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SUMMARY

In many fields of science and engineering important to society, such as study of air and

water quality, pollutant dispersion, cloud physics, design of improved combustion devices,

etc., the ability of turbulent flow to provide efficient transport of entities such as pollutants,

vapor droplets, fuel and oxidizer, etc. is of critical importance. To understand and hence

develop proper predictive tools for such transported entities it is necessary to understand

turbulence from a Lagrangian perspective (of an observer moving with the flow), including

the interaction between turbulent transport and molecular diffusion. Usually, in both direct

numerical simulations (DNS) and experiments, a population of fluid particles is tracked

forward in time (forward tracking) from specified initial conditions to understand how a

cloud of material spreads in a turbulent flow. However, the process of turbulent mixing

occurs when material from different regions is brought together at a later time. In such a

scenario, it is more important to track the particles backward in time (backward tracking).

Backward tracking is also important from a modeling perspective, which would help address

questions about the dynamical origins of a patch of contaminant material, or a highly

convoluted multi-particle cluster. Furthermore, it can also be shown that the nth moment

of a passive scalar field can be directly related to the backward in time statistics of an

n-particle cluster. Although conceptually simple, backward tracking is very difficult to

accomplish due to time irreversibility of Navier-Stokes equations, and thus not very well

understood in literature.

In this work, DNS of stationary isotropic turbulence is performed to investigate the

fundamental differences between forward and backward dispersion. A new massively parallel

algorithm using one-sided communication has been developed and applied to enable particle

tracking in DNS at Petascale problem sizes. Simulations up to 40963 in size with more

than 100 million particles have been performed, while a new simulation with 81923 grid
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points with 300 million particles on 262, 144 processors is currently underway. Also a new

massively parallel postprocessing algorithm is developed and applied to obtain well-sampled

backward and forward statistics of pairs and clusters of fluid particles and molecules that

undergo Brownian motion relative to the fluid.

Detailed results are first obtained for pairs of fluid particles, over a range of initial separa-

tions ranging from Kolmogorov to energy-containing scales and up to Taylor-scale Reynolds

numbers (Rλ) of 1000, which is higher than in recent work in the literature. Backward dis-

persion is faster, especially at intermediate times, after the ballistic range and before the

long-time diffusive behavior is reached. Richardson scaling has been demonstrated for the

mean-squared separation, and the forward and backward Richardson constants are esti-

mated to be 0.55 and 1.5 respectively, which are close to or comparable to other estimates.

Extensions to higher order moments of the separation are also investigated. Analysis of the

so-called distance-neighbor function showed only transitory agreement with the well-known

Richardson prediction. The predicted asymmetry between backward and forward relative

displacements at early times, manifested in a t3 variation, was confirmed numerically and

explicitly traced to Eulerian property at the small scales. However, this t3 growth is not

simply connected to the t3 growth in the Richardson regime and the asymmetry manifested

there by the difference in the backward and forward Richardson constants. Asymmetry

in time for higher order moments is also explained using a Taylor-series analysis at small

times.

Statistics of the trajectories of molecules diffusing via Brownian motion, are obtained

for Schmidt numbers (Sc) from 0.001 to 1000 at Taylor-scale Reynolds number up to 1000.

Statistics of displacements of single molecules compare well with the earlier theoretical

work of Saffman (J. Fluid Mech. 8, 273-283, 1960) except for the scaling of the integral

time scale of the fluid velocity following the molecular trajectories. For molecular pairs we

extend Saffman’s theory to include pairs of small but finite initial separation, in excellent

agreement with numerical results provided data are collected at sufficiently small times.

At intermediate times the separation statistics of molecular pairs exhibit a more robust

Richardson scaling behavior than for the fluid particles. The forward scaling constant is
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very close to 0.55, whereas the backward constant is about 1.53–1.57, with a weak Schmidt

number dependence, although no scaling exists if Sc≪ 1, at the Reynolds numbers presently

accessible. An important innovation in this work is to demonstrate explicitly the practical

utility of a Lagrangian description of turbulent mixing, where molecular displacements and

separations in the limit of small backward initial separation can be used to calculate the

evolution of scalar fluctuations resulting from a known source function in space. Lagrangian

calculations of production and dissipation rates of the scalar fluctuations are shown to agree

very well with Eulerian results for the case of passive scalars driven by a uniform mean

gradient. Although the Eulerian-Lagrangian comparisons are made only for Sc ∼ O(1),

the Lagrangian approach is more easily extended to both very low and very high Schmidt

numbers. The well known scalar dissipation anomaly is accordingly also addressed in a

Lagrangian context.

Some results for dispersion of four-particle clusters (tetrads) are also reported. The

statistics of tetrad size, namely volume (V ) and gyration radius (R), are qualitatively similar

to that of the mean-square separation of particle pairs, i.e., stronger backward dispersion

at intermediate times with larger backward Richardson constant. The statistics of tetrad

shape show more robust inertial range scaling compared to the statistics of tetrad size.

The general behavior of forward and backward statistics of tetrad shape, further suggests

that the distorting effects of turbulence at intermediate times are stronger in the backward

frame.

Extensions of the current work to study of, for example, clusters of molecules, velocity

gradients following fluid particles, inertial particles, etc. are also addressed.

xix



CHAPTER I

INTRODUCTION

1.1 Background and Motivation

Turbulence is the most common state of fluid motion both in nature and engineering.

Understanding of turbulence is essential for a range of applications such as atmospheric

sciences, oceanography, pollutant transport, cloud physics, aerospace vehicles, combustion

devices, etc. Turbulent flows are characterized by disorderly fluctuations spanning a wide

range of scales in time and three-dimensional (3D) space, resulting in a set of governing

equations, the Navier-Stokes equations, which are highly non-linear and stochastic in nature.

Because of these complexities, the study of turbulence is very challenging (Lumley & Yaglom

2001) and still remains a major ‘unsolved’ problem in classical physics (Sreenivasan 1999).

It is clear that theory, computations and experiments (Warhaft 2009) are all important

in turbulence research. However, in recent years advances in high-performance computing

(Ishihara et al. 2009) have led to increasing opportunities for understanding flow physics at

a degree of detail surpassing most experiments.

All turbulent flows are characterized by a high Reynolds number Re = ul/ν, where u

and l are the characteristic velocity and length scales of the flow and ν is the kinematic

viscosity of the fluid. Due to the non-linear interactions arising from inertial motions, larger

eddies in the flow progressively break down into smaller and smaller eddies, until they are

small enough to be dissipated by the viscosity (Richardson 1926). This results in an energy

cascade from the largest to the smallest scales of motion, at a rate controlled by the mean

dissipation rate of the turbulent kinetic energy. Since the largest scales are characterized

by u and l, the Reynolds number quantifies the range of scales in the flow and hence also

the extent of the energy cascade. A fundamental question in the study of turbulence is

how these wide range of scales behave and interact with each other. Since a deterministic

approach is almost impossible, one has to rely on similarity scaling to devise a statistical
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description of turbulence. The most well-known theory in this regard is that of Kolmogorov

(1941), which hereafter will be referred to as K41. The first hypothesis of K41 states that,

in all turbulent flows at sufficiently high Reynolds number, the small scales are locally

isotropic regardless of the nature of large scales and their statistics have an universal form

completely determined by the mean dissipation rate and the kinematic viscosity. The second

hypothesis states that at sufficiently higher Reynolds number there exists an intermediate

range of scales (the so-called inertial subrange) between the large scales and the smallest

scales, such that the statistics are further independent of viscosity (and hence depend only

on the mean dissipation rate). This universality allows us to treat all turbulent flows at

high Reynolds number in a similar fashion, often leading to simple algebraic statistical

expressions. This greatly simplifies the analysis and prediction of otherwise complex flows.

Many important problems in environmental science related to air and water quality

and cloud physics are tied to the transport of contaminants, particulate matter, water

vapor droplets and other entities in a turbulent flow. These transport processes often

involve complex interactions such as those between turbulence and multiphase flow, or

between turbulence and buoyancy and atmospheric dynamics. However the key element of

advective transport by turbulence is naturally described using a Lagrangian viewpoint of

fluid mechanics (Monin & Yaglom 1971, 1975). In the Lagrangian approach, we consider the

flow from the viewpoint of an observer traveling along with a large number of infinitesimal

material fluid elements, usually referred to as fluid particles (also called passive tracers in

literature). In effect, the continuum fluid motion is represented by a collection of discrete

fluid particles, which are of zero size and move with local flow velocity (Yeung 2002). The

concept can also be applied to Brownian particles or “molecules” which move due to the

combined effects of the fluid motion and of molecular diffusion, and to inertial particles

whose trajectories differ from those of fluid particles because of the effects of inertia and

gravitational settling or buoyancy (Sawford & Pinton 2013). This approach is in contrast to

the typical Eulerian approach, where the motion of the fluid is treated as a continuum and

measurements (in experiments or numerical simulations) are made at fixed spatial locations

at various time instants in a stationary inertial frame. The Lagrangian description is also
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more useful in capturing the temporal evolution of a turbulent flow, as it is not affected by

large-scale turbulence sweeping (Tennekes 1975; L’vov et al. 1997). Several reviews covering

a broad range of modern Lagrangian approaches have been given by Sawford (2001), Yeung

(2002), Salazar & Collins (2009) and Toschi & Bodenschatz (2009).

The Lagrangian approach to study turbulent dispersion goes back at least as far as the

work of Taylor (1921), who studied the statistics of of displacement of a single fluid particle

and first introduced the Lagrangian velocity autocorrelation function. Soon later, Richard-

son (1926) studied the dispersion of particle pairs relative to each other and observed the

first signs of universal inertial range scaling, which paved the way for the K41 theory. While

these earlier Lagrangian investigations were aimed at understanding turbulent dispersion,

Batchelor (1949, 1952a) established direct connections between Lagrangian statistics and

turbulent mixing of passively diffusing scalars. He showed that the statistics of fluid particle

motion can determine the mean concentration field of a scalar, whereas two-particles statis-

tics can determine the variance of the concentration for any random source distribution

(Corrsin 1952; Batchelor 1952a). Many other classical ideas, including the application of

K41 theory to Lagrangian statistics, were summarized by Monin & Yaglom (1971, 1975).

In the past few decades, the Lagrangian viewpoint has been expanded to stochastic model-

ing of many practical dispersion and mixing applications, covering environmental problems

in the atmosphere (Sawford 1985, 1993, 2001; Wilson & Sawford 1996; Rodean 1996), the

oceans (Griffa 1996) and engineering flows (Pope 1994; Meneveau 2011). Thus the La-

grangian viewpoint serves both as an alternative representation of the flow and as a means

of developing practical models for turbulent transport of scalar materials.

A fundamental question in the Lagrangian view of turbulent diffusion is, given a cloud

of material, how will it spread. To answer this question it is usual to track a collection

of particles forward in time, i.e. to set initial positions at some time t = 0 and follow

their subsequent trajectories, over some suitably long period of observation (T ). This is

convenient both in numerical simulations based on advancing the velocity field forwards

in time according to the Navier Stokes equations, and in experiments where some tracer

material is released in a controlled manner upstream of the observation volume. However,
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provided the density is constant, at the same time as fluid elements move apart (becoming

dispersed from one another), other fluid particles initially far apart will also have a chance

to come into close proximity of each other — leading to mixing of local inhomogeneities in

the flow. In the latter case, instead of focusing on a source and asking where the material

under consideration will go, we need to trace back in time to determine the origins of some

observed material and ask where it came from. In such a scenario, it is more relevant to

study the trajectories of fluid particles inverse in time, given their final location. This idea of

describing the statistics of particle positions at times earlier than a prescribed labeling time

is known as backward tracking and is crucial in formulating the Lagrangian description of

turbulent mixing (Sawford & Pinton 2013). Fundamentally at the molecular level, dispersion

and mixing are the same process. In problems related to dispersion, it is usually desirable

to know how some material will spread or ‘disperse’, whereas in mixing it is desirable to

understand how material from different regions comes together to ‘mix’. Hence in the latter

case, from a Lagrangian viewpoint, it is very convenient to start the observation at the final

time at which the molecules arrive from different regions, reversing the temporal axis to

trace back in time the trajectories of these molecules. In effect, the mixing process at a

given observation time, now can be described as a dispersion process traced backward to

earlier times. As discussed in details in Chapter 5 (also see review by Sawford & Pinton

(2013)), this reversal of reference frame greatly simplifies the mathematical formulation for

turbulent mixing and is also the motivation for many practical models for scalar mixing.

The underlying concept of backward tracking is useful in a myriad of other problems

in which the transport or aggregation of particles in turbulence is important. One such

important example is the formation of clouds (Shaw 2003; Bodenschatz et al. 2010). The

formation of clouds is fundamentally governed by two physical processes, (1) formation of

water droplets by condensation of water vapor in different regions of atmosphere and (2)

transport and coalescence of such droplets (which is controlled by turbulence, buoyancy

and various other atmospheric dynamics) leading to formation and growth of clouds. In

the latter case, the backward tracking perspective is particularly useful to understand the

process of coalescence (Bragg et al. 2016). Backward tracking is also useful in problems
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related to biological spread and growth (Garrett 2003; Garabato et al. 2004; Visser 2007;

Durham et al. 2013). For example, understanding the spread of organisms in oceans or in

critical epidemic or bioterrorism-driven situations, when it is important to trace an air- or

water-borne pathogen to its origin. Also in many astrophysical applications, such as galaxy

formation (Ryu et al. 2008; Charbonnel & Talon 2007) and stellar evolution (Humphreys

& Davidson 1984; Ward-Thompson 2002), backward tracking is an useful tool. While most

of these physical processes are too complex to be simulated directly, the study of backward

tracking in simpler settings is nevertheless important in developing high fidelity models

applicable to such complex problems.

While the change in reference temporal frame is a simple matter of perspective, it still

has major implications on the understanding of the underlying physical process due to time

irreversibility of Navier-Stokes equations. Needless to say backward tracking does not in-

volve backward time integration of Navier-Stokes equations, which are not time-reversible.

It involves tracking backwards in time, some tracer which can be some invisible pollutant,

passive scalar, or airborne pathogen, to determine its origin. Given the final time T , the

position of such a tracer is tracked backward in time to its initial position at t = 0, while

the fluid flow still satisfies the Navier-Stokes as integrated forward from t = 0 to t = T . As

a result, backward tracking is far more challenging in both computations and experiments

compared to forward tracking (Sawford et al. 2005; Berg et al. 2006), even though concep-

tually it is as simple. In computations, backward tracking can be accomplished if complete

velocity fields stored at every time step in a previously-conducted simulation are available.

Such a calculation was performed by Sawford et al. (2005) on a 643 grid at Taylor-scale

Reynolds number 1 Rλ = 38 and more recently on a larger scale by Eyink (2011); Ben-

veniste & Drivas (2014) using a large turbulence database at 10243 resolution at Rλ = 433.

This approach allows particles to be tracked back in time from any designated final position

and hence provides complete control over final separations of particles or form geometries

1Taylor-scale Reynolds number is defined as Rλ = uλ/ν, where λ is the Taylor length scale. The Taylor

length scale is defined as λ =
ˆ

σ2

u/〈(∂u1/∂x1)
2〉

˜1/2

, where σu is the root-mean-square velocity component
and ∂u1/∂x1 is the longitudinal gradient of one velocity component. Both are often used to characterize
turbulence, especially in direct numerical simulations.
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of desired shapes. However this approach requires velocity fields at N3 grid points to be

stored at a very large number of time steps, such that the total data storage requirement

grows as fast as R6
λ (similar to the computational cost of DNS as discussed in Chapter 3).

As a result at Petascale problem sizes associated with large Rλ, this approach would be

unsustainable at even the largest supercomputing installations in operation today. On the

other hand in experiments, while one can release the tracers in a controlled manner and

track them forwards in time, it is very difficult to control the final separations of tracers.

Also experiments do not provide the degree of details available from simulations (Yeung &

Pope 1989). While some progress has been made in backward tracking of fluid particles in

experiments (Berg et al. 2006; Jucha et al. 2014), the scope these studies is still limited.

Consequently, new strategies and algorithms are needed to make backward tracking more

viable. One of the objectives of the work reported in this thesis is to develop new algorithms

to generate and use a large numerical simulation database, enabling the study of backward

dispersion of fluid particles across a wide range of Reynolds numbers.

A central idea in study of turbulent dispersion, is applicability of Kolmogorov’s hy-

potheses to Lagrangian statistics. In general the K41 theory can be applied to statistics of

single particles and pairs (and as we will see later clusters of three and four particles also).

While the application of K41 has been very well studied for forward Lagrangian statistics

(see reviews by Sawford 2001; Yeung 2002; Salazar & Collins 2009; Toschi & Bodenschatz

2009), very limited studies have been reported in literature for backward statistics (Saw-

ford et al. 2005; Berg et al. 2006; Eyink 2011). For single particle statistics, under the

assumption of stationarity, the backward results are equivalent to the forward results and

hence require no extra effort (Sawford et al. 2005). However, for statistics of particle pairs,

backward dispersion is fundamentally different from forward dispersion due to irreversibil-

ity of Navier-Stokes equations. Arguably the most pivotal result for particle pairs is the

Richardson’s t3 law (Richardson 1926; Obukhov 1941) given as

〈r2〉 = g〈ǫ〉t3 , (1.1)

where r(t) is the separation between a pair of fluid particles, 〈ǫ〉 is the mean dissipation
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rate and t is the time. The constant g is known as Richardson’s constant. Under K41, g

is expected to be universal and independent of large scales at sufficiently high Reynolds

number. Historically, observing Richardson scaling for forward particle pair dispersion has

been a subject of much difficulty, as it requires a very wide range of scales, i.e., a very large

Reynolds number, which is difficult to achieve in controlled experiments or numerical simu-

lations (Sawford 2001). Nevertheless, significant progress has been made in understanding

Richardson’s scaling for forward statistics over the past decade (Sawford et al. 2008). How-

ever, Richardson scaling for backward pair statistics is still not well understood. Earlier

studies of backward tracking (Sawford et al. 2005; Berg et al. 2006) have indicated that

backward dispersion is similar to forward dispersion at both very short and very long time

scales but stronger at intermediate times of travel (suggesting a larger backward Richard-

son constant provided the t3 scaling still holds). But these studies were at relatively small

Reynolds number to observe Richardson scaling. More recent studies at moderate Reynolds

number (Eyink 2011; Benveniste & Drivas 2014; Bragg et al. 2016) have been able to identify

some characteristics of Richardson scaling for backward statistics, but are still inconclusive.

However, it is clear that access to data over a substantial range of Reynolds number is essen-

tial to identify any asymptotic behavior towards Richardson scaling for backward statistics.

Hence another objective of the current work is to investigate more rigorously the applica-

bility of Richardson’s scaling to backward statistics of particle pairs and in the process also

understand how and why backward dispersion is different from its forward counterpart.

Although the motion of fluid particles captures the physics of turbulent dispersion and

mixing well, in reality most transported substances undergo Brownian motion relative to

the fluid at a rate set by their molecular diffusivity, κ (Saffman 1960). In such a scenario, it

becomes important to consider trajectories of ‘molecules’ which move under the combined

action of turbulent velocity field and molecular diffusion. The relative importance of molec-

ular diffusion with respect to turbulent transport can be quantified by the non- dimensional

parameter Schmidt number Sc = ν/κ. The value of Sc varies widely in practical applica-

tions, from O(10−2) in liquid metals, to O(1) in gas-phase mixing and combustion to O(103)

for organic dyes. For the limit Sc→ ∞, one can recover the fluid particle behavior. For high
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Reynolds numbers and/or weakly diffusive substances (Sc ≫ 1), the turbulent transport

as captured by fluid particles is thought to be the dominant process and serves as a good

approximation. However, in situations where the Reynolds number and/or Schmidt number

are small, or in vicinity of localized sources, the effects of molecular diffusion as modified by

turbulence must be considered explicitly (Sawford & Hunt 1986; Borgas & Sawford 1996).

Ultimately, it is the study of backward molecular trajectories that is directly connected to

understanding turbulent mixing from a Lagrangian perspective (see review by Sawford &

Pinton 2013).

While the connection between turbulent mixing and backward molecular trajectories

has been known since the works of Batchelor (1952a) and Corrsin (1952), studies related

to backward tracking (and even forward tracking for that matter) of molecular trajectories

are even rarer in literature because of additional difficulties associated with wide range of

Schmidt numbers in practical applications. Saffman (1960) applied the kinematic analysis

to provide some theoretical results for small and large time limits of forward molecular

statistics. Yeung & Borgas (1997) reported the first numerical results for single molecule

statistics and later Borgas et al. (2004) provided some theoretical analysis for high Schmidt

numbers. Theoretical and numerical results for backward trajectories of molecular pairs

were first reported by Eyink (2011) and Benveniste & Drivas (2014) for the case of Sc . 1,

focusing on identifying Richardson’s scaling at intermediate times. However, these studies

were very limited in scope and so far, to the best of our knowledge, there has not been any

comprehensive study dealing with both forward and backward molecular statistics for the

general case of any Schmidt number. Hence in this work, we also aim at understanding

in details, the properties of the trajectories of molecules in both forward and backward

reference frames, across a wide range of Reynolds numbers spanning both low and high

Schmidt number regimes. The study of molecular trajectories is then extended to study the

process of scalar mixing from a Lagrangian perspective.

Turbulent dispersion is often characterized in terms of the relative motion of pairs of

fluid particles (or molecules) moving apart from one another (see, e,g. Sawford 2001; Salazar

& Collins 2009). More general questions arise if we consider clusters of three and four
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particles (or triangles and tetrads respectively), whose size and shape are dependent on

local stretching and deformation by turbulence at the small scales. In general, the backward

statistics of an n-particle cluster are directly related to nth order moments of a passive

concentration field (Thomson 1990). Consequently, study of backward tracking of multi-

particle clusters (of both fluid particles and molecules) provides the most general overview

of turbulent mixing. Although results on the forward tracking of multi-particle clusters

have been reported by several groups (Chertkov et al. 1999; Pumir et al. 2000; Biferale

et al. 2005; Luthi et al. 2007; Xu et al. 2008; Hackl et al. 2011), backward statistics of four-

particle clusters (tetrads) were only recently reported by Jucha et al. (2014), identifying

differences between forward and backward results at small times. While the Reynolds

number in their work was sufficiently high, the observation times were too short to observe

any inertial range characteristics. The study of multi-particle clusters (in both forward and

backward frames of reference) is also important from the perspective of stochastic modeling

(Sawford & Pinton 2013). For example a Lagrangian model of high-order multi-point scalar

correlations was presented by Frisch et al. (1999), whereas Chertkov et al. (1999) developed

a Lagrangian model for velocity gradient tensor using the statistics of four-particle clusters

(tetrads). While statistics of two particles are a convenient measure of linear dimensions of

a cloud of material, statistics of more than two particles provide information about both

size and shape of clouds of material. Application of universal scaling to statistics of size

and shape of multi-particle clusters is fundamentally important for developing stochastic

models. In earlier works of Luthi et al. (2007); Xu et al. (2008); Hackl et al. (2011), it has

been established that forward statistics of triangles and tetrads do indeed exhibit inertial

range similarity scaling. The statistics of shape in general are known to exhibit more robust

scaling behavior than the statistics of size. In the current research, we make similar studies

for backward statistics of multi-particle clusters as well.

In this work, we study turbulent dispersion and mixing using Direct Numerical Simu-

lations (DNS), where the exact conservation equations are solved numerically by resolving

all relevant length and time scales. Because of the need to resolve a wide range of scales,

DNS is inherently computationally intensive (Moin & Mahesh 1998) and a major challenge
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for high performance computing (Yokokawa et al. 2002). In most practical applications,

the transport and mixing processes, such as dispersion of pollutants in the atmosphere

or mixing of temperature and salinity fields in oceans, involve complex turbulent flows at

high Reynolds numbers, with a very wide range of length and time scales. They are typi-

cally influenced by turbulence interacting with various other phenomena such as chemistry,

buoyancy, radiation, effects of terrains, Earth’s rotation and other atmospheric or ocean

dynamics (Iribarne & Cho 1980; Pickard & Emery 1990). While the computational power

has been growing exponentially over the past few decades, such flow regimes are still beyond

the realm of current DNS capabilities. However, if the Reynolds number is sufficiently high,

the small scale and inertial range characteristics, are universal in such otherwise complex

flows (K41 hypotheses). Also a major focus of the current work is to investigate the funda-

mental physics associated with dispersion and mixing phenomena, identifying the universal

characteristics in all flows. As a result, in the current work, we study forced isotropic turbu-

lence, which is ideal for enabling highest Reynolds numbers possible in DNS. It also allows

us to investigate the fundamental physics in the universal equilibrium range (small scales

and inertial range), which forms the basis (by providing closure data) for most stochastic

models, which in turn are more readily used in practical applications.

The Lagrangian data can be obtained from DNS by tracking a large population of

particles, with a degree of detail far surpassing that of experiments (Riley & Patterson

1974; Yeung & Pope 1989). In this work, we consider two scenarios to study dispersion and

mixing phenomena. First, particles moving purely under the advective action of turbulence,

i.e., fluid particles are considered, since they effectively capture the physics of turbulent

transport. Second, particles moving under the combined action of turbulence and molecular

diffusion, i.e., Brownian particles or molecules are considered, to additionally capture the

physics of scalar mixing. In many practical applications such as cloud physics, multi-

phase combustion, etc., the effect of particle mass (or inertia) is also important (Shaw 2003;

Balachandar & Eaton 2010). However in this work, we focus on fluid and Brownian particles

only, which are adequate to describe most dispersion and mixing phenomena (Sawford &

Pinton 2013).
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While on one hand, achieving high Reynolds number is inherently costly in DNS, it also

is a fundamental requirement to study inertial subrange characteristics such as Richardson

scaling. In order to enable study of turbulence at high Reynolds numbers, one has to

increase both the number of grid points and number of particles, which inevitably requires

larger number of processors. We have had the privilege of having access to some of the

largest supercomputers with theoretical peaks well exceeding 1 Petaflop (1015 floating point

operations) per second. In particular, our access to the Blue Waters supercomputer at the

National Center for Supercomputing Applications (NCSA) has enabled us to run one of the

largest turbulence simulation with 81923 grid points and 300 million particles using 262144

processors (which is currently underway). Needless to say, at such a large scale, use of an

efficient massively parallel algorithm is of utmost importance.

In DNS, Navier-Stokes equations are solved to obtain flow velocity at fixed grid points

in the Eulerian reference frame, subject to appropriate initial and boundary conditions. Si-

multaneously, a large number of fluid particles are tracked in time to obtain the Lagrangian

information. Since the velocity field is available at only fixed grid locations from the Eu-

lerian part, to obtain the velocity at the particle positions, some sort of interpolation is

necessary. As a result, in designing a suitable algorithm we need to consider challenges

that are specific to the Eulerian and Lagrangian parts of the simulation, both individually

and jointly. We use a distributed memory approach where both the Eulerian solution do-

main and the Lagrangian fluid particles are divided among multiple processors, such that

each processor executes the same code on data in its own memory, a programming protocol

commonly referred to as Single Program Multiple Data (SPMD). The processors exchange

data and synchronize if needed, using a communication protocol such as the Message Pass-

ing Interface (MPI). On top of MPI, we employ Coarray Fortran (CAF), a partitioned

global address space (PGAS) programming extension of Fortran, which often allows us to

exploit the so-called locality of reference (Coarfa et al. 2005), which as discussed later, is

particularly beneficial for particle tracking in DNS.

To further improve the efficiency and scalability of the code, we also use a shared memory

protocol to distribute the work on each processor. In the last decade, while single processor
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clock rates have reached their limit due to energy considerations, computing power has

been increasing exponentially in accordance with Moore’s law (Moore 1965). This has been

largely possible due to the emergence of multi-core and many-core architectures, the under-

lying idea of which is to connect a group of identical processors to a main shared memory.

All supercomputers today use symmetric multi-processors (SMPs) with the NUMA (non-

uniform memory access) architecture which typically constitutes a node (and is the building

block of the supercomputer). To fully exploit such systems, we use a hybrid programming

approach, which uses MPI or CAF to communicate across nodes, but uses OpenMP threads

to share the memory within a node. Some supercomputers additionally have the so called

accelerators on each node, such as Intel Many Integrated Core (MIC) architecture on Stam-

pede at Texas Advanced Computing Center (TACC) or NVIDIA graphics processing units

(GPUs) on Titan at Oak Ridge National Laboratory. In this work, we also explore the use

of such accelerators to improve the performance of both the DNS code and the postpro-

cessing of particle trajectories as obtained from DNS simulations (which as explained later,

can become very computational intensive).

In summary, the study of dispersion of fluid particles and molecules, in a Lagrangian

frame of reference, is crucial for our physical understanding of turbulent dispersion and

mixing. In particular, the backward in time dispersion of pairs and clusters of particles

and molecules is rather poorly understood. To this end we use state of the art computing

resources to facilitate turbulence simulations at large Reynolds numbers. Hence, the current

work has a strong computing aspect to it, which involves both optimizing current algorithms

and developing new ones to keep up with the rapidly evolving nature of high performance

computing in turbulence research. In the long term, this work will help in improving our

understanding of turbulent dispersion and mixing, especially in major transport problems

in environmental science. The new insights and detailed data obtained from the current

work, will help in development of models of dispersion and mixing at a significantly higher

level of physical realism than that available today. These improved models are applicable

not only to atmospheric air-quality but also to accidental or terrorism-driven discharge of

toxic material and mixing of scalar in practical engineering flows. (In most of these issues,
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the underlying paradigm is tracking backwards in time or space.)

1.2 Objectives and Outline

The general goals of the current work are as follows:

1. To develop efficient and scalable computational capabilities to perform large scale

turbulence simulations. The computational aspect involves optimizing the current

Eulerian part and also implementing new parallel algorithm for the Lagrangian part. A

novel postprocessing approach has also been developed to obtain backward dispersion

statistics at a wide range of Reynolds numbers.

2. To study turbulent dispersion especially from a backward tracking perspective for a

wide range of Reynolds numbers. More precisely, to understand and quantify the

differences between forward and backward tracking, specially at intermediate times

(inertial range), where universal similarity holds.

3. To extend the knowledge for fluid particles to understand molecular dispersion in

turbulence over a wide range of Schmidt numbers. This will help reconcile Eulerian

and Lagrangian description of scalar mixing and provide further insights, more readily

available from the Lagrangian viewpoint.

4. Further extend the work to the study of backward tracking of three and four-particle

clusters (triangles and triads).

The rest of this thesis is organized as follows:

Chapter 2 gives an overview of governing equations, the numerical method and the

details of parallel implementation with particular focus on the Eulerian part of the code.

Chapter 3 focuses on the computational details of particle tracking and how backward

dispersion statistics are obtained via post-processing. We also discuss the scaling problems

associated with current implementation and develop an alternate parallel implementation

for particle tracking. The challenges associated with post-processing are also addressed

along with strategies used to overcome them. Both the new approaches, i.e, for particle

tracking and postprocessing, are found to scale very well to large Petascale problem sizes.
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In Chapter 4, we present results for the backward dispersion of fluid particle pairs. The

differences between forward and backward statistics are investigated with special emphasis

on the inertial range characteristics and Richardson scaling. In general, backward dispersion

is stronger than forward, especially at intermediate times, resulting in a larger backward

Richardson constant. However, the forward results show a more robust Richardson scaling.

In Chapter 5, the work on fluid particles is extended to molecular trajectories. We ana-

lyze the forward and backward statistics of molecular trajectories taken singly and in pairs,

over a wide range of Schmidt numbers. Statistics of molecular pairs are found to exhibit

more robust inertial range scaling than that of fluid particle pairs. The statistics of molec-

ular trajectories are then used to study turbulent mixing from a Lagrangian perspective,

making comparisons with Eulerian results for Schmidt numbers of order unity. The well

know scalar dissipation anomaly is also addressed in a Lagrangian context.

In Chapter 6, we analyze the backward statistics of triangles and tetrads. Some results

on statistics of both size and shape of tetrads are reported. Both the forward and backward

statistics of tetrad shape show more robust scaling than the statistics of tetrad size.

A summary of the current work is provided in Chapter 7. The scope of future work,

such as possible extensions to study of clusters of molecules, backward tracking of inertial

particles, etc. is also given.

Some derivations relevant to the material presented in Chapter 5 are given in the ap-

pendices.
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CHAPTER II

GOVERNING EQUATIONS AND DIRECT NUMERICAL

SIMULATIONS

In this chapter we describe the governing equations and the computational methodology

used to perform the direct numerical simulations (DNS) on massively parallel supercomput-

ers, focusing on the Eulerian part (the Lagrangian part and the corresponding challenges

and improvements associated with it are discussed in the next Chapter). The Navier-Stokes

equations are solved numerically using a pseudo-spectral method in space (Rogallo 1981)

and second-order Runge-Kutta integration in time. In addition to study turbulent mixing,

we consider a passive scalar driven by a uniform mean-gradient.

2.1 Velocity field

Assuming constant density and no mean velocity, the Navier-Stokes equations for the fluc-

tuating velocity field u(x, t) can be written in the Cartesian tensor notation as

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
, (2.1)

∂ui

∂xi
= 0 , (2.2)

where, p is the fluctuating pressure, ρ is the density (assumed constant) and repeated indices

imply summation as per tensor notation. The boundary conditions used are periodic and

given as,

ui(x + nLoej, t) = ui(x, t) n = 1, 2, 3, . . . , (2.3)

where L0 is the domain length in each direction and ej is a unit vector in the jth direction.

The use of periodic boundary condition enables the representation of the velocity field as a

discrete Fourier series,

ui(x, t) =
∑

k

ûi(k, t)e
ik·x , (2.4)
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where k is the wavenumber vector, ûi is the Fourier coefficient (or Fourier mode) of ui

and i ≡
√
−1. The physical domain, which is a cube of side L0, is divided into N grid

points along each direction, such that their position is defined as as (l1∆, l2∆, l3∆), where

l1, l2, l3, are integers going from 0 to N − 1 and ∆ = L0/N is the grid spacing in each

direction. In wavenumber space there are N3 discrete wavenumbers, (m1k0,m2k0,m3k0),

where m1,m2,m3, are integers going from 1−N/2 to N/2 and k0 = 2π/L0 is the lowest non-

zero wavenumber magnitude. Typically we use a domain size of L0 = 2π, which results in

convenient integer values for wavenumbers. Although in some physical problems where the

large scales grow with time, e.g., rotating flows, strained or shear flows, low Schmidt number

mixing, larger domain lengths such as 4π or 8π would be appropriate. Since the velocity

field in the physical space is real-valued, the Fourier coefficients obey conjugate symmetry,

i.e., û(−k, t) = û∗(k, t), where the asterisk denotes a complex conjugate. As a result only

half the Fourier modes need to be stored in memory. Depending on the requirement, we

can use the same array to store either the velocity field in the Fourier space (N3/2 complex

values) or the physical space (N3 real numbers).

The equations give by (2.1) and (2.2) can be transformed to Fourier space as

( ∂
∂t

+ νk2
)
ûi(k, t) = −

(
δij −

kikj

k2

)
Ĝj(k, t) , (2.5)

kiûi = 0 , (2.6)

where, δij is the Kronecker delta function (equal to 1 for i = j and 0 otherwise), k = |k|

is the magnitude of the wavenumber vector and Ĝj(k, t) is the Fourier transform of the

nonlinear term in (2.1) given by the following convolution sum,

Ĝj(k, t) = ikm

∑

k′

ûj(k
′, t)ûm(k− k′, t) . (2.7)

While the left-hand side of (2.5) involves ûi at only k, the right-hand side involves ûi at

k′ and k′′, such that k′ + k′′ = k. Thus in wavenumber space, the convection term is non-

linear and non-local, involving the interaction of wavenumber triads, k, k′ and k′′, which

form a closed triangle. Thus the partial differential equations given by (2.1) and (2.2)

are transformed into a set of ordinary differential equations, which can now be integrated
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numerically to obtain the velocity field at different times. The computation of the Ĝ(k, t)

and time integration are the main aspects of the numerical algorithm.

A direct calculation of Ĝ(k, t) is prohibitively expensive as it involves calculating the

convolution sum which requiresN6 operations. Instead a pseudo-spectral approach (Rogallo

1981) is used, such that the velocity field is transformed into physical space, where the

nonlinear terms are computed and then transformed back to wavenumber space. The non-

linear term Ĝj(k, t) in (2.5) is computed as

Ĝj(k, t) = −ikm Fk{uj(x, t)um(x, t)} , (2.8)

where, Fk{·} denotes a Fourier transform from physical to wavenumber space. Essen-

tially, the pseudo-spectral approach requires two sets of transforms, one for velocity from

wavenumber to physical space and one for the non-linear terms from physical to wavenumber

space. These transforms are computed using the Fast Fourier Transfer (FFT) algorithm

(Cooley & Tukey 1965) and requires order N3 log2N operations. However, the pseudo-

spectral treatment of non-linear terms also results in aliasing errors, which are controlled

by a combination of phase shifts and truncation (Rogallo 1981). As a result of truncation,

the magnitude of highest resolvable wavenumber is lowered to kmax =
√

2Nk0/3 (Canuto

et al. 1987).

The time integration is performed using an explicit second-order Runge-Kutta method.

If the right-hand side of (2.5) is denoted by ĉi, then at time step tn, we can write

d(Fûi(k, tn))

dt
= F ĉi(k, tn) , (2.9)

where, F (t) = exp
(∫ t

tn
νk2dt

)
is the integrating factor with F (tn) = 1. To advance from

time tn to tn+1 = tn + ∆t (where ∆t is the time step), we first calculate the predictor step

estimate as

F (tn+1)û
p
i = ûi(k, tn) + ĉi(k, tn)∆t (2.10)

and then the corrector step result as

F (tn+1)ûi(k, tn+1) = ûi(k, tn) +
∆t

2
[ĉi(k, t) + F (tn+1)ĉ

p
i ] , (2.11)
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where ĉpi is the convective term computed using ûp
i (velocity at the predictor step). The

value of ∆t is calculated using the Courant-Friedrichs-Lewy (CFL) condition

∆t = C
∆

(|u1| + |u2| + |u3|)max
, (2.12)

where, C is the CFL number and (u1, u2, u3) are the Cartesian components of velocity at

a grid point and the maxima is taken over the entire domain. While for finite-difference

schemes, numerical stability considerations typically require C ≤ 1, for spectral methods

stability analysis is not so well established (Peyret & Taylor 1983). However, it is common

to follow the same condition (Eswaran & Pope 1988). Typically the value of C is about 0.6

in our simulations.

Due to the spectral nature of the numerical scheme, it is very common to measure the

grid resolution using the non-dimensional parameter, kmaxη, where η =
(
ν3/〈ǫ〉

)1/4
is the

Kolmogorov length scale (a measure of the smallest length scales in the flow field). Using

the definition of kmax, one can write

(kmaxη)
∆

η
=

2
√

2π

3
. (2.13)

Typically in DNS simulations, kmaxη between 1.0 and 2.0 is used (Yeung & Pope 1989;

Kaneda et al. 2003; Ishihara et al. 2009), with kmaxη ≈ 1.4 being the most common which

corresponds to ∆/η ∼ 2. At the same time, the domain size must be several times larger

than the largest length scales (usually measured in terms of the longitudinal integral length

scale L1). The ratio L0/L1 is about 5–6 in our simulations, which is enough to ensure that

the flow field is not strongly influenced by domain size.

To maintain a statistically stationary state, the large scales in the range k0 ≤ k ≤ kF

are forced using a combination of six independent Uhlenbeck-Ornstein random processes

(Eswaran & Pope 1988), where kF is typically chosen to be around 2. The underlying

assumption is that the small scales are independent of the large scales. This is increasingly

valid as the Reynolds number increases (and hence the range of scales increases), as sug-

gested by the K41 hypotheses and is well supported by data in the literature (Sreenivasan

1998). The resulting velocity fields are statistically stationary to a good approximation.

Recently, Donzis & Yeung (2010) have developed a new forcing scheme which freezes the
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energy in the range k0 ≤ k ≤ kF , at values suggested by long-time averages derived from

previous simulations which used the stochastic forcing of Eswaran & Pope (1988). This

further allows us to minimize the temporal oscillations of the kinetic energy and dissipation

rate, leading to improved stationary characteristics. The length of each simulation is typi-

cally extended to several large eddy turnover times TE ∼ L/u′ (where u′ is the r.m.s of the

velocity fluctuations), since long-time averages are consistent with ensemble averages of the

original K41 theory due to ergodicity (Frisch 1995; Galanti & Tsinober 2004).

Using the grid resolution (given by N3) and the number of time steps (given by TE/∆t),

one can estimate the total cost a simulation. By classical scaling estimates the number of

grid points required to resolve all scales varies as N3 ∼ (L/η)3 ∼ R
9/2
λ , where Rλ is the

Taylor-scale Reynolds number. If as a first order approximation, the denominator in the

right-hand side of (2.12) is assumed to be proportional to u′, then a fixed CFL number

would imply TE/∆t ∼ L/∆ ∼ L/η (since ∆ ∼ η). Hence the number of time steps scales

as R
3/2
λ , giving the total cost proportional to R6

λ. This rapid increase in computational

resources with increasing Reynolds number makes DNS very challenging.

2.2 Passive scalars

In addition to the Navier-Stokes equations, we also solve for the scalar fluctuations φ(x, t),

driven by an uniform mean gradient ∇Φ (Yeung 1996; Overholt & Pope 1996), governed by

the equation

∂φ

∂t
+ ui

∂φ

∂xi
= −ui

∂Φ

∂xi
+ κ

∂2φ

∂xi∂xi
, (2.14)

The mean scalar gradient acts as a source term and hence no forcing is necessary. To

ensure homogeneity, the mean gradient must be constant. For an isotropic velocity field,

the orientation of the gradient vector does not affect the statistics of the scalar field and it

is sufficient to align with any of the coordinate axes. Hence, we can choose ∇Φ = (G, 0, 0)

where G is a constant and represents the mean gradient magnitude. However, to ensure

better sampling for each scalar, we ensemble over three different realizations, each with

a mean-gradient aligned separately with the three coordinate axes. Periodic boundary

conditions are also used for the scalar field, whereas the initial scalar field is set to zero
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everywhere:

φ(x + nLoek, t) = φ(x, t) n = 1, 2, 3, . . . , (2.15)

φ(x, 0) = 0 . (2.16)

This allows the scalar field to be also represented by a discrete Fourier series. As a result,

(2.14) can be transformed to the wavenumber space resulting in

( ∂
∂t

+ κk2
)
φ̂(k, t) = −iki Fk{ui(x, t)φ(x, t)} −Gû1(k, t) . (2.17)

For passive scalars, we can again treat the non-linear term using Rogallo’s (1981) pseudo-

spectral approach. Essentially the number of variables to solve now becomes 3 +Nc, where

Nc is the number of scalars.

The simulation parameters, such as grid resolution (∆), time step (∆t), domain size

(L0), typically depends on the choice of Schmidt number. While for Sc . 1 no special

considerations are required, for Sc≫ 1 the smallest length scale in the scalar field is smaller

than Kolmogorov length scale, hence requiring finer grid resolution, which also leads to a

smaller time step from the CFL condition (Donzis & Yeung 2010). On the other hand, for

Sc≪ 1, while the smallest scale is larger than Kolmogorov length scale, the largest scales in

scalar field are larger than in velocity field. This requires a larger domain, while maintaining

the small scale resolution. Also the fast molecular diffusion results in very small time

scales (∆t ∼ ∆2/κ), resulting in a much stricter CFL criterion (Yeung & Sreenivasan 2013,

2014). Due to these constraints, Eulerian simulations of high and low Schmidt numbers

are inherently expensive. However, as we explain later, these constraints are absent in the

Lagrangian framework. Consequently, we investigate the high and low Schmidt number

regimes using the Lagrangian perspective, and restrict our Eulerian simulations to Sc . 1,

which is enough to validate the Lagrangian results when necessary.

2.3 Parallel implementation

It is evident from previous sections that DNS of high Reynolds number turbulence requires

the use of most powerful supercomputers available to the research community 1. We have

1www.top500.org
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access to the computing resources at many national supercomputing centers, some of which

are Blue Waters at the National Center for Supercomputing Applications (NCSA), Stam-

pede at Texas Advanced Computing Center (TACC), Titan at Oak Ridge National Labora-

tory (ORNL), Edison at National Energy Research Scientific Computing Center (NERSC),

Kraken (now decommissioned) at National Institute of Computational Sciences (NICS).

Each of these supercomputers have a theoretical peak performance in the Petaflop range.

A summary of the supercomputers used in this work, along with their system specifications

is given in table 2.1.

To best utilize the supercomputing resources, we use a massively parallel implementation

of Rogallo’s (1981) pseudo-spectral algorithm, in which the most time-consuming task is

the computation of the 3D FFT. The solution domain is divided among P processors (also

commonly referred to as MPI tasks) using a two-dimensional (2D) domain decomposition

(Donzis et al. 2008), such that pencils of size N × (N/Prow)× (N/Pcol) are available to each

MPI task, where Prow and Pcol stands for the number of MPI tasks along the rows and

columns such that Prow × Pcol = P . A schematic of the mapping is shown in figure 2.1.

To perform the 3D FFT, we use a transpose-based approach (described in Pekurovsky

2012), as opposed to a distributed FFT (Dubey & Tessera 2001). Distributed FFT relies on

a parallel implementation of the 1D-FFT with each MPI task communicating the necessary

data with the other tasks. On the other hand, transpose-based FFT relies on a sequential

version of 1D-FFT that performs the transform on one dimension at a time, transposing

the data when needed and is considered to be faster than the distributed FFT approach

(Foster & Worley 1997; Dubey & Tessera 2001). Since a given task holds complete lines

of data only along a single direction, two global data transposes are required to perform

the 3D FFT. If we start with the pencils aligned in say the x-direction, the first step is

to take the 1D FFT along x-direction, which is a local task on each task. Then a global

transpose is carried out to align the pencils in say the z-direction, followed by a 1D FFT

along the z-axis. Finally, the data is again globally transposed to align the pencils in y-

direction, followed by the last 1D FFT. A schematic of this procedure is show in figure 2.2.

These global transposes are typically accomplished by using the MPI_ALLTOALL intrinsic,
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one in each of the two orthogonal sub-communicators formed from Prow and Pcol MPI tasks

respectively. For example, in figure 2.1, tasks P0, P4, P8 and P12 belong to the row

sub-communicator, whereas P0, P1, P2 and P3 belong to the column sub-communicator.

Such a strategy enables the communication process to be confined in smaller local sub-

communicators instead of the entire MPI_COMM_WORLD (the communicator for all P tasks).

Furthermore, the data required to be sent to other MPI tasks is typically non-contiguous in

memory. As a result, the ALLTOALL exchange is usually preceded and followed by some

sort of ‘packing’ and ‘unpacking’ respectively. This ensures that the data for the local 1D

FFT within each pencil is of unit stride.

The local 1D FFT is performed by each MPI task using the FFTW library (Frigo &

Johnson 2005). For N data points, the complexity of the 1D FFT is order N log2N and

hence for the entire grid the total cost is order N3 log2N . The use of FFTW library and

providing data with unit stride, results in highly optimized FFT calculations on each MPI

task and scales near perfectly with both problem size and the number of MPI tasks. As

a result, the main bottleneck is the communication required to perform the ALLTOALLs,

which is known to degrade with increasing problem size and number of MPI tasks (Kumar

et al. 2008; Pekurovsky 2012) and thus is a major challenge at Petascale level. Typically

the performance of ALLTOALLs is influence by a number of factors. For an ALLTOALL

in a communicator, each MPI task needs to send a block of data to every other task. As a

result, the total number of messages increase quadratically with the number of tasks in the

communicator, which can result in serious network congestion at large problem sizes (Chan

et al. 2008). The performance also depends on other factors like the type of the interconnect

used in the parallel system (hence network latency and bisection bandwidth), how the MPI

tasks are mapped to the physical node (topology of the processors), and interference from

other jobs running on the system. We address these issues one by one.

One strategy employed to reduce the network congestion is to choose Prow such that

all the MPI tasks in the row communicator lie on a physical node. This results in the first

transpose being performed entirely on the node without using the network. Essentially, the
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2D pencil decomposition is reduced to a pseudo 1D “slab-on-node” decomposition, while off-

node communication for one of the transposes is eliminated. The contention and overhead

from MPI_ALLTOALL can be further reduced by instead using a partitioned global address

space (PGAS) programming model such as Coarray Fortran (CAF) on Cray machines such

as Blue Waters at NCSA (Fiedler et al. 2013). Compared to MPI, communication calls

in CAF can have smaller headers (due to one-sidedness) and therefore can carry more

data per packet for slightly higher bandwidth. In addition, latencies for short messages

in CAF, can be significantly lower than in MPI (Fiedler et al. 2013). For these reasons,

the use of CAF is beneficial even in particle tracking (as discussed in the next chapter).

The network congestion and interference from other jobs, can be further reduced by using a

topology aware scheduler to place jobs on topologically adjacent nodes on the network (Enos

et al. 2014). These considerations, implemented with the help of consultants at NCSA, has

greatly helped in improving the performance on large Cray machines (which typically use

the Gemini network in a 3D torus configuration).

More advanced strategies based on the truncation used to control the aliasing errors

have also been used in past. Since the numerical scheme results in all Fourier modes

above kmax being truncated, the message size for the ALLTOALLs can be reduced by not

communicating these modes and just trivially setting them to be zero (Pekurovsky 2012).

This strategy is particularly useful on non-Cray machines where ALLTOALLs are not so

sensitive to the network (such as Stampede at TACC, which uses a fat-tree network). The

code is also designed to use OpenMP to reduce the number of MPI tasks while maintaining

the same core count, which can help alleviate both memory and network latency issues

(Tsuji & Sato 2009).

Another consideration is the use of accelerators in what is commonly referred to as

heterogeneous computing. Along with the central processing units (CPUs), the nodes on

many modern supercomputers are equipped with accelerators, e.g. Intel MIC on Stam-

pede, GPUs on Titan. As of now, the top two supercomputers on the www.top500.org list

use accelerators/heterogeneous computing. The underlying idea behind using accelerators

is to supplement a few CPUs which are highly optimized for sequential processing, with
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hundreds to thousands of much smaller and efficient cores, designed for handling paral-

lel workloads. The accelerators greatly outpace the CPUs in arithmetic throughput and

memory bandwidth providing excellent speedups at a very reasonable power cost. For the

3D FFTs, we can offload the 1D FFTs and the packing/unpacking portions of the code

to the accelerators, whereas the communication still happens through the CPUs. We have

already implemented this on Titan using the OpenACC standard for GPU programming

and the speed up obtained from the GPUs has reduced computational cost to the point

where it is almost negligible. However, the communication cost from the ALLTOALLs re-

mains unchanged. Since at Petascale and bigger problem sizes, the 3D FFTs are almost

entirely dominated by communication, the use of GPUs (or accelerators in general) is not

very beneficial to overall performance (Czechowski et al. 2012). Nevertheless, we still have

managed to port our codes to run on these heterogeneous machines.

To summarize, we use a 2D processor grid which decomposes the N3 grid points into

pencils of data. Then a transpose based algorithm is used to perform the 3D FFT, in

which communication is the main bottleneck. A number of strategies are employed with

active help from consultants at supercomputing centers to improve the efficiency and scaling

of communication costs. The most notable is the use of CAF on Blue Waters, which

greatly improves the communication performance and allows the code to scale well up to

O(105 − 106) processors. In general, considerable effort has been spent in optimizing the

transposes to the point that the Eulerian code now performs very efficiently. Hence, in the

current work our main focus is the particle tracking aspect of the DNS (as discussed in next

chapter).
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Table 2.1: List of Petascale supercomputers used in current work

Supercomputer Blue Waters Stampede Titan Edison Kraken1

Location NCSA TACC ORNL NERSC NICS
System type Cray XE6/XK7 Intel Xeon-Phi Cray XK7 Cray XC30 Cray XT5
Nodes 22640/4228 6400 18688 5576 9408
Network 3D Torus Fat-tree 3D Torus Dragonfly 3D Torus
Peak Perf. 13.34 PF 9.60 PF 27.11 PF 2.57 PF 1.17 PF
1 now decommissioned
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Figure 2.1: Mapping the N3 domain into a 2D computational grid with P = Prow × Pcol

processors. Here Prow = Pcol = 4.
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Figure 2.2: 1D FFT in each direction followed by a transpose for a 2D computational grid.
Two global transposes are needed to complete a 3D FFT in this case. Here Prow = Pcol = 2.
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CHAPTER III

PARTICLE TRACKING ALGORITHM AND POSTPROCESSING

3.1 Introduction

As discussed in the previous chapter, in the Eulerian part of the DNS code, we compute

the 3D velocity field at N3 grid points. In the Lagrangian part, a large number of fluid

particles are initialized at t = 0 and tracked forward in time along with the velocity field.

The motion of these fluid particles is governed by a simple ordinary differential equation:

dx+(t)

dt
= u+(t) , (3.1)

where, x+ and u+ denote the particle position and velocity respectively, and u+ is simply

the Eulerian velocity taken at the instantaneous particle position

u+ = u(x+, t) . (3.2)

Since the Eulerian velocity u is available only at fixed N3 grid points and the particle

positions in general can be anywhere, to obtain the Lagrangian velocity u+, we need to

interpolate between the grid points. We use cubic-spline interpolation, which is fourth-order

accurate and twice- differentiable, making them suitable for interpolating other quantities

like velocity gradients or for subsequently obtaining the acceleration by differentiating the

interpolated velocity in time (Yeung & Pope 1988). The following formula is used to obtain

the particle velocity

u+ =

4∑

k=1

4∑

j=1

4∑

i=1

bi(x
+)cj(y

+)dk(z
+)eijk(x) (3.3)

where bi, cj , dk are the 1-D basis functions that are determined by the particle position

co-ordinates (x+ = (x+, y+, z+)) and eijk are the 3-D spline coefficients that are computed

from the Eulerian velocity field u(x). The interpolation requires 4 grid points in each

direction. Hence a total of 43 or 64 points are required for each particle. Also as a result,

a total of (N + 3)3 spline coefficients are required for the entire grid. The algebraic details
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of the method and the expressions for basis functions and spline coefficients are available

in Yeung & Pope (1988).

Once the velocity at the particle position is obtained, the position of the particle is

simply integrated in time using second-order Runge-Kutta method using the time step as

obtained from the Eulerian part of the DNS code. The position after the predictor step is

given as

x∗ = x+(tn) + ∆t u(x+(tn), tn) , (3.4)

and after the corrector step, we get

x∗(tn+1) = x+(tn) +
∆t

2

[
u(x∗, tn) + u(x+(tn), tn)

]
. (3.5)

As it can be seen, the time integration of particles is rather simple. Consequently, the most

time consuming task in particle tracking is to obtain the particle velocity as interpolated

from the 64 neighboring grid points.

3.2 Parallel implementation

Consider a total of Np particles being tracked. Since Np is typically very large (many

millions), the particle positions and velocities need to be distributed among the MPI tasks.

A key consideration in particle tracking is that, as the particles wander around under the

action of turbulence, the position of particles and hence the required interpolation stencil of

43 points, keeps changing with time. As a result, the efficient parallel implementation of this

interpolation for the wandering particles is not straightforward. One approach is to keep

each MPI task responsible for the same set of particles which were initiated on that MPI

task and receive the required information for interpolation from other tasks. We call this the

‘global’ approach as it requires a global exchange of information for interpolation. Another

approach is to let each particle at a given time step be tracked by the MPI task which

holds the sub-domain in which the particle is instantaneously located. This implies that

each MPI task is responsible for a dynamically evolving instead of a fixed sub-population

of particles. We call this the ‘local’ approach, as the information for interpolation is almost

always available locally on the MPI task. In previous works, we have used the global
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approach and for small to moderate problem sizes it performs reasonably well. However,

for large problem sizes such as 81923 on 262, 144 processors, the global approach scales very

poorly and hence in this work we develop and implement a local approach. In the following

section, we discuss the global approach along with the merits and shortcomings associated

with it. Then the local approach is described in detail.

3.2.1 Global approach

In the global approach, the particles are initially (at time t = 0) divided equally among

all MPI tasks. On every task, each particle is assigned a random initial position (using

the Fortran intrinsic RANDOM_NUMBER with a different random seed on each task to ensure

statistical independence) within the entire domain, i.e., the coordinates in each direction

are between 0 and L0. Now for the entire DNS run, each MPI task is always responsible for

the same set of particles, to which it was initially assigned, and the interpolation is carried

out using the following operations:

First, the 3D spline coefficients (eijk) are computed from the Eulerian velocity field. This

requires solving a set of tridiagonal system of equations in each direction (Yeung & Pope

1988). The calculation of the spline coefficients shares some similarities to that of 3D FFTs,

as it requires the complete data in each direction to compute the individual components

in that direction. Since there are (N + 3)3 spline coefficients and N + 3 is not divisible by

P (total number of MPI tasks), the ALLTOALL protocol is replaced by ALLTOALLV to

perform the transposes. The calculation of spline coefficients in this manner is a direct result

of the interpolation scheme being fourth-order accurate. This task is required irrespective

of whether the global or local approach is used.

Second, we calculate the 1D basis functions (bi, cj , dk). The basis functions are simple

algebraic functions of the particle position (which is already known to the MPI task).

However, the summation in (3.3) now requires communication, since, as the particles wander

around, the majority of them will require access to spline coefficients held by another MPI

task. To do so, the 1D basis functions are gathered into a global array, such that each MPI

task now has the information for all particles. This is performed using the MPI_ALLGATHER
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protocol. To avoid any memory issues due to the size of this extra global array, particles

can be processed in smaller batches.

Third, the summation is now carried out using the information computed and com-

municated as described above. Each MPI task now has the information about 1D basis

functions for all particles, but only the local spline coefficients. As a result, each MPI task

can calculate a partial sum for each particle. These partial sums are finally added up us-

ing an MPI_REDUCE and the result are returned to their corresponding MPI tasks using an

MPI_SCATTER. We were also able to implement a CAF version of REDUCE+SCATTER,

where a collective reduce was executed using a binary-tree algorithm (Buaria & Yeung 2014)

and was found to perform better than the MPI counterpart on Cray machines.

The advantage of the global approach lies in its simple implementation. Since each task

has to keep track of its own Np/P particles, the work distribution is exactly the same on

all MPI tasks. However, this approach requires lot of global communication which does not

scale efficiently to large number of processors. Table 3.1 shows the timings for the particle

tracking part of the code, using the global approach. The cases selected are in accordance

with weak scaling arguments for the Eulerian part, but the number of particles is held

constant. This also represents the weak scaling for the calculation of spline coefficients, since

they also depend on the number of grid points. However for the interpolation portion it

represents the strong scaling argument since the number of particles are held constant while

the number of processors is increased. As it can be seen, the communication performance

(specially for ALLGATHER) greatly deteriorates with increasing number of processors for

the same number of particles. We use a hybrid MPI/OpenMP approach to alleviate some

of the network latency issues. However, adding more threads leads to increased overhead

from OpenMP, which overrides any improvement obtained from reducing the latency. The

best timings are typically obtained for when 2 threads are used (as reported in table 3.1).

Table 3.2 shows the same set of timings with four times the particles as shown in

table 3.1. The calculation of spline coefficients takes almost the same time as before,

since it is independent of the number of particles. The time taken in other operations,

especially ALLGATHER, increases with the number of particles (though the factor is less
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than 4, except for the computation part) and at the largest problem size the performance

is extremely poor. Another factor leading to this poor performance is interference from

other jobs running on the system. While the ALLTOALLs are also affected by network

traffic to some extent, the sheer volume of data being communicated in an ALLGATHER

(which rapidly increases with both the number of particles and processors) makes it more

susceptible to network traffic and congestion. Thus at the largest problem sizes, a new

approach, avoiding such expensive collective communication calls is of utmost importance.

3.2.2 Local approach

In the local approach, the main idea to keep the particles ‘local’ to the MPI tasks, i.e.,

a scheme whereby at every time step each particle will lie in a sub-domain where all in-

formation required for interpolation will be available locally on an MPI task. In such

a scenario, the expensive collective communication calls such as ALLGATHER and RE-

DUCE+SCATTER are automatically eliminated. However, we still need to communicate

the spline coefficients required for interpolation, for particles very close to domain bound-

aries. Also if a particle crosses into a different sub-domain kept by a neighboring MPI task,

then all of its information is transferred to this new ‘host’ MPI task. Thus we need to explic-

itly keep track of every particle by assigning an index to it. The underlying concept of the

local approach is similar to the spatial decomposition particle tracking done in molecular

dynamics (Plimpton 1995; Phillips et al. 2005) and was also recently used by Ireland. et al.

(2013) for fluid and inertial particles in homogeneous turbulence. The main procedures for

interpolation can be summarized as follows:

First, we compute the spline coefficients, using the Eulerian velocity field just like the

global approach. This operation is unchanged.

Second, the basis functions can also be directly from the particle positions just as before.

Next, taking advantage of the fact that the particle is in the same sub-domain, i.e., the

required spline coefficients are also on the same MPI task, we can directly proceed to the

interpolation. For particles near the boundaries, communication is required to access the

required spline coefficients. However, unlike the global approach, this communication occurs
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only between MPI tasks holding adjacent sub-domains, instead of across the entire global

communicator.

Third, since the approach requires that all particles be local, an additional operation

is required after the interpolation and time advancement. At every time step, we need to

check the new position of every particle and move them to their new MPI tasks if required.

However, based on the CFL criterion, the particle cannot move more than one grid spacing

at every step. As a result, a particle can only move to an immediately neighboring MPI

task. Thus in this operation, a exchange of particles is performed using MPI_SENDs and

MPI_RECVs.

While the advantage of this approach is very evident, i.e., the communication pattern is

always localized between neighboring MPI tasks, which can result in excellent scaling prop-

erties (discussed later in § 3.2.3), it also has a few drawbacks. Since the number of particles

on each MPI task is not the same, in principle this can lead to load imbalance. However,

in homogeneous flows, such as the one considered in this work, the spatial distribution of

particles is more or less uniform. As a result, on average, the number of particles leaving

a MPI task, is of the same order as the number of particles entering. Furthermore, the

amount of time spent on interpolation with this new scheme, is such a small fraction of the

total time (also discussed in § 3.2.3), that the small degree of imbalance can be ignored.

However, in future if this code is to be extend to study of say inertial particles (particles

with mass), which are known to cluster inhomogeneously even in homogeneous flows, we

will have to consider adding some sort of dynamic load balancing. Another drawback of this

approach is in I/O. Since the particles are freely changing the task they belong to, writing

out the particle positions and velocities requires additional consideration (discussed in later

section).

An important consideration in this approach is the manner in which the communica-

tion is performed for the above mentioned second operation, i.e., communication of spline

coefficients for particles near the domain boundaries. A common method to exchange such

information is to allow each MPI task to hold several layers of ‘ghost points’ (Pletcher et al.

2012). After the spline coefficients are computed, a simple exchange using SENDs and
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RECVs can populate these ghost layers and then even for the particles near the boundary,

the interpolation becomes local. Recently, Ireland. et al. (2013) used such an approach

for particle tracking in DNS of homogeneous turbulence of up to 20483 grid points. In the

current algorithm, since 4 points are required in each direction for the interpolation, a ghost

layer extending to 3 extra points in each direction is sufficient. However, using ghost layers

has an inherent drawback, especially at large problem sizes. In the 2D domain decomposi-

tion, the size of each pencil (in terms of grid points) is N × (N/Prow) × (N/Pcol) and the

typical practice is to keep Prow equal to the number of cores in a node to obtain the best

ALLTOALL performance for the Eulerian part of the code (and even the ALLTOALLV

part of the Lagrangian code, when the spline coefficients are calculated). For example, on

Blue Waters, each node has 32 cores and the largest problem size of 81923 grid points is

typically run on 8192 nodes. Thus for this case, Prow = 32 and Pcol = 8192, giving pencils

of dimensions 8192 × 256 × 1. In such a scenario, using a ghost layer of 3 points in each

direction is not feasible, as the ghost layer itself would be more than six times (since 3

points are required on both sides of the pencil) of the total pencil size, resulting in a huge

memory penalty. Furthermore, not all the values in the ghost layer would be useful, since

the number of points near the boundaries would on average be smaller than the number of

spline coefficients required for interpolation (typically N3 is much larger than Np). Thus

the strategy utilizing ghost layers is not a viable one, specially at the Petascale problem

sizes.

A possible strategy is to keep the spline coefficients in the remote memory and transfer

them individually for every particle whenever required. However, the information required

for each particle is different on every MPI task and each task at any given time, is respon-

sible for thousands of particles. In such a scenario, the use of one-sided communication

is particularly beneficial since it greatly reduces the synchronization required between the

communicating tasks. The underlying idea is to start calculating the sum in (3.3) and then

fetch the required spline coefficients using one-sided communication, for the particles near

the sub-domain boundaries. The communication is still restricted in a local zone between

the neighbors, but the amount of synchronization has been greatly reduced. Also in general,
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any processor geometry (such as 32 × 8192 for the 81923 grid) can be considered. This one

sided communication can be performed using the MPI_GET call provided by the MPI 3.0

standard or CAF on Cray machines such as Blue Waters (NCSA). The use of CAF in this

regard is faster, since the message sizes are very small and CAF greatly exploits the mem-

ory locality due to the inherent localized nature of communication. A global coarray for

the spline coefficients is be formed and used for the interpolation, by accessing the remote

memory using the coarray dimension. The use of MPI_GET also achieves the desired result,

however because of larger overhead and synchronization costs, it is not as good as using

CAF.

3.2.3 Performance

The main benefit of the local approach is the local nature of the communication between

neighboring MPI tasks. Since the processor grid is 2D, a given MPI task has 8 immediate

neighbors (since there are 4 faces and 4 edges shared between sub-domains on each task).

This is true for tasks even on the boundaries of the domain due to periodic boundary

conditions. For example in figure 2.1, the neighbors of P5 are P0, P1, P2, P6, P10, P9,

P8 and P4, whereas the neighbors of P0 are P12, P13, P1, P5, P4, P7, P3 and P15. In

general we can scale up to any number of processors and the communication pattern always

will remain local. As a result, the communication costs associated with interpolation are

very small. Table 3.3 shows the particle tracking timings using the local approach. The

same cases as reported earlier for global approach (in table 3.1) are chosen. The expensive

collective communication calls are replaced by two local communication calls. The first

corresponds to communication of spline coefficients (for particles near the boundaries) from

neighboring tasks for interpolation and the second corresponds to migration of particles

in case they move out of the sub-domain boundaries. As it can be seen, the timings for

the local approach are significantly better. The inherent local nature of communication

allows for almost complete avoidance of any other network traffic, allowing for very good

scaling of the communication costs. The timings for computations are also significantly less

as the summation is calculated only for the local population of particles (unlike the global
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approach where a partial sum is formed for all the particles). Table 3.4 shows the timings

for four times as many particles in table 3.3, similar to table 3.2 for the global approach.

While the timings increase proportionally with the number of particles, the overall cost is

still much less compared to the global approach. Finally in table 3.5, we present the timings

at the largest problem size we have run, for different numbers of particles. Except for the

cost of calculating the spline coefficients, all other costs are proportional to the number of

particles. However, the total cost for particle tracking is substantially less. In fact, this

dramatic improvement in performance has allowed us to run up to 300 million particles in

the 81923 DNS run. If we compare the timings for 64M particles between the global and

local approach, we find that the local approach performs over 10X faster (and given the

trend, order 40X for the case of 256M particles).

While the performance for the local approach is very good, there are still a few points

to consider. An important point is the effect of processor grid on particle tracking. In the

local approach, communication occurs only when particles are near the boundary (or when

they move out of the sub-domain boundary). Since the turbulence is homogeneous, we can

assume that the particles are distributed more or less uniformly in space. As a result, the

likelihood of a particle being near a boundary depends on (1) how many total particles are

being tracked and (2) the size of the sub-domain, i.e., the value N/Prow ×N/Pcol (we can

ignore the third direction, since entire data along that direction is always present on each

task). For a fixed value of P (= Prow×Pcol), more particles will be near the boundary if the

sum Prow + Pcol is higher, since the sum is a measure of the perimeter of the sub-domain

(larger perimeter would imply a large boundary for the same area given by Prow × Pcol).

Thus the optimal performance, in theory, is expected for Prow = Pcol =
√
P , which gives

the smallest perimeter for a give value of P . However, such a domain decomposition gives

sub-optimal performance for the Eulerian part (which performs best for Prow ≪ Pcol as

discussed before in § 2.3). As a result, the optimal processor grid required for the Eulerian

and the Lagrangian parts directly conflict with each other. Since the Eulerian part takes

more time due to the nature of 3D FFTs, the processor grid is chosen to get the best

Eulerian performance. Another important point to consider is the load imbalance across
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all MPI tasks in the local approach. Since the particles move around between tasks, some

MPI tasks might have a significantly larger number of particles than others. However since

the overall cost for interpolation in the local approach is so less (less than 5% of the total

time per step, at the largest problem size of 81923 considered in this work), we can safely

ignore the need for working on load balancing currently.

3.2.4 I/O considerations

An important task in particle tracking is writing out the data for particle positions and

velocities. For postprocessing (as discussed in next section), the entire time history of par-

ticles is required at multiple of a sampling time interval, which is a fraction of Kolmogorov

time scale (on average thousands of time steps are written out at the largest Reynolds

numbers). Also many Lagrangian statistics require numerical differentiation or integration

with respect to time (more details in Chapter 5) and thus require a small output step for

accuracy. Since the I/O is performed so frequently for particle tracking, it is obviously

important for it to be as efficient as possible. Given the different nature of global and local

approaches, both require separate considerations for efficient I/O.

In the global approach, particles always belong to the MPI task they are initiated on.

As a result, the I/O for global approach is simple. At every output step, we choose Ps

MPI tasks which are always responsible for writing out the data, such that Ps is a factor

of P and 1 < Ps < P . These Ps tasks are uniformly scattered in the entire communicator,

for example, tasks 0, P/Ps, 2P/Ps, ... ,(Ps − 1)P/Ps. These tasks collect the data from

succeeding P/Ps −1 tasks (or P/Ps tasks including itself) and write out the data in a serial

fashion into Ps output files simultaneously. Based on the number of particles (Np), the

value of Ps is chosen such that NpPs/P is a constant for every DNS run (essentially each

task writes out the same amount of data). Furthermore this value is determined for any

supercomputer to get the best overall I/O bandwidth from a simple parametric study.

For the local approach, particles constantly move around between MPI tasks. Thus the

above mentioned approach cannot be used directly. To keep track of particles, each particle

is assigned an unique integer index, which always remains the same regardless of where

37



particles go. One approach is to send the information for every particle, to the MPI task it

was initiated on (using this integer index) and then write out the data using the same I/O

method employed in the global approach. Essentially, a parallel sorting is required at every

output step, where the particles are sorted in the same manner as they were initiated in and

then the same I/O method is used to write out the data. However doing this parallel sorting

on O(105−106) MPI tasks is very expensive. As a result, the sorting is now performed using

a postprocessing approach. First the unsorted particle position and velocities, along with

the unique indices are simply written out using a strategy similar to that used in the global

approach. Then a ‘sorting’ code is run as a post-processor on this raw data using a much

smaller number of MPI tasks. This allows us to run the DNS code efficiently on O(105−106)

MPI tasks. Since the number of particles can also be very large, we have further employed

parallel I/O in the DNS code to write out the unsorted data. The strategy is still the same,

where Ps blocks of MPI tasks are chosen, such that each P/Ps group of tasks collectively

write out their data in parallel. For convenience, Ps is chosen to be equal to Pcol, such that

Prow group of tasks write out one file each. This way the parallel I/O is restricted within

the node (the communication as a result is very fast and scalable), since Prow is typically

chosen to be equal to the number of processors on a node.

3.3 Postprocessing and Backward tracking

As mentioned earlier, a direct way of tracking particles backward in time is to store the

Eulerian velocity fields (as integrated forward in time from say t = 0 to T ) at every time

step. Particles are introduced in the domain at t = T and integrated backwards in time

to t = 0 using (3.1). However as discussed earlier, this approach is prohibitively expensive

at large Reynolds numbers due to the storage requirements which grows similarly to the

computational cost (R6
λ).

To avoid the severe storage constraints noted above, we have developed a new algorithm

based on postprocessing of saved forward trajectories to obtain both forward and backward

statistics. A large population of particles is tracked forward in time from t = 0 to T along

with the Eulerian velocity field and the positions and velocities of particles are written out at
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reasonably small time intervals (normally a fraction of Kolmogorov time scale). Then these

forward trajectories are inverted using the transformation t′ = T − t, where t′ corresponds

to the backward time. This inversion can be applied since the Eulerian flow is statistically

stationary (Buaria et al. 2015). While this approach has similarities with techniques used by

experimentalists (Berg et al. 2006; Jucha et al. 2014), the number of particles and pairs we

consider in this work are much larger. Single particle statistics like velocity autocorrelation,

mean-square displacement, etc. (Yeung & Pope 1989) are easily obtained for both forward

and backward reference frames. In fact, because of stationarity both forward and backward

single particle statistics would be identical (Sawford et al. 2005). However, obtaining two

particle statistics is a non-trivial task.

The typical approach to obtain two particle statistics in the forward case, is to introduce

pairs of exact initial separation at t = 0 and track them forward in time (Yeung & Borgas

2004). Doing the same for backward case would require the expensive data storage method,

as we cannot control the final separations of the particles (at t = T , which also is the initial

separation for backward frame at t′ = 0) in the current approach. Instead particle pairs are

now formed by choosing all the unique combinations of two single particles. This results

in a smooth variation of initial separations over a continuous probability distribution and

statistics are formed by collecting samples of the initial separation distance into bins of a

desired width. As a result, obtaining both forward and backward statistics is a postpro-

cessing task. Similarly triangles and tetrads can also be formed by choosing three and four

particles respectively. The details of this postprocessing algorithm are discussed next.

3.3.1 Pairs

In principle, for a population of Np particles we can form a maximum of Np(Np − 1)/2

distinct pairs. However for a nominal value of Np = 106 (as we will see later, the value

of Np chosen can be much higher than that), the total number of pairs is O(1012). Since

we need to process the data at possibly over a thousand time steps, the data analysis

also requires massively parallel processing. It is also important to note that within each

population and at any given time instant there may be relatively few pairs which are close
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together, but many more which are relatively far apart. Consequently it may be difficult

to obtain sufficient samples of pairs with small initial separation (r0) while for large initial

separation it is not necessary to count all the samples. Our goal is thus to count as many

pairs as possible and necessary, for pairs that are close together at t = 0 or t = T , while

keeping the overall cost manageable using a systematic approach that also provides a means

of assessing the degree of sampling uncertainty.

To explain our counting algorithm we consider analyzing a population of Np particles

using M distinct parallel processes (or MPI tasks). The particles are divided into M

independent sub-populations, each of size Np/M and held by a distinct MPI task. We also

sub-divide each Np/M sub-population into two halves, of Np/(2M) particles each. The

algorithm then goes through the following steps. First, on each MPI task, (Np/2M)2 pairs

are formed by selecting, for each pair, a particle from the first half and a particle from the

second half of the same sub-population, giving N2
p /(4M) pairs upon summing over M MPI

tasks. To obtain more pairs, we move the second half of each sub-population, in pipe-lining

fashion, from one MPI task to the next, and then form another N2
p /(4M) pairs in the

same manner. If this procedure is repeated a maximum of M times we obtain N2
p /4 pairs,

regardless of the value of M . Second, we can form new pairs by swapping the first half

of one sub-population with the second half of each of the other (M − 1) sub-populations.

Proceeding systematically in the same manner as above produces another (N2
p /4M)(M −1)

pairs. Finally, we can also form pairs within each half of each sub-population, which gives

another (Np/2M)(Np/2M − 1)M pairs. The sum of the three subtotals above is the same

as the theoretical maximum of Np(Np − 1)/2. Yet, by avoiding forming pairs directly

across different sub-populations residing on different MPI tasks the communication cost for

this calculation is inherently low. The systematic nature of the approach, further allows

us to parallelize the work on each MPI task using OpenMP threads and exploit modern

SIMD (single instruction, multiple data) architectures by fully vectorizing the time step

loop (which is kept to be the innermost for this reason).

In post-processing of particle pairs, our practice is to keep the number of particles on

an MPI task, i.e., Np/M fixed. Then depending on how many particles are being processed
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we set the total number of MPI tasks accordingly. The underlying idea is have sufficient

particles to fully utilize OpenMP within a MPI task, but also not have too many particles

such that memory becomes an issue. As noted earlier, the basic procedure involved in post-

processing is to form pairs on MPI tasks and then cycle a sub-population of particles. Then

this process is repeated to go through all the pairs. Since Np/M is constant, the time for

each basic procedure is also same across different runs. In Table 3.6, the timings for such a

procedure are given. It can be seen that the code scales almost perfectly up to 8 OpenMP

threads on Stampede (TACC). On going from 8 to 16 threads, the scalability is not perfect

due to the penalty in memory access across a NUMA node (each node on Stampede has

two NUMA nodes with 8-cores on each). Also the time spent in communication is trivially

small compared to that spent in computations. As a result, the code is almost entirely

computation bound and performs consistently at the reported flop rate of about 6 GF/s

per thread, which is about 30% of the peak flop rate 1.

Another important parameter in post-processing is the number of time steps. Due to the

nature of the algorithm forming the pairs, it would be most efficient to compute the statistics

for all time steps together. As a result, the time step loop is made to be the innermost

and resulting in very efficient vectorization. Table 3.7 shows the dependence on number of

time steps on the performance of the code. As one can observe, the efficiency of the code

improves with increasing number of time steps until it saturates. This is because increasing

the number of time steps helps to utilize more vector units until a point is reached when

all vector units are saturated. The communication time also increases with the number of

time steps, but still is trivially small. For very large time steps, sustained performance can

still be obtained by using simple techniques like loop/cache blocking. Thus this algorithm

allows us to form all the possible particle pairs in a very systematic way, such that we can

very efficiently parallelize all the work using hybrid MPI/OpenMP programming.

In backward tracking, we begin with full knowledge of the fluid particle velocities and

positions at the output time steps {t = 0, h, 2h, .........T − h, T}. As mentioned earlier, we

can define the backward time as t′ = T − t, and thus associate initial conditions for the

1https://www.tacc.utexas.edu/stampede
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backward problem (at t′ = 0) with fluid particle properties at t = T from a forward numer-

ical simulation, without any further numerical integration. However a careful consideration

of the nature of periodic boundary conditions is necessary. In the forward DNS, at t = 0,

the position coordinates of all fluid particles are initialized as uniformly distributed random

variables scaled such that all particles lie within a “primary” domain of size (2π)3. Subse-

quently, as time evolves, because of the unbounded nature of homogeneous turbulence, an

increasingly large fraction of the particles will be found in periodic images of the primary

domain. The velocities of particles lying outside the primary domain remain well-defined,

being the same as if the particles were inside the domain, with each coordinate shifted by

an integral multiple of the length of the domain on each side. Thus, for example, a particle

at position (2k1π + x1, 2k2π + x2, 2k3π + x3), where the ki are integers and 0 ≤ xi ≤ 2π,

experiences exactly the same velocity as a particle at position (x1, x2, x3), which is in the

primary domain. This consideration allows us to formulate a backward tracking problem

with all particles starting (at t′ = 0) inside the primary domain: essentially, at t = T we

bring all particles back into the primary domain by adding or subtracting a multiple of 2π

in all three coordinate directions. The position coordinates of each particle at all earlier

forward times are also shifted in the same way, while velocities are not affected. As a con-

sequence, in backward dispersion, as we travel back to earlier times (at increasing t′), an

increasingly large fraction of the particles will be found in periodic images of the periodic

domain, in a manner analogous to forward dispersion at large time t.

In previous forward-tracking studies (Yeung & Borgas 2004; Sawford et al. 2008) only

particle pairs with several prescribed values of initial separation (r0) were considered. In our

present formulation the initial separation is random. The likelihood of samples in different

ranges of r0 is characterized by its probability density function (PDF), f(r0) (throughout

this paper we use f(·) as a generic symbol for PDFs), and most of the results presented

in this paper are statistics averaged over samples of particle pairs whose r0 fall into a

series of designated intervals. Figure 3.1 shows the PDF of r0 normalized by either the

length of the domain (L0) or the Kolmogorov length scale (η) (with all PDFs normalized

such that the area under the curve, if plotted on linear scales, is unity). On the left of
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this figure f(r0/L0) is independent of Reynolds number except that a larger particle count

used in the higher Reynolds number simulation provides more samples at scale sizes much

smaller than L0. For a uniform distribution of particles in three dimensions, the cumulative

distribution of pair separations is a power law with an exponent equal to the correlation

dimension (Grassberger & Procaccia 1983), which in this case is just the spatial dimension,

three. Thus for r0 ≪ L0 the cumulative distribution function scales as (r0/L0)
3, such

that f(r0/L0) ∝ (r0/L0)
2, which explains the quadratic growth seen to hold well up to

r0 ≈ L0/2 (the radius of the largest sphere that can be wholly contained in the primary

solution domain). For r0 exceeding L0 the PDF is seen to drop quickly towards 0 for r0 at

its upper bound of
√

3L0 (equal to the length of the diagonal in the cubic domain). We are

interested mostly in initial separations within the dissipation and inertial sub-ranges which

correspond to r0 ≪ L0. If we consider (in the right of Fig. 3.1) the PDF of r0/η then the

PDFs at different Reynolds numbers differ significantly. Sampling for small r0/η becomes

more difficult at higher Reynolds number as η becomes smaller (while L0 is fixed). In our

data, for Rλ = 140 the PDF of r0/η appears to be reasonably well-sampled for r0/η down

to about 1/4. In the Rλ = 1000 simulation accuracy at such a small r0 would require many

more samples than we have used. As a result, for our higher Reynolds number datasets we

mainly present results for r0/η from 1 upwards.

It should be noted that, provided periodic boundary conditions are properly accounted

for, the second law of thermodynamics and incompressibility ensure that an initially uniform

distribution of fluid particles remains so, and that therefore the PDFs of forward and

backward r0 are the same. In our data we have observed this is true — the forward and

backward PDFs differ only slightly due to sampling noise for r0 at its smallest values.

3.3.2 Triangles and tetrads

The general strategy for forming triangle and tetrads is similar to that of forming pairs.

We can now divide the population on each MPI task into four groups of Np/4M each. For

triangles, we can pick one particle from three groups at a time, whereas for tetrads we

can pick one particle from each group. In theory, for Np particles one can form a total of
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Np(Np − 1)(Np − 2)/6 unique triangles and Np(Np − 1)(Np − 2)(Np − 3)/24 unique tetrads.

However, counting all the possible triangles or tetrads is clearly out of question, since for

O(106) particles we are looking at O(1018) triangles and O(1024) tetrads (which is almost

impossible even by Petascale standards). Furthermore, not every triangle and tetrad formed

this way is of interest. As a result, we only consider equilateral triangles and regular tetrads

(a tetrad with all sides equal) which have received considerable attention in forward tracking

studies (Chertkov et al. 1999; Pumir et al. 2000; Xu et al. 2008; Hackl et al. 2011).

Since the separation distances between particles are distributed randomly (as highlighted

in previous section and also figure 3.1), we cannot obtain perfect equilateral triangles or

regular tetrads. Instead we use a binning strategy, whereby a sample is identified when all its

sides fall within the same bin (note a triangle with all three sides equal is always equilateral

and a tetrad with all six sides equal is always regular). The resulting triangles and tetrads

can now be sampled in a similar fashion as pairs, by treating them as an ensemble of three

and six pairs (for each side) respectively. The variable r0 now represents the length of

each side for a triangle or tetrad and a sample is found when all the sides fall in the same

bin around a given r0. This strategy allows us obtain results from a more modest number

of samples, which greatly reduces the required computational cost. As we saw earlier for

pairs, while samples for reasonably large r0 are readily available, samples for small r0 are

much rarer. For the triangles and tetrads, samples of small r0 occur even rarely as three

and six sides respectively need to simultaneously satisfy the same sampling condition. In

order to achieve good sampling at small r0, we would have to potentially scan through all

the possible samples (just as in the case of pairs). However such a task for triangle and

especially tetrads is extremely difficult. To counter this, we have come up with a different

approach as discussed next.

As mentioned earlier for pairs, for a cubic domain of length L0, the largest possible

distance between two particles is
√

3L0. Now if we divide the entire domain into sub-cubes

of length L0/F , where F is some integer factor greater than unity, then the largest distance

available becomes
√

3L0/F . Since Np particles are scattered in the entire domain, after

sorting spatially we will have Np/F
3 particles in each sub-cube on average. The exact
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numbers will be slightly less or more, but since the overall distribution is homogeneous, we

can approximately take it to be this for every sub-cube. Now if triangles or tetrads formed

are restricted to each sub-cube, then the total number of samples to scan through scales

as N3
p/F

9 and N4
p /F

12 respectively. By appropriately choosing the value of F , we can

dramatically reduce the number of samples we have to scan through to find the equilateral

triangles and regular tetrads. The samples obtained are also restricted to a maximum size

set by the size of the sub-cube. This strategy greatly reduces the computational cost of

studying triangles and tetrads. However, for the smallest r0, it is still impossible to obtain

decent sampling, since the samples are non-existent in the first place. In general for a

given, r0, the number of samples for pairs will be much larger than the number of samples

for triangles, which in turn would be much larger than the number of samples for tetrads.

For a given value of Np, the total number of samples are restricted and thus sampling at

smallest r0 gets progressively worse in going from pairs to triangles to tetrads. As a result

the smallest well sampled r0/η for triangles or tetrads is somewhat higher than smallest

well sampled r0/η for pairs and also depends on the Reynolds number. For Rλ = 140, good

sampling for r0/η ≥ 1 is obtained, whereas for Rλ = 1000, good sampling is available for

r0/η ≥ 8 only. (discussed more in Chapter 6).

3.4 Summary

The key task in particle tracking is the interpolation of fluid velocity at particle location from

the neighboring grid points. We have presented two approaches for this purpose, namely

the global and the local approach. In the global approach, the particles are always located

on the MPI tasks they are initialized on, while the information required for interpolation

is globally communicated. In the local approach, the particles freely change MPI tasks as

they are integrated forward in time, such that the required information for interpolation is

always locally available. While the global approach has been used previously for smaller

to moderate problem sizes, it scales poorly at Petascale problem sizes. For this reason,

the local approach has been developed and implemented in the DNS code. For all problem

sizes, the local approach is found to scale significantly better.
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Based on the trajectories of particles saved in DNS, we have developed and imple-

mented a new postprocessing algorithm to obtain statistics of particle pairs. A hybrid

MPI/OpenMP approach is used, in which particles are distributed across a large number

of processors and two-particle statistics are calculated by systematically forming pairs from

unique combinations of single particles. The code scales almost perfectly with both the

number of MPI tasks and OpenMP threads. Extensions to triangles and tetrads are also

discussed.
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Table 3.1: Particle tracking timings on Blue Waters (NCSA) for the global approach for
16M particles. The problem size and number of processors correspond to weak scaling
argument for the Eulerian part.

Grid points 20483 40963 81923

CPU cores 4096 32768 262144
Proc. Grid 16x128 16x1024 32x4096
No. of threads 2 2 2
Spline coefficients 1.507 3.329 5.121
Allgather 0.912 5.072 11.82
Computations 0.288 0.261 0.364
Reduce+Scatter 0.516 1.438 2.062
Total time 3.278 14.11 19.81
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Table 3.2: Particle tracking timings on Blue Waters (NCSA) for the global approach for
64M particles. The problem size and number of processors correspond to weak scaling
argument for the Eulerian part.

Grid points 20483 40963 81923

CPU cores 4096 32768 262144
Proc. Grid 16x128 16x1024 32x4096
No. of threads 2 2 2
Spline coefficients 1.493 3.290 5.006
Allgather 3.052 7.034 43.58
Computations 1.134 1.048 1.464
Reduce+Scatter 2.052 4.404 6.032
Total time 7.804 16.42 55.27
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Table 3.3: Particle tracking timings on Blue Waters (NCSA) for the local approach for
16M particles (similar to table 3.1)

.
Grid points 20483 40963 81923

CPU cores 4096 32768 262144
Proc. Grid 32x128 32x1024 32x8192
No. of threads 1 1 1
Spline coefficients 1.419 2.295 4.905
Comm. interpolation 0.601 0.378 0.140
Computations 0.025 0.003 0.001
Update particles 0.001 0.004 0.032
Total time 2.064 2.751 5.120
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Table 3.4: Particle tracking timings on Blue Waters (NCSA) for the local approach for
64M particles (similar to table 3.2)

.
Grid points 20483 40963 81923

CPU cores 4096 32768 262144
Proc. Grid 32x128 32x1024 32x8192
No. of threads 1 1 1
Spline coefficients 1.422 2.352 4.917
Comm. interpolation 1.150 1.130 0.293
Computations 0.110 0.014 0.002
Update particles 0.003 0.005 0.071
Total time 3.295 3.519 5.273
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Table 3.5: Particle tracking timings on Blue Waters (NCSA) for the local approach at
81923 using 262, 144 CPU cores (using 32 × 8192 domain decomposition)

No. of particles 16M 64M 256M
Spline coefficients 4.905 4.917 4.862
Comm. interpolation 0.140 0.293 1.060
Computations 0.001 0.002 0.008
Update particles 0.032 0.071 0.201
Total time 5.120 5.273 6.066
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Table 3.6: Timings on Stampede (TACC) with 200 time steps and 16384 particles on each
MPI task

OpenMP threads 1 2 4 8 16
Computations (secs) 100.37 50.58 24.44 12.25 7.41
Communication (secs) 0.047 0.042 0.038 0.043 0.035
Flop Rate (in GF/s/thread) 5.56 5.68 5.88 5.89 4.85
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Table 3.7: Timings on Stampede (TACC) with 16384 particles on each MPI task, using 8
OpenMP threads

Time steps 10 50 100 200 400
Computations (secs) 1.346 3.368 6.204 12.25 23.620
Communication (secs) 0.001 0.009 0.021 0.043 0.088
Flop Rate (in GF/s/thread) 2.67 5.33 5.79 5.89 6.09
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Figure 3.1: Probability density function (PDF) of initial separation normalized by length
of domain (left) and by Kolmogorov scale (right), at Reynolds numbers 140 (solid lines, in
red) and 1000 (dashed lines, in blue), with number of particles as given in Table 5.1. In the
left frame a dashed line of slope 2 in black shows quadratic variation up to r0 ≈ L0/2.
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CHAPTER IV

RELATIVE DISPERSION STATISTICS OF FLUID PARTICLES

4.1 Introduction

Turbulent relative dispersion is usually understood as the spreading of a pair of particles

relative to each other, under the influence of chaotic motions in a turbulent flow. The con-

cept can be applied to fluid particles, which exactly follow the fluid motion, molecules which

additionally undergo Brownian motion and to ‘real’ or inertial particles whose trajectories

differ from those of fluid particles because of effects or inertia or buoyancy. In this chapter,

we investigate the trajectories of fluid particle pairs, whereas the study of molecular pairs is

the focus of next chapter. As discussed earlier in § 1.1, for the relative dispersion between

a pair of fluid particles there is much interest in the classical Richardson scaling (Monin

& Yaglom 1975; Sawford 2001) which has been postulated to hold under inertial sub-range

conditions with respect to both length scales and time scales. In general, because the range

of time scales increases with Reynolds number less rapidly than the range of length scales,

Kolmogorov similarity for Lagrangian statistics is relatively difficult to observe without

ambiguity (Sawford & Yeung 2011). For forward in time studies, numerical simulations at

relatively high Reynolds number have allowed robust estimates of the Richardson constant

(Sawford et al. 2008), at least in isotropic turbulence. However, backward dispersion is still

a major challenge. Using the new numerical breakthroughs described in Chapter 3, our

first objective is to understand the fundamental characteristics of backward dispersion over

a range of Reynolds numbers.

Earlier studies of backward tracking (Sawford et al. 2005; Berg et al. 2006) have indi-

cated that backward dispersion is similar to forward dispersion at both very short and very

long time scales but stronger at intermediate times of travel. Naturally, we are interested

in how this difference varies with Reynolds number, and whether clear inertial sub-range

behavior similar to Richardson scaling can be identified for backward as well as forward
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statistics. It is clear that access to data over a substantial range of Reynolds numbers

beyond those necessary to observe inertial sub-range scaling in Eulerian statistics (Yeung

& Zhou 1997) is essential. Our results given later in this chapter also indicate that a higher

Reynolds number is needed to observe clear Richardson scaling in backward dispersion

compared to the forward case. A more recent study (Jucha et al. 2014) has shown that

an asymmetry between forward and backward dispersion starts developing from t = 0+

(where 0+ represents an infinitesimal positive increment). This asymmetry can be obtained

by using a simple Taylor series expansion and is found to grow as t3 in time. We investi-

gate this asymmetry in more details to understand, if possible, any relation it has with the

Richardson scaling regime (which also grows as t3 in time). We also analyze the behavior of

higher order moments and the so-called distance neighbor function in Richardson’s theory.

4.2 Simulation parameters and Database

In order to ensure sufficient samples of particle pairs close together at either the beginning

or the end of the simulation, it is necessary to track a much larger population of fluid parti-

cles than in studies of one-particle statistics (Yeung et al. 2006b) or of two-particle statistics

with only several discrete values of the initial separation (Sawford et al. 2008). As a result

the computational cost as well as data requirements are dominated by the particle tracking

A combination of distributed (message passing) and shared-memory (multithreading) par-

allel processing that takes advantage of the multi-cored nature of current supercomputing

platforms has been found to be effective (details discussed in Chapter 3).

For clarity we define here various scales used to characterize the flow. The Kolmogorov

length η =
(
ν3/〈ǫ〉

)1/4
, velocity υη =

(
ν〈ǫ〉

)1/4
and time tη =

(
ν/〈ǫ〉

)1/2
scales, where

〈ǫ〉 is the mean rate of dissipation of turbulence kinetic energy and ν is the kinematic

viscosity, are representative of the scales on which dissipation of energy is effective (the

overbar denotes quantities that are averaged over the Eulerian fields in both space and

time, since the flow considered is stationary and homogeneous). We can also define length

L = σ3
u/〈ǫ〉, velocity σu and time TE = σ2

u/〈ǫ〉 scales representative of the energetic eddies,

where σu is the standard deviation of a component of the turbulent velocity. Note that L
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is related empirically (Sreenivasan 1998) to the integral length scale L1 for the longitudinal

Eulerian velocity correlation function. Our recent simulations (Yeung et al. 2012) give

L1/L ≈ 0.46, with little variation for Rλ ≥ 140 (although this ratio may be flow-dependent).

The advantage of using L rather than L1 is that then the energy containing scales and

the Kolmogorov scales are connected very simply via the turbulence Reynolds number

Re = σuL/ν. With these definitions the Taylor scale Reynolds number, which following

common practice we use to characterize the flow, is given by Rλ = (15Re)1/2 for isotropic

turbulence.

Table 4.1 shows several basic parameters of the simulations used. In all cases the solution

domain cubic with side L0 = 2π, and the grid spacing approximately twice the Kolmogorov

length scale η. Although the value of the spatially averaged dissipation rate varies somewhat

in time, since the forcing scheme used (Donzis & Yeung 2010) tends to limit such variations

both η and tη can be taken as constant throughout each simulation. Increases in Reynolds

number are achieved by reducing the viscosity with corresponding refinement of grid spacing

to maintain the small-scale resolution, while the forcing parameters that control the large

scales are unchanged. For Rλ ≤ 650 the values for the ratio of the Lagrangian integral time

scale to the Kolmogorov time scale TL/tη were calculated by integrating over the Lagrangian

velocity auto-correlation and are in good agreement with the large-Reynolds number limit

2Rλ/(15
1/2C̃0), with the proportionality constant C̃0 = 6.5 obtained from earlier estimates

(Sawford et al. 2008). For Rλ = 1000, where the simulation time period T is not sufficiently

long for TL to be obtained directly, the time scale ratio was calculated from this large-

Reynolds number limit. The output time interval (h) should be small compared to tη,

especially in the analysis of pairwise relative velocities. The particle count Np is chosen to

be an integer multiple of the number of CPU cores used to perform the simulations. The

values of P shown in the table range from 4M to 32M, where “M” is a common shorthand for

220 = 1, 048, 576. Typically we have increased P in proportion toN in order to better sample

a wider range of times (except for the Rλ = 1000 simulation, where the computational cost

would have been too great). The number of time intervals is proportional to TL/tη, which

varies like Rλ. Thus the storage requirement scales as NRλ. Incidentally, from Table 4.1
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we can infer that Rλ itself scales as N2/3, which is consistent with classical scaling for the

range of length scales (L1/η) present in the flow as well.

4.3 Statistics of Forwards and Backward Dispersion

We denote the instantaneous position vectors of two particles forming a pair by x(1)(t) and

x(2)(t). For forward dispersion the separation vector at time t is

r(t) = x(2)(t) − x(1)(t) (4.1)

whereas for backward dispersion we consider

r(t′) = x(2)(t′) − x(1)(t′) (4.2)

with t′ defined to be T−t as noted earlier. Note that for simplicity we have dropped the “+”

superscript notation for Lagrangian quantities, and rely on the context and the arguments

to distinguish between Lagrangian and Eulerian quantities.

Because the turbulence is stationary, any statistic evaluated at time t′ is equivalent to

that evaluated at time −t. Thus comparisons between forward and backward dispersion will

usually be made via the properties of r(t) and r(t′), with t and t′ taking the same values. For

convenience, we may also use the same notation for both forward and backward quantities

when the context is clear. In isotropic turbulence a basic quantity is the separation distance,

i.e. magnitude of the separation vector, given the initial separation r0 = |r(0)| in either

forward or backward frames. As noted in Sec. II our sampling procedure gives statistics

averaged over particle pairs whose values of r0/η fall into designated bins. We choose

bins such that the upper bound is four times the lower bound, and in order to resolve

the dependence on r0 more precisely we use overlapping bins with 2i−3 ≤ r0/η < 2i−1

for i = 0, 1, 2, 3, ... onwards. In this work, the notation 〈·〉 is used to represent these bin-

wise averages, and each bin is identified by the geometric mean of its upper and lower

bounds i.e., r̃0/η = 2i−2 for i = 0, 1, 2, 3, ... onwards. This binning strategy is a trade-off

between ensuring an adequate number of samples in each bin, resolving the dependence on

r̃0, and ensuring that results for each r̃0 are distinct. Numerical results including the relative

dispersion 〈r2(t)〉 and mean-squared relative displacement 〈|r(t) − r(0)|2〉 (which measures
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the change of separation over time) are presented as functions of r̃0. The mean-squared

relative displacement has the advantage of being more sensitive to the fundamental flow

physics, since it is less dominated by the initial separation at early times. Results given

below include second- and higher-order moments, as well as the evolution of the PDF of

r(t) in comparison with Richardson’s theory (Batchelor 1952a; Monin & Yaglom 1975) on

the so-called distance-neighbor function at intermediate times.

4.3.1 Second Moments and Richardson scaling

It is well known (Batchelor 1950) that, in classical theory, the process of relative dispersion

evolves through three distinct regimes in time, known as ballistic, inertial and diffusive

ranges respectively. Traditionally, for a fixed initial separation r0 the extent of the ballistic

range has been quantified for inertial sub-range initial separations by the Batchelor time

scale t0 = r
2/3
0 /〈ǫ〉1/3. In the present context, for each bin identified by a given r̃0, this

is generalized to t0 = 〈r2/3
0 〉/〈ǫ〉1/3 which measures memory of the initial separation for

pairs in the bin centered on r0 in the inertial sub-range. For the mean-squared relative

displacement defined above, these asymptotic behaviors can be summarized by writing

〈|r(t)−r(0)|2〉 =





〈DLL(r0) + 2DNN (r0))〉t2 if t≪ max(tη, t0)

g〈ǫ〉t3 if max(tη, t0) ≪ t≪ TL

12σ2
uTLt if t≫ TL ,

(4.3)

where DLL(·) and DNN (·) are Eulerian longitudinal and transverse structure functions, and

g is known as Richardson’s constant. For bins in the quadratic range of f(r0), that is, for

r̃0 . L0/2 (as noted in Sec. II), it is easily shown that 〈r2/3
0 〉 = 1.31r̃

2/3
0 . If r̃0 is in the

inertial sub-range and intermittency corrections are neglected the multiplicative factor in

the first part of (4.3) can also be replaced by (11C2/3)〈ǫ〉2/3〈r2/3
0 〉 where C2, the Kolmogorov

constant in DLL(·), is close to 2.13 if the Reynolds number is sufficiently high (Sreenivasan

1995; Yeung & Zhou 1997). Both the ballistic and diffusive regimes are kinematic in nature,

since their attainment (or otherwise) is determined, respectively, by how small a time step is

used in collecting the data and how long the numerical simulation is in physical time units,

with no requirement for high Reynolds number. In contrast, dispersion characteristics at
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intermediate (inertial) times are dependent on the range of physical time scales present,

and hence on the Reynolds number of the flow. The form of the condition in the second

line of (4.3) also allows for the fact that particle pairs beginning in bins with r̃0 ≪ η can

still reach the inertial sub-range and Richardson scaling behavior at sufficiently large times

and sufficiently large Reynolds numbers.

Figure 4.1 shows data on the mean-squared relative displacement, normalized by Kol-

mogorov variables, at the lowest and highest Reynolds numbers in this work. At early

times 〈|r(t) − r(0)|2〉 increases quadratically with slope 2 on log-log plots as expected for

the ballistic regime. In this regime particle-pair statistics are determined by the Eulerian

properties, which are (with the proviso of statistical stationarity) the same for forward and

backward dispersion, as observed. Lines for the largest values of r̃0 are very close to each

other since the Eulerian structure functions approach constant values at large r. At later

times, especially for t≫ TL we observe that the dependence on r̃0 also becomes weak, and

all the curves shown ultimately converge towards a diffusive regime where the growth of

mean-squared separation is linear. This approach towards the diffusive limit is clearest for

the Rλ 140 simulation which was relatively long (T ≈ 10 TL) but less so for the Rλ 1000

simulation which was carried out only for T ≈ 2.5 TL. A closer examination does show that

backward dispersion approaches slope unity faster than forward dispersion.

At intermediate times, when most pairs are at some intermediate distance apart beyond

the viscous sub-range, turbulent dispersion is expected to be strongly influenced by inertial

effects, which appear in the Navier-Stokes equations as nonlinear terms that, through the

transfer of energy from large to small scales, imply non-reversibility in time. Significant

differences between forward and backward dispersion are thus expected (Sawford et al.

2005; Berg et al. 2006). These differences also imply that the Richardson constant g will

have different values in the forward and backward reference frames.

To focus on the inertial sub-range behavior, in figure 4.2 we show plots for the compen-

sated mean-square relative displacement
〈
(r(t) − r0)

2
〉
/
(
〈ǫ〉t3

)
as a function of time scaled

by the Batchelor time scale t/t0 for a range of initial separations and Reynolds numbers.

We see that for each value of r̃0/η there is a collapse with increasing Reynolds number
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over a range of times, and that the extent of this range increases with increasing Reynolds

number. The upper end of this similarity scaling range is truncated by the transition to

diffusive behavior. We also see that, with increasing r̃0/η, the diffusive transition occurs at

smaller values of t/t0 (as the Batchelor time scale t0 increases). As noted by Sawford et al.

(2008), for η ≪ r̃0 ≪ L, in this scaling the mean-square relative displacement collapses to

a universal curve, independent of both r̃0 and Reynolds number, in both the ballistic and

Richardson regimes and is truncated only by the diffusive regime. In figure 4.2 this is seen to

occur as r̃0/η → 16 and is essentially complete for r̃0/η ≥ 32 (not shown). For t/t0 ≫ 1 this

universal curve flattens out as it approaches, with increasing Reynolds number, a constant

plateau corresponding to Richardson scaling.

For smaller values of r̃0/η the dispersion is retarded at early times due to the viscous

effects in the dissipation sub-range, and falls substantially below data at larger initial sepa-

rations. However with increasing time particle separations increase on average, leaving the

influence of dissipation scale eddies and becoming increasingly influenced by inertial sub-

range eddies. As a result the compensated mean-square relative displacement approaches

the Richardson plateau from below, again increasingly so with increasing Reynolds number.

Recently (Bitane et al. 2012, 2013) introduced a new time scale, which we denote here

by tB = S2(r̃0)/(2〈ǫ〉), where S2(r̃0) = 〈DLL(r0) + 2DNN (r0)〉, which collapses both the

leading order quadratic term in the ballistic range and the Richardson range for all values

of the initial separation. For the compensated mean-square relative displacement in this

new scaling, shown in the insets to figure 4.2, the curves are simply shifted horizontally

so that they collapse at small times. This produces a clearer approach to the Richardson

regime at large times for the smaller values of r̃0/η, and hence a more extended plateau

region. However, regardless of the use of t0 or tB as the normalizing time scale, the picture

that emerges is one where the compensated relative dispersion approaches the Richardson

plateau from above for r̃0/η ≫ 1 and from below for r̃0/η . 1. Indeed, in the forward

case shown in the left panel of figure 4.2 we see that for r̃0/η = 4, which is large enough

for viscous effects to vanish at relatively early times, and small enough for t0 to be much
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smaller than TL, there is a plateau at a height approximately 0.55.

In the backward case shown in the right panel, there is a clear indication that the

Richardson plateau is somewhat higher than in the forward case, consistent with the greater

growth rate at intermediate times in figure 4.1. As a result of this increased growth rate,

the initial conditions are forgotten more quickly so the backward case trends towards the

plateau at earlier times than in the forward case. On the other hand, this faster growth

also means backward relative dispersion approaches the diffusive regime more quickly, thus

truncating the Richardson plateau somewhat prematurely at large times. This is seen most

clearly for r̃0/η = 4 at Rλ = 1000, where again there is a plateau, but starting and ending

earlier than for the forward case. The trends with Reynolds number and initial separation

are the same as for the forward case and consistent with a larger backward Richardson

constant, gb ≈ 1.5.

A more precise way to search for the presence of, and to quantify, a Richardson scaling

range is (Sawford et al. 2008; Hackl et al. 2011) to plot the so-called cubed-local-slope

(CLS)

1

〈ǫ〉

(
d

dt

[
〈r2〉1/3

])3

(4.4)

versus Batchelor-scaled times (t/t0). If a well-defined Richardson scaling range exists then

a plot of the CLS should show a plateau with height equal to the Richardson constant over

a range of separations r̃0 and a range of times t0 ≪ t≪ TL.

We show in figure 4.3 data for three Reynolds numbers and four values of r̃0/η. In general

data from the Rλ 650 simulation are closer to that from Rλ 1000 than that from Rλ 390,

which is a plausible sign that an asymptotic state does exist at sufficiently high Reynolds

number, even if that is not yet fully reached in this work. For the forward case the curves

all converge with increasing Reynolds number onto the dashed line at height 0.55. The

composite plateau at this height over all values of r̃0 extends for about a decade, suggesting

a robust scaling with Richardson constant about 0.55, which differs only marginally from

the value 0.56 suggested in an earlier paper (Sawford et al. 2008). The scaling shown here is

in fact likely to be more reliable, in part since it is observed over a wider time span at larger

t/t0 than before, and in part because the improved forcing used in the present simulations

62



gives better stationarity in the turbulence (Donzis & Yeung 2010).

In the backward case, only for r0/η = 8 is there a short plateau, but in all cases it

is clear that the height of the peaks converges, and they become broader, with increasing

Reynolds number. It is useful to note that for r̃0/η = 2 and 4 (red and green lines) the

peak value is still increasing with Reynolds number, while for r̃0/η = 8 (blue line) it seems

to have converged and for r̃0/η = 16, it is even decreasing slightly by Rλ = 1000. It seems

likely that at Reynolds numbers even higher than the present data the peak value of the

red and green lines will increase further towards a plateau, while the black line will broaden

and approach a plateau, below its peak value. This suggests the asymptotic value of the

backward Richardson constant is close to the reference height of 1.5 drawn in the figure.

The extent of any plateau in plots like that in figure 4.3 is limited by the transition

to diffusive behavior at large times t ≫ TL and by the interference of the ballistic range

at small times t ≪ t0. The latter effect can be reduced by studying relative dispersion in

an inertial frame moving with the initial relative velocity between a pair of particles. We

define the “differential separation” vector (Borgas & Sawford 1991; Yeung 1994)

r̂(t) = r(t) − r(0) − u(r)(0)t . (4.5)

At small times the mean-square of r̂(t) rises as t4, and the statistics of r̂(t) are determined by

the Eulerian acceleration structure function evaluated at a spatial separation r(0) (Sawford

et al. 2008). At times t ≫ t0 the statistics of r̂(t) are expected to be close to those of r(t) as

the effects of initial conditions gradually vanish. Accordingly, at times t≫ t0 if Richardson

scaling is well attained in 〈r2(t)〉 at times t ≫ t0, the same behavior is also expected in

〈r̂2(t)〉 even though these quantities scale differently at small times. This expectation is

tested in figure 4.4, which shows cubed-local-slope results obtained from the mean-square

of the vector r̂, presented in a manner similar to figure 4.3. In general the CLS of r̂2(t)

begins at large values since 〈r̂2(t)〉 initially rises as t4. Thus it would appear that we have

replaced one potential source of interference (the ballistic range contribution to
〈
r2
〉
) with

another (the rapid early growth of 〈r̂2(t)〉). However we see that for r̃0/η = 4 (green

lines), the effect of the t4 growth drops off quickly enough to permit an extended plateau,
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especially for the forward case, but also to a lesser extent for the backward case. The heights

of these plateaus are consistent with those deduced from figure 4.3, and behavior at later

times is also very similar as well. Thus the results in figures 4.3 and 4.4 are complementary

and taken together provide strong support for the conclusion that forward and backward

Richardson constants are close to gf = 0.55 and gb = 1.5 respectively.

The value of gf deduced above is essentially the same as those found in other experi-

mental and numerical work (Berg et al. 2006; Sawford et al. 2008; Bitane et al. 2012, 2013).

Our estimate of gb = 1.5 appears to be comparable to but slightly higher than estimates of

1.15 reported by both Berg et al. (2006) using particle-tracking velocimetry in experiments,

and Bragg et al. (2016) using direct numerical simulations, as well as 1.35 by Eyink (2011)

using DNS results on stochastic tracers with zero initial separation but finite molecular dif-

fusivity. However, because of challenges in observing a well-defined backward Richardson

scaling range, some modest variation in the value of gb obtained from different datasets

analyzed differently is not surprising.

4.3.2 Higher-order moments and non-Gaussianity of the separation

In the preceding subsection we only presented data from second-order moments, which in

the case of pollutant plumes give a measure of the spread of the contaminant material

in space. However, the occurrence of separation distances which are much larger than the

average and contribute strongly to higher-order moments is also important. With increasing

order the moments of the separation are increasingly dominated by the dissipation sub-range

dynamics of the small scales. In figure 4.5 we show the normalized moments

Mn(t) = 〈rn(t)〉/〈r2(t)〉n/2 (4.6)

for orders n = 3, 4 for both forward and backward separation at Rλ = 1000. The small time

limits (which persist for longer times if r̃0 is larger) are determined by the distribution of

initial separations shown in figure 3.1, while the large time limits correspond to independent

Gaussian motions for the two particles in the diffusive regime. We see that for the smallest

initial separation r̃0/η = 1 shown there, both moments rise rapidly over a time less than

10 tη to a peak and then decay only slowly towards the diffusive limit. This dissipation
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sub-range growth is so strong, that it influences the moments for larger initial separations

where fewer, but still some, pairs are subject to dissipation sub-range dynamics. Thus,

even at the highest Reynolds number for which we have data, these higher moments are

dominated by dissipation sub-range dynamics over most times almost out to the diffusive

regime. As a consequence, we are unable to observe any evidence of a Richardson scaling

range, which for higher moments would be of the form

〈rn(t)〉 = 〈ǫ〉n/2t3n/2 (t0 ≪ t≪ TL) , (4.7)

perhaps with intermittency corrections for n 6= 2, since in that case (4.7) is not linear in

the dissipation rate.

The rapid growth in the moments of the separation is exponential in the limit r0/η → 0,

where the separation vector behaves as an infinitesimal fluid element. The evolution of

the separation is then governed by the simple equation (Batchelor 1952b; Berg et al. 2006;

Borgas et al. 2004)

dr = rsdt (r ≪ η) (4.8)

where s(t) = eisijej is the strain rate measured along the separation vector, ei = ri/r is the

unit vector in the direction of r(t), and the strain rates are evaluated along the trajectory

of one of the pair of particles (which remain sufficiently close together for the local velocity

gradients to be almost constant). The solution for rp(t) is

rp = rp
0 exp

[
p

∫ t

0
s(t′)dt′

]
(r ≪ η) , (4.9)

Borgas et al. (2004) argued that at large time (t ≫ tη) s(t) is in uncorrelated in time, so

that, by the central limit theorem,
∫ t
0 s(t

′)dt′ would be a Gaussian random variable with

mean st and variance βσ2
s tηt, where β is a constant of order unity. In fact this theory

neglects extreme events and so the log-normal approximation for the statistics of r that

follows from the central limit theorem is not exact (Falkovich et al. 2001). Nevertheless, it

is interesting to see what this model predicts for the present DNS data.

For small times t . tη, the correlation in s(t) cannot be ignored. However if we suppose

that s(t) ≈ s(0) up to a time αtη where α = O(1), we can analyze the integral in (4.9) by
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splitting it into two parts, as 0 → αtη and αtη → t. This allows us to apply the central

limit theorem analysis of Borgas et al. (2004), with the result

〈rp〉 = bp 〈rp
0〉 exp

[
ps (t− αtη) +

p2

2
βσ2

s tη (t− αtη)

]
(〈rp〉 ≪ ηp; t≫ tη) (4.10)

where bp = 〈exp (αps(0)tη)〉, and we recall that the average is taken over all pairs with

initial separations in the bin centered on r̃0/η. Thus for t ≫ tη the effect of the small-

time correlation in the strain rate can be approximated by a time offset in the exponential

growth (Batchelor 1952b). That is, the correlation simply delays the onset of the exponential

growth, which can be investigated numerically. Note that the dependence of the coefficient

bp on the order p means that the PDF is no longer exactly log-normal, and that the intercept

of the exponential term at t = 0 varies with the order p.

Equation (4.10) can be analyzed further by noting that it needs to satisfy a requirement

from incompressibility, namely (Zeldovich et al. 1984; Falkovich et al. 2001)
〈
r−3
〉

be in-

variant for r̃0/η → 0 and t → ∞. This requires that the argument of the exponential term

in (4.10) must vanish for p = −3, giving the constraint

βσ2
s tη =

2

3
s . (4.11)

Consequently (4.10) depends only on the Lagrangian time average of the strain-rate, s

〈rp〉 = bp 〈rp
0〉 exp [ps (3 + p) (t− αtη) /3] (〈rp〉 ≪ ηp ; t≫ tη) . (4.12)

The non-dimensional moments can be written as

〈rp〉
〈r2〉p/2

= cp
bp

b
p/2
2

exp[ζp(t/tη − α)] (〈rp〉 ≪ ηp ; t≫ tη) , (4.13)

where ζp = (p2 − 2p)stη/3. The result is the same as for a log-normal PDF except for the

prefactor cpbp/b
p/2
2 , where cp = 〈rp

0〉 /
〈
r20
〉p/2

, which is independent of r̃0 for r̃0/η → 0. We

emphasize that this result applies in the limit r̃0/η → 0 and we see that in this limit the

exponential growth rate for the non-dimensional moments is independent of r̃0.

Figure 4.6 shows the data from figure 4.5, re-plotted on linear-log axes, so an exponential

growth appears as a straight line. Results at smaller values of r̃0/η are subject to increasing

sampling noise and so are not plotted here, but we find that within sampling noise the results
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at r̃0/η = 1/2 are essentially the same as those at r̃0/η = 1 confirming that the moments

converge as r̃0/η → 0, in accord with the theory. The exponential growth is truncated

when particle separations move out of the dissipation sub-range and become increasingly

influenced by inertial sub-range dynamics, but this truncation is delayed for increasingly

longer times as r̃0/η → 0.

We have made estimates of the coefficients ζp by fitting the lagged exponential range

for r0/η = 1 empirically as shown by the straight lines in figure 4.6. The results are

summarized in Table 4.2 for Rλ = 390, 650 and 1000. Although these are crude estimates,

there is broad consistency in the results. The ratio of the exponents for the fourth order

and the third order moments is close to the value 8/3 predicted by (4.13), suggesting that

the central limit theorem is a reasonable approximation for moments of this order. In

general the exponents increase with Reynolds number, although the backward exponents

for Rλ = 390 seem anomalously high, as can be seen also from the ratio of the backward to

forward exponents. For Rλ = 650 and 1000 this ratio, which is just the ratio of s for the

backward case to that for the forward case since the factors in p cancel, is approximately 1.5.

Since s is equal to the largest Lyapunov exponent λ1 for the forward case (Falkovich et al.

2001) and the magnitude of the negative Lyapunov exponent |λ3| for the backward case

(Berg et al. 2006), this ratio implies that the Lyapunov exponents are in the proportions

λ1 : λ2 : λ3 = 1 : 0.5 : −1.5, where as a result of incompressibility λ1 + λ2 + λ3 = 0. The

50% difference between the backward and forward exponents is somewhat larger than other

estimates (Berg et al. 2006) of about 20%.

4.3.3 Probability density function of the separation

More complete information beyond the moments of the separation distance is available in

the separation PDF, i.e the PDF of r(t) which evolves in time and is dependent on the initial

separation. Because of our interest in scale similarity, we use the PDF of r/σr where σ2
r(t) is

the time-dependent mean-squared separation. At small times the form of this PDF, denoted

by f(r/σr), is constrained by the manner in which particle pairs are initially positioned and

sampled. In our case, f(r/σr) is computed as a function of the initial separation r̃0 in each
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bin. Based on figure 3.1, for bins with r̃0 ≤ 1
2L0 the separation PDF at time t = 0 has

the form f(r) = Ar2 (where A is a constant) if r lies between 1
2 r̃0 and 2r̃0 but f(r) = 0

otherwise. This is readily cast into the non-dimensional form f(r/σr0
) using the relation

σr0
= 〈r20〉1/2 = 1.5607r̃0 where as before 〈·〉 denotes averaging in a bin. Accordingly, since

0.5/1.5607 ≈ 0.32 and 2/1.5607 ≈ 1.28 we can write

f(r/σr0
) =





0 r/σr0
≤ 0.32

A(r/σr0
)2 0.32 ≤ r/σr0

≤ 1.28 .

0 1.28 ≤ r/σr0

(4.14)

On the other hand, in the large-time (diffusive) limit as the particles ultimately move

independently of each other, r(t) is expected to behave as the magnitude of a vector those

three components are independent and identically-distributed Gaussian random variables.

The PDF in the diffusive-limit can be written as

f(r/σr) = 3

√
6

π

(
r

σr

)2

exp

[
−3

2

(
r

σr

)2
]
. (4.15)

This limiting form of the PDF is only mildly non-Gaussian, with skewness factor 0.491 and

flatness factor 3.099. Because of long-term memory effects in particle displacements the

approach to this limit takes many Lagrangian integral time scales (Yeung 1994).

Another important limiting form of the separation PDF often investigated (Ott & Mann

2000; Ishihara & Kaneda 2002; Borgas & Yeung 2004; Sawford et al. 2013) is a result from

Richardson’s theory (Richardson 1926), in which the separation PDF satisfies a diffusion

equation with scale dependent diffusivity k(r) = k0〈ǫ〉1/3r4/3 (where k0 is a non-dimensional

coefficient) for separations in the inertial sub-range. This PDF can be written as

f(r/σr) = α

(
r

σr

)2

exp

[
−β
(
r

σr

)2/3
]
, (4.16)

where the coefficients (Sawford et al. 2013)

α =

(
1144

81

)3/2 ( 2187

560
√
π

)
; β =

9

4

(
1144

81

)1/3

(4.17)

ensure that the normalization condition
∫∞
0 f(r/σr) d(r/σr) ≡ 1 is satisfied and that (be-

cause σ2
r is the mean-square)

∫∞
0 (r/σr)

2f(r/σr) d(r/σr) ≡ 1.
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Richardson (1926) also defined the “distance neighbor function” (DNF)

q(r/σr) ≡ f(r/σr)/(r/σr)
2 (4.18)

which compensates for the r2 term in each of these PDFs and so takes a simpler form

which is convenient for comparisons. Note in particular, that the DNF at t = 0 is simply

a “top-hat” function which, from (4.14) is constant over the range 0.32 ≤ r0/σr0
≤ 1.28.

We also note that Richardson’s constant (and the constant k0 in Richardson’s diffusivity)

is involved only in the predicted scaling for σ2
r (hence σr), but not in the shape of the PDF

of r/σr.

Figure 4.7 shows the time development of the distance-neighbor function at Rλ = 1000

and initial separations r̃0 = 4, 8, 16 which provide conditions closest to that for Richardson’s

scaling to apply. The time instants are chosen to be in successive factors of 2, ranging from

less than tη to greater than 2 TL. At the earliest time shown forward and backward DNFs

agree closely, with the initial top-hat over the range 0.32 ≤ r0/σr0
≤ 1.28 spreading to both

smaller and larger values, particularly the latter. Subsequently, the DNFs spread towards

the Richardson form at both small and large separations. Indeed, in the forward case for

r̃0 = 4 and the backward case for r̃0 = 4 and 8 the DNFs spread beyond the Richardson

form. Finally, at large times the DNFs obtained relax back towards, but, because of the

finite time span of the simulations, do not reach the diffusive form.

In general, it can be seen that the tails of the backward DNF (as well as the PDF)

extend wider than those in the forward cases. However for both forward and backward

dispersion the PDFs show only transient agreement with the Richardson form, notably at

t/t0 = 2.65 and 5.31 for r̃0 = 8 in the forward case, and at t/t0 = 1.67 and 3.34 for r̃0 = 16 in

the backward case. These times are generally somewhat smaller, and the initial separations

somewhat larger, than those for which the mean square displacement (according to figures 3

and 4) tends to show Richardson scaling. Consequently, in our view it is not clear whether

the agreement with the Richardson form is significant or merely coincidental. It is possible

that neither forward nor backward dispersion at intermediate scales behaves as a diffusion

stochastic process as assumed by Richardson (1926). Indeed, a recent model (Bourgoin
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2015) successfully treats relative dispersion as a cascade of scale-dependent ballistic motions

rather than as a scale-dependent diffusion process.

4.4 Asymmetry in time

We have seen in the previous section that backward relative dispersion in both the dissipa-

tion sub-range and the Richardson range is faster than forward dispersion. In this Section

we examine briefly the underlying mechanisms for this, with a focus on the small-time be-

havior which is more amenable to theoretical analysis. We also consider properties of the

relative velocity, which governs the evolution of dispersion with time.

Recent work in the literature (Jucha et al. 2014) has shown that a more direct asymmetry

occurs at small times, where the leading-order term in a Taylor series expansion in time

has a change in sign going from forward to backward dispersion. In particular, if u(r)(t) =

u(2)(t)−u(1)(t) denotes the relative velocity of particles 2 and 1, and a(r)(t) = a(2)(t)−a(1)(t)

is the relative acceleration then the mean square relative velocity at small time can be

written as

〈u(r)(t) · u(r)(t)〉 = 〈u(r)(0) · u(r)(0)〉 + 2
〈
u(r)(0) · a(r)(0)

〉
t+O(t2) . (4.19)

This relation implies that the two-point, one-time covariance between velocity and acceler-

ation 〈u(r)(0) · a(r)(0)〉 is of special significance.

Since we save particle velocities at time intervals much smaller than tη, we are able to

obtain the Lagrangian acceleration by a simple central difference of the Lagrangian velocity

time series of each particle, and hence to obtain the term 〈u(r)(0) · a(r)(0)〉. As before,

we sample this quantity separately for pairs with their distances within a factor of 2 of a

nominal r̃0. However, since we calculate the acceleration as the velocity derivative for fluid

particles, we need to account for the effect of the large-scale forcing. Using the Navier-Stokes

equations at two points x(0) and x(0) + r0, it can be shown readily that

〈u(r)(0) · a(r)(0)〉 = −2〈ǫ〉 − 2ν
∂2〈u′iui〉
∂r0j∂r0j

+
〈
(f ′i − fi)(u

′
i − ui)

〉
, (4.20)

where ui = ui(x(0)), u′i = ui(x(0) + r(0)) and f and f′ represent the large-scale forcing at

the points x(0) and x(0)+r(0) respectively. For incompressible isotropic turbulence we can
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re-express the R.H.S in terms of the derivatives of the Eulerian longitudinal and transverse

structure functions, in the form

〈
u(r)(0) · a(r)(0)

〉
= −2〈ǫ〉 + ν

〈
∂2 (DLL(r0) + 2DNN (r0))

∂r0j∂r0j

〉
+
〈
(f ′i − fi)(u

′
i − ui)

〉
.

(4.21)

At small scales, where forcing is not present, by substituting Kolmogorov similarity forms

for the structure functions in the dissipation range we can show that in the limit r̃0/η → 0

the Laplacian term becomes equal to 2〈ǫ〉, so that the velocity-acceleration covariance also

approaches zero, as required.

Figure 4.8 shows our results for the (relative) velocity-acceleration covariance at Rλ

from 140 to 1000, in log-linear (left) and log-log scales (right). Because this covariance

is a single-time statistic we have performed ensemble averaging over Lagrangian data at

several well-separated time instants. At r̃0/η ≪ 1 the covariance becomes vanishingly

small, as expected from the arguments above. With increasing separation, the Laplacian

term in (4.21) becomes smaller, varying like
〈
(r0/η)

−4/3
〉
〈ǫ〉 for η ≪ r̃0 ≪ L and eventually

vanishing for r̃0 ≫ L, and so at sufficiently large separation becomes negligible compared

with −2〈ǫ〉. As a result the covariance is expected to approach −2〈ǫ〉 (Ott & Mann 2000; Xu

et al. 2008; Pumir et al. 2001; Jucha et al. 2014) with increasing separation. This covariance

is also equivalent to the initial time derivative of the mean-squared relative velocity, which

has been confirmed in laboratory data (Xu et al. 2008) to be negative for all r0. On the

other hand, at large r0 (of order L) the correlation between the forcing and the velocity

is significant. Since the forcing causes the turbulence to be stationary, at large scales the

relative velocity-acceleration covariance must vanish. This effect is clearly seen in figure 4.8,

where the covariance peaks near −2〈ǫ〉 and then decreases with increasing separation. This

fall-off occurs at smaller values of r0/η as the Reynolds number increases. For comparison

we have included Eulerian results for the normalized relative acceleration covariance at

Rλ = 140 and 390. In Eulerian terms the acceleration is calculated as the sum of the

pressure gradient and viscous terms, but without the forcing. Consequently there is no

large scale fall-off and the covariance remains at −2〈ǫ〉 for r0/η > 100, largely independent
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of Reynolds number.

Incidentally, the apparent collapse between data at different Reynolds numbers up to

10 η in figure 4.8 indicates small-scale universality. This behavior can be analyzed by

expanding the Eulerian structure functions in (4.21) in a Taylor-series and keeping the next

higher order beyond the usual quadratic contribution: namely

DLL(r0) =

〈(
∂u

∂x

)2
〉
r0

2 − 1

12

〈(
∂2u

∂x2

)2
〉
r0

4 + ... . (4.22)

Substitution of this and a similar result for DNN (r0) into (4.21) gives

−〈u(r)(0) · a(r)(0)〉 =
ν

12

[
ν2〈(∂2

‖u)
2 + 2(∂2

⊥u)
2〉
] ∂2r40
∂r0j∂r0j

. (4.23)

where ∂2
‖u and ∂2

⊥u denote second derivatives taken in directions parallel and perpendicular

to the velocity component concerned. Performing the required differentiations using the

formula ∂r/∂rj = rj/r and normalizing using the Kolmogorov variables produces the result

−〈u(r)(0) · a(r)(0)〉
2〈ǫ〉 =

5

6

[
ν2〈(∂2

‖u)
2 + 2(∂2

⊥u)
2〉

〈ǫ〉3/2ν−1/2

] 〈
r20
〉

η2
, (4.24)

The bracketed term in (4.24), which we denote here as Λ, is an an Eulerian quantity

related to the viscous contribution to the acceleration. Consider a coordinate component

of the viscous acceleration, as

Aα = ν∇2uα = Bαα +Bαβ +Bαγ , (4.25)

where, e.g.. Bαβ ≡ ν∂2uα/∂x
2
β with α, β, γ being distinct subscripts (not summed). A

simple squaring of both sides followed by use of isotropy gives

〈A2
α〉 = 〈(Bαα)2〉 + 2〈(Bαβ)2〉 + 4〈BααBαβ〉 + 2〈BαβBαγ〉 , (4.26)

Here the R.H.S contains four groups of terms. The sum of the first two gives the numerator

in Λ. All of these terms can be written as integrals in Fourier space, e.g.

〈(Bαα)2〉 = ν2

∫∫∫
k4

αΦαα(k) dk , (4.27)

where Φij(k) is the energy spectrum tensor at the wavenumber vector k. In incompressible

isotropic turbulence the integral above can be evaluated by using the standard form

Φij(k) =
E(k)

4πk2

(
δij −

kikj

k2

)
(4.28)
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and a transformation to spherical coordinates in wavenumber space. The net result is that

all terms in (4.27) are proportional to the integral
∫∞
0 k4E(k) dk: in particular

〈(Bαα)2〉 =
2

35
ν2

∫ ∞

0
k4E(k) dk ; 〈(Bαβ)2〉 =

6

35
ν2

∫ ∞

0
k4E(k) dk . (4.29)

Using these results and dividing by the denominator in Λ leads to

Λ =
7

2

(
1

15

)3/2

Sǫ = 0.06025 Sǫ , (4.30)

where Sǫ = (4/35)(15ν/〈ǫ〉)3/2
∫∞
0 νk4E(k) dk is the dissipation skewness (Kerr 1985),

which for locally isotropic turbulence at relatively high Reynolds number is close to the

negative of the skewness of longitudinal velocity gradients (Batchelor 1953). Numerical

values of Λ obtained from the DNS data are 0.031 and 0.034 at Rλ 140 and 390 respectively,

which are consistent with values of Sǫ reported previously (Yeung et al. 2006a). In the right

frame of figure 4.8 excellent agreement with a slope 2 power law corresponding to these

(close) values of Λ is indeed observed.

For relative dispersion the importance of the relative velocity-acceleration covariance

examined above is that it appears in the Taylor series expansion for the mean square

separation as the coefficient in a t3 correction (Jucha et al. 2014; Ouellette et al. 2006) to

the leading order ballistic term in (4.3). This correction term changes sign in the backward

case, and so becomes the leading order term in the difference between backward and forward

relative displacements, which can be written as

〈
|r(−t) − r0|2

〉
−
〈
|r(t) − r0|2

〉
= −2

〈
u(r)(0)a(r)(0)

〉
t3 +O(t5) . (4.31)

We see from figure 4.8 that for η ≪ r̃0 ≪ L at large Reynolds number the term on the

right simplifies to −4〈ǫ〉t3. However, in subtracting between forward and backward relative

displacement it is important to ensure that we are sampling the same “initial” conditions

whether going forward or backward. This can be achieved by choosing an intermediate

reference time, say t = T/2 in an original simulation spanning the period 0 to T , and then

tracking the particle pairs both forward and backward for a shorter time interval (T/2).

Figure 4.9 shows the compensated difference between forward and backward dispersion,

ψ(t) =
( 〈

|r(−t) − r0|2
〉
−
〈
|r(t) − r0|2

〉 )
/
(
− 1

2

〈
u(r)(0)a(r)(0)

〉
t3
)
, (4.32)
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plotted as a function of t/t0 over a range of initial separations for Rλ = 140 and 1000 in

the left and center panels respectively, and for a range of Reynolds numbers for r̃0/η = 4

and 8 in the right panel. The first two panels are similar in content to figure 1 of Jucha

et al. (2014) but shows results at small to intermediate r̃0 as well as (on the right) data at

higher Reynolds number than other known data sources. At very early times especially for

larger r̃0 and higher Reynolds number there is a significant degree of numerical noise, which

has been traced to the subtraction between extremely close numbers needed to extract t3

behavior in both terms on the left of (4.31). To reduce this noise in the case of Rλ = 1000

we have averaged over three overlapping segments of reduced length T/4 instead of T/2

in the other cases. Nevertheless it is clear that (4.31) is well satisfied for both Reynolds

numbers, with ψ(t) showing a plateau at height 4.0 at early times for all values of r̃0/η.

In the right panel of figure 4.9 the curves for Rλ = 390, 650 and 1000 converge for

t/t0 ≈ 10 and approach a plateau at a height of about 1.9 as indicated by the dotted

reference line. This corresponds to the Richardson regime with a plateau at height (gb −

gf )/(−1
2

〈
u(r)(0)a(r)(0)

〉
/〈ǫ〉). Noting from figure 4.8 that −1

2

〈
u(r)(0)a(r)(0)

〉
/〈ǫ〉 ≈ 0.47

for r̃0/η = 4, this corresponds to gb − gf ≈ 0.9, which is close to that implied by the

estimates for gf = 0.55 and gb = 1.5 in Sec. 4.3.1. However, unlike figure 4.2, in figure 4.9

we do not see a tendency for curves with r̃0/η = 8 to collapse to the same plateau because

the normalizing factor −1
2

〈
u(r)(0)a(r)(0)

〉
is a strong function of r̃0/η at these separations.

The analysis of asymmetry between forward and backward dispersion at early times can

also be extended to higher order moments. We first note that, to leading order, squaring

the Taylor-series result r(t) − r(0) = u(r(0)t+ 1
2a

(r)t2 + ... gives

(∆r)2 = u2
0t

2 + u0A
‖
0t

3 + .... , (4.33)

where we have introduced the shorthands ∆r = |r(t) − r(0)|, u0 = |u(r)(0)|, and A
‖
0 =

u(r)(0) · a(r)(0)/u0. Raising this expression to the power 1/2 gives

∆r = u0t+
1

2
A

‖
0t

2 + ... , (4.34)

and hence, at any order p

〈(∆r)p〉 = 〈up
0〉tp +

p

2
〈up−1

0 A
‖
0〉tp+1 + .... . (4.35)
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Further use of power-series expansions eventually allows us to write the non-dimensional

moments as

〈(∆r)p〉
〈(∆r)2〉p/2

=
〈up

0〉
〈u2

0〉p/2

[
1 +

p

2

(
〈up−1

0 A
‖
0〉

〈up
0〉

− 〈u0A
‖
0〉

〈u2
0〉

)
t+ ....

]
. (4.36)

Figure 4.10 shows data on the fourth-order non-dimensional moments of both forward

and backward relative separation at Rλ = 140 and 1000. At small times the quantity on

the ordinate is equivalent to the flatness factor of a velocity increment at scale size r̃0,

or of a velocity gradient if r̃0 ≤ η. As a result, because of intermittency in space, the

normalized moments generally increase with the Reynolds number. According to (4.36) the

correction to the leading order ballistic term is linear in time and so again changes sign

in the backward case. This is clearly seen in the figure, where the trend away from the

initial value is negative in the forward case (solid lines) but positive in the backward case

(dashed lines). The asymmetry is not perfect however, presumably because the faster rate

of separation in the backward case causes higher order corrections to affect the backward

moment sooner.

The early-time asymmetry features studied here arise simply from the analytical nature

of the dispersion statistics at small times. The existence of a non-trivial t3 term in (4.31),

through a non-zero correlation between the relative acceleration and velocity, depends on

the non-linearity of the Navier-Stokes equations governing the Eulerian velocity field which

determines the initial conditions. On the other hand, while the t3 scaling in the Richardson

range is not amenable to an analytical treatment it is also subject to the non-linear inertial

sub-range dynamics. We believe however that there is no causal connection between the

behavior of the relative displacement difference in (4.31) and that in the Richardson range,

but rather that both are simply consequences of the non-linearity. For example, the early-

time t3 behavior is a transient response to the initial conditions which persists only for a time

of order t0 for inertial sub-range initial separations and for a time tη for dissipation sub-range

initial separations. Furthermore, although in the limit r0/η → 0 the acceleration-velocity

covariance vanishes (see figure 4.8) so the early time t3 regime also vanishes, at sufficiently

large Reynolds number and sufficiently large time the Richardson t3 range still exists (see
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figure 4.2). In fact, the limit r0 → 0 is singular for fluid particles since particles with

r0 = 0 never separate. Molecular diffusion regularizes this singular behavior. Indeed, for

molecules which move under the joint action of the fluid velocity and a random Brownian

motion (Pope 1998), we can set r0 = 0, so the covariance and the early time t3 regime

both vanish completely. Despite this, the relative dispersion of pairs of molecules shows

asymmetrical Richardson range scaling with different values for the backward and forward

Richardson constants (Eyink 2011). Thus, the existence of Richardson scaling, and the

asymmetry between the backward and forward versions, does not require a corresponding

early time t3 regime. In the cascading ballistic model of Bourgoin (2015) the early time

t3 regime is not necessary for the existence of a Richardson regime, but is necessary to

ensure asymmetry between the backward and forward versions. This is probably because

the cascade process continually resets the initial conditions.

4.5 Summary

In the study of turbulent mixing the trajectories of fluid particle pairs tracked backward in

time are of great importance, but the type of data required is generally difficult to obtain and

infrequently reported. In this work we have used direct numerical simulations of stationary

isotropic turbulence to study both forward and backward dispersion, using an algorithm

designed to sample efficiently the backward trajectories of a large number of fluid particles

whose position and velocity have been saved from a forward simulation. Backward tracking

is accomplished by post-processing of saved trajectories instead of performing an artificial

backward simulation using Eulerian velocity fields saved at thousands of time steps which

would lead to prohibitive storage requirements. We have developed a massively parallel

implementation that has allowed us to obtain well-sampled forward and backward relative

dispersion statistics at Taylor-scale Reynolds numbers 140 to 1000 over a range of initial

separations ranging from Kolmogorov to energy-containing scales. Statistics are presented

as functions of forward or backward initial separation, which are sorted into a number of bins

centered around power-of-two multiples of the Kolmogorov scale. The number of particles

tracked in each simulation is up to about 32 million and the total number of particle pairs
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counted is of the order 1012.

A major focus of our work has been demonstration and quantification of Richardson

t3 scaling for the mean-squared separation in both forward and backward dispersion. This

task has been carried out using data over a range of Reynolds numbers and initial separa-

tions, and a range of techniques, including plots compensated by inertial sub-range scaling,

and so-called cubed-local-slope plots for both the relative dispersion and the mean-squared

differential separation. In general backward dispersion is stronger than forward, especially

at intermediate times, with faster dispersion also leading to an earlier approach to diffusive

conditions. Richardson scaling for backward dispersion appears to require higher Reynolds

number than for forward dispersion. Nevertheless, the Reynolds numbers in our simula-

tions are sufficiently high for us to demonstrate the scaling in both cases, with forward and

backward Richardson constants gf = 0.55 and gb = 1.5. The forward constant is consistent

with, and the backward constant, a little larger than, previous estimates.

In contrast to quantities at the second moment level, Richardson scaling was not ob-

served for higher order moments of the separation, because with increasing order the mo-

ments are increasingly influenced by dissipation sub-range effects, which persist almost to

the large-time diffusive regime even for initial separations within the inertial sub-range. Our

analysis of the separation PDF and the so-called distance-neighbor function showed only

transitory agreement with the well-known Richardson prediction.

The strong exponential growth of the separation on dissipation sub-range scales was ana-

lyzed in terms of a central limit theory approximation which yields a log-normal distribution

for the separations. A correction to this theory, which allows for early-time correlations in

the strain-rate, explains the observed delay in the onset of exponential growth. The result-

ing predictions for the ratio of the growth rates of the third- and fourth-order moments

are reasonably consistent with the theory. The backward growth rates, corresponding to

the ratio of the magnitude of the smallest to largest Lyapunov exponents, are about 50%

greater than the forward growth rates, somewhat higher than other estimates.

The asymmetry between backward and forward relative displacement in the ballistic

small-time limit was analyzed theoretically and confirmed numerically. We showed that
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the key quantity in the Taylor series expansion for the mean square relative displacement,

namely the covariance between the relative acceleration and the relative velocity, is non-zero

and equal to −2〈ǫ〉 in the inertial sub-range at large Reynolds numbers. A rigorous analysis

is also made of the small-scale universality of an Eulerian quantity that plays a central role.

As a result of the behavior of the relative velocity-acceleration covariance, the difference in

the backward and forward mean-square relative displacement has a t3 dependence. Higher

order moments of the relative displacement show a similar time asymmetry. We conclude

however, that these asymmetries, and particularly the t3 growth of this difference, are not

simply connected to the t3 growth in the Richardson regime and the asymmetry manifested

there by the difference in the backward and forward Richardson constants.

The backward tracking approach developed and implemented in this work can be gen-

eralized readily to the case of pairs of molecules that undergo Brownian motion relative to

the fluid (subject of next chapter), and to triangles and tetrads of fluid particles (subject

of Chapter 6) which may become severely distorted fine-scaled turbulence at high Reynolds

number. Improved understanding and accurate quantification of high Reynolds number

behavior are expected to be of favorable impact in applications such as the dispersion of

droplets in cloud physics (Chang et al. 2015).
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Table 4.1: Parameters of the simulations performed: the Taylor-scale Reynolds number
(Rλ) , number of grid points (N3), the mean dissipation rate (〈ǫ〉), the kinematic viscosity
(ν), the ratio of Lagrangian integral time scale (TL) to Kolmogorov time scale (tη), output
time interval (h) in Kolmogorov scales, time span of simulation (T ) in integral time scales,
and the number of particles (Np) tracked.

Rλ 140 240 390 650 1000
N3 2563 5123 10243 20483 40963

〈ǫ〉 1.32 1.30 1.33 1.28 1.44
ν 2.8 × 10−3 1.1 × 10−3 4.370 × 10−4 1.732 × 10−4 6.873 × 10−5

TL/tη 13.5 23.0 36.1 54.0 79.4
h/tη 0.174 0.172 0.177 0.172 0.174
T/TL 10.3 9.55 4.76 4.78 2.59
Np 4,194,304 4,194,304 8,388,608 33,554,432 33,554,432
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Figure 4.1: Mean-squared relative displacement as a function of forward time (solid lines,
in red) and backward time (dashed lines, in blue) at Rλ 140 (left) and 1000 (right), scaled
by Kolmogorov variables, for different initial separations. Arrows indicate direction of
increasing r̃0, in logarithmically-spaced intervals, r̃0/η = 1/4, 1, 4, 16, 64, 256, 1024 for Rλ

140; r̃0/η = 1, 4, 16, 64, 256, 1024, 4096 for Rλ 1000. (Results at r̃0/η = 1/4 for Rλ 1000
are not shown since they are not well sampled.)
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Figure 4.2: Compensated mean-square relative displacement in inertial sub-range scal-
ing for a range of initial separations centered on r̃0/η = 1, 2, 4, 8, 16 (increasing upwards,
in magenta, red, green, blue, black) and Reynolds numbers Rλ = 390, 650, 1000 (dotted,
dashed and solid lines respectively). Left panel shows forward dispersion; right panel shows
backward dispersion. Horizontal dashed lines are at heights corresponding to estimates of
forward and backward Richardson constants (0.55 and 1.5 respectively). Insets show the
plots with time scaled by the Bitane time scale tB = S2(r̃0)/(2〈ǫ〉). The sloping cyan dashed
line represents the quadratic ballistic term.
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Figure 4.3: Forward (left) and backward (right) cubed-local slopes (defined by (5.36))
of mean-squared separation at different Reynolds numbers and initial separations. The
data shown are at Rλ 390 (dotted lines), 650 (dashed lines) and 1000 (solid lines). Initial
separations are (from bottom to top at small times) r̃0/η = 2 (red), 4 (green), 8 (blue), 16
(black). Horizontal dotted lines drawn for reference are at the heights 0.55 (forward) and
1.5 (backward).

82



t/t0 t/t0

CLS

Figure 4.4: Cubed-local slopes obtained from the mean-squared differential separation,
under the same conditions and labeled in the same manner as in figure 4.3. A linear scale
on the time axis is used for better clarity in this figure.
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Figure 4.5: Normalized third order (left) and fourth-order (right) moments of forward (solid
lines, in red) and backward (dashed lines, in blue) separation distance for initial separations
r̃0/η = 1, 2, 4, 8 (increasing in the direction of the arrows), at Rλ = 1000. Horizontal dotted
lines indicate values at ballistic and diffusive limits: 1.0687 and 1.2284 respectively for third
order, and 1.1741 and 1.6666 respectively for fourth order.
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Figure 4.6: Linear-log plot to reveal exponential growth in third (left) and fourth (right)
order moments of forward (solid red lines) and backward (broken blue lines) separation
for Rλ = 1000; r̃0/η = 1, 2, 4, 8, 16 (increasing in the direction of the arrows). The straight
dotted lines (red for forward, blue for backward) are empirical fits to the exponential growth
region.
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Table 4.2: Exponential growth coefficients (in (4.13)) estimated from non-dimensional
moments of the separation for r0/η = 1 and for a range of Reynolds numbers. In the last
two columns additional superscripts are used to distinguish between forward and backward
values.

Forward Backward Backward-to-Forward Ratios

Rλ ζ3 ζ4 ζ4/ζ3 ζ3 ζ4 ζ4/ζ3 ζb
3/ζ

f
3 ζb

4/ζ
f
4

390 0.127 0.368 2.89 0.244 0.703 2.88 1.92 1.91
650 0.139 0.395 2.85 0.229 0.576 2.52 1.65 1.46
1000 0.225 0.577 2.57 0.327 0.877 2.68 1.52 1.45
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Figure 4.7: Richardson’s distance-neighbor function for r̃0/η = 4, 8 and 16 (top, middle
and bottom panels respectively) at various times for forward (left panels) and backward
(right panels) relative dispersion for Rλ = 1000. The colors sequence red, dark red, green,
dark green, blue, dark blue, brown, magenta, black corresponds to t/t0 values 0.264, 0.527,
1.05, 2.11, 4.22, 8.44, 16.9, 33.7, 61.6 (r̃0/η = 4); 0.166, 0.332, 0.664, 1.33, 2.65, 5.31, 10.6,
21.2, 38.8 (r̃0/η = 8); 0.105, 0.209, 0.418, 0.836,1.67, 3.34, 6.69, 13.8, 24.4 (r̃0/η = 16).
Dashed and dotted lines in black represent Richardson and diffusive limits respectively.
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Figure 4.8: Normalized covariance between the two-point relative velocity and relative
acceleration at time t = 0 at Rλ = 140, 240, 390, 650, 1000 (increasing in the direction of
the arrow). Dashed curves in red and cyan (almost coincident but with the latter extending
further) represent Eulerian results at Rλ = 140 and 390. The frame on the right shows the
same data on log-log scales, compared with a slope 2 power law (dashed line) deduced from
an analysis of higher-order terms.
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Figure 4.9: Compensated difference ψ(t) between backward and forward relative displace-
ment for Rλ = 140 (left panel) and 1000 (center panel), for r̃0/η = 2, 4, 8, 16, 32, 64
(increasing in the direction of the arrow). The right panel shows ψ(t) for r̃0/η = 4 (solid
lines) and r̃0/η = 8 (dashed lines) for the 5 Reynolds numbers of this work (increasing from
140 to 1000 in the direction of the arrow) The horizontal dotted line is at a height 1.9.
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Figure 4.10: Normalized fourth-order moments for the relative displacement as a function
of normalized time t/tη, for Rλ = 140 (left panel) and 1000 (right panel), r̃0/η = 1, 2, 4,
8, 16, 32, 64, 128 (increasing from top to bottom); showing both forward dispersion (solid
lines, in red) and backward dispersion (dashed lines, in blue).
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CHAPTER V

LAGRANGIAN STUDY OF TURBULENT MIXING: DISPERSION

OF MOLECULAR TRAJECTORIES

5.1 Introduction

Although the motion of fluid particle captures the physics of turbulent dispersion well, in

reality most transported substances undergo Brownian motion relative to the fluid at a rate

set by their molecular diffusivity. Suppose if we consider two fluid particles at the same

spatial location (hence zero relative velocity), they will never move apart and hence result

in no mixing. Thus for mixing at small scales, we need to consider the motion of ‘molecules’

with a finite molecular diffusivity. If the scales of turbulent motions are much larger than the

molecular time scales, the motion of molecules can be modeled by the stochastic differential

equation (Pope 1998)

dxm(t) = u (xm(t), t) dt+
√

2κ dW(t) , (5.1)

where xm(t) is the molecular position at time t, u(xm(t), t) is the instantaneous Eulerian

velocity evaluated at xm(t), and W(t) is a standardized three-dimensional (3D) isotropic

Wiener process (Gardiner 1983). Although direct measurements are clearly difficult (more

than for fluid particles), (5.1) provides a starting point for theoretical and numerical analy-

ses. In particular, in direct numerical simulations (DNS) molecules can be tracked forwards

in time as for fluid particles, with the Wiener process contribution implemented by drawing

Gaussian random numbers at every time step. If a passive contaminant is released from

a localized source, the subsequent displacement of molecules away from the source has a

direct impact on the extent of spatial spreading achieved over a period of time. However,

mixing also inherently involves how small parcels of contaminant material previously far

apart and of different properties may be brought closely together. A close connection to the

Eulerian framework is in fact made by studying backward trajectories, especially for pairs

close together at a chosen time of reference (Thomson 1990; Sawford et al. 2005; Srinivasan
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& Papavassiliou 2012) — efficient mixing would be indicated if there is a strong likelihood

for such pairs to have come from locations far apart.

In this chapter we have two primary objectives. The first is to quantify and understand

the properties of the trajectories of molecules taken singly and in pairs, in both forward and

backward reference frames. Both high- and low-diffusivity regimes are considered, with the

Schmidt number varied from 0.001 to 1000. We examine ballistic and diffusive behaviors at

small and large times respectively, including comparisons with theoretical results given by

Saffman (1960) where applicable. Because Brownian motion is not differentiable, a molecule

does not have a well-defined velocity. However as Saffman (1960) showed, an integral time

scale based on the fluid velocity along the molecular trajectories can be used to infer a

turbulent diffusivity. In addition we are interested in any behavior at intermediate times

that may resemble classical Richardson scaling (where mean-squared separation grows as t3)

for fluid particle pairs. Results are compared with those for fluid particle pairs (obtained

in Chapter 4) and theoretical predictions for molecular pairs (Eyink 2011; Benveniste &

Drivas 2014).

Our second objective is to establish and demonstrate, explicitly, a direct connection

between molecular dispersion and passive scalar mixing at the same Schmidt number and

Reynolds number. It is well known that the Schmidt number in applications can vary

widely, and there are fundamental differences between weakly diffusive (Sc≫ 1) (Batchelor

1959) and highly diffusive (Sc ≪ 1) (Batchelor et al. 1959) regimes. Both of these asymp-

totic regimes introduce difficulties for Eulerian investigations (Donzis et al. 2010; Yeung &

Sreenivasan 2014). However, regardless of the value of Sc, in the Lagrangian framework,

the covariance between scalar fluctuations separated by a distance r in space at a given time

(t) is determined by the displacement statistics of two molecules that are at a distance r

apart at time t (Durbin 1980; Borgas et al. 2004). For incompressible flow, either backwards

or forwards formulations of these statistics can be used, but the backwards formulation is

computationally more efficient and mathematically more tractable (Sawford et al. 2005).

In the limit r → 0 we recover the single-point scalar variance (〈φ2〉). A very appealing

scenario for verifying this Eulerian-Lagrangian correspondence is the case of passive scalar
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fluctuations driven by a uniform mean gradient, which has received much attention in the

Eulerian framework (Overholt & Pope 1996; Yeung et al. 2002; Watanabe & Gotoh 2006)

especially for Sc . 1. In this case, there is a particularly simple connection between the

backwards relative dispersion of a pair of particles and the scalar dissipation rate. This al-

lows us to use backwards molecular trajectories to obtain precise information on processes

contributing to net increase (i.e. production) or decrease (i.e. dissipation) of passive scalar

fluctuations.

The postprocessing algorithm as discussed in § 3.3 is easily extended to molecules. As in

§ 5.4, we have obtained results at Taylor-scale Reynolds number from 140 to 1000. However,

because molecular diffusion effects do become less pronounced at higher Reynolds number,

we put a greater emphasis on results over a wide range of Schmidt numbers at moderate

Reynolds numbers. Results at early times agree well with the exact theoretical results

of Saffman (1960). At intermediate times evidence for Richardson scaling is stronger for

molecules of Sc ∼ O(1) than for fluid particles, but absent for molecules of Sc ≪ 1 which

are dominated by molecular diffusion. With sufficient care in the numerical procedures

we find that our Lagrangian estimates of production and dissipation of scalar fluctuations,

which are applicable at any Schmidt number, agree well with Eulerian results.

We first begin with a summary of the theoretical background underlying this work, with

a focus on asymptotic limiting behaviors (including some results from Saffman (1960)) for

statistics of molecules taken singly and in pairs. Their role in a Lagrangian description

of turbulent mixing and its connection to the corresponding Eulerian formulation is also

discussed. Several key aspects of the DNS numerical approach specific to molecules are

noted. Then the results on one- and two-molecule statistics are presented, followed by the

Lagrangian results for turbulent mixing based on molecular trajectories, which are shown

to be in good agreement with Eulerian results on passive scalars driven by a uniform mean

gradient.
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5.2 Theory

In this section we present the theoretical background for our numerical results in this work,

including the statistics of the displacement of single molecules (§5.2.1), the separation be-

tween pairs of molecules at specified initial separations in both forward and backward ref-

erence frames (§5.2.2), and the connection between Lagrangian and Eulerian results for

passive scalar mixing (§5.2.3). For stationary turbulence we expect theoretical results de-

rived by Saffman (1960) for one-molecule statistics to hold equally well for both forward

and backward dispersion. However for pairs, it is important to make the distinction. It

is well known that backward relative dispersion at intermediate times is stronger than for-

ward (Sawford et al. 2005; Berg et al. 2006). There has been, in fact, considerable recent

interest in backward dispersion of fluid particles (Jucha et al. 2014; Buaria et al. 2015) as

well as theoretical work on molecular trajectories (Eyink 2011; Benveniste & Drivas 2014).

However current knowledge of molecular path statistics especially in their Schmidt number

dependence and connection to Eulerian passive scalar statistics is still limited.

5.2.1 Dispersion of single molecules

Saffman (1960) showed that the mean-square displacement of a single molecule consists of

a diffusive Brownian motion contribution and a turbulence term based on the ‘substance-

autocorrelation’ function (ρm), which is the fluid velocity autocorrelation along molecular

trajectories. A tensor-form result assuming isotropy is

〈Y m
i Y m

i 〉(t) = 〈uiui〉
∫ t

0

∫ t

0
ρm(t′, t′′) dt′ dt′′ + 6κt , (5.2)

where Y m
i (t) = xm

i (t) − xm
i (0) is the molecular displacement (we use superscript m to

denote single-molecule quantities in contrast to + for fluid particles.) If the turbulence is

stationary and isotropic with r.m.s component velocity σu, then ρm is a function of time

lag (τ = |t′ − t′′|) alone and (5.2) becomes

〈Y m
i Y m

i 〉(t) = 6σ2
u

∫ t

0
(t− τ)ρm(τ)dτ + 6κt , (5.3)

which can be compared with

〈Y +
i Y +

i 〉(t) = 6σ2
u

∫ t

0
(t− τ)ρL(τ)dτ , (5.4)
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for fluid particles where ρL(τ) is the Lagrangian velocity autocorrelation. A term that

represents interaction between molecular diffusion and turbulence can be defined as

∆(t) = 〈Y m
i Y m

i 〉(t) − 6κt− 〈Y +
i Y +

i 〉(t) . (5.5)

We address both small- and large-time limits. At small τ , Saffman used a Taylor series

expansion to write the substance autocorrelation in the form

ρm(τ) = ρL(τ) − 1

3

κ〈ωiωi〉
σ2

u

|τ | + O(τ2) , for |τ |/tη ≪ min(1, Sc) , (5.6)

where 〈ωiωi〉 is the enstrophy, and tη is the Kolmogorov time scale. The small time limit

here is defined both by tη and the time scale of molecular diffusion, Sctη. Thus as Sc

decreases, and molecular diffusion acts faster, the value of t required to observe this power

law also becomes much smaller. The presence of a linear (|τ |) term in (5.6) reflects the

non-differentiable nature of the velocity at the molecular position. To non-dimensionalize

the second term in (5.6) we use the relations 〈ωiωi〉 = 〈ǫ〉/ν and 〈ǫ〉 = 15νσ2
u/λ

2, where 〈ǫ〉

is the mean dissipation rate and λ is the Taylor length scale, to obtain

ρm(τ) = ρL(τ) −
√

15

3

1

Rλ

1

Sc

|τ |
tη

+ O(τ2) , for |τ |/tη ≪ min(1, Sc) , (5.7)

where Rλ = σuλ/ν is the Taylor-scale Reynolds number.

Substituting this in (5.3) and non-dimensionalizing by Kolmogorov variables leads to

the following, up to O(t3):

〈Y m
i Y m

i 〉(t)
η2

=
6

Sc

t

tη
+

3Rλ√
15

(
t

tη

)2

− 1

3Sc

(
t

tη

)3

, (5.8)

where terms on the r.h.s represent the direct effect of molecular diffusion, fluid particle

motion in the ballistic limit, and the interaction between turbulence and molecular diffusion.

The diffusion term has the same form at any time t, while the t2 ballistic term requires

|τ |/tη ≪ 1 and the t3 interaction term requires t/tη ≪ min(1, Sc). It is apparent that, at

any time t, the relative importance of different terms in (5.8) depends on both Rλ and Sc as

well as t/tη, while the interaction term itself (when written in Kolmogorov scaling) depends

on Sc only, as:

∆(t)/η2 = − 1

3Sc
(t/tη)

3 + O(t4) . (5.9)
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At asymptotically large times, with a “molecular” integral time scale defined as Tm =

∫∞
0 ρm(τ) dτ , the mean-square displacement is expected to approach a diffusive regime of

linear growth (Taylor 1921), i.e.

〈Y m
i Y m

i 〉(t) ≈ 6σ2
uTmt+ 6κt , for t≫ Tm . (5.10)

With this and a similar result for 〈Y +
i Y

+
i 〉 in terms of the Lagrangian integral time scale

(TL), the interaction term in (5.5) becomes

∆(t) = 6σ2
u(Tm − TL)t , for t≫ Tm, TL . (5.11)

Saffman (1960) also gave an approximate result for ρm(τ) at time lags τ ≫ tη:

ρm(τ) = ρL(τ) − a
κω

σ2
u

ρL(τ) , (5.12)

where a is a proportionality constant, which Saffman (1960) estimated to be about 0.23.

On substituting into (5.3), it can be shown that the interaction term then scales in the same

way as 〈Y +
i Y

+
i 〉, such that for t ≫ tη, the ratio

∆/(〈Y +
i Y +

i 〉) ≈ −a
√

15Sc−1Rλ
−1 , (5.13)

becomes constant. Applying this relation for t≫ (Tm, TL) then (5.11) also gives

1 − Tm/TL ≈ a
√

15Sc−1Rλ
−1 , (5.14)

which can be tested using the DNS data available in the present work.

5.2.2 Dispersion of molecular pairs

Consider two molecules at positions xm,1(t) and xm,2(t) respectively. Using (5.1), the

separation vector r(t) = xm,1(t) − xm,2(t) evolves by

dr(t) =
[
u(xm,1, t) − u(xm,2, t)

]
dt+

√
4κdW(r) , (5.15)

where dW(r) = (dW(1) − dW(2))/
√

2 is also a standardized incremental Wiener process

(since the Brownian motion of each molecule is independent). The mean-square relative

displacement for molecule pairs is given by

〈|r(t) − r(0)|2〉 =

∫ t

0

∫ t

0
〈u(r)(t′) · u(r)(t′′)〉dt′dt′′ + 12κt , (5.16)
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where u(r)(t) is the relative fluid velocity between molecular positions xm,1(t) and xm,2(t).

Asymptotic behaviors at small, large and intermediate times are addressed below.

Unlike fluid particles, molecules can separate even if they happen to be coincident at a

given time. For the case r(0) = 0, and under the conditions |r(t)| = r(t) ≪ η and t ≪ tη,

Saffman (1960) obtained a small-time result which can be written as

〈r2(t)〉 = 12κt +
4

3
κt3/t2η + O(t4) . (5.17)

However, we are interested in a more general result that is also applicable to the small-

time behavior of molecular pairs with small but finite initial separation. This requires a

derivation based on Taylor series expansions in both time and space, which is presented in

the Appendix A. Under the conditions r(t) ≪ η (and hence |r(0)| = r0 ≪ η) and t ≪ tη,

the result obtained, to O(t3), can be written in Kolmogorov variables as
〈
|r(t) − r(0)|2

〉

η2
=

(
r0
η

)2
[

1

3

(
t

tη

)2

− 7 Sǫ

18
√

15

(
t

tη

)3
]

+
12

Sc

[
|t|
tη

+
1

9

( |t|
tη

)3
]
, (5.18)

where Sǫ is the so-called dissipation skewness (Kerr 1985) which is directly related to the

third moment of longitudinal velocity gradients. In (5.18) the first bracketed term repre-

sents the contribution from fluid particle dispersion, whereas the second bracketed term is

essentially Saffman’s result for coincident molecular pairs. It is clear that if r0 = 0, we

recover Saffman’s result in (5.17), while for Sc → ∞, we recover results for fluid particle

pairs. This equation holds for forward relative dispersion. We have introduced the absolute

value of the time in the Saffman term in (5.18) because for backward relative dispersion,

which can be obtained by replacing t by −t, this term is unchanged (see Appendix A),

whereas the sign of the fluid particle t3 term in the first bracket changes (Jucha et al. 2014;

Buaria et al. 2015). In general, under the specified conditions, the t2 and t terms in both

brackets will dominate compared to their respective t3 counterparts. However the relative

magnitude of the t2 term in the first bracket, compared to both the t and t3 terms in the

second bracket depends strongly on r0/η and Sc. For weak molecular diffusion (Sc ≫ 1),

we can find a range of time given by Sc−1(r0/η)
−2 ≪ t/tη ≪ 1, for which the t2 term domi-

nates over the t term (and hence also the t3 term) in the second bracket. However for strong

molecular diffusion, the linear t term will always dominate over the t2 term, since r0 ≪ η.
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Similarly, the Saffman t3 interaction term in the second bracket dominates compared with

the t2 term for (r0/η)
2 ≪ Sc−1t/tη and t/tη ≪ min(1, Sc) . On the other hand, for any

fixed r0, the t2 term dominates (over the t3 term in the second bracket) for small enough

time t/tη ≪ Sc(r0/η)
2.

For arbitrary (not necessarily small) values of r0 we can use (5.16) directly, to obtain,

to leading order

〈|r(t) − r(0)|2〉
η2

=
〈DLL(r0) + 2DNN (r0)〉

η2

(
t

tη

)2

+
12

Sc

(
t

tη

)
+ O(t3) , (5.19)

where DLL(·) and DNN (·) are the Eulerian longitudinal and transverse structure functions

respectively. The t2 term on the r.h.s is the same as the fluid particle relative displacement

at small times for any value of r0 (Sawford et al. 2008). For r0 ≪ η, using a Taylor series

expansion, this term gives the t2 term in (5.18).

In the large-time limit, when the displacements of both molecules become independent

of each other, the mean-square relative displacement becomes twice that of the displacement

of a single molecule. Accordingly by (5.10), at times t≫ Tm, we obtain

〈|r(t) − r(0)|2〉 ≈ 12σ2
uTmt+ 12κt . (5.20)

In practice, because of memory effects in the displacement, the time needed to show clear

agreement with (5.20) may be well over 10 integral time scales (Yeung 1994).

At intermediate times it is reasonable to look for an “inertial” scaling range where the

mean-squared separation is independent of both the small-scale and large-scale motions,

as well as the memory of initial separations. An extension of Richardson scaling for fluid

particle pairs to molecules then suggests (Sawford & Pinton 2013)

〈|r(t) − r(0)|2〉 = gm〈ǫ〉t3 , for max(tη , t0, tκ) ≪ t≪ Tm (5.21)

where gm is Richardson’s constant, t0 = (r20/〈ǫ〉)1/3 is the Batchelor time scale which mea-

sures the memory of the initial separation (r0) and tκ = (κ/〈ǫ〉)1/2 is the time scale of

the interaction of molecular diffusion with inertial range eddies. Since backward dispersion

is stronger than forward dispersion especially at intermediate times the Richardson con-

stant for backward dispersion is larger than that for forward dispersion, as investigated in
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Chapter 4 and also recently reported by Bragg et al. (2016); Buaria et al. (2015) of fluid

particle pairs. At the same time, observation of Richardson scaling generally requires higher

Reynolds number in the case of backward dispersion. For molecules an additional question

is how the scaling depends on Schmidt number. One of our objectives in this work is to

investigate Richardson scaling for both forward and backward molecular dispersion over a

wider range of Reynolds and Schmidt numbers than have been reported by other authors

(Eyink 2011; Eyink & Benveniste 2013; Benveniste & Drivas 2014).

5.2.3 Connections to Eulerian passive scalar mixing

In the Lagrangian theory of scalar mixing, the moments of the scalar concentration field can

be expressed in terms of both the forward and backward displacement of marked molecules

(Sawford & Pinton 2013). We decompose the instantaneous scalar field φ̃ into the sum

of the mean Φ and fluctuation φ. In general, the nth order moment of φ̃ due to a source

S(x, t), can be obtained in terms of backward displacements as

〈φ̃n(x, t)〉 =

∫ t

−∞
...

∫ t

−∞

∫

V
...

∫

V
P (x1, t1; ....;xn, tn|x, t)

S(x1, t1)...S(xn, tn)dx1....dxndt1...dtn ,

(5.22)

where P (x1, t1; ....;xn, tn|x, t) is the probability density function (PDF) for n molecules to

be at positions x1, ...,xn at earlier times t1, ..., tn < t respectively, subject to the condition

that they have all arrived at x at time t. This relation is exact and is the fundamental

connection between the displacement statistics of molecular trajectories and scalar concen-

tration statistics. The advantages of the backwards formulation are two-fold. Firstly, it is

mathematically simpler in that the scalar moments are defined in terms of moments of the

source function: by carrying out the integrations in space (5.22) also leads to

〈φ̃n(x, t)〉 =

∫ t

−∞
...

∫ t

−∞

〈
S(xm,1(t1))...S(xm,n(tn)) |x, t

〉
dt1...dtn . (5.23)

Secondly, it is computationally more efficient since only trajectories ending at the measure-

ment location (x, t) need to be sampled.

For the special case of an instantaneous uniform scalar gradient source in the x1 direction

S(x, t) = Gx1δ(t) in stationary isotropic turbulence, (5.22) can be simplified for n = 2 to
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obtain the scalar variance. Borgas et al. (2004) and Sawford et al. (2005) showed that

〈φ2〉 = G2
〈
Y m,1

1 (0)Y m,2
1 (0)|r0(t) → 0

〉

= G2〈(Y m
1 )2〉 − 1

2
G2〈r21(0) |r0(t) → 0〉 , (5.24)

where
〈
Y m,1

1 (0)Y m,2
1 (0)|r0(t) → 0

〉
is the conditional covariance of the x1-component of the

backward displacements at time zero of a pair of molecules labeled at time t, 〈(Y m
1 )2〉 is

the x1-component of the one-particle dispersion over a time period t (equivalent for both

backward and forward), and 〈r21〉 is the x1-component of the backward relative dispersion at

time zero, such that at the final time t, the separation distance (r0) between two molecules

becomes zero. In isotropic turbulence it is also appropriate (and effective for improved

sampling) to consider an ensemble average over gradient sources oriented along each of the

three coordinate axes. It follows from (5.24) that

〈φ2〉 =
1

3
G2〈Y m

i Y m
i 〉 − 1

6
G2〈riri〉r0(t)→0 . (5.25)

where we have simplified our notation for conditioning on r0(t) → 0. Substituting 〈Y m
i Y m

i 〉

from (5.3) and differentiating with respect to t, it follows

∂〈φ2〉/∂t = 2G2κt + 2G2κ− 1

6
G2 d

dt
〈riri〉r0(t)→0 , (5.26)

where κt denotes σ2
u

∫ t
0 ρm(τ)dτ (from (5.3) using the Leibniz rule for integrals) which in

the large time limit equals σ2
uTm.

Equation (5.22) can be generalized to calculate joint velocity-scalar moments in terms of

a similar integral over the joint velocity-displacement PDF. The result for the velocity-scalar

covariance is (Sawford et al. 2005)

〈uiφ〉 = −Gκtδiα , (5.27)

for a mean gradient G in the xα direction. The gradient-transport nature of this relation

suggests κt may be interpreted as the eddy diffusivity of the scalar fluctuations correspond-

ing to the molecular motions.

Many Eulerian studies of turbulent mixing have considered a passive scalar field driven

by a uniform mean gradient (∇Φ), governed by the equation

∂φ/∂t + u · ∇φ = −u · ∇Φ + κ∇2φ . (5.28)
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The scalar variance evolves by

∂〈φ2〉/∂t = P − χ , (5.29)

where P = −2〈uφ〉·∇Φ is the scalar production and χ = 2κ〈∇φ·∇φ〉 is the scalar dissipation.

Unlike in work focused on a stationary state, here we are interested in both production and

dissipation as functions of time from t = 0 onwards. With the choice ∇Φ = Gê1 (and

averaging results for ∇Φ along other coordinate directions) we obtain P = 2G2κt from

(5.27), which is also the first term on the r.h.s. of in (5.26). Thus by comparing (5.26) with

(5.29), we obtain

χ(t) =
1

6
G2 d

dt
〈riri〉r0(t)→0 − 2G2κ . (5.30)

It now follows from substitution into (5.29) and using (5.25) that

P (t) =
1

3
G2 d

dt
〈Y m

i Y m
i 〉 − 2G2κ . (5.31)

Thus we have exact results for the scalar production and dissipation in terms of the rate

of change of the one- and two-molecule backward dispersion. In the current work, we

first characterize the statistics of single molecules and pairs of molecules, comparing with

Saffman’s theoretical results wherever applicable. For molecular pairs, we are naturally more

interested in backward statistics. Comparisons with Eulerian results are made primarily for

Sc ∼ O(1) because this is the range where detailed time history in the Eulerian frame is

most readily available.

5.3 Numerical Approach and Database

We have performed simulations of stationary isotropic turbulence over a range of Reynolds

numbers. Eulerian velocity and scalar fields are computed using a pseudo-spectral approach

in space and second-order Runge Kutta integration in time as described in Chapter 2.

Stationarity in the velocity field is achieved by maintaining (Donzis & Yeung 2010) the

energy spectrum in the lowest few wavenumber shells at values suggested by long-time

averages derived from previous simulations which used stochastic forcing (Eswaran & Pope

1988). For scalar fields the fluctuations are initially absent but subsequently generated by a

uniform mean gradient. Although the forcing scheme employed tends to minimize temporal
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oscillations of the kinetic energy and dissipation rate, statistics in specific directions can

still vary significantly at a given time instant. In order to minimize limitations in statistical

sampling, for each value of Sc we simulate and subsequently average over results for three

scalars with ∇Φ in different coordinate directions.

Molecules are tracked by integrating (5.1), using an extension of a parallelized particle-

tracking algorithm discussed in Chapter 3. To advance from time tn to tn+1 = tn + ∆t we

calculate the predictor step estimate of the new position xm(tn+1) by the formula

xm,∗ = xm(tn) + ∆t u(xm(tn), tn) +
√

2κ∆t Z , (5.32)

where Z is a standardized Gaussian random variable in 3D, and the Wiener process incre-

ment is implemented as dW =
√

∆t Z. The end result, after the corrector step, is

xm(tn+1) = xm(tn) +
1

2
∆t [u(xm(tn), tn) + u(xm,∗, tn+1)] +

√
2κ∆t Z . (5.33)

The fluid velocities at the two molecular positions shown in (5.33) are calculated by cubic-

spline interpolation (Yeung & Pope 1988). This scheme is strong order 1/2 and weak

order 1 (Kloeden & Platen 1992). However, in contrast to Eulerian simulations, no special

numerical constraints arise for the time step or grid spacing at either very low or very

high Schmidt number (Donzis et al. 2010; Yeung & Sreenivasan 2014), although having

a substantial number of molecules is obviously important for statistical sampling. This

approach is similar to the thermal marker technique of Papavassiliou & Hanratty (1995).

To obtain both forward and backward displacement statistics, we use our postprocessing

approach described in Chapter 3. While single molecule statistics are relatively simple to

obtain, two-molecule statistics require a careful approach in forming pairs of desired initial

separation from the entire population. For a given trajectory extending from t = 0 to

t = T , the initial separation for forward pairs is simply r0 = |r(t = 0)|, whereas for

backward pairs the initial separation is defined as r0 = |r(t′ = 0)|, where t′ = T − t is the

backward time. Thus forward and backward statistics are compared using the properties

of r(t) and r(t′). However, since the turbulence is stationary, the statistics evaluated at

any time t′ are equivalent to those evaluated at time −t. Henceforth for convenience, we

will use t to represent both forward and backward times, unless specified otherwise. Since
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pairs are formed from a population of many millions, samples of r0 vary continuously over

a wide range and are sorted into bins of finite width (see Chapter 3). This method allows

us to compute the backward statistics without the need to store numerous time-resolved

snapshots of the velocity field, which would be extremely memory-intensive, especially as

the Reynolds number increases. Since final-time positions are not prescribed, we have no

samples of initially coincident molecular pairs in the backward frame, and pairs of small r0

are correspondingly fewer in number. However in most cases adequate sampling is achieved

for pairs of initial separation down to as small as η/4, which as seen later in §5.6 is generally

sufficiently small as an approximation to r0 → 0.

Table 5.1 gives a summary of the database used in the current work along with the

main simulation parameters. In all cases the solution domain is of size (2π)3, and the grid

spacing is approximately twice the Kolmogorov length scale η. As mentioned earlier, the

forcing scheme used (Donzis & Yeung 2010) tends to limit the variations in kinetic energy

and mean dissipation rate, and thus both η and tη can be taken as constant throughout

each simulation. Most of the simulation parameters are the same as used in table 4.1 for

fluid particles, except that the time span of both Eulerian and Lagrangian simulation at

Rλ = 650 and 1000 is limited by computational expense. In the smaller simulations we

have tracked molecules at several values of Schmidt number spanning many decades. For

time-dependent Eulerian scalar fields we have limited ourselves to Sc = 0.125 and 1 (and

only the latter in the more expensive 40963 simulation).

5.4 Single Molecule Statistics

Single-molecule statistics (where each molecule is an independent sample) provide a basic

characterization of molecular trajectory properties and are also related to the production

of scalar variance (§5.2.3). In this section we do not differentiate between forward and

backward results, since in stationary turbulence these statistics are equivalent.

As suggested in §5.2.1, the first quantity to examine is the substance autocorrelation,

ρm(τ), which by stationarity is an even function of the time lag (τ). Figure 5.1 shows (a)

ρm(τ) for a range of Sc at given Rλ, and (b) data for a range of Rλ at given Sc, as a
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function of the time lag. The case Sc = ∞ corresponds to fluid particles. In (a), with Rλ

held fixed at 140, as Sc decreases, we observe that the autocorrelation drops off to zero

faster with time. This faster decorrelation at decreasing Sc is expected, because Brown-

ian motion contributions to the displacements at successive time instants are independent

and uncorrelated, and these contributions become stronger at higher molecular diffusivity.

However the departure from the fluid particle case is substantial only for Sc ≪ 1, showing

that effects of molecular diffusion are weak compared to turbulence unless Sc is less than

unity. The dependence on Sc is also expected to be weaker at higher Rλ.

It is well understood that since the velocity of a fluid particle is differentiable in time,

the fluid particle velocity autocorrelation ρL(τ) has a parabolic decay near τ = 0: i.e.,

ρL(τ) ≈ 1 − τ2

λ2
t

, for |τ | → 0 , (5.34)

where λt is the Taylor time scale related to the acceleration variance σ2
a as

√
2σu/σa. By

expressing σa in Kolmogorov variables and substituting this in (5.7) we obtain

ρm(τ) = 1 −
√

15

Rλ

a2
0

2

(
τ

tη

)2

−
√

15

3

1

Rλ

1

Sc

|τ |
tη

, for |τ |/tη ≪ min(1, Sc) , (5.35)

where a0 is the Kolmogorov-scaled acceleration variance (which is known to increase with

Reynolds number as a result of intermittency (Yeung et al. 2006a)). The linear term in

(5.35) will dominate if τ/tη ≪ a2
0Sc, which is more easily satisfied at low Rλ and low Sc.

To examine this behavior, in the inset in figure 5.1(a) we show 1−ρm versus τ/tη on log-log

scales. The approach to linear behavior, which would become more robust if the curves

were extended to smaller time lags, is seen most readily for Sc ≪ 1. For Sc ≫ 1 there is

a range of times a−2
0 Sc−1 ≪ t/tη ≪ 1 over which the quadratic term in (5.35) dominates.

Thus for Sc > 1, we can observe that the curves nearly overlap and display slope 2 at early

time lags.

The effect of Reynolds number on Schmidt number dependence is seen in figure 5.1(b),

which shows the substance autocorrelation for Sc = 0.01 and the fluid particle velocity

autocorrelation (i.e. Sc = ∞). The difference between the two solid lines is substantial,

showing that for fixed Sc the decorrelation with increasing time lag occurs more slowly

when the Reynolds number increases. However, it is also clear at higher Reynolds number
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the difference between the solid and dashed blue (upper) lines is weak, which indicates

sensitivity to Sc is much diminished as Reynolds number increases.

The areas under the curves in the two frames of figure 5.1 are (based on the normalization

chosen) equal to the ratios Tm/tη or Tm/TL, respectively. These ratios are themselves related

through the factor TL/tη, which increases with the Reynolds number. Table 5.2 shows the

variation of Tm/TL with Sc at Rλ up to 390. (At Rλ 650 and 1000 the simulation time

T/TL is too short to estimate Tm/TL reliably.) It can be seen that Tm/TL is relatively

low for Sc ≪ 1 and approaches unity as Sc increases. In addition, as Reynolds number

increases, Tm/TL at a given Sc becomes closer to unity. This is consistent with the fact

that as the Reynolds number increases the influence of molecular diffusion also becomes

very weak. However for finite Reynolds number, the effects of molecular diffusion must be

taken into account, especially if Sc is low and Rλ is modest.

Figure 5.2 shows (a) the mean-square displacement, and (b) the magnitude of the in-

teraction term (defined in (5.5)) , both normalized by Kolmogorov variables. As a result of

molecular diffusion, the behavior of the mean-square displacement at small times, as given

by (5.8), is very different depending on the Schmidt number. For sufficiently small times

t/tη ≪ Sc−1R−1
λ the linear diffusion term dominates, as is readily seen for Sc < 1 in part

(a) of this figure, where Sc is varied over a wide range at fixed Rλ. For large Sc and/or

large Rλ this linear growth is restricted to very small times and there is a range of times

Sc−1R−1
λ ≪ t/tη ≪ 1 over which the quadratic ballistic term dominates. This is readily

seen in the collapse of curves for Sc > 1 onto the fluid particle result for Sc = ∞. At large

times, all curves approach a diffusive regime where the growth of mean-square displacement

is linear as given by (5.10). However the curve for Sc = 0.001 lies far above all the oth-

ers, which is because in this case the diffusivity is so high that the second term in (5.10)

dominates. By using σ2
uTm = κt as defined earlier, the mean-square displacement equals

6(κt + κ)t, such that the slope in the large time limit is determined by the additive effect

of the turbulent and molecular diffusivities. The Schmidt number dependence at other

Reynolds numbers follows similar trends, but at higher Rλ generally a lower Sc is needed

for molecular diffusion to be dominant.
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A more sensitive test of Schmidt number effects is to plot the interaction term given

by (5.5), which explicitly quantifies the effects of molecular diffusion on turbulence. In

figure 5.2(b) it can be seen that, although there is some numerical noise resulting from

taking differences between small values which are very close to each other, agreement with

(5.10) is good for moderate and high Sc. However with decreasing Sc the DNS data fall

increasingly below the theory. This is because, as noted before, (5.9) holds only at times

t/tη ≪ Sc, which is not satisfied in the data range of figure 5.2(b).

On the other hand, at large times, the interaction term is given by (5.11), in which the

relative magnitudes of the integral time scales Tm and TL are important. In figure 5.3 we

show data for 1−Tm/TL versus Sc, which provides a test for the functional form suggested in

(5.14), with each dashed line corresponding to a different value of the parameter a therein.

At high Sc, or at moderate Sc at high Rλ, Tm becomes very close to TL and the quantity

1 − Tm/TL can become unreliable, or even spuriously negative, especially if Tm or TL is

affected by limitations such as the length of the simulation. As a result some data points

corresponding to cases listed in table 5.2 are not shown in this figure where logarithmic scales

are used. Nevertheless, good agreement with the Sc−1 dependence of Saffman’s theoretical

result is observed over a range of moderate Schmidt numbers, but with the parameter a

dependent on Reynolds number. At very low Sc the discrepancy between theory and DNS

is substantial, which is not surprising since physically both Tm and TL must be non-negative

with Tm ≤ TL, so 1 − Tm/TL ≤ 1.

5.5 Statistics of molecule pairs

In this section, we present results for the forward and backward dispersion of molecular pairs.

Since the turbulence is isotropic, dependence on the initial separation vector is through its

magnitude (r0) only. The statistics of molecule pairs are extracted using the same approach

as fluid particle pairs, where samples of a continuous variation of r0 are sorted into finite

bins of logarithmic spacing. To enhance the sampling without sacrificing resolution in r0,

we choose overlapping bins within a factor of four, defined as 2i−3 ≤ r0/η ≤ 2i−1 for

i = 0, 1, 2, 3, .... onwards. To identify a bin, we use r̃0/η, which is the geometric mean
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between its lower and upper bounds, normalized by the Kolmogorov scale, i.e., r̃0/η = 2i−2

for i = 0, 1, 2, 3, .... onwards. Consequently, all the pair statistics reported here are averages

over the sample of initial separations in each bin and so are reported as functions of r̃0

rather than random variable r0. Earlier studies focused on fluid particles (Sawford et al.

2005; Berg et al. 2006) have shown that backward dispersion is similar to forward dispersion

at both very short and very long times but stronger at intermediate times. More recently,

it has been recognized that (Jucha et al. 2014; Buaria et al. 2015) forward and backward

dispersion do differ at early but finite times — at a rate that grows as t3, which could be

overlooked if only the leading t2 term in the Taylor-series expansions for both forward and

backward mean-square relative displacement were retained.

An important question in this section is how molecular diffusion affects the behavior of

mean-square relative displacement,
〈
|r(t) − r(0)|2

〉
. In view of the structure of (5.18–5.19),

it is convenient to separate out the linear diffusive term which could become large at low

Sc and obscure other effects of interest. Accordingly in figure 5.4 we show the evolution

of the mean-square relative displacement compensated for the direct effect of molecular

diffusion, i.e.
(〈
|r(t) − r(0)|2

〉
− 12κt

)
/η2, at three different Schmidt numbers with fixed

Rλ = 140. On the scales of this figure forward and backward dispersion generally agree

closely at both small and large times. At large times (t ≫ Tm) curves for all values of r̃0 are

also seen to converge towards a linear diffusive limit, as given by (5.20). However, at very

low Sc (0.01 or lower) where molecular diffusion is dominant, differences between forward

and backward dispersion are small even at intermediate times. This is consistent with the

results of Sawford et al. (2005) which showed that forward and backward dispersion are

equivalent if the turbulence is Gaussian. As Sc decreases Brownian motion contributions

(which are Gaussian) are more prominent. Approach to the large-time diffusive limit also

occurs earlier for such small Sc since the ratio Tm/TL (and hence Tm/tη) decreases with

decreasing Sc.

The nature of the behavior at early times in figure 5.4 is sensitive to both initial sepa-

ration and Schmidt number. If r̃0 is large then unless Sc is extremely small, the early-time

growth is quadratic as explained by (5.19). Lines for large r̃0 are also closer to each other
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since the Eulerian structure functions increase monotonically with r̃0 until becoming con-

stant at large r̃0. However as discussed in relation to (5.18) if r̃0 is small the early time

behavior depends strongly on Sc, being cubic for r̃20/η
2 ≪ Sc−1t/tη with t/tη ≪ min(1, Sc)

and quadratic for t/tη ≪ Sc(r̃0/η)
2. Thus in the data at Sc = 0.01, for r̃0/η → 0 we see a

convergence to a stronger than quadratic dependence on time, but the times shown are too

large for the Saffman t3 behavior to be observed. For Sc = 1, data for r̃0/η = 1/4 converge

to the Saffman result for both forward and backward dispersion. Finally for Sc = 100 much

smaller values of r̃0/η are needed to observe the Saffman result, and we see instead the

ballistic t2 behavior.

The most important dynamical issue at high Reynolds number is, of course, the pos-

sibility of Richardson scaling at intermediate times as defined by (5.21). An effective way

to characterize the scaling behavior is to calculate the so-called cubed-local slope (CLS)

(Sawford et al. 2008),

1

〈ǫ〉

(
d

dt
〈r2〉1/3

)3

. (5.36)

If a well-defined Richardson scaling range is present, then the plot of the CLS versus t/t0

will show a plateau at height equal to Richardson’s constant, over a range of r̃0 and in the

range (tη, t0, tκ) ≪ t ≪ Tm. In figure 5.5, we show data at the three highest Reynolds

numbers for Sc = 0.125 and 1, for four values of r̃0/η. In general there is clear evidence

for Richardson scaling, at slightly different plateau heights, for all cases shown, while (as

for fluid particles) the Richardson constant for backward dispersion is higher. For the

forward case of Sc = 0.125, as Rλ increases, the plateau indicating Richardson scaling

shifts down from 0.59 at Rλ = 390 to 0.56 at Rλ = 650 and Rλ = 1000. For Sc = 1, the

data for Rλ = 650 and 1000 overlap almost perfectly with each other, indicating a very

robust scaling with the Richardson constant being 0.55, a little lower than the value 0.56

for Sc = 0.125.

For backward dispersion, convergence towards Richardson scaling is not as strong as

forward, especially at Sc = 1, but nevertheless still clearly evident. For Sc = 0.125, as Rλ

increases from 390 to 1000, there is a clear trend with plateaus at 1.41, 1.55 and 1.57. For

Sc = 1, the plateaus tend to be defined by the decreasing trends in the peak values with
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decreasing r̃0, towards coincident values for r̃0/η = 2 and 4, rather than as an extended

plateau for any one value of r̃0. These coincident values are 1.32, 1.50 and 1.53 for Rλ = 390,

650 and 1000 respectively.

While figure 5.5 shows the Reynolds number dependence at fixed Schmidt numbers, it is

also useful to examine the Schmidt number dependence of the CLS at the highest available

Rλ, including the case of Sc = ∞ (where we used fluid particle results given in Chapter 4.

Figure 5.6 shows such data at Rλ = 1000 for Sc = 0.125, 1 and ∞. For forward dispersion

(left frame), curves for Sc = 1 and ∞ essentially coincide at a plateau at height 0.55, a

little lower than the plateau at 0.56 for Sc = 0.125. This suggests the Richardson’s constant

inferred here is well-converged with respect to Sc even if a weak decrease with Sc may still

persist. For the backward case (right frame), dependence on Sc is more visible, with curves

for Sc = 0.125 plateauing at 1.57, which is slightly above the value 1.53 for Sc = 1. For

Sc = ∞, the trends with both r̃0/η and Rλ suggest a best estimate of 1.5 for the backward

Richardson constant. This value corresponds to the short plateau for r̃0/η = 8 in figure

5.6. This again suggests that an even higher Rλ is required to reach the asymptotic state

for backward dispersion, at which the backward Richardson constant would also become

independent of Sc.

A summary of our estimates for both forward and backward Richardson constants is

given in Table 6.1. There are systematic trends with respect to both Schmidt number and

Reynolds number and clear convergence with both increasing Sc at fixed Rλ and vice versa.

The trends are also consistent with the work of Eyink (2011), who estimated the forward

and backward constants to be 0.64 and 1.35 respectively using DNS results on stochastic

tracers with zero initial separation for Sc = 1 at Rλ = 433; and that of Benveniste & Drivas

(2014) who reported the backward constant to be 1.33 using the same database as Eyink

(2011). Thus, the overall conclusion is that both Schmidt number and Reynolds number

effects on the value of Richardson’s constant (forward and backward) are weak, and that

the values inferred here are consistent with those reported earlier for fluid particles (0.55

and 1.5 for forward and backward respectively, as shown in table 6.1 for Sc = ∞).

The general appearance of figures 5.5 and 5.6 bears several similarities to our analysis
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of Richardson scaling for fluid particles in Chapter 4. However, the scaling for molecules

appears to be more robust. One possible explanation is that as a pair of molecules moves

under the combined effects of turbulence and molecular diffusion, its memory of initial

separation is lost faster than for fluid particles. If the Schmidt number is not too low,

this effect may result in an early onset of a wider inertial range, with a wider plateau.

While Sc ∼ O(1), produces a more robust Richardson scaling, for Sc ≪ 1 molecular

diffusion may be so strong that the nature of dispersion becomes increasingly similar to

pure Brownian motion, which deviates strongly from inertial range scaling. A complete

absence of Richardson scaling is indeed found for our CLS data at Sc = 0.01 and 0.001

(not shown), although at higher Reynolds number this behavior would require increasingly

lower Schmidt numbers.

The results of §5.4 and §5.5 have provided reliable information on one- and two-molecule

statistics over a Reynolds and Schmidt number range considerably wider than previously

reported in the literature. In the next section we use these results to address turbulent

mixing in a Lagrangian frame.

5.6 Lagrangian Description of Scalar Mixing

In this section, we use the results for displacement statistics given in earlier sections to de-

rive scalar field statistics from a Lagrangian perspective. Comparisons with Eulerian results

are made only for Sc = 0.125 and 1 since higher or lower Sc require more computational

resources. As derived earlier in §5.2, the scalar production and dissipation can be written

in terms of displacement statistics for single molecules and pairs of molecules, as given by

(5.31) and (5.30) respectively. However, both of these expressions involve numerical differ-

entiation and subtraction between terms which may be very close to each other, especially

for moderate and low Sc. To avoid numerical inaccuracies caused by these issues we derive

alternative formulas in Appendix B. The formulas then we actually use to compute the

scalar production and dissipation terms are

P (t) =
2

3
G2〈Y m

i (t)ui〉 , (5.37)

χ(t) =
1

3
G2〈ri(0)u(r)

i (0)|r̃0(t) → 0〉 , (5.38)
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where ui is the fluid velocity at the molecular position and u
(r)
i is the relative fluid velocity

between two molecules. In addition, stationarity allows us to replace (5.38) by

χ(t) =
1

3
G2〈ri(t′)u(r)

i (t′)|r̃0(T ) → 0〉 , (5.39)

where t′ = T−t and conditioning on properties at the fixed final time (T ) of the simulations

is more readily implemented. However, as seen later, (5.31) and (5.30) are still useful from

a theoretical perspective.

Figure 5.7 shows results for the scalar production normalized in the form P/G2ν, for

Sc = 1/8 and 1, as the Reynolds number is varied from 140 to 1000. Excellent agreement is

observed between Lagrangian results (calculated from (5.31) and (5.37)) and the Eulerian

result (dotted black lines) P = −2〈uφ〉 · ∇Φ (§5.3), which is ensemble averaged over mean

gradients aligned with each of the three coordinate axes. The normalization chosen allows

the small-time results to be written wholly in terms of t/tη , Rλ and Sc. In particular, for

small times, substituting (5.8) in (5.31) gives the Lagrangian result as

P

G2ν
=

2Rλ√
15

t

tη
− 1

3Sc

(
t

tη

)2

, (5.40)

which clearly supports a leading slope 1 behavior for Sc = 1/8 and 1 in the figure, with

a direct dependence on Rλ which is also clearly seen. In the Eulerian frame, with φ =

0 everywhere as initial conditions, at small times ∂φ/∂t = −u · ∇Φ from (5.28), which

implies the scalar fluctuations and hence production term grow linearly with time, at a rate

consistent with (5.40).

At large times, a stationary state is expected as production and dissipation become

balanced by each other (Overholt & Pope 1996). Substitution of (5.10) in (5.31) gives the

Lagrangian result as

P

G2ν
= 2σ2

uTm/ν , for t≫ Tm , (5.41)

which becomes a constant, consistent with stationarity. Agreement between Lagrangian

and Eulerian results is also verified by using (5.27) with σ2
uTm approaching κt. The time

taken to reach a stationary state, if measured in tη, is seen to be longer as the Reynolds

number increases. This is expected, since approach to stationary state is determined by the
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large scale motions, whose time scale increases with respect to tη as the Reynolds number

increases.

As noted earlier (§5.2.3 and §5.5) statistics for pairs with zero backward initial separation

are not available: i.e., the limiting condition r̃0(T ) → 0 written above cannot be exactly

attained. Thus we are interested in the quantity

χ̃(r̃0) =
1

6
G2 d

dt
〈ri(t)ri(t)|r̃0(T )〉 − 2G2κ . (5.42)

which effectively provides a Lagrangian estimate of χ based on results at a finite nonzero

r̃0(T ) approaching zero, but not exactly equal to zero. Figure 5.8 shows non-dimensionalized

χ̃(r̃0) for r̃0/η = 1/4 to 4 at Sc = 1, along with corresponding Eulerian result, for Rλ ranging

from 140 to 1000. It can be seen that as r̃0 becomes smaller, χ̃(r̃0) approaches the Eulerian

result χ, with lines in red virtually coinciding with the black dashed lines. At large times

all lines shown converge towards

χ̃

G2ν
= 2σ2

uTm/ν , for t≫ Tm , (5.43)

which can be obtained by noting that the mean-squared relative displacement in (5.30)

becomes twice the one-molecule mean-squared displacement used to obtain the scalar pro-

duction term. To understand the convergence of results in the limit of r̃0 → 0 we can

consider theoretical results on χ̃(r̃0) at small times, If we consider pairs of very small sep-

aration only, i.e., r̃0 ≪ η, we can obtain the time derivative in (5.42) by differentiating

(the backward version of, with a change in sign in the ballistic t3 term) (5.18). The result,

non-dimensionalized in the same manner as the production term, is

χ̃(r̃0)

G2ν
=

〈
r20
〉

η2

[
1

9

(
t

tη

)
+

7

36

Sǫ√
15

(
t

tη

)2
]

+
2

3Sc

(
t

tη

)2

. (5.44)

where
〈
r20
〉

is the average over all initial separations in the bin centered on r̃0. This expres-

sion has a strong dependence on r̃0 which is (to leading order) linear in time, while the last

term, scaling as t2, is the true scalar dissipation in the limit of r̃0 → 0. A short dotted line

of slope 2 drawn between t/tη from 0.1 to 1 confirms excellent agreement with the data at

small times in figure 5.8. For a given Sc and Rλ, the relative magnitude of first bracket can
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be controlled by choosing a sufficiently small r0. In figure 5.8 it can be seen that, at small

times, r̃0/η = 1/4 is sufficiently small to obtain very close agreement with the Eulerian

result (which becomes (2/3Sc)(t/tη)2).

As noted earlier, one advantage of the Lagrangian approach adopted here is that it is

able to provide results on the statistics of scalar field when Sc is far from unity more easily

than in the Eulerian frame. In figure 5.9 we show results for χ̃(r̃0) for various r̃0 at one

very low value (0.01) and one very high value (100) of Sc, at the highest Rλ (390) for which

we have such data available. Both are clearly quite distinct from the case of Sc = 1 at the

same Rλ, which is already shown in the center panel of figure 5.8.

For Sc = 0.01, we can see that curves for all r̃0/η almost completely overlap, since

molecular diffusion effects are so strong that the effect of r̃0 is almost negligible. The

discrepancy between the DNS data lines and the Saffman limit (which has slope 2 in this

figure) is because the observation times t do not satisfy the condition t/tη ≪ Sc = 0.01. We

see though that the results are trending towards the Saffman limit with decreasing time.

A substantial contrast for Sc = 100 is evident in frame (b) of figure 5.9, where the r̃0

dependence is very strong. While the data at small times agree very well with (5.44), in this

case well-sampled results for r̃0 substantially smaller than η/4 are necessary to approximate

the limiting case r̃0 → 0 well. This is a challenging requirement, since a substantial increase

in the number of pairs of small separation can be achieved only by tracking a much larger

population of molecules. The need for more samples will also grow with increasing Reynolds

number, such that a satisfactory convergence to r̃0 → 0 at high Sc and high Rλ would

be almost impossible to achieve in practice. However, χ̃(r̃0/η = 1/4) provides a better

estimate for the dissipation at larger times, and particularly for the stationary state, as the

dependence on r̃0 weakens and eventually vanishes.

In (5.41 and 5.43), it has been already noted that in the large time limit, both the

production and dissipation approach 2σ2
uTm/ν under the normalization used above. A

semi-empirical estimate of this dimensionless quantity can be made by writing it in terms
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of the Reynolds number and several time scales in turbulence, as

2σ2
uTm/ν = 2

Rλ
2

15

TL

TE

Tm

TL
, (5.45)

where the Eulerian large-eddy timescale TE = σ2
u/〈ǫ〉, and for Rλ ≥ 140 the ratio of the

Lagrangian to Eulerian timescales is TL/TE = 2/C̃0, with C̃0 ≈ 6.5 (Sawford et al. 2008).

Thus we have the result

P

G2ν
=

χ

G2ν
≈ 0.041 Rλ

2 Tm

TL
, (5.46)

where the ratio Tm/TL has (as in table 5.2) a very weak dependence on Sc at large Rλ.

It is worth recapitulating that, to leading order and in the limit of vanishing back-

ward initial separation, the rate of production of scalar fluctuations is initially indepen-

dent of Sc according to (5.40) whereas the rate of dissipation is initially independent of

Reynolds number according to (5.44). Figure 5.10 shows the evolution of both produc-

tion and χ̃(r̃0/η = 1/4), our Lagrangian approximation to the scalar dissipation, as they

eventually approach the same large-time limit represented by (5.46) The behavior at small

times is exactly as expected from (5.40) and (5.44) . At large times, for Rλ = 140, both

scalar production and dissipation approach the same stationary state, although the curves

for Sc = 0.01 are distinctively lower than that of Sc & 1. However at Rλ = 390, we observe

that all Sc cases nearly overlap at large times, since for the same Sc, Tm/TL is closer to

unity for Rλ = 390 compared to Rλ = 140. This observation that in the stationary state

the scalar dissipation becomes independent of Sc with increasing Rλ, which in this case

is derived from Lagrangian displacement statistics of molecules, is a manifestation of, and

is consistent with and the same as the corresponding Eulerian understanding of the scalar

dissipation anomaly (Donzis et al. 2005) and is evidence for so-called “spontaneous stochas-

ticity” (Eyink 2011; Bernard et al. 1998). As a consequence, in the large Reynolds number

limit fluid particles can be used in place of molecules to calculate scalar statistics on scales

outside the dissipation sub-range.

Finally we examine the evolution of the non-dimensional scalar time scale, in the form

of the ratio of the scalar field time scale, 〈φ2〉/〈χ〉 to the turbulence time scale K/〈ǫ〉,

where K = 3
2σ

2
u is the turbulence kinetic energy. At small times, from (5.25) we have

114



〈φ2〉 ≈ σ2
ut

2G2, while from (5.44) in the limit r̃0 → 0 we have 〈χ〉 ≈ 2
3Sc

−1(t2/t2η)G
2ν. This

readily leads to

〈φ2〉/〈χ〉
K/〈ǫ〉 = Sc , for t→ 0 . (5.47)

Data for the non-dimensional scalar time scale in the large-time stationary limit in

DNS have been examined by Borgas et al. (2004) (for Sc ≥ 1) and Donzis et al. (2005) (for

Sc ≥ 1/8). Both present semi-empirical results, based on integration of the scalar spectrum,

describing the dependence of the timescale on Reynolds number and Schmidt number. For

Sc = 1 the result given by Borgas et al. (2004) is simpler (and is found to fit the data

slightly better). It is of the form

〈φ2〉/〈χ〉
K/〈ǫ〉 = a+ bR−1

λ , (5.48)

where values a = 0.41 and b = 4.33 represent the DNS data well. Clearly (5.48) breaks

down for Rλ = 0, but we are mostly interested in the large Reynolds number limit. For

Sc≫ 1 both groups propose a correction logarithmic in Schmidt number, which arises from

the Batchelor k−1 spectrum (Batchelor 1959), so that (5.48) becomes

〈φ2〉/〈χ〉
K/〈ǫ〉 = a+ bR−1

λ +
5
√

15

3
BφR

−1
λ lnSc , (5.49)

where Bφ ≈ 5 (Borgas et al. 2004; Donzis et al. 2010) is the Batchelor constant. For Sc≪ 1,

Donzis et al. (2005) propose an inverse square-root correction, so in this case (5.48) becomes

〈φ2〉/〈χ〉
K/〈ǫ〉 = a+ bR−1

λ − cR−1
λ Sc−1/2 . (5.50)

Here we take c = 1.25. The data used in developing these semi-empirical relations were

averaged over an extended time period of several eddy-turnover times in a stationary state,

whereas the present data are time series subject to significant sampling variation, partic-

ularly at low Reynolds number. In order to smooth out these variations, we have fitted

suitable functions, typically an exponential decay with a linear correction, to the data.

These functions have been constrained to satisfy the small time limit (5.47) and the sta-

tionary limits (5.48) – (5.50). The left panel of figure 5.11 shows the result of such a fit to

Eulerian time series for Sc = 1/8 and Sc = 1 at Rλ = 140. Given the variation, particularly
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at large times, the fitted functions are good representations of the data. The sampling vari-

ation decreases, and the fits improve, with increasing Reynolds number. The center panel

shows the fitted functions for Rλ = 140−650. There are two points to note. Firstly, at small

times, the timescale is directly proportional to Sc even in the large Reynolds number limit,

so molecular diffusion can never be neglected. Secondly, in the stationary state for fixed Sc,

the timescale becomes independent of Sc with increasing Reynolds number. This is again

a manifestation of the scalar dissipation anomaly. These findings are confirmation of the

small and large time predictions presented above. Finally, the third panel shows results as a

function of Sc at Rλ = 140. In this case we show Lagrangian results for r̃0/η = 1/4, which

approximate the dissipation rate and hence the scalar timescale, since our Eulerian results

do not cover a wide range of Sc. We see that at small times our results, shown as the dashed

lines, deviate from the limit (5.47) because r̃0/η = 1/4 is not small enough. Nevertheless,

we have again been able to use suitable functional forms, shown as the solid lines, to fit

our data and interpolate to the small-time limit. In this case of fixed Reynolds number, we

see that with increasing Sc, the timescale stationary limit increases in agreement with the

logarithmic dependence in (5.49). Thus in agreement with the theory developed in Borgas

et al. (2004) and Donzis et al. (2005), our data show that the limit κ → 0 is a singular.

For Rλ → ∞ at finite Sc the scalar dissipation and the scalar timescale are independent

of molecular diffusion. On the other hand for Sc → ∞ at finite Rλ, the scalar dissipation

vanishes and the scalar timescale diverges.

5.7 Summary

Statistics of the trajectories of diffusing molecules undergoing Brownian motion relative to

the fluid are important in a Lagrangian description of turbulent mixing, but not readily

available in the literature. In this chapter, we have addressed several extensions to classical

theory and have reported results on molecular dispersion at Schmidt numbers (Sc) ranging

from 0.001 to 1000, in direct numerical simulations of stationary isotropic turbulence at

Taylor-scaled Reynolds numbers (Rλ) 140 to 1000. Statistics of molecular pairs followed

both forwards and backwards in time are obtained using a postprocessing approach which is
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adapted for massively parallel computation with a large sample of size (of order 1013 pairs).

Our two main objectives are to understand how the statistics of molecules (singly and in

pairs) at different temporal regimes depend on Rλ and Sc, and to relate these statistics to

Eulerian results for a passive scalar driven by a uniform mean gradient (which, compared

to the Lagrangian approach adopted here, are less readily obtained if Sc≪ 1 or Sc≫ 1).

As Saffman (1960) showed, the mean-squared displacement of a single molecule is the

sum of a double integral of the autocorrelation of fluid velocity along the molecular tra-

jectory (called the substance autocorrelation, ρm(τ)) and a direct diffusion term which is

linear in time. In general, as Sc decreases, ρm(τ) decreases more rapidly with time lag τ ,

resulting in a molecular integral time scale (Tm) which for any finite Sc is smaller than the

Lagrangian velocity integral time scale (TL). However this departure from fluid particle

behavior, and correspondingly the effect of molecular diffusion on one-molecule statistics,

is substantial only for Sc≪ 1, and also becomes weak at high Rλ with Sc fixed. Very good

agreement is obtained with the theoretical predictions of Saffman (1960) except for scaling

of Tm/TL at low Sc.

For two-molecule statistics, we are able to extend a theoretical result of Saffman (1960)

from the case of initially coincident pairs to pairs of finite initial separation. Excellent

agreement is obtained between DNS and theory in the ballistic and diffusive limits. At

intermediate times both forward and backward dispersion show clear signs of Richardson’s

t3 scaling, with the backward Richardson constant being larger, as expected from the results

on fluid particle pairs. As a result of the Brownian motion molecular pairs separate and lose

memory of their initial separation faster, which appears to lead to more robust Richardson

scaling for molecules compared to fluid particles. However if molecular diffusion is very

strong (when Reynolds number is not large and Sc is very low), no scaling is observed.

Our data suggest the forward and backward Richardson constants to be about 0.55 and 1.5

respectively for large Sc and large Rλ, which is in good agreement with the limited data

in the literature. An observed weak dependence on Sc implies a Reynolds number higher

than those in this work is required to reach the asymptotic behavior independent of Sc.
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The connection between molecular displacements and passive scalar statistics in turbu-

lent mixing is well known in theory but in practice rarely demonstrated explicitly. For the

case of a scalar field generated by a uniform mean gradient we are able to relate numerical

results on one and two-molecule statistics to Eulerian results which are more restricted

in the range of Schmidt numbers accessible in DNS without much greater computational

cost. The rate of production of scalar fluctuations inferred from one-molecule mean-squared

displacement is seen to be in excellent agreement with Eulerian DNS results. The scalar

dissipation requires the consideration of initially coincident backward trajectories of molec-

ular pairs. However for Sc ∼ O(1), pairs initially about 1/4 of a Kolmogorov length scale

(η) apart appear to give adequate results. In the case of Sc ≪ 1 a close correspondence is

also possible but can be clearly observed only at smaller times than were recorded in our

DNS. In the opposite limit of Sc≫ 1, a similar degree of agreement requires good sampling

of backward pairs that are initially much closer than a distance of η/4 and correspondingly

a much larger population of molecules tracked in the simulations.

Our results confirm that molecular diffusion cannot be neglected at small times where

the scalar dissipation depends directly on Sc. At large times our results show that both the

scalar dissipation rate and the scalar timescale become independent of Sc for fixed Sc in

the large Reynolds number limit. This is a manifestation of the scalar dissipation anomaly

(Donzis et al. 2005) and is evidence for so-called “spontaneous stochasticity” (Eyink 2011;

Bernard et al. 1998). On the other hand, for fixed Reynolds number, in the limit of large

Sc the scalar dissipation rate vanishes and the scalar timescale diverges. Thus, the limit

κ → 0 is singular. As a consequence of the scalar dissipation anomaly and spontaneous

stochasticity, in the large Reynolds number limit fluid particles can be used in place of

molecules to calculate scalar statistics on scales outside the dissipation sub-range.

In conclusion, we stress that the effects of molecular diffusion, which are often ne-

glected in Lagrangian models of turbulent transport, have many interesting facets which

may become prominent under a combination of conditions such as early times, small initial

separations, and low Schmidt numbers. The analysis of molecular trajectories especially in

a backwards-in-time reference frame as validated in this work can potentially provide useful
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answers for the mixing of a passive scalar at Schmidt numbers beyond those readily accessi-

ble in an Eulerian framework. We have focused on first and second moments. Higher-order

moments require the study of multi-molecular clusters such as tetrads of various initial sizes

and shapes.
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Table 5.1: Parameters of the simulations performed: the Taylor-scale Reynolds number
(Rλ) , number of grid points (N3), the mean dissipation rate (〈ǫ〉), the kinematic viscosity
(ν), the ratio of Lagrangian integral time scale (TL) to Kolmogorov time scale (tη), output
time interval (h) in Kolmogorov scales, time span of simulation (T ) in integral time scales,
the number of molecules (P ) tracked for each value of Schmidt number (Sc) and the values
of Sc computed for each case in both the Lagrangian (Lag) and the Eulerian (Eul) part.
Sc = ∞ corresponds to fluid particles.

Rλ 140 240 390 650 1000
N3 2563 5123 10243 20483 40963

〈ǫ〉 1.32 1.27 1.27 1.42 1.44
ν 0.0028 0.0011 0.000437 0.0001732 0.00006873
TL/tη 13.5 23.0 36.1 54.0 79.4
h/tη 0.174 0.172 0.177 0.172 0.174
T/TL 10.3 9.55 4.76 1.94 1.86
P 4,194,304 4,194,304 16,777,216 33,554,432 50,331,648
Sc (Lag) 10−3, 0.01, 0.125,

1, 8, 100, 103, ∞
10−3, 0.125, 1,
8, 103, ∞

0.01, 0.125, 1,
100, ∞

0.125, 1, ∞ 0.125, 1, ∞

Sc (Eul) 0.125, 1 0.125, 1 0.125, 1 0.125, 1 1
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Figure 5.1: Substance auto-correlation, (a) as a function of non-dimensional time lag (τ/tη)
for Rλ = 140 and, bottom to top, for Sc = 0.001 (red), 0.01 (green), 0.125 (blue), 1 (cyan),
8 (magenta); data for Sc = 100 and 1000 are almost indistinguishable from Sc = ∞ (black).
The inset shows 1 − ρm on log-log scales with Sc increasing downwards, with dotted and
dashed lines, indicating slopes 1 and 2 respectively; (b) versus time lag scaled by TL, for
Sc = 0.01 (solid) and ∞ (dashed), at Rλ = 140 (red) (lower lines) and 390 (blue) (upper
lines).
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Table 5.2: Lagrangian integral time scale for molecular trajectories

Rλ/Sc 0.001 0.01 0.125 1 8 100 1000
140 0.2074 0.7199 0.9568 0.9921 0.9989 0.9997 0.9999
240 0.3770 0.9848 0.9974 0.9992 0.9999
390 0.9408 0.9943 0.9992 1.000
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Figure 5.2: (a) Single molecule Kolmogorov-scaled mean-square displacement at Rλ = 140,
for Sc = 0.001 (red), 0.01 (green), 0.125 (blue), 1 (cyan), 8 (magenta), 100 (orange) and 1000
(black) increasing from top to bottom (the last three cases being virtually indistinguishable).
Dashed color lines are corresponding small time results given by (5.8). Dotted black lines are
for slopes 1 and 2. (b) Negative of interaction term given by (5.5), scaled by Kolmogorov
variables, for Rλ = 140 and Sc = 0.001, 0.01, 0.125, 1 and 8 (same colors as in (a)),
increasing from top to bottom. Dashed color lines represent Saffman’s small-time results
given by (5.9).
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Figure 5.3: Variation of molecular integral time scale with respect to Lagrangian time scale
as a function of Sc for Rλ = 140 (circle, in red), 240 (triangle, in green) and 390 (square, in
blue). Open and closed symbols represent estimates based on the substance autocorrelation
and the interaction term respectively. Dashed lines at slope −1.
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Figure 5.4: Compensated mean-square relative displacement of molecule pairs as a function
of forward time (solid lines, in red) and backward time (dashed lines, in blue), scaled by
Kolmogorov variables, at Rλ = 140 for Sc = 0.01 (left), 1 (center), 100 (right). Green
dashed lines represent the Saffman t3 small-time limit. Values of r̃0/η (1/4, 1, 4, 16, 64)
increase from bottom to top. (In (a) lines for r̃0/η = 1/4 and 1 are virtually indistinguish-
able whereas in (b) the r̃0/η = 1/4 data coincide with the green dashed line at small times.)
Black dotted lines indicate slope of 2.
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t/t0 t/t0

CLS

CLS

Figure 5.5: Forward (left) and backward (right) cubed-local slope (CLS) of mean-square
separation, defined by (5.36), at Rλ = 390 (dotted), 650 (dashed) and 1000 (solid) for
Sc = 0.125 (top row) and 1 (bottom row). Initial separations are r̃0/η = 2 (red), 4 (green),
8 (blue) and 16 (black). Horizontal dotted lines drawn for reference at the heights: 0.56
(forward) and 1.57 (backward) for Sc = 0.125; 0.55 (forward) and 1.53 (backward) for
Sc = 1.
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t/t0 t/t0

CLS

Figure 5.6: Forward (left) and backward (right) cubed-local slope (CLS) at Rλ = 1000
for Sc = 0.125 (solid), 1 (dashed) and ∞ (dotted). Same initial separations as figure 5.5.
Horizontal dotted lines drawn for reference at the heights: 0.55 and 0.56 for forward; 1.53
and 1.57 for backward.
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Table 5.3: Forward and backward Richardson constants as estimated from the cubed-local
slope plots for various Rλ and Sc. Data for Sc = ∞ same as that reported in Chapter 4.

Forward Backward

Rλ/Sc 0.125 1 ∞ Rλ/Sc 0.125 1 ∞
390 0.59 0.57 390 1.41 1.32
650 0.56 0.55 650 1.55 1.50
1000 0.56 0.55 0.55 1000 1.57 1.53 1.50
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Figure 5.7: Non-dimensional scalar production as obtained from Lagrangian (solid lines)
and Eulerian (dotted black lines) approaches, at Rλ = 140 (red), 240 (green), 390 (blue),
650 (cyan) and 1000 (magenta), increasing from bottom to top. Frames (a) and (b) show
data for Sc = 1/8 and 1 respectively. Eulerian result at Rλ = 1000 only for Sc = 1.
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Figure 5.8: Lagrangian estimates of χ̃(r̃0) at Sc = 1 and Rλ = 140, 390 and 1000 (from left
to right), for r̃0/η = 1/4 (red), 1/2 (green), 1 (blue), 2 (cyan) and 4 (magenta) (increasing
from bottom to top at small times). The scalar dissipation is given by χ̃(r̃0 = 0). Dashed
black line is the corresponding Eulerian result for the scalar dissipation (which is virtually
coincident with Lagrangian data for χ̃ at r̃0/η = 1/4). A short dotted black line restricted
to small times represents (5.44) with r̃0/η = 1/4.
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Figure 5.9: Same as figure 5.8, but for Rλ = 390 at (a) Sc = 0.01 and (b) Sc = 100. In each
frame the black dotted line represents (5.44) while the dashed line represents the Saffman’s
term in the same equation with r̃0 = 0.
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Figure 5.10: Evolution of normalized rates of production (left) and the quantity χ̃(r̃0/η =
1/4) (right) computed from molecular statistics for Rλ 140 (solid lines) and 390 (dashed
lines), at Sc = 0.01 (red), 1 (green) and 100 (blue), For production the lines for Sc = 1 and
100 are virtually indistinguishable. Horizontal black dotted lines drawn for comparison are
at heights 0.041 Rλ

2.
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Figure 5.11: Evolution of the ratio of scalar to mechanical time scales. The dashed lines
in (a) represent Eulerian data for Sc = 1/8 (lower curve) and Sc = 1 (upper curve).
The corresponding solid lines are smoothing functions satisfying the small and large time
limits (6.11)-(6.14). Panel (b) shows these smoothing functions (dashed and solid curves
are for Sc = 1/8 and 1 respectively) from fits to data at Rλ = 140 (red), 240 (blue), 390
(magenta) and 650 (cyan) (bottom to top at small times). The dashed lines in panel (c)
show Lagrangian data (for r̃0/η = 1/4) at Rλ = 140 for Sc = 0.01 (black), 0.125 (blue), 1
(cyan) , 8 (green), 100 (red) and 1000 (magenta) (bottom to top). The corresponding solid
lines are smoothing functions interpolated to the small-time limit (6.11).
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CHAPTER VI

BACKWARD DISPERSION OF MULTI-PARTICLE CLUSTERS

6.1 Introduction

While the study of particle (and molecule) pairs is critical in understanding the process of

dispersion and mixing, in order to understand the geometrical effects of turbulence, we need

to consider clusters of three and four particles. As noted earlier, the n-th moment of the

concentration field is in general, determined by the displacement statistics of a n-particle

cluster, more specifically in a backward reference frame. Thus in order to predict say the

third and fourth order moments of the concentration field, it is important to consider the

collective motions of three (triangles) and four (tetrads) particles or molecules. The study

of tetrads is of special interest (Pumir et al. 2000; Biferale et al. 2005; Luthi et al. 2007;

Hackl et al. 2011), since it is the minimum configuration which allows a volume to be defined

and hence contains a rich amount of shape information in 3D space. However, backward

statistics of tetrads are even more difficult to obtain compared to that of pairs. Recently,

Jucha et al. (2014) reported backward statistics for tetrads of fluid particles. But the time

of observation in their work was very short and restricted to ballistic range and hence no

inertial range characteristics were reported. To our best knowledge no other study has

reported backward statistics of tetrads. As a result, it is useful to extend the current work

to also investigate the backward in time evolution of these multi-particle clusters.

We begin by providing the theoretical background for study of multi-particle clusters,

with references to previous work in the forward tracking framework. Then some basic results

for tetrads are provided.

6.2 Theory

In general we consider a cluster of n particles located at instantaneous positions: x(1),

x(2),..., x(n), at time t (Hackl et al. 2011). To derive measures of cluster size, it is useful to

consider a hierarchy of transformed variables, for each 1 ≤ m ≤ n− 1, which expresses the
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position of (m+ 1)th particle relative to the center of mass of the first m particles. This

defines a set of reduced separation vectors, of the form

r(m) =

√
m

m+ 1

(
x(m+1) − 1

m

m∑

i=1

x(i)

)
, (6.1)

where the coefficients have been chosen such that each r(m) would have the same variance

as the position vector of a single particle, if all position vectors involved were independent.

Using these reduced separation vectors, we can define a 3 × (n − 1) matrix G, with each

column of G being one of the n − 1 separation vectors as defined in (6.1). We can further

form two tensors from G: G = GGT , which is the moment of inertia tensor, and C = GTG,

which is the dispersion tensor. It can be shown that both G and C, have the same non-zero

and non-negative eigenvalues, which are arranged in descending order as g1 ≥ g2... ≥ gn−1

(Hackl et al. 2011).

A fully rigorous specification of the geometry of an n-particle cluster can be made

using the so-called Euler parametrization (Shraiman & Siggia 1998). This consists of the

min(3, n − 1) eigenvalues of the tensor G (or C) defined above and (n − 1)(n − 2)/2 Euler

angles which define rotation in (n−1)- dimensional pseudo-space (while rotations in physical

space merely determine the orientation of the cluster). For tetrads (n = 4) we get three

Euler angles, which make their use very difficult and hence we focus primarily on the role

of three eigenvalues g1, g2 and g3. However for triangles (n = 3), there is only one Euler

angle and two eigenvalues, which are easier to characterize.

The sum of min(3, n − 1) eigenvalues, or equivalently the trace of G, gives the square

of the gyration radius (R) of the cluster, which is also related to the sum of squares of

separation distances of all particles involved, i.e.,

R2 =

n−1∑

α=1

gα = Tr(G) =

n−1∑

m=1

|r(m)|2 =
1

2n

n∑

l,m=1

|x(l) − x(m)|2 . (6.2)

The sum of the eigenvalues represents the size of the clusters, while their ratios, i.e.,

Iα = gα/R
2 , (α = 1, 2, ...., n − 1) (6.3)

give useful information about the cluster shape (and by definition sum to unity).
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For the case of tetrads, with n = 4, the reduced separation vectors are given as (Chertkov

et al. 1999)

r(1) =
(
x(2) − x(1)

)
/
√

2 (6.4)

r(2) =
(
2x(3) − x(2) − x(1)

)
/
√

6 (6.5)

r(3) =
(
3x(3) − x(3) − x(2) − x(1)

)
/
√

12 . (6.6)

We can obtain the corresponding volume (regardless of the ordering of particles) as

V =
1

6

∣∣∣
(
x(2) − x(1)

)
·
[(

x(3) − x(1)
)
×
(
x(3) − x(1)

)]∣∣∣ , (6.7)

which is also related to the determinant of the matrix G

V =
1

3
(g1g2g3)

1/2 . (6.8)

The interpretation of cluster volume is subject to the caveat that for sheet-like structure,

its volume can approach zero even though the particles in the tetrads may be spreading

apart from each other. However, the dimensionless parameter defined as

Λ = V 2/3/R2 , (6.9)

is a convenient measure of the shape, as it varies between 0 for sheet like tetrads of all

four particles lying on a plane, to a maximum of 3−5/3 = 0.16025 in the case of a regular

tetrahedron with all sides equal and g1 = g2 = g3 (Hackl et al. 2011). This result follows

from the standard inequality between arithmetic and geometric means, i.e., (g1+g2+g3)/3 ≥

(g1g2g3)
1/3. It is also related to the shape factors (as defined in (6.3)) as

Λ = V 2/3/R2 = 3−2/3(I1I2I3)
1/3 , (6.10)

which shows its usefulness, in condensing the information on cluster shape. An important

point to note is that of I1, I2, I3 and Λ, only two are independent, as the knowledge of any

two completely determines all four of them. There are three limiting cases corresponding

to (1) I3 = 0 (I1 + I2 = 0), which gives sheet like tetrads, (2) I1 = I2 > I3, which gives

pancake-shaped tetrads, and (3) I1 = 1 with I2 = I3 = 0, which gives needle-shape tetrads.
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The case of n = 3 corresponds to triangles, with no volume and just the first two

reduced separation vectors. The third eigenvalue g3 is always identically zero and the

radius of gyration is simply give by R2 = g1 + g2. This also gives I3 ≡ 0 and I1 + I2 = 1.

An important parameter for triangles is the ratio of its area A to the square of the gyration

radius, which is a direct measure of the aspect ratio (Castiglione & Pumir 2001). Following

Shraiman & Siggia (1998), we define the aspect ratio w as

w =
4A√
3R2

, (6.11)

where the numerical factors are chosen such that w always lies between 0 (for collinear

points) and 1 (for equilateral triangles). Both I1 and I2 are directly related to w as

I1 =
1

2

(
1 +

√
1 − w2

)
, (6.12)

I2 =
1

2

(
1 −

√
1 − w2

)
. (6.13)

The aspect ratio w along with one Euler angle χ defined as

χ =
1

2
arctan

(
2r(1) · r(2)

|r(2)|2 − |r(1)|2

)
, (6.14)

fully specifies the two degrees of freedom in the shape of the triangle. The Euler angle

χ expresses the orientation of the principal axes in the vector space spanned by r(1) and

r(2). While the value of χ depends on the ordering of the vertices, one can always define an

unique ordering which will result in χ between 0 and π/6. For an equilateral triangle, χ is

undefined since both the numerator and the denominator in (6.14) vanishes. Both extremes

of 0 and π/6 occur for isosceles triangles, with χ = 0 for triangles with two equal sides much

greater than the third side and χ = π/6 for triangles with two equal sides shorter than the

third side. While I1, I2 and w are easily interpreted as measures of aspect ratio (note only

one of them is independent), χ can be interpreted as a measure of symmetry as reflected in

deviation from an isosceles shape.

6.3 Simulation parameters and database

To obtain the statistics of triangles and tetrads, we use the same database as used for particle

pairs in Chapter 4. Thus the simulation parameters and database are the same as given
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by table 4.1. Both the forward and backward statistics are obtained by the postprocessing

approach described in § 3.3. However, the number of samples for tetrads (and triangles) for

the same bin is significantly less compared to pairs, since now the conditioning requires all

six sides to satisfy the same condition (and three for triangles). As a result, the smallest

well sampled bin for tetrads is at a larger value of r0/η compared to that for pairs. The

smallest well sampled r0/η also depends on the Reynolds number (see figure 3.1 and § 3.3

for discussion). For these reasons, the results for tetrads are presented for r0/η = 8 and

upwards for Rλ = 1000, whereas for Rλ = 140 it starts from r0/η = 1. To study the inertial

range characteristics (which are most closely attained larger Reynolds number), we will

mostly focus on the results obtained for Rλ = 1000.

6.4 Statistics of cluster size

In this section, we present forward and backward statistics of tetrad size, namely, the

gyration radius (R) and the volume (V ). Similar to two particle statistics, a key objective

is the investigation of Richardson scaling at intermediate times.

Figure 6.1 shows the forward and backward time evolution of the tetrad volume, in terms

of the square root of its two-thirds moment (〈V 2/3〉1/2), scaled by Kolmogorov variables, at

the lowest and highest Reynolds number listed in table 4.1 (Rλ 140 and 1000 respectively).

The choice of the two-thirds moment is primarily motivated by the functional form of

Richardson scaling in the inertial range. Since 〈V 2/3〉 is of the same dimension as length-

squared, the corresponding inertial range relationship would be linear in 〈ǫ〉 (similar to (1.1))

and thus free of intermittency corrections. Similar to results for particle pairs, the forward

and backward volume behave similarly at small and large times, while at intermediate times,

the backward volume grows faster. At large times, the approach to diffusive limit is again

clearest for Rλ 140 simulation, which was relatively long (T ≈ 10TL) compared to the Rλ

1000 simulation (T ≈ 2.5TL).

Figure 6.2 shows the forward and backward time evolution of r.m.s. gyration radius,

〈R2〉1/2, scaled by Kolmogorov variables, under conditions similar to figure 6.1. The trends

in different temporal regimes for both forward and backward results are qualitatively similar

138



to the corresponding results for tetrad volume. However at early times, the gyration radius

starts increasing from its initial state much earlier than the tetrad volume. This suggests

that the effects of dispersion are felt more strongly on gyration radius than on volume.

This is not surprising since the tetrad volume is an ambiguous measure of size as discussed

previously. For many tetrads, even though the particles might be moving apart, the volume

can actually decrease depending on the orientation of the particles (if all particles are on

the same plane, the volume becomes zero). As a result, the average volume stays the same

for longer duration than the gyration radius. This slow growth in volume also leads to

a weaker contrast between the forward and backward result for volume compared to the

gyration radius.

Since the gyration radius is directly obtained by summing the squares of each side of

the tetrad (multiplied by the factor of 1/4), we can treat each tetrad at t = 0 as a collection

of six pairs of equal separation (since we consider regular tetrads, which by definition have

all six sides equal). Thus the temporal evolution of gyration radius can be studied simply

by multiplying the temporal evolution of mean-square displacement of particle pairs by a

factor of 3/2, i.e., 6 times the factor 1/4. Thus by using (4.3) we get

〈R2(t)〉 − 3

2
〈r20〉 =





3
2 〈DLL(r0) + 2DNN (r0))〉 t2 if t≪ max(tη, t0)

3
2g〈ǫ〉t3 if max(tη, t0) ≪ t≪ TL

18σ2
uTLt if t≫ TL ,

(6.15)

where the symbols have the same meaning as before and the term 3〈r20〉/2 on the left hand

side is the mean-square gyration radius at t = 0.

Similar to particle pairs in Chapter 4 and the forward tetrads results of Hackl et al.

(2011), the small and large time behaviors can be easily verified. We are more interested

in the intermediate time behavior, especially for backward statistics which has not been

studied before. As discussed and used before, a robust way to identify Richardson scaling

at intermediate times is to look at the so called cubed-local slope (CLS),

1

〈ǫ〉

(
d

dt

[
〈R2〉1/3

])3

(6.16)
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versus Batchelor-scaled times (t/t0). For gyration radius, if a well-defined Richardson scal-

ing range exists, then a plot of CLS should show a plateau with height equal to 3/2 times

the Richardson constant (which was obtained in Chapter 4). In figure 6.3, we show both

the forward and backward CLS data for the largest Reynolds number available in current

work (Rλ = 1000), at five values of separation distances. The smallest value starts from

r0/η = 8 for tetrads due to the sampling issues discussed before.

For the forward case, there is weak indication in this figure of Richardson scaling for

r0/η = 8 and 16, with the forward Richardson constant around 0.85. This value agrees

exactly with that of Hackl et al. (2011). For the backward case, the CLS quickly increases

to a larger value, however no clear convergence is visible. Based on the backward Richardson

constant for particle pairs (estimated as 1.5 in Chapter 4), a horizontal line at 2.25 (3/2

time 1.5) is drawn. While the curve for r0/η = 8 seems to plateau around that value at

intermediate times, the overall trend is still inconclusive. This suggests that the backward

in time gyration radius for tetrads, possibly requires even larger Reynolds number compared

to the mean-square separation of two particles to observe Richardson scaling. Even for the

forward results, the convergence towards the plateaus is much stronger for the two-particle

results. A similar analysis can be repeated for the CLS of volume. However since the

gyration radius is a more reliable measure of the size, we currently restrict ourselves to

that.

For further information of the structural aspects of tetrads, we consider the individual

eigenvalues g1 ≥ g2 ≥ g3 of the moment-of-inertia matrix, whose sum and product give

gyration radius and volume respectively. In figure 6.4, we show the forward and backward

in time evolution of all three mean eigenvalues, scaled by Kolmogorov variables for the Rλ

1000 simulation. While at small times, both forward and backward statistics are same, the

growth at intermediate times is qualitatively different.

For g1, the backward statistic grows faster as expected, but for g2 and g3 there is a brief

period where the backward statistic is less than the forward, before ultimately the backward

result starts growing faster again.
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To analyze this further, we plot the mean eigenvalues along with the mean-square gy-

ration radius for a fixed r̃0/η in figure 6.5. As it can be seen from the figure, the individual

eigenvalues in the backward frame start differing from the forward counterparts earlier than

the mean-square gyration radius. This suggests that the small time ballistic behavior of

the eigenvalues is different compared to the gyration radius. While the mean-square gyra-

tion radius grows according to (6.15) with a t2 term at small times, the ballistic behavior

of individual eigenvalues has a linear t term (Jucha et al. 2014; Hackl et al. 2011), which

cancels out for all eigenvalues when they summed up to obtain R2. This can also explain

the faster decrease for g2 and g3 in the backward frame at small times, when the linear

term dominates. However at sufficiently large times, the cubic term (with larger backward

Richardson constant) dictates the growth rate, leading to stronger backward growth.

The different behavior of different eigenvalues suggest possibly different inertial range

scaling characteristic for each eigenvalue. To understand it better, we extend the CLS

approach to the eigenvalues. If a well defined Richardson scaling exists for each eigenvalue

separately, we can define three new constants, such that, for instance, 〈g1〉 = C1〈ǫ〉t3 and

similarly for the other eigenvalues. The CLS curves will then plateau at these new constants,

whose sum C1 + C2 + C3 should be 3g/2 (since the sum the eigenvalues is equal to R2).

Figures 6.6 to 6.8 show the forward and backward CLS plots for the three eigenvalues using

the same r0/η values as figure 6.3. Since g1 is the largest contribution to R2, it is not

surprising that the CLS of g1 in figure 6.6 resembles that of R2 in figure 6.3. Both the

forward and backward CLS for g1 show the same behavior, with the plateau approximately

at 0.72 and 2.0 respectively. The forward value is once again in excellent agreement with

Hackl et al. (2011). On the other hand, the CLS curves of g2 (figure 6.7) and g3 (figure 6.8),

show better convergence with respect to different r0/η values. Although the results for g2

and g3 are noisier, both the forward and backward results show all the r0/η curves peaking

around the same value. The forward constants for g2 and g3 are estimated to be 0.12 and

0.012 respectively, which is again in excellent agreement with Hackl et al. (2011). The

backward constants for g2 and g2 are about 0.23 and 0.018. The sum C1 + C2 + C3 also is

approximately equal to 3g/2 for both the forward and backward case. The inertial range
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constants as obtained from all CLS results are summarizes in table 6.1

While the forward results presented here similar to that of Hackl et al. (2011), there is a

small difference, especially relevant at small times. In the current work, we consider regular

tetrads at t = 0 such that all sides are r0 (or rather fall in the bin around r0). However,

Hackl et al. (2011) starts from a trirectangular tetrad configuration, such that three sides

forming the right angle are r0 and other three sides are
√

2r0. This leads to g1 = g2 > g3

at t = 0. Due to this special configuration, the small time behavior of g1 and g2, and hence

also their CLS is somewhat different. However at intermediate times, once the dependence

on initial conditions is lost, regardless of any starting configuration, the same behavior is

expected.

6.5 Statistics of cluster shape

It is well known that the forward in time statistics of cluster shape show more robust

Richardson scaling than that of cluster size (Hackl et al. 2011). Naturally it is important

to understand the corresponding behavior for backward statistics. The general nature

of backward statistics of cluster size (such as gyration radius, volume, eigenvalues of the

moment-of-inertia tensor) is similar to that of two-particle backward statistics. That is,

the backward statistics of cluster size are similar to forward at small and large times but

stronger at intermediate times, such that observing backward Richardson scaling requires

even higher Reynolds number. To understand the corresponding behavior for statistics of

cluster shape, we again consider the results for tetrads.

We begin with the shape parameter Λ = V 2/3/R2. As discussed earlier, in the current

work tetrads are formed by identifying four particles such that all six sides fall within the

same bin. Since the bins chosen are sufficiently wide to ensure adequate sampling, each

individual sample obtained is almost never a regular tetrad (the samples are regular tetrads

only on an average). As a result, the initial value of Λ can vary anywhere from 0 to 0.16025.

The samples with Λ closer to 0 are essentially planar tetrads, whereas the samples closer to

0.16025 are regular tetrads. Since our aim is to consider regular tetrads, we impose another

sampling condition Λ(t = 0) ≥ 0.12. This ensures that the starting tetrads are close to
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being regular and also provides reasonable sampling (it would be nearly impossible to get

any samples of Λ exactly equal to 0.16025).

Figure 6.9 shows the forward and backward in time evolution of the mean value of

Λ in Batchelor-scaled time at Rλ 1000 for various r0/η values. Once again the forward

and backward results are similar at small times, both being dictated by ballistic behavior.

However at intermediate times, the backward 〈Λ〉 decreases faster than the forward. A

scaling regime of near constant 〈Λ〉 emerges for both forward and backward results, although

the forward curves show more robust scaling at intermediate times. The strongest scaling

for both forward and backward results is obtained for the bin r̃0/η = 16, with the plateaus

obtained at 0.045 and 0.036 for the forward and backward results respectively. This exact

value for the forward case was also reported by Hackl et al. (2011), although the current

simulation is shorter and does not show the approach towards the diffusive limit (as marked

by the dotted line at 0.0645).

While the inertial scaling for backward 〈Λ〉 is not as strong as the forward case (which

is a key feature of all backward statistics reported in current work), it is still better when

compared to the backward statistics of cluster size reported in previous section. Further-

more, the smaller scaling value for backward statistics in the inertial range suggests that

the distorting effect of turbulence is stronger in the backward reference frame than the

forward reference frame. In order to better understand the inertial range behavior, we plot

the forward and backward 〈Λ〉 at various Reynolds numbers for the case of r̃0/η = 16 in

figure 6.10. At small times all curves nearly overlap, which is a consequence of small-scale

universality. At intermediate times, for the smallest Rλ (140), both the forward and back-

ward curves quickly move towards the diffusive limit, showing no signs of inertial range

scaling. However as the Reynolds number is increased, the curves gradually start to form

a plateau. The plateau is most evident for Rλ = 1000, extending nearly a decade for the

forward case and little less than a decade for the backward case. Approach to diffusive limit

is not obtained at higher Reynolds numbers due to the simulation being shorter (however

sufficiently long enough to study the inertial range).

Since a tetrad is a 3D entity, its shape cannot be fully described by one single parameter.
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Hence, we next consider the shape factors I1, I2 and I3 as defined by (6.3). Since by

definition they add up to unity only two of them are independent. Figures 6.11–6.13 show

the mean of all the three shape factors at Rλ 1000 for both forward and backward reference

frames. The general trend for all shape factors is very similar to that of Λ in figure 6.9. After

the initial ballistic behavior, where the forward and backward results are same, there is a flat

scaling region at intermediate times, with the forward results showing more robust scaling

compared to the backward results. However the backward value of I1 (figure 6.11) is larger

than the forward at intermediate times, whereas for I2 (figure 6.12) and I3 (figure 6.13)

the backward value is smaller than the forward at intermediate times (similar to Λ). This

behavior can be explained by understanding the behavior of the individual eigenvalues (g1,

g2, g3) along with R2. While we know that the backward growth in cluster size is stronger

than the forward in time growth, the difference between the backward and forward growth

rate is clearly much stronger for g1 compared to g2 and g3 as seen earlier from figure 6.4.

Since g1 is always the dominant contribution to R2, the backward 〈I2〉 and 〈I3〉 decreases

faster (whereas backward 〈I1〉 increases faster) than the forward counterparts.

The behavior of backward in time shape factors is consistent with that of backward Λ,

though it further quantifies the degree of deformation in each direction. While the overall

distortion in shape is faster in backward reference frame, this distortion is achieved by an

increasing value of 〈I1〉 and decreasing value of 〈I2〉 and 〈I3〉. This means there is an overall

tendency of the tetrads elongating more along the I1 direction resulting in more needle-like

structures, although a detailed investigation of the joint PDF of shape factors will provide

more conclusive evidence. To summarize, we have listed the inertial range constants for

all shape parameters (both forward and backward) in table 6.2. The forward results are

in perfect agreement with the work of Hackl et al. (2011). In general backward dispersion

causes similar distortion as forward dispersion, though the amplitude of distortion is higher

in backward frame.
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6.6 Summary

In this chapter we have investigated the forward and backward statistics of multi-particle

clusters. While the work is still ongoing, we have presented some initial results for the

forward and backward statistics of tetrads. The postprocessing algorithm discussed in

Chapter 3 is used to extract tetrads from single particles such that all the sides of chosen

tetrads fall in the same bin (statistically we can treat them as regular tetrads) at t = 0.

The statistics of tetrad size, such as gyration radius, volume and eigenvalues of the

moment-of-inertia tensor have been reported. The general behavior of forward and back-

ward statistics of tetrad size is similar to that particle pairs. At small and large times, the

forward and backward statistics are similar, whereas at intermediate times the backward

statistics grow faster. The cubed-local slope (CLS) approach is used to investigate Richard-

son scaling at intermediate times. In general the Richardson scaling for forward statistics

is more robust than the backward statistics. However compared to two-particle statistics,

Richardson scaling for measures of tetrad size seems less robust.

The statistics of tetrad shape, as represented by Λ and the shape factors have also been

reported. A consequence of stronger backward dispersion appears to be faster distortion of

tetrad shape in the backward reference frame. An overall observation in this work, consistent

with that of Hackl et al. (2011), is that the inertial range scaling is more readily observed

in the statistics of shape than those of size. However, the forward results always show more

robust inertial range scaling, while a higher Reynolds number is required for backward

statistics (a recurring requirement observed even in Chapters 4 and 5). It is evident that

the backward dispersion statistics for both size and shape needs more investigation and also

needs to be extended to triangles. Furthermore, a similar extension to study triangles and

tetrads of molecules is necessary to understand turbulent mixing.
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Figure 6.1: Forward (solid red lines) and backward (dashed blue lines) in time evolution
of linear tetrad size derived from the tetrad volume, in the form 〈V 2/3〉1/2, normalized by
Kolmogorov variables, at Rλ = 140 (left frame) and Rλ = 1000 (right frame). The initial
separations, increasing from bottom to top are r̃0/η = 1, 2, 4, 8, 16, 32, 64, 128, 256 for Rλ

140 and r̃0/η = 8, 16, 32, 64, 128, 256, 512, 1024 for Rλ 1000.
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Figure 6.2: Forward (solid red lines) and backward (dashed blue lines) in time evolution
of root-mean-squared gyration radius, 〈R2〉1/2/η, normalized by Kolmogorov variables, at
same conditions shown in figure 6.1.
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Figure 6.3: Forward (solid lines) and backward (dashed lines) cubed-local-slope for mean-
square gyration radius at Rλ = 1000. Initial separations are r̃0/η = 8 (red), 16 (green), 32
(blue), 64 (cyan) and 128 (magenta). Curves move to the left with increasing r̃0/η. Hori-
zontal dashed lines are drawn for reference at heights 0.85 (forward) and 2.25 (backward).
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Figure 6.4: Forward (solid red lines) and backward (dashed blue lines) in time evolution
of mean tetrad eigenvalues in Kolmogorov variables at Rλ = 1000. Three sets of curves
for 〈g1〉, 〈g2〉, 〈g3〉 are shown, for initial separations r̃0/η = 8 (lower), 64 (middle), and 512
(upper). Note that g1 > g2 > g3, by definition. At sufficiently large times curves for each
eigenvalue (but different r̃0/η) are seen to converge upon one another.
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Figure 6.5: Forward (solid red lines) and backward (dashed blue lines) in time evolution of
mean tetrad eigenvalues and mean-square gyration radius scaled by Kolmogorov variables
at Rλ = 1000 for r̃0/η = 64. The curves from bottom to top represent g1, g2, g3 and R2.
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Figure 6.6: Forward (solid lines) and backward (dashed lines) cubed-local-slope of mean of
first eigenvalue (〈g1〉) under same conditions and labeled in the same manner as in figure 6.3.
Horizontal dashed lines are drawn for reference at heights 0.72 (forward) and 2.0 (backward).
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Figure 6.7: Forward (solid lines) and backward (dashed lines) cubed-local-slope of mean
of first eigenvalue (〈g2〉) under same conditions and labeled in the same manner as in
figure 6.3. Horizontal dashed lines are drawn for reference at heights 0.12 (forward) and
0.23 (backward).
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Figure 6.8: Forward (solid lines) and backward (dashed lines) cubed-local-slope of mean
of first eigenvalue (〈g3〉) under same conditions and labeled in the same manner as in
figure 6.3. Horizontal dashed lines are drawn for reference at heights 0.012 (forward) and
0.018 (backward).
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Table 6.1: Estimated values of inertial range scaling constants, forward and backward,
based on cubed-local-slopes of statistics of tetrad size. These values are inferred from the
simulation data at Rλ = 1000 as shown in figures 6.3, 6.6–6.8.

〈R2〉 〈g1〉 〈g2〉 〈g3〉
Forward 0.85 0.72 0.12 0.012
Backward 2.25 2.0 0.23 0.018
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t/t0

〈Λ〉

Figure 6.9: Forward (solid red lines) and backward (solid blue lines) in time evolution
of mean of Λ = V 2/3/R2 at Rλ = 1000. Initial separations are, for curves terminating
at the rightmost edge of the plot to the left, r̃0/η = 8, 16, 32, 64, 128, 256, 512, and
1024. Curves for backward 〈Λ〉 lie below curves for forward 〈Λ〉. Dashed horizontal lines at
0.045 (forward) and 0.036 (backward) marks the inertial range scaling constants. Dotted
horizontal line at 0.065 marks the diffusive limit.
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〈Λ〉

Figure 6.10: Forward (solid lines) and backward (dashed lines) in time evolution of mean of
Λ = V 2/3/R2 at Rλ = 140 (magenta), 390 (green), 650 (blue) and 1000 (red) for r̃0/η = 16.
Curves for backward 〈Λ〉 lie below the curves for forward 〈Λ〉. Dashed horizontal lines at
0.045 (forward) and 0.036 (backward) marks the inertial range scaling constants. Dotted
horizontal line at 0.065 makes the diffusive limit.
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〈I1〉

Figure 6.11: Forward (solid red lines) and backward (solid blue lines) in time evolution of
mean of shape factor I1 = g1/R

2 under same conditions as figure 6.9. Curves for backward
〈I1〉 lie above the curves for forward 〈I1〉. Dashed horizontal lines at 0.825 (forward) and
0.865 (backward) marks the inertial range scaling constants.
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〈I2〉

Figure 6.12: Forward (solid red lines) and backward (solid blue lines) in time evolution of
mean of shape factor I2 = g2/R

2 under same conditions as figure 6.9. Curves for backward
〈I2〉 lie below the curves for forward 〈I2〉. Dashed horizontal lines at 0.16 (forward) and
0.12 (backward) marks the inertial range scaling constants.
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Figure 6.13: Forward (solid red lines) and backward (solid blue lines) in time evolution of
mean of shape factor I3 = g3/R

2 under same conditions as figure 6.9. Curves for backward
〈I3〉 lie below the curves for forward 〈I3〉. Dashed horizontal lines at 0.015 (forward) and
0.01 (backward) marks the inertial range scaling constants.
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Table 6.2: Estimated values of inertial range scaling constants, forward and backward, for
statistics of tetrad shape. These values are inferred from the simulation data at Rλ = 1000
as shown in figures 6.9, 6.11–6.13.

〈Λ〉 〈I1〉 〈I2〉 〈I3〉
Forward 0.045 0.825 0.16 0.015
Backward 0.036 0.865 0.12 0.010
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In the current work, we have used direct numerical simulations (DNS) to study turbulent dis-

persion and mixing from a Lagrangian perspective over a wide range of Reynolds numbers.

In DNS, the Navier-Stokes equations are solved numerically (in an Eulerian framework)

and a large population of particles are simultaneously tracked using a massively parallel

algorithm. A new computational framework has been developed to enable particle tracking

in DNS at Petascale problem sizes, at Reynolds numbers higher than previously available in

the literature. A new massively parallel postprocessing algorithm has also been developed

and applied to obtain Lagrangian statistics from saved particle trajectories (as obtained

from DNS). These statistics have provided new physical insights into the process of turbu-

lent dispersion and mixing. The conclusions for the main topics undertaken in this thesis

are summarized next, followed by some remarks about possible future work.

7.1 Summary of the main conclusions

7.1.1 Numerical and computational aspects

In DNS, a key task in particle tracking is to obtain the velocity at particle positions by

interpolating from the neighboring grid points. Since the entire solution domain is divided

among a large number of parallel processors (or so-called MPI tasks) and the particles

are free to wander under the influence of turbulence, this interpolation operation requires

frequent exchange of information between the processors. One approach is to keep each

processor responsible for the same set of particles (which were initiated on that processor)

and receive the required information for interpolation from other processors at every time

step. This approach requires global exchange of information using collective communica-

tion protocols and hence is called the ‘global’ approach. Another approach is to allow each

processor to be responsible for a dynamically evolving population of particles, such that at
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every time step the required information for interpolation is available locally on the proces-

sor, and hence is called the ‘local’ approach. The global approach performs reasonably well

at small to moderate problem sizes and has been used in the previous works. However, it

scales very poorly at large Petascale problem sizes due to expensive collective communica-

tion calls. In the current work we have developed a new local approach for particle tracking.

The communication process is limited to neighboring processors in a localized region and as

a result has excellent scaling characteristics. Special consideration has been given in opti-

mizing the performance of both the Eulerian and the Lagrangian part of the DNS code, by

using one-sided communication to accomplish the interpolation in parallel. For the largest

problem size of 81923 grid points with 300 million particles on 262, 144 processors a speed

up of more than 40X is obtained for the Lagrangian part of the DNS code, using the newly

developed local approach.

Another key computational task is the postprocessing of raw data written out from DNS.

While from DNS time histories of millions of single particles are obtained, to study turbulent

dispersion and mixing, we need to calculate statistics of particle pairs and clusters (three

or four particles). This is done in postprocessing by choosing all the available combinations

of two or more particles from the single particles. For example, given Np particles, a total

of Np(Np − 1)/2 unique particle pairs can be formed. In general, for a cluster of n particles

(n = 2 for pairs, 3 for triangles and 4 for tetrads), a population in the order of Nn
p clusters

can be formed. As a result, the cost of postprocessing can grow very rapidly (typically Np is

many millions). In the current work, we have developed and used a new massively parallel

postprocessing algorithm to obtain statistics of particle pairs and clusters. The entire

population of Np particles is divided among a large number of processors. The desired

clusters are formed simultaneously on each processor, by systematically cycling the data,

until statistical convergence is achieved. Near-perfect strong and weak scaling is obtained

for the corresponding code.
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7.1.2 Relative dispersion of fluid particles

In problems related to turbulent dispersion, the common approach is to follow the fluid

particle trajectories forward in time, along with the Eulerian flow. However, in Lagrangian

studies of turbulent mixing, the trajectories of fluid particle pairs tracked backward in

time are of greater importance. In principle, backward tracking can be accomplished by

storing complete velocity fields at every time step in a previously conducted DNS. However,

such an approach becomes prohibitively expensive at large Reynolds numbers. The new

postprocessing approach developed in this work has enabled the study of both forward

and backward dispersion without being restricted by expensive data storage algorithms.

In particular it has allowed us to study the process of backward dispersion at Reynolds

numbers significantly higher than previously reported in literature.

In Chapter 4, we have studied backward dispersion of fluid particle pairs. A major

focus is to understand and quantify the differences between backward and forward relative

dispersion, especially at intermediate times, where inertial subrange universality holds. Us-

ing the data over a wide range of Reynolds number and initial separations, we have been

able to demonstrate and quantify Richardson t3 scaling for the mean-squared separation

in both forward and backward dispersion. At intermediate times, backward dispersion is

stronger than forward, leading to an earlier approach to diffusive conditions. As a result,

backward statistics have a diminished range of inertial range behavior, requiring higher

Reynolds number to observe Richardson scaling. However, the Reynolds numbers in our

simulations are sufficiently high to demonstrate Richardson scaling for both forward and

backward cases. The corresponding forward and backward Richardson constants are found

to be gf = 0.55 and gb = 1.5 respectively. In contrast to second order moments, higher

order moments of separation do no show Richardson scaling, since with increasing order

the moments are increasingly influenced by dissipation range effects. Furthermore, the so-

called distance-neighbor function showed only transitory agreement with the well-known

Richardson prediction.

The asymmetry between backward and forward relative dispersion was further inves-

tigated by considering a Taylor series expansion in the small-time limit. The difference
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between the backward and forward mean-square relative displacement has a t3 dependence

at small times, controlled by the covariance of relative acceleration and relative velocity,

which is non-zero and equal to −2〈ǫ〉 in the inertial range at large Reynolds numbers. The

analysis is also extended to higher order moments of the relative displacement, which show

a similar asymmetry in time. However, we conclude that these asymmetries and particu-

larly the t3 growth of the difference between backward and forward mean-square relative

displacement, are not simply connected to the t3 growth in the Richardson regime and the

asymmetry manifested there.

7.1.3 Lagrangian turbulent mixing: dispersion of molecules

In Chapter 5, we have addressed the effects of molecular diffusion which are crucial in un-

derstanding turbulent mixing from a Lagrangian perspective. The postprocessing algorithm

to study forward and backward dispersion is extended to extract statistics of the trajec-

tories of diffusing molecules that undergo Brownian motion relative to the fluid. Detailed

results are obtained for Schmidt numbers (Sc) from 0.001 to 1000 at Taylor-scale Reynolds

number (Rλ) up to 1000. We have first investigated how the forward and backward statis-

tics of molecules (singly and in pairs) in different temporal regimes depend on Sc and Rλ.

Then these statistics are related to Eulerian results for a passive scalar driven by a uniform

mean-gradient.

Statistics of displacements of single molecules compare well with the earlier theoretical

work of Saffman (1960) except for the scaling of the integral time scale of the fluid velocity

following the molecular trajectories. For molecular pairs we extend Saffman’s theory to

include pairs of small but finite initial separation. Excellent agreement is obtained between

the theory and numerical results in the ballistic and diffusive limits. At intermediate times,

both forward and backward statistics of molecular pairs exhibit a more robust Richardson

scaling behavior than for the fluid particles. This is due to the added Brownian motion,

which causes pairs to separate and lose memory of their initial separation faster. However

if molecular diffusion is very strong (when Reynolds number is not large and Sc is very

low), no scaling is observed. The forward scaling constant is very close to 0.55, whereas the
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backward constant is about 1.53–1.57, with a weak Schmidt number dependence, which is

in good agreement with the limited data in the literature.

An important innovation in this work is to demonstrate explicitly the practical utility of

a Lagrangian description of turbulent mixing, where molecular displacements and separa-

tions in the limit of small backward initial separation can be used to calculate the evolution

of scalar fluctuations resulting from a known source function in space. Lagrangian calcu-

lations of production and dissipation rates of the scalar fluctuations are shown to agree

very well with Eulerian results for the case of passive scalars driven by a uniform mean

gradient. Although the Eulerian-Lagrangian comparisons are made only for Sc ∼ O(1),

the Lagrangian approach is more easily extended to both very low and very high Schmidt

numbers. The well known scalar dissipation anomaly is also addressed in a Lagrangian

context. Our results show that molecular diffusivity cannot be neglected at small times,

where the scalar dissipation depends directly on Sc, whereas in the large time limit, both

scalar dissipation rate and the scalar timescale become independent of Sc in the limit of

large Reynolds number.

7.1.4 Multi-particle clusters

In Chapter 6, we investigate forward and backward dispersion of multi-particle clusters of

fluid particles. As in study of particle pairs, our primary focus is on inertial range scaling,

especially for backward dispersion statistics of clusters. Measures of cluster size and shape

are considered separately, with the latter exhibiting more robust inertial range scaling. We

mostly focus on statistics of four-particle clusters, namely tetrads, which is the smallest

possible cluster configuration allowing a volume to be defined and contains a rich amount

of information in 3D space.

For measures of tetrad size, we have investigated the volume (V ) and more appropri-

ately, gyration radius (R). Similar to particle-pair dispersion, the statistics of tetrad size

grow faster in the backward reference frame at intermediate times. Since a tetrad can be

interpreted as a collection of six particle pairs, the mean-square gyration radius of tetrad

has a functional form similar to that of mean-square relative displacement of particle pairs,
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only differing by a constant factor of 3/2. However, the Richardson scaling for mean-square

gyration radius, in both forward and backward reference frame, is not as robust as that of

mean-square separation of particle pairs. Nevertheless, we have been able to demonstrate

Richardson scaling for mean-square gyration radius and the eigenvalues of the moment-

of-inertia tensor (the sum of the eigenvalues is equal to the square of gyration radius).

Excellent agreement is obtained for the forward results with previously reported data in the

literature, whereas the backward results are first of its kind.

The tetrad shape is represented by the non-dimensional ratio Λ = V 2/3/R2 as well as

the shape factors defined as normalized eigenvalues of the moment-of-inertia tensor. Both

the forward and backward statistics of tetrad shape show inertial range scaling, and is more

robust than that of statistics of tetrad size. This suggests that the geometrical effects of

turbulence, represented by statistics of tetrad shape are more amenable to modeling or

theoretical description than the dispersive effects of turbulence, as represented by measures

of tetrad size. At the same time, the general behavior of forward and backward statistics

of tetrad shape, suggests that the distorting effects of turbulence at intermediate times are

stronger in the backward frame, resulting in a stronger deformation of the tetrad shape.

7.2 Future work

It is evident that the problem of multi-particle cluster evolution is less studied and less

understood than the case of two-particle relative dispersion, especially for the case of back-

ward dispersion. An immediate extension of the current work would be to further the study

the backward dispersion of multi-particle clusters. While some results for tetrads are pre-

sented in the current work, they need to be understood in greater detail and also extended

to triangles. Furthermore, we can extend the current work to multi-particle clusters of

molecules, for which, to best of our knowledge, no formal study exists in literature. The

backward statistics of triangle and tetrads are directly connected to the third and fourth

order moments of a passive scalar field and can be tremendously useful for understanding

the highly and weak diffusive regimes (given by very low and very high Schmidt numbers

respectively) of scalar mixing, which are very difficult to study in Eulerian simulations.
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In the current study, we have focused on turbulent mixing of one passive scalar, also

called ‘Level-1’ mixing in the review by Dimotakis (2005). A natural extension is to study

mixing of two or more coupled passive scalars of different molecular diffusivities, which is

important in many applications in both nature and engineering. Most notable examples

include mixing of temperature and salinity fields in ocean currents (Adkins et al. 2002;

Wunsch 2002; Wunsch & Ferrari 2004), differential diffusion of passive scalars (Yeung &

Pope 1993; Juneja & Pope 1996) and broadcast spawning in marine biology (Crimaldi

& Browning 2004; Crimaldi 2012). The current approach developed in Chapter 5 can be

readily extended to study this. For example, by considering pairs of molecules with different

Schmidt numbers, one can obtain the covariance between two scalars and hence also the joint

scalar dissipation. As mentioned earlier, this would be particularly beneficial for very low

or very high Schmidt numbers, which are very difficult to study in an Eulerian framework.

The computational advances made in particle tracking in the current work has allowed

us to generate Lagrangian data at Reynolds number higher than previously reported in the

literature. While the simulation is still in the production phase, it will eventually allow us to

answer many outstanding questions in fundamental turbulence research. Recently, Yeung

et al. (2015) found that the nature of extreme events in dissipation and enstrophy at very

large Reynolds number is fundamentally different from that previously observed at low to

moderate Reynolds number (Kawahara 2005). However, the origin of such extreme events

is still not well understood. From a Lagrangian viewpoint, one can trace the evolution of

clusters of particles originating in such regions, which can be useful in understanding the

origins of such extreme events.

A higher Reynolds number also provides a more reliable way of understanding inertial

range scaling behavior, especially for Lagrangian statistics, which have a smaller extent

of inertial range compared to the Eulerian statistics. A higher Reynolds number is also

required to study Lagrangian intermittency, which is strongly manifested in small scale

statistics such as acceleration. While the subject is well established, there still remains many

open questions about the small scale universality of single particle Lagrangian statistics

(Sawford & Yeung 2011).
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The study of velocity gradients along trajectories of fluid particles can also help shed

some light on the behavior of the small scales. The local straining and rotational effects of

turbulence and hence the local structure of turbulence, is completely described by the ve-

locity gradient tensor. The velocity gradient tensor contains other geometric and statistical

information such as the alignment of vorticity with respect to the strain-rate eigenvectors,

rate of deformation and shapes of fluid material volumes, intermittency, etc. Furthermore

in reacting flows, the velocity gradients not only determine the growth rate of flamelet area,

but also the flamelet orientation and hence the direction of propagation of the flame (Gir-

imaji & Pope 1990). While obtaining complete information of the local velocity gradient

tensor is still not possible in experiments, it is readily obtained in DNS. The results from

DNS help in both improving our physical understanding and develop new models applicable

to more complex flows (Meneveau 2011).

In the last few decades, the exponential growth of computing power has constantly

allowed us to the push the limit of highest Reynolds number achievable in simulations.

However, recently this growth in computing is also accompanied by a paradigm shift towards

modern architectures involving accelerators such as graphical processing units (GPUs), and

Intel Many Integrated Core (MIC). It is evident that achieving even higher Reynolds number

will require modern codes capable of exploiting such architectures. While some initial steps

have already been taken in this work to port our codes to machines using such architectures,

substantial effort will be required in future to utilize them to their full capacity, which may

even involve implementing new numerical and parallel approaches from scratch.

The study of fluid particles serves as a good approximation to study dispersion of mate-

rial in turbulent flows. Similarly, the effects of molecular diffusion are captured reasonably

well by the motion of so-called molecules. However in reality, all transported substances

also have mass and it is clear that because of inertia effects, suspended solid particles and

vapor droplets in multiphase flow also do not follow the same trajectories as fluid parti-

cles. The subject of multiphase turbulence (Balachandar & Eaton 2010). is very broad,

and additional complexities such as two-way couplings (Ferrante & Elghobashi 2003) for
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particles of substantial size present at high mass density are well-known. In practical dis-

persion problems (in contrast to, say, multiphase combustion and sooty flames), because

of small particle size and low mass loading two-way couplings are usually unimportant.

The important parameter is then the Stokes number (usually defined as ratio of particle

time scale to Kolmogorov time scale), which has been studied by other investigators (e.g.

Sundaram & Collins 1997; Bec et al. 2010). It is well known that inertial particles tend to

cluster inhomogeneously even in homogeneous flows (Guha 2008). The study of backward

dispersion in this regard is crucial as recently demonstrated by Bragg et al. (2016), and still

warrants additional investigation.

To conclude, we have developed a new massively parallel computational framework,

which has enabled Lagrangian investigations of turbulent dispersion and mixing at Reynolds

number higher than previously available in the literature. New insights are found into

the physical process of turbulent dispersion, especially from a backward in time reference

frame. The backward dispersion of molecules is used to understand turbulent mixing from a

Lagrangian perspective across a wide range of Schmidt numbers, a task incredibly difficult

from the Eulerian perspective. A key focus of the current work has been to identify and

understand the inertial range characteristics of various Lagrangian statistics. All this has

been made possible due to the rapid growth of supercomputers in the past decade. The

computing power of the upcoming supercomputers holds even greater potential in both

expanding our current state of knowledge and enabling new topics of research in turbulence,

which were previously inaccessible.
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APPENDIX A

SMALL-TIME ASYMPTOTE FOR MOLECULAR PAIRS OF FINITE

INITIAL SEPARATION

We work in Cartesian tensor notation, with summation implied over repeated Roman sub-

scripts. Starting with (5.15) and using a Taylor series expansion for the relative velocity

under the condition r(t) ≪ η, we can write

dri(t) = Aij(t)rj(t)dt +
√

4κdW
(r)
i , (A.1)

where Aij = ∂ui/∂xj is the velocity gradient tensor. This upon integration gives

ri(t) − ri(0) =

∫ t

0
Aij(t)rj(t)dt +

√
4κ

∫ t

0
dW

(r)
i . (A.2)

For t≪ tη, we can approximate the first term on the r.h.s. to first order and write

ri(t) − ri(0) = Aij(0)rj(0)t +
√

4κW
(r)
i (t) . (A.3)

Now substituting ri(t) from this into the r.h.s. of (A.1), we get

dri(t) = Aij(t)
(
rj(0) +Ajk(0)rk(0)t +

√
4κW

(r)
j (t)

)
dt +

√
4κdW

(r)
i (t) . (A.4)

The first term can be integrated by approximating the velocity gradient by its value at t = 0

again and introducing the integrated Wiener process W−1(t) (Gardiner 1983) (the function

whose time derivatives give W(t)). We obtain

ri(t) − ri(0) = Aij(0)

(
rj(0)t +Ajk(0)rk(0)

t2

2
+

√
4κW−1

j (t)

)
+

√
4κW

(r)
i (t) . (A.5)

By definition W−1(t) has zero mean and its covariance tensor is equal to
〈
W−1

i (t)W−1
j (t)

〉

= δijt
3/3. Now squaring and averaging (A.5), we get, up to O(t3)

〈|r(t) − r(0)|2〉 =〈AijAil〉rj(0)rl(0) t2 + 〈AijAjkAil〉rk(0)rl(0) t
3

+4κ〈W (r)
i (t)W

(r)
i (t)〉 + 4κ〈AijAil〉〈W−1

j (t)W−1
l (t)〉 , (A.6)
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where covariances between velocity gradients and Wiener process are zero since they are

independent. To simplify the notation we also omit the dependence on t = 0 here and

thereafter. Now we can write, ri(0) = r0ei, where r0 is the initial separation (distance)

and ei is the i-th component of the unit vector along the initial separation vector, with the

property eiei = 1. Also substituting the covariances of Wiener processes, we obtain

〈|r(t) − r(0)|2〉 = r20
(
〈AijAil〉ejel t2 + 〈AijAjkAil〉ekel t3

)

+ 12κt+ 4κ〈AijAil〉 δjl
t3

3
. (A.7)

Next, to analyze the second and third moments in (A.7) it is useful to note the properties

of fourth and sixth order tensors in isotropic incompressible turbulence. In particular, we

can write (Pope 2000):

Fikjl = 〈AijAkl〉 = α

(
2δikδjl −

1

2
δijδkl −

1

2
δilδjk

)
, (A.8)

Gijkpqr = 〈AipAjqAkr〉 = β

(
δipδjqδkr

− 4

3
[δipδjkδqr + δjqδikδpr + δkrδijδpq]

− 1

6
[δipδjrδqk + δjqδirδpk + δkrδiqδpj]

− 3

4
[δiqδpkδjr + δirδpjδqk]

+ [δijδpkδqr + δijδqkδpr + δikδpjδqr

+ δikδrjδpq + δjkδqiδpr + δjkδriδpq]

)
. (A.9)

where α = 〈A2
11〉 and β = 〈A3

11〉 are the second and third order moments respectively of

A11, i.e., a longitudinal velocity gradient. Standard isotropy relations give α = 〈ǫ〉/(15ν)

and β = Suα
3/2, where Su is the skewness of A11. In isotropic turbulence Su is also equal

to the negative of the dissipation skewness Sǫ (Kerr 1985). By evaluating Fiijl and Gijijkl
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according to the tensor relations above, we obtain

〈AijAil〉 ejel = 5α =
1

3t2η
, (A.10)

〈AijAil〉 δjl = 15α =
1

t2η
, (A.11)

〈AijAjkAil〉 ekel =
35

6
β = − 7

18
√

15

Sǫ

t3η
. (A.12)

Substituting these in (A.7), we get

〈
|r(t) − r(0)|2

〉
= r20

[
1

3

(
t

tη

)2

− 7 Sǫ

18
√

15

(
t

tη

)3
]

+ 12κt+
4

3
κ
t3

t2η
, (A.13)

In the steps taken so far we have assumed that we are integrating forward in time, such

that this formula strictly holds for forward dispersion. To consider backward dispersion, we

may replace t by −t on the l.h.s and and in the square bracket on the r.h.s. However, since

the last 2 terms in (A.13) represent the non-negative variances of Wiener and integrated

Wiener processes, they retain the same sign if t is replaced by −t. A result valid for both

backward and forward dispersion can thus be written with the absolute value of time |t| in

the last two terms of (A.13). Finally, dividing both sides by η2 recovers the result (5.18),

as required.
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APPENDIX B

ROBUST APPROACH FOR MOLECULAR DISPLACEMENT

STATISTICS IN LAGRANGIAN VIEW OF MIXING

Starting with Y m
i (t) = xm

i (t) − xm
i (0) and using Ito’s rule (Gardiner 1983), we can write a

stochastic differential equation (SDE) for Y m
i Y m

i as

d(Y m
i Y m

i ) = 2Y m
i dY m

i + dY m
i dY m

i . (B.1)

Recognizing dY m
i = dxm

i and substituting dxm
i from (5.1), we get

d(Y m
i Y m

i ) = 2Y m
i (uidt +

√
2κdWi) + (uidt +

√
2κdWi)(uidt+

√
2κdWi) , (B.2)

where ui is the fluid velocity at the molecular position. Ignoring higher order terms of

the form dtdt and dtdWi, and using dWidWi = δiidt = 3dt from the property of Wiener

processes, we get

d(Y m
i Y m

i ) = 2Y m
i uidt+ 2Y m

i

√
2κdWi + 6κdt . (B.3)

Taking the ensemble average over the entire population of molecules, the second term on

the r.h.s. becomes zero, and the result can be rearranged to give

d〈Y m
i Y m

i 〉/dt = 2〈Y m
i ui〉 + 6κ . (B.4)

Substituting this result in (5.31) gives

P =
2

3
G2〈Y m

i ui〉 . (B.5)

Thus we have now obtained an expression for scalar production in terms of the covariance of

molecular displacement and fluid velocity at molecular positions, which is easier is calculate

reliably.

A similar analysis for molecular pairs would give

d〈r2〉/dt = 2〈riu(r)
i 〉 + 12κ , (B.6)
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which on substituting in (5.30) gives

χ =
1

3
G2〈riu(r)

i 〉r0(t)→0 , (B.7)

The expressions for scalar production and dissipation developed in this Appendix have the

advantage of avoiding numerical differentiation, which is prone to numerical noise.
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