
A MULTI-RESOLUTION DISCONTINUOUS GALERKIN METHOD
FOR RAPID SIMULATION OF THERMAL SYSTEMS

A Thesis
Presented to

The Academic Faculty

by

Daniel Gempesaw

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology
December 2011

A MULTI-RESOLUTION DISCONTINUOUS GALERKIN METHOD
FOR RAPID SIMULATION OF THERMAL SYSTEMS

Approved by:

Professor Yogendra Joshi, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Professor Satish Kumar
School of Mechanical Engineering
Georgia Institute of Technology

Professor Hao-Min Zhou
School of Mathematics
Georgia Institute of Technology

Date Approved: 26 August 2011

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor, Dr. Yogendra Joshi, for his tireless assistance

during the long journey that has been my Master’s degree. I would also like to thank

my parents for their encouragement and support, as well as my girlfriend Karen Shih.

Lastly, the various members of the CEETHERM/METTL group at the Georgia Institute

of Technology were always very helpful and considerate and I’d like to thank them for their

kindness.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF SYMBOLS OR ABBREVIATIONS viii

SUMMARY . ix

I INTRODUCTION . 1

1.1 Motivation: Thermal Management of Data Centers 1

1.1.1 Motivation . 2

1.2 Objective . 4

1.3 Reproducibility of Results . 5

II PREVIOUS WORK . 8

2.1 Discontinuous Galerkin Methods . 8

2.1.1 Hybrid and Easy Discontinuous Galerkin Environment 9

2.2 Wavelets and Multiwavelets . 9

2.2.1 Introduction To Wavelets . 10

2.2.2 Wavelets and CFD . 12

2.2.3 Wavelet Turbulence Modeling . 14

2.2.4 Wavelet-Based Numerical Methods 16

III MULTI-RESOLUTION DISCONTINUOUS GALERKIN METHOD 19

3.1 Multi Resolution Approximation . 19

3.1.1 Describing the Approximation Space 19

3.1.2 Series Approximation . 21

3.1.3 Wavelet Thresholding . 22

3.2 The Discontinuous Galerkin Method . 24

3.3 Time Stepping Method . 26

3.4 Choice of Flux . 27

3.5 Incompressible Navier-Stokes Equations with Heat Transfer 28

iv

IV SIMULATION RESULTS . 31

4.1 Mesh Refinement Comparison . 31

4.1.1 Runtime and Accuracy Comparisons 33

4.2 Simple Steady State Flow . 35

4.3 Steady State Channel Flow . 35

4.3.1 Cross Section Comparisons . 39

4.4 Transient Channel Flow . 43

V CONCLUSION . 45

5.1 Future Work . 45

5.1.1 Extension to 3-D . 46

5.1.2 Method Applicability . 46

REFERENCES . 48

v

LIST OF TABLES

1 General Hardware and Software Versions . 7

2 Software Versions for Hedge and Direct Dependencies 7

vi

LIST OF FIGURES

1.1 Hot Aisle Cold Aisle . 2

1.2 Defense Thermal Management Scales . 3

1.3 Domain Decomposition and Discontinuities 5

1.4 Single Scale vs Multi Scale . 6

2.1 Multi Resolution Approximation . 11

2.2 Comparison of Classic Methods and their Wavelet Analogues 13

3.1 Midpoint subdivisions . 20

3.2 Thresholding a Noisy Signal . 23

3.3 DG Subtask Decomposition . 26

3.4 Model Problem . 28

4.1 A comparison between the basic mesh used in the simulations and the refined
mesh used in this section for verification. 31

4.2 Comparison of velocity vectors between basic mesh and a refined mesh for a
transient simulation. 32

4.3 Run Time Comparison . 33

4.4 MRDG Laminar Flow . 36

4.5 Fluent Laminar Flow . 36

4.6 Steady state channel flow with bluffs after 50s of flow development; compar-
ison between DG and MRDG shows an advantage for the MRDG method.
The results generated using ANSYS R© FLUENT are shown in the bottom
row. 38

4.7 Comparisons of the velocity profiles and temperature contours taken at dif-
ferent cross-sections throughout the channel. The simulations shown are
produced by the MRDG simulation as well as FLUENT for simulation veri-
fication. 40

4.8 Comparisons of the temperature contours taken at different cross-sections
throughout the channel. 41

4.9 Transient channel flow with a different starting condition. 43

vii

LIST OF SYMBOLS OR ABBREVIATIONS

CUDA Compute Unified Device Architecture, nVidia’s GPU-enhanced parallel com-
puting efforts.

DG Discontinuous Galerkin.

FD Finite Difference.

FEM Finite Element Method.

FV Finite Volume.

GPU Graphics processing unit.

MPI Message Passing Interface.

MRDG Multi Resolution Discontinuous Galerkin.

N Polynomial degree.

PDE Partial Differential Equation.

viii

SUMMARY

Efficient, accurate numerical simulation of coupled heat transfer and fluid dynamics

systems continues to be a challenge. Direct numerical simulation (DNS) packages like FLU-

ENT exist and are sufficient for design and predicting flow in a static system, but in larger

systems where input parameters can change rapidly, the cost of DNS increases prohibitively.

Major obstacles include handling the scales of the system accurately - some applications

span multiple orders of magnitude in both the spatial and temporal dimensions, making

an accurate simulation very costly. There is a need for a simulation method that returns

accurate results of multi-scale systems in real time. To address these challenges, the Multi-

Resolution Discontinuous Galerkin (MRDG) method has been shown to have advantages

over other reduced order methods. Using multi-wavelets as the local approximation space

provides an inherently efficient method of data compression, while the unique features of

the Discontinuous Galerkin method make it well suited to composition with wavelet theory.

This research further exhibits the viability of the MRDG as a new approach to efficient,

accurate thermal system simulations. The development and execution of the algorithm will

be detailed, and several examples of the utility of the MRDG will be included. Comparison

between the MRDG and the “vanilla” DG method will also be featured as justification of

the advantages of the MRDG method.

ix

CHAPTER I

INTRODUCTION

1.1 Motivation: Thermal Management of Data Centers

A data center is a facility that houses computers and their necessary support infrastructure.

This includes the storage systems for the computers as well as the environmental control

systems that maintain the temperature, humidity, and air quality in the data center. Until a

few years ago, energy usage in data centers was not a primary concern for many businesses,

and data centers were expanded as needed. However, the newer servers generate more heat

than their older counterparts and have been decreasing in size, meaning more servers with

higher heat generation rates can fit in the same data center[33]. These trends have led

to data centers consuming more power and becoming an area where increasing efficiency

would save a significant amount of money. In today’s data centers, approximately half of

the power goes towards powering the actual IT equipment; the rest of the power is used

for cooling, backup power, and lost in power conversions [30]. In fact, the server hardware

itself is no longer the most expensive part of a data center: the price of a new server is less

than the cost of power and cooling for the lifetime of that server [8]. These trends have

motivated a focus on data center energy efficiency, and in particular methods for advanced

cooling strategies.

Currently, the industry standard for server organization the data center has been servers

stacked vertically to form racks, which are then placed side by side to form a row. A row

faces another row and cold air is fed to the front of these racks, passed through the servers,

and expelled on the other side of the row. This configuration is called Hot Aisle Cold

Aisle (HACA) because of the alternating nature of the aisles created as seen in Figure

1.1. Computer room air conditioning units (CRAC) supply the cold air for the servers and

recycle the warm air after it passes through the server. A common method for providing

the cold air to the servers is by pushing through an under-floor plenum to the cold aisle

1

Figure 1.1: A image depicting the Hot Aisle Cold Aisle Layout [54]

where it rises through perforated tiles to reach the racks. After passing through the racks,

the warm air rises and is returned to the CRAC units.

1.1.1 Motivation

Various avenues for improving cooling efficiency have been considered. Variations on the

HACA them described above include containment for one or both of the hot and cold

aisle to prevent recirculation of warm air to the servers [54]. Deploying baffles throughout

the room and in the under-floor plenum to obstruct and direct airflow is another strategy

that is often practiced as a makeshift solution. Other options include abandoning the

HACA organization completely and using a pod based system for orienting the racks [64].

However, regardless of the physical layout of the data center, it is crucial to understand

2

Figure 1.2: The scales in defense thermal management range from nanometers to hundreds
of meters. Simulating a system incorporating a wide range of scales can be costly and time
consuming.

the airflow patterns and temperature distribution in the data center. Temperature and

humidity sensors can be deployed throughout a data center to provide information on the

temperatures at a finite number of points, but the empirical nature of this data hinders its

predictive capabilities. Using computer simulations, one can predict the temperature and

velocity fields everywhere within the data center and anticipate problems before they occur.

For example, defense thermal management systems involve multiple length scales over

ten or more decades, making the task of simulating these systems intrinsically difficult.

The usual simulation efforts partition a domain into smaller elements and solve a discretized

version of the governing equations on each of these smaller elements. If the solution changes

rapidly in known regions of the domain, the partition is refined there in order to achieve

additional solution accuracy. In defense systems, the multiple length and time scales seen in

Figure 1.2 become a primary obstacle to rapid thermal simulations. Computing the solution

on an element takes a finite amount of time, and for a large domain with many small

elements, classic simulation packages are unable to quickly produce an accurate solution.

In simulating these complicated domains, there is a tradeoff between speed and accuracy.

Simulating convection-dominated air flow is intrinsically a difficult problem for a number

3

of reasons. Air flow is often turbulent, and the multi-scale nature of the problem adds

another level of complexity. The major heat generating components in an electronic system

are chips or packages, often less than 40mm2 in footprint area. Meanwhile, the other

end of the lengths scale spectrum includes aircraft and warships with sizes reaching the

kilometers. While there are commercial software packages that are able to model parts of

these complicated systems, they are time consuming and expensive from a computing load

standpoint. There is a need for fast simulation methods that are able to accurately resolve

flow and thermal fields in multi-scale systems on a real time basis.

1.2 Objective

We present this study of the Multi Resolution Discontinuous Galerkin (MRDG) method

for the simulation of incompressible flows and with heat transfer. The MRDG method

is a combination of two distinct theories: the Discontinuous Galerkin (DG) method for

partial differential equations PDE has been well documented since its inception in the

1960s. Various manifestations of the DG method have been successfully applied to fluid

flow and heat transfer [46]. The multi-resolution analysis afforded by multiwavelet theory

provides an efficient function representation and the associated operators for application

as the approximation space. A model problem presenting the advantages of the MRDG

method is presented as validation of the theory.

The MRDG method discussed here uses the DG formulation for the spatial discretiza-

tion. Similar to the continuous Galerkin method, the domain is partitioned into elements

and on each element, we solve the weak form of the coupled fluid flow and heat trans-

fer equations. In the continuous Galerkin framework, each element communicates with its

neighbor elements by enforcing strict continuity across inter-element boundaries, but in the

DG method, continuity across elements is not required as seen Figure 1.3. Instead, solutions

are coupled by enforcing appropriate fluxes across elements for the inviscid and viscous flux

terms.

In the majority of prior work, the DG method uses Legendre polynomials or Jacobi

polynomials as the basis for the solution space on each element [71, 14]. The MRDG

4

Figure 1.3: The DG method has discontinuities between elements in the domain. This is
shown in the example two dimensional domain above.[17]

method uses multiwavelets as the approximation space instead of polynomials, and by doing

so introduces a number of key advantages to the method. In general, a priori knowledge

of the flow field is unavailable, making it difficult to select an optimal partitioning of the

domain that would have more elements in areas where the flow field changes rapidly. Using

multiwavelets as the approximation space in the MRDG provides a method that tracks

the solution and can refine the mesh during run time, providing a significant savings in

simulation length and cost while still maintaining the desired accuracy. The advantage

of multi-scale resolution over single scale is depicted in Figure 1.4 [63]. In addition to

refining the mesh in a solution-driven fashion, the multiwavelets also afford the ability to

save computations by coarsening the mesh in areas of the solution where further detail is

unnecessary, providing another venue to reduce simulation time.

1.3 Reproducibility of Results

In other branches of academia, experimental results published in journals have the potential

to be verified by other practicians. When researchers obtain empirical results with physical

experimentation, the details and construction of the experiment are outlined in the paper to

provide the reader with a path to follow to reproduce the results. However, in papers about

computational methods, the authors often only offer the outline and general spirit of the

method presented in the paper in the interest of brevity; the papers themselves end up being

mere advertisments for the knowledge and education represented by the software programs,

5

Figure 1.4: The top image is a standard step function. The middle image is an approxima-
tion to the weak derivative that is distorted due to the lack of sufficient mesh points. The
bottom image displays the advantage of multi-scale operation. From [63]

which is counter-intuitive. As noted by Leveque in a recent paper about this issue [45],

experimental results are expected to be reproducible, and yet scientific computing seems to

exempt itself from this necessity.

In the spirit of encouraging a similar culture for computational experiments, this sec-

tion outlines the software that I used to generate my experimental results. First, Table

1 describes the general software programs that I used that were not directly related to

the MRDG method. Additionally, Table 2 outlines the particular versions of hedge [40]

that I used in my experimental results. As of May 2011, the most recent version of

hedge and associated software is acccesible at the Andreas Klockner’s personal website:

http://mathema.tician.de/software/hedge. The wavelet package was incorporated through

the use of PyWavelet, available at http://pypi.python.org/pypi/PyWavelets/.

6

Table 1: Versions of generic hardware and software used in producing my results

Item Version Notes

Processor Intel(R) Core TM2 Duo CPU E8200 Speed: 2.66 GHz, 32-bit
Operating System Ubuntu 10.04 “Lucid Lynx” Linux version 2.6.32-30-generic
GNU C Compiler 4.4.3 Ubuntu 4.4.3-4ubuntu5

Boost C++ library 1.43
Python 2.6.5
numpy 1.3.0
PyTest 2.0.1

Virtualenv 1.49

Table 2: Versions of hedge’s direct software dependencies used to generate my results. All
projects were on the “master” branch of the tree, except for hedge itself, wherein I was
using the staging branch. Versions are provided as SHA1 version hash IDs which are used
by the “git” version control system. Each hash uniquely specifies a version for each project.

Name git Version ID Notes

aksetup 3f214fa85d08a1783b2e6b92b415d1a1e437ccab
jhbuild fd51787375a2206bad7adfe4df29911e51c6bb9b
pytools 9950c1266d9316e300e949e602b1f9d6463c387e

pymbolic 0eff7c0726ec1307445ab9b80172c0a2d7ab07a9
pyublas 46d422f55d4a38282d8eecfb3c59e6ac13712f6e
meshpy 7ee3b8ce9acfe7380245af9f096d098f94205ae5
datapyle cbcba42216b1e53860fb9a8f245e52bf6c5cdda9
pyvisfile f5effabd532523e4b9a3f8b0e4fe58ccf7900aed
codepy 18402a351ad475e52cfe916fbad603863e602c67
pymetis 0d9c6467ff03e2c580a3be127129082ad4bbe6f2

pyublasext 07115d184f6b0e127c0b6b0f1498c2a82a8d8ded
quiet-beam-sampling 89207d2acb7aea4fe26f48ad6c4d729ab2baec03

hedge 4bc593f9fd6ebceb3818ec0c3adc269748a4585a Branch: Staging
pywavelet 354bb40e5ce60865315bd284a591da0317431416

7

CHAPTER II

PREVIOUS WORK

2.1 Discontinuous Galerkin Methods

The DG method can be considered a natural extension of the finite volume (FV) and finite

element methods (FEM) to higher order. However, there are certain distinctions between

the DG and other methods: notably, the finite element method generates a solution as a

composition of continuous piecewise polynomials. On the other hand, the solution obtained

via the DG method is composed of discontinuous piecewise polynomials, but due to this,

the DG method is able to more easily handle local mesh refinement [59]. Both methods

use the variational formulation of the partial differential equation in question, but the DG

method has a number of advantages over both finite difference (FD) and FV methods [63].

Complex geometries are not an obstacle when working with DG methods because the

DG method is able to handle unstructured grids. Also, the method is suited to handle

non-conforming elements that have multiple hanging nodes, whereas the FE method can

only handle one hanging node per element and requires special functions to do so. Also,

because each element only requires input from its adjacent elements, the method is easily

parallelizable, also simplifying the coding efforts required [50]. Adjusting the polynomial

degree for DG methods is also significantly easier when compared to FEM: modifications are

only necessary in the routine that calculates the basis functions, whereas the FEM requires

different codes for polynomial degrees [59]. In fact, due to the discontinuous nature of the

relationship between elements, the degree of the solution and even the equations that govern

the system can change from element to element without disrupting the overall method [65].

Moreover, the function space basis used to approximate the solution admits any linear space

and does not necessarily have to be the same on all elements or for all time. [71]

8

2.1.1 Hybrid and Easy Discontinuous Galerkin Environment

Hedge is an open source Discontinuous Galerkin code written primarily by Andreas Klock-

ner [41]. The user-facing interface is written in Python, a high-level scripting-type language,

for ease of use, while a smaller core is written in C++ for speed optimization [67]. Hedge

comes from an interest in running simulations on a Graphics Processing Unit (GPU) instead

of the default and usual way of running fluid simulations on the CPU itself. Due to the

intended workload difference between GPUs and CPUs, it becomes obvious that the GPU

is well fitted to performing the types of calculations that are crucial in flow simulations.

CPUs are tasked with mashalling workloads such as web browsers, word processors, and a

wide array of miscellaneous desktop programs - the workload consists of high complexity

and a lesser emphasis on parallelization. On the other hand, GPUs have been designed

for the application of uniform, reasonably complicated floating point operations to a large

amount of data and are often constructed with parallel schema in mind. By using Andreas

Klockner’s PyCUDA interface, a useful bridge is created bewteen the Python scripting lan-

guage and the generation of optimized code that runs on Nvidia’s Compute Unified Device

Architecture (CUDA) [55, 42]. Moreover, Hedge was written with an optional component

that allows it to run on parallel infrastructure, which fits in very well with the DG method

as well as the wavelet representation. As mentioned previously, the DG method parallelizes

easily since interactions between elements is minimal [41].

2.2 Wavelets and Multiwavelets

Wavelets first became a topic of interest in the mathematical and engineering communities

in the 1980s, with applications in signal processing, image compression, statistical analysis,

and other fields. There have been a number of studies on the use of wavelets for solving

partial differential equations [12, 25, 58]; the wavelet-collocation method arose for solutions

to the Navier Stokes equations for turbulent flow [10, 48], among others [24]. The Coherent

Vortex Simulation (CVS) method [26, 27] and the Stochastic Coherent Adaptive Large Eddy

Simulation (SCALES) method [29] are more recent, engaging examples of the usefulness of

wavelets in turbulent flow analysis. The basis of these methods is the principle that applying

9

wavelet decomposition to a turbulent flow field provides the capability to identify and resolve

only the more energetic eddies, avoiding the cost of resolving the entire flow [6].

The motivation behind incorporating multiwavelet theory into this DG method is slightly

different: choosing multiwavelets as the approximation basis allows for adaptive compression

of the local solution estimate. Traditionally, DG methods use polynomial bases - Legendre

polynomials and Jacobi polynomials are popular choices in literature [49, 36]. However,

Yuan et al. explored the use of trigonometric and exponential approximation spaces for DG

methods. For certain PDE systems, the alternate basis was more efficient than the “stock”

classic orthogonal polynomials [71]. It is in this spirit that we consider using an alternate

wavelet basis for the DG method in order to utilize the advantages of wavelets.

2.2.1 Introduction To Wavelets

2.2.1.1 Classic Wavelets

In the classic setting, the scaling function φ is defined as

φ(x) =
√

2
∑
k

hkφ(2x− k)

The hk are recursion coefficients and define the relationship between scales. Refinement of

this function and incorporating wavelets leads to a multi-resolution approximation (MRA).

In an MRA, a function is decomposed as the sum of a smooth background and fluctuations,

somewhat similar to the idea behind Reynolds-averaging: the mean flow is the smooth

background and the turbulent component are the fluctuations. By recursively applying this

concept, we construct a hierarchy of scales and are able to decompose the function into

the sum of the smooth background and fluctuations; Figure 2.1 displays this concept for a

1D function. At coarse scales, the fluctuations serve as comparatively smooth background,

while for smaller scales, the fluctuations are the fine details [51]. The scaling function at

each scale represents the smooth background while the wavelets at each scale contribute

the fluctuations. Inherent to an MRA are decomposition and reconstruction algorithms

that transfer data between scales; generalizing the wavelet theory leads to such functions

as ridgelets, curvelets, wavelet packets, frames, second generation wavelets, and others.

10

Figure 2.1: The original signal is shown at the top and labeled ’s’. The smooth background
is shown as ’a3’ and then three detail functions are shown of descending scale. Note how
the background function captures the overall motion of the original function, and the detail
functions add increasingly more accuracy to the approximation.

2.2.1.2 Multiwavelets

Multiwavelets are one of the generalizations of the classic wavelet theory; they were intro-

duced in the 1990s. Whereas before the scaling function was a scalar, now we consider a

vector of scaling functions called a multiscaling function.

Φ(x) =


φ1(x)

...

φr(x)


Refinement is accomplished as

Φ(x) =
√
m
∑
k

HkΦ(mx− k)

where Hk now represents a matrix of size r × r. Multiwavelets introduce some advantages

compared to classic wavelets: their support is more flexible than wavelets while affording

high smoothness, and it is possible for multiwavelets to be symmetric and orthogonal. Mul-

tiwavelets also lend themselves to a similarly constructed multi-resolution approximation

and analogous decomposition and reconstruction algorithms like scalar wavelets.

11

An important characteristic of multiwavelets in this implementation is handling inter-

scale effects. Traditionally, adaptive mesh methods would only take into consideration

the interactions between the boundary provided and then adjust the mesh as a result of

these considerations. However, the multiwavelet construction admits information exchange

between elements by moving to a higher or lower scale as necessitated by the problem.

2.2.2 Wavelets and CFD

Wavelet methods are a relatively new research avenue and have been present in the litera-

ture only in the past decade. Simulation of turbulent flow and heat transfer is still a major

challenge for the scientific community. The application of such simulations has impact in

practically every field of science and engineering. Traditionally, direct numerical simula-

tion (DNS) of the governing equations has been limited by the computing power available,

which limits the application of such efforts to complicated problems of interest. While

waiting for computing power to increase, the only other option is to model some of the

turbulent phenomena in order to reduce the compute load. The Reynolds-averaged Navier-

Stokes (RANS) approach was one of the early modeling approaches, but it was not able

to accurately capture the spatial and temporal interactions at all the pertinent scales [22].

Modifications to the RANS approach include large-eddy simulations (LES) which employed

a distinct scale separation by appyling a low-pass filter of sorts to the governing equations.

However, neither of these methods really takes advantage of the fundamental characteris-

tics of turbulence: it is multiscale, with coherent structures and intermittent spatial and

temporal features.

Introducing wavelet based models comes from the realization that for a particular flow,

the coherent structures and important “modes” of the flow are not spread evenly across time

or space. A sparse representation of the flow characteristics would take advantage of the fact

that fine details are only required intermittently throughout the simulation. Using wavelets

to represent the flow can yield a compact description of turbulent flow and heat transfer by

only preserving the particular wavelets with high dynamic action, as noted by the magnitude

of the coefficients in the representation. Just as there are a wide range of approaches to

12

traditional efforts to model and simulate turbulent heat transfer, there are a number of

methods in which wavelets have been introduced to varying degrees of success. There are

three main categories, which will be discussed in brief to give an idea of the position from

which the MRDG method is presented. Figure 2.2 describes the relationship between some

of the classic modeling efforts and the newer wavelet versions of these methods, including

some wavelet methods that are not based on classic methodology.

Figure 2.2: Some traditional methods have been modified and improved with the introduc-
tion of wavelet representation. Some of the wavelet methods do not have a close analogue
to classic methods because they take advantage of particular wavelet characteristics. The
middle column in darker blue containing years and names indicate the earliest publications
of the respective wavelet method or a major publication that denoted a significant change
in methodology.

As seen in Figure 2.2, DNS has a corresponding wavelet version appropriately titled

Wavelet DNS (WDNS), which attempts to model all of the modes of the flow using a wavelet

13

representation without using any modeling of small scale activity. Coherent Vortex Simu-

lation (CVS) begins to incorporate modeling for the incoherent components of turbulence.

Finally, the Stochastic Coherent Adaptive Large-Eddy Simulation (SCALES) method is an

extension of the LES method that provides reduced computational complexity while still

maintaining competitive accuracy. The bottom half of the image depicts mesh-adaptive

models that include unique wavelet methods and so called “pure” wavelet methods that

correspond to simple collocation or galerkin methods. Multi-resolution methods, including

the MRDG, are included in this bracket and are a modification of FE/FV/FD methods

that use polynomial bases.

2.2.3 Wavelet Turbulence Modeling

WDNS is the method that carries the highest degree of precision and a correspondingly high

degree of computational complexity. By taking advantage of the compact nature of wavelet

representation, the cost and memory requirements of the method are kept in check without

performing modeling for the small scales. Starting in 2000, WDNS has been successfully

employed for a wide array of flows for incompressible and compressible flow, including flow

around cylinder(s) [61], 2D and 3D homogeneous turbulence [56], flow in a differentially

heated cavity [70], and even combustion and thermoacoustic wave propagation [57].

2.2.3.1 Wavelet-Based Direct Numerical Simulation

An important feature of the WDNS method in particular takes advantage of the intermittent

nature of the flow characteristics, and this is one area where the wavelet methods are able

to reduce computational complexity. The previous computational estimates for the number

of grid points required in a simulation of 2D and 3D decaying turbulence has been found

to be N ∝ Re
3
2 and N ∝ Re3, where N is the number of grid points. As a comparison

for how the WDNS performs in 2D, the following relationships were found for the sample

problem of for impusively started flow through a tightly packed cylinder array. The number

of active grid points was found to satisfy NWDNS ∝ Re
1
2 , and computational complexity

scaled similarly to Re; both of these relationships held over five orders of magnitude of

Re : 3 × 101 ≤ Re ≤ 105 [37]. Also, further studies in 2D turbulent decay confirmed the

14

advantage of WDNS over previous methods, with the wavelet enhanced method boasting

spatial modes scaling similar to Re0.7 compared to the traditional estimate of O(Re) [62].

2.2.3.2 Coherent Vortex Simulation

Coherent Vortex Simulation, CVS, was introduced in 1999 by Farge and colleagues [27], and

was used to simulate turbulent flows. The driving idea behind this method was to extract

coherent vortices in a mathematically objective fashion when looking at turbulent flows.

Using a wavelet basis, the evolution of coherent vortices is calculated deterministically. The

computation adapts to the spatial and temporal domains with strong gradients, while the

incoherent components of the flow are modeled and discarded at each step to mimic the

turbulent diffusion. CVS separates itself from LES by using wavelet threshold filters instead

of the linear low-pass filters; the LES filters do not adapt to the flow as it changes, whereas

the CVS filters depend on the current flow parameters. In a comparison between CVS

and DNS for a time-dependent 3D turbulent mixing layer, the ratio of retained coefficients

between DNS and CVS was found to range from 8%to15% - that is, DNS retained over

five times as many coefficients as the CVS model. Meanwhile, comparing the timewise

evolution of the energy from each method showed that the CVS method maintained 99.6%

of the energy described in the DNS simulation [60].

2.2.3.3 Stochastic Coherent Adaptive Large-Eddy Simulation

In the spirit of further reducing the computational complexity, the SCALES method was de-

veloped and introduced a higher degree of modeling compared to the CVS method [29]. The

distinction between foreground and background flow characteristics was shifted towards the

more energetic characteristics, meaning that the new “background” flow makes a relevant

contribution to the flow and cannot be neglected. Introducing a model for the background

flow makes the method similar to LES, but unlike LES, SCALES couples the grid and the

SGS model, meaning that the local resolution of the mesh can be increased or decreased

when necessary, making the method more responsive to changes in the flow realization. Due

to the analogy between SCALES and LES, some of the same models used in LES methods

have been used in the SCALES method, the most successful of which being a Lagrangian

15

path-line/tube dynamic model [68].

In comparisons between DNS, WDNS, CVS, and SCALES, the advantages of the CVS

and SCALES methods become obvious. Both approaches were found to match the DNS

energy and enstrophy density spectra for the primary wave-numbers using much fewer

degrees of freedom - the resolved kinetic energy for both CVS and SCALES was very close

to that of the DNS prediction [62]. In a comparison of the percentage of compression,

or discarded points, the SCALES method with two separate sub-models outperformed the

compression of the standard LES method by four times. The SCALES method employed

99.6% compression compared to the DNS model, using only 0.4% of the points in comparison

to the LES method which used 1.6%. [68, 66].

2.2.4 Wavelet-Based Numerical Methods

As seen in Figure 2.2, the family of wavelet methods can be grouped into three families:

unique wavelet methods, pure wavelet methods, and multiresolution methods. The unique

methods are new approaches to the numerical solution of PDEs and are dissimilar from

previous methods. Pure wavelet schemes are called so because the wavelets are used for

direct discretization nof the PDEs. Finally, multiresolution methods compose the family

of methods that are based on finite-difference, finite-volume, or finite-element analysis but

introduce wavelets as an improvement method. This last group is the family in which the

MRDG method resides.

2.2.4.1 Unique Wavelet Methods

There are two distinct methods that are considered unique in their approaches. The first

is the Lagrangian Wavelet method, which is an extension of adaptive wavelet methods

and uses travelling wavelets [5]. This method is unique because both the position and

scale of the wavelet bases change continuously in time; ideally this would provide the most

compact representation of the flow because the basis readily adapts to any and all flow

characteristics as the solution iterates through time. Although the method was found to

work well for linear problems, its extension to nonlinear systems was difficult due to the

problem of wavelet collision [9].

16

While the majority of methods, both wavelet and otherwise, depend on adapting to a

problem in space, fewer methods are time-adaptive. Instead of using the timestep to control

stability or limit the error, space-time wavelet methods introduce different time-adaptive

stepping strategies. The first time adaptive wavelet methods came in 1992, when a scale-

dependent method was presented for the Burgers’ equation. [4]. More recently, Domingues

et al. applied time-adaptive methods to the compressible Euler equations [20, 21]. Although

the methods have some advantages, they still accrue error over time - Alam et al. presented

a modified version of the approach that featured an extreme reduction in gridpoints while

achieving similar global accuracy. However, the tradeoff came at the cost of a significantly

larger memory requirement [1].

2.2.4.2 Pure Wavelet Methods

Pure wavelet methods consist of both Galerkin and collocation methods. Here, wavelets

are used to directly discretize the operators in the PDE, or the properties of the wavelets

are used to optimize the method, via grid adaption, pre-conditioning, or other schemes.

The adaptive Galerkin methods attempts to find a solution that in the form of a wavelet

basis, solving for the coefficients of the different wavelets and discarding the coefficients

lesser than an absolute threshold. Wavelet Galerkin methods were primarily of focus in the

90s, with a number of studies describing different ways of implementing the method and in

particular the evaluation of the nonlinear terms [53, 34, 62].

The wavelet collocation method avoids some of the issues encountered in the wavelet

Galerkin methods, namely the difficulties that arise with the nonlinear terms and the issue

of treating general boundary conditions. A distinction of the wavelet collocation method

is its grid adaptation scheme - in a similar fashion to the previous method, the wavelets

with trivial coefficients are discarded, but in the collocation method, the grid points that

correspond to the discarded wavelets are also discarded. The collocation grid points are

only preserved from time step to time step if the wavelet that corresponds to that grid point

has a nontrivial coefficient [62].

17

2.2.4.3 Multiresolution Methods

Multiresolution methods were first developed in 1994 for hyperbolic conservation laws [31].

Recently, Harten’s approach has been extended and developed in a number of studies with

various applications [16, 52, 63]. As previously mentioned, multiresolution methods use a

hierarchical representation of the data that is very well matched to the multiscale nature

of turbulent flow. Using the wavelet basis to represent the flow, information about local

smoothness of the flow can be deduced from the wavelet coefficients; in areas where the

solution is smooth, additional coefficients can be discarded and the compression of the

representation is improved. This gives way to an adaptive grid algorithm that uses coefficient

thresholding to only retain the significant wavelets and their coefficients. Moreover, since

the grid adaption error can be estimated as a function of the threshholding method, it is

possible to control for the error, providing an extra advantage for multiresolution methods

[62].

18

CHAPTER III

MULTI-RESOLUTION DISCONTINUOUS GALERKIN METHOD

In order to describe the MRDG method, we follow the previous works by Shelton [63], Li

[46], Klockner [41], and Hesthaven [32]. We begin by outlining the MRA and the tools

necessary for its application. Next, we describe the DG method and the pertinent items for

the solution of the governing equations.

3.1 Multi Resolution Approximation

3.1.1 Describing the Approximation Space

Discretization of the problem domain Ω is the one of the first steps we will consider. We

partition the aforementioned channel into a set of non-overlapping elements Ωe of charac-

teristic size he where the interface between any two given elements is either a point, an

edge, or nothing:

Ω =
⋃
e

Ωe, Ωe ∩ Ωe′ = ∅ for e′ 6= e (3.1)

In two dimensions, we will consider a triangular canonical element, but quadrilaterals are

also an option (tetrahedrals are the corresponding three dimensional analogy). Next, on

each triangular element Ωe we consider a further partition by n midpoint subdivisions of the

element as depicted in Figure 3.1 as a starting point for the multi resolution approximation

[63].

Ωe =

22n−1⋃
h=0

Ωh, Ωh ∩ Ωh′ = ∅ for h′ 6= h (3.2)

On each newly partitioned element, the continuous function space is approximated as a

vector space Vnp . f ∈ Vnp if f is polynomial of degree at most p and f is compactly supported.

The spaces Vnp form a nested sequence of closed subspaces:

V0
p ⊂ V1

p ⊂ · · · Vnp · · · (3.3)

19

Figure 3.1: Partitioning an element via recursive mid-point division, and the numbering
method for the elements within. From [63]

Next, we can define the space Wn
p as the orthogonal complement of Vnp in Vn+1

p :

Wn
p = Vn+1

p 	 Vnp (3.4)

This can be rewritten asWn
p ⊕Vn+1

p = Vnp . Here,Wn
p is the details space which corresponds

to the averages space Vn+1
p ; these two vector spaces are orthogonal to each other and their

sum is the averages space of the higher scale [18]. As a result, we can compose any averages

space Vnp as the sum of a single averages space V0
p along with a sequence of details Wp:

Vnp = V0
p ⊕W0

p ⊕W1
p ⊕ · · · ⊕Wn−1

p (3.5)

Now, we can define the multiscaling functions that span Vnp and the multiwavelet func-

tions that span Wn
p given a basis for the spaces V0

p and W0
p . Assuming φ0, . . . , φk−1 spans

V0
p , then any space Vnp has the following for a basis, obtained by dilating and translating

the original basis:

φnhj (τ) = chφj(TΩc→Ωh
τ) (3.6)

The operator TΩc→Ωh
maps the coordinates of the actual element to a bi-unit triangle and

20

τ refers to the coordinates. ch is a dilation factor:

ch =

√
|Ωc|
|Ωh|

= 2n (3.7)

A similar construction is available for Wn
p , with the basis ψl,0, . . . , ψl,k−1, where in two

dimensions, l = 1, . . . 3

ψnhl,j (τ) = chψl,j(TΩc→Ωh
τ) (3.8)

As previously discussed, the φj functions are the multiscaling functions and the ψl,j are the

multiwavelet functions. By construction, the following orthonormal properties hold [63]:

〈φi, φj〉 = δij , 〈ψl,i, ψl′,j〉 = δijδll′ (3.9)

These properties extend to the multiwavelets that were constructed via dilation and trans-

lation:

〈ψnhl,j , ψn
′h′
l′,j′ 〉 = δijδll′δnn′δhh′ (3.10)

Since W0
p ⊥ V0

p follows from the definition of W0
p , the basis functions φi and ψl,j are

also orthogonal: 〈φi, ψl,j〉 = 0. Therefore, a complete orthonormal basis for Vnp is the

set {φj} ∪ {ψnhl,j } with modes j = 0, . . . , k − 1, dimensional connections, l = 1, 2, 3, scales

m = 0, . . . , n− 1 and subregions h = 0, . . . , 22m − 1.

3.1.2 Series Approximation

The efficient function decomposition is based on the idea that when a given function f

is sufficiently smooth at some scale m′, the details at any further scale m > m′ are small

enough to be ignored, and the rest of the decomposition at all further scales can be neglected.

The truncation of the decomposition based on the size of the details leads to a reduction in

terms necessary to approximate the function.

In order to approximate a function on the spaces outlined above, we can project the

function onto the space V0
p as well as the spaces Wn

p . The approximation of the function is

then the sum of these projections. To decompose a function f ∈ Vnp :

f(x) ≈ f̃(x) =
2n−1∑
l=0

k−1∑
j=0

snjlφ
n
jl(x) (3.11)

21

Here, φnjl are the scaling functions that compose the basis of each space Vnp , and the coeffi-

cients snjl are found from the inner product of the basis functions and the original function

f(x):

snjl =

∫ 2−n(l+1)

2−nl
f(x)φnjl(x)dx (3.12)

Of course, there is an equivalent representation using only one averages space V0
p and the

complementary details spaces Wn
p .

f̃(x) =

k−1∑
j=0

(s0
j0φj(x) +

n−1∑
m=0

2m−1∑
l=0

dmjlψ
m
jl (x)) (3.13)

Again, the coefficients dmjl are found as the inner product of the original function f(x) and

the basis functions ψnjl(x), analogous to Equation 3.12.

While the total number of expansion coefficients in the averages space decomposition,

Equation 3.11, and the details space decomposition, Equation 3.13, are the same, the num-

ber of significant coefficients in Equation 3.13 for a given error tolerance ε is different. The

development of fast transforms between the two different expansions was demonstrated in

[2], and allows for efficient transition between scales when necessary [3]. The advantage of

using the multiwavelet expansion is that fewer significant expansion coefficients are needed,

so the computational speed and efficiency of the method are increased [2]. The thresholding

technique is similar to that found in [11, 63] wherein

||f − f̃ ||∞ < ε (3.14)

3.1.3 Wavelet Thresholding

In signal denoising applications, wavelet thresholding is applicable and advanageous because

the scale of the coefficients in the signal decomposition is similar to that of the noise that

is clouding the signal. Considering the decomposition of a noisy signal, setting “small”

wavelet coefficients that are less than a threshold ε << 1 and reconstructing the signal

effectively removes the noise and can return a continuous version of the signal without

the noise. Because the noise contributes information that is the same scale as the smaller

22

coefficients, discarding the coefficients effectively discards the noise as well, resulting in

a signal is denoised. Figure 3.2 demonstrates this nicely, showing a signal, its wavelet

coefficients, the thresholded coefficients, and the denoised signal in that order [35].

Figure 3.2: (a) The original signal is in the top left, containing stationary and white noise.
(b) The signal’s Haar transform. The noise is distributed evenly across the entire wavelet
coefficient spectrum, and the singularities in the original signal are still distinguishable in
the wavelet coefficients from the noise. (c) Wavelet coefficients after soft thresholding (d)
The reconstructed signal, with significantly less noise. Additional details available in [35]

Although denoising a signal is a different application from computational fluid dynam-

ics, the concepts are similar. There are two main methods of modifying the coefficients:

hard- and soft- thresholding. In hard-thresholding, small coefficients are removed while

23

large coefficients are unchanged. The distinction between “small” and “large” in this sense

depends on the concern for reconstruction accuracy and the competing interest of com-

putational efficiency. Soft thresholding involves shrinking the coefficients larger than the

threshold, moving the entire signal towards zero in the interest of producing a continu-

ous reconstructed signal. For data compresion in our application, hard-thresholding is the

method of choice.

Impressive compression rates have been achieved in literature for wavelet methods. For

a variety of test problems subject to the Euler equations using the MRDG method, Shelton

achieved compression rates of 75% DoF in one dimension and 96% DoF in two dimensions,

with predictions of even better compression in three dimensions [63]. In a review of wavelet

methods for CFD, the SCALES and CVS methods achieved compression rates of over

99% DoF, outperforming the LES method [66, 56, 68, 62] from both an efficiency and

accuracy standpoint. While the majority of the simulations in the later sections were not

run with compression as a prime objective, a small number of tests were run with different

thresholding values. Compression rates for the simplified method presented here were in

the range of 75% compression. While this is significantly lower than current state of the

art, it is comparable to some of the early methods in the literature, and is also subject to

a number of available improvements that would increase efficiency.

3.2 The Discontinuous Galerkin Method

Discontinuous Galerkin (DG) methods [14, 32] are an interesting synthesis of ideas from

finite volume and spectral element methods. The method consists of two separate halves:

at higher detail, the method is high-order by design, but at a certain level of detail, the

method switches to a decomposition onto computational elements, coupling these elements

using a finite-volume like surface Riemann solver [41].

DG methods have been particularly suited to solution of hyperbolic systems of conser-

vation laws such as

ut +∇ · F (u) = 0 (3.15)

24

where the domain of interest is Ω =]Kk=1Dk ⊂ Rd where the Dk composing the domain are

disjoint triangles or tetrahedra. The associated boundary conditions are expressed as

u|Γi(x, t) = gi(u(x, t), x, t), i = 1, · · · , b

at the boundaries]Γi ⊂ ∂Ω. For simplicity’s sake, if we assume the flux function in

Equation 3.15 is linear, the weak form of 3.15 on each element Dk is

0 =

∫
Dk

utϕ+ [∇ · F (u)]ϕdx

=

∫
Dk

utϕ− F (u) · ∇ϕdx+

∫
∂Dk

(n̂ · F)∗ϕdSx

(3.16)

Here, ϕ is a test function, and (n̂ · F)∗ represents the numerical flux in the unit normal.

Proceeding as in [32], the strong form of the system becomes

0 =

∫
Dk

utϕ+ [∇ · F (u)]ϕdx−
∫
∂Dk

[n̂ · F − (n̂ · F)∗]ϕdSx (3.17)

In the standard DG, the solution to this equation is a vector uk := uN |Dk
from the space

of polynomials of maximum degree N , PnN (Dk). As the scalar test function ϕ ∈ PN (Dk) is

from the same basis, the method is of course of Galerkin-type. To be explicit, the solution in

each cell would be a piecewise-polynomial. Representing both the solution and test function

by expansion in a basis of Np := dimPN (Dk) Lagrange polynomials Li [69, 41], the mass,

stiffness, differentiation, and face mass matrices are defined as follows.

Mk
ij :=

∫
Dk

liljdx, (3.18)

Sk,∂vij :=

∫
Dk

li∂xv ljdx, (3.19)

Dk,∂v := (Mk)−1Sk,dv, (3.20)

Mk,A
ij :=

∫
A⊂∂Dk

liljdSx (3.21)

We can re-write 3.17 using the matrices as

0 = Mk∂tu
k +

∑
Sk,∂v [F (uk)]−

∑
F⊂∂Dk

Mk,A[n̂ · F − (n̂ · F)∗],

∂tu
k = −

∑
v

Dk,∂v [F (uk)] + Lk[n̂ · F − (n̂ · F)∗]|A⊂∂Dk

(3.22)

25

Figure 3.3: Decomposition of a DG operator into its different subtasks; operations that are
element local and do not depend on global communication are highlighted in blue. More
details regarding the construction and specific implementation of these operators is available
in [41]

The lifting matrix Lk included in 3.22 acts on vectors of the shape [uk|A1 , · · · , Uk|A4]. Here,

uk|Ai is the vector of the degrees of freedom on face i, and Lk performs a compositon of

functions. The lifting matrix applies each face’s mass matrix, embeds the facial values

back into a volume vector, and finally applies the inverse volume mass matrix [41]. The

implementation of the DG method is aided by the fact that DG decomposes naturally into

four stages. Figure 3.3 visualizes the decomposition and in particular notes that the majority

of the operations are element-wise local and are feasible without global communication. The

element-wise nature of the operations simplifies the parallelization of the scheme, and also

distinguishes DG from other finite element methods.

3.3 Time Stepping Method

The major focus of this work is taking advantage of the multi-scale nature of the turbulence

problem in the spatial dimensions. While there are many applications that exist that have

a multi-scale temporal dimension, the test cases and typical applications that we would

encounter in a data center are not multi-scale in time. As a result, a simple fourth order

Runge-Kutta multi-stage time-stepping method is implemented for use. As mentioned in

Chapter 2, certain multi-resolution wavelet methods have also incorporated an adaptive time

step, but because our focus is mainly spatial resolution, we will not be taking advantage of

an adaptive time step. The details for the RK4 method are widely available, and specific

details for the implementation can be found in [63].

26

3.4 Choice of Flux

Due to the nature of the discontinuous global space, the numerical flux function carries

information across the boundaries of elements. In a one dimensional case, an interface would

have a “left” element and a “right” element. While the choice of a flux function depends

on the application, the flux function must satisfy identity and reflexive relationships:

Fn(U,U) = Fn(U) (3.23)

Fn(UL, UR) = Fn(U) (3.24)

When using artificial viscosity, simple averages composed of equal influence from the left

(L) and right (R) sides are implemented

U =
UL + UR

2
(3.25)

Favn =
Favn (UL) + Favn (UR)

2
(3.26)

There are also other choices available for the viscous flux function in a DG scheme, each

bringing their own advantages and disadvantages to the table. Zhang and Shu presented an

inconsistent and weakly unstable flux method that was used as a baseline for comparison of

flux methods [72, 38]. Commonly used flux choices include the Bassi-Rebay scheme (BR)

[23], the local discontinuous galerkin method (LDG) [15], the Baumann-Oden scheme (BO)

[7], and the Lax-Friedrichs flux [63]. The different flux schemes differ in stencil size and the

related amounts of “communication” between elements - LDG and BO have tighter stencils

and thus less communication than BR, for example. On the other hand, the LDG method

requires a smaller timestep, making it less efficient in that sense [38]. Of course, there are

a number of other potential choices that exist, some of which can be found in [44] and the

references within.

In our case, the Lax Friedrichs flux has been implemented. In classical finite volume

methods, the flux matching across the element interfaces was crucial in order to propagate

the boundary information to the interior of the domain, and also to keep the solution within

27

Figure 3.4: The dimensions and layout of the model problem, representing a slice of a server.

reasonable bounds. However, in the DG method, the choice of flux is less influential for

two reasons. First, the element update is not entirely dependent on the interface integral,

and secondly, for higher order DG methods, the discontinuities across elements tends to be

increasingly small. The Lax-Friedrichs flux was chosen because it performs well compared

to traditional methods and its efficiency over more complex methods [63]. The function is

Fn =
Fn(UL) + Fn(UR)

2
+

∆x

∆t

UL − UR

2
(3.27)

3.5 Incompressible Navier-Stokes Equations with Heat Transfer

The problem of application is the flow of air horizontally through a server encased in an

electronics rack. In practice, air flow from the front of a rack through the servers and out the

back is a turbulent, incompressible, viscous, three dimensional flow. The air moves through

the server and across the heated components on the motherboard due to the fans in the

server that create a pressure gradient. For the purposes of this paper, we shall consider

a model problem: a two dimensional simplification where we assume flow across a given

slice of the server is indicative of the overall flow. The representative 2D problem that we

consider is essentially pressure driven channel flow with a heat flux on bluffs on the bottom

wall representing the heated components in a server such as the CPU or the RAM. The

governing equations for fluid flow and heat transfer in terms of velocity and temperature

fields and are derived from the conservation of mass, momentum, and energy, along with a

28

number of constitutive relations and are presented here in vector form.

∇ · u = 0

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · µ(∇u + (∇u)T)−∇p+ f− ρgβ(T − Tr)

ρCp
∂T

∂t
+ ρCpu · ∇T = ∇ · κ∇T +Q+ Φ

The unknowns are the velocity u, the pressure p and the temperature T . f is the body

force, not including gravity, and ρ is the density and µ is the molecular viscosity. β is the

thermal expansion coefficient, and g is the acceleration due to gravity. Cp is the specific

heat and constant temperature and κ is the thermal conductivity.

Since we will be considering a two dimensional forced convection case, the governing

equations can be written explicitly in the following non-dimensionalized manner:

∂u

∂x
+
∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
u
∂T

∂x
+ v

∂T

∂y
=

1

RePr

(
∂2T

∂x2
+
∂2T

∂y2

)

Here, U = U∞ scales the velocity. The length scale is Lx and the time scale is Lx
U . Re

denotes the Reynolds number: Re = ρULx

µ and Pr = ν
α is the Prandtl number and α is the

thermal diffusivity. Finally, the nondimensionalized temperature is T =
(T ∗−T ∗1)
T ∗2−T ∗1

where the

superscript asterisk refers to the dimensional temperature.

The boundary conditions that will be applied are as follows. The velocity is zero on

the top and bottom walls of the channel and the inlet velocity is uniform. The top wall is

insulated and the bottom wall is mostly insulated except for two regions where the heat flux

is nonzero to represent the heated components in a server. The inlet temperature will be

TR, a reference temperature. There will be two initial conditions considered. The velocity

may be zero inside the channel and the temperature in the channel is TR; physically, this

denotes a state where the server is off and the fans are not pulling air across the components.

29

At t = 0, we can presume that the server is turned on and initiates the air flow. Another

condition is uniform flow through the channel, as if driven by the CRAC unit; the simulation

would describe the airflow as the server’s fans are activated. At the outlet, we will apply

the condition that the gradients of the pertinent variables are zero, implying that the

perturbations to the system are far from the outlet.

u(x, y = 0) = 0; v(x, y = Ly) = 0; (3.28)

∂u

∂x
(x = Lx, y) = 0,

∂v

∂x
(x = Lx, y) = 0 (3.29)

∂T

∂y
(x, y <= 0.25) =


0 if x /∈ [x1, x2] ∪ [x3, x4]

1 if x ∈ [x1, x2] ∪ [x3, x4]

(3.30)

∂T

∂y
(x, y = Ly) = 0,

∂T

∂x
(x = Lx, y) = 0 (3.31)

u(x, y, t = 0) = 0, v(x, y, t = 0) = 0, (3.32)

T (x, y, t = 0) = Tref (3.33)

Here, the regions [x1, x2] and [x3, x4] denote the portions of the channel where the heat

flux is nonzero on the bottom wall. The length of the channel is Lx and the height of the

channel is Ly.

30

CHAPTER IV

SIMULATION RESULTS

A number of different simulations have been run for comparison purposes. Although it

is difficult to present an exhaustive battery of test cases due to the cost of solving the

problem, the results are promising. The simulations include the DG method using Legendre

polynomials as the basis, and a simplified version of the full MRDG method, as well as

various methods used to verify the accuracy and precision of the MRDG method. ANSYS R©

FLUENT simulations are also provided as a benchgmark for comparison.

4.1 Mesh Refinement Comparison

The mesh used in the majority of the simulations by the MRDG and DG code is displayed

in Figure 4.1a, and the refined mesh is displayed in Figure 4.1b. Mesh generation for the

MRDG simulation is accomplished by MeshPy and PyMetis [40].

The initial velocity profile condition for this test case was uniform flow throughout the

channel: u(x, y, 0) = 1, v(x, y, 0) = 0. The simulation represents the development of the

flow over nine seconds, and as seen in Figure 4.2, the simulation displays many of the same

qualities at both mesh refinement levels, and does not deviate significantly from the refined

mesh. It may be noted here that the initial condition of a uniform flow that is propagated

evenly throughout the channel is a slightly unrealistic condition for the velocity profile.

(a) Mesh of channel with bluffs (b) Refined mesh of channel

Figure 4.1: A comparison between the basic mesh used in the simulations and the refined
mesh used in this section for verification.

31

(a) Coarse mesh: t = 2.9s (b) Refined mesh: t = 2.9s

(c) Coarse mesh: t = 5.8s (d) Refined mesh: t = 5.8s

(e) Coarse mesh: t = 8.7s (f) Refined mesh: t = 8.7s

Figure 4.2: Comparison of velocity vectors between basic mesh and a refined mesh for a
transient simulation.

However, initializing the flow in this manner avoids the transient period and transitions

much faster to the steady state where the flow features are more obviously discernable and

can be more easily compared, so for the purpose of mesh refinement comparison, this accel-

erated initialization makes sense. Looking at the maximum velocity in each plot, we notice

that the maximum velocity in the different phases of the simulation remains within a few

percentage points. For example, comparing the maximum velocities at t = 2.9s, we see

that the coarse mesh presents umax,coarse = 1.26 compared to the refined mesh maximum of

umax,refined = 1.239; the discrepancy is 1.67%. While the percentage difference is approx-

imately 8% at the middle time interval, nearing the end of the simulation the discrepancy

between the maximum velocities decreases further to 0.5%, which is encouragingly small.

The Reynolds number of these flows was Re = 1600.

32

Figure 4.3: A comparison between the run times of the two different methods: DG and the
MRDG method. The shear case refers to the laminar flow described in Section 4.2 shows
only a small difference in run time, but for the more complicated channel bluff flow, the
discrepancy is exacerbated.

4.1.1 Runtime and Accuracy Comparisons

A small sample size run time comparison was performed to examine the difference in runtime

between the original DG method and the MRDG method. Looking at a comparison of the

run time between the two methods, we see that there is a negligible difference for the very

simple shear flow case discussed initially for verification purposes. However, when running

the coarse mesh and the refined mesh, there is a more significant advantage for the DG

method. While it is discouraging that the MRDG method’s runtime is not superior, the

run time is still on the same order of magnitude and there is definitely a lot of room for

optimization of the code in order to improve the run time.

To expand on the optimization theme for the MRDG method, the hedge code is com-

posed of files written in two programming languages: Python and C++. As with all

programming languages, each of the two have their advantages and disadvantages. Python

is a high-level language that relieves the programmer from dealing with the details of the

33

actual execution of the code. Topics like memory addresses and allocation, garbage col-

lection (discarding unused objects, like variables or instances of classes) and registers are

left to the compiler to handle in exchange for a language that is more usable and readable.

On the other hand, C++ is an intermediate-level language that grants access to efficiency-

increasing methods at the exchange of user-facing complexity. For the existing hedge code,

the bottlenecks in the Python code that would slow down the simulations have been rewrit-

ten in the faster C++ language. The result is a code that provides the user-friendly nature

of Python with a small, fast core written in C++ to decrease the run-time. However, the

adjustments I made to the program for the purposes of these simulations were all done in

Python, as it is an easier language in which to code. Transferring the most frequently called

functions and heavy mathematical operations from Python to C++ would have a definite

effect on the MRDG run-time. In addition, there are further optimizations with Python

such as memoization and unique imports that can be introduced to improve the run-time

of the MRDG method. Moreover, there are a number of Python modules such as hotshot,

profile, and timeit that help profile and time code. Being able to see where the the code

runs slowest would allow one to achieve the greatest amount of optimization [19].

There also are a number of hardware specific available optimizations in the code that

would make it a much more competitive code in terms of compute load and execution time.

The Hedge code includes optional modules that allow for improvement of the code. The first

of which is the boostmpi, which is a Message Passing Interface (MPI) wrapper for Python.

Boostmpi provides access to high-performance communication between processes for parallel

computing. In the absence of parallel computing architecture, one could also utilize the

PyCUDA module with an Nvidia CUDA-enabled graphics card. CUDA, as previously

mentioned, is Nvidia’s foray into general-purpose computation on graphics processing units.

The natural fit between GPUs and fluid flow simulations has been discussed previously, and

the PyCUDA module would provide a number of distinct advantages, the foremost of which

being an increase in speed with no affect on the accuracy of the method. Introducing these

and other optional modules in hedge have been estimated to add at least additional 20%

34

speed increase [41].

4.2 Simple Steady State Flow

The next test case is a very simple flow that has an exact solution. Fully developed laminar

pipe flow has an exact solution far from the entrance where the laminar flow has developed

fully. Here, we can use the analytic solution as a benchmark for the MRDG method. For

this case, there is an exact solution which can be used as accuracy verification:

u(x, y, t) =y2

v(x, y, t) =0

The flow produced by the MRDG exhibits the expected features: a maximum velocity in the

center of the channel tapering to zero at the walls where no-slip is enforced. The velocity

profile for the solution to the Navier Stokes equation in this flow is shown in Figure 4.4,

where what’s shown is the bottom half of the pipe flow. The top of the graph shown would

be a symmetry line and the plot could be mirrored above to create an entire picture of the

laminar pipe flow. The L2 error for the MRDG simulations was consistently and repeatably

on the order of 10−5, with a short run time of around thirty seconds. Solving the analogous

problem using ANSYS R© FLUENT grants a very similar plot shown in Figure 4.5, where

again the symmetry of the system was used to simplify the equation. Conceptually mirroring

the graph above creates the entire pipe and shows the parabolic flow profile. For a pipe

diameter of 0.2m and a viscosity of 0.002 kg
m·s , the Reynolds number for these cases was

Re = 100. The images in Figure 4.4 and Figure 4.5 are of the same simulation and the

similarity between them serves as a form of verification of the MRDG method.

4.3 Steady State Channel Flow

One of the test cases that was simulated was a long term simulation to see how the flow would

develop. In the simulations with no time-dependent boundary conditions, steady state was

achieved at approximately 50s, determined qualitatively by examining the flow contours

35

Figure 4.4: Vector plot of horizontal velocity; laminar flow modeled using the MRDG code.
These results agree with [32].

Figure 4.5: Vector plot of velocity in fully developed laminar pipe flow; laminar flow modeled
using ANSYS R© FLUENT code.

36

over time. Both the velocity and the temperature fields are provided for examination

in Figure 4.6. Here, the comparison between a standard DG method and the enhanced

MRDG method is exposed. While both methods perform at a similar computational speed,

the MRDG method was able to resolve a higher degree of detail and information in the

system. This is particularly evident in the temperature contours, which are much more

detailed in the MRDG method. The initial conditions here were a reference temperature

throughout the channel and the inlet flow also has the same reference temperature of 300 K.

At t = 0, the bluffs were assigned a heat flux of Q1 = 50 W
cm2 and Q2 = 75 W

cm2 . These fluxes

are smaller than average for CPUs but higher than average for other components like RAM

[13]. The velocity profile was zero throughout the channel, and at the inlet there was a

uniform flow with a velocity of 1ms . These boundary conditions represent the setting where

the server and the CRAC unit are both off for t < 0 and not generating heat or driving air

through the server. At t = 0, both the server and the CRAC unit are turned on. A more

realistic simulation would take into account the fact that the flow would not instantly begin

to flow, and the heat from the computer components would not instantly emit the full heat

flux load, but for a steady state simulation these details can be somewhat ignored as they

have smaller influence on the long-time development of the flow.

Looking at the thermal profiles of a long run that was allowed to reach steady state, we

see that the results from the DG method are very comparable to the MRDG method. The

profiles look similar and the maximum temperatures attained in each case are very close,

to the point where the percent difference between them would be very small. As expected,

you can see the flow carrying the heat away from the bluffs and also how the heat generated

by the first bluff actually extends backwards along the flow due to the difficulty of flowing

over that sharp corner. There is also some evidence of the lower quality of the DG solution

when looking in the area above the first bluff. In the thermal profile produced by the DG,

there are a few jagged edges in the profile that don’t correspond to any physical phenomena

in that region. In comparison, the MRDG thermal profile does not have these inaccuracies

and produces a smooth profile that is more accurate.

37

(a) DG Vector Plot (b) DG Temperature Plot

(c) MRDG Vector Plot (d) MRDG Temperature Plot

(e) FLUENT Vector Plot (f) FLUENT Temperature Plot

Figure 4.6: Steady state channel flow with bluffs after 50s of flow development; comparison
between DG and MRDG shows an advantage for the MRDG method. The results generated
using ANSYS R© FLUENT are shown in the bottom row.

The velocity profile and temperature profile for this case that was generated using AN-

SYS R© FLUENT are displayed in Figure 4.6. Although the legend color scheme is different

for these plots, the scale is actually the same and the results from the MRDG are very

comparable to those displayed in the figure. In order to achieve this steady state version in

FLUENT, instead of letting the transient simulation run until steady state was achieved,

the “steady state” option was simply used in the solution generation. In terms of compar-

isons between the three different simulations (DG, MRDG, and FLUENT), there are a few

features that are notable. First, the FLUENT plot in Figure 4.6e most obviously shows

that there is an area of increased velocity above the bluffs and leading towards the exit,

caused by the uniform flow encountering the stagnation point at the sharp top left corner

of the initial bluff. This increased velocity is somewhat missing from the DG simulation in

Figure 4.6a but is much more apparent in the MRDG counterpart in Figure 4.6c. All three

velocity simulations are qualitatively similar otherwise, with an initial slow region and little

to no flow between the bluffs or in the bottom right region of the flow, where the bluffs

38

would have blocked the majority of the velocity. Quantitatively, the DG method overesti-

mated the maximum velocity by 9% as compared to the MRDG method and the FLUENT

simulation: 1.21ms (DG) vs 1.12ms (MRDG) and 1.11ms (FLUENT), lending weight to the

accuracy of the MRDG method.

The thermal profiles show some discrepancy when comparing the three different meth-

ods. Both the DG and MRDG method seem to overestimate the influence of the heat flux

compared to the FLUENT simulation. In Figure 4.6b and 4.6d, there is a region of high

temperature that is carried significantly far away from the bluffs to form a cloud surround-

ing the bottom half of the channel. In comparison, Figure 4.6f has a thermal profile that

indicates that the highest temperature air, the red region, does not travel so freely through

the channel, and in fact the high temperature region is smaller and more condensed than

as prediced by the MRDG methods. While the FLUENT profile does contain a “cloud” of

higher temperature being pulled away from the bluffs, it is at a much lower temperature

than seen in the previous Figures. From a practical standpoint, erring on the side of predict-

ing a hotter temperature is favorable in the sense that one would rather prefer to over-cool

the servers and assuredly avoid heat damage; if the simulation predicted temperatures that

were too low, one might inadvertently provide too little cooling and risk damage to the

servers. That being said, the deficiency in the accuracy of the thermal profile is definitely

a priority for further improvement. Quantitatively, the maximum temperatures in all three

methods are actually very close, around 304 K in all of the different cases.

4.3.1 Cross Section Comparisons

In order to elucidate the comparisons between the MRDG method and the FLUENT sim-

ulations, comparisons at certain cross sections through the channel flow will be displayed.

Both the velocity vectors and the thermal contours are shown in Figure 4.7 and Figure 4.8.

The cross sections are taken at the entrance of the flow, at x = 0, at the left corner of the

first bluff x = 0.15, the right corner of the second bluff at x = 0.25, and at the exit of the

channel at x = 0.40. Comparing the velocity profiles at the different cross sections, we see

that they match up very well. The initial cross section, taken at the entrance of the channel,

39

(a) MRDG Vector Cross Sections

(b) FLUENT Vector Cross Sections

Figure 4.7: Comparisons of the velocity profiles and temperature contours taken at different
cross-sections throughout the channel. The simulations shown are produced by the MRDG
simulation as well as FLUENT for simulation verification.

is similar in both versions: uniform flow. At the corner of the first bluff, we again see a

similar profile. Starting at the bottom of the profile and moving to to the top, we see that

at the bottom the majority of the velocity vectors have a slight positive y-axis component,

with the x-axis component being strongest near the bluff and dying off closer to the top

of the channel. At the third cross section at the end of the second bluff, the profiles are

again similar. Near the bottom of the channel there is little to no flow due to the back of

the bluff being a poor area for velocity development, and then moving higher and higher

up the channel, we see a steady increase in velocity, the shape of which is mirrored in both

Figure 4.7a and Figure 4.7b. Finally, at the exit of the channel, near the bottom area the

flow velocity is low in both simulations, and the profiles mirror each other again. Moving

up towards the top of the channel, we see a velocity increase before reaching the very top

where there is a slight decrease in velocity. Again, these profiles are very similar in shape

and magnitude.

Considering the temperature profiles, we see that the MRDG simulation is very well

40

(a) MRDG Thermal Contour Cross Sections

(b) FLUENT Thermal Contour Cross Sections

Figure 4.8: Comparisons of the temperature contours taken at different cross-sections
throughout the channel.

41

matched to the FLUENT simulation. Note that in Figure 4.8a, the “cross section” has

been widened for ease of viewing - the data for each location has simply been stretched

over a wider x-range to make it easier to see, but each “bar” in the graph only contains

data from a single x location, not an interval as the graph may seem to depict. Looking

at the cross sections in a similar fashion as before (left to right, bottom to top), starting

with the entrance cross section we see a similar base temperature around 300 K with not

much deviation. At the left corner of the first bluff, of course the bluff itself has a higher

temperature, shown in red in both graphs, but the rest of the channel is essentially the

same temperature as the entrance; both the MRDG and the FLUENT simulations show

that the top half of the channel is not receiving much influence from the heated bluff below.

Considering the fact that the velocity does not have a strong vertical component in this

region, it makes sense that the upper half of the channel is not yet affected by the heated

bluff below.

At the third cross section located at the right corner of the second bluff, we see a bit of

a discrepancy in scale, although the general profile is similar. At this point in the channel,

both simulations depict the heated section to be taller than the bluffs themselves, moving

a bit above the bluff and heating part of the channel. However, the MRDG simulation

overestimates the influence of the heated bluffs as compared to the FLUENT simulation,

where the heated region stays closer to the bluffs themselves. For the upper half of the

channel, the profiles are very similar; this discrepancy is only in a small part of the channel

and is exacerbated by the fact that the legends are colored differently. Note that in the

FLUENT simulation, there is a region of yellow, green, and light blue in this area: a range

of 302 K to 300 K. While the MRDG simulation has a range of orange, yellow, and green,

looking at the legend we see that these colors actually correspond to a range of 303 to

300 K. While the colors seem to be significantly different, the actual numerical discrepancy

is relatively small. Finally, at the last cross section taken at the exit of the channel, the

MRDG simulation predicts a similar profile as the entrance of the reference temperature.

In the FLUENT simulation, the bottom portion of the channel is slightly warmer, but the

majority of the exit profile is also at the reference temperature.

42

(a) The initial condition is uniform inlet flow at t=1 s(b) The flow is mainly in the first third of the channel
at t = 5s

(c) The flow has pushed across the majority of the
channel at t = 10s

(d) The inlet uniform flow has propagated across the
majority of the channel at t = 13s

Figure 4.9: Transient channel flow with a different starting condition.

4.4 Transient Channel Flow

An area that is currently in development is a transient version of the MRDG that incorpo-

rates a different initial condition. When the server is turned on and the CRAC units are

activated in the data center, the initial condition would be no velocity in the channel and a

uniform velocity at the inlet that propagates through the channel. Each of the displays is

a time shifted simulation of the flow with the mesh in the background for clarity purposes.

Looking at the progression of the flow over time, its possible to see how the inlet uniform

velocity forces its way through the channel. Initially, as mentioned, the velocity profile is

u(x, y) = 0 throughout the channel and a uniform velocity profile at the left inlet. Figure

4.9a shows these condition with a few moments after t = 0 and shows that the flow has

moved into the channel. In Figure 4.9b we see the flow has begun to proceed through the

initial third of the channel, spreading out and covering more and more of the channel. In

Figure 4.9c, the flow has moved across the majority of the channel, and a few key features

have started to appear that are seen in the steady state simulation. First, above the first

bluff, there is a region of higher velocity that can be seen in Figure 4.6 as well in both the

MRDG and FLUENT simulations. However, unlike the steady state simulations, the flow

at this location above the first bluff is still directed somewhat downwards, whereas in the

previous simulations, the flow was directed up and away from the bluffs. Also, vortices have

43

begun to form between the bluffs and after the second bluff, another feature that is echoed

in the steady state simulations. Finally, in Figure 4.9d, we see the resolution of some of the

discrepancies from Figure 4.9c. The vortices are more fully developed and apparent, and

the flow above the first bluff is beginning to move more upwards, to match up with what

we would expect to see when connecting the end of the transient flow to the steady state

simulations.

44

CHAPTER V

CONCLUSION

We have presented a solution method for unsteady incompressible flows and associated

heat transfer that directly addresses the tradeoff between speed and accuracy. The effi-

cient function representation inherent to the multi-resolution approximation transfers to

the composite MRDG method wherein the solution drives the adaptation and compression.

The DG method serves as a high order computational tool with enough flexibility to take

advantage of the multi-resolution framework. While the method presented here is still in

its infancy, the literature has proven its effectiveness and a first effort at implementing the

method returned results that agreed with previous efforts [2, 63, 41].

5.1 Future Work

Future work includes applying the MRDG method to increasingly realistic model problems,

incorporating more aspects of an actual server into the model as well as considering entire

racks and multi-rack domains in the simulation. Extending the method to three dimensions

is theoretically straightforward and would be the ultimate goal, but even in the current two

dimensional implementation, there are a number of optimizations that can still improve the

code.

The sample problems that were described here are very limited in terms of their real-

world applicability, not to mention that they are a far cry from an entire data center

simulation. Introducing more realistic boundary conditions for the simple 2D example

could be the first step in improving the model. Making the heat flux a funcion of the

distance from the channel inlet could represent the introduction of hotspots on the server

components. In addition, having heat flux come from the sides of the bluff would also be

a closer representation of real heat generating components, instead of assuming that the

heat flux only comes from one face. It may also be relevant to consider the heat flux from

the components of the server in the rack above or below. Changing the actual boundary

45

itself to more accurately reflect the server geometries would also be of use. Incorporating

the internal fans of the server, for example, would definitely have an impact on the flow, as

does the presence of various wires and other internal components.

5.1.1 Extension to 3-D

After handling the various details that are critical to an accurate flow representation in 2D,

one of the next goals after having presented the usefulness of the method in 2D is obviously

the extension to 3D, which would provide the capability for more realistic, and thus more

useful, simulations and flow predictions. In the current hedge framework, there are already

built-in functions that produce three dimensional meshes, so from a meshing standpoint, it

would simply be a matter of describing the geometry of the model and passing that to the

discretization code within hedge. Implementing a grid-adaptive multi-wavelet basis would

be a very involved process, although some of the framework for such an extension exists

[63]. From an operator standpoint within hedge, it would also be necessary to verify that

none of the simplifications to the governing equations relied on any 2D specific details, and

implementing any changes that arose as a result.

5.1.2 Method Applicability

Many of the advantages discussed here have been geared directly towards the solution

of a distinct problem: turbulent fluid dynamics and heat transfer. In particular, certain

features of turbulent flow such as its intermittent nature and self-organization into coherent

structures have been targetted as areas where classical methods were not taking advantage of

efficient representations. When considering the simulation of laminar flow, obviously some

of these flow features for which the MRDG was designed will not be present. However,

the strengths of the hybrid method come through here, as the high order, accurate nature

of the DG method still applies in a laminar setting. While some of the multiresolution

advantages might not be present in a laminar simulation, the DG method is still able to

provide high order results for laminar simulations, as is evident in literature about DG

46

methods being used for laminar flows [28, 47, 39, 43]. Because the design of the method

was intended for turbulent flow, the MRDG method may not be as feasible for laminar

flow as a method that was specifically designed for laminar flow. However, the MRDG

method should be expected to perform reasonably well in a laminar situation because of

the inclusion of the DG method. The MRDG would be most advantageous in a multi-

scale turbulent problem because of the nature of the turbulent decomposition is much more

efficient in a multiresolution decomposition than a classic polynomial decomposition. Also,

for a problem like an entire data center simulation where the domain is complex and the

length scale is across several orders of magnitude, running the MRDG method on an a

parallel infrastructure would be a significant improvement over other methods. In an effort

to increase the robustness of the code, future work should also include work in the line of

introducing laminar-specific optimizations where possible so that the code is able to better

encompass a wider range of flow environments.

Again, the overarching goal is to be able to produce a method that allows for real-

time simulation of data centers. Simulating each server is just the first step in that goal,

and so future work would obviously include the simulation of data centers. Initially, while

developing the simulation, an idealized version of a data center would be used - the canonical

example of a CRAC unit and two rows of four server racks would be the starting point.

Verifying that the simulation works and moving towards more complicated versions of the

canonical example would be the next step. Combining the different models wherein the

servers within each rack are modeled and their contributions are taken into account in the

overall room simulation would be the ultimate goal, at which point the goal would be to

reduce the simulation’s computational complexity in order to reduce the execution time. By

controlling those parameters, it would be possible to simulate the entire data center and be

able to predict to problems and react to them to preserve the integrity of the data center.

47

REFERENCES

[1] Alam, J. M., Kevlahan, N. K. R., and Vasilyev, O. V., “Simultaneous space-time
adaptive wavelet solution of nonlinear parabolic differential equations,” J. Comput.
Phys., vol. 214, pp. 829–857, May 2006.

[2] Alpert, B., Beylkin, G., Gines, D., and Vozovoi, L., “Adaptive solution of
partial differential equations in multiwavelet bases,” Journal of Computational Physics,
vol. 182, no. 1, pp. 149 – 190, 2002.

[3] Archibald, R., Evans, K. J., Drake, J., and White, J. B., “Multiwavelet dis-
continuous galerkin-accelerated exact linear part (elp) method for the shallow-water
equations on the cubed sphere,” Monthly Weather Review, vol. 139, pp. 457 – 473,
2010.

[4] Bacry, E., Mallat, S., and Papanicolaou, G., “A wavelet based space-time adap-
tive numerical method for partial differential equations,” Mathematical Modelling and
Numerical Analysis, vol. 26, pp. 793–834, 1992.

[5] Basdevant, C., Holschneider, M., and Perrier, V., “Traveling wavelets
method.,” C. R. Acad. Sci. Ser. I Math., vol. 310, pp. 647–52, 1990.

[6] Bassi, F., Crivellini, A., Rebay, S., and Savini, M., “Discontinuous galerkin
solution of the reynolds-averaged navier-stokes and k-ω turbulence model equations,”
Computers & Fluids, vol. 34, pp. 507–540, 2005.

[7] Baumann, C. E. and Oden, J. T., “A discontinuous hp finite element method for
convection–diffusion problems,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 175, no. 3-4, pp. 311 – 341, 1999.

[8] Belady, C. L., “In the data center, power and cooling costs more than the it equip-
ment it supports,” Electronics Cooling, vol. 13, February 2007.

[9] Berg, J., Wavelets in physics. Cambridge University Press, 2004.

[10] Bertoluzza, S. and Naldi, G., “A wavelet collocation method for the numerical
solution of partial differential equations,” Applied and Computational Harmonic Anal-
ysis, vol. 3, no. 1, pp. 1 – 9, 1996.

[11] Beylkin, G., Cheruvu, V., and Prez, F., “Fast adaptive algorithms in the non-
standard form for multidimensional problems,” Applied and Computational Harmonic
Analysis, vol. 24, no. 3, pp. 354 – 377, 2008.

[12] Bindal, A., Khinast, J. G., and Ierapetritou, M. G., “Adaptive multiscale so-
lution of dynamical systems in chemical processes using wavelets,” Computers and
Chemical Engineering, vol. 27, pp. 131–142, 2003.

48

[13] Bowers, M. B. and Mudawar, I., “High flux boiling in low flow rate, low pressure
drop mini-channel and micro-channel heat sinks,” International Journal of Heat and
Mass Transfer, vol. 37, pp. 321–332, Jan. 1994.

[14] Cockburn, B. and Shu, C.-W., “Tvb runge-kutta local projection discontinuous
galerkin finite element method for conservation laws ii: General framework,” Mathe-
matics of Computation, vol. 52, no. 186, pp. 411–435, 1989.

[15] Cockburn, B. and Shu, C.-W., “The local discontinuous galerkin method for
time-dependent convection-diffusion systems,” SIAM J. Numer. Anal., vol. 35, no. 6,
pp. 2440–2463, 1998.

[16] Cohen, A., Kaber, S. M., Müller, S., and Postel, M., “Fully adaptive multires-
olution finite volume schemes for conservation laws,” Math. Comput., vol. 72, pp. 183–
225, January 2003.

[17] Collis, S. S., “Discontinuous galerkin methods for turbulence simulation,” in In
Proceedings of the 2002 Center for Turbulence Research Summer Program, pp. 155–
167, 2002.

[18] Coult, N., “Introduction to discontinuous wavelets,” in Discontinuous Galerkin meth-
ods: theory, computation, and applications (Cockburn, B., Karniadakis, G., and
Shu, C., eds.), Lecture notes in computational science and engineering, ch. 2, pp. 301–
308, Springer, 2000.

[19] Documentation, P., “Python speed,” August 2011.

[20] Domingues, M. O., Gomes, S. M., Roussel, O., and Schneider, K., “An adaptive
multiresolution scheme with local time stepping for evolutionary pdes,” J. Comput.
Phys., vol. 227, pp. 3758–3780, April 2008.

[21] Domingues, M. O., Gomes, S. M., Roussel, O., and Schneider, K., “Space–time
adaptive multiresolution methods for hyperbolic conservation laws: Applications to
compressible euler equations,” Appl. Numer. Math., vol. 59, pp. 2303–2321, September
2009.

[22] Durbin, P. A. and Pettersson-Reif, B. A., “Statistical theory and modeling for
turbulent flows,” Wiley & Sons, Ltd. 2nd ed., Jan. 2011.

[23] F., F. B. and Rebay, S., “A high-order accurate discontinuous finite element method
for the numerical solution of the compressible navier-stokes equations,” Journal of
Computational Physics, vol. 131, no. 2, pp. 267–279, 1997.

[24] Farge, M., Goirand, E., Meyer, Y., Pascal, F., and Wickerhauser, M. V.,
“Improved predictability of two-dimensional turbulent flows using wavelet packet com-
pression,” Fluid Dynamics Research, vol. 10, pp. 229–250, 1992.

[25] Farge, M., Kevlahan, N., Perrier, V., and Éric Goirand, “Wavelets and tur-
bulence,” Proceedings of the IEEE, vol. 84, pp. 639–669, April 1996.

[26] Farge, M. and Schneider, K., “Coherent vortex simulation (cvs), a semi-
deterministic turbulence model using wavelets,” Flow, Turbulence and Combustion,
vol. 66, pp. 393–426, 2001.

49

[27] Farge, M., Schneider, K., and Kevlahan, N., “Non-gaussianity and coherent
vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet
basis,” Physics of Fluids, vol. 11, pp. 2187 – 2201, August 1999.

[28] Ferrer, E. and Willden, R., “A high order discontinuous galerkin finite element
solver for the incompressible navier-stokes equations,” Computers & Fluids, vol. 46,
no. 1, pp. 224 – 230, 2011. 10th ICFD Conference Series on Numerical Methods for
Fluid Dynamics (ICFD 2010).

[29] Goldstein, D. E., Stochastic Coherent Adaptive Large Eddy Simulation Method.
Ph.D. thesis, University of Colorado, 2004.

[30] Group, S. V. L., “Data center energy forecast: Final report..” White paper, June
2008.

[31] Harten, A., “Adaptive multiresolution schemes for shock computations,” J. Comput.
Phys., vol. 115, pp. 319–338, December 1994.

[32] Hesthaven, J. S. and Warburton, T., Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applications. Springer Publishing Company, Incorporated,
2007.

[33] Hewlett-Packard, “Hp proliant bl2x220c g5 server blade.” Data Sheet, April 2008.

[34] Holmström, M. and Waldén, J., “Adaptive wavelet methods for hyperbolic pdes,”
J. Sci. Comput., vol. 13, pp. 19–49, March 1998.

[35] Jansen, M., “Wavelets and wavelet thresholding,” in Noise Reduction by Wavelet
Thresholding, vol. 161 of Lecture Notes in Statistics, pp. 9–45, Springer New York,
2001. 10.1007/978-1-4613-0145-5 2.

[36] Karniadakis, G. and Sherwin, S. J., Spectral/hp element methods for CFD. Oxford
University Press, illustrated ed., 1999.

[37] Kevlahan, N. K.-R. and Vasilyev, O. V., “An adaptive wavelet collocation method
for fluid-structure interaction at high reynolds numbers,” SIAM J. Sci. Comput.,
vol. 26, pp. 1894–1915, June 2005.

[38] Kirby, R. M. and Karniadakis, G. E., “Selecting the numerical flux in discontinu-
ous galerkin methods for diffusion problems,” J. Sci. Comput., vol. 22-23, pp. 385–411,
June 2005.

[39] Klaij, C., van der Vegt, J., and van der Ven, H., “Space-time discontinuous
galerkin method for the compressible navier-stokes equations,” Journal of Computa-
tional Physics, vol. 217, no. 2, pp. 589 – 611, 2006.

[40] Klockner, A., “Hedge: Hybrid ’n’ easy discontinuous galerkin environment,” 2009.

[41] Klockner, A., High-Performance High-Order Simulation of Wave and Plasma Phe-
nomena. PhD thesis, Brown University, May 2010.

50

[42] Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih,
A., “PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code
Generation,” Tech. Rep. 2009-40, Scientific Computing Group, Brown University, Prov-
idence, RI, USA, Nov. 2009.

[43] Landmann, B., Kessler, M., Wagner, S., and Krmer, E., “A parallel, high-order
discontinuous galerkin code for laminar and turbulent flows,” Computers & Fluids,
vol. 37, no. 4, pp. 427 – 438, 2008. Turbulent Flow and Noise Generation.

[44] Laney, C. B., Computational gasdynamics. Cambridge University Press, 1998.

[45] LeVeque, R. J., “Python tools for reproducible research on hyperbolic problems,”
Computing in Science and Engineering, vol. 11, pp. 19–27, 2009.

[46] Li, B. Q., Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Com-
putational Fluid and Solid Mechanics, Springer, 2006.

[47] Liu, H. and Xu, K., “A runge-kutta discontinuous galerkin method for viscous flow
equations,” Journal of Computational Physics, vol. 224, no. 2, pp. 1223 – 1242, 2007.

[48] Liu, Y., Cameron, I. T., and Wang, F. Y., “The wavelet-collocation method
for transient problems with steep gradients,” Chemical Engineering Science, vol. 55,
pp. 1729 – 1734, 2000.

[49] Lomtev, I. and Karniadakis, G. E., “A discontinuous galerkin method for the
navier-stokes equations,” Int. J. Numer. Meth. Fluids, vol. 29, pp. 587–603, 1999.

[50] Luo, H., Baum, J. D., and Löhner, R., “A discontinuous galerkin method based on
a taylor basis for the compressible flows on arbitrary grids,” Journal of Computational
Physics, vol. 227, pp. 8875–8893, 2008.

[51] Mallat, S. G., “A theory for multiresolution signal decomposition: the wavelet repre-
sentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11,
pp. 674–693, 1989.

[52] Müller, S. and Stiriba, Y., “Fully adaptive multiscale schemes for conservation
laws employing locally varying time stepping,” J. Sci. Comput., vol. 30, pp. 493–531,
March 2007.

[53] Myers, M., Holmes, P., Elezgaray, J., and Berkooz, G., “Wavelet projections
of the kuramoto-sivashinsky equation i. heteroclinic cycles and modulated traveling
waves for short systems,” Phys. D, vol. 86, pp. 396–427, September 1995.

[54] Niemann, J., “Hot aisle vs. cold aisle containment.” White paper, 2008.

[55] Nvidia, “Nvidia cuda reference manual,” 2007.

[56] Okamoto, N., Yoshimatsu, K., Schneider, K., Farge, M., and Kaneda, Y.,
“Coherent vortex simulation: application to 3d homogeneous isotropic turbulence,” in
Advances in Turbulence XII (Eckhardt, B., ed.), vol. 132 of Springer Proceedings in
Physics, pp. 759–762, Springer Berlin Heidelberg, 2009.

51

[57] Rastigejev, Y. A. and Paolucci, S., “Wavelet-based adaptive multiresolution com-
putation of viscous reactive flows,” International Journal for Numerical Methods in
Fluids, vol. 52, no. 7, pp. 749–784, 2006.

[58] Ren, X. and Xanthis, L. S., “[‘]les fleurs du mal’ ii: A dynamically adaptive wavelet
method of arbitrary lines for nonlinear evolutionary problems–capturing steep moving
fronts,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 37-40,
pp. 4962 – 4970, 2006. John H. Argyris Memorial Issue. Part I.

[59] Rivière, B., Discontinuous Galerkin methods for solving elliptic and parabolic equa-
tions: theory and implementation. Frontiers in Applied Mathematics, Philadelphia,
PA: SIAM, 1st ed., 2008.

[60] Schneider, K., Farge, M., Pellegrino, G., and Rogers, M. M., “Coherent vor-
tex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets,”
Journal of Fluid Mechanics, vol. 534, pp. 39–66, July 2005.

[61] Schneider, K. and Farge, M., “Adaptive wavelet simulation of a flow around an
impulsively started cylinder using penalisation,” Applied and Computational Harmonic
Analysis, vol. 12, no. 3, pp. 374 – 380, 2002.

[62] Schneider, K. and Vasilyev, O. V., “Wavelet Methods in Computational Fluid
Dynamics,” ANNUAL REVIEW OF FLUID MECHANICS, vol. 42, pp. 473–503, 2010.

[63] Shelton, A., A Multi-Resolution Discontinuous Galerkin Method for Unsteady Com-
pressible Flows. PhD thesis, Georgia Institute of Technology, August 2008.

[64] Somani, A., “Advanced thermal management strategies for energy efficient data cen-
ters,” Master’s thesis, Georgia Institute of Technology, December 2008.

[65] Stan, F., “Discontinuous galerkin method for interface crack propagation,” Int. J.
Mater. Form., vol. Suppl 1, pp. 1127–1130, 2008.

[66] Stefano, G. D., Vasilyev, O. V., and Goldstein, D. E., “Localized dynamic
kinetic-energy-based models for stochastic coherent adaptive large eddy simulation,”
Physics of Fluids, vol. 20, no. 4, p. 045102, 2008.

[67] van Rossum, G., “Python reference manual,” 1995.

[68] Vasilyev, O. V., Stefano, G. D., Goldstein, D. E., and Kevlahan, N. K. R.,
“Lagrangian dynamic sgs model for stochastic coherent adaptive large eddy simula-
tion,” Journal of Turbulence, 2008.

[69] Warburton, T., “An explicit construction of interpolation nodes on the simplex,”
Journal of Engineering Mathematics, vol. 56, pp. 247–262, 2006. 10.1007/s10665-006-
9086-6.

[70] Wirasaet, D. and Paolucci, S., “Application of an adaptive wavelet method to
natural-convection flow in a differentially heated cavity,” ASME Conference Proceed-
ings, vol. 2005, no. 47330, pp. 499–511, 2005.

[71] Yuan, L. and Shu, C.-W., “Discontinuous galerkin method based on non-polynomial
approximation spaces,” J. Comput. Phys., vol. 218, no. 1, pp. 295–323, 2006.

52

[72] Zhang, M. and Shu, C.-W., “An analysis of three different formulations of the dis-
continuous galerkin method for diffusion equations,” Mathematical Models and Methods
in Applied Sciences, vol. 13, pp. 395–413, 2002.

53

