
A DEEP LEARNING AND PARALLEL SIMULATION METHODOLOGY FOR
AIR TRAFFIC MANAGEMENT

A Dissertation
Presented to

The Academic Faculty

By

Young Jin Kim

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Computational Science and Engineering

Georgia Institute of Technology

December 2017

Copyright c© Young Jin Kim 2017

A DEEP LEARNING AND PARALLEL SIMULATION METHODOLOGY FOR
AIR TRAFFIC MANAGEMENT

Approved by:

Dr. Dimitri Mavris, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Richard Fujimoto, Co-advisor
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Daniel Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Duen Horng Chau
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Andres Rodriguez
Artificial Intelligence Products
Group
Intel Corporation

Date Approved: July 28, 2017

To my family

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Dr. Dimitri Mavris, for giving me the great

opportunity to work in Aerospace Systems Design Lab where I could learn a lot of invalu-

able lessens. Especially, Dr. Mavris always emphasized logical thinking, reasoning and

communications which will be great guidances for my entire career. It has been an honor

to do my research under supervision of one of the leading researchers in this field.

I would like to thank Dr. Richard Fujimoto, for guiding me to find a path for my

research. I have been deeply impressed by his passion for the research. Whenever I have a

hard problem to solve, Dr. Fujimoto always kindly provided great advices and opinions on

my research topic. It has been an honor to do my research under supervision of one of the

leading researchers and pioneers of the distributed simulation field.

I would like to thank Dr. Daniel Schrage and Dr. Polo Chau for giving me invaluable

comments and guidances for my thesis. They helped so much to enhance my insights to

my research. Thanks to those guidances, the contents of the thesis have improved a lot.

I would like to thank Dr. Andres Rodriguez for giving me great advices and guidances

to my research and works. It has been always my great pleasure to discuss with him re-

garding challenging research topics. I was really fortunate enough to finish my thesis with

him and work with him.

I would like to thank people who I worked and interacted with; Dr. Simon Briceno,

Dr. Woong Je Sung, Dr. Dongwook Lim, Dr. Jongki Moon, Sun Choi, Sanggyu Min,

Youngchul Park. I could have a really great time in the lab thanks to them.

Finally, I would like to thank my family. Their belief and support always give me a

great motivation. I would like to specially thank my wife, Ayoung. Without her supports,

nothing could have been achieved. I am so lucky to have her in my life.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . ix

List of Figures . x

Chapter 1: Introduction . 1

1.1 Background . 1

1.2 Air Traffic Management . 2

1.2.1 Prescriptive models . 3

1.2.2 Descriptive models . 4

1.3 Parallel Simulation . 6

1.3.1 Computer Simulation . 6

1.3.2 Parallel Discrete Event Simulation 6

1.3.3 Spatial Parallel Simulation . 9

1.3.4 Time-Parallel Simulation . 12

1.4 Artificial Neural Networks . 13

1.4.1 Recurrent Neural Networks . 14

1.5 Research Contributions . 16

1.5.1 Time-Parallel Simulation of Air Traffic Networks 17

v

1.5.2 Combining Time and Spatial Parallelism for Air Traffic Networks . 18

1.5.3 Recurrent Neural Network Model for Airspace Applications 18

1.6 Thesis Organization . 19

Chapter 2: Time-parallel simulation . 20

2.1 Overview . 20

2.2 Related Work . 21

2.3 Modeling Techniques . 22

2.3.1 Queueing network based discrete event simulation 22

2.3.2 Fluid flow modeling . 23

2.3.3 System Dynamics Modeling . 24

2.3.4 Agent-Based Modeling . 25

2.4 Simulation Model . 27

2.4.1 Simulation Model Resources . 28

2.4.2 Ground Delay Programs . 28

2.4.3 Event Definitions . 29

2.4.4 Delay Model . 30

2.4.5 Simulation Execution . 32

2.5 Algorithm . 33

2.5.1 Time-Parallel Simulation . 33

2.5.2 Simulation Executive . 35

2.5.3 Fix Up Computation . 35

2.5.4 Workload Distribution . 41

vi

2.6 Experimental Results . 41

2.6.1 Air Traffic Scenario and Data . 41

2.6.2 Experimentation Environment . 43

2.6.3 Fix Up Computation Comparison 44

2.6.4 Workload Distribution Comparison 48

2.6.5 Limited Airport Capacity Comparison 50

2.7 Conclusion . 52

Chapter 3: Exploiting Spatial Parallelism in Air Traffic Network Simulation . . 53

3.1 Overview . 53

3.2 Combining Time and Spatial Parallelism 54

3.2.1 Time Warp Parallel Simulation of Air Traffic Networks 54

3.2.2 Time and Spatial Parallel Simulation of the Air Traffic Network . . 64

3.3 Experimental Results . 66

3.3.1 Experimentation Environment . 66

3.3.2 Parallelism Analysis . 67

3.4 Conclusion . 78

Chapter 4: Recurrent Neural Networks for Flight Delay Prediction 79

4.1 Overview . 79

4.2 Deep Recurrent Neural Networks . 80

4.2.1 Vanilla Recurrent Neural Networks 80

4.2.2 LSTM . 82

4.2.3 GRU . 82

vii

4.2.4 Deep architecture of RNN . 84

4.3 Network Training . 85

4.3.1 Day-to-day delay status model . 86

4.3.2 Deep architecture for the day-to-day delay status RNN model 88

4.3.3 Individual flight delay model . 88

4.3.4 Regularization . 89

4.3.5 Training methods . 90

4.4 Experimental Results . 91

4.4.1 Accuracy measurement . 92

4.4.2 Day-to-day delay status model . 92

4.4.3 Individual flight delay model . 99

4.4.4 Generalization of day-to-day model for different airports 100

4.5 Conclusion . 101

Chapter 5: Conclusions and Future Work . 102

5.1 Contributions . 102

5.2 Future Research . 104

Chapter A: Application Programming Interface of Simulation Software 108

A.1 Time and Space Parallel Simulation . 108

References . 225

viii

LIST OF TABLES

2.1 The number of simulation rounds for the time-parallel simulation. 51

3.1 Example of domain decomposition of the NAS - 5 LPs. 57

3.2 Speed up by using single parallel algorithms. 72

3.3 Speed up by using dual parallel algorithms. 77

4.1 Characteristics of three kinds of activation functions. 81

4.2 Inputs and outputs of the day-to-day delay status model. 87

4.3 Inputs and outputs of the individual flight delay model. 90

4.4 Accuracy of day-to-day model - vanilla RNN. 93

4.5 Accuracy of day-to-day model - LSTM. 93

4.6 Accuracy of day-to-day model - GRU. 94

4.7 Accuracy of day-to-day model - different epochs. 96

4.8 Accuracy of day-to-day model - number of stacked layers. 97

4.9 Accuracy of individual flight delay models. 100

4.10 Accuracy of day-to-day model for different airports. 101

4.11 Additional training with a model from Atlanta airport - JFK airport. 101

ix

LIST OF FIGURES

1.1 Two different parallel simulations of air traffic network. 8

1.2 Notional example of state-matching problem. 13

1.3 A neuron of artificial neural networks. 14

1.4 Three different activation functions. 15

1.5 Feed forward artificial neural networks and Recurrent neural networks. . . . 16

2.1 Air traffic environment in terms of control volumes and merge and diverge
models [73]. 24

2.2 Summary of the model of the airline agent [63]. 26

2.3 Delay model of the departure. 32

2.4 Single airport event flow. 33

2.5 Two different parallel simulations of air traffic network. 34

2.6 Communication of fix up messages. 37

2.7 Evaluation of update for the fix up computation. 38

2.8 High level view of the fix up computations - sequential operation. 39

2.9 High level view of the fix up computations - gather operation. 39

2.10 Sequential fix-up computation vs. Collective fix-up computation. 45

2.11 Sequential fix-up computation vs. Collective fix-up computation with No
fix-up computation. 45

x

2.12 Sequential fix-up computation vs. Collective fix-up computation. 46

2.13 Sequential fix-up computation vs. Collective fix-up computation with No
fix-up computation. 47

2.14 Same time intervals vs. Same amount of traffic. 48

2.15 Same time intervals vs. Same amount of traffic with No fix up computation. 49

2.16 Capacity limits vs. No capacity limits with No fix up computation. 51

3.1 Air traffic flow chart [82]. 56

3.2 ARTCC map [83]. 56

3.3 Time and spatial allocation of LPs. 66

3.4 Xeon Phi 7250 architecture [84]. 68

3.5 Speed up of Time Warp simulation - small workload. 70

3.6 Speed up of Time Warp simulation - large workload. 70

3.7 Speed up of time parallel simulation- large workload. 71

3.8 Speed up of dual parallel simulation - time division: 2. 74

3.9 Efficiency of dual parallel simulation - time division: 2. 74

3.10 Expected speed up vs actual speed up - time division: 2. 75

3.11 Speed up of dual parallel simulation - time division: 4. 76

3.12 Efficiency of dual parallel simulation - time division: 4. 76

3.13 Expected speed up vs actual speed up - time division: 4. 77

4.1 Long Short-Term Memory Cell [96]. 83

4.2 Gated Recurrent Unit Cell [97]. 84

4.3 Day-to-Day departure delay status model. 87

xi

4.4 Deep architecture for the RNN model. 88

4.5 Individual flight delay model. 89

4.6 Dropout Neural Net Model [101]. 91

4.7 Accuracy comparison for different recurrence units. 94

4.8 Accuracy changes with increasing number of epochs (until 200 epochs). . . 95

4.9 Accuracy changes with increasing number of epochs (until 1000 epochs). . 96

4.10 Accuracy changes with increasing number of layers. 98

4.11 Actual delay vs Predicted delay (ATL). 98

4.12 Actual delay vs Predicted delay (JFK). 99

xii

SUMMARY

Air traffic management is widely studied in several different fields because of its com-

plexity and criticality to a variety of stakeholders including passengers, airlines, regulatory

agencies, air traffic controllers, etc. However, the exploding amount of air traffic in recent

years has created new challenges to ensure effective management of the airspace. A fast

time simulation capability with high accuracy is essential to effectively explore the conse-

quences of decisions from the airspace design phase to the air traffic management phase.

In this thesis, two key components for enabling intelligent decision support are proposed

and studied.

To accelerate fast time simulations, a time-parallel simulation approach has been stud-

ied and applied to air traffic network simulation in addition to exploitation of spatial parallel

simulation. This approach splits the simulation time axis into time intervals and simulates

the intervals concurrently potentially achieving a high level of parallelism. This approach

requires a way to ensure that the distributed simulation takes into account dependencies

across time periods. A methodology to address this issue is proposed. The proposed time-

parallel algorithm works seamlessly with the spatial parallel approach. In particular, the

synchronization algorithm used for the spatial parallel simulation is integrated with the

time-parallel simulation algorithm. In this thesis, an efficient algorithm spanning these

aspects of the distributed simulations is proposed and implemented. The implemented

simulation is tested in a variety of scenarios and balances time and spatial parallelism to

improve speed up.

As another aspect, to predict the future scenarios more accurate, it is necessary to feed

the appropriate input vales to the simulation program. This input can be acquired by learn-

ing the previous patterns in data, statistically. Recent improvements in machine learning

and artificial intelligence research enable an accurate prediction of the future state variables

in the air traffic network system. Recurrent neural network is one type of algorithm which

xiii

can effectively model sequential state variables. In that sense, a recurrent neural network

approach is proposed for modeling the input of each simulation scenario. By utilizing a

large amount of historical flight and weather data, the proposed recurrent neural network

model learns the best parameters in the model to predict the future status of the airports

in the National Airspace System (NAS). In particular, airports daily capacity in the future

is a key input variable for the NAS simulation model. The proposed model is trained to

accurately predict the airports daily capacity.

Based on real world air traffic data, the improvements in the performance and the ac-

curacy of both techniques have been investigated and presented. The proposed approaches

show significant improvements for supporting air traffic management decision making.

xiv

CHAPTER 1

INTRODUCTION

1.1 Background

According to the Federal Aviation Administration (FAA)’s latest forecast, domestic en-

planement of commercial airlines will increase by 1.5 times over the next twenty years,

from 696 million to 1,052 million. Over the same time period, it is estimated that the num-

ber of passengers taking international flights into or leaving the U.S. will more than double

from 206 million to 452 million [1]. This increased traffic could result in significant delays

in the National Airspace System (NAS). According to one study [2], air traveler delays

accounted for approximately $33 billion in direct or indirect costs to passengers, airlines

and other parts of the NAS in 2007.

In addition to this increase of traditional air traffic, new types of air traffic are also ex-

pected to be exploding including Unmanned Aircraft Systems (UAS). In 2020, the forecast

shows that 7 million unmanned fleets will be flown in the NAS whereas the current number

of unmanned fleets is 2.5 million [1]. Furthermore, there is an emerging literature for the

new concept of Personal Air Vehicle (PAV) and air taxi [3], [4], [5], [6]. This will also

increase the burden of air traffic management. Athenes, Averty et al. has shown that the

complexity of airspace is increasing the workload of air traffic controllers as measured by

the Traffic Load Index (TLI) [7]. The TLI consists of weight factors based on the time

urgency and uncertainty of each aircraft controlled by air traffic controllers.

As a result of the increased and diversified air traffic, air traffic controllers need to make

decisions more precisely while handling a much larger amount of air traffic. This increased

workload will exceed the capability of air traffic controllers. If there is a decision support

system which can provide possible solutions quickly, it should alleviate the problem of this

1

situation. The system also can be utilized as a component of an automated decision making

system. To achieve the goal of better decision support, the system should have the ability to

explore the decision space quickly. Also, it should be able to generate reliable and accurate

evaluations of target state variables of the system.

1.2 Air Traffic Management

Air traffic management (ATM) encompasses all the activities required to manage the NAS

safely and efficiently. This usually consists of two components: air traffic control (ATC)

and air traffic flow management (ATFM) [8]. ATC is mainly dealing with tactical decisions

including real-time separation procedures for collision detection and avoidance. In order

to provide the ATC services, the NAS is divided into several different sectors and human

air traffic controllers are controlling the traffic’s procedures assisted by air traffic control

systems. On the other hand, ATFM handles more strategic decisions, globally. ATFM

procedures detect and resolve demand-capacity imbalance problems across the NAS. Thus,

ATFM focuses on the flow of air traffic considering a global view of the entire airspace.

Much of the previous ATM has been done with ATC level decision making. This ap-

proach was sufficient with a relatively small amount of traffic. However, when the amount

of traffic increases, it becomes more important to handle the problem with a more scalable

approach [8]. Furthermore, there exist many opportunities to gain more efficient ATM by

using the flow management scheme. For that reason, there have been a significant number

of studies to model the ATFM problem. They can be categorized into two types of models

which are prescriptive models and descriptive models depending on the model’s goal to ad-

dress the problem. Prescriptive models usually define an optimization problem with a given

situation, then solve the model with various numerical methods. This can be used for de-

cision making processes. On the other hand, descriptive models try to regenerate or mimic

the behaviors occurring in the NAS, then find and analyze patterns and key characteristics

of the system. For this purpose, computer simulations are widely utilized.

2

1.2.1 Prescriptive models

In the following, the use of demand and capacity planning to create prescriptive models is

described.

Demand management models

Initially, administrative and economic policies were used for demand management [9]. This

approach has the problem of correctly setting appropriate capacity limits and resulted in in-

efficient air traffic management. In order to mitigate the problem, auctions and congestion

pricing models have been incorporated into the demand management models [8]. In the

case of the auction model, a bid mechanism is utilized for allocating the landing and de-

parture slots to airlines [10], [11], [12]. On the other hand, congestion pricing models try

to manage demands by imposing a certain congestion fee for departures and landings [9].

Daniel [13] models equilibrium congestion prices at hub airports. There have been several

research studies related to the efficiency of the congestion pricing models [14], [15].

Capacity models

The capacity of an airport is usually determined by multiple factors [8]. They include

weather conditions, aircraft types and types of operations-whether they are landings, take-

offs, and the sequence of those [16]. Barnhart et al. [9] proposed an approach using a

capacity envelope with a convex shape. Based on the capacity envelope, the capacity man-

agement models try to optimize the allocation of the possible time slots for landing and

departure. This can be solved using integer programming methods [17]. Based on this

optimization problem, there have been approaches that add uncertainty to the model [18],

[19].

3

1.2.2 Descriptive models

As explained before, descriptive models are usually realized as simulation models. They

can be divided into two different categories based on the scope of the model [8]. The first

category is airspace models which analyzes global behavior of the airspace and deal with

interconnection among the entities inside the system. The other category is airport models

which focus on local characteristics of the facilities such as runways and taxiways.

Airspace models

The Airport and Airspace Simulation Model (known as SIMMOD) [20] and the Total Air-

port and Airspace Modeler (TAAM) [21] are considered the first airspace models used

widely. They have capabilities to model a high level of detail such as gates, terminals,

runways and en route flight schedules. These detailed models provide a variety of func-

tionalities and model at a microscopic level. In order to support more aggregate level anal-

ysis, there have been several different models. The Logistics Management Institute (LMI)

developed LMINET using a queueing network model of the NAS [22]. LMINET can be

used for analyzing delays at airports and en route sectors. However, it does not model the

interdependencies within a flight schedule, and cannot capture the characteristics of delay

propagation [8]. Another queueing network based model, NASPAC (National Airspace

System Performance Analysis Capability) [23], was developed by the MITRE corporation

and adopted by the FAA. It uses a daily flight plan as an input and simulates flight times and

delays. The MITRE corporation also improved it and developed another queueing network

based model called the Detailed Policy Assessment Tool (DPAT) [24]. It has more detailed

en route sectors and weather models. It also includes a parallel simulation capability.

There have been some models that add special functionalities for a specific purpose

of the analyses. The Aviation Environmental Design Tool (AEDT) was developed for

the analysis of environmental impacts across the airspace and airports and delivered to

the FAA [25]. It generates all the flight trajectories under investigation and computes all

4

noise, emissions and emission dispersions made by flights. For the aircraft models, it uti-

lizes the Base of Aircraft Data (BADA) from EUROCONTROL. For the evaluation of new

future air traffic management concepts, the National Aeronautics and Space Administra-

tion (NASA) developed two airspace models. The Airspace Concept Evaluation System

(ACES) is an agent-based model to examine the costs and benefits of novel ATM opera-

tional paradigms [26], [27]. It models all the major components of the ATM system as

agents and emulates their activities across the NAS. The Future ATM Concepts Evaluation

Tool (FACET) was also developed by NASA Ames Research Center and includes detailed

dynamics model of each individual aircraft [28], [29]. It models all the en route navigations

and weather conditions in the NAS. It computes detailed dynamic models of aircraft and

weather models, and has computationally heavy workloads. In addition, NASA continues

to improve and modernize the airspace model and proposed the Shadow Mode Assessment

using Realistic Technologies for the National Airspace System (SMART NAS) [30]. In

the newly designed model, NASA includes state-of-the-art modeling and simulation tech-

niques and data analytics methods.

Airport models

On the other hand, a significant amount of research has focused on the airport facilities [8],

[31]. An analytical model to determine the capacity of a single runway was firstly proposed

by Blumstein [32]. The Airfield Capacity Model (ACM) which calculates the maximum

throughput capacity of multiple runways was released by the FAA [33]. Queueing network

based airport models have also been proposed. The difficulty in modeling an airport as a

queueing network is that the process is not stationary. Koopman proposed a time-varying

Poisson distribution for the arrival sequences [34]. Kivestu extended this research by ap-

plying the second order methods to model a time dependent queue [35]. Malone analyzed

the characteristics of the queues modeled by Koopman and Kivestu, then developed some

rules of thumb that could help planners and operators of airport facilities [36]. The Inter-

5

national Air Transport Association (IATA) introduced a fast time airport simulation model

called Total AirportSim [37]. It includes runways, gates and terminals and is compatible

with SIMMOD input data.

1.3 Parallel Simulation

1.3.1 Computer Simulation

Computer simulations are used in a variety of applications including entertainment, train-

ing, scientific research, weather forecasting, etc. By modeling the rules and properties of

the target systems properly, one can assess different scenarios in a way that is safer and less

expensive than experimentation with the actual system. In cases where experimentation is

difficult or impossible such as exploring nuclear reactions or the creation of the universe,

computer simulation can provide a way to examine the system. If one does not have enough

data for future planning, computer simulations can generate data. Computer simulation is

also used in early design phase explorations. It can also help to explore the decision space

for system management.

Computer simulation has also been used for the air traffic management domain as dis-

cussed earlier. In the designing of a new airport or adding a new runway to an existing

airport, the impacts of the new airport can be evaluated using computer simulations during

the design phase. It can evaluate the noise impact near the airport area, emissions for the en-

tire NAS, and economic impacts caused by the addition of a new runway. It is also actively

utilized for the training of the air traffic controllers before a new air traffic control system

is added. Computer simulation can support decision makings by air traffic controllers in

managing the airspace.

1.3.2 Parallel Discrete Event Simulation

When a simulation is realized as a computer simulation, it consists of three major compo-

nents. The first component is a collection of variables which characterize the state of the

6

system under investigation. The second component is a set of state transition rules which

modify the state variables of the model over time. The last component is the time manage-

ment scheme during the execution of the simulation program. The state variables depend

on simulation time.

Computer simulations can be classified into two categories: continuous simulations

and discrete simulations. Continuous simulations assume that the changes of state variables

occur continuously over time. Usually, the behavior of the system is modeled by differential

equations. By solving a set of numerical equations, the state variables of the system are

computed over simulation time. This type of simulation is widely used for the simulation

of fluids, materials and structural deformations.

On the other hand, discrete simulations assume that the changes in state of the system

occur at certain points in the time domain. These state changes can be encapsulated in

“events” and such simulations are also called discrete event simulations. For instance, a

departure event in an air traffic simulation program can encapsulate the decreased number

of the aircraft in the airport and the increased number of the aircraft in the airspace. This

thesis focuses on discrete event simulations.

In terms of the speed of computer simulations that are of interest here, they can be cat-

egorized into two different types: fast time computer simulation and real-time computer

simulation. Fast time simulations execute multiple different scenarios as rapidly as possi-

ble. They then provide evaluations of those scenarios to users. On the other hand, real-time

computer simulations do not need to be faster than real-time. Rather, they need to provide

on-time evaluations of the state. This thesis focuses on the fast time simulation capability to

support decisions of air traffic controllers. For decision support in real world situations, the

planning of future schedules, the possible design space explorations, etc., fast simulation

execution is often important. As an example, when an air traffic controller is managing the

airspace, the performance of the system could be enhanced by completing many simulation

runs in a short period of time to provide evaluations of the results of different decisions.

7

There have been several approaches proposed to speed up discrete event simulations.

They have mainly focused on the parallel execution of part or all of the simulation in order

to efficiently utilize parallelized hardware. These techniques are often referred to as Parallel

Discrete Event Simulation (PDES) methods. Various different studies have been conducted

to distribute one discrete event simulation program into multiple computing units to achieve

parallel execution. They can be categorized into two approaches termed spatial (or state)

parallel simulation and time-parallel simulation.

Spatial parallel simulations divide the state variables into a certain number of buckets

and execute the simulations of those buckets in parallel. Each bucket is called as Logical

Process (LP). LPs execute concurrently. On the other hand, time-parallel simulations di-

vide the simulation time axis into a number of intervals and simulate these intervals concur-

rently. Here, each time interval simulator is called an LP. These two concepts are illustrated

in Figure 1.1.

Figure 1.1: Two different parallel simulations of air traffic network.

Both approaches have non-trivial problems associated with splitting the simulation into

LPs and distributing them across different computing units. In the case of the spatial par-

allel simulation, dependencies among the states distributed across different LPs need to be

8

linked properly. A synchronization algorithm is needed for this purpose. For the time-

parallel simulation, each LP is dependent on the previous time interval LP and this depen-

dency needs to be addressed appropriately. This is called the “state-matching” problem.

The remainder of this section describes approaches to address these problems in greater

detail.

1.3.3 Spatial Parallel Simulation

In spatial parallel simulation, each LP may advance simulation time separately from the

other LPs, so the current time can be different in different LPs. If the states residing in

different LPs are independent, this would be fine. However, there are usually dependencies

between LP states and they need to be synchronized appropriately. For instance, the number

of arriving aircraft in one airport at a certain time will depend on departures from other

airports. The time stamps of these events are determined by the LPs simulating those

airports. If interactions between LPs are not synchronized properly, the simulation will

produce incorrect results.

To avoid this problem, several different approaches to synchronize LPs have been pro-

posed. They can be divided into two categories: conservative and optimistic synchroniza-

tion algorithms.

Conservative Synchronization Algorithms

As the name implies, conservative synchronization algorithms prevent out-of-order event

processing. One way to avoid out-of-order execution of events is to ensure each LP only

processes events with time stamp less than the minimum time stamp of events that will

later be produced by other LPs. In order to find this lower bound on the time stamp of

future events, one can determine the minimum time stamp of future messages other LPs

might send. Then, the earliest time stamp among these is the safe time to which each LP

can proceed [38]. It can be shown that this procedure ensures correct simulation results if

9

all the LPs are following this rule.

This approach can lead to deadlock situations. This means that every LP is waiting

for a message from another LP and no LP can actually send a message to the others. To

resolve this deadlock problem, Chandy et al. proposed a “null message” approach [39]. The

algorithm is also called the ‘Chandy/Misra/Bryant’ algorithm after the inventors. Every LP

sends null messages to the other LPs when it has no events to process. The extra messages,

avoid deadlock situations.

One disadvantage of the null message approach is the additional communication over-

head. The frequency of null messages depends on lookahead values which derives from

the distances between airports in an air traffic simulation. With a small lookahead value,

there might be many null messages sent. There have been several proposals to address

this problem. Thomas et al. reduce the number of null messages by grouping some LPs

together [40]. Inside the same group, there is no need to send null messages. Wang et al.

proposed an approach to add a requested time stamp for the null message in a discrete and

continuous hybrid simulation model [41].

Another class of conservative synchronization algorithms use a synchronous execution

approach. The LPs find a certain time stamp to which they can proceed without caus-

ing synchronization errors [38]. Then, all the LPs proceed to this simulation time and

stop, using a barrier communication mechanism. This algorithm is presented in Nicol’s

paper where the Yet Another Windowing Network Simulator (YAWNS) algorithm is pro-

posed [42]. The basic idea of the algorithm is to calculate a lower bound of time stamp

(LBTS) of events each LP may later send and compute a global minimum or LBTS value.

Then, by processing all events before the LBTS, global synchronization is achieved. Nicol

also analyzed the efficiency of conservative synchronization in parallel discrete event sim-

ulations [43]. In order to improve the performance of synchronous algorithms, different

approaches have been developed including a tree and butterfly topology [38].

To gain more efficient communications, hardware supported synchronization on multi-

10

core architecture was proposed by Lynch and Riley [44]. The Global Synchronization Unit

(GSU) is inter-connected with all the CPU cores in the system. Liu and Rong presented

a hierarchical composite synchronization algorithm which combines the null message and

synchronous execution algorithms [45].

Optimistic Synchronization Algorithms

Optimistic synchronization algorithms allow out-of-order execution of the events, but re-

cover using a rollback mechanism. Jefferson initially proposed this approach to discrete

event simulations [46]. After the rollback operation, LPs resume the simulation at the time

stamp of the rollback. In order to rollback message sent, each LP sends anti-messages

to cancel these messages. In the Time Warp algorithm, the states of each LP are saved

(checkpoint) prior to processing each event to allow state variable to be restored when a

rollback occurs. This incurs a certain amount of overhead. Also, the rollback itself requires

a certain amount of overhead for both computation and communication. There has been a

significant amount of research related to reducing these overheads. Lin et al. proposed that

checkpoints do not need to be taken so frequently [47]. Instead, he proposed an algorithm

that finds an optimal interval to take checkpoints. Rönngren et al. presented an adaptive

approach to change checkpoint intervals dynamically based on the rollback behavior [48].

In terms of efficient resource management, Lin et al. investigated how to optimally manage

memory in time warp simulations [49]. Fujimoto and Panesar studied the importance of

buffer management strategies in shared-memory time warp simulations [50]. There have

been proposals to reduce the number of rollbacks. Wang et al. proposed an approach to

limit optimism by using a reinforcement learning algorithm [51]. A reward for the rein-

forcement learning is defined using the Event Commit Rate (ECR) and the model is trained

by the Q-learning algorithm.

11

1.3.4 Time-Parallel Simulation

Time-parallel simulation involves dividing the simulation time axis into non-overlapping

segments T1, T2, ... TN where the end of time segment Ti coincides with the beginning of

time segment Ti+1. Then, the simulation of each time segment is assigned to a different

logical process LP1, LP2, ... LPN , with LPi responsible for simulating time interval Ti.

Each such LP may then execute concurrently on a different processor. This would be a very

straightforward approach to parallelization if the simulations of the different time segments

were independent of each other. This is rarely the case, however, because (1) the initial state

of LPi depends on (is identical to) the final state of LPi−1 — the so-called state matching

problem — and (2) the events occurring in LPi may depend on the simulation computations

performed in earlier time segments. One notional example of the state-matching problem

is illustrated in Figure 1.2.

To address this problem, time-parallel simulations typically require multiple rounds of

execution, and utilize a fix up computation to correct errors resulting from data depen-

dencies between LPs that were not accounted for in the initial execution. Time-parallel

simulations can become inefficient if an error propagates through multiple time segments

because an additional round of fix up computations is needed to propagate the correction

through each successive time segment. There have been several different approaches to

address this problem. Some use repeated fix up computations to correct errors in guessed

initial states [38]. Fujimoto, Nikolaidis et al. presented an algorithm using regeneration

points to simulate ATM multiplexers [52]. Time-parallel simulation of queues using paral-

lel prefix computation algorithms were introduced by Greenberg, Lubachevsky et al [53].

In order to improve parallel efficiency, several approximate state matching algorithms have

been developed. Wang and Abrams proposed an approximate time-parallel simulation al-

gorithm of queueing systems with losses [54]. Kiesling, Tobias et al. proposed a time-

parallel simulation algorithm with approximate state matching and analyzed its efficiency

and accuracy [55]. More recently, Thi, Fourneau et al. applied time-parallel simulation to

12

stochastic automata networks [56]. Grasedyck, Lobbert el al. use space and time-parallel

simulation for multigrid PDE simulations [57]. An approach to simulate large-scale dy-

namic transportation systems using spatial and time-parallel simulation has been proposed

by Qu and Zhou [58].

Figure 1.2: Notional example of state-matching problem.

1.4 Artificial Neural Networks

Artificial Neural Networks (NN) is a non-linear function estimation model for a given sys-

tem which has multiple inputs and outputs. By loosely imitating the activities happening

in a human brain, it tries to find the best mapping function between input and output. The

basic unit of the ANN is called a neuron and it consists of a lot of connecting links be-

tween input variables and output variables. By going through a neuron, input variables are

multiplied by some constant weight values, then summed into a specific output variable.

After that, all the output variables go into the non-linear activation functions such as a lo-

gistic sigmoid function (sigmoid), a hyperbolic tangent function (tanh) and rectified linear

unit (ReLU). Figure 1.3 shows the basic neuron of the ANN. Figure 1.4 shows three differ-

ent kinds of activation functions. By stacking multiple neurons hierarchically, a complex

system can be modeled mathematically. Activation functions enable the ANN models to

13

express non-linear patterns in the data. The constant weight values for each neuron are

found using the pre-existing data set which is available when the model is constructed.

By utilizing optimization methods such as the gradient descent optimization, some locally

minimal constant weight values which minimize the errors of the model’s prediction or

estimation are calculated [59].

Figure 1.3: A neuron of artificial neural networks.

1.4.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN) is a class of the artificial neural networks that models

the behaviors of dynamic systems using hidden states. The main characteristic of RNN

compared to the standard ANN is that RNN utilizes outputs from previous time as an input

for the model. The difference is illustrated in Figure 1.5. On the left side, the standard

ANN architecture is illustrated and RNN is shown on the right side. The output of the

model is fed back into the model. Given an input sequence x = (x1, x2, . . . , xk, . . . , xT),

RNN computes the evolution of hidden states h = (h1, h2, . . . , hk, . . . , hT) and output

sequence y = (y1, y2, . . . , yk, . . . , yT). This computation is performed iteratively solving

the following equations for the time span from t = 1 to T . Here, xk, hk and yk can be any

arbitrary sized vectors which are represented as the dimension of input space, hidden space

14

Figure 1.4: Three different activation functions.

and output space. Here, h0 which is used for the time step 1 is given as an initial condition

and can be set as an arbitrary vector at the initial time.

ht = φh (Whhht−1 +Wxhxt + bh) (1.1)

yt = φ0 (Whyht + by) (1.2)

Whh denotes the weight matrix for the transition of hidden states from the previous time

step to the current time step, Wxh denotes the weight matrix for the input to hidden layer

and Why denotes the weight matrix for the hidden layer to output. bh and by are biases for

each equation. φh and φo are activation functions for hidden states and output, respectively

[60]. As stated before, for these activation functions, rectified linear unit or a saturating

nonlinear function such as sigmoid and tanh is applied element-wisely to the given vector

15

Figure 1.5: Feed forward artificial neural networks and Recurrent neural networks.

usually.

1.5 Research Contributions

Returning to the problem of managing air traffic, an accurate fast time simulation method-

ology can evaluate possible decision spaces and suggest different options. Time and spatial

parallel simulation provides a way to speed up simulations. Recurrent neural network

model provides a way to model necessary input variables for the simulations such as the

capacity of airports precisely. The two approaches developed here are novel concepts to

model the NAS. Neither has been utilized for the air traffic network system applications

previously. The value of those components is presented next.

16

1.5.1 Time-Parallel Simulation of Air Traffic Networks

A new time-parallel simulation algorithm has been proposed and implemented in this re-

search. In particular, this is the first application of time-parallel simulation to the air traffic

simulation problem. The developed algorithm shows a sub-linear scalability up to 44 LPs

while achieving 27 times faster simulation compared to the sequential simulation for the

ideal air traffic schedule. The detailed descriptions and analyses are presented in Chapter

2.

As discussed earlier, the main issue for the time-parallel simulation is the state matching

problem. Three properties of air traffic network system simulation mitigate the problem of

fix up computations and their propagation through multiple time segments [61]. At first,

the simulations are driven by statically defined flight schedules that indicate the scheduled

departure and arrival times of each aircraft at each airport it visits. These schedules are

known prior to the execution of the simulation and can be used by each LP to initially

simulate the activity within its time segment. Secondly, so long as the computed arrival time

of a simulated aircraft leads to an on-time departure, an error in the computed arrival time

will not impact the aircraft’s departure, i.e., errors in computing the arrival time will not

propagate further in the future trajectory of the aircraft. This greatly lessens the propagation

of errors through the time segment. Error propagation resulting from fix up computations

largely occurs when the aircraft arrives sufficiently late to affect its subsequent departure

time from the airport.

A third factor that facilitates the use of time-parallel simulation concerns the fact that

airlines are often organized around a “hub” model where many flights travel through certain

hub airports where passengers change flights to reach their eventual destination. A typi-

cal airline schedule will include many flights arriving within a small time window, a short

period of time where passengers change flights, followed by the departure of many flights

from the hub. This cycle repeats throughout the day. This results in bursts of high activity at

the airport followed by periods of light activity before the next round of flights arrive. This

17

is advantageous for time-parallel simulations because the effects of congestion-induced

delays occurring in one busy period are mitigated by periods of light traffic, meaning com-

putation errors due to delayed aircraft are less likely to propagate throughout the day in a

typical airport in the absence of severe events that impact the entire airport for a prolonged

period of time. Moreover, these factors suggest that a time-parallel simulation approach

may be well suited for air traffic simulation.

1.5.2 Combining Time and Spatial Parallelism for Air Traffic Networks

A new algorithm to combine both time and spatial parallelism into one simulation pro-

gram for air traffic networks is proposed and implemented. The developed algorithm offers

more performance than the stand-alone time-parallel simulation or spatial parallel simula-

tion. For a realistic air traffic scenario including air traffic delays, the combined algorithm

achieves 10 times faster simulation which is better than each single parallelism. The de-

tailed descriptions and analyses are presented in Chapter 3.

Spatial parallel simulations require their own synchronization algorithms to synchro-

nize multiple LPs. Therefore, it is also important to carefully design a spatial parallel

algorithm to obtain an efficient implementation for the air traffic network simulation. Fur-

thermore, the spatial parallel algorithm must operate together with the time-parallel sim-

ulation algorithm. The different communication channels for the time and spatial parallel

simulation algorithms must be coordinated properly. Events and workloads also need to

be distributed well across the parallel computer. This research addresses these issues and

develops an approach to adjust the degree of time and spatial parallelism.

1.5.3 Recurrent Neural Network Model for Airspace Applications

A new RNN based prediction model is proposed and implemented. This is the first appli-

cation of RNN model to air traffic data analysis. The proposed model presents a highly

accurate prediction of the future delay of airports. Several different variants of RNN mod-

18

els are tested with different control variable settings. The detailed descriptions and analyses

are presented in Chapter 4.

According to the hierarchical nature of the model and the very high degree of freedom,

RNN is expected to model a certain sequential system very precisely. However, because

of the complexity of the model, RNN was hard to train and actually not a viable solution.

By leveraging recent advances in computing power and numerical optimization methods,

RNN now enables various tasks such as automatic image captioning, machine translation,

autonomous driving cars, etc.

Air traffic network system exhibits highly sequential nature. If some delays occur

across the NAS at a certain time, these delays will affect the future status of air traffic

network and increase the possibility of delays in the next time period. This sequential na-

ture can be naturally modeled in RNN. Also, weather impacts might move across the NAS

which causes sequential propagation in the space domain. Therefore, RNN models are ex-

pected to capture those key components of the NAS simulation and provide the simulation

program with an accurate input. As a result of this relevance, an RNN based flight delay

prediction was introduced by Kim et al. in 2016 [62].

1.6 Thesis Organization

In Chapter 2, the details of the time-parallel simulation algorithm will be presented. The

model for the NAS simulation will be also described. The performance evaluation of the

time-parallel simulation is discussed. Chapter 3 describes the approach combining time and

spatial parallelisms together. The integration of the two parallel algorithms is discussed.

Also, an approach to balance the two parallelization approaches is explored using various

experiments. In Chapter 4, the details of RNN models are presented with the theoretical

background. Based on the model, an actual model for air traffic application has been built

and evaluated with the real world air traffic data and weather data. In Chapter 5, conclusions

from this thesis are presented.

19

CHAPTER 2

TIME-PARALLEL SIMULATION

2.1 Overview

As stated in the first chapter, the amount of air traffic is rapidly increasing and will cause

various problems such as delay in the NAS. Fast time simulation was suggested as a tool

to help address this issue. Rapid execution of simulation models is important in order to

explore a wide variety of scenarios quickly. When used for operations, fast execution is

important in order to make decisions in a timely fashion. Parallel processing offers an

approach to accelerate simulation executions, and several different parallel simulation al-

gorithms have been explored. These approaches use spatial parallelism where one divides

the NAS into distinct regions, and one distributes the state and associated computations to

transform this state across different processors so that they can be performed concurrently.

It is necessary to properly synchronize these computations. In an air traffic network simu-

lation, the components of the system such as airports, air traffic control centers, flights etc.

for a region are typically mapped to a single logical process (LP). Each LP computes its in-

ternal states during the simulation run and communicates necessary events with other LPs.

Challenges to achieving significant speed up of these simulations include the realization of

efficient synchronization among the LPs and managing communication overheads.

Another approach to parallel simulation is time-parallel simulation. As introduced in

Chapter 1, it divides the simulation time axis into multiple time segments. Then, each time

segment is running on a different processor. Algorithms to handle the state-matching prob-

lem is a key component of the time parallel simulation. In particular, a fix up computation

is a good solution to this problem because it avoids re-execution of the simulation. Fix up

computation algorithms for the air traffic network system are discussed in this chapter.

20

As discussed in Chapter 1, there are three promising characteristics of air traffic sim-

ulations with respect to time-parallel simulation. First, they can utilize pre-acquired flight

schedules in the simulation. Second is the errors will not propagate if arrival delays are not

large enough to result in delaying the subsequent departure. The third characteristic is the

hub model which also reduces the probability that errors will propagate.

This chapter describe a new time-parallel simulation algorithm and evaluates it ability

to speed up the simulation of the NAS. Details of time-parallel simulation of the NAS

are described and the algorithm to resolve the state matching problem is presented. The

algorithm is verified using real world air traffic data.

The remainder of this chapter is organized as follows. The next section describes related

work. The discrete event simulation model utilized here is then described. The time-

parallel simulation algorithm is described, followed by presentation of experimental results

based on actual historical data for the NAS. The concluding remarks follow.

2.2 Related Work

There is a significant literature concerning modeling approaches for simulating air traf-

fic network systems including queueing network based models, agent-based models and

system dynamics models, e.g., see [22], [63], [64], [65]. Several studies have focused

on the use of parallel simulation algorithms to speed up the simulation models. Wieland

reports results concerning the use of parallel simulation algorithms for aviation applica-

tions [66]. Lee, Pritchett et al. presented several different parallel simulation algorithms

for the analysis of the NAS [67]. Hybinette and Fujimoto proposed a new method to max-

imize the parallel efficiency of parallel aviation simulation by using a simulation cloning

technique [68].

There have been several studies using the time-parallel simulation approach for a vari-

ety of applications. It was used for trace-driven cache simulation [69], ATM multiplexers

simulation [52], stochastic automata networks [56], multigrid PDE simulation [57], and

21

other applications. Several approaches attack the state matching problem. Some use re-

peated fix up computations to correct errors in guessed initial states [38]. Time-parallel sim-

ulation of queues using parallel prefix computation algorithms were introduced by Green-

berg, Lubachevsky et al. [53]. In order to improve parallel efficiency, there have been

several approximate state matching algorithms developed. Wang and Abrams proposed

an approximate time-parallel simulation algorithm of queueing systems with losses [54].

Kiesling, Tobias et al. proposed a time-parallel simulation algorithm with approximate

state matching and analyzed its efficiency and accuracy [55].

Although there is a growing literature in time-parallel simulation, there has not been an

attempt to apply it to the problem of air traffic network simulations. The effort described

here addresses this issue.

2.3 Modeling Techniques

In order to determine the most appropriate technique to model the air traffic network sys-

tem, historical modeling techniques of the system were investigated. Modeling techniques

include discrete event simulation using a queueing network model, fluid flow models, sys-

tem dynamics models, and agent-based models. Characteristics, strengths, and weaknesses

for each of these modeling techniques are discussed next [65].

2.3.1 Queueing network based discrete event simulation

In the mid 1980s, air traffic simulation modeling mainly relied on discrete event simula-

tion (DES) techniques based on queueing networks. Queueing network based simulation is

the simulation technique which consists of state variables, an event list and a global clock.

Time-stamped events are generated and consumed as the simulation proceeds through time.

At the consumption of each event, state variables are changed, and new events may be

scheduled. The event list, which is implemented by a priority queue data structure, stores

and removes events in time stamp order [38]. For example, in the air traffic network sim-

22

ulation, arrivals and departures of airplanes can be defined as events, and the occupancy

of runway and gates can be modeled as state variables. One example using this queue-

ing network approach is the National Airspace System Performance Analysis Capability

(NASPAC) simulation model that was first developed in 1989 by the Federal Aviation Ad-

ministration (FAA) and Mitre Corporation. In 2008, it was modernized to improve its

performance [70]. Another example of a queueing network model of the air traffic network

system is LMINET developed by Logistics Management Institute (LMI) for the National

Aeronautics and Space Administration (NASA). It uses the airport delay model, which

defines a system’s components as a queue with a delay time (service time for each com-

ponent). For example, a taxi-queue stores arrival events of the airplane and models the

taxiing of the airplane as a delay in the taxi-queue [22]. Queueing network modeling of the

air traffic network is increasing in popular with improvements in discrete event simulation

techniques [71, 72]. One advantage of the queuing network based discrete event simulation

is that it is straight forward to design a spatial parallel simulation. Each individual queue

can be mapped to an LP. Depending on the number of parallel hardware units, multiple

queues can be assigned to one LP.

2.3.2 Fluid flow modeling

The fluid flow modeling approach models the air traffic network as a set of fluid flows. It is

called the Eulerian approach because it uses Euler equations of fluid dynamics to model air

traffic flow. This model spatially aggregates air traffic to generate models of air traffic flow

in a network of interconnected control volumes. It focuses more on the aggregated aspects

of the network system such as arrival rate at a certain airport rather than on the detailed

arrival and departure times of individual airplanes [73].

Figure 2.1 shows a basic example of this flow model. An approach proposed by P.K.

Menon and NASA in 2004 is a good example of the fluid flow modeling of the air traffic

23

Figure 2.1: Air traffic environment in terms of control volumes and merge and diverge
models [73].

network. Under a quasi-steady-state assumption, this research applied linear control theory

to the controlling of air traffic [73]. This model offers an advantage that classical con-

trol theories can be easily adopted because of the continuous characteristic of this model.

However, detailed departure and arrival times, which are not available in this model, can

be very helpful to decision makers. Also, this model cannot show the complex collective

behaviors of the air traffic network system such as the propagation of delay times of flights

throughout the system.

2.3.3 System Dynamics Modeling

System dynamics modeling of the air traffic network system has been suggested since the

2010’s as another modeling approach. This modeling technique uses feedback loops along

with stock and flow diagrams. Interrelationship among the entities of the system is the

main focus of this model. Equations for the stock and flow model are found to quantify the

relationship of the components using historical data or data from a physics-based model.

24

The simulation involves processing these equations. Because of the continuous nature of

this model, it also focuses on the macro level of the system rather than the micro or op-

erational level [74]. Dr. Pinon developed one simulation model using system dynamics

to valuate and select the technology portfolios for small and medium airports [64]. This

modeling technique captures the collective complex behavior of the air traffic network sys-

tem, but it can be unsuitable in some scenarios. It shows good estimation of the system’s

states in a macro level, but real state values are smoothed in a micro level. It is difficult to

evaluate trade-offs between entities’ policies and local rule changes because it is a more de-

ductive approach. The deductive approach means that governing equations of relationships

are extracted from the existing data and applied to the simulation model using a top-down

approach.

2.3.4 Agent-Based Modeling

Agent-based modeling (ABM) is widely used in logistics, economics and civil engineering

simulations [75]. ABM has also become widely used in air traffic network simulation. An

ABM consists of numerous agents which represent individual components of the system.

The simulation models the agents’ local activities based on their local rules for interacting

with each other. More detailed characteristics of the agents are described below [76]:

• Agents are entities with well-defined boundaries and interfaces

• Agents are situated in a particular environment

• Agents strive for specific objectives

• Agents are autonomous

• Agents can be both reactive and proactive in order to achieve their objectives

When modeling the air traffic network system, entities of the system such as airlines, gov-

ernment, and air traffic controllers can be modeled as agents. Figure 2.2 shows one example

25

Figure 2.2: Summary of the model of the airline agent [63].

of an agent design. An airline agent determines flight schedules based on the interaction

between other environment agents. Because the agents’ characteristics are very analogous

to the characteristics of the complex system, ABM is well-fitted to model the air traffic

network in order to capture its emergent behavior. The agent-based modeling technique

is built using a bottom-up approach and can capture not only a detailed level of infor-

mation but also macro level information. It can simulate complex collective behaviors of

the system. The Airspace Concepts Evaluation System (ACES) developed by NASA in

2003 was the first example of an agent-based model of the air traffic network system. It

models Aeronautical/airline Operational Control (AOC), Air Route Traffic Control Center

(ARTCC), Terminal Radar Approach Control (TRACON), Airport Traffic Control Tower

(ATCT), flight and other agents. It simulates the air traffic network accurately but requires

a very long time to implement and run. It was estimated that a simulation of 25,000 flights

through 250 airports and 20 centers required five to six hours in 2003 [77]. In Europe, the

26

Single European Sky ATM Research (SESAR) program’s Complex Adaptive Systems for

Optimization of Performance in ATM (CASSIOPEIA) project attempted to develop a new

agent-based model of the air traffic network system. It uses a higher level of abstraction

than previous ABM research and models different ATM stakeholders and new collaborative

decision processes for flow traffic management [63].

Considering the characteristics of the different modeling techniques, the queuing net-

work based discrete event simulation was selected as a model in this research. It is able

to model each individual aircraft. Also, different level of abstractions can be easily im-

plemented by just replacing event definitions. The simulation executive can be reused for

different applications. ABM also can model different abstraction levels, but it is typically

slower than queueing network based DES. Thus, DES is a better choice to build a decision

support tool. Also, the developed parallel simulation algorithm can also be extended to use

the other modeling techniques.

2.4 Simulation Model

Here, a discrete event simulation model is used to model the NAS for a single day in the

continental U.S. Specifically, we model the domestic airports in the U.S. with the com-

mercial flights using a queuing network-like model. Each flight departs from an airport

based on the flight schedule for the day and the availability of resources for the flights.

These resources could include runways, gates, taxi ways and the air traffic controllers in

the airport. In addition, the airspace and air traffic controllers en route can be viewed as

resources. Here, we focus on modeling airport runways and delays associated with wait-

ing to utilize the runways. Each airport models arriving and departing flights based on the

schedule for the day. The sequence of arriving and departing flights is modeled as events

within the simulation. The main goal of the simulation is to track delays encountered by

each flight in order to improve management of the NAS by minimizing delays and the num-

ber of diverted flights. Further, each aircraft is used for a sequence of flights throughout

27

the day resulting in correlations and interactions among those flights. Details of the event

definitions, resources and the sequence of events in the system are described next.

2.4.1 Simulation Model Resources

Runways are the main resource modeled within this simulation system. A principal task

of the simulation is to compute queuing delays resulting from congestion as many flights

compete for the available runways. The hub model described earlier that is used by major

airlines can exasperate runway delays because arrivals and departures are scheduled to

cluster into certain, busy time periods. All incoming and outgoing flights must wait until a

runway is available to land or take off.

2.4.2 Ground Delay Programs

One important aspect associated with modern air traffic systems concerns the management

of large volumes traffic arriving at certain congested air traffic spaces such as the north-

eastern United States. Due to the limited amount of fuel an aircraft can carry as well as

the expense of burning fuel in flight, the time that an arriving aircraft can wait to land is

limited. If the aircraft cannot be assigned for landing, it may need to be diverted to an

alternate airport. Not surprisingly, this can lead to many other subsequent problems and

issues. Ground delay programs (GDP) are used to avoid this situation [78]. The main

idea of a GDP is to add delay to an aircraft while it is still on the ground prior to depar-

ture if the destination airport is expecting a severe shortage of capacity for arriving flights.

Such limits in capacity can be caused by severe weather conditions or high traffic volumes.

Modeling a GDP requires definition of the airport’s capacity as measured by the number of

flights an airport can handle over a specific time period. This value is usually determined

by weather conditions near the airport. Delays depend on the volume of air traffic arriving

at that airport.

28

2.4.3 Event Definitions

The simulation utilizes five different types of events:

• Arrived

The arrived event represents the arrival of an aircraft at either its original destination

or the alternate airport in the case of a diversion. This event is typically scheduled

when a departed event is processed at the airport originating the flight. Alternatively,

it can be also scheduled when a diverted event is processed. When this event is

processed a runway is assigned as a resource that is used by the flight. In the time-

parallel simulation, the time stamp of the arrived event could be changed by the fix

up computation. This is discussed in greater detail later.

• Diverted

The diverted event represents the diversion of an aircraft to land at an alternate air-

port because of limited fuel and/or inability of the destination airport to handle the

incoming flight due to limited capacity. The processing of this event will schedule

another arrived event at the alternate airport.

• Landed

The landed event represents the completion of the landing sequence for an aircraft.

It represents the exit of the aircraft from the runway it used in the landing sequence.

This event is scheduled when an arrived event is processed with some amount of time

to model the landing of the aircraft on its assigned runway.

• Taxi-in

The taxi-in event represents the arrival of an aircraft to a gate in order to unload and

load passengers. In this simulation, the traffic on the ground at the airport is modeled

by a fixed time delay. Therefore, the event is scheduled when a landed event is

processed with some amount of time delay determined by an analysis of historical

29

data for that airport.

• Departed

The departed event represents the departure of an aircraft from an airport based on

the schedule and availability of resources at the destination airport. The event is

scheduled when a taxi-in event is processed using certain delay computations. This

computation utilizes two different models related to flight delays. The first model

uses the delay of the previous flight to compute the delay of the next flight. This

model is based on research in delay analysis described in [79], and is described in

greater detail later. A second model utilizes ground delay programs in use for air

traffic management. As described earlier, ground delays may be inserted before each

departure if significant delays are anticipated at the destination airport.

An event handler procedure is defined for each event type. The pseudo code for each

event is presented in Algorithm 1.

2.4.4 Delay Model

In the simulation of one day of the NAS, an aircraft can have multiple flights. When it

arrives at a destination airport, it will prepare for the next flight to be flown. Therefore, the

delay from the previous flight might affect the delay of subsequent flights by that aircraft.

To accommodate possible delays, schedules are defined that include buffer times are used to

absorb delays in both ground operations and flight delays en route. Turn-around buffer time

is used to mitigate possible departure delays by adding extra time for ground operations.

On the other hand, block buffer time is used for mitigating possible arrival delays by adding

extra time in the sky. When these buffer times are able to absorb delays on the ground and

in the sky, there will be no delays relative to the published flight schedule. However, if the

actual delays exceed the buffer times, there will be delays that can propagate through to

other flights.

30

Algorithm 1 Simulation event handler.
1: procedure ARRIVED

2: if runway.isBusy() then
3: if runway.waitTime() > threshold then
4: executive.scheduleEvent(new Diverted)
5: else
6: runway.insert(this)
7: else
8: executive.scheduleEvent(new Landed)

9: procedure DIVERTED

10: new dst← findNearAirport()
11: sendMessage(new dst)

12: procedure LANDED

13: executive.scheduleEvent(new Taxi-in)
14: if runway.isWaiting() then
15: runway.pop event()
16: executive.scheduleEvent(new Landed)

17: procedure TAXI-IN

18: dep time← max(dep schedule, sim time+Gd − bsg)
19: executive.scheduleEvent(new Departed)

20: procedure DEPARTED

21: if destination.isBusy() then
22: executive.scheduleEvent(new Departed)
23: else if
24: then sendMessage()

The formulas to compute the departure and arrival delays are shown below. Dd and

Ad represent the actual departure delay and the actual arrival delays, respectively. Gd

represents the ground handling time and bsg represents the scheduled turn around buffer

time on the ground. Similarly, Rd represents the block time in the air and bsr represents the

scheduled block buffer time.

Dd = max{0, Ad
−1 +Gd − bsg} (2.1)

Ad = max{0, Dd +Rd − bsr} (2.2)

31

As stated earlier, new departed events and arrived events can be scheduled based on the

computation in equations (2.1) and (2.2). The delay model for the departure is illustrated in

Figure 2.3. It shows the case where a delayed taxi-in event doesn’t affect the next departure

schedule because there is sufficient buffer time on the ground.

Figure 2.3: Delay model of the departure.

2.4.5 Simulation Execution

When the initial arrival and departure schedules are given for an airport, the events de-

scribed above are scheduled according to the schedule. The arrived events are scheduled

based on the anticipated arrival times. Then the arrived events are processed with queuing

delays in the runway resource. As a result of processing arrived events, the landed and

taxi-in events are then scheduled. If the airport could not process the arrived event because

of the limited capacity in the airport, then a new diverted event will be scheduled. Then,

the delay model and the ground delay program model are utilized for the computation of

the next time for departure while processing the taxi-in event. As a result of the combined

model computation, a new departed event is scheduled. The sequence of event processing

32

is illustrated in Figure 2.4.

Figure 2.4: Single airport event flow.

2.5 Algorithm

This section explains the algorithms used to execute the air traffic model described in the

previous section. In particular, the time-parallel simulation algorithm is described as well

as the fix up computation.

2.5.1 Time-Parallel Simulation

The goal of the simulation is to compute the state of the entire system, in this case the NAS,

over a single day. Time-parallel simulation and space-parallel simulation are illustrated

conceptually in Figure 2.5 with a space-time diagram. While the space-parallel simulation

assigns a set of nodes (airports) in the air traffic network to a single LP, the time-parallel

simulation assigns a segment of simulation time to each LP. Then, the results from each

logical process are merged to produce the final result. One could use both time and space

parallelism to simulate the NAS, however, this chapter focuses exclusively on the time-

parallel simulation approach. A combined approach is investigated in Chapter 3.

Each LP simulates the NAS over a time segment, say [Ty, Tz]. In other words, the

simulator must compute the trajectory of each aircraft over [Ty, Tz], as it visits different

33

Figure 2.5: Two different parallel simulations of air traffic network.

airports during that time segment. The simulator has the scheduled arrival (and departure)

times of aircraft. But initially, the location of each aircraftAi at the start of the time interval

Ty is unknown. However, the simulator does have the scheduled departure times. So, in the

initial simulation, the simulator assume Ai leaves the gate on time from the first airport it

visits during [Ty, Tz], and it then simulates Ai’s trajectory based on this assumption. This

information, the departure time of the aircraft from the gate of the first airport it visits

during [Ty, Tz], is the key piece of information needed for the time parallel algorithm to

work correctly.

After the first round, i.e., all time segment simulations complete their execution, the

simulator for the previous time segment [Tx, Ty] will have computed the actual time Ai

left the gate at the first airport it visited during [Ty, Tz]. Now, this time was computed

based on the assumption of an on-time departure at the first airport Ai visited during [Tx,

Ty] which may not be correct. Nevertheless, the simulator for [Ty, Tz] compares the time

computed by the simulator for [Tx, Ty] that Ai departed from the first airport it visited in

[Ty, Tz] with the on-time departure it had assumed. If Ai did in fact depart on time, Ai

was simulated correctly in the first round so nothing more needs to be done. If Ai departed

34

late, then the trajectory of Ti (and possibly other aircraft) during [Ty, Tz] needs to be fixed

up or re-simulated. If there are no differences in event ordering, the fix up computation

can correct the simulation, however, if the correction involves reordering events, the initial

simulation must be discarded and repeated using the corrected event ordering.

At the end of round 2, the simulator for the previous time segment [Tx, Ty] will have

re-computed a new time Ai left the gate for the first airport it visited during [Ty, Tz].

Here, another round of fix up computation may be needed. If this time matches what it

had reported to the simulator of [Ty, Tz] after the first round, nothing needs to be done.

However, if it does not match, the trajectory of Ai during [Ty, Tz] needs to be re-computed

again. The above process repeats until no mismatches occur. Once this becomes correct

for each aircraft, for each time segment, the time parallel simulation is done.

2.5.2 Simulation Executive

The simulation executive manages event processing and advancements in simulation time.

Like the executive in a sequential simulation, it processes events from an event list in times-

tamp order, and updates the current simulation time of each LP with each event it processes.

The executive also determines when the simulation is completed. The pseudo code for the

executive is shown in Algorithm 2.

2.5.3 Fix Up Computation

A more detailed description of the fix up computation, that occurs at the end of each round

of simulation is described next.

Update and Communication Strategies

At the end of the simulation run, each LP constructs a fix up message. This fix up mes-

sage consists of two components. The first component is the changed schedules for the last

flights flown in the LP for each aircraft. All of the LPs maintain a list of the aircraft flown

35

Algorithm 2 Simulation executive.
1: procedure ISRUNNING

2: if sim time = end time then
3: return TRUE
4: else
5: return FALSE

6: procedure STARTEXECUTIVE

7: ExecutiveThread()

8: procedure SCHEDULEEVENT(evt)
9: event list.insert(evt)

10: procedure EXECUTIVETHREAD()
11: while event list.size() > 0 do
12: cur evt← event list.pop()
13: cur evt.process()
14: sim time← cur evt.time()

15: return

throughout the day, so this is simply an array of delay times (Tdelay). More specifically,

each delay time id defined as the time difference (Tdelay = Tact − Torg) between the orig-

inal scheduled arrival time (Torg) for the flights and the actual arrival time (Tact) after the

simulation run. The other component is the queueing status of each airport at every time

stamp. This means the wait time when a new flight arrives to the airport at that specific

time point. In other words, based on the queueing status, we know how much time each

aircraft needs to wait. These two fix up messages are shown in Figure 2.6. In this specific

notional example, there are three different aircraft in the system and each LP is simulating

9 minutes each. They are used for several different flights and the fix up message holds the

last flights’ delay for each LP. In the figure, each box indicates ‘Aircraft (Last flight number

in the LP) : delay’. For instance, aircraft A’s last flight in LP 1 was delayed 5 minutes and

aircraft B’s last flight in LP 1 has no additional delay. In case of the airport queueing status,

LP 1 has a sequence of numbers represents the delay time in the runway queue at a specific

time for each airport. In this example, the aircraft A is supposed to arrive five minutes

36

Figure 2.6: Communication of fix up messages.

later from the beginning time of LP 1. If we assume that the landing takes 5 minutes, the

expected waiting time will be five, four, three, two and one for the next five minutes. Here,

the next step is iterating through the updated aircraft in the LP which have different arrival

times from the previous LP. When it goes through the aircraft’s flights, it removes flights

from the queue at the original schedule spot and adds it to the new spot in the queue. As

a result of the evaluation, one can determine whether a new simulation run is necessary

in the specific LP or not. If all the changes are simply updating the arrival times and do

not propagate to the next flight, the LP does not need to re-compute the simulation. On

the other hand, if the evaluation results in a change to the upcoming flights, another round

of simulation is run based on the updated flight times. Depending on the algorithms, the

evaluation of updates can be done sequentially or collectively. This means that the fix up

messages are either sent to the next LP or collected into the first LP.

This modification of queue status is illustrated in Figure 2.7. The aircraft A’s update

message from LP 1 to LP 2 was that 5 minutes delay was added to the original scheduled

arrival. Therefore, LP 2 does the evaluation step by firstly removing the flights at the

original place which is the second time spot in LP 2’s status. This removes all expected

delays for five minutes. Then, it adds the flight into the delayed time slot which is five

minutes later. The expected delay was zero for that time slot but it has 5 minutes expected

37

delay at that time point after evaluation.

Figure 2.7: Evaluation of update for the fix up computation.

A high level view of the two different communication strategies is illustrated in Figure

2.8 and Figure 2.9. Figure 2.8 shows a fix up computation that is accomplished separately

by a sequential communication that propagates corrections in earlier time intervals (LPi) to

later ones (LPi+1). This approach ensures that all communications among the LPs happen

only once. Based on the fix up message received from the previous LP, it might or might not

need to do the simulation run again. However, the simulation results should be final at every

LP, so it avoids unnecessary rounds of fix up computations. On the other hand, because this

fix up computation is sequential, there could be performance degradation especially if there

are a large number of LPs.

Figure 2.9 shows the collective computation of the output variable by gathering all

the results into the first logical process. This utilizes the collective API from MPI such

as MPI Gather and MPI Scatter. By utilizing this collective approach, we can reduce

the number of communications to a constant number instead of the number proportional

to the number of LPs. Here, two rounds of communications are required for one fix up

computation. Because general implementations of the collective APIs of MPI roughly has

38

Figure 2.8: High level view of the fix up computations - sequential operation.

Figure 2.9: High level view of the fix up computations - gather operation.

a complexity ofO(log n), it could reduce the burden of communications significantly. After

collecting all the updated information into one LP, it can quickly evaluate all the states need

to be fixed. In the next part of the section, the criteria for rerunning the simulation after the

fix up computations are described.

Rerunning the Simulation

When the updated events from the LP processing the previous time segment, i.e., the pre-

ceding LP, have no impact on the subsequent event scheduled by the updated event, we can

39

simply update state variables affected by the changed event in order to ensure computed

statistics are correct. This is when the updated next departure time based on the queue

evaluation is still the same as the original scheduled departure time. This is computed by

Equation 2.1. In this case the fix up computation will not propagate beyond the LP and the

update will remain within this LP.

If the updated events affect the scheduling of the subsequent departed events within

an LP, another round of the simulation is needed to correct the differences. Based on the

updated arrival time, all the affected time pieces are corrected by running the simulation

again. At the end of the simulation, another round of fix up computation is performed for

the evaluation. The explained procedure is presented in Algorithm 3.

Algorithm 3 Fix up computation.
1: procedure COMMUNICATEFIXUPMSG

2: Msg.flights← flight result
3: Msg.queue state← airport state
4: SendAndReceive(Msg)

5: procedure EVALUATEUPDATE

6: queue states←Msg.queue state
7: for flight update ∈Msg.flights do
8: UpdateQueue(flight update)
9: if IsDepChanged(flight update) then

10: isRerunNeeded← TRUE

11: procedure ISDEPCHANGED(offset)
12: if offset+Gd − bsg > 0 then
13: return TRUE

14: procedure POSTFIXUP

15: isRerunNeeded← FALSE
16: CommunicateFixupMsg()
17: EvaluateUpdate()
18: return isRerunNeeded

40

2.5.4 Workload Distribution

It is important to balance the computational workload across the different LPs because the

slowest LP will dominate the execution time. In order to achieve this, we may partition the

time domain so that all the LPs have a similar amount of traffic to model. In order to mea-

sure how this balancing affects the efficiency of the time-parallel simulation, two workload

distribution algorithms were tested. The initialization portion of the algorithm is presented

in Algorithm 4. Based on the options which are “SAME TIME” and “SAME TRAFFIC”,

the workload is distributed across the LPs.

2.6 Experimental Results

In order to investigate performance and various algorithm alternatives, the time-parallel

simulator algorithm was implemented. The main focus of these experiments was to eval-

uate the initial workload distribution approaches as well as the variations on the fix up

computation algorithms in addition to evaluating the overall speed up obtained by the time-

parallel simulation of the NAS.

2.6.1 Air Traffic Scenario and Data

To evaluate the simulation, two simulation scenarios were utilized. At first, computed

results by the simulation without any capacity restrictions were compared with a perfect

schedule of historical data. When the departure schedules of all the flights from one spe-

cific date are given, the simulation model runs all the traffic during the day in the absence

of airport capacity limitations. This scenario should produce simulation results that ex-

actly match scheduled arrival times. In the validation test, the developed simulation model

yielded the correct results except in some instances where inconsistencies in the historical

data led to differences in model predictions.

The other scenario used for the verification is a real traffic data with a capacity limita-

41

Algorithm 4 Initialization.
1: procedure DISTRIBUTE(option)
2: if option = SAME TIME then
3: duration← total time/num lps
4: start time← lpID × duration
5: end time← start time+ duration
6: else if option = SAME TRAFFIC then
7: lp traffic← total traffic/num lps
8: time← 0
9: while traffic < lpID × lp traffic do

10: traffic← traffic+ traffic at time
11: time← time+ 1

12: start time← time
13: while traffic < (lpID + 1)× lp traffic do
14: traffic← traffic+ traffic at time
15: time← time+ 1

16: end time← time

17: procedure DOINITIALIZE()
18: schedule← LoadData(start time, end time)

19: procedure STARTSIMULATION()
20: Distribute(option)
21: DoInitialize()
22: isRerunSimulation← TRUE
23: while isRerunSimulation do
24: Barrier()
25: executiveHandle← StartExecutive()
26: while executiveHandle.IsRunning() do
27: Wait()
28: Barrier()
29: isRerunSimulation← PostFixup()
30: return

tion in the airport because of the weather conditions and congestions of the NAS. It might

cause some additional round of computations. Because the assumption that the NAS has

unlimited capacity for the air traffic is no longer valid, there exist air traffic delays. De-

pending on the weather condition and the congestion of the NAS, the flight times will be

different from the expected flight times used for the initial simulation. This will cause a

discrepancy between the original flight schedules and the updated schedules generated by

42

the simulation. As a result, there are more severe situations for the state-matching problem.

TranStats from the Bureau of Transportation Statistics is a large transportation database

maintained by the U.S. Department of Transportation. [80] It collects various historical data

related to the transportation systems in the United States including aviation, maritime, and

highway data. Among these, the airline on-time performance database stores all the air-

line information, original departure/arrival flight schedules, actual departure/arrival times,

causes of delays, etc. of all domestic flights in the U.S. The database is publicly available

and can be downloaded by specifying a specific time including year and month.

For this experiment, air traffic data for August 19, 2016 was used. This date included in-

clement weather conditions in the continental U.S. The air traffic on that day has sufficiently

complex patterns and includes flight delays which are providing a realistic, challenging test

case to evaluate the parallel simulation algorithm. Across the 297 airports within the NAS,

16,614 flights for that day were simulated.

2.6.2 Experimentation Environment

Hardware configuration

For the experimentation, a parallel machine using Intel’s Xeon R© CPU (E5-2699 v4, 2.20

GHz, Broadwell micro-architecture) was utilized. It has two sockets and each socket has 22

processing cores. Therefore, up to 44 physical cores were utilized in the experiments. Also,

each socket has 64 GB DDR4 memory installed so in total 128 GB of memory. Because

all the experiments are performed in a single node, there is no network connectivity for

the experiments. Each thread corresponds to an LP and executes on one physical core. To

maximize cache hit rates, each physical core executes only one LP during the simulation

run.

43

Software Configuration

C++11 standards and libraries were utilized for the implementation on top of CentOS

v7.2. Even though this experiment was performed in a single machine configuration, it has

been implemented using MPICH to enable later extension to a multi-machine clustering

environment. The version of the MPICH used in this implementation is v3.2 and the version

of gcc used is v4.8.5.

2.6.3 Fix Up Computation Comparison

Two different fix up computation algorithms described in Section 2.5.3 were implemented

and tested. In these experiments, the wall clock time required for each LP was measured

and the slowest time is used in computing speed ups. Figure 2.10 shows the speed up as

the number of LPs was varied for the two different fix up computation algorithms. As

seen from the graph, the collective fix up computation algorithm executes faster than the

sequential fix up computation. This can be explained by the communication overheads in

the fix up computation. There should be n-1 communications among all LPs which results

in O(n) communication complexity. On the other hand, all the collective operations used

in this implementation have O(log n) communication complexity.

One further observation is that the parallel efficiency drops significantly after a certain

number of LPs are reached. These results are compared with the speed up when no fix

up computation is performed, as shown in Figure 2.11. With no fix up computation, the

simulation, of course, produces incorrect results, however, this simulation provides an up-

per bound on performance and illustrates the performance degradation that results from the

fix up computation. As expected, the speed up without fix up computations yields almost

ideal, linear speed up, and sometimes even shows super linear speed up. We believe this is

because more cache memory is available as the number of processors (LPs) increases.

Returning to the time-parallel simulation, we hypothesize that the performance degra-

dation as the number of processors is increased is because the simulation computation

44

Figure 2.10: Sequential fix-up computation vs. Collective fix-up computation.

Figure 2.11: Sequential fix-up computation vs. Collective fix-up computation with No fix-
up computation.

models a single day of traffic, so the amount of computation in each LP decreases as more

LPs are added. For a large number of LPs the fix up computation requires additional com-

munication, incurs a more significant overhead. This explains the performance degradation

45

in the time-parallel simulation as the number of LPs becomes large. In this experiment, the

policy which distributes the same amount of traffic is used.

In order to verify that the degradation of parallel efficiency is because of the small

size of the original computations, another experiment was performed that included artifi-

cially enlarged event computations. This is done by adding a spin-loop which computes

1,000,000 times integer additions in each event computation. Figure 2.12 shows the re-

sult of this experiment. In this experiment, both the sequential fix up and collective fix

up computations show good speed ups. The collective fix up computation shows slightly

better performance. These speed ups can also be compared with the speed up without fix

up computation in Figure 2.13. All of these show significant speed ups demonstrating the

potential performance improvement of the time-parallel algorithm.

Figure 2.12: Sequential fix-up computation vs. Collective fix-up computation.

46

Figure 2.13: Sequential fix-up computation vs. Collective fix-up computation with No fix-
up computation.

47

2.6.4 Workload Distribution Comparison

For another experiment, the different initial workload distribution policies described in

2.5.4 were used in the simulation. In both cases, they scale well as shown in Figure 2.14.

And, the case with the same amount of traffic shows better performance than the case

with the same time distribution. This result shows that it is important to evenly distribute

workloads across the LPs. In the case of 44 LPs, 1.65 times more speed up can be acquired

by distributing workload uniformly. For the comparison with the speed up without fix up

computation, Figure 2.15 shows all three graphs. For this experiment, the collective fix up

computation is used.

Figure 2.14: Same time intervals vs. Same amount of traffic.

48

Figure 2.15: Same time intervals vs. Same amount of traffic with No fix up computation.

49

2.6.5 Limited Airport Capacity Comparison

For the last experiment, the actual flight times including traffic delays of the real world

data were utilized. With this setting, the same number of LPs were tested to measure the

performance. Figure 2.16 shows speed ups with different numbers of LPs. The lowest line

shows the speed up for this specific traffic scenario and the middle line shows the speed up

for the ideal schedule scenario. From the figure, it is seen that the time-parallel simulation

exhibits a performance degradation in the scenario compared to the ideal traffic situation.

It shows a good scalability until 4 LPs, but the efficiency drops for 8 LPs. The reason is

that the simulation runs require multiple rounds because of the state-matching problem. As

can be seen in Table 2.1, there are multiple rounds of the simulation to fix the incorrect

simulation results which are computed based on the original flight schedules. In the case of

44 LPs, the number of simulation rounds go up to 9 rounds. Another observation from this

scenario is that the number of simulation rounds does not increase linearly in proportion

to the number of LPs. Up to 4 LPs, only one round is needed, but the number increases

to 4 rounds at 8 LPs. 12 LPs also shows 4 rounds, but increases to 6 rounds at 16 LPs.

This is an expected characteristic of the time-parallel simulation of the NAS. Because of

the hub-network model, some LPs can absorb the propagation of delays well. For example,

when we divided the entire time into 4 LPs, those 4 LPs can absorb all the delays within

themselves. So, no additional simulation rounds are needed. But, the division of 8 LPs

results in many state mismatches. In this case, a time period containing concentrated traffic

is split across different LPs.

50

Figure 2.16: Capacity limits vs. No capacity limits with No fix up computation.

Table 2.1: The number of simulation rounds for the time-parallel simulation.

Number of
LPs

Number of
simulation

rounds

1 1

2 1

4 1

8 4

12 4

16 6

22 8

32 8

44 9

51

2.7 Conclusion

Time-parallel simulation offers a new approach to accelerating air traffic simulations of the

NAS. The schedule-driven nature and other aspects of the air transportation schedules such

as the inclusion of buffer times makes it an application that appears to be well suited for

the time-parallel simulation approach. Therefore, a time-parallel simulation algorithm for

simulating the NAS was proposed. Experimental results illustrate that this algorithm can

achieve high level of parallelism and speed up for this application. Preliminary measure-

ments indicate that the collective fix up computation yields better performance than the

sequential fix up computation. It is also seen that even distribution of workloads across the

LPs is necessary for efficient parallel simulation. These results suggest that time-parallel

simulation offers a viable approach to accelerating certain air traffic simulations. At the

same time, it also shows some limitations for a scenario which involves some air traffic de-

lays. It causes multiple rounds of simulations and reduces the efficiency of the simulation.

There are several open avenues for future research. In order to mitigate the performance

degradation problem, an improved algorithm such as dynamic time distribution needs to be

added. Also, an algorithm to find optimal splitting points in the simulation is needed. Cer-

tain algorithmic improvements of the simulation method may yield additional performance

enhancements. Approaches using both spatial and time-parallel simulation is described

next. Realization exploiting SIMD architectures is another area of future research. Further,

a shared memory model such as OpenMP can be integrated with the MPI based simulator

and may achieve better speed up in many core systems; there are many physical cores in

a single machine so it will be more efficient to exploit shared memory among LPs where

possible, and rely on MPI for communication between LPs mapped to different machines.

Finally, the simulations could be adopted for use in real-time symbiotic simulation appli-

cations.

52

CHAPTER 3

EXPLOITING SPATIAL PARALLELISM IN AIR TRAFFIC NETWORK

SIMULATION

3.1 Overview

As explained in the earlier chapters, there are two different types of parallel simulation

algorithms for air traffic network analysis. By distributing state variables across multiple

LPs, a spatial parallel simulation can be implemented. On the other hand, by distributing

time segments across multiple LPs, a time-parallel simulation can be created. In Chapter

2, the main focus was on the methodology to implement a time-parallel simulation. In this

chapter, a novel approach to the simulation of the air traffic network system is proposed

by combining spatial and time parallel simulation algorithms. By simultaneously using

two parallel algorithms, a higher level of parallelism can be achieved. In particular, it is

expected that spatial parallel simulation algorithms can supplement time-parallel simula-

tion algorithms to improve scalability. Although, there has been a significant amount of

research in spatial parallelism, combining both spatial and time parallelism has not been

widely studied. In doing so, it is important to coordinate the different LPs residing in dif-

ferent time and spatial zones efficiently. To the author’s knowledge, this is the first attempt

to apply a combined parallel simulation approach to NAS applications.

This chapter consists of the following sections. In Section 3.2, the proposed algorithm

to combine spatial and time parallel simulations is described as well as the spatial parallel

algorithm is realized in this research. In Section 3.3, the experimental environment and

results are presented using the developed spatial and time parallel simulation program.

Finally, the conclusion for this chapter is presented in Section 3.4.

53

3.2 Combining Time and Spatial Parallelism

3.2.1 Time Warp Parallel Simulation of Air Traffic Networks

There are two main approaches to partition a simulation for parallel execution known as

task parallelization and domain decomposition [81]:

• Task parallelization - The different functional modules of a traffic simulation model

(flight, airport gates, airport controllers, en route traffic controllers) are mapped to

different LPs. The advantage of this approach is that it is straightforward to imple-

ment. Each LP need only implement its specific functionality. The disadvantage

of this approach is that the slowest module will dominate the execution speed. For

example, if one certain airport controller has many more computations compared to

other components, it will become a bottleneck.

• Domain decomposition - In this approach, each LP covers a specific geographic

region. Inside the region, different kinds of functional modules reside. Each LP

performs all of the individual activities contained with the region. In this approach,

all LPs have the same logic but use different data.

Here, the domain decomposition is used for two reasons. First, parallel efficiency is a con-

cern in the task parallelization approach as discussed above. Second, the domain decompo-

sition reduces the amount of communications. With task parallelization, all modules must

communicate with each other. This may result in much communication between LPs. On

the other hand, the domain decomposition approach only requires communications among

spatially neighboring LPs. This is closer to the actual communications in the air traffic

system. Here, the simulation is constructed as in Figure 2.5.

54

Domain Decomposition of the NAS

For the domain decomposition of the NAS, we need to understand the sequence of traffic

control operates in order to determine how the domains of the NAS are constructed. The

sequence of air traffic management operations across the NAS for a flight is shown in Fig-

ure 3.1. When a flight is ready to depart, the Airport Traffic Control Tower (ATCT) gives

a departure clearance. Then, ATCT controls the flight’s ground route so that it can reach a

runway. Once, the runway is ready, ATCT allows the flight to take off. After taking off, it

is controlled by ATCT within a 5 mile range. Then, it is handed over to the Terminal Radar

Approach Control (TRACON). TRACON manages the flight until it reaches the altitude of

10,000 feet or a distance of 40 miles from the airport. From that point, the flight is man-

aged by the Air Route Traffic Control Centers (ARTCC) which control the regions through

which the flight travels. Depending on the flight route, it can pass through several different

ARTCCs. When the flight approaches the destination airport, the reverse sequence takes

place. When the flight is within a range of 40 miles or its altitude is less than 10,000 feet,

TRACON takes control of the flight. ATCT gives a clearance for landing and the flight

lands at a runway following the control of ATCT. Finally, the flight travels to a gate to

unload passengers.

There are 22 ARTCCs in the U.S. NAS. Each ARTCC manages its assigned region.

20 ARTCCs are in the continental US and the other two ARTCCs are controlling the re-

mote regions. One remote ARTCC is controlling the Alaska region and the other controls

Hawaii region. Inside the area controlled by each ARTCC, there are many airports. The

flights flying near the airport, especially for taking off and landing, are managed by ATCT

as explained earlier. The actual ARTCC regions of the NAS is shown in Figure 3.2.

One way to decompose the NAS across multiple LPs is to assign each ARTCC zone to

one LP. In that case, the maximum number of spatial regions is only 22. Another approach

55

Figure 3.1: Air traffic flow chart [82].

Figure 3.2: ARTCC map [83].

56

is to place each U.S. state into a separate LP, in this case, resulting in 50 LPs. Based on the

flight schedule data used here, American Samoa (AS), U.S. Virgin Island (VI) and Puerto

Rico (PR) are also included increasing the maximum number of LPs to 53. In addition

to this pre-defined division of the NAS, we also need to define a flexible way to divide

the NAS in order to measure how well the parallel simulation scales. As a first step to

implement that, all the 53 possible states are lined up and split into the LPs by prorating

them. One empirical fact is that the horizontal grouping of the states is better than the

vertical grouping of the states. Because of the time difference between the eastern side of

the NAS and the western side of the NAS, the vertical grouping may cause the LPs handling

the western side of the NAS to be idle during the early morning time period. Similarly, the

vertical grouping makes the LPs handling the eastern side of the NAS to be idle during the

night time. Therefore, the horizontal grouping can distribute the flights more evenly. Table

3.1 shows one example of divisions of states across LPs. In the table, each LP spans across

the horizontal regions.

Table 3.1: Example of domain decomposition of the NAS - 5 LPs.

LP ID States

LP0 AS, VI, HI, PR, LF, TX, LA

LP1 CA, AZ, NM, OK, AR, MS, AL, GA, SC, TN, NC

LP2 NV, UT, CO, KS, MO, KY, WV, VA, DC, MD, DE

LP3 OR, ID, WY, NE, IA, IL, IN, OH, PA, NJ, CT

LP4 SD, MT, ND, MN, WI, MI, NY, MA, NH, ME, RI, VT, AK

Components of Time Warp Simulation

The time-parallel simulation algorithm proposed in the previous chapter divides time axis

and assign each time intervals to different LPs. Time Warp simulation is well fitted to this

time-parallel simulation because too much optimism which might cause too many rollback

operations is naturally prevented by the time splitting. The sequential simulation algorithm

57

Algorithm 5 GVT computation.
1: procedure INITIATEGLOBALCONTROL

2: if history queue.size() > threshold then
3: SendMessage(global sync)
4: GlobalControl()

5: procedure GLOBALCONTROL

6: while sentMessage 6= receivedMessage do
7: ReceiveAllMessage()
8: AllReduceSum([sentMessage, receivedMessage])
9: localMinimumTime← event list.head().time()

10: globalMinimum← AllReduceMin(localMinimumTime)
11: CommitGVT(globalMinimum)

12: procedure COMMITGVT(GV T)
13: globalVirtualTime← GVT
14: stateHistory.free(GVT)
15: while processedMessage.size() 6= 0 && processedMessage.begin().time() < GVT

do
16: processMessage.pop()
17: logger.commitLog(GVT)

discussed in Section 2.5.2 can be modified to enable execution with Time Warp. First, a

rollback mechanism is needed when the LP detects any out-of-order execution of event.

This includes an anti-message mechanism to roll messages back. Second, there needs to be

a global time management mechanism added. These additions are described below.

• Global Virtual Time

Global virtual time enables LPs to commit I/O related operations and reclaim mem-

ory. Here, a synchronous GVT algorithm is used. The pseudo-code for the algorithm

is presented in Algorithm 5:

1. (Line 1 - 4): Each time, an LP processes an event, it checks if any memory must

be reclaimed. If memory needs to be reclaimed, the LP send messages to the

other LPs to initiate a global control operation.

2. (Line 5 - 11): Once a global control operation is initiated, all LPs synchronize

58

to determine GVT value. All LPs wait until all messages they have sent have

been received at the destination LP. After confirming that all messages have

been delivered, each LP computes its local minimum time value. Then, all LPs

use an all reduce operation to compute a GVT value.

3. (Line 12 - 17): Finally, the LPs free any memory with time value earlier than

GVT. Also, they delete all saved messages with time stamp less than GVT. Log

messages are also saved into files.

• Rollback

In addition to the GVT algorithm, LPs need to have a mechanism to correct any

out-of-order event execution. This is accomplished using a rollback operation. The

operation rolls back the state of the LP to a most recent simulation time before that

of the message causing the rollback. Then, the LP execution can resume from that

time. The Time Warp simulator saves each LP’s state periodically to enable rollback.

It is also necessary to cancel messages sent by rolled back computations. This is

done using the anti-message message cancellation mechanism. An anti-message is

same as the original message, but contains a flag indicating it is an anti-message.

Whenever an LP needs to cancel a message, it sends an anti-message to the original

destination LP. In the receiving LP, if it has been processed, the LP is rolled back to

the most recent simulation time earlier than the canceled message time stamp. The

LP cancels the original message if it has not been processed. The detailed algorithm

is presented in Algorithm 6:

1. (Line 1 - 7): Rollback operations are initiated by a message received from an-

other LP. If an LP receives an anti-message, it calls the message annihilation

routine. On the other hand, if it receives a positive message, it checks the time

stamp of the message. If the time stamp is lower than the current simulation

time of the LP, it executes the rollback routine.

59

Algorithm 6 Rollback algorithm.
1: procedure SCHEDULEEVENTFROMREMOTE(evt)
2: if evt =⇒ ANTI MSG then
3: Annihilate(evt)
4: else
5: if evt.time < simTime then
6: Rollback(evt.time)
7: event list.add(evt)

8: procedure ANNIHILATE(evt)
9: if evt.time < simTime then

10: Rollback(evt.time)
11: else
12: event list.delete(evt)

13: procedure ROLLBACK(time)
14: states← statesHistory(time)
15: while processedMessage.size() 6= 0 && processedMessage.end().time() > time do
16: message← processedMessage.pop()
17: event list.add(message)
18: sendAntiMessage(message)
19: simTime← message.time()

2. (Line 8 - 12): The annihilation routine first compares the time stamp of the

anti-message with the current simulation time at the LP. If it is lower than the

simulation time, it executes the rollback routine. On the other hand, if the orig-

inal positive message has not been processed yet, it simply cancels the original

message. In this case, the annihilation does not cause additional rollbacks.

3. (Line 13 - 19): The rollback routine iterates through the list of processed events

from the most recent to the least recent event. Any events with time stamp less

than the rollback time are removed from the processed event list and added back

to the scheduled event list. At the same time, the LP also sends anti-messages

for any sent messages. After finishing the iteration loop, the simulation time of

the LP is set to the time stamp of the last message added to the event list. Then,

the LP resumes its execution from that event.

60

Algorithm 7 Time warp simulation executive.
1: procedure SENDTERMINATEMESSAGE

2: localState← Terminate
3: idx← 0
4: while idx < NumOfLPs do
5: SendMessage(localState)
6: idx← idx + 1

7: procedure RUNTIMEWARPSIMULATION

8: while CheckTermination() = FALSE do
9: SendAllMessages()

10: ReceiveAllMessages()
11: SaveStateData()
12: event← event list.pop()
13: simTime← event.time()
14: event.process()
15: processedMessage.add(event)
16: InitiateGlobalControl()
17: GlobalControl()
18: SendTerminateMessage()
19: CommitGVT(simTime)

20: procedure CHECKTERMINATION

21: if event list.size() > 0 then
22: return FALSE
23: else if checkOtherLPDone() = TRUE then
24: return TRUE
25: else
26: SendTerminateMeaage()
27: return FALSE

• Time Warp Simulation Executive

Based on the GVT and rollback algorithms, the Time Warp simulation was con-

structed. Each LP processes scheduled events and communicates with other LPs to

manage the execution until the simulation reaches to the termination condition. The

pseudo code is shown in Algorithm 7.

1. (Line 1 - 6): When an LP process all of its events, it sends a termination mes-

sages to all the other LPs.

61

2. (Line 7 - 19): In the main simulation routine, each LP iterates over all the events

it has received. At every time, it starts with checking the termination status us-

ing the ‘CheckTermination()’ routine. If the termination status is satisfied, it

stops the iteration and sends a final termination message to all the other LPs

using the ‘SendTerminateMessage()’ routine. If the LP still has more events

to process or receives messages from the other LPs, the LP starts the event

processing routine. First, it sends and receives all the pending communication

messages. Then, it saves the current status of the LP. The LP then removes the

smallest time stamped event from the ‘event list’ and processes that event. At

the same time, the time stamp of the LP is also updated. After the event is pro-

cessed, it is stored in the ‘processedMessage’ list. Finally, the LP initiates the

global control routine as discussed earlier to update the GVT. Once the iteration

has completed, the LP sends termination confirm messages if the execution has

completed and commits I/O operation and release memory.

3. (Line 20 - 27): In the termination condition check routine, the LP checks if the

‘event list’ is empty. If there are any events to be processed, the LP is not ready

to finish. If there is no more event to be processed, it checks if it has received

the termination messages from all the other LPs. If it received termination mes-

sages from all the other LPs, it can finish. Otherwise, it sends the termination

messages to the other LPs and waits until the other LPs complete their jobs.

Integrated Simulator

By combining all the elements discussed in this chapter and Chapter 2, a time and spa-

tial parallel simulation can be created. After initializing the LPs for each time interval, they

execute the simulation as if they were executing a spatial parallel simulation. They synchro-

nize with the other LPs simulating the same time interval. Once, they complete the spatial

parallel simulations of their assigned time interval, the time parallel simulation algorithm

62

Algorithm 8 Integrated time and spatial simulation.
1: procedure RUNSIMULATION

2: skipThisLP← FALSE
3: completed← FALSE
4: while completed = FALSE do
5: [skipThisLP, completed]← CheckCompleted()
6: if skipThisLP 6= TRUE then
7: GenerateTraffic(time interval, domain)
8: RunTimeWarpSimulation()

9: procedure CHECKCOMPLETED

10: global delay data← []
11: delay data← localStatus[delay]
12: AllReduceSum(delay data, spaceComm)
13: AllGather(delay data, global delay data, timeComm)
14: if LP ID 6= 0 And global delay data[LP ID - 1] 6= 0 then
15: completed← FALSE
16: UpdateScheduleglobal delay data
17: else if time round > time order then
18: skipThisLP← TRUE
19: return [skipThisLP, completed]

20: procedure GENERATETRAFFIC(time interval, domain)
21: traffic data← ReadTrafficData()
22: idx← 0
23: while idx < traffic data.size() do
24: if traffic data[idx] ∈ time interval And traffic data[idx] ∈ domain then
25: event list.add(traffic data[idx])
26: idx← idx + 1

executes the fix up computations. They evaluate if an additional round of the simulation is

needed. If there is need for another round of the simulation, the LPs update initial condi-

tions using an updated flight schedule, and start another round of the simulation. Then, each

time interval initiates a new spatial parallel simulation with the updated flight schedules.

These routines are repeated until all the simulation resolve the state-matching problem.

1. (Line 1 - 8): When an LP starts a simulation, it initializes two boolean variables

which are used for checking completion of the Time Warp simulation for an as-

signed time interval. Then, the LP starts to execute the loop containing the checking

63

for global state-matching of the time parallel algorithm and executes a Time Warp

simulation. First the ‘CheckCompleted’ routine is called to check for global state-

matching. Depending on the results, it may execute another round of Time Warp

simulation. When another round of the Time Warp simulation is executed, the flight

events are populated again into the ‘event list’ for the simulation.

2. (Line 9 - 18): The completion check routine first initializes the ‘global delay data’

container for collecting all the delay data across time and space. Then, every LP exe-

cuting the same time interval performs a ‘reduce sum’ operation to compute a global

delay for the time interval. Finally, all the LPs across the different time intervals

perform a ‘gather’ operation for the LPs to obtain the global delay status. Finally, all

the LPs read the data and check if there are any delays cause an additional round of

time parallel simulation. This result is returned to the caller of this routine.

3. (Line 19 - 25): In the traffic generation routine, the traffic data is populated by data

files which contain the flight schedules. Then, the LP iterates through the traffic data

which has entire flight schedules for the day and determines if every flight schedule

is assigned to itself regionally and timely. If the data corresponds to this LP, the flight

schedule is added into the ‘event list’.

3.2.2 Time and Spatial Parallel Simulation of the Air Traffic Network

An open question concerns how much time parallelism and how much spatial parallelism

should be utilized in the simulation. In some parallel simulation applications, the larger

amount of time parallelism can result in a greater speed up. In other cases, more spatial

parallelism will result in greater speed up. It is also possible that a balance of time and spa-

tial parallelism can yield the best speed up. To investigate the best possible combination of

these two forms of parallelism in the simulation of the air traffic network system, the sim-

ulation program is constructed in a configurable manner. Based on configuration settings,

64

the workload is automatically distributed across different LPs. The following explains how

the distribution algorithm is implemented.

Job Allocation for Logical Processes

The configuration of the two different parallelisms is specified by two variables called

‘space division’ and ‘time division’. The total number of the LPs is determined by multi-

plying those two values.

LP NUMtotal = space division× time division

Once the number of LPs are specified, the simulation splits the entire communications ac-

cording to the number of time pieces. The first LP NUM
space division

LPs are assigned to simulate the

first time interval. Then, the next LP NUM
space division

LPs are assigned for the next time interval,

and so on.

Once, the time division is completed, all LPs inside the same time interval initialize a

communication channel for their Time Warp synchronization while running the simulation.

Based on the geographical regions assigned to each LP, the event list is populated to execute

the simulation. The allocation of LPs based on this explained algorithm is presented in

Figure 3.3. In addition to the spatial communication channels, another communication

channel is created for the LPs simulating the same spatial domains across the time intervals.

This communication channel is used for the time parallel simulation algorithm including

fix up computations. The pseudo code for the explained initialization of the communication

is presented in Algorithm 9.

1. (Line 1 - 9): At first, the initialization of the global communication is performed.

Then, each LP gets the global size of the parallel simulation and its global identifica-

tion number. By division and modulo operations, it can compute the orders in time

and space. Finally, based on the orders and the ID number, it creates communication

65

Figure 3.3: Time and spatial allocation of LPs.

Algorithm 9 Initialization of time and spatial communications.
1: procedure INITIALIZECOMMUNICATIONS(space division, time division)
2: CommInit()
3: LP NUM← CommSize()
4: LP ID← CommRank()

5: time order← LP ID / space division
6: space order← LP ID mod space division

7: spaceComm← CommSplit(time order, LP ID)
8: timeComm← CommSplit(space order, LP ID)

9: Barrier()

channels for the spatial parallel algorithm and time-parallel algorithm.

3.3 Experimental Results

3.3.1 Experimentation Environment

Hardware configuration

A parallel machine using Intel’s Xeon Phi R© CPU (7250, 1.40 GHz, Knights Landing micro-

architecture) was mainly utilized for these experiments. Each chip has 36 tiles of CPU

66

cores with a 2 dimensional mesh interconnect. Each tile has up to 2 CPU cores. The

machine utilized for these experiments has a total of 68 CPU cores. The architecture of

the CPU is shown in Figure 3.4. One special characteristic of the Knights Landing CPU is

that it utilizes a Multi Channel DRAM (MCDRAM) on the package. MCDRAM is a high

bandwidth memory; better performance can be obtained by placing all of the data within

the MCDRAM. The machine has 16 GB of MCDRAM and 192 GB of DDR4 memory.

For some initial experiments of the stand-alone parallelism case, Intel’s Xeon R© CPU (E5-

2699 v4, 2.20 GHz, Broadwell micro-architecture) was utilized to compare the results with

the previous chapter’s results. Because all the experiments are performed in a single node,

there is no network connectivity for the experiments. Each thread corresponds to an LP and

executes on one physical core. To maximize cache hit rates, each physical core executes

only one LP during the simulation run.

Software Configuration

C++11 standard libraries were utilized for the implementation. The system runs on the

Ubuntu 14.04.5 LTS operating system. Even though this experiment is performed in a

single machine configuration, it has been implemented using MPICH to enable later exten-

sion to a multi-machine clustering environment. The version of the MPICH used in this

implementation is v3.2 and the version of gcc used is v4.8.4.

3.3.2 Parallelism Analysis

Based on the developed time and spatial parallel simulation program, several experiments

were conducted. First, the speed up of the spatial parallel simulation algorithm was mea-

sured by setting the degree of time parallelism to one. This experiment measures the effi-

ciency of the Time Warp implementation. Also, the speed up of the time parallel simulation

algorithm was measured by setting the degree of spatial parallelism to one. In addition, the

performance of the both time and spatial parallel algorithms working together was also

67

Figure 3.4: Xeon Phi 7250 architecture [84].

measured. Various combinations of time and spatial simulations were measured and ana-

lyzed. From the analysis of these cases, one can characterize the performance of different

combinations of time and spatial parallelism.

Performance Using Spatial or Time Parallelism in Isolation

Figure 3.5 shows the speed up of the Time Warp simulation with a small workload which

has no additional arithmetic computation. In this test, all parallel versions are slower than

the sequential simulation. This is because the communication overheads dominate because

there is relatively little computation between communications. To investigate the parallel

68

efficiency under a heavy workload, the amount of computation was artificially increased

by adding 1,000,000 integer arithmetic computations per each event. Figure 3.6 shows the

resulting speed up. Up to 8 LPs, the speed of the simulation increases with the increase of

the number of LPs. With 5 LPs, the simulation executes almost 2.6 times faster than the

sequential version. However, when the number of LPs increases beyond 8 LPs, it shows

a significant performance degradation. This is because of increased communication and

excessive rollbacks.

69

Figure 3.5: Speed up of Time Warp simulation - small workload.

Figure 3.6: Speed up of Time Warp simulation - large workload.

70

The speed up of the integrated simulation using time parallel simulation only has also

been measured to verify that the integration of the spatial parallel simulation algorithm does

not degrade the performance of the time parallel algorithm. Figure 3.7 shows the speed up

of the time parallel simulation algorithm by setting the degree of spatial parallelism to one.

The results are consistent with the implementation of the time parallel algorithm shown in

Figure 2.16. It shows a good speed-up up to 4 LPs. However, the efficiency declines when

more LPs are utilized. It may be noted that the time parallel simulation shows better scal-

ability than the spatial parallel simulation which suffered from communication overheads

as the number of LPs increased.

Figure 3.7: Speed up of time parallel simulation- large workload.

The speed up results from the different parallel simulation algorithms operating in iso-

lation are shown Table 3.2. One may note that the division of 5 spatial regions are included

in these experiments. The NAS is categorized into five regions based on the latitude of the

states. In the simulation result, the case of 5 spatial divisions shows the best efficiency. This

is because the workload is better distributed for parallel execution. The maximum number

of spatial division is 53 because there are 53 regions including 50 states and 3 independent

71

regions.

Table 3.2: Speed up by using single parallel algorithms.

Time division Space division Total number
of LPs

Speed up

1 1 1 1

2 1 2 1.983723732

4 1 4 3.918442948

8 1 8 1.973017747

12 1 12 2.931938218

16 1 16 2.610305943

32 1 32 4.101205776

64 1 64 6.845090425

1 1 1 1

1 2 2 1.271560034

1 4 4 1.911319084

1 5 5 2.628851916

1 8 8 2.748376714

1 16 16 1.424655224

1 32 32 2.290080683

1 53 53 1.414010307

72

Performance Using Both Spatial and Time Parallelism

These experiments examine using both time and spatial parallelisms, to understand inter-

actions between the two. First, the degree of time parallelism is set to 2, and the degree of

spatial parallelism is varied. Considering the number of available cores, the total number of

LPs which is the product of the degree of time and spatial parallelism is at most 64. When

the time axis is divided into two intervals, the degree of spatial parallelism is set in the

range from 2 to 32. When the time axis is divided into four intervals, the degree of spatial

parallelism is set in the range from 2 to 16. Figure 3.8 shows the speed up for the case

where the degree of time parallelism is fixed at 2 and the amount of spatial parallelism is

varied. In this case, the dual parallelism works best when the degree of spatial parallelism

is 8, or 16 total LPs. In that case, a speed up of 5.47 is obtained. In terms of efficiency,

setting the degree of spatial parallelism to 5 results in a speed up of 5.01 using 6 fewer

cores. Figure 3.9 shows the efficiency of these cases. Another observation is that the dual

parallel simulation shows no performance degradation due to the interaction between the

two different parallel algorithms. Figure 3.10 shows a comparison between the expected

speed up and the actual speed up. The expected speed up is computed by multiplying the

speed up achieved using time or spatial parallelism in isolation as discussed earlier.

73

Figure 3.8: Speed up of dual parallel simulation - time division: 2.

Figure 3.9: Efficiency of dual parallel simulation - time division: 2.

74

Figure 3.10: Expected speed up vs actual speed up - time division: 2.

The next set of experiments set the degree of time parallelism to 4 and the degree of

spatial parallelism is varied from 2 to 16. Figure 3.11 shows the speed up with different

degrees of spatial parallelism. The best speed up is 10.9X with 8-fold spatial parallelisms

which means a total of 32 LPs. However, in terms of efficiency, a spatial parallelism of

5 yields better efficiency. An efficiency of 50% can be seen in Figure 3.12. In that case,

10-fold speed up is achieved using 20 LPs. Finally, the actual speed up is compared with

the expected speed up which is the product of the time and spatial parallelisms in isola-

tion. Figure 3.13 shows the result. It shows a consistent pattern for most of the test cases.

However, when the number of total LPs become 64, the actual speed up is almost half of

the expected speed up. From this result, it can be concluded that there are some interac-

tions between the two different parallel simulation algorithms when the number of LPs is

increased. All the speed up results from the dual parallel simulation algorithm are shown

Table 3.3.

75

Figure 3.11: Speed up of dual parallel simulation - time division: 4.

Figure 3.12: Efficiency of dual parallel simulation - time division: 4.

76

Figure 3.13: Expected speed up vs actual speed up - time division: 4.

Table 3.3: Speed up by using dual parallel algorithms.

Time division Space division Total number
of LPs

Speed up

2 2 4 2.55640261

2 4 8 3.700238162

2 5 10 5.011837615

2 8 16 5.477427135

2 16 32 2.951136693

2 32 64 3.717920321

4 2 8 5.011222847

4 4 16 6.662033964

4 5 20 10.04040167

4 8 32 10.92419857

4 16 64 2.73136388

77

3.4 Conclusion

Two different paradigms for parallel simulation are time parallel simulation and spatial

parallel simulation. Each has its own strengths and weaknesses. Time parallel simulations

can provide a significant speed up in the case where the initial conditions of each time

interval is well-known and errors do not propagate through entire time segments. However,

if this is not the case, the performance of the time parallel simulation can be degraded

significantly. In that situation, multiple rounds of simulations will be needed. On the

other hand, spatial parallel simulations can speed up the simulation largely independent of

the different initial conditions. However, the spatial parallel simulation algorithm suffers

from communication costs when the amount of computation between message in an LP is

modest.

In order to utilize the advantages of both parallelisms, both time and spatial simulation

algorithms are merged into one simulation program for the air traffic network system ap-

plication. By making them work together efficiently without interference between them, a

new combined parallel simulation algorithm has been proposed. The combined algorithm

achieves good performance by exploiting the advantages offered by each algorithm. A va-

riety of combinations of both types of parallelism has been examined to explore the best

achievable performance of the combined algorithm for the NAS application. As a result,

over ten-fold speed up was achieved.

For future research, there will be an opportunity to improve the parallel efficiency by

dynamically distributing the workload across different LPs. Also, other different spatial

parallel algorithms can be applied and tested to find the best approach for the NAS simula-

tion application.

78

CHAPTER 4

RECURRENT NEURAL NETWORKS FOR FLIGHT DELAY PREDICTION

4.1 Overview

Flight delays in the National Airspace System (NAS) lead to a significant amount of costs

according to a previous study [2]. In 2007, this accounted for approximately $33 billion as

direct or indirect cost to passengers, airlines and other parts of the NAS. In order to reduce

the wasted costs, various studies have been performed for the analysis and prediction of air

traffic delays [85], [86], [87]. Based on the analysis and the prediction, more efficient and

mitigating air traffic management strategies could be established. Furthermore, this pre-

diction can be utilized as an input to a simulation model which enable to realize a reliable

simulation model.

To achieve this, there have been a group of analyses using data analytics and statistical

machine learning, inspired by the success of their techniques in many fields. Tu et al. [88]

analyzed long-term and short-term patterns in air traffic delays using statistical methods.

Xu et al. [89] proposed a Bayesian network approach to estimate delay propagation.

Rebollo et al. [90] analyzed air traffic network characteristics and predicted air traffic

delays using machine learning techniques. Choi et al. [91] proposed a machine learning

model combined with weather data. However, there is still room for improvement in the

accuracy.

In the meantime, artificial neural networks (ANN) based deep learning paradigm which

was inspired by the hierarchical structure of human perception has been widespread. Deep

ANN improves the accuracy of the classification and regression dramatically in many ma-

chine learning tasks such as image recognition, speech recognition, machine translation and

etc [92], [93]. Furthermore, it is now utilized for the ground traffic flow prediction [94].

79

Especially, considering the current improvements of deep ANN algorithms, it is meaning-

ful to evaluate the applicability and the performance of a deep ANN architecture for the

flight delay prediction.

There exist a lot of different deep learning architectures including stacked autoencoders,

convolutional neural networks and recurrent neural networks. In this research, recurrent

neural networks was selected as the architecture for the day-to-day delay status prediction

task because it can capture sequential and temporal relationships existing in the data. Intu-

itively, delay states of previous days’ flights affect subsequent days’ flight delays. Section

4.2 explains the deep learning algorithms used in this study and Section 4.3 explains the ar-

chitecture of the networks trained in the study. Section 4.4 presents the experiment results

using the deep learning model and the conclusion is given in Section 4.5.

4.2 Deep Recurrent Neural Networks

Recurrent Neural Networks (RNN) is an artificial neural networks that models the behav-

iors of dynamic systems using hidden states. There are three commonly used RNN archi-

tectures: vanilla RNN, Long Short-Term Memory (LSTM) networks and Gated Recurrent

Unit (GRU). Vanilla RNN uses the standard RNN equations. LSTM and GRU are proposed

to improve the accuracy of vanilla RNN architecture. In this section, general architectures

of vanilla RNN, LSTM and GRU networks are explained. Then, the benefits of stacking

these networks are discussed and the ways to make an architecture deeper using RNN are

also discussed.

4.2.1 Vanilla Recurrent Neural Networks

Vanilla RNN is a standard format of the recurrent architecture. As explained earlier, with

an input sequence x = (x1, x2, . . . , xk, . . . , xT), hidden states h = (h1, h2, . . . , hk, . . . , hT)

and output sequence y = (y1, y2, . . . , yk, . . . , yT), they are computed by Equation 1.1 and

Equation 1.2. This computation is performed iteratively solving the following equations

80

for the time span from t = 1 to T . Whh denotes the weight matrix for the transition of

hidden states from the previous time step to the current time step, Wxh denotes the weight

matrix for the input to hidden layer and Why denotes the weight matrix for the hidden

layer to output. bh and by are capturing biases for each equation. φh and φo are activation

functions for hidden states and output, respectively. As discussed in Chapter 1, three widely

used activation functions are a logistic sigmoid function, a hyperbolic tangent function and

Rectified Linear Unit (ReLU). The characteristics of these activation functions are listed in

Table 4.1.

Table 4.1: Characteristics of three kinds of activation functions.

TanH ReLU Sigmoid

Equation f(x) = tanh(x) =
2

1+e−2x − 1
f(x) = 0 for x < 0

x for x ≥ 0

f(x) = 1
1+e−x

Derivative f ′(x) = 1− f(x)2 f ′(x) = 0 for x < 0

1 for x ≥ 0

f ′(x) =
f(x)(1− f(x))

Range (−1, 1) [0,∞) (0, 1)

One problem with this vanilla RNN architecture is that it is difficult to optimize math-

ematically. The problem is called as ‘vanishing gradients’ and caused by a long sequence

of the networks. When a network is trained, a numerical gradient method is widely used.

However, in a long sequence of the networks, the cumulated gradient multiplication makes

the gradient value zero. This results in the RNN model not updated any more even with

more training with other data [95]. The model’s optimization process might not success-

fully completed in this situation. Therefore, the accuracy of the model might not be good

depending on the applications.

81

4.2.2 LSTM

The LSTM architecture uses memory cells which will replace φh and φo of standard RNN

architecture to store hidden layer information and it shows better performance for the se-

quence of long range than vanilla RNN architectures. By utilizing four different kinds of

gate functions, it minimizes the ‘vanishing gradients’ problem. In this research, the LSTM

memory cell proposed by Alex Graves et al. [96] was used. This single memory cell is

repeated across the sequences. It has an input gate(i), a forget gate(f), an output gate(o)

and a cell activation vectors(c), all of which are the same size as the hidden vector h. The

following equations represent the computations of the model:

it = φ (Wxixt +Whtht−1 +Wcict−1 + bi) (4.1)

ft = φ (Wxfxt +Whfht−1 +Wcfct−1 + bf) (4.2)

ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc) (4.3)

ot = φ (Wxoxt +Whoht−1 +Wcoct + bo) (4.4)

ht = ot tanh (ct) (4.5)

where φ is the logistic sigmoid function. The cell architecture of LSTM module is illus-

trated in Figure 4.1.

4.2.3 GRU

The GRU architecture is a variant of LSTM architecture. Similar to the LSTM, a GRU cell

replaces φh and φo of standard RNN architecture to store hidden layer information. The

main difference between GRU and LSTM is that GRU does not need to carry an additional

state vector for the next recurrent layer. In the case of LSTM, cell activation vectors(c) are

passed to the next time step to keep more memory. On the other hand, GRU merges the cell

82

Figure 4.1: Long Short-Term Memory Cell [96].

activation vectors(c) into the hidden state vector h. Also, GRU combines the input gate(i)

and the forget gate(f) into a single update unit. This single memory cell is repeated across

the sequence. By combining those, the model can be simplified and shows similar perfor-

mance with LSTM for various tasks. The following equations represent the computations

of the model:

zt = φ (Wxzxt +Whzht−1) (4.6)

rt = φ (Wxrxt +Whrht−1) (4.7)

h̃t = tanh
(
Wxhxt +Whh

(
rt
⊙

ht−1
))

(4.8)

ht = (1− zt)
⊙

ht−1 + zt
⊙

h̃t (4.9)

where φ is the logistic sigmoid function.
⊙

denotes an element-wise multiplication of two

vectors. The cell architecture of GRU module is illustrated in Figure 4.2.

83

Figure 4.2: Gated Recurrent Unit Cell [97].

4.2.4 Deep architecture of RNN

From the past studies [96], [98], it has been shown that a deep and hierarchical model can

be more efficient and accurate at representing some functions than a shallow one. Inspired

by this hypothesis, a deep architecture of model is designed for the task of flight delay

prediction. There are four different ways to deepen the RNN model: deep input-to-hidden,

deep hidden-to-output, deep hidden-to-hidden transition and stacks of hidden states. Each

one strengthens the model in a different manner. First, the deep input-to-hidden architecture

has the effect of non-linear dimensionality reduction. And, it will discover the underlying

factors of variation from the original input. The deep hidden-to-output architecture may

be useful to disentangle the factors of variation in the hidden state, making it easier to

predict the output. The deep hidden-to-hidden transition architecture allows the RNN to

learn a highly nonlinear and non-trivial transition between the consecutive hidden states.

84

Lastly, the stack of hidden states enables a model to capture state transitions of different

timescales.

For this research, the deep input-to-hidden function, the deep hidden-to-output function

and stacked RNN are applied. They are also illustrated in Figure 4.4. The non-linearity of

the state transition is already covered by RNN architectures. The equations for deep input-

to-hidden and deep hidden-to-output transitions just add more affine layers and non-linear

transformation layers, thus the formulations are left out of this thesis. The mathematical

formulation of the stacked RNN is as follows:

h
(l)
t = f

(l)
h

(
h
(l−1)
t , h

(l)
t−1

)
= φh

(
Wlh

(l)
t−1 + Ulh

(l−1)
t

)
(4.10)

where h(l)t is the hidden state of the l-th level at time t. When l = 1, the state is computed

using xt instead of h(l−1)t . The hidden states of all the levels are recursively computed from

the bottom level l = 1.

4.3 Network Training

The proposed model has a two-stage approach. The first stage is to predict daily delay status

using deep RNN. The next stage is to predict delays of individual flights using daily delay

status from the first stage. For the training of the model, historical on-time performance

data of the commercial airline flights and historical weather data for the ten major airports

in the U.S. have been collected. Then, the historical data was grouped by airports so that

the day-to-day sequence of arriving and departing flights at a specific airport can be fed

into the first stage of the model. By computing hidden states sequentially, the delay status

of subsequent days is predicted as an output. For the second stage, the daily from the first

stage, is used as the model input to predict the delays of individual flights. The details of the

actual network configuration and the methods used for the network training are described

in this section.

85

4.3.1 Day-to-day delay status model

The purpose of the first stage is to get a day-to-day delay status model. From the Transtats

database of U.S. Department of Transportation [80], on-time performance data of commer-

cial airline flights is collected. Including the flight schedule, origin airport and destination

airport, all available data attributes are collected from the database. Table 4.2 shows the

details of the flight data used. All of the departure delay times and all of the arrival delay

times for each single day are averaged, respectively. The averaged values are used for rep-

resenting the delay status of one single day. The binary status which is either not-delayed

or delayed is acquired by applying threshold value to the averaged delay value. Several

different threshold values are tested to analyze the most effective threshold value.

It is expected that the weather conditions at the origin and the destination airports were

important factors for the prediction task. Therefore, all the weather data related to the

flight data was gathered from the Integrated Surface Database (ISD) of National Oceanic

and Atmospheric Administration (NOAA) [99]. Similar to the historical flight data, all the

available data attributes are collected from the weather database. Then, the weather data

for a day is averaged. For both flight data and weather data, there is no pre-filtering for

the available data attributes. By using the deep input-to-hidden architecture, it is expected

that the most important features of the model are extracted automatically. The list of the

weather attributes selected for the prediction task is shown in Table 4.2. Based on the

flight and weather input data, the binary class of delay is computed as an output. Then,

this classification is repeated for the consequent days at an airport. In the sequence of the

flight status, the delay of the previous days will affect the delay of the following days. This

sequential characteristic makes the recurrent relationships at the airport. Using an example

of the departure delay sequence of Atlanta airport, the concept for the model is illustrated

in Figure 4.3.

86

Table 4.2: Inputs and outputs of the day-to-day delay status model.

Airports ATL, LAX, ORD, DFW,

DEN, JFK, SFO, CLT,

LAS, PHX

Time period Jan. 2010 - Aug. 2015

Attributes of Day of week, Season,

(Input variables) Month, Date

Flight data

Attributes of Wind direction, Wind speed, Cloud height,

(Input variables) Visibility, Precipitation, Snow Accumulation,

Weather data Intensity, Descriptor, Observation Code

(Daily average)

Classification Class of delay with

(Output variable) different threshold values

(10 minutes, 15 minutes, 30 minutes)

from averaged departure and arrival delay data

Figure 4.3: Day-to-Day departure delay status model.

87

Figure 4.4: Deep architecture for the RNN model.

4.3.2 Deep architecture for the day-to-day delay status RNN model

In order to learn the sequential nature of the air traffic flight delays correctly, deep archi-

tectures described in the previous section are utilized. The deep input-to-hidden functions,

the deep hidden-to-output functions and stacked RNN architectures are merged into the

designed model. The architecture of the network is illustrated in Figure 4.4.

4.3.3 Individual flight delay model

Once, a delay status of one day is acquired, it is fed into the second stage model. The

second stage consists of the layered neural networks (NN) model. It computes a delay class

of one specific flight using a given delay status of flight date and a historical delay class

with historical weather data. For each depth, the hyperbolic tangent function (Tanh) is

followed by a fully connected linear layer. At the final depth, the logistic sigmoid function

is used instead of Tanh because the final output should be a binary class which is 0 and 1.

The inputs and outputs of the model are summarized in Table 4.3. The networks built for

88

this stage is also illustrated in Figure 4.5. The number of layers and the number of nodes

in each layer of the NN model can vary. Impacts of those numbers will be discussed in the

next section.

Figure 4.5: Individual flight delay model.

4.3.4 Regularization

One of the most important issues that needs to be handled appropriately is how to pre-

vent over-fitting of the both day-to-day delay status model and individual delay prediction

model. As the complexity of the model increases with depth, the model is more prone to

over-fitting. It results in a serious degradation of the accuracy of the model. The dropout

technique proposed by Hinton el al. was used in this study [100]. It has been proved that

dropout enhances the accuracy of the deep learning model by randomly dropping units

(along with their connections) from the neural networks during training [101]. As a result

of the random drop, a dropout updates a randomly picked subset of entire network during

89

Table 4.3: Inputs and outputs of the individual flight delay model.

Attributes of Day of week, Season, Month, Date

(Input variables) Origin airport, Destination airport

Flight data Scheduled departure time

Scheduled arrival time

Delay status of origin airport

Delay status of destination airport

Attributes of Wind direction, Wind speed, Cloud height,

(Input variables) Visibility, Precipitation, Snow Accumulation,

Weather data Intensity, Descriptor, Observation Code

Classification Class of delay with

(Output variable) different threshold values

(15 minutes, 30 minutes)

the training phase. This increases a randomness in the model and results in a more gener-

alized model. During the prediction phase, this random sampling does not happen. As a

result, this has an equivalent effect to an ensemble model which has an exponential num-

ber of different “thinned” networks. This significantly reduces over-fitting and gives major

improvements over other regularization methods. The procedure of the dropout is shown

in Figure 4.6. The left side shows the original networks model and the right side shows one

thinned networks using a dropout.

4.3.5 Training methods

For the training of the designed model, the stochastic gradient descent (SGD) algorithm is

utilized. In contrast to the conventional gradient descent algorithm which is called batch

gradient descent, it uses only one sample data at every iteration step of the training opti-

mization. By using only one random sample at a time, it reduces computation time and

memory space used for the training, significantly [102]. The algorithm may not converge

to the direct descent direction of a local optimum because of the noise in a single data

point. However, it is not a problem when a large amount of data is available. Furthermore,

90

Figure 4.6: Dropout Neural Net Model [101].

by adding random sampling procedure at every iteration step, SGD is another effective

method to prevent over-fitting and increase general performance. Mini-batch gradient de-

scent algorithm is in between batch gradient descent and SGD. It uses a subset of data for

each iteration so reduces the time to converge. For some models in the study, mini-batch

gradient descent algorithm was also utilized.

4.4 Experimental Results

Using the implemented day-to-day RNN model and the individual flight NN model, ex-

periments have been performed to analyze the effectiveness of the RNN models. At first,

day-to-day delay status model was trained with different RNN settings. To investigate the

efficiencies of different recurrent units, three recurrent units studied in previous chapters

are applied to ten airports respectively. Also, to investigate the impact of different epochs

and the number of stacked layers, one airport is tested with those different settings. Here,

an epoch means one full pass through the entire dataset for a training.

Then, the individual flight delay model was trained and tested by varying parameters as

91

an example usage of the trained day-to-day delay model. In the case of the individual flight

delay model, historical data for Atlanta airport was utilized. Finally, for evaluating the

generalization performance of the model, one setting acquired from the day-to-day model

experiment of Atlanta airport was applied to other major airports and the accuracies were

analyzed.

4.4.1 Accuracy measurement

In order to measure the accuracy of the model, one tenths of the air traffic data are held out

while the model is trained. Then, the validation of the model accuracy is done with unseen

data for the model. At every 10 iterations, the accuracy using one batch of validation set is

measured. And, those accuracies are averaged all together.

4.4.2 Day-to-day delay status model

Three different types of recurrence architectures are used for measuring the accuracy of

the model for 10 major airports in the NAS. For all the cases, only single stack of the re-

current layer is utilized. And, the threshold value to determine if the airport is delayed

or not is set to 10 minutes. The length of the sequence used here is set to 7. With these

setting, 25 epochs of trainings have been performed. Table 4.4, Table 4.5 and Table 4.6

are showing the accuracy measured for the validation data set for vanilla RNN, LSTM

and GRU respectively. From the result, it is consistently observed that the model works

better for some specific airports. For instance, all three models show high accuracies for

Atlanta airport, Charlotte airport, Chicago airport and Dallas airport. On the other hand,

they show relatively lower accuracies for New York JFK airport, Los Angeles airport and

Las Vegas airport. From the observation, it can be assumed that the recurrence architec-

ture is not enough to capture all the dynamic characteristics of some airports. Especially,

because they are using only one stack of recurrent layer, all the states dependent on dif-

ferent time frames might not be captured correctly. Figure 4.7 shows the accuracies from

92

the three different recurrent architectures. Considering the variance from the randomness

of the stochastic gradient descent method, LSTM and GRU architectures show the simi-

lar performance. However, vanilla RNN shows worse accuracy across different airports.

This is consistent with the expectation that the vanilla RNN has a limitation to model the

sequential characteristics fully, because of its relatively simple architecture.

Table 4.4: Accuracy of day-to-day model - vanilla RNN.

Airport Accuracy

Atlanta (ATL) 92.35

Los Angeles (LAX) 81.01

Chicago (ORD) 88.96

Dallas (DFW) 88.09

Denver (DEN) 89.09

New York (JFK) 85.64

San Francisco (SFO) 87.63

Charlotte (CLT) 92.96

Las Vegas (LAS) 85.92

Phoenix (PHX) 88.19

Table 4.5: Accuracy of day-to-day model - LSTM.

Airport Accuracy

Atlanta (ATL) 93.45

Los Angeles (LAX) 85.19

Chicago (ORD) 90.49

Dallas (DFW) 89.65

Denver (DEN) 87.52

New York (JFK) 85.64

San Francisco (SFO) 88.83

Charlotte (CLT) 93.25

Las Vegas (LAS) 85.76

Phoenix (PHX) 88.09

93

Table 4.6: Accuracy of day-to-day model - GRU.

Airport Accuracy

Atlanta (ATL) 93.43

Los Angeles (LAX) 83.96

Chicago (ORD) 90.47

Dallas (DFW) 89.19

Denver (DEN) 89.55

New York (JFK) 86.63

San Francisco (SFO) 88.28

Charlotte (CLT) 93.14

Las Vegas (LAS) 86.04

Phoenix (PHX) 87.97

Figure 4.7: Accuracy comparison for different recurrence units.

94

In order to verify the effects of the different number of epochs and the different number

of stacked layers, two more experimentations have been performed. For this experiment,

the historical flight data from JFK airport is utilized. As a recurrent unit, LSTM is used for

the experiment. Except for the variables under experiment, all the other variables are set

to the same as the previous experiment which are 7 for the sequence length and 10 for the

delay threshold value. Firstly, given these settings, the number of epochs is varied from 25

to 1000. From this experiment, it can be analyzed how the accuracy changes by the number

of epochs. Figure 4.8, Figure 4.9 and Table 4.7 show the result of the experiment. It is

observed that the accuracy increases consistently by increasing the number of epochs until

200 epochs. This means that the LSTM architecture has many parameters to optimize and

there are still potential gains to acquire. The accuracy still increases when the number of

epoch increases beyond 200 epochs, but it also shows a diminishing return. The maximum

achievable accuracy is around 98.8 %.

Figure 4.8: Accuracy changes with increasing number of epochs (until 200 epochs).

95

Table 4.7: Accuracy of day-to-day model - different epochs.

Epochs Accuracy

25 85.64

50 87.38

75 89.62

100 90.92

125 91.88

150 93.24

175 94.32

200 95.37

300 96.63

400 97.47

500 97.98

600 98.15

700 98.37

800 98.57

900 98.76

1000 98.82

Figure 4.9: Accuracy changes with increasing number of epochs (until 1000 epochs).

96

As another test case, the number of stacked recurrent layers is varied while the other

parameters are fixed. In this case, the number of epochs to train as 100. The number of

recurrent layers is varied from 1 to 8. The results are shown in Figure 4.10 and Table 4.8. It

is observed that the accuracy increases when multiple stacked layers are utilized compared

to one layer. However, it gives a diminishing return when the number is greater than 6. This

can be explained that more layers capture the detailed pattern of the data better. However,

the accuracy is saturated at some point and the increased number of layers does not improve

the accuracy beyond the point.

Table 4.8: Accuracy of day-to-day model - number of stacked layers.

Number of layers Accuracy

1 90.92

2 93.77

3 93.21

4 93.68

5 93.82

6 92.62

7 93.47

8 93.32

Based on the trained models for Atlanta airport and JFK airport, two example prediction

results were acquired. For the comparison of the accuracy, they are shown together with

the actual delay data. Both are using 10 minutes as the threshold value and 100 days of

prediction data has been computed. Figure 4.11 shows the result from Atlanta airport. As

can be seen in the figure, the model’s prediction results are almost same as the actual delay

data except for several mismatches. For the comparison, the worst performing model in

Table 4.5 which is JFK airport also tested for 100 days. It is shown in Figure 4.12. Even

for the worst case model, it predicts the delays quite well except for a few mismatches.

97

Figure 4.10: Accuracy changes with increasing number of layers.

Figure 4.11: Actual delay vs Predicted delay (ATL).

98

Figure 4.12: Actual delay vs Predicted delay (JFK).

4.4.3 Individual flight delay model

By combining the delay status of a single day, historical flight data and weather data, the

model for individual OD pair was trained. The networks described in Section 4.3 and

Figure 4.5 was utilized. In the deep layered fully connected nodes, the number of layers, the

number of hidden nodes in each layer, epoch and the batch size are varied and the accuracy

is tested. At every iteration, the number of samples used for the training is the batch size.

Table 4.9 shows the accuracies acquired for different settings. From the results, the model

achieved high accuracy ranging from 86% to 87%. It also shows that the increased number

of layers is contributing to improve accuracy. Similar to the observation acquired from the

previous experiment, it is observed that more epochs make the model more accurate. And,

it is a common observation in most of the previous data analytics tasks [103]. This suggests

that the RNN approaches and models will perform better in the future by accumulating

99

Table 4.9: Accuracy of individual flight delay models.

Layers
Number of hidden nodes

for each layer
Epoch Accuracy

1 133 22 85.32

2 133→ 100 22 86.57

3 133→ 200→ 15 22 86.71

4 133→ 200→ 100→ 15 22 86.93

5 133→ 300→ 200→ 100→ 15 22 86.99

5 133→ 300→ 200→ 100→ 15 228 87.40

5 (mini-batch) 133→ 300→ 200→ 100→ 15 228 87.42

more data.

4.4.4 Generalization of day-to-day model for different airports

The day-to-day model trained for one specific airport has been applied to 10 different air-

ports. From the first part of this section, the best performing parameter settings are found

using Atlanta airport’s air traffic data. Therefore, the model trained with the air traffic data

from Atlanta airport is applied to other 9 airports to evaluate the generalization performance

of the model to the other airports. Table 4.10 shows the accuracy results for 10 airports. It

shows that all the accuracy values are over 80% except for JFK airport. However, the accu-

racies for the other airports are usually lower than the original Atlanta airport. Thus, even

though the model can be generalized well, the model needs to be trained with the specific

data set to get the best accuracy. This is because each data set has its own characteristics. In

order to verify that an additional training with the specific data from each individual airport

helps improving the model, several numbers of additional trainings were performed for

JFK airport. The result is shown in Table 4.11. When additional trainings were applied, the

accuracy increases greatly. When 50 more iterations are performed, the accuracy increases

almost 6%. When 150 additional iterations were applied, it shows a similar accuracy to the

model trained originally from JFK airport.

100

Table 4.10: Accuracy of day-to-day model for different airports.

Airport Accuracy

Atlanta (ATL) 93.45

Los Angeles (LAX) 82.63

Chicago (ORD) 88.07

Dallas (DFW) 83.33

Denver (DEN) 88.42

New York (JFK) 74.74

San Francisco (SFO) 86.14

Charlotte (CLT) 80.35

Las Vegas (LAS) 81.93

Phoenix (PHX) 81.93

Table 4.11: Additional training with a model from Atlanta airport - JFK airport.

Additional training Accuracy

0 74.74

50 80.66

100 83.66

150 88.99

4.5 Conclusion

From this study, it is shown that the RNN architectures can improve the accuracy of the

airport delay prediction models. In particular, by applying LSTM and GRU architecture to

the prediction model, a highly accurate day-to-day delay prediction model can be acquired.

Sequential characteristics of the data can be modeled efficiently using the recurrent models.

Then, the most accurate delay states for individual flights have been acquired by feeding

the delay status of a day to the individual flight delay model. It gives state-of-the-art results

in predicting individual flight delays. The next steps are to apply other deep architectures

to the prediction and analysis task of flight delays. It may yield important patterns in flight

delay data.

101

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, a new methodology to support air traffic management decisions using time

and spatial parallel simulation algorithms and recurrent neural networks models has been

presented. The specific contributions of this thesis are summarized in Section 5.1. And,

directions for the future research are presented in Section 5.2.

5.1 Contributions

In order to implement an intelligent decision support system for the air traffic management,

two major issues need to be addressed. For the fast exploration of a huge decision space,

a simulation model for the decision support need to be fast to investigate all the possible

different scenarios quickly. Also, for the accurate analysis of the air traffic flow and the

decision support for the air traffic management, the decision support tool has to predict the

future scenario correctly by utilizing the available data. This thesis has addressed these two

problems. The specific contributions of the thesis are listed as follows.

• Analysis of the existing decision support methodologies for the air traffic man-

agement

Existing models for the air traffic management have been categorized and analyzed

based on their different approaches. In particular, various simulation based models

are investigated with their conceptual modeling techniques which are queueing net-

work based discrete event simulation, fluid flow model, system dynamics model and

agent-based models. Queueing network based discrete event simulation is picked as

a reference model and a prototype model for the air traffic network system has been

formulated.

102

• In-depth study and formulation of parallel discrete event simulation algorithms

To accelerate the constructed discrete event simulation model, various different par-

allel simulation algorithms have been studied. Two different paradigms of building a

parallel simulation program which are spatial parallelism and time parallelism are ex-

plained and investigated. In many applications as well as the simulation of the NAS,

spatial parallel simulation algorithms have been used mainly. Conservative synchro-

nization algorithms and optimistic synchronization algorithms, which are two major

synchronization algorithms for the spatial parallelism, have been studied and ex-

plained.

• Time-parallel simulation algorithm for the air traffic networks

As a novel approach to the simulation of the air traffic network systems, a time-

parallel simulation algorithm has been introduced and implemented. Especially, cer-

tain properties of air traffic network system, which are pre-defined schedule based

operation and hub network based model, make the time-parallel algorithm promising

for the application. The proposed algorithm has been realized with the proposed pro-

totype simulation program. Using the implemented simulation program, speed ups

brought by the time-parallel simulation algorithm have been investigated. In partic-

ular, the algorithm shows a sub-linear scalability with an ideal scenario. At the same

time, the algorithm shows a relatively smaller scalability in the scenario of a limited

airport capacity.

• Time and spatial hybrid parallel simulation algorithm for the air traffic net-

works

To more accelerate the simulation of the air traffic network, both time-parallel and

spatial parallel algorithms have been integrated to build a hybrid model which can

utilize the benefits of both parallel algorithms at the same time. The details of the

algorithm has been explained and implemented using the prototype simulation pro-

103

gram. The implemented parallel simulation algorithm results in a significant speed

up with a real world air traffic scenario.

• Formulation of the data modeling for the air traffic management

For acquiring more accurate simulation results and getting a better prediction model

for air traffic delays, a new method to model the variables existing inside the air

traffic network system has been proposed. By utilizing historical air traffic data and

weather data, a new model is capable of predicting the future delays of the national

airspace system. Day-to-day delay status model can be utilized for the input variable

for the air traffic simulation. Also, it can be utilized for the input variable to another

model which can predict delays of each individual flight.

• Recurrent neural networks approach to the flight delay prediction

Recurrent neural networks is well-known for its effectiveness of modeling a sequen-

tial variables. Air traffic delay data is a kind of sequential data. Especially, the

day-to-day model defined in this thesis is well fitted for the recurrent neural net-

works. Therefore, several different kinds of recurrent neural networks, which are

vanilla RNN, LSTM and GRU, are investigated and implemented. This is also a

novel approach to the prediction of air traffic delays. By setting several different pa-

rameters for the recurrent models, the accuracies of the model have been measured

using the real world historical flight and weather data. Overall, the model achieved

a significant improvement in predicting the future sequences and LSTM and GRU

models show a promising performance.

5.2 Future Research

To build an even faster and more accurate decision support tool, the research presented in

this thesis can be extended in several ways as follows.

• Analysis of the simulation performance with enlarged future air traffic scenario

104

In this thesis, real world air traffic schedule data is utilized to verify the speed up and

improvement of the proposed algorithm. The benefit from the parallel simulation al-

gorithms could become larger in an enlarged air traffic situation. Because the amount

of the air traffic is increasing in a significant pace, optimizing the algorithm with the

increased scenario could bring more impacts. For that research, a new method to

generate a reasonable future air traffic data also needs to be developed.

• Improvement of the spatial parallel simulation algorithms

From the experimentations, there exist a quite amount of rollback operations while

spatial parallel simulation algorithm is running. By addressing this issue, a more ef-

ficient spatial parallel simulation algorithm can be implemented. Conservative sim-

ulation algorithms can be evaluated to see if they are showing a more efficient paral-

lelism. Also, to reduce the amount of rollback operations, a new algorithm which is

restricting too much optimism can be studied. Given that a huge amount of historical

air traffic data is available, time warp simulation can limit the optimistic executions

based on the statistics of historical data.

• Dynamic workload balancing across time and spatial regions

Another observation from the experimentation is that it is important to distribute

workload evenly. Especially, when there are multiple rounds of time-parallel simula-

tions to fix the computations up, some LPs which do not have extra rounds computa-

tion just wait until the other LPs finish their extra rounds. This causes an inefficient

utilization of such LPs. Furthermore, it is observed that the split point for the time-

parallel simulation is important to avoid extra rounds of simulations. From these

observations, a dynamic workload balancing algorithm might improve the parallel

simulation significantly. If the more time parallelism is needed, the algorithm au-

tomatically increase the number of time parallelism while reducing the number of

spatial parallelism. Also, it can distribute the time intervals again while multiple

105

simulation rounds are going on. Finally, it can find an optimal time division point

optimally as well.

• Extension of artificial neural networks approach to the air traffic data modeling

To get a more accurate model for the air traffic network, every input variable can be

modeled using an artificial neural networks. For instance, the loading and unloading

time of passengers at an airport gate can be varied depending on the different dates of

the week and dates of the month. Similarly, waiting times for the allocation of gates

can be different. These variables also can be modeled using an ANN and a more

accurate input variables can be acquired as a result. On the other hand, different kinds

of ANN models can be tested and applied. As one example, Convolutional Neural

Networks (CNN) is good at extracting the best features from the high dimensional

data. Thus, it can be utilized to find a best feature from the air traffic data.

106

Appendices

107

APPENDIX A

APPLICATION PROGRAMMING INTERFACE OF SIMULATION SOFTWARE

A.1 Time and Space Parallel Simulation

A part of software especially for the application independent parts is based on the software

developed for the NETWORK TRAFFIC SIMULATOR from the CSE 6730 class held in

Spring 2014 at Georgia Institute of Technology. So, all the source files might share below

general comments.

Common header comment

/ /

/ / / / / /

/ / / Time and space p a r a l l e l NAS s i m u l a t o r / / /

/ / / / / /

/ / / by / / /

/ / / Young J i n Kim / / /

/ / / / / /

/ / / A p a r t o f s o f t w a r e i s from / / /

/ / / NETWORK TRAFFIC SIMULATOR / / /

/ / / CSE / ECE − 6730 Sp . 2014 / / /

/ / / / / /

/ / / by / / /

/ / / C h r i s t o p h e r Hood / / /

/ / / Young J i n Kim / / /

/ / / David S c r i p k a / / /

/ / / / / /

/ /

108

Logger.hpp

i f n d e f LOGGER HPP

d e f i n e LOGGER HPP

i n c l u d e <s t r i n g >

i n c l u d e <i o s t r e a m>

i n c l u d e <f s t r e a m>

i n c l u d e <s t d i o . h>

i n c l u d e <s t d a r g . h>

i n c l u d e <map>

c l a s s Event ;

c l a s s Logger

{

p u b l i c :

s t a t i c Logger ∗ g e t L o g g e r (c o n s t s t d : : s t r i n g& loggerName) ;

void w r i t e L o g (c o n s t s t d : : s t r i n g& l o g) ;

void w r i t e L o g (c o n s t char∗ fo rmat , . . .) ;

void even tLog (c o n s t Event ∗ e v e n t) ;

void queueEventLog (c o n s t Event ∗ e v e n t) ;

void r o l l b a c k (double t ime) ;

void commitLog (double t ime) ;

109

p r i v a t e :

s t a t i c s t d : : map<s t d : : s t r i n g , Logger∗> l o g g e r s ;

Logger (c o n s t s t d : : s t r i n g& loggerName) ;

˜ Logger () ;

s t d : : s t r i n g loggerName ;

s t d : : o f s t r e a m o f ;

s t d : : mult imap<double , s t d : : s t r i n g > logQueue ;

/ / TODO f i l e s i z e check and make new f i l e

} ;

e n d i f /∗ LOGGER HPP ∗ /

Event.hpp

i f n d e f EVENT HPP

d e f i n e EVENT HPP

i n c l u d e ” Hand le r . hpp ”

i n c l u d e ” Logger . hpp ”

/ /

/ / / \ b r i e f Wrapper c l a s s f o r an e v e n t .

/ / /

/ /

c l a s s Event

110

{

p u b l i c :

/ /

/ / / \ b r i e f c o n s t r u c t o r

/ / /

/ /

Event (double t ime , c o n s t Hand le r ∗ pHand le r)

: t i m e (t ime)

{

i f (pHand le r) p H a n d l e r = pHandler−>c l o n e () ;

e l s e p H a n d l e r = 0x0 ;

}

/ /

/ / / \ b r i e f copy c o n s t r u c t o r

/ / /

/ /

Event (c o n s t Event ©)

: t i m e (copy . t i m e)

{

i f (copy . p H a n d l e r) p H a n d l e r = copy . pHand le r −>c l o n e () ;

e l s e p H a n d l e r = 0x0 ;

}

/ /

/ / / \ b r i e f a s s i g n m e n t

/ / /

/ /

Event& operator =(c o n s t Event &r h s)

{

111

i f (t h i s != &r h s)

{

t i m e = r h s . t i m e ;

d e l e t e p H a n d l e r ;

i f (r h s . p H a n d l e r) p H a n d l e r = r h s . pHand le r −>c l o n e () ;

e l s e p H a n d l e r = 0x0 ;

}

re turn ∗ t h i s ;

}

/ /

/ / / \ b r i e f d t o r

/ / /

/ /

˜ Event () { d e l e t e p H a n d l e r ; }

/ /

/ / / \ b r i e f Handle t h e h a n d l e r a s s o c i a t e d w i t h t h i s e v e n t

/ / /

/ /

void h a n d l e () { pHand le r −>h a n d l e () ; }

/ /

/ / / \ b r i e f Get t h e t i m e a s s o c i a t e d w i t h t h i s e v e n t

/ / /

/ /

double t ime () c o n s t { re turn t i m e ; }

112

/ /

/ / / \ b r i e f S o r t i n g o p e r a t o r

/ / /

/ /

bool operator < (c o n s t Event &r h s) c o n s t

{ re turn t i m e < r h s . t i m e ; }

/ /

/ / / \ b r i e f Peek a t t h e h a n d l e r

/ / /

/ /

Hand le r ∗ pHand le r () c o n s t { re turn p H a n d l e r ;}

/ /

/ / / \ b r i e f Peek a t t h e h a n d l e r

/ / /

/ /

void w r i t e L o g ()

{

Logger : : g e t L o g g e r (” Event ”)−>even tLog (t h i s) ;

}

p r i v a t e :

double t i m e ; / / Sim t i m e a t which t h i s e v e n t o c c u r s

/ / P o i n t e r t o o b j e c t from which Handle f u n c t i o n c a l l e d

Hand le r ∗ p H a n d l e r ;

} ;

113

e n d i f

EventList.hpp

i f n d e f EVENTLIST HPP

d e f i n e EVENTLIST HPP

i n c l u d e ” Event . hpp ”

/ /

/ / / \ b r i e f A b s t r a c t base c l a s s t o encompass an

/ / / e v e n t s c h e d u l e r .

/ / /

/ /

c l a s s E v e n t L i s t

{

p u b l i c :

E v e n t L i s t () {}

v i r t u a l ˜ E v e n t L i s t () {}

v i r t u a l vo id add (Event e v e n t) = 0 ;

v i r t u a l Event pop () = 0 ;

v i r t u a l bool empty () = 0 ;

v i r t u a l Event head () = 0 ;

v i r t u a l u i n t 3 2 t s i z e () = 0 ;

v i r t u a l bool a n n i h i l a t e (c o n s t Event &even t ,

c o n s t bool n o e x c e p t i o n = f a l s e) = 0 ;

v i r t u a l E v e n t L i s t ∗ c l o n e () c o n s t = 0 ;

p r o t e c t e d :

114

} ;

e n d i f

ConfigFile.hpp

i f n d e f CONFIGFILE HPP

d e f i n e CONFIGFILE HPP

i n c l u d e <i o s t r e a m>

i n c l u d e <s t r i n g >

i n c l u d e <s s t r e a m>

i n c l u d e <map>

i n c l u d e <c s t d l i b >

/ /

/ / / \ b r i e f Genera l c l a s s t o h an d l e r e a d i n g c o n f i g f i l e s

/ / /

/ /

c l a s s C o n f i g F i l e

{

p u b l i c :

C o n f i g F i l e () { comment = ’ # ’ ; }

˜ C o n f i g F i l e () ;

void p a r s e (c o n s t s t d : : s t r i n g &f i l e) ;

void p r i n t (s t d : : o s t r e a m &os) ;

t empla te <c l a s s T>

void add (c o n s t s t d : : s t r i n g &arg , T &v a r) ;

115

t empla te <c l a s s T>

void add (c o n s t s t d : : s t r i n g &arg , T &var , bool (∗ check) (T)) ;

p r i v a t e :

c l a s s VarCapsu leBase ;

t empla te <c l a s s T>

c l a s s VarCapsu le ;

/ / da ta members

s t d : : map< s t d : : s t r i n g , VarCapsu leBase ∗ > v a r s ;

char comment ;

} ;

/ /

/ / / \ b r i e f Base c l a s s t o h an d l e e n c a p s u l a t i o n o f v a r i a b l e

/ / / r e f e r e n c e .

/ / /

/ /

c l a s s

C o n f i g F i l e : : VarCapsu leBase

{

p u b l i c :

v i r t u a l ˜ VarCapsu leBase () {}

v i r t u a l vo id a s s i g n (s t d : : s t r i n g) = 0 ;

v i r t u a l vo id p r i n t (s t d : : o s t r e a m &) = 0 ;

} ;

116

/ /

/ / / \ b r i e f Sub c l a s s t o a c t u a l l y ho ld da ta .

/ / /

/ /

t empla te <c l a s s T>

c l a s s

C o n f i g F i l e : : VarCapsu le

: p u b l i c C o n f i g F i l e : : VarCapsu leBase

{

p u b l i c :

v i r t u a l ˜ VarCapsu le () {}

VarCapsu le ()

{

pVar = c h e c k = 0x0 ;

r e a d = f a l s e ;

}

VarCapsu le (T ∗p , bool (∗ c) (T))

{

pVar = p ;

c h e c k = c ;

r e a d = f a l s e ;

}

/ / A s s i g n t h e v a r i a b l e from a s t r i n g

v i r t u a l vo id a s s i g n (s t d : : s t r i n g s t r)

{

s t d : : i s t r i n g s t r e a m i s (s t r . c s t r ()) ;

i s >> ∗ pVar ;

i f (i s . f a i l ()) throw s t r ;

117

r e a d = t rue ;

i f (c h e c k && ! c h e c k (∗ pVar)) throw t h i s ;

}

/ / p r i n t t o a s t r e am

v i r t u a l vo id p r i n t (s t d : : o s t r e a m &os)

{

os << ∗ pVar ;

i f (r e a d) os << ” [r e a d] ” ;

e l s e os << ” [d e f a u l t] ” ;

}

p r i v a t e :

T ∗ pVar ; / / R e f e r e n c e t o v a r i a b l e

bool (∗ c h e c k) (T) ; / / Check c a l l b a c k

bool r e a d ;

} ;

/ /

/ / / \ b r i e f Add a v a r i a b l e t o t h e c o n f i g f i l e k e y s

/ / /

/ / / \param arg : V a r i a b l e key

/ / / \param var : R e f e r e n c e o f p l a c e t o w r i t e t h e r e s u l t

/ / / d u r i n g p a r s i n g

/ / /

/ /

t empla te <c l a s s T>

void

C o n f i g F i l e : : add (c o n s t s t d : : s t r i n g &arg , T &v a r)

118

{

v a r s [a r g] = new VarCapsule<T>(&var , 0x0) ;

}

/ /

/ / / \ b r i e f Add a v a r i a b l e t o t h e c o n f i g f i l e k e y s

/ / /

/ / / \param arg : V a r i a b l e key .

/ / / \param var : R e f e r e n c e o f p l a c e t o w r i t e t h e r e s u l t

/ / / d u r i n g p a r s i n g .

/ / / \param check : C a l l b a c k t h a t c h e c k s t h e r e s u l t .

/ / /

/ /

t empla te <c l a s s T>

void

C o n f i g F i l e : : add (c o n s t s t d : : s t r i n g &arg , T &var , bool (∗ check) (T))

{

v a r s [a r g] = new VarCapsule<T>(&var , check) ;

}

e n d i f

CircularQueue.hpp

i f n d e f CIRCULARQUEUE HPP

d e f i n e CIRCULARQUEUE HPP

i n c l u d e <v e c t o r>

i n c l u d e < s t d i n t . h>

i n c l u d e <c s t d l i b >

119

/ /

/ / / \ b r i e f C i r c u l a r queue . U n l i k e most STL c o n t a i n e r s ,

/ / / t h i s c l a s s p r o v i d e s NO i m p l i c i t memory

/ / / a l l o c a t i o n s . The queue i s o n l y moved i f you

/ / / e x p l i c i t l y r e q u e s t more memory .

/ / /

/ /

t empla te <c l a s s T>

c l a s s

C i r c u l a r Q u e u e

{

p u b l i c :

c l a s s i t e r a t o r ;

c l a s s c o n s t i t e r a t o r ;

C i r c u l a r Q u e u e () ;

C i r c u l a r Q u e u e (u i n t 3 2 t c a p a c i t y) ;

C i r c u l a r Q u e u e (c o n s t C i r c u l a r Q u e u e<T> ©) ;

C i r c u l a r Q u e u e<T>& operator = (c o n s t C i r c u l a r Q u e u e<T> ©) ;

void r e s e r v e (u i n t 3 2 t c a p a c i t y , c o n s t T © = T ()) ;

i n t 3 2 t s i z e () c o n s t ;

i n t 3 2 t c a p a c i t y () c o n s t ;

bool f u l l () c o n s t ;

bool empty () c o n s t ;

void push (c o n s t T &o b j) ;

void pop () ;

void popBack () ;

i t e r a t o r b e g i n () ;

120

c o n s t i t e r a t o r b e g i n () c o n s t ;

i t e r a t o r end () ;

c o n s t i t e r a t o r end () c o n s t ;

p r i v a t e :

u i n t 3 2 t v l e n g t h () c o n s t ;

i n t 3 2 t s i z e ;

i t e r a t o r b e g i n ;

i t e r a t o r end ;

s t d : : v e c t o r<T> v e c t o r ;

} ;

/ a / / / /

/ / / \ b r i e f Base c l a s s f o r a c i r c u l a r i t e r a t o r which

/ / / o p e r a t e s i n c o n t i g u o u s memory .

/ / /

/ /

t empla te <c l a s s T>

c l a s s

C i r c u l a r I t e r a t o r B a s e

{

p u b l i c :

C i r c u l a r I t e r a t o r B a s e () {}

/ / These o p e r a t o r s can f u n c t i o n i n be tween d i f f e r e n t

/ / c h i l d r e n o f t h e base c l a s s (i . e . b / w c o n s t and non−c o n s t)

bool operator == (c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s) c o n s t ;

bool operator != (c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s) c o n s t ;

121

i n t 3 2 t operator − (c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s) c o n s t ;

p r o t e c t e d :

/ /

/ / / \ b r i e f A modulo o p e r a t i o n t h a t a lways r e t u r n s t h e

/ / / same s i g n as t h e second argument , u n l i k e t h e

/ / / b u i l t −i n ‘ ‘% ’ ’ o p e r a t o r .

/ / /

/ /

i n l i n e s t a t i c

i n t 3 2 t mod (i n t 3 2 t a , i n t 3 2 t b)

{

re turn b ? (((a % b) + b) % b) : 0 ;

}

/ /

/ / / \ b r i e f See i f r h s has t h e same base memory r e g i o n

/ / /

/ /

bool sameBase (c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s) c o n s t

{

bool same ((pMemBegin == r h s . pMemBegin) &&

(pMemEnd == r h s . pMemEnd)) ;

i f (! same) throw ∗ t h i s ;

re turn same ;

}

/ /

/ / / \ b r i e f S e t pHere t o l i e i n s i d e t h e memory r e g i o n

/ / /

/ /

122

void s e t ()

{

i n t 3 2 t N = pMemEnd − pMemBegin ;

i n t 3 2 t n = pHere − pMemBegin ;

pHere = pMemBegin + mod (n , N) ;

}

/ /

/ / / \ b r i e f Copy r o u t i n e used by t h e c h i l d c l a s s e s

/ / /

/ /

void doCopy (c o n s t C i r c u l a r I t e r a t o r B a s e <T> ©)

{

pMemBegin = copy . pMemBegin ;

pMemEnd = copy . pMemEnd ;

pHere = copy . pHere ;

}

T ∗pMemBegin ;

T ∗pMemEnd ;

T ∗ pHere ;

} ;

/ /

/ / / \ b r i e f Ano ther base c l a s s t o p r o v i d e t h e f u n c t i o n a l i t y

/ / /

/ / / \param T The base t e m p l a t e parame te r

/ / / \param Q The q u a l i f i e d t e m p l a t e parame te r . Shou ld be

/ / / e i t h e r ”T” or ” c o n s t T”

/ / /

/ /

t empla te <c l a s s T , c l a s s Q>

123

c l a s s

C i r c u l a r I t e r a t o r

: p u b l i c C i r c u l a r I t e r a t o r B a s e <T>

{

p u b l i c :

C i r c u l a r I t e r a t o r () ;

C i r c u l a r I t e r a t o r (Q ∗pMb , Q ∗pMe , Q ∗pHe) ;

/ / Note t h a t i n t h i s c o n t e x t , t h e l i t e r a l ‘ ‘ c o n s t ’ ;

/ / q u a l i f i e r means t h a t t h e a c t u a l a d d r e s s v a l u e s

/ / won ’ t change , NOT t h a t t h e c o n t e n t s o f t h e a d d r e s s

/ / won ’ t change . The c o n s t q u a l i f i c a t i o n on t h e

/ / a d d r e s s c o n t e n t s i s hand led by t h e Q parame te r .

Q& operator ∗ () c o n s t ;

Q∗ operator −> () c o n s t ;

/ / These o p e r a t o r s o n l y work w i t h members o f your own c h i l d c l a s s

C i r c u l a r I t e r a t o r <T , Q> operator = (c o n s t C i r c u l a r I t e r a t o r <T , Q> &r h s) ;

C i r c u l a r I t e r a t o r <T , Q>& operator ++ () ; / / p r e f i x

C i r c u l a r I t e r a t o r <T , Q> operator ++ (i n t) ; / / p o s t f i x

C i r c u l a r I t e r a t o r <T , Q>& operator −− () ; / / p r e f i x

C i r c u l a r I t e r a t o r <T , Q> operator −− (i n t) ; / / p o s t f i x

C i r c u l a r I t e r a t o r <T , Q> operator + (i n t 3 2 t n) c o n s t ;

C i r c u l a r I t e r a t o r <T , Q> operator − (i n t 3 2 t n) c o n s t ;

i n t 3 2 t operator − (c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s) c o n s t ;

C i r c u l a r I t e r a t o r <T , Q>& operator += (i n t 3 2 t n) ;

C i r c u l a r I t e r a t o r <T , Q>& operator −= (i n t 3 2 t n) ;

124

p r o t e c t e d :

t y p e d e f C i r c u l a r I t e r a t o r B a s e <T> B ;

} ;

/ /

/ / / \ b r i e f c t o r

/ / /

/ /

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q> : : C i r c u l a r I t e r a t o r ()

{

B : : pMemBegin = 0x0 ;

B : : pMemEnd = 0x0 ;

B : : pHere = 0x0 ;

}

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q> : : C i r c u l a r I t e r a t o r (Q ∗pMb , Q ∗pMe , Q ∗pHe)

{

/ / We c o n s t c a s t he re . Now , we j u s t have t o be

/ / v e r y c a r e f u l t o n o t e d i t t h e c o n t e n t s o f t h e s e

/ / a d d r e s s e s i f Q i s c o n s t !

B : : pMemBegin = c o n s t c a s t <T∗> (pMb) ;

B : : pMemEnd = c o n s t c a s t <T∗> (pMe) ;

B : : pHere = c o n s t c a s t <T∗> (pHe) ;

B : : s e t () ;

}

125

/ /

/ / / \ b r i e f o p e r a t o r s

/ / /

/ /

t empla te <c l a s s T>

bool

C i r c u l a r I t e r a t o r B a s e <T> : : operator == (c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s) c o n s t

{

re turn sameBase (r h s) && (pHere == r h s . pHere) ;

}

t empla te <c l a s s T>

bool

C i r c u l a r I t e r a t o r B a s e <T> : : operator != (c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s) c o n s t

{

re turn ! (∗ t h i s == r h s) ;

}

t empla te <c l a s s T>

i n t 3 2 t

C i r c u l a r I t e r a t o r B a s e <T> : : operator − (c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s) c o n s t

{

i f (! sameBase (r h s)) re turn −1;

/ / The f i r s t p t r (t h i s) i s t h e head . The second i s t h e t a i l

/ / ALWAYS r e t u r n s p o s i t i v e !

i n t 3 2 t N = pMemEnd − pMemBegin ;

re turn mod (pHere − r h s . pHere , N) ;

}

t empla te <c l a s s T , c l a s s Q>

Q&

C i r c u l a r I t e r a t o r <T , Q> : : operator ∗ () c o n s t

126

{

re turn ∗B : : pHere ;

}

t empla te <c l a s s T , c l a s s Q>

Q∗

C i r c u l a r I t e r a t o r <T , Q> : : operator −> () c o n s t

{

re turn B : : pHere ;

}

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q>

C i r c u l a r I t e r a t o r <T , Q> : : operator = (c o n s t C i r c u l a r I t e r a t o r <T , Q> &r h s)

{

i f (t h i s != &r h s)

{

B : : pMemBegin = r h s . pMemBegin ;

B : : pMemEnd = r h s . pMemEnd ;

B : : pHere = r h s . pHere ;

B : : s e t () ;

}

re turn ∗ t h i s ;

}

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q>&

C i r c u l a r I t e r a t o r <T , Q> : : operator ++ ()

{

/ / p r e f i x

B : : pHere ++;

B : : s e t () ;

re turn ∗ t h i s ;

127

}

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q>

C i r c u l a r I t e r a t o r <T , Q> : : operator ++ (i n t)

{

/ / p o s t f i x

C i r c u l a r I t e r a t o r <T , Q> r e t (∗ t h i s) ;

B : : pHere ++;

B : : s e t () ;

re turn r e t ;

}

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q>&

C i r c u l a r I t e r a t o r <T , Q> : : operator −− ()

{

/ / p r e f i x

B : : pHere −−;

B : : s e t () ;

re turn ∗ t h i s ;

}

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q>

C i r c u l a r I t e r a t o r <T , Q> : : operator −− (i n t)

{

/ / p o s t f i x

C i r c u l a r I t e r a t o r <T , Q> r e t (∗ t h i s) ;

B : : pHere −−;

B : : s e t () ;

re turn r e t ;

}

128

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q>

C i r c u l a r I t e r a t o r <T , Q> : : operator + (i n t 3 2 t n) c o n s t

{

C i r c u l a r I t e r a t o r <T , Q> r e t (∗ t h i s) ;

r e t . pHere += n ;

r e t . s e t () ;

re turn r e t ;

}

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q>

C i r c u l a r I t e r a t o r <T , Q> : : operator − (i n t 3 2 t n) c o n s t

{

C i r c u l a r I t e r a t o r <T , Q> r e t (∗ t h i s) ;

r e t . pHere −= n ;

r e t . s e t () ;

re turn r e t ;

}

t empla te <c l a s s T , c l a s s Q>

i n t 3 2 t

C i r c u l a r I t e r a t o r <T , Q> : : operator − (c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s) c o n s t

{

re turn ∗ s t a t i c c a s t <c o n s t C i r c u l a r I t e r a t o r B a s e <T>∗>(t h i s) − r h s ;

}

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q>&

C i r c u l a r I t e r a t o r <T , Q> : : operator += (i n t 3 2 t n)

{

129

B : : pHere += n ;

B : : s e t () ;

}

t empla te <c l a s s T , c l a s s Q>

C i r c u l a r I t e r a t o r <T , Q>&

C i r c u l a r I t e r a t o r <T , Q> : : operator −= (i n t 3 2 t n)

{

B : : pHere −= n ;

B : : s e t () ;

}

/ /

/ / / \ b r i e f C i r c u l a r queue i t e r a t o r i m p l e m e m t a t i o n

/ / /

/ /

t empla te <c l a s s T>

c l a s s

C i r c u l a r Q u e u e<T> : : i t e r a t o r

: p u b l i c C i r c u l a r I t e r a t o r <T , T>

{

p u b l i c :

i t e r a t o r () ;

i t e r a t o r (T ∗pMb , T ∗pMe , T ∗pHe) ;

i t e r a t o r (C i r c u l a r I t e r a t o r <T , T> i t) ;

130

p r o t e c t e d :

t y p e d e f C i r c u l a r I t e r a t o r B a s e <T> B ;

} ;

/ /

/ / / \ b r i e f C i r c u l a r queue c o n s t i t e r a t o r i m p l e m e m t a t i o n

/ / /

/ /

t empla te <c l a s s T>

c l a s s

C i r c u l a r Q u e u e<T> : : c o n s t i t e r a t o r

: p u b l i c C i r c u l a r I t e r a t o r <T , c o n s t T>

{

p u b l i c :

c o n s t i t e r a t o r () ;

c o n s t i t e r a t o r (c o n s t T ∗pMb , c o n s t T ∗pMe , c o n s t T ∗pHe) ;

c o n s t i t e r a t o r (C i r c u l a r I t e r a t o r <T , c o n s t T> i t) ;

/ / Make an c o n s t i t e r a t o r from an i t e r a t o r

c o n s t i t e r a t o r (c o n s t C i r c u l a r I t e r a t o r B a s e <T> ©) ;

c o n s t i t e r a t o r& operator = (c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s) ;

p r o t e c t e d :

t y p e d e f C i r c u l a r I t e r a t o r B a s e <T> B ;

} ;

131

/ /

/ / / \ b r i e f c t o r

/ / /

/ /

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T> : : i t e r a t o r : : i t e r a t o r ()

: C i r c u l a r I t e r a t o r <T , T> ()

{}

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T> : : i t e r a t o r : : i t e r a t o r (T ∗pMb , T ∗pMe , T ∗pHe)

: C i r c u l a r I t e r a t o r <T , T> (pMb , pMe , pHe)

{}

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T> : : i t e r a t o r : : i t e r a t o r (C i r c u l a r I t e r a t o r <T , T> i t)

: C i r c u l a r I t e r a t o r <T , T> (i t)

{}

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T> : : c o n s t i t e r a t o r : : c o n s t i t e r a t o r ()

: C i r c u l a r I t e r a t o r <T , c o n s t T> ()

{}

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T> : : c o n s t i t e r a t o r : : c o n s t i t e r a t o r (

c o n s t T ∗pMb ,

c o n s t T ∗pMe ,

c o n s t T ∗pHe)

: C i r c u l a r I t e r a t o r <T , c o n s t T> (pMb , pMe , pHe)

{}

132

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T> : : c o n s t i t e r a t o r : : c o n s t i t e r a t o r (

C i r c u l a r I t e r a t o r <T , c o n s t T> i t)

: C i r c u l a r I t e r a t o r <T , c o n s t T> (i t)

{}

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T> : : c o n s t i t e r a t o r : : c o n s t i t e r a t o r (

c o n s t C i r c u l a r I t e r a t o r B a s e <T> ©)

{

doCopy (copy) ;

}

t empla te <c l a s s T>

typename C i r c u l a r Q u e u e<T> : : c o n s t i t e r a t o r&

C i r c u l a r Q u e u e<T> : : c o n s t i t e r a t o r : : operator = (

c o n s t C i r c u l a r I t e r a t o r B a s e <T> &r h s)

{

i f (t h i s != &r h s)

{

doCopy (r h s) ;

}

re turn ∗ t h i s ;

}

/ /

/ / / \ b r i e f C i r c u l a r queue i m p l e m e m t a t i o n

/ / /

/ /

133

/ /

/ / / \ b r i e f D e f a u l t c t o r

/ / /

/ /

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T> : : C i r c u l a r Q u e u e ()

{

s i z e = 0 ;

}

/ /

/ / / \ b r i e f R e s e r v e c t o r

/ / /

/ /

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T> : : C i r c u l a r Q u e u e (u i n t 3 2 t c a p a c i t y)

{

s i z e = 0 ;

v e c t o r . r e s i z e (c a p a c i t y + 1) ;

T ∗p = &v e c t o r [0] ;

b e g i n = i t e r a t o r (p , p + v l e n g t h () , p) ;

end = b e g i n ;

}

/ /

/ / / \ b r i e f copy c t o r

/ / /

/ /

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T> : : C i r c u l a r Q u e u e (c o n s t C i r c u l a r Q u e u e<T> ©)

{

s i z e = copy . s i z e ;

134

v e c t o r = copy . v e c t o r ;

T ∗p = &v e c t o r [0] ;

c o n s t T ∗c = © . v e c t o r [0] ;

c o n s t i t e r a t o r copyMemBegin (c , c + copy . v l e n g t h () , c) ;

i n t 3 2 t nb = copy . b e g i n − copyMemBegin ;

i n t 3 2 t ne = copy . end − copyMemBegin ;

b e g i n = i t e r a t o r (p , p + v l e n g t h () , p+nb) ;

end = i t e r a t o r (p , p + v l e n g t h () , p+ne) ;

}

/ /

/ / / \ b r i e f a s s i g n m e n t oper

/ / /

/ /

t empla te <c l a s s T>

C i r c u l a r Q u e u e<T>&

C i r c u l a r Q u e u e<T> : : operator = (c o n s t C i r c u l a r Q u e u e<T> &r h s)

{

i f (t h i s != &r h s)

{

s i z e = r h s . s i z e ;

v e c t o r = r h s . v e c t o r ;

T ∗p = &v e c t o r [0] ;

c o n s t T ∗c = &r h s . v e c t o r [0] ;

c o n s t i t e r a t o r rhsMemBegin (c , c + r h s . v l e n g t h () , c) ;

i n t 3 2 t nb = r h s . b e g i n − rhsMemBegin ;

i n t 3 2 t ne = r h s . end − rhsMemBegin ;

b e g i n = i t e r a t o r (p , p + v l e n g t h () , p+nb) ;

end = i t e r a t o r (p , p + v l e n g t h () , p+ne) ;

}

re turn ∗ t h i s ;

}

135

/ /

/ / / \ b r i e f R e s i z e t h e c i r c u l a r queue .

/ / /

/ / / \param newCapac i ty : Number o f e l e m e n t s t o r e s e r v e

/ / /

/ /

t empla te <c l a s s T>

void

C i r c u l a r Q u e u e<T> : : r e s e r v e (u i n t 3 2 t c a p a c i t y , c o n s t T ©)

{

s t d : : v e c t o r<T> newVector (c a p a c i t y + 1 , copy) ;

s i z e = s t d : : min (s i z e , i n t 3 2 t (c a p a c i t y)) ;

/ / Copy t h e da ta i n t o t h e b e g i n n i n g o f newVector

i t e r a t o r i t = b e g i n ;

f o r (i n t 3 2 t i = 0 ; i < s i z e ; ++ i , ++ i t)

{

newVector [i] = ∗ i t ;

}

/ / Swap t h e c o n t e n t s

v e c t o r . swap (newVector) ;

/ / R e s e t t h e i t e r a t o r s

T∗ p = &v e c t o r [0] ;

b e g i n = i t e r a t o r (p , p + v l e n g t h () , p) ;

end = i t e r a t o r (p , p + v l e n g t h () , p + s i z e) ;

}

/ /

/ / / \ b r i e f Get t h e c u r r e n t number o f v a l i d e l e m e n t s

136

/ / / (number o f pushed o b j e c t s)

/ / /

/ /

t empla te <c l a s s T>

i n t 3 2 t

C i r c u l a r Q u e u e<T> : : s i z e () c o n s t

{

re turn s i z e ;

}

/ /

/ / / \ b r i e f Get t h e maximum s i z e as s e t w i t h ” r e s e r v e ”

/ / /

/ /

t empla te <c l a s s T>

i n t 3 2 t

C i r c u l a r Q u e u e<T> : : c a p a c i t y () c o n s t

{

re turn v l e n g t h () − 1 ;

}

/ /

/ / / \ b r i e f Get t h e t r u e memory s i z e

/ / /

/ /

t empla te <c l a s s T>

u i n t 3 2 t

C i r c u l a r Q u e u e<T> : : v l e n g t h () c o n s t

{

re turn v e c t o r . s i z e () ;

}

/ /

137

/ / / \ b r i e f Query i f t h e queue i s f u l l

/ / /

/ /

t empla te <c l a s s T>

bool

C i r c u l a r Q u e u e<T> : : f u l l () c o n s t

{

re turn s i z e >= c a p a c i t y () ;

}

/ /

/ / / \ b r i e f Query i f t h e queue i s empty

/ / /

/ /

t empla te <c l a s s T>

bool

C i r c u l a r Q u e u e<T> : : empty () c o n s t

{

re turn s i z e == 0 ;

}

/ /

/ / / \ b r i e f Push a new o b j e c t on to t h e end o f t h e queue

/ / /

/ / / \param o b j : Element t o push on to end

/ / /

/ /

t empla te <c l a s s T>

void

C i r c u l a r Q u e u e<T> : : push (c o n s t T &o b j)

{

∗ end ++ = o b j ;

s i z e = end − b e g i n ;

138

}

/ /

/ / / \ b r i e f Pop an e l e m e n t from t h e f r o n t o f t h e queue

/ / / Popping on an empty queue w i l l produce we i rd

/ / / b e h a v i o r . Don ’ t do i t !

/ / /

/ /

t empla te <c l a s s T>

void

C i r c u l a r Q u e u e<T> : : pop ()

{

++ b e g i n ;

s i z e = end − b e g i n ;

}

/ /

/ / / \ b r i e f Pop an e l e m e n t from t h e BACK o f t h e queue

/ / / Popping on an empty queue w i l l produce we i rd

/ / / b e h a v i o r . Don ’ t do i t !

/ / /

/ /

t empla te <c l a s s T>

void

C i r c u l a r Q u e u e<T> : : popBack ()

{

−−end ;

s i z e = end − b e g i n ;

}

/ /

/ / / \ b r i e f Get t h e f r o n t i t e r a t o r

/ / /

139

/ /

t empla te <c l a s s T>

typename C i r c u l a r Q u e u e<T> : : i t e r a t o r

C i r c u l a r Q u e u e<T> : : b e g i n ()

{

re turn b e g i n ;

}

/ /

/ / / \ b r i e f Get t h e f r o n t i t e r a t o r

/ / /

/ /

t empla te <c l a s s T>

typename C i r c u l a r Q u e u e<T> : : c o n s t i t e r a t o r

C i r c u l a r Q u e u e<T> : : b e g i n () c o n s t

{

re turn c o n s t i t e r a t o r (b e g i n) ;

}

/ /

/ / / \ b r i e f Get t h e r e a r i t e r a t o r (one p a s t t h e end)

/ / /

/ /

t empla te <c l a s s T>

typename C i r c u l a r Q u e u e<T> : : i t e r a t o r

C i r c u l a r Q u e u e<T> : : end ()

{

re turn end ;

}

/ /

/ / / \ b r i e f Get t h e r e a r i t e r a t o r (one p a s t t h e end)

/ / /

140

/ /

t empla te <c l a s s T>

typename C i r c u l a r Q u e u e<T> : : c o n s t i t e r a t o r

C i r c u l a r Q u e u e<T> : : end () c o n s t

{

re turn c o n s t i t e r a t o r (end) ;

}

e n d i f

Handler.hpp

i f n d e f HANDLER HPP

d e f i n e HANDLER HPP

i n c l u d e < s t d i n t . h>

i n c l u d e <P a r a l l e l M a n a g e r . hpp>

/ /

/ / / \ b r i e f A b s t r a c t base c l a s s f o r an e v e n t h a n d l e r .

/ / /

/ /

c l a s s Hand le r

{

p u b l i c :

v i r t u a l c o n s t char∗ t y p e I d () c o n s t = 0 ;

Hand le r () : i d (u n i q u e I d ++) {}

Hand le r (c o n s t Hand le r ©) : i d (copy . i d) , d e s t I d (copy . d e s t I d)

{}

v i r t u a l ˜ Hand le r () {}

141

s t a t i c vo id s t a r t i n g I d (u i n t 3 2 t i d) { u n i q u e I d = i d ; }

/ /

/ / / \ b r i e f Get t h e i d

/ / /

/ /

u i n t 3 2 t i d () c o n s t { re turn i d ; }

/ /

/ / / \ b r i e f Pure v i r t u a l f u n c t i o n t o han d l e an e v e n t .

/ / /

/ /

v i r t u a l vo id h a n d l e () = 0 ;

/ /

/ / / \ b r i e f Pure v i r t u a l f u n c t i o n t o d e t e r m i n e i f t h e

/ / / r e s u l t a n t e v e n t must be s c h e d u l e d r e m o t e l y .

/ / /

/ /

v i r t u a l bool i sRemote () c o n s t

{ re turn d e s t I d != P a r a l l e l M a n a g e r : : spaceRank ; }

/ /

/ / / \ b r i e f Pure v i r t u a l f u n c t i o n t o d e t e r m i n e t h e t a r g e t

/ / / p r o c e s s o f t h e h a n d l e r .

/ / /

/ /

v i r t u a l u i n t 3 2 t t a r g e t L p () c o n s t = 0 ;

v i r t u a l Hand le r ∗ c l o n e () c o n s t = 0 ;

i n t 3 2 t d e s t I d = −1;

142

p r o t e c t e d :

u i n t 3 2 t i d ;

s t a t i c u i n t 3 2 t u n i q u e I d ;

} ;

/ /

/ / / \ b r i e f E q u i v a l e n c e o p e r a t o r

/ / /

/ /

i n l i n e bool operator ==(c o n s t Hand le r &l h s , c o n s t Hand le r &r h s)

{

re turn l h s . i d () == r h s . i d () ;

}

e n d i f

MultiEventList.hpp

i f n d e f MULTIEVENTLIST HPP

d e f i n e MULTIEVENTLIST HPP

i n c l u d e ” E v e n t L i s t . hpp ”

i n c l u d e <v e c t o r>

/ /

/ / / \ b r i e f M u l t i p l e e v e n t l i s t t o d e a l w i t h m u l t i p l e LPs .

/ / / t h e e v e n t l i s t u s i n g STL v e c t o r .

/ / /

/ /

143

c l a s s M u l t i E v e n t L i s t

{

p u b l i c :

M u l t i E v e n t L i s t () ;

M u l t i E v e n t L i s t (c o n s t M u l t i E v e n t L i s t ©) ;

˜ M u l t i E v e n t L i s t () ;

M u l t i E v e n t L i s t& operator =(c o n s t M u l t i E v e n t L i s t &r h s) ;

void c r e a t e L i s t s (u i n t 3 2 t l i s t C n t , E v e n t L i s t ∗ t empl) ;

void add (u i n t 3 2 t fromLP , Event e v e n t) ;

bool empty (u i n t 3 2 t fromLP) ;

/ / Doesn ’ t pop t h e e v e n t

bool head (Event &r e t v a l) c o n s t ;

/ / Pops t h e e v e n t

Event g e t F a s t e s t E v e n t () ;

/ / R e t u r n s t o t a l e v e n t c o u n t i n a l l o f t h e l i s t

u i n t 3 2 t g e t T o t a l E v e n t C n t () ;

p r i v a t e :

void f i n a l i z e () ;

bool g e t I n d e x O f F a s t e s t T i m e (u i n t 3 2 t &r e t v a l) c o n s t ;

s t d : : v e c t o r<E v e n t L i s t∗> m u l t i L i s t ;

} ;

144

e n d i f /∗ MULTIEVENTLIST HPP ∗ /

SetEventList.hpp

i f n d e f SETEVENTLIST HPP

d e f i n e SETEVENTLIST HPP

i n c l u d e ” E v e n t L i s t . hpp ”

i n c l u d e <s e t>

/ /

/ / / \ b r i e f S im p l e (and i n e f f i c i e n t) i m p l e m e n t a t i o n o f

/ / / t h e e v e n t l i s t u s i n g STL ’ s ” s e t ” t e m p l a t e .

/ / /

/ / /

/ /

c l a s s S e t E v e n t L i s t

: p u b l i c E v e n t L i s t

{

p u b l i c :

S e t E v e n t L i s t () ;

v i r t u a l ˜ S e t E v e n t L i s t () ;

v i r t u a l vo id add (Event e v e n t) ;

v i r t u a l Event pop () ;

v i r t u a l bool empty () ;

v i r t u a l Event head () ;

v i r t u a l u i n t 3 2 t s i z e () ;

v i r t u a l bool a n n i h i l a t e (

c o n s t Event &even t ,

145

c o n s t bool n o e x c e p t i o n = f a l s e) ;

v i r t u a l E v e n t L i s t ∗ c l o n e () c o n s t { re turn new S e t E v e n t L i s t (∗ t h i s) ; }

p r i v a t e :

s t d : : m u l t i s e t <Event> s e t ;

} ;

e n d i f

RandomGen.hpp

i f n d e f RANDOMGEN HPP

d e f i n e RANDOMGEN HPP

i n c l u d e < s t d i n t . h>

/ /

/ / / \ b r i e f Random g e n e r a t o r . The u n i f o r m g e n e r a t o r i s

/ / / l i n e a r c o n g r u e n t i a l w i t h t h e same p a r a m e t e r s

/ / / as ∗ rand48 on most ∗NIX s y s t e m s .

/ / /

/ /

c l a s s RandomGen

{

p u b l i c :

RandomGen () ;

RandomGen (u i n t 3 2 t s eed) ;

146

i n t 3 2 t r and () ;

double un i fo rm () ;

bool b e r n o u l l i (double p) ;

double normal () ;

double normal (double mu , double s i g) ;

double normalPos (double mu , double s i g) ;

double e x p o n e n t i a l (double lambda) ;

p r i v a t e :

u i n t 6 4 t advance () ;

s t a t i c c o n s t u i n t 6 4 t a ;

s t a t i c c o n s t u i n t 6 4 t c ;

s t a t i c c o n s t u i n t 6 4 t m;

u i n t 6 4 t r ;

} ;

e n d i f

Simulator.hpp

i f n d e f SIMUALTOR HPP

d e f i n e SIMUALTOR HPP

i n c l u d e ” Hand le r . hpp ”

i n c l u d e ” E v e n t L i s t . hpp ”

i n c l u d e ” TscWal lClock . hpp ”

/ /

/ / / \ b r i e f A b s t r a c t base c l a s s f o r t h e s i m u l a t o r

/ / / i m p l e m e n t a t i o n .

147

/ / /

/ /

c l a s s S i m u l a t o r

{

p u b l i c :

S i m u l a t o r () : p E v e n t L i s t (0 x0) , l o g g i n g (f a l s e) {}

v i r t u a l ˜ S i m u l a t o r () {} ;

/ / I n i t i a l i z e t h e o b j e c t u s i n g an Even t L i s t t y p e T

t empla te <c l a s s T>

void i n i t i a l i z e L i s t () ;

/ / The c h i l d ’ s i n i t i a l i z a t i n o r o u t i n e

v i r t u a l vo id i n i t i a l i z e () = 0 ;

/ / Add a n e i g h b o r and t h e a p p r o p r i a t e c h a n n e l d e l a y

v i r t u a l vo id addNeighbor (u i n t 3 2 t lp , double lookAhead) = 0 ;

/ / Get t h e c u r r e n t s i m u l a t i o n t i m e

v i r t u a l double simTime () c o n s t = 0 ;

/ / S c h e d u l e an e v e n t from a l o c a l c o n t e x t

v i r t u a l vo id s c h e d u l e L o c a l (

double t ime ,

c o n s t Hand le r ∗ pHand le r) = 0 ;

/ / APIs f o r s p a t i a l p a r a l l e l i s m

/ / Log a remote send (NOTE: d e f a u l t does n o t h i n g !)

v i r t u a l vo id l ogSen tMessage (

double t ime ,

c o n s t Hand le r ∗ pHand le r) {}

148

/ / S c h e d u l e an e v e n t from a remote c o n t e x t

v i r t u a l vo id schedu leRemote (

u i n t 3 2 t lp ,

double t ime ,

c o n s t Hand le r ∗ pHandler ,

u i n t 8 t f l a g 0 , u i n t 8 t f l a g 1) = 0 ;

/ / Run

v i r t u a l vo id run () = 0 ;

/ / Run w i t h t r a c i n g

v i r t u a l vo id run (void (∗myfunc) (void)) = 0 ;

/ / A l l o c a t e a new c l o n e

v i r t u a l S i m u l a t o r ∗ c l o n e () c o n s t = 0 ;

/ / S e t whe ther t o use l o g g i n g or n o t

void l o g g i n g (bool l o g g i n g) { l o g g i n g = l o g g i n g ; }

/ / I t ’ s up t o t h e i m p l e m e n t a t i o n t o d e c i d e when t o s t a r t and

/ / s t o p t h e s p e c i a l t i m e r

i n t 6 4 t s p e c i a l T i m e r () { re turn s p e c i a l T i m e r . e l a p s e d () ; }

bool l o g g i n g ;

p r o t e c t e d :

E v e n t L i s t ∗ p E v e n t L i s t ;

TscWal lClock s p e c i a l T i m e r ;

} ;

149

/ /

/ / / \ b r i e f I n i t i a l i z e t h e s i m u l a t o r o b j e c t by c r e a t i n g

/ / / a new e v e n t l i s t o b j e c t

/ / /

/ / / \param T : (t e m p l a t e parame te r) The t y p e o f e v e n t

/ / / l i s t t o use .

/ / /

/ /

t empla te <c l a s s T>

void

S i m u l a t o r : : i n i t i a l i z e L i s t ()

{

p E v e n t L i s t = new T () ;

i n i t i a l i z e () ;

}

e n d i f

TscWallClock.hpp

i f n d e f TSCWALLCLOCK H

d e f i n e TSCWALLCLOCK H

i n c l u d e < s t d i n t . h>

i n c l u d e <s y s / t ime . h>

/ /

/ / / \ b r i e f Wall c l o c k t i m e r o b j e c t which u t i l i z e s t h e

/ / / TSC r e g i s t e r on x86 o n l y . Use on o t h e r

/ / / p l a t f o r m s r e s u l t s i n n u l l .

/ / /

/ /

c l a s s TscWal lClock

150

{

p u b l i c :

TscWal lClock () ;

˜ TscWal lClock () {}

void s t a r t () ;

void pause () ;

void r e s e t () ;

i n t 6 4 t e l a p s e d () { re turn i n t 6 4 t (r e a l) ; }

p r i v a t e :

u i n t 6 4 t r e a l ;

s t r u c t t i m e s p e c s t a r t , end ;

} ;

e n d i f

SequentialSimulator.hpp

i f n d e f SEQUENTIALSIMULATOR HPP

d e f i n e SEQUENTIALSIMULATOR HPP

i n c l u d e ” S i m u l a t o r . hpp ”

i n c l u d e ” E v e n t L i s t . hpp ”

/ /

/ / / \ b r i e f I m p l e m e n t a t i o n o f a s i m u l a t o r t h a t runs

/ / / s e q u e n t i a l l y on one LP .

/ / /

151

/ /

c l a s s S e q u e n t i a l S i m u l a t o r

: p u b l i c S i m u l a t o r

{

p u b l i c :

S e q u e n t i a l S i m u l a t o r () ;

S e q u e n t i a l S i m u l a t o r (c o n s t S e q u e n t i a l S i m u l a t o r ©) ;

S e q u e n t i a l S i m u l a t o r& operator =(c o n s t S e q u e n t i a l S i m u l a t o r &r h s) ;

v i r t u a l ˜ S e q u e n t i a l S i m u l a t o r () ;

v i r t u a l vo id i n i t i a l i z e () ;

v i r t u a l vo id addNeighbor (u i n t 3 2 t lp , double lookAhead) {}

v i r t u a l double simTime () c o n s t ;

v i r t u a l vo id s c h e d u l e L o c a l (double t ime , c o n s t Hand le r ∗ pHand le r) ;

v i r t u a l vo id schedu leRemote (

u i n t 3 2 t lp ,

double t ime ,

c o n s t Hand le r ∗ pHandler ,

u i n t 8 t f l a g 0 , u i n t 8 t f l a g 1) ;

v i r t u a l vo id run () ;

v i r t u a l vo id run (void (∗myfunc) (void)) ;

v i r t u a l S i m u l a t o r ∗ c l o n e () c o n s t

{ re turn new S e q u e n t i a l S i m u l a t o r (∗ t h i s) ; }

p r o t e c t e d :

double simTime ;

} ;

e n d i f

152

ParallelManager.hpp

i f n d e f PARALLELMANAGER HPP

d e f i n e PARALLELMANAGER HPP

i n c l u d e < s t d i n t . h>

i n c l u d e <mpi . h>

i n c l u d e <v e c t o r>

i n c l u d e <queue>

/ /

/ / / \ b r i e f Wrapper c l a s s f o r message p a s s i n g i n t e r f a c e

/ / / and h a n d l i n g d i s t r i b u t e d e n v i r o n m e n t

/ / /

/ / /

/ /

c l a s s P a r a l l e l M a n a g e r

{

p u b l i c :

s t a t i c vo id i n i t i a l i z e (

i n t &argc ,

char ∗∗ &argv ,

c o n s t i n t& s p a c e D i v i s i o n ,

c o n s t i n t& t i m e D i v i s i o n) ;

s t a t i c vo id f i n a l i z e () ;

/ / by d e f a u l t , a l l t h e commun ica t ions are assumed as space Comm

/ / t i m e comm w i l l be added

t empla te <c l a s s T>

153

s t a t i c vo id i s e n d (c o n s t T &obj , i n t d s t , i n t t a g) ;

t empla te <c l a s s T>

s t a t i c vo id r e c v (T &obj , i n t s r c , i n t t a g) ;

t empla te <c l a s s T>

s t a t i c MPI Request i sendNb (T &obj , i n t d s t , i n t t a g) ;

s t a t i c vo id probeBlock () ;

s t a t i c bool probeRecv (i n t t ag , i n t &from) ;

s t a t i c bool probeRecvAny (i n t &tag , i n t &from) ;

s t a t i c u i n t 3 2 t sys temCount () { re turn sys t emCoun t ; }

s t a t i c u i n t 3 2 t s y s t e m I d () { re turn s y s t e m I d ; }

s t a t i c u i n t 3 2 t s e n t () ; / / Get sum f o r a l l LPs

s t a t i c u i n t 3 2 t s e n t (u i n t 3 2 t l p) ;

s t a t i c u i n t 3 2 t r e c e i v e d () ; / / Get sum f o r a l l LPs

s t a t i c u i n t 3 2 t r e c e i v e d (u i n t 3 2 t l p) ;

s t a t i c MPI Comm spaceComm ;

s t a t i c MPI Comm timeComm ;

s t a t i c i n t spaceRank ;

s t a t i c i n t s p a c e S i z e ;

s t a t i c i n t t imeRank ;

s t a t i c i n t t i m e S i z e ;

p r i v a t e :

154

s t a t i c s t d : : v e c t o r<u i n t 3 2 t > t x ;

s t a t i c s t d : : v e c t o r<u i n t 3 2 t > r x ;

s t a t i c i n t sys t emCoun t ;

s t a t i c i n t s y s t e m I d ;

t empla te <c l a s s T>

s t r u c t SendObjec t ;

t empla te <c l a s s T>

c l a s s SendQueue ;

} ;

/ /

/ / / TEMPLATE MEMBERS

/ / /

/ /

/ / / \ b r i e f R e c e i v e a s i n g l e o b j e c t (b l o c k i n g) .

/ / /

/ / /

/ / / \param o b j O b j e c t i n which t o p u t

/ / / \param t a g Message queue t a g

/ / /

/ /

t empla te <c l a s s T>

void

P a r a l l e l M a n a g e r : : r e c v (T &obj , i n t s r c , i n t t a g)

{

M P I S t a t u s s t ;

155

MPI Recv (&obj , s i z e o f (T) , MPI BYTE , s r c , t ag , spaceComm , &s t) ;

r x [s r c] + + ;

}

/ /

/ / / \ b r i e f He lper s t r u c t f o r memory management

/ / /

/ /

t empla te <c l a s s T>

s t r u c t

P a r a l l e l M a n a g e r : : SendObjec t

{

T ∗ pDa ta ;

MPI Request r q ;

} ;

/ /

/ / / \ b r i e f Wrapper c l a s s f o r a queue .

/ / /

/ /

t empla te <c l a s s T>

c l a s s

P a r a l l e l M a n a g e r : : SendQueue

{

p u b l i c :

˜ SendQueue ()

{

whi le (! queue . empty ())

156

{

d e l e t e queue . f r o n t () . pDa ta ;

queue . pop () ;

}

}

SendObjec t<T>& f r o n t () { re turn queue . f r o n t () ; }

void pop () { queue . pop () ; }

void push (c o n s t SendObjec t<T> &p) { queue . push (p) ; }

u i n t 3 2 t s i z e () c o n s t { re turn queue . s i z e () ; }

p r i v a t e :

s t d : : queue< SendObjec t<T> > queue ;

} ;

/ /

/ / / \ b r i e f Send a s i n g l e o b j e c t (non−b l o c k i n g) . You can

/ / / queue m u l t i p l e s e n d s i n a row w i t h no worry .

/ / /

/ / / \param o b j S i n g l e o b j e c t t o send (c o p i e s i t)

/ / / \param d s t D e s t i n a t i o n LP

/ / / \param t a g Message queue t a g

/ / /

/ /

t empla te <c l a s s T>

void

P a r a l l e l M a n a g e r : : i s e n d (c o n s t T &obj , i n t d s t , i n t t a g)

{

/ / SendObjec t<T> s e n d O b j e c t ;

/ / s e n d O b j e c t . pData = new T (o b j) ;

/ /

/ / / / Per form non−b l o c k i n g send

157

/ / MPI Send (s e n d O b j e c t . pData , s i z e o f (T) , MPI BYTE , d s t , tag ,

/ / spaceComm) ; / / , &(s e n d O b j e c t . r q)) ;

/ /

/ / d e l e t e s e n d O b j e c t . pData ;

/ / Each send f u n c t i o n manages i t s own l i s t o f

/ / send b u f f e r s . T h i s e a s e s t h e memory management

/ / a s p e c t .

s t a t i c SendQueue<T> b u f f e r s ;

/ / The o b j e c t encompass ing t h e da ta f o r t h i s send o p e r a t i o n

SendObjec t<T> s e n d O b j e c t ;

/ / Check i f we can t a k e t h e t o p o f f t h e queue

i n t f r o n t S e n d C o m p l e t e d = 0 ;

i f (b u f f e r s . s i z e ())

{

MPI Test (

&(b u f f e r s . f r o n t () . r q) ,

&f ron tSendComple t ed ,

MPI STATUS IGNORE) ;

}

i f (f r o n t S e n d C o m p l e t e d)

{

/ / Reuse t h e memory a l l o c a t e d f o r t h e f r o n t

s e n d O b j e c t . pDa ta = b u f f e r s . f r o n t () . pDa ta ;

∗ (s e n d O b j e c t . pDa ta) = o b j ;

/ / Remove t h e f r o n t

b u f f e r s . pop () ;

}

158

e l s e

{

/ / Make some new memory i n s t e a d

s e n d O b j e c t . pDa ta = new T (o b j) ;

}

/ / Per form non−b l o c k i n g send

MPI Isend (s e n d O b j e c t . pData , s i z e o f (T) , MPI BYTE , d s t , t ag ,

spaceComm , &(s e n d O b j e c t . r q)) ;

t x [d s t] + + ;

/ / Add t h e o b j e c t t o t h e back

b u f f e r s . push (s e n d O b j e c t) ;

}

/ /

/ / / \ b r i e f The raw v e r s i o n which doesn ’ t b u f f e r a n y t h i n g

/ / /

/ /

t empla te <c l a s s T>

MPI Request

P a r a l l e l M a n a g e r : : i sendNb (T &obj , i n t d s t , i n t t a g)

{

MPI Request r e t ;

/ / Per form non−b l o c k i n g send

MPI Isend (&obj , s i z e o f (T) , MPI BYTE , d s t , t ag ,

spaceComm , &r e t) ;

t x [d s t] + + ;

159

re turn r e t ;

}

e n d i f

RemoteReceiver.hpp

i f n d e f REMOTERECEIVER HPP

d e f i n e REMOTERECEIVER HPP

/ / # d e f i n e COUT MESSAGE TRACE

i n c l u d e <c s t d l i b >

i n c l u d e < s t d i n t . h>

i n c l u d e <c s t r i n g >

i n c l u d e <map>

i n c l u d e ” Hand le r . hpp ”

i n c l u d e ” P a r a l l e l M a n a g e r . hpp ”

/ /

/ / / \ b r i e f T h i s c l a s s i s used t o han d l e t h e c r e a t i o n o f

/ / / un iq ue i d numbers f o r each i n s t a n t i a t i o n

/ / / o f t h e R e m o t e R e c e i v e r t e m p l a t e , and i s a l s o

/ / / used t o d e f i n e a way t o up da t e reach r e c e i v e r

/ / / w i t h one method

/ / /

/ /

c l a s s RemoteRece iveAggrega to r

{

p u b l i c :

t y p e d e f void (∗ R e c e i v e C a l l b a c k) (u i n t 3 2 t) ;

160

s t r u c t C a l l b a c k s

{

R e c e i v e C a l l b a c k rx ;

} ;

t y p e d e f s t d : : map<u i n t 3 2 t , C a l l b a c k s> CallbackMap ;

s t a t i c vo id r e c e i v e A l l () ;

s t a t i c vo id s e n d A l l (double t ime , double ∗ l p B i a s) ;

c l a s s RemoteMessageBase ;

p r o t e c t e d :

s t a t i c u i n t 3 2 t a s s i g n R e c e i v e r (R e c e i v e C a l l b a c k cb) ;

s t a t i c vo id scheduleRemoteWrapper (u i n t 3 2 t lp , double t ime ,

c o n s t Hand le r ∗ pHandler ,

u i n t 8 t f l a g 0 , u i n t 8 t f l a g 1) ;

s t a t i c double simTimeWrapper () ;

s t a t i c bool ge tTagInRange (i n t &tag , i n t &s r c) ;

s t a t i c CallbackMap& c a l l b a c k L i s t () ;

s t a t i c i n t& r e c e i v e r C l a s s C o u n t () ;

s t r u c t RmbComp ;

s t a t i c s t d : : mult imap<RemoteMessageBase ∗ , u i n t 3 2 t , RmbComp>

sendQueue ;

161

} ;

/ /

/ / / \ b r i e f A base s t r u c t u r e f o r s e n d i n g e v e n t da ta r e m o t e l y

/ / /

/ /

c l a s s

RemoteRece iveAggrega to r : : RemoteMessageBase

{

p u b l i c :

RemoteMessageBase () {}

RemoteMessageBase (double t , u i n t 8 t f0 , u i n t 8 t f1)

: f l a g 0 (f0) , f l a g 1 (f1) , t i m e (t) {}

RemoteMessageBase (c o n s t RemoteMessageBase ©)

: f l a g 0 (copy . f l a g 0) , f l a g 1 (copy . f l a g 1) , t i m e (copy . t i m e)

{}

v i r t u a l ˜ RemoteMessageBase () {}

v i r t u a l vo id send (u i n t 3 2 t l p) = 0 ;

v i r t u a l c o n s t Hand le r ∗ h a n d l e r () c o n s t = 0 ;

u i n t 8 t f l a g 0 ;

u i n t 8 t f l a g 1 ;

double t i m e ;

} ;

/ /

/ / / \ b r i e f A s t r u c t u r e t o compare p o i n t e r s t o remote messages

/ / /

162

/ /

s t r u c t

RemoteRece iveAggrega to r : : RmbComp

{

bool operator () (c o n s t RemoteMessageBase ∗ l h s ,

c o n s t RemoteMessageBase ∗ r h s) c o n s t

{

re turn l h s−>t ime <rhs−>t i m e ;

}

} ;

/ /

/ / / \ b r i e f Templa te c l a s s t o d e f i n e an i n t e r f a c e f o r s e n d i n g

/ / / e v e n t s r e m o t e l y .

/ / /

/ /

t empla te <c l a s s T>

c l a s s RemoteRece ive r

: p u b l i c RemoteRece iveAggrega to r

{

p u b l i c :

c l a s s RemoteMessage ;

/ / Send an e v e n t t o an l p (a c t u a l l y j u s t queue)

s t a t i c vo id s c h e d u l e S e n d (u i n t 3 2 t lp , double t ime , c o n s t T &h a n d l e r ,

u i n t 8 t f l a g 0 , u i n t 8 t f l a g 1) ;

/ / Per form a send s t r a i g h t away (used i n t h i s module o n l y !)

s t a t i c vo id send (c o n s t RemoteMessage &out , u i n t 3 2 t l p) ;

/ / T h i s g e t s any pend ing e v e n t and s c h e d u l e s i t l o c a l l y u s i n g

163

/ / S i m u l a t o r E x e c u t i v e : : s c h e d u l e R e m o t e ()

s t a t i c vo id r e c e i v e (u i n t 3 2 t s r c) ;

p r i v a t e :

s t a t i c u i n t 3 2 t r e c e i v e r C l a s s I d ;

} ;

/ /

/ / / \ b r i e f I d e n t i f i e r t a g f o r a h a n d l e r t y p e T

/ / /

/ /

t empla te <c l a s s T>

u i n t 3 2 t

RemoteReceiver<T> : : r e c e i v e r C l a s s I d

= a s s i g n R e c e i v e r (RemoteReceiver<T> : : r e c e i v e) ;

/ /

/ / / \ b r i e f A s t r u c t u r e f o r s e n d i n g e v e n t da ta r e m o t e l y

/ / /

/ /

t empla te <c l a s s T>

c l a s s

RemoteReceiver<T> : : RemoteMessage

: p u b l i c RemoteRece iveAggrega to r : : RemoteMessageBase

{

p u b l i c :

164

RemoteMessage () {}

RemoteMessage (double t ime , c o n s t T &h a n d l e r , u i n t 8 t f0 , u i n t 8 t f1)

: RemoteMessageBase (t ime , f0 , f1) , h a n d l e r (h a n d l e r) {}

RemoteMessage (c o n s t RemoteMessage ©)

: RemoteMessageBase (copy) , h a n d l e r (copy . h a n d l e r)

{}

v i r t u a l ˜ RemoteMessage () {}

v i r t u a l vo id send (u i n t 3 2 t l p) ;

v i r t u a l c o n s t Hand le r ∗ h a n d l e r () c o n s t { re turn &h a n d l e r ;}

T h a n d l e r ;

} ;

/ /

/ / / \ b r i e f Queue up da ta t o send

/ / /

/ / / \param l p : Which l p t o send t o

/ / / \param t i m e : Even t s im t i m e

/ / / \param h a n d l e r : Even t h a n d l e r o b j e c t

/ / /

/ /

t empla te <c l a s s T>

void

RemoteReceiver<T> : : s c h e d u l e S e n d (

u i n t 3 2 t lp , double t ime , c o n s t T &h a n d l e r ,

u i n t 8 t f l a g 0 , u i n t 8 t f l a g 1)

{

165

/ / S i n c e s c h e d u l e S e n d i s t h e o n l y f u n c t i o n c a l l e d from

/ / o u t s i d e o f t h i s module , i f we NEED t h e t e m p l a t e

/ / t o a c t u a l l y any p a r t i c u l a r t h i n g s we need t o a s s e r t

/ / them here . T h i s i s p u r e l y s y n t a c t i c a l and f o r t h e

/ / c o m p i l e r . No e f f e c t on run−t i m e .

i f (r e c e i v e r C l a s s I d) {}

RemoteMessage ∗msg = new RemoteMessage (t ime , h a n d l e r , f l a g 0 , f l a g 1) ;

/ / Cr ea t e t h e o u t p u t s t r u c t u r e and enqueue

sendQueue . i n s e r t (s t d : : p a i r <RemoteMessage ∗ , u i n t 3 2 t >(msg , l p)) ;

}

/ /

/ / / \ b r i e f S t r a i g h t a w a y send da ta . Not an i n t e r f a c e f u n c t i o n .

/ / /

/ / / \param o u t : Remote message t o send

/ / / \param l p : Which l p t o send t o

/ / /

/ /

t empla te <c l a s s T>

void

RemoteReceiver<T> : : send (c o n s t RemoteMessage &out , u i n t 3 2 t l p)

{

P a r a l l e l M a n a g e r : : i s e n d (out , lp , r e c e i v e r C l a s s I d) ;

}

166

/ /

/ / / \ b r i e f Do t h e p h y s i c a l s e n d i n g o f da ta

/ / /

/ / / \param l p : l p t o send t o

/ / /

/ /

t empla te <c l a s s T>

void

RemoteReceiver<T> : : RemoteMessage : : send (u i n t 3 2 t l p)

{

RemoteReceiver<T> : : send (∗ t h i s , l p) ;

}

/ /

/ / / \ b r i e f R e c e i v e up t o one pend ing e v e n t s and s c h e d u l e

/ / / them .

/ / /

/ / / One−s h o t b l o c k i n g r e c e i v e t h a t ALWAYS r e t u r n s

/ / / o n l y a f t e r a r e c e p t i o n .

/ / /

/ /

t empla te <c l a s s T>

void

RemoteReceiver<T> : : r e c e i v e (u i n t 3 2 t s r c)

{

/ / Get t h e message

RemoteMessage i n b u f ;

P a r a l l e l M a n a g e r : : r e c v (i n b u f , s r c , r e c e i v e r C l a s s I d) ;

/ / S c h e d u l e t h e message (we have t o use t h i s wrapper f u n c t i o n t o

167

/ / a c t u a l l y make t h i s c o m p i l a b l e . . . f o rward d e c l a r a t i o n s can ’ t f i x

/ / t h i s problem)

/ / schedu leRemoteWrapper (src , i n b u f . t i m e , &i n b u f . h a n d l e r) ;

/ / t odo : b e t t e r f i x (we do t h i s t o ‘ ‘ f i x ’ ’ t h e VTABLE

T h a n d l e r (i n b u f . h a n d l e r) ;

scheduleRemoteWrapper (s r c , i n b u f . t ime , &h a n d l e r ,

i n b u f . f l a g 0 , i n b u f . f l a g 1) ;

}

e n d i f

StateDataHistory.hpp

i f n d e f STATEDATAHISTORY HPP

d e f i n e STATEDATAHISTORY HPP

i n c l u d e < s t d i n t . h>

i n c l u d e <u t i l i t y >

i n c l u d e ” C i r c u l a r Q u e u e . hpp ”

/ /

/ / / \ b r i e f Base c l a s s t o d e f i n e a c l a s s which h o l d s and

/ / / m a n i p u l a t e s s t a t e da ta v i a a r e f e r e n c e t o

/ / / t h e a c t u a l da ta and a h i s t o r y s t r u c t u r e .

/ / /

/ /

c l a s s S t a t e D a t a H i s t o r y B a s e

{

p u b l i c :

168

S t a t e D a t a H i s t o r y B a s e () {}

v i r t u a l ˜ S t a t e D a t a H i s t o r y B a s e () {}

/ / S e t t h e max h i s t o r y s i z e

v i r t u a l vo id maxs ize (u i n t 3 2 t s i z e) = 0 ;

/ / Max maximum c a p a c i t y

v i r t u a l u i n t 3 2 t maxs ize () c o n s t = 0 ;

/ / Get number o f enqueued e l e m e n t s

v i r t u a l u i n t 3 2 t s i z e () c o n s t = 0 ;

bool f u l l () c o n s t { re turn s i z e () == maxs ize () ; }

/ / Cr ea t e a new h i s t o r y e n t r y a t t i m e by c o p y i n g t h e c u r r e n t v a l u e

v i r t u a l vo id push (double t ime) = 0 ;

/ / Free up o l d e n t r i e s up u n t i l t i m e

v i r t u a l vo id f r e e (double t ime) = 0 ;

/ / D e l e t e newer e n t r i e s t o go back t o t i m e and s e t t h e c u r r e n t s t a t e

v i r t u a l vo id r o l l b a c k (double t ime) = 0 ;

v i r t u a l S t a t e D a t a H i s t o r y B a s e ∗ c l o n e () c o n s t = 0 ;

} ;

/ /

/ / / \ b r i e f C l a s s i m p l e m e n t a t i o n f o r a r b i t r a r y da ta t y p e

/ / /

169

/ /

t empla te <c l a s s T>

c l a s s S t a t e D a t a H i s t o r y

: p u b l i c S t a t e D a t a H i s t o r y B a s e

{

p u b l i c :

/ / Pa i r o f a t i m e v a l u e and a s t a t e o b j e c t

t y p e d e f s t d : : p a i r <double , T> H i s t o r y T y p e ;

S t a t e D a t a H i s t o r y (T ∗ p S t a t e) ;

v i r t u a l ˜ S t a t e D a t a H i s t o r y () ;

v i r t u a l vo id maxs ize (u i n t 3 2 t s i z e) ;

v i r t u a l u i n t 3 2 t maxs ize () c o n s t ;

v i r t u a l u i n t 3 2 t s i z e () c o n s t ;

v i r t u a l vo id push (double t ime) ;

v i r t u a l vo id f r e e (double t ime) ;

v i r t u a l vo id r o l l b a c k (double t ime) ;

v i r t u a l S t a t e D a t a H i s t o r y B a s e ∗ c l o n e () c o n s t

{ re turn new S t a t e D a t a H i s t o r y (∗ t h i s) ; }

p r i v a t e :

/ / Queue o f h i s t o r y v a l u e s

C i r c u l a r Q u e u e<His to ryType> queue ;

/ / P o i n t e r t o c u r r e n t work ing s t a t e (i s s h a l l o w c o p i e d)

T ∗ c u r r e n t S t a t e ;

} ;

170

/ /

/ / / \ b r i e f c t o r

/ / /

/ /

t empla te <c l a s s T>

S t a t e D a t a H i s t o r y <T> : : S t a t e D a t a H i s t o r y (T ∗ p S t a t e)

{

c u r r e n t S t a t e = p S t a t e ;

}

/ /

/ / / \ b r i e f d t o r

/ / /

/ /

t empla te <c l a s s T>

S t a t e D a t a H i s t o r y <T> : : ˜ S t a t e D a t a H i s t o r y ()

{

/ / nada

}

/ /

/ / / \ b r i e f S e t t h e max s i z e

/ / /

/ / / \param s i z e : new maximum s i z e (c a p a c i t y)

/ / /

/ /

t empla te <c l a s s T>

void

S t a t e D a t a H i s t o r y <T> : : maxs ize (u i n t 3 2 t s i z e)

{

queue . r e s e r v e (s i z e) ;

}

171

/ /

/ / / \ b r i e f Get t h e max s i z e

/ / /

/ / / \ r e t u r n C u r r e n t c a p a c i t y

/ / /

/ /

t empla te <c l a s s T>

u i n t 3 2 t

S t a t e D a t a H i s t o r y <T> : : maxs ize () c o n s t

{

re turn queue . c a p a c i t y () ;

}

/ /

/ / / \ b r i e f Query t h e number o f enqueued h i s t o r y e n t r i e s

/ / /

/ / / \ r e t u r n C u r r e n t number o f h i s t o r y e n t r i e s

/ / /

/ /

t empla te <c l a s s T>

u i n t 3 2 t

S t a t e D a t a H i s t o r y <T> : : s i z e () c o n s t

{

re turn queue . s i z e () ;

}

/ /

/ / / \ b r i e f Push t h e c u r r e n t v a l u e a t ” t i m e ”

/ / /

/ / / \param t i m e : Time v a l u e a s s o c i a t e d w i t h c u r r e n t s t a t e

/ / / b e i n g pushed .

/ / /

172

/ /

t empla te <c l a s s T>

void

S t a t e D a t a H i s t o r y <T> : : push (double t ime)

{

queue . push (H i s t o r y T y p e (t ime , ∗ c u r r e n t S t a t e)) ;

}

/ /

/ / / \ b r i e f Free o l d e n t r i e s up u n t i l ” t i m e ”

/ / /

/ / / \param t i m e : Time v a l u e up t o which t o f r e e o l d e r

/ / / e n t r i e s . Frees a l l e n t r i e s marked

/ / / as a t or b e f o r e t i m e .

/ / /

/ /

t empla te <c l a s s T>

void

S t a t e D a t a H i s t o r y <T> : : f r e e (double t ime)

{

whi le (! queue . empty () && queue . b e g i n ()−> f i r s t <= t ime)

{

queue . pop () ;

}

}

/ /

/ / / \ b r i e f R o l l b a c k newer e n t r i e s down u n t i l ” t i m e ” , and

/ / / t h e n s e t t h e c u r r e n t v a l u e o f c u r r e n t S t a t e t o be

/ / / t h e ne we s t e n t r y .

/ / /

/ / / \param t i m e : Time v a l u e down t o which t o f r e e newer

/ / / e n t r i e s . D e l e t e s a l l e n t r i e s g r e a t e r than

173

/ / / t ime , t h e n t a k e s t h e n e x t e n t r y as t h e

/ / / c u r r e n t s t a t e b e f o r e removing i t from

/ / / t h e l i s t .

/ / /

/ /

t empla te <c l a s s T>

void

S t a t e D a t a H i s t o r y <T> : : r o l l b a c k (double t ime)

{

i f (queue . empty ()) re turn ;

typename C i r c u l a r Q u e u e<His to ryType > : : i t e r a t o r back = queue . end () − 1 ;

whi le (queue . s i z e () > 1 && back−> f i r s t > t ime)

{

queue . popBack () ;

back−−;

}

/ / S e t t h e c u r r e n t s t a t e

/ / Note t h a t r o l l b a c k () ALWAYS r o l l b a c k a t l e a s t once !

∗ c u r r e n t S t a t e = back−>second ;

queue . popBack () ;

}

e n d i f

AntiMessageHandler.hpp

i f n d e f ANTIMESSAGEHANDLER HPP

d e f i n e ANTIMESSAGEHANDLER HPP

i n c l u d e ” Hand le r . hpp ”

i n c l u d e ” P a r a l l e l M a n a g e r . hpp ”

174

/ /

/ / / \ b r i e f Encompasses an a n t i−message . Note t h a t when

/ / / p r o p e r l y c o n s t r u c t e d , an a n t i−message and i t s

/ / / complementary normal message w i l l y i e l d

/ / / e q u i v a l e n c e even though t h e t h e y s h a r e no

/ / / ” r e a l ” p a r a m e t e r s . T h i s i s because t h e y s h a r e

/ / / t h e same un iq ue i d .

/ / /

/ /

c l a s s Ant iMessageHand le r

: p u b l i c Hand le r

{

p u b l i c :

v i r t u a l c o n s t char∗ t y p e I d () c o n s t

{ re turn ” Ant iMessageHand le r ” ; }

Ant iMessageHand le r () {}

Ant iMessageHand le r (c o n s t Hand le r ©)

: Hand le r (copy) , t a r g e t L p (copy . t a r g e t L p ()) {}

v i r t u a l ˜ An t iMessageHand le r () {}

v i r t u a l vo id h a n d l e () {}

v i r t u a l bool i sRemote () c o n s t

{ re turn P a r a l l e l M a n a g e r : : spaceRank != t a r g e t L p ; }

v i r t u a l u i n t 3 2 t t a r g e t L p () c o n s t { re turn t a r g e t L p ; }

v i r t u a l Hand le r ∗ c l o n e () c o n s t

{ re turn new Ant iMessageHand le r (∗ t h i s) ; }

175

p r o t e c t e d :

u i n t 3 2 t t a r g e t L p ;

} ;

e n d i f

TimeWarpSimulator.hpp

i f n d e f TIMEWARPSIMULATOR HPP

d e f i n e TIMEWARPSIMULATOR HPP

i n c l u d e < l i s t >

i n c l u d e <deque>

i n c l u d e ” S i m u l a t o r . hpp ”

i n c l u d e ” S t a t e D a t a H i s t o r y . hpp ”

i n c l u d e ” C i r c u l a r Q u e u e . hpp ”

i n c l u d e ” Nul lMessageHand le r . hpp ”

/ /

/ / / \ b r i e f TW s i m u l a t o r i m p l e m e n t a t i o n

/ / /

/ /

c l a s s TimeWarpSimula tor

: p u b l i c S i m u l a t o r

{

p u b l i c :

s t a t i c u i n t 1 6 t r o l l b a c k c o u n t e r ;

TimeWarpSimula tor () ;

TimeWarpSimula tor (c o n s t TimeWarpSimula tor ©) ;

176

TimeWarpSimula tor& operator =(c o n s t TimeWarpSimula tor &r h s) ;

v i r t u a l ˜ TimeWarpSimula tor () ;

v i r t u a l vo id i n i t i a l i z e () ;

v i r t u a l vo id addNeighbor (u i n t 3 2 t lp , double lookAhead) ;

v i r t u a l double simTime () c o n s t ;

v i r t u a l vo id s c h e d u l e L o c a l (double t ime , c o n s t Hand le r ∗ pHand le r) ;

v i r t u a l vo id l ogSen tMessage (double t ime , c o n s t Hand le r ∗ pHand le r) ;

v i r t u a l vo id schedu leRemote (

u i n t 3 2 t lp ,

double t ime ,

c o n s t Hand le r ∗ pHandler ,

u i n t 8 t f l a g 0 , u i n t 8 t f l a g 1) ;

v i r t u a l vo id run () ;

v i r t u a l vo id run (void (∗myfunc) (void)) ;

v i r t u a l S i m u l a t o r ∗ c l o n e () c o n s t

{ re turn new TimeWarpSimula tor (∗ t h i s) ; }

/ / User i n t e r f a c e f u n c t i o n s p e c i a l f o r Time Warp

t empla te <c l a s s T>

s t a t i c vo id a t t a c h (T &s t a t e , u i n t 3 2 t h i s t o r y S i z e) ;

p r o t e c t e d :

/ / Enum d e s c r i b i n g t y p e s o f g l o b a l c o n t r o l t o per fo rm

enum G l o b a l C o n t r o l

{

GC NONE = 0 ,

GC SYNC = 1 ,

ENUM MX = 2

177

} ;

/ / Enum d e s c r i b i n g t e r m i n a t i o n s t a t e s

enum S t a t e

{

NOT DONE = 0 ,

LOCAL DONE = 1 ,

GLOBAL DONE = 2 ,

NUM STATES

} ;

/ / Enum d e s c r i b i n g f l a g 0 o f t h e message s t r u c t u r e

enum MessageFlag

{

NORM MSG = 0 ,

ANTI MSG = 1 ,

NULL MSG = 2 ,

NUM MSGS

} ;

/ / C l a s s t o ho ld i n p u t queue messages

s t r u c t E v e n t S t a t e

{

E v e n t S t a t e () : e v e n t (0 . 0 , 0 x0) {}

E v e n t S t a t e (c o n s t Event &e) : e v e n t (e) {}

Event e v e n t ;

s t d : : deque<Event> outQueue ;

} ;

/ / P r i v a t e methods

void r o l l b a c k (double t ime , c o n s t Hand le r ∗ pHand le r = 0x0) ;

void g l o b a l C o n t r o l (G l o b a l C o n t r o l gc) ;

178

G l o b a l C o n t r o l c h e c k G l o b a l C o n t r o l () ;

void commitGvt (double newGvt) ;

void sendAnt iMessage (c o n s t Event &e v e n t) ;

void a n n i h i l a t e (double t ime , c o n s t Hand le r ∗ pHand le r) ;

void i n i t i a t e G l o b a l C o n t r o l () ;

S t a t e l o c a l S t a t e () ;

void sendNul lMessages () ;

bool c h e c k L p s S t a t e (S t a t e s t a t e) ;

/ / Member o b j e c t s

double simTime ;

double g v t ;

bool t e r m i n a t i n g ;

u i n t 3 2 t h i s t o r y S i z e ;

S t a t e D a t a H i s t o r y B a s e ∗ p S t a t e H i s t o r y ; / / S t a t e queue

/ / l ookahead v a l u e s f o r do ing remote s e n d s

s t d : : v e c t o r<double> lookAhead ;

/ / L i s t o f s t a t e s f o r my n e i g h b o r s

s t d : : v e c t o r<S t a t e > s t a t e L i s t ;

/ / B u f f e r f o r i n i t i a t i n g g l o b a l c o n t r o l

G l o b a l C o n t r o l t x B u f ;

/ / P r o c e s s e d e v e n t s queue (e v e n t s I hand led)

C i r c u l a r Q u e u e<E v e n t S t a t e > p r o c e s s e d Q u e u e ;

/ / Hold a n t i−message t e m p o r a r i l y , i f i t i s n o t found

s t d : : l i s t <Event> a n t i M s g H o l d e r ;

/ / C o n s t a n t o b j e c t s

/ / Okay t o use t h e t a g 0 s i n c e t h e h a n d l e r t a g s s t a r t a t 1

179

s t a t i c c o n s t i n t gcTag = 0 ;

/ / S t a t i c members (o n l y used f o r i n i t i a l a t t a c h)

s t a t i c S t a t e D a t a H i s t o r y B a s e ∗ p I n i t i a l H i s t o r y T o A t t a c h ;

s t a t i c u i n t 3 2 t i n i t i a l H i s t o r y S i z e ;

} ;

/ /

/ / / \ b r i e f S t a t i c t e m p l a t e u s e r i n t e r f a c e t o a t t a c h

/ / / s t a t e da ta t o t h e s i m u l a t o r .

/ / / NOTE: T h i s a t t a c h must be per fo rmed BEFORE t h e

/ / / c a l l t o i n i t i a l i z e !

/ / /

/ / / \param s t a t e : R e f e r e n c e t o s t a t e da ta

/ / / \param h i s t o r y S i z e : s i z e o f t h e 3 queues

/ / /

/ /

t empla te <c l a s s T>

void

TimeWarpSimula tor : : a t t a c h (T &s t a t e , u i n t 3 2 t h i s t o r y S i z e)

{

/ / T h i s v a l u e w i l l be c l o n e d i n t o t h e a c t u a l o b j e c t .

/ / Note t h a t t h i s o b j e c t w i l l n o t be f r e e d d u r i n g main () . That i s okay !

p I n i t i a l H i s t o r y T o A t t a c h = new S t a t e D a t a H i s t o r y <T>(&s t a t e) ;

i n i t i a l H i s t o r y S i z e = h i s t o r y S i z e ;

}

e n d i f

180

SimulatorExecutive.hpp

i f n d e f SIMULATOREXECUTIVE HPP

d e f i n e SIMULATOREXECUTIVE HPP

i n c l u d e <c s t d l i b >

i n c l u d e <i o s t r e a m>

i n c l u d e ” Hand le r . hpp ”

i n c l u d e ” S i m u l a t o r . hpp ”

i n c l u d e ” RemoteRece iver . hpp ”

i n c l u d e ” S i m A p p l i c a t i o n . hpp ”

/ /

/ / / \ b r i e f S t a t i c c l a s s encompass ing t h e s i m u l a t i o n

/ / / e x e c u t i v e . Note : s i n c e t h i s i s s t a t i c ,

/ / / t h e r e i s o n l y ONE per LP .

/ / /

/ /

c l a s s S i m u l a t o r E x e c u t i v e

{

p u b l i c :

s t a t i c u i n t 1 6 t s t a r t T i m e ;

s t a t i c u i n t 1 6 t endTime ;

s t a t i c s t d : : s t r i n g s c h e d u l e F i l e ;

s t a t i c s t d : : u i n t 1 6 t s p a c e D i v i s i o n ;

s t a t i c s t d : : u i n t 1 6 t t i m e D i v i s i o n ;

s t a t i c u i n t 3 2 t r a n d S e e d ;

s t a t i c double d u p R a t i o ;

s t a t i c double simTime () ;

181

s t a t i c vo id run () ;

s t a t i c vo id run (void (∗myfunc) (void)) ;

t empla te <c l a s s T , c l a s s T2>

s t a t i c vo id i n i t i a l i z e (

s t d : : s t r i n g s c h e d u l F i l e ,

c o n s t u i n t 1 6 t s p a c e D i v i s i o n ,

c o n s t u i n t 1 6 t t i m e D i v i s i o n = 1) ;

s t a t i c vo id f i n a l i z e () ;

t empla te <c l a s s T>

s t a t i c vo id s c h e d u l e (double t ime , c o n s t T &h a n d l e r) ;

/ / Note t h a t i n c o n t r a s t t o s c h e d u l e () , s c h e d u l e R e m o t e () t a k e s

/ / a p o i n t e r t o t h e h a n d l e r . The o r i g i n f o r t h i s d i s c r e p a n c y l i e s

/ / i n fo rward d e c l a r a t i o n prob lems w i t h t h e headers , n o t h i n g more .

s t a t i c vo id schedu leRemote (

u i n t 3 2 t lp ,

double t ime ,

c o n s t Hand le r ∗ pHandler ,

u i n t 8 t f l a g 0 , u i n t 8 t f l a g 1) ;

s t a t i c vo id addNeighbor (u i n t 3 2 t lp , double lookAhead) ;

s t a t i c vo id l o g g i n g (bool l o g g i n g) ;

/ / Get t h e v a l u e o f t h e ” s p e c i a l ” t i m e r a f t e r r u n n i n g .

/ / The s p e c i a l t i m e r m e t r i c depends on t h e sim imp l

s t a t i c i n t 6 4 t s p e c i a l T i m e r () ;

p r i v a t e :

182

s t a t i c S i m u l a t o r ∗ p S i m u l a t o r ;

s t a t i c s i z e t t imeRound ;

/ / p o s t f i x−up c o m p u t a t i o n f o r t i m e p a r a l l e l i s m

s t a t i c bool checkComple ted (bool &i s T h i s L p S k i p) ;

s t a t i c vo id p o s t P r o c e s s () ;

s t a t i c vo id doFixup (c o n s t s i z e t numLPs , s h o r t ∗ t imes , s h o r t ∗ u p d a t e s) ;

s t a t i c vo id p o s t P r o c e s s n a i v e () ;

s t a t i c vo id p o s t P r o c e s s g a t h e r () ;

s t a t i c vo id p o s t P r o c e s s s c a n () ;

} ;

/ /

/ / / \ b r i e f I n i t i a l i z e t h e s i m u l a t o r t o a known s t a t e .

/ / /

/ / / \param T : (t e m p l a t e parame te r) Which s i m u l a t o r t y p e

/ / / t o use .

/ / / \param T2 : (t e m p l a t e parame te r) Which e v e n t l i s t t y p e

/ / / t o use ;

/ / /

/ /

t empla te <c l a s s T , c l a s s T2>

void

S i m u l a t o r E x e c u t i v e : : i n i t i a l i z e (

s t d : : s t r i n g s c h e d u l F i l e ,

c o n s t u i n t 1 6 t s p a c e D i v i s i o n ,

c o n s t u i n t 1 6 t t i m e D i v i s i o n)

{

d e l e t e p S i m u l a t o r ;

183

p S i m u l a t o r = new T () ;

p S i m u l a t o r −> i n i t i a l i z e L i s t <T2> () ;

s c h e d u l e F i l e = s c h e d u l F i l e ;

s p a c e D i v i s i o n = s p a c e D i v i s i o n ;

t i m e D i v i s i o n = t i m e D i v i s i o n ;

/ / We need t o s e t t h e h a n d l e r s t a r t i n g i d so t h e y don ’ t o v e r l a p

/ / be tween LPs

Hand le r : : s t a r t i n g I d ((0 xFFFFFFFF / P a r a l l e l M a n a g e r : : sys temCount ())

∗ P a r a l l e l M a n a g e r : : s y s t e m I d ()) ;

/ / A l l are c o n n e c t e d

f o r (s i z e t i = 0 ; i < P a r a l l e l M a n a g e r : : s p a c e S i z e ; ++ i)

{

i f (i != P a r a l l e l M a n a g e r : : spaceRank)

{

s t d : : c o u t << ” s e t l o o k a h e a d : ”

<< n a s s i m u l a t o r : : S i m A p p l i c a t i o n : : s endHor i zon

<< s t d : : e n d l ;

addNeighbor (i , n a s s i m u l a t o r : : S i m A p p l i c a t i o n : : s endHor i zon) ;

/ / addNeighbor (i , 1) ;

}

/ / e l s e

}

}

/ /

/ / / \ b r i e f S c h e d u l e an e v e n t u s i n g an o b j e c t .

184

/ / /

/ / / \param t i m e Time (s) a t which e v e n t o c c u r s

/ / / \param h a n d l e r Even t h a n d l e r o b j e c t

/ / /

/ /

t empla te <c l a s s T>

void

S i m u l a t o r E x e c u t i v e : : s c h e d u l e (double t ime , c o n s t T &h a n d l e r)

{

i f (p S i m u l a t o r)

{

i f (h a n d l e r . i sRemote ())

{

/ / Send w i t h n u l l f l a g s and a message Id

RemoteReceiver<T> : : s c h e d u l e S e n d (

h a n d l e r . t a r g e t L p () ,

t ime ,

h a n d l e r , 0 , 0) ;

p S i m u l a t o r −>l ogSen tMessage (t ime , &h a n d l e r) ;

}

e l s e

{

/ / t e s t l o g

/ / s t d : : c o u t << ” s c h e d u l e t i m e : ” << t i m e << s t d : : e n d l ;

/ / s t d : : c o u t << t e s t c o u n t ++ << s t d : : e n d l ;

/ / I t ’ s okay t o pas s t h i s r e f e r e n c e because t h e new Even t

/ / o b j e c t c l o n e s t h e h a n d l e r o b j e c t

p S i m u l a t o r −>s c h e d u l e L o c a l (t ime , &h a n d l e r) ;

}

}

185

e l s e

{

s t d : : c e r r << ”ERROR: S i m u l a t o r n o t i n i t i a l i z e d . E x i t i n g . ” << s t d : : e n d l ;

e x i t (EXIT FAILURE) ;

}

}

e n d i f

Flight.hpp

i f n d e f FLIGHT HPP

d e f i n e FLIGHT HPP

i n c l u d e < s t r i n g . h>

i n c l u d e <s t r i n g >

i n c l u d e <s s t r e a m>

i n c l u d e <i o s t r e a m>

i n c l u d e ” Logger . hpp ”

namespace n a s s i m u l a t o r {

/ / @TODO month and d a t e t o g e t d a y l i g h t s a v i n g s .

/ /

/ / / \ b r i e f LocalT ime da ta c l a s s

/ / /

/ /

c l a s s LocalTime

{

p u b l i c :

s t a t i c LocalTime GetNewTime (c o n s t LocalTime &begin ,

186

c o n s t s i z e t e lapedMin ,

c o n s t double u t c O f f s e t)

{

/ / s t d : : c o u t << ” b e g i n . ho ur : ” << b e g i n . hour << s t d : : e n d l ;

/ / s t d : : c o u t << ” b e g i n . m i n u t e : ” << b e g i n . m i n u t e << s t d : : e n d l ;

/ / s t d : : c o u t << ” e lapsedMin : ” << e lapedMin << s t d : : e n d l ;

/ / s t d : : c o u t << ” u t c O f f s e t : ” << u t c O f f s e t << s t d : : e n d l ;

s i z e t newHour = b e g i n . h o u r + e lapedMin / 6 0 ;

s i z e t newMins = b e g i n . m i n u t e + e lapedMin % 6 0 ;

i f (newMins > 59) {

newHour ++;

newMins −= 6 0 ;

}

newHour += (u t c O f f s e t − b e g i n . u t c O f f s e t) ;

LocalTime newTime (newHour , newMins , u t c O f f s e t) ;

re turn newTime ;

}

s t a t i c LocalTime GetNewTime (c o n s t s i z e t simTime ,

c o n s t double u t c O f f s e t)

{

s i z e t newHour = simTime / 6 0 ;

s i z e t newMins = simTime % 6 0 ;

newHour += (u t c O f f s e t + 4) ;

LocalTime newTime (newHour , newMins , u t c O f f s e t) ;

re turn newTime ;

187

}

s t a t i c i n t G e t D i f f (LocalTime t ime1 , LocalTime t ime2)

{

re turn t ime1 . ge tMos tEas tT imeMinu te () − t ime2 . ge tMos tEas tT imeMinu te () ;

}

/ /

/ / / \ b r i e f d e f a u l t c o n s t r u c t o r

/ / /

/ /

LocalTime () {}

/ /

/ / / \ b r i e f c o n s t r u c t o r

/ / /

/ /

LocalTime (

s t d : : s t r i n g t i m e s t r i n g ,

double u t c O f f s e t ,

bool p l u s o n e d a y = f a l s e)

: u t c O f f s e t (u t c O f f s e t)

{

s i z e t l e n = t i m e s t r i n g . l e n g t h () ;

i f (l e n < 3)

{

h o u r = 0 ;

m i n u t e = a t o i (t i m e s t r i n g . c s t r ()) ;

}

e l s e

{

h o u r = a t o i (t i m e s t r i n g . s u b s t r (0 , l e n − 2) . c s t r ()) ;

m i n u t e = a t o i (t i m e s t r i n g . s u b s t r (l e n − 2 , 2) . c s t r ()) ;

188

}

i f (p l u s o n e d a y)

h o u r += 2 4 ;

}

/ /

/ / / \ b r i e f c o n s t r u c t o r

/ / /

/ /

LocalTime (s i z e t hour , s i z e t minute , double u t c O f f s e t)

: u t c O f f s e t (u t c O f f s e t) , h o u r (hour) , m i n u t e (minu te) { }

/ /

/ / / \ b r i e f a s s i g n m e n t

/ / /

/ /

LocalTime& operator =(c o n s t LocalTime &r h s)

{

i f (t h i s != &r h s)

{

t h i s−>h o u r = r h s . h o u r ;

t h i s−>m i n u t e = r h s . m i n u t e ;

t h i s−>u t c O f f s e t = r h s . u t c O f f s e t ;

}

re turn ∗ t h i s ;

}

/ / T h i s i s p u e r t o r i c o t i m e (UTC−4) , E s t e r n t i m e i s a l s o UTC −4 d u r i n g DST

s i z e t ge tMos tEas tT imeMinu te () c o n s t

{

re turn 60 ∗ (h o u r − (i n t) (4 . 0 + u t c O f f s e t)) + m i n u t e ;

}

189

s i z e t h o u r ;

s i z e t m i n u t e ;

double u t c O f f s e t ;

} ;

/ /

/ / / \ b r i e f A i r p o r t da ta c l a s s

/ / /

/ /

c l a s s A i r p o r t I n f o

{

p u b l i c :

/ /

/ / / \ b r i e f d e f a u l t c o n s t r u c t o r

/ / /

/ /

A i r p o r t I n f o () {}

A i r p o r t I n f o (

s t d : : s t r i n g a i r p o r t I d ,

s t d : : s t r i n g a i r p o r t F u l l N a m e ,

s t d : : s t r i n g cityName ,

double l o n g i t u d e ,

double l a t i t u d e ,

double u t c O f f s e t ,

s t d : : s t r i n g d a y l i g h t S a v i n g

)

: a i r p o r t I d (a i r p o r t I d) ,

190

a i r p o r t F u l l N a m e (a i r p o r t F u l l N a m e) ,

c i tyName (ci tyName) ,

l o n g i t u d e (l o n g i t u d e) ,

l a t i t u d e (l a t i t u d e) ,

u t c O f f s e t (u t c O f f s e t) ,

d a y l i g h t S a v i n g (d a y l i g h t S a v i n g) {}

s t d : : s t r i n g a i r p o r t I d ;

s t d : : s t r i n g a i r p o r t F u l l N a m e ;

s t d : : s t r i n g c i tyName ;

double l o n g i t u d e ;

double l a t i t u d e ;

double u t c O f f s e t ;

s t d : : s t r i n g d a y l i g h t S a v i n g ;

} ;

/ /

/ / / \ b r i e f F l i g h t s t a t u s da ta c l a s s

/ / /

/ /

c l a s s F l i g h t S t a t

{

p u b l i c :

/ /

/ / / \ b r i e f d e f a u l t c o n s t r u c t o r

/ / /

/ /

F l i g h t S t a t () {}

191

} ;

/ /

/ / / \ b r i e f F l i g h t da ta c l a s s

/ / /

/ /

c l a s s F l i g h t

{

p u b l i c :

/ /

/ / / \ b r i e f d e f a u l t c o n s t r u c t o r

/ / / @TODO d a t e i n f o r m a t i o n ?

/ /

F l i g h t () {}

/ /

/ / / \ b r i e f copy c t o r

/ / /

/ /

F l i g h t (c o n s t F l i g h t ©)

{

s t r n c p y (t h i s−>c a r r i e r I d , copy . c a r r i e r I d , 8) ;

s t r n c p y (t h i s−>t a i lNum , copy . t a i lNum , 8) ;

t h i s−>f l i g h t N u m = copy . f l i g h t N u m ;

t h i s−>o r i g i n A i r p o r t I d = copy . o r i g i n A i r p o r t I d ;

t h i s−>d e s t A i r p o r t I d = copy . d e s t A i r p o r t I d ;

t h i s−>crsDepTime = copy . crsDepTime ;

t h i s−>c r s A r r T i m e = copy . c r s A r r T i m e ;

t h i s−>actDepTimeRec = copy . actDepTimeRec ;

192

t h i s−>ac tAr rT imeRec = copy . ac tAr rT imeRec ;

t h i s−>c r s F l i g h t T i m e = copy . c r s F l i g h t T i m e ;

t h i s−>depDelRec = copy . depDelRec ;

t h i s−>a r r D e l R e c = copy . a r r D e l R e c ;

/ / r e s u l t da ta

t h i s−>actDepTime = copy . ac tDepTime ;

t h i s−>a c t A r r T i m e = copy . a c t A r r T i m e ;

/ / f o r t i m e p a r a l l e l s i m u l a t o r

t h i s−>i s I n T i m e B i n = copy . i s I n T i m e B i n ;

}

/ /

/ / / \ b r i e f c o n s t r u c t o r

/ / / @TODO d a t e i n f o r m a t i o n ?

/ /

F l i g h t (

s t d : : s t r i n g c a r r i e r I d ,

s t d : : s t r i n g tai lNum ,

s i z e t f l igh tNum ,

s i z e t o r i g i n A i r p o r t I d ,

s i z e t d e s t A i r p o r t I d ,

LocalTime crsDepTime ,

LocalTime crsArrTime ,

LocalTime actDepTimeRec ,

LocalTime actArrTimeRec ,

s i z e t c r s F l i g h t T i m e ,

i n t depDelRec ,

i n t a r r D e l R e c)

: /∗ c a r r i e r I d (c a r r i e r I d) ,

t a i l N u m (ta i lNum) , ∗ /

f l i g h t N u m (f l i gh tNum) ,

193

o r i g i n A i r p o r t I d (o r i g i n A i r p o r t I d) ,

d e s t A i r p o r t I d (d e s t A i r p o r t I d) ,

c rsDepTime (crsDepTime) ,

c r s A r r T i m e (c r sAr rT ime) ,

c r s F l i g h t T i m e (c r s F l i g h t T i m e) ,

actDepTimeRec (actDepTimeRec) ,

ac tAr rT imeRec (ac tArrTimeRec) ,

depDelRec (depDelRec) ,

a r r D e l R e c (a r r D e l R e c) {

s t r n c p y (c a r r i e r I d , c a r r i e r I d . c s t r () , 8) ;

s t r n c p y (ta i lNum , ta i lNum . c s t r () , 8) ;

}

/ / s i z e t GlobalTime () c o n s t { r e t u r n 0 ; }

/ /

/ / / \ b r i e f d t o r

/ / /

/ /

˜ F l i g h t () { }

/ /

/ / / \ b r i e f a s s i g n m e n t

/ / /

/ /

F l i g h t& operator =(c o n s t F l i g h t &r h s)

{

i f (t h i s != &r h s)

{

194

s t r n c p y (t h i s−>c a r r i e r I d , r h s . c a r r i e r I d , 8) ;

s t r n c p y (t h i s−>t a i lNum , r h s . t a i lNum , 8) ;

t h i s−>f l i g h t N u m = r h s . f l i g h t N u m ;

t h i s−>o r i g i n A i r p o r t I d = r h s . o r i g i n A i r p o r t I d ;

t h i s−>d e s t A i r p o r t I d = r h s . d e s t A i r p o r t I d ;

t h i s−>crsDepTime = r h s . crsDepTime ;

t h i s−>c r s A r r T i m e = r h s . c r s A r r T i m e ;

t h i s−>actDepTimeRec = r h s . actDepTimeRec ;

t h i s−>ac tAr rT imeRec = r h s . ac tAr rT imeRec ;

t h i s−>c r s F l i g h t T i m e = r h s . c r s F l i g h t T i m e ;

t h i s−>depDelRec = r h s . depDelRec ;

t h i s−>a r r D e l R e c = r h s . a r r D e l R e c ;

/ / r e s u l t da ta

t h i s−>actDepTime = r h s . ac tDepTime ;

t h i s−>a c t A r r T i m e = r h s . a c t A r r T i m e ;

/ / f o r t i m e p a r a l l e l s i m u l a t o r

t h i s−>i s I n T i m e B i n = r h s . i s I n T i m e B i n ;

}

re turn ∗ t h i s ;

}

/ /

/ / / \ b r i e f Peek a t t h e f l i g h t i n f o r m a t i o n

/ / /

/ /

void w r i t e L o g ()

{

s t d : : o s t r i n g s t r e a m buf ;

buf << ” F l i g h t : ” << c a r r i e r I d << f l i g h t N u m ;

buf << ” , T a i l Num: ” << t a i l N u m ;

buf << ” , o r i g i n : ” << o r i g i n A i r p o r t I d ;

195

buf << ” , crsDepTime : ” << crsDepTime . h o u r

<< ” : ” << crsDepTime . m i n u t e ;

buf << ” , crsDepTime (E s t e r n) : ” << crsDepTime . ge tMos tEas tT imeMinu te () ;

buf << ” , d e s t : ” << d e s t A i r p o r t I d ;

buf << ” , c r sAr rT ime : ” << c r s A r r T i m e . h o u r

<< ” : ” << c r s A r r T i m e . m i n u t e ;

buf << ” , c r sAr rT ime (E s t e r n) : ” << c r s A r r T i m e . ge tMos tEas tT imeMinu te () ;

buf << ” , i s I n T i m e B i n : ” << i s I n T i m e B i n ;

/ / b u f << ” , i s I n S p a c e B i n : ” << i s I n S p a c e B i n ;

Logger : : g e t L o g g e r (” F l i g h t ”)−>w r i t e L o g (buf . s t r ()) ;

}

/ / i n p u t da ta − f i x e d from t h e f i r s t t i m e

char c a r r i e r I d [8] = {0 , } ;

char t a i l N u m [8] = {0 , } ;

/ / s t d : : s t r i n g c a r r i e r I d ;

/ / s t d : : s t r i n g t a i l N u m ;

s i z e t f l i g h t N u m ;

s i z e t o r i g i n A i r p o r t I d ;

s i z e t d e s t A i r p o r t I d ;

LocalTime crsDepTime ;

LocalTime c r s A r r T i m e ;

LocalTime actDepTimeRec ;

LocalTime ac tAr rT imeRec ;

s i z e t c r s F l i g h t T i m e ;

i n t depDelRec ;

i n t a r r D e l R e c ;

/ / r e s u l t da ta

LocalTime actDepTime ;

LocalTime a c t A r r T i m e ;

/ / f o r t i m e p a r a l l e l s i m u l a t o r

196

bool i s I n T i m e B i n = f a l s e ;

/ / f o r space p a r a l l e l s i m u l a t o r

/ / boo l i s I n S p a c e B i n = f a l s e ;

p r i v a t e :

} ;

c l a s s CompareF l i gh t

{

p u b l i c :

bool operator () (F l i g h t c o n s t &a , F l i g h t c o n s t &b)

{

re turn a . actDepTimeRec . ge tMos tEas tT imeMinu te ()

> b . actDepTimeRec . ge tMos tEas tT imeMinu te () ;

}

} ;

s t r u c t

{

bool operator () (F l i g h t c o n s t &a , F l i g h t c o n s t &b)

{

re turn a . actDepTimeRec . ge tMos tEas tT imeMinu te ()

< b . actDepTimeRec . ge tMos tEas tT imeMinu te () ;

}

} s C o m p a r e F l i g h t ;

} / / n a s s i m u l a t o r

197

e n d i f

AirportManager.hpp

i f n d e f AIRPORTMANAGER HPP

d e f i n e AIRPORTMANAGER HPP

i n c l u d e < l i s t >

i n c l u d e <v e c t o r>

i n c l u d e ” F l i g h t . hpp ”

namespace n a s s i m u l a t o r {

s t r u c t d e l a y P r o p I n f o {

d e l a y P r o p I n f o () : d e l a y P r o p (0) , n u m F l i g h t s (0) {}

d e l a y P r o p I n f o (

u i n t 3 2 t de l ayProp ,

u i n t 3 2 t n u m F l i g h t s) : d e l a y P r o p (d e l a y P r o p) ,

n u m F l i g h t s (n u m F l i g h t s) {}

u i n t 3 2 t d e l a y P r o p ;

u i n t 3 2 t n u m F l i g h t s ;

} ;

s t r u c t a i r p o r t S t a t e {

a i r p o r t S t a t e (u i n t 1 6 t t imes t amp) : t i m e s t a m p (t imes t amp) ,

w a i t t i m e (0) { w a i t f l i g h t s . c l e a r () ; }

u i n t 1 6 t t i m e s t a m p ;

u i n t 1 6 t w a i t t i m e ;

198

s t d : : v e c t o r<s t d : : s t r i n g > w a i t f l i g h t s ;

} ;

/ /

/ / / \ b r i e f A i r p o r t Manager c l a s s

/ / /

/ /

c l a s s A i r p o r t M a n a g e r

{

p u b l i c :

s t a t i c c o n s t s i z e t LANDING TIME = 0 ;

s t a t i c c o n s t s i z e t TAXI TIME = 0 ;

s t d : : v e c t o r<a i r p o r t S t a t e > a i r p o r t S t a t e s ;

/ / u i n t 1 6 t s t a r t T i m e ;

/ /

/ / / \ b r i e f c o n s t r u c t o r

/ / /

/ /

e x p l i c i t A i r p o r t M a n a g e r (

s i z e t a i r p o r t I d ,

s t d : : s t r i n g a i r p o r t n a m e ,

u i n t 1 6 t o r d e r I n T i m e)

: a i r p o r t I d (a i r p o r t I d) ,

a i r p o r t n a m e (a i r p o r t n a m e) ,

o r d e r I n T i m e (o r d e r I n T i m e)

{

/ / Add i n f o r m a t i o n t o t h e l i s t f o r d i s t r i b u t i n g a i r p o r t s a c r o s s LPs

}

199

/ /

/ / / \ b r i e f d t o r

/ / /

/ /

˜ A i r p o r t M a n a g e r () { }

void a d d I n F l i g h t (F l i g h t f l i g h t) { i n F l i g h t s . p u s h b a c k (f l i g h t) ; }

void a d d O u t F l i g h t (F l i g h t f l i g h t) { o u t F l i g h t s . p u s h b a c k (f l i g h t) ; }

bool isInRunwayEmpty () { re turn inRunwayEmpty ; }

void setInRunwayEmpty (bool i sEmpty) { inRunwayEmpty = isEmpty ; }

bool isOutRunwayEmpty () { re turn outRunwayEmpty ; }

void setOutRunwayEmpty (bool i sEmpty) { outRunwayEmpty = isEmpty ; }

bool h a s N e x t I n F l i g h t () { re turn (i n F l i g h t s . s i z e () > 0) ; }

F l i g h t p o p N e x t I n F l i g h t ()

{

F l i g h t n e x t F l i g h t ;

i f (i n F l i g h t s . s i z e () > 0)

{

n e x t F l i g h t = i n F l i g h t s . f r o n t () ;

i n F l i g h t s . p o p f r o n t () ;

}

re turn n e x t F l i g h t ;

}

s i z e t ge tLand ingTime () { re turn LANDING TIME ; }

void f i x u p R e m o v e F l i g h t (s t d : : s t r i n g f l i g h t n a m e) {}

void f i x u p A d d F l i g h t (s t d : : s t r i n g f l i g h t n a m e , u i n t 1 6 t d e l a y) {}

200

s i z e t g e t O r d e r I n T i m e () { re turn o r d e r I n T i m e ; }

s t d : : s t r i n g a i r p o r t n a m e ;

p r i v a t e :

s t a t i c vo id addNewAirpor t () ;

s t a t i c f l o a t a l t M i n ;

s t a t i c f l o a t a l t Ma x ;

s t a t i c f l o a t l a t M i n ;

s t a t i c f l o a t l a t Ma x ;

double a i r p o r t I d ;

u i n t 1 6 t o r d e r I n T i m e ;

bool inRunwayEmpty = t rue ;

bool outRunwayEmpty = t rue ;

s t d : : l i s t < F l i g h t > i n F l i g h t s ;

s t d : : l i s t < F l i g h t > o u t F l i g h t s ;

} ;

} / / n a s s i m u l a t o r

e n d i f / / AIRPORTMANAGER HPP

AirportTrafficImporter.hpp

i f n d e f AIRTRAFFICIMPORTER HPP

d e f i n e AIRTRAFFICIMPORTER HPP

i n c l u d e <s t r i n g >

i n c l u d e <map>

i n c l u d e <v e c t o r>

201

i n c l u d e <queue>

i n c l u d e <memory>

i n c l u d e ” E v e n t L i s t . hpp ”

i n c l u d e ” F l i g h t . hpp ”

i n c l u d e ” A i r p o r t M a n a g e r . hpp ”

namespace n a s s i m u l a t o r {

enum ScdI tem {

Year = 0 ,

Month = 1 ,

DayofMonth ,

DayOfWeek ,

F l i g h t D a t e ,

U n i q u e C a r r i e r ,

A i r l i n e I D ,

C a r r i e r ,

TailNum ,

FlightNum ,

O r i g i n A i r p o r t I D ,

O r i g i n A i r p o r t S e q I D ,

O r i g i n C i t y M a r k e t I D ,

Or ig in ,

OriginCi tyName ,

O r i g i n S t a t e ,

O r i g i n S t a t e F i p s ,

Or ig inS ta teName ,

OriginWac ,

D e s t A i r p o r t I D ,

D e s t A i r p o r t S e q I D ,

Des tCi tyMarke t ID ,

202

Dest ,

DestCityName ,

D e s t S t a t e ,

D e s t S t a t e F i p s ,

DestSta teName ,

DestWac ,

CRSDepTime ,

DepTime ,

DepDelay ,

DepDelayMinutes ,

DepDel15 ,

Depa r tu reDe layGroups ,

DepTimeBlk ,

TaxiOut ,

WheelsOff ,

WheelsOn ,

Tax i In ,

CRSArrTime ,

ArrTime ,

ArrDelay ,

ArrDelayMinutes ,

ArrDel15 ,

A r r i v a l D e l a y G r o u p s ,

ArrTimeBlk ,

C a n c e l l e d ,

C a n c e l l a t i o n C o d e ,

D i v e r t e d ,

CRSElapsedTime ,

Ac tua lE lapsedTime ,

AirTime ,

F l i g h t s ,

D i s t a n c e ,

Dis tanceGroup ,

203

C a r r i e r D e l a y ,

WeatherDelay ,

NASDelay ,

S e c u r i t y D e l a y ,

L a t e A i r c r a f t D e l a y ,

F i r s tDepTime ,

TotalAddGTime ,

LongestAddGTime ,

D i v A i r p o r t L a n d i n g s ,

DivReachedDest ,

DivActua lE lapsedTime ,

DivArrDelay ,

D ivDis t ance ,

D i v 1 A i r p o r t ,

D iv1Ai rpor t ID ,

Div1Ai rpor tSeqID ,

Div1WheelsOn ,

Div1TotalGTime ,

Div1LongestGTime ,

Div1WheelsOff ,

Div1TailNum ,

D i v 2 A i r p o r t ,

D iv2Ai rpor t ID ,

Div2Ai rpor tSeqID ,

Div2WheelsOn ,

Div2TotalGTime ,

Div2LongestGTime ,

Div2WheelsOff ,

Div2TailNum ,

D i v 3 A i r p o r t ,

D iv3Ai rpor t ID ,

Div3Ai rpor tSeqID ,

Div3WheelsOn ,

204

Div3TotalGTime ,

Div3LongestGTime ,

Div3WheelsOff ,

Div3TailNum ,

D i v 4 A i r p o r t ,

D iv4Ai rpor t ID ,

Div4Ai rpor tSeqID ,

Div4WheelsOn ,

Div4TotalGTime ,

Div4LongestGTime ,

Div4WheelsOff ,

Div4TailNum ,

D i v 5 A i r p o r t ,

D iv5Ai rpor t ID ,

Div5Ai rpor tSeqID ,

Div5WheelsOn ,

Div5TotalGTime ,

Div5LongestGTime ,

Div5WheelsOff ,

Div5TailNum

} ;

s t r u c t s t a t e O r d e r

{

s t a t e O r d e r () = d e f a u l t ;

s t a t e O r d e r (

u i n t 1 6 t r e g i o n i d ,

u i n t 1 6 t o r d e r i n r e g i o n ,

u i n t 1 6 t lpCount ,

u i n t 1 6 t a b s o r d e r ,

205

u i n t 1 6 t s p a c e d i v i s i o n)

{

t h i s−>r e g i o n i d = r e g i o n i d ;

t h i s−>o r d e r i n r e g i o n = o r d e r i n r e g i o n ;

t h i s−>a b s o r d e r = a b s o r d e r ;

c a l c L p O r d e r (s p a c e d i v i s i o n , l pCoun t) ;

} ;

s t a t e O r d e r (c o n s t s t a t e O r d e r& copy)

{

t h i s−>r e g i o n i d = copy . r e g i o n i d ;

t h i s−>o r d e r i n r e g i o n = copy . o r d e r i n r e g i o n ;

t h i s−>a b s o r d e r = copy . a b s o r d e r ;

t h i s−> l p o r d e r i n t i m e = copy . l p o r d e r i n t i m e ;

}

s t a t e O r d e r& operator =(c o n s t s t a t e O r d e r &r h s)

{

i f (t h i s != &r h s)

{

t h i s−>r e g i o n i d = r h s . r e g i o n i d ;

t h i s−>o r d e r i n r e g i o n = r h s . o r d e r i n r e g i o n ;

t h i s−>a b s o r d e r = r h s . a b s o r d e r ;

t h i s−> l p o r d e r i n t i m e = r h s . l p o r d e r i n t i m e ;

}

re turn ∗ t h i s ;

}

void c a l c L p O r d e r (

u i n t 1 6 t s p a c e d i v i s i o n ,

u i n t 1 6 t lpCoun t

)

{

206

i f (s p a c e d i v i s i o n == 5)

{

t h i s−> l p o r d e r i n t i m e = t h i s−>r e g i o n i d ;

}

e l s e i f (s p a c e d i v i s i o n == 53)

{

t h i s−> l p o r d e r i n t i m e = t h i s−>a b s o r d e r ;

}

e l s e i f (s p a c e d i v i s i o n < 54)

{

/ / @TODO check

u i n t 1 6 t d i v = 53 / s p a c e d i v i s i o n ;

u i n t 1 6 t r e m a i n d e r = 53 % s p a c e d i v i s i o n ;

i f (a b s o r d e r < (d i v + 1)∗ r e m a i n d e r)

{

t h i s−> l p o r d e r i n t i m e = t h i s−>a b s o r d e r / (d i v + 1) ;

}

e l s e

{

t h i s−> l p o r d e r i n t i m e

= (a b s o r d e r − (d i v + 1)∗ r e m a i n d e r) / d i v + r e m a i n d e r ;

}

}

e l s e

{

s t d : : c e r r

<< ” Cannot d i v i d e more t h a n 53 s p a t i a l r e g i o n s f o r now . ”

<< s t d : : e n d l ;

}

/ / l p i d

}

207

u i n t 1 6 t r e g i o n i d ;

u i n t 1 6 t o r d e r i n r e g i o n ;

u i n t 1 6 t a b s o r d e r ;

u i n t 1 6 t l p o r d e r i n t i m e ;

} ;

/ /

/ / / \ b r i e f S t a t i c c l a s s t o i m p o r t a i r t r a f f i c da ta

/ / /

/ /

c l a s s A i r T r a f f i c I m p o r t e r

{

p u b l i c :

/ / @TODO Im po r t from d a t a b a s e ?

s t a t i c vo id R e a d A i r p o r t D a t a (

c o n s t s t d : : s t r i n g& fi leName ,

s t d : : map< s t d : : s t r i n g , A i r p o r t I n f o > &a i r p o r t s ,

u i n t 3 2 t lpCoun t = 1 ,

u i n t 3 2 t l p I d = 0 ,

u i n t 3 2 t t i m e d i v i s i o n = 1

) ;

s t a t i c vo id I m p o r t v 2 (

c o n s t u i n t 3 2 t rndSeed ,

double d u p l i c a t e R a t i o ,

c o n s t s t d : : s t r i n g& fi leName ,

u i n t 1 6 t& s t a r t T i m e ,

u i n t 1 6 t& endTime ,

u i n t 1 6 t& t i m e o r d e r ,

u i n t 1 6 t& s p a c e o r d e r ,

208

s t d : : map< s t d : : s t r i n g , F l i g h t > &f l i g h t s M a p ,

s t d : : map< s t d : : s t r i n g ,

s t d : : p r i o r i t y q u e u e <F l i g h t , s t d : : v e c t o r<F l i g h t > ,

CompareF l igh t> > &s c h e d u l e s ,

s t d : : map< s i z e t , s t d : : s h a r e d p t r <Airpor tManager> > &a i r p o r t M a n a g e r s ,

s t d : : map< s t d : : s t r i n g , d e l a y P r o p I n f o > &delayPropMap ,

u i n t 3 2 t lpCoun t = 1 ,

u i n t 3 2 t l p I d = 0 ,

u i n t 3 2 t t i m e d i v i s i o n = 1 ,

u i n t 3 2 t s p a c e d i v i s i o n = 1

) ;

p r i v a t e :

s t a t i c s t d : : v e c t o r<F l i g h t > e n t i r e F l i g h t s ;

s t a t i c bool d a t a I n i t i a l L o a d e d ;

s t a t i c s t d : : map< s t d : : s t r i n g ,

s t d : : p r i o r i t y q u e u e <F l i g h t , s t d : : v e c t o r<F l i g h t > ,

CompareF l igh t> >

schedulemapKeep ;

s t a t i c u i n t 3 2 t v i r t u a l F l i g h t N o ;

s t a t i c u i n t 3 2 t v i r t u a l T a i l N o ;

} ;

} / / n a s s i m u l a t o r

e n d i f

SimApplication.hpp

i f n d e f SIMAPPLICATION HPP

209

d e f i n e SIMAPPLICATION HPP

i n c l u d e <queue>

i n c l u d e <memory>

i n c l u d e ” Event . hpp ”

i n c l u d e ” Hand le r . hpp ”

i n c l u d e ” F l i g h t . hpp ”

i n c l u d e ” A i r p o r t M a n a g e r . hpp ”

i n c l u d e ” S i m A p p l i c a t i o n S t a t e D a t a . hpp ”

namespace n a s s i m u l a t o r {

/ /

/ / / \ b r i e f S t a t i c a p p l i c a t i o n i n t e r f a c e . S e r v e s as a

/ / / wrapper i n t e r f a c e f o r an i n s t a n c e i n sim

/ / / t i m e o f t h e a p p l i c a t i o n s t a t e da ta .

/ / /

/ /

c l a s s S i m A p p l i c a t i o n

{

p u b l i c :

s t a t i c u i n t 1 6 t t i m e o r d e r ;

s t a t i c u i n t 1 6 t s p a c e o r d e r ;

s t a t i c u i n t 1 6 t s p a c e r e g i o n ;

s t a t i c u i n t 1 6 t s endHor i zon ;

/ / s i m u l a t o r o p t i o n s

s t a t i c s i z e t DUMMY COUNT;

s t a t i c s i z e t FIXUP METHOD ;

s t a t i c s i z e t INITIAL DIST ;

210

/ / debug c o u n t e r

s t a t i c s i z e t a r r C o u n t e r ;

s t a t i c s t d : : map< s i z e t , s t d : : s h a r e d p t r <Airpor tManager> >

a i r p o r t M a n a g e r s ;

s t a t i c s t d : : map< s t d : : s t r i n g , A i r p o r t I n f o > a i r p o r t D a t a ;

s t a t i c s t d : : map< s t d : : s t r i n g , F l i g h t > f l i g h t s M a p ;

s t a t i c s t d : : map< s t d : : s t r i n g ,

s t d : : p r i o r i t y q u e u e <F l i g h t , s t d : : v e c t o r<F l i g h t > ,

CompareF l igh t> >

schedu lemap ;

s t a t i c s t d : : map< s t d : : s t r i n g ,

s t d : : v e c t o r<F l i g h t > >

s c h e d u l e m a p c o m p l e t e ;

s t a t i c s t d : : map< s t d : : s t r i n g , u i n t 3 2 t > f ixupMsg ;

s t a t i c s t d : : map< s t d : : s t r i n g , d e l a y P r o p I n f o > delayPropMap ;

s t a t i c s t d : : map< s t d : : s t r i n g , u i n t 3 2 t > de layUpda tedFromPrev ;

s i z e t s t a t u s ;

/ / Wrapper / h e l p e r f u n c t i o n s

/ / He lper

s t a t i c S i m A p p l i c a t i o n S t a t e D a t a& s t a t e () { re turn s t a t e ; }

p r i v a t e :

s t a t i c S i m A p p l i c a t i o n S t a t e D a t a s t a t e ;

} ;

211

c l a s s NasHandler : p u b l i c Hand le r

{

p u b l i c :

F l i g h t f l i g h t ;

NasHandler () : Hand le r () {}

NasHandler (F l i g h t f l i g h t) : f l i g h t (f l i g h t) {}

NasHandler (c o n s t NasHandler& copy)

: Hand le r (copy) , f l i g h t (copy . f l i g h t)

{}

} ;

c l a s s D e p a r t e d H a n d l e r : p u b l i c NasHandler

{

p u b l i c :

v i r t u a l c o n s t char∗ t y p e I d () c o n s t { re turn ” D e p a r t e d H a n d l e r ” ; }

/ / c t o r

D e p a r t e d H a n d l e r () : NasHandler () {}

D e p a r t e d H a n d l e r (F l i g h t f l i g h t) : NasHandler (f l i g h t) {}

D e p a r t e d H a n d l e r (c o n s t D e p a r t e d H a n d l e r& copy)

: NasHandler (copy)

{}

/ / d t o r

v i r t u a l ˜ D e p a r t e d H a n d l e r () {}

/ / Handle method

v i r t u a l vo id h a n d l e () ;

212

/ / check i f remote e v e n t

v i r t u a l bool i sRemote () c o n s t ;

/ / g e t t a r g e t l p

v i r t u a l u i n t 3 2 t t a r g e t L p () c o n s t ;

v i r t u a l D e p a r t e d H a n d l e r ∗ c l o n e () c o n s t

{ re turn new D e p a r t e d H a n d l e r (∗ t h i s) ; }

} ;

c l a s s A r r i v e d H a n d l e r : p u b l i c NasHandler

{

p u b l i c :

v i r t u a l c o n s t char∗ t y p e I d () c o n s t { re turn ” A r r i v e d H a n d l e r ” ; }

/ / c t o r

A r r i v e d H a n d l e r () : NasHandler () {}

A r r i v e d H a n d l e r (F l i g h t f l i g h t) : NasHandler (f l i g h t) {}

A r r i v e d H a n d l e r (c o n s t A r r i v e d H a n d l e r& copy)

: NasHandler (copy)

{}

/ / d t o r

v i r t u a l ˜ A r r i v e d H a n d l e r () {}

v i r t u a l vo id h a n d l e () ;

v i r t u a l bool i sRemote () c o n s t ;

v i r t u a l u i n t 3 2 t t a r g e t L p () c o n s t ;

v i r t u a l A r r i v e d H a n d l e r ∗ c l o n e () c o n s t

213

{ re turn new A r r i v e d H a n d l e r (∗ t h i s) ; }

} ;

c l a s s LandedHandler : p u b l i c NasHandler

{

p u b l i c :

v i r t u a l c o n s t char∗ t y p e I d () c o n s t { re turn ” LandedHandle r ” ; }

/ / c t o r

LandedHandler () : NasHandler () {}

LandedHandler (F l i g h t f l i g h t) : NasHandler (f l i g h t) {}

LandedHandler (c o n s t LandedHandler& copy)

: NasHandler (copy)

{}

/ / d t o r

v i r t u a l ˜ LandedHandle r () {}

v i r t u a l vo id h a n d l e () ;

v i r t u a l bool i sRemote () c o n s t ;

v i r t u a l u i n t 3 2 t t a r g e t L p () c o n s t ;

v i r t u a l LandedHandle r ∗ c l o n e () c o n s t

{ re turn new LandedHandler (∗ t h i s) ; }

} ;

c l a s s D i v e r t e d H a n d l e r : p u b l i c NasHandler

{

p u b l i c :

214

v i r t u a l c o n s t char∗ t y p e I d () c o n s t { re turn ” D i v e r t e d H a n d l e r ” ; }

/ / c t o r

D i v e r t e d H a n d l e r () : NasHandler () {}

D i v e r t e d H a n d l e r (F l i g h t f l i g h t) : NasHandler (f l i g h t) {}

D i v e r t e d H a n d l e r (c o n s t D i v e r t e d H a n d l e r& copy)

: NasHandler (copy)

{}

/ / d t o r

v i r t u a l ˜ D i v e r t e d H a n d l e r () {}

v i r t u a l vo id h a n d l e () ;

v i r t u a l bool i sRemote () c o n s t ;

v i r t u a l u i n t 3 2 t t a r g e t L p () c o n s t ;

v i r t u a l D i v e r t e d H a n d l e r ∗ c l o n e () c o n s t

{ re turn new D i v e r t e d H a n d l e r (∗ t h i s) ; }

} ;

c l a s s T a x i i n H a n d l e r : p u b l i c NasHandler

{

p u b l i c :

v i r t u a l c o n s t char∗ t y p e I d () c o n s t { re turn ” T a x i i n H a n d l e r ” ; }

/ / c t o r

T a x i i n H a n d l e r () : NasHandler () {}

T a x i i n H a n d l e r (F l i g h t f l i g h t) : NasHandler (f l i g h t) {}

T a x i i n H a n d l e r (c o n s t T a x i i n H a n d l e r& copy)

: NasHandler (copy)

215

{}

/ / d t o r

v i r t u a l ˜ T a x i i n H a n d l e r () {}

v i r t u a l vo id h a n d l e () ;

v i r t u a l bool i sRemote () c o n s t ;

v i r t u a l u i n t 3 2 t t a r g e t L p () c o n s t ;

v i r t u a l T a x i i n H a n d l e r ∗ c l o n e () c o n s t

{ re turn new T a x i i n H a n d l e r (∗ t h i s) ; }

} ;

} / / namespace n a s s i m u l a t o r

e n d i f

216

REFERENCES

[1] F. A. Forecast. (2016). Forecast 2016–2036, (visited on 01/18/2017).

[2] M. Ball, C. Barnhart, M. Dresner, M. Hansen, K. Neels, A. Odoni, E. Peterson,
L. Sherry, A. A. Trani, and B. Zou, “Total delay impact study: A comprehensive
assessment of the costs and impacts of flight delay in the united states”, 2010.

[3] M. D. Moore and K. H. Goodrich, “High speed mobility through on-demand avi-
ation”, in 2013 aviation technology, integration, and operations conference, 2013,
p. 4373.

[4] M. Jones, P. Perfect, M. Jump, and M. White, “Investigation of novel concepts
for control of a personal air vehicle”, in American helicopter society 70th annual
forum, montréal, québec, canada, 2014.

[5] I. Chakraborty, B. G. Lozano, T. Nam, and D. N. Mavris, “A preliminary study of
high lift system design and actuation for a personal air vehicle concept”, in 14th
aiaa aviation technology, integration, and operations conference, 2014, p. 2855.

[6] J. Page, J. Olsen, and A. Isikveren, “Design of a light, four-seat, zero-emissions
aircraft”, in Aiac16: 16th australian international aerospace congress, Engineers
Australia, 2015, p. 396.

[7] S. Athènes, P. Averty, S. Puechmorel, D. Delahaye, and C. Collet, “Atc complexity
and controller workload: Trying to bridge the gap”, in Proceedings of the interna-
tional conference on hci in aeronautics, AAAI Palo Alto, CA, 2002, pp. 56–60.

[8] T. W. Vossen, R. Hoffman, and A. Mukherjee, “Air traffic flow management”,
in Quantitative problem solving methods in the airline industry, Springer, 2012,
pp. 385–453.

[9] M. Ball, C. Barnhart, G. Nemhauser, and A. Odoni, “Air transportation: Irregu-
lar operations and control”, Handbooks in operations research and management
science, vol. 14, pp. 1–67, 2007.

[10] S. J. Rassenti, V. L. Smith, and R. L. Bulfin, “A combinatorial auction mechanism
for airport time slot allocation”, The bell journal of economics, pp. 402–417, 1982.

[11] M Ball and K Hoffman, “Nextor congestion management project: Interim report”,
Technical report, NEXTOR, The National Center of Excellence for Aviation Oper-
ations Research, Tech. Rep., 2005.

217

[12] M. O. Ball, L. M. Ausubel, F. Berardino, P. Cramton, G. Donohue, M. Hansen,
and K. Hoffman, “Market-based alternatives for managing congestion at new yorks
laguardia airport”, AirNeth Annual Conference, The Hague, 2007.

[13] J. I. Daniel, “Congestion pricing and capacity of large hub airports: A bottleneck
model with stochastic queues”, Econometrica: Journal of the econometric society,
pp. 327–370, 1995.

[14] E. Pels and E. T. Verhoef, “The economics of airport congestion pricing”, Journal
of urban economics, vol. 55, no. 2, pp. 257–277, 2004.

[15] J. L. Schank, “Solving airside airport congestion: Why peak runway pricing is not
working”, Journal of air transport management, vol. 11, no. 6, pp. 417–425, 2005.

[16] R. Horonjeff, F. X. McKelvey, et al., Planning and design of airports. McGraw-Hill
New York, 1962.

[17] R. Hoffman and M. O. Ball, “A comparison of formulations for the single-airport
ground-holding problem with banking constraints”, Operations research, vol. 48,
no. 4, pp. 578–590, 2000.

[18] O. Richetta and A. R. Odoni, “Dynamic solution to the ground-holding problem
in air traffic control”, Transportation research part a: Policy and practice, vol. 28,
no. 3, pp. 167–185, 1994.

[19] A. Mukherjee, “Dynamic stochastic optimization models for air traffic flow man-
agement”, Institute of transportation studies, 2004.

[20] FAA. (1993). Simmod, (visited on 07/01/2017).

[21] Jeppesen. (1993). Taam, (visited on 07/01/2017).

[22] D. Long, D. Lee, J. Johnson, E. Gaier, and P. Kostiuk, “Modeling air traffic manage-
ment technologies with a queuing network model of the national airspace system”,
1999.

[23] S ZAIDMAN, “National airspace system performance analysis capability naspac”,
in Agifors proceedings, 1988.

[24] L. A. Wojcik, “Airspace and airport system simulation with dpat”, 2000.

[25] C. Roof, T. Thrasher, C. Hall, E. Dinges, R. Bea, A. Hansen, S. Balasubramaniam,
A. Nguyen, B. Kim, P. Hollingsworth, et al., “Aviation environmental design tool
(aedt): System architecture”, John A. Volpe National Transportation System Cen-
ter, Tech. Rep., 2007.

218

[26] NASA. (2003). Aces, (visited on 07/01/2017).

[27] L. Meyn, T. Romer, K. Roth, L. Bjarke, and S. Hinton, “Preliminary assessment of
future operational concepts using the airspace concept evaluation system”, in 4th
aviation technology, integration and operations forum, chicago, il, 2004.

[28] NASA. (2001). Facet, (visited on 07/01/2017).

[29] K Bilimoria, B. Sridhar, G. B. Chatterji, K Sheth, and S. Grabbe, “Facet: Future
atm concepts evaluation tool”, Air traffic control quarterly, vol. 9, no. 1, pp. 1–20,
2001.

[30] K. Palopo, G. B. Chatterji, M. D. Guminsky, and P. C. Glaab, “Shadow mode as-
sessment using realistic technologies for the national airspace system (smart nas)
test bed development”, in Aiaa aviation forum, 2015.

[31] A. Kazda and R. E. Caves, Airport design and operation. Emerald Group Publish-
ing Limited, 2010.

[32] A. Blumstein, “The landing capacity of a runway”, Operations research, vol. 7, no.
6, pp. 752–763, 1959.

[33] W. J. Swedish, “Upgraded faa airfield capacity model. volume ii. technical descrip-
tion of revisions”, Tech. Rep., 1981.

[34] B. O. Koopman, “Air-terminal queues under time-dependent conditions”, Opera-
tions research, vol. 20, no. 6, pp. 1089–1114, 1972.

[35] P. A. Kivestu, “Alternative methods of investigating the time dependent m/g/k queue”,
PhD thesis, Massachusetts Institute of Technology, 1976.

[36] K. M. Malone, “Dynamic queueing systems: Behavior and approximations for in-
dividual queues and for networks”, PhD thesis, Massachusetts Institute of Technol-
ogy, 1995.

[37] T. Le, “Total airportsim: A new generation airport simulation model”, Transporta-
tion research e-circular, 2002.

[38] R. M. Fujimoto, Parallel and distributed simulation systems. Wiley New York,
2000, vol. 300.

[39] K. M. Chandy and J. Misra, “Distributed simulation: A case study in design and
verification of distributed programs”, Software engineering, ieee transactions on,
no. 5, pp. 440–452, 1979.

219

[40] B. Thomas, S. S. Rizvi, and K. M. Elleithy, “Reducing null messages using group-
ing and status retrieval for a conservative discrete-event simulation system”, in
Proceedings of the 2009 spring simulation multiconference, Society for Computer
Simulation International, 2009, p. 120.

[41] B. Wang, Y. Zhai, Z. Wang, H. Zhang, and D. Qing, “Enhanced null message al-
gorithm for hybrid parallel simulation systems with large disparity in time step”,
in Distributed simulation and real time applications (ds-rt), 2016 ieee/acm 20th
international symposium on, IEEE, 2016, pp. 61–68.

[42] D. M. Nicol, C. C. Michael, and P. Inouye, “Efficient aggregation of multiple lps
in distributed memory parallel simulations”, in Proceedings of the 21st conference
on winter simulation, ACM, 1989, pp. 680–685.

[43] D. M. Nicol, “The cost of conservative synchronization in parallel discrete event
simulations”, Journal of the acm (jacm), vol. 40, no. 2, pp. 304–333, 1993.

[44] E. W. Lynch and G. F. Riley, “Hardware supported time synchronization in multi-
core architectures”, in Principles of advanced and distributed simulation, 2009.
pads’09. acm/ieee/scs 23rd workshop on, IEEE, 2009, pp. 88–94.

[45] J. Liu and R. Rong, “Hierarchical composite synchronization”, in Proceedings of
the 2012 acm/ieee/scs 26th workshop on principles of advanced and distributed
simulation, IEEE Computer Society, 2012, pp. 3–12.

[46] D. R. Jefferson, “Virtual time”, Acm transactions on programming languages and
systems (toplas), vol. 7, no. 3, pp. 404–425, 1985.

[47] Y.-B. Lin, B. R. Preiss, W. M. Loucks, and E. D. Lazowska, “Selecting the check-
point interval in time warp simulation”, in Acm sigsim simulation digest, ACM,
vol. 23, 1993, pp. 3–10.

[48] R. Rönngren and R. Ayani, “Adaptive checkpointing in time warp”, in Acm sigsim
simulation digest, ACM, vol. 24, 1994, pp. 110–117.

[49] Y.-B. Lin and B. R. Preiss, “Optimal memory management for time warp parallel
simulation”, Acm transactions on modeling and computer simulation (tomacs), vol.
1, no. 4, pp. 283–307, 1991.

[50] R. M. Fujimoto and K. S. Panesar, “Buffer management in shared-memory time
warp systems”, Acm sigsim simulation digest, vol. 25, no. 1, pp. 149–156, 1995.

[51] J. Wang and C. Tropper, “Optimizing time warp simulation with reinforcement
learning techniques”, in Simulation conference, 2007 winter, IEEE, 2007, pp. 577–
584.

220

[52] R. M. Fujimoto, I. Nikolaidis, and C. A. Cooper, “Parallel simulation of statistical
multiplexers”, Discrete event dynamic systems, vol. 5, no. 2-3, pp. 115–140, 1995.

[53] A. G. Greenberg, B. D. Lubachevsky, and I. Mitrani, “Algorithms for unboundedly
parallel simulations”, Acm transactions on computer systems (tocs), vol. 9, no. 3,
pp. 201–221, 1991.

[54] J. J. Wang and M. Abrams, “Approximate time-parallel simulation of queueing
systems with losses”, in Proceedings of the 24th conference on winter simulation,
ACM, 1992, pp. 700–708.

[55] T. Kiesling and S. Pohl, “Time-parallel simulation with approximative state match-
ing”, in Proceedings of the eighteenth workshop on parallel and distributed simu-
lation, ACM, 2004, pp. 195–202.

[56] T. H. D. Thi, J.-M. Fourneau, and F. Quessette, “Time-parallel simulation for stochas-
tic automata networks and stochastic process algebra”, in International conference
on analytical and stochastic modeling techniques and applications, Springer, 2014,
pp. 140–154.

[57] L. Grasedyck, C. Löbbert, G. Wittum, A. Nägel, V. Schulz, M. Siebenborn, R.
Krause, P. Benedusi, U. Küster, and B. Dick, “Space and time parallel multigrid
for optimization and uncertainty quantification in pde simulations”, in Software for
exascale computing-sppexa 2013-2015, Springer, 2016, pp. 507–523.

[58] Y. Qu and X. Zhou, “Large-scale dynamic transportation network simulation: A
space-time-event parallel computing approach”, Transportation research part c:
Emerging technologies, vol. 75, pp. 1–16, 2017.

[59] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural networks: A
survey”, Ieee transactions on neural networks, vol. 6, no. 5, pp. 1212–1228, 1995.

[60] K.-i. Funahashi and Y. Nakamura, “Approximation of dynamical systems by con-
tinuous time recurrent neural networks”, Neural networks, vol. 6, no. 6, pp. 801–
806, 1993.

[61] Y. J. Kim, D. N. Mavris, and R. M. Fujimoto, “Time-parallel simulation of air
traffic networks”, in Winter simulation conference (wsc), 2017, IEEE, 2017.

[62] Y. J. Kim, S. Choi, S. Briceno, and D. Mavris, “A deep learning approach to flight
delay prediction”, in Digital avionics systems conference (dasc), 2016 ieee/aiaa
35th, IEEE, 2016, pp. 1–6.

[63] M. Molina, S. Carrasco, and J. Martin, “Agent-based modeling and simulation for
the design of the future european air traffic management system: The experience

221

of cassiopeia”, in International conference on practical applications of agents and
multi-agent systems, Springer, 2014, pp. 22–33.

[64] O. J. Pinon, A methodology for the valuation and selection of adaptable technology
portfolios and its application to small and medium airports. 2012.

[65] Y. J. Kim, O. J. Pinon-Fischer, and D. N. Mavris, “Parallel simulation of agent-
based model for air traffic network”, in Aiaa modeling and simulation technologies
conference, 2015, p. 2799.

[66] F. Wieland, “Parallel simulation for aviation applications”, in Proceedings of the
30th conference on winter simulation, IEEE Computer Society Press, 1998, pp. 1191–
1198.

[67] S. Lee, A. Pritchett, and D. Goldsman, “Hybrid agent-based simulation for analyz-
ing the national airspace system”, in Proceedings of the 33nd conference on winter
simulation, IEEE Computer Society, 2001, pp. 1029–1036.

[68] M. Hybinette and R. M. Fujimoto, “Cloning parallel simulations”, Acm transac-
tions on modeling and computer simulation (tomacs), vol. 11, no. 4, pp. 378–407,
2001.

[69] P. Heidelberger and H. S. Stone, “Parallel trace-driven cache simulation by time
partitioning”, in Proceedings of the 22nd conference on winter simulation, IEEE
Press, 1990, pp. 734–737.

[70] J. Post, J. Gulding, K. Noonan, D. Murphy, J. Bonn, and M. Graham, “The modern-
ized national airspace system performance analysis capability (naspac)”, Weather,
vol. 4, p. 5, 2008.

[71] B. Bagdatli and D. Mavris, “Use of high-level architecture discrete event simulation
in a system of systems design”, in Aerospace conference, 2012 ieee, IEEE, 2012,
pp. 1–13.

[72] C. Iwata and D. Mavris, “Object-oriented discrete event simulation modeling envi-
ronment for aerospace vehicle maintenance and logistics process”, Procedia com-
puter science, vol. 16, pp. 187–196, 2013.

[73] P. K. Menon, G. D. Sweriduk, and K. D. Bilimoria, “New approach for modeling,
analysis, and control of air traffic flow”, Journal of guidance, control, and dynam-
ics, vol. 27, no. 5, pp. 737–744, 2004.

[74] A. Borshchev and A. Filippov, “From system dynamics and discrete event to practi-
cal agent based modeling: Reasons, techniques, tools”, in Proceedings of the 22nd
international conference of the system dynamics society, 2004.

222

[75] A. A. Tako and S. Robinson, “The application of discrete event simulation and sys-
tem dynamics in the logistics and supply chain context”, Decision support systems,
vol. 52, no. 4, pp. 802–815, 2012.

[76] S. R. Conway, “An agent-based model for analyzing control policies and the dy-
namic service-time performance of a capacity-constrained air traffic management
facility”, in Icas 2006-25th congress of the international council of the aeronautical
sciences hamburg, germany, 2006, pp. 3–8.

[77] G. J. Couluris, C. Hunter, M. Blake, K. Roth, D. Sweet, P. Stassart, J. Phillips,
and A. Huang, “National airspace system simulation capturing the interactions of
air traffic management and flight trajectories”, in Aiaa guidance, navigation, and
control (gnc) conference, 2003.

[78] M. O. Ball and G. Lulli, “Ground delay programs: Optimizing over the included
flight set based on distance”, Air traffic control quarterly, vol. 12, no. 1, pp. 1–25,
2004.

[79] J.-T. Wong and S.-C. Tsai, “A survival model for flight delay propagation”, Journal
of air transport management, vol. 23, pp. 5–11, 2012.

[80] B. of transports statistics. (2017). Research and innovative technology administra-
tion (rita)/transtats, (visited on 01/18/2017).

[81] N. Cetin, A. Burri, and K. Nagel, “A large-scale agent-based traffic microsimula-
tion based on queue model”, in In proceedings of swiss transport research confer-
ence (strc), monte verita, ch, Citeseer, 2003.

[82] FAA. (Oct. 2009). Traffic flow management in the national airspace system.

[83] New york times, http://www.nytimes.com/.

[84] A. Sodani, “Knights landing (knl): 2nd generation intel R© xeon phi processor”, in
Hot chips 27 symposium (hcs), 2015 ieee, IEEE, 2015, pp. 1–24.

[85] B. Manley and L. Sherry, “Analysis of performance and equity in ground delay
programs”, Transportation research part c: Emerging technologies, vol. 18, no. 6,
pp. 910–920, 2010.

[86] J. Ferguson, A. Q. Kara, K. Hoffman, and L. Sherry, “Estimating domestic us
airline cost of delay based on european model”, Transportation research part c:
Emerging technologies, vol. 33, pp. 311–323, 2013.

223

[87] C. N. Glover and M. O. Ball, “Stochastic optimization models for ground delay
program planning with equity–efficiency tradeoffs”, Transportation research part
c: Emerging technologies, vol. 33, pp. 196–202, 2013.

[88] Y. Tu, M. O. Ball, and W. S. Jank, “Estimating flight departure delay distributionsa
statistical approach with long-term trend and short-term pattern”, Journal of the
american statistical association, vol. 103, no. 481, pp. 112–125, 2008.

[89] N. Xu, G. Donohue, K. B. Laskey, and C.-H. Chen, “Estimation of delay propa-
gation in the national aviation system using bayesian networks”, in 6th usa/europe
air traffic management research and development seminar, Citeseer, 2005.

[90] J. J. Rebollo and H. Balakrishnan, “Characterization and prediction of air traffic
delays”, Transportation research part c: Emerging technologies, vol. 44, pp. 231–
241, 2014.

[91] S. Choi, Y. J. Kim, S. Briceno, and D. N. Mavris, “Prediction of weather-induced
airline delays based on machine learning algorithms”, in Digital avionics systems
conference (dasc), 2016 ieee/aiaa 35th, IEEE, 2016.

[92] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E.
Muharemagic, “Deep learning applications and challenges in big data analytics”,
Journal of big data, vol. 2, no. 1, pp. 1–21, 2015.

[93] H. Kashyap, H. A. Ahmed, N. Hoque, S. Roy, and D. K. Bhattacharyya, “Big
data analytics in bioinformatics: A machine learning perspective”, Arxiv preprint
arxiv:1506.05101, 2015.

[94] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with big
data: A deep learning approach”, Intelligent transportation systems, ieee transac-
tions on, vol. 16, no. 2, pp. 865–873, 2015.

[95] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neu-
ral networks”, in International conference on machine learning, 2013, pp. 1310–
1318.

[96] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks”, in Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on, IEEE, 2013, pp. 6645–6649.

[97] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation”, Arxiv preprint arxiv:1406.1078, 2014.

224

[98] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct deep recurrent
neural networks”, Arxiv preprint arxiv:1312.6026, 2013.

[99] National oceanic and atmospheric administration, http://www.noaa.gov/.

[100] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural networks
for lvcsr using rectified linear units and dropout”, in Acoustics, speech and signal
processing (icassp), 2013 ieee international conference on, IEEE, 2013, pp. 8609–
8613.

[101] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting”, The journal of machine
learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[102] L. Bottou, “Large-scale machine learning with stochastic gradient descent”, in Pro-
ceedings of compstat’2010, Springer, 2010, pp. 177–186.

[103] X.-W. Chen and X. Lin, “Big data deep learning: Challenges and perspectives”,
Access, ieee, vol. 2, pp. 514–525, 2014.

225

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Air Traffic Management
	Prescriptive models
	Descriptive models

	Parallel Simulation
	Computer Simulation
	Parallel Discrete Event Simulation
	Spatial Parallel Simulation
	Time-Parallel Simulation

	Artificial Neural Networks
	Recurrent Neural Networks

	Research Contributions
	Time-Parallel Simulation of Air Traffic Networks
	Combining Time and Spatial Parallelism for Air Traffic Networks
	Recurrent Neural Network Model for Airspace Applications

	Thesis Organization

	Time-parallel simulation
	Overview
	Related Work
	Modeling Techniques
	Queueing network based discrete event simulation
	Fluid flow modeling
	System Dynamics Modeling
	Agent-Based Modeling

	Simulation Model
	Simulation Model Resources
	Ground Delay Programs
	Event Definitions
	Delay Model
	Simulation Execution

	Algorithm
	Time-Parallel Simulation
	Simulation Executive
	Fix Up Computation
	Workload Distribution

	Experimental Results
	Air Traffic Scenario and Data
	Experimentation Environment
	Fix Up Computation Comparison
	Workload Distribution Comparison
	Limited Airport Capacity Comparison

	Conclusion

	Exploiting Spatial Parallelism in Air Traffic Network Simulation
	Overview
	Combining Time and Spatial Parallelism
	Time Warp Parallel Simulation of Air Traffic Networks
	Time and Spatial Parallel Simulation of the Air Traffic Network

	Experimental Results
	Experimentation Environment
	Parallelism Analysis

	Conclusion

	Recurrent Neural Networks for Flight Delay Prediction
	Overview
	Deep Recurrent Neural Networks
	Vanilla Recurrent Neural Networks
	LSTM
	GRU
	Deep architecture of RNN

	Network Training
	Day-to-day delay status model
	Deep architecture for the day-to-day delay status RNN model
	Individual flight delay model
	Regularization
	Training methods

	Experimental Results
	Accuracy measurement
	Day-to-day delay status model
	Individual flight delay model
	Generalization of day-to-day model for different airports

	Conclusion

	Conclusions and Future Work
	Contributions
	Future Research

	Application Programming Interface of Simulation Software
	Time and Space Parallel Simulation

	References

