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SUMMARY 

The management of technology portfolios is an important element of aerospace 

system design. New technologies are often applied to new product designs to ensure their 

competitiveness at the time they are introduced to market. The future performance of yet-

to-be designed components is inherently uncertain, necessitating subject matter expert 

knowledge, statistical methods and financial forecasting.  Estimates of the appropriate 

parameter settings often come from disciplinary experts, who may disagree with each 

other because of varying experience and background. Due to inherent uncertain nature of 

expert elicitation in technology valuation process, appropriate uncertainty quantification 

and propagation is very critical. The uncertainty in defining the impact of an input on 

performance parameters of a system makes it difficult to use traditional probability 

theory. Often the available information is not enough to assign the appropriate probability 

distributions to uncertain inputs. Another problem faced during technology elicitation 

pertains to technology interactions in a portfolio.  When multiple technologies are applied 

simultaneously on a system, often their cumulative impact is non-linear. Current methods 

assume that technologies are either incompatible or linearly independent.  

It is observed that in case of lack of knowledge about the problem, epistemic 

uncertainty is the most suitable representation of the process. It reduces the number of 

assumptions during the elicitation process, when experts are forced to assign probability 

distributions to their opinions without sufficient knowledge. Epistemic uncertainty can be 

quantified by many techniques. In present research it is proposed that interval analysis 

and Dempster-Shafer theory of evidence are better suited for quantification of epistemic 

uncertainty in technology valuation process. Proposed technique seeks to offset some of 

the problems faced by using deterministic or traditional probabilistic approaches for 

uncertainty propagation. Non-linear behavior in technology interactions is captured 

through expert elicitation based technology synergy matrices (TSM). Proposed TSMs 
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increase the fidelity of current technology forecasting methods by including higher order 

technology interactions.  

A test case for quantification of epistemic uncertainty on a large scale problem of 

combined cycle power generation system was selected. A detailed multidisciplinary 

modeling and simulation environment was adopted for this problem. Results have shown 

that evidence theory based technique provides more insight on the uncertainties arising 

from incomplete information or lack of knowledge as compared to deterministic or 

probability theory methods. Margin analysis was also carried out for both the techniques. 

A detailed description of TSMs and their usage in conjunction with technology impact 

matrices and technology compatibility matrices is discussed. Various combination 

methods are also proposed for higher order interactions, which can be applied according 

to the expert opinion or historical data. The introduction of technology synergy matrix 

enabled capturing the higher order technology interactions, and improvement in predicted 

system performance. 
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CHAPTER 1 

 UNCERTAINTIES IN KNOWLEDGE ELICITATION 

 

Knowledge elicitation is the foundation for the exploration of new ideas in 

technological advancements.  Subject matter experts can provide a good insight on the 

impact of technologies on the systems. However the knowledge elicitation for subject 

matter experts remains a complicated process. If this process is not handled carefully, it 

can lead to misleading conclusions. Some of these complications arise from involvement 

of psychological elements such as human experts, facilitators, supervisors etc. [1] Due to 

human presence in the process of knowledge elicitation, it becomes imperative to take 

closer attention to various aspects of cognitive psychology and epistemology.  

   

Knowledge and its applications 

Types of Knowledge 

In real world problems there are many areas where predictive models are used. 

These models constitute the basis for technology valuation and require a combination of 

knowledge, information and opinions from the subject matter experts. These elements of 

predictive models have some distinctive properties and limitations associated with them, 

which should be considered in their usage. 

 

Knowledge 

A branch of philosophy that studies the origin, nature, methods, and limits of 

human knowledge is called epistemology [2]. Knowledge can be based on evolutionary 

epistemology using an evolutionary model. Knowledge can be distributed amongst many 
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branches depending upon the sources [3]. It can be divided in two main types namely 

nonpropositional and propositional knowledge. Nonpropositional knowledge is further 

divided into concept, know-how and object knowledge. Concept and know-how 

knowledge is theoretical, historic or empirical based knowledge on how to conduct a 

specific activity e.g. riding a bicycle of operating a machine. Object knowledge is also 

referred as familiarity and deals with the acquaintance to a person, place or any other 

phenomenon. For example Mr. Smith knows the President of United States [4]. 

Propositional knowledge is based on certain propositions or claims that can be true or 

false. It is defined as a branch of knowledge that is based upon propositions that meet the 

conditions of justified true belief (JTB).  Sober (1991) discussed it in detail and provided 

a framework for propositional knowledge. For example a proposition that “Mr. Smith 

knows that the Rockies are in North America” can be expressed as: 

 𝑆 𝑘𝑛𝑜𝑤𝑠 𝑃 Equation 1 

Where S is the subject and P is the proposition or claim. For this claim to be true, 

the following conditions must be met[4, 5]: 

 

S must believe P, 

P must be true, 

S must have a reason to believe P. 

 

In the third condition which is also known as the Justification condition, the 

reason to believe can come from any source, but in general it should be justified through 

rational reasoning and empirical evidence. These conditions were established in Plato’s 

theory of knowledge based on justifiable true believe (JTB). Later they were scrutinized 

by Gettier’s counterexample [5, 6] that demonstrated that JTB theory breaks down under 
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specific conditions. It explained that a person can have justified true belief and still be 

without knowledge. This brought the clear distinction between reliable and infallible 

evidence. In case of infallible evidence, JTB theory is sufficient for knowledge, but there 

are very few instances when we have perfect infallible evidence [4]. In general, JTB 

theory can be accepted  for engineering problems [7]. A small doubt in the third condition 

means that the evidence is not infallible and can be referred as reliable. This phenomenon 

can be explained through reliability of knowledge.  

 

Various levels of knowledge are discussed below: 

(a) Episteme: the most basic category of cognitive knowledge. 

(b) Dianoia: based on correct reasoning from hypothesis, such as logic and 

mathematics. 

(c) Pistis: based on belief and intellectual/emotional acceptance of a proposition 

(d) Eikasia: based on inference, theory or prediction originating from incomplete or 

reliable evidences 

 

The first two categories are intellectual in nature whereas third and fourth 

categories transition in the realm of appearance and propositions. The pistis and eikasia 

play a major role in expert opinion elicitation. Although uncertainty is present in these 

categories, a proper treatment of this uncertainty can offer greater application of the 

knowledge. 
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Information 

Information is defined as sensed objects, things, places, processes etc. It can also 

be obtained through communication by language and other multimedia sources [9]. 

Information and knowledge are closely linked with each other. Unlike some sources who 

use both these terms as synonym to each other, technically they are not the same.  

Information is the pre-processed input to cognitive system and forms a basis for 

knowledge acquisition [9]. Information leads to knowledge through one or more of the 

following components among others: 

(a) Investigation 

(b) Study 

(c) Reflection 

Due to the reliance of knowledge on how human mind reflects, extrapolates and 

studies the information, using biases and preconceived notions about incoming 

information and its processing, knowledge is often subjected to uncertainties. JTB theory 

 

Figure 1: Sources and categories of knowledge [8] 

Episteme 
• Cognitive knowledge including know-how and object knowledge 

Dianoia 
• Correct reasoning from hypothesis, such as mathematics 

Pistis 
• Propositional knowledge based on belief 

Eikasia 
• Propositional knowledge based on conjecture 
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makes an effort to this imperfection and evolutionary nature of human behavior. 

Information might not always lead to evolutionary knowledge, if it does not fulfill the 

justification condition in JTB. Knowledge attained through information is often 

accompanied by another important element of ignorance. This area of ignorance has been 

ignored during early development of theories on human knowledge, but has been gaining 

attention in recent past. 

Opinion 

Opinions are processed manifestation of information and knowledge that can be 

assessed through JTB criteria and not necessarily are infallible. Opinions are elicited 

from experts, and represent the propositional type of knowledge. These expert opinions 

may not meet all the conditions of JTB and reliability theory of knowledge; hence they 

can be proven false or negated by other experts later on. Even with these shortcomings in 

expert opinions, these are still considered very important element for further growth of 

knowledge. These opinions aid in expanding the boundaries of current state of 

knowledge. Use of expert opinion in decision making process needs careful evaluation. 

Inherent uncertainty, if not captured properly, may lead to undesirable conclusions.  

Ignorance 

Human mind often put more emphasize on information or knowledge, and 

intentionally or unintentionally tend to overlook ignorance. This situation may lead to 

overconfidence. In context of expert elicitation, the determination of the actual 

knowledge possessed by the expert is a complex phenomenon. The knowledge of an 

expert about a system has following three aspects.  

The actual knowledge possessed by the expert. 

The self-perceived knowledge by the expert. 

The perception of other people about the expert’s knowledge. 
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It is desirable that all three aspects must be equal to each other. If self-perceived 

knowledge is more than the actual one, then the difference between these two is the 

measure of overconfidence [10]. The difference between these areas is also affected by 

communication skills of the expert. The ignorance of the expert about the actual acquired 

knowledge can be unintentional or deliberate. During expert elicitation process, this 

ignorance should be accounted for in order to avoid undesirable results.  

Classification of ignorance 

The ignorance can be divided into two categories, namely blind ignorance and 

conscious ignorance. The blind ignorance refers to the type where it is caused by 

erroneous cognition state and not knowing the information about the system in hand. In 

this case the person doesn’t know about ignorance. Conscious ignorance arises due to 

deliberate attempt to ignore information due to any reason e.g. due to political conflict, or 

limited resources [11]. Here the person knows about the ignorance and can take steps to 

reduce this ignorance. These types can further divided into three categories, namely 

know-how, object or propositional ignorance as shown in Figure 2. In the field of expert 

elicitation, uncertainty quantification and propagation, generally the focus is diverted 

towards conscious ignorance. Reducible aspect of conscious ignorance relates it with 

epistemic uncertainty. A detailed discussion on reducible uncertainties is done in later 

sections of this study. 
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Figure 2. Classification of Ignorance [11] 

Expert Elicitation Concepts 

Defining an Expert 

According to dictionary[2] an expert is “a person who has special skill or 

knowledge in some particular field”. Depending on the nature and requirements of 

elicitation the expert definition may vary. In certain cases, we might require a person with 

years of experience and expertise in a specific area to be regarded as expert for elicitation 

whereas in some other occasion any person from which an opinion is elicited can be 

described as expert, regardless of their degree of expertise. For every case it is very 

important to select the most relevant expert to get the meaningful results. In real life 

problems, many a times the major decisions with huge implications are made in the 

presence of substantial uncertainty. Characterization and minimization of this uncertainty 

require genuinely expert judgment. This makes it imperative to decide about experts 

more critical. Often multiple experts are also involved in the elicitation. This requires an 

additional layer of combining their opinions into useful analysis.   

In addition to knowledge and experience in their respective fields, experts are also 

distinguished how they organize and use it during elicitation process. Wood and Ford 

[12] describe the pertinent  features of the approach adopted by an expert.  
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(a) Expert knowledge is grounded in specific cases 

(b) Experts use formal principles for problem representation 

(c) Experts use known strategies for problem solution 

(d) Experts rely more on procedural knowledge (relationships) and less on declarative 

one (Facts)  

During elicitation process the communication skills of expert are very important. 

If the expert is fully aware of one’s knowledge and know how to accurately represent it 

then the elicitation can produce meaningful results. On the contrary, if these bounds are 

not followed in a precise manner, it can produce poor analyses. The knowledge of an 

expert can be divided into 3 categories. 

(a) An acquired subset of evolutionary infallible knowledge (EIK). 

(b) Self-perceived knowledge. 

(c) Perception by others. 

The EIK of the expert should be equal to self-perceived knowledge of an expert. 

If self-perceived knowledge is more than the acquired EIK of the expert, then the 

difference represent the overconfidence and psychologically it can be linked to the 

expert’s ego. Similarly another expert of the same area would have different magnitude 

of these categories that might overlap with the former. These categories make it desirable 

that experts are able to assess and express their knowledge and related uncertainties well. 

Elicitation Methods 

Cooke (1991) has discussed some practical guidelines for a successful elicitation 

process [13]. These guidelines are not restricted to any specific technique and applicable 

to all methods. 

(a) Clarity in formulation of questions should be adhered. It is very important that all 

the experts understands and interpret questions correctly to avoid misleading 

results. 
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(b) An appropriate format of questions according to background of experts can 

greatly expedite the elicitation process. E.g. a graphical representation may be 

preferred over the written statements. It would also keep the experts engaged for 

longer durations. 

(c) After selecting the questions and their format, a practice session with smaller 

number of expert generally results in significant improvements in the elicitation 

process. 

(d) The analysis of the elicitation process must be performed during the elicitation 

process. This can address potential issues with interpretation of questions. 

(e) An explanation of elicitation format and treatment of responses by analyst should 

be explained to participants of elicitation process.  

(f) Analyst should avoid coaching the experts. The explanation of the process should 

be restricted to dynamics of elicitation only without any bias. 

(g) The elicitation process should be divided into manageable sessions. Experts may 

lose attention and focus in longer sessions  

 

There are various methods of elicitation based on the type of problem, analyst’s 

priority and experts’ familiarity with probabilistic methods. 

 

Indirect: 

These methods are used by offering some sort of incentive for experts to bet on an 

event to express their degree of belief. This was originally introduced by Ramsey [14] 

and remain popular amongst theoreticians [13]. This technique is not commonly applied 

to expert probability elicitation. There have been many indirect approaches developed to 

elicit opinions from experts with no or little knowledge of probability theory. Analysts 
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have used estimation of time to first failure for equipment as indirect method for 

estimation of failure probability.  

 

Direct: 

As the name suggests, this method rely on direct elicitation from expert. Although 

it appears very straight forward and convincing, it does have some disadvantages. It can 

produce very misleading results if expert is not well conversant with the concept of 

probability. Direct methods were applied through Delphi [15] and nominal group 

techniques. In Delphi method no interaction is allowed between experts before elicitation 

whereas in nominal group technique after experts present their opinions, a structured 

discussion is carried out. After a few iterations the final decision is formulated through 

mathematical aggregation. Lindley [16] suggested another method where experts are 

asked to voice their opinion about an occurrence comparing with a selected familiar event 

[17]. For example an expert is familiar with an event A and its probability of occurrence 

p(A). The expert is asked to assess the relative probability of another event B to A. This 

would result in p(B)=b*p(A); where b is the multiplier of p(A) assessed by expert. The 

probability of B cannot be greater than 1. Some more direct methods are suggested 

“probability wheel” by De Groot [18], discrete tests and quantile tests [13]. 

 

Parametric estimation: 

In this technique the confidence interval is measured on the quantities whose 

distributions are being elicited.  This was developed for European space agency in 1989 

[19] for the assessment of failure frequencies. Parametric estimation involves 2-step 

approach. 

Step 1: Assessment of median estimate for the probability (M) in question from expert. 
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Step 2: Assessment of probability (r) that true value will exceed 10 times the median 

value. 

The numbers M and r obtained from these 2 steps represent a unique lognormal 

distribution and they can be used to compute 5% and 95% confidence bounds as M/k0.95 

and M(k0.95) respectively, where 

𝑘0.95 ≈ �
exp (−0.658)

𝑦1−𝑟
�  

Here  𝑦1−𝑟  is the (1-r)th quantile of the standard normal distribution. 

Roles in Elicitation Process 

During elicitation process there are various distinct roles. Although all these roles 

are well defined, an individual can assume more than one role during the process. 

Discussions of advantages and disadvantages of multiple roles would be done later. 

Following are the roles during elicitation process: 

 

Subject matter expert: It is the individual or a group with relevant knowledge and/or 

experience about the quantities of interest and associated uncertainties. They are also 

referred as substantive expert. 

 

Facilitator: The facilitator manages the elicitation process. The responsibilities of the 

facilitator include presentation of the questions, moderate the dialogue and keep track of 

the answers offered by subject matter experts. 

 

Analyst/ Statistician: The statistician imparts the probability training to participants of 

elicitation, provides validation and analysis of results, and presents feedback to the 

participants. Sometimes they are also referred as normative expert. 
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Decision Maker: They use the results of elicitation process as an aid to make decisions. 

 

If the facilitator is familiar with statistical approach and analysis then this role can 

be merged with the role of analyst. Similarly expert’s role can be combined with analyst 

or facilitator, but it has potential of skewed results [20]. 

Types of Uncertainties in Elicitation 

Technology evaluations generally require elicitations from experts about expected 

improvements in performance or cost related parameters due to technologies in question. 

This induces an element of uncertainty in the process. Neglecting uncertainties during 

technology evaluations can result in unexpected outcomes. Uncertainty can be 

represented in many ways. There have been different theories and studies for this in 

literature. Identification and application of appropriate representation can lead to better 

results.  

In the past mostly the uncertainties has been represented by probability theory. 

Although it might be sufficient representation in some cases where we have enough 

information to correctly capture the uncertainty, in many situations the available 

information is not enough and we have to use many assumptions to utilize probability 

theory. Use of these assumptions would lead to inaccurate results. There has been active 

research in representation of these uncertainties [8, 21, 22]. These theories have shown 

capabilities with better characterization of uncertainties with limited availability of 

information. 

Classification of Uncertainty 

Technology valuation is performed by creating a modeling and simulation 

environment for representing the system on which technologies are being applied. In this 

context there may be different sources of uncertainty.  
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(a) Uncertainties in the input parameters. For revolutionary technologies, there is a 

lot of uncertainty in the elicitation from experts. 

(b) Uncertainties in model fidelity and its mathematical robustness. Uncertainties are 

attached with each phase of model development and application and needs to be 

characterized as such. Figure 3 represent a view of modeling and simulation by 

the Society of Computer Simulation [23]. This representation gives an overall 

process, but misses the uncertainties associated with each phase. 

 

Simulation tool is considered deterministic as it is generally act as the process 

only and generate the same response for same set of inputs under similar conditions. 

 

Uncertainties can be broadly divided into three categories. 

(a) Aleatory Uncertainty 

(b) Epistemic Uncertainty 

(c) Numerical Uncertainty 

 

Figure 3. View of modeling and simulation by the Society of Computer Simulation [23] 
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In technology evaluation and M&S process, all these uncertainties are present 

either alone or in combination. Total uncertainty is can be estimated by identifying all 

possible sources of variability, uncertainty and error [24, 25]. It can be observed from 

Figure 3, that when conceptual/mathematical model is created to represent reality, it 

incorporates many assumptions, including nonlinearities of physics of the problem, which 

can be hard to capture completely through a mathematical model. Uncertainties in this 

phase can be classified as epistemic. When the conceptual model is converted into 

computer model, there would be uncertainties linked with the fidelity of model. This type 

can also be characterized by epistemic. Inputs to the computer model can vary from 

aleatory to epistemic in nature depending on the problem and elicitation area. It is very 

important to have a good understanding of aleatory and epistemic uncertainty for model 

inputs and conduct elicitation accordingly to get good results. Computer model also cause 

numerical errors due to round-off. 

Aleatory Uncertainty 

Aleatory uncertainty is also referred as inherent uncertainty, irreducible 

uncertainty, stochastic uncertainty and variability. This type of uncertainty is modeled as 

random phenomenon and represented by probability distributions. To characterize 

aleatory uncertainty, sufficient information can be made available such that probability 

distributions are assigned. To correctly construct probability distributions using relative 

frequency of occurrence of events, large amount of experimentation is required. If this 

information is not available, then certain assumption can be made in the form of mean, 

variance etc. to model the distribution. At times these assumptions are questionable, 

when they cannot accurately represent physical behavior. In that case epistemic 

uncertainty can be considered to characterize the phenomenon in a better way. Some 

examples of aleatory uncertainty are weather and height of individual in population [26] 

and variation in fatigue life of compressor and turbine blade [27]. 
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Epistemic Uncertainty 

Epistemic uncertainty represents lack of knowledge about the quantity in 

question. It is also known as reducible, subjective or model form or state-of-knowledge 

uncertainty. Epistemic uncertainty can be reduced by increased understanding and 

research of the system in question [28, 29]. If some variables have fixed value in a 

system, then uncertainty about their value can be modeled through epistemic uncertainty 

based on the level of information about their value. Epistemic uncertainty can show-up in 

many forms including parametric and model form.  

Parametric Uncertainty 

This is the form of uncertainty, where information relating to uncertain variable is 

incomplete or inadequate. In this case the uncertainty in parameters is propagated to 

outcomes of the system. It can be modeled in number of ways including interval analysis, 

evidence theory and second-order probability. 

Model form Uncertainty 

This uncertainty is linked to the fidelity of analysis model. Models representing 

different fidelities would generate different results. This type of uncertainty exists when 

there is little to none knowledge exists to create a model of physical phenomenon. It can 

arise from different forms: 

(a) Selection of  different fidelity models  

(b) Lack of information to simulate conditions 

(c) Lack of unified modeling technique 

An example of model form uncertainty can be seen during decision for employing 

laminar and turbulent flows in a fluid mechanics example. 
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Numerical Uncertainty 

It is generally referred as error. Numerical uncertainty can appear from round-off 

errors, truncation errors, convergence related issues etc. in modeling and simulation 

environment. 

Uncertainty Modeling and propagation 

Uncertainty can be modeled and propagated in number of ways.  Some of them 

include probability theory, the theory of fuzzy sets[75], Dempster-Shafer theory[22], 

possibility theory[18], interval analysis [71], second order probability and convex model 

of uncertainty. Some of these theories only deal with epistemic uncertainty; most deal 

with both. Few of these theories are discussed briefly in following paragraphs. 

Probability Theory 

Probability theory is generally employed if enough data is available, so that the 

probability distribution can be correctly modeled. It represents the uncertainty in random 

variables. These random variables can be discrete or continuous. Different approaches 

have been used within probability theory domain including the classical, the frequentist, 

and the subjectivist or Bayesian [30-32].  

In case of continuous variables probability density function (PDF) describes 

relative likelihood of an occurrence to happen at a given point.  It represents the nature of 

randomness and information on probability. The probability of the random variable “X” 

to have a value between two realizations of x1 and x2 is expressed as following: 

 

 
𝑃(𝑥1 < 𝑋 ≤ 𝑥2) = � 𝑓𝑥(𝑥)𝑑𝑥

𝑥2

𝑥1

 Equation 2 
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Cumulative distribution function (CDF) represents the probability of a random 

variable “X” to be found less than or equal to a number x. 

 

 

 
𝐹𝑥(𝑥) = 𝑃(𝑋 ≤ 𝑥) = �𝑓𝑥(𝑥)𝑑𝑥

𝑥

−∞

 Equation 3 

 

For CDF the area under PDF is integrated for all possible values of X less than or 

equal to x. The PDF and the CDF are related to each other through derivation. The PDF 

is the first derivative of PDF. 

 

 

 
𝑓𝑥(𝑥) =

𝑑𝐹𝑥(𝑥)
𝑑𝑥

 Equation 4 

 

Similarly mean (µ), standard deviation (σ) and correlation between random 

variables X1 and X2 (ρ12) can be expressed as:  

 

 
µ = � 𝑥𝑓𝑥(𝑥)𝑑𝑥

∞

−∞

 Equation 5 

 

 

 

 
σ2 = �(𝑥 − 𝜇)2 𝑓𝑥(𝑥)𝑑𝑥

∞

−∞

 Equation 6 
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𝜌12𝜎1𝜎2 = �(𝑥1 − 𝜇1)(𝑥2 − 𝜇2) 𝑓𝑥1,𝑥2(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2

∞

−∞

 Equation 7 

 

Here  𝑓𝑥1,𝑥2(𝑥1, 𝑥2) represent the joint probability density function of X1 and X2. 

Similarly statistical quantities can also be represented for a scalar function g(X1, X2, .., 

Xn). The mean value of g is shown below: 

 

 
𝜇𝑔 = �  g(𝑥1, 𝑥2, . . , 𝑥𝑛)𝑓𝑥1,𝑥2,..,𝑥𝑛(𝑥1, 𝑥2, . . , 𝑥𝑛)𝑑𝑥1𝑑𝑥2 . .𝑑𝑥𝑛

∞

−∞

 Equation 8 

 

Bayesian probability is another approach used for application of probability 

theory. Bayesian method incorporates the scientific hypothesis in the analysis by 

introducing prior distributions.  It interprets probability as a rational agent’s degree of 

belief about an uncertain event. If the hypothesis of the agent is found not to be true, then 

previously calculated probability is updated. Statistical inference is taken as the 

modification of uncertainty about the value of the parameter according to evidence. 

Bayes’ theorem is utilized to model this modification [32, 33]. 

 

Fuzzy Sets 

In case of sparse data, fuzzy set theory can be used to model uncertainties [34]. In 

classical sets, fixed boundaries are used to determine that an element belongs to the set or 

otherwise. These are also called crisp sets. In fuzzy sets this condition of fixed boundaries 

is not required. Fuzzy sets utilize the partial membership functions to decide whether an 
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element belongs to a set [35]. These functions are usually expressed as unit interval of 

real numbers from 0 to 1. In this interval 0 refers to no compatibility of the element to a 

particular set whereas 1 refers to highest level of compatibility [36]. Membership 

function is expressed as following: 

 𝛼𝐴(𝑥):𝑋 → [0.1] Equation 9 

Where X is a universal set and membership function 𝛼𝐴(𝑥) is the level of 

compatibility of x in A. For membership function different shapes can be assumed. A 

triangle membership function can be defined as follows: 

 𝐴 = [𝑎, 𝑏, 𝑐] Equation 10 

In Equation 12, a and c represent the lower and upper points in triangular 

membership function at α=0 and b represent the x value at α=1. Similarly other shapes of 

membership functions, such as trapezoidal and bell, can be applied. 

 

Interval analysis 

Interval analysis technique is used when there is no other information is available, 

except that input variables lie within a certain interval. This is a simple and straight 

forward approach to handle epistemic uncertainties. The upper and lower values of output 

variables are calculated by utilizing appropriate optimization techniques such as bound 

constrained Newton methods [26]. These methods provide upper and lower bounds on 

the output. This approach to interval analysis can be very expensive if the model is very 

nonlinear with respect to inputs. To find the global optima, global methods are required 

to be used which can be very computationally expensive. A way to handle this drawback 
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is using the surrogate model [37] through the use of samples. A high fidelity modeling 

and simulation environment can take considerably long time to translate the impact of 

input variables on outputs. A surrogate model is a fast executing regression of modeling 

code behavior and replaces the computationally expensive modeling and simulation 

environment. A surrogate model would enable fast execution of analysis to quickly 

obtain the bounds on output. Surrogate based optimization methods are also used to get 

the output intervals. 

Another method to implement interval analysis utilizes the sampling from the 

input variables. The lower and upper bounds on outputs are obtained from these samples. 

The accuracy of this approach is highly dependent on number of samples and generally 

underestimates the actual output interval [26]. 

 

Second Order probability 

In engineering applications, sometimes the problem involves both aleatory and 

epistemic uncertainties. Second order probability addresses this kind of uncertainties 

[26]. It can propagate both type of uncertainty. It can be seen in a situation where a 

designer may know about the form of probability distribution of an uncertain variable, 

but there is a lack of knowledge about the values of the parameters that govern the 

distribution. This problem is addresses by utilizing two loops. Aleatory uncertainty is 

handled in inner loop whereas epistemic uncertainty is kept on the outer loop as shown in 

Figure 4. In outer loop the epistemic uncertainty is applied on the uncertain variables in 

the form of intervals. A particular value from these intervals is selected to be passed on to 

inner loop. In the inner loop, the sampling is done for aleatory uncertainty for the selected 

realization of epistemic uncertain values. This results in generation of a series of CDF’s, 

one each for a particular value of a parameter from outer loop.  
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Sometimes, it can be prohibitively expensive as sampling is performed in two 

loops, but it can be very useful when distinction between aleatory and epistemic 

uncertainties can provide better results. Second-order probability has been applied in 

extensively in nuclear waste and safety assessments [29, 38]. 

 

 

Possibility theory 

Possibility theory can be applied when the information about variables is 

insufficient. This theory provides uncertainty representation that permits the 

specifications of more structure than interval analysis [34, 39]. Variable xi is specified as 

a pair (Xi, ri) also known as possibility space for the variable xi. Here Xi represents the 

universal set that contains all possible values of xi. The function ri is called the possibility 

distribution of xi and is defined on Xi such that : 

 0 ≤ 𝑟𝑖(𝑥𝑖) ≤ 1          𝑓𝑜𝑟 𝑥𝑖 ∈ 𝑋𝑖  

 

Figure 4. Second-order Probability [26] 
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and 

 sup{ 𝑟𝑖(𝑥𝑖): 𝑥𝑖 ∈ 𝑋𝑖} = 1  

The value of  𝑟𝑖(𝑥𝑖) = 0 means that the information completely refutes the value 

of occurrence of 𝑥𝑖 where as 𝑟𝑖(𝑥𝑖) = 1 suggests that there is no known information that 

refutes the occurrence of 𝑥𝑖.  

Possibility theory has distinct differences from probability theory. Some of the 

difference can be noted from the following axioms of possibility theory. If Θ is a finite 

universal set then distribution of possibility is a function pos such that: 

pos(∅) = 0 

pos(Θ) = 1 

pos(A ∪ B) = max (pos(A), pos(B)   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 

pos(A ∩ B) ≤ min (pos(A), pos(B)   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 

The other metric used by possibility theory is necessity (nec) function. It is 

defined as: 

nec(A) = 1 − pos(�̅�) 

whereas �̅� represents the complement of A for universal set Θ.  

Convex Model of Uncertainty 

In case the uncertain events form some sort of patterns, convex models can be 

utilized for their modeling [40, 41]. Convex models require less information as compared 

to probability theory for the characterization of uncertainty. These patterns can be 

ellipses, intervals, or any other type of convex sets. It is generally handled by constrained 

optimization techniques and requires worst case analysis. Based on complexity of the 

problem, local or global optimizations can be utilized.  
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Info-Gap Theory 

Information-gap is utilized when severe lack of knowledge exists [42]. Unlike 

probability theory, info-gap theory does not use distributions to quantify lack of 

knowledge [43]. This theory works well when the available information is very scarce. In 

case more information is available, then probabilistic or fuzzy logic based approached 

becomes more relevant. This theory has been used in various fields where different 

explanations of uncertainty and its propagation were introduced. Galbraith [44] used it 

for design of complex organizations and defines uncertainty as information gap between 

the amount of knowledge required to perform a specific task and available information.   

Laufer [45] discussed project management and emphasized that in today’s world of 

uncertainty it is not how early the decision can be made, rather the ability to reduce the 

impact of uncertainty and to minimize the element of surprise become more important. 

Info-gap modeling needs to be problem specific as discussed by Keith and Ben-

Haim [46] for waste management study. A simple info-gap model was constructed for 

waste management problem: 

 𝑈(∝, �̃�) =  {𝑟(𝑥, 𝑡,𝑤): | 𝑟(𝑥, 𝑡,𝑤) −  �̃�(𝑥, 𝑡,𝑤)| ≤∝},∝≥ 0 Equation 11 

Where �̃�(𝑥, 𝑡,𝑤) is a removal rate and is function of position (x), time (t) and a 

general variable (w), which depends on the available model. The actual function𝑟(𝑥, 𝑡,𝑤) 

varies from nominal function �̃�(𝑥, 𝑡,𝑤) in an uncertain manner. No information is 

available about the likelihood of alternate rate functions. This lack of information makes 

this problem unsuitable for probability theory and theory of fuzzy sets. If theory of fuzzy 

sets is applied in this problem, many unverified assumption would be required to be 

made. α represent the uncertainty parameter. The deviation of  𝑈(∝, �̃�)  needs to be lower 

than α. Larger values of α represent greater range of unknown variation. In many cases, 
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the value of α is unknown too, requiring a creation of a family of nested sets. This 

combination of nested sets is referred as information-gap model of uncertainty. 

Dempster-Shafer Theory of Evidence 

Dempster-Shafer theory of evidence is a useful technique for quantification of 

epistemic uncertainty. It is a non-intrusive method where the modeling and simulation 

environment remains a black box for uncertainty quantification purposes. Another 

advantage of this theory is that it uses the calculations from probabilistic framework, 

which are commonly available [28]. When the information about a problem is non-

specific, ambiguous, or conflicting, this theory relaxes the assumptions of probability 

theory [26]. This particular aspect increases the utility of Dempster-Shafer theory in 

technology valuation process, as generally the amount of information on performance 

impact of technologies under development is limited. This theory is also capable of 

accounting for evidence that can be assigned to multiple events, as opposed to probability 

theory where evidence is associated with only one possible event. The term evidence 

expresses the information obtained from either observation or experimentation [47]. This 

information is generally imprecise or uncertain when discussed from the perspective of 

evidence theory. Dempster-Shafer theory can also account for conflicting evidence by 

assigning different belief functions based on the compatibility or otherwise amongst 

multiple sources of evidence. 

 

The input uncertain variables are modeled as sets of intervals. These variables can 

be assigned one or more intervals. In case of multiple intervals, each interval is assigned 

a unique basic probability assignment (BPA). BPA indicates the likelihood of the 

occurrence of the input to fall in that interval. The sum of BPAs of a particular variable 

must be equal to one. Within one interval, there is an equal likelihood of the event to 

occur.  The intervals can be adjacent, disjoint or overlapping as shown in Figure 5. In the 
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figure a BPA of 0.6 is assigned to values of an uncertain variable from 0.96 to 0.98. 

Similarly a BPA of 0.4 is assigned for an interval from 0.98 to 1.1. An example of 

disjoint and overlapping intervals is also shown in Figure 5. 

 

 

Dempster-Shafer theory is formulated in terms of the function say m, that maps 

the power set of a universal set Θ to [0,1]. Θ is assumed to be a finite, non-empty set and 

is also called frame of discernment. This power set (P(Θ) or 2Θ) represents all possible 

subsets of the universal subset of Θ.  

 𝑚 ∶  2Θ → [0,1] Equation 12 

Such that  

 

Figure 5: Intervals for uncertain variables and their associated BPAs 
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(a) 0 ≤ 𝑚(𝐴) ≤ 1      𝑓𝑜𝑟 𝑎𝑛𝑦 𝐴 ∈ 2Θ 
 

(b) m(∅) = 0  

(c) �𝑚(𝐴) = 1
𝐴⊂Θ

  

This function m is called basic probability assignment [48]. A is an event which is 

subset of Θ. m(A) represents the evidential support or BPA corresponding to event A, but 

not to any specific subset of A. All subsets A of Θ (𝐴 ∈ 2Θ) for which 𝑚(𝐴) ≠ 1, are 

called focal elements. If F represents the set of all focal elements of m, then the pair 

(F,m) is called a body of evidence. 

Dempster-Shafer theory of evidence uses belief and plausibility as two measures 

of uncertainty. The intervals of uncertain variables are used to calculate the belief and 

plausibility. Belief represents a lower bound on a probability value that is consistent with 

the evidence. In other words it represents the minimum amount of absolute confidence 

that an event will occur whereas plausibility is the upper bound consistent with the given 

evidence. Belief and plausibility are determined for all sets 𝐴 ∈ 2Θ by following 

equations: 

 𝐵𝑒𝑙(𝐴) =  �𝑚(𝐵)
𝐵⊆𝐴

 Equation 13 

 𝑃𝑙(𝐴) =  � 𝑚(𝐵)
𝐵∩𝐴≠∅

 Equation 14 

It can be observed that Bel(A) is calculated by summation of all BPAs of the 

evidences that totally agree with the event A whereas Pl(A) is calculated by all the BPAs 

of the evidences that totally and partially agree with event A.   
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Due to presence of uncertainty the evidential measure of an event to occur and its 

complement does not have to be equal to one, as shown in Figure 6. 𝐴 represent the 

negation of an event A. 

 

 

 
𝐵𝑒𝑙(𝐴) + 𝐵𝑒𝑙�𝐴� ≤ 1      for all A ⊆  Θ Equation 15 

Also from Figure 6, plausibility (Pl) can be expressed as following: 

 

 

 
𝑃𝑙(𝐴) = 1 − 𝐵𝑒𝑙(𝐴) Equation 16 

 

This uncertainty is also referred as ignorance in literature [50]. From Equation 15 

and Equation 16, it can be inferred that 

 

 
𝐵𝑒𝑙(𝐴) ≤ 𝑃𝑙(𝐴)  

For a subset “A” of Θ, the information available through evidential function 

Bel(A) and Pl(A) can be represented by belief interval [Bel(A),Pl(A)]. Bel(A) represent 

the degree to which evidence absolutely supports the subset A and Pl(A) represent the 

degree to which the evidence remain plausible. The residual uncertainty (ignorance) is 

then defined by following equation: 

 

 

Figure 6: Belief and plausibility in evidence theory [49] 
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𝑖𝑔𝑛𝑜𝑟𝑎𝑛𝑐𝑒(𝐴) = 𝑃𝑙(𝐴) − 𝐵𝑒𝑙(𝐴) Equation 17 

 

Hence Equation 17 suggests that Dempster-Shafer theory of evidence takes into 

account what is known as well as the unknown or uncertain part of information. This 

makes the use of this theory very desirable in case of epistemic uncertainties.  

 

Belief function can be defined as following: 

Bel : 2Θ →[0,1] 

If it satisfies following 

Bel(Ø) = 0 

Bel(Θ) = 1 

 

For any collection A1, A2, …, An (n≥1) of subsets of Θ 

 

Bel(A1∪A2∪ …∪ An) ≥∑ (−1)|𝐼|+1
𝐼⊆{1,2,…,𝑛},𝐼≠∅ 𝑏𝑒𝑙(∩𝑖∈𝐼 𝐴𝑖) 

𝐵𝑒𝑙(𝐴) =  � 𝑚(𝐵)
𝑋⊆Θ

 𝑓𝑜𝑟 𝑎𝑙𝑙  𝐴 ⊆  Θ 

0 ≤ 𝐵𝑒𝑙(𝐴) ≤ 1     𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 ⊆  Θ 

𝐵𝑒𝑙(𝐴) ≥ 0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 ⊆  Θ 

 

Inversion between BPA and belief function is defined as follows: 

 

𝑚(𝐴) =  � (−1)|𝐴−𝐵|𝐵𝑒𝑙(𝐵)
𝐵⊆Θ

 𝑓𝑜𝑟 𝑎𝑙𝑙  𝐴 ⊆  Θ 

𝐵𝑒𝑙(𝐴) =  � 𝑚(𝐵)
𝑋⊆𝐴

 𝑓𝑜𝑟 𝑎𝑙𝑙  𝐴 ⊆  Θ 



29 

 

 

Here |𝐴 − 𝐵| represent the difference in cardinality of sets A and X. For each 

belief function only and only one mass function corresponds and vice versa[50]. 

 

Similarly plausibility function show following characteristics: 

 

𝑝𝑙𝑠(𝐴) = 1 − 𝑏𝑒𝑙(�̅�)   𝑓𝑜𝑟 𝑎𝑙𝑙  𝐴 ⊆  𝛩 

𝑏𝑒𝑙(𝐴) = 1 − 𝑝𝑙𝑠(�̅�)   𝑓𝑜𝑟 𝑎𝑙𝑙  𝐴 ⊆  𝛩 

𝑃𝑙(∅) = 0 

𝑃𝑙(𝛩) = 1 

Combination of evidence 

Aggregation of information is used to meaningfully compiling and simplifying the 

data from a single or multiple sources. Generally it is done by arithmetic averages, 

geometric averages, harmonic averages, minimum and maximum values [17]. 

Combination rules are special cases of evidence. These rules aggregate the information 

gathered from multiple sources for same frame of discernment. These sources provide 

different assessments.  

There are different rules that can be used for combination of evidence. Sentz and 

Ferson [51] discussed these methods in detail in their report. These rules include the 

Dempster rule of combination, Yager’s modified Dempster rule, Inagaki’s unified 

combination rule, Zhang’s center combination rule, Dubois and Prade’s disjunctive 

consensus rule, Discount and combine method, Convolutive Averaging, and Mixing or 

averaging. They apply on different situations and many of these rules are formulated on 

the basis of Dempster’s rule of combination and offer modifications in Dempster’s rule. 
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Dempster’s rule of combination:  

 

Dempster’s rule of combination applies to multiple evidences which are 

independent but belong to same set of discernment. This set of belief functions are 

combined with Dempster rule as shown in Equation 18. 

 

 𝑚12(𝐴) =
∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶=𝐴

1 − 𝐾
,𝐴 ≠ ∅ Equation 18 

Assuming  

 𝑚12(∅) ≠ 0 Equation 19 

Where 

 𝐾 = � 𝑚1(𝐵)𝑚2(𝐶)
𝐵∩𝐶=∅

 Equation 20 

 

K is calculated by summation of the products of the BPAs where intersection 

between evidence is null. The denominator in Equation 18 is a normalization factor, 

which ignores all the conflicts. In case of significant conflicts in evidence, this rule can 

yield some unexpected results.   
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Dempster-Shafer theory assumes that these sources are independent. The use of 

Dempster rule of combination is criticized for the situations when significant conflicts in 

evidence are encountered. These conflicts need to be addressed prior to applying the 

Dempster rule. If there are no significant conflicts, Dempster’s rule provide reliable 

results. In present study, filters are applied during elicitation process to resolve such 

conflicts before applying combination rules. 

To demonstrate the basic calculations for Dempster’s rule of combination, an 

example is presented in Table 1. In this example two experts are offering their knowledge 

about three events namely A, B and C. The Expert 1 believes that associated probabilities 

for these events to happen are 𝑚1(𝐴),  𝑚1(𝐵) and 𝑚1(𝐶) respectively whereas Expert 2 

believe them to be  𝑚2(𝐴),  𝑚2(𝐵) and 𝑚2(𝐶). The basic probability assignments 

(BPAs) are combined as shown in the table. Finally the joint probability is obtained from 

Equation 18 through Equation 20 with the help of Table 1. 

 

 

Figure 7: Aggregation of Evidence from Multiple Experts 
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The outcome of this method is an interval-valued probability distribution. The 

notional resulting cumulative belief and plausibility functions from Dempster-Shafer 

theory are shown in Figure 8 [26]. In Dempster-Shafer theory, cumulative belief function 

is similar to cumulative distribution function in probability theory. It represents that the 

value of uncertain variable y* is less than the given value y. It is often denoted by 

Bel(y*≤y). Similarly plausibility can be denoted by Pl(y*≤y). From Figure 8, it can be 

explained that the cumulative belief that shear mode frequency is less than or equal to 

2200 Hz is 0.35, whereas cumulative plausibility is it is less than 0.8 for the same 

frequency. The step function like behavior is due to intervals assignment to inputs. 

 

Table 1: Calculations for Dempster’s rule of Combination (Two Experts) 

  
Expert 2 

  
Event  >> A B C 

E
xp

er
t 1

 Event BPA 𝑚2(A) 𝑚2(B) 𝑚2(𝐶) 
A 𝑚1(𝐴)  𝑚1(𝐴)𝑚2(𝐴)  𝑚1(𝐴)𝑚2(𝐵)  𝑚1(𝐴)𝑚2(𝐶) 
B 𝑚1(𝐵) 𝑚1(𝐵)𝑚2(𝐴)   𝑚1(𝐵)𝑚2(𝐵)  𝑚1(𝐵)𝑚2(𝐶) 
C 𝑚1(C)  𝑚1(𝐶)𝑚2(𝐴)  𝑚1(𝐶)𝑚2(𝐵)  𝑚1(𝐶)𝑚2(𝐶) 
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Yager’s modified Dempster rule: 

Yager presented a modification in Dempster rule while addressing the issue of 

normalization [52, 53]. He presented the concept of ground probability mass distribution 

in addition to basic probability mass distribution which was initially used in Dempster 

rule of combination. The ground probability mass distribution carries no normalization 

factor. It is defined in Equation 21.  

 

 q(A) = � 𝑚1(𝐵)𝑚2(𝐶)
𝐵∩𝐶=𝐴

 Equation 21 

 
 

Where q(A) denotes the ground probability assignment. B and C are members of 

a power set P(X) and A is the intersection of B and C. m represents the basic probability 

mass assignment. It is emphasized by Yager that combination rules should be able to 

update once new information becomes available. It is possible through the property 

 

Figure 8: Dempster-Shafer Analysis of Shear Mode Frequency 
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referred as associativity. Another aspect of Yager rule of combination is its ability to use 

any number of evidence. It is shown in Equation 22. 

 
 

 q(A) = � m1(A1)m2(A2)m3(A3) … . mn(An)
∩i=1
n Ai=A

 Equation 22 

 
Here 𝑚𝑖 represents the basic probability assignment associated with ith believe 

structure. In Equation 22, q(A) denotes the combination of multiple basic probability 

assignments. 

 
Dempster rule address the conflict by normalization whereas Yager rule of 

combination does not modify the evidence in case of conflict rather it treats in such a 

manner that I causes the degree of ignorance to increase. Yager rule of combination is 

also known as modified Dempster’s Rule. 

 
 
Inagaki’s unified combination rule: 

Inagaki introduced the combination rule by modifying the Dempster’s and 

Yager’s rules. Inagaki used Yager’s ground probability assignment function and build a 

new class of combination operators [54]. He asserted that there is no credibility or 

reliability of the sources of knowledge. This assumption sometimes restricts the use of 

this rule. Inagaki’s rule of combination maintains the strict relationship between basic 

probability mass assignment (m) and ground probability assignment (q). 

 

 𝑚(𝐴)
𝑚(𝐵) =

q(A)
q(B) Equation 23 

 

Inagaki defines the rule of combination as: 
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 m(A) = q(A) + 𝑓(𝐴)𝑞(∅) Equation 24 

 

Where 𝑓(𝐴) is the scaling function for 𝑞(∅) and is always equal or greater than 

zero where 𝐴 ≠ ∅. 

Also 

 � 𝑓(𝐴)
𝐴⊂𝑋,𝐴≠∅

= 1 Equation 25 

 

Inagaki’s rule handles the conflict in evidence by filtering the evidence. The 

magnitude of the filtration is a complex problem and involves the determination process 

of conflict (k) and ground probability distribution. Inagaki’s rule can be compared with 

the Yager’s rule, where the evidence is not changed and conflict is assigned to the 

universal set. In case of Dempster’s rule the conflict is ignored and the evidence is 

filtered. 

 

Zhang’s center combination rule 

Zhang’s rule of combination [55] provides another alternative to Dempster’s rule. 

This rule provides interpretation of Dempster’s rule with two frames of discernment. 

Zhang assumes two frames of discernment and explains that the compatibility relation 

between them can be used as a basis for provision of truth in one frame with the help of 

the other frame of discernment. The belief function for an event B can be represented as 

following: 

 

 𝐵𝑒𝑙(𝐵) = 𝑃{𝑥|𝑥 ∈ 𝑋 𝑎𝑛𝑑 ∃ 𝑦 ∈ 𝐵 𝑠. 𝑡. (𝑥,𝑦) ∈ 𝐷} Equation 26 
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Where x and y denotes the elements of X and Y respectively. X and Y represent 

two frames of discernments and D is the compatibility relation between them. Equation 

26 represents the probability about the available evidence in X, which can provide the 

information in Y through the compatibility relation D. Zhang also mentioned that 

Dempster’s rule of combination failed to include intersection of focal points. He 

introduced an additional relationship based on cardinality of individual sets in 

Dempster’s rule. 

 

 𝑚12(𝐴) = 𝑘 � �
|𝐴|

|𝐵||𝐶|𝑚1(𝐵)𝑚2(𝐶)�
𝐵∩𝐶=𝐴

 Equation 27 

 

Here k is a renormalization factor and independent of A, 𝑚1 and 𝑚2. |𝐵| and |𝐶| 

represent the cardinality of B and C, and 𝐵 ∩ 𝐶 = 𝐴. If  |𝐵||𝐶| = |𝐴|, then Equation 27 

represents the Dempster’s rule. 

 

Dubois and Prade’s disjunctive consensus rule 

Dubois and Prade [56, 57] based their approach on set theory. They used the 

union of basic probability assignments such that no information is rejected neither any 

conflict is generated as a result of application of this rule.  

 

 𝑚 ∪(𝐴) = � [𝑚1(𝐵)𝑚2(𝐶)]
𝐵∪𝐶=𝐴

 Equation 28 

Where 𝑚 ∪(𝐴) represent union of basic probability assignments 𝑚1 ∪  𝑚2. 

Although this rule removes any necessity of normalization factor, in many occasions it 

can generate excessively imprecise results. 
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Discount and combine method 

 

This method takes into account the reliability of the sources of information. It was 

initially proposed by Shafer [58]. Each source is assigned a degree of trust before the 

combination and then an averaged function is used. First a discounting factor α is 

assigned to each belief and represented by following equation: 

 𝐵𝑒𝑙𝛼𝑖(𝐴) = (1 − 𝛼𝑖)𝐵𝑒𝑙(𝐴) Equation 29 

Where 𝐵𝑒𝑙𝛼𝑖(𝐴) is a discounting function and (1-𝛼𝑖) represents the degree of 

trust.  

Also 

 0 ≤ 𝛼𝑖 ≤ 1  

Finally  

 𝐵𝑒𝑙�����(𝐴) =
1
𝑛

[𝐵𝑒𝑙𝛼1(𝐴) + 𝐵𝑒𝑙𝛼2(𝐴) + … . . +𝐵𝑒𝑙𝛼𝑛(𝐴)] Equation 30 

Where 𝐵𝑒𝑙�����(𝐴) represent the average of all discounted belief functions.  It can also 

be deduced from Equation 30 that in case a strong conflict is observed by one belief 

function, whereas other belief functions are closer to each other, then the effect of the 

function with a conflict will be reduced. It is also emphasized that assigning the degree of 

trust require a lot of knowledge about all sources of belief in order to get the meaningful 

results. 
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Mixing or averaging 

 

This method applies weights on basic probability assignments before taking their 

averages [59]. It can be observed that this method is similar to discount and combine 

method, the only difference is that in discount and combine method the weights are 

applied on beliefs whereas in mixing method they are applied on basic probability 

distributions. 

 𝑚 1….𝑛(𝐴) =
1
𝑛
�[𝑤𝑖𝑚𝑖(𝐴)]
𝑛

𝑖=1

 Equation 31 

Where 𝑤𝑖 are the weights assigned to each basic probability assignment (𝑚𝑖(𝐴)) 

according to the degree of trust. 

Ferson and Kreinovich [59] also offered convolutive x-averaging method. In this 

method the Dempster-Shafer structures are treated as scaler numbers and their average is 

taken as shown in Equation 32. 

 
 

 𝑚 1….𝑛(𝐴) =
1

∑𝐴𝑖
𝑛

�[𝑤𝑖𝑚𝑖(𝐴)]
𝑛

𝑖=1

 Equation 32 

 
In Equation 32, 𝑤𝑖 represent the weights assigned according to the degree of trust. 

Margin Analysis 

Margin analysis translates input uncertainties to structures of margins. There are 

different ways to analyze margins depending upon the propagation methods of aleatory 

and epistemic uncertainties [60, 61]. It is a measure of the difference between 

performance requirements of the system (R) and actual achieved performance(P) of the 

system [61].  
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 𝑀(𝑅,𝑃|𝑒) = 𝑅 − 𝑃 Equation 33 

Where M represents the margin, e is the vector of epistemic uncertain parameters. 

In case M≥0, it means that requirement is met, whereas M<0 shows that requirement is 

not met. The margins, when analyzed under uncertainty are themselves uncertain. Their 

uncertainty originates from the uncertainty attached with the input variables. The margins 

can also be specified in terms of intervals to incorporate uncertainty.  

In case of Dempster-Shafer representation of uncertainty in Figure 8, if 

requirement is set to 3000 Hz, it can be observed that both cumulative belief and 

plausibility values are 1.   

 𝑃3000 = {𝑃�:𝑃� ∈ 𝑃,𝑃� ≤ 3000}  

This means that measure that performance set P can be met is given by: 

 [𝐵𝑒𝑙𝑃(𝑃3000),𝑃𝑙𝑃(𝑃3000)] = [1.0, 1.0]  

Here 𝐵𝑒𝑙𝑃(𝑃3000)  is the measure of the information that supports the proposition 

that the value of shear mode frequency is contained in 𝑃3000, whereas 𝑃𝑙𝑃(𝑃3000) refers 

to the information that does not refute the proposition that the value of shear mode 

frequency is contained in 𝑃3000 . Both belief and plausibility shows that margin would be 

satisfied. In the same example if the requirement is set to 2700 Hz, it would be 

represented as following: 

 [𝐵𝑒𝑙𝑃(𝑃2700),𝑃𝑙𝑃(𝑃2700)] = [0.7, 1.0]  
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Hence we it would transforms to 𝐵𝑒𝑙𝑃(𝑃�2700) = 0.3, where 𝑃� represent the 

negation of event P. This implies that there is evidence that the shear mode frequency 

does not fall within 2700 Hz. In this case belief infers that there is 30 percent chance that 

margin is not met. For decision making, results should not be reduced to margin analysis. 

Helton [61] suggests that cumulative belief and plausibility plots should be taken into 

account with requirements shown as a constraints.  
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CHAPTER 2 

EXPERT ELICITATION PROCESS 

 

There are some good practices as discussed by many previous studies [62-66]. 

These studies differ in details of the steps involved in elicitation process but broadly 

agree on following five steps: 

Preparation background 

Elicitation process is started with the selection of appropriate variables of interest. 

This selection can become complicated, if the problem in hand is complex. A bad 

selection of variables can make whole elicitation process useless. Another important 

element of this step is application of suitable statistical methods for elicitation. Well-

chosen statistical methods would help get the desired format of the process. Selection of 

variables and statistical methods should be prepared by the client or decision maker with 

facilitator or analyst. The combined preparation would also give a good insight to the 

facilitator, who gets basic knowledge and understanding of the problem. This also helps 

facilitator discuss the problem with experts in a better way. The facilitator also plan for 

the session handling in this step involving preparation of questionnaire, background for 

experts and transcript of problem definition.  

 

Expert recruitment 

Elicitation process heavily depends on experts, so their selection from the pool of 

individuals helps gain better results. Sometimes the selection can be very simple or 

obvious depending on the nature and scope of the problem, but at times it may be 

required to follow the more open and rigorous approach. If the elicitation is done for 
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some issue of huge public interest, like handling of nuclear waste [67], the process needs 

to be transparent as there are many stake holders in the problem and any perceived or 

actual bias may raise questions about validity of the process. Familiarity of expert with 

statistical methods can be considered too, as this would help the expert easily transform 

the acquired knowledge into the required elicitation. A training of experts for statistical 

and probability concepts can also be conducted before actual elicitation takes place. 

Training is discussed in next step.  Hora and von Winterfeldt [67] suggested six 

conditions for an expert: 

(a) Tangible evidence of expertise 

(b) Reputation 

(c) Availability and willingness to attend elicitation sessions 

(d) Understanding of the specific problem dynamics 

(e) Impartiality 

(f) No economic or personal conflict of interest with the potential outcome of 

elicitation process 

Sometimes it is not possible to have expert with impartiality and no conflict of 

interest. In that case, the conflict of interest should be recorded in elicitation proceedings. 

 

Expert training 

Before elicitation session a detailed description of problem, elicitation process 

and utilization of results should be given to experts. It helps experts get familiarized with 

the process and articulate their responses accordingly. Sometimes experts are not very 

comfortable with probabilities and uncertainties. Clemen and Reilly [62] suggested 

discussing the issue of uncertainty with experts and explaining that uncertainties in their 

responses would be captured during the elicitation process. In an elicitation study, Walker 

et al. (pp30-hogan) also observed that experts were particularly uncomfortable with 
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probabilistic nature of elicited distributions. This problem can be addressed to an extent 

by offering appropriate training. This training should include following elements: 

(a) Uncertainty and probabilities. 

(b) Commonly observed pitfalls/ biases during elicitation process and ways to 

overcome them. 

(c) Practice elicitations on known issues. 

During the training session, the facilitator/statistician should try to impart working 

statistical knowledge to expert, while avoiding to influence their responses in elicitation 

process.  

Structuring the elicitation 

There should be a good portion of time reserved to finalize the structure of 

elicitation process. All the possible dependencies, sensitivities and relevant impacts 

should be considered [68]. This step is generally done by client and statistician, but the 

input of expert is very vital here. Expert would be able to give further insight about 

quantities of interest and may suggest changes in the structure itself. The quantities, for 

which elicitation is required, should be defined precisely. The questions that are finalized 

to be asked need to be clear. If ambiguity exist in the questions, it would be difficult to 

retain the focus of the expert in elicitation process. Experts are likely to lose their interest 

in the process, if they feel that analyst does not know about the subjects and the questions 

are not aligned with the scope of the elicitation. The questions should be as direct as 

possible with clear definition and details about the background. 
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Elicitation 

This is the step where actual response from experts is elicited and recorded. This 

is an iterative process where elicitation is done from experts either deterministically or 

probabilistically. Probability distributions are combined and feedback sought in case of 

noticeable conflict. Adequacy of the results is assessed and process is repeated if found 

inadequate.  

 

 It is important to document the evidence of expert judgment. This helps in 

keeping track of the rationale for responses as well as a tool for experts to enumerate all 

possible reasoning that can be discussed later. Elicitation can be done in number of ways. 

It can be done through mail by sending questionnaire or over the phone etc. Best way to 

conduct elicitation is face-to-face interaction. It has many advantages including exclusive 

availability of expert for elicitation, instant feedback and correction system, and 

discussions on the results. Sometimes face-to-face interactions become difficult either 

 

 

Figure 9: Expert Elicitation Process 

Background & 
Preparation 

Expert 
recruitment Training Structuring 

elicitation 
Elicitation 
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due to non-availability of expert, financial constraints or other administrative difficulties. 

The experts are contacted either by telephone call, email or through mail. A prepared 

questionnaire is sent to the experts for their opinion. Their response is analyzed upon 

receipt and if the analyst assesses that further clarification is required, additional queries 

are sent back to the experts. This situation sometimes causes delays in finalization of 

expert elicitation. At the same time often the expert is not committed fully to elicitation 

process due to other commitments at their work place, if any. Face-to-face interaction 

helps analyst and expert to focus on the elicitation process during the elicitation period. 

In case of email/ mail type of elicitation, the better prepared questionnaire would help 

elicit expert opinions.  
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CHAPTER 3 

APPLICATION OF DEMPSTER-SHAFER THEORY OF EVIDENCE 

 
Discussions in previous section have highlighted some of the drawbacks of using 

traditional probability theory in expert opinion elicitation in context of technology 

valuation. Classical probability theory focuses on aleatory uncertainty, which emphasis 

more on what is known and tends to neglect the ignorance on part of the expert. Further 

research needs to be done on how to better model the uncertainty in expert elicitation 

used for technology valuation, while taking care of absence of absolute knowledge, and 

abundance of data. A hypothesis is made that treatment of expert elicitation as epistemic 

uncertainty can better propagate the uncertainties in technology valuation process.  

A brief description of the problem setup is discussed below where epistemic 

uncertainty is propagated through evidence theory. Results are also compared with 

deterministic and probability theory based process. Results were created for a one 

technology portfolio including thirteen technologies [69-71]. 

 

Problem Setup 

 
A Latin hypercube DoE was used to sample the design space of a baseline aircraft 

engine model. The flow path of the baseline engine can be seen in Figure 10 [72-75]. 

This DoE data was used to create a set of 2nd order RSE surrogate models. The inputs to 

this model included five TIF: Fan efficiency, HPC efficiency, combustor efficiency, HPT 

efficiency, and LPT efficiency. Seven system level performance metrics were regressed: 

specific thrust (ST), thrust specific fuel consumption (TSFC), total engine weight in lbs., 

total engine length in inches, total engine diameter in inches, HPC stage loading, and 

engine thrust to weight ratio (TWR). The engines baseline performance can be seen in 

Table 2. The thirteen candidate technologies can be seen in Table 3. 
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Figure 10 : Baseline Engine Flow Path and Architecture 

Table 2 : Baseline Engine Performance 

Performance Metric Units Baseline 
Value 

Deterministic 
Value with 

Technologies 
Specific Thrust lbf/(lbm/sec) 110 113.75 

Thrust Specific Fuel 

Consumption 
1/hr. 0.88 0.88 

Engine Nacelle Length in. 98.4 94.4 

Engine Nacelle Max Diameter in. 33.6 33.1 

Total Engine Weight lbs. 2467 2727 

HPC Stage Loading Coefficient - 0.6 0.635 

Thrust to Weight Ratio of 

Engine 
- 4.46 4.17 
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Each of the five TIF was given the same set of uncertainty intervals, as seen in 

Table 3. The Dempster’s rule for combination, was then used to propagate these 

uncertainties into belief and plausibility functions for the seven system responses[76]. 

 

 

Table 3: Candidate Technologies 

Technology Component Symbol 

Blisk Rotor 

Fan T1 

HPC T2 

HPT T3 

LPT T4 

Splitter Blades HPC T5 

Circulation Control 

Blades 
HPC T6 

Fully 3D Optimization 

Fan T7 

HPC T8 

HPT T9 

LPT T10 

Com

bustor 
T11 

Endwall Contouring HPC T12 

Lightweight Materials Fan T13 
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Results 

 
Evidence theory was applied for technology evaluation process discussed in this 

study. Dempster rule of combination was used to combine the propositions from multiple 

experts. The method was run with different sample sizes to check its sensitivity against 

sample size.  

Sensitivity Analysis 

The sensitivity analysis plays an important role is determining the relative impact 

of inputs to the parameters of interest. Sensitivity study was carried out against all the 

outputs and their sensitivities to variability in the input efficiencies were quantified. The 

inputs which do not have any significant impact on the outputs can be filtered out from 

simulations for the purpose of uncertainty propagation [77, 78]. To conduct sensitivity 

analysis, ranges and distributions of input variables should be consistent with each other 

Table 4 : Intervals of Percent Uncertainty Used in Evidence Theory 

 Low High BPA 

Interval Set 1 -1 0.5 0.7 

0.5 1 0.3 

Interval Set 2 -1 -0.1 0.33 

-0.5 1 0.34 

-0.5 0.5 0.33 

Interval Set 3 -1 0.5 0.6 

0.5 1 0.4 
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to have an appropriate relative importance. These ranges should also cover the range of 

uncertainty used in evidence theory [78].  

Figure 11 displays the sensitivity analysis for (thrust specific fuel consumption) 

TSFC. It can be observed that combustor efficiency is the major contributor to the 

variability of TSFC, whereas LTP efficiency has very little impact. Before leaving out 

any input variable from uncertainty propagation based on sensitivity analysis, it is 

important to do the similar analysis for each of the outputs. This can ensure that the input 

variable nominated for dropping out has no significant impact on the variability of the 

any output. In Figure 12 it can be seen that LPT efficiency is significant in case of thrust-

to-weight ratio. The information obtained from sensitivity analysis provides an in-depth 

insight to the relative impact of uncertain variables on the outputs, which can in turn be 

used in the uncertainty propagation through evidence theory. 

 

 

 

Figure 11: Sensitivity analysis for TSFC 
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Combination of Evidence 

The information regarding the variability in input variables was collected from 

multiple experts, who have assigned different ranges and basic probability assignments 

(BPA) to the inputs. Input interval sets for input variables were elicited from multiple 

experts and the aggregation of this information was done through Dempster rule. In case 

of technology valuation, the elicited information revealed that the sources were 

independent and did not have significant conflicts. This justified the usage of Dempster 

rule for combination of evidence. Results of elicitation from three different experts for 

variation in combustor efficiency were recorded. Figure 13 represent the ranges and their 

corresponding BPAs. 

Combination of evidence was conducted using Dempster’s rule, as seen in Figure 

14. This shows the resulting BPA for percent variation of combustor efficiency from 

baseline. 

 

 

 

 

Figure 12: Sensitivity analysis for Thrust-to-Weight Ratio 
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Figure 13: Intervals and associated BPAs for percent variation of combustor 

efficiency from baseline 

 

Figure 14: Plot of resulting BPA from Dempster Rule 

BPA=0.7 BPA=0.3

-1 0.5 1

BPA=0.33

-1 -0.1

BPA=0.34

-0.5           0.5                       1 

Expert 1

BPA=0.33

BPA=0.6 BPA=0.4

-1 0.5 1

Expert 2

Expert 3
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Sample Size Sensitivity 

Experiments were conducted to monitor the effect of sample size and its impact 

on simulations. Three sample sizes of 103, 104 and 105 were evaluated. The cumulative 

belief (Bel) and plausibility (Pl) distribution of thrust-to-weight ratio is shown in Figure 

15.The distributions from sample size of 104 and 105 were identical, so only results from 

sample size of 103 and 104 are displayed. 

 

 

 

The sensitivity of sample size to time is shown Figure 16. Based on cumulative 

distributions and time factor, sample size of 104 was used for all simulations.   

Cumulative distributions 

 Cumulative belief and plausibility distributions for specific thrust are shown in 

Figure 17. The intervals assigned to input variables can be contiguous (expert 1 and 3), 

overlapping (expert 2) or disjoint. The interval type, range and BPA affect the resulting 

 

Figure 15: Cumulative belief and plausibility distributions for thrust-to-weight ratio 
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distributions of the outputs. It can be observed that the probability that value of specific 

thrust is less than 114 lbf/(lb/s) lies between a range of 0.15 to 1. 

 

Similarly it can also be deduced that there are 90 percent probability that Specific 

thrust value is between 113.1 to 114.8 lbf/(lb/s). In terms of the concept of cumulative 

density function (CDF), the belief and plausibility provide lower and upper bounds to 

CDF [26]. It can also be noted that deterministic value of specific thrust was calculated as 

113.75 lbf/(lb/s) , when all the inputs were used as average values of their respective 

uncertain ranges. It can be observed that the cumulative belief that specific thrust is less 

than 113.75 lbf/(lb/s) is 0.01 and the cumulative plausibility that this value is less than 

113.75 lbf/(lb/s) is 0.96. 

 

Figure 16: Effect of sample size on simulation time 
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Figure 18 : Cumulative belief and plausibility distributions for TSFC 

 

Figure 17 : Cumulative belief and plausibility distributions for Specific Thrust 
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Cumulative belief and plausibility distributions TSFC and total engine weight can 

be seen from Figure 18 and Figure 19. 

 
 

 
Another experiment was conducted to compare combining rules (Dempster’s rule 

[ET, DR], and weighted mixing [ET, WM]) within theory of evidence. Results were also 

generated and compared with probability theory. Cumulative belief and plausibility 

distributions for Thrust to Weight Ratio are shown in Figure 20. CDFs generated using 

probability theory can also be seen. Some comments can be made on cumulative belief 

and plausibility distributions. Dempster rule and weighted mixing rule produced results 

close to each other. In case of conflicts within expert opinions from different sources, 

these results are expected to be different. Similarly it can also be observed about 

probability that value of “thrust-to-weight ratio” is less than 4.18 is different for all three 

methods: 

 

Figure 19 : Cumulative belief and plausibility distributions for Total Engine 

Weight 
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(a) Dempster’s Rule: 0.55 to 0.90 

(b) Weighted Average: 0.5 to 0.82 

(c) Monte Carlo: 0.65 

 
 

It can also be observed from Figure 20 that the CDF produced by probability 

theory process pass outside of the plausibility and belief curves generated by either 

Evidence Theory approach. This is a significant difference (on the order of 10%) in the 

calculated probability that “thrust-to-weight ratio” is less than 4.16. Although in some 

cases the CDF generated from probability theory fell within the bounds of Cumulative 

 

Figure 20. Cumulative belief and plausibility distributions for Thrust to Weight 

Ratio 
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belief and plausibility distributions, the situations where it falls outside may lead to 

undesirable conclusions. 
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CHAPTER 4 

TECHNOLOGY MODELING WITH TECHNOLOGY SYNERGY 

MATRICES 

Technology modeling is the process of using data from expert opinion elicitation 

to simulate the net impact of a set of technologies on a system. Various methods of 

technology modeling have been proposed in previous works [79-87].Many of these 

methods use a technology impact matrix (TIM) to capture the independent, one-at-a-time, 

impacts of all the technologies on k-factors and performance metrics. These methods 

assume that the effects of technologies are linearly additive. A technology compatibility 

matrix (TCM) may be used to filter-out technology combinations that are infeasible due 

to incompatibilities.  

Problems with Current Methodologies 

Current methods do not account for nonlinear interactions between technologies. 

This may lead to erroneous results for some inherently nonlinear problems. One example 

of this is the combined application of active aeroelastic wing technology and composite 

wing construction technology to commercial passenger aircraft design. When applying 

composite wing construction alone to an aircraft design, a structures expert may be able 

to accurately predict a scalar improvement in aircraft structural weight fraction due to 

that technology. Likewise, if an active aeroelastic wing (AAW) technology was applied 

in isolation to a conventional all-aluminum aircraft, an AAW expert may make a 

reasonable prediction of aircraft empty weight fraction reduction due to thinner wing 

skins and other stiffness tailoring techniques.  The combination of these technologies is 

unlikely to be additive because of the structural complexity of integrating AAW servos 

with an all-composite wing structure. One interpretation of this non-linear effect is that 

the AAW technology has a potential to degrade the original benefit of the all-composite 
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wing technology. Another interpretation is that the ability to combine these two 

technologies represents a technology in itself—one that has a negative impact on the 

performance metric of aircraft structural weight fraction.  

Another problem with the simple addition of technology impacts is that they may 

violate theoretical or physical constraints. For example, let’s assume that technology A 

has been projected to reduce fuel consumption of an aircraft by 50%. Likewise, let’s 

assume that technology B has also been projected to reduce fuel consumption by 50%. 

Simulating the combination of technology A and B by reducing fuel consumption by 

50%+50%=100% would lead to an unrealistic modeling scenario (a conventionally 

powered aircraft that consumed no fuel). Sometimes certain makeshift arrangements are 

utilized in form of a fudge factor or multipliers to reduce the additive impact of multiple 

technologies, but these frameworks lack the direct input from experts. 

Based on these observations, further research is warranted on how expert 

elicitation and historical data be used to better capture the interactions between 

technologies in technology valuation process. A framework is needed to extract the 

existing knowledge from experts or available historical data about technology 

interactions and utilize it in technology valuation problem solving. It is hypothesized that 

a new set of technology synergy matrices can be introduced to capture the higher order 

interactions between technologies through subject matter expert opinion and historical 

data. This newly introduced Technology synergy matrices would record the technology 

interactions and better represents the physics of problem. Experiments would be setup to 

where results from technology valuation from linear and non-linear methods will be 

compared. In following section the newly proposed approach is discussed along with 

experiment setup and initial results. 
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Approach Description 

Technology Synergy Matrices (TSM) are a method of capturing expert opinion 

regarding 2nd order and higher technology interactions. This information can be combined 

with TIM data to form a higher-order technology model. The TSM contains correction 

factors that, as seen in the scenario depicted in Figure 21, will be able to account for non-

linear technology interactions.  While there is only one TIM and one TCM for a given 

problem, there are multiple TSM for a single technology portfolio problem.  Each TSM 

modifies the technology impacts for a single performance metric. Each entry in a given 

TSM answers the question, “Given that these two technologies have both been added to 

the design and are interacting, by what fraction will the net additive impact of these two 

technologies be degraded or enhanced?” The TSM allows for 2nd order technology 

 

 
 
Figure 21. Notional Comparison of Current and Proposed Methodologies for the 

Modeling of Technology Combinations 
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impacts to enter the technology forecasting problem through expert opinion on pair wise 

technology interactions[88, 89].  

The proposed process of technology impact forecasting with TSM includes three 

forms of expert opinion: technology impact matrices, technology compatibility matrices, 

and technology synergy matrices. For a given problem, there will only be one TIM and 

one TCM created. Multiple TSM will be necessary, however—one for each performance 

metric—to fully characterize the potential 2nd order synergies between technologies. 

Technology Impact Matrices (TIM) 

The TIM is a tool for mapping technologies directly to system performance 

metrics [81, 84]. A notional example of a TIM with seven technologies (T1 through T7) 

and four performance metrics (M1 through M7) can be seen in Figure 22. In the TIM, 

each technology is listed along the vertical axis and each performance metric is listed 

along the horizontal axis. Every intersection of a technology and performance metric 

contains a scalar multiplier. This scalar represents an expert’s best guess as to how the 

technology modifies the performance of the system when applied by itself. For example, 

 

 
Figure 22. Notional Technology Impact Matrix 

 

 

 



63 

 

in Figure 22 the intersection of technology 2 (T2) and performance metric 2 (k2) is 1%. 

This is equivalent to saying that technology 2 is expected to increase the value of 

performance metric 2 by 1% when applied to the system. Likewise, technology 2 is 

expected to have no effect on performance metric 1. Technology 5 (T5), on the other 

hand, increases the value of performance metric 1 by 6%.  

Technology Compatibility Matrices (TCM) 

The TCM is a tool used to account for incompatibilities between technologies. 1 

During design space exploration or optimization, information in the TCM can be used to 

filter out technology combinations that are infeasible. A notional TCM can be seen in 

Figure 23 below. Both the horizontal and vertical axes of the TCM consist of the entire 

list of technologies. Each field in the TCM contains either the binary value 1 or 0. The 

value 1 indicates that the technology combination represented by that matrix intersection 

is feasible. The value 0 represents an infeasible combination. For example, the notional 

matrix seen in Figure 23 shows that technology 1 (T1) and technology 5 (T5) are 

incompatible, while technology 2 (T2) and technology 5 (T5) are compatible. In the 

 

 

Figure 23.  Notional Technology Compatibility Matrix 
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interior of the TCM, only the top diagonal of the matrix is displayed and/or used because 

the other diagonal portion would contain redundant information.  It is important to 

contain this information in a single matrix (as opposed to combining this information 

with the many TSM) so that the combinatorial space of technology combinations can be 

quickly pruned. Searching through a single matrix, the TCM, is much more 

computationally efficient than searching through multiple TSM for this task. 

Technology Synergy Matrices (TSM) 

The technology synergy matrix captures the interactions between technologies 

that are ignored by current TIM / TCM only methodologies. When a single technology is 

applied to a product design, it has an expected performance improvement. This is 

obtained through k-factors documented in the TIM.  

With the methodologies proposed in the past, when two technologies are applied 

simultaneously their respective k-factors are added to find a net technology impact 

multiplier for a given performance metric, as seen in Equation 34and Equation 35 below 

[79, 82]. In Equation 34 Mm,baseline is the baseline performance metric value for a design, 

while km
net is the net impact of a set of selected technologies and Mm,tech is the simulated 

performance due to technology inclusion. In Equation 35 Kim is the TIM value found at 

the intersection of technology i (Ti) and performance metric m (Mm).  Ii is the flag used to 

simulate whether a technology is applied (included in the present design) or not applied 

(not included). Ii is set equal to 1 if the technology Ti is being applied or 0 if technology 

Ti is not being applied.  N is the total number of available technologies. 

 

 ( ), . , 1 m
m tech m baseline netM M k= +  Equation 34 
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TSM adds an extra layer of resolution with respect to the TIM/TCM only 

approach. The impact of interactions between technologies is captured in addition to 

individual technology impacts. A notional TSM for a single performance metric can be 

seen in Figure 24. Like the TCM, the TSM has every technology on both axes. Each 

intersection of two technologies in a TSM contains a continuous scalar value greater than 

0, however. When this scalar value is equal to one, then the effect of combining those 

two technologies is linear. When a TSM entry is less than one, the technology 

combination is less effective than if the two technologies were independent (there is a 

mutual degradation). Likewise, if a TSM entry is greater than one, then the technology 

combination is more effective than if they were independent (there is a technology 

synergy).  As with entries in the TIM, TSM entries are estimated through one or more of 

the following: expert questionnaires, literature reviews, or theoretical evidence/reasoning. 

Five methods of applying TSM scalars are proposed in this paper. Each method has been 

designed so that the linear technology combination method is recovered when all TSM 

values are equal to one. 
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Combination Methods 

A combination method is the equation used to combine TIM and TSM into a 

predicted k-factor.  Five combination methods are explored in this thesis: The weighted 

pairwise combination method, direct product method, averaged synergy method, 

minimum impact method, and maximum impact method.  

 

 

Method 1: Weighted Pairwise Combination Method 

The weighted pairwise combination method, described by Equation 36 below, 

attempts to directly correct the multipliers found through the simple addition of TIM 

values, replacing Equation 35 seen above.  In Equation 36, all values are the same as 

defined for Equation 35. The term kijm is new, and represents the TSM correction scalar 

(found in the TSM matrix for performance metric m) for technology combination Ti and 

Tj. This method treats each TSM value as a degradation/synergy multiplier against the 

combined effect of two technologies. 

 

 
 

Figure 24. Notional Technology Synergy Matrix 

Technology 
Synergy Matrix T1 T2 T3 T4 T5 T6 T7

T1 0.9 0.8 0.85 0 0 0

T2 0 0.7 0.95 0 1

T3 0 0.7 1 1.05

T4 0.85 0.9 0

T5 0.75 0

T6 0.8

T7
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A benefit of this method is that the selection of TSM values has a clear meaning 

to the user. It answers the question, “Given that these two technologies have both been 

added to the design and are interacting, by what fraction will the net additive impact of 

these two technologies be degraded or enhanced?” One downside of this method is that it 

cannot be applied to situations were only one technology is selected. The user must 

default to using Equation 35 when only one technology is activated. Another downside is 

that, for problems where the number of technologies is large and the number of synergies 

(non-one TSM values) is small, the effect of synergies is reduced. As the number of 

technologies becomes large, the equation becomes heavily biased by the number of 

technologies selected and begins to behave similarly to the linear technology model, 

Equation 35. 
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 Equation 36 

Method 2: Direct Product Method 

The direct product method applies all TSM scalars directly to each technology 

impact. This method is the most accurate when each technology is only involved in one 

synergy (there are no 3rd order interactions). Unlike the Weighted Pairwise Combination, 

his method is not biased by the number of technologies present. If a technology is 

involved in multiple 2nd order synergies, then those synergies combine through 

multiplication, as seen in Equation 37. This may lead to unanticipated and highly 

erroneous results for cases where 2nd order synergies interact, however.  
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Method 3: Averaged Synergy Method 

This method is a modification of the Direct Product Method that attempts to 

addresses the problem of 3rd and higher order technology synergies. Instead of allowing 

multiple 2nd order interactions to combine through multiplication, all 2nd order 

interactions are averaged before being applied to a given technology impact. This can be 

seen in Equation 38. This would prevent the unrealistically high or low synergies seen 

when one applies the Direct Product Method to problems with multiple technology 

interactions.  
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Equation 38 

Method 4: Minimum Impact Method 

This method is another modification of the Direct Product Method that addresses 

the issue of higher order technology synergies for a special case. It is most appropriate 

when impact of simultaneous application of multiple technologies is restricted by 

minimum improvement by any technology. In this method, the smallest applicable non-

unity technology synergy is applied to each technology impact. This provides the most 

conservative estimate of a technology’s effect. Equation 39 shows the formula behind 

this method. It should be noted that, when applying Equation 39, technology synergies 

that are equal to one should not be included in the averaged. Therefore, in Equation 39, N 

represents the number of technology synergies that are not equal to 1, while kijm 

represents the technology synergies that are not equal to 1. 
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 𝑘𝑚𝑛𝑒𝑡 = �𝐼𝑖
𝑁

𝑖=1
𝑘𝑖𝑚[min�𝑘𝑖𝑗𝑚�∀j: 𝑘𝑖𝑗𝑚

(𝐼𝑗)≠1
] Equation 39 

Method 5: Maximum Impact Method 

This method is the final modification of the Direct Product Method for higher 

order technology synergies. In this method, the largest applicable technology synergy is 

applied to each technology impact. This provides the least conservative estimate of a 

technology’s effect. Equation 40 describes the formula behind this method. 

 𝑘𝑚𝑛𝑒𝑡 = �𝐼𝑖
𝑁

𝑖=1
𝑘𝑖𝑚[max�𝑘𝑖𝑗𝑚�∀j: 𝑘𝑖𝑗𝑚

(𝐼𝑗)≠1
] Equation 40 

TSM Method Selection and Data Collection Process 

The methods presented earlier can be applied independently to each metric in 

TIM. Different metrics can have different methods to determine the net effect of 

combined technologies. To accurately select the best suited method for higher order 

impacts, various approaches can be adopted. Suggested approaches include expert 

opinion elicitation [1, 90] and calibration based on available experimental/physics based 

results. 

Expert Opinion 

While elicitation of expert opinion for construction of technology impact 

forecasting, the information on nature of behavior of each metric can be assessed. This 

can help in deciding about selection of method for TSM implementation of higher order 

interactions. For example in case of noise improvement technologies, the minimum 

improvement in maximum noise generating component of a system may be suggested by 

experts. This is based on expert’s experience because the minimum reduction in the 
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component generating maximum noise can be a deciding factor for complying FAA noise 

regulations. According to this input, minimum impact method can be adopted for noise 

related k factors in TIM.  

Calibration 

In some cases it is possible to have a set of historical or experimental data for a 

particular problem. Calibration against historical data can give insight on the type of 

method to be adopted for a particular method. It can show the impact of combining 

certain metrics on the output of the environment. Sensitivity analysis of metrics can also 

provide additional information during calibration process.   

User Defined K-factor Limit 

In many situations, there are known upper or lower limits to the net impact on a k-

factor. These limits may be based on either fundamental physics or practical constraints 

to the problem. A simple way of capturing these limitations is by applying a vector of 

user defined upper and lower limits to the calculation. If the k-factor calculated through 

the use one of the five methods described above violates one of these limits, then the 

prediction should be replaced by the limit value. This can be accomplished through the 

use of “IF” statements in a computer code. This adds an additional nonlinearity to the 

technology selection problem and should prevent unrealistically large or small net 

technology impact predictions from occurring. 
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Technology Evaluation and Selection 

After calculating net k-factors for a given set of technologies from the 

combination of TIM, TCM, and TSM, using either Equation 36, Equation 37, Equation 

38, Equation 39 or Equation 40 above and applying k-factor limits,  technologies may be 

simulated by either  inputting these net k-factor values directly into a modeling and 

simulation (M&S) environment  or by applying them to the M&S environment responses 

using Equation 34 as shown in Figure 25. This will produce technology impacted design 

performance estimates. Once the capability to simulate a package of technologies exists, 

a method for testing multiple technology packages and selecting the “optimal” is then 

required.  One of the following techniques may be used to solve this technology portfolio 

optimization problem: Multi-Attribute Decision-Making (MADM) techniques such as 

TOPSIS (Technique for order preference by similarity to ideal solution), technology 

frontiers, technology sensitivities, or stochastic optimization techniques such as Genetic 

Algorithm [82, 91, 92]. Using an appropriate technique from the list above, an optimized 

combination of technologies may be selected. 

 

Figure 25. Integration of TSM in Technology Evaluation 
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Experiment Setup 

A notional aircraft design problem is used to compare the behavior of the various 

technology modeling methods. In this example, seven notional technologies are 

investigated. These technologies are mapped to effects on four aircraft cruising 

performance metrics: cruising speed (Vcruise), lift to drag ratio (L/D), specific fuel 

consumption (TSFC), and aircraft gross weight at start of cruise (Wo). Using the Breguet 

range equation (Equation 41) these four performance metrics can be used to simulate the 

total fuel burn for a cruise mission segment at fixed speed and altitude (Wfuel). The 

objective for this example problem is to select the technology combination that 

minimizes this total fuel burn, according to the transformation of the Breguet range 

equation seen in Equation 41. 

 

 
0

1
lncruise

cruise

V L WR
TSFC D W

   =    
     Equation 41 

 
Table 5: Baseline Aircraft Assumptions  

 
Cruise Range 3500 Miles 

TSFC at Cruise Conditions 0.8 1/hr 

L/D at Cruise Conditions 16 

Gross Weight at Start of 

Cruise 
130,000 lbs. 

Cruise Speed 760 ft/sec 
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The baseline performance metrics used in this problem can be seen in Table 1. 

These values approximate the performance of a medium range civil transport aircraft. In 

this problem, notional technologies 1 through 3 represent engine technologies while 

technologies 4 through 6 represent aerodynamic technologies. Technology 7 represents a 

notional technology that couples engine and aerodynamic performance (such as 

circulation control technology). 

Results 

A direct comparison between different methods is shown in Figure 26. This 

comparison is based on an identical portfolio for all the methods. Reduction in fuel burn 

 

 
Figure 26. Comparison between TSM methods application 
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is compared while applying TSM for a same set of technologies. It can be observed that 

traditional approach without TSM gives maximum reduction in fuel burn. Direct product 

method yielded minimum improvement whereas weighted pair wise combination and 

maximum impact methods resulted in higher values. The values of different methods can 

also be constrained by upper ceiling defined by user in accordance with limits of the 

physics of the problem.  

Each of the TSM combination methods were run on the example problem 

described above. Each method produced a unique Pareto front of technology portfolios. 

These can be seen in Figure 27 and Figure 28.  Figure 27 shows that linear approach 

gives better results almost all the times. This trend was expected as in case of linear 

approach all the improvement factors from individual technologies are added and 

maximize the benefits of the technologies. The results obtained from this traditional 

approach often violate the physics based constraints of the problem. Introduction of TSM 

can be observed as compared to traditional additive approach. It should also be noted that 

 
Figure 27.  Pareto Front for Final Case 
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the Pareto fronts of each method may represent different portfolios. Different methods for 

application of TSM generate different Pareto fronts. This indicates that technology 

evaluation process can be calibrated and improved with introduction of TSMs with 

suitable selection. 

TOPSIS was used as a decision method to select a single technology portfolio 

among the Pareto efficient technology portfolios. The same TOPSIS weightings were 

used to select the best portfolio in each case. The selected portfolio can be seen in Table 

6. These results show that the selection of a TSM method and inclusion of higher order 

technology modeling information can have a significant impact on the predicted 

performance of a system. A 10% difference in predicted fuel burn and RDTE cost was 

seen, depending on the TSM methodology selected. The result from Table 6 shows that, 

even for a relatively simple problem, the selection of a TSM method may also lead to a 

 

`  
 

Figure 28. Pareto Front for Extreme Case 
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different technology portfolio selection. While most TSM methods indicated that T1 

through T5 should be selected, the use of the Direct Product Method would lead a user to 

not select T1. Thus, the selection of a TSM methodology is non-trivial, and deserves 

further research. The exploration of the applicability of these TSM methodologies is one 

major goal of this study.  

 

 
 

 

Table 6. Selected portfolios based on best cruise performance 

Best Cruise Performance 

Technologies Selected 

% Reduction in 

Fuel Burn 

Estimated 

% Increase in RDTE 

Cost Estimated 

T1+T2+T3+T4+T5 0.49 50.0 

T1+T2+T3+T4+T5 0.45 54.0 

T2+T3+T4+T5 0.36 46.2 

T1+T2+T3+T4+T5 0.38 47.7 

T1+T2+T3+T4+T5 0.39 55.0 

T1+T2+T3+T4+T5 0.42 62.0 
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CHAPTER 5 

FINANCIAL MODELING 

Traditionally, gas turbine economics has been evaluated through NPV models 

based on a discounted cash flow (DCF) approach. This approach gives limited insight 

regarding the future value of a gas turbine design. DCF valuation assumes that 

investments are fixed and there is no uncertainty on inputs to the process. The projects 

are tackled as now or never basis [93-95]. Managerial flexibility is ignored and passive 

decision making is performed without consideration of economic uncertainties. In order 

to account for these uncertainties and incorporate dynamic decision making, and 

managerial flexibility, real options is used to produce an economic analysis of each 

technology portfolio. This technique can capture market related uncertainties which are 

otherwise neglected in the technology development process. This provides more robust 

and highly competitive alternate to traditional DCF approaches [94-96]. Real Options 

Analysis provides the link between net system performance, component design 

parameters, and system economic metrics. Real options analysis follows multiple step 

approach. 

Real Options Process 

Real Options process can be divided in six steps as shown in Figure 29 in the 

context of technology development. This process can be modified depending on 

application and specific requirements of the system. 

Value Model 

First a value model needs to be created that transforms performance 

improvements due to incorporation of new technologies into financial benefits. It is 
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function of technical as well as market related parameters. The output of value function 

acts as input to real options analysis. 

Sensitivity Analysis 

Sensitivity analysis of all the inputs to values function enables the designer to 

ignore the inputs with negligible impact on outputs. This step helps the designer to reduce 

the dimensionality of the problem. The important factors are then used in calculations of 

volatility. 

Volatility calculations 

Historical trend of important factors is gathered and used for volatility 

calculations. In case of more than one variable, their effect is lumped in the value model 

and then the volatility of value model is calculated. In certain cases Monte Carlo 

simulations may be employed to estimate the value of the technology or a portfolio[94].  

Problem Definition 

This step is important because according to problem at hand the appropriate 

method is selected for real options valuation. In case of technology development there 

many phases involved in the process with costs associated with each of them. At the same 

time theses phases are dependent on each other and success in one phase is a pre-cursor 

of next phase. For this kind of problems with various phases sequential compound option 

is a good choice. Sequential compound option takes place when the project has multiple 

phases and success of one phase is dependent on previous phases. 

Modeling and analysis 

In this phase, volatility and baseline from value function are used to calculate the 

expanded net present value (eNPV) of the technology or a portfolio in case of multiple 

technologies.  eNPV is the sum of deterministic baseline NPV and the options value of 
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the technology. eNPV is then used as objective function in technology or portfolio 

prioritization by replacing DCF based NPV.  

 

 

Decision Making and Process Review 

Based on the results from real option analysis, the real options value can be used 

in number of ways depending on the goals of the study. It can be used in technology 

selection out of the large pool of alternatives. Technologies with higher options value in 

presence of market uncertainties are ranked higher than the ones with lower options 

value. In case of multiple objectives, this criterion may be adjusted accordingly. Real 

options analysis can also be used to assess the valuation of competing technologies. 

These technologies are the ones, where a technology needs to be abandoned to select 

another technology. The competing technologies have some value associated with them 

and various possible paths can be generated based on future uncertainties. Value of each 

 
Figure 29.  Options Valuation Process 
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of competing technology over period of time along arbitrary selected path can be 

observed. A scenario based paths can be valuated to choose the right technology. 
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CHAPTER 6 

METHODOLOGY  

 
This research is focused on uncertainty propagation in technology prioritization 

process. The proposed methodology use Dempster-Shafer theory of evidence to capture 

uncertainties in the input variables of the existing processes. It also addresses the non-

linear behavior in the technology interactions within technology portfolios.  

 

 Technology Forecasting Methodology 

 

A schematic of this methodology is shown in Figure 30. Details of individual 

steps have already been discussed in previous sections. A brief introduction of each step 

in discussed here. 

 

Creation of M&S Environment 

The methodology starts with creation of a modeling and simulation environment, 

which can accept the technology impacts as inputs and gives responses of interest as 

outputs. In case of gas turbine problem this environment consists of a multi-disciplinary 

design environment encompassing compressor, combustor, turbine and combine cycle 

codes. Relevant subsystem or disciplinary models may be linked to provide a total system 

simulation capability. The complete set of inputs and outputs of this system simulation 

can be explored using a coarse design of experiments (DoE). This will provide a first-cut 

indication of input-output sensitivities. Inputs that are of negligible impact with respect to 

the range of the design space under exploration can be defaulted to an average value to 

reduce the dimensionality of the problem. An additional DoE, exploring only the 
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significant variables, provides data to create a set of surrogate models. In case M&S 

environment is computationally expensive, surrogates may be generated for faster 

simulations.  Surrogate models are fast-executing analytical models that emulate the 

original simulation. The models should be formulated so that the inputs are technology 

impact factors (TIF) and the outputs are system performance metrics. They form the 

backbone of the proposed method [88]. 

 

Expert elicitation and Technology Modeling 

The second step in using the complete methodology is the elicitation of expert 

opinion. This involves surveying experts individually as well as in groups to determine 

how a given technology will impact the TIF inputs to the system. The ranges and 

respective BPAs should be collected for implementation of evidence theory [1, 17, 63]. 

Technology impact matrices, technology compatibility matrices and technology synergy 

matrices are generated in this step. 

Next, a TSM aggregation method is selected and combined with the surrogate 

models and TIM/TSM data. The input of the technology model is a vector of selected 

technologies and a vector of TIF errors. The output of this model is a single vector of 

system output values [88].  

 

Financial Modeling 

Fourth step consists of financial modeling to assess the monetary aspects of 

technology valuation process. In this step a value model is constructed to link 

performance improvements with financial benefit. Market related uncertainties are 

identified and sensitivity analyses are conducted to reduce the dimensionality of the 
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problem. Volatility of the value model is calculated and real options analysis is applied to 

ascertain the extended net present value of the portfolio. 

 

Uncertainty propagation 

Evidence Theory is used to aggregate the expert elicited uncertainty intervals and 

subsequently propagation of epistemic uncertainty. Various aggregation techniques are 

available as discussed in earlier sections. Appropriate technique can be applied for 

aggregation of evidence. The uncertainty propagation routine of Evidence Theory wraps 

the technology model. This will create a larger model that, for a single input vector of 

selected technologies, produces a plausibility and belief function for each system output.  

 

Quantification of Epistemic Uncertainties in Multidisciplinary Environments 

 
The uncertainties in technology valuation process for Power Generation Systems 

were evaluated in this study. Due to long lead times and huge investments in potential 

technologies make it an interesting problem from uncertainty study perspective. It has 

 
Figure 30. Uncertainty Propagation in Technology Valuation 
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been discussed in previous chapters that mostly epistemic uncertainty characterizes the 

systems involving expert elicitation. In multidisciplinary environment these uncertainties 

become more complex as they originate from multiple sources. Adequate identification of 

these sources of uncertainty and their propagation is vital to perform the meaningful 

analyses. 

 

 

Figure 30 represents a multidisciplinary environment. CA1, CA2 and CA3 are 

three subsystems who are interacting with each other. Uncertain variables d, e and f are 

input to CA1, CA2 and CA3 respectively. d, e and f has associated basic probability 

assignments too as shown in Figure 32. 

 

 

 

Figure 31. Multidisciplinary Environment 
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Modeling and Simulation: Multidisciplinary Environment for Power Generation 

System 

A multidisciplinary environment for combined cycle power generation system 

was selected as the example to demonstrate the uncertainty quantification and 

propagation process. Figure 31 represents the overall structure of the environment. These 

models were created from or validated against proprietary data in combination with 

available literature of existing power generation systems. Details of individual codes are 

discussed in following paragraphs. 

Compressor 

The compressor model is based on the technology based polytropic efficiency 

curves as a function of pressure ratio and mass flow. The compressor polytropic 

efficiency then used to calculate the power requirements. These curves were converted to 

a response surface for ease of use in integrated environment. 

Combustor 

Combustor model is obtained from a relation between Nitrogen Oxide (NOx) 

emissions and primary zone temperature. This relation is dependent on fuel-air mix ratio 

(Fu). Lower ratio would have positive impact on the efficiency. In these simulations the 

 

 

Figure 32. Interval specification for Dempster-Shafer theory of evidence 
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NOx level is kept constant while trying to achieve higher primary zone temperatures and 

thus getting better efficiencies.   

 

Turbine 

For turbine a one-dimensional meanline flowsolver was used. It used equations of 

mass, momentum and energy. The inputs of this model are inlet and outlet temperatures 

as well as different geometric variables. The outputs consist of stage efficiencies, cooling 

and leakage flows. The code has a built-in optimizer too, which calculates the optimized 

turbine efficiency as an additional option. An external optimizer can also be employed to 

achieve the same objective.  

Thermodynamic cycle calculations for gas turbine were done with another 

FORTRAN based code. It maps the inlet cooling mass flows, compressor pressure ratios 

and stage efficiencies with turbine efficiencies, power and exhaust-mass flows. 

 

Combined Cycle 

Combined cycle was modeled with the mapping between Fuel flow, enthalpy, 

exhaust mass flow, exhaust temperature and combined cycle characteristics such as 

efficiency and power. A representative design structure matrix for combined cycle power 

plant is shown in Figure 33. 
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Surrogate Model  

A surrogate model is a fast executing regression of a training data set. It is in the 

form of an algebraic equation which is designed to be a substitute for the physical model 

of a system. In most cases it is regressed from data produced by the high fidelity model 

such as computational fluid dynamics (CFD) solvers, finite element method (FEM), etc. 

These surrogate models are only valid over a predefined subset of the ranges of the 

original model.[97] 

 

A well-constructed surrogate model will have a capability to estimate the value of 

the response to within the error tolerance of the original high fidelity analysis code. In 

order to make a surrogate, first step is selecting a proper high fidelity code. An 

appropriate Design of Experiments technique is used to determine the points at which the 

code should be run in order to return the most information for the fewest number of runs. 

The results from the code are then compiled with their associated input parameter values, 

and regression is used to create a response surface that closely matches all of the inputs & 

outputs. One surrogate model must be created for every response of interest. Goodness of 

 
 

Figure 33. Multidisciplinary Environment for Combined Cycle Power Plant 
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Fit analysis is used to check how well the approximation reproduces the original code, 

both for the points used to create the surrogate model and for new points that were not 

used in the surrogate generation. If the discrepancies between the approximation and the 

original code are small, and no patterns are observed in the distribution of the errors, the 

surrogate is considered as acceptable. A surrogate model cannot be used to evaluate 

parameter inputs outside the ranges used in its generation.[82, 98] 

 

The surrogate model is useful for design and optimization problems for a number 

of reasons:  

(a) A surrogate model can run on any platform (e.g. Windows, Mac, Linux or UNIX).  

(b) A surrogate model can be evaluated very quickly, in contrast to the original 

physics-based analysis code.  

(c) The sensitivity of the response to changes in the input variables can be determined 

easily and quickly through partial derivatives.  

(d) The optimum value of the response can be found quickly and easily.  

 

In addition, surrogate model makes it easy to collaborate between different 

entities. Companies may spend a great deal of money and effort developing sophisticated 

analysis codes, which they then guard closely to protect their investment. Since it is 

impossible to use a surrogate model to determine anything about the underlying code, a 

company can distribute a surrogate model of its code to partners without compromising 

the code's security.  

There are many techniques, which can be employed to generate surrogate models. 

Common surrogate models include response surface equations (RSE), Gaussian process 

models (GP), radial basis functions (RBF), and neural networks [97, 99-101]. 
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Neural Network Overview 

Due to highly nonlinear relationships between variables, a neural network 

surrogate model was used. The neural network is a non-linear surrogate model inspired 

by the architecture of the human brain [102-107]. A neural network is created by 

combining multiple linear regressions and non-linear activation functions. It can 

approximate any function arbitrarily well as long as there are enough neurons in the 

hidden layer [103, 104]. A generic neural network representation is shown in Figure 33. 

This neural network is a surrogate model for the response Y as a function of the inputs X1 

through Xn. There are L neural network layers with M nodes per layer.  

Each node’s output is constructed from a linear regression passed through a 

nonlinear activation function, as seen in equations 1 through 3 below.  

 

 

 
 

Figure 34. The Generic Neural Network 
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Given enough nodes, the neural network can replicate any function to an arbitrary 

degree of accuracy. As the number of layers and/or nodes approaches infinity, the 

approximation error of a neural network approaches zero. Thus, the neural network acts 

as a “universal approximation” for functions of arbitrary complexity. 

 

The Basic Neural Network Fitting Procedure 

In order to fit a neural network to a set of training cases, the user must first select 

an appropriate activation function, the total number of hidden layers to be used, and the 

number of nodes to use in each layer. The neural network is fit by finding the set of 

weights for each link in the neural network that minimizes the least squares error over the 

entire training data set. This weights optimization problem is, in general, multi-modal and 

will require a stochastic optimization heuristic for its solution (such as the Genetic 

Algorithm). The complexity and size of the weights optimization problem scales with the 

number of layers and nodes selected, as well. 

The basic neural network fitting procedure is not as straightforward as the fitting 

procedure for response surface equations. While superior to the RSE in ability to model 

highly non-linear responses, the neural network is prone to over-fitting. In other words, 
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the neural network can provide a surrogate model that exhibits extremely low error near 

training cases and very high elsewhere in the design space (also known as poor model 

generalization). Also, because stochastic fitting procedures are generally used to train the 

network, the same fitting problem will produce a different answer each time it is solved. 

The weights values may vary wildly amongst solutions.  Cross-validation and multiple 

training tours are used to combat these problems and provide more consistent neural 

networks of higher quality [107]. 

In order to check the validity of surrogate model, the following metric are 

evaluated: 

 

(a) R2 value 

(b) Actual by predicted plot 

(c) Residual by predicted plot 

(d) Model fit error distribution (MFE) 

(e) Model representation error (MRE) 

 

The R2 value is a mathematical measure that estimates how well the assumed 

functional form of the response measures the variability of the supplied response data. A 

perfect fit of the response data corresponds to a R2 value of 1.0 and a ‘no fit’ corresponds 

to a R2 value of 0. As a general rule of thumb, a R2 value greater than 90% represents a 

good model fit. [108, 109] 

The residual is the error, which is the difference between actual value and 

predicted value. A good Residual by Predicted plot will result in a random scattering of 

the data points about zero with no distinguishable pattern and a small magnitude relative 

to the predicted value. Random scattering is indicative of the error in the assumed model 

being randomly distributed as a standard normal distribution, i.e., N(0,1). If the ratio of 
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the total span of error to the minimum of the predicted is less than 5%, the surrogate 

model may be valid.[108, 109] 

In addition of R2 and Residual plot, Model Fit Error (MFE), Model 

Representation Error (MRE), and actual by predict plot are also use to check the fitness 

of the neural network models for all responses. The Model Fit Error (MFE) distribution 

shows the magnitude and shape of the error from the Residual plot in terms of a 

histogram. The error associated with neglecting effects in the model is valid if the error is 

similar to a standard normal distribution, N(0,1), which corresponds to approximately +/- 

2 to 3% error. Model Representation Error (MRE) should be similar to the MFE 

distribution with only a slight widening. The actual behavior of the response may be 

some higher order or logarithmic function such that if the response model is used to 

evaluate off DOE data points, the predictive error is large. To determine the goodness of 

the predictive capability of the model throughout the entire space, one should select 

random cases, extract the response data, and calculate the error as was done with the 

model fit error distribution. A normal distribution exists for the MFE and MRE with 

nearly zero mean and less than one standard deviation. The actual by predict plot shows 

the perfect fit line and the distribution of the training cases and validation cases. This plot 

helps check if there is any cases do not fit well. The residual by predict plot shows the 

distribution of the errors for all cases and helps check where the maximum error occur 

[82]. 

Neural Network Fitting Results and Validation 

To create database for surrogate generation, 17,000 data are generated by physics-

based high fidelity modeling and simulation environment. The number of input 

parameters is 210. There are two outputs: Electrical Net Efficiency and Electrical Net 

Power.  



93 

 

Neural network modeling was performed in JMP 9.0 Pro[110], which is the 

commercial statistical package by SAS. The statistical metric of Electrical Net Efficiency 

and Electrical Net Power are shown in Table 2 and Table 8. The goodness of fit results of 

electrical net efficiency and electrical net power are shown in Figure 35, Figure 36, 

Figure 37 and Figure 38  respectively.  

The coefficient of determination, also known as R2, indicates how well a 

regressed equation predicts the output for its training cases. This metric varies from 0 to 

1, with a value of 1 representing a perfect fit. The R2 for both the responses are 0.99, 

which means developed surrogated model can explain more than 99% of the data points.  

The plot of actual training case versus neural network predicted values gives more 

detailed information about a surrogate model’s quality. It gives an indicator as to how 

well the neural network performs across the output space. It also allows for outliers to be 

identified and considered. For a good surrogate model, data points should fit tightly 

against the line of perfect fit, the 45 degree line across the plot where actual value equals 

predicted value. This can be seen in Figure 35 and Figure 37. Based on this plot, the 15 

node surrogate model is deemed acceptable because of its low error throughout the 

design space. 

Table 7 : Statistical Metric of Electrical Net Efficiency 
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The plot of neural network fitting error versus predicted value, also known as the 

residual vs. predicted plot, allows to gauge how much error exists in the neural network 

prediction for a given region of the output space. Figure 36 and Figure 38 show the 

residual versus predicted plots for efficiency and power. Clearly, a normal distribution 

does exist for Model Fit Error (MFE) and Model Representation Error (MRE) with nearly 

zero means and less than one standard deviation. Overall the surrogate model for each 

response predicts good accuracy.  

  

 

 

Table 8 : Statistical Metric of Electrical Net Power 

 

 

Figure 35. : Actual by Predicted Plot of Electrical Net Efficiency 
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Figure 36. : Residual by Predicted Plot of Electrical Net Efficiency 

 

 

Figure 37. : Actual by Predicted Plot of Electrical Net Power 
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Technology Modeling 

 

Technologies are modeled with the help of k-factors and are recorded in 

Technology Impact matrices, technology compatibilities and technology synergy 

matrices. The detailed description of these matrices and interrelationships are discussed 

earlier in this study. Overall schematic representation of technology valuation process is 

shown in Figure 39. 

 

 
Figure 38. Residual by Predicted Plot of Electrical Net Power 
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Figure 39. Integrated environment for technology valuation 
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Selected Technologies 

Five technologies were selected out of a large pool of candidate technologies. 

These technologies were modeled and evaluated in integrated environment. These new 

technologies improve the combined cycle efficiency and power. As these are new 

technologies, the experts’ opinions are elicited to quantify these impacts through 

disciplinary codes. The details, applicability and modeling of these technologies are 

discussed later in results’ section. 

 

Expert Elicitation 

The potential impact caused by these technologies on the power generation 

system is recorded in the form of technology of technology impact matrix (TIM). The 

experts are asked to provide their assessment of the impact of the technology over the 

baseline. These impacts are then linked to input parameters of the disciplinary codes. 

Three types of responses are recorded for different studies: 

 

(a) Deterministic: Averaged response for deterministic valuation of technologies.  

(b) Interval: Minimum and maximum expected range in inputs without any associated 

distribution. The input may fall at any point inside the specified range. This is 

used for interval estimation. 

(c) Multiple intervals with associated basic probability assignments: These intervals 

are used for application of Dempster-Shafer theory of evidence. It can be noted 

that second and third type of expert elicitation is focused on epistemic uncertainty 

propagation. 

In case of deterministic technology valuation, the experts are asked to provide the 

averaged impact of the technology on the system performance. Table 9 represents an 
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extract of technology impact matrix for one technology. Material systems technology 

impacts the heat conductivity of blades and vanes in different stages of gas turbine. These 

impacts, also known as k-factors, are listed in third column of Table 9. First column 

comprise of design metrics which are inputs to the disciplinary codes whereas second 

column shows the baseline values of the design metrics. New values of performance 

metrics are achieved by adding k-factors to baseline. K-factors can also be recorded in 

percentage or absolute format. In percentage format, the k-factors are multiplied with 

baseline values to get the updated performance improvements, whereas in absolute 

format, the value of baseline is replaced by the value of k-factor. Similarly values of heat 

conductivity for other blades and vanes can be calculated. These updated values are used 

and input parameters of design codes to quantify the system level improvements. 

 

 

 

  

Figure 40: Material Systems Technology [111] 
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For interval analysis, the elicitation consists of obtaining the minimum and 

maximum values of intervals.  

Table 10 shows the minimum and maximum bounds of intervals on input 

parameters for impact of material systems technology. These inputs are then used to 

perform interval analysis. In Table 10 first column contains the variable names, which are 

the inputs to the disciplinary codes. Second and third columns represent the improvement 

over the baseline due to the technology. The intervals assigned by the experts have 

minimum and maximum values without assigning any distribution to them. It is assumed 

that no other information is available, except the range of the interval. These intervals can 

be assigned in form of percentage or absolute value. In Table 10, the heat conductivity 

for vane 1 (Hcv1) would have the new absolute range by adding the k-factor with the 

baseline to get a lower bound and upper bound. In case of percentage improvement 

format of technology impact matrix, same values will act as multiplication factors. 

  

Table 9: Deterministic Technology Impacts of Material Systems 

Technology 

Variable Name 
[ W/(m2*K)] 

k-factors for 
Material Systems 

Technology 
Hcv1 0.21 
Hcv2 0.225 
Hcv3 0.255 
Hcv4 0.355 
Hcb1 0.175 
Hcb2 0.185 
Hcb3 0.355 
Hcb4 0.355 
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In case of Dempster-Shafer theory of evidence, the input variables of disciplinary 

codes are modeled as sets of intervals. Each interval has associated basic probability 

assignment (BPA) which indicates the likelihood of that value of the input to fall with 

that interval. Data from  

Table 11 to Table 14 represents the technology impact factors for Dempster 

Shafer theory of evidence. These tables show the technology impacts for heat 

conductivities for vane 1, vane 2, blade 1 and blade2. Material systems technology also 

effect thermal conductivities of vane 3, vane 4, blade 3 and blade 4. Each table has 

impact factors for one input parameter. These impact factors are divided into multiple 

intervals. These intervals are shown in second and third columns. Associated basic 

probability assignments for respective rows are shown in the last column. In  

Table 11 it can be observed that improvement in heat conductivity of vane 1 is 

divided into 5 intervals. First interval has its bounds in between 0.179 and 0.189 with 

associated basic probability assignment of 0.3. It means that according to the expert there 

is 30 percent likelihood that value of heat conductivity of vane 1 will fall within this 

 

Table 10: Technology Impacts of Material Systems Technology 

Variable Name 
[ W/(m2*K)] 

Intervals 
Min Max 

Hcv1 0.168 0.252 
Hcv2 0.180 0.270 
Hcv3 0.204 0.306 
Hcv4 0.284 0.426 
Hcb1 0.140 0.210 
Hcb2 0.148 0.222 
Hcb3 0.284 0.426 
Hcb4 0.284 0.426 
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interval. Similarly interval bounds and associated basic probability assignments for other 

intervals can be seen in the table. 

 

 

 

 

 

Table 11: Technology Impact for Heat Conductivity of Vane 1 for 

Evidence Theory 

Interval # Interval Bounds [W/(m2*K)] BPA's 
1 0.179 0.189 0.3 
2 0.189 0.200 0.2 
3 0.200 0.210 0.1 
4 0.210 0.221 0.3 
5 0.231 0.242 0.1 

 

Table 12: Technology Impact for Heat Conductivity of Vane 2 for 

Evidence Theory 

Interval # Interval Bounds [ W/(m2*K)] BPA's 
1 0.191 0.203 0.3 
2 0.203 0.214 0.5 
3 0.248 0.259 0.2 
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The intervals of the input parameters can be adjacent, overlapping or disjoint. It 

can be observed that all intervals are adjacent for heat conductivity of blade 2.  Heat 

conductivity of vane 2 has first two intervals are disjoint whereas last interval is adjacent. 

The number, bounds and basic probability assignments of the intervals impact the shape 

of resulting cumulative belief and plausibility function. 

Uncertainty propagation 

Epistemic uncertainty in technology valuation process is quantified by interval 

estimation and Dempster-Shafer theory of evidence. For comparison of results averaged 

deterministic valuation is also performed. 

Table 13: Technology Impact for Heat Conductivity of Blade 1 for 

Evidence Theory 

Interval # Interval Bounds [ W/(m2*K)] BPA's 
1 0.149 0.158 0.1 
2 0.158 0.166 0.2 
3 0.166 0.175 0.2 
4 0.184 0.201 0.5 

Table 14: Technology Impact for Heat Conductivity of Blade 2 for 

Evidence Theory 

Interval # Interval Bounds [ W/(m2*K)] BPA's 
1 0.157 0.176 0.4 
2 0.185 0.194 0.5 
3 0.194 0.213 0.1 
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Deterministic 

Deterministic technology valuation is based on averaged technology impacts and 

serves as a sanity check for the results obtained from interval analysis and Dempster-

Shafer theory of evidence. In this method the averaged technology impacts are 

propagated through the modeling and simulation environment and single point objectives 

are obtained. 

Interval Analysis 

The interval analysis is performed with the assumption that the only available 

information about a set of variables is their minimum to maximum range. No other 

information is available.  When this set is propagated to outputs through the analysis, the 

ranges on the outputs are obtained. The output ranges have the same characteristic as that 

of input ranges. The output ranges does not have any associated distribution.  

Two approaches can be employed for interval analysis: 

(a) Sampling based uncertainty analysis 

(b) Optimization based interval analysis 

Latin Hypercube sampling (LHS) is employed for sampling based uncertainty 

quantification. LHS sampling is computationally slightly less expensive than traditional 

Monte Carlo (MC) approach [112-115]. 

For optimization based interval analysis, efficient global optimization (EGO) 

technique is employed. In EGO, the objective function is estimated through Gaussian 

approximation from sample points of true function. Expected Improvement Function 

(EIF) looks for the better objective function in the search space. Efficient global 

optimization tries to maximize the EIF [116, 117]. This technique was initially developed 

to calculate the unconstrained minimization of implicit response functions, which are 

computationally very expensive. This approach is very effective and use true functions to 
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evaluate the function minimum and very few Gaussian Process samples are used to 

calculate the function maximum. The efficiency of this process depends on nonlinearity 

of the simulation model and the input dimensions. 

Dempster Shafer Theory of Evidence 

Dempster-Shafer theory of evidence combines the input variable intervals in the 

form of an input cell. Each interval of a variable are combined with intervals of other 

variables, thus creating a set of combinations. Minimum and maximum values of each 

interval cell are calculated. The aggregation of these values creates belief and plausibility 

curves. It is obvious that in case of more variables the number of input cells would 

increase rapidly, thus making implementation of Dempster-Shafer theory of evidence 

very expensive. Surrogate modeling can alleviate this problem by enabling very fast 

function calls. 
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CHAPTER 7 

RESULTS AND DISCUSSIONS 

In this section results from different approaches for uncertainty analysis are 

discussed. Interval analysis and Dempster-Shafer theory of evidence were used to 

propagate the uncertainty.  

Interval Analysis 

 

Interval analysis was performed by sampling-based and optimization approaches. 

As mentioned in the previous section, Latin Hypercube methodology was applied for 

sampling-based interval analysis. For interval analysis, only one interval per input 

variable can be assigned. Simulations were performed with 1000, 5000, 10000 and 

100000 sample sizes. The results were similar between 10,000 and 100,000 sample sizes, 

so sample size of 10,000 was selected for further simulation. In Table 15, results for 

sampling-based interval analysis of material systems technology are shown. Lower and 

upper bounds are calculated for efficiency and power improvements. 

 

Optimization was also used to perform interval analysis. Efficient global 

optimization (EGO) was employed for global optimization to calculate the bounds. As 

mentioned earlier in the document this is based on Gaussian process surrogate. This 

Table 15 : Results for Interval Analysis 

 

Δ Efficiency (%) Δ Power (MW) 

Lower Bound Upper Bound Lower Bound Upper Bound 

Sampling 0.1884 0.3157 13.3451 22.3981 

Optimization 0.1887 0.3157 13.3452 22.3981 
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technique is very effective as far as function calls are concerned. It used only 57 function 

evaluations to calculate the minimum and maximum estimates of efficiency 

improvements. A comparison of the results obtained from sampling and optimization 

base interval analysis is shown in Table 15.  

 

Dempster-Shafer Theory of Evidence 

Dempster-Shafer theory of evidence is used in this study to characterize epistemic 

uncertainty. Unlike interval analysis, Dempster-Shafer theory of evidence allows use of 

multiple intervals and associated basic probability assignments (BPA) for each input.  

Belief structure on two intervals is shown below. The values of these variables are 

normalized from 0.85 to 1.15.  Belief structures are also shown in graphical and tabular 

form. 

Input Variable 1: 

Number of intervals   = 5  

          interval_probabilities  = 0.3  0.2  0.1  0.3  0.1  

          interval_bounds = 0.85 0.90   0.90 0.95   0.95 1.00   1.00 1.10   1.10 1.15 

 

 

 

Figure 41: Intervals and Associated BPAs for Evidence analysis 
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Input Variable 2: 

Number of intervals   = 3  

          interval_probabilities  = 0.5  0.3  0.2  

          interval_bounds = 0.85 0.90     0.90 1.00    1.05 1.15 

 

Figure 42: Intervals and Associated BPAs for Evidence analysis 

 

 

 

 

Cumulative Belief and Plausibility Distributions (CBF, CPF) 

Figure 43 shows the cumulative belief function (CBF) and cumulative plausibility 

function (CPF) for efficiency improvement. This is similar to cumulative distribution 

Table 16: Intervals and Associated BPAs for Evidence analysis 

 

Table 17: Intervals and Associated BPAs for Evidence analysis 

 

BPA's
1 0.85 0.90 0.3
2 0.90 0.95 0.2
3 0.95 1.00 0.1
4 1.00 1.10 0.3
5 1.10 1.15 0.1

Interval Bounds

BPA's
1 0.85 0.90 0.5
2 0.90 1.00 0.3
3 1.05 1.15 0.2

Interval Bounds
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function (CDF). CBF is the cumulative belief that uncertain variable x ̃ is less than a 

given value of x. Similarly CPF represent the cumulative plausibility that uncertain 

variable x ̃ is less than a given value of x. CBF and CPF are denoted as Bel (x ≤̃x) and 

Pl(x ̃≤x) respectively. In Figure 4, it can be seen that cumulative belief that efficiency 

improvement is less than or equal to 0.28% is 0.5 and cumulative plausibility that 

efficiency improvement is less than or equal to 0. 28% is 0.7. 

 

Complementary Cumulative Belief and Plausibility Distributions (CCBF, CCPF) 

Complementary cumulative belief function and complementary cumulative 

plausibility function are an alternate presentation of CBF and CPF. The Complementary 

cumulative functions for belief and plausibility are shown in Figure 44 for efficiency 

improvements respectively. Complementary cumulative belief function is the cumulative 

belief that the uncertain value x  ̃is greater than a given value x. Similarly complementary 

 
 

 
 

 
Figure 43. Cumulative Belief and Plausibility Distributions [Bel (𝒙� ≤x), Pl(𝒙� ≤x)] for 
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cumulative plausibility function is the cumulative plausibility that the uncertain value x ̃ 

is greater than a given value x. They are generally written as Bel (x ̃>x) or Pl(x ̃>x). In 

Figure 44 it can be seen that complementary cumulative belief that efficiency 

improvement is more than 0.26% is 0.5 whereas complementary cumulative plausibility 

that efficiency improvement is more than 0.26% is 0.7. These plots also show the 

deterministic results and interval estimation outputs. 

 

 

 

Impact of Input Intervals Settings on Response Distributions 

Figure 45 represent results from a portfolio of technologies with five 

technologies. This plot represent two sets of the complementary cumulative belief 

function (CCBF) and complementary cumulative plausibility function (CCPF) for power. 

It can be observed that due to high numbers of input intervals, the large numbers of 

 
 
Figure 44. Cumulative Belief and Plausibility Distributions [Bel (𝒙�>x) or Pl(𝒙�>x)] for 
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output intervals were created. This resulted in the CCBF and CCPF curves with fine 

steps.   

 

A comparison is also made to assess the impact of different configurations of 

intervals within the same extreme minimum and maximum values in Figure 45. It can be 

observed that Belief_2 and Plausibility_2 have coarser intervals and thus producing 

bigger step sizes. This can result in possible loss of accuracy between larger steps. The 

more information about inputs will yield more accurate representation of output belief 

and plausibility representation. Similar behavior can also be seen from coarser to finer 

distribution curves with addition of more uncertain variables in the analysis.  

  
  

 

 

Figure 45. Comparison between different interval settings: Complementary 

Cumulative belief and plausibility distributions [Bel (x ̃>x) or Pl(x ̃>x)] for Power 
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Uncertainty Quantification through DAKOTA 

 

DAKOTA (Design and Analysis toolkit for Optimization and Terascale 

Applications) support advanced methods for optimization, sensitivity analyses, parameter 

estimation and uncertainty quantification[118, 119]. It provides an automated iterative 

analysis capable of handling uncertainty quantification, parameter estimation, 

optimization and sensitivity analysis. A generic top level schematic for DAKOTA is 

shown in Figure 39. It works well as a non-intrusive and semi-intrusive process as regard 

to computational model. This is a very desirable functionality that allows seamless 

integration of DAKOTA with the engineering modeling and simulation codes.  

 

 

 

 
 

 

Figure 46. DAKOTA setup for automated iterative analysis 
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DAKOTA system revolves around five main components including strategy, 

method, model, variables, interface and responses. The strategy commands provide a 

high level control layer for management of multiple iterators.  

Main types of strategies include single method, hybrid, multi-start and pareto set. 

In single method, a single iterator is used with one method. It is the used when multiple 

iterators are not required. Hybrid strategy is used when various optimization/ 

minimization algorithms are used at various phases of the process. This method exploits 

strengths of different techniques at appropriate stage of the process for maximum 

efficiency. The multi-start iteration strategy allows the start of code from multiple values 

of design variables concurrently. A common use of this strategy is multi-start local 

optimization, which can help to achieve optimal solution in a more robust manner. Pareto 

set optimization strategy performs iterations by assigning different weights to multiple 

objective functions. It results in a Pareto set, which is then used for trade-offs between 

competing objectives. This strategy can perform parallel iterations. In present study a 

single strategy is used for interval analysis and Dempster-Shafer theory of evidence. The 

examples of single method, hybrid, multi-start and pareto set strategies are as following:  

strategy, 

single_method 

method_pointer = ’UQ1’ 

 

strategy, 

hybrid sequential 

method_list = ’GA’, ’PS’, ’NLP’ 
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Strategy selection is followed by a method section which specifies the description, 

and controls of an iterator. A selection is made from the available options including 

uncertainty quantification, optimization, least squares, design of experiments, and 

parameter study iterators according to the requirement of the problem. These iterators are 

accompanied by the method specific controls which change according to the specific 

method. An example is shown below where epistemic uncertainty analysis is performed 

through Dempster-Shafer theory of evidence. Here sampling is used to calculate the 

interval bounds. It can also be defined to be performed by global optimization approach. 

Number of samples and details about required output are also specified in the method 

section. 

strategy, 

multi_start 

method_pointer = ’NLP’ 

random_starts = 20 

 

strategy, 

pareto_set 

method_pointer = ’NLP’ 

random_weight_sets = 15 
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Following method applies to interval analysis for epistemic uncertainty. Interval 

analysis can either be performed with local or global methods. In case of local method 

sequential quadratic programming (SQP) or nonlinear interior point (NIP) can be used. In 

global approach for the interval analysis either a sampling or a global optimization 

approach can be used. In present study both the approaches were tested. For sampling 

based global approach Latin Hypercube Sampling (LHS) was applied, which takes the 

minimum and maximum samples as the bounds. For optimization based global approach 

the efficient global optimization (EGO) is used to determine the bounds 

 

method 

 id_method = 'UQ1' 

 model_pointer = 'UQ1' 

 nond_global_evidence lhs  

 samples = 10000   

 seed = 59334 rng rnum2  

response_levels = 60.80 61.50 62.00 62.50 63.50 518.0 525.0 535.0 600.0 

probability_levels = 0.1 0.25 0.5 0.75 1.0 0.1 0.25 0.5 1.0  

distribution cumulative                  

output verbose 
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In the following examples Gauss-Newton algorithm is used for optimization with 

associated method specific control settings.  

 
 

 

Vector parameter study is used to study the response along a vector in parameter 

space. It is implemented by further specifying final points and number of steps. 

 
 
 
 

 

method 

 id_method = 'INT1' 

model_pointer = ' INT1 

nond_global_interval_est lhs 

samples = 10000 

method, 

optpp_g_newton 

max_iterations = 15 

convergence_tolerance = 1.e-10 

search_method trust_region 

gradient_tolerance = 1.e-4 
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Method specification in DAKOTA input file is followed by model description. 

Model contains the controls that describe how input parameters are mapped to their 

responses in an iterative process. Model lists down the components necessary to construct 

a particular model instance under a method. There are four main classes of models named 

as single, data fit surrogates, hierarchical approximations, and nested model. Based on the 

specific class, additional model specific controls are also specified. An example of single 

class model is shown below. Model independent controls include a model identifier 

which is used to categorize a particular model within method specifications. Variable and 

response pointers are used to identify the unique sets required to be used with the specific 

models. If only one set of models, variables and responses are present then their 

respective pointers can be omitted.  

 

 
 

 

method, 

vector_parameter_study 

final_point = 5.1 7.3 

num_steps = 10 

model 

id_model = 'UQ1' 

variables_pointer = 'variablesForUQ1' 

responses_pointer = 'forUQ1' 

single 
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Following example use surrogate model using quadratic polynomial for global 

approximation.  

 
 

Nested model have sub-iterators and models which accepts inputs from outer 

level and after performing iteration in inner level pass back the responses to outer level 

which act as inputs for further iterative process. Following example represent a nested 

model where outer level is performing epistemic uncertainty and inner level deals with 

model, 

id_model = ’SURROGATE’ 

surrogate global 

responses_pointer = ’SURROGATE_RESP’ 

dace_method_pointer = ’SAMPLING’ 

correction additive zeroth_order 

polynomial quadratic  

model, 

id_model = ’EPIST_M’ 

nested 

variables_pointer   = ’EP_Out’ 

sub_method_pointer   = ’AL_In’ 

responses_pointer   = ’EP_R’ 

primary_variable_mapping  = ’A’ ’B’ 

secondary_variable_mapping = ’mean’ ’mean’ 

primary_response_mapping  =  1. 0. 0. 0. 0. 0. 0. 0. 

0. 0. 0. 0. 1. 0. 0. 0. 

0. 0. 0. 0. 0. 0. 0. 1. 
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aleatory uncertainty. 

 

Parameters for the analyses are defined in the variable section. These variables 

can be design, state and uncertain variables. Design variables are used in optimization 

where their values are adjusted to reach to optimal solution. These variables can be 

continuous or discrete. They can also have an initial point and a descriptive tag. In case of 

ranges they can be defined with lower and upper bounds. For discrete sets some 

admissible values are assigned to each variable. 

Uncertain variables are used when deterministic value of the variable is not 

known or when the analysis is aimed at quantification of uncertainty. They can be 

categorized as aleatory or epistemic variables. Aleatory uncertainties are irreducible and 

generally have sufficient data points that facilitate in defining the appropriate probability 

distributions. A continuous aleatory uncertain variable can be described by normal, 

lognormal, uniform, loguniform, triangular, exponential, beta, gamma, gumbel, frechet, 

weibull or histogram bin distribution. Similarly discrete aleatory variables can have 

Poisson, Binomial, Negative Binomial, Geometric, Hypergeometric, or Histogram Point 

probability distributions. Each type of distribution has different controls for their 

respective variables. Epistemic uncertainties are inherently reducible and assume very 

little knowledge about the problem. Epistemic uncertain variables are characterized by 

intervals with lower and upper bounds with associated basic probability assignments 

(BPAs). 

State variables are the ones which are mapped through the simulation. They are 

additional model inputs which are neither design variables nor they are uncertain. They 

are important because they bring adaptability in the system and can be used for some 

advanced parametric study in future. State variables can be continuous or discrete. State 

variables are not used by uncertainty quantification, optimization or other algorithms. 
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Design of experimental methods and parameter study techniques use the state variables 

and their impact on the system performance can be measured. 

 

Following example three continuous design variables are defined with an initial 

point followed by lower and upper bounds. 

 

 
 
Uncertain variables with number of uncertain intervals, applicable bounds and 

associated basic probability assignments are shown in this example: 
 

 
 

variables, 

continuous_design = 3 

initial_point    100.5  110.5 125.3 

upper_bounds 120.5  125.6 132.4 

lower_bounds   90.3  97.4   105.2 

descriptors ’X1’ ’X2’ 

variables 

 id_variables = 'variablesForUQ1' 

 interval_uncertain = 5 

 num_intervals   = 3 3 2 2 2 

 interval_probs  = 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.6 0.6 0.4 0.7 0.3 

interval_bounds = 0.85 0.95 0.95 1.05 1.05 1.15 0.85 0.95 0.95 1.05 

1.05 1.15 0.85 0.95 0.95 1.15 0.85 1.0 1.0 1.15 0.85 1.05 1.05 1.15 

 descriptors = 'X1' 'X2' 'X3' 'X4' 'X5' 
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Following example include design, uncertain, and state variables. Different 

classes of these variables are also shown in the same example. 

 

variables, 

id_variables = ’VarAll’ 

 continuous_design = 3 

initial_point    100.5  110.5 125.3 

upper_bounds 120.5  125.6 132.4 

lower_bounds   90.3  97.4   105.2 

descriptors ’X1’ ’X2’ 

 discrete_design_range = 1 

initial_point 150 

upper_bounds 200 

lower_bounds 100 

descriptors ’X3’ 

 normal_uncertain = 2 

means = 200.2, 350.1 

std_deviations = 10.3, 25.2 

descriptors = ’X4’ ’X5’ 

 uniform_uncertain = 2 

lower_bounds = 100.5, 230.2 

upper_bounds = 540.3, 650.2 

descriptors = ’X6’ ’X7’ 
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Interface section is responsible for control on how function evaluations will be 

performed for mapping input parameters to responses. Function evaluations are executed 

by interfaces to simulation codes or algebraic mappings. When the interfaces to 

simulation codes are used, the function evaluations are done through direct function 

invocation, system calls, or forks. If the simulation is linked to DAKOTA, the direct 

function interface can be used to invoke it. This interface improves the computational 

effort involved in the process creation and file operations. To implement this interface 

existing simulations codes need to be converted into library with a subroutine interface. 

The system call simulation interface involves creation of a process that communicates 

with DAKOTA algorithms through a setup of parameter and response files. Although this 

process necessitates the creation of extra setup for files creation, but have an advantage of 

using simulation code in non-intrusive way. This allows the use of simulation code 

without any major change. The fork interface works like system interface and uses the 

external file system to manage the simulation code. It utilizes fork, exec, and wait 

function families. An example each from system and the direct function interface is 

shown below. 

 

 continuous_state = 2 

initial_state = 1.e-4 1.e-6 

descriptors = ’CC1’ ’CC2’ 

 discrete_state_set_int = 1 

initial_state = 50 

set_values = 50 100 150 

descriptors = ’CS1’  
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The responses section in input file controls the behavior of output from execution 

of the simulation code in DAKOTA. The specification comprises of number and type of 

response functions. It can also contain first and second derivatives for the response 

functions. In case of optimization methods, number of objective functions, and number of 

nonlinear equality and inequality constraints are utilized. For least square data set number 

of least square terms, and number of nonlinear equality and inequality constraints are 

appropriate. Finally number of response functions are used in case of uncertainty 

quantification methods. Following example shows a response specification for 

uncertainty quantification case. There is no gradient or Hessian availability. 

 

interface 

 analysis_drivers = '/share/script' 

system 

 parameters_file = 'pr' 

    results_file = 'rs' 

    file_tag 

    file_save 

asynchronous 

evaluation_concurrency = 100 

 

interface, 

 direct 

  analysis_driver = ’textbook’ 
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Following examples show generic responses section for optimization and least 

squares data set. 

 

responses 

 id_responses = 'forUQ1' 

descriptors = 'Elect_Eff' 'Elect_Power' 

num_response_functions = 2 

no_gradients 

no_hessians 

responses, 

num_objective_functions = 1 

num_nonlinear_inequality_constraints = 3 

analytic_gradients 

no_hessians 

 

responses, 

num_least_squares_terms = 5 

numerical_gradients 

method_source dakota 

interval_type central 

fd_gradient_step_size = .001 

no_hessians 
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Input files for interval analysis with sampling and EGO methods were created and 

simulations were carried out. Similarly input files for evidence theory were generated and 

results were analyzed. Selected extracts of input files and results are reproduced in 

Appendix ‘A’ and “B’ respectively. 

 

 

Combined Results: Individual Technologies/ Portfolios 

 

Results from individual technologies and portfolios are presented in the following 

section. These results represent treatment of epistemic uncertainty through interval 

analysis and Dempster-Shafer theory of evidence. The results also include deterministic 

values of respective responses for comparison purposes. 

 

TECH01: Advanced Burner Concept 

 

The Advanced burner concept is aimed at improving the performance of 

combustors [120].  Advanced burner stabilization methods allow quick adjustments to the 

requirements [121]. This technology also target better design process, and improved 

controls. This results in better emission levels.  
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For interval analysis, percent of mixed fuel (Fu) is assigned the normalized 

interval [0.85, 1.15]. Similarly input intervals for Dempster-Shafer theory of evidence 

were assigned in the format shown in Figure 41 and Figure 42. The resulting 

complementary cumulative functions for belief and plausibility (CCBF, CCPF) are 

shown in Figure 48 and Figure 49 for efficiency and power respectively. It also shows the 

deterministic results and ranges of interval estimation outputs. 

 

 

Figure 47: Advanced Burner Concept [122] 
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As discussed earlier, complementary cumulative belief function is the cumulative 

belief that the uncertain value 𝒙� is greater than a given value 𝑥, and complementary 

cumulative plausibility function is the cumulative plausibility that the uncertain value 𝒙� is 

greater than a given value 𝑥.They are generally written as Bel (𝒙�>x) or Pl(𝒙�>x). In Figure 

48 it can be seen that complementary cumulative belief that efficiency improvement is 

more than 0.32% is 0.4 whereas complementary cumulative plausibility that efficiency 

improvement is more than 0.32% is 0.5. 

 
 

 
 

 
Figure 48. Uncertainty Propagation in Technology Valuation for TECH01: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Efficiency 
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TECH07: Compressor performance improvement 

This technology improves the compressor polytropic efficiency. The 

improvement in compressor polytropic efficiency is denoted by Ep.  

 

 

 

 

 

 
Figure 49. Uncertainty Propagation in Technology Valuation for TECH01: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Power 
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Figure 50: Compressor Performance Improvement [123] 

 
 

 
 

 
Figure 51. Uncertainty Propagation in Technology Valuation for TECH07: Plots of CCBF 

and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Efficiency 
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For interval analysis, Ep is assigned the normalized interval [0.85, 1.15] whereas 

for deterministic analysis normalized value of Ep was set to 1. For application of 

Dempster- Shafer theory of evidence, the belief structure on Fu was assigned in the 

similar format shown in Figure 41 and Figure 42. The resulting complementary 

cumulative functions for belief and plausibility (CCBF, CCPF) are shown in Figure 51 

and Figure 52. It also shows the deterministic results and interval estimation outputs. 

 

TECH16: Turbine cooling system improvement 

This technology improves overall performance of gas turbine. It offers an 

improved system of cooling of the hot section components in a gas turbine. This 

 
 

 
Figure 52. Uncertainty Propagation in Technology Valuation for TECH07: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Power 
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technology includes a turbo-compressor and two heat exchangers [124]. The inlet of the 

heat exchanger is in fluid contact with the low temperature discharge air from engine 

compressor booster section. The outlet of the first heat exchanger is in in fluid contact 

with second heat exchanger which is further connected to turbo-compressor. The turbo-

compressor is finally connected to the portions of engine requiring cooling. 

 

 

 

For interval analysis, the thermal efficiencies (Et) of vanes and blades of first 

stage of the turbine is assigned the normalized interval [0.85, 1.15] whereas for 

deterministic analysis normalized value of Et was set to 1. For application of Dempster-

Shafer theory of evidence, the belief structure on Et was assigned in the similar format 

shown in Figure 41 and Figure 42.  The resulting complementary cumulative functions 

 

Figure 53: Turbine Cooling System improvement [124] 
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for belief and plausibility (CCBF, CCPF) are shown in Figure 54 and Figure 55. It also 

shows the deterministic results and interval estimation outputs. 

 

 

 

 

 

 

 
 

 
 

 
Figure 54. Uncertainty Propagation in Technology Valuation for TECH16: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Efficiency 
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TECH23: Material Systems Technology 

This technology improves the Heat conductivity (Hc) of blades and vanes of 

turbine. Protective coating for provision of thermal barrier plays a major role in corrosion 

resistance. Use of advanced alloys further improves resistance to high temperatures. 

 

 
 

 
Figure 55. Uncertainty Propagation in Technology Valuation for TECH16: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Power 
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The structure of only one stage will be shown here. For interval analysis, Hc is 

assigned the normalized interval [0.85, 1.15] whereas for deterministic analysis 

normalized value of Hc was set at 1. For application of Dempster-Shafer theory of 

evidence, the belief structure on Hc was assigned in the similar format shown in Figure 

41 and Figure 42. Cumulative belief and plausibility functions (CBF, CPF) are shown in 

Figure 57 for efficiency. It can be noted that Bel (𝒙� ≤0.27) is 0.3 and Pl(𝒙� ≤0.27) is 0.5.  

 

The Complementary cumulative functions for belief and plausibility are shown in 

Figure 58and Figure 59. It also shows the deterministic results and interval estimation 

 

Figure 56: Material Systems Technology [125] 
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outputs. Complementary cumulative belief function and complementary cumulative 

plausibility function are an alternate presentation of CBF and CPF. They are denoted by 

Bel (𝒙�>x) or Pl(𝒙�>x). 

 

 

 

 

 

 
 

 
 

Figure 57. Uncertainty Propagation in Technology Valuation for TECH23: Plots of 

CBF and CPF [Bel (𝒙� ≤x), Pl(𝒙� ≤x)] for Efficiency 
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Figure 58. Uncertainty Propagation in Technology Valuation for TECH23: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for efficiency 

 
 

 
Figure 59. Uncertainty Propagation in Technology Valuation for TECH23: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Power 
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TECH34: Advanced Turbine Airfoils 

This technology uses advanced metals and innovative airfoil design to improve 

the efficiency of the gas turbines. Improvements in the cooling distributions in the core of 

the blade airfoil help reduce the temperature of the blades. The location and size of 

indentations on the blade surface facilitates the circulation of cooling flows.  

 It would improve the surface temperature (Ts) of the blades and vanes of the 

turbine. Although the impacts of all the stages are assessed, the inputs to only one stage 

are listed here. For interval analysis, the surface temperature (Ts) of the blades and vanes 

of first stage is assigned the normalized interval [0.85, 1.15] whereas for deterministic 

analysis normalized value of Ts was 1. For application of Dempster-Shafer theory of 

evidence, the belief structure on Ts was assigned in the similar format shown in Figure 41 

and Figure 42.  The resulting complementary cumulative functions for belief and 

plausibility are shown in Figure 61and Figure 62. It also shows the deterministic results 

and interval estimation outputs. 

 

Figure 60: Advanced Turbine Airfoils [126] 
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Figure 61. Uncertainty Propagation in Technology Valuation for TECH34: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Efficiency 

 

 
 

 
Figure 62. Uncertainty Propagation in Technology Valuation for TECH34: Plots of CCBF 

and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Power 
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Portfolio 1: TECH07 and TECH16 

When technologies are applied simultaneously, the portfolio of technologies is 

assessed and uncertainty on overall impact of all included technologies is assessed. In this 

study two portfolios are considered. Portfolio 1 consists of two technologies: 

(a) Compressor performance improvement 

(b) Turbine cooling system improvement 

 

 

 

 

 
 

 
 

Figure 63. Uncertainty Propagation in Technology Valuation for Portfolio 1 

(TECH07+TECH16): Plots of CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for efficiency 
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Portfolio 2: TECH01, TECH07, TECH16, TECH23, TECH34 

After assessment of Portfolio 1, another portfolio is selected with five 

technologies and uncertainty analysis is performed. Portfolio 2 consists of following 

technologies: 

(a) Advanced Burner Concept 

(b) Compressor performance improvement 

(c) Turbine cooling system improvement 

(d) Material Systems Technology 

(e) Advanced Turbine Airfoils 

 
 

 
Figure 64. Uncertainty Propagation in Technology Valuation for Portfolio 1: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Power 
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Figure 65 and Figure 66 show cumulative belief function (CBF) and cumulative 

plausibility function (CPF). This is similar to cumulative distribution function (CDF) and 

CBF is the cumulative belief that uncertain variable 𝒙� is less than a given value of x.  

 

Similarly CPF represent the cumulative plausibility that uncertain variable 𝒙� is 

less than a given value of x. CBF and CPF are denoted as Bel (𝒙� ≤x) and Pl(𝒙� ≤x), 

respectively. In Figure 65, it can be seen that cumulative belief that efficiency 

improvement is less than or equal to 1.9% is 0.3 and cumulative plausibility that 

efficiency improvement is less than or equal to 1.9% is 0.9. Similar deductions can be 

assumed from Figure 66. 

 

 

 
 

Figure 65. Uncertainty Propagation in Technology Valuation for Portfolio 2 

(TECH01+TECH07+TECH16+TECH23+TECH34): Plots of CBF and CPF [Bel 

(𝒙� ≤x), Pl(𝒙� ≤x)] for Efficiency 
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Figure 67 and Figure 68 represent the complementary cumulative belief function 

(CCBF) and complementary cumulative plausibility function (CCPF) for efficiency and 

power, respectively. In this case there were high numbers of intervals thus large number 

of output intervals was created. This resulted in the CCBF and CCPF curves with fine 

steps.  

 
Figure 66. Uncertainty Propagation in Technology Valuation for PF2: Plots of CBF and 

CPF [Bel (𝒙� ≤x),  Pl(𝒙� ≤x)] for Power 
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Figure 67. Uncertainty Propagation in Technology Valuation for PF 2: Plots of CCBF and 

CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Efficiency 

 
 
Figure 68. Uncertainty Propagation in Technology Valuation for PF2: Plots of CCBF 

and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Power 
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A comparison is also made to assess the impact of different configurations of 

intervals within the same extreme minimum and maximum values. It is shown Figure 69 

and Figure 70. It can be observed that CCBF2 and CCPF2 have coarser intervals and thus 

producing bigger step sizes. 

 
 
 
 
 
 

 

 

 
 

Figure 69. Uncertainty Propagation in Technology Valuation for PF2: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Efficiency: Comparison between 

different interval settings 
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Figure 70. Uncertainty Propagation in Technology Valuation for PF2: Plots of 

CCBF and CCPF [Bel (𝒙�>x) or Pl(𝒙�>x)] for Power: Comparison between 

different interval settings 
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Decision Making under Uncertainty 

Margin analysis provides better understanding of the results that are obtained 

from quantification of epistemic uncertainty. It helps quantify the difference between the 

required level of performance and the estimated level of performance. If the required 

level of performance is achieved, it is represented by positive margin. In case the 

requirement is not met, the margin has a negative value. As shown previously, interval 

analysis based on Latin Hypercube sampling (LHS) of portfolio 2 yielded the interval for 

power improvement as [83.483, 98.953] as shown in Figure 71. Assume that there are 

two requirements for power improvements namely R1 and R2. Margin analysis of 

following two requirements will be discussed here: 

 

R1: Power improvement should not be more than 100.37 MW. 

R2: Power improvement should not be more than 98.37 MW. 

 

For first case we have R=100.37 MW. It has also discussed previously that: 

 

𝑀(𝑅,𝑃|𝑒) = 𝑅 − 𝑃 

 

Where M represents the margin, e is the vector of epistemic uncertain parameters. 

In case M≥0, it means that requirement is met, whereas M<0 shows that requirement is 

not met. 

 

So in first case: M= [16.881, 1.422]. As M≥0, so requirement is met. 

In second case M= [14.881, -0.578] and margin is not fulfilled in this case as a 

negative value is included in the margin M. 
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In case of results for portfolio 2 from Dempster-Shafer theory of evidence ( 

Figure 71), the requirement number 1 yields value of both CBF and CPF as 1.  

𝑃100.37 = {𝑃�:𝑃� ∈ 𝑃,𝑃� ≤ 100.37} 

Hence 𝑃100.37 can be represented as: 

[𝐵𝑒𝑙𝑃(𝑃100.37),𝑃𝑙𝑃(𝑃100.37)] = [1.0, 1.0] 

But in case of requirement 2: 

𝑃98.37 = {𝑃�:𝑃� ∈ 𝑃,𝑃� ≤ 98.37} 

𝑃98.37 can be represented as: 

[𝐵𝑒𝑙𝑃(𝑃98.37),𝑃𝑙𝑃(𝑃98.37)] = [0.9, 1.0] 

 

 

 
 

Figure 71. Uncertainty Associated with margin for Power Improvement 
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𝐵𝑒𝑙𝑃(𝑃98.37
𝑐 ) = 0.1 

 

This implies that there is evidence supporting the fact that power requirement can 

be greater than 98.37 MW, which could not be fulfilled with present set of technologies. 

As discussed in this example of margin analysis, it can be a powerful tool for 

decision makers. It presents an intuitive way to look at the difference between the 

required and estimated levels of performance in the context of epistemic uncertainties. 

Apart from margin analysis presented earlier, these results can be utilized to perform 

other analyses. Some of other analyses are listed below: 

 

(a) Epistemic uncertainty with specified bound 

(b) Epistemic uncertainty with specified bounding interval 

(c) Epistemic uncertainty with uncertain bound 

 

These analyses can be performed according to the available information, type of 

input variables and objective of the study. 

 

Now to further analyze these results different cases for quantification of margin 

and uncertainty (QMU) will be discussed. First a case uncertainty with specified bound 

on power improvement is considered.  In such cases the requirement is plotted against the 

cumulative belief and plausibility functions and measured against expected performance 

parameters. Bounds on either side that is lower and upper perspective can be assessed. In 

Figure 72 it can be seen that all values of power improvement are above the lower bound 

(R)b1. The plausibility of power improvement falling below (R)b2 is 0.8 and associated 

value of belief is 0.1.  
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Similarly the analysis can be performed for the values of margin located beyond 

the upper value of complimentary cumulative belief and plausibility functions. It can be 

observed from Figure 73 that all values of for power improvement are below the bound 

(R)b4. In case of (R)b3 the plausibility of power improvement falling below is 0.3 and 

belief that value of power improvement can fall below (R)b3 is 0.  

 
 
 

 

 

Figure 72. Uncertainty with Specified Bounds on Power Improvement 
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In terms of margin 𝑀(𝑅,𝑃|𝑒), bounds (R)bk with k=1,2,3,4 as shown in Figure 

72 and Figure 73, can be generalized as following: 

 

𝑀(𝑅,𝑃|𝑒) = �
(R)bk − P, 𝑓𝑜𝑟 𝑘 = 1,2
𝑃 − (R)bk, 𝑓𝑜𝑟 𝑘 = 3,4 

 
𝑀(𝑅,𝑃|𝑒) > 0 will indicate that specific requirement is met, whereas 

𝑀(𝑅,𝑃|𝑒) < 0 will indicate that requirement is not met. 

 
In certain cases it becomes necessary to analyze bounding intervals for 

quantification of margin and uncertainty. The probability of performance with a specific 

 

 

Figure 73. Uncertainty with Specified Bounds on Power Improvement 
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bounding interval is calculated. Margins for both lower and upper bounds, represented by 

(R)lb and (R)ub, are analyzed for estimated performance parameters. In this case value of 

(R)lb  is assumed to be 88 MW and that of (R)ub is taken as 98 MW. Belief and 

plausibility for lower bound are shown as Bel(X+) and Pl(X+), whereas for upper bound 

they are shown as Bel(X-) and Pl(X-). From Figure 74, it can be seen that specified 

bounding interval results in following uncertainty for power improvement: 

 

Belp(X+) = 0.8    Plp(X+) = 1.0 

and 
Belp(X-) = 1.0    Plp(X-) = 0.1 

 
 
 

 

 

Figure 74. Uncertainty with Specified Bounding Interval on Power Improvement 
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The above representations explain the uncertainty in whether the specified 

margins will be met or otherwise when evidence theory based approach is utilized. In 

case of interval analysis, if the performance bounds are contained within the specified 

bounding interval the requirements are met. In a corresponding interval analysis of power 

improvement as shown in Figure 74, the uncertainty interval was [86.37 99.37]. This 

implies that the margins are not met, when the bounding interval is [88 98]. 

 

Another possibility of uncertainty is regarding the bounds themselves. In some 

cases the location of bounds are not clearly defined. The bounds can have different 

locations based on the various conditions such as operational environment and operating 

conditions. Now if the conditions are not exactly known for a specific requirement, it 

suggests that there is an uncertainty in the location of bound itself. In this case each 

bound can be treated as an uncertain bounding interval and analysis can be performed 

accordingly.  

Quantification of margin and uncertainty (QMU) involves three aspects namely 

quantification, margins and uncertainty. Margins (M) in QMU involve the calculations of 

difference between requirements (R) and performance (P) of a system. In case of a single 

value it is simply represented by M(R,P) such that: 

 

M(R,P) = R-P, if 𝑃 ≤ 𝑅 

M(R,P) = P-R, if 𝑃 ≥ 𝑅 

 

If M(R,P) is equal to or more than zero, the requirement is met but if M(R,P) is 

less than zero, the requirement is not met. In many cases the requirement and 

performance correspond to a set of values and treated as vectors. Both requirement (R) 
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and expected performance (P) are represented by vectors and margin is calculated by 

comparing their corresponding elements. This analysis may be more complex than a 

situation with single number subtraction only. They can have the following structure: 

 

R=[R1, R2, R3, …, Rn] 

and  

P=[P1, P2, P3, …, Pn] 

 

Then M is denoted by a function M(R, P). Now if M(R, P) ≥ 0, the requirements 

are assumed to be met, but in case of M(R, P) < 0, the requirements are not met. 

Similarly it is also possible to have M(R, P) as a vector itself and can be represented as 

following: 

 

M(R, P)=[ M1(R1, P1), M2(R2, P2), …, Mi(Ri, Pi), …, Mn(Rn, Pn)] 

 

To decide on the requirement conditions the minimum or weighted average of the 

components i.e. Mi(Ri, Pi) is taken. These representations of the margin do not assume 

any uncertainty in margin, but if the uncertainty is present in the margins, an additional 

component of uncertainty eM is included in the analysis. Margin is then denoted by M(R, 

P| eM), where eM=[ eM1, eM2, eM3, ….., eMn]. The values of eM are often not known precisely 

and associated epistemic uncertainty can be characterized through Dempster-Shafer 

theory of evidence. 

The quantification of these margins requires a deep understanding of 

mathematical components as well as the actual performance uncertainties. If P and R 

represent performance and requirement respectively, eR and eP represent epistemic 

uncertainties associated with P and R. In case a requirement does not have any 
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uncertainty associated with it, it can be simply shown by a vector “R”, otherwise it is 

represented by a vector function R(eR). Similarly a function P(eP) represents a vector 

function for epistemic uncertainty associated with performance of the system. These 

functions define margin as following: 

  

M(R, P|e)=M[R(eR), P(eP)] 

 

Calculations of functions R(eR) and P(eP) are sometimes very complex and 

computationally expensive.  

The presentation of QMU needs to be planned in such a way that it conveys the 

intended results. Cumulative or counter-cumulative belief and plausibility functions with 

vertical line acting as margin or requirement on performance index of the system 

represent a good depiction of the problem. For lower and upper bounds different setup is 

needed to extract the useful information. It is also emphasized that efforts to reduce the 

uncertainty results to a single number need to be carefully evaluated. Lot of useful 

information is lost while trying to over-simplify the uncertainty analysis.   
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Discussions on Technology Insertion Based on Technology Readiness Level 

 
Many factors influence technology investment decisions. One of the important 

factors is the technology readiness levels (TRL)  [127] of respective technologies. Based 

on available time for program launch, certain technologies can be included or excluded 

from the portfolio prioritization process. TRL and associated projected funding for 

technologies can be used to prioritize the technology portfolios in various scenarios. 

Figure 75 shows a representative timeline for selection of technologies. The vertical 

dashed blue line in Figure 75 shows present time on a 16 year timeline horizontal axis. 

Horizontal bars show TRL’s according to timescale. For example, Tech 1 can achieve 

TRL 9 in around four years from now, whereas Tech 4 would take another 8 years to be 

ready for program insertion. Although TRL 9 is considered to be the phase where 

technology has been tested in actual environment and finally ready for integration into 

the system, sometimes organizations are just interested in a lower TRL before declaring a 

technology readiness for its inclusion in a program for their budgetary decisions. This is 

dictated by the strategic approach and acceptable risk level of the organization. For 

example, some organizations consider TRL 6 to have acceptable risk level to be 

considered for program insertion. 

The cost associated with each TRL can sometimes be enhanced to accelerate the 

technology development process. Although it is not always possible due to sequential 

nature of technology development, additional funding may be used to get to a desired 

TRL in shorter time. In Figure 75, Tech 5 is showing this behavior. Normal development 

of Tech 5 would take eight years to reach to TRL 9 whereas an accelerated schedule of 

Tech 5 would require six years to mature. Accelerated schedules incur a cost penalty 

associated with them. 
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The balance between cost and TRL can be utilized to generate and assess various 

scenarios. Some of the common scenarios are shown in Figure 75. A brief explanation of 

them is as following: 

(a) Scenario 1: Program launch at specified time with limited availability of 

funds. 

(b) Scenario 2(a): Program launch at a specified time with high level of 

available funding. Budget allows accelerated development of technology 

to accommodate it within compressed timeframe. 

 

(c) Scenario 2(b): Same as 2(a), but with a specified TRL (e.g. TRL=3). This 

sometime helps to demonstrate the conceptual performance achievements 

with existing portfolio. 

(d) Scenario 3(a): Program launch date is far enough, such that expected 

development of all the technologies is possible. Available funding is 

constrained. 

 

Figure 75. Technology insertion into program according to TRL timings 
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(e) Scenario 3(b): Program launch date is far enough, such that expected 

development of all the technologies is possible. Target performance 

objectives are required to be achieved while minimizing the required 

funding. 
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CHAPTER 8 

CONCLUSIONS 

 
Technology valuation for future technologies is a complex problem that requires 

analysis of the concepts, which have not been tested yet. This also implies that in such 

cases the available data is not sufficient make future performance predictions. There are 

many uncertainties in this process.  

 

Knowledge and experts 

Knowledge elicitation is a foundation for the exploration of new ideas in 

technological advancements. Subject matter expert can provide a good insight on the 

impact of technologies on the systems. However the knowledge elicitation for subject 

matter expert remains a complicated process. If this process is not handled carefully, it 

can lead to misleading conclusions. 

Expert elicitation requires collection of their opinion in the form which is useful 

to further the knowledge about the system in question. It is important to understand how 

these opinions are formed and how they should be treated. Opinions are processed 

manifestation of information and knowledge that can be assessed through the justifiable 

true belief (JTB) criteria and are not necessarily infallible. Opinions represent the 

propositional type of knowledge. These expert opinions may not meet all the conditions 

of JTB and reliability theory of knowledge; hence, they can be proven false or negated by 

other experts later on. Careful selection of experts can help minimize the error but the 

analyst should be able to identify and quantify the uncertainties in the process. Elicitation 

process needs to be transparent, well-structured and well-documented. It is observed that 

in case of lack of knowledge about the problem, epistemic uncertainty is most suitable 

representation of the process. It reduces the number of assumptions during the elicitation 
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process, when experts are forced to assign probability distributions to their opinions 

without sufficient knowledge. Epistemic uncertainty can be quantified by many 

techniques. In present research it is proposed that interval analysis and Dempster-Shafer 

theory of evidence are better suited for quantification of epistemic uncertainty in the 

technology valuation process.  

Another challenge in expert elicitation is combining the evidence from different 

experts. In case of quantitative elicitation, generally the experts are asked to give their 

opinion on quantities, rather than any indirect utility functions or ranking. To combine 

these opinions, Dempster’s rule of combination is suggested in this study. Suggested 

elicitation process requires that experts be given independence by just proposing the 

ranges for the elicited entities. They can offer more than one range for the same variable 

with pre-assigned basic probability assignments for each sub interval. These intervals can 

be adjacent, apart or overlapping. Within these ranges, no distribution is assigned to these 

quantities. They can assume any value within the range. 

 

Uncertainty propagation 

Epistemic uncertainties represent lack of knowledge. In order to quantify and 

propagate this type of uncertainty without requiring lot of assumptions, an appropriate 

theory needs to be selected. Some of these techniques include probability theory, the 

theory of fuzzy sets, Dempster-Shafer theory, possibility theory, interval analysis, second 

order probability and convex model of uncertainty. These techniques are discussed 

previously in this document. Some techniques can handle epistemic uncertainties only, 

whereas some can handle both aleatory and epistemic type of uncertainties. For current 

study Dempster-Shafer theory of evidence is utilized along with interval analysis for 

comparison of results. 
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Interval analysis 

Interval analysis technique is used when there is no other information is available, 

except that input variables lie within a certain interval. There are two ways to implement 

interval analysis: Sampling based and Optimization based. If interval analysis is 

implemented on computationally expensive environment, it may require prohibitive time 

and resources, but if used in combination with surrogate modeling, it considerably 

reduces the computational effort. For sampling based analysis, Latin Hypercube sampling 

(LHS) was used. Optimization through efficient global optimization (EGO) technique 

was implemented. It was observed that both techniques provided accurate results which 

were very close to each other. EGO technique reached the solution with fewer function 

calls. 

Dempster-Shafer Theory of Evidence 

   Dempster-Shafer theory of evidence is a non-intrusive method for quantification 

of epistemic uncertainty. When the available information is non-specific, ambiguous or 

conflicting, evidence theory relaxes the assumptions of probability theory. In case of 

multiple experts, the combination of the evidence is performed by different methods 

including Dempster rule and weighted mixing rule of combination. Dempster rule was 

later applied due to the compatible nature of the problem, type of inputs from elicitation 

and ease of implementation.  

Dempster-Shafer theory of evidence is applied for uncertainty quantification for 

technology valuation of an aircraft engine. A second order response surface surrogate 

was created to map input variables to objective functions. Sensitivity study was carried 

out against all the outputs and their sensitivities to variability in the input efficiencies 

were quantified. The inputs which do not have any significant impact on the outputs were 

filtered out from simulations for the purpose of uncertainty propagation. This was 
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followed by study on impact of sample size on time required and accuracy of the 

solution. Sample size of 103, 104 and 105 were evaluated. Sample size of 104 was used as 

it was able to predict the solution accurately. Cumulative belief and cumulative 

plausibility distributions were obtained after application of Dempster-Shafer theory of 

evidence. Comparisons were made with belief structures obtained from different rules of 

combination and probability theory.     

 

Technology interactions 

Technology valuation involves elicitation from experts about possible outcome of 

new technologies on the system. Various methods have been adopted to quantify and 

apply this impact on the system to assess the objective functions. Many of these methods 

use a technology impact matrix (TIM) to capture the independent, one-at-a-time, impacts 

of all the technologies on k-factors and performance metrics. Current methods do not 

account for nonlinear interactions between technologies. This may lead to erroneous 

results for some inherently nonlinear problems. This can also lead to situations which 

violates the physical constraints of the problem. To overcome this problem, a new set of 

technology synergy matrices (TSM) is introduced to capture the higher order interactions 

between technologies through subject matter expert opinion and historical data. This 

newly introduced Technology synergy matrices would record the technology interactions 

and better represents the physics of problem. A detailed description of TSMs and their 

usage in conjunction with technology impact matrices and technology compatibility 

matrices is discussed. Various combination methods are also proposed, which can be 

applied according to the type of interactions. A notional aircraft design problem is 

addressed with the newly proposed setup. This setup is successfully implemented on the 

example problem. Comparisons are also made between all proposed combination 

methods.   
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Large Scale Example Application 

A test case for quantification of epistemic uncertainty on a large scale problem of 

combined cycle power generation system was applied. A detailed multidisciplinary 

modeling and simulation environment was adopted for this problem. High fidelity 

simulations were very expensive for this multidisciplinary setup, so a neural network 

based surrogate model was developed. This surrogate model significantly reduced the 

computational effort.  

Expert elicitation was done for the five selected technologies from different areas. 

Expert elicitation was obtained for various analyses based on deterministic, interval 

estimation and Dempster-Shafer theory of evidence. All three types of approaches were 

implemented for comparison. Sampling based interval analysis was carried out on power 

generation problem. It is then compared with Optimization based interval analysis. 

Sampling based uncertainty estimation was easy to implement, but it took more time and 

function calls than optimization based analysis. Finally Dempster-Shafer theory of 

evidence was applied on the combined cycle power generation problem. It was 

implemented through surrogate model as well, because it can be very expensive if the 

modeling and simulation code uses excessive computational effort. All the five 

technologies and two portfolios were analyzed. The results were presented in the form of 

cumulative belief functions (CBF), cumulative plausibility functions (CPF), 

complementary cumulative belief functions (CCBF) and complementary cumulative 

plausibility functions (CCPF). These results are graphically compared with interval 

analyses and deterministic approach. This comparison clearly shows the amount of 

information that is available from each analysis. In interval estimation, only bounds of 

the objective function are known. In Dempster-Shafer theory of evidence, a stair like 

functions namely CBF and CPF provide more elaborate details. At the end margin 

analyses were performed to utilize these epistemic based uncertainty results. In margin 
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analysis different target values were evaluated against technology capabilities obtained 

from interval analyses and Dempster-Shafer theory of evidence. 

Future Work 

In this study the focus has been on the parameter uncertainty. Another aspect 

which can be combined with this study is to combine model uncertainty as well. This 

approach is important where multi-fidelity codes are applicable or where lack of 

information exists for simulation conditions. In such cases adding model form uncertainty 

better captures the overall uncertainty of the system. 

 

Technology synergy matrices (TSM) approach captures the non-linear impact of 

technology interactions in a portfolio. It may be applied to previously analyzed 

technology valuation problems to improve upon the results. 

 

In this research Dempster-Shafer theory of evidence and interval analysis 

approaches are applied successfully on a combined cycle power generation system. The 

uncertainty quantification is focused on epistemic uncertainty, which is different 

approach from the previous technology valuation efforts i.e. based on probability theory. 

Epistemic uncertainty can be assumed and implemented in technology valuation 

processes in other areas as well. 

Manufacturing readiness levels (MRL) are used to identify manufacturing 

maturity of a technology and complements technology readiness levels. Figure 76 shows 

the relationship between manufacturing readiness levels with technology readiness levels. 

It helps mitigate manufacturing related risks. Incorporation of manufacturing readiness 

levels in technology development process ensures that the technology is ready to be 

manufactured as soon it passes its development phase. MRL can be introduced in the 

process for epistemic uncertainty perspective.    
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Figure 76: Manufacturing Readiness Levels and their Relationship to Technology 

Readiness Levels   
(http://www.dtic.mil) 

 
 

Summary of Contributions 

This research offer following contributions upon its successful completion: 

 

(a) Based on literature search on process of acquisition of human knowledge, it is 

suggested that expert opinion is more likely to be subjected to epistemic 

uncertainty.  

(b) For combination of evidence, exploration and implementation of Dempster rule of 

combination and weighted rule of combination. 

(c) Application of interval analysis on quantitative technology valuation to capture 

epistemic uncertainty. Application and comparison of Latin hypercube sampling 

(LHS) and efficient global optimization (EGO) approaches. 

(d) Application of Dempster-Shafer theory of evidence to quantify and propagate 

epistemic uncertainties in technology valuation processes. 

(e) Implementation of margin analysis for technology valuation process. 

http://www.dtic.mil/
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(f) Introduction of technology synergy matrices to better capture the nonlinear effects 

of technologies. This newly introduced layer in technology valuation process 

improves the technology impact estimation. 

(g) Use of real options in integrated environment for financial modeling within 

technology valuation process. 
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APPENDIX A 

INTRODUCTION TO DAKOTA  

DAKOTA (Design and Analysis toolkit for Optimization and Terascale 

Applications) is a project by Sandia National Laboratories. It encompasses a wide array 

of algorithms that support advanced methods for optimization, sensitivity analyses, 

parameter estimation and uncertainty quantification[118, 119]. It helps address many key 

questions arise from simulation-based engineering problems. In sensitivity analyses, the 

crucial parameters of the system are evaluated and their impacts on the key metrics are 

assessed. Uncertainty quantification addresses the issues regarding variability, reliability 

and robustness of the system with the help of quantification of margin and uncertainty 

(QMU). Optimization helps identify the pest performing design or control and calibration 

supports regarding the models and parameters that best match the experimental data. To 

achieve these intended benefits for different needs and analyses, algorithms both from 

classical theories as well as advanced methods are incorporated. Optimization can be 

performed with gradient and nongradient based methods whereas uncertainty 

quantification can be done with sampling, interval, stochastic expansion, reliability, and 

epistemic nondeterministic methods. Sensitivity analysis can be applied with design of 

experiments (DOE) and parameter study methods. Parameter estimation is done with the 

help of nonlinear least squares methods. In most of the involved engineering applications 

these methods are used in conjunction with broader applications such as optimization 

under uncertainty, and mixed aleatory-epistemic uncertainty. 

JAGUAR (Java GUI for Applied Research) is the graphical user interface (GUI) 

for creation, modification and execution of DAKOTA input files. Although DAKTA can 

be executed on command line as well, but JAGUAR have many additional GUI based 

features. It can parse the DAKOTA input file and offers a complete set of problem setup 

and option specifications. It can read an existing input file, create a new file and have a 



167 

 

set of templates which can help the user to build a method specific input file. In the GUI, 

there are two sections for problem definition. First section defines the model and 

describes how variables are linked to the responses through interfaces. The next section 

defines the flow and iteration of the problem. In this section strategy and respective 

methods are defined. JAGUAR performs inputs validation as the values are fed in the 

GUI based forms. In case of conflicting inputs, the user is alerted to correct the problem 

interactively.  

Two sections are dedicated to perform analysis and visualize results in JAGUAR. 

In execution related section, options for checking, and execution of code are provided. In 

execution part Core run, pre-run, and post-run options are available. JAGUAR can 

perform additional checking of the input file to determine any problems in the structure 

of the input file. After the checking the input file, the analysis is executed. All the scripts 

need to have valid paths to avoid any problem during the execution phase. Some methods 

such as parameter study and design of experiments require a pre-run component to 

generate required files or data for the main execution of the problem. The pre-run option 

is used in these cases to provide the complete sets of input to the code. Similar to pre-run 

requirement a post-run option is used when an output statistic is helpful in analysis of the 

results. They are particularly useful in sensitivity analysis. Results visualization display 

the results from the execution of the input file. JAGUAR also has the capability to 

monitor the job status for the DAKOTA jobs submitted to a remote cluster.  
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APPENDIX B 

SAMPLE INPUT FILES FOR UNCERTAINTY QUANTIFICATION 

Dempster Shafer Theory of Evidence  

 

strategy 

 tabular_graphics_data 

 single_method 

 method_pointer = 'EV1' 

 

 

method 

 id_method = 'EV1' 

 model_pointer = 'EV1' 

 nond_global_evidence lhs  

  samples = 10000   

  seed = 59334 rng rnum2  

  response_levels = 1.5 1.7 1.9 2.1 2.3 2.5 85 88 91 94 97 100 

probability_levels = 0.1 0.25 0.5 0.75 0.9 1.0 0.1 0.25 0.5 0.75 0.9 

1.0  

  distribution cumulative                  

  output verbose 
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variables 

 id_variables = 'variablesForEV1' 

 # PortFolio_2: (T1,T2,T3,T4,T5)  

 interval_uncertain = 5 

  num_intervals   = 3 3 2 2 2 

  interval_probs  = 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.6 0.6 0.4 0.7 0.3 

interval_bounds = 0.85 0.95 0.95 1.05 1.05 1.15 0.85 0.95 0.95 1.05 

1.05 1.15 0.85 0.95 0.95 1.15 0.85 1.0 1.0 1.15 0.85 1.05 1.05 1.15 

  descriptors = 'T1' 'T2' 'T3' 'T4' 'T5' 

 continuous_state = 30 

initial_state = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 

descriptors =  'T6' 'T7' 'T8' 'T9' 'T10' 'T11' 'T12' 'T13' 'T14' 'T15' 

'T16' 'T17' 'T18' 'T19' 'T20' 'T21' 'T22' 'T23' 'T24' 'T25' 'T26' 'T27' 

'T28' 'T29' 'T30' 'T31' 'T32' 'T33' 'T34' 'T35' 

 
 
interface 

 analysis_drivers = '/share/TechValuation/EV1.bash' 

 system 

  parameters_file = 'pr' 

  results_file = 'rs' 

  file_tag 

  file_save 

 asynchronous 

  evaluation_concurrency = 100 
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responses 

 id_responses = 'forEV1' 

 descriptors = 'Elect_Eff' 'Elect_Power' 

 num_response_functions = 2 

 no_gradients 

 no_hessians 

 

 

model 

 id_model = 'EV1' 

 variables_pointer = 'variablesForEV1' 

 responses_pointer = 'forEV1' 

 single 
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Interval Analysis 

  

strategy 

 tabular_graphics_data 

 single_method 

 method_pointer = 'INT1' 

 

method 

 id_method = 'INT1' 

 model_pointer = 'INT1' 

 nond_global_interval_est lhs 

  samples = 10000 

 

  

variables 

 id_variables = 'variablesForINT1' 

 # PortFolio_2: (T1,T2,T3,T4,T5) 

interval_uncertain = 5 

         num_intervals   = 1 1 1 1 1 

         interval_probs  = 1.0 1.0 1.0 1.0 1.0 

         interval_bounds = 0.85 1.15 0.85 1.15 0.85 1.15 0.85 1.15 0.85 1.15 

         descriptors = 'T1' 'T2' 'T3' 'T4' 'T5'  
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continuous_state = 30 

initial_state = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

descriptors =  'T6' 'T7' 'T8' 'T9' 'T10' 'T11' 'T12' 'T13' 'T14' 'T15' 'T16' 'T17' 

'T18' 'T19' 'T20' 'T21' 'T22' 'T23' 'T24' 'T25' 'T26' 'T27' 'T28' 'T29' 'T30' 

'T31' 'T32' 'T33' 'T34' 'T35' 

 

interface 

 analysis_drivers = '/share/TechValuation/INT1.bash' 

 system 

  parameters_file = 'pr' 

  results_file = 'rs' 

  file_tag 

  file_save 

 asynchronous 

  evaluation_concurrency = 100 

 

responses 

 id_responses = 'forINT1' 

 descriptors = 'Elect_Eff' 'Elect_Power' 

 num_response_functions = 2 

 no_gradients 

 no_hessians 

 



173 

 

 
   

model 

 id_model = 'INT1' 

 variables_pointer = 'variablesForINT1' 

 responses_pointer = 'for INT1' 

 single 
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APPENDIX C:  

OUTPUT RESULTS FILES 

This Appendix has selected extracts from the results of the following simulations: 

(a) Technology Portfolio 2: Dempster-Shafer Theory of Evidence 

(b) Technology Portfolio 2: Interval Analysis 

(c) Technology Portfolio 1: Dempster-Shafer Theory of Evidence 

(d) Technology Portfolio 1: Interval Analysis 

(e) Tech01: Dempster-Shafer Theory of Evidence 

(f) Tech01: Interval Analysis 

(g) Tech07: Dempster-Shafer Theory of Evidence 

(h) Tech07: Interval Analysis 

(i) Tech16: Dempster-Shafer Theory of Evidence 

(j) Tech16: Interval Analysis 

(k) Tech23: Dempster-Shafer Theory of Evidence 

(l) Tech23: Interval Analysis 

Technology Portfolio 2: Dempster-Shafer Theory of Evidence 
 
Technology Portfolio 2 (Tech1 + Tech7+ Tech16+ Tech23+ Tech34) 
Writing new restart file dakota.rst 
methodName = nond_global_evidence 
gradientType = none 
hessianType = none 
>>>>> Running nond_global_evidence iterator. 
>>>>> nond_global_evidence: pre-run phase. 
>>>>> nond_global_evidence: core run phase. 
NonD lhs Samples = 10000 Seed (user-specified) = 59334 
>>>>> Identifying minimum and maximum samples for response function 1 within cells 1 
through 72 
>>>>> Identifying minimum and maximum samples for response function 2 within cells 1 
through 72 
>>>>> nond_global_evidence: post-run phase. 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
ElectricalNetEff: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
ElectricalNetPower: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
------------------------------------------------------------------ 
Belief and Plausibility for each response function: 
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Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetEff:   
            
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ----     
2.02E-02 1.55E+00 1.65E+00 1     
2.69E-02 1.59E+00 1.70E+00 2     
2.02E-02 1.62E+00 1.71E+00 3     
1.51E-02 1.52E+00 1.65E+00 4     
2.02E-02 1.55E+00 1.65E+00 5     
1.51E-02 1.58E+00 1.76E+00 6     
2.02E-02 1.49E+00 1.59E+00 7     
2.69E-02 1.55E+00 1.65E+00 8     
2.02E-02 1.57E+00 1.69E+00 9     
3.02E-02 1.64E+00 2.39E+00 10     
4.03E-02 1.64E+00 2.44E+00 11     
3.02E-02 1.71E+00 2.43E+00 12     
2.27E-02 1.61E+00 2.35E+00 13     
3.02E-02 1.59E+00 2.41E+00 14     
2.27E-02 1.74E+00 2.38E+00 15     
3.02E-02 1.61E+00 2.31E+00 16     
4.03E-02 1.62E+00 2.37E+00 17     
3.02E-02 1.69E+00 2.44E+00 18     
1.34E-02 1.63E+00 1.73E+00 19     
1.79E-02 1.66E+00 1.73E+00 20     
1.34E-02 1.69E+00 1.76E+00 21     
1.01E-02 1.58E+00 1.66E+00 22     
1.34E-02 1.64E+00 1.75E+00 23     
1.01E-02 1.66E+00 1.76E+00 24     
1.34E-02 1.54E+00 1.65E+00 25     
1.79E-02 1.57E+00 1.67E+00 26     
1.34E-02 1.63E+00 1.75E+00 27     
2.02E-02 1.71E+00 2.38E+00 28     
2.69E-02 1.80E+00 2.49E+00 29     
2.02E-02 1.80E+00 2.48E+00 30     
1.51E-02 1.74E+00 2.39E+00 31     
2.02E-02 1.72E+00 2.43E+00 32     
1.51E-02 1.78E+00 2.25E+00 33     
2.02E-02 1.72E+00 2.36E+00 34     
2.69E-02 1.71E+00 2.42E+00 35     
2.02E-02 1.70E+00 2.42E+00 36     
8.64E-03 1.61E+00 1.71E+00 37     
1.15E-02 1.64E+00 1.75E+00 38     
8.64E-03 1.70E+00 1.77E+00 39     
6.48E-03 1.57E+00 1.66E+00 40     
8.64E-03 1.61E+00 1.71E+00 41     
6.48E-03 1.65E+00 1.72E+00 42     
8.64E-03 1.58E+00 1.65E+00 43     
1.15E-02 1.60E+00 1.67E+00 44     
8.64E-03 1.63E+00 1.70E+00 45     
1.30E-02 1.73E+00 2.39E+00 46     
1.73E-02 1.77E+00 2.45E+00 47     
1.30E-02 1.81E+00 2.44E+00 48     
9.72E-03 1.69E+00 2.38E+00 49     
1.30E-02 1.74E+00 2.43E+00 50     
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9.72E-03 1.83E+00 2.26E+00 51     
1.30E-02 1.67E+00 2.39E+00 52     
1.73E-02 1.76E+00 2.38E+00 53     
1.30E-02 1.67E+00 2.47E+00 54     
5.76E-03 1.69E+00 1.72E+00 55     
7.68E-03 1.70E+00 1.80E+00 56     
5.76E-03 1.75E+00 1.86E+00 57     
4.32E-03 1.65E+00 1.71E+00 58     
5.76E-03 1.68E+00 1.74E+00 59     
4.32E-03 1.73E+00 1.74E+00 60     
5.76E-03 1.66E+00 1.67E+00 61     
7.68E-03 1.65E+00 1.70E+00 62     
5.76E-03 1.68E+00 1.71E+00 63     
8.64E-03 1.72E+00 2.43E+00 64     
1.15E-02 1.78E+00 2.53E+00 65     
8.64E-03 1.90E+00 2.41E+00 66     
6.48E-03 1.73E+00 2.32E+00 67     
8.64E-03 1.77E+00 2.50E+00 68     
6.48E-03 1.99E+00 2.44E+00 69     
8.64E-03 1.94E+00 2.46E+00 70     
1.15E-02 1.72E+00 2.41E+00 71     
8.64E-03 1.77E+00 2.25E+00 72        
 
ΔResponse  Belief         ΔResponse              Belief  
Level              Level      
-------------- ------            --------------              ------ 
1.49E+00 1.10E+00  1.64E+00 6.29E-01 
1.52E+00 1.08E+00  1.64E+00 5.89E-01 
1.54E+00 1.06E+00  1.65E+00 5.75E-01 
1.55E+00 1.05E+00  1.65E+00 5.68E-01 
1.55E+00 1.02E+00  1.65E+00 5.63E-01 
1.55E+00 1.00E+00  1.66E+00 5.57E-01 
1.57E+00 9.84E-01  1.66E+00 5.51E-01 
1.57E+00 9.64E-01  1.66E+00 5.33E-01 
1.57E+00 9.57E-01  1.67E+00 5.23E-01 
1.58E+00 9.40E-01  1.67E+00 5.10E-01 
1.58E+00 9.24E-01  1.68E+00 4.97E-01 
1.58E+00 9.16E-01  1.68E+00 4.91E-01 
1.59E+00 9.06E-01  1.69E+00 4.86E-01 
1.59E+00 8.79E-01  1.69E+00 4.55E-01 
1.60E+00 8.49E-01  1.69E+00 4.42E-01 
1.61E+00 8.37E-01  1.69E+00 4.32E-01 
1.61E+00 8.28E-01  1.70E+00 4.26E-01 
1.61E+00 8.20E-01  1.70E+00 4.19E-01 
1.61E+00 7.97E-01  1.70E+00 4.10E-01 
1.62E+00 7.67E-01  1.71E+00 3.90E-01 
1.62E+00 7.47E-01  1.71E+00 3.70E-01 
1.63E+00 7.06E-01  1.71E+00 3.40E-01 
1.63E+00 6.93E-01  1.72E+00 3.13E-01 
1.63E+00 6.79E-01  1.72E+00 3.01E-01 
1.64E+00 6.71E-01  1.72E+00 2.81E-01 
1.64E+00 6.59E-01  1.72E+00 2.72E-01 
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ΔResponse  Belief         ΔResponse              Belief  
Level              Level      
-------------- ------            --------------              ------ 
 
1.73E+00 2.52E-01  1.77E+00 1.29E-01 
1.73E+00 2.46E-01  1.78E+00 1.20E-01 
1.73E+00 2.41E-01  1.78E+00 1.05E-01 
1.74E+00 2.28E-01  1.80E+00 9.35E-02 
1.74E+00 2.16E-01  1.80E+00 6.66E-02 
1.74E+00 1.93E-01  1.81E+00 4.64E-02 
1.75E+00 1.78E-01  1.83E+00 3.35E-02 
1.76E+00 1.72E-01  1.90E+00 2.38E-02 
1.77E+00 1.55E-01  1.94E+00 1.51E-02 
1.77E+00 1.37E-01  1.99E+00 6.48E-03 
 
     
ΔResponse  Plausibility        ΔResponse            Plausibility  
Level              Level      
-------------- ------            --------------              ------ 
1.59E+00 1.10E+00  1.76E+00 6.96E-01 
1.65E+00 1.08E+00  1.77E+00 6.82E-01 
1.65E+00 1.06E+00  1.80E+00 6.73E-01 
1.65E+00 1.03E+00  1.86E+00 6.66E-01 
1.65E+00 1.02E+00  2.25E+00 6.60E-01 
1.65E+00 1.01E+00  2.25E+00 6.45E-01 
1.65E+00 9.91E-01  2.26E+00 6.36E-01 
1.66E+00 9.75E-01  2.31E+00 6.27E-01 
1.66E+00 9.69E-01  2.32E+00 5.96E-01 
1.67E+00 9.59E-01  2.35E+00 5.90E-01 
1.67E+00 9.53E-01  2.36E+00 5.67E-01 
1.67E+00 9.42E-01  2.37E+00 5.47E-01 
1.69E+00 9.24E-01  2.38E+00 5.07E-01 
1.70E+00 9.04E-01  2.38E+00 4.97E-01 
1.70E+00 8.96E-01  2.38E+00 4.74E-01 
1.70E+00 8.69E-01  2.38E+00 4.57E-01 
1.71E+00 8.60E-01  2.39E+00 4.37E-01 
1.71E+00 8.55E-01  2.39E+00 4.24E-01 
1.71E+00 8.50E-01  2.39E+00 4.09E-01 
1.71E+00 8.42E-01  2.39E+00 3.78E-01 
1.71E+00 8.33E-01  2.41E+00 3.66E-01 
1.72E+00 8.13E-01  2.41E+00 3.35E-01 
1.72E+00 8.06E-01  2.41E+00 3.27E-01 
1.73E+00 8.01E-01  2.42E+00 3.15E-01 
1.73E+00 7.87E-01  2.42E+00 2.88E-01 
1.74E+00 7.69E-01  2.43E+00 2.68E-01 
1.74E+00 7.65E-01  2.43E+00 2.59E-01 
1.75E+00 7.59E-01  2.43E+00 2.46E-01 
1.75E+00 7.48E-01  2.43E+00 2.16E-01 
1.75E+00 7.34E-01  2.44E+00 1.96E-01 
1.76E+00 7.21E-01  2.44E+00 1.56E-01 
1.76E+00 7.11E-01  2.44E+00 1.49E-01 
   2.44E+00 1.19E-01 
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ΔResponse  Plausibility         
Level                    
-------------- ------  
2.45E+00 1.06E-01       
2.46E+00 8.88E-02       
2.47E+00 8.02E-02       
2.48E+00 6.72E-02       
2.49E+00 4.70E-02       
2.50E+00 2.02E-02       
2.53E+00 1.15E-02  
      
        
ΔResponse  Belief Prob Plaus Prob  
Level  Level  Level      
-------------- ----------------- ----------------      
1.47E+00 -1.00E-01 -1.00E-01      
1.51E+00 -1.00E-01 -7.98E-02      
1.54E+00 -1.00E-01 -5.13E-02      
1.58E+00 -1.00E-01 8.42E-02      
1.62E+00 -7.98E-02 2.53E-01      
1.65E+00 2.46E-02 4.43E-01      
1.69E+00 7.63E-02 5.74E-01      
1.73E+00 1.99E-01 7.48E-01      
1.76E+00 3.04E-01 8.45E-01      
1.80E+00 3.27E-01 9.33E-01      
1.84E+00 3.34E-01 9.76E-01 
      
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
0.00E+00 1.65E+00 1.57E+00      
1.00E-01 1.70E+00 1.59E+00      
2.00E-01 1.73E+00 1.61E+00      
3.00E-01 1.76E+00 1.63E+00      
4.00E-01 2.32E+00 1.64E+00      
5.00E-01 2.38E+00 1.68E+00      
6.00E-01 2.39E+00 1.71E+00      
7.00E-01 2.42E+00 1.72E+00      
8.00E-01 2.44E+00 1.74E+00      
9.00E-01 2.46E+00 1.80E+00      
1.00E+00 2.53E+00 1.99E+00      
        
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetPower:   
     
        
Basic Prob  ΔResponse ΔResponse  Cell   
Assign   Min  Max 
----------------- ------------ ------------ ----     
2.02E-02 8.75E+01 9.11E+01 1     
2.69E-02 8.77E+01 9.23E+01 2     
2.02E-02 8.79E+01 9.22E+01 3     
1.51E-02 8.31E+01 9.04E+01 4     
2.02E-02 8.63E+01 9.05E+01 5     
1.51E-02 8.75E+01 9.16E+01 6     
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2.02E-02 8.27E+01 8.70E+01 7     
2.69E-02 8.43E+01 8.99E+01 8     
2.02E-02 8.62E+01 9.06E+01 9     
3.02E-02 9.03E+01 9.56E+01 10     
4.03E-02 8.96E+01 9.66E+01 11     
3.02E-02 9.09E+01 9.63E+01 12     
2.27E-02 8.73E+01 9.50E+01 13     
3.02E-02 8.81E+01 9.51E+01 14     
2.27E-02 9.05E+01 9.53E+01 15     
3.02E-02 8.61E+01 9.26E+01 16     
4.03E-02 8.74E+01 9.46E+01 17     
3.02E-02 8.90E+01 9.45E+01 18     
1.34E-02 8.63E+01 9.38E+01 19     
1.79E-02 8.88E+01 9.34E+01 20     
1.34E-02 8.86E+01 9.32E+01 21     
1.01E-02 8.58E+01 9.04E+01 22     
1.34E-02 8.70E+01 9.29E+01 23     
1.01E-02 8.79E+01 9.27E+01 24     
1.34E-02 8.41E+01 8.90E+01 25     
1.79E-02 8.67E+01 9.04E+01 26     
1.34E-02 8.78E+01 9.04E+01 27     
2.02E-02 8.93E+01 9.67E+01 28     
2.69E-02 9.21E+01 9.77E+01 29     
2.02E-02 9.22E+01 9.77E+01 30     
1.51E-02 9.03E+01 9.42E+01 31     
2.02E-02 9.08E+01 9.54E+01 32     
1.51E-02 9.16E+01 9.47E+01 33     
2.02E-02 8.87E+01 9.45E+01 34     
2.69E-02 8.95E+01 9.45E+01 35     
2.02E-02 9.01E+01 9.50E+01 36     
8.64E-03 8.96E+01 9.16E+01 37     
1.15E-02 9.15E+01 9.46E+01 38     
8.64E-03 9.06E+01 9.42E+01 39     
6.48E-03 8.58E+01 9.17E+01 40     
8.64E-03 8.93E+01 9.28E+01 41     
6.48E-03 9.02E+01 9.17E+01 42     
8.64E-03 8.62E+01 8.93E+01 43     
1.15E-02 8.77E+01 9.12E+01 44     
8.64E-03 8.90E+01 9.12E+01 45     
1.30E-02 9.22E+01 9.77E+01 46     
1.73E-02 9.38E+01 9.83E+01 47     
1.30E-02 9.40E+01 9.81E+01 48     
9.72E-03 8.97E+01 9.46E+01 49     
1.30E-02 9.28E+01 9.66E+01 50     
9.72E-03 9.31E+01 9.49E+01 51     
1.30E-02 8.96E+01 9.40E+01 52     
1.73E-02 9.16E+01 9.52E+01 53     
1.30E-02 9.07E+01 9.56E+01 54     
5.76E-03 8.96E+01 9.02E+01 55     
7.68E-03 9.13E+01 9.56E+01 56     
5.76E-03 9.34E+01 9.51E+01 57     
4.32E-03 8.88E+01 9.29E+01 58     
5.76E-03 9.04E+01 9.34E+01 59     
4.32E-03 9.20E+01 9.27E+01 60     
5.76E-03 8.59E+01 8.93E+01 61     
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7.68E-03 9.00E+01 9.21E+01 62     
5.76E-03 8.88E+01 9.18E+01 63     
8.64E-03 9.17E+01 9.79E+01 64     
1.15E-02 9.45E+01 9.98E+01 65     
8.64E-03 9.48E+01 9.83E+01 66     
6.48E-03 9.11E+01 9.65E+01 67     
8.64E-03 9.38E+01 9.86E+01 68     
6.48E-03 9.51E+01 9.69E+01 69     
8.64E-03 9.16E+01 9.66E+01 70     
1.15E-02 9.17E+01 9.61E+01 71     
8.64E-03 9.24E+01 9.51E+01 72     
        
ΔResponse  Belief         ΔResponse              Belief  
Level              Level      
-------------- ------            --------------              ------ 
8.27E+01 1.10E+00  8.96E+01 4.84E-01 
8.31E+01 1.08E+00  8.97E+01 4.44E-01 
8.41E+01 1.06E+00  9.00E+01 4.34E-01 
8.43E+01 1.05E+00  9.01E+01 4.26E-01 
8.58E+01 1.02E+00  9.02E+01 4.06E-01 
8.58E+01 1.02E+00  9.03E+01 4.00E-01 
8.59E+01 1.01E+00  9.03E+01 3.69E-01 
8.61E+01 1.00E+00  9.04E+01 3.54E-01 
8.62E+01 9.72E-01  9.05E+01 3.48E-01 
8.62E+01 9.63E-01  9.06E+01 3.26E-01 
8.63E+01 9.43E-01  9.07E+01 3.17E-01 
8.63E+01 9.30E-01  9.08E+01 3.04E-01 
8.67E+01 9.09E-01  9.09E+01 2.84E-01 
8.70E+01 8.92E-01  9.11E+01 2.54E-01 
8.73E+01 8.78E-01  9.13E+01 2.47E-01 
8.74E+01 8.55E-01  9.15E+01 2.40E-01 
8.75E+01 8.15E-01  9.16E+01 2.28E-01 
8.75E+01 8.00E-01  9.16E+01 2.13E-01 
8.77E+01 7.80E-01  9.16E+01 1.96E-01 
8.77E+01 7.53E-01  9.17E+01 1.87E-01 
8.78E+01 7.41E-01  9.17E+01 1.78E-01 
8.79E+01 7.28E-01  9.20E+01 1.67E-01 
8.79E+01 7.18E-01  9.21E+01 1.63E-01 
8.81E+01 6.98E-01  9.22E+01 1.36E-01 
8.86E+01 6.67E-01  9.22E+01 1.23E-01 
8.87E+01 6.54E-01  9.24E+01 1.03E-01 
8.88E+01 6.34E-01  9.28E+01 9.40E-02 
8.88E+01 6.16E-01  9.31E+01 8.10E-02 
8.88E+01 6.12E-01  9.34E+01 7.13E-02 
8.93E+01 5.67E-01  9.38E+01 6.55E-02 
8.90E+01 6.06E-01  9.38E+01 5.69E-02 
8.93E+01 5.58E-01  9.40E+01 3.96E-02 
8.95E+01 5.38E-01  9.45E+01 2.66E-02 
8.96E+01 5.11E-01  9.48E+01 1.51E-02 
8.96E+01 4.98E-01  9.51E+01 6.48E-03 
8.96E+01 4.90E-01    
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ΔResponse Plausibility    ΔResponse Plausibility 
Level         Level  
-------------- ------     -------------- ------      
8.70E+01 1.10E+00  9.45E+01 6.27E-01 
8.90E+01 1.08E+00  9.45E+01 6.06E-01 
8.93E+01 1.07E+00  9.45E+01 5.76E-01 
8.93E+01 1.06E+00  9.46E+01 5.49E-01 
8.99E+01 1.05E+00  9.46E+01 5.40E-01 
9.02E+01 1.03E+00  9.46E+01 4.99E-01 
9.04E+01 1.02E+00  9.47E+01 4.88E-01 
9.04E+01 1.00E+00  9.49E+01 4.73E-01 
9.04E+01 9.91E-01  9.50E+01 4.63E-01 
9.04E+01 9.76E-01  9.50E+01 4.43E-01 
9.05E+01 9.63E-01  9.51E+01 4.20E-01 
9.06E+01 9.43E-01  9.51E+01 4.11E-01 
9.11E+01 9.22E-01  9.51E+01 3.81E-01 
9.12E+01 9.02E-01  9.52E+01 3.75E-01 
9.12E+01 8.94E-01  9.53E+01 3.58E-01 
9.16E+01 8.82E-01  9.54E+01 3.36E-01 
9.16E+01 8.67E-01  9.56E+01 3.15E-01 
9.17E+01 8.58E-01  9.56E+01 2.85E-01 
9.17E+01 8.52E-01  9.56E+01 2.77E-01 
9.18E+01 8.45E-01  9.61E+01 2.64E-01 
9.21E+01 8.40E-01  9.63E+01 2.53E-01 
9.22E+01 8.32E-01  9.65E+01 2.23E-01 
9.23E+01 8.12E-01  9.66E+01 2.16E-01 
9.26E+01 7.85E-01  9.66E+01 2.03E-01 
9.27E+01 7.55E-01  9.66E+01 1.63E-01 
9.27E+01 7.50E-01  9.67E+01 1.54E-01 
9.28E+01 7.40E-01  9.69E+01 1.34E-01 
9.29E+01 7.32E-01  9.77E+01 1.28E-01 
9.29E+01 7.18E-01  9.77E+01 1.01E-01 
9.32E+01 7.14E-01  9.77E+01 8.78E-02 
9.34E+01 7.00E-01  9.79E+01 6.77E-02 
9.34E+01 6.83E-01  9.81E+01 5.90E-02 
9.38E+01 6.77E-01  9.83E+01 4.61E-02 
9.40E+01 6.63E-01  9.83E+01 3.74E-02 
9.42E+01 6.50E-01  9.86E+01 2.02E-02 
9.42E+01 6.42E-01  9.98E+01 1.15E-02 
 
        
ΔResponse  Belief Prob Plaus Prob 
Level  Level  Level      
-------------- ----------------- ----------------      
8.16E+01 -1.00E-01 -1.00E-01      
8.35E+01 -1.00E-01 -6.47E-02      
8.53E+01 -1.00E-01 -2.44E-02      
8.72E+01 -7.98E-02 1.22E-01      
8.91E+01 -6.64E-02 4.33E-01      
9.09E+01 7.75E-02 7.16E-01      
9.28E+01 2.68E-01 9.06E-01      
9.46E+01 4.60E-01 9.85E-01      
9.65E+01 7.77E-01 1.00E+00      
9.83E+01 9.80E-01 1.00E+00      
1.00E+02 1.00E+00 1.00E+00      
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Probability Belief Prob Plaus Prob 
  Level  Level      
-------------- ----------------- ----------------      
0.00E+00 9.04E+01 8.62E+01      
1.00E-01 9.12E+01 8.70E+01      
2.00E-01 9.26E+01 8.75E+01      
3.00E-01 9.34E+01 8.81E+01      
4.00E-01 9.45E+01 8.90E+01      
5.00E-01 9.46E+01 8.96E+01      
6.00E-01 9.51E+01 9.03E+01      
7.00E-01 9.56E+01 9.09E+01      
8.00E-01 9.66E+01 9.16E+01      
9.00E-01 9.77E+01 9.28E+01      
1.00E+00 9.98E+01 9.51E+01   
----------------------------------------------------------------- 
<<<<< Iterator nond_global_evidence completed. 

 
 
Technology Portfolio 2: Interval Analysis 

 
Technology Portfolio 2 (Tech1 + Tech7+ Tech16+ Tech23+ Tech34) 
methodName = nond_global_interval_est 
gradientType = none 
hessianType = none 
[1-3, 5-12, 16, 17, 21-44, 46-51, 58, 60, 61, 65-70, 72, 73, 76-78, 82-88, 90, 92-100, 102-106, 108, 112-117, 120, 127-202] 

[68, 203-214] 
>>>>> Running nond_global_interval_est iterator. 
 
NonD lhs Samples = 10000 Seed (system-generated) = 138231 
 
>>>>> Identifying minimum and maximum samples for response function 1 
>>>>> Identifying minimum and maximum samples for response function 2 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
------------------------------------------------------------------ 
Min and Max estimated values for each response function: 
ΔElectricalNetEff:  Min = 1.4720000000E+00  Max = 2.5419000000E+00 
ΔElectricalNetPower:  Min = 8.1622000000E+01  Max = 1.0019800000E+02 
----------------------------------------------------------------- 

 <<<<< Iterator nond_global_interval_est completed. 
 
 
Technology Portfolio 1: Dempster-Shafer Theory of Evidence 

 
Technology Portfolio 1 ( Tech7+ Tech16) 
Writing new restart file dakota.rst 
methodName = nond_global_evidence 
gradientType = none 
hessianType = none 
>>>>> Running nond_global_evidence iterator. 
>>>>> nond_global_evidence: pre-run phase. 
>>>>> nond_global_evidence: core run phase. 
NonD lhs Samples = 10000 Seed (user-specified) = 59334 
>>>>> Identifying minimum and maximum samples for response function 1 within cells 1 
through 9 
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>>>>> Identifying minimum and maximum samples for response function 2 within cells 1 
through 9 
>>>>> nond_global_evidence: post-run phase. 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
ElectricalNetEff: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
ElectricalNetPower: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
------------------------------------------------------------------ 
Belief and Plausibility for each response function: 
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetEff: 
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ----     
9.00E-02 5.94E-01 6.43E-01 1.00E+00 
6.00E-02 6.07E-01 7.27E-01 2.00E+00 
3.00E-02 7.13E-01 9.14E-01 3.00E+00 
9.00E-02 9.04E-01 1.41E+00 4.00E+00 
3.00E-02 1.40E+00 1.68E+00 5.00E+00 
1.50E-01 6.58E-01 7.05E-01 6.00E+00 
1.00E-01 6.69E-01 7.91E-01 7.00E+00 
5.00E-02 7.74E-01 9.75E-01 8.00E+00 
1.50E-01 9.62E-01 1.47E+00 9.00E+00 
5.00E-02 1.46E+00 1.74E+00 1.00E+01 
6.00E-02 7.00E-01 7.46E-01 1.10E+01 
4.00E-02 7.13E-01 8.32E-01 1.20E+01 
2.00E-02 8.21E-01 1.02E+00 1.30E+01 
6.00E-02 1.01E+00 1.51E+00 1.40E+01 
2.00E-02 1.50E+00 1.78E+00 1.50E+01 
    
 
ΔResponse  Belief    ΔResponse Plausibility 
Level      Level      
-------------- ------    -------------- ------   
5.94E-01 1.00E+00 6.43E-01 1.00E+00 
6.07E-01 9.10E-01 7.05E-01 9.10E-01 
6.58E-01 8.50E-01 7.27E-01 7.60E-01 
6.69E-01 7.00E-01 7.46E-01 7.00E-01 
7.00E-01 6.00E-01 7.91E-01 6.40E-01 
7.13E-01 5.40E-01 8.32E-01 5.40E-01 
7.13E-01 5.10E-01 9.14E-01 5.00E-01 
7.74E-01 4.70E-01 9.75E-01 4.70E-01 
8.21E-01 4.20E-01 1.02E+00 4.20E-01 
9.04E-01 4.00E-01 1.41E+00 4.00E-01 
9.62E-01 3.10E-01 1.47E+00 3.10E-01 
1.01E+00 1.60E-01 1.51E+00 1.60E-01 
1.40E+00 1.00E-01 1.68E+00 1.00E-01 
1.46E+00 7.00E-02 1.74E+00 7.00E-02 
1.50E+00 2.00E-02 1.78E+00 2.00E-02 
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Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------  
1.00E-01 7.27E-01 6.58E-01 1.89E-02 
2.50E-01 7.46E-01 6.69E-01 2.29E-01 
5.00E-01 9.75E-01 7.74E-01 5.37E-01 
7.50E-01 1.51E+00 1.01E+00 2.28E-01 
9.00E-01 1.74E+00 1.46E+00 3.76E-02 
1.00E+00 1.78E+00 1.50E+00  
    
 
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetPower:    
Basic Prob  ΔResponse ΔResponse  Cell   
Assign    Min  Max 
----------------- ------------ ------------ ----     
9.00E-02 2.90E+01 3.26E+01 1.00E+00 
6.00E-02 3.23E+01 3.53E+01 2.00E+00 
3.00E-02 3.50E+01 3.76E+01 3.00E+00 
9.00E-02 3.73E+01 4.15E+01 4.00E+00 
3.00E-02 4.12E+01 4.34E+01 5.00E+00 
1.50E-01 3.03E+01 3.39E+01 6.00E+00 
1.00E-01 3.36E+01 3.66E+01 7.00E+00 
5.00E-02 3.62E+01 3.88E+01 8.00E+00 
1.50E-01 3.85E+01 4.28E+01 9.00E+00 
5.00E-02 4.25E+01 4.47E+01 1.00E+01 
6.00E-02 3.11E+01 3.48E+01 1.10E+01 
4.00E-02 3.45E+01 3.74E+01 1.20E+01 
2.00E-02 3.72E+01 3.97E+01 1.30E+01 
6.00E-02 3.94E+01 4.37E+01 1.40E+01 
2.00E-02 4.33E+01 4.55E+01 1.50E+01 
    
ΔResponse  Belief    ΔResponse    Plausibility 
Level      Level      
-------------- ------    --------------     ------   
2.90E+01 1.00E+00 3.26E+01 1.00E+0

0 
3.03E+01 9.10E-01 3.39E+01 9.10E-01 
3.11E+01 7.60E-01 3.48E+01 7.60E-01 
3.23E+01 7.00E-01 3.53E+01 7.00E-01 
3.36E+01 6.40E-01 3.66E+01 6.40E-01 
3.45E+01 5.40E-01 3.74E+01 5.40E-01 
3.50E+01 5.00E-01 3.76E+01 5.00E-01 
3.62E+01 4.70E-01 3.88E+01 4.70E-01 
3.72E+01 4.20E-01 3.97E+01 4.20E-01 
3.73E+01 4.00E-01 4.15E+01 4.00E-01 
3.85E+01 3.10E-01 4.28E+01 3.10E-01 
3.94E+01 1.60E-01 4.34E+01 1.60E-01 
4.12E+01 1.00E-01 4.37E+01 1.30E-01 
4.25E+01 7.00E-02 4.47E+01 7.00E-02 
4.33E+01 2.00E-02 4.55E+01 2.00E-02 
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Probability Belief Prob Plaus Prob 
  Level  Level      
-------------- ----------------- ----------------      
1.00E-01 3.48E+01 3.11E+01  
2.50E-01 3.53E+01 3.23E+01  
5.00E-01 3.88E+01 3.62E+01  
7.50E-01 4.34E+01 3.94E+01  
9.00E-01 4.47E+01 4.25E+01  
1.00E+00 4.55E+01 4.33E+01  
----------------------------------------------------------------- 
<<<<< Iterator nond_global_evidence completed. 

 
 
 
Technology Portfolio 1: Interval Analysis 

 
Technology Portfolio 1 (Tech7+ Tech16) 
methodName = nond_global_interval_est 
gradientType = none 
hessianType = none 
 
>>>>> Running nond_global_interval_est iterator. 
 
NonD lhs Samples = 10000 Seed (system-generated) = 138231 
 
>>>>> Identifying minimum and maximum samples for response function 1 
>>>>> Identifying minimum and maximum samples for response function 2 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
------------------------------------------------------------------ 
Min and Max estimated values for each response function: 
ΔElectricalNetEff:  Min = 5.94E-01 Max = 1.78E+00 
ΔElectricalNetPower:  Min = 2.90E+01  Max = 4.55E+01 
----------------------------------------------------------------- 
<<<<< Iterator nond_global_interval_est completed. 

 
Tech01: Dempster-Shafer Theory of Evidence 

 
Writing new restart file dakota.rst 
methodName = nond_global_evidence 
gradientType = none 
hessianType = none 
>>>>> Running nond_global_evidence iterator. 
>>>>> nond_global_evidence: pre-run phase. 
>>>>> nond_global_evidence: core run phase. 
NonD lhs Samples = 10000 Seed (user-specified) = 59334 
>>>>> Identifying minimum and maximum samples for response function 1 within cells 1 
through 5 
>>>>> Identifying minimum and maximum samples for response function 2 within cells 1 
through 5 
>>>>> nond_global_evidence: post-run phase. 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
ElectricalNetEff: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
ElectricalNetPower: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
------------------------------------------------------------------ 
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Belief and Plausibility for each response function: 
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetEff: 
 
 
 
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ---- 
3.00E-01 2.58E-01 2.74E-01 1.00E+00 
2.00E-01 2.73E-01 2.89E-01 2.00E+00 
1.00E-01 2.89E-01 3.05E-01 3.00E+00 
3.00E-01 3.04E-01 3.36E-01 4.00E+00 
1.00E-01 3.36E-01 3.52E-01 5.00E+00 
 
ΔResponse  Belief  
Level      
-------------- ------       
2.58E-01 1.00E+00   
2.73E-01 7.00E-01   
2.89E-01 5.00E-01   
3.04E-01 4.00E-01   
3.36E-01 1.00E-01   
 
ΔResponse Plausibility 
Level       
-------------- ------       
2.74E-01 1.00E+00   
2.89E-01 7.00E-01   
3.05E-01 5.00E-01   
3.36E-01 4.00E-01   
3.52E-01 1.00E-01   
ΔResponse  Belief Prob Plaus Prob  
Level  Level  Level      
-------------- ----------------- ----------------      
2.52E-01 1.11E-16 1.11E-16  
2.77E-01 3.00E-01 5.00E-01  
3.02E-01 5.00E-01 6.00E-01  
3.27E-01 6.00E-01 9.00E-01  
4.52E-01 1.00E+00 1.00E+00  
3.52E-01 1.00E+00 1.00E+00  
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
1.00E-01 2.89E-01 2.73E-01  
2.50E-01 2.89E-01 2.73E-01  
5.00E-01 3.05E-01 2.89E-01  
7.50E-01 3.52E-01 3.36E-01  
9.00E-01 3.52E-01 3.36E-01  
1.00E+00 3.52E-01 3.36E-01  
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Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetPower:   
  
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ----     
3.00E-01 1.36E+01 1.44E+01 1.00E+00 
2.00E-01 1.44E+01 1.51E+01 2.00E+00 
1.00E-01 1.51E+01 1.58E+01 3.00E+00 
3.00E-01 1.58E+01 1.69E+01 4.00E+00 
1.00E-01 1.69E+01 1.74E+01 5.00E+00  
ΔResponse  Belief  
Level      
-------------- ------       
1.36E+01 1.00E+00   
1.44E+01 7.00E-01   
1.51E+01 5.00E-01   
1.58E+01 4.00E-01   
1.69E+01 1.00E-01   
ΔResponse Plausibility 
Level       
-------------- ------       
1.44E+01 1.00E+00   
1.51E+01 7.00E-01   
1.58E+01 5.00E-01   
1.69E+01 4.00E-01   
1.74E+01 1.00E-01   
    
ΔResponse  Belief Prob Plaus Prob  
Level  Level  Level      
-------------- ----------------- ----------------      
1.34E+01 1.11E-16 1.11E-16  
1.44E+01 3.00E-01 5.00E-01  
1.54E+01 5.00E-01 6.00E-01  
1.74E+01 9.00E-01 1.00E+00  
1.74E+01 9.00E-01 1.00E+00  
1.84E+01 1.00E+00 1.00E+00  
 
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
1.00E-01 1.51E+01 1.44E+01  
2.50E-01 1.51E+01 1.44E+01  
5.00E-01 1.58E+01 1.51E+01  
7.50E-01 1.74E+01 1.69E+01  
9.00E-01 1.74E+01 1.69E+01  
1.00E+00 1.74E+01 1.69E+01  
----------------------------------------------------------------- 
<<<<< Iterator nond_global_evidence completed. 
 

Tech01: Interval Analysis 
 
methodName = nond_global_interval_est 
gradientType = none 
hessianType = none 
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>>>>> Running nond_global_interval_est iterator. 
 
NonD lhs Samples = 10000 Seed (system-generated) = 138231 
 
>>>>> Identifying minimum and maximum samples for response function 1 
>>>>> Identifying minimum and maximum samples for response function 2 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
------------------------------------------------------------------ 
Min and Max estimated values for each response function: 
ΔElectricalNetEff:  Min = 2.58E-01 Max = 3.52E-01 
ΔElectricalNetPower:  Min = 1.36E+01  Max = 1.75E+01 
----------------------------------------------------------------- 
<<<<< Iterator nond_global_interval_est completed. 

 
Tech07: Dempster-Shafer Theory of Evidence 

 
Writing new restart file dakota.rst 
methodName = nond_global_evidence 
gradientType = none 
hessianType = none 
>>>>> Running nond_global_evidence iterator. 
>>>>> nond_global_evidence: pre-run phase. 
>>>>> nond_global_evidence: core run phase. 
NonD lhs Samples = 10000 Seed (user-specified) = 59334 
>>>>> Identifying minimum and maximum samples for response function 1 within cells 1 
through 5 
>>>>> Identifying minimum and maximum samples for response function 2 within cells 1 
through 5 
>>>>> nond_global_evidence: post-run phase. 
<<<<< Function evaluation summary: 1000 total (1000 new, 0 duplicate) 
ElectricalNetEff: 1000 val (1000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
ElectricalNetPower: 1000 val (1000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
------------------------------------------------------------------ 
Belief and Plausibility for each response function: 
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetEff: 
 
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ----     
3.00E-01 3.54E-01 3.75E-01 1.00E+00 
2.00E-01 3.74E-01 3.95E-01 2.00E+00 
1.00E-01 3.95E-01 4.16E-01 3.00E+00 
3.00E-01 4.15E-01 4.57E-01 4.00E+00 
1.00E-01 4.57E-01 4.77E-01 5.00E+00 
 
 
ΔResponse  Belief  
Level      
-------------- ------       
3.54E-01 1.00E+00   
3.74E-01 7.00E-01   
3.95E-01 5.00E-01   
4.15E-01 4.00E-01   
4.57E-01 1.00E-01   
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ΔResponse Plausibility 
Level       
-------------- ------       
3.75E-01 1.00E+00   
3.95E-01 7.00E-01   
4.16E-01 5.00E-01   
4.57E-01 4.00E-01   
4.77E-01 1.00E-01   
     
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
1.00E-01 3.95E-01 3.74E-01  
2.50E-01 3.95E-01 3.74E-01  
5.00E-01 4.16E-01 3.95E-01  
7.50E-01 4.77E-01 4.57E-01  
9.00E-01 4.77E-01 4.57E-01  
1.00E+00 4.77E-01 4.57E-01  
    
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetPower:   
  
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ----     
3.00E-01 7.34E+00 7.78E+00 1.00E+00 
2.00E-01 7.78E+00 8.21E+00 2.00E+00 
1.00E-01 8.21E+00 8.63E+00 3.00E+00 
3.00E-01 8.63E+00 9.51E+00 4.00E+00 
1.00E-01 9.51E+00 9.93E+00 5.00E+00 
ΔResponse  Belief  
Level      
-------------- ------       
7.34E+00 1.00E+00   
7.78E+00 7.00E-01   
8.21E+00 5.00E-01   
8.63E+00 4.00E-01   
9.51E+00 1.00E-01   
    
 
ΔResponse Plausibility 
Level       
-------------- ------       
7.78E+00 1.00E+00   
8.21E+00 7.00E-01   
8.63E+00 5.00E-01   
9.51E+00 4.00E-01   
9.93E+00 1.00E-01   
    
 
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
1.00E-01 8.21E+00 7.78E+00  
2.50E-01 8.21E+00 7.78E+00  
5.00E-01 8.63E+00 8.21E+00  
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7.50E-01 9.93E+00 9.51E+00  
9.00E-01 9.93E+00 9.51E+00  
1.00E+00 9.93E+00 9.51E+00  

----------------------------------------------------------------- 
<<<<< Iterator nond_global_evidence completed. 
 

Tech07:  Interval Analysis 
 

methodName = nond_global_interval_est 
gradientType = none 
hessianType = none 
 
>>>>> Running nond_global_interval_est iterator. 
 
NonD lhs Samples = 10000 Seed (system-generated) = 138231 
 
>>>>> Identifying minimum and maximum samples for response function 1 
>>>>> Identifying minimum and maximum samples for response function 2 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
------------------------------------------------------------------ 
Min and Max estimated values for each response function: 
ΔElectricalNetEff:  Min = 3.54E-01 Max = 4.78E-01 
ΔElectricalNetPower:  Min = 7.34E+00  Max = 9.93E+00 
----------------------------------------------------------------- 
<<<<< Iterator nond_global_interval_est completed. 
 

Tech16: Dempster-Shafer Theory of Evidence 
 
Writing new restart file dakota.rst 
methodName = nond_global_evidence 
gradientType = none 
hessianType = none 
>>>>> Running nond_global_evidence iterator. 
>>>>> nond_global_evidence: pre-run phase. 
>>>>> nond_global_evidence: core run phase. 
NonD lhs Samples = 10000 Seed (user-specified) = 59334 
>>>>> Identifying minimum and maximum samples for response function 1 within cells 1 
through 5 
>>>>> Identifying minimum and maximum samples for response function 2 within cells 1 
through 5 
>>>>> nond_global_evidence: post-run phase. 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
ElectricalNetEff: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
ElectricalNetPower: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
------------------------------------------------------------------ 
Belief and Plausibility for each response function: 
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetEff: 
 
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ----     
    
3.00E-01 2.27E-01 2.66E-01 1.00E+00 
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2.00E-01 2.34E-01 3.34E-01 2.00E+00 
1.00E-01 3.34E-01 5.26E-01 3.00E+00 
3.00E-01 5.26E-01 1.05E+00 4.00E+00 
1.00E-01 1.05E+00 1.34E+00 5.00E+00 
  
ΔResponse  Belief  
Level      
-------------- ------  
2.27E-01 1.00E+00   
2.34E-01 7.00E-01   
3.34E-01 5.00E-01   
5.26E-01 4.00E-01   
1.05E+00 1.00E-01   
    
ΔResponse Plausibility 
Level       
-------------- ------       
 
2.66E-01 1.00E+00   
3.34E-01 7.00E-01   
5.26E-01 5.00E-01   
1.05E+00 4.00E-01   
1.34E+00 1.00E-01   
 
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
1.00E-01 3.34E-01 2.34E-01  
2.50E-01 3.34E-01 2.34E-01  
5.00E-01 5.26E-01 3.34E-01  
7.50E-01 1.34E+00 1.05E+00  
9.00E-01 1.34E+00 1.05E+00  
1.00E+00 1.34E+00 1.05E+00  

    
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetPower:   
  
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ----     
3.00E-01 2.15E+01 2.49E+01 1.00E+00 
2.00E-01 2.49E+01 2.75E+01 2.00E+00 
1.00E-01 2.75E+01 2.98E+01 3.00E+00 
3.00E-01 2.98E+01 3.38E+01 4.00E+00 
1.00E-01 3.38E+01 3.57E+01 5.00E+00 
    
ΔResponse  Belief  
Level      
-------------- ------       
2.15E+01 1.00E+00   
2.49E+01 7.00E-01   
2.75E+01 5.00E-01   
2.98E+01 4.00E-01   
3.38E+01 1.00E-01   
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ΔResponse Plausibility 
Level       
-------------- ------       
2.49E+01 1.00E+00   
2.75E+01 7.00E-01   
2.98E+01 5.00E-01   
3.38E+01 4.00E-01   
3.57E+01 1.00E-01   
    
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
1.00E-01 2.75E+01 2.49E+01  
2.50E-01 2.75E+01 2.49E+01  
5.00E-01 2.98E+01 2.75E+01  
7.50E-01 3.57E+01 3.38E+01  
9.00E-01 3.57E+01 3.38E+01  
1.00E+00 3.57E+01 3.38E+01  
   

----------------------------------------------------------------- 
<<<<< Iterator nond_global_evidence completed. 

 
Tech16: Interval Analysis 
 

methodName = nond_global_interval_est 
gradientType = none 
hessianType = none 
 
>>>>> Running nond_global_interval_est iterator. 
 
NonD lhs Samples = 10000 Seed (system-generated) = 138231 
 
>>>>> Identifying minimum and maximum samples for response function 1 
>>>>> Identifying minimum and maximum samples for response function 2 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
------------------------------------------------------------------ 
Min and Max estimated values for each response function: 
ΔElectricalNetEff:  Min = 2.27E-01 Max = 1.34E+00 
ΔElectricalNetPower:  Min = 2.15E+01  Max = 3.57E+01 
----------------------------------------------------------------- 

 <<<<< Iterator nond_global_interval_est completed. 
 

Tech23: Dempster-Shafer Theory of Evidence 
 
Writing new restart file dakota.rst 
methodName = nond_global_evidence 
gradientType = none 
hessianType = none 
>>>>> Running nond_global_evidence iterator. 
>>>>> nond_global_evidence: pre-run phase. 
>>>>> nond_global_evidence: core run phase. 
NonD lhs Samples = 10000 Seed (user-specified) = 59334 
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>>>>> Identifying minimum and maximum samples for response function 1 within cells 1 
through 5 

>>>>> Identifying minimum and maximum samples for response function 2 within cells 1 
through 5 

>>>>> nond_global_evidence: post-run phase. 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
ElectricalNetEff: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
ElectricalNetPower: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
------------------------------------------------------------------ 
Belief and Plausibility for each response function: 
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetEff: 
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ----     
 
1.00E-01 2.95E-01 3.16E-01 1.00E+00 
2.00E-01 2.73E-01 2.95E-01 2.00E+00 
2.00E-01 2.53E-01 2.73E-01 3.00E+00 
2.00E-01 2.09E-01 2.52E-01 4.00E+00 
3.00E-01 1.88E-01 2.10E-01 5.00E+00 
    
ΔResponse  Belief  
Level      
-------------- ------       
1.88E-01 1.00E+00   
2.09E-01 7.00E-01   
2.53E-01 5.00E-01   
2.73E-01 3.00E-01   
2.95E-01 1.00E-01   
    
ΔResponse Plausibility 
Level       
-------------- ------       
2.10E-01 1.00E+00   
2.52E-01 7.00E-01   
2.73E-01 5.00E-01   
2.95E-01 3.00E-01   
3.16E-01 1.00E-01   
  
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
0.00E+00 2.10E-01 1.88E-01  
1.00E-01 2.52E-01 2.09E-01  
2.00E-01 2.52E-01 2.09E-01  
3.00E-01 2.52E-01 2.09E-01  
4.00E-01 2.73E-01 2.53E-01  
5.00E-01 2.73E-01 2.53E-01  
6.00E-01 2.95E-01 2.73E-01  
7.00E-01 2.95E-01 2.73E-01  
8.00E-01 3.16E-01 2.95E-01  
9.00E-01 3.16E-01 2.95E-01  
1.00E+00 3.16E-01 2.95E-01  
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Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetPower:   
  

Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ----     
1.00E-01 2.09E+01 2.24E+01 1.00E+00 
2.00E-01 1.94E+01 2.09E+01 2.00E+00 
2.00E-01 1.79E+01 1.94E+01 3.00E+00 
2.00E-01 1.48E+01 1.78E+01 4.00E+00 
3.00E-01 1.33E+01 1.48E+01 5.00E+00    
 
ΔResponse  Belief  
Level      
-------------- ------       
1.33E+01 1.00E+00   
1.48E+01 7.00E-01   
1.79E+01 5.00E-01   
1.94E+01 3.00E-01   
2.09E+01 1.00E-01   
    
ΔResponse Plausibility 
Level       
-------------- ------       
1.48E+01 1.00E+00   
1.78E+01 7.00E-01   
1.94E+01 5.00E-01   
2.09E+01 3.00E-01   
2.24E+01 1.00E-01   
   
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
0.00E+00 1.48E+01 1.33E+01  
1.00E-01 1.78E+01 1.48E+01  
2.00E-01 1.78E+01 1.48E+01  
3.00E-01 1.78E+01 1.48E+01  
4.00E-01 1.94E+01 1.79E+01  
5.00E-01 1.94E+01 1.79E+01  
6.00E-01 2.09E+01 1.94E+01  
7.00E-01 2.09E+01 1.94E+01  
8.00E-01 2.24E+01 2.09E+01  
9.00E-01 2.24E+01 2.09E+01  
1.00E+00 2.24E+01 2.09E+01  
 
----------------------------------------------------------------- 
<<<<< Iterator nond_global_evidence completed. 

 
Tech23: Interval Analysis 

 
Technology Portfolio 2 (Tech1 + Tech7+ Tech16+ Tech23+ Tech34): Interval Analysis 
methodName = nond_global_interval_est 
gradientType = none 
hessianType = none 
 
>>>>> Running nond_global_interval_est iterator. 



195 

 

 
NonD lhs Samples = 10000 Seed (system-generated) = 138231 
 
>>>>> Identifying minimum and maximum samples for response function 1 
>>>>> Identifying minimum and maximum samples for response function 2 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
------------------------------------------------------------------ 
Min and Max estimated values for each response function: 
ΔElectricalNetEff:  Min = 1.88E-01 Max = 3.16E-01 
ΔElectricalNetPower:  Min = 1.33E+01  Max = 2.24E+01 
----------------------------------------------------------------- 
 
<<<<< Iterator nond_global_interval_est completed. 

 
Tech34: Dempster-Shafer Theory of Evidence 

 
Writing new restart file dakota.rst 
methodName = nond_global_evidence 
gradientType = none 
hessianType = none 
>>>>> Running nond_global_evidence iterator. 
>>>>> nond_global_evidence: pre-run phase. 
>>>>> nond_global_evidence: core run phase. 
NonD lhs Samples = 10000 Seed (user-specified) = 59334 
>>>>> Identifying minimum and maximum samples for response function 1 within cells 1 

through 5 
>>>>> Identifying minimum and maximum samples for response function 2 within cells 1 

through 5 
>>>>> nond_global_evidence: post-run phase. 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
ElectricalNetEff: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
ElectricalNetPower: 10000 val (10000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
------------------------------------------------------------------ 
Belief and Plausibility for each response function: 
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetEff: 
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ---- 
3.00E-01 5.69E-01 5.98E-01 1.00E+00 
2.00E-01 5.98E-01 6.24E-01 2.00E+00 
1.00E-01 6.25E-01 6.52E-01 3.00E+00 
3.00E-01 6.52E-01 7.07E-01 4.00E+00 
1.00E-01 7.07E-01 7.35E-01 5.00E+00 
    
ΔResponse  Belief  
Level      
-------------- ------       
5.69E-01 1.00E+00   
5.98E-01 7.00E-01   
6.25E-01 5.00E-01   
6.52E-01 4.00E-01   
7.07E-01 1.00E-01   
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ΔResponse Plausibility 
Level       
-------------- ------       
5.98E-01 1.00E+00   
6.24E-01 7.00E-01   
6.52E-01 5.00E-01   
7.07E-01 4.00E-01   
7.35E-01 1.00E-01   
   
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
1.00E-01 6.24E-01 5.98E-01  
2.50E-01 6.24E-01 5.98E-01  
5.00E-01 6.52E-01 6.25E-01  
7.50E-01 7.35E-01 7.07E-01  
9.00E-01 7.35E-01 7.07E-01  
1.00E+00 7.35E-01 7.07E-01  
 
 
Cumulative Belief/Plausibility Functions (CBF/CPF) for ElectricalNetPower:   

  
Basic Prob     ΔResponse ΔResponse  Cell     
Assign        Min  Max     
----------------- ------------ ------------ ----     
3.00E-01 3.10E+01 3.57E+01 1.00E+00 
2.00E-01 3.57E+01 3.94E+01 2.00E+00 
1.00E-01 3.94E+01 4.22E+01 3.00E+00 
3.00E-01 4.22E+01 4.62E+01 4.00E+00 
1.00E-01 4.62E+01 4.76E+01 5.00E+00 
    
ΔResponse  Belief  
Level      
-------------- ------       
3.10E+01 1.00E+00   
3.57E+01 7.00E-01   
3.94E+01 5.00E-01   
4.22E+01 4.00E-01   
4.62E+01 1.00E-01   
 
ΔResponse Plausibility 
Level       
-------------- ------       
3.57E+01 1.00E+00   
3.94E+01 7.00E-01   
4.22E+01 5.00E-01   
4.62E+01 4.00E-01   
4.76E+01 1.00E-01   
 
 
Probability Belief Prob Plaus Prob  
  Level  Level      
-------------- ----------------- ----------------      
1.00E-01 3.94E+01 3.57E+01  



197 

 

2.50E-01 3.94E+01 3.57E+01  
5.00E-01 4.22E+01 3.94E+01  
7.50E-01 4.76E+01 4.62E+01  
9.00E-01 4.76E+01 4.62E+01  
1.00E+00 4.76E+01 4.62E+01  
----------------------------------------------------------------- 
<<<<< Iterator nond_global_evidence completed. 
 

Tech34: Interval Analysis 
 

methodName = nond_global_interval_est 
gradientType = none 
hessianType = none 
 
>>>>> Running nond_global_interval_est iterator. 
 
NonD lhs Samples = 10000 Seed (system-generated) = 138231 
 
>>>>> Identifying minimum and maximum samples for response function 1 
>>>>> Identifying minimum and maximum samples for response function 2 
<<<<< Function evaluation summary: 10000 total (10000 new, 0 duplicate) 
------------------------------------------------------------------ 
Min and Max estimated values for each response function: 
ΔElectricalNetEff:  Min = 5.69E-01 Max = 7.35E-01 
ΔElectricalNetPower:  Min = 3.10E+01  Max = 4.76E+01 
----------------------------------------------------------------- 
 
<<<<< Iterator nond_global_interval_est completed. 
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