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SUMMARY

There is a need for a fuel-optimal required time of arrival (RTA) mode for

aircraft flight management systems capable of enabling controlled time of arrival

functionality in the presence of wind speed forecast uncertainty. A computation-

ally tractable two-stage stochastic algorithm utilizing a data-driven, location-specific

forecast uncertainty model to generate forecast uncertainty scenarios is proposed as a

solution. Three years of Aircraft Communications Addressing and Reporting Systems

(ACARS) wind speed reports are used in conjunction with corresponding wind speed

forecasts from the Rapid Update Cycle (RUC) forecast product to construct an inho-

mogeneous Markov model quantifying forecast uncertainty characteristics along spe-

cific route through the national airspace system. The forecast uncertainty modeling

methodology addresses previously unanswered questions regarding the regional uncer-

tainty characteristics of the RUC model, and realizations of the model demonstrate a

clear tendency of the RUC product to be positively biased along routes following the

normal contours of the jet stream. A two-stage stochastic algorithm is then developed

to calculate the fuel optimal stage one cruise speed given a required time of arrival at

a destination waypoint and wind forecast uncertainty scenarios generated using the

inhomogeneous Markov model. The algorithm utilizes a quadratic approximation of

aircraft fuel flow rate as a function of cruising Mach number to quickly search for the

fuel-minimum stage one cruise speed while keeping computational footprint small and

ensuring RTA adherence. Compared to standard approaches to the problem utilizing

large scale linear programming approximations, the algorithm performs significantly

better from a computational complexity standpoint, providing solutions in fractional

power time while maintaining computational tractability in on-board systems.
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CHAPTER I

INTRODUCTION

The Federal Aviation Administration forecasts that there will be a 50% increase in

the number of operations at FAA managed facilities by 2025 [28]. The Next Gen-

eration Air Transportation System (NextGen) concept was developed to ensure that

air carriers will be able to continue moving people and goods safely and e�ciently

through the national airspace system (NAS) during this period of growth. The Joint

Planning and Development O�ce (JPDO), tasked with guiding and supporting the

creation of NextGen, has stated that trajectory and performance-based operations

(TBO) are a primary functional component of the NextGen concept [29]. Primarily,

four-dimensional trajectories (4DT) will be the basis for all tra�c management func-

tions across all time horizons for managing tra�c in high-density and highly complex

airspace [27]. The inclusion of 4DT-based technologies is meant to mitigate the im-

pact of increased tra�c loads on delays, cost of operation, and the environment by

improving both the aircraft’s ability to meet schedule constraints mid-flight, as well

as the ground’s ability to foresee and adjust to operational uncertainties.

A cornerstone of TBO and 4DT is the controlled time of arrival (CTA) function-

ality. From an aircraft standpoint, a CTA is enabled via use of the required time of

arrival (RTA) mode in the aircraft’s flight management system (FMS); an RTA mode

gives the aircraft the ability to self-deliver itself to an air waypoint at a predefined

time. An aircraft’s capability to manage its own arrival time to tra�c management

fixes is necessary to move forward with 4DT, specifically time-based metering ap-

plications [29]. Moreover, it has been demonstrated that an aircraft-based solution

is preferable to ground-based systems for aircraft speed management in time-based
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metering applications due to pilot preference, RTA adherence performance, and air-

ground data link challenges [90]. This preference was reinforced by later findings that

air-based RTA solutions performed as well or better than ground-based solutions,

particularly in the presence of wind forecast error [76, 35].

In the most general sense, an RTA algorithm calculates the speed schedule re-

quired to meet an assigned RTA by considering the along-track distance to the RTA

fix, a model of aircraft performance capabilities, and the forecasted winds along the

aircraft’s planned route. Assuming a constant ground speed (the simplest case), one

can view the problem as a distance vs. time calculation. The FMS first generates an

estimated time of arrival (ETA) at the RTA waypoint:

tETA =
dRTA

|v

g

|

(1)

where tETA is the ETA at the RTA waypoint, dRTA is the distance to the RTA

waypoint, and v

g

is the vector groundspeed of the aircraft. If there is a di↵erence

between the ETA and RTA at the RTA waypoint, the FMS must compute the speed

change required such that an updated ETA and the RTA coincide.

In many cases, changing an aircraft’s cruise speed in order to meet an assigned

RTA will force the aircraft to operate outside of its optimal performance envelope and

introduce operational ine�ciencies from a fuel burn standpoint [82]. For example,

consider an aircraft that is estimated to arrive late over or at an assigned RTA way-

point, the aircraft will be forced to make up time by increasing its air speed. Though

contingent on many factors including flight altitude and operating cost index1, re-

quiring a higher air speed will usually increase overall fuel consumption [68]. More

1The aircraft cost index (CI) is a carrier-specific engine operating parameter meant to weigh the
overall economic benefit of fuel burn against total flight time [72]. Ranging in values from 0 to 200,
a 0 value corresponds to a purely fuel-optimal setting [40]. In the context of a time-constrained,
fixed-path RTA operation, flight time is constrained, and a 0 setting is appropriate [68]. It should
also be noted, that traditional RTA algorithm implementations may search over a variety of cost
indices to find the absolute minimum fuel case [89]. However, the aircraft performance model used
in this work relates fuel flow to Mach number alone, and this capability is not required to find the
fuel-minimum speed.
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preferable methods are available to achieve the RTA from an air tra�c management

standpoint such as path stretching or shortening to change flight times. However,

these options are not specifically available outside of air tra�c control (ATC) inter-

vention. Therefore, this research e↵ort will focus on a fixed-path solution specifically

applicable to aircraft-based algorithms.

Due to computational power limitations, early RTA algorithm implementations

relied on simple search and estimation algorithms to find the optimal operating pa-

rameters to meet an assigned RTA [23, 32, 82]. An ETA at the RTA waypoint was

generated, and the fuel-minimum cost index and cruise speed required to meet the

RTA were determined via a grid search. The problem becomes more complicated,

however, when one considers that the groundspeed of an aircraft is not constant.

Rather, it is a function of the aircraft’s planned airspeed and the winds encountered

along the aircraft’s planned route:

v

g

= v

TAS

+ v

wind

(2)

where v

g

is the aircraft’s vector ground speed, v
TAS

is the aircraft’s true air speed

vector (the aircraft’s speed relative the air mass in which it is traveling), and v

wind

is the wind vector encountered by the aircraft at each point along the aircraft’s flight

path. Thus, the simple distance-time relationship posed in Equation 1 is complicated

by the fact that the groundspeed changes as a function of the encountered winds

along the route. More exactly, the distance flown by the aircraft over any period of

time is represented by the integral equation:

d =

Z t1

t0

v

g

·�t =

Z t1

t0

(v
TAS

+ v

wind

)�t (3)

Though the true airspeed v

TAS

is planned ahead of time in the aircraft’s flight plan,

the winds along the aircraft’s route v

wind

must be forecasted or treated as an un-

known. Inaccurate forecasted wind speeds lead to inaccurate predictions of the air-

craft’s ground speeds, and ultimately the estimated flight time to the RTA fix.
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The e↵ects of wind speed forecast errors on trajectory prediction and flight time

estimation has been thoroughly discussed in the literature [13, 61, 63, 18]. Early

RTA searching algorithms failed to account for wind speed forecast error in ETA

calculations, often times failing to deliver the aircraft to the RTA waypoint at the

required time. More recent RTA algorithm implementations use a traditional feedback

control framework to mitigate the impact flight time estimation error [74, 89]. ETA’s

at the RTA waypoint are monitored as the flight progresses, and if the di↵erence

between the ETA and the RTA grows above a certain tolerance, the RTA algorithm

recalculates the required airspeed for the remainder of the route. This approach to

aircraft-based control enables extremely accurate delivery times to the RTA fix with

delivery error on the order of 7 seconds [89]. A dead-band control approach also

allows the algorithm to address the issue of RTA required speed control on fuel burn

performance by attempting to use the minimum number of control actions required

based on the dead-band gain. However, no credence is given to the quality of the

wind forecast information used by the FMS. Again, wind speed forecast uncertainty

is handled as a disturbance to be corrected rather than proactively addressed.

More contemporary approaches to managing RTA speed control given wind fore-

cast uncertainty frame the issue as a bounding problem. The aircraft’s known speed

envelope and a stochastic wind speed and temperature uncertainty model are used

to create cones of estimated arrival times representing the earliest and latest possible

aircraft arrival time at the RTA waypoint which are then relayed to the pilot. Bound-

ing possible arrival times at an RTA waypoint allows pilots to work in coordination

with ATC to better plan required speed changes for RTA operations. However, no

new attempt is made algorithmically to minimize the fuel burn required to achieve

the assigned RTA given the range of arrival times. Work by De Menorval et. al.

suggests a more robust approach to the bounding technique by assigning probability

levels to arrival time estimates generated by the FMS [22]. This approach enables

4



the FMS to make speed control decisions based on which arrival scenarios are more

likely to occur given a range of arrival times rather than strictly bounding the possible

scenarios that may occur.

The literature suggests a move towards probabilistic and stochastic technologies

as the next-step in the evolution of FMS RTA algorithms. However, there is no

indication of a major shift in the hardware available on board the aircraft. Any solu-

tion hoping to quantify the a↵ects of wind speed forecast uncertainty in fuel-optimal

speed change decisions to enable RTA operations will need to be able to operate ef-

ficiently given a small hardware footprint. To this end, it is proposed that the RTA

speed control problem be reformulated in a two-stage stochastic framework, with a

computationally e�cient algorithm for solving the fuel burn optimization and RTA

adherence subproblems. Further, a data-driven, position-based wind speed forecast

uncertainty model will be used to generate scenario sets for the stochastic algorithm.

1.1 Thesis Organization

This research e↵ort includes two distinct yet coupled areas of focus: the wind forecast

uncertainty model and the RTA algorithm. Although the modeling of wind forecast

uncertainty is an independent endeavour, the RTA algorithm relies directly on the

model itself. Thus, the wind forecast uncertainty model is first developed in its

entirety in Chapter 2. A review of the wind forecast uncertainty modeling literature

is presented, the modeling approach is detailed, a sample model is constructed, and

selected results are presented. Development of the RTA algorithm follows separately

in Chapter 3. An introduction to stochastic programming is presented along with

relevant literature pertaining to the RTA problem, the algorithm is presented in

detail, and finally selected results utilizing wind scenarios generated using the forecast

uncertainty model developed in Chapter 2 are presented. The conclusions from this

work are presented in Chapter 4 along with summaries of both the included results

5



as well as the contribution of this work to the field given the research gaps identified

in prior chapters.
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CHAPTER II

WIND FORECAST UNCERTAINTY MODELS

The proposed solution involves recasting the RTA speed control problem as a two-

stage stochastic program, with a position-based forecast uncertainty model forming

the basis of the scenario sets for the stochastic formulation. In the general sense,

an uncertainty model is a mathematical model describing the randomness associated

with a system. As has been previously discussed, forecast wind speed values along

an aircraft’s flight path tend to di↵er from the actual wind speeds experienced by the

aircraft as it traverses its planned route. These di↵erences in observed wind speeds

versus forecast wind speeds are referred to as forecast “errors.” More generally, fore-

cast error is the observable di↵erence between a particular forecast and observation

data for the valid forecast time. Forecast error di↵ers from forecast uncertainty, which

is an estimate of future forecast error made a priori. The forecast uncertainty model

developed in this work is therefore a mathematical model that estimates the future

random di↵erences between forecast wind speeds along an aircraft’s planned route,

and what the aircraft ultimately experiences en route.

Before detailing the forecast uncertainty modeling methodology, the relevant data

sets in the field will be examined: the Rapid Update Cycle (RUC) forecast product

and the Aircraft Communications Addressing and Reporting System (ACARS) data

set. A review of the relevant literature concerning wind speed forecast uncertainty

modeling and the a↵ects of wind speed forecast uncertainty on aircraft trajectory

prediction is then presented. The gaps in the current research e↵orts to date will

then be identified, and the scope of the forecast uncertainty modeling e↵ort will be

defined. Finally, the uncertainty modeling technique will be developed in its entirety,

7



and selected results discussed.

2.1 Literature Review

2.1.1 Data Sets

2.1.1.1 The Rapid Update Cycle

Though most air carriers operate internal weather clearinghouses, many utilize the

National Oceanic and Atmospheric Administration’s (NOAA) Rapid Update Cycle

Forecast (RUC) product in some capacity. Thus, the RUC forecast product was

chosen as the basis of the uncertainty modeling e↵ort. In discussing the RUC, the

ACARS data set will be mentioned as well; specific details regarding the ACARS

data set are available in Section 2.1.1.2.

The Rapid Update Cycle is an operational mesoscale data assimilation and nu-

merical forecast system (a full specification is available from NOAA). The key aspects

of the RUC forecast product di↵erentiating it from other numerical weather predic-

tion systems are its hourly forward assimilation cycle [7], and its use of a hybrid

isentropic-terrain-following vertical coordinate for both the assimilation and forecast

model components [8], the former being of particular interest to this work. The RUC

utilizes a one hour forward intermittent data assimilation cycle to add new obser-

vations from various data sources to the current forecast model, using the previous

one hour RUC forecast as a basis for the new atmospheric model. More specifically:

new observations are compared to the previous one hour forecast to generate forecast

residuals; these residuals are then analyzed by the model to produce an estimate of

the forecast error field; this error field is then summed with the previous one hour

forecast to produce a corrected one hour model. This scheme essentially uses the RUC

forecast model in a simplified Kalman filtering framework to introduce new observa-

tions to the next hour forecast. Historically, the RUC has roots in the RUC1 model

which operated on a three hour assimilation cycle [6]. However, the data available

8



from observable sources such as rawinsondes, GPS, ship reports, surface stations, and

particularly aircraft measurements are available on an hourly cycle, meaning two-

thirds of the available observation data was lost. As a result, it was desirable to

introduce a higher-frequency forward assimilation framework. The technical details

of this framework will not be discussed as they are outside the scope of this work.

However, the use of aircraft reports as a high-frequency data source will be examined

as they are a primary component of the uncertainty modeling e↵ort.

Aircraft wind speed observations play a primary role in the current RUC frame-

work, as they have been shown to contribute significantly to forecast validity in even

the earliest data assimilation forecasts due to both the quality of their reports as well

as the volume of data available [3, 4]. However, as the distribution of aircraft reports

in both space and time is strictly dependent on the route structure of air carriers,

there is a trade-o↵ to be made between the length of the assimilation window used

in the model and the horizontal resolution that results due to that choice. Aircraft

reports span a shorter distance in space given a shorter observation window meaning

there is less geographic coverage as the length of the assimilation window is reduced;

this reduction in spatial coverage directly impacts the horizontal resolution of the

model. A further temporal error is introduced by the data assimilation method when

one considers the time of the aircraft observation to be valid at the time of analy-

sis, though observations rarely occur at the exact time of analysis. Historically, this

spatiotemporal error was accepted as a necessary evil of the data assimilation frame-

work. Observations were grouped into time windows several hours wide centered on

the analysis time of a particular forecast and considered to be valid [55, 84, 52]; these

observations were then used according to their particular assimilation scheme as if

they occurred at the time of analysis. However, as the time resolution of the assim-

ilation is increased, the error introduced by time validity of the data observations
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becomes more significant. The simplest solution to the time validity issue is to in-

crease the analysis frequency; more frequent analyses corresponds to a lower average

time di↵erence between the observation time and the analysis time. The expected

consequence of this solution is a decrease in the volume of data available for a partic-

ular analysis, thus decreasing the horizontal resolution of the model. One must also

ensure that as the assimilation window is shortened, the data density remains be suf-

ficient to ensure there are enough valid observations to correct the background model

given the desired horizontal resolution of the model [60]. Benjamin et al. examined

this phenomenon and demonstrated that the impact of the analysis time window on

spatiotemporal validity of the RUC model depends specifically on the feature being

modeled. A fast moving feature such as a jet streak (on the order of 30 m/s) was

shown to be subject to a 100 km stretching distortion with an assimilation window as

short as an hour [7]. In order to ensure the assimilation window was su�ciently short

to reduce time validity errors while remaining su�ciently large to include enough

aircraft observations to model prevalent propagating features in the atmosphere, the

middle-ground position of a one hour assimilation cycle is currently used in the RUC

model. However, improvements to the quality and quantity of available observation

data, as well as improvements to computational capabilities have led to increases in

the horizontal resolution of the RUC along its development cycle. The 1994 release

of the RUC1 provided reports at a 60 km horizontal resolution and 25 vertical lev-

els; this work will make use of the RUC20 product, released in 2002, which provides

reports at a 20 km horizontal resolution and 50 vertical levels.

Several researchers have explored the accuracy of the RUC versus both archived

and live aircraft wind speed reports. Cole et al. performed the first comprehensive

review of the RUC model in 1998 [15], in which aircraft wind speed reports from

the Meterological Data Collection and Reporting System (MDCRS) from a 1300 km

wide region encompassing the Denver center airspace were compared to the RUC1
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forecast over a one year period. The RUC1 was found to exhibit an RMS vector

error of 6.74 m/s, with a median error vector of 4.99 m/s. The 90th percentile error

vector was shown to be 10.18 m/s with roughly 11% of the RUC error vectors being

larger than 10 m/s. For air tra�c management purposes, peak errors of greater than

approximately 7.7m/s were found to be detrimental to trajectory prediction purposes

as the aggregate position error over a 20 minute prediction becomes larger than the

5 nautical mile minimum en-route radar separation distance [33, 69]. Of greater

importance, however, were the correlation amongst errors within the region. For level

flights of 20 minutes at 400 kts, the RUC1 demonstrated a linear correlation coe�cient

of approximately 0.45. Uncorrelated wind speed errors will tend to change sign along

the route, ultimately canceling the e↵ect of the error on flight time prediction over the

course of the flight. However, correlated error values tend to compound not only as a

function of the spatial correlation term, but also the reference time along which they

are considered; the longer the flight time, the more significant the e↵ect of correlated

errors on flight time prediction [16, 17].

Schwartz et al. performed a later study of the RUC2 40 km resolution grid [78].

Wind speed reports from the ACARS data set were compared to RUC2 forecasts for

the same time period and airspace as the Cole study [15]. The RUC2 model showed

slight improvement of RMS error vectors, with daily mean RMS values improving

roughly 10%. This improvement, though small, was considered to be statistically

significant given the large number of ACARS reports used as well as the fact that

ACARS observations are unbiased with respect to the forecast error of the RUC

model. A more interesting result, however, was that the distributions of errors be-

tween the RUC1 and RUC2 models were found to be independent, implying that as

model improvements are made, the uncertainty characteristics of the RUC model will

change. The Schwartz study further found that seasonal a↵ects exist between summer

and winter months with the seasonal movement of the jet stream, with higher RMS
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error vectors during the winter months.

2.1.1.2 The Aircraft Communications, Addressing, and Reporting System

United States air carriers have implemented a fully automated meteorological re-

porting system via a communications system called the Aircraft Communications,

Addressing, and Reporting System (ACARS). Relying primarily on air-ground VHF

radio links, aircraft are able to report meteorological conditions to ground stations

that cover a majority of the U.S. airspace (though newer aircraft are able to make

use of satellite communication links). Key parameters of these observation include:

• Longitude and latitude (tenth of a minute).

• Time (nearest minute).

• Temperature (nearest tenth of a degree).

• Flight level (pressure altitude to the nearest hundred feet).

• Wind direction (nearest degree).

• Wind speed (nearest knot).

As introduced in Section 2.1.1.1, these meteorological reports play a key role in both

the ongoing development and validation of numerical forecast systems such as the

RUC. Accordingly, the accuracy and best use practices of these reports are of key

interest when considering ACARS reports for any sort of modeling e↵ort.

Initial studies of wind speed measurements from ACARS equipped aircraft com-

pared observations from collocated aircraft to rawinsonde measurements in order to

provide an upper bound limit on ACARS measurement variability [77]. Observations

from ascending and descending aircraft separated by less than 150 km and 90 minutes

in time were shown to exhibit wind speed observational variation of 5.76 m/s across

4440 matched data pairs. This variability was further reduced to 4 m/s when only
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data pairs separated by less than 25 km and 15 min were considered, and reduced

further still to 2.84 m/s when only considering the “best” sample set. It should be

noted by the reader, however, that this measured error reflects contributions from

three known sources: rawinsonde measurement and reporting error, aircraft measure-

ment and reporting error, and mesoscale variability in wind speeds. Of key interest

to this work, is the contribution due to aircraft measurement and reporting error

(i.e., the error specifically inherent to the ACARS observations themselves). ACARS

equipped aircraft compute wind speed observations by comparing the motion vector

of the aircraft with respect to the earth as given by the inertial navigation system

(INS), to the motion vector of the aircraft with respect to the air as given by the

total airspeed and heading measurements. This methodology has been demonstrated

to provide high accuracy measurements of wind speed on the order of 0.5 m/s [66].

INS wind speed measurements are also heavily influenced by aircraft maneuvers, how-

ever. Bisiaux et al. demonstrated significant measurement errors for maneuvers in

which the roll angle exceeded 5� [11]. At the time of the 1995 Schwartz study dis-

cussed above [78], the ACARS data set contained no indicator of the aircraft’s roll

state. Nonetheless, the authors concluded that error due to ACARS wind speed cal-

culations contributed far less to total error calculation than both rawinsonde and

mesoscale a↵ects, and that ACARS wind speed errors were likely on the order of the

INS limits posed by Nicholls. This conclusion was later confirmed during the RUC

verification studies discussed in Section 2.1.1.1, by which time an aircraft roll indica-

tion flag had been added to the ACARS standard. In the 1999 verification studies,

Benjamin et al. found estimated ACARS wind speed report errors on the order of

1.1 m/s [9].
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2.1.2 Forecast Uncertainty

By virtue of the data assimilation modeling methodology used to generate RUC fore-

casts, the forecast itself will never exactly match observation values. The tradeo↵

between spatial resolution and analysis time discussed in Section 2.1.1.1 results in a

model that is unable to represent phenomena of every length and time scale present

in nature. This behavior is evident in an examination of the error correlation results

described by Cole et al. [15]. The Cole study calculated the correlation between

RUC errors as a function of observation separation distance then fit an exponential

function to the resultant data. The specific correlation values from this study are

not available. However, the exponential fits are presented in Figure 1 (the results

are presented in terms of the u and v directional components unique to the RUC).

Of importance in Figure 1 are the correlation values as the separation distance ap-
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Figure 1: RUC error correlations as a function of observation separation.

proaches zero. By definition, one would expect the correlation between collocated

errors to approach unity. This discrepancy is the result of smaller scale atmospheric
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features not being captured by the model. The observation network, in this case a

series of aircraft reports, is not of su�cient horizontal resolution to describe smaller

scale features. Mondoloni provides a description of the phenomenon as follows [61]:

consider a network of K observation stations with multiple observations O and ref-

erence forecast values F . The correlation between observation errors at two stations

` and m can be calculated:

⇢`,m =
(O` � F`)(Om � Fm)

p

(O` � F`)2(Om � Fm)2

where the observation values O` and Om include any sensor error. A third variable

T is now introduced to represent the “true” value of the observation at a station k.

It should be noted that T only represents the “true” value of those components of

the time and distance spectrums able to be captured by the RUC. Observation and

forecast error terms can now be found:

E2
O =

1

K

K
X

k=1

(Ok � Tk)2

E2
F =

1

K

K
X

k=1

(Fk � Tk)2

These error terms necessarily include error due to the inability of the RUC to rep-

resent smaller scale phenomenon together with measurement errors. The correlation

function is now expanded:

⇢`,m =
[(O` � T`)� (F` � T`)][(Om � Tm)� (Fm � Tm)]

p

[(O` � T`)� (F` � T`)]2[(Om � Tm)� (Fm � Tm)]2

If one further assumes that the forecast errors are uncorrelated with measurement

errors, the correlation function can be further simplified:

⇢`,m =
(O` � T`)(F` � T`) + (Om � Tm)(Fm � Tm)

E2
O + E2

F

If the errors are considered to be homogeneous, and the station measurement errors

uncorrelated in space, the limit of the correlation as the distance r between stations
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the station ` and m reduces:

lim
r!0

⇢(r) =
E2

F

E2
O + E2

F

(4)

The result found in Equation 4 demonstrates the paradox that results by neglecting

to account for smaller scale e↵ects present in the atmosphere; this error is referred to

as error of “under-represented scales” or “representativeness.”

Three sources of error in the RUC forecast product have been presented to this

point:

• Sensor error in predominantly aircraft-based atmospheric observations on the

order of 1 m/s.

• Error introduced by the trade between assimilation window length, data density,

and observation time (discussed in Section 2.1.1.1).

• Error of representativeness due to the density of the observation grid (the reader

should note that error of representativeness is coupled with error due to the as-

similation scheme, as the assimilation window length will determine the possible

density of the observation grid when using aircraft observations).

Several techniques have been developed to minimize the e↵ects of model scale and

representativeness, a prominent approach being the time-lagged ensemble forecast. A

time-lagged ensemble forecast is simply a weighted mean of time-lagged deterministic

weather forecasts valid for the same time. Posed originally by Ho↵man and Kalnay

in 1983 [36], ensemble forecasts address both error due to the assimilation scheme

and error of representativeness by incorporating observations from multiple analysis

time windows. Modeling errors introduced by the data assimilation scheme tend

to be blunted by the averaging of multiple forecasts, and the density of the e↵ective

observation grid is increased as more forecasts are added. Multiple weighting schemes

have been introduced, two of which have been explored specifically with the RUC
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forecast product. Lu et al. examined the improvement in time-lagged ensembled RUC

forecasts for both a simple arithmetic mean and optimized weighting scheme using

a linear regression model to minimize the forecast error as compared to a reference

“truth” [57]. This study found that both methodologies were e↵ective in their ability

to reduce random model error due to data assimilation. However, the regression

technique was more capable by virtue of giving higher preference to those forecasts

which performed better when compared to observation data.

Though forecast ensembles provide a means of diminishing the impact of forecast

errors of scale and representativeness, the question of the forecast uncertainty remains

unanswered. The simplest approach to modeling forecast uncertainty is to simply

express forecast error in terms of root mean square statistics for the forecast product

being used, an approach common in aircraft conflict prediction [49]. However, root

mean square statistics fail to completely quantify the uncertainty characteristics of a

forecast models like the RUC, as they neglect the spatial correlation of forecast errors

due to under-represented scales [34]. Admittedly, a model of the forecast error spatial

correlation is the prohibiting factor in many of the research e↵orts to date:

“[A]lthough known to be a critical issue in aircraft conflict prediction, the

wind spatial correlation [of forecast errors] is largely ignored in the current

literature, probably due to the di�culty in its modeling and analysis.” [39]

As a result, a standard approach to modeling forecast uncertainty is to assume some

stochastic distribution of future forecast errors, usually in the form of a Gaussian or

Brownian random field with various correlation structures. Often times the choice

in this correlation structure is dependent entirely on the end-use of the uncertainty

model. In aircraft conflict detection, for example, the geometry of an individual

conflict scenario may determine the correlation parameters used for the uncertainty

model [39]. Other times, the choice in correlation structure is based on the desired

complexity of the model. In the simplest case, forecast errors may be completely
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uncorrelated (i.e., truly random) [12, 24]. In more complex implementations, forecast

errors can be correlated in space alone [39], or in both space and time[58, 14, 88, 59].

Interestingly, regardless of the particular correlation scheme chosen, the authors of

these works tune their models to produce the same RMS error statistics produced by

the Cole’s study of the RUC forecast.

A more complete forecast uncertainty model was proposed by Mondoloni in 2006

in order to address the multiple sources of forecast error [62]. Mondoloni’s solution

describes forecast uncertainty as a sum of three random components, each character-

izing a di↵erent type of forecast error:

werror = "R + "S + "L

where werror is the total wind speed uncertainty, "R is the error due to representa-

tiveness of the model, "S is the prediction error in those features capable of being

modeled at scale, and "L is a large-scale constant model bias. The model continues

by further assuming a correlation structure for each component: the error due to

underrepresented scales is modeled as a zero-mean process with a time correlation

function based on the density of the observation network; the prediction error at

modeled scales is modeled as another zero mean process with a correlation structure

based on work by Hollingsworth and Lönnberg [37]; and the large scale error is mod-

eled as a constant sampled from a normal distribution with a specified variance. Via

Monte Carlo simulation, Mondoloni demonstrated that this decomposition approach

provides forecast error distributions similar to those described by Schwartz et al. [78].

Though decomposing forecast uncertainty into separate processes based on the

error scale provides results more consistent with the RUC validation studies, it fails

to address the issue of localization. A more recent study by Lee et. al compared

flight time predictions along paths through ensembled RUC forecasts to examine the

a↵ects of RUC uncertainty on trajectory prediction error. Though not the focus of the

study, Lee demonstrated that di↵erent paths through the airspace exhibit di↵erent
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uncertainty characteristics [51]. Moreover, the RUC forecast exhibits highly regional

uncertainty characteristics that have not yet been captured. The majority of works

to date rely on the results of the Cole and Schwartz RUC verification studies as the

basis for any wind speed forecast uncertainty model. However, tuning an uncertainty

model to fit the RMS statistics for one region is not acceptable for every application,

particularly long-scale trajectory prediction in which an aircraft will traverse several

unique regions of the RUC model.

Recent work by Zheng and Zhao has attempted to address the issue of regional

variations by using weighted ensembles of forecast error statistics [91]. Zheng and

Zhao propose a non-Gaussian random field composed of weighted sums of historical

forecast errors at certain “look ahead” distances and two purely random compo-

nents to represent measurement errors in the nominal wind speed as well as modeling

errors. Again, however, the authors assume that forecast uncertainty correlation is

represented by an exponential curve as discussed in reference to Figure 1. Specifically,

forecast error records falling within the characteristic correlation length (found to be

between 250 m to 350 m) are summed with the weights being inversely proportional

to the distance from the local point squared. As a result, the model is inherently non-

stationary as one sums the contributions of neighboring measurements while moving

along a specified path.

2.2 Research Gaps

Though the error characteristics of the RUC forecast have been studied extensively,

an uncertainty model capturing both errors in model scale and representativeness

as well as the unique geographical characteristic of the RUC model is still lacking.

RMS statistics and Gaussian random field models are completely appropriate for

short range trajectory predictions such as those used for conflict detection, but are

not satisfactory when considering long scale trajectory predictions through several
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regions of the national airspace system. There is a clear need for a forecast uncertainty

model that not only addresses the issues of model scale and representativeness, but

also captures the unique regional uncertainty characteristics of the RUC forecast.
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2.3 Modeling Methodology

Given the need for a position-specific forecast uncertainty model as identified in Sec-

tion 2.2, focus must now shift to defining a methodology that produces an uncertainty

model that captures the e↵ects of multiple model scales including error of representa-

tiveness while also adequately capturing the regional error correlation characteristics

of RUC forecasts. Again, consider the end-use scenario for forecast uncertainty model,

an aircraft in cruise: there exists a flight plan detailing the aircraft’s future planned

path, a RUC wind speed forecast along this route, and a measure of the current wind

speed at the aircraft’s current and past positions. The forecast error vector at any

point along the flight path can be defined as:

" = w

forecast

�w

actual

, (5)

if the sensor error is assumed to be small in comparison to the magnitude of the

forecast wind speeds. Now consider the contents of the RUC and ACARS data

sets: the RUC provides wind speed forecasts for the cruise regime, and the ACARS

data set provides historical aircraft flight paths through the national airspace system

(NAS) with corresponding wind speed measurements at selected points along those

paths. One can construct a series of forecast error measurements " by comparing

RUC forecast values w
forecast

with corresponding ACARS wind speed measurements

w

actual

at di↵erent points within the NAS, e↵ectively recreating the data set used in

the RUC verification studies but on scale much larger than the Denver TRACON area

[15, 78]. This technique was used by the author in 2009 to examine the regional error

characteristics of the RUC forecast on a NAS-wide scale [86]. Though this technique

was successful in identifying a tendency of the RUC to overemphasize the contribution

of the jet stream in certain regions, a major shortcoming of this technique was again

a lack of any understanding regarding the correlation between error measurements

as a function of position within the NAS. As the issue of error correlation remains
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a path-specific problem, any analysis must consider specific paths through regions of

the NAS rather than simply the aggregate statistics of those regions.

Conveniently, air carriers tend to follow very similar routes through the NAS

depending on the origin and destination airport pair of a given flight, meaning ACARS

flight data tends to be clustered along very similar ground tracks when considering a

specific origin-destination pair. By approaching the error analysis from a route-based

standpoint, it is possible to generate a series of wind speed measurement strings along

very similar ground tracks. These measurement strings can then be compared to the

corresponding RUC forecast to produce a series of wind speed errors linked to the

origin-destination pair. More importantly though, as each ACARS flight is considered

in totality rather than as contributing independent wind speed measurements, there

are now measurements of prior and future forecast errors at di↵erent points along

a common route for individual flights. Given a su�ciently large data set, one can

construct an uncertainty model that leverages this time history of error transitions

as a function of position; a Markov chain is well-suited to this task.

2.3.1 A Markovian Approach

Let S be a countable set, with each s 2 S representing a state. A state s is a

discrete interval on the range R = [�a, a] where R contains q individual states

s. For example, if R = [�5, 5] with q = 5 states, S contains the state intervals

{(�5,�3], (�3,�1], (�1, 1], (1, 3], (3, 5]}. In the context of the forecast uncertainty

model, each forecast error value calculated by comparing a RUC forecast wind speed

with an archived ACARS measurement can be mapped to a state interval s. Using

the prior example of R = [�5, 5] with q = 5 states, an error value " = �0.5 maps

to state s3 = (�1, 1]. It is important to note that a state s refers to a mapped bin

in S representing a range of forecast error values and not a position along an origin-

destination route. Continuing, � = (�s : s 2 S) is considered to be a measure on S if
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0  �s  1; furthermore, if
P

s2S �s = 1, � is a distribution of S.

Now consider a random variable X in a probability space (⌦,F ,P), where X holds

values in S as a function X : S ! ⌦. If:

�s = P(X = s) = P({w : X(w) = s})

then � defines the distribution of X. That is to say, X models forecast error as a

random state which takes value s with a probability �s.

A matrix P = (pi,j : i, j 2 S) is said to be stochastic if every row (pi,j : j 2 S) is a

distribution. A Markov chain (Xn)n�0 is now defined as a stochastic process holding

the following properties in terms of a stochastic transition probability matrix P and

initial distribution �:

1. P(X0 = s0) = �s,0

2. P(Xn+1 = sn+1|X0 = s0, . . . , Xn = sn) = psn,sn+1

for n � 0 and every s0, . . . , sn 2 S. (Xn)0�n�N is Markov(�, P ) if (Xn)0�n�N is a

sequence of random variables satisfying (1) and (2) above for n = 0, 1, . . . , N � 1. In

other words, a Markov process has (1) an initial state distribution X0 = � and (2) for

n � 0, Xn+1 has distribution (pi,j : J 2 S) conditional on Xn = s and independent of

X0, . . . , Xn�1. Formally, we can state that a Markov chain holds the Markov property:

Theorem 2.3.1 Let (Xn)n�0 be Markov(�, P ). Then, conditional on Xm = s,

(Xm+n)n�0 is Markov(�i, P ) and is independent of the random variables X0, . . . , Xm.

In the simplest terms, a Markov chain is defined by a set of states S = {s1, s2, . . . , sn}.

The chain starts in one of theses states and moves successively between these states

over a series of steps. If the chain is in state si at step n, then it moves to state

sj at step n + 1 with probability pi,j. The Markov property (Theorem 2.3.1) holds
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that pi,j is independent of the chain’s state at any prior step. Howard illustrates a

Markov chain as a frog jumping between a series of lilly pads; the frog begins on one

pad, then proceeds through a series of neighboring pads based solely on the pad he

currently occupies [38].

Recall that distributions and measures � are merely row vectors, indexed by a

state s 2 S, and the transition probability matrix P is simply a matrix indexed by

indices on S ⇥ S. Given S is finite, the states si can be indexed 1, 2, . . . , N , meaning

� is simply a 1 ⇥ N vector and P an N ⇥ N matrix. Matrix multiplication can be

extended to define new measures �P and and a new matrix P 2 [67]:

Definition (�P )j =
P

i2S �pi,j

Definition (P 2)i,k =
P

j2S pi,jpj,k

where P n follows similarly for any n. Using these definitions, P 0 refers to the identity

matrix I, and pni,j = (P n)i,j refers to the (i, j) entry in P n. Extending this notation,

the n� step transition probability from state i to state j follows:

Definition P(Xn = j) = (�P n)j

Definition P(Xn+m = j|Xm = i) = pni,j

given (Xn)n�0 is Markov(�, P ) for al n,m � 0. In other words, the (i, j) entry of

(P n)i,j = pni,j, gives the probability that the Markov process starting in state i will be

in state j after n steps. Constructing a Markov process therefore requires a means of

calculating state transition probabilities pi,j.

The problem as described thus far, is to define an uncertainty modeling method-

ology that produces a model capturing the e↵ects of multiple model scales including

error of representativeness as well as the regional characteristics of RUC forecasts.

In its base form, a Markovian model is capable of representing localized error due to

model scales and representativeness based on construction. Imagine a route through
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the NAS comprised of a series of waypoints. The distance between these waypoints

may vary, allowing for closely grouped waypoints during one phase of the route, and

wider spaced waypoints at other points of the route. Research e↵orts to date, such

as those discussed in Section 2.1.2, have considered the correlation intensity of wind

speed forecast errors to fit the same exponential function presented in Figure 1. As

a result, the correlation of forecast errors is based solely on the distance between

two points, not the region in which the waypoints exist; closely grouped waypoints

will always exhibit a high correlation of forecast errors regardless of whether or not

that characteristic is present. Furthermore, recall that data density is a driving fac-

tor in both genesis of model scale errors as well as the correlation of forecast errors

along paths through the NAS. The exponential correlation assumption relied on to

date must therefore assume equivalent data densities through di↵erent regions of the

NAS; this idea has been thoroughly contradicted in the RUC literature. Conversely,

a Markov model can be constructed such that only sequential forecast error calcu-

lations between two specific waypoints are used. One can consider this construction

to be analogous to varying the correlation length of the model as a function of route

progress and location.

Given a sample route of N waypoints, ACARS flight tracks based on origin-

destination airport pair are examined to provide wind speed forecast values su�ciently

close to the waypoints comprising the sample route. These forecast error values are

then assigned an error state s based on the state space definition S, and state transi-

tion probabilities pi,j are calculated by tracking the error states of individual flights

as they progress through the sequence of waypoints {1, 2, . . . , N} thus forming the

state transition matrix P . In order to determine the probable error state at a way-

point n along the sample route, one would simply need to calculate P n, where n is

the n-th waypoint in a sequence of waypoints along the sample route {1, 2, . . . , N}.

This method, however, assumes a homogeneous model. Specifically, the transition
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probabilities pi,j are a function of the entire route and not the unique sequence of

waypoints comprising the route (i.e.: P is constant). An assumption of homogeneity

thus eliminates the need to examine the uncertainty characteristic as a function of

both correlation length and region, as the forecast error transition probability char-

acteristics between regions are confounded as are the characteristics of di↵erent route

leg lengths. As the purpose of the Markovian approach was to examine unique error

correlation lengths in di↵erent regions of the NAS, an inhomogenous model making

use of unique waypoint-to-waypoint state transitions must be constructed.

Given the same series of N waypoints through the NAS and identical forecasts

error values clustered by waypoint, a series of unique transition probability matrices

(P n,m)m�n are defined [42]:

Definition (P n,m
i,j ) =

P

`2S p
n,(m�1)
i,` pm`,j

where P n,n refers to the identity matrix I. Instead of a single transition proba-

bility matrix governing the evolution of the change for all steps n 2 {1, 2, . . . , N}

waypoints, the inhomogeneous chain is constructed using a sequence of transition

probability matrices tied to the unique sequence of air waypoints. Consider a sam-

ple route of waypoints {A,B,C} indexed {1, 2, 3}, the inhomogenous model con-

sists of three unique transition probability matrices considering forward-only travel:

{P 1,2, P 2,3, P 1,3
}. P 1,2 and P 2,3 are constructed by examining ACARS flight tracks

between waypoints {A,B} and {B,C} respectively in the same manner as the ho-

mogeneous model. P 1,3 could conceivably be constructed in the same manner by

comparing forecast error measurements between waypoints {A,C}. However, doing

so removes the influence of waypoint B on the model. Alternatively, P 1,3 is deter-

mined as the matrix product of the sequence of transitions P 1,3 = P 1,2P 2,3
6= P 3,2P 2,1,

allowing the chain to evolve as a function of visited waypoints along the route. Form-

ing such transition probability matrices using ACARS flight tracks and archived RUC

forecasts is detailed in the following section.
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2.3.2 Data Mappings

Background information regarding the RUC forecast product and ACARS meteo-

rological data archives were presented in Sections 2.1.1.1 and 2.1.1.2 respectively.

Technical aspects associated with mapping ACARS wind speed measurements into

the RUC domain are detailed in this section, along with the methodology used to

generate wind speed forecast error measurements that are subsequently used to cal-

culate the Markov transition matrices introduced in Section 2.3.1. The Rapid Update

Cycle (RUC) forecast product encompasses a suite of wind speed forecasts varying

in horizontal and vertical resolutions. This research e↵ort utilizes the RUC20 fore-

cast, which provides wind speed forecasts on a 20 km grid at 50 vertical levels (a full

specification is provided by in [5]).

2.3.2.1 Horizontal Resolution

The RUC20 provides data in the form of gridded arrays across 50 vertical levels. These

arrays map to a specific spatial domain defined by a Lambert conformal projection,

referred to as the Advanced Weather Interactive Processing System (AWIPS) 252

grid. A Lambert conformal projection seats a cone over a geodetic datum spheroid

representing the Earth and projects from the Earth datum to the cone conformally,

meaning angles are preserved. The cone is then “unrolled” resulting in the projected

surface. The details of the projection method itself are not presented, as it is beyond

the scope of this work. However, there is su�cient literature on the topic available

to the reader. There are also several industry standard open source computational

libraries such as PROJ.4 available for this task. The World Geodetic System (WGS)

84 Earth specification is used as the geodetic datum for the Lambert projection;

WGS84 is the same datum used by the Global Positioning System. The AWIPS

252 grid provides total coverage of the continental United States across its 301⇥225

domain, with a nominal grid length of 20.317 km at 25� N latitude; the extents of the
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AWIPS 252 grid are illustrated in Figure 2 [64] and the parameters of the Lambert

conformal projection are provided in Table 1. The reader should note the di↵erences

between the East and North directions measured relative to the parallels meridians

as compared to the grid-relative East and North directions, referred to herein as the

u and v directions. At any point in the grid, if one were to travel due East along a

parallel, this travel would correspond to a projected path of travel in both the u and

v directions, whereas the Earth-centric travel would feature no Northern component.

This e↵ect is a direct result of the varying map-scale factor of the projection and

becomes more significant as one approaches the projection boundaries. Consequently,

any vector values measured in an AWIPS 252 centric coordinate system must first

be rotated before they are compared to East-North centric vector values. Wind

speed values in a RUC20 grid are provided at grid vertices in terms of u and v unit

directional components. Contrary to meteorological convention in regards to wind

directional notation, the resultant vector giving wind speed and direction:

w

forecast

= u · u+ v · v

points in the direction of the wind, as opposed to the conventional notation in which

the directional vector points in the direction from which the wind is blowing. Finding

the forecast wind at a local point (lat, lon) thus requires interpolating the wind speed

values at the four grid vertices surrounding the local point. First, the point (lat, lon) is

mapped into the AWIPS 252 domain using the Lambert conformal projection defined

in Table 1 producing a point (x, y). The neighboring grid vertices and corresponding

wind speed forecast values are easily found:

n1 = (bxc, byc)! w

1

= u1 · u+ v1 · v

n2 = (bxc, dye)! w

2

= u2 · u+ v2 · v

n3 = (dxe, dye)! w

3

= u3 · u+ v3 · v

n4 = (dxe, byc)! w

4

= u4 · u+ v4 · v
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Figure 2: The AWIPS 252 grid.

Table 1: AWIPS 252 grid projection parameters.

Parameter Value
Nx 301
Ny 225
Dx 20.317625 km
Dy 20.317625 km

Longitudinal Axis -95� E
Latin 1 25� N
Latin 2 25� N

Grid Corner (1,1) (16.281� N, 126.138� W)
Grid Corner (1,225) (54.127� N, 139.856� W)
Grid Corner (301,225) (55.481� N, 57.383� W)
Grid Corner (301,1) (17.340� N, 69.039� W)
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A bilinear interpolation is then used to find the u and v components of the wind at

the local point (x, y):

u

x,y

= [u1(1��x)(1��y) + u2(1��x)�y + u3�x�y + u4�x(1��y)] · u

v

x,y

= [v1(1��x)(1��y) + v2(1��x)�y + v3�x�y + v4�x(1��y)] · v

where �x = x � bxc and �y = y � byc. Due to the varying map scale of the

Lambert conformal projection and its e↵ects on u and v relative to East and North,

it is necessary to provide a further correction with respect to the wind speeds at the

neighboring vertices. First, the wind speed at the local point (x, y) is interpolated

using the wind speeds at the neighboring vertices:

sx,y = |w

1

|(1��x)(1��y) + |w

2

|(1��x)�y + |w

3

|�x�y + |w

4

|�x(1��y)

A correction factor is then calculated:

Ks =
sx,y

|u

x,y

+ v

x,y

|

The local wind speed vector at a point (x, y) follows:

w

x,y

= Ks(ux,y

+ v

x,y

) (6)

The result derived in Equation 6 returns the local wind speed at a point (x, y) in terms

of the unit directional vectors u and v relative to the Lambert conformal projection

of the AWIPS 252 grid. A further transformation is required in order to represent

the local wind speed at (x, y) in terms of East and North directional components e

and n relative to the original candidate point (lat, lon) [25]. The rotational constant

is first defined in terms of the AWIPS 252 projection parameters:

r = sin(25�)

where 25� N is the Latin 1 projection tangent at which the AWIPS 252 projection

is true. The local rotation angle is then calculated based on the distance from the
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local point (lat, lon) from the longitudinal axis of the AWIPS 252 grid (the meridian

aligned with the Cartesian x-axis):

✓2 = r(lon� (�95))

The local wind speed at a point (lat, lon) in terms of local East and North directional

components e and n follows:

elat,lon · e = cos(✓2)(wx,y

· u) + sin(✓2)(wx,y

· v)

nlat,lon · n = �sin(✓2)(wx,y

· u) + cos(✓2)(wx,y

· v)

leaving the local wind speed at a point (lat, lon):

w

lat,lon

= elat,lon · e+ nlat,lon · n (7)

The reader should again note that the vector result presented in Equation 7 provides

a vector result that points in the direction of the wind.

2.3.2.2 Vertical Resolution

RUC20 gridded data is available at 50 vertical levels organized by pressure layer

relative to a standard atmosphere. Calculating the wind speed at a specific location

(lat, lon, altitude) is simply a matter of mapping the desired pressure altitude (or

flight level) to the corresponding pressure in a standard atmosphere, locating the two

neighboring data grids surrounding the local pressure altitude, interpolating the local

wind speeds longitudinally in each of the neighboring data grids using the method

defined in section 2.3.2.1, then linearly interpolating on pressure altitude between the

layers.

2.3.2.3 Direction and Time

To this point, two facets of the forecast error calculation have not been discussed:

the direction vs. magnitude of forecasted and actual wind speeds, and the time refer-

ence of the RUC20 forecast releases. Wind speeds are expressed as vector quantities
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with a speed and direction. A Markov model describing the uncertainty in a wind

speed forecast model must necessarily be bivariate in order to encompass both values.

Accordingly, this research e↵ort will generate two individual models in terms of the

Eastern component of the wind speed forecast error along the e unit direction defined

in Section 2.3.2.1, and the corresponding Northern component of the forecast error

along the n unit direction also defined in Section 2.3.2.1. As a result, the Eastern and

Northern components of the Markov uncertainty model are inherently decoupled. As

the end use of the model is longer term trajectory prediction in the en route regime,

and local vorticity (the mixing of directional components of the wind) is largely a

localized e↵ect, a decoupled model should provide reasonable results as any ignored

vorticity will not compound over the course of a tracked flight route.

The time component of RUC20 forecast releases also provides another interesting

consideration. Forecast release time and relative forecast age were introduced in

Section 2.1.2 while discussing ensembled forecasts. As a review, an individual forecast

has a release time and a valid time relative to the forecast release. For example, a

RUC20 forecast released at 00:00 GMT will contain wind speed forecasts in one hour

increments until 06:00 GMT, leaving six valid forecast times for the 00:00 GMT

forecast release (i.e.: the 00:00 GMT 1-hour forecast is valid from 00:00 GMT to 1:00

GMT, the 00:00 GMT 2-hour forecast is valid from 1:00 GTM to 2:00 GMT, etc.).

The rolling structure of the RUC20 forecast cycle two extreme paths through the time

history of RUC20 releases. The first path holds the forecast release static, considering

each of the hourly forecasts associated with that release to provide w

forecast

values

for the model. This scenario can be considered analogous to a pilot loading a wind

speed forecast before taking o↵ and not updating the wind speed forecasts at any

point along the route. The second path only considers the 1-hour release of each new

RUC20 release. Every hour, the freshest forecast release is used to provide a one hour

forecast. Conversely, this scenario is analogous to a pilot updating the forecast wind
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speeds as soon as the newest RUC20 forecast is released. From this point forward, a

model using the former scenario will be referred to as the “base” case, and a model

using the latter scenario will be referred to as the “updated” case.

2.3.3 A Sample Construction

As discussed at the beginning of Section 2.3, air carriers tend to follow common

routes through the NAS between origin and destination airports. This practice re-

sults in large concentrations of ACARS flight tracks (and ultimately forecast error

measurements) along similar ground tracks between origin and destination airport

pairs. Given the methodologies defined in Sections 2.3.1 and 2.1.1, it is possible to

construct an inhomogeneous Markovian RUC forecast uncertainty model along a com-

mon route, such as the model for the route between Seattle’s Tacoma International

Airport (KSEA) and Hartsfield-Jackson International Airport in Atlanta (KATL)

that is presented in this section. First, the route itself as well as data considera-

tions are discussed; calculation of the transition probability waypoints between the

route waypoints then follows; a visualization of the Markov chain probabilities and a

simulated wind scenario along the route are then discussed in closing.

2.3.3.1 The Data Set

In order to generate a su�cient number of usable data points to calculate Markov

transition probabilities, a large volume of RUC-matched data pairs is required. Ac-

cordingly, this study considers three years of ACARS flight tracks between each ori-

gin and destination pair, recorded between January 1, 2008 and December 31, 2010.

However, the data set must first be sanitized to ensure only data points meeting the

following criteria are included:

1. Measurement occurs during the cruise portion of the flight.

2. Measurement passes all ACARS quality control checks for temporal and spatial
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validity.

3. Measurement is recorded while the aircraft maintains a roll angle of less than

5� as advised by Biseaux et al. [11]

Sanitation of the data set leaves a total of 2,797 remaining flights tracks for the

sample scenario of a flight from KSEA to KATL for the three year period. A further

consideration must be lent, however, to the pairwise proximity of the remaining flight

tracks. Though commercial operators tend to follow similar routings between an

origin and destination pair, exogenous factors such as storms or congestion may lead

to deviation from the standard track. The RUC-matched ACARS data density as a

function of RUC grid cell is illustrated in Figure 3, where the heat of the individual

cell is a function of how many ACARS data points fall within each individual cell.

As a band of flight tracks exists along the Northern most edge of the KSEA to KATL

flight tracks, the sample route is constructed such that the route follows a ground

track through this data-dense region. Constructions for routes between other origin

and destination airport pairs must follow a similar methodology; the data available

along routes between the pair is first examined, then a candidate path is constructed

through data dense regions. Though not a universal solution, this approach both

ensures su�cient data coverage for calculating the Markov chain as well as satisfies

the intended end-use case of the uncertainty model for an aircraft in cruise.
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Figure 3: RUC-matched ACARS data density in RUC cells along the KSEA to KATL route.

35



Table 2: Sample route used to construct uncertainty model for flights between KSEA
and KATL.

Waypoint Latitude (�N) Longitude (�E) Length (nm) Heading (�)
MWH 47.2108633 -119.3168167 306.790 102.7
HIA 45.8616667 -112.1697222 224.602 104.0
SHR 44.8422222 -107.0611111 71.503 114.0
GCC 44.3477778 -105.5436111 265.048 111.8
ANW 42.5691667 -99.9897222 176.084 123.0
LNK 40.9238889 -96.7419444 101.298 124.2
STJ 39.9605556 -94.9252778 259.156 120.4
FAM 37.6733333 -90.2341667 194.014 117.2
BNA 36.1369722 -86.6847778 N/A N/A

2.3.3.2 Lateral Path Construction

Though not necessarily a function of the forecast uncertainty model, route construc-

tion must first be discussed in order to give context to the end-use case of the model.

As the model is position-based and tied to a specific ground track, considerations

regarding the construction of the track itself should first be explored as they will ul-

timately impact the model itself. Flight routes are defined in an aircraft’s flight plan

as a series of latitude and longitude tuples describing the location of standardized

waypoints or navigation aids. The flight plan does not describe the intended lateral

path of the aircraft exactly, but rather serves as a series of locations the aircraft must

visit (either closely or exactly) along its route. The flight management system calcu-

lates the aircraft’s intended ground track given the route waypoints supplied by the

flight plan, e↵ectively constructing the entire route to be flown by the aircraft on a

point-to-point basis. A route for the sample scenario of a flight between KSEA and

KATL is presented in Table 2 as a series of waypoints, and is further illustrated in

Figure 4.
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Figure 4: KSEA to KATL sample route in terms of standard waypoints.
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Table 3: Sample route segments used to construct uncertainty model for flights
between KSEA and KATL.

Start Finish Shortest Length (nm) Heading (�)
MWH HIA 306.790 102.7
HIA SHR 224.602 104.0
SHR GCC 71.503 114.0
GCC ANW 265.048 111.8
ANW LNK 176.084 123.0
LNK STJ 101.298 124.2
STJ FAM 259.156 120.4
FAM BNA 194.014 117.2

Though not explicitly required, it is often desirable for an aircraft to follow the

shortest path between consecutive waypoints, roughly a great circle path. Recall that

a great circle divides a sphere into two equal hemispheres. A great circle path between

two points on the surface of a sphere is the minor arc connecting the two points along

the diameter of a great circle; in reference to spherical geometry, a great circle path is

a straight line between two points lying on the surface. The Earth, however, cannot

be precisely represented in terms of a sphere, but rather as an oblate spheroid per the

WGS84 datum. Vincenty’s algorithm provides an iterative method for calculating

analogous great circle paths between two points on the surface of an oblate spheroid

[87]. Table 3 lists the great circle distances and headings along individual segments

of the sample route previously defined in Table 2 and Figure 4.

The sample scenario flight path is now defined in terms of a series of great cir-

cle segments between defined waypoints through the data dense regions depicted in

Figure 3. Again, it should be mentioned that an aircraft isn’t required to maintain a

great circle path between waypoints given tra�c, weather, or other outside consider-

ations. Though, given the assumption of a fixed flight path with a predefined flight

plan, assuming a great circle arc between waypoints is reasonable. Further consid-

eration must be given to heading changes along the route, however. As mentioned

previously, the flight management system constructs the aircraft’s exact ground track
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Figure 5: FAA illustration of fly-by and fly-over waypoints.

given the series of waypoints defined in the flight plan. To this point, that path has

been defined as a series of great circle arcs connecting consecutive waypoints. Any

heading change along the path is handled instantaneously meaning the aircraft flies

an infeasible sharp corner. In practice, aircraft flight management systems handle

heading changes in one of two manners based on the turn waypoint. Turns at a

“fly-by” waypoint are initiated prior to the aircraft reaching the waypoint allowing

the aircraft to perform a steady turn e↵ectively ”cutting the corner” at the way-

point. Conversely, “fly-over” waypoints are first flown over before a series of turns

is executed to bring the aircraft back on course. Both scenarios are illustrated in

Figure 5 [30]. In the context of Figure 5, an instantaneous heading change implies

that the aircraft follows the nominal track exactly and does not shorten or lengthen

the path when executing a turn. In high fidelity trajectory prediction applications,

turn modeling methodology heavily impacts predicted flight times. Large heading

changes may significantly stretch or shorten paths depending on both the type of

waypoint and the aircraft’s cruise speed leading to inaccurate flight time estimation

if not accounted for. Mondoloni’s study of turn modeling errors demonstrated that

along-track distance (the length of the path to be flown) error rose as high as 2.71

nm for a 90� heading change at 400 kts cruise speed [63]. The scenarios considered in

this study, however, do not present such stark heading changes as the scenario posed
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by Mondoloni or the scenario depicted in Figure 5. On the contrary, in the case of the

sample scenario of a flight between KSEA and KATL, the heading di↵erence between

neighboring flight segments is on the order of a few degrees, with the largest heading

change of 11.2� occuring at ANW. For small heading changes on the order of 20�, the

same Mondoloni study found along track error on the order of 0.02 nm. As a result,

this research e↵ort will only consider routes with negligible heading changes in order

to reasonably approximate turns as occurring instantaneously.

A final consideration must be lent to the segment distances listed in Table 3. The

segment lengths for the sample scenario range from 71.503 nm to 306.790 nm. There

is nothing inherently wrong with this construction from a flight path standpoint as it

is simply the most convenient means of defining a specific path through the desired

region. However, as the methodology discussed Section 2.3.1 defines Markov transi-

tion probabilities on transitions from waypoint to waypoint, the Markov chain will

evolve over significantly di↵erent distances as a function of route progress. In other

words, adhering to the predefined route waypoints from a typical aircraft flight plan

produces a model with irregular along-track resolution. It is therefore desirable to

recast the flight path in terms of intermediate or artificial waypoints at equidistant

points along the original path defined in Tables 2 and 3. The sample route in terms

of the original waypoints as well as 15 artificial waypoints is depicted in Figure 6,

creating flight segments roughly 100 nm long. The new route reads as a blended

string of waypoints new and old {MWH, A1, A2, A3, HIA, A4, A5, SHR, . . . }; the

full list of flight segments with artificial waypoints can be found in Table 4. The path

defined in Figure 6 and Table 4 follows the original sample route defined in Table

2, Table 3, and Figure 4 exactly, with the artificial waypoints simply representing

100 nm distance markers along the original route. 100 nm was chosen as a reason-

able discretization distance based on industry guidance regarding the capabilities of

modern flight management systems [Personal Communication. Dr. Liling Ren, GE
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Table 4: Sample route segments with artificial waypoints for KSEA to KATL sce-
nario.

Start Finish Shortest Length (nm) Heading (�)
MWH A1 99.906 102.7
A1 A2 99.906 104.4
A2 A3 99.906 106.1
A3 HIA 7.0716 107.7
HIA A4 92.834 104.0
A4 A5 99.906 105.5
A5 SHR 31.862 107.1
SHR A6 68.044 114.0
A6 GCC 3.459 115.0
GCC A7 96.447 111.8
A7 A8 99.906 113.2
A8 ANW 68.695 114.7

ANW A9 31.211 123.0
A9 A10 99.906 123.4
A10 LNK 44.966 124.6
LNK A11 54.938 124.2
A11 STJ 46.340 124.8
STJ A12 53.546 120.4
A12 A13 99.906 121.1
A13 A14 99.906 122.2
A14 FAM 5.798 123.3
FAM A15 94.108 117.2
A15 BNA 99.906 118.3

Global Research Center, May 2011]. For example, waypoints A7 and A8 lie on the

great circle path between GCC and ANW. A9 and A10 on the other hand lie on the

great circle path between ANW and LNK. The path between A8 and A9 through

ANW is not a great circle path due to the heading change at ANW as required by the

original flight plan defined in Table 2. However, the total length of the great circle

paths from A8 to ANW and ANW to A9 sum to the desired path length. Using the

path waypoints defined in Table 4, Markov transition probabilities can be calculated

at equidistant track lengths along the originally planned flight path. It should be

apparent to the reader that the Markov transitions will be calculated at the artificial

waypoints {A1, A2, . . . , A15} rather than the original planned waypoints in order to
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preserve along track distance and in turn, along-track model resolution.
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Figure 6: KSEA to KATL sample route in terms of artificial waypoints.
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2.3.3.3 Altitude and Speed

Section 2.3.3.2 defined the aircraft’s lateral flight path in terms of a series of great

flight segments between air waypoints defined in the aircraft’s flight plan. To this

point, altitude or cruise speed have not been mentioned. Along with lateral path

waypoints, a flight plan includes desired flight altitudes and speeds at each waypoint

or cruise-climb segments where available. This specification provides an additional

factor for consideration generating a Markov model: the altitude layer of the model

itself.

The currently formulated model includes aircraft flight data from all available

altitude layers, forming a single model regardless of cruise altitude. The set used

to generate Figure 3, for example, includes data points ranging in altitudes from

35,000 ft to 41,000 ft. Upon first inspection, it may seem necessary to further

subdivide the 2,797 sanitized flight tracks into altitude layers in terms of flight level,

where flight level is the barometric pressure altitude of the standard atmosphere in

terms of hundreds of feet (i.e.: 35,000 ft pressure altitude corresponds to flight level

350). However, prior work by the author determined that wind forecast error values

were more sensitive to direction of travel rather than altitude alone [86]. First recall

that Federal Aviation Regulation (FAR) Part 91 defines cruise altitudes for aircraft

operating above flight level 290 based on direction of travel [31]:

“(i) On a magnetic course of zero degrees through 179 degrees, any odd

flight level, at 2,000-foot intervals beginning at and including flight level

290 (such as flight level 290, 310, 330, 350, 370, 390, 410); or

(ii) On a magnetic course of 180 degrees through 359 degrees, any even

flight level, at 2000-foot intervals beginning at and including flight level

300 (such as 300, 320, 340, 360, 380, 400).”
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Part 91 requires that all East-bound air tra�c maintain an “odd” flight level start-

ing at flight level 290, and all West-bound tra�c maintains an “even” flight level

starting at flight level 300, meaning that air tra�c alternates in 1000 ft intervals

based on direction of travel. The author’s 2009 study demonstrated that the RUC20

forecast error values were nearly statistically identical within directional subgroups.

East-bound flight tracks odd flight levels exhibited nearly identical error properties

regardless of flight level; this result held across the data for West-bound flight levels.

Given the results of this prior study, subdividing the model further in terms of flight

level is unwise, as the added fidelity of a per flight level model is negligible compared

to the severe drop in available flight tracks when the data set subdivided into altitude

layers.

2.3.3.4 Error Calculation

A sample route between KSEA and KATL was defined through a data dense region

of the airspace along common routings between the two airports in Section 2.3.3.2.

Artificial waypoints were then calculated along the route to provide consistent hori-

zontal resolution along the sample route’s lateral path. In order to generate Markov

transition probabilities between the artificial waypoints, forecast error values at each

waypoint must be calculated by comparing the RUC wind speed forecasts at the way-

points with archived ACARS wind speeds recorded su�ciently close to the waypoints.

The closeness of ACARS wind speed measurements to a specific waypoint provides

an interesting challenge. Not only do individual measurements need to be within some

neighborhood of the waypoint, but this condition must hold for all waypoints along

the string of measurements for a given ACARS track. In essence, the entire ACARS

ground track must be su�ciently close to the desired flight route in order to be used.

A technique considering the nearest approaches of ACARS flight routes to the desired

flight path was developed to handle such filtering:
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Algorithm 1 Filters ACARS ground tracks close to a desired route.

for all ACARS tracks in set {1 . . . j . . .M} do
for all Waypoints along desired route {1 . . . i . . . N} do
dj,i  distance of nearest approach between ACARS track j and waypoint i

end for
dj  

1
N

PN
i=1 dj,i {mean distance of nearest approach}

if dj  40km then
Accept ACARS ground track j.

else
Reject ACARS ground track j.

end if
end for

Algorithm 1 uses the mean distance of closest approach between individual ACARS

flight tracks in a set and a series of waypoints specifying a desired route. If the mean

distance of closest approach for a single ACARS track is less than 40 km, the ACARS

track is considered su�ciently close to the desired flight route. Essentially, the al-

gorithm searches for routes that are on average within one RUC cell of the desired

route. Algorithm 1 was used to filter the original 2,797 flights between KSEA and

KATL with respect to the sample route constructed previously; the resulting flight

track are presented in Figure 7.
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Figure 7: Filtered ACARS tracks along KSEA to KATL sample route.
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Figure 8: Wind Interpolation scenario.

Though steps have been taken to minimize deviation between the archived ACARS

tracks and the proposed sample track by including only similar ground paths in the

study, further consideration must be lent to the location of the ACARS measurements

themselves. Ideally, the ACARS archives would provide wind speed measurements

from flights passing over the same waypoints as the planned sample route. However,

as previously demonstrated this is not the case. Consider the case of a planned route

consisting of a series of waypoints {A1, A2, A3} alongside a neighboring ACARS flight

track consisting of wind speed measurements at locations {AC1, AC2, AC3, AC4}

as presented in Figure 8. A means of extrapolating the wind speed at waypoint A02

is needed given the available ACARS measurements at known locations {AC1, AC2,

AC3, AC4}. [50] provides a survey of meteorological extrapolation and interpolation

routines given a variety of data structures, a few of the suggested routines being

function fitting methods such as cubic spline interpolation [70] and Kriging [48],

successive corrective methods, and Kalman filtering. However, the use case defined

to this point (and illustrated in Figure 8) requires that wind speed forecast error be

tracked on a flight-by-flight basis, meaning that only the contributions from a single

string of ACARS measurements may be used to generate a single wind speed error

measurement at waypoint A02. [50] suggests that inverse distance weighting [81] be

used in the case of such sparse data sets. Inverse distance weighting simply calculates
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a weighted sum of known observations, where the weights are specified based on the

distance of the known observations from the desired location. Generally, the value

of a field fa at a point i can be approximated using a combination of K observations

fo weighted by a function of the inverse of the distance from the point i to the k-th

observation:

fa(ri) =
K
X

k=0

w(r
i,k

)fo(rk)
PK

j=0 w(ri,j)
(8)

w(r
i,k

) =
1

d(x
i

,x
k

)p
(9)

where d(x
i

,x
k

) is the distance operator which returns the distance between points i

and k, and p is the power parameter (for sparse data sets, [50] suggests using p = 2).

It should be noted that distance weighting schemes are not appropriate for scenarios

involving larger data sets, as they are heavily directionally dependent or anisotropic.

Inverse distance weighting also fails to capture the higher order e↵ects quantified by

more robust schemes. However, given the sparseness of the available data set, there

is no advantage to pursuing such methods.

One can use the method posed in Equations 8 and 9 to approximate the ACARS-

measured wind speed at waypoint A02 as a combination of the recorded measurements

at locations AC2 and AC3:

w

A02

=

⇣

1
d21

⌘

w

AC2

1
d21

+ 1
d22

+

⇣

1
d22

⌘

w

AC3

1
d21

+ 1
d22

(10)

where d1 and d2 are the distances between locations AC2 and waypoint A02 and

AC3 and waypoint A02 respectively, and w

AC2

and w

AC3

are the vector wind speeds

at locations AC2 and AC3 respectively. It was found that inverse weighting is very

sensitive to the distances between observations given the suggested power factor p = 2.

As a result, only the two closest ACARS observation to a specified waypoint are used

to interpolate the ACARS wind speed at the waypoint; adding more points to the

interpolation provided little benefit given the distances between ACARS observations.
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The reader may have noted that the expression derived in Equation 10 is in terms

of vector quantities w

A02

, w
AC2

, and w

AC3

. As previously mentioned in Section

2.3.2, ACARS wind speed observations are reported in terms of a wind speed and

wind direction, where the direction value is reported in terms of a 0� true-North

reference and signifies the direction from which the wind is blowing. In order to

ensure ACARS wind speed observations are expressed in the same frame of reference

as the RUC wind forecasts, ACARS winds speed observations are further transformed

to a component-based form:

w

lat,lon

= elat,lon · e+ nlat,lon · n

in terms of local East and local North vector components at a point (lat, lon), where

e and n point with the direction of the wind (e↵ectively reversing the direction of

the ACARS wind direction observation). After transforming ACARS observations

into a common frame of reference as the RUC wind speed forecasts, inverse distance

weighting (Equations 8 and 9) is used to generate ACARS wind speed observations

in terms of East and North components at each of the artificial waypoints along the

sample route {MWH, A1, . . . , BNA}. Using the methods outlined in Section 2.3.2,

the ACARS observations are then compared to the corresponding RUC forecasts given

the forecast�actual convention defined in Equation 5 creating a series of wind speed

forecast error measurements as a function of individual flights at each of the sample

route waypoints.

2.3.3.5 Error Distributions

RUC forecast errors have been calculated at each of the artificial waypoints con-

structed along the sample route between KSEA and KATL by comparing ACARS

wind speed observations from flights along similar routes with the corresponding RUC

forecasts on a per flight basis. Referring to the model definition constructed in Section

2.3.1, a series of q = 11 error states s 2 S are now defined on the range R = [�11, 11],
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where S contains the error state intervals {(�11,�9], (�9,�7], . . . , (9, 11]}. This

range and number of states were chosen to provide enough granularity while ensuring

adequate data density and a zero-centered model. The RUC forecast errors calculated

at each waypoint are now mapped into the state space S, and a normalized histogram

of the error populations generated. Figures 9 and 10 illustrate two such histograms

for the RUC forecast errors at MWH and A1. In each histogram, the states s 2 S are

listed along the horizontal axis, with the vertical axis representing the percentage of

the total error values mapped to a particular state si. Error counts in both the local

East e and local North n directions are plotted alongside one another. The reader

should further note that figures 9 and 10 also represent forecast error counts for the

base model case discussed in Section 2.3.2.3.

As standalone results, the forecast error distributions presented in Figures 9 and

10 provide interesting results. The distributions in both directions are roughly zero

mean, and there is a slight tendency at both waypoints for there to be a higher

percentage of peak errors in the positive direction rather than negative, meaning the

RUC forecast is slightly more likely to demonstrate higher over predictions rather

than under predictions based on the forecast � actual convention. This result is

further illustrated in Figures 11 and 11 depicting cumulative histograms of the RUC

forecast errors at both waypoints. In the East direction, more than 50% of the forecast

errors tend to map to positive error states; this behavior is not evident in the North

direction, where the median error falls in the state centered on 0 m/s, s6.

2.3.3.6 Transition Probabilities

A further classification of forecast errors is required, however, to construct the in-

homogeneous Markov model defined in section 2.3.1. Recall that the probability

transition matrix (P n,m)m�n was previously defined:

Definition (P n,m
i,j ) =

P

`2S p
n,(m�1)
i,` pm`,j
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Figure 9: Normalized histogram of RUC forecast errors at MWH for the base case
model.

Figure 10: Normalized histogram of RUC forecast errors at A1 for the base case
model.
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Figure 11: Cumulative histogram of RUC forecast errors at MWH for the base case
model.

Figure 12: Cumulative histogram of RUC forecast errors at A1 for the base case
model.
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Definition 2.3.1 provides a means of calculating state transition probabilities between

a location n and m given information is known about the state transition probabilities

between points n and a point m � 1, which is only one step from m. For example,

consider the sample route between KSEA and KATL. In order to calculate the state

transition probabilities between waypoints MWH and A03, the route between the

waypoints must be considered: MWH, A1, A2, A3. Given Definition 2.3.1, one must

at the very least know the state transition probabilities between waypoints MWH

and A2, as A2 is the only waypoint within one prior step of A3:

(PMWH,A3
i,j ) =

X

`2S

pMWH,A2
i,` pA3

`,j

However, (PMWH,A2
i,j ) can similarly be constructed given information regarding the

state transition probabilities between waypoints AWH and A1, as A1 is the only

waypoint within one prior step of A2:

(PMWH,A2
i,j ) =

X

`2S

pMWH,A1
i,` pA2

`,j (11)

Equation 11 leaves the simplest case, a step between locations MWH and A1 requiring

the state transition probability matrix (PMWH,A1
i,j ). Recall that a state probability

transition matrix is simply a matrix indexed by indices on S⇥S, where states s 2 S.

In this scenario, S is finite and si is indexed 1, 2, . . . , 11, meaning (PMWH,A1
i,j ) is

simply an 11⇥11 matrix tracking the state transition probabilities between locations

MWH and A1. Furthermore, each row (PMWH,A1
i,⇤ ) is a distribution �i describing the

probability of the forecast error at A01 given the error state si at MWH. As the

sample route explicitly requires the aircraft to proceed from MWH to A1 directly,

calculating (PMWH,A1
i,j ) is an exercise in accounting of the error state transitions for

individual flight segments between MWH and A1. Consider the illustration provided

in Figure 13. The state transition probability p1,21,1 describes the probability of a

forecast error state transitioning from state s1 to state s1 as the aircraft moves from

location (1) to location (2). Similarly, p1,25,4 describes the probability of a forecast
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p1,21,1

s10,1

s11,1

s1,1

s2,1

s3,1

s4,1

s5,1

s6,1

s7,1

s8,1

s9,1

s1,2

s2,2

s3,2

s4,2

s5,2

s6,2

s7,2

s8,2

s9,2

s10,2

s11,2

p1,21,2

p1,25,4

p1,25,5

Figure 13: Example of state transition accounting.

error state transitioning from state s5 to state s4 as the aircraft moves from location

(1) to location (2). Calculating any p1,2i,j for a one-step transition from location (1) to

location (2) can be done directly, by finding the fraction of errors moving from a state

si at location (1) to a state sj at location (2) out of the total number of errors in state

si at location (1). The same methodology applies to calculating the rows (PMWH,A1).

As the forecast errors are recorded as a function of individual ACARS flights, finding

the fraction of forecast errors transitioning to a state si at MWH to sj at A1 is again

a matter of simple accounting of error transitions between the locations across the

entire set of ACARS flights. As a reminder, each row (PMWH,A1
i,⇤ ) is a distribution �i

describing the probability of the forecast error taking a state sj at A1 given the state

si at MWH.

(PMWH,A1) for the East component of the base case model is illustrated in Figure

14. Referring to the notation discussed above, each row of the transition probability

matrix is indexed by a forecast error state at waypoint MWH; these error states are

noted along the vertical axis of Figure 14. The corresponding forecast error states at

waypoint A1 index the columns of (PMWH,A1) and are listed along the horizontal axis
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Figure 14: Illustration of transition probability matrix (PMWH,A1) for the East
component of the base case model.

of Figure 14. Moving from s1 to s11 down the vertical axis, the rows of (PMWH,A1)

are distributions describing the probability of the forecast error taking a state sj at

A1. For example, if the forecast error is found to be in state s7 at waypoint MWH,

it is most likely to remain in state s7 at waypoint A1 with a probability of just over

60%. The next most likely transition for an error in state s7 at MWH is to transition

to state s6 at A1; this transition occurs with a probability near 25%. As a further

note to the reader, areas of high probability near the edge states such as the pMWH,A1
3,3

and pMWH,A1
11,11 transitions are usually the result of fewer error records in those initial

states rather than high probability of transition, specifically.

2.3.3.7 The Inhomogeneous Markov Chain

Now that the simplest case of a one step transition has been constructed, the entire in-

homogeneous Markov chain can be constructed as a series of one step transitions along
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each flight segment {MWH-A1, A1-A2, . . . , A15-BNA} by calculating the appropri-

ate one step transition probability matrices {(PMWH,A1), (PA1,A1), . . . , (PA15,BNA)}

and using Definition 2.3.1 as demonstrated in Equation 11. Referring to Section 2.3.1,

however, one will find that a final piece of the puzzle is required in order to gener-

ate wind forecast scenarios using the model: an initial distribution. Recall that the

definition of the model stated that a Markov chain (Xn)n�0 is defined as a stochastic

process holding the following properties in terms of a stochastic transition probability

matrix P and initial distribution �:

1. P(X0 = s0) = �s,0

2. P(Xn+1 = sn+1|X0 = s0, . . . , Xn = sn) = psn,sn+1

for n � 0 and every s0, . . . , sn 2 S. (Xn)0�n�N is Markov(�, P ) if (Xn)0�n�N is a

sequence of random variables satisfying (1) and (2) above for n = 0, 1, . . . , N � 1. In

order to generate the model and subsequently sample realizations in order to form

forecast error scenarios, some information regarding the initial distribution of the

error states is required.

In a real-world scenario, actual wind speed error information may be used to

specify the initial distribution �. For example, consider an aircraft following the

sample route from KSEA to KATL. The aircraft will have both a forecast of the

wind speeds at its initial waypoint MWH as well as a measure of the actual winds

at MWH, meaning an initial forecast error can be calculated. If the forecast error at

MWH is measured to be 3.5 m/s, the initial error is known to exist in state s8. The

initial distribution �MWH can therefore be defined to reflect this known information

�MWH = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0} (i.e.: the forecast error exists in state s8 with

100% probability). The notional scenario posed to this point does not provide for an

injection of known information into the model. Accordingly, the initial distribution

at MWH is calculated directly; this distribution has already been presented in Figure
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9.

Given an initial distribution, the inhomogeneous Markov chain is now simply

calculated using the constructed one step transition probability matrices:

(Xn) = �0 ·

N
Y

n=0

(P n,n+1) (12)

Product notation is used in Equation 12 for simplicity. However, the summation

notation used in Definition 2.3.1 also applies. Again considering the scenario of an

aircraft following the sample route from KSEA to KATL, Equation 12 is used to

construct the Markov model sequentially as follows:

(XA1) = �MWH · (PMWH,A1) (13)

(XA2) = �MWH · (PMWH,A1)(PA1,A2) = (XA1)(P
A1,A2) (14)

(XBNA) = �MWH · (PMWH,A1)(PA1,A2) · · · (PA15,BNA) = (XA15)(P
A15,BNA) (15)

The process described in Equations 13-15 is further illustrated in Figures 15 and 16

using the results of the forecast error analysis along the sample route. The evolution

of the inhomogeneous Markov chain for the East component of the base case model is

depicted in Figure 15, whereas the evolution of the inhomogeneous Markov chain for

the North component of the model is illustrated in Figure 16. The vertical axes list

the probable error states in ascending order from top to bottom, the horizontal axis

tracks the age of the chain in terms of the route waypoint, and the intensity of the

individual cell indexed (si, j) is the probability of the forecast error existing in state si

at waypoint j. In practice, the model is better understood as a function of columns.

Each column of cells in Figures 15 and 16 represents the distribution of the forecast

errors �j at a particular waypoint j. For example, the columns index A4 in Figures 15

and 16 provide the distribution of forecast uncertainty �A4 at waypoint A4 in the for

the East and North components of the base case model respectively. Moving from left

to right, one tracks the probability distributions of forecast uncertainty as a function
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Figure 15: Illustration of the calculated inhomogeneous Markov chain for the East
component of the base case model.

Figure 16: Illustration of the calculated inhomogeneous Markov chain for the North
component of the base case model.
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of route progress. As an important reminder, based on the definition of the model

derived in Section 2.3.1, the results presented in Figures 15 and 16 are functions of

the specific series of waypoints visited in order along the sample route from KSEA to

KATL.
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Table 5: Wind forecast uncertainty model analysis routes.

Route Number Origin Airport Destination Airport
1 KSEA KATL
2 KATL KSEA
3 KLAX KATL
4 KATL KLAX
5 KEWR KATL
6 KATL KEWR

2.4 Selected Results

An inhomogeneous Markov approach to wind forecast uncertainty modeling was de-

tailed in Section 2.3. A sample model was constructed using ACARS flights tracks

along a sample route between Seattle’s Tacoma International Airport (KSEA) and

Hartsfield-Jackson International Airport in Atlanta (KATL). In this section, the mod-

eling methodology is applied to five more routes between Los Angeles International

Airport (KLAX) and KATL, and Newark Liberty International airport (KEWR) and

KATL. In total, six complete wind forecast uncertainty models between each of the

three partner airports and KATL are considered; these models are defined in terms

of origin and destination airport pair in Table 5. Detailed descriptions of these routes

including waypoint lists and corresponding plots consistent with Table 2 and Figure

6 respectively are provided in Appendix A.

2.4.1 Jet Stream E↵ects

Jet streams are narrow bands of high velocity winds in the upper atmosphere which

flow along the boundaries between hot and cold air masses. In the continental United

States, jet streams flow from West to East but vary in daily position along a North-

South axis [65]. The experiences of World War II fighter pilots who encountered

strong westerly winds in both the European and Asian theaters of war (a summary

of these documented encounters is available in [53]) led to seminal works by “Sta↵

Members” of the University of Chicago’s Department of Meteorology [83], Rossby
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[73], and Riehl [71] characterizing the high velocity atmospheric winds now referred

to as jet streams. Though specifics regarding the meteorology behind the formations

of jet streams are not important to this research e↵ort, the usefulness of jet streams

to aviation is of key interest.

Recall from Chapter 1 that an aircraft’s ground speed is a function of both its

planned airspeed and the wind speed it encounters along the route. An aircraft

encountering a strong tailwind assisting its motion will travel at a considerably higher

groundspeed than an aircraft flying into a headwind directly impeding its motion,

resulting in a shorter flight time and lower fuel expenditure for the same planned

airspeed. Clearly it is advantageous for commercial carriers to plan their routes in

such a manner as to leverage the tail wind e↵ects of the jet stream for flights fromWest

to East, while avoiding the headwind e↵ects of the jet stream for routes from East

to West. Now consider that aviation wind speed reports constitute a large portion

of the baseline data used to generate the RUC forecast (discussed in Section 2.1.1.1).

The result of wind-favorable route planning by commercial air carriers is that the

RUC forecast is initialized using a high percentage of wind speed measurements from

within the jet stream.

Figures 17 and 18 depict the inhomogeneous Markov chains in the East direction

for the base model for routes 1 (KSEA to KATL) and 3 (KLAX to KATL) respectively.

Routes 1 and 3 are eastward routes, along which aircraft are likely to leverage

tailwinds provided by the jet stream. In both Markov chains, there is a tendency of

the forecast error to skew towards error state s7 along the entire route, where state s7

is on the range between 1 m/ and 3 m/s. In other words, the forecast error is more

likely to be slightly positive biased than zero-centered or negative, meaning the RUC

forecast slightly over predicts the wind speeds along these routes. Similar behavior

is seen along route 6 from KATL to KEWR in Figures 19 and 20. In this case, it

is common for the jet stream to turn from East to North and follow the eastern sea
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Figure 17: Illustration of the calculated inhomogeneous Markov chain for the East
component of the base case model for the KSEA to KATL route.

Figure 18: Illustration of the calculated inhomogeneous Markov chain for the North
component of the base case model for the KLAX to KATL route.
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Figure 19: Illustration of the calculated inhomogeneous Markov chain for the East
component of the base case model for the KATL to KEWR route.

Figure 20: Illustration of the calculated inhomogeneous Markov chain for the North
component of the base case model for the KATL to KEWR route.
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board of the United States, essentially flowing along route 6. A heavy Eastern bias

is seen in Figure 19 at the beginning of the route near the jet stream turning point,

the e↵ects of which linger along the rest of the route. A consistent northern bias is

seen in Figure 20, which mimics the results seen along routes 1 and 3 depicting a

consistent over prediction by the RUC in the direction of the jet stream.

These results reinforce prior findings by the author [86] which found that the

aviation reports tend to add a slight positive bias in favor of the jet stream due

to wind-optimal route planning by air carriers. Conversely, the models for routes

opposing the direction of the jet stream (routes 2, 4, and 5) exhibit a slight negative

bias, meaning the RUC under predicts the wind speeds in regions not a↵ected by a

jet stream; these results are found in Figures 21 and 22. In both models, the error

along the route has a tendency to skew towards error state s5 defined on the range

between (-1) m/s and (-3) m/s. Though the positive jet stream bias of the RUC was

previously confirmed by the author in [86], the tendency of the RUC to slightly under

predict wind speeds along routes opposing the direction of the jet stream is a new

finding.

2.4.2 Updated Forecasts

Section 2.3.2.3 discussed two possible paths through the RUC forecast time horizon

corresponding to “base” and “updated” cases. The base case considered the forecast

release to be fixed throughout the analysis period whereas the updated case only used

the freshest 1-hour forecast release available. Figures 23 and 24 depict the Markov

models for the East components of route 4 between KATL and KLAX for both the

base and updated cases. Though slight, there is a di↵erence in the base and updated

model. The updated model depicted in Figure 24 depicts slightly narrower probability

bounds in the later stages of the route. For example, consider the outer edges of the

forecast uncertainty distributions in both models, specifically states s3 and s8. The
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Figure 21: Illustration of the calculated inhomogeneous Markov chain for the East
component of the base case model for the KATL to KSEA route.

Figure 22: Illustration of the calculated inhomogeneous Markov chain for the North
component of the base case model for the KATL to KLAX route.
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Figure 23: Illustration of the calculated inhomogeneous Markov chain for the East
component of the base case model for the KATL to KLAX route.

Figure 24: Illustration of the calculated inhomogeneous Markov chain for the East
component of the updated case model for the KATL to KLAX route.
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base model depicted in Figure 22 demonstrates a higher likelihood of the forecast error

existing in these outer states, as one moves from VUZ to TNP. Though this result is

again very slight, it does lend credence to the idea that updating wind information

along the route does slightly improve forecast skill as demonstrated by a decreased

forecast uncertainty. Though only the result for route 4 have been provided, this

result is consistent across the route set.
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CHAPTER III

THE RTA PROBLEM

A review of forecast uncertainty modeling literature, a detailed exploration of the

forecast uncertainty modeling methodology utilized in this research e↵ort, and se-

lected results along sample routes between sets of origin and destination airports

were presented in Chapter 2. This chapter switches focus from uncertainty modeling

to stochastic optimization, specifically as it relates to the fuel optimal required time

of arrival (RTA) problem introduced in Chapter 1. An introduction to stochastic pro-

gramming methodology is first presented. The unique challenges of the fuel optimal

RTA problem are then discussed before the research gaps in this area are identified.

The solution algorithm is then developed before selected results for flight scenarios

along the sample routes constructed in Chapter 2 are presented and discussed.

3.1 Stochastic Programming

3.1.1 A Simple Recourse Model

Stochastic models describe systems with uncertain inputs that can be characterized

by known probability distributions. As opposed to deterministic models which assume

the input data is known at time of solution, stochastic models are used to account

for variability in possible scenarios given the realization of data uncertainty as time

progresses. The most common stochastic model is the recourse model. In a general

recourse model, a decision is made at the current point in time before any uncertainty

has been realized. The goal of this decision is to minimize the net cost of the current

decision and any future necessary corrective decisions as the uncertainty scenarios

unfold. The simplest recourse model is the two-stage model which relies on a single

recourse decision. An initial decision is made for the first stage, the uncertainty in
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the data is realized, and a recourse decision is made for the second stage. In the

context of the fuel optimal RTA problem, consider the forecasted wind speeds along

the route to be the source of uncertainty. The task is to make a decision on the initial

chosen cruise speed, given this cruise speed may need to be changed at some point in

the future in order to satisfy a given RTA. The goal of this initial cruise speed is to

minimize the total expected fuel burn given all possible correction scenarios required

due to arrival time estimation error that results from wind speed forecast uncertainty.

A linear two-stage model as introduced by Beale [1] and Dantzig [21] is presented

below:

min
x2Rn

c>x+ E⇠ [Q(x, ⇠)]

s.t. Ax = b

x � 0

(16)

where x is the first stage decision vector, cTx is the cost of the first stage decision, and

⇠(q, T,W, h) is the data associated with the second stage model. In the context of the

linearized RTA problem, x contains choices for the initial cruise speed, cTx contains

the fuel costs associated with selecting the initial cruise speeds, and ⇠(q, T,W, h)

contains data for the second stage model including wind speed scenarios generated

using the forecast uncertainty model. The solution to the second stage model is

defined:

Q(x, ⇠) = min
y2Rm

q>y

s.t. Tx+Wy = h

y � 0

(17)

In order to solve the two-stage model numerically, it can be assumed that the random

vector ⇠ contains a finite number of possible realizations, referred to as scenarios

(⇠1, ⇠2, . . . , ⇠K) with probabilities of occurrence (p1, p2, . . . , pK). As the expectation

of the second stage solution can then be expressed as a function of its scenarios:

E⇠ [Q(x, ⇠)] =
K
X

k=1

pkQ(x, ⇠k) (18)
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the two stage model presented in Equations 16-17 can be formulated as one large-scale

linear programming model:

min
x,y1,y2,...,yk

c>x+
PK

k=1 pkq
>
k yk

s.t. Ax = b

Txk +Wyk = hk 8k 2 (1, 2, . . . K)

x � 0

yk � 0

(19)

Cutting plane methods are a common solution strategy to solving large-scale linear

programs. Cutting plane methods redefine the model’s feasible space by iteratively

adding linear inequality constraints to the model. The first cutting plane method

was proposed by Kelley in 1960 [44], and formed the basis of later methods including

both Dantzig-Wolfe [20, 19] and Bender’s [2] decompositions methods. Decomposi-

tion methods segregate the problem into a first stage master problem based on the

first stage decision and multiple second stage problems defined by the realizations

of the random vector ⇠ described in Equations 16 - 19. Several more cutting plane

and decomposition methodologies have been developed to improve computational ef-

ficiency including the multi-cut method proposed by Birge and Louveaux [10] and the

regularized decomposition method proposed by Ruszczynski [75]. These works will

not be discussed in detail, but are provided as reference for the reader.

3.1.2 Relationship to Dynamic Programming

In developing an algorithm to explore the solution space posed by a stochastic pro-

gramming problem, it is helpful to draw parallels between the classic two-stage linear

stochastic programming model introduced in Equations 16 - 19 and dynamic pro-

gramming approaches. Recall again that in a stochastic programming framework,

the uncertainty data (⇠1, ⇠2, . . . , ⇠K) is revealed over a time horizon, and that in the

setting of a stochastic decision process, decisions must be made before realizations of
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the model uncertainty come to pass. The decision process therefore has the form:

decision(x1)! observation(⇠1)! decision(x2)!

· · ·! decision(xT )! observation(⇠T )
(20)

where the sequence ⇠t 2 Rdt for t = 1, 2, . . . , T of data vectors is a stochastic pro-

cess with known probability distributions (note that ⇠[t] = (⇠1, ⇠2, . . . , ⇠t) refers to the

history of the process up to time t). The form of the decision process described

in Equation 20 introduces the concept of nonanticipativity. Again, assume that

the random vector ⇠ contains a finite number of possible realizations or scenarios

(⇠1, ⇠2, . . . , ⇠K) with probabilities of occurrence (p1, p2, . . . , pK). The two-stage for-

mulation presented in Equation 16 can be relaxed by replacing the decision vector x

with K vectors (x1, x2, . . . , xK), one for each scenario. This relaxation results in K

smaller problems of the form:

min
xk�0,yx�0

c>xk + q>k yk

s.t. Axk = b

Tkxk +Wkyk = hk

(21)

Based on the decision process presented in Equation 20, it is clear that the model

posed in Equation 21 is unsuitable for finding a two-stage decision process as the

first stage decision variables xk depend on realizations of the random data from the

second stage. An additional constraint, referred to as a nonanticipativity constraint,

is required to ensure that the first stage decision variables are independent of the

realizations of the random data. One of the simplest ways to enforce nonanticipativity

is to require that all realizations of the first stage decision vector are equal to one

another. Another is to set all realizations of the first stage decision vector equal to

the weighted average of the entire set of first stage scenarios weighted by probability

of occurrence. Both implementations ensure the requirement of nonanticipativity,

enforcing that xt depend on ⇠t alone, and not future observations.
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Given the problem must be formulated to reflect nonanticipitivity, consider a

mutli-stage problem with T stages, specifically the final-stage problem at period T :

min
xT2XT (xT�1,⇠T )

fT (xT , ⇠T )

where xt 2 Rnt are decision variables, ft are defined on Rnt
⇥Rdt , and Xt are defined

on Rnt�1
⇥ Rdt for t = 1, 2, . . . , T . Recall based on the structure of the decision

process that the optimal value of this problem, denoted QT (xT�1, ⇠T ), is a function

of the prior stage decision vector xT�1 and current stage data ⇠T . At stage T � 1, the

problem becomes:

min
xT�12XT�1(xT�2,⇠T�1)

fT�1(xT�1, ⇠T�1) + E
⇥

QT (xT�1, ⇠[T ]) | ⇠[T�1]

⇤

where E
⇥

· | ⇠[t]
⇤

is a conditional expectation, meaning the T �1 stage’s optimal value

depends on the optimal value of stage T , QT (xT�1, ⇠T ), given the realization of the

uncertainty process ⇠ at stage T � 1. This trend continues as one steps through

prior states, allowing prior stage formulations to be written more generally for stages

t 2 2, 3, . . . , T :

min
xt2Xt(xt�1,⇠t)

ft(xt, ⇠t) + E
⇥

Qt+1(xt, ⇠[t+1]) | ⇠[t]
⇤

As a result, solving the any single stage requires recursively calculating prior stage

“cost-to-go” functions Qt(xt�1, ⇠[t]), as they are functions of the prior stage decisions

xt�1 and the realizations of the uncertainty data ⇠[t]. Eventually, the entire time

history must be explored, leading to the first stage problem:

min
x12X1

f1(x1) + E
⇥

Q2(x1, ⇠[2])
⇤

The equivalent dynamic programming equations are written [80]:

Qt(xt�1, ⇠[t]) = inf
xt2Xt(xt�1,⇠t)

⇥

ft(xt, ⇠t) +Qt+1(xt, ⇠[t])
⇤

(22)

where

Qt+1(xt, ⇠[t]) := E
⇥

Qt+1(xt, ⇠[t+1]) | ⇠[t]
⇤

(23)
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Given this construct, the decision variables xt = x
t

(⇠[t]) can be considered to be

functions of the data process ⇠[t] up to time t. A sequence of feasible decision variables

representing a series of feasible decisions to be made at each stage is referred to as an

“implementable policy.” An implementable policy is considered optimal if and only

if for every t 2 1, 2, . . . , T ,

x⇤
t (⇠[t]) 2 argmin

xt2Xt(x̄t�1(⇠[t�1]),⇠t)

⇥

ft(xt, ⇠t) +Qt+1(xt, ⇠[t])
⇤

with probability equal to 1 (note that for t = T , Qt+1 is omitted; the set Xt only

depends on ⇠1 for t = 1). In other words, an optimal implementable policy provides a

sequence of optimal stage-wise decisions over the evolution of the problem uncertainty

⇠[t] (the reader should be aware that an optimal implementable policy considers future

optimal recourse in prior stage decisions based on the nested nature of the prior stage

formulation). Essentially, a dynamic programming approach reduces the problem to

a series of finite dimensional problems indexed by t and ⇠[t].

3.1.3 Scenario Trees

Recall that the random process ⇠ contains a finite number of possible realizations or

scenarios (⇠1, ⇠2, . . . , ⇠K) with probabilities of occurrence (p1, p2, . . . , pK). The process

of constructing these scenarios in such a manner as to both capture the structure of the

proposed decision process as well as accurately discretizing the forecast uncertainty

process is the next area of focus.

Scenario trees are useful tools for visualizing the evolution of uncertainty processes

over multiple problems stages. In general, a scenario tree is constructed of several

levels, organized by problem stages 1, 2, . . . , T , each layer containing multiple nodes.

The first level, denoted by t = 1, contains only a “root” node, which has a known

associated value ⇠1. Subsequent levels t + 1 contain as many nodes ◆ as there are

possible realizations of ⇠t+1, referred to as “child” nodes, where each child node is
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Figure 25: Sample scenario tree.

connected to an “ancestor node” in level t � 1 via an arc. Based on the parent-

child relationship of the nodes between each level, all of the nodes in a given level t

represent possible realizations of the process ⇠t, and share common ancestry of the

process history ⇠[t]. Thus, a “scenario” as described to this point, is a path from the

root node through the levels of a scenario tree, constituted by a series of individual

realizations ⇠◆t , where t is again the problem stage, and ◆ a specific node within level

t. ⌦t denotes the set of all nodes in a given stage t 2 1, 2, . . . , T . A scenario tree with

t = 3 levels and varying number of nodes ◆ in each level is depicted in Figure 25.

Given the nested nature of the decision process defined in Equation 20, in order to

define probability distributions describing the uncertainty process, the process must

be modeled using conditional distributions. Specifically, the process ⇠t+1 is a function

of the specific time history of the process ⇠[t], t = 1, 2, . . . , T � 1. If the uncertainty

process holds a value b◆ at a node ◆ 2 ⌦t, one can specify the probability of the

process holding a value b⌘ at a node ⌘ 2 ⌦t+1. Let this probability be defined as p◆,⌘,

and lie along the arc connecting nodes ◆ and ⌘. Furthermore, require that p◆,⌘ � 0

8◆, ⌘ 2 ⌦t, and
P

◆2⌦t,⌘2⌦t+1
p◆,⌘ = 1. Referring again to Figure 25, one can see

that the uncertainty process holds value b◆1 at stage t = 1 with probability equal
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⇠[A10]

M1 M2

MWH BNAA10

Figure 26: Sample decision scenario for route 1 between KSEA and KATL.

to 1 (as it is the root node); the process will hold value b◆1 at stage t = 2 (distinct

from b◆1 with t = 1) with probability p◆1,◆1 , and value b◆2 with probability p◆1,◆2 . It

should be apparent to the reader that the probabilities along any given stage t form

a conditional distribution describing the state of the process ⇠ at stage t, given the

process ⇠[t�1].

The inhomogenous Markov model developed in Chapter 2 is well-conditioned to

generating wind forecast uncertainty scenarios using a node-based method. Again

consider the decision process defined in Equation 12; however, this time, consider it in

the context of an aircraft cruising along one of the sample routes previously discussed,

specifically route 3 between KLAX and KATL (described in Appendix A.2). Referring

to Figure 26 and Equation 20, the decision process dictates that the aircraft make an

initial choice in Mach number M1 at waypoint MWH in order to minimize the total

fuel burn along the route given this choice will later be revised to M2 at artificial

waypoint A10 to correct for flight time estimate errors introduced by wind forecast

uncertainty. Assume the wind forecast uncertainty at MWH, ⇠MWH is known; ⇠MWH

holds one value which maps to a known error state sMWH 2 S, and serves as the

root node of the scenario tree (a singleton distribution can be used to describe the

probability distribution of a known value in the Markov model). The possible error

states at A10 sj with j = 1, 2, . . . , 11 each map to a child node ◆sj , which connect

to the root node via an arc with probability pMWH,A10
sMWH ,◆sj

. Recall from Section 2.3.3.5

that the set of probabilities pMWH,A10
sMWH ,◆sj

constitute the conditional distribution �A10; in

the context of the scenario tree description, �A10 describes the uncertainty process

⇠[A10] given the process’s known state at MWH, sMWH . Given ⇠[A10], subsequent tree
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levels are similarly constructed. The possible error states at BNA map to child nodes

⌘sj , each of which connects to a corresponding parent node in the MWH level via an

arc with probability pA10,BNA
◆sj ,⌘sj

. Similarly, �BNA can be constructed to describe ⇠[BNA],

which is a function of both ⇠[A10] and ⇠MWH

The Markov property was introduced in Section 2.3.1. In the simplest terms, a

stochastic process was said to be Markovian if it held the Markov property, mean-

ing that its future state was a function of its current state alone and not the time

history of prior states. The scenario tree construction presented above constitutes

the entire time history of the process whether or not the process hold the Markov

property, as every possible state combination is enumerated as one steps through the

scenario tree levels. Formulating an optimization problem from a dynamic program-

ming standpoint as posed in Equations 22 - 23 eliminates the requirements to track

the entire time history of the uncertainty process, as the stage cost-to-go functions

Qt(xt�1, ⇠[t]) are functions of the current state of the uncertainty process ⇠[t] alone.

In essence, a dynamic programming approach leverages the Markovian structure of

the process to reduce the information required at any one time. A stochastic pro-

gramming approach conversely considers the entire time history of the process, thus

making it more general at the expense of a requiring a significantly larger scenario set.

This di↵erence in scenario structure is the basic distinction between stochastic pro-

gramming and dynamic programming approaches [80]. The challenge of a stochastic

programming approach as it relates to this e↵ort, is formulating an algorithm capa-

ble of exploring the entire scenario tree while maintaing computational tractability

for onboard systems. Though a purely dynamic programming approach solves this

particular problem, it does so at the expense of generality.
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3.1.4 Nonlinearities

The model presented in Equations 16 - 19 assumes a linear relationship between the

decision variables in x for both the objective function and the associated constraints.

However, the fuel optimal RTA problem provides non-linearity in two areas: the

relationship between travel distance, velocity, and time; and the relationship between

an aircraft’s fuel flow rate and velocity.

Referring to Equation 3, the distance travelled vs. flight time relationship is non-

linear. Lowther provides a framework for linearizing the time-distance relationship

by non-dimensionalizing velocity terms in terms of Mach number [56]. Recall that

the distance flown by an aircraft in any given time period ti� t0 is represented by the

integral equation:

d =

Z t1

t0

v

g

·�t

Consider that the aircraft’s ETA to the RTA waypoint di↵ers by some value �t =

tRTA � tETA. A constant speed change �v

g

can be introduced to achieve the change

in arrival time �t as the distance traversed by the aircraft remains the same (fixed

path constraint) regardless of the flight speed:

dRTA =
R tETA��t

t0
(v

g

+�v

g

)dt

=
R tETA

t0
(v

g

+�v

g

)�
R tETA

tETA��t(vg

+�v

g

)

=
R tETA

t0
v

g

· dt+
R tETA

t0
�v

g

· dt�
R tETA

tETA��t vg

· dt�
R tETA

tETA��t �v

g

· dt

= dRTA +�v

g

· tETA �
R tETA

tETA��t vg

��v

g

·�t

If it is further assumed that the groundspeed v

g

during time period [tETA��t, tETA]

remains constant such that v

g

= v

g,i

(the groundspeed for this segment equals the

initial groundspeed):

�v

g

· tETA � v

g,i

·�t��v

g

·�t = 0

a relationship between the arrival time change required to achieve an RTA and the
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change in the current groundspeed required to a↵ect that change can be defined:

tETA =
(v

g,i

+�v

g

) ·�t

�v

g

Again recall that the groundspeed of the aircraft is a function of both the true air

speed and the wind speeds encountered by the aircraft as described in Equation 2.

If it is assumed that the cross-wind component (the component of the wind vector

laying perpendicular to the aircraft’s ground track) is relatively small compared to

the aircraft’s true airspeed, it can be said that the change in groundspeed required

to satisfy a change in an ETA is approximately equal to an equivalent change in the

aircraft’s true airspeed. More specifically, a change in the aircraft’s true airspeed can

be introduced to a↵ect an equivalent change in the aircraft’s ground speed subject to

the prevailing winds. Accordingly, Equation 3.1.4 is reformulated in terms of Mach

number:

tETA =
(Mi +�M) ·�t

�M
(24)

where M is the Mach coe�cient, the ratio of the aircraft’s true airspeed v

TAS

and

the local speed of sound a:

M =
|v

TAS

|

a

Though now closer to forming a linear relationship between travel distance, true

airspeed, and time, Equation 24 still provides bilinear unknown �M · �t when ex-

panded via Taylor series. The only means of mitigating the a↵ect of these nonlin-

ear terms is to make a further assumption that �M is comparatively small to Mi.

Lowther found that assuming �M has a maximum value of 0.02 introduced as much

as 2.5% error into the flight time calculation for an Mi value of 0.8 [56]. This assump-

tion is undesirable for two reasons: a speed change limit on Mach number severely

reduces control authority, and increasing the speed change limit to a more accept-

able value introduces considerable flight time estimation error as demonstrated by

Lowther. Diminshed control authority could conceivably prevent an aircraft from
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satisfying an RTA if the speed change required to do so is beyond the limits imposed

by the linearized model. Conversely, relaxing the speed change limit and conse-

quently increasing flight time estimation error beyond the 2.5% margin demonstrated

by Lowther is not an acceptable alternative given the adherence capabilities of current

RTA systems.

The aircraft’s fuel burn characteristics introduce a second source of nonlinearity.

Fuel burn rate is approximately quadratic as a function of Mach number [Boeing

Performance Engineer’s Manual: 737-300/CFM56-3B-2]. Again, steps can be taken

to linearize this relationship, this time by representing the quadratic relationship as

a piecewise linear function. However, this methodology introduces the same �M

limitation as the previous derivation in order to mitigate the a↵ects of linearization

and thus limits the available control authority as well.

A third, yet slightly more significant source of non-linearity is the forecast in-

formation itself. Lowther’s problem assumed a static wind forecast along the entire

route for the duration of the flight. Regardless of the flight duration, the wind fore-

cast remained fixed. The model presented in Chapter 2 posed two distinct yet still

dynamic scenarios (referred to as the “base” and “updated” cases). In the base case,

only wind information from a single release is used, whereas the updated model case

considers only the first hour forecast of the newest freshest forecast release. In both

cases, the wind forecast along the route updates on an hourly cycle (the distinction

between the two cases is the source of the updated information). As the time versus

distance travelled relationship is a function of the aircraft’s groundspeed, and the air-

craft’s groundspeed is directly a function of the encountered winds along the route,

the problem data itself changes as a function of the decision variables. In essence, the

problem itself is purely dynamic. As a result, a linearized formulation as presented

in Equation 19 is infeasible without completely neglecting the time component.

As one can see, formulating the fuel optimal RTA problem in terms of large-scale
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linear program as posed in Equation 19 is undesirable due to linearization e↵ects and

the problem structure. Linearizing the distance travel versus flight time relationship

introduces introduces enough error to ensure that a linearized formulation will not

perform to the same tolerances as currently available technologies while significantly

limiting the control authority of the algorithm. More importantly though, a linearized

model is incapable of capturing the time dynamics of the problem. The task is

therefore to develop an algorithm that can address both the non-linearities inherent

to the problem while maintaining computational tractability on an airborne system

given the large solution space posed by a stochastic programming formulation.

3.2 Research Gaps

Current on-board systems fail to proactively address flight time estimation error in-

troduced by wind forecast uncertainty as it relates to required time of arrival (RTA)

capability for two primary reasons: the lack of a robust wind forecast uncertainty

model, and the lack of a computationally tractable RTA algorithm capable of consid-

ering wind forecast uncertainty for speed planning purposes. A position-based wind

forecast uncertainty model was developed in Chapter 2. To the second need, the

shortcomings associated with linearizing the speed planning problem as a means of

formulating the underlying stochastic program as a large-scale linear program were

discussed in Section 3.1.4. There is a clear need for a computationally tractable RTA

algorithm capable of being used by on-board systems to make speed planning deci-

sions in the presence of wind forecast uncertainty that does not incur the penalties

associated with a traditional approach utilizing linearization.
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3.3 Algorithm Formulation

The simplest solution to the RTA problem as posed is a brute force enumeration

of all possible scenarios across a set of possible cruise Mach numbers. However, as

introduced in Section 3.1.3, this methodology is not computationally tractable in

an on-board system given the limited computational capabilities of contemporary

flight management systems. The development of a search heuristic capable of quickly

exploring the entire set of wind speed forecast uncertainty scenarios is the next focus

of this research e↵ort, and the resulting algorithm the second contribution1.

Similarly to the development of the forecast uncertainty model in Chapter 2,

development of the RTA algorithm will rely on a sample scenario for illustrative

purposes. Again, consider a flight between KSEA and KATL, this time, with some

required time of arrival at the route’s final waypoint BNA. The route details are

available in Section 2.3.3, and a description of this particular scenario was previously

introduced in Figure 26. Assume that artificial waypoint A10 was chosen as the

problem stage dividing point, meaning a recourse speed change will be made in order

to account for wind forecast uncertainty.

3.3.1 Scenario Generation

Recall that the uncertainty model is initialized via an initial distribution. In the

posed RTA scenario, this initial distribution reflects known forecast error information

calculated by the aircraft as it reaches cruising altitude at MWH. As a reminder to

the reader, the Markov model developed in Chapter 2 defined a series of q = 11

error states s 2 S on the range R = [�11, 11], where S contains the error state

intervals {(�11,�9], (�9,�7], . . . , (9, 11]} indexed by i = 1, 2, . . . , 11. For example,

if the forecast error at MWH is measured to be 3.5 m/s, the initial error is known to

1The RTA algorithm is currently under review by the United States Patent and Trademark O�ce.
Information regarding intellectual property claims can be found in [85].
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exist in state s8. The initial distribution �MWH can therefore be defined to reflect this

known information �MWH = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0} (i.e.: the forecast error exists

in state s8 with 100% probability). In the context of the scenario tree as introduced

in Section 3.1.3, �MWH provides a known value for the root node of the forecast

uncertainty process ⇠.

Given the known value of the uncertainty process at MWH, the conditional proba-

bility distribution of the uncertainty process ⇠ at the intermediate decision point A10

is constructed. This construction may be carried out in one of two ways: a transi-

tion probability matrix (PMWH,A10) is calculated directly using error comparisons for

data points neighboring MWH and A10, or (PMWH,A10) is calculated indirectly using

one-step transition probability matrices for intermediate waypoints between MWH

and A10 (see Equation 12). Both methods have positive and negative consequences

from a modeling standpoint. The first method is structurally sound from a scenario

generation standpoint; a directly calculated conditional distribution reflects strictly

the evolution of the process from MWH to A10, whereas the indirect method utilizing

Equation 12 relies on intermediate history of the process to generate the conditional

distribution at the next level. Utilizing the second methodology could require intro-

ducing a new scenario tree level as each intermediate conditional distribution is used

to move the uncertainty process closer to A10. However, as the problem formulation

to this point relies on a single recourse decision, these additional intermediate lev-

els only serve to increase the dimensionality of the problem (11n+1 + 1 nodes where

n is the number of intermediate waypoints considered) given the proposed decision

process. The direct methodology introduces a separate consequence, however, as the

distance between MWH and A10 is on the order of 1000 nm. Calculating the un-

certainty process ⇠ in terms of a single stage transition significantly decreases the

longitudinal resolution of the uncertainty model, as the uncertainty process would

be assumed to hold a single (though still random) value between MWH and A10.
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As one of the primary motivations for the uncertainty modeling process was to in-

troduce region-specific information, this attribute of the direct calculation method

is clearly undesirable. In order to utilize the longitudinal resolution of the uncer-

tainty model while maintaining feasible dimensionality of the indirect approach, the

number of first-stage scenarios must be su�ciently large to capture the evolution of

the uncertainty process between MWH and A10 while being small enough to remain

computational tractability. For certain classes of problems, namely convex problems

with piecewise linear objectives and non-empty, bounded solution sets, the sample av-

erage approximation (SAA) [45] method may be used to reliably reduce the number

of required scenarios [79, 54]. However, as previously discussed in Section 3.1.4, the

RTA problem is ill-conditioned to a linearized formulation. As a result, the number of

first stage scenarios will be the parameterized as a variable of interest, and the e↵ects

of scenario size on the algorithm’s performance examined in a sensitivity analysis.

Assuming n first stage scenarios are required, the process of generating realiza-

tions is rather straightforward. The inverse transform method is used to sample the

conditional cumulative mass functions generated using the initial distribution �MWH ,

one-step transition probability matrices, and Equation 12 at intermediate waypoints

between MWH and A10 for both the East and North directional models. These

samples form a series of uncertainty measurements along the route for each model

direction ⇠A1, ⇠A2, . . . , ⇠A10, with the time history of samples constituting a single first-

stage scenario ⇠◆[A10]. The sampling process is repeated until ◆ = n first stage scenarios

have been generated. For each first stage scenario ⇠◆[A10], the sampling process contin-

ues across m � n second stage scenarios. A time history of uncertainty measurements

⇠A11, ⇠A12, . . . , ⇠BNA is generated at intermediate waypoints between A10 and BNA;

these samples constitute a single second stage scenario ⇠⌘[BNA], with the process re-

peating until ⌘ = m second stage scenarios have been generated for each of the n first

stage scenarios.
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. . .

MWH
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⇠◆=1
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[BNA]⇠◆=1,⌘=m
[BNA]⇠◆=1,⌘=2
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⇠◆=n
[A10]. . .

. . .

Figure 27: A two-stage scenario tree for a flight between KSEA and KATL.

The structure of the scenario tree with its (n⇥m+1) nodes is illustrated in Figure

27, where each unique scenario is indexed by stage A10 node ◆ and stage BNA node ⌘

(note that branch ⇠◆=2
[A10] does exist, it was merely hidden to save figure space). Given

this structure, a complete scenario is comprised of a series of sampled uncertainty

values of the form ⇠◆,⌘[BNA] = {⇠MWH , ⇠
◆
A1, ⇠

◆
A2, . . . , ⇠

◆
A10, ⇠

◆,⌘
A11, ⇠

◆,⌘
A12, . . . , ⇠

◆,⌘
BNA}

3.3.2 Constraints

Again consider the two-stage scenario posed in Figure 26. The task is to select a

Mach number M1, that enables the aircraft to meet the assigned RTA at BNA given

the aircraft is able to later change speeds at A10 in order to do so; this choice in

initial Mach number M1 should result in the minimum expected fuel burn for the

entire flight given the wind forecast uncertainty scenarios possibly encountered along

the route. This scenario can be constructed in terms of a multi-stage formulation as

posed in Section 3.1.2:

min
M12M1

fMWH(M1) + E
⇥

QA10(M1, ⇠[A10])
⇤

where the “cost-to-go” function can be expressed:

QA10(M1, ⇠[A10]) = fA10(M2) + E
⇥

QBNA(M2, ⇠[BNA])
⇤

85



Combining both stages, the problem follows:

min
M12M1,M22M2

fMWH(M1) + E
⇥

fA10(M2) + E
⇥

QBNA(M2, ⇠[BNA])
⇤⇤

(25)

where in this case the function f represents the fuel burned as a function of the chosen

Mach number for the given flight segment (fMWH(M1) would therefore represent the

fuel burned along the segment from MWH to A10 given a Mach number of M1).

Furthermore, the expected value of the “cost-to-go” function E [Q(M, ⇠)] represents

the expected value of the fuel burned across the entire set of possible required speed

changes at a given waypoint made necessary to correct for the e↵ects of the forecast

uncertainty process ⇠ on the estimated arrival time at the final waypoint required to

satisfy the RTA.

The term E
⇥

QBNA(M2, ⇠[BNA])
⇤

introduces an interesting issue when considering

speed selection for RTA adherence. The problem could conceivably be refactored into

an n-stage problem with as many intermediate RTA control points as desired. How-

ever, the n-th stage must enforce the aircraft arrive at the RTA waypoint with a given

certainty or confidence. In practice, this will never be possible given the nature of the

interaction between the forecast uncertainty process ⇠ and the RTA constraint. Con-

sider the scenario presented in Figure 28 of an aircraft approaching an RTA control

waypoint. As long as there is some distance between the aircraft’s current position

and the control waypoint, there will be some arrival time uncertainty introduced by

the wind forecast uncertainty process ⇠. This arrival time uncertainty can be quan-

tified in terms of a probability distribution describing the aircraft’s probable arrival

times to the RTA fix rather than a singular estimated time of arrival. As the aircraft

approaches the RTA control waypoint, the width of arrival time distribution will nar-

row as there is a shorter distance over which any forecast uncertainty may aggregate,

with the distribution approaching the actual arrival time as the distance between the

aircraft and the RTA control point approaches zero. Regardless of the number of

problem stages, it will never be possible to ensure the aircraft arrives at the RTA
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RTA

Figure 28: E↵ects of forecast uncertainty on arrival time distributions versus esti-
mation distance.

waypoint at the assigned RTA given there is some measure of wind forecast uncer-

tainty and distance remaining between the aircraft and the RTA control waypoint.

As a result, the algorithm proposed in this work will assume that some level of air

tra�c controller or traditional control methodology intervention will be required at

the tactical level as the aircraft approaches the neighborhood of the RTA fix in order

to ensure the RTA is satisfied. The term E
⇥

QBNA(M2, ⇠[BNA])
⇤

essentially quantifies

the cost of this tactical level intervention, or n-th stage recourse decision.

It is not possible to model the cost of the n-th stage recourse decision. However,

it is possible to reformulate the problem in an attempt to mitigate its e↵ects. Again

recall the generic formulation presented in Equation 25:

min
M12M1

fMWH(M1) + E
⇥

fA10(M2) + E
⇥

QBNA(M2, ⇠[BNA])
⇤⇤

To this point, no mention has been made of the constraints associated with the

proposed model other than the implicit assumption that the aircraft must satisfy a

specified RTA at the final waypoint, BNA. As the cost of the final recourse decision

E
⇥

QBNA(M2, ⇠[BNA])
⇤

is e↵ectively unknown, a modification to the constraints is
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made to mitigate the e↵ects of the required action: rather than requiring that a set of

speed decisions exactly satisfy the RTA, a set of decisions (M ◆
1,M2) for ◆ 2 1, 2, . . . , n

stage-one scenarios is considered to be a feasible policy M (⇠[BNA]) 2 M1 ⇥M2 if
�

�

�

E
n

tBNA(M ◆
1,M2, ⇠

◆
[BNA])

o

� tRTA

�

�

�

 ✏. In this instance, tBNA(M ◆
1,M2, ⇠

◆,⌘
[BNA]) is

the estimated arrival time of the aircraft to the RTA waypoint BNA given first stage

Mach number M1 indexed by stage one scenario ◆, second stage Mach number M2,

and a realization of the forecast uncertainty process ⇠◆,⌘;
n

tBNA(M ◆
1,M2, ⇠

◆
[BNA])

o

is

a sequence of arrival times of size 1⇥m indexed by stage two scenario ⌘; tRTA is the

required time of arrival at the RTA fix; and ✏ is a chosen tolerance. In other words, the

recourse decision for each stage one scenario ◆, M2, is chosen such that the expected

value of the arrival time to the RTA fix due to the flight time estimation error e↵ects

introduced by ⇠ is su�ciently close to the RTA to some specified tolerance. The reader

should again note that as a result of this modification, the choice in M2 calculated

by the RTA algorithm will not necessarily deliver the aircraft to the RTA fix exactly

satisfying the RTA due to the e↵ects of wind forecast uncertainty. Rather, it results

in a choice in M2 providing arrival times that on average satisfy corresponding RTA’s

over a series of operations along the same route; tactical level controller intervention

may still be required on a per-flight basis.

Reformulating Equation 25 for completeness:

min
M12M1(⇠[A10]),M22M2(⇠[A10],⇠[BNA])

fMWH(M1) + E [fA10(M2)]

s.t.
�

�

�

E
n

tBNA(M ◆
1,M2, ⇠

◆
[BNA])

o

� tRTA

�

�

�

 ✏

8 ◆ 2 1, 2, . . . , n

(26)

Given the formulation posed in Equation 26, focus must now shift to the evaluation

of the formulation objective and constraint parameters for fuel burn and flight time.
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Figure 29: Wind triangle.

3.3.3 Aircraft Model

Numerical flight time estimation in the context of the RTA algorithm developed in this

work is a rather straightforward process. Given a fixed ground track as constructed

in Section 2.3.3.2, estimating an along-track flight time is simply a matter of mapping

the aircraft’s true airspeed to its groundspeed given the current wind forecast and

wind uncertainty scenario. Recall that the aircraft’s groundspeed vector is a function

of its true airspeed vector as well as the incident wind vector at its current position:

v

g

= v

TAS

+ v

wind

,

where the wind vector in this case is the sum of a nominal wind forecast and some

forecast uncertainty process:

v

wind

= v

forecast

+ ⇠

As the aircraft is required to maintain its lateral track along its planned route, the

aircraft’s groudspeed vector should track the planned lateral path. Consequently, a

heading o↵set � is required to correct for drift induced by the incident wind vector

(this scenario is illustrated in Figure 29). The incident wind vector is decomposed

into headwind and crosswind components using the angle di↵erence � between the

incident wind speed vector and the desired ground track heading ✓:

W

head

= |v

wind

| cos �

W

cross

= |v

wind

| sin �
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and the resultant groundspeed follows:

vg = |v

TAS

�W

cross

|� |W

head

| (27)

A further modification is required, however, in order to model the known behavior of

current flight management systems as it pertains to the handling of forecast winds.

Current systems blend known winds at the aircraft’s present position with forecast

winds at the next waypoint using simple linear interpolation. In order to mimic this

wind mix behavior, the wind speed at any given waypoint is calculated as the average

value between the known wind at the aircraft’s current waypoint i, and the forecasted

winds at the next waypoint i+ 1:

v

wind,i

=
1

2
· (v

actual,i

+ v

wind,i+1

)

where from Equation 5:

v

actual,i

= v

forecast,i

+ ⇠

◆

i

and ⇠

◆ is the current forecast uncertainty scenario.

As the groundspeed can now be calculated at any waypoint along the planned

route given the planned heading, the aircraft’s true airspeed vector, a wind forecast,

and a forecast uncertainty scenario, the flight time along a given segment distance can

be numerically estimated based on a discretization of the flight path into smaller seg-

ments. The flight time estimation routine used by the RTA algorithm first discretizes

the complete flight path into the same 100 nm segments utilized by the forecast un-

certainty model developed in Chapter 2. The routine then calculates the flight time

for each segment, finally summing the segment flight times to find the total path

flight time. This process is summarized in Algorithm 2.

Estimating aircraft fuel expenditure is performed via a first principles model of

aircraft performance. The lift required to maintain steady-level flight is equal to the

instantaneous weight of the aircraft W :

Lreq = W =
1

2
⇢1 · |v

TAS

|

2
· CL,req · S (28)
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Algorithm 2 Estimates flight time along a path given discretized path segments.

given vforecast {wind forecast by route segment}
given ⇠◆i {wind forecast uncertainty scenario by route segment}
given v

TAS

{true airspeed vector}
given ✓ {desired ground track heading by route segment}
given d {route segment lengths}
init T  0 {total path flight time}
for all flight path segments in set {1 . . . i . . . (N � 1)} do
v

actual,i

 v

forecast,i

+ ⇠

◆

i

v

wind,i

 

1
2 · (vactual,i

+ v

wind,i+1

)
�  \(v

wind

)� ✓
W

head

 |v

wind,i

| cos �
W

cross

 |v

wind,i

| sin �
vg,i = |v

TAS

�W

cross

|� |W

head

|

ti  vg,i/di {segment flight time}
T  T + ti

end for
return T

where ⇢1 is the atmospheric density of the free stream air, CL,req is the required

coe�cient of lift to maintain steady-level flight, and S is the planform area of the

aircraft’s wings. Given the weight of the aircraft is known, the required coe�cient of

lift follows:

CL,req =
2 ·W

⇢1 · |v

TAS

|

2
· S

(29)

Using a proprietary drag polar [Boeing Performance Engineer’s Manual: 737-300/CFM56-

3B-2], the required coe�cient of lift CL,req is mapped to the corresponding coe�cient

of drag CD as a function of both the required coe�cient lift and the aircraft’s Mach

number M . As the instantaneous thrust must equal the total drag in order to main-

tain steady-level flight, the required thrust Treq is found:

Treq = D =
1

2
⇢1 · |v

TAS

|

2
· CD · S (30)

Proprietary fuel burn rate tables [Boeing Performance Engineer’s Manual: 737-300/CFM56-

3B-2] are then used to map the required thrust Treq to the required fuel burn rate ṁ

given the aircraft’s cruising altitude h and the aircraft’s Mach number.
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Algorithm 3 Estimates fuel expenditure given initial aircraft weight and travel time.

given h {wing planform area}
given W0 {initial cruising weight}
given T {total travel time}
given �t {time step}
given h {altitude}
load ⇢1  ICAO(h) {air density at flight level h [41]}
load a1  ICAO(h) {speed of sound at flight level h [41]}
init t 0
init W  W0

M  |v
TAS

|/a1
while t < T do
CL,req  (2 ·W )/(⇢1 · |v

TAS

|

2
· S)

load CD(M,CL,req) {mapped from drag polar}
Treq  

1
2 ⇢1 · |v

TAS

|

2
· CD(M,CL,req) · S

load ṁ(h,M, Treq) {mapped from fuel burn rate tables}
W  W � ṁ(h,M, Treq) · �t
t t+ �t

end while
return (W0 �W )

The model developed in Equations 28 - 30 correspond to instantaneous values for

the aircraft’s weight. In order to quantify the impact of varying aircraft weight as fuel

is burned along-route, the total fuel expenditure must be calculated iteratively based

on a discretization of the aircraft’s total travel time T . Algorithm 3 summarizes this

process assuming the aircraft’s initial cruising weight W0, true airspeed, and total

travel time T are known. Atmospheric parameters are defined as a function of the

ICAO standard atmosphere and the cruising altitude of the aircraft [41].

The availability of propriety aircraft performance data makes fuel burn estimation

significantly simpler. The RTA algorithm implementation presented in this research

e↵ort makes use of performance data for the Boeing 737-300/CFM56-3B-2, though

similar tables are available for a variety of Airbus and Boeing aircraft. In the absence

of such data, a more robust performance model such as EUROCONTROL’s Base of

Aircraft Data (BADA) [26] would be required in order to generate su�ciently accurate

estimates of the aircrafts fuel burn characteristics. However, as the RTA algorithm is
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designed for an FMS-based implementation rather than a ground system, assuming

access to relevant vehicle performance data is reasonable.

3.3.4 Search Heuristic

The formulation posed in Equation 26 allows for the problem to be solved in a se-

ries of unique subproblems according to stage: the second stage strictly enforces the

expected arrival time constraint whereas the first stage (in consideration of nested

second stage solutions) deals entirely with Mach selection for fuel burn minimization.

The proposed RTA algorithm leverages this staged problem structure along with air-

craft performance characteristics to e�ciently search forecast uncertainty scenario

sets generated using the methods outlined in Section 3.3.1 for a fuel optimal im-

plementable policy. The algorithm architecture is depicted in Figures 30-32. The

outermost level is described in Figure 30; this level includes the primary Mach number

search. The objective function (fuel burn) calculation is similarly shown in Figure 30.

Lastly, the recourse decision search based on the constraint described in Equation 26

is outlined in Figure 32. Figures 30 and 32 highlight search functions which will be

further detailed in Section 3.3.4.1.

Beginning with the outer most level depicted in Figure 30, the RTA algorithm

begins by calculating a feasible solution. For simplicity, this initial Mach num-

ber is chosen such that it satisfies the RTA given perfect forecast information (i.e.:

w

forecast

= w

actual

, or ⇠ = 0). The feasible Mach solution is next used to calculate

the expected fuel burn across all n⇥m, stage one and stage two scenarios. The reader

should note from Figure 30 that this process involves both the objective calculation

subroutine described in Figure 31 and the RTA adherence subroutine described in

Figure 32.

To calculate the fuel burn for the feasible Mach solution, first the flight time

from MWH to A10 for each realization of the forecast uncertainty model ⇠◆[A10], ◆ 2
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fnom = fopt M1 = M⇤
1

fcheck = fnom � fopt

fcheck > �
Yes

Return for M1

Search for M⇤
1

Calculate fnom = E [{f (M1)}]

Calculate Feasible M1 := M1,nom

M1 = M1,nom

F1

Calculate fopt = E [{f (M1)}]

F1

Figure 30: Stage one fuel burn minimization subproblem functional diagram.
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Algorithm 3

◆ = 0

Obtain ⇠◆[A10]

◆ < n

◆ = ◆+ 1

Calculate tA10

⇣

M1,M2, ⇠
◆
[A10]

⌘

Obtain M2,
n

tBNA

⇣

M1,M2, ⇠
◆
[BNA]

⌘o

Calculate
n

f ◆
⇣n

tBNA

⇣

M1,M2, ⇠
◆
[BNA]

⌘o⌘o

Obtain M1

F1: Objective Calculation

S2

S1

Return E [{f (M1)}]

Algorithm 2

Figure 31: Stage one objective calculation functional diagram.
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Algorithm 2

⌘ = 0

Search for M⇤
2

No

Yes

⌘ = ⌘ + 1

No

Yes

M2 = M⇤
2

M2 = M2,nom

⌘ < m

Obtain ⇠◆,⌘[BNA]

Calculate Feasible M2 := M2,nom

Obtain tA10(M1, ⇠
◆
[A10])

Calculate tBNA(M1,M2, ⇠
◆,⌘
[BNA])

�

�

�

E
n

tBNA(M1,M2, ⇠
◆
[BNA])

o

� tRTA

�

�

�

 ✏

Return M2,
n

t[BNA](M1,M2, ⇠
◆
[BNA])

o

S2: RTA Adherence Subproblem

F1

Figure 32: Stage-two RTA adherence subproblem functional diagram.
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1, 2, . . . , n, is calculated using the method outlined in Algorithm 2 and depicted in

Figure 31. The result is a sequence of n arrival times to A10,
�

tA10

�

M1, ⇠[A10]

� 

. Each

arrival time represents a possible stage one outcome based on the initial feasible Mach

solution and the impact of the forecast uncertainty process between MWH and A10,

⇠[A10]. The RTA constraint defined in Equation 26 must now be applied to each of

the stage one outcomes by means of a speed change at A10; this process is performed

by the RTA adherence subroutine labeled S2, which is further described in Figure 32.

Calculating the second stage speed begins in the same manner as the outermost

layer of the algorithm. For each of the stage one outcomes indexed by stage one

scenario ◆, a feasible Mach solution is calculated such that given perfect forecast

information, the aircraft satisfies the RTA at BNA given its initial estimated arrival

time to A10, tA10(M1, ⇠
◆
[A10]). The stage two feasible Mach is then used to estimate

the time of arrival at BNA again using Algorithm 2 for each second stage realization

of the forecast uncertainty process ⇠◆,⌘[BNA], ⌘ 2 1, 2, . . . ,m. It should be clear to this

point that there now exist n⇥m estimated arrival times to BNA, indexed first by the

first stage scenario index ◆, then by the second stage scenario index ⌘. The constraint

developed in Section 3.3.2 holds that for each subset of the arrival times indexed by a

single stage one scenario, the expected value of the arrival time must fall su�ciently

close to the RTA. Enforcing this constraint therefore requires calculating a second

stage Mach, M2, that shifts the expected value of each subset of arrival times to the

RTA at BNA for each of the stage one scenarios. Determining this Mach number,

defined as M⇤
2 in Figure 32 is the focus of Section 3.3.4.1. For now, assume that once

this value is determined, the final step of the RTA adherence subroutine is to return

the second stage Mach number M2 satisfying the RTA constraint as well as the m

estimated arrival times to BNA.

Now that a value for M2 has been found for each of the n stage one scenarios

that satisfies the RTA constraint, and arrival times to BNA calculated based on
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the stage one feasible Mach solution and the RTA-required stage two Mach number,

Algorithm 3 is used to calculate the fuel burn for all n⇥m scenarios. The expected

fuel burn across the full range of scenarios is then returned. This value for expected

fuel burn represents the average fuel burn across all generated forecast uncertainty

scenarios given the aircraft flies from MWH to A10 at the initial feasible stage one

Mach number, then updates its speed at A10 in order to enforce the RTA constraint

at BNA. Furthermore, the corresponding solution pair M = (M1,M2) is a feasible

policy, though not necessarily an optimal policy. As one can see in Figure 30, a search

is next performed on Mach number by a “black box” search routine to improve the

initial feasible solution used by the algorithm, the process repeated, and the expected

fuel burn results given the updated Mach number compared to the prior iteration.

Once the di↵erence in expected fuel burn between iterations falls below a specified

tolerance (defined as �), the algorithm is considered to have converged on a value for

the first stage Mach number, M1, and the resultant policy M considered to be an

optimal policy.

3.3.4.1 Mach Searches

To this point, the algorithm as depicted in Figures 30-32 strictly lays out a framework

for enumerating the forecast uncertainty model scenarios in a structured manner while

enforcing the RTA constraint given an initial feasible first stage Mach solution, M1.

The real power of the algorithm lies in the two Mach searches performed by the

outermost layer of the algorithm described in Figure 30 and the inner most layer

described in Figure 32.

First, consider the Mach search referenced in Figure 30. The goal of the routine

is to generate a stage one Mach number that results in an improved value for the

expected fuel burn across all n⇥m scenarios considering the possible recourse actions

required at A10 when compared to its input, an initial feasible value for M1. Recall
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from section 3.1.4 that fuel burn rate is approximately quadratic with Mach number.

Intuitively, one would assume the expected fuel burn value returned by the algorithm

objective subroutine to be quadratic with Mach number as well. Accordingly, the

stage one search routine simply paramaterizes the expected fuel burn as a quadratic

function of the stage one Mach number. The input M1 value is first perturbed in

both directions, resulting in two additional values for M1 in the neighborhood of the

original M1 value. The expected fuel burn for each perturbed Mach value is then

calculated using the objective calculation subroutine described in Figure 31. A three-

point quadratic approximation of expected fuel burn versus Mach number is then

constructed, and the closed-form minimum of the function evaluated:

M⇤ =
f` + f

2
�

s` · (fh � f`)

2 · (sh � s`)
(31)

with:

f` = E [{f (M1 � �)}]

f = E [{f (M1)}]

fh = E [{f (M1 + �)}]

sh = (fh � f)/((M1 + �)�M1)

s` = (f � f`)/(M1 � (M1 � �))

where M1 is the input Mach number, � is a small perturbation on the order of M =

0.05, and M⇤ is the minimum of the quadratic approximation. This minimum Mach

value is then set as the new initial feasible solution, and the process repeated until

the expected fuel burn converges.

The second Mach search, referenced in Figure 32, performs in nearly the same

manner. However, in this case the distance between the mean arrival time of the stage

two scenarios and the RTA is parameterized and fit to a quadratic approximation as
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a function of the second stage Mach number:rm

f` =
�

�

�

E
n

tBNA(M1,M2 � �, ⇠◆[BNA])
o

� tRTA

�

�

�

f =
�

�

�

E
n

tBNA(M1,M2, ⇠
◆
[BNA])

o

� tRTA

�

�

�

fh =
�

�

�

E
n

tBNA(M1,M2 + �, ⇠◆[BNA])
o

� tRTA

�

�

�

sh = (fh � f)/((M2 + �)�M2)

s` = (f � f`)/(M2 � (M2 � �))

where Equation 31 still holds for the minimum of the approximation. Again, this

routine accepts an initial feasible solution for M2, and the resulting value for M2 is

meant to minimize the di↵erence between the mean arrival time to the RTA way-

point, BNA, and the RTA; this process iterates until it fails to improve the time

di↵erence. As an additional note to the reader, a quadratic approximation for the

second stage is not necessarily the only acceptable searching routine to use for this

purpose. Whereas a quadratic approximation leverages the quadratic approximation

between Mach number and fuel burn rate for the stage one Mach search, a quadratic

fit routine was selected for this purpose as the prior search routine had already been

implemented.
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Table 6: Notional RTA scenarios along sample routes.

Route Origin Destination Flight Level Decision RTA
1 KSEA KATL 370 A09 03:45:00 GMT
2 KATL KSEA 360 A09 03:55:00 GMT
3 KLAX KATL 370 A08 03:00:00 GMT
4 KATL KLAX 360 A08 03:45:00 GMT
5 KEWR KATL 360 A03 01:30:00 GMT
6 KATL KEWR 350 A03 00:58:30 GMT

3.4 Sample Results

As any result produced by the RTA algorithm is the product of a specific scenario

construction, results are presented for notional RTA scenarios along the sample routes

provided in Appendix A relative to a specific series of RUC-20 forecast releases. Each

of the notional RTA scenarios hold the following characteristics in common:

1. The aircraft reaches its initial cruise waypoint at 2009-08-31 00:00:00 GMT.

2. The aircraft reaches its initial cruise waypoint at 70% of its maximum gross

takeo↵ weight.

3. The forecast uncertainty model is initialized to represent a zero-error initial

distribution (i.e.: the di↵erence between the winds measured at the first cruise

waypoint and the wind forecast lies in the range [�1, 1)).

4. The forecast uncertainty model used represents the “base” scenario discussed

in Chapter 2.

5. The recourse decision occurs at a point roughly two-thirds along the length of

the route.

6. The algorithm considers n = 100 stage-one and m = 100 stage two forecast

uncertainty scenarios, where |⇠| = 10, 000.
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Table 6 lists a series of such scenarios along the sample route, where the ”Deci-

sion” column lists the waypoint separating the problem stages (the reader should be

aware by now that the recourse speed decision is made at this waypoint). Table 7

lists the corresponding algorithm solutions, where M1,nom is the required cruise speed

to satisfy the RTA given no forecast uncertainty and M⇤
1 is the calculated optimal

stage one cruise speed. The speed advisories listed in Table 7 are of diminished value,

however, given no baseline metric of fuel burn improvement. In order to generate

baseline values for comparison, a “traditional” dead-band RTA logic was also imple-

mented to demonstrate the benefit of the fuel planning algorithm. An overview of

this algorithm is provided in Algorithm 4; any “calculate” subroutines have already

been developed in Section 3.3.3. As a reminder of the traditional approach to RTA

functionality as introduced in Chapter 1, the estimated time of arrival (ETA) to the

final waypoint is monitored as an aircraft progresses along its route. At any point, if

the projected ETA diverges from the RTA to a degree larger than a specified toler-

ance, the cruising Mach number is adjusted. Using the logic developed in Algorithm

4, three more columns are generated for Table 7: E
⇥

fM⇤
1

⇤

is the expected fuel burn

across all scenarios given a calculated optimal stage one Mach number found by the

stochastic algorithm, E [f
M

] is the expected fuel burn across all scenarios given a

traditional RTA approach as detailed in Algorithm 4 (note that M in this case is a

vector quantity as there are multiple possible cruising Mach numbers along a given

scenario), and �f is the di↵erence between E
⇥

fM⇤
1

⇤

and E [f
M

] (a negative value rep-

resents an expected savings in favor of the stochastic algorithm in terms of pounds of

fuel).

In examining Table 7, the reader should reference the scenario conditions detailed

at the start of this section. Recall that these sample scenarios were built using a wind

forecast uncertainty model initialized with a zero-error initial distribution, meaning

that forecasted winds along the route added very little uncertainty to the solution
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Algorithm 4 Dead-band speed controller for RTA flight mode.

given ✏ {control gain}
given T0 {current clock time}
given RTA {required time of arrival at final route waypoint}
calculate M0(T0) {cruise Mach required to satisfy the RTA from time T0}

init T  T0 {flight clock}
init M  M0 {cruise Mach number}
for all flight path segments in set {1 . . . i . . . (N � 1)} do
calculate ti (M) {flight time to segment end given cruise Mach M}

T  T + ti
calculate ETAi (M,T ) {estimated time of arrival to final route waypoint}
if |ETAi (M,T )�RTA| > ✏ then
calculate Mi(T ) {Mach required to satisfy the RTA from segment i}
init M  Mi

end if
end for

Table 7: Notional RTA scenario results.

Route M

1,nom

M

⇤
1

E
⇥

f

M

⇤
1

⇤

(lbs) E [f
M

] (lbs) �

f

(lbs)
1 0.715 0.735 20,515 20,584 -69
2 0.710 0.730 21,164 21,238 -74
3 0.715 0.730 16,586 16,618 -32
4 0.715 0.735 20,268 20,350 -82
5 0.720 0.730 8,053 8,071 -18
6 0.710 0.715 5,452 5,458 -4
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space. This fact highlights a characteristic of the standard RTA approach previously

introduced in Chapter 1: traditional dead-band control solutions force aircraft to

operate outside of their optimal performance envelopes [82]. Though the forecast

uncertainty model had little impact on the scenarios, there were still significant fuel

savings to be found simply by not constraining the aircraft to continuously track a

suboptimal cruising speed. Alternatively, the author’s approach allows the FMS to

consider the cost of cruising at a slightly better Mach number for a portion of the route

given a corrective speed choice can be made later to satisfy the RTA; furthermore,

the fuel cost of this correction is considered in the initial Mach selection.

Routing plays an interesting role in the performance of the algorithm. An obvious

result is that more fuel is saved along longer flight paths, as small speed changes have

more time to a↵ect change in the amount of fuel burned along the route. One may

initially consider the smaller fuel burn di↵erence along route 6 between KATL and

KEWR to be an insignificant result in comparison to the results for the transcontinen-

tal scenarios. Further inspection reveals however, that the small fuel savings provided

by the stochastic algorithm along route 6 is actually a statistically significant result.

The standard error of the di↵erence in mean fuel burns along route 6 was found to be

0.306 lbs, corresponding to a 99% confidence interval for the di↵erence in the mean

fuel burns of 4± 0.860lbs.

A more nuanced result was introduced in Section 2.4.1. Notice that in general, fuel

savings are greater along routes opposing the jet stream’s natural direction (routes 4

and 5 in particular). Now consider that an increase in the stage one Mach number

from the nominal value allows the aircraft to operate at a better Mach number from

a fuel burn rate standpoint, but requires a larger decrease in speed at the recourse

waypoint in order to satisfy the RTA. Aircraft will tend to experience a stronger

headwind or weaker tailwind along routes opposing the jet stream, meaning the mag-

nitude of this speed decrease is slightly reduced. As a result, the aircraft continues
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to operate more closely to its fuel-preferred Mach number. This e↵ect is particularly

noticeable along routes 3 and 4. As the routing is nearly direct in both directions

between KATL and KLAX, avoiding a headwind is virtually unavoidable along route

4 (as reflected in the increased flight time and fuel burn); this attribute of the route

is exploited by the algorithm, however, to find significantly more fuel savings when

compared to the converse routing.

3.4.1 Time to Solution

Questions regarding the complexity of linear programming algorithms have been

raised since the 1950’s. Klee and Minty demonstrated that the simplex algorithm

could at worst be expected to perform in exponential time in 1970 [47]; Khachiyan

demonstrated that linear programming problems can be solved in polynomial time

relative to the length of the input data using ellipsoid methods in 1979 [46]; and

Karmarkar developed a polynomial time interior point algorithm for linear programs

in 1984 [43]. Linear programming methods are used as a comparison for the author’s

search heuristic as the alternative methods explored in Sections 3.1.1-3.1.4 utilized

such techniques. However, it is important to note that the algorithm developed in

this research e↵ort is strictly a heuristic, meaning optimal solutions found by the

algorithm have not been proven to be globally optimal as in the case of the linear

methods discussed prior.

As detailed in Section 3.3.4.1, the heuristic makes use of a three point quadratic

approximation to search for the fuel-minimum stage one Mach number. Given fuel

burn rate is roughly quadratic with Mach number, one should expect the quadratic

approximation of a quasi-quadratic function to provide the minimum solution in a

single iteration. Absent numerical instabilities introduced by the aircraft performance

data, this is often the case. Intrinsically, one would therefore expect the algorithm

to reach a solution in linear time, as the solution time is simply bound by the time
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Figure 33: Algorithm time to solution as a function of scenario set size for sample
scenario 1.

it takes to enumerate the tree completely three times. However, if one considers the

structure of the scenario tree, a di↵erent conclusion is reached. Recall from Section

3.3.4 that each first stage branch is enumerated independently and the flight time

from the first waypoint to the decision waypoint given the first stage wind forecast

uncertainty scenario calculated. Further flight time calculations are then performed

on each of the stage two forecast scenarios for the individual stage one branches.

However, the stage two calculations only consider the flight path between the decision

waypoint and the final RTA waypoint. Accordingly, the forecast uncertainty scenario

tree is not enumerated completely as a function of individual scenarios, rather as

a function of the individual stage one branches. The algorithm time to solution is

therefore driven by the number of stage one scenarios rather than the total number

of scenarios. Moreover, the algorithm provides a solution in better than linear time.

An examination of the algorithm run time is provided in Figure 33, which depicts the
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Table 8: Sensitivity to decision waypoint location.

Route Decision Waypoint M

⇤
1

E
⇥

f

M

⇤
1

⇤

(lbs)

1
A06 0.750 20,508
A09 0.735 20,515
A12 0.735 20,521

2
A06 0.750 21,149
A09 0.730 21,164
A12 0.720 21,178

3
A05 0.740 16,570
A08 0.730 16,586
A11 0.730 16,598

4
A05 0.745 20,251
A08 0.735 20,268
A11 0.735 20,333

times to solution for 10 runs of sample scenario 1 (defined in Table 6) as a function of

the size of the forecast uncertainty scenario set.2 As one can see in Figure 33, there is

little variation in run time for problems of the same size. Furthermore, the algorithm

provides a solution in fractional power time. Though a slight improvement over linear

run time, fractional power time represents a significant run time improvement when

compared to a polynomial time solution.

3.4.2 Sensitivity to Decision Waypoint

Table 8 lists a series of sensitivity studies examining the e↵ects of decision point

placement on the calculated solution for sample scenarios 1-4 as constructed in Table

6 (routes between KATL and KEWR were omitted as the route length is too short

to produce any perceptible change in result). In each case, as the stage one decision

2The particular algorithm implementation was developed using a mixture of Python 2.7 (with
Numpy 1.7) and standard C. Though Python introduces some computational overhead as an in-
terpreted language, this choice was made to both ease flexibility of development and respect the
technology debt inherited by the weather modeling portion of this research e↵ort. Best-practices
regarding minimizing interpreter overhead were respected. However, one should expect significant
solution time improvement given a purely C (or in the case of an FMS implementation, Ada) im-
plementation. The algorithm was run was run on a Core i5 processor with a clock speed of 1.8GHz
in a single processing thread; this implementation was purposefully not parallelized to respect the
nature of on-board systems.
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length is reduced, the recommended stage one Mach number is increased. Again,

recall that aircraft Mach number is roughly quadratic with Mach number and as a

result, there exists a Mach number at which the aircraft’s fuel burn rate achieves

a minimum value. Given the 70% weight fraction defined in scenario definition at

the beginning of Section 3.4, this minimum Mach lies near Mach 0.77 (this value was

verified, however the author cannot disclose a plot of fuel burn versus Mach number as

this information constitutes protected intellectual property). The trend in increasing

Mach is a direct result of the aircraft’s optimal operating Mach lying at 0.77. Given

the aircraft has a longer stage two distance, a less dramatic recourse decision is

required to counter the time e↵ects of the increased stage one Mach number.

Further consideration must be given to decision waypoint placement, however,

when one considers the algorithm formulation developed in Section 3.3.2. Recall that

the algorithm considers the RTA constraint in terms of expected value as there will

always be some measure of time uncertainty between the aircraft’s estimated arrival

time to the RTA waypoint and the RTA so long as some distance remains between

the two. Accordingly, one can consider the placement of the decision waypoint as an

analogue for acceptable RTA adherence risk. The further the decision waypoint lies

from the RTA waypoint, the higher risk of the aircraft arriving to the RTA waypoint

within some small neighborhood of the RTA. However, moving the decision waypoint

further from the RTA waypoint may allow for fuel saving opportunities.

3.4.3 Sensitivity to Forecast Uncertainty Conditions

The algorithm demonstrated very little deviation in performance given a variety of

initial distributions used to initialize the forecast uncertainty model. As a specific ex-

ample, distributions representing initial conditions of error magnitude proportional to

7.7 m/s (the level at which forecast error becomes detrimental to air tra�c manage-

ment operations—see Section 2.1.1.1), and the algorithm produced nearly identical
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results to those presented in Table 7. However, this result is a shortcoming of the

forecast uncertainty model rather than the algorithm and will be discussed in further

detail in Chapter 4.
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CHAPTER IV

CONCLUSIONS

The shortcomings of current flight management system (FMS) implementations of

the required time of arrival (RTA) mode in the presence of wind forecast uncertainty

were introduced and discussed in Chapter 1. The clear need for an on-board system

capable of making fuel-optimal speed decisions to enable the controlled time arrivals in

the presence of forecast uncertainty was identified and a two-fold solution proposed.

First, a location-specific, data-driven forecast uncertainty model was developed in

order to capture regional uncertainty characteristics for the Rapid Update Cycle

(RUC20) forecast uncertainty product. Constructed as an inhomogeneous Markov

model, the forecast uncertainty model served as a scenario generation mechanism for

a two-stage stochastic algorithm. The stocahstic algorithm aimed to calculate the

stage one cruise speed that ensured the aircraft’s expected arrival time to the RTA

waypoint was within a certain tolerance of the RTA while providing the minimum

expected fuel burn along the entire route.

An examination of the literature illuminated two primary gaps in current ap-

proaches to forecast uncertainty modeling: all approaches to date were unable to

resolve error introduced by the characteristics of the sensor network (i.e.: errors of

scale or representativeness), and no other e↵orts had genuinely attempted to model

the regional characteristics of the RUC20 model, with most works relying on sta-

tistical information generated during a year-long evaluation of the RUC product in

the Denver center airspace. As the author had already identified regional variations

in the RUC20 product in prior research e↵orts, a model capturing regional forecast

uncertainty characteristics rather than relying on statistics from a single region was
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deemed necessary, especially for operations traversing multiple regions of the national

airspace system.

From an approach standpoint, the inhomogeneous Markov technique developed

in Chapter 2 was successful in illustrating the regional uncertainty characteristics of

the RUC20 product. Realizations of the model clearly illustrate the impact of the

jet-stream on a data assimilation model relying heavily on aircraft reports, with the

RUC 20 exhibiting a slight positive bias along routes where aircraft leverage the strong

tailwind provided by the jet stream. The converse case is also evident for the first

time, with the RUC20 displaying a slight negative bias along routes where aircraft

actively avoid strong jet stream headwinds. This result demonstrates a need for

models that capture regional forecast uncertainty characteristics, as the uncertainty

characteristics of the RUC forecast product as an example are inexorably driven by

the air route. Regarding the issue of error scale, the inhomogeneous Markov approach

was unable to address this issue directly; on its face, the reasoning should be rather

plain to the reader as well. Any model hoping to capture an error e↵ect within the

RUC20 will require co-temporal measurements of equal or lesser than scale compared

to the e↵ect itself. In other words, the only real solution to this issue is to increase the

sensor network density. Although the inhomogeneous Markov approach was unable

to solve an issue inherent to the problem itself, it is completely adaptable to increased

sensor network density. As the sensor network (i.e.: density of aircraft wind reports)

increases, the longitudinal scale of the model can be increased to capture the e↵ects

of smaller scale forecast features.

From an application standpoint, an issue with the forecast uncertainty model

was briefly addressed in Section 3.4.3. Initializing the uncertainty model with a

variety of initial distributions provides very little impact on the realizations of the

model itself. Upon closer inspection, this phenomenon is explained by data density

issues. Of the 2,797 flight paths between KSEA and KATL comprising the data set
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for this airport origin-destination pair, only 217 flights directly contributed to the

uncertainty model constructed along sample route 1. Of these 217 flights, very few

exhibited consistently large forecast error measurements. Accordingly, the transition

probabilities tend to drive most fringe measurements towards the center when the

model is actually realized. Though detrimental towards illustrating the possible uses

of the stochastic algorithm as the solution space becomes artificially narrow, the

approach itself is still valid and the models themselves can be improved with access

to a better data set. Currently, U.S. air carriers only contribute a fraction of collected

meteorological data reports to the ACARS program. The author’s methodology could

very easily be utilized to construct high resolution model along popular routes within

a carrier’s route structure using the wealth of privately held data.

Current FMS RTA mode implementations are purely deterministic. Research ef-

forts surrounding fuel-optimal RTA functionality have approached the issue from a

large-scale, linearized model approach for ground-based solutions, and development

of on-board solutions have approached RTA functionality given forecast uncertainty

from a purely adherence-driven standpoint utilizating a “worst case scenario” ap-

proach. Studies have repeatedly shown that an on-bard system is preferred for a

variety of reasons, however, any approach combining fuel optimization strategies uti-

lizing large scale mixed integer programming techniques is immediately at odds with

the technology available in the cockpit. A clear need for an algorithm capable of in-

cluding wind speed forecast uncertainty information in fuel-centric RTA speed while

being computationally tractable with an on-board system is plainly evident.

The stochastic algorithm developed in Chapter 3 succeeds in bridging the gap

between fuel optimization approaches developed in the literature and the constraints

imposed by a lack of compute power. In most cases, the quadratic search technique

allows the search heuristic to converge within one iteration (though an additional

iteration is required to verify the solution). Moreover, the algorithm demonstrates
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fuel savings on the order of 50-100 lbs of fuel for transcontinental RTA operations

when compared to standard dead-band control approaches. Computationally, the

algorithm compares very favorably performance-wise to the large scale optimization

approaches described in the literature. Generally, mixed integer programs solve in

polynomial time. The algorithm proposed by the author solves in better than linear

time, consistently providing solutions in fractional power time meaning performance

improves as the solution space increases in size. However, though a very interesting

result from a computational complexity standpoint, it is important to note that per-

formance gains exhibited by algorithms with better than linear time to solutions are

only really evident once the solution space reaches a certain size. For the solution

space of 10,000 scenarios proposed in this e↵ort, the algorithm performs comparably

to a linear time approach.

4.1 Contributions to the Field

This research e↵ort provides two significant contributions to the field: a forecast

uncertainty modeling methodology capable of capturing regional forecast uncertainty

characteristics, and a stochastic fuel-optimal RTA algorithm which is computationally

tractable given the limited resources of on-board systems. The uncertainty model

developed in this e↵ort clearly demonstrates the need for regional or route specific

models by plainly illustrating the inherent bias of the RUC20 model due to jet stream

e↵ects, and the RTA algorithm provides a compact approach to fuel-optimal RTA

performance with an algorithm that performs better than its large-scale counterparts

from a computational complexity standpoint given a much smaller implementation

footprint.
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4.2 Future Work

Both the wind forecast uncertainty model and the required time of arrival algo-

rithm warrant further exploration. To begin, the wind forecast uncertainty mod-

eling methodology relied on the fact that aircraft flight track data was concentrated

along specific routes through the airspace, excluding flights from the considered data

set which did not closely follow the proposed sample route. In order to generate a

Markov model utilizing fixed transition probability matrices, this characteristic of the

model is an unfortunate necessity. Expanding the analysis methodology to instead

consider a variable route and thus variable transition probabilities would allow for a

more flexible approach. As a proposed solution, Kriging could be used to estimate

the transition probabilities as a function of unique route and neighboring data points

rather than tying the transition probabilities to a predefined route.

It may have become evident to the reader that the RTA algorithm produces cruise

speed recommendations that often lie in close proximity to the nominal Mach number

required for RTA adherence. If one further considers that modern flight management

systems can only be expected to accept Mach inputs with precision to five thou-

sandths of a Mach number, the entire algorithm could be reformulated to consider

Mach number as a discrete rather than continuous variable, with Mach number dis-

cretized in 0.005 Mach increments. Doing so would severely restrict the solution

space allowing for the consideration of additional variables such as the location of the

decision waypoint. Rather than modeling the decision waypoint as a constraint, the

acceptable width of the arrival time distribution could be constrained based on carrier

RTA adherence risk tolerance, and the location of the decision waypoint explored to

find the combination of stage one Mach number and decision waypoint location which

minimizes fuel burn while ensuring that arrival time uncertainty remains bounded.
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APPENDIX A

AIRCRAFT ROUTES

A.1 Route 2: KATL to KSEA

Table 9: Route used to construct uncertainty model for flights between KATL and
KSEA.

Waypoint Latitude (�N) Longitude (�E) Length (nm) Heading (�)
BNA 36.1369608 -86.6847717 243.926 -46.9
STL 38.8606889 -90.4823681 278.852 -58.6
OVR 41.1672222 -95.7369444 363.702 -60.0
RAP 43.9760292 -103.0123419 263.352 -63.4
BIL 45.8085592 -108.6246475 146.739 -69.7
HLN 46.6068208 -111.9534753 159.893 -70.0
MLP 47.4569031 -115.646045 80.827 -84.7
GEG 47.5649444 -117.6268889 N/A N/A
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Figure 34: KATL to KSEA route with standard and artificial waypoints.
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A.2 Route 3: KLAX to KATL

Table 10: Route used to construct uncertainty model for flights between KLAX and
KATL.

Waypoint Latitude (�N) Longitude (�E) Length (nm) Heading (�)
TRM 33.6280833 -116.1601944 353.070 80.3
SJN 34.4240367 -109.14352 206.966 77.4
ACH 35.1117061 -105.0399289 164.482 86.5
PNH 35.235 -101.6991667 101.585 85.7
SYO 35.3452778 -99.6352778 99.442 89.0
IRW 35.3586111 -97.6091667 163.776 88.4
FSM 35.3883333 -94.2713889 212.016 94.8
MEM 35.0151111 -89.9832222 N/A N/A
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Figure 35: KLAX to KATL route with standard and artificial waypoints.
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A.3 Route 4: KATL to KLAX

Table 11: Route used to construct uncertainty model for flights between KATL and
KLAX.

Waypoint Latitude (�N) Longitude (�E) Length (nm) Heading (�)
VUZ 33.6701389 -86.8998333 269.684 -75.6
LIT 34.6776728 -92.1805283 270.586 -79.8
IRW 35.3585892 -97.6092336 200.984 -90.9
PNH 35.2350628 -101.6990328 164.492 -91.6
ACH 35.1116667 -105.04 87.568 -92.2
ABQ 35.0437956 -106.8163119 115.339 -91.7
ZUN 34.9657533 -109.1545094 165.013 -94.5
DRK 34.7025564 -112.4803492 167.084 -101.3
TNP 34.1122222 -115.7699167 N/A N/A
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Figure 36: KATL to KLAX route with standard and artificial waypoints.
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A.4 Route 5: KEWR to KATL

Table 12: Route used to construct uncertainty model for flights between KEWR
and KATL.

Waypoint Latitude (�N) Longitude (�E) Length (nm) Heading (�)
PTW 40.2222364 -75.5602589 78.708 -123.2
EMI 39.4950075 -76.9785719 65.857 -140.7
CSN 38.6412022 -77.8654994 73.561 -126.7
MOL 37.9005247 -79.1068892 279.546 -132.1
ODF 34.6958611 -83.2976667 N/A N/A

Figure 37: KEWR to KATL route with standard and artificial waypoints.
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A.5 Route 6: KATL to KEWR

Table 13: Route used to construct uncertainty model for flights between KATL and
KEWR.

Waypoint Latitude (�N) Longitude (�E) Length (nm) Heading (�)
SPA 35.0336389 -81.927 113.129 57.0
GSO 36.0456919 -79.9763753 136.424 48.7
FAK 37.5285 -77.8282222 87.241 35.7
OTT 38.7058611 -76.74475 78.824 42.0
DQO 39.6781389 -75.6070833 47.227 42.9
ARD 40.2533333 -74.9076111 N/A N/A

Figure 38: KATL to KEWR route with standard and artificial waypoints.
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