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SUMMARY 

Stereovision is a common computer/machine vision technique used to extract 

three dimensional information from a set of images. These images can be acquired with 

two or more cameras, or a combination of cameras and IR sensors placed in a known 

pose relative to a world coordinate frame. Typical applications use two cameras each 

with a known pose relative to a world coordinate frame.  

In general, stereovision can be defined as a two part problem. The first is the 

correspondence problem. This involves determining the image point in each image of a 

set of images that correspond to the same physical point P. We will call this set of image 

points, N. The second problem is the reconstruction problem. Once a set of image points, 

N, that correspond to point P has been determined, N is then used to extract three 

dimensional information about point P.   

This master’s thesis presents three novel solutions to the reconstruction problem. 

Two of the techniques presented are for detecting the location of a 3-D point and one for 

detecting a line expressed in a three dimensional coordinate system. These techniques are 

tested and validated through point detection or a finger gesturing application. The 

techniques presented are unique because of their simplicity and because they do not 

require the cameras to be placed in specific locations, orientations or have specific 

alignments. On the contrary, it will be shown that the techniques presented in this thesis 

allow the two cameras used to assume almost any relative pose provided that the object 

of interest is within their field of view.    

The relative pose of the cameras at a given instant in time, along with basic 

equations from the perspective image model are used to form a system of equations that 
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when solved, reveal the 3-D coordinates of a particular fixed point of interest or the three 

dimensional equation of a fixed line of interest. Finally, it will be shown that a single 

moving camera can successfully perform the same line and point detection accomplished 

by two cameras by altering the pose of the camera.  

The results presented in this work are beneficial to any typical stereovision 

application because of the computational ease in comparison to other reconstruction 

techniques for points and lines. But more importantly, this work allows for a single 

moving camera to perceive three-dimensional position information, which effectively 

removes the two camera constraint for a stereo vision system. When used with other 

monocular cues such as texture or color, the work presented in this thesis could be as 

accurate as binocular stereo vision at interpreting three dimensional information. Thus, 

this work could potentially increase the three dimensional perception of a robot that 

normally uses one camera, such as an eye-in-hand robot or a snake like robot.  

Furthermore, this type of work would bring robots closer to having visual perception 

similar to the human eye, which can observe depth using just a single eye.   
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1 INTRODUCTION 

1.1  The Limitations of Stereovision 

 

 Stereovision is a common computer/machine vision technique used to extract 3-D 

information from a set of images. These images can be acquired with two or more 

cameras, or a combination of cameras and IR sensors (such as the X-BOX Kinect) placed 

in a known pose relative to a world coordinate frame [1]. Once the set of images are 

obtained, traditional stereovision algorithms are used to determine any desired 3-D 

characteristics such as the 3-D location of an object of interest [1]. Typical applications 

use two cameras each with a known pose relative to a world coordinate frame.   

In general, stereovision image analysis can be defined as a two part problem. The 

first is the correspondence problem. This involves determining the image point in each 

image of a set of images that correspond to the same physical point P. We will call this 

set of image points, N. The second problem is the reconstruction problem. Once a set of 

image points, N, that correspond to point P has been determined, the set of points N is 

then used to extract three dimensional information about point P [2].  Generally, this is 

accomplished using a probabilistic method or more commonly Epipolar geometry, which 

uses triangulation and 2-D information from each camera to determine the coordinates of 

a fixed point in three dimensional space [1] [3][4][5][6]. 

 Although Stereovision has been used successfully in the field of Robotics for 

many years, it has been repeatedly shown to have several drawbacks that limit its use 

during actual applications. First, Stereovision relies on the use of two or more cameras 

for interpreting three-dimensional information. If one of the cameras is destroyed or 

damaged during use, the reconstruction problem becomes impossible because the 2-D 
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information from both cameras is no longer available. Second, the use of two or more 

cameras introduces additional complexities and uncertainties from each camera due to the 

processing needs of the camera and, the high level of precision necessary for camera 

calibration and placement. Each camera also introduces an additional level of sensitivity 

to correspondence errors which can result from the physical limitations of the camera, 

errors from the Epipolar analysis or any additional image pre-processing required for the 

application.  

But more importantly, stereovision is inherently limited by the baseline distance 

between the two cameras used. As the point of interest moves further away from the 

cameras, the depth estimation of the point becomes increasingly inaccurate due to small 

correspondence and triangulation errors that are compounded over time [7] [8]. In 

addition, the baseline distance between the cameras becomes unperceivable as the point 

of interest moves further away. Essentially, this means that the point of interest shows no 

noticeable change in location in the either image which results in a collapse of the 

Epipolar analysis altogether [2][1].  

Lastly, from a philosophical standpoint it is evident that the field of Robotics is 

motivated by the need to replace humans for applications no longer desired by humans to 

perform. Therefore, in order for robots to perform successfully in their application, they 

must be given the same capabilities of a human being or better. For humans, the eye can 

perceive depth and other 3-D information without the need of information from the other 

eye [9]. Humans unconsciously use geometric techniques as well as monocular cues such 

as texture, color, shading and haze to determine 3-D information all from just a single 

eye[10][7]. Therefore, the advancement of Robotic vision is dependent on the 
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development of novel solutions that allow robots to perceive 3-D information using a 

single camera, just as a human can perceive 3-D information using a single eye [10].   

To overcome the shortcomings of Stereovision, much work has been done in the 

area of Single Camera Stereovision, more generally referred to as Monocular Vision. 

Monocular Vision is used to determine depth and other 3-D information using a single 

camera and either a single or multiple images that are related through some type of 

correspondence algorithm. Both approaches are complementary and are more effective in 

determining 3-D information from an environment rather than traditional stereovision. 

The focus of this thesis work is to present novel techniques in Monocular Vision. 

Therefore, in this chapter various approaches to depth estimation through Monocular 

vision will be reviewed to allow for a better understanding of the context for the work 

presented in this thesis. First, single camera mapping and SLAM techniques will be 

discussed followed by Omnidirectional and catadioptric vision systems. Finally, single 

image depth estimation techniques and structure from motion will be discussed. Lastly, 

the overview and implications of this thesis work will be presented.  

1.2 Single Camera SLAM and other Single Camera 3-D Mapping 

Techniques 

 

Simultaneous Localization and Mapping or SLAM is a widely used technique that 

allows robots to map an unknown environment and simultaneously track their position 

without using any previous knowledge of the environment. Typically, SLAM techniques 

acquire information about the environment using a single sensor or combine information 

from several sensors such as laser range finders, sonar sensors and cameras. In particular, 

the use of cameras in SLAM applications has become important because they are 
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compact, noninvasive, ubiquitous and becoming more affordable [11] [12] [13]. The 

aforementioned limitations of stereovision have been recognized by the SLAM 

community and as a result, they have proceeded to develop and explore various types of 

single camera SLAM techniques.   

Some of the earliest work was done by Harris and Pike [14] in 1987. Although their 

work was not officially called SLAM, it was similar because it used images taken in 

succession from a single camera to build 3-D visual maps. Feature points of interest are 

extracted and tracked from each image and used along with Kalman filtering to determine 

their actual physical 3D locations. Their work was successful in achieving accurate 3-D 

maps and real time implementation. However, serious drawbacks related to their initial 

assumptions cause concern in regards to the reliability of their technique. For example, 

the common camera motion was ignored when determining the locations of each of the 

mapped visual features [13]. 

In 1988, another basic 3-D mapping method similar to template matching was 

developed and used with a single camera attached to a mobile robot to identify its 

location in a room [15]. Vertical edge detection was performed and compared to a known 

room map of vertical edges that is acquired beforehand. The authors craft their algorithm 

around the practical assumption of imperfect edge detection and achieve accurate and 

significant results. However, they fail to address the tediousness of creating and using 

known vertical edge detection maps. Furthermore, problems from unknown objects or 

other random scene changes are completely unaddressed.  
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More recently, Davison and Reid have developed a real time algorithm that can 

determine the 3-D trajectory of a single mobile camera moving through an unknown 

environment [13]. They have dubbed their system MonoSLAM because it uses a single 

camera to determine 3-D information. They accomplish this by using fundamental 

probabilistic SLAM techniques, motion modeling and the measurement and mapping of 

visual landmarks found on planar surfaces within the environment. MonoSLAM has 

broad applications in robotics and wearable computing. In particular, Davison and Reid 

have successfully used MonoSLAM to command a humanoid robot to walk in circles 

with a high level of accuracy and precision. Other interesting applications include the 

successful use of MonoSLAM with an automobile driven through an urban environment 

[16]. However, MonoSLAM is still in its infantile stages and requires further work to 

deal with issues such as changing lighting, significant occlusions from objects and the 

ability to operate in larger indoor/outdoor environments [13].  

Other related works have utilized Kalman filtering with SLAM to map a 3-D 

environment. In general, single camera SLAM systems based on Kalman filtering have 

been successful, but are limited due to the computational complexity of the techniques 

and inaccuracy due to linearization[13][14].  

Indeed, these works reveal that single camera 3-D mapping techniques, specifically 

SLAM techniques are successful. However, they are complex and must account for 

unknown scene changes during practical applications.   
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1.3 Other 3-D Line and 3-D Point Detection Algorithms 

 

The goal of this work is to not only expand on the area of Monocular Vision but to 

present reconstruction techniques for fixed 3-D lines and fixed 3-D points. Therefore, it is 

important to discuss the various methods that currently exist for line and point 

reconstruction. Traditional 3-D point reconstruction algorithms are known as 

Triangulation and the Trifocal tensor. Triangulation is typically used with two images, 

while the Trifocal tensor is used with three images [5].  

Triangulation works by first solving the correspondence problem using Epipolar 

geometry. Next the fundamental matrix (also known as the bifocal tensor) or essential 

matrix is determined and used along with image points from at least two images of the 

same physical point of interest [5]. The resulting prediction of the physical point of 

interest is with respect to a world coordinate frame, which is in contrast to the techniques 

in this thesis which provide 3-D point coordinate estimates relative to the camera frame 

[17].  

The Trifocal tensor relates correspondence information from three images to create 

what is known as the trifocal relationship which basically states that the 3-D coordinates 

of a point can be found by analyzing the relationship between four intersecting planes. 

The trifocal tensor can also be used to identify the equation of a line using three or more 

intersecting planes. Typically, the trifocal tensor is used with multiple views for line, 

point and plane reconstruction.  

Additionally, there are many methods in literature that currently exist for point and 

line detection. This is because point and line detection is an older computer vision 

problem, and thus many unique solutions have been developed for it. For example, [18] 
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presents a method for 3-D reconstruction of points, planes and lines based on user 

inputed coplanarity, perpendicularity and parallelism constraints. These techniques were 

designed for single view and were shown to be successful for reconstruction and 

calibration purposes. Another interesting example is[19], which presents a novel linear, 

non-iterative reconstruction technique for points and lines from correspondence 

measurements subject to noise. Through rigorous experimental results, this method was 

shown to be useful with one or multiple image viewpoints. Many other solutions exist in 

literature for point and line detection. They take advantage of a wide range of techniques 

and assumptions and must be considered carefully before they are used for the 

application.  

1.4 Omnidirectional Stereovision and Catadioptric Vision Systems 

 

Omnidirectional stereovision is another example of Monocular Vision. Essentially, 

the goal of this approach is to image an entire 360 degree panorama from a specific 

viewpoint. This panorama can be used to obtain various types of 3-D information, with 

the most important being depth estimation [20]. Several interesting methods have been 

developed and tested over the years. A simple approach uses a single, off-center rotating 

camera to image a particular environment [21][22]. Other methods are more complicated 

and require the use of multiple cameras and curved mirrors to obtain 3-D information 

from a panoramic viewpoint in a single image [21] [23] [24]. The use of cameras and 

curved mirrors to achieve panoramic images, often referred to as catadioptric imaging 

systems can seem unnecessary, but they have been shown to be extremely useful [25].  

In particular, catadioptric systems have found a place amongst the security systems 

of most shopping malls and stores. Typically, cameras are used in conjunction with 
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convex or concave mirrors to provide an observer with a larger viewpoint of any area of 

the store, thus eliminating any blind spots outside a normal camera’s field of view that 

are taken advantage of by criminals [26].  Typical catadioptric vision systems are 

commercially available and consist of a hyperbolic mirror placed in front of a camera. 

During use, light is reflected of the hyperbolic mirror and into the camera to generate a 

wide view round image of the environment, as seen in Figure 1.  

 

                 

(a)                                                           (b) 

Figure 1: (a) An experimental Catadioptic Camera System using two hyperbolic mirrors  (b) A 

commercially available Catadioptic Camera system using one mirror [27][28] 
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   Figure 2: Captured Catadioptric stereo image and the unwrapped panoramic image [28] 

 

 The round image (as seen in    Figure 2) is then unwrapped to obtain panoramic 

images for analysis [20][28].  Catadioptric imaging systems have also been successfully 

used on mobile robot platforms for navigation purposes. Novel robots using cameras and 

hyperbolic mirrors have been designed for assisting humans during tasks such as grocery 

shopping and as contestants in the RoboCup, which is a Robot soccer competition 

[20][29][28].  
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Other interesting design approaches for Omnidirectional Stereovision exist as well. 

For example, camera lenses, from spheres to bio-inspired design, have been developed 

and used in conjunction with mirrors to achieve Omnidirectional Stereovision[23] [26]. 

One attempt requires the camera to image an environment while traversing a spherical 

track encapsulating the environment of interest [22]. Although accurate depth 

information was obtained, it is clearly not a practical solution because a spherical track 

would need to be constructed for each application. This will be very difficult especially if 

the environment is very large, such as a stadium or a large room. Besides the spherical 

track attempt, specific omnidirectional cameras and sensors have also been developed to 

achieve a panoramic view from a single image [22].  

In general, it is clear that omnidirectional stereovision can be successfully used in 

many different ways but, it is limited to a specific application which is of course, 

attaining a panoramic viewpoint of an environment. If this is the desired application, then 

implementation of this type of stereovision can be complex because specially designed 

mirrors must be used and maintained. Furthermore, these mirrors will require accurate 

and precise placement, which is in addition to camera calibration and placement. 

However, aside from these drawbacks, Omnidirectional Vision or more specifically 

catadioptric systems, can provide accurate depth and 3-D scene information for most 

applications.  However, 3-D interpretation for complex and practical applications such as 

human gesture recognition or facial recognition has yet to be achieved with 

Omnidirectional or Catadioptric systems.   
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1.5  Depth Estimation from a Single Image 

 

Depth estimation from a single image has been investigated and accomplished by 

the use of a probabilistic map along with a supervised learning algorithm. Earlier works 

in this area were successful but impractical because they relied on unrealistic assumptions 

about the environment. However, Saxena et al. impressively solves the problem of 

estimating detailed 3-D structures of an unknown environment using a single still image. 

Rather than using triangulation techniques as in normal stereovision, a Markov Random 

Field (MRF) is utilized along with supervised learning techniques to obtain the “depth 

maps” as shown in Figure 3. In these depth maps, a single color pertains to a specific 

physical distance from the camera itself. Saxena et al. uses the MRF to model the depth at 

different resolutions by combining various methods from computer vision such as feature 

point identification and multiscale representation of images. Furthermore, monocular 

cues such as haze, color, motion parallax and texture are used along with the MRF to 

create depths similar to those in Figure 3 [7] [8].  Absolute and relative image features 

are also taken advantage of to produce accurate depth estimation from a single image.  

Saxena et al. applied these techniques to real world applications such as static 

environments containing trees, buildings or other people. Furthermore, these techniques 

were successfully applied to a small RC truck to perform obstacle avoidance at high 

speeds [30]. In addition, these techniques have been combined into free software called 

Make3D, which is free and can be downloaded from the internet [31]. Make3D allows 

you to create 3D panoramic models from a single static image as seen in Figure 4.  
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               Figure 3: A single still image and the corresponding depth map. Each color corresponds to a 

different depth [7] 

 

 

 

           Figure 4: (top left) original image, (top right and bottom) results of Make3D modeling 

software [31] 
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Although these techniques are very successful and impressive, they do have issues 

that must be addressed. In particular, these techniques have difficulty predicting the 3-D 

information of the environment behind an object without using information about the 

object itself. Furthermore, depth estimation becomes nearly impossible if the image is 

largely homogenous such as in the case of a wall of uniform color or even a blue sky. 

These environments lack the diversity needed for the analysis techniques proposed by 

Saxena et al. In general, these techniques require a heavy amount of training images and 

prior knowledge about the environment to estimate depth from a single image. This is 

largely due to the fact that monocular 3-D reconstruction is an inherently difficult and 

ambiguous problem [7][32][33].  

1.6 Structure from Motion  

 

The area of Structure from Motion (SfM) is another attempt to infer 3-D geometry 

from 2-D image projections using one or multiple cameras. The 3-D information is 

traditionally determined by using 2-D projections of the motion trajectory or motion 

signals of an object or environment occurring in 3-D space [34]. In fact, SfM is very 

similar to the techniques presented in this thesis hence, a thorough discussion of SfM is 

extremely relevant to this literature review. In general, SfM assumes that either the 

contents of the environment are moving or the camera itself is moving [35]. Furthermore, 

another assumption is that there exists a correspondence algorithm that identifies, extracts 

and labels 2-D image features such as corners, curves and Centroids. These 2-D features 

are then related to their corresponding instances in each image. The end result of this 

process is used by the SfM algorithm for determining 3-D information [36]. The 

reconstruction portion of SfM involves techniques similar to stereo vision. Depending on 
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the number of images used, the camera poses along with Epipolar analysis or affine 

transformations are used to determine the 3-D information from the set of images. The 

resulting information is summarized and compiled into motion data for an object of 

interest within the environment. Clearly, SfM appears to be very similar to traditional 

stereovision however, SfM requires only one camera while Stereovision requires two 

cameras.  

Several applications exist for SfM, some such as 3D model reconstruction and 3D 

motion matching, computer animation, camera calibration and 3-D vision for Robotics. 

More recent work has been done in reconstructing the 3-D trajectory of a moving point 

from its correspondence from a set of 2-D images, provided that the 3-D spatial pose and 

time of capture from each camera is known [37]. These researchers were able to track 

hand movement and other body movement trajectories using a RANSAC correspondence 

algorithm and SfM techniques during activities such as rock climbing and dancing [37]. 

Although SfM techniques are very successful they are fundamentally limited by the 

relationship between the 3-D trajectory of a point and the 3-D trajectory of the center of 

the cameras used.  Furthermore, SfM are computationally intensive and subject to noise, 

which is typical of most 3-D Computer Vision algorithms.   

1.7 Conclusions 

 

Clearly the breadth of existing Monocular Vision research is large and varied. 

Many different applications have been explored in an effort to showcase the practicality 

and usefulness of Monocular Vision. Individually, these techniques were shown to be 

very precise and accurate. However, it became apparent either directly or indirectly, that 

the best vision system for a robot is one that combines both Monocular and Stereovision 
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techniques. This is because the vision system inherent in human beings operates exactly 

the same way. The human eye and brain together take advantage of Monocular and 

Stereoscopic cues to interpret the scene surrounding the human being. Therefore, while 

this thesis will present experimental data to support the techniques presented in this work, 

it must be noted that the work presented here will be more effective when combined with 

other 3-D scene interpretation techniques.   

2 RESEARCH OVERVIEW 

 

This thesis attempts to introduce three novel Monocular Vision techniques that can 

be used with multiple cameras or a single moving camera. These techniques do not 

address the problem of correspondence; in fact these techniques assume that the 

correspondence problem is solved beforehand and that the results have correspondence 

error.  The new approaches presented in this paper are fresh solutions to the 

reconstruction problem. Two of the techniques presented are for detecting the location of 

a point and one for detecting a line expressed in a 3-D coordinate system. The methods 

presented are unique because of their simplicity and because they do not require the 

cameras to be placed in specific locations, orientations or have specific alignments. On 

the contrary, the techniques presented in this paper will show that the two cameras used 

can assume almost any relative pose provided that the object of interest is within their 

field of view.   

The relative pose of the cameras at a given instant in time, along with basic 

equations from the perspective image model will be used to form a system of equations 

that will reveal the 3-D coordinates of a particular fixed point of interest or the three 

dimensional equation of a fixed line of interest. Finally, it will be shown that a single 
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moving camera can successfully perform the same line and point detection accomplished 

by two cameras by altering the pose of the camera.  

The results presented in this work are beneficial to any typical stereovision application 

because of the computational ease in comparison to Epipolar geometry.  

But more importantly, this work allows for a single moving camera to perceive 3-D 

position information, which effectively removes the two camera constraint for a stereo 

vision system. When used with other monocular cues such as texture or color, the work 

presented in this paper could be as accurate as binocular stereo vision or human vision at 

interpreting 3-D information [6]. Thus, this work could potentially increase the 3-D 

perception of a robot that normally uses one camera, such as an eye-in-hand robot or a 

snake like robot.   

In the next chapters, the basic perspective imaging equations will be discussed 

followed by homogeneous transformation equations. Later these equations will be 

combined to form a system of equations that will yield either the 3-D coordinate of a 

point or the 3-D equation of a line. A rigorous derivation of the degenerate cases will 

follow and finally experimental verification of the techniques presented in this work will 

be provided.   
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3 FIXED 3-D POINT RECONSTRUCTION METHOD 1 

3.1  Perspective Imaging Equations 

 

 The camera pinhole model defines the relationship between the image coordinates 

and 3-D coordinates of a point p as follows, 

 

x

u

z

f
  (1) 

 

 where x, y and z are the 3-D coordinates of point p relative to the optical center of 

the camera, u and v are the image coordinates of point p relative to the image principal 

point and  f  is the focal parameter for the camera. The focal parameter is defined as the 

focal length divided by the pixel length in either the x or y direction. For our purposes we 

will assume that the focal parameter is the same for both x and y directions [1] [2].  

 

3.2  Homogenous Transformations Between Coordinate Systems 

 

 A point p can be expressed in different Cartesian coordinate reference frames 

(CRF) using a homogenous transformation. If point p is represented in the i-th CRF by 
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where  Rj
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is a 3 x 3 rotation matrix (R
T
R=I) whose columns are the 3x1 vector 

representation of the j-th CRF basis unit vectors relative to the to i-th CRF, and the 

displacement vector  
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 is the origin of the j-th CRF relative to the i-th CRF. In the next sections, the 

indices of the displacement vector and rotation matrix (i.e., d=d
i
 and R= Rj

i
) will be 

omitted when dealing with only two CRFs [38].  

 

3.3  Combining Homogenous Equations and Perspective Equations 

 

Suppose two cameras, camera 1 and camera 2, each with their own CRF are 

viewing a fixed point p. The pose of camera 2 relative to camera 1 is known. The 

coordinates of point p relative to each camera can be solved for by using equations (1)  

and (2) and the image coordinates, u and v, of point p from each camera.  Let (ui,vi) 

denote the image coordinates of p relative to camera i and define the image vector as 

 Tiii
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Then (1) and (2) can be used to relate p
1 
to the image vector in camera 2:   

1

1

2

2

1
pdpRp   (6) 

 

where i=pz
i
/f. (6) can be rearranged as a system of linear equations in terms of =[1 2] 

whose solution will yield point p: 
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The unknown vector  can be solved for as follows provided that matrix Ap is full rank,  
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                (8) 

 

From equations (6) and (7), it can be seen that matrix Ap is full rank as long as p
1
 

and d are linearly independent or equivalently point p does not lie on the line joining the 

origins of the cameras’ CRF. Once these conditions are satisfied, the 3-D coordinates of a 

fixed point p can be determined using only, the image coordinates of point p from each 

camera and the relative pose between camera 1 and camera 2.  Any pose is permitted 

provided that the displacement vector between the cameras does not go through point p.  

A change in orientation of the camera will be insufficient and will result in Ap being 

singular (which will be discussed in detail in the next section). 

More importantly, we can easily see that a single moving camera can be used with 

equations (6) and (7) to identify point p. In this case, several sensors must be used to 
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record the relative pose of the camera from ti to t (i+1). Furthermore, the focal parameter 

must be known and the image coordinates at ti and t (i+1) must be determined through a 

correspondence algorithm. For example, a single camera can identify the 3-D coordinates 

of a point of interest p by simply moving towards it such that p is not collinear with the 

camera’s CRF. The movement could be in a straight line or a curved path provided that 

point p is within the camera’s field of view. This movement would be similar to a snake 

like robot or a robot with an eye-in-hand camera.  
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3.4 Experimental Verification  

 

3.4.1 Overview  

 

Experimental verification of  (7) was accomplished by identifying a fixed point of 

interest using various camera poses. As shown in Figure 5 and Figure 7, the camera used 

was a 640 x 480 resolution camera (f = 525) built into a Hewlett Packard Pavilion DV6T 

Selection Edition laptop running Windows 7. The point of interest or target, was a black 

dot drawn on a white index card attached to a standard laboratory test stand.  For each 

test, the Centroid of the target was approximated using Microsoft Paint from two images 

taken from different randomly chosen camera configurations.  The pose of the target 

itself remained fixed throughout the experiment. Each camera pose was attained by 

precise translations of the laptop. However, no changes in the orientation of the laptop 

were utilized. The pixel locations of the Centroid and the relative pose of the laptop 

camera were then used with (7) to determine the 3-D location of the target. 

      

Figure 5: Professional photo of HP DV6T SE Series Laptop used for the experiment [39] 

 

Built in webcam 

location 
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3.4.2 Laptop Translation and Pose Estimation Procedures  

 

The experimental setup with an example laptop pose is shown in Figure 7. The 

precise location of the laptop was determined with the use of four experimental aids. The 

first aid was a 1/2 inch x 1/2 inch grid poster paper, which was firmly secured and placed 

underneath the laptop and test stand. A grid system such as this one served as a two 

dimensional coordinate system that made laptop translation measurements clearer and 

more defined. The second aid used was standard measuring tape that was used to measure 

the translation of the laptop during the experiment. The third aid was a foot long ruler 

that was used to ensure that the laptop screen was kept orthogonal to the horizontal axis. 

This was done to ensure that the orientation of the laptop remained fixed at all times 

during the experiment and, that the camera axes were in the same direction as the laptop 

translation axes, as seen in Figure 8.  

 

 

Figure 6: Sample set of images taken. The image on the right was taken after the camera was displaced in 

the z direction by 2 inches. 
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 Figure 7: An example laptop pose of point detection experimental testing setup 
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Figure 8: (a) Dotted line is line with camera center, the red dot indicates a reference point of measurement 

during the experiment. (b) Profile of the laptop. The screen orientation was kept perpendicular to the 

horizontal at all times. Camera axes and laptop translation axes are in the same direction. [40].  

 

 

 The fourth aid was the reference point on the mouse pad of the laptop. This point, 

shown as the red dot in Figure 8 was in line with the camera axes and was used as a 

reference point when measuring laptop displacement during the experiment. Lastly, once 

both images were taken, Microsoft Paint was used to determine the pixel locations of the 

Centroid as seen in Figure 9. This was successful because, Microsoft Paint gives you the 

current pixel coordinates of the cursor. By using this feature in Microsoft Paint and by 

zooming in to the highest zoom level, an accurate estimation of the target’s Centroid was 

determined.   

+X 

+Y +Y 

+Z 
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Figure 9: Using Microsoft Paint to determine the pixel coordinates of the Centroid. In this image, 

maximum zoom has been used. The cursor has been placed over the center of the target, MS Paint displays 

the pixel coordinates of the cursor in the lower left hand portion of the screen. 

 

 

 The pixel coordinates of the Centroid from each image and the relative pose of 

the laptop camera were then used with Equation (7) to determine the 3-D location of the 

target. Approximately fifteen experimental test points and thirty random camera poses 

(two for each test) were used to validate (7).  A flow chart summarizing the experimental 

procedure has been given in Figure 10.  Furthermore, the results of the experiment are 

shown in Figure 11 in the next subsection.  
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Figure 10: Experimental procedure flowchart for testing method 1. This flowchart is assuming that the test stand and target have been setup and will 

remain fixed throughout the experiment. 

 



 26 

 

3.4.3 Experimental Results  

 

 Figure 11 displays the target location at the origin and each additional point 

represents a predicted location from camera 1 or camera 2 with respect to the target 

location. From Figure 11, it is evident that the final estimated position of the target from 

each camera was very accurate, with the results evenly distributed around the target 

location. The resulting error for each coordinate was on average less than one inch, which 

is acceptable for this type of basic experiment. The error present in the results is largely 

due to correspondence error. The pixel locations were chosen manually and are subject to 

human interpretation of the images containing the target. A small mistake in determining 

the location of same pixel in each image would result in errors in the final estimation.   

Furthermore, the use of higher resolution cameras with a larger focal parameter 

would allow for more accurate predictions over a larger distance from the camera. 

Specifically, a higher resolution camera would yield a sharper image with smaller 

divisions that would allow for a better estimate for the Centroid of the target. Aside from 

some minor experimental errors, in the end it was shown that by simply moving the 

camera, (7) can be used to accurately determine the 3-D location of a point of interest 

relative to the camera.     



 27 

  

 

Figure 11: Predicted target locations relative to the actual target location (at the origin) 

for both cameras 

 

4 FIXED 3-D LINE RECONSTRUCTION 

4.1 Using Intersecting Planes To Define a Line 

 

A line L in a 3-D space can be defined using a point L0p  and unit vector u 

representing the line direction. Any Lp  can be expressed as, 

Rupp 0   ,  (8) 

 

The image L
~

of line L in the uv-plane of a camera, assuming the line does not 

intersect the camera center, can be described using its normal vector n=[-sin cos]
T
 and 

point L
~~

0 p  where θ is the orientation of L
~

 as shown in Figure 12,  
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0~~cossin)~~(  00 pnppn
TT vu      (9) 

 

 

Figure 12: A point p0 on line L in as viewed by a camera 

  

 If we substitute the perspective equations (1) and (2) into equation    (9) we arrive 

at the plane equation containing point pi and line Li imaged in the i
th

 camera,  

 

0)~~()cos()sin( 0  zyfxf T
pn  (10) 

         

Or equivalently n
T
p=0 for all Lp where 

 TTff 0
~~cossin pnn                  (11) 

 

Note that the normal vector n in (11) is perpendicular to any Lp  hence by (8), 

n
T
u=0 and p0u=n for some scalar 0 or equivalently the triple cross product 
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0)(  upn 0                                    (12)    

         

If two cameras are now used, we can write plane equations using (10) of the same 

imaged line with respect to each camera. Next, we can write the plane equation in camera 

1 with respect to camera 2 using the coordinate transformation described in (2),  
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  where ni is the normal vector in (11) resulting from the i-th image.  Using (8) in 

(13) also implies that n2
T
u2= n1

T
Ru2= 0 or equivalently,  
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provided that n2xn1
2
0 where ui is the vector representation of unit vector u 

relative to the i-th CRF  and n1
2
= R

T
n1. Point p0 closest to the origin satisfies (8) as well 

as resulting in the following system of linear equations,  
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Solving equation (15) will yield the vector equation of the line L containing point 

p0 with respect to the second camera. Note that the matrix A0 is nonsingular provided that 

n2xn1
2 
 0 since 

2

12

2

1220 )( nnnnuA  T
. 

4.2 Singularity Analysis 

 

In the preceding section the necessary and sufficient conditions for singularity of 

the line identification problem was derived in terms of the normal vectors rising from 

each image.  To gain more insight into the singularity condition, a more explicit condition 

in terms of line L and the locations of the two cameras will be derived. To this end let 

point p0 be an arbitrary point on line L. Throughout the paper we assume that line L 

contains neither of the two cameras’ CRF  origins so that pxu0, pL, where u is the 

line’s directional unit vector. Applying the coordinate transformation equation (3) to p0
i
, 

i=1,2 yields the following,    

dRpp  2

0

1

0  

 

and evaluating its cross product with u1 from the right and n1 (as previously 

defined) from the left using (12) we arrive at,  
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 (16) 

 

where 
2

0

1

0
~ Rpp  . Using u1=Ru2 and  p0

2
u2=n2 for some scalar 0, and the 

identity RaxRb=R(axb) the preceding equation yields, 
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2

1  udnnnR  (17) 

 

By the triple cross product identity ax(bxc)=b(a
T
c)-c(a

T
b) and  n1

T
u1=0,  (17) is 

equivalent to 

            
  212
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1 )( udnnn

T                         (18) 

 

Thus 02

12 nn if and only if 01 dn
T . In summary, the line identification problem 

is singular if and only if line L and the line joining the origins of the cameras’ CRFs are 

coplanar. 

5 FIXED 3-D POINT RECONSTRUCTION METHOD 2 

5.1 Adding a third plane 

 

The results of the line identification presented in the preceding section can be 

extended so that 3-D points can be identifying using three intersecting planes. If a third 

plane is included in (16), then the 3-D coordinates of a fixed point p can be determined. 

This third plane could be a plane that describes the ground or some other bounding 

surface that includes point p. Letting vector n3 represent the normal vector to the 

aforementioned plane containing p and hR , then (18) combined with n3
T
p

2
=h can be 

presented in equation (19).  
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(19) 

 

A simple case where the third plane represents a flat ground surface was used in 

(19). In this case, n3=[0 1 0] and h is the constant height of the ground relative to the pose 

of camera 2.  Equation (19) has a unique solution p
2
=A

-1
b provided that matrix A is 

nonsingular.  

 

The determinant of matrix A similarly to that is given by 
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Thus |A|=0 if and only if 02

12 nn or equivalently 01 dn
T or 023 un

T
. In 

other words, |A|=0 if and only if line L and the line joining the origins of the cameras’ 

CRFs are coplanar or line L is parallel to the third plane. 
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5.2 Experimental Verification Through Finger Gesturing 

 

5.2.1 Overview 

 

An increasingly popular application of stereovision is the identification of human 

movement. In general, movement is a versatile form of communication that can be used 

to send all types of information [41] [42] [43]. For practical purposes, human movement 

or gesturing can be interpreted for robot control or for entertainment purposes such as 

with the XBOX Kinect. Therefore, verification of the techniques presented in this thesis 

was attempted through gesturing to illustrate the advantages of the techniques in this 

thesis and, to highlight their applicability to current and popular stereovision trends. In 

our case, a novel MATLAB GUI was developed to identify the 3-D point on the floor 

that a static gloved finger was pointing towards, as seen in Figure 13 and Figure 14.  

 

 

Figure 13: Finger glove used for finger gesturing experiment. The finger glove was cut 

from a Clorox cleaning glove purchased at a Target store. 
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       Figure 14: MATLAB GUI developed for finger detection application 

 

In particular, a single camera was used to determine the 3-D location of the point 

of interest. First, a color filter and area filter algorithm were used to isolate objects 

resembling a static gloved pointing finger. The gloved finger was assumed to have an 

elliptical shape, and as such, properties of an ellipse, such as eccentricity, were used to 

isolate the gloved finger. Next, five images were taken in succession and for each image, 

the orientation and Centroid of the finger (assumed to be on the line defining the finger) 

was found. These results were averaged to yield the Centroid and orientation of the finger 

for a distinct camera pose.  This process was repeated for another distinct camera pose. 

This information was used in conjunction with (9) to calculate the 3-D point of interest 

with respect to the second camera position.   

The finger glove was kept in a fixed location by attaching it to a test stand, while 

thirty random camera poses were used (fifteen trials). The camera used was the same as 
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described in Chapter 3.4 and as seen in Figure 5. As with the experimental results in 

Chapter 3.4, the pose of the laptop was altered through translation only. The results of the 

experiment are shown in Figure 21. In the next few subsections, the design process 

behind the GUI will be outlined and discussed followed by a discussion of the 

experimental results.  

5.2.2 GUI Design Overview  

 

The finger gesturing experiment required the development of a GUI with the 

following characteristics:  

 Ability to detect a gloved finger in any environment (i.e. regardless of 

lighting, other objects in the environment, etc. ) 

 Able to calculate and store information related to the gloved finger 

 Manipulate stored information through averaging or other techniques 

 Accurately calculate the 3-D location of a point using the stored 

information from the detected gloved finger.  

This was accomplished by first using a color filter to identify all objects that have 

a similar color as the glove itself and by approximating the finger as an elliptical object.  

Lastly, the orientation and Centroid of the finger were acquired from two images and 

used with    (9) to determine the 3-D point of interest.  

5.2.3 Object Area Filter and Color Filter Overview 

 

The color filter used was a standard normalized RGB filter. First, the RGB values 

for each pixel in the image matrix were found and normalized with respect to the 
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magnitude of the RGB vector.  Next, pixels within the image matrix that did not fall 

within the following normalized RGB parameters were removed:  

Rnormalized   >  0.45 

Gnormalized  <  0.40 

Bnormalized   < 0.60 

 These parameters were found experimentally using various photos of the finger 

glove in various lighting conditions. The above parameters represent an average 

approximation of the RGB values for a pixel containing a portion of the finger glove.  

Overall, this scheme for color filtering was very fast and accurate.  

 The resulting image matrix was then converted to black and white and MATLAB 

was used to perform object detection. Next, a simple object area filter was used to 

remove objects that were less than 200 pixels
2
. This was done to limit the focus of the 

GUI to objects within a specific distance of the camera itself and to reduce random 

background noise.  

5.2.3.1 Elliptical Approximation  

 

A profile view of the finger, as seen in              Figure 15, can be viewed as an 

ellipse existing in a 2-D environment. This approximation not only matches the shape of 

the finger well, but it also takes advantage of the many image processing tools in 

MATLAB which makes a similar approximation to any object detected.  
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             Figure 15: Finger glove approximated as a 2-D ellipse  

 

 For example, MATLAB’s image processing toolbox returns the eccentricity and 

orientation of an ellipse with the same second polar moment of inertia of the object of 

interest. Thus, once the color and area filter were applied, the object eccentricity filter 

was used to identify objects that were elliptical in shape.  A perfect eccentricity has a 

value of 0, which is that of a circle. Therefore, the eccentricity of an object is a non-

dimensional measure of an object’s shape relative to a circle. Specifically, ellipses have 

an eccentricity that is greater than zero but less than 1 [44]. For the finger glove in 

question, experimental testing revealed that the eccentricity of the glove was larger than 

0.86 but less than 1 during any given experiment. Therefore, the GUI was designed to 

identify objects with an eccentricity greater than 0.86 but less than 1.  

 In addition to the above filters, a “π filter” was used on the remaining objects to 

isolate the desired elliptical object. This was accomplished by using the area of an ellipse 

which can be written as,  

      (20) 

+ r 

+ c 
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 where a and b are the semi- major and semi-minor axes of the ellipse. For each 

object, MATLAB calculates the object area, major and minor axes. This information was 

used along with (20) to experimentally estimate the value of π. Since the area of the 

finger glove is not exactly an ellipse, the calculated value of π will be close to the known 

value of 3.14. In our case, it was determined that for the finger glove π was estimated to 

be between 2.90 and 3.08. Therefore, objects with geometric characteristics that do not 

yield a value of π within this range were ignored.  

5.2.3.2 GUI Gloved Finger Filtering Summary 

 

The combination of normalized color, area, eccentricity and π filters was 

successfully used to identify a gloved finger in any 3-D environment (aside from an 

environment absent from lighting of course!).  The filtering process has been summarized 

in the flow chart shown in Figure 16. The final algorithm is essentially a loop that 

continues as long as the program is running.  

5.2.4 GUI Interface Design Summary   

 

The GUI interface was designed such that the user could see the live video feed 

from the camera and the final interpreted result after the filtering algorithm was finished. 

Furthermore, the GUI was designed so that the user could store line information from two 

different camera poses and average them if needed. This stored information could then be 

used by the user to calculate the intersection point of the line with the ground. The 

ground itself was also a parameter that could be entered by the user. Figure 17 depicts the 

interface in detail.  
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Figure 16: Flow chart of filtering algorithm used in MATLAB GUI for gloved finger detection 
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Figure 17: Final GUI Interface and descriptions of some of its useful features. 
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5.2.5 Experimental Procedure  

 

This experiment was carried out similarly to the experiment for point detection 

method 1. The finger glove was attached to the test stand in a fixed position, while new 

images were obtained from the laptop that was moved around. The point that the finger 

glove was pointing towards was recorded on the grid paper for comparison against 

experimental results. The experimental setup from the laptop point of view is shown in 

Figure 18.  The finger glove was attached to the test stand to ensure a static configuration 

was maintained throughout the experiment. Using an actual finger for multiple 

measurements would be difficult since an actual finger is prone to random movement and 

Figure 18: Experimental setup for gesture application from laptop POV. Finger glove 

placed in non-planar orientation 
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physical exhaustion. 

The precise location of the laptop was determined with the use of four 

experimental aids. The first aid was a 1/2 inch x 1/2 inch grid poster paper, which was 

firmly secured and placed underneath the laptop and test stand. A grid system such as this 

one served as a two dimensional coordinate system that made laptop translation 

measurements clearer and more defined. The second aid used was standard measuring 

tape that was used to measure the translation of the laptop during the experiment. The 

third aid was a foot long ruler that was used to ensure that the laptop screen was kept 

orthogonal to the horizontal axis. This was done to ensure that the orientation of the 

laptop remained fixed at all times during the experiment and, that the camera axes were 

in the same direction as the laptop translation axes, as seen in Figure 19.  

 

 

 

Figure 19: (a) Dotted line is line with camera center, the red dot indicates a reference 

point of measurement during the experiment. (b) Profile of the laptop. The screen 

orientation was kept perpendicular to the horizontal at all times. Camera axes and laptop 

translation axes are in the same direction [37]. 
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The fourth aid was the reference point on the mouse pad of the laptop. This point 

shown as a red dot in Figure 19 was in line with the camera axes and was used as a 

reference point when measuring laptop displacement during the experiment. It is 

important to note that in this case, the positive y axis has been assumed to be down.   

For each camera pose, the average orientation and average Centroid of the gloved 

finger were determined from five consecutive images, provided that first the pose of the 

laptop was known and correct. The pose of the laptop was altered and the average 

orientation and average Centroid of the gloved finger were again determined using five 

consecutive images.  The averaged Centroid and averaged orientation of the gloved 

finger from two different camera poses are saved and used along with the +Y coordinate 

of the ground, the camera focal parameter and homogenous transformation parameters of 

the camera to obtain the 3-D location of the point on the ground where the gloved finger 

was pointing towards.  

For this experiment, this process was repeated fifteen times (30 different camera 

poses) to obtain the results presented in Figure 5. It must be noted that the orientation of 

the laptop remained fixed and the laptop was translated in either the x or z directions or a 

combination of both x and z directions. A summary of this experimental procedure is 

given in Figure 20. 
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Figure 20: Experimental procedure flowchart for testing method 2. This flowchart is assuming that the test stand and finger glove have been setup and 

will remain fixed throughout the experiment. 
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5.3 Experimental Results 

 

 

Figure 21: Predicted target locations relative to the Actual Target Location (at the origin) 

from the second camera. Ground location is assumed to be fixed at y = 9.625 inches. 

 

Similar to Figure 11, Figure 21 shows the fixed target location at the origin and 

the predicted locations relative to the actual location. Only the x and z coordinates have 

been shown since y is assumed to be h = 9.625 inches (camera center to table top).  From 

Figure 21, it is evident that the predictions were accurate to within ± 1 inch of the target. 

This translates to an average error of -15% for the x coordinate prediction and a +1% 

error for the z coordinate prediction, which is acceptable for this type of basic 

experiment.  
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From Figure 21, it is clear that while the z coordinate predictions were evenly 

distributed between ± 1 inch of the target z coordinate, most of the x coordinate 

predictions were overestimated, indicating an experimental bias. This bias was 

investigated and it was determined to be the result of x axis translation measurement error 

and/or issues specific to the placement of the finger glove. x axis translation measurement 

error as small as ± 0.1 inches can cause the final x coordinate to be overestimated by as 

much as 0.20 inches. Eleven of the experimental trials consisted of either pure translation 

along the x axis or a combination of translation along both the x and z axes, with the x 

axis translation always being the largest. It is entirely possible that for a few of these 

trials a measurement error as small as 0.1 inches could have occurred.  

Additionally, the finger glove was placed in a non-planar position with respect to 

the camera. As a result, estimation of the area was more susceptible to variation which 

can result in errors in the Centroid estimation from the second image. Better lighting and 

better equipment (especially the camera) could have reduced the error even further. 

Nevertheless, if we consider how small the magnitude of the error is in the predictions, it 

becomes clear that (19) is an accurate and novel method for identifying points expressed 

in a 3-D environment.    

5.4 The Effects of Averaging the Centroid and Orientation of the 

Finger Glove 

 

During the experiment, the Centroid and orientation of the finger glove at each 

pose were measured five times and averaged before the final 3-D point estimate was 

determined. Five averages were chosen based on an experiment designed to determine 

the running average estimation of the fixed 3-D point that the finger glove was pointing 
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towards. Figure 22 and Figure 23 depict the results of the experiment. From each plot it 

can be seen that the accuracy of the prediction increases as the number of averages 

increases over time. Therefore, averaging the Centroid and the orientation of the finger 

glove does have a positive impact on the final 3-D estimate. Choosing the number of 

averages seems obvious by examining the trend in Figure 22 and Figure 23. However, if 

the difference between five and 50 averages is considered, we can see that the accuracy 

improves by 1% on average.  Therefore, based on these calculations it is apparent that 

five averages is more than enough to achieve accurate experimental results.  Any 

additional averaging would most likely not have a higher benefit on the final results. 

Additionally, performing more than five averages may not be practical for real 

applications because it could take a long period of time than is desired and effectively 

slow down the robot during its use.  
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Figure 22: Running Average for x coordinate prediction for finger glove intersection 

point. Ground location is assumed to be fixed at y = 9.625 inches. 
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Figure 23: Running Average for x coordinate prediction for finger glove intersection 

point. Ground location is assumed to be fixed at y = 9.625 inches. 

 

 It must also be noted that a noticeable bias in the final coordinate estimation does 

exist in Figure 22 and Figure 23. The bias is most likely due to small translation 

measurement error or inaccuracies in the camera used. The camera is a webcam built into 

a laptop and not an expensive machine vision camera normally used for experimental 

work.  
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6 Limitations of Fixed 3-D Line and Fixed 3-D Point Reconstruction 

Techniques 1 and 2 

 

The techniques presented in this work have several drawbacks. First, the 

techniques presented in this work rely on precise camera pose estimation from on board 

sensors. Any error in estimation from these sensors could result in error of the estimation 

of the line equation or 3-D point coordinates. Additionally, there are other 3-D techniques 

that receive this information using point estimation from each image, which make the 

techniques in this thesis less attractive because it requires additional hardware for 

implementation. Second, the approaches presented in this thesis do not provide a 

complementary correspondence algorithm. The correspondence problem is essentially 

left to the engineer to solve before using the techniques in this work.  

Furthermore, an accurate sensitivity analysis with respect to correspondence and 

pose estimation errors has not been completed. Therefore, it is largely unknown how 

sensitive the techniques presented in this thesis are to errors in correspondence and 

camera pose estimation.  

7  CONCLUSIONS AND FUTURE WORK 

 

This work presented in this thesis was motivated by two important observations. 

First, through this work and other related work, it has been shown that Stereovision has 

several limitations related to the fundamentals of its design and implementation. Second, 

in order for robots to be more successful as human replacements, they must have human 

like visual perception. In particular, they must have the ability to interpret depth using a 

single camera, similar to how humans can perceive depth using a single eye.  Therefore, 

this thesis has presented three novel techniques for identifying the 3-D coordinates of 
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fixed 3-D points and the 3-D equation of a fixed line in a physical 3-D environment. The 

techniques presented in this thesis can be successfully used with one moving camera or 

two stationary cameras provided that a separate correspondence technique is 

implemented beforehand.  The techniques used for identifying 3-D fixed points have 

been experimentally validated and shown to be very accurate aside from a small 

experimental bias. Both results suffered from the same inaccuracies and are due to factors 

such as small correspondence errors, small measurement errors or limitations of the 

equipment used.  

Lastly, the methods presented in this thesis can be expanded on in three ways. 

First, experimental verification of the line detection method would further validate the 

work in this thesis. Second, the techniques presented in this thesis can be expanded to 

account for n images, meaning that either n cameras or a single camera taking n images 

can be used to determine any desired points and lines in a 3-D environment. Enabling the 

use of n cameras or n images allows for a more general approach not limited by the 

number of cameras used. A general approach increases the overall information available 

and will allow for a better approximation for the location of the 3-D point of interest.  

 Finally, these techniques should be experimented with actual moving robots to 

attain a better understanding of the practical uses and implementation requirements 

necessary for successful depth estimation using these techniques.  In general, further 

advancement of the work presented in this thesis would be greatly beneficial to the vision 

system of any mobile robot or moving robot such as a robotic arm because it will remove 

the two camera constraint, thus allowing for a less complex vision system overall.   
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APPENDIX A 

POINT DETECTION METHOD 1 MATLAB CODE  

%Roshan Kalghatgi 
%Date Created 11/6/2011 
%This program locates a 3-D point relative to a camera in a two camera 
%pose setting.  

  
function [A,B,alpha,p] = stereovision_point(f,uv,th,d) 

  
%Define General Rotation matrix  
thx=deg2rad(th(1));  
Rx=[1 0 0;0 cos(thx) -sin(thx);0 sin(thx) cos(thx)]; 
thy=deg2rad(th(2)); 
Ry=[cos(thy) 0 sin(thy);0 1 0;-sin(thy) 0 cos(thy)]; 
thz=deg2rad(th(3)); 
Rz=[cos(thz) -sin(thz) 0;sin(thz) cos(thz) 0;0 0 1]; 
R=Rx*Ry*Rz 

  

  
%Shift uv relative to IPP 
uv(1) = (uv(1) - 320);  
uv(3) = (uv(3) - 320); 
uv(2) = (240 - uv(2)); 
uv(4) = (240 - uv(4)); 

   
%Define p_bar  
p_bar1 = [uv([1:2]) f]' 
p_bar2 = [uv([3:4]) f]'; 

  
%Define A and B 
A(:,1) = p_bar1;  
A(:,2) = -R*p_bar2;    

  
B = d';  

  
%Solve for alpha 
alpha = A\B; 

  
p = [alpha(1)*p_bar1 alpha(2)*p_bar2]; 

  
end 
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APPENDIX B 

POINT DETECTION METHOD 2 MATLAB CODE  

%Roshan Kalghatgi 
%Date Created 11/6/2011 
%This program computes the x,y,z coordinates of point that is common to 
three planes 

function [p,A,B,R]=stereovision_line(a,p,f,th,d,h) 
%a,b: angle and one point on each line [a1 a2], [p1 p2], pi=[ri;ci] 
%f: camera focal parameter  
%th: 3x1 vector of successive rotation about x, y, and z axes to 

specify the rotation matrix between the 2 camera 
%d: traslation vector between the camers optical centers. 
%h: height of the ground from the camera center (defined on the y axis) 

  
%Form the rotaion matrix R  
thx=deg2rad(th(1)); 
Rx=[1 0 0;0 cos(thx) -sin(thx);0 sin(thx) cos(thx)]; 
thy=deg2rad(th(2)); 
Ry=[cos(thy) 0 sin(thy);0 1 0;-sin(thy) 0 cos(thy)]; 
thz=deg2rad(th(3)); 
Rz=[cos(thz) -sin(thz) 0;sin(thz) cos(thz) 0;0 0 1]; 
R=Rx*Ry*Rz;  

  
%Line parameters  
%unit vector perpendecular to line 
%any rc(r,c) on the line satisfies m'*rc=m'*p, where m is the unit 

vector 
%perpendicular  
a1=deg2rad(a(1)); a2=deg2rad(a(2)); 
m1=[cos(pi/2+a1);sin(pi/2+a1)];    
m2=[cos(pi/2+a2);sin(pi/2+a2)];  
p1 = p(1,[1:2]); p2=p(1,[3:4]); 
b1=m1'*p1';  
b2=m2'*p2';  

    
%Form A matrix 
A1 = [m2(1)*f m2(2)*f -b2]; 
A2 = [m1(1)*f*R(1,1)+m1(2)*f*R(2,1)-b1*R(3,1) 

m1(1)*f*R(1,2)+m1(2)*f*R(2,2)-b1*R(3,2) m1(1)*f*R(1,3)+m1(2)*f*R(2,3)-

b1*R(3,3)]; 
A3 = [0 1 0]; 
A = [A1;A2;A3]; 

  
B = [0; (-m1(1)*f*d(1)-m1(2)*f*d(2)+b1*d(3));(h-d(2))]; 
p=inv(A)*B; 

  
return 

end 
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APPENDIX C 

FINGER DETECTION GUI MATLAB CODE 

%Name: Roshan Kalghatgi 
%Date Created: 8/3/2011 
%Last Updated: 11/12/2011 
%File Name: BlueHandFilterLive8.m 
%Version 8 

  

function varargout = BlueHandFilterLive(varargin) 

  

  
% BLUEHANDFILTERLIVE M-file for BlueHandFilterLive.fig 
%      BLUEHANDFILTERLIVE, by itself, creates a new BLUEHANDFILTERLIVE 

or raises the existing 
%      singleton*. 
% 
%      H = BLUEHANDFILTERLIVE returns the handle to a new 

BLUEHANDFILTERLIVE or the handle to 
%      the existing singleton*. 
% 
%      BLUEHANDFILTERLIVE('CALLBACK',hObject,eventData,handles,...) 

calls the local 
%      function named CALLBACK in BLUEHANDFILTERLIVE.M with the given 

input arguments. 
% 
%      BLUEHANDFILTERLIVE('Prop erty','Value',...) creates a new 

BLUEHANDFILTERLIVE or raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before BlueHandFilterLive_OpeningFcn gets 

called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to BlueHandFilterLive_OpeningFcn 

via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 

one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help BlueHandFilterLive 

  

% Last Modified by GUIDE v2.5 07-Jul-2011 11:58:48 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
    'gui_Singleton',  gui_Singleton, ... 
    'gui_OpeningFcn', @BlueHandFilterLive_OpeningFcn, ... 
    'gui_OutputFcn',  @BlueHandFilterLive_OutputFcn, ... 



 55 

    'gui_LayoutFcn',  [] , ... 
    'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
end 

  
% --- Executes just before BlueHandFilterLive is made visible. 
function BlueHandFilterLive_OpeningFcn(hObject, eventdata, handles, 

varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to BlueHandFilterLive (see 

VARARGIN) 

  
% Choose default command line output for BlueHandFilterLive 
handles.output = hObject; 

  
%Initialize the camera 
imaqreset;  

   
global obj;  
obj = videoinput('winvideo',1,'YUY2_640x480'); 
set(obj,'ReturnedColorSpace','RGB','FramesPerTrigger',1); 
set(obj,'TriggerRepeat',Inf,'FrameGrabInterval',2,'TimerPeriod',1/2,'Ti

merFcn',... 
    @BlueHandFilter); 

  
%set up an images to put pictures in 
vidRes = get(obj, 'VideoResolution'); 
nBands = get(obj, 'NumberOfBands'); 
hIm1 = image(zeros(vidRes(2), vidRes(1), nBands),'parent',... 
    handles.LiveVideoFeed); 

  
start(obj); 

  
    function BlueHandFilter(obj,~) 
        global b m theta CentroidStore; 
        tic 
        data = getdata(obj); 
        flushdata(obj); 

         
        %send image data to the image object in LiveVideo Feed 
        set(hIm1,'CData',data); 
        set(handles.LiveVideoFeed,'xticklabel',[]); 
        set(handles.LiveVideoFeed,'yticklabel',[]); 
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        %---Implement hand filter algorithm---% 

         
        %I_manip is the I matrix that this program will be manipulating 
        I = double(data(:,:,:,:)); 
        I_manip = I; 

         
        %Find the size of I 
        [m n q] = size(I_manip); 

         
        %Preallocate space for denom matrix 
        denom = zeros(m,n);  

         
        %---Implement Color Filter---% 

         
        %Normalize the image matrix 
        denom = sqrt(I_manip([1:m],[1:n],1).^2 + 

I_manip([1:m],[1:n],2).^2 + I_manip([1:m],[1:n],3).^2); 

         
        I_manip(:,:,1) = I_manip(:,:,1)./denom; 
        I_manip(:,:,2) = I_manip(:,:,2)./denom; 
        I_manip(:,:,3) = I_manip(:,:,3)./denom;  

         

           
        %Find the indices of the pixels that don't meet the RGB 

thresholds 
        [r c] = find(I_manip(:,:,1) > 0.45); %R 

         
        lindex1 = sub2ind(size(I_manip),r,c); %you can specificy the 

layer in sub2ind, third input is the layer array 
        lindex2 = sub2ind(size(I_manip),r,c,2*ones(length(r),1)); 
        lindex3 = sub2ind(size(I_manip),r,c,3*ones(length(r),1)); 

         

        I([lindex1' lindex2' lindex3']) = 0; 

         
        [r c] = find(I_manip(:,:,2) < 0.40); %G 

         
        index1 = sub2ind(size(I_manip),r,c); %you can specificy the 

layer in sub2ind, third input is the layer array 
        lindex2 = sub2ind(size(I_manip),r,c,2*ones(length(r),1)); 
        lindex3 = sub2ind(size(I_manip),r,c,3*ones(length(r),1)); 

         
        I([lindex1' lindex2' lindex3']) = 0; 

         
        [r c] = find(I_manip(:,:,3) < 0.6); %B 50.65 

         
        lindex1 = sub2ind(size(I_manip),r,c); %you can specifiy the 

layer in sub2ind, third input is the layer array 
        lindex2 = sub2ind(size(I_manip),r,c,2*ones(length(r),1)); 
        lindex3 = sub2ind(size(I_manip),r,c,3*ones(length(r),1)); 

         
        I([lindex1' lindex2' lindex3']) = 0;  
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        %---END Color Filter---% 

         
        %Convert to bw based on a grayscale threshold 
        thresh = graythresh(I); 
        I = im2bw(I,thresh); 

         
       % I = bwconncomp(I,26);  

          
        %Find objects in the image and all the properties 
        cc1 = 

regionprops(I,'Area','Orientation','Centroid','PixelList','Perimeter','

Eccentricity','MajorAxisLength','MinorAxisLength');  

           
     %---Filter objects by Area, Perimeter^2/Area, and Eccentricity---% 

          
        %Of all objects found find those >500 sq pixels & e >=0.86 
        indices1 = intersect(find([cc1(:,:).Area] > 

200),find([cc1(:,:).Eccentricity] >= 0.86)); 
        %indices1 = find([cc1(:,:).Eccentricity] >= 0.86); 

  
        %Calculate pi using the area, major axis and minor axis  
        try  
        ab = 

(cc1(indices1,:).MajorAxisLength).*(cc1(indices1,:).MinorAxisLength); 

         

        ab = ab(ab ~=0);  
        indices1 = indices1(find(ab ~=0));  

         
        PI_filter = 4*(cc1(indices1,:).Area./ab); 

      

          
        %Notes: Perimeter^2/Area and max/min are good BUT they are 2-D 
        %characteristics, what if you angle your finger. You have the 
        %effects of foreshortening and thus the finger will be filtered 
        %out. this can work if you have a large  
        %range of values. Need a param that is independent of 3-d, also 

need to improve 
        %color filter   

         

        %Of all obj found in indices1, determine which have PtoA within 

[15 35] 
        %indices2 is the index of indices1! Very important note!  
        indices2 = intersect(find(PI_filter > 2.90),find(PI_filter < 

3.08));  

         
        %indices give you the original indices from cc1 of the object 

that 
        %meets the criteria  
        indices = indices1(indices2); 

            
        %Determine the number of objects  
        NumObjects = length(indices); 
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        %---End object filter---% 

         
        %Preallocating 
        AreaofObj = zeros(1,NumObjects)';  
        Centroids = zeros(2,NumObjects)'; 

         
        catch 
            NumObjects = 0; 
        end 

         
        if NumObjects > 0 
            for k = 1:1:NumObjects             

                  
                    %Calculate area, orientation and centroid of object 

found 
                    AreaofObj(k) = cc1(indices(k),1).Area; 
                    cc1(indices(k),:).Eccentricity; 
                    Centroids(k,[1:2]) = cc1(indices(k),:).Centroid 

%(x,y)  

                     
                    % maxtomin = 

(cc1(indices(k),:).MajorAxisLength)*(cc1(indices(k),:).MinorAxisLength) 
                    %ratio = 4*AreaofObj(k)/maxtomin 
                    

%([cc1(indices(k),:).Perimeter].^2)./[cc1(indices(k),:).Area] 

                     

                    %Make centroids relative to IPP  
     Centroids(k,[1:2]) = [(Centroids(k,1)-320) (Centroids(k,2)-240)]; 
                    CentroidStore = Centroids(k,[1:2]); 

                      
                    %Calculate orientation 
                    theta = -cc1(indices(k),:).Orientation 

                     
         %Calculate the normal vector of the plane 

that the line 
                    %lies on 
                    N = [cosd(theta+90) sind(theta+90)]; 

                     
                    %Determine the line parameters 
                    D = N*[Centroids(k,[1:2])]'; 

                     
                    b = D/sind(theta + 90);  

                     
                    m = (-1/tand(theta+90)); 

                     
                    x = [-300:1:300]; 
                    y = m*x + b; 

                     
                    %Find all the pixels that make up the object 
                    PList{k} = cc1(indices(k),:).PixelList; 

 PList{k}(:,1:2) = [(PList{k}(:,1)-320) (PList{k}(:,2)-240)]; 

                
                end 
        else  
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            Centroids = [0 0]; 
            PList = [0 0]; 
            x = 0; 
            y = 0; 
            m = 0; 
            b = 0; 

           
        end 
        try 
            slope = m; 
            yintercept = b; 
            thetaTag = num2str(theta); 
        catch 
            slope = 0; 
            yintercept = 0; 
            thetaTag = 'No object'; 

             
        end 

         

        try 
            e = num2str(cc1(1,1).Eccentricity); 
            AreaTag = num2str(AreaofObj); 
        catch 
            e = 'No object'; 
            AreaTag = 'No object'; 
        end 

         
        %Send data to textboxes 
        set(handles.eccen,'string',e); 
        set(handles.lineEq ,'string',sprintf('%gc + 

%g',slope,yintercept)); 
        set(handles.NumObjText,'string',NumObjects); 
        set(handles.OrientationTag,'string',thetaTag); 
        set(handles.AreaTag,'string',AreaTag); 

         
        %Plot the centroids and the finger area 
        if NumObjects > 0 
            % plot(handles.FilterResults,Centroids(:,1),-

Centroids(:,2),'r+','MarkerSize',20); 
            for z = 1:1:NumObjects 
                plot(handles.FilterResults,PList{z}(:,1),-

PList{z}(:,2),'*',x,-y,'-',Centroids(:,1),-

Centroids(:,2),'r+','MarkerSize',5); 
            end 
        else 
            plot(handles.FilterResults,0,0); 
        end  
         toc 
      end%end BlueHandFilter 

  
% Update handles structure 
guidata(hObject, handles); 

  
end%end opening function 
% UIWAIT makes BlueHandFilterLive wait for user response (see UIRESUME) 
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% uiwait(handles.figure1); 

  
% --- Outputs from this function are returned to the command line. 
function varargout = BlueHandFilterLive_OutputFcn(~, ~, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
end 

  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(~, ~, ~) 
% hObject    handle to pushbutton1 (see 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

end 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(~, ~, ~) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDA 
end 

  

  
% --- Executes when user attempts to close figure1. 
function figure1_CloseRequestFcn(hObject, ~, ~) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: delete(hObject) closes the figure 
imaqreset(); 
delete(hObject); 
end 

  

  

% --- Store Line 1 info 
function strL1_Callback(~, ~, handles) 

  
global theta_line1 Centroid1 theta CentroidStore n1; 

  
%Initialize n1, Centroid 1 and theta_line1 
if isempty(n1) 
    n1 = 0; 
end 

  
if isempty(Centroid1) 
    Centroid1 = [0 0]; 
end 
if isempty(theta_line1) 
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    theta_line1 = 0; 
end 

  
%increment counter 
n1 = n1 + 1; 

  
% Store line 1 characteristics and average them 
theta_line1 = ((n1-1)*theta_line1 + theta)/n1; 
Centroid1 = [(((n1-1)*Centroid1(1) + CentroidStore(1))/n1),(((n1-

1)*Centroid1(2) + CentroidStore(2))/n1)]; 

  

%send line 1 info to the textboxes 
set(handles.thetaL1,'string',num2str(theta_line1)); 
set(handles.CentroidL1,'string',sprintf('(%g,%g)',Centroid1(1),Centroid

1(2))); 
set(handles.NumavgL1,'string',num2str(n1)); 
end 

  
% --- Store Line 2 info 
function strL2_Callback(~, ~, handles) 

  
global theta_line2 Centroid2 theta CentroidStore n2; 

  
%Initialize variable 
if isempty(n2) 
    n2 = 0; 
end 

  
if isempty(Centroid2) 
    Centroid2 = [0 0]; 
end 

  

if isempty(theta_line2) 
    theta_line2 = 0; 
end 

  
%increment counter 
n2 = n2 + 1; 

  
% Store line 2 characteristics 
theta_line2 = ((n2-1)*theta_line2 + theta)/n2; 
Centroid2 = [(((n2-1)*Centroid2(1) + CentroidStore(1))/n2),(((n2-

1)*Centroid2(2) + CentroidStore(2))/n2)]; 

  
%send line 1 info to the textboxes 
set(handles.thetaL2,'string',num2str(theta_line2)); 
set(handles.CentroidL2,'string',sprintf('(%g,%g)',Centroid2(1),Centroid

2(2))); 
set(handles.NumavgL2,'string',num2str(n2)); 
end 

  
% --- Executes on button press in calcPoint. 
function calcPoint_Callback(~, ~, handles) 
% hObject    handle to calcPoint (see GCBO) 
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global b_line1 m_line1 theta_line1 Centroid1 b_line2 m_line2 

theta_line2 Centroid2 

  

%Store Transformation Parameters 
th_x = str2num(get(handles.Rx,'string')) 
th_y = str2num(get(handles.Ry,'string')) 
th_z = str2num(get(handles.Rz,'string')) 

  
d_x = str2num(get(handles.Tx,'string')) 
d_y = str2num(get(handles.Ty,'string')) 
d_z = str2num(get(handles.Tz,'string')) 

  
%Store Height (relative to the second camera) 
ht = str2num(get(handles.height,'string')); 

  
%Set focal parameter 
f = str2num(get(handles.focalParam,'string')); 

  
%Calculate point  
[p,A,B,R]=stereovision_line([theta_line1 theta_line2],[Centroid1 

Centroid2],f,[th_x th_y th_z],[d_x d_y d_z],ht) 

  

  
%Output point to the gui textboxes 
set(handles.px,'string',num2str(p(1))) 
set(handles.py,'string',num2str(p(2))) 
set(handles.pz,'string',num2str(p(3))) 

  
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
end 

  

  
function Rx_Callback(~, ~, ~) 
% hObject    handle to Rx (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of Rx as text 
%        str2double(get(hObject,'String')) returns contents of Rx as a 

double 
end 

  
% --- Executes during object creation, after setting all properties. 
function Rx_CreateFcn(hObject, ~, ~) 
% hObject    handle to Rx (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
function Ry_Callback(~, ~, ~) 
% hObject    handle to Ry (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Ry as text 
%        str2double(get(hObject,'String')) returns contents of Ry as a 

double 
end 

  
% --- Executes during object creation, after setting all properties. 
function Ry_CreateFcn(hObject, ~, ~) 
% hObject    handle to Ry (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  

function Rz_Callback(~, eventdata, handles) 
% hObject    handle to Rz (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Rz as text 
%        str2double(get(hObject,'String')) returns contents of Rz as a 

double 

  
end 
% --- Executes during object creation, after setting all properties. 
function Rz_CreateFcn(hObject, ~, ~) 
% hObject    handle to Rz (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
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end 

  
end 

  

function Tx_Callback(hObject, eventdata, handles) 
% hObject    handle to Tx (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Tx as text 
%        str2double(get(hObject,'String')) returns contents of Tx as a 

double 

  
end 
% --- Executes during object creation, after setting all properties. 
function Tx_CreateFcn(hObject, ~, handles) 
% hObject    handle to Tx (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
end 
function Ty_Callback(hObject, eventdata, handles) 
% hObject    handle to Ty (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Ty as text 
%        str2double(get(hObject,'String')) returns contents of Ty as a 

double 

  
end 
% --- Executes during object creation, after setting all properties. 
function Ty_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Ty (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  

% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

end 
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function Tz_Callback(hObject, eventdata, handles) 
% hObject    handle to Tz (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Tz as text 
%        str2double(get(hObject,'String')) returns contents of Tz as a 

double 
end 

  
% --- Executes during object creation, after setting all properties. 
function Tz_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Tz (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
function height_Callback(hObject, eventdata, handles) 
% hObject    handle to height (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of height as text 
%        str2double(get(hObject,'String')) returns contents of height 

as a double 

  
end 
% --- Executes during object creation, after setting all properties. 
function height_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to height (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 
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function pz_Callback(hObject, eventdata, handles) 
% hObject    handle to pz (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of pz as text 
%        str2double(get(hObject,'String')) returns contents of pz as a 

double 
end 

  
% --- Executes during object creation, after setting all properties. 
function pz_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pz (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
end 

  
function py_Callback(hObject, eventdata, handles) 
% hObject    handle to py (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of py as text 
%        str2double(get(hObject,'String')) returns contents of py as a 

double 
end 

  
% --- Executes during object creation, after setting all properties. 
function py_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to py (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
end 
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function px_Callback(hObject, eventdata, handles) 
% hObject    handle to px (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of px as text 
%        str2double(get(hObject,'String')) returns contents of px as a 

double 

  
end 
% --- Executes during object creation, after setting all properties. 
function px_CreateFcn(hObject, ~, ~) 
% hObject    handle to px (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

 
function focalParam_Callback(~, eventdata, handles) 
% hObject    handle to focalParam (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of focalParam as text 
%        str2double(get(hObject,'String')) returns contents of 

focalParam as a double 

  
end 
% --- Executes during object creation, after setting all properties. 
function focalParam_CreateFcn(hObject, ~, handles) 
% hObject    handle to focalParam (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 
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% --- Executes on button press in Reset. 
function Reset_Callback(~, ~, handles) 
% hObject    handle to Reset (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
global theta_line1 Centroid1 theta_line2 Centroid2 n1 n2; 

  

  
%Reset averages counter 
n1 = 0; 
set(handles.NumavgL1,'string',num2str(n1)); 
n2 = 0; 
set(handles.NumavgL2,'string',num2str(n2)); 

  
%Reset Transformation Parameters 
th_x = 0; 
set(handles.Rx,'string',num2str(th_x)); 
th_y = 0; 
set(handles.Ry,'string',num2str(th_y)); 
th_z = 0; 
set(handles.Rz,'string',num2str(th_z)); 

  
d_x = 0; 
set(handles.Tx,'string',num2str(d_x)); 
d_y = 0; 
set(handles.Ty,'string',num2str(d_y)); 
d_z = 0; 
set(handles.Tz,'string',num2str(d_z)); 

  
%Store Height (relative to the second camera) 
ht = 9.625; 
set(handles.height,'string',num2str(ht)); 

  
%Reset focal parameter 
f = 525; 
set(handles.focalParam,'string',num2str(f)); 

  
%Reset saved information 
%Reset all line parameters and transformation parameters 
theta_line1 = 0; 
set(handles.thetaL1,'string',num2str(theta_line1)); 
Centroid1 = [0 0]; 
set(handles.CentroidL1,'string',sprintf('(%g,%g)',Centroid1(1),Centroid

1(2))); 
theta_line2 = 0; 
set(handles.thetaL2,'string',num2str(theta_line2)); 
Centroid2 = [0 0]; 
set(handles.CentroidL2,'string',sprintf('(%g,%g)',Centroid2(1),Centroid

2(2))); 

  
%Reset display for calculated point 
set(handles.px,'string',num2str(0)) 
set(handles.py,'string',num2str(0)) 
set(handles.pz,'string',num2str(0)) end 
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APPENDIX D 

RUNNING AVERAGE PLOTTING SCRIPT 

%Averaging test data script 
%Roshan Kalghatgi 
%12/31/2011 
%This code takes thetas and Centroids taken over 50 averages and 

computes a running average plot of x and z coordinate predictions.  
n = 50;  
a(:,[1:2]) = [dummyStore1([1:n],1) dummyStore2([1:n],1)]; 

  
p(:,[1:4]) = [dummyStore1([1:n],[2:3]) dummyStore2([1:n],[2:3])]; 

  
for i = 1:1:n 

     
prediction(i,[1:3]) = stereovision_line(a(i,:),p(i,:),525,[0 0 0],[1.1 

0 0],9.625);  
end 

  
numAvgs = [1:1:n]; 

  
figure(1)  
plot(numAvgs,prediction(:,1),'*',[0 numAvgs], 1.91*ones(n+1,1),'-r'); 
ylabel('X Coordinate Estimate (inches)');  
xlabel('Number of Averages');  

  
figure(2) 
plot(numAvgs,prediction(:,3),'*',[0 numAvgs], 8.375*ones(n+1,1),'-r'); 
xlabel('Number of Averages'); 
ylabel('Z Coordinate Estimate (inches)');  
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