WMC and used as a proof of concept for

this example. Using realistic transition frequency data and running thousands of sim-

ulations allow the modeler to study the alteration of mental models, the consequences

on situation awareness and the possible emergence of automation surprises.
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CHAPTER VI

SITUATION AWARENESS AND MENTAL MODELS FOR

CONTINUOUS DYNAMICS

Although authors like Forrester point out the dynamical limitations of mental models,

the literature tends to show that agent models implementing model-based observers

are able to match observations of expert operators like pilots [19]. Therefore, it is

reasonable to assume that pilots run mental dynamic simulations to internally for-

mulate their expectations regarding the evolution of the system’s state. In situations

where monitoring systems are faulty, mental models are the only way to maintain

a reasonable belief of certain states. In the presence of observable states, a good

accuracy of mental simulation of continuous dynamics allows humans to lower the

monitoring frequency and reduce the mental and physical task load. This chapter in-

troduces a formal way of simulating continuous mental dynamics (predict step) along

with monitoring events (update step) based on model-based estimation theory such

as Kalman filters.

6.1 Continuous Dynamics Actions

WMC is a continuous-time simulation engine. Its therefore capable of integrating

numerically differential equations allowing to simulate complex non-linear system dy-

namics. These actions are executed by a non-human agent and generally include

controllers and can implement a variety of numerical integration methods such as

Runge Kutta. The mental version of continuous dynamics actions is called mental

dynamics and can be either automatically generated from real dynamics or imple-

mented manually. When a human agent executes a mental dynamics action, it gets
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the values of mental resources corresponding to the actual state variables involved

and sets them to the new predicted value, as in equation 16 before updating the

covariance matrix as described in the following section.

6.2 Mental dynamics

Mental dynamics can be approximated using the same mathematical formalism as

actual dynamics. Let x be the actual state of the world, and x̂ the belief, the basis

for the operator’s situation awareness. System dynamics ruling the world can be

considered as a closed loop non linear system such as

ẋ = f(x) (6)

Mental dynamics are likely to only act on a subpart of the state’s estimation of

the world. Let D denote a specific mental dynamical system acting on {x̂i}i∈SD
,

subset SD of the whole mental state estimate x̂. Since this work is supposed to serve

numerical simulations, we will use a discrete system dynamics formalism, where the

mental state at time k + 1 is a function of the mental state at time k.

x̂k+1 = f(x̂k) (7)

At this point, situation awareness is represented in the fact that x̂i, the mental

representation of the state xi, is a gaussian probability distribution. This is compati-

ble with such dynamics by maintaining a covariance matrix P that is updated at each

iteration. The diagonal represents the standard deviation of the belief introduced in

Chapter 4 and the off-diagonal elements measure the covariance between state vari-

ables, i.e how much the agent believes two states are linked by the system dynamics.
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In mathematical terms :

P ij
k = E[(xik − x̂ik)(xjk − x̂

j
k)] (8)

In particular,

P ii
k = E[(xik − x̂ik)2] = var(x̂ik) (9)

since E(x̂k) = E(xk).

The covariance matrix gets updated by the mental dynamics and more specifically

by the Jacobian matrix of the dynamics:

F ij =
∂f i

∂xj
(10)

Pk+1 = FkPkF
T
k (11)

F ij is computed numerically from the nonlinear mental dynamics at each iteration

using Newton’s central differences.

We can then derive the formula we will use in our implementation.

Pk+1 = FkPkF
T
k (12)

→ P ij
k+1 =

∑
m

∂f i

∂xm
(
∑
k

Pmk ∂f
j

∂xk
) (13)

6.3 Human model-based observer

Kalman filters have been used extensively as an efficient way to model human estima-

tion as part of Optimal Control Models [19, 20]. This section describes how this work
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uses Kalman filters to integrate monitoring actions with mental dynamics to simulate

the impact of continuous mental models on situation awareness. Let D represent

a dynamical system acting on a subset {x̂i}i∈SD
of the whole mental system’s state

x̂ which is an estimator of the actual system’s state x. x̂i can represent the mental

estimation of any continuous variable such as the altitude of the airspeed of the plane.

Dynamics involved in aircraft models are nonlinear and represented by the function

f . We will assume that observations z are the result of the agent directly monitoring

state variables. Let P be the covariance matrix and F = ∂f
∂x

Moreover, we are in the

context of numerical simulations, therefore we will use the following mathematical

discrete formulation. C represents the monitoring scheme, i.e the subpart of the state

that is observed at iteration k.

x̂k = f(x̂k−1) (14)

zk = Cxk (15)

where zk represents the observation from a monitoring action. It is important to

note that steps 14 and 15 are asynchronous and generally do not happen at the same

time.

6.3.0.1 Predict phase

The predict phase of the Kalman filter represents the simulation step. The mental

estimation is updated through the mental non-linear dynamics and the covariance

matrix is updated with respect to the following formula:
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Figure 23: Control diagram representing the Kalman estimator

x̂k = f(x̂k−1) (16)

Pk = Fk−1Pk−1F
T
k−1 (17)

The diagonal elements represent the uncertainty in the belief of each of the state.

The values of the diagonal elements are increased by equation 17 as a consequence of

integrating dynamics from uncertain state values.

6.3.0.2 Update phase

The update phase of the Kalman estimation integrates the direct observations from

instruments into the mental belief and can be decomposed this way:
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yk = zk − Cx̂k (18)

Sk = CPkC
T +Rk (19)

Kk = PkCS
−1
K (20)

x̂k+1 = x̂k +Kkyk (21)

Pk+1 = (I −KkC)Pk (22)

yk in Equation 18 represents the difference between the monitored value and the

current estimate of the state. Equations 19 and 20 compute the optimal gain Kk

that allows Equation 21 to integrate the last observation in the next estimated state

assuming neither process nor sensor noise.

Let us assume that the operator monitors one variable at a time. Then C =

[0...1..0] with the only non-zero element in the i-th column and Cx̂k = x̂ik. The

equations can then be reduced to

yk = zik − x̂ik (23)

Sk = Pii (24)

Kk =
1

Pii

Coli(Pk) (25)

x̂k+1 = x̂k +Kkyk (26)

Pk+1 = (I −KkC)Pk (27)

which can be simplified to
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Kk =
1

P ii
k

Coli(Pk) (28)

x̂k+1 = x̂k +
1

P ii
k

Coli(Pk)(zik − x̂ik) (29)

Pk+1 = Pk −
1

P ii
k

Coli(Pk)Rowi(Pk) (30)

The update of a specific element P ij of the covariance matrix is computed by

∆Pmn = − 1

P ii
PmiP in (31)

Equation (29) shows that the specific monitoring of variable x̂i can impact the

whole mental state x̂ as a consequence of non-zero off-diagonal elements of the covari-

ance matrix, monitoring airspeed also updates estimates of altitude position. More-

over, some elements of this matrix are reset to zero in the absence of process and

sensor noise. In order to maintain the filter’s stability, we implemented a minimum

standard deviation, corresponding to non-zero diagonal elements that represents the

believed inaccuracy of the instruments or lack of confidence.

6.4 Test Case

The agent model created by this work was successfully implemented an used as the

pilot in the described aircraft model. The pilot’s initial mental model is comprised of

simple kinematic dynamics k1.

 h(k + 1) = h(k) + vs(k)×∆t

vs(k + 1) = vs(k)
(32)

The vertical speed Vs is monitored by the pilot every 30 seconds whereas the

altitude h is monitored every 20 seconds plus as a reaction to certain events such
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as waypoint passing. Figure 24 shows the evolution of the mental belief of altitude

(dotted line) as a result of three processes: direct monitoring of the altitude (stars),

internal dynamics (k1 applied to mental altitude and vertical speed, and indirect

observation: the observation of the vertical speed tape also updates the belief of

the altitude through the covariance matrix, as shown by equation 30 in Section 6.3.

Kalman estimation is used to simulate the integration of all these information.

From this figure, it is clear that within legs of the descent profile with a constant

vertical speed, the mental state is fairly close to the actual state. SA starts to degrade

in areas of rapid or unexpected changes in vertical speed due to the behavior of

autopilot control algorithms as seen between t = 925 and t = 1010 seconds. As the

actual execution of mental dynamics actions and monitoring actions depend on the

degree of vacuity of the pilot’s active action list, i.e the current workload, we have

to mention that figure 24 was obtained with WMC using the new agent model with

a mental capacity larger than the biggest workload actually experienced during the

descent, i.e the agent model never has to defer or interrupt actions.
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Figure 24: Evolution of the mental altitude as a result of observations, direct and
indirect dynamic estimations. Here, indirect dynamics are the consequence of the
observation of the vertical speed. The blue area represents an the uncertainty of the
belief as much as three standard deviations below and above the mean

6.5 Measuring situation awareness

In Figure 24, a drop of situation awareness is observed between 925 and 1010 seconds,

as the aircraft levels off automatically. Indeed, the estimated altitude deviates from

the actual altitude. The overall situation awareness during the approach phase can

be characterized by computing SA1 metric.

To illustrate the impact of workload on SA, the mental capacity of the pilot

was progressively decreased from 50 to reasonable values below 10 and Situation

Awareness was measured as described in Section 4.3. Figure 25 gathers the results

for several states of the aircraft. SA decreases with the mental capacity and we can
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observe a plateau for every state variable after 9 simultaneous tasks, which is the

maximal workload any agent can experience from this work model. The y axis has

been normalized between 0 and 1 for a better visualization.
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Figure 25: Evolution of SA1 as a function of the mental capacity. Data has been
normalized for each state variable so that the maximal root mean square error equals
1.

SA drops when the agent’s active action list is saturated. Therefore, actions with

lower priority are delayed or skipped. Considering the fact that humans are believed

to struggle at handling multivariate dynamics, indirect dynamics are set to have the

lowest priority, below direct dynamics and monitoring actions.The consequence can

be seen in Figure 26, where more than 60 % of indirect observations are not accounted

for when the scenario is run with a low agent’s mental capacity.

This shows that this work provides a quantitative way of measuring the impact of
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too high workload or the loss of an instrument on situation awareness. In the case of

AF447, such a simulation running live in the cockpit fed with eye-tracking observation

data could have detected a drop in situation awareness. A dynamic display could then

use this information to adapt the saliency of different instruments to try to restore

the pilots’ SA. On a design perspective, an engineer could simulate the drops in SA

as a consequence of high workload and system complexity.
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Figure 26: Pourcentage skipped per type for different mental capacities. (Low: 3,
Medium: 5, High: 7) relative to the estimation of the altitude in the continuous
approach scenario.
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CHAPTER VII

MULTI-LEVEL APPROACH TO MODELING

SOCIO-TECHNICAL SYSTEMS IN WMC 4

This work has defined a methodology to translate cognitive engineering concepts

such as mental model and situation awareness into computational models. To allow

engineers to actually use these models to support their design and analysis, we also

focused on redesigning the base framework WMC in a more flexible and modular

as well as user friendly fashion. This chapter describes shortly the new skeleton of

work modeling in WMC 4 and how it improves the overall design, simulation and

evaluation processes.

7.1 Toward a graphical integrated work modeling system

Stating the fact that work modelers are not necessarily experienced developers willing

to interact with the heavy C++ machinery of WMC’s simulation core, we intended

to separate the modeling task from the simulation framework development. Before

this work, WMC users would have to localize, understand and modify the C++ code

responsible for defining parameters such as function allocation, scenarios, control

algorithms with a high risk of negative interference with the simulation core itself.

This new separation allows researchers to intervene at different levels of the system

and to have a clear view on the design variables they are interacting with as shown

in Figure 27.

52



	  Func%on	  alloca%on	  	  	  	  	  	  	  	  	  Training	  

XML	  -‐>	  C++	  code	  generator	  +	  Low-‐level	  implementa8on	  

WMC	  C++	  work	  model	  

XML WM 

Action trace 
     Situation  
 
Awareness 

GUI	  for	  Work	  model	  design	  1	  

2	  

3	  

Performance Workload 

WMC	  Sim	  Core	  simula8on	  

Tools Design 
variables 

	   	  Control	  Algorithms 	  	  	  	   	  Procedures	  

	   	   	   	   	   	   	  Scenarios	  

Figure 27: Overview of WMC 4 tools and design variables

7.1.1 Redefining workmodels

In practice, a WMC work model is a large .cpp file with everything inside from the

definition of the abstraction hierarchy, resources and agents to the detailed implemen-

tation of every action. We decided to bring work models back to their core definition,

i.e the abstraction hierarchy introduced in Chapter 2. It should be an abstract repre-

sentation of the work easily modifiable for functional analysis rather than sequential

code. The graphical representation is also essential as it supports multi-level func-

tional modeling which was nearly impossible by the current sequential programming

method.
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7.1.2 XML and GUI

These requirements fit the standard format XML well. It is both human-readable

and machine-readable and interacts easily with Graphical User Interface (GUI) us-

ing a Document Object Model (DOM) application programming interface (API) for

instance. An example of such a work model representation is given in figure 29.

Therefore, it is now possible to utilize a web-based user interface allowing the user to

create and edit a work model, resources and actions graphically through a regular web

browser instead of writing raw XML. Using the graphical interface, system designers

do not need advanced programming skills anymore to use WMC and evaluate their

design choices. It is now possible to compose work models and to change the function

allocation across agents, the team composition in a few seconds. The GUI is able

to generate an XML work model respecting a standard WMC grammar. WMC can

generate C++ code out of the XML work model and placeholders for specific action

implementations such as control laws or complex procedures leading faster to a C++

work model ready for simulations.
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Figure 28: Web-based work modeling interface - Example of a simple coffee shop
model
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7.1.3 System Overview and future work

The overall system allows WMC’s user to act upon three different levels represented

in figure 27 :

1. Work model design : the GUI allows the user to create and modify the following:

• Functional design

• Function allocation

• Agent’s training (future work)

2. Low-level implementation : the code generator prepares the C++ files where

the user can enter custom codes to implement specific :

• Operational procedures

• Automation-related algorithms (controls, modes)

• System dynamics

3. Simulation : WMC Simulation core allows the user to define:

• Scripted events

• Designs of Experiment (future work)

• Metrics

Finally WMC now produces standardized outputs such as sequential action traces,

workload graphs for each agent as well as the evolution of situation awareness for

56



every resource and agent. The user can also easily define and output performance

metrics and plot them. The system overview proposed in Figure 27 demonstrates

the achievement of several goals of this work. First it shows that human-related

critical variables such as function allocation or training are now introduced early

in the design phase. Moreover, situation awareness is an indicator that depends on

training, function allocation as well as system dynamics. Therefore, WMC now allows

to study interactions between human-related and automation-related independent

variables and can therefore be used for quantitative HCI analysis.
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<workmodel name=”TutorialCoffeeModel”>
<agents>

<agent name=”Cashier” agentType=”advancedHumanAgent” agentRequirementsType=”double”/>
<agent name=”Waiter” agentType=”advancedHumanAgent” agentRequirementsType=”double”/>
<agent name=”Manager” agentType=”advancedHumanAgent” agentRequirementsType=”double”/>

</agents>
<functions>

<function name=”Run CoffeeShop”>
<function name=”Make coffee”>
<function name=”Maintain Supplies”>
<function name=”Handle customers” ></function>

</functions>
<actions>

<action className=”checkLine” actionName=” 1 checkLine” parentFunction=”Handle customers”>
<resourcesToGet>

<resource var=”” resourceName=”customerLine” qos=”5”/>
</resourcesToGet>
<resourcesToSet/>

</action>
<action className=”takeOrder” actionName=” 2 takeOrder” parentFunction=”Handle customers”>

<resourcesToGet/>
<resourcesToSet>

<resource var=”” resourceName=”coffeeBoard”/>
</resourcesToSet>

</action>
<action className=”serveCoffee” actionName=” 3 serveCoffee” parentFunction=”Handle customers”>

<resourcesToGet>
<resource var=”” resourceName=”readyCoffees” qos=”10”/>

</resourcesToGet>
<resourcesToSet>

<resource var=”” resourceName=”customerLine”/>
</resourcesToSet>

</action>
<action className=”getDelivered” actionName=” 4 getDelivered” parentFunction=”Maintain Supplies”>

<resourcesToGet/>
<resourcesToSet>

<resource var=”” resourceName=”coffeeSupply”/>
</resourcesToSet>

</action>
<action className=”orderNewCoffee” actionName=” 5 orderNewCoffee” parentFunction=”Maintain Supplies”>

<resourcesToGet>
<resource var=”” resourceName=”coffeeSupply” qos=”100”/>

</resourcesToGet>
<resourcesToSet/>

</action>
<action className=”prepareCoffee” actionName=” 6 prepareCoffee” parentFunction=”Make coffee”>

<resourcesToGet>
<resource var=”” resourceName=”coffeeBoard” qos=”10”/>

</resourcesToGet>
<resourcesToSet>

<resource var=”” resourceName=”readyCoffees”/>
<resource var=”” resourceName=”coffeeSupply”/>

</resourcesToSet>
</action>
<action className=”updateLine” actionName=” 7 updateLine”>

<resourcesToGet/>
<resourcesToSet>

<resource var=”” resourceName=”customerLine”/>
</resourcesToSet>

</action>
</actions>
<resources>

<resource name=”customerLine” type=”double”/>
<resource name=”coffeeBoard” type=”double”/>
<resource name=”readyCoffees” type=”double”/>
<resource name=”coffeeSupply” type=”double”/>

</resources>
</workmodel>

Figure 29: Example of an XML work model auto-generated through the GUI
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CHAPTER VIII

CONCLUSION

This work introduced a quantitative and computational method of measuring sit-

uation awareness of pilots through simulating human agents’ belief of the current

state of the system and mental models of the dynamics. In Chapter 7, we explain

how this development was integrated into an overarching design process and supports

quantitative analysis of human automation interaction early in the design process.

8.1 More realistic simulations

However, SA is not simply a new metric but required significant additional simulation

infrastructure. Moreover, accounting for it also changes the execution of the simula-

tion itself. Indeed, the agent’s decision making process is now fed with the agent’s

state belief as we can see in figure 30 and 31. Therefore, accounting for mental models

and situation awareness make simulation more realistic and although further testing

is still required to calibrate our system, this work opens the way to a new design

method quantitatively integrating human factors as soon as the very first functional

analysis. While, WMC does not aim to accurately simulate the complete response

of pilots in the case of unexpected events but provides a comprehensive method for

identifying the preconditions of poor human automation interaction. We believe this

work can help defining new design envelopes relatively to HAI.

8.2 Hybrid mental dynamics

SA is updated through observation and two different types of mental models: discrete

and continuous mental dynamics accounting for the pilot’s perception of both discrete
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Figure 30: Overview of the simulation using the new agent model. The pilot monitors
the system’s state X and runs mental dynamics. He/she uses his/her comprehension
of the world to take decisions and reconfigure the aircraft (Decision Actions, D.A) and
also communicates with other agents (COM). Implicit learning shapes the alteration
of discrete mental models.

dynamics such as autopilot modes and continuous dynamics, for instance, flight dy-

namics or complex control algorithms. Analysts can now study the pilot’s interactions

with discrete flight mode changes and long-term knowledge degradation phenomena

as described in Chapter 5. It is also possible to study the effect of introducing a new

control algorithm in the flight system along with different training strategies to mea-

sure the pilot’s understanding and his situation awareness when facing an increasing

complexity. More generally, this work allows engineers to simulate the interaction of

hybrid - discrete and continuous - dynamics against the pilot’s understanding and

produce quantitative assessments of the resulting situation awareness.
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Figure 31: Overall system accounting for discrete and continuous dynamics. This
diagram represents the estimated state as the major component of situation awareness
whereas mental models are comprised of the dynamics and monitoring patterns. The
decision making block shows how SA and mental models actually influence the actual
system.

8.3 Application in Design and Certification

WMC is now a powerful design and analysis tool for socio-technical systems allowing

engineers to work with design variables such as team composition, function allocation,

training, automation algorithms, operational procedures, communication procedures,

run thousands of scenarios and produce metrics such as user-define performance met-

rics, workload, situation awareness and long-term knowledge degradation. For in-

stance, it is now possible to change the control laws of the autopilot and analyze the

consequences on pilots’ situation awareness. WMC can also be used to test whether
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additional training would improve the pilot’s understanding or degrade his/her situ-

ation awareness as a result of added complexity. Accounting for situation awareness

also allows accident investigators to simulate the loss of an instrument - for instance

the speed indication in the case of AF 447 - and simulate the loss of SA whereas safety

engineers could use WMC to test solutions to help pilots when these unexpected situa-

tions happen. A tool like WMC enhanced with the computational models developed

in this work could also be a good start to develop quantitative validation metrics

regarding the certification of automated systems in the context of human-computer

interaction.

8.4 Real-time applications

Previous conclusions were centered on the positive impacts of this work on design.

However, the situation awareness assessment system developed here could also pro-

vide a base for projecting real-time data onto a computational model of situation

awareness. Thus, knowing the training of the pilot, and using for example live eye-

tracking data, a continuous assessment of the pilot’s SA could be made during the

flight whereas a dynamic interface could adapt the saliency of certain information

to prevent potential misunderstandings of drifts of SA. In the AF447 case, such a

monitoring system would have tried to restore the pilots’ SA by simulating their un-

derstanding of the situation and displaying relevant information such as a reminder

of the switch from normal law to direct law.
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8.5 Limitations

However, agent models are not likely to completely replace HITL experiments. Models

cannot replace testing with actual pilots. The agent model developed in this work does

not account for phenomena such as stress, confirmation bias or other psychological

aspects that are known to play a major role in accidents. The new features of WMC’s

agent models do not aim to predict exact pilots’ reactions and will not as a human

model does not capture personality or tolerance to stress for instance. However, this

work tries to approximate some aspects of pilots’ experience through the hebbian

learning theory developed in Chapter 5. This is a first step to specialize a general

model to capture individual features.

8.6 Future work

To validate the models used in this work, and calibrate parameters such as the hebbian

learning rate introduced in Chapter 5 about knowledge plasticity, we would need to

run human experiments. After a robust calibration, we would need to determine

safety envelopes for SA and progress toward introducing new certification metrics. A

next step to improve the computational model of SA would be to account for SA L3,

i.e simulate agents’ anticipation. Indeed, when workload is low, pilots think ahead

using mental models, seek information early and potentially take preventive decisions.

As far as aviation is concerned, the next step is to create relevant scenarios and

improve the realism of aircraft work models to demonstrate the validation power of

the method presented in this work. NASA recently pointed out serious safety issues in

continuous descent approaches with pilots faced with unexpected speed restrictions.

Implementing such scenarios in WMC will allow us to analyze related HAI issues and

propose improvements in NextGen air traffic operations such as automation design,

training and communication procedures.
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8.7 Discussion

The fact that human automation interaction is not reducible to interface design but

has to be analyzed at the system design level is still hardly understood in the industry.

Human operators not only interact with automation through displays and actuators

but also through their mental model of the system the accuracy of which highly

depends on the complexity of the actual system and the operator’s experience with

it. We believe this work provides a solid first step toward providing a quantitative

basis to promote the understanding and use of cognitive engineering in aviation and

certification procedures.
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