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Abstract 

The Polaronic Effect on Quantum 

Well-Wires 
 

Presented By 

Mahmoud Osama AL Mamlouk 

 

Supervised By   

Prof. Dr. Bassam H. Saqqa 

 

The polaron problem in a quasi 1D cylindrical quantum well-wire with infinite 

boundary potential is investigated using the strong-coupling theory. It is observed that 

a decrease in the radius of wire produce a pseudo strong aspect to the problem in spite 

of weak values of (𝛼).   

The effect of an external magnetic field on the problem is also studied. It is observed 

the polaronic effect becomes more important for strong values of the magnetic field and 

large values of the wire radius. As the radius of the wire getting smaller the effect of 

the magnetic field becomes negligible.   
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 ملخص باللغة العربية 

  للأسلاكبار الكمية لآعلى ا التأثير البولاروني

شراف إتحت   

ام هاشم السقا / بس   الدكتور الأستاذ   

 الباحث / محمود أسامه المملوك

 وذلك نهائي الطوللا  أسطوانيلقد تم دراسة مسألة البولارون المحصور في سلك 

استخدام الطريقة الادياباتيكية. وتبين أنه ومع تقليل قطر السلك وبالرغم من قيم صغيرة ب

يمكن أن نحصل على حالة تشبه حالة  تلثابت الاقتران بين الالكترون والفونونا

  ان شبه قوي.ت الاقترمي  الاقتران القوي س  

أثير حظ أن التلو ،على نفس المسألة الخارجيالمجال المغناطيسي  كما تم دراسة تأثير

عند زيادة شدة المجال المغناطيسي وزيادة قيم نصف  يزداد أهمية خصوصا  البولاروني 

  قطر السلك. 
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Chapter 1 

 

Introduction  

 

1.1 The Concept of Polaron  
 

To explain the concept of polaron, first we begin with the description of crystals. The 

structure of all crystals can be described in term of a lattice (a lattice is a regular periodic 

array of points in space) with a group of atoms attached to every lattice point. The group 

of atoms is called basis, when repeated periodically in space it forms the crystal structure. 

At room temperature, the atoms are not fixed, but it vibrates around their equilibrium 

positions (the lattice points). The vibrations of atoms will form a vector field called the 

displacement field, which can be quantized, the quanta of displacement field are called 

phonons [1]. The ionic polarization in the crystal occurs by electric field of conduction 

electron in which the electric field of the electron displaces the positive and negative ions 

with respect to one another (attracts the positive ions and repels the negative ions 

according to coulomb forces ), this displacement can be described as waves or cloud of 

phonons. A conduction electron or (hole) together with its self-induced polarization in a 

polar semiconductor or an ionic crystal forms (Polaron). 

As a result of formation of polaron, the electron polarizes the lattice producing a potential 

well around itself in which it becomes trapped. The self-trapping is considered in ionic 

(polar) materials, so the notation (polaron) is due to this fact. This concept was first 

introduced by Landau in (1933) [2]. 
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The polaron concept is of interest, because it describes the particular physical properties 

of an electron in polar crystals and ionic semiconductors and it is an interesting 

theoretical model consisting of a fermion, the electron, interacting with a boson field, The 

polaron is characterized by many parameters such as: its binding or (self- energy), its 

effective mass and its response to the external electric and magnetic fields. Also, the 

number of phonons in the polaron cloud, and the polaron radius are important parameters.  

The polaron can be classified according to its size to [large and small] and according to 

the frequency of the phonons which interact with electron to [optical and acoustic 

polaron]. 

When the phonons interact with two electrons (or two holes) in the crystal it will form a 

bipolaron which is spinless contrary the polaron has a spin [3]. 

 

Small polaron [Holstein polaron]: 

It's formed when the displacement of the ion is smaller than the lattice constant and the 

deformation of the lattice will be small. Because for small polarons the lattice 

polarization is mostly confined to one unit cell, the atomicity of solid is felt by carrier, 

which takes into account the detailed local structure of solid, the Fröhlich continuum 

approximation would not be adequate. Nevertheless, actual small-polaron theories as 

developed, e.g., by Yamashita and Kurosawa (1958), Holstein (1959) and others are 

based on analytical approximation as starting point. Thus, the adiabatic eigenstates of an 

electron placed in a deformable continuum were shown to depend drastically on the 

character of the electron lattice in interaction as well as on the dimensionality of system. 

(Emin, Holstein, 1976) The self-trapped carrier of small polaron is confined to a single 

site, and the small polaron are governed by the short-range interaction [3], [4].  

 

Large polaron [Fröhlich polaron]:  

It is formed when the displacement of the ion is larger than the lattice constant and the 

deformation of the lattice will be large. The large polarons are governed by the large-

range interaction, and the self-trapped carrier of a large polaron generally extends over 

several sites [4], [5]. 
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Besides, in a large polaron regime, the lattice can be replaced by a continuum medium 

which is not appropriate for small polaron regime. 

 

Optical polaron: 

This type of polaron is formed in polar materials when a conduction electron interacts 

with longitudinal optical (LO) modes of the lattice vibrations, which have a high 

frequency. 

 

Acoustic polaron: 

This polaron is formed in metals when the electron interacts with acoustic phonons which 

have a low frequency. It is important to know that, the early work on polarons was 

devoted to the interaction between a charge carrier (electron, hole) and (LO) phonons 

[21]. 

 

1.2 Historical Studies       

Historically, the first studies on polarons is a Russian work that described the concept of 

polaron by Landau (1933) in a paper of about one page [2].  

      In (1937) Fröhlich [5] gave a quantitative discussion of the electron scattering in ionic 

crystals where he introduced the concept of the field of lattice displacement. 

     In (1949) Fröhlich derived the so called (Fröhlich Hamiltonian), and solved the 

problem for the weak-coupling case using perturbation theory [5].Landau and Pekar 

(1951) investigated the self-energy and the effective mass of polaron which was shown 

by Fröhlich (1954) that correspond to the strong-coupling regime [3], [6]. 

     In (1953) Lee, low and Pines (L.L.P), [7], have derived a variational technique which 

depends on a series of successive canonical transformations that give good results for 

intermediate coupling strength.   
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    In (1954) Pekar put the trial wave state Ψ for the polaron, which is considered as two 

parts electron wave function 𝜑𝑒 , and the field (phonon) wave function 𝜑𝑝ℎ, that is [6]  

                                                       Ψ = 𝜑𝑒 . 𝜑𝑝ℎ ,                                                            (1.1) 

which can be written as 

                                                       |Ψ〉 =  |𝜑𝑒〉|𝜑𝑝ℎ〉                                                     (1.2)                        ( 1.2 ) 

      In (1955) Feynman studied one of Fröhlich`s papers on polarons (Fröhlich, 1945). 

There, he got the idea to formulate the polaron problem into Lagrangian form of quantum 

mechanics. He considered the polaron consists of two classical particles, and eliminate 

oscillators (waves). The resulting is Feynman's path integral form [8]. Over the years 

Feynman model for the polaron has remained in many respects the most successful to the 

problem of polaron, for the overall range of the coupling strength. 

      In (1970) Bogolubov applied the well-known method of chronological or T- products. 

This method appeared to be effective for the theory of the large-radius derivation of 

higher terms of the perturbation series in the weak-coupling limit. Like the functional 

integration formalism, the T-product method has various applications in many fields of 

quantum physics [9]. 

     Peeters and Devreese (1982) have generalized the Feynman model of the polaron to 

the case where a static external magnetic field is applied [3], [10], and their calculations 

are valid for all values of the polaronic strength. In this model the free energy of polaron 

was treated as a path integral [8]. Even though the polaron problem is rather old subject, 

it has recently excited renewed interests in the context of low dimensionally confined 

quantum system, because it represents a theoretical model of a particle interacts with a 

fluctuating medium, connects the condensed matter physics with the framework of 

quantum field theory and it is used in the recent developments in a micro fabrication 

technology. 
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1.3   The Hamiltonian of The Polaron 

It is important to know that all theories of the polaron depend on using the Fröhlich 

Hamiltonian (1954) which consists of three parts, the Hamiltonian of electron, the 

Hamiltonian of phonon, and the Hamiltonian of electron-phonon interaction, that is [7]: 

 𝐻 = 𝐻𝑒 + 𝐻𝑝ℎ + 𝐻𝑒−𝑝ℎ                                                               (1.5)                   

     = 𝐻𝑒 + ∑ ħ𝑄 𝜔𝐿𝑂𝑎𝑄
†𝑎𝑄 + ∑ 𝑉𝑄𝑄 [𝑎𝑄 𝑒𝑥𝑝 𝑖 ( �⃗� . 𝑟  ) + 𝑎𝑄

† 𝑒𝑥𝑝−𝑖 ( �⃗� . 𝑟  )]  

Where 𝐻𝑒 represents the electronic Hamiltonian, and  𝑉𝑄 is the amplitude of the electron-

phonon interaction which is given as  

                      𝑉𝑄 = −𝑖 ( 
ħ𝜔𝐿𝑂

𝑄
) (

4𝜋𝛼

𝑉
)

1

2
(

ħ

2𝑚𝜔𝐿𝑂
)
1

4                     (1.6)                                                                                   

where V is the volume of the crystal (which is taken as a unit in most problem of the 

polaron), 𝜔𝐿𝑂 is the frequency of the (LO) phonons,  ħωLO is the energy of the phonons, 

and 𝛼 is the standard dimensionless coupling constant of the electron-phonon interaction 

which is given as [5] 

                             𝛼 =  
𝑒2

2ħ𝜖0
√

2𝑚

ħ𝜔𝐿𝑂
( 

𝜖0

𝜖∞
− 1 ),                        (1.7)  

where ϵ∞(ϵ0) is high frequency (static) dielectric constant of the medium. 

By using the pervious information, Fröhlich (1954), [5] has provided the first weak 

coupling perturbation-theory results 

                                            𝜖𝑃
3𝐷 =  𝛼ħ𝜔𝐿𝑂 ,                                          (1.8)  
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where  𝜖𝑃
3𝐷 is the three-dimensional binding energy (3D) of the polaron in the ground 

state. Electron systems in reduced dimensions as in two dimensions like in GaAs 

(Gallium Arsenic) are of great interest. Also the electron-phonon interaction and the 

polaron effect in such systems received much attention. For one polaron, confined to two 

dimensions, but interacting with a (3D) phonon gas, with a simple modification in the 

amplitude of the electron-phonon interaction 𝑉𝑄. The binding energy for a polaron in 

two-dimensions (2D) for small value of (𝛼) was first obtained by Sak (1972) [3], and 

provided us with the result 

                                         𝜖𝑃
2𝐷 = 

𝜋

2
𝛼ħ𝜔𝐿𝑂                                        (1.9) 

For large value of ( 𝛼 ), the strong-coupling corresponding result are [11], [12] 

                                         𝜖𝑃
3𝐷 = 

𝛼2

3𝜋
ħ𝜔𝐿𝑂                                        (1.10) 

It is clear that, decreasing dimensions, leads to increase in the value of polaron binding 

energy. the polaron binding energy is depend by a factor 
𝜋

2
 in the weak-coupling regime, 

and by 
3𝜋2

8
 in the strong-coupling regime, that is because the confinements increase the 

binding energy. 

       On the other hand, it is important to talk about the effect of the external magnetic 

field on the polaron problem (magnetopolaron), because a large number of experiments 

and theories [13]-[14] have reported measurements of polaronic effects in 

semiconductors in the presence and in the absence of a magnetic field. 
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All studies of (magnetopolaron) explain the interrelation between the strength of the 

magnetic field and the coupling strength of the polaron. For the case of magnetopolaron, 

additional term is added to Fröhlich Hamiltonian that results from the magnetic force so 

that the binding energy becomes large due to the additional degree of localization brought 

about by the magnetic field. An important contribution to the theoretical study of 

polarons in the magnetic fields was made by Larsen [15]. Many studies explained the 

combined effect of the external magnetic field and the polaronic interaction and the 

important result is [14] 

       For weak electron-phonon coupling and high magnetic fields, the lattice is thought to 

be responding only to the overall motion of the faster orbiting electron in its landau orbit 

[16]. In this limit the adiabatic approach gives the same result obtained from the second 

order perturbation theory. This means for small values of 𝛼 the strong-coupling method 

gives reasonable results as the strength of the magnetic field increases, that because the 

strong magnetic field adds another confinement to the polaron problem so the adiabatic 

theory succeeds in solving the problem of polaron in spite of the weak electron-phonon 

coupling. 

       The magnetic field strength and the high degree of confinement lead to the a pseudo-

enhancement of (𝛼), which increase the polaronic effect, more studies and researches 

focused on the quantum confinement systems, such as the polaron (2D), polarons in thin 

wires, magnetopolaron, and polarons with reduced dimensionality in semiconductors 

which play an important role in micro-fabrication technology, such as molecular-beam 

epitaxy. 

       Many theoretical investigation have been made to study the polaronic properties in 

lower dimensions [17]-[18]. Recent studies on the electron-phonon interaction in quasi 

one-dimensional (Q1D) system have explored a polaronic effect pronounced strong than 

in (2D) structures [17]. 
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 Since the Fröhlich Hamiltonian of polaron has no exact solution, many mathematical 

techniques have been developed to treat the polaron problem such as: 

(1) The Strong-Coupling Theory or, The Adiabatic-Coupling Theory 

This theory which developed by Pekar [6] is valid when the kinetic energy for the 

electron is much greater than the energy of phonons, because this theory assumes 

that the wave function of the polaron consists of two wave functions, electron wave 

function 𝜑𝑒 and the field (phonon) wave function 𝜑𝑝ℎ as we explained in equation 

(1.1), the calculations of this method depend on the variational method which 

supposes a variational parameters in trial wave state of the polaron, and minimizing 

the Hamiltonian to find the binding energy of polaron. This method can be used for 

large values of coupling strength. 

 

(2) The Weak-Coupling Theory which depends on the perturbation theory, this 

theory supposes that the Hamiltonian interaction between electron and phonons as 

a small perturbed quantity and using the method of the perturbation technique to 

find the energy of polaron. This method can be used for small values of polaronic 

constant [5].  

 

(3) The Mixed-Coupling Approximation, This method depends on the variational 

method, in which two (L.L.P) successive transformations are used [7].  
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1.4 The Aim of The Work 

 The progress in semiconductor nanotechnology has made it possible to fabricate various 

kinds of semiconductor hetrostructure including low dimension structure. The quantum 

well wires system is one of these systems.  Many theoretical investigations have been 

made to study polaronic effect in low-dimensional structures as ionic crystals and polar 

semiconductors. Because of increasing attention on this subject, in our work we focus on 

studying a confined polaron in a quantum well wire, starting with Fröhlich Hamiltonian 

with a parabolic potential. 

In chapter 2 we retrieve within the strong-coupling theory, the quasi-one dimensional 

analog of standard optical polaron relevant to a cylindrical quantum well wire. Under the 

assumption of perfect confinement the ground state binding energy, effective polaronic 

mass and the phonon-coupling-induced potential well profiles will be studied as a 

function of the wire radius and the electron-phonon interaction strength.  

 The effect of the magnetic field on a quantum well is studies in chapter 3. Chapter 4 is 

devoted to the results and discussion.  We observe that the binding energy increases with 

increasing field intensity and/or decreasing well size, and further that the enhancement in 

the binding brought about by electron-phonon coupling is rather noticable.  
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Chapter 2 

 

Theory and Calculation 

 

2.1  The Strong Coupling Regime 

In this chapter, we study the problem of quasi-one dimensional analog of the standard 

optical polaron relevant to a cylindrical quantum well wire (QWW), we are using the 

strong-coupling theory, with infinite boundary potential [19]. In the framework of the 

adiabatic approximation we start with the Hamiltonian of the electron immersed in the 

field of bulk (LO) phonons in a cylindrical wire with radius (R), and the units (2𝑚 =

 𝜔𝐿𝑂 =  ħ = 1), where m is the effective mass of the electron. 

The Hamiltonian of the polaron is given by 

                                      𝐻 = 𝐻𝑒 + 𝐻𝑝ℎ + 𝐻𝑒−𝑝ℎ    ,                              (2.1)  

where 𝐻𝑒  is the electronic part of the Hamiltonian, which in cylindrical coordinates, 

takes the form  

                                       𝐻𝑒 = − 
1

𝜌

𝜕

𝜕𝜌
(𝜌

𝜕

𝜕𝜌
) − 

𝜕2

𝜕𝑧2  ,                   (2.2)  

where (𝜌,⃗⃗⃗   z) denote the position of the electron in cylindrical coordinates. And the 

Hamiltonian of phonon is,  

                                                           𝐻𝑝ℎ = ∑ 𝑎𝑄
†𝑎𝑄𝑄    ,                                (2.3)   
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where 𝑎𝑄
†(𝑎𝑄) is the phonon creation (annihilation) operator, and Q ⃗⃗  ⃗ is the wave vector 

of the phonons, with �⃗� = ( 𝑞 ,⃗⃗⃗⃗  𝑞𝑧). 

                      𝐻𝑒−𝑝ℎ = ∑ 𝑉𝑄[𝑎𝑄exp (𝑖𝑄 .⃗⃗ ⃗⃗  
𝑄 𝑟 ) + 𝑎𝑄

†exp (−𝑖�⃗� . 𝑟 )]  ,         (2.4) 

is the Hamiltonian representing the electron- phonon interaction, where 𝑉𝑄is the 

interacting amplitude which is related to the phonon wave vector �⃗�  through,  

                                                   𝑉𝑄 = 
√4𝜋𝛼

𝑄
  .                             (2.5)    

To solve the problem in adiabatic approximation we take the Pekar-type [6] trial state as 

in [equation (1.2)] which is 

                                                       |𝛹𝑔〉 =  |𝜑𝑒〉|𝜑𝑝ℎ〉  ,                                (2.6) 

where |𝜑𝑒〉 is the ground wave state for the electron, and  

                                                            |𝜑𝑝ℎ〉  =  𝑈𝑄|0〉                                  (2.7)  

Describes the phonon wave function. The ket  |0〉 is vacuum state, simply because at low 

temperature (𝐾𝑇 <<  ħ𝜔𝐿𝑂), there will be no effective phonons, (𝐾 is Boltzmann's 

constant and 𝑇  the absolute temperature). 

𝑈𝑄 is the unitary displacement operator which is given by,  

                                           𝑈𝑄 = exp∑ 𝑢𝑄( 𝑎𝑄 − 𝑎𝑄
†)𝑄                              (2.8) 
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which produces lattice deformation created at the origin, 𝑢𝑄(𝜑𝑒) will be considered as a 

variational function. The electron trial wave function will be taken as, 

                                          𝜑𝑒( 𝜌 , 𝑧) =  𝜑𝑒( 𝜌 ⃗⃗⃗  )𝜑𝑒( 𝑧) ,                              (2.9)  

with 

                                       𝜑𝑒( 𝜌 ⃗⃗⃗  ) =  𝑛𝜌𝐽0(𝑘 𝜌)exp (− 
1

2
 𝜇2𝜌2) ,                   (2.10) 

and  

                                𝜑𝑒( 𝑧) =  𝑛𝑧exp (− 
1

2
 𝜆2𝑧2)   ,                (2.11) 

where 𝜇 and 𝜆 are two variational parameters accounting for anisotropic nature of the 

system, 𝐽0 is zeroth order cylindrical Bessel function of the first kind in which (k= 
𝑗0.1

𝑅
) 

its first zero , 𝑗0.1 = 2.4048, R is radius of the cylinder and 𝑛𝜌, 𝑛𝑧 are normalization 

constants of 𝜑𝑒( 𝜌 , 𝑧) which is normalized function, Applying the normalization 

condition (∫𝜑∗𝜑𝑑𝑣 = 1) we will get, 𝜑𝑒( 𝑧) as 

                                      𝜑𝑒( 𝑧) = ( 
𝜆2

𝜋
 )

1

4exp ( − 
1

2
 𝜆2𝑧2)                          (2.12) 

and 

                        𝜑𝑒( 𝜌 ⃗⃗⃗  ) =  
1

√2𝜋 𝜎00
(1)

(0)

𝐽0(𝑘 𝜌)exp (− 
1

2
 𝜇2𝜌2)                     (2.13) 

With the form of  equation (2.10) adopted for the lateral part of the electron trial state, the 

Bessel function takes care of the geometric confinement, and the further confinement 

induced by phonon coupling is governed by the counterpart through the parameter 𝜇. 
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to calculate the energy of the polaron, return to equation (2.6), taking the wave function 

of polaron as,  

                                                        𝛹𝑔 = 𝜑𝑒𝑈𝑄|0〉                                     (2.14) 

the energy can be obtained as 

                                                𝐸𝑔 = ⟨0|⟨𝜑𝑒|𝑈𝑄
−1𝐻𝑈𝑄|𝜑𝑒⟩|0⟩                     (2.15) 

      =   ⟨0|⟨𝜑𝑒|𝐻
`|𝜑𝑒⟩|0⟩ 

where 

                     𝐻` → 𝑈𝑄
−1𝐻𝑈𝑄                 

Now using the identity 

      𝑒𝐴Be−A = B + 
1

1!
[A, B] + 

1

2!
[A, [A, B]] + 

1

3!
[A, [A, [A, B]]] + ⋯ ,    (2.16) 

and equation (2.8) which explains the expression of 𝑈𝑄 [6], we obtained the following 

results 

                                                        𝑈−1𝐻𝑒𝑈 = 𝐻𝑒,                                    (2.17) 

            𝑈−1 ∑ 𝑎𝑄
†𝑎𝑄𝑈𝑄 = ∑ 𝑎𝑄

†𝑎𝑄 + ∑ 𝑢𝑄
2 − ∑ 𝑢𝑄( 𝑎𝑄 + 𝑎𝑄

†
𝑄𝑄𝑄 ),       (2.18) 

and 

𝑈−1[ ∑ 𝑉𝑄( 𝑎𝑄𝑒𝑖𝑄 ⃗⃗  ⃗.𝑟 
𝑄 + 𝑎𝑄

†𝑒−𝑖�⃗� .𝑟 )]𝑈  =  −∑ 𝑉𝑄𝑢𝑄 (𝑒𝑖�⃗� .𝑟 + 𝑒−𝑖�⃗� .𝑟 ) +𝑄

                                                                    ∑ 𝑉𝑄(𝑄 𝑎𝑄𝑒𝑖�⃗� .𝑟 + 𝑎𝑄
†𝑒−𝑖�⃗� .𝑟 ) .       (2.19)  
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The last three equations will form the modified Hamiltonian as 

     𝐻` = 𝐻𝑒 + ∑ 𝑎𝑄
†𝑎𝑄𝑄 +  ∑ 𝑢𝑄

2
𝑄 − ∑ 𝑢𝑄(𝑄 𝑎𝑄 + 𝑎𝑄

†) + ∑ 𝑉𝑄( 𝑎𝑄𝑒𝑖�⃗� .𝑟 +𝑄

                𝑎𝑄
†𝑒−𝑖�⃗� .𝑟 ) − ∑ 𝑉𝑄𝑢𝑄( 𝑒𝑖�⃗� .𝑟 

𝑄 + 𝑒−𝑖�⃗� .𝑟 ) ,                               (2. 20) 

which can be simplified to  

𝐻` = 𝐻𝑒 + ∑ 𝑎𝑄
†𝑎𝑄𝑄 + ∑ 𝑢𝑄

2
𝑄 − ∑ 𝑉𝑄𝑢𝑄( 𝑒𝑖�⃗� .𝑟 

𝑄 + 𝑒−𝑖�⃗� .𝑟 ) +

            ∑ {[𝑉𝑄𝑒(𝑖�⃗� .𝑟 ) − 𝑢𝑄] 𝑎𝑄 + [𝑉𝑄𝑒(−𝑖�⃗� .𝑟 ) − 𝑢𝑄] 𝑎𝑄
†}𝑄   .                   (2.21)  

The energy will be then  

            𝐸𝑔 = ⟨𝜑𝑒|𝐻𝑒|𝜑𝑒⟩ +  ∑ 𝑢𝑄
2

𝑄 − ∑ 𝑉𝑄𝑢𝑄 ⟨𝜑𝑒|𝑒
(𝑖�⃗� .𝑟 )|𝜑𝑒⟩𝑄 −

                          ∑ 𝑉𝑄𝑢𝑄 ⟨𝜑𝑒|𝑒
−(𝑖�⃗� .𝑟 )|𝜑𝑒⟩𝑄   .                                                  (2.22) 

Defining  

𝜖𝑘 = ⟨𝜑𝑒|−∇2|𝜑𝑒⟩ , 

and  

𝑆𝑄 = ⟨𝜑𝑒|𝑒
∓(𝑖�⃗� .𝑟 ⃗⃗⃗  )|𝜑𝑒⟩ . 

Then 𝐸𝑔, becomes  

                                     𝐸𝑔 = 𝜖𝑘 +  ∑ 𝑢𝑄
2

𝑄 − 2∑ 𝑉𝑄𝑢𝑄𝑆𝑄𝑄                       (2.23) 
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By minimizing equation (2.23) with respect to 𝑢𝑄, we can obtain 𝑢𝑄 as  

                                                               𝑢𝑄 = 𝑆𝑄𝑉𝑄 .                                 (2.24) 

Substituting back in equation (2.23), for 𝑢𝑄 we obtain 

                                                      𝐸𝑔 = 𝜖𝑘 − ∑ 𝑉𝑄
2𝑆𝑄

2
𝑄                              (2.25)  

Using the definitions of 𝜑𝑒 given in equations (2.9)-(2.11) we obtain 

                   𝜖𝑘  = ⟨𝜑𝑒(𝜌 , 𝑧)|−∇2|𝜑𝑒(𝜌 , 𝑧)⟩                                                                 

                    =  ⟨𝜑𝑒(𝜌 )|−
1

𝜌

𝜕

𝜕𝜌
(𝜌

𝜕

𝜕𝜌
) |𝜑𝑒(𝜌 )⟩ + ⟨𝜑𝑒(𝑧)|−

𝜕2

𝜕𝑧2
|𝜑𝑒(𝑧)⟩     

                = ⟨𝜑𝑒(𝜌 )|−
1

𝜌

𝜕

𝜕𝜌
(𝜌

𝜕

𝜕𝜌
) |𝜑𝑒(𝜌 )⟩ + 

𝜆2

2
  .                                  

Defining for notational convenience,  

         𝜎
𝑚𝑚`
(𝑛) (𝑥) =  ∫ 𝑑𝑡𝑡𝑛𝐽𝑚(𝑡)𝐽𝑚`(𝑡)𝐽0(𝑥𝑡)exp (−

𝜇2

𝑘2
𝑡2)

𝑗0.1

0
 .                (2.26) 

 

Finally 𝜖𝑘 can be written as 

          𝜖𝑘 = 𝑘2 + 𝜇2 ( 2 − 
2𝜎10

(2)
(0)− (

𝜇
𝑘⁄ )

2
𝜎00

(3)
(0)

𝜎00
(1)

(0)
) + 

𝜆2

2
             (2.27)  
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For  𝑆𝑄,we have 

𝑆𝑄 = ⟨𝜑𝑒(𝜌 )|⟨𝜑𝑒(𝑧)|𝑒
±𝑖�⃗� .�⃗⃗� 𝑒±𝑖𝑞𝑧.𝑧|𝜑𝑒(𝑧)⟩|𝜑𝑒(𝜌 )⟩ 

                              =  ⟨𝜑𝑒(𝜌 )|𝑒
±𝑖�⃗� .�⃗⃗� |𝜑𝑒(𝜌 )⟩⟨𝜑𝑒(𝑧)|𝑒

±𝑖𝑞𝑧.𝑧|𝜑𝑒(𝑧)⟩         

                              = 𝑟𝑞  ⟨𝜑𝑒(𝑧)|𝑒
±𝑖𝑞𝑧.𝑧|𝜑𝑒(𝑧)⟩ .    

where  

                                          𝑟𝑞 = ⟨𝜑𝑒(𝜌 )|𝑒
±𝑖�⃗� .�⃗⃗� |𝜑𝑒(𝜌 )⟩ .                                (2.28) 

Equ. (2.28) can be written as 

                                                      𝑟𝑞 = 
𝜎00

(1)
(
𝑞

𝑘
)

𝜎00
(1)                                         (2.29) 

The final form of 𝑆𝑄 is now  

                                                    𝑆𝑄 = 𝑟𝑞𝑒
(−

𝑞𝑧
2

4𝜆2)                           (2.30) 

Projecting out the �⃗� -summations in equation (2.25) using the transformation 

                             ∑ →  
1

(2𝜋)3
∫ ∫ ∫ 𝑞𝑑𝑞 𝑑𝑞𝑧 𝑑∅

2𝜋

0

∞

−∞

∞

0𝑄                (2.31)   

We arrive at the following integral-expression for the ground-state energy 

                                                  𝐸𝑔 = 𝜖𝑘 −  𝛼 ∫ 𝑑𝑞 𝑟𝑞
2 𝑓𝑞  

∞

0
 ,                        (2.32)  
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where 

                                                𝑓𝑞 = exp( 
𝑞2

2𝜆2
 ) 𝑒𝑟𝑓𝑐( 

𝑞

√2 𝜆
) ,                       (2.33) 

with (erfc) denoting the complementary error function. 
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Chapter 3 

 

The Effect of The Magnetic Field on 

Problem 

 

The application of an external magnetic field on the problem puts a further confinement 

on the problem, this means that the effect of the magnetic field is expected to enhance the 

importance of the polaronic effect [21, 22].  

We consider a constant and uniform magnetic field directed along the z-axis �⃗⃗⃗� = 𝐵�̂�. 

Using the symmetric gauge [23],  

                             𝐴  =  
1

2
�⃗� × 𝑟 =  

𝐵

2
(−𝑦 �̂� + 𝑥 𝑗̂)                           (3.1)  

For the vector potential, the electronic part of the Hamiltonian is given by                                

                                   𝐻𝑒 =  −∇2 +
𝜔2

8
𝜌2 + 

𝜔

2
 𝐿𝑍                           (3.2)                                                                      

Where 𝜌 ⃗⃗⃗  = (x,y) denotes the electron position in the transverse plane, 𝐿𝑍 = ( 𝑥𝑃𝑦 − 𝑦𝑃𝑥) 

is the z-component of angular momentum, and 𝜔 is the dimensionless cyclotron 

frequency.  

The expectation value of the electronic part of the Hamiltonian using the same wave-

function defined in Eq. (2.9) is now given as  

⟨𝜑𝑒|𝐻𝑒|𝜑𝑒⟩ =  ⟨𝜑𝑒|−∇2|𝜑𝑒⟩ + ⟨𝜑𝑒|
𝜔2

8
𝜌2|𝜑𝑒⟩ + 

𝜔

2
⟨𝜑𝑒|𝐿𝑍|𝜑𝑒⟩              (3.3) 
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But the first term of Eq.(3.3) is already calculated in Eq.(2.27) with  

 𝜖𝑘 = ⟨𝜑𝑒|−∇2|𝜑𝑒⟩ =  𝑘2 + 𝜇2 ( 2 − 
2𝜎10

(2)
(0)− (

𝜇
𝑘⁄ )

2
𝜎00

(3)
(0)

𝜎00
(1)

(0)
) + 

𝜆2

2
 ,        (3.4) 

   and knowing that  

 

                           ⟨𝜑𝑒|𝐿𝑍|𝜑𝑒⟩ =  −
𝑖ħ

2
 ⟨𝜑𝑒|

𝜕

𝜕𝜑
|𝜑𝑒⟩ = 0 ,                     (3.5)  

because 𝜑𝑒  does not depend on ∅ .  

  

To calculate the last term we have 

 

                    ⟨𝜑𝑒|
𝜔2

8
𝜌2|𝜑𝑒⟩ =  

𝜔2

8
∫𝜑𝑒

∗ 𝜌2𝜑𝑒𝑑𝜏                               

                                                =  
𝜔2

8
∫𝜑𝑒

∗ 𝜌2𝜑𝑒𝜌𝑑𝜌𝑑∅𝑑𝑧                (3.6) 

   

Integrating with respect to the azimuthal angel ∅ we obtain 

 

                  ⟨𝜑𝑒|
𝜔2

8
𝜌2|𝜑𝑒⟩ =

𝜔2

8
2𝜋 ∫𝜑𝑒

∗ 𝜌2𝜑𝑒𝜌𝑑𝜌𝑑𝑧.                     (3.7)     
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Substituting about 𝜑𝑒(𝑧) we get  

 

  ⟨𝜑𝑒|
𝜔2

8
𝜌2|𝜑𝑒⟩ =

              
𝜔2

8
2𝜋 ∫(

𝜆2

𝜋
)
1

4   𝜑(𝜌)∗𝑒
−𝜆2𝑧2

2 𝑒−𝑖𝜔𝑧𝜌3 (
𝜆2

𝜋
)

1

4
𝜑(𝜌)𝑒

−𝜆2𝑧2

2 𝑒𝑖𝜔𝑧𝑑𝜌𝑑𝑧  

   

                         =  
𝜔2

8
2𝜋 ( 

𝜆2

𝜋
)
1

2 ∫ 𝑒−𝜆2𝑧2
𝑑𝑧 ∫ 𝜑(𝜌)∗𝜌3𝜑(𝜌)𝑑𝜌

𝑅

0

∞

−∞
             (3.8)      

 

Now using Gaussian integral we get 

 

                                     ∫ 𝑒−𝜆2𝑧2
𝑑𝑧 =  

√𝜋

𝜆

∞

−∞
  .                                         (3.9) 

 

Substituting (3.9) in (3.8) we have  

 

                      =  
𝜔2

8
2𝜋 ( 

𝜆2

𝜋
)
1

2
√𝜋

𝜆
∫ 𝜑(𝜌)∗𝜌3𝜑(𝜌)𝑑𝜌

𝑅

0
 .                (3.10) 

 

After simplifying we obtain  

 

         ⟨𝜑
𝑒
|

𝜔2

8
𝜌2|𝜑

𝑒
⟩  =  

𝜔2

4
𝜋 ∫ 𝜑(𝜌)∗𝜌3𝜑(𝜌)𝑑𝜌

𝑅

0
                      (3.11) 

 

Now  

                                   𝑛𝜌 = 
1

√2𝜋𝜎00
(1)

(0)

  .           (3.12) 
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Substituting Form 𝜑(𝜌) in (3.11) we get 

 

  ⟨𝜑
𝑒
|

𝜔2

8
𝜌2|𝜑

𝑒
⟩  =  

𝜔2

8𝜎00
(1)(0)

∫ [𝐽0(𝑘 𝜌)]2
𝑅

0
𝑒−𝜌2𝜇2

𝜌3𝑑𝜌.                (3.13) 

 

but  

                        ∫ [𝐽0(𝑘 𝜌)]2
𝑅

0
𝑒−𝜌2𝜇2

𝜌3𝑑𝜌 =  𝜎00
(3)(0) .              (3.14) 

                   

 Substituting Equ. (3.14) in (3.13) we have   

 

                                   ⟨𝜑𝑒|
𝜔2

8
𝜌2|𝜑𝑒⟩ =  

𝜔2

8𝜎00
(1)(0)

  𝜎00
(3)(0) .                      (3.15)   

 

 

The ground state energy of problem now becomes 

                                          𝐸𝑔 =  𝜖𝑘 + 
𝜔2

8𝜎00
(1)(0)

  𝜎00
(3)(0) ,                               (3.16)                                                                                                                                            

 

Or which can be written as 

𝐸𝑔 = 𝑘2 + 𝜇2 ( 2 − 
2𝜎10

(2)
(0)− (

𝜇
𝑘⁄ )

2
𝜎00

(3)
(0)

𝜎00
(1)

(0)
) + 

𝜔2

8𝜎00
(1)

(0)
  𝜎00

(3)(0) +
𝜆2

2
 .   

                                                                                                                                   (3.17) 

                                                                                                                     

It should be noticed that even though the lattice part of the Hamiltonian seems not to be 

effected by the application of the magnetic field directly, the effect inter the problem 

indirectly through the variational parameters. The effect of the electron-phonon coupling 

constant 𝛼 and the strength of the magnetic field 𝜔 enter the problem in an interrelated 

feature. The minimization of equation (3.17) will be done numerically. 
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Chapter 4 

 

Results  Discussion  

 

In order to obtain the binding energy, we numerically minimize equation (3.17) with 

respect to the variational parameters 𝜇 and λ. Then substituting the minimized value of 

𝐸𝑔to obtain the binding energy which is defined as [11]  

                                              𝜀𝑝 =  (
𝑗0.1

𝑅⁄ )2 − 𝐸𝑔                                  (4.1)  

By using Maple Programme, we obtain  𝜀𝑝 = 3.34 for a wire with 𝛼 = 3 and wire 

radius 𝑅 = 1. This value is exactly the same as obtained by Ercelebi A. and Senger R.T 

[11]. For thinner wires the binding energy gets naturally deeper since the electronic wave 

function becomes even more localized in all directions perpendicular to the wire axis. We 

obtain 𝜀𝑝 = 5.51 when 𝑅 = 0.5 and 𝜀𝑝 = 9.98 when 𝑅 = 0.2 

A comparison of these values with the corresponding three-and two-dimensional values 

by using equations (1.9), (1.10), gives that 𝜀𝑝
(3𝐷)

= 0.955, and 𝜀𝑝
(2𝐷)

= 3.534. 

This means that the polaron binding energy is much greater when effective 

dimensionality is reduced from three to one than when reduced from three to two.   
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                      Figure 4.1: The variational parameters 𝜇 (solid curve) and λ (dashed 

                                                Curve) as a function of the wire radius (R).             

 The relation between the variational parameters (𝜇, λ) and the radius of the wire R is 

displayed in figure (4.1). This family of the curves is plotted for 𝛼 = 3, 6 and 9 

respectively. 

From the figure, it is clear that for large wire radii the curves for 𝜇 and λ both have the 

same value (nearly). And as R is getting smaller the curves begin to split, depicting the 

anisotropy due to the confinement imposed by the wire boundary. 
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The two parameters (𝜇, λ ) represent the presence of the wave function of the polaron in 

all directions of the space (in the (x-y) plane and along z-axis) respectively. 

So from the figure (4.1) we note at large values of R (the case approaches the bulk limit), 

(𝜇 =  λ), which means that, the wave functions of the polaron are presented in all 

directions. But for small values of R, it is clear that (λ > 𝜇) which means that the 

probability of the presence of the wave function of polaron along (z-axis) is larger than in 

(x-y) plane. This is due to the confinement of the polaron which is caused by the rigid 

boundary of the wire.  

      For a complementary understanding of the variation of the spatial extent of the 

polaron in the lateral and longitudinal directions, we also display in [figure (4.2)] the 

measures of localization of the electron coordinates expressed in terms of the 

corresponding root-mean-square (r.m.s) value which is given by 

                                  𝜉𝜌 = [ ⟨𝜑𝑒|𝜌
2|𝜑𝑒⟩ ]

(
1

2
)  =  𝑘−1√

𝜎00
(3)

𝜎00
(1)⁄               (4.2) 

and  

                                   𝜉𝑧 = [ ⟨𝜑𝑒|𝑧
2|𝜑𝑒⟩ ]

(
1

2
) = (2𝜆2)− 

1

2                         (4.3) 
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                Figure 4.2: The spatial extends 𝜉𝜌 (solid curve) and 𝜉𝑧 (dashed curve) of the Polaron as  

                                               a function of the wire radius 

We plot the relation between the parameters (𝜉𝜌, 𝜉𝑧 and R). Thus the figures includes an 

implicit coupling between the transverse and longitudinal coordinates of the electron. 

       When we examine the family of curves for 𝜇 and λ and for 𝜉𝜌and  𝜉𝑧, we see that, 

even though there is no geometric confinement along the wire axis, the axial extent of the 

polaron shrinks inward contrary to what one might have expected in the wire with 

changing of the radius of the wire. 
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It is clear that, going from the bulk case to the quasi-one dimensional limit (Q1D) there 

comes about a competitive interrelation between whether the charge distribution ( and 

hence the lattice deformation) will condense on to origin (the polaron center) or will 

expand to relax itself in the longitudinal directions along the wire axis.  

   Starting from 𝑅 ≫ 1 and then restricting the transverse spread of the electron, the 

contribution coming from the tendency of the polaron to expand longitudinally is 

compensated for by the pseudo-enhancement in the effective phonon coupling due to 

lateral localization towards the wire axis, thus leading to an overall shrinking spatial 

extent in the ± 𝑍 direction. Meanwhile, with contracting wire size there are results an 

alteration in the lateral structure of the electron wave function as depicted by the 𝜇-

profile, displaying first a monotonic decrease and then an increase, implying that the 

radial part  𝜑(𝜌), of the electron wave function conforms to a form structured more by its 

Bessel-function counterpart  𝐽0(𝑘𝜌), rather than a narrow Gaussianexp (−
𝜇2𝜌2

2
⁄ ), 

decaying far before the boundary is reached. This can alternatively be recognized from 

the fact that, regardless of 𝛼, the curves for 𝜉𝜌 figure (4.2) all tend to the same asymptote, 

meaning that at small wire radii the lateral extent of polaron is governed mainly by 

geometric confinement rather than phonon coupling-induced localization.    
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 Figure (4.3): 𝜑(𝜌) versus 𝜌 for various pairs (𝛼, 𝑅) of 𝛼 (= 3, 5,7 ) and 𝑅(= 0.5, 2, 5).             

                       In the plots the peak value of 𝜑 is normalized to unity, and 𝜌 is expressed  

                       in units of 𝑅.    
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For completeness, we also present a pictorial view of the phonon-coupling- induced 

potential well profiles along the radial and transverse direction. 

         𝑉(𝜌, 𝑧) =  
1

𝑒
 ∑ 𝑄⟨−0|𝑈−1(𝑒𝑖𝑄.𝑟𝑎𝑄 + 𝑒−𝑖𝑄.𝑟𝑎𝑄

†)𝑈|0⟩𝑄                   (4.4) 

 

 

 

 

            Figure (4.4): the phonon coupling-induced potential well profiles in the radial and  

                                        longitudinal directions represented, respectively, by the upper and  

                                        lower curves. 
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The potentials 𝑉𝜌 and 𝑉𝑍 are given in arbitrary units on a linear scale, whereas 𝜌 and 𝑧 are 

expressed in terms of 𝑅. The spatial anisotropy mentioned in the preceding paragraph is 

also portrayed in the set of curves for the potential profiles in that 𝑉𝑍 lies deviated below 

𝑉𝜌, the digression being most significant for small 𝑅 values and at sites more on the 

boundary side rather than the axial region (𝜌 𝑅, 𝑧⁄ |𝑅 ≤ 0.1) where 𝑉𝜌 and 𝑉𝑍 join and 

form spherically symmetric (isotropic) equipotential. 

 

 

Figure (4.5): 𝜀𝜌 and ∆𝑚𝜌 as function of 𝑅. 

A more brief content of arguments given above is provided in fig.(4.5) where we plot the 

binding energy, 𝜀𝑝 =  (
𝑗0.1

𝑅⁄ )2 − 𝐸𝑔 (relative to the subband), and the polaronic 

contribution to the band mass, ∆𝑚𝜌 = 𝑚𝜌 − 1, against the wire radius for a set of 

distinctive 𝛼-values. We once again note the same qualitative behavior where the growth 

rates of 𝜀𝑝 and 𝑚𝜌 are somewhat moderate for large 𝑅, but however on the opposite 
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extreme where 𝑅 is tuned to smaller values both 𝜀𝑝and 𝑚𝜌are observed to increase with 

very pronounced slopes the growth rates, which are significantly greater for strong 𝛼.   

 

 

Figure (4.6): 𝜀𝜌 and ∆𝑚𝜌 as function of 𝑅 under external magnetic field. 

    It is expected that the application of an external magnetic field puts a further 

confinement on the problem making the polaronic effect more important. Even though, 

the problem is somewhat complicated due to the combined effect of the magnetic field 

and the electron-phonon interaction we will not go in detail for the extreme limits of the 

magnetic field.  
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In figure (4.6) the binding energy and the effective mass is plotted versus the radius of 

the wire for different values of the strength of the magnetic field, for 𝛼 = 7. As it is clear 

from the figure, the polaronic effect becomes more important for strong values of the 

magnetic field and large values of the wire radius. As R getting smaller the effect of the 

magnetic field becomes negligible. This because as the problem squeezes along the 

transverse of the confinement coming from the geometry of the problem becomes more 

dominant.  
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