
RECONSTRUCTION TECHNIQUES FOR FIXED 3-D LINES AND

FIXED 3-D POINTS USING THE RELATIVE POSE OF ONE OR

TWO CAMERAS

A Thesis

Presented to

The Academic Faculty

by

Roshan Satish Kalghatgi

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in the

G.W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

May 2012

COPYRIGHT 2012 BY ROSHAN SATISH KALGHATGI

RECONSTRUCTION TECHNIQUES FOR FIXED 3-D LINES AND

FIXED 3-D POINTS USING THE RELATIVE POSE OF ONE OR

TWO CAMERAS

Approved by:

Dr. Nader Sadegh, Advisor

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Kok-Meng Lee

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Ioannis Brilakis

School of Building Construction

Georgia Institute of Technology

Dr. Aaron Bobick

School of Computer Science

Georgia Institute of Technology

Date Approved: January 9, 2012

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Nader Sadegh for giving me the freedom to

develop my own Master’s thesis project. His brilliant insights and guidance were

fundamental to the timely completion of this work. I would also like to thank my parents,

especially my mother Manisha and my sister Reena for raising me, encouraging me and

supporting me over the years as I chose to follow my ambitions and dreams. I would also

like to thank my friends Geetanjali Ningappa, Myles Akin, Alexander Pitt, Alexander

Merritt and others that I have met along the way for making my years at Georgia Tech

some of the best years of my life. I would also like to acknowledge the field of science

and science fiction for inspiring me and motivating me to continue to follow this path that

I have taken.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii-ix

SUMMARY x-xi

1 INTRODUCTION 1

1.1 The Limitations of Stereovision 1

1.2 Single Camera SLAM and other Single Camera 3-D Mapping Techniques 3

1.3 Other 3-D Line and 3-D Point Detection Algorithms 6

1.4 Omnidirectional Stereovision and Catadioptric Vision Systems 7

1.5 Depth Estimation from a Single Image 11

1.6 Structure from Motion 13

1.7 Conclusions 14

2 RESEARCH OVERVIEW 15

3 FIXED 3-D POINT RECONSTRUCTION METHOD 1 17

3.1 Perspective Imaging Equations 17

3.2 Homogenous Transformations Between Coordinate Systems 17

3.3 Combining Homogenous Equations and Perspective Equations 18

3.4 Experimental Verification 21

3.4.1 Overview 21

3.4.2 Laptop Translation and Pose Estimation Procedures 22

3.4.3 Experimental Results 26

4 FIXED 3-D LINE RECONSTRUCTION 27

 vi

4.1 Using Intersecting Planes To Define a Line 27

4.2 Singularity Analysis 30

5 FIXED 3-D POINT RECONSTRUCTION METHOD 2 31

5.1 Adding a third plane 31

5.2 Experimental Verification Through Finger Gesturing 33

5.2.1 Overview 33

5.2.2 GUI Design Overview 35

5.2.3 Object Area Filter and Color Filter Overview 35

5.2.4 GUI Interface Design Summary 38

5.2.5 Experimental Procedure 41

5.3 Experimental Results 45

5.4 The Effects of Averaging the Centroid and Orientation of the Finger Glove 46

6 Limitations of Fixed 3-D Line and Fixed 3-D Point Detection Techniques 1 and 250

7 CONCLUSIONS AND FUTURE WORK 50

APPENDIX A: POINT DETECTION METHOD 1 MATLAB CODE 52

APPENDIX B: POINT DETECTION METHOD 2 MATLAB CODE 53

APPENDIX C: FINGER DETECTION MATLAB GUI CODE 54-68

APPENDIX D: RUNNING AVERAGE PLOTTING SCRIPT 69

REFERENCES 70-72

VITA 73

 vii

LIST OF FIGURES

Figure 1: (a) An experimental Catadioptic Camera System using two hyperbolic mirrors

(b) A commercially available Catadioptic Camera system using one mirror [24] [25]8

Figure 2: Captured Catadioptric stereo image and the unwrapped panoramic image [25] .9

Figure 3: A single still image and the corresponding depth map. Each color corresponds

to a different depth [7] ... 12

Figure 4: (top left) original image, (top right and bottom) results of Make3D modeling

software [28] ... 12

Figure 5: Professional photo of HP DV6T SE Series Laptop used for the experiment [36]

 .. 21

Figure 6: Sample set of images taken. The image on the right was taken after the camera

was displaced in the z direction by 2 inches. .. 22

Figure 7: An example laptop pose of point detection experimental testing setup 23

Figure 8: (a) Dotted line is line with camera center, the red dot indicates a reference point

of measurement during the experiment. (b) Profile of the laptop. The screen orientation

was kept perpendicular to the horizontal at all times. Camera axes and laptop translation

axes are in the same direction. [37]. ... 24

Figure 9: Using Microsoft Paint to determine the pixel coordinates of the Centroid. In this

image, maximum zoom has been used. The cursor has been placed over the center of the

target, MS Paint displays the pixel coordinates of the cursor in the lower left hand portion

of the screen. ... 25

 viii

Figure 10: Experimental procedure flowchart for testing method 1. This flowchart is

assuming that the test stand and target have been setup and will remain fixed throughout

the experiment. .. 25

Figure 11: Predicted target locations relative to the actual target location (at the origin)

for both cameras .. 27

Figure 12: A point p0 on line L in as viewed by a camera .. 28

Figure 13: Finger glove used for finger gesturing experiment. The finger glove was cut

from a Clorox cleaning glove purchased at a Target store. ... 33

Figure 14: MATLAB GUI developed for finger detection application............................ 34

Figure 15: Finger glove approximated as a 2-D ellipse ... 37

Figure 16: Flow chart of filtering algorithm used in MATLAB GUI for gloved finger

detection .. 39

Figure 17: Final GUI Interface and descriptions of some of its useful features. 40

Figure 18: Experimental setup for gesture application from laptop POV. Finger glove

placed in non-planar orientation ... 41

Figure 19: (a) Dotted line is line with camera center, the red dot indicates a reference

point of measurement during the experiment. (b) Profile of the laptop. The screen

orientation was kept perpendicular to the horizontal at all times. Camera axes and laptop

translation axes are in the same direction [36]. ... 42

Figure 20: Experimental procedure flowchart for testing method 2. This flowchart is

assuming that the test stand and finger glove have been setup and will remain fixed

throughout the experiment. .. 44

file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530685
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530685
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530685
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530691
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530691
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530692
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530693
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530693
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530694
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530694
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530694
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530694
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530695
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530695
file:///C:/Users/Roshan%20Kalghatgi/Documents/My%20Documents/Georgia%20Tech/Gesturing%20GT/Thesis%20Writing/Kalghatgi_MSThesis_Jan_05_2011.docx%23_Toc313530695

 ix

Figure 21: Predicted target locations relative to the Actual Target Location (at the origin)

from the second camera. Ground location is assumed to be fixed at y = 9.625 inches. 45

Figure 22: Running Average for x coordinate prediction for finger glove intersection

point. Ground location is assumed to be fixed at y = 9.625 inches.................................. 48

Figure 23: Running Average for x coordinate prediction for finger glove intersection

point. Ground location is assumed to be fixed at y = 9.625 inches.................................. 49

 x

SUMMARY

Stereovision is a common computer/machine vision technique used to extract

three dimensional information from a set of images. These images can be acquired with

two or more cameras, or a combination of cameras and IR sensors placed in a known

pose relative to a world coordinate frame. Typical applications use two cameras each

with a known pose relative to a world coordinate frame.

In general, stereovision can be defined as a two part problem. The first is the

correspondence problem. This involves determining the image point in each image of a

set of images that correspond to the same physical point P. We will call this set of image

points, N. The second problem is the reconstruction problem. Once a set of image points,

N, that correspond to point P has been determined, N is then used to extract three

dimensional information about point P.

This master’s thesis presents three novel solutions to the reconstruction problem.

Two of the techniques presented are for detecting the location of a 3-D point and one for

detecting a line expressed in a three dimensional coordinate system. These techniques are

tested and validated through point detection or a finger gesturing application. The

techniques presented are unique because of their simplicity and because they do not

require the cameras to be placed in specific locations, orientations or have specific

alignments. On the contrary, it will be shown that the techniques presented in this thesis

allow the two cameras used to assume almost any relative pose provided that the object

of interest is within their field of view.

The relative pose of the cameras at a given instant in time, along with basic

equations from the perspective image model are used to form a system of equations that

 xi

when solved, reveal the 3-D coordinates of a particular fixed point of interest or the three

dimensional equation of a fixed line of interest. Finally, it will be shown that a single

moving camera can successfully perform the same line and point detection accomplished

by two cameras by altering the pose of the camera.

The results presented in this work are beneficial to any typical stereovision

application because of the computational ease in comparison to other reconstruction

techniques for points and lines. But more importantly, this work allows for a single

moving camera to perceive three-dimensional position information, which effectively

removes the two camera constraint for a stereo vision system. When used with other

monocular cues such as texture or color, the work presented in this thesis could be as

accurate as binocular stereo vision at interpreting three dimensional information. Thus,

this work could potentially increase the three dimensional perception of a robot that

normally uses one camera, such as an eye-in-hand robot or a snake like robot.

Furthermore, this type of work would bring robots closer to having visual perception

similar to the human eye, which can observe depth using just a single eye.

1

1 INTRODUCTION

1.1 The Limitations of Stereovision

 Stereovision is a common computer/machine vision technique used to extract 3-D

information from a set of images. These images can be acquired with two or more

cameras, or a combination of cameras and IR sensors (such as the X-BOX Kinect) placed

in a known pose relative to a world coordinate frame [1]. Once the set of images are

obtained, traditional stereovision algorithms are used to determine any desired 3-D

characteristics such as the 3-D location of an object of interest [1]. Typical applications

use two cameras each with a known pose relative to a world coordinate frame.

In general, stereovision image analysis can be defined as a two part problem. The

first is the correspondence problem. This involves determining the image point in each

image of a set of images that correspond to the same physical point P. We will call this

set of image points, N. The second problem is the reconstruction problem. Once a set of

image points, N, that correspond to point P has been determined, the set of points N is

then used to extract three dimensional information about point P [2]. Generally, this is

accomplished using a probabilistic method or more commonly Epipolar geometry, which

uses triangulation and 2-D information from each camera to determine the coordinates of

a fixed point in three dimensional space [1] [3][4][5][6].

 Although Stereovision has been used successfully in the field of Robotics for

many years, it has been repeatedly shown to have several drawbacks that limit its use

during actual applications. First, Stereovision relies on the use of two or more cameras

for interpreting three-dimensional information. If one of the cameras is destroyed or

damaged during use, the reconstruction problem becomes impossible because the 2-D

 2

information from both cameras is no longer available. Second, the use of two or more

cameras introduces additional complexities and uncertainties from each camera due to the

processing needs of the camera and, the high level of precision necessary for camera

calibration and placement. Each camera also introduces an additional level of sensitivity

to correspondence errors which can result from the physical limitations of the camera,

errors from the Epipolar analysis or any additional image pre-processing required for the

application.

But more importantly, stereovision is inherently limited by the baseline distance

between the two cameras used. As the point of interest moves further away from the

cameras, the depth estimation of the point becomes increasingly inaccurate due to small

correspondence and triangulation errors that are compounded over time [7] [8]. In

addition, the baseline distance between the cameras becomes unperceivable as the point

of interest moves further away. Essentially, this means that the point of interest shows no

noticeable change in location in the either image which results in a collapse of the

Epipolar analysis altogether [2][1].

Lastly, from a philosophical standpoint it is evident that the field of Robotics is

motivated by the need to replace humans for applications no longer desired by humans to

perform. Therefore, in order for robots to perform successfully in their application, they

must be given the same capabilities of a human being or better. For humans, the eye can

perceive depth and other 3-D information without the need of information from the other

eye [9]. Humans unconsciously use geometric techniques as well as monocular cues such

as texture, color, shading and haze to determine 3-D information all from just a single

eye[10][7]. Therefore, the advancement of Robotic vision is dependent on the

 3

development of novel solutions that allow robots to perceive 3-D information using a

single camera, just as a human can perceive 3-D information using a single eye [10].

To overcome the shortcomings of Stereovision, much work has been done in the

area of Single Camera Stereovision, more generally referred to as Monocular Vision.

Monocular Vision is used to determine depth and other 3-D information using a single

camera and either a single or multiple images that are related through some type of

correspondence algorithm. Both approaches are complementary and are more effective in

determining 3-D information from an environment rather than traditional stereovision.

The focus of this thesis work is to present novel techniques in Monocular Vision.

Therefore, in this chapter various approaches to depth estimation through Monocular

vision will be reviewed to allow for a better understanding of the context for the work

presented in this thesis. First, single camera mapping and SLAM techniques will be

discussed followed by Omnidirectional and catadioptric vision systems. Finally, single

image depth estimation techniques and structure from motion will be discussed. Lastly,

the overview and implications of this thesis work will be presented.

1.2 Single Camera SLAM and other Single Camera 3-D Mapping

Techniques

Simultaneous Localization and Mapping or SLAM is a widely used technique that

allows robots to map an unknown environment and simultaneously track their position

without using any previous knowledge of the environment. Typically, SLAM techniques

acquire information about the environment using a single sensor or combine information

from several sensors such as laser range finders, sonar sensors and cameras. In particular,

the use of cameras in SLAM applications has become important because they are

 4

compact, noninvasive, ubiquitous and becoming more affordable [11] [12] [13]. The

aforementioned limitations of stereovision have been recognized by the SLAM

community and as a result, they have proceeded to develop and explore various types of

single camera SLAM techniques.

Some of the earliest work was done by Harris and Pike [14] in 1987. Although their

work was not officially called SLAM, it was similar because it used images taken in

succession from a single camera to build 3-D visual maps. Feature points of interest are

extracted and tracked from each image and used along with Kalman filtering to determine

their actual physical 3D locations. Their work was successful in achieving accurate 3-D

maps and real time implementation. However, serious drawbacks related to their initial

assumptions cause concern in regards to the reliability of their technique. For example,

the common camera motion was ignored when determining the locations of each of the

mapped visual features [13].

In 1988, another basic 3-D mapping method similar to template matching was

developed and used with a single camera attached to a mobile robot to identify its

location in a room [15]. Vertical edge detection was performed and compared to a known

room map of vertical edges that is acquired beforehand. The authors craft their algorithm

around the practical assumption of imperfect edge detection and achieve accurate and

significant results. However, they fail to address the tediousness of creating and using

known vertical edge detection maps. Furthermore, problems from unknown objects or

other random scene changes are completely unaddressed.

 5

More recently, Davison and Reid have developed a real time algorithm that can

determine the 3-D trajectory of a single mobile camera moving through an unknown

environment [13]. They have dubbed their system MonoSLAM because it uses a single

camera to determine 3-D information. They accomplish this by using fundamental

probabilistic SLAM techniques, motion modeling and the measurement and mapping of

visual landmarks found on planar surfaces within the environment. MonoSLAM has

broad applications in robotics and wearable computing. In particular, Davison and Reid

have successfully used MonoSLAM to command a humanoid robot to walk in circles

with a high level of accuracy and precision. Other interesting applications include the

successful use of MonoSLAM with an automobile driven through an urban environment

[16]. However, MonoSLAM is still in its infantile stages and requires further work to

deal with issues such as changing lighting, significant occlusions from objects and the

ability to operate in larger indoor/outdoor environments [13].

Other related works have utilized Kalman filtering with SLAM to map a 3-D

environment. In general, single camera SLAM systems based on Kalman filtering have

been successful, but are limited due to the computational complexity of the techniques

and inaccuracy due to linearization[13][14].

Indeed, these works reveal that single camera 3-D mapping techniques, specifically

SLAM techniques are successful. However, they are complex and must account for

unknown scene changes during practical applications.

 6

1.3 Other 3-D Line and 3-D Point Detection Algorithms

The goal of this work is to not only expand on the area of Monocular Vision but to

present reconstruction techniques for fixed 3-D lines and fixed 3-D points. Therefore, it is

important to discuss the various methods that currently exist for line and point

reconstruction. Traditional 3-D point reconstruction algorithms are known as

Triangulation and the Trifocal tensor. Triangulation is typically used with two images,

while the Trifocal tensor is used with three images [5].

Triangulation works by first solving the correspondence problem using Epipolar

geometry. Next the fundamental matrix (also known as the bifocal tensor) or essential

matrix is determined and used along with image points from at least two images of the

same physical point of interest [5]. The resulting prediction of the physical point of

interest is with respect to a world coordinate frame, which is in contrast to the techniques

in this thesis which provide 3-D point coordinate estimates relative to the camera frame

[17].

The Trifocal tensor relates correspondence information from three images to create

what is known as the trifocal relationship which basically states that the 3-D coordinates

of a point can be found by analyzing the relationship between four intersecting planes.

The trifocal tensor can also be used to identify the equation of a line using three or more

intersecting planes. Typically, the trifocal tensor is used with multiple views for line,

point and plane reconstruction.

Additionally, there are many methods in literature that currently exist for point and

line detection. This is because point and line detection is an older computer vision

problem, and thus many unique solutions have been developed for it. For example, [18]

 7

presents a method for 3-D reconstruction of points, planes and lines based on user

inputed coplanarity, perpendicularity and parallelism constraints. These techniques were

designed for single view and were shown to be successful for reconstruction and

calibration purposes. Another interesting example is[19], which presents a novel linear,

non-iterative reconstruction technique for points and lines from correspondence

measurements subject to noise. Through rigorous experimental results, this method was

shown to be useful with one or multiple image viewpoints. Many other solutions exist in

literature for point and line detection. They take advantage of a wide range of techniques

and assumptions and must be considered carefully before they are used for the

application.

1.4 Omnidirectional Stereovision and Catadioptric Vision Systems

Omnidirectional stereovision is another example of Monocular Vision. Essentially,

the goal of this approach is to image an entire 360 degree panorama from a specific

viewpoint. This panorama can be used to obtain various types of 3-D information, with

the most important being depth estimation [20]. Several interesting methods have been

developed and tested over the years. A simple approach uses a single, off-center rotating

camera to image a particular environment [21][22]. Other methods are more complicated

and require the use of multiple cameras and curved mirrors to obtain 3-D information

from a panoramic viewpoint in a single image [21] [23] [24]. The use of cameras and

curved mirrors to achieve panoramic images, often referred to as catadioptric imaging

systems can seem unnecessary, but they have been shown to be extremely useful [25].

In particular, catadioptric systems have found a place amongst the security systems

of most shopping malls and stores. Typically, cameras are used in conjunction with

 8

convex or concave mirrors to provide an observer with a larger viewpoint of any area of

the store, thus eliminating any blind spots outside a normal camera’s field of view that

are taken advantage of by criminals [26]. Typical catadioptric vision systems are

commercially available and consist of a hyperbolic mirror placed in front of a camera.

During use, light is reflected of the hyperbolic mirror and into the camera to generate a

wide view round image of the environment, as seen in Figure 1.

(a) (b)

Figure 1: (a) An experimental Catadioptic Camera System using two hyperbolic mirrors (b) A

commercially available Catadioptic Camera system using one mirror [27][28]

 9

 Figure 2: Captured Catadioptric stereo image and the unwrapped panoramic image [28]

 The round image (as seen in Figure 2) is then unwrapped to obtain panoramic

images for analysis [20][28]. Catadioptric imaging systems have also been successfully

used on mobile robot platforms for navigation purposes. Novel robots using cameras and

hyperbolic mirrors have been designed for assisting humans during tasks such as grocery

shopping and as contestants in the RoboCup, which is a Robot soccer competition

[20][29][28].

 10

Other interesting design approaches for Omnidirectional Stereovision exist as well.

For example, camera lenses, from spheres to bio-inspired design, have been developed

and used in conjunction with mirrors to achieve Omnidirectional Stereovision[23] [26].

One attempt requires the camera to image an environment while traversing a spherical

track encapsulating the environment of interest [22]. Although accurate depth

information was obtained, it is clearly not a practical solution because a spherical track

would need to be constructed for each application. This will be very difficult especially if

the environment is very large, such as a stadium or a large room. Besides the spherical

track attempt, specific omnidirectional cameras and sensors have also been developed to

achieve a panoramic view from a single image [22].

In general, it is clear that omnidirectional stereovision can be successfully used in

many different ways but, it is limited to a specific application which is of course,

attaining a panoramic viewpoint of an environment. If this is the desired application, then

implementation of this type of stereovision can be complex because specially designed

mirrors must be used and maintained. Furthermore, these mirrors will require accurate

and precise placement, which is in addition to camera calibration and placement.

However, aside from these drawbacks, Omnidirectional Vision or more specifically

catadioptric systems, can provide accurate depth and 3-D scene information for most

applications. However, 3-D interpretation for complex and practical applications such as

human gesture recognition or facial recognition has yet to be achieved with

Omnidirectional or Catadioptric systems.

 11

1.5 Depth Estimation from a Single Image

Depth estimation from a single image has been investigated and accomplished by

the use of a probabilistic map along with a supervised learning algorithm. Earlier works

in this area were successful but impractical because they relied on unrealistic assumptions

about the environment. However, Saxena et al. impressively solves the problem of

estimating detailed 3-D structures of an unknown environment using a single still image.

Rather than using triangulation techniques as in normal stereovision, a Markov Random

Field (MRF) is utilized along with supervised learning techniques to obtain the “depth

maps” as shown in Figure 3. In these depth maps, a single color pertains to a specific

physical distance from the camera itself. Saxena et al. uses the MRF to model the depth at

different resolutions by combining various methods from computer vision such as feature

point identification and multiscale representation of images. Furthermore, monocular

cues such as haze, color, motion parallax and texture are used along with the MRF to

create depths similar to those in Figure 3 [7] [8]. Absolute and relative image features

are also taken advantage of to produce accurate depth estimation from a single image.

Saxena et al. applied these techniques to real world applications such as static

environments containing trees, buildings or other people. Furthermore, these techniques

were successfully applied to a small RC truck to perform obstacle avoidance at high

speeds [30]. In addition, these techniques have been combined into free software called

Make3D, which is free and can be downloaded from the internet [31]. Make3D allows

you to create 3D panoramic models from a single static image as seen in Figure 4.

 12

 Figure 3: A single still image and the corresponding depth map. Each color corresponds to a

different depth [7]

 Figure 4: (top left) original image, (top right and bottom) results of Make3D modeling

software [31]

 13

Although these techniques are very successful and impressive, they do have issues

that must be addressed. In particular, these techniques have difficulty predicting the 3-D

information of the environment behind an object without using information about the

object itself. Furthermore, depth estimation becomes nearly impossible if the image is

largely homogenous such as in the case of a wall of uniform color or even a blue sky.

These environments lack the diversity needed for the analysis techniques proposed by

Saxena et al. In general, these techniques require a heavy amount of training images and

prior knowledge about the environment to estimate depth from a single image. This is

largely due to the fact that monocular 3-D reconstruction is an inherently difficult and

ambiguous problem [7][32][33].

1.6 Structure from Motion

The area of Structure from Motion (SfM) is another attempt to infer 3-D geometry

from 2-D image projections using one or multiple cameras. The 3-D information is

traditionally determined by using 2-D projections of the motion trajectory or motion

signals of an object or environment occurring in 3-D space [34]. In fact, SfM is very

similar to the techniques presented in this thesis hence, a thorough discussion of SfM is

extremely relevant to this literature review. In general, SfM assumes that either the

contents of the environment are moving or the camera itself is moving [35]. Furthermore,

another assumption is that there exists a correspondence algorithm that identifies, extracts

and labels 2-D image features such as corners, curves and Centroids. These 2-D features

are then related to their corresponding instances in each image. The end result of this

process is used by the SfM algorithm for determining 3-D information [36]. The

reconstruction portion of SfM involves techniques similar to stereo vision. Depending on

 14

the number of images used, the camera poses along with Epipolar analysis or affine

transformations are used to determine the 3-D information from the set of images. The

resulting information is summarized and compiled into motion data for an object of

interest within the environment. Clearly, SfM appears to be very similar to traditional

stereovision however, SfM requires only one camera while Stereovision requires two

cameras.

Several applications exist for SfM, some such as 3D model reconstruction and 3D

motion matching, computer animation, camera calibration and 3-D vision for Robotics.

More recent work has been done in reconstructing the 3-D trajectory of a moving point

from its correspondence from a set of 2-D images, provided that the 3-D spatial pose and

time of capture from each camera is known [37]. These researchers were able to track

hand movement and other body movement trajectories using a RANSAC correspondence

algorithm and SfM techniques during activities such as rock climbing and dancing [37].

Although SfM techniques are very successful they are fundamentally limited by the

relationship between the 3-D trajectory of a point and the 3-D trajectory of the center of

the cameras used. Furthermore, SfM are computationally intensive and subject to noise,

which is typical of most 3-D Computer Vision algorithms.

1.7 Conclusions

Clearly the breadth of existing Monocular Vision research is large and varied.

Many different applications have been explored in an effort to showcase the practicality

and usefulness of Monocular Vision. Individually, these techniques were shown to be

very precise and accurate. However, it became apparent either directly or indirectly, that

the best vision system for a robot is one that combines both Monocular and Stereovision

 15

techniques. This is because the vision system inherent in human beings operates exactly

the same way. The human eye and brain together take advantage of Monocular and

Stereoscopic cues to interpret the scene surrounding the human being. Therefore, while

this thesis will present experimental data to support the techniques presented in this work,

it must be noted that the work presented here will be more effective when combined with

other 3-D scene interpretation techniques.

2 RESEARCH OVERVIEW

This thesis attempts to introduce three novel Monocular Vision techniques that can

be used with multiple cameras or a single moving camera. These techniques do not

address the problem of correspondence; in fact these techniques assume that the

correspondence problem is solved beforehand and that the results have correspondence

error. The new approaches presented in this paper are fresh solutions to the

reconstruction problem. Two of the techniques presented are for detecting the location of

a point and one for detecting a line expressed in a 3-D coordinate system. The methods

presented are unique because of their simplicity and because they do not require the

cameras to be placed in specific locations, orientations or have specific alignments. On

the contrary, the techniques presented in this paper will show that the two cameras used

can assume almost any relative pose provided that the object of interest is within their

field of view.

The relative pose of the cameras at a given instant in time, along with basic

equations from the perspective image model will be used to form a system of equations

that will reveal the 3-D coordinates of a particular fixed point of interest or the three

dimensional equation of a fixed line of interest. Finally, it will be shown that a single

 16

moving camera can successfully perform the same line and point detection accomplished

by two cameras by altering the pose of the camera.

The results presented in this work are beneficial to any typical stereovision application

because of the computational ease in comparison to Epipolar geometry.

But more importantly, this work allows for a single moving camera to perceive 3-D

position information, which effectively removes the two camera constraint for a stereo

vision system. When used with other monocular cues such as texture or color, the work

presented in this paper could be as accurate as binocular stereo vision or human vision at

interpreting 3-D information [6]. Thus, this work could potentially increase the 3-D

perception of a robot that normally uses one camera, such as an eye-in-hand robot or a

snake like robot.

In the next chapters, the basic perspective imaging equations will be discussed

followed by homogeneous transformation equations. Later these equations will be

combined to form a system of equations that will yield either the 3-D coordinate of a

point or the 3-D equation of a line. A rigorous derivation of the degenerate cases will

follow and finally experimental verification of the techniques presented in this work will

be provided.

 17

3 FIXED 3-D POINT RECONSTRUCTION METHOD 1

3.1 Perspective Imaging Equations

 The camera pinhole model defines the relationship between the image coordinates

and 3-D coordinates of a point p as follows,

x

u

z

f
 (1)

 where x, y and z are the 3-D coordinates of point p relative to the optical center of

the camera, u and v are the image coordinates of point p relative to the image principal

point and f is the focal parameter for the camera. The focal parameter is defined as the

focal length divided by the pixel length in either the x or y direction. For our purposes we

will assume that the focal parameter is the same for both x and y directions [1] [2].

3.2 Homogenous Transformations Between Coordinate Systems

 A point p can be expressed in different Cartesian coordinate reference frames

(CRF) using a homogenous transformation. If point p is represented in the i-th CRF by

 i
z

i
y

i
x

i pppp

 then its representation p
j
 relative to the j-th CRF is related to p

i
 through the

following equation,

y

v

z

f
 (2)

 18

iji

j

i
dpRp (3)

where Rj
i

is a 3 x 3 rotation matrix (R
T
R=I) whose columns are the 3x1 vector

representation of the j-th CRF basis unit vectors relative to the to i-th CRF, and the

displacement vector

 i

z

i

y

i

x

i dddd

 (4)

 is the origin of the j-th CRF relative to the i-th CRF. In the next sections, the

indices of the displacement vector and rotation matrix (i.e., d=d
i
 and R= Rj

i
) will be

omitted when dealing with only two CRFs [38].

3.3 Combining Homogenous Equations and Perspective Equations

Suppose two cameras, camera 1 and camera 2, each with their own CRF are

viewing a fixed point p. The pose of camera 2 relative to camera 1 is known. The

coordinates of point p relative to each camera can be solved for by using equations (1)

and (2) and the image coordinates, u and v, of point p from each camera. Let (ui,vi)

denote the image coordinates of p relative to camera i and define the image vector as

 Tiii

i fvup (5)

 19

Then (1) and (2) can be used to relate p
1
to the image vector in camera 2:

1

1

2

2

1
pdpRp (6)

where i=pz
i
/f. (6) can be rearranged as a system of linear equations in terms of =[1 2]

whose solution will yield point p:

dpRp

α
A

2

121

p

 (7)

The unknown vector can be solved for as follows provided that matrix Ap is full rank,

dAAAα
T
pp

T
p

1)(

2,1, ii

i

i
pp

 (8)

From equations (6) and (7), it can be seen that matrix Ap is full rank as long as p
1

and d are linearly independent or equivalently point p does not lie on the line joining the

origins of the cameras’ CRF. Once these conditions are satisfied, the 3-D coordinates of a

fixed point p can be determined using only, the image coordinates of point p from each

camera and the relative pose between camera 1 and camera 2. Any pose is permitted

provided that the displacement vector between the cameras does not go through point p.

A change in orientation of the camera will be insufficient and will result in Ap being

singular (which will be discussed in detail in the next section).

More importantly, we can easily see that a single moving camera can be used with

equations (6) and (7) to identify point p. In this case, several sensors must be used to

 20

record the relative pose of the camera from ti to t (i+1). Furthermore, the focal parameter

must be known and the image coordinates at ti and t (i+1) must be determined through a

correspondence algorithm. For example, a single camera can identify the 3-D coordinates

of a point of interest p by simply moving towards it such that p is not collinear with the

camera’s CRF. The movement could be in a straight line or a curved path provided that

point p is within the camera’s field of view. This movement would be similar to a snake

like robot or a robot with an eye-in-hand camera.

 21

3.4 Experimental Verification

3.4.1 Overview

Experimental verification of (7) was accomplished by identifying a fixed point of

interest using various camera poses. As shown in Figure 5 and Figure 7, the camera used

was a 640 x 480 resolution camera (f = 525) built into a Hewlett Packard Pavilion DV6T

Selection Edition laptop running Windows 7. The point of interest or target, was a black

dot drawn on a white index card attached to a standard laboratory test stand. For each

test, the Centroid of the target was approximated using Microsoft Paint from two images

taken from different randomly chosen camera configurations. The pose of the target

itself remained fixed throughout the experiment. Each camera pose was attained by

precise translations of the laptop. However, no changes in the orientation of the laptop

were utilized. The pixel locations of the Centroid and the relative pose of the laptop

camera were then used with (7) to determine the 3-D location of the target.

Figure 5: Professional photo of HP DV6T SE Series Laptop used for the experiment [39]

Built in webcam

location

 22

3.4.2 Laptop Translation and Pose Estimation Procedures

The experimental setup with an example laptop pose is shown in Figure 7. The

precise location of the laptop was determined with the use of four experimental aids. The

first aid was a 1/2 inch x 1/2 inch grid poster paper, which was firmly secured and placed

underneath the laptop and test stand. A grid system such as this one served as a two

dimensional coordinate system that made laptop translation measurements clearer and

more defined. The second aid used was standard measuring tape that was used to measure

the translation of the laptop during the experiment. The third aid was a foot long ruler

that was used to ensure that the laptop screen was kept orthogonal to the horizontal axis.

This was done to ensure that the orientation of the laptop remained fixed at all times

during the experiment and, that the camera axes were in the same direction as the laptop

translation axes, as seen in Figure 8.

Figure 6: Sample set of images taken. The image on the right was taken after the camera was displaced in

the z direction by 2 inches.

 23

 Figure 7: An example laptop pose of point detection experimental testing setup

½ inch x ½

inch grid

poster board

Experimental

Test Stand

 24

Figure 8: (a) Dotted line is line with camera center, the red dot indicates a reference point of measurement

during the experiment. (b) Profile of the laptop. The screen orientation was kept perpendicular to the

horizontal at all times. Camera axes and laptop translation axes are in the same direction. [40].

 The fourth aid was the reference point on the mouse pad of the laptop. This point,

shown as the red dot in Figure 8 was in line with the camera axes and was used as a

reference point when measuring laptop displacement during the experiment. Lastly, once

both images were taken, Microsoft Paint was used to determine the pixel locations of the

Centroid as seen in Figure 9. This was successful because, Microsoft Paint gives you the

current pixel coordinates of the cursor. By using this feature in Microsoft Paint and by

zooming in to the highest zoom level, an accurate estimation of the target’s Centroid was

determined.

+X

+Y +Y

+Z

 25

Figure 9: Using Microsoft Paint to determine the pixel coordinates of the Centroid. In this image,

maximum zoom has been used. The cursor has been placed over the center of the target, MS Paint displays

the pixel coordinates of the cursor in the lower left hand portion of the screen.

 The pixel coordinates of the Centroid from each image and the relative pose of

the laptop camera were then used with Equation (7) to determine the 3-D location of the

target. Approximately fifteen experimental test points and thirty random camera poses

(two for each test) were used to validate (7). A flow chart summarizing the experimental

procedure has been given in Figure 10. Furthermore, the results of the experiment are

shown in Figure 11 in the next subsection.

 25

Figure 10: Experimental procedure flowchart for testing method 1. This flowchart is assuming that the test stand and target have been setup and will

remain fixed throughout the experiment.

 26

3.4.3 Experimental Results

 Figure 11 displays the target location at the origin and each additional point

represents a predicted location from camera 1 or camera 2 with respect to the target

location. From Figure 11, it is evident that the final estimated position of the target from

each camera was very accurate, with the results evenly distributed around the target

location. The resulting error for each coordinate was on average less than one inch, which

is acceptable for this type of basic experiment. The error present in the results is largely

due to correspondence error. The pixel locations were chosen manually and are subject to

human interpretation of the images containing the target. A small mistake in determining

the location of same pixel in each image would result in errors in the final estimation.

Furthermore, the use of higher resolution cameras with a larger focal parameter

would allow for more accurate predictions over a larger distance from the camera.

Specifically, a higher resolution camera would yield a sharper image with smaller

divisions that would allow for a better estimate for the Centroid of the target. Aside from

some minor experimental errors, in the end it was shown that by simply moving the

camera, (7) can be used to accurately determine the 3-D location of a point of interest

relative to the camera.

 27

Figure 11: Predicted target locations relative to the actual target location (at the origin)

for both cameras

4 FIXED 3-D LINE RECONSTRUCTION

4.1 Using Intersecting Planes To Define a Line

A line L in a 3-D space can be defined using a point L0p and unit vector u

representing the line direction. Any Lp can be expressed as,

Rupp 0 , (8)

The image L
~

of line L in the uv-plane of a camera, assuming the line does not

intersect the camera center, can be described using its normal vector n=[-sin cos]
T
 and

point L
~~

0 p where θ is the orientation of L
~

 as shown in Figure 12,

 28

0~~cossin)~~(00 pnppn
TT vu (9)

Figure 12: A point p0 on line L in as viewed by a camera

 If we substitute the perspective equations (1) and (2) into equation (9) we arrive

at the plane equation containing point pi and line Li imaged in the i
th

 camera,

0)~~()cos()sin(0 zyfxf T
pn (10)

Or equivalently n
T
p=0 for all Lp where

 TTff 0
~~cossin pnn (11)

Note that the normal vector n in (11) is perpendicular to any Lp hence by (8),

n
T
u=0 and p0u=n for some scalar 0 or equivalently the triple cross product

 29

0)(upn 0 (12)

If two cameras are now used, we can write plane equations using (10) of the same

imaged line with respect to each camera. Next, we can write the plane equation in camera

1 with respect to camera 2 using the coordinate transformation described in (2),

0

0

1
2

1
1

1

2
2

dnRpnpn

pn

TTT

T

 (13)

 where ni is the normal vector in (11) resulting from the i-th image. Using (8) in

(13) also implies that n2
T
u2= n1

T
Ru2= 0 or equivalently,

2
12

2
12

2
nn

nn
u

 (14)

provided that n2xn1
2
0 where ui is the vector representation of unit vector u

relative to the i-th CRF and n1
2
= R

T
n1. Point p0 closest to the origin satisfies (8) as well

as resulting in the following system of linear equations,

0

2
00

0

0

1

0

0

0

2

1

2

bpA

dn

u

Rn

n

T

T

T

T

z

y

x

 (15)

 30

Solving equation (15) will yield the vector equation of the line L containing point

p0 with respect to the second camera. Note that the matrix A0 is nonsingular provided that

n2xn1
2
 0 since

2

12

2

1220)(nnnnuA T
.

4.2 Singularity Analysis

In the preceding section the necessary and sufficient conditions for singularity of

the line identification problem was derived in terms of the normal vectors rising from

each image. To gain more insight into the singularity condition, a more explicit condition

in terms of line L and the locations of the two cameras will be derived. To this end let

point p0 be an arbitrary point on line L. Throughout the paper we assume that line L

contains neither of the two cameras’ CRF origins so that pxu0, pL, where u is the

line’s directional unit vector. Applying the coordinate transformation equation (3) to p0
i
,

i=1,2 yields the following,

dRpp 2

0

1

0

and evaluating its cross product with u1 from the right and n1 (as previously

defined) from the left using (12) we arrive at,

0)()~(

)(

111
1
01

1
1
01

udnupn

upn

 (16)

where
2

0

1

0
~ Rpp . Using u1=Ru2 and p0

2
u2=n2 for some scalar 0, and the

identity RaxRb=R(axb) the preceding equation yields,

 31

 0)(112

2

1 udnnnR (17)

By the triple cross product identity ax(bxc)=b(a
T
c)-c(a

T
b) and n1

T
u1=0, (17) is

equivalent to

 212

2
1)(udnnn

T (18)

Thus 02

12 nn if and only if 01 dn
T . In summary, the line identification problem

is singular if and only if line L and the line joining the origins of the cameras’ CRFs are

coplanar.

5 FIXED 3-D POINT RECONSTRUCTION METHOD 2

5.1 Adding a third plane

The results of the line identification presented in the preceding section can be

extended so that 3-D points can be identifying using three intersecting planes. If a third

plane is included in (16), then the 3-D coordinates of a fixed point p can be determined.

This third plane could be a plane that describes the ground or some other bounding

surface that includes point p. Letting vector n3 represent the normal vector to the

aforementioned plane containing p and hR , then (18) combined with n3
T
p

2
=h can be

presented in equation (19).

 32

bpA

dn

n

Rn

n

hz

y

x
T

T

T

T

1

3

1

2 0

2

(19)

A simple case where the third plane represents a flat ground surface was used in

(19). In this case, n3=[0 1 0] and h is the constant height of the ground relative to the pose

of camera 2. Equation (19) has a unique solution p
2
=A

-1
b provided that matrix A is

nonsingular.

The determinant of matrix A similarly to that is given by

23

2

12

2

123)(unnnnnnA
TT

Thus |A|=0 if and only if 02

12 nn or equivalently 01 dn
T or 023 un

T
. In

other words, |A|=0 if and only if line L and the line joining the origins of the cameras’

CRFs are coplanar or line L is parallel to the third plane.

 33

5.2 Experimental Verification Through Finger Gesturing

5.2.1 Overview

An increasingly popular application of stereovision is the identification of human

movement. In general, movement is a versatile form of communication that can be used

to send all types of information [41] [42] [43]. For practical purposes, human movement

or gesturing can be interpreted for robot control or for entertainment purposes such as

with the XBOX Kinect. Therefore, verification of the techniques presented in this thesis

was attempted through gesturing to illustrate the advantages of the techniques in this

thesis and, to highlight their applicability to current and popular stereovision trends. In

our case, a novel MATLAB GUI was developed to identify the 3-D point on the floor

that a static gloved finger was pointing towards, as seen in Figure 13 and Figure 14.

Figure 13: Finger glove used for finger gesturing experiment. The finger glove was cut

from a Clorox cleaning glove purchased at a Target store.

 34

 Figure 14: MATLAB GUI developed for finger detection application

In particular, a single camera was used to determine the 3-D location of the point

of interest. First, a color filter and area filter algorithm were used to isolate objects

resembling a static gloved pointing finger. The gloved finger was assumed to have an

elliptical shape, and as such, properties of an ellipse, such as eccentricity, were used to

isolate the gloved finger. Next, five images were taken in succession and for each image,

the orientation and Centroid of the finger (assumed to be on the line defining the finger)

was found. These results were averaged to yield the Centroid and orientation of the finger

for a distinct camera pose. This process was repeated for another distinct camera pose.

This information was used in conjunction with (9) to calculate the 3-D point of interest

with respect to the second camera position.

The finger glove was kept in a fixed location by attaching it to a test stand, while

thirty random camera poses were used (fifteen trials). The camera used was the same as

 35

described in Chapter 3.4 and as seen in Figure 5. As with the experimental results in

Chapter 3.4, the pose of the laptop was altered through translation only. The results of the

experiment are shown in Figure 21. In the next few subsections, the design process

behind the GUI will be outlined and discussed followed by a discussion of the

experimental results.

5.2.2 GUI Design Overview

The finger gesturing experiment required the development of a GUI with the

following characteristics:

 Ability to detect a gloved finger in any environment (i.e. regardless of

lighting, other objects in the environment, etc.)

 Able to calculate and store information related to the gloved finger

 Manipulate stored information through averaging or other techniques

 Accurately calculate the 3-D location of a point using the stored

information from the detected gloved finger.

This was accomplished by first using a color filter to identify all objects that have

a similar color as the glove itself and by approximating the finger as an elliptical object.

Lastly, the orientation and Centroid of the finger were acquired from two images and

used with (9) to determine the 3-D point of interest.

5.2.3 Object Area Filter and Color Filter Overview

The color filter used was a standard normalized RGB filter. First, the RGB values

for each pixel in the image matrix were found and normalized with respect to the

 36

magnitude of the RGB vector. Next, pixels within the image matrix that did not fall

within the following normalized RGB parameters were removed:

Rnormalized > 0.45

Gnormalized < 0.40

Bnormalized < 0.60

 These parameters were found experimentally using various photos of the finger

glove in various lighting conditions. The above parameters represent an average

approximation of the RGB values for a pixel containing a portion of the finger glove.

Overall, this scheme for color filtering was very fast and accurate.

 The resulting image matrix was then converted to black and white and MATLAB

was used to perform object detection. Next, a simple object area filter was used to

remove objects that were less than 200 pixels
2
. This was done to limit the focus of the

GUI to objects within a specific distance of the camera itself and to reduce random

background noise.

5.2.3.1 Elliptical Approximation

A profile view of the finger, as seen in Figure 15, can be viewed as an

ellipse existing in a 2-D environment. This approximation not only matches the shape of

the finger well, but it also takes advantage of the many image processing tools in

MATLAB which makes a similar approximation to any object detected.

 37

 Figure 15: Finger glove approximated as a 2-D ellipse

 For example, MATLAB’s image processing toolbox returns the eccentricity and

orientation of an ellipse with the same second polar moment of inertia of the object of

interest. Thus, once the color and area filter were applied, the object eccentricity filter

was used to identify objects that were elliptical in shape. A perfect eccentricity has a

value of 0, which is that of a circle. Therefore, the eccentricity of an object is a non-

dimensional measure of an object’s shape relative to a circle. Specifically, ellipses have

an eccentricity that is greater than zero but less than 1 [44]. For the finger glove in

question, experimental testing revealed that the eccentricity of the glove was larger than

0.86 but less than 1 during any given experiment. Therefore, the GUI was designed to

identify objects with an eccentricity greater than 0.86 but less than 1.

 In addition to the above filters, a “π filter” was used on the remaining objects to

isolate the desired elliptical object. This was accomplished by using the area of an ellipse

which can be written as,

 (20)

+ r

+ c

 38

 where a and b are the semi- major and semi-minor axes of the ellipse. For each

object, MATLAB calculates the object area, major and minor axes. This information was

used along with (20) to experimentally estimate the value of π. Since the area of the

finger glove is not exactly an ellipse, the calculated value of π will be close to the known

value of 3.14. In our case, it was determined that for the finger glove π was estimated to

be between 2.90 and 3.08. Therefore, objects with geometric characteristics that do not

yield a value of π within this range were ignored.

5.2.3.2 GUI Gloved Finger Filtering Summary

The combination of normalized color, area, eccentricity and π filters was

successfully used to identify a gloved finger in any 3-D environment (aside from an

environment absent from lighting of course!). The filtering process has been summarized

in the flow chart shown in Figure 16. The final algorithm is essentially a loop that

continues as long as the program is running.

5.2.4 GUI Interface Design Summary

The GUI interface was designed such that the user could see the live video feed

from the camera and the final interpreted result after the filtering algorithm was finished.

Furthermore, the GUI was designed so that the user could store line information from two

different camera poses and average them if needed. This stored information could then be

used by the user to calculate the intersection point of the line with the ground. The

ground itself was also a parameter that could be entered by the user. Figure 17 depicts the

interface in detail.

 39

Figure 16: Flow chart of filtering algorithm used in MATLAB GUI for gloved finger detection

 40

3-D

coordinates of

intersection

point relative

to second

camera pose

are displayed

User inputs the focal

parameter of the camera

and the Y coordinate of the

ground relative to the

camera.

User inputs the camera

rotation and translation

information relative to the

first camera

Live display of

object shape,

Centroid and

axial line of object

Store

information

from

Camera 1 or

Camera 2

Figure 17: Final GUI Interface and descriptions of some of its useful features.

 41

5.2.5 Experimental Procedure

This experiment was carried out similarly to the experiment for point detection

method 1. The finger glove was attached to the test stand in a fixed position, while new

images were obtained from the laptop that was moved around. The point that the finger

glove was pointing towards was recorded on the grid paper for comparison against

experimental results. The experimental setup from the laptop point of view is shown in

Figure 18. The finger glove was attached to the test stand to ensure a static configuration

was maintained throughout the experiment. Using an actual finger for multiple

measurements would be difficult since an actual finger is prone to random movement and

Figure 18: Experimental setup for gesture application from laptop POV. Finger glove

placed in non-planar orientation

 42

physical exhaustion.

The precise location of the laptop was determined with the use of four

experimental aids. The first aid was a 1/2 inch x 1/2 inch grid poster paper, which was

firmly secured and placed underneath the laptop and test stand. A grid system such as this

one served as a two dimensional coordinate system that made laptop translation

measurements clearer and more defined. The second aid used was standard measuring

tape that was used to measure the translation of the laptop during the experiment. The

third aid was a foot long ruler that was used to ensure that the laptop screen was kept

orthogonal to the horizontal axis. This was done to ensure that the orientation of the

laptop remained fixed at all times during the experiment and, that the camera axes were

in the same direction as the laptop translation axes, as seen in Figure 19.

Figure 19: (a) Dotted line is line with camera center, the red dot indicates a reference

point of measurement during the experiment. (b) Profile of the laptop. The screen

orientation was kept perpendicular to the horizontal at all times. Camera axes and laptop

translation axes are in the same direction [37].

+X

+Y +Y

+Z

 43

The fourth aid was the reference point on the mouse pad of the laptop. This point

shown as a red dot in Figure 19 was in line with the camera axes and was used as a

reference point when measuring laptop displacement during the experiment. It is

important to note that in this case, the positive y axis has been assumed to be down.

For each camera pose, the average orientation and average Centroid of the gloved

finger were determined from five consecutive images, provided that first the pose of the

laptop was known and correct. The pose of the laptop was altered and the average

orientation and average Centroid of the gloved finger were again determined using five

consecutive images. The averaged Centroid and averaged orientation of the gloved

finger from two different camera poses are saved and used along with the +Y coordinate

of the ground, the camera focal parameter and homogenous transformation parameters of

the camera to obtain the 3-D location of the point on the ground where the gloved finger

was pointing towards.

For this experiment, this process was repeated fifteen times (30 different camera

poses) to obtain the results presented in Figure 5. It must be noted that the orientation of

the laptop remained fixed and the laptop was translated in either the x or z directions or a

combination of both x and z directions. A summary of this experimental procedure is

given in Figure 20.

 44

Figure 20: Experimental procedure flowchart for testing method 2. This flowchart is assuming that the test stand and finger glove have been setup and

will remain fixed throughout the experiment.

 45

5.3 Experimental Results

Figure 21: Predicted target locations relative to the Actual Target Location (at the origin)

from the second camera. Ground location is assumed to be fixed at y = 9.625 inches.

Similar to Figure 11, Figure 21 shows the fixed target location at the origin and

the predicted locations relative to the actual location. Only the x and z coordinates have

been shown since y is assumed to be h = 9.625 inches (camera center to table top). From

Figure 21, it is evident that the predictions were accurate to within ± 1 inch of the target.

This translates to an average error of -15% for the x coordinate prediction and a +1%

error for the z coordinate prediction, which is acceptable for this type of basic

experiment.

 46

From Figure 21, it is clear that while the z coordinate predictions were evenly

distributed between ± 1 inch of the target z coordinate, most of the x coordinate

predictions were overestimated, indicating an experimental bias. This bias was

investigated and it was determined to be the result of x axis translation measurement error

and/or issues specific to the placement of the finger glove. x axis translation measurement

error as small as ± 0.1 inches can cause the final x coordinate to be overestimated by as

much as 0.20 inches. Eleven of the experimental trials consisted of either pure translation

along the x axis or a combination of translation along both the x and z axes, with the x

axis translation always being the largest. It is entirely possible that for a few of these

trials a measurement error as small as 0.1 inches could have occurred.

Additionally, the finger glove was placed in a non-planar position with respect to

the camera. As a result, estimation of the area was more susceptible to variation which

can result in errors in the Centroid estimation from the second image. Better lighting and

better equipment (especially the camera) could have reduced the error even further.

Nevertheless, if we consider how small the magnitude of the error is in the predictions, it

becomes clear that (19) is an accurate and novel method for identifying points expressed

in a 3-D environment.

5.4 The Effects of Averaging the Centroid and Orientation of the

Finger Glove

During the experiment, the Centroid and orientation of the finger glove at each

pose were measured five times and averaged before the final 3-D point estimate was

determined. Five averages were chosen based on an experiment designed to determine

the running average estimation of the fixed 3-D point that the finger glove was pointing

 47

towards. Figure 22 and Figure 23 depict the results of the experiment. From each plot it

can be seen that the accuracy of the prediction increases as the number of averages

increases over time. Therefore, averaging the Centroid and the orientation of the finger

glove does have a positive impact on the final 3-D estimate. Choosing the number of

averages seems obvious by examining the trend in Figure 22 and Figure 23. However, if

the difference between five and 50 averages is considered, we can see that the accuracy

improves by 1% on average. Therefore, based on these calculations it is apparent that

five averages is more than enough to achieve accurate experimental results. Any

additional averaging would most likely not have a higher benefit on the final results.

Additionally, performing more than five averages may not be practical for real

applications because it could take a long period of time than is desired and effectively

slow down the robot during its use.

 48

Figure 22: Running Average for x coordinate prediction for finger glove intersection

point. Ground location is assumed to be fixed at y = 9.625 inches.

 49

Figure 23: Running Average for x coordinate prediction for finger glove intersection

point. Ground location is assumed to be fixed at y = 9.625 inches.

 It must also be noted that a noticeable bias in the final coordinate estimation does

exist in Figure 22 and Figure 23. The bias is most likely due to small translation

measurement error or inaccuracies in the camera used. The camera is a webcam built into

a laptop and not an expensive machine vision camera normally used for experimental

work.

 50

6 Limitations of Fixed 3-D Line and Fixed 3-D Point Reconstruction

Techniques 1 and 2

The techniques presented in this work have several drawbacks. First, the

techniques presented in this work rely on precise camera pose estimation from on board

sensors. Any error in estimation from these sensors could result in error of the estimation

of the line equation or 3-D point coordinates. Additionally, there are other 3-D techniques

that receive this information using point estimation from each image, which make the

techniques in this thesis less attractive because it requires additional hardware for

implementation. Second, the approaches presented in this thesis do not provide a

complementary correspondence algorithm. The correspondence problem is essentially

left to the engineer to solve before using the techniques in this work.

Furthermore, an accurate sensitivity analysis with respect to correspondence and

pose estimation errors has not been completed. Therefore, it is largely unknown how

sensitive the techniques presented in this thesis are to errors in correspondence and

camera pose estimation.

7 CONCLUSIONS AND FUTURE WORK

This work presented in this thesis was motivated by two important observations.

First, through this work and other related work, it has been shown that Stereovision has

several limitations related to the fundamentals of its design and implementation. Second,

in order for robots to be more successful as human replacements, they must have human

like visual perception. In particular, they must have the ability to interpret depth using a

single camera, similar to how humans can perceive depth using a single eye. Therefore,

this thesis has presented three novel techniques for identifying the 3-D coordinates of

 51

fixed 3-D points and the 3-D equation of a fixed line in a physical 3-D environment. The

techniques presented in this thesis can be successfully used with one moving camera or

two stationary cameras provided that a separate correspondence technique is

implemented beforehand. The techniques used for identifying 3-D fixed points have

been experimentally validated and shown to be very accurate aside from a small

experimental bias. Both results suffered from the same inaccuracies and are due to factors

such as small correspondence errors, small measurement errors or limitations of the

equipment used.

Lastly, the methods presented in this thesis can be expanded on in three ways.

First, experimental verification of the line detection method would further validate the

work in this thesis. Second, the techniques presented in this thesis can be expanded to

account for n images, meaning that either n cameras or a single camera taking n images

can be used to determine any desired points and lines in a 3-D environment. Enabling the

use of n cameras or n images allows for a more general approach not limited by the

number of cameras used. A general approach increases the overall information available

and will allow for a better approximation for the location of the 3-D point of interest.

 Finally, these techniques should be experimented with actual moving robots to

attain a better understanding of the practical uses and implementation requirements

necessary for successful depth estimation using these techniques. In general, further

advancement of the work presented in this thesis would be greatly beneficial to the vision

system of any mobile robot or moving robot such as a robotic arm because it will remove

the two camera constraint, thus allowing for a less complex vision system overall.

 52

APPENDIX A

POINT DETECTION METHOD 1 MATLAB CODE

%Roshan Kalghatgi
%Date Created 11/6/2011
%This program locates a 3-D point relative to a camera in a two camera
%pose setting.

function [A,B,alpha,p] = stereovision_point(f,uv,th,d)

%Define General Rotation matrix
thx=deg2rad(th(1));
Rx=[1 0 0;0 cos(thx) -sin(thx);0 sin(thx) cos(thx)];
thy=deg2rad(th(2));
Ry=[cos(thy) 0 sin(thy);0 1 0;-sin(thy) 0 cos(thy)];
thz=deg2rad(th(3));
Rz=[cos(thz) -sin(thz) 0;sin(thz) cos(thz) 0;0 0 1];
R=Rx*Ry*Rz

%Shift uv relative to IPP
uv(1) = (uv(1) - 320);
uv(3) = (uv(3) - 320);
uv(2) = (240 - uv(2));
uv(4) = (240 - uv(4));

%Define p_bar
p_bar1 = [uv([1:2]) f]'
p_bar2 = [uv([3:4]) f]';

%Define A and B
A(:,1) = p_bar1;
A(:,2) = -R*p_bar2;

B = d';

%Solve for alpha
alpha = A\B;

p = [alpha(1)*p_bar1 alpha(2)*p_bar2];

end

 53

APPENDIX B

POINT DETECTION METHOD 2 MATLAB CODE

%Roshan Kalghatgi
%Date Created 11/6/2011
%This program computes the x,y,z coordinates of point that is common to
three planes

function [p,A,B,R]=stereovision_line(a,p,f,th,d,h)
%a,b: angle and one point on each line [a1 a2], [p1 p2], pi=[ri;ci]
%f: camera focal parameter
%th: 3x1 vector of successive rotation about x, y, and z axes to

specify the rotation matrix between the 2 camera
%d: traslation vector between the camers optical centers.
%h: height of the ground from the camera center (defined on the y axis)

%Form the rotaion matrix R
thx=deg2rad(th(1));
Rx=[1 0 0;0 cos(thx) -sin(thx);0 sin(thx) cos(thx)];
thy=deg2rad(th(2));
Ry=[cos(thy) 0 sin(thy);0 1 0;-sin(thy) 0 cos(thy)];
thz=deg2rad(th(3));
Rz=[cos(thz) -sin(thz) 0;sin(thz) cos(thz) 0;0 0 1];
R=Rx*Ry*Rz;

%Line parameters
%unit vector perpendecular to line
%any rc(r,c) on the line satisfies m'*rc=m'*p, where m is the unit

vector
%perpendicular
a1=deg2rad(a(1)); a2=deg2rad(a(2));
m1=[cos(pi/2+a1);sin(pi/2+a1)];
m2=[cos(pi/2+a2);sin(pi/2+a2)];
p1 = p(1,[1:2]); p2=p(1,[3:4]);
b1=m1'*p1';
b2=m2'*p2';

%Form A matrix
A1 = [m2(1)*f m2(2)*f -b2];
A2 = [m1(1)*f*R(1,1)+m1(2)*f*R(2,1)-b1*R(3,1)

m1(1)*f*R(1,2)+m1(2)*f*R(2,2)-b1*R(3,2) m1(1)*f*R(1,3)+m1(2)*f*R(2,3)-

b1*R(3,3)];
A3 = [0 1 0];
A = [A1;A2;A3];

B = [0; (-m1(1)*f*d(1)-m1(2)*f*d(2)+b1*d(3));(h-d(2))];
p=inv(A)*B;

return

end

 54

APPENDIX C

FINGER DETECTION GUI MATLAB CODE

%Name: Roshan Kalghatgi
%Date Created: 8/3/2011
%Last Updated: 11/12/2011
%File Name: BlueHandFilterLive8.m
%Version 8

function varargout = BlueHandFilterLive(varargin)

% BLUEHANDFILTERLIVE M-file for BlueHandFilterLive.fig
% BLUEHANDFILTERLIVE, by itself, creates a new BLUEHANDFILTERLIVE

or raises the existing
% singleton*.
%
% H = BLUEHANDFILTERLIVE returns the handle to a new

BLUEHANDFILTERLIVE or the handle to
% the existing singleton*.
%
% BLUEHANDFILTERLIVE('CALLBACK',hObject,eventData,handles,...)

calls the local
% function named CALLBACK in BLUEHANDFILTERLIVE.M with the given

input arguments.
%
% BLUEHANDFILTERLIVE('Prop erty','Value',...) creates a new

BLUEHANDFILTERLIVE or raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before BlueHandFilterLive_OpeningFcn gets

called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to BlueHandFilterLive_OpeningFcn

via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help BlueHandFilterLive

% Last Modified by GUIDE v2.5 07-Jul-2011 11:58:48

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @BlueHandFilterLive_OpeningFcn, ...
 'gui_OutputFcn', @BlueHandFilterLive_OutputFcn, ...

 55

 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
end

% --- Executes just before BlueHandFilterLive is made visible.
function BlueHandFilterLive_OpeningFcn(hObject, eventdata, handles,

varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to BlueHandFilterLive (see

VARARGIN)

% Choose default command line output for BlueHandFilterLive
handles.output = hObject;

%Initialize the camera
imaqreset;

global obj;
obj = videoinput('winvideo',1,'YUY2_640x480');
set(obj,'ReturnedColorSpace','RGB','FramesPerTrigger',1);
set(obj,'TriggerRepeat',Inf,'FrameGrabInterval',2,'TimerPeriod',1/2,'Ti

merFcn',...
 @BlueHandFilter);

%set up an images to put pictures in
vidRes = get(obj, 'VideoResolution');
nBands = get(obj, 'NumberOfBands');
hIm1 = image(zeros(vidRes(2), vidRes(1), nBands),'parent',...
 handles.LiveVideoFeed);

start(obj);

 function BlueHandFilter(obj,~)
 global b m theta CentroidStore;
 tic
 data = getdata(obj);
 flushdata(obj);

 %send image data to the image object in LiveVideo Feed
 set(hIm1,'CData',data);
 set(handles.LiveVideoFeed,'xticklabel',[]);
 set(handles.LiveVideoFeed,'yticklabel',[]);

 56

 %---Implement hand filter algorithm---%

 %I_manip is the I matrix that this program will be manipulating
 I = double(data(:,:,:,:));
 I_manip = I;

 %Find the size of I
 [m n q] = size(I_manip);

 %Preallocate space for denom matrix
 denom = zeros(m,n);

 %---Implement Color Filter---%

 %Normalize the image matrix
 denom = sqrt(I_manip([1:m],[1:n],1).^2 +

I_manip([1:m],[1:n],2).^2 + I_manip([1:m],[1:n],3).^2);

 I_manip(:,:,1) = I_manip(:,:,1)./denom;
 I_manip(:,:,2) = I_manip(:,:,2)./denom;
 I_manip(:,:,3) = I_manip(:,:,3)./denom;

 %Find the indices of the pixels that don't meet the RGB

thresholds
 [r c] = find(I_manip(:,:,1) > 0.45); %R

 lindex1 = sub2ind(size(I_manip),r,c); %you can specificy the

layer in sub2ind, third input is the layer array
 lindex2 = sub2ind(size(I_manip),r,c,2*ones(length(r),1));
 lindex3 = sub2ind(size(I_manip),r,c,3*ones(length(r),1));

 I([lindex1' lindex2' lindex3']) = 0;

 [r c] = find(I_manip(:,:,2) < 0.40); %G

 index1 = sub2ind(size(I_manip),r,c); %you can specificy the

layer in sub2ind, third input is the layer array
 lindex2 = sub2ind(size(I_manip),r,c,2*ones(length(r),1));
 lindex3 = sub2ind(size(I_manip),r,c,3*ones(length(r),1));

 I([lindex1' lindex2' lindex3']) = 0;

 [r c] = find(I_manip(:,:,3) < 0.6); %B 50.65

 lindex1 = sub2ind(size(I_manip),r,c); %you can specifiy the

layer in sub2ind, third input is the layer array
 lindex2 = sub2ind(size(I_manip),r,c,2*ones(length(r),1));
 lindex3 = sub2ind(size(I_manip),r,c,3*ones(length(r),1));

 I([lindex1' lindex2' lindex3']) = 0;

 57

 %---END Color Filter---%

 %Convert to bw based on a grayscale threshold
 thresh = graythresh(I);
 I = im2bw(I,thresh);

 % I = bwconncomp(I,26);

 %Find objects in the image and all the properties
 cc1 =

regionprops(I,'Area','Orientation','Centroid','PixelList','Perimeter','

Eccentricity','MajorAxisLength','MinorAxisLength');

 %---Filter objects by Area, Perimeter^2/Area, and Eccentricity---%

 %Of all objects found find those >500 sq pixels & e >=0.86
 indices1 = intersect(find([cc1(:,:).Area] >

200),find([cc1(:,:).Eccentricity] >= 0.86));
 %indices1 = find([cc1(:,:).Eccentricity] >= 0.86);

 %Calculate pi using the area, major axis and minor axis
 try
 ab =

(cc1(indices1,:).MajorAxisLength).*(cc1(indices1,:).MinorAxisLength);

 ab = ab(ab ~=0);
 indices1 = indices1(find(ab ~=0));

 PI_filter = 4*(cc1(indices1,:).Area./ab);

 %Notes: Perimeter^2/Area and max/min are good BUT they are 2-D
 %characteristics, what if you angle your finger. You have the
 %effects of foreshortening and thus the finger will be filtered
 %out. this can work if you have a large
 %range of values. Need a param that is independent of 3-d, also

need to improve
 %color filter

 %Of all obj found in indices1, determine which have PtoA within

[15 35]
 %indices2 is the index of indices1! Very important note!
 indices2 = intersect(find(PI_filter > 2.90),find(PI_filter <

3.08));

 %indices give you the original indices from cc1 of the object

that
 %meets the criteria
 indices = indices1(indices2);

 %Determine the number of objects
 NumObjects = length(indices);

 58

 %---End object filter---%

 %Preallocating
 AreaofObj = zeros(1,NumObjects)';
 Centroids = zeros(2,NumObjects)';

 catch
 NumObjects = 0;
 end

 if NumObjects > 0
 for k = 1:1:NumObjects

 %Calculate area, orientation and centroid of object

found
 AreaofObj(k) = cc1(indices(k),1).Area;
 cc1(indices(k),:).Eccentricity;
 Centroids(k,[1:2]) = cc1(indices(k),:).Centroid

%(x,y)

 % maxtomin =

(cc1(indices(k),:).MajorAxisLength)*(cc1(indices(k),:).MinorAxisLength)
 %ratio = 4*AreaofObj(k)/maxtomin

%([cc1(indices(k),:).Perimeter].^2)./[cc1(indices(k),:).Area]

 %Make centroids relative to IPP
 Centroids(k,[1:2]) = [(Centroids(k,1)-320) (Centroids(k,2)-240)];
 CentroidStore = Centroids(k,[1:2]);

 %Calculate orientation
 theta = -cc1(indices(k),:).Orientation

 %Calculate the normal vector of the plane

that the line
 %lies on
 N = [cosd(theta+90) sind(theta+90)];

 %Determine the line parameters
 D = N*[Centroids(k,[1:2])]';

 b = D/sind(theta + 90);

 m = (-1/tand(theta+90));

 x = [-300:1:300];
 y = m*x + b;

 %Find all the pixels that make up the object
 PList{k} = cc1(indices(k),:).PixelList;

 PList{k}(:,1:2) = [(PList{k}(:,1)-320) (PList{k}(:,2)-240)];

 end
 else

 59

 Centroids = [0 0];
 PList = [0 0];
 x = 0;
 y = 0;
 m = 0;
 b = 0;

 end
 try
 slope = m;
 yintercept = b;
 thetaTag = num2str(theta);
 catch
 slope = 0;
 yintercept = 0;
 thetaTag = 'No object';

 end

 try
 e = num2str(cc1(1,1).Eccentricity);
 AreaTag = num2str(AreaofObj);
 catch
 e = 'No object';
 AreaTag = 'No object';
 end

 %Send data to textboxes
 set(handles.eccen,'string',e);
 set(handles.lineEq ,'string',sprintf('%gc +

%g',slope,yintercept));
 set(handles.NumObjText,'string',NumObjects);
 set(handles.OrientationTag,'string',thetaTag);
 set(handles.AreaTag,'string',AreaTag);

 %Plot the centroids and the finger area
 if NumObjects > 0
 % plot(handles.FilterResults,Centroids(:,1),-

Centroids(:,2),'r+','MarkerSize',20);
 for z = 1:1:NumObjects
 plot(handles.FilterResults,PList{z}(:,1),-

PList{z}(:,2),'*',x,-y,'-',Centroids(:,1),-

Centroids(:,2),'r+','MarkerSize',5);
 end
 else
 plot(handles.FilterResults,0,0);
 end
 toc
 end%end BlueHandFilter

% Update handles structure
guidata(hObject, handles);

end%end opening function
% UIWAIT makes BlueHandFilterLive wait for user response (see UIRESUME)

 60

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = BlueHandFilterLive_OutputFcn(~, ~, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;
end

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(~, ~, ~)
% hObject handle to pushbutton1 (see
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

end
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(~, ~, ~)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDA
end

% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, ~, ~)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
imaqreset();
delete(hObject);
end

% --- Store Line 1 info
function strL1_Callback(~, ~, handles)

global theta_line1 Centroid1 theta CentroidStore n1;

%Initialize n1, Centroid 1 and theta_line1
if isempty(n1)
 n1 = 0;
end

if isempty(Centroid1)
 Centroid1 = [0 0];
end
if isempty(theta_line1)

 61

 theta_line1 = 0;
end

%increment counter
n1 = n1 + 1;

% Store line 1 characteristics and average them
theta_line1 = ((n1-1)*theta_line1 + theta)/n1;
Centroid1 = [(((n1-1)*Centroid1(1) + CentroidStore(1))/n1),(((n1-

1)*Centroid1(2) + CentroidStore(2))/n1)];

%send line 1 info to the textboxes
set(handles.thetaL1,'string',num2str(theta_line1));
set(handles.CentroidL1,'string',sprintf('(%g,%g)',Centroid1(1),Centroid

1(2)));
set(handles.NumavgL1,'string',num2str(n1));
end

% --- Store Line 2 info
function strL2_Callback(~, ~, handles)

global theta_line2 Centroid2 theta CentroidStore n2;

%Initialize variable
if isempty(n2)
 n2 = 0;
end

if isempty(Centroid2)
 Centroid2 = [0 0];
end

if isempty(theta_line2)
 theta_line2 = 0;
end

%increment counter
n2 = n2 + 1;

% Store line 2 characteristics
theta_line2 = ((n2-1)*theta_line2 + theta)/n2;
Centroid2 = [(((n2-1)*Centroid2(1) + CentroidStore(1))/n2),(((n2-

1)*Centroid2(2) + CentroidStore(2))/n2)];

%send line 1 info to the textboxes
set(handles.thetaL2,'string',num2str(theta_line2));
set(handles.CentroidL2,'string',sprintf('(%g,%g)',Centroid2(1),Centroid

2(2)));
set(handles.NumavgL2,'string',num2str(n2));
end

% --- Executes on button press in calcPoint.
function calcPoint_Callback(~, ~, handles)
% hObject handle to calcPoint (see GCBO)

 62

global b_line1 m_line1 theta_line1 Centroid1 b_line2 m_line2

theta_line2 Centroid2

%Store Transformation Parameters
th_x = str2num(get(handles.Rx,'string'))
th_y = str2num(get(handles.Ry,'string'))
th_z = str2num(get(handles.Rz,'string'))

d_x = str2num(get(handles.Tx,'string'))
d_y = str2num(get(handles.Ty,'string'))
d_z = str2num(get(handles.Tz,'string'))

%Store Height (relative to the second camera)
ht = str2num(get(handles.height,'string'));

%Set focal parameter
f = str2num(get(handles.focalParam,'string'));

%Calculate point
[p,A,B,R]=stereovision_line([theta_line1 theta_line2],[Centroid1

Centroid2],f,[th_x th_y th_z],[d_x d_y d_z],ht)

%Output point to the gui textboxes
set(handles.px,'string',num2str(p(1)))
set(handles.py,'string',num2str(p(2)))
set(handles.pz,'string',num2str(p(3)))

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
end

function Rx_Callback(~, ~, ~)
% hObject handle to Rx (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Rx as text
% str2double(get(hObject,'String')) returns contents of Rx as a

double
end

% --- Executes during object creation, after setting all properties.
function Rx_CreateFcn(hObject, ~, ~)
% hObject handle to Rx (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

 63

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
end

function Ry_Callback(~, ~, ~)
% hObject handle to Ry (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Ry as text
% str2double(get(hObject,'String')) returns contents of Ry as a

double
end

% --- Executes during object creation, after setting all properties.
function Ry_CreateFcn(hObject, ~, ~)
% hObject handle to Ry (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
end

function Rz_Callback(~, eventdata, handles)
% hObject handle to Rz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Rz as text
% str2double(get(hObject,'String')) returns contents of Rz as a

double

end
% --- Executes during object creation, after setting all properties.
function Rz_CreateFcn(hObject, ~, ~)
% hObject handle to Rz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');

 64

end

end

function Tx_Callback(hObject, eventdata, handles)
% hObject handle to Tx (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Tx as text
% str2double(get(hObject,'String')) returns contents of Tx as a

double

end
% --- Executes during object creation, after setting all properties.
function Tx_CreateFcn(hObject, ~, handles)
% hObject handle to Tx (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

end
function Ty_Callback(hObject, eventdata, handles)
% hObject handle to Ty (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Ty as text
% str2double(get(hObject,'String')) returns contents of Ty as a

double

end
% --- Executes during object creation, after setting all properties.
function Ty_CreateFcn(hObject, eventdata, handles)
% hObject handle to Ty (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

end

 65

function Tz_Callback(hObject, eventdata, handles)
% hObject handle to Tz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Tz as text
% str2double(get(hObject,'String')) returns contents of Tz as a

double
end

% --- Executes during object creation, after setting all properties.
function Tz_CreateFcn(hObject, eventdata, handles)
% hObject handle to Tz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
end

function height_Callback(hObject, eventdata, handles)
% hObject handle to height (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of height as text
% str2double(get(hObject,'String')) returns contents of height

as a double

end
% --- Executes during object creation, after setting all properties.
function height_CreateFcn(hObject, eventdata, handles)
% hObject handle to height (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
end

 66

function pz_Callback(hObject, eventdata, handles)
% hObject handle to pz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of pz as text
% str2double(get(hObject,'String')) returns contents of pz as a

double
end

% --- Executes during object creation, after setting all properties.
function pz_CreateFcn(hObject, eventdata, handles)
% hObject handle to pz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

end

function py_Callback(hObject, eventdata, handles)
% hObject handle to py (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of py as text
% str2double(get(hObject,'String')) returns contents of py as a

double
end

% --- Executes during object creation, after setting all properties.
function py_CreateFcn(hObject, eventdata, handles)
% hObject handle to py (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

end

 67

function px_Callback(hObject, eventdata, handles)
% hObject handle to px (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of px as text
% str2double(get(hObject,'String')) returns contents of px as a

double

end
% --- Executes during object creation, after setting all properties.
function px_CreateFcn(hObject, ~, ~)
% hObject handle to px (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
end

function focalParam_Callback(~, eventdata, handles)
% hObject handle to focalParam (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of focalParam as text
% str2double(get(hObject,'String')) returns contents of

focalParam as a double

end
% --- Executes during object creation, after setting all properties.
function focalParam_CreateFcn(hObject, ~, handles)
% hObject handle to focalParam (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
end

 68

% --- Executes on button press in Reset.
function Reset_Callback(~, ~, handles)
% hObject handle to Reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global theta_line1 Centroid1 theta_line2 Centroid2 n1 n2;

%Reset averages counter
n1 = 0;
set(handles.NumavgL1,'string',num2str(n1));
n2 = 0;
set(handles.NumavgL2,'string',num2str(n2));

%Reset Transformation Parameters
th_x = 0;
set(handles.Rx,'string',num2str(th_x));
th_y = 0;
set(handles.Ry,'string',num2str(th_y));
th_z = 0;
set(handles.Rz,'string',num2str(th_z));

d_x = 0;
set(handles.Tx,'string',num2str(d_x));
d_y = 0;
set(handles.Ty,'string',num2str(d_y));
d_z = 0;
set(handles.Tz,'string',num2str(d_z));

%Store Height (relative to the second camera)
ht = 9.625;
set(handles.height,'string',num2str(ht));

%Reset focal parameter
f = 525;
set(handles.focalParam,'string',num2str(f));

%Reset saved information
%Reset all line parameters and transformation parameters
theta_line1 = 0;
set(handles.thetaL1,'string',num2str(theta_line1));
Centroid1 = [0 0];
set(handles.CentroidL1,'string',sprintf('(%g,%g)',Centroid1(1),Centroid

1(2)));
theta_line2 = 0;
set(handles.thetaL2,'string',num2str(theta_line2));
Centroid2 = [0 0];
set(handles.CentroidL2,'string',sprintf('(%g,%g)',Centroid2(1),Centroid

2(2)));

%Reset display for calculated point
set(handles.px,'string',num2str(0))
set(handles.py,'string',num2str(0))
set(handles.pz,'string',num2str(0)) end

 69

APPENDIX D

RUNNING AVERAGE PLOTTING SCRIPT

%Averaging test data script
%Roshan Kalghatgi
%12/31/2011
%This code takes thetas and Centroids taken over 50 averages and

computes a running average plot of x and z coordinate predictions.
n = 50;
a(:,[1:2]) = [dummyStore1([1:n],1) dummyStore2([1:n],1)];

p(:,[1:4]) = [dummyStore1([1:n],[2:3]) dummyStore2([1:n],[2:3])];

for i = 1:1:n

prediction(i,[1:3]) = stereovision_line(a(i,:),p(i,:),525,[0 0 0],[1.1

0 0],9.625);
end

numAvgs = [1:1:n];

figure(1)
plot(numAvgs,prediction(:,1),'*',[0 numAvgs], 1.91*ones(n+1,1),'-r');
ylabel('X Coordinate Estimate (inches)');
xlabel('Number of Averages');

figure(2)
plot(numAvgs,prediction(:,3),'*',[0 numAvgs], 8.375*ones(n+1,1),'-r');
xlabel('Number of Averages');
ylabel('Z Coordinate Estimate (inches)');

 70

REFERENCES

[1] L.G. Shapiro and G.C. Stockman, Computer Vision. Upper Saddle River, NJ:

Prentice Hall, 2001.

[2] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint.

Cambridge, , MA: MIT Press, 1993.

[3] D.H. Ballard and C.M. Brown, Computer Vision. Englewood Cliffs, NJ: Prentice

Hall, 1982.

[4] D. Oram, "Rectification for Any Epipolar Geometry," The British Machine Vision

Association and Society for Pattern Recognition, pp. 653-662, 2001.

[5] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.

Cambridge, United Kingdom: University Press, 2000.

[6] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.

Cambridge, United Kingdom: University Press, 2003.

[7] A. Saxena, "Monocular Depth Perception and Robotic Grasping of Novel Objects,"

Stanford University, Ph.D Thesis 2009.

[8] A. Saxena, S.H. Chung, and A.Y. Ng, "3-D Depth Reconstruction from a Single Still

Image," International Journal of Computer Vision, vol. 76, no. 1, pp. 53-69, January

2008.

[9] C. Bianco. (2011, December) How Vision Works: Depth Perception. [Online].

http://science.howstuffworks.com/environmental/life/human-biology/eye10.htm

[10] H., Basslich, P. Bassmann, "Monocular Computer Vision," in 3rd Conf. on Image

Processing and its Applications, Warwick, 1989, pp. 107-111.

[11] S., Blas, M. Riisgaard. (2005) SLAM for Dummies. [Online].

http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-

spring-2005/projects/1aslam_blas_repo.pdf

[12] H., Bailey, T. Durrant-Whyte, "Simultaneous Localization and Mapping (SLAM):

Part I The Essential Algorithms," Robotics and Automation Magazine, vol. 13, no. 2,

pp. 99-110, June 2006.

[13] A., Reid, I., Molton, N., Stasse, O. Davison, "MonoSLAM: Real-Time Single

Camera SLAM," IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 29, no. 6, pp. 1052-1067, June 2007.

[14] C.G., Pike, J.M. Harris, "3D Positional Integration From Image Sequences," in Third

Alvey Vision Conference, 1987, pp. 233-236.

[15] K. Sugihara, "Some Location Problems for Robot Navigation Using a Single

Camera," Computer Vision, Graphics, and Image Processing, vol. 42, pp. 112-129,

1988.

[16] M., Wyeth, G. Milford, "Single Camera Vision-Only SLAM on a Suburban Road

Network," in IEEE ICRA, Pasadena, 2008, pp. 3684-3689.

[17] R. Zisserman, A. Hartley. (1999) Multiple View Geometry. Power Point Lecture.

[18] S., Strum P. Maybank, "A Method for Interactive 3-D Reconstruction of Piecewise

Planar Objects from Single Images," in The 10th British Machine Vision

Conference, 1999, pp. 265-274.

http://science.howstuffworks.com/environmental/life/human-biology/eye10.htm
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf

 71

[19] B., Maier, D., Manner, R., Yu, M. Liu, "An Efficient and Accurate Method for 3-D

Point Reconstruction from Multiple Views," International Journal of Computer

Vision, January 2002.

[20] J., Hubner, K. Zhang. (2002, June) Using Symmetry as a Feature in Panoramic

Images for Mobile Robot Applications. Power Point Presentation.

[21] H., Miura, J., Shirai, Y. Koyasu, "Recognizing Moving Obstacles for Robot

Navigation using Real-time Omnidirectional Stereo vision," Journal of Robotics and

Mechatronics, vol. 14, no. 2, pp. 147-156, 2002.

[22] Z. Zhu, "Omnidirectional Stereo Vision," in 10th IEEE ICAR, Budapest, 2001.

[23] S., Ahuja, N. Yi, "An Omnidirectional Stereo Vision System Using a Single

Camera," in 18th IEEE ICPR, Hong Kong, 2006.

[24] S., Nayar, S. Baker, "A Theory of Single-Viewpoint Catadioptric Image Formation,"

International Journal of Computer Vision, vol. 35, no. 2, pp. 175-196, 1999.

[25] E., Sagawa, R., Echigo, T., Yagi, Y. Mouaddib, "Stereovision with a Single Camera

and Multiple Mirrors," in IEEE ICRA, Barcelona, 2005.

[26] T.,Yamaguchi, J. Nishimoto, "Three Dimensional Measurement Using Fisheye

Stereo Vision," in SICE Annual Conference, Takamatsu, 2007, p. 2007.

[27] L., Luo, C., Feng, Z., Hao, Y. He. (2008) intech.com.

[28] H., Koenig, A., Schroeter, C., Boehme, H. Gross, "Omnivision-based Probabilistic

Self-localization for a Mobile Shopping Assitant Continued," in IROS, Las Vegas,

2003, pp. 1505-1511.

[29] C., Koenig, A., Boehme, H., Gross, H. Schroeter, "Multi-Sensor Monte-Carlo-

Localization Combining Omni-vision and Sonar Range Sensors," in 2nd European

Conference on Mobile Robots, Ancona, 2005, pp. 164-169.

[30] A. Saxena, J. Michels, and A.Y. Ng, "High Speed Obstacle Avoidance using

Monocular Vision and Reinforcement Learning," in 22nd International Conference

on Machine Learning (ICML), Bonn, 2005.

[31] A. Saxena, M. Sun, and A.Y. Ng, "Make3D: Learning 3D Scene Structure from a

Single Still Image," IEEE Transactions of Pattern Analysis and Machine

Intelligence (PAMI), vol. 30, no. 5, pp. 824-840, 2009.

[32] A. Saxena, S.H. Chung, and A.Y. Ng, "Learning Depth from Single Monocular

Images," in Neural Information Processing Systems (NIPS), 2005, p. 18.

[33] A. Saxena, J. Schulte, and A. Ng, "Depth Information Using Monocular and Stereo

Cues," in 20th International Joint Conference on Artificial Intelligence, Hyderabad,

India, 2007.

[34] G., Nalpantidis, L., Sirakoulis, G., Gasteratos, A. De Cubber, "Intelligent Robots

need Intelligent Vision: Visual 3D Perception ," International Workshop on Robotics

for Risky Interventions and Survelillance of the Enviornment, Benicassim, 2008.

[35] Azarbayejani, A., Pentland, A. Jebara T. (1999, May) 3D Structure from 2D Motion.

[Online]. http://www.cs.columbia.edu/~jebara/htmlpapers/SFM/sfm.html

[36] S. Lazebnik. (2011, March) Structure from Motion Lecture Slides. Power Point

Presentation.

http://www.cs.columbia.edu/~jebara/htmlpapers/SFM/sfm.html

 72

[37] H., Shiratori, T., Matthews, I., Sheikh, Y. Park, "3D Reconstruction of a Moving

Point from a Series of 2D Projections," in ECCV, Crete, 2010, pp. 158-171.

[38] J.J. Craig, Introduction to Robotics, Mechanics and Control. Upper Saddle River,

NJ: Prentice Hall, 2005.

[39] Johann. (2010, May) Techfresh.net. [Online]. http://laptops.techfresh.net/hp-

pavilion-dv6t-select-edition/

[40] D. Pirvu. (2009, Apr.) GeekSailor.com. [Online]. http://www.geeksailor.com/hp-

pavilion-dv6t-1030us-review/

[41] D., Huber E., Bonasso, P. Kortenkamp, "Recognizing and interpreting gestures on a

mobile robot," in AAAI-96, Portland, OR, 1996, pp. 915-921.

[42] D., Baillieul, J. Raghunathan, "Relative Motion of Robots as a Means of Signaling ,"

in International Conference on Intelligent Automation and Robotics, 2009.

[43] V., Sharma, R., Huang, T. Pavlovic, "Visual Interpretation of Hand Gestures for

Human-Computer Interaction: A Review," IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 19, pp. 677-695, 1997.

[44] Wolfram Research Inc. (2011) Eccentrcity. [Online].

http://mathworld.wolfram.com/Eccentricity.html

[45] Celeste Biever, "Why a robot is better with one eye than two," New Scientist , vol.

188, no. 2530, p. 30, December 2005.

[46] T. Breckon. (2006) 3D Recognition from stereovision: Correspondance and

Triangulation. Power Point Lecture.

[47] N. Leventon, M., Freeman, W. Howe, "Bayesian Reconstruction of 3D Human

Motion from Single-Camera Video," Mitsubishi Electric Research Laboratory,

Cambridge, Published Internal Report 1999.

[48] G., Kim S., Kweon I. Jang, "Single Camera Catadioptric Stereo System," in

Workshop on Omnidirectional Vision, Camera Networks and Non-classical

cameras, 2005.

http://laptops.techfresh.net/hp-pavilion-dv6t-select-edition/
http://laptops.techfresh.net/hp-pavilion-dv6t-select-edition/
http://www.geeksailor.com/hp-pavilion-dv6t-1030us-review/
http://www.geeksailor.com/hp-pavilion-dv6t-1030us-review/
http://mathworld.wolfram.com/Eccentricity.html

 73

VITA

ROSHAN SATISH KALGHATGI

Roshan was born in Schaumburg, Illinois. He attended public schools in

Schaumburg, IL, Ann Arbor, MI and Skillman, NJ. Prior to attending Georgia Tech, he

received a B.S. in Aerospace Engineering from Boston University in 2009. While at

Boston University he worked as a summer intern at GE Aviation in Lynn, MA and also

performed undergraduate research in motion based communication and its application to

Robotics. When not working on engineering problems, Roshan enjoys writing short

stories and reading anything he can get his hands on. He also enjoys movies, exercise and

personal fitness.

