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SUMMARY 

Cellular adhesion plays a crucial role in the biological function of cells, allowing 

them to communicate and signal, as well as physically anchor, by enabling them 

to adhere to either other cells or the extra cellular matrix (ECM). This process is 

regulated by several factors including intrinsic bond kinetics, internal cellular 

signaling, environment, force exerted on the bond, and force history of the bond. 

Concerning the force and force history dependence, the observation of catch 

bonds in integrin binding has asked as more questions than it has answered. 

 To explore the force and force history dependence this process, each 

bond was loaded to a peak force before relaxing to a much lower force that was 

held for the duration of the measurement. Two different integrins were studied, 

both of which have in previous works exhibited a catch bond. Furthermore, the 

effects of different metal ion conditions and an allosteric antagonist were also 

studied to elucidate the conformational effects on force priming of integrin.  What 

was observed was that I domain, or αA domain, possessing integrin, whether 

tested against its more active or less active binding state, changed very little in 

terms of off rate once the priming force was applied. However in the I domain, or 

αA domain, lacking integrin, the observed off rate changed as well. It seems that 

force priming is capable of causing integrin to bind in a stronger manner 

regardless of the other conditions used to either activate or inhibit binding. 

However the way in which the binding is strengthened depends on the receptors 

structure.  
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CHAPTER 1 

SPECIFIC AIMS 

The following objectives were proposed to study force activation effects on 

ligand binding to integrins both possessing and lacking an I domain, or αA 

domain. 

1. Characterize the bond lifetime-force relationships of integrin α5β1 and 

fibronectin interaction in the force primed and unprimed cases. 

 α5β1 binds fibronectin on the cellular surface and this bond, in 

physiological conditions, is constantly under stress. Previous work on this 

interaction has revealed a catch bond [27]. However, the mechanism for this is 

currently unknown. One area of debate regarding this phenomenon is whether a 

large force is required for the duration of the bond to cause this. To understand 

this, α5β1 expressed on live cells were brought into contact with a fibronectin 

fragment, FN III7-10, and the bond lifetime was measured under force. One set of 

measurements were performed after the bond experienced a ~20 pN priming 

force and the force was relaxed to, and held at, ~5pN. The other set of 

measurements were performed with force simply being held at ~5pN for the 

entire bond lifetime without experiencing a higher priming force. Previous work 

has shown force activation of α5β1 before but used a FC chimera instead of a live 

cell [27]. This work, while important and extremely useful, does not demonstrate 

if this phenomenon can happen on a cell or if there is something about the way 

the cell controls its integrin that might prevent this. 
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 Integrin conformation is controlled by several factors including signaling 

from inside the cell and the metal ions present outside the cell. It has been 

shown that different divalent cations cause a shift in conformation populations of 

the integrin and it is has been shown that integrin conformation is closely tied to 

integrin affinity [10]. To further understand the role of these ions play in force 

regulation of α5β1/FN interaction, lifetimes were measured in media containing 

either 2mM concentration of magnesium/EGTA or manganese.  From this we 

hope to determine if force activation is possible on the cell as well as what role 

conformation plays. 

2. Characterize bond lifetime-force relationships of integrin LFA-1 and 

ICAM-1 interaction in the primed and unprimed cases. 

 Similar to the α5β1/FN interaction, LFA-1 has also been shown to exhibit a 

catch bond when binding human ICAM-1 [28]. Previous work on cross species 

reactivity has shown that while mouse LFA-1 will not bind human ICAM-1; human 

LFA-1 can bind mouse ICAM-1 similar to what was used in the work presented 

here [52,53]. As LFA-1 also possesses an I domain, it was suspected that this 

receptor would behave differently from α5β1 when the bond lifetime was 

measured after experiencing a priming event. Previous work has been done 

showing that catch bond behavior might be observed because of the change in 

affinity of the synergy site on α5β1 when the receptor is under load [45]. While this 

is an acceptable explanation for a RGD integrin like α5β1, LFA-1 has no such 

synergy site. 
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 Again, since LFA-1 possesses an I domain, all ligand binding takes place 

away from the β propeller where the aforementioned synergy site is located. 

However, the I domain has been characterized as an endogenous ligand for the 

head piece of the integrin. Therefore, it is possible or even likely that if force 

priming does affect ligand binding in the I lacking case then it could affect it in the 

I possessing case. Additionally, testing an I domain possessing integrin on a live 

cell will allow us to know more thoroughly if this type of event is a common 

characteristic of all integrin types. 

3.  Investigate the effects of XVA-143 on force priming. 

 The specific residues and secondary protein structure where the bind is 

formed between the ligand and the integrin is known as the binding pocket. 

When dealing with integrin, the binding pocket can be said to exist in either an 

open or closed conformation with the open conformation associated with higher 

affinity binding. Since LFA-1 possesses an I domain, that is the location of the 

binding pocket for this type of integrin. I domain containing integrin are 

susceptible to a molecule known as XVA-143. The I domain is believed to be an 

intrinsic ligand for the I-like domain. XVA-143, a small molecule, is known to 

inhibit ligand binding in I domain possessing integrin by stabilizing the I-like 

domain in a high affinity conformation but preventing the I domain from binding to 

the I-like domain which correlates to a low affinity I domain binding pocket. XVA-

143 effects binding to the I domain then by inhibiting the binding between the 

integrin headpiece and the I domain [1]. When this occurs the integrin legs and 

headpiece extend. This combination of an extended integrin with a low affinity 
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binding pocket is known as the intermediate affinity state. Therefore, by priming 

the integrin in the presence of XVA-143, the importance of the interaction 

between the I and I-like domains can be better understood with regard to binding 

strength and behavior under various loads and loading conditions. Also, the local 

conformational changes from this and the previous two specific aims can be used 

in concert to better understand how integrin activation occurs. 
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CHAPTER 2 

BACKGROUND 

The main load bearing receptor in mammalian cells is integrin. Integrin is 

responsible for a wide variety of physiological events such as tissue 

morphogenesis, cellular differentiation, wound healing, inflammation response, 

leukocyte trafficking, etc. Integrins are a large family of intercellular heterodimeric 

adhesion and signaling receptors. There are currently 24 known human integrins 

consisting of one of 18 types of α subunits and one of 8 types of β subunits [2]. 

There are 12 known integrin types that possess an extra portion, an 

approximately 200 amino acid structure known as the I domain, which exists on 8 

types of α subunits; αL, αM, αX, αD, α1, α2, α10, α11 and αE as can be seen in 

figure 2-1. The two subunits are non-covalently bound and with the N-terminus of 

each meeting in a globular head that provides the binding site for ligands except 

when an I domain is present [3]. In that case, the ligand binds to the I domain. 

Each integrin subunit also has a cytoplasmic tail and a transmembrane portion. 

However, the extracellular portion of the receptor is much larger than the other 

two segments (figure 2-2). 

Previous EM and crystallographic studies have reported various and 

conflicting conformations of integrins under different conditions. EM imaging 

showed what looks like an extended integrin with straight leg portions [7-9]. 

Later, crystal structures of αVβ3 showed a bent conformation [5,6]. EM imagining 

done by the Springer group in various metal ion conditions provided some 

resolution to this apparent conflict by showing a mostly bent conformation 
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population of integrin in the presence of calcium but an extended conformation in 

the presence of manganese [10]. This conformational change was also 

previously observed by a change in the Stoke’s radius of integrin when in the 

presence of small ligands [11]. While alone these findings were very interesting, 

when considered with integrin’s affinity dependence on the metal ion types 

present in the environment implied an allosteric relationship between the 

receptor’s conformation and its affinity [10]. Given this data, a model for integrin 

unbending as it related to affinity and binding was proposed. The model stated 

that Integrin must open at the knee, or genu region, before binding could occur. 

This conformational change model is known as the switchblade model [12]. While 

this model is a cause of some debate in the field, it is the most widely accepted 

model to date. 

 

Figure 2-1. Integrin Receptor Family. The Integrin family of receptors is made 
up of 24 individual, heterodimeric pairs consisting of one α and one β subunit. 
Each integrin type is then shown as a line connecting the subunits. The α 
subunits highlighted with a dark circle signify α subunits that possess an I 
domain. Figure taken from reference [4]. 
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As shown earlier, changes in the affinity relate back to allosteric, long 

range changes in the molecule. In the switchblade model there are two 

“pathways” which regulate these two changes, known as inside-out and outside-

in signaling (figure 2-3)[15]. Inside-out signaling, capable of increase the 

receptors affinity as much as 1000 times, is the process by which the cell itself 

alters the affinity of the integrin through binding of the intra-cellular tails of the two 

subunits [4,14]. This causes an extension of the integrin as the headpiece and 

legs straighten. This is known as the intermediate affinity state. The separation of 

the legs can facilitate the larger scale conformational change and straightening of 

the leg portions as the headpiece breaks its interactions with the body. It is also 

believed that to reach the highest binding affinity, the legs and transmembrane 

segments must separate and the hybrid domain must extend out from the β 

subunit. The hybrid domain extension facilitates a conformational change in the I-

like domain resulting in an increase in affinity in both I-like and I integrin [1,16]. In 

I-like integrin, meaning integrin lacking an I domain, as the hybrid domain 

separates from the β subunit, the α7 in the I-like domain helix is pulled down [10]. 

When the α7 helix shifts, it causes a rearrangement of the hydrophobic core 

which in turn causes a change in the position of the α1 helix. The α1 helix is 

important for positioning residues involved in coordinating the metal ion 

occupying what is known as the ADMIDAS site [17]. The ADMIDAS is then 

believed to help stabilize the I-like domain and regulate binding to the MIDAS site 
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which serves as an important ligand binding site by allowing a glutamate residue 

present on the ligand to coordinate with its metal ion [18].  

I domain possessing integrins are activated in a similar fashion. The I 

domain is a GTPase-like domain with the catalytic site missing [16]. Instead, at 

the top of the domain is a metal ion site which serves as a primary ligand binding 

site in the same way the MIDAS site on the I-like domain [17]. The I and I-like 

domains are very similar when overlaid on top of each other [16]. However, 

among a handful of other differences, there is no ADMIDAS site on the I domain 

regulating the MIDAS site. Even in the absence of this, the shift from a low, or 

closed, to high, or open, conformation can be seen as very similar between the 

two, both involving their respective α1 and α7 helixes, particularly the downward 

shift of the α7 helix [19-21].  

Outside-in signaling can be thought of as similar to outside-in signaling but 

in reverse. First the knees separate before the transmembrane segment and the 

binding of the ligand causes the hybrid to swing out as described earlier [15]. 

Outside-in signaling is initiated by ligand binding and allosteric and 

conformational changes in the molecule conceivably could prime the subunit tails 

for binding intracellular proteins. 
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Figure 2-2. Integrin Structure. A) Primary structure of both extracellular 
portions α and β subunits [13]. B) Illustration of extended integrin subunits with 
αIIb and β3 transmembrane segments with the Talin F3 domain bound to the β 
subunit’s intracellular tail. Each domain from (A) is shown with the exception of 
the I domain which is not present in the illustration and is represented by the 
dashed circle. C) The same integrin domains illustrated in the bent, inactive 
conformation. (B) and (C) are adapted from reference [14]. 
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Figure 2-3. Proposed transition between conformational states. Outside in 
and inside out signaling as proposed in the switchblade model. Inside out 
signaling is the path from d to h through i and j. Outside in signaling is the path is 
from d to h through f and g [15]. 
 

The link between the ligand and cytoskeleton, facilitated by the integrin, is 

completed by what are called adaptor proteins, including talin, paxillin, vinculin, 

Shp2, filamen, and/or α-actin, which link the β tail of the integrin to the actin 

cytoskeleton [22]. It is also believed that cells can use force, through the binding 

of adaptor proteins, as regulated by the cytoskeleton, to control both integrin 

clustering and affinity. Myosin motor proteins can generate forces on the integrin 

bonds. The cell can form large adhesion complex involving ordered 

arrangements of integrin as well as other adaptor proteins and signaling 

molecules. In several cases it has been shown that force is required for stable 

adhesion formation and force has been reported to stabilize the high affinity 

conformation of the α7 helix I possessing integrin [23-25]. Some of these 

adhesion complexes have been shown to correlate the force exerted at the 



 11 

adhesion site with the number of integrin involved as well as the orientation of the 

site [26]. Recently it has shown seen on a single molecule level with the 

observation of catch bonds between α5β1 and fibronectin as well as between 

LFA-1 and ICAM-1 meaning integrin-ligand bond lifetimes are prolonged by 

increasing force [27, 28]. As the affinity of the receptors increases, multivalent 

ligands such as fibronectin or ICAM-1 could feasibly cause clustering leading to 

an increase in the avidity of multivalent interaction. However, mechanical 

regulation of integrin binding does not have to be a signaling event because, in 

the absence of cytoskeletal control of the receptor, shear flow can also cause 

these effects [23].   

α5β1, also known as VLA-5 (very late antigen-5) or CD49e/CD29, is a 

very important and often studied integrin receptor. It is an I domain lacking 

integrin that consists of a 114 kDa α subunit and an 84 kDa β subunit. α5β1 is 

important in leukocyte trafficking as well as a variety of other functions and is 

present on a number of different cell types throughout the body, such as 

osteoblast.  

The main ligand for α5β1 is fibronectin. Fibronectin, an extracellular 

glycoprotein, is secreted in a soluble form and assembles into a fiber network on 

the surface of the cell. It is a dimer composed of two similar subunits and is made 

up of three different types of modular domains, type I, type II and type III. The 

main binding sites on fibronectin exist on the third domains between modules 

seven through ten (figure 2-4). 
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Figure 2-4. A space-filled and ribbon diagram of the FN III 7-10. A) A space-
filled model of the crystal structure of the type III subunits 7-10. Each subunit is 
divided by a line and labeled on the left hand side of the figure. The red portions 
in subunits 9 and 10 are the synergy binding site and the RGD binding site 
respectfully B) A ribbon diagram of the space-filled model in (A). This model 
shows the secondary structure and orientation of the β sheets in each subunit 
(blue and yellow portions). This figure was adapted from reference [47]. 

 

On the cell surface, fibronectin forms long fibers that form a two 

dimensional network. As force is applied to the network, α5β1 clusters which allow 

for larger adhesion sites to form [50]. Increased and decreased fibronectin 

expression has been linked to cancer growth as well as defects in neural tubes 

and vascular development. 

A B 
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αLβ2, also known as LFA-1 (lymphocyte function associated antigen-1) or 

CD11a/CD18 is another very important immunological receptor. It contains an I 

domain (figure 2-5) as its only ligand binding site and exists as part of a larger 

family of leukocyte integrin, all of which contain a β2 subunit. αLβ2 is important 

for T lymphocyte immunological synapse formation as well as leukocyte 

trafficking. Deficiencies in the expression of LFA-1, as well as other leukocyte 

integrins, have been linked to a condition known as leukocyte adhesion 

deficiency which results in decreased resistance to infection [48].   

 

Figure 2-5. I domain. An I domain from an αL subunit. The locked open (blue) 
and WT closed (red) domains are both represented in this overlay with a 
manganese ion in the MIDAS position [29]. 
 

αLβ2 binds I-CAM-1, ICAM-2 and ICAM-3 as well as ICAM-4 and ICAM-5, 

although the physiological basis for these is unknown. Of these though, the 

primary ligand for αLβ2 is ICAM-1 which mediates a significant portion of known 

leukocyte functions. ICAM-1 is a 90 kD surface glycoprotein that promotes 

inflammatory and immunological adhesion. Belonging to the immunoglobulin 
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family of molecules, ICAM-1 consists of four domains, each approximately the 

same size as a typical Ig domain, and a fifth truncated domain as well as a small 

transmembrane domain and a small intracellular portion that binds to the actin 

cytoskeleton. ICAM-1 exists as a dimer on the cell surface. ICAM is expressed at 

low levels on some cell types such as endothelial and T cells but can be forced to 

express higher levels on many more types if induced through one of a variety of 

signal types, i.e. cytokines, shear stress, etc.  

 

 

Figure 2-6. Drawing of ICAM-1 monomer. [28] 

Receptor-ligand interactions, such as those observed between α5β1 and 

fibronectin or LFA-1 and ICAM-1, are governed by simple, reversible chemical 

reaction kinetics. In this framework, two concentrations, brought into contact with 
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each other have a “forward” rate kf  which is the rate at which the two molecules 

associate, receptor R and ligand L, join to form a third complex C. Likewise, they 

also have a “reverse” rate kr, which is the rate at which that the parts of the 

complex C disassociate from one another and return to the original components, 

R and L. The two rates are also known as on-rate and off-rate respectively. This 

can be written as [30]: 

                                                

Which can be rewritten as the differential equation: 

][]][[
][

CkLRk
dt

Cd
rf                              Equation 2 

Under this model, the concentration of C will reach an equilibrium state after a 

long period of time. At that point the concentrations of the three stabilizes and the 

amount of C produced equals the amount of C destroyed. When this occurs, 

what is known as the affinity KA can be expressed as: 

]][[
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C

k

k
K

r

f

A                                    Equation 3 

This is a much idealized case. This kinetic framework was created to 

characterize three dimensional molecular binding where the components are 

suspended in a fluid. However, a significant portion of cell receptor binding takes 

place in two dimensional cases where the individual binding components are 

fixed on a surface. Furthermore, when this geometry is considered, the bonds 

formed exist under a load which can have a significant effect on the off-rate 

involved. Under these circumstances, normally it would be expected that the 

Equation 1 C 
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bond would disassociate faster with the application of greater forces. However 

this is not always the case. Currently there are two ways of describing how 

reversible bonds are affected by force: slip bonds and catch bonds.  

Slip bonds are exceedingly common. They are considered the standard 

model for reversible binding under load and include streptavidin-biotin as well as 

antibody-antigen reactions [31, 32]. In the slip bond case, as outlined in what is 

known as the Bell Model, the bond lifetime will decrease exponentially with 

increasing force [33]. As the force increases the energy barrier that separates the 

bound and disassociated states decrease and the likelihood of a transition 

between the two becomes more likely [30]. In this case kr was described by Bell 

as: 
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          Equation 4 

This is a mathematical relationship between the off rate, the unstressed off rate 

kr
0, and the energy barrier Eb separating the bound and unbound states. The 

energy barrier is a function of the force f, and the width of the energy barrier xβ 

which, taken together, are used to calculate the total work needed to overcome 

the energy barrier. The other factors involved are the Boltzman constant, kb, the 

absolute temperature, T, and fβ, a scaling factor in force units that relates the 

Boltzman constant and the temperature to the energy barrier. 

Catch bonds are far rarer. These types of bonds exhibit a counterintuitive 

behavior where an increase in the force experienced by the bond results in a 

longer-lived bond [32, 35]. The mechanism for this is very specific to the structure 
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of the molecules in question. Thus far catch bonds have been observed in 

selectin/ligand interactions [32, 56], glycoprotein Ib and von Willdebrand factor 

interactions [36], myosin/actin interactions [51], the bacterial FirH receptor and 

mannose [37] and recently has been observed between purified α5β1 and 

fibronectin[27] and between LFA-1 and ICAM-1 [28]. 

For either type of bonds, the parameter being studied is the off rate since 

both cases related to bond disassociation. One way of measuring the off rate of a 

bond is done by measuring a large number of bond lifetimes. A bond lifetime is 

the amount of time a bond lasts under a given force. For any given force, the 

lifetime distribution can usually be modeled as an exponential relating the bond 

lifetime to the bond’s off rate as expressed as [32]: 

tk

a
reP


                                         Equation 5 

Where “t” is the lifetime of the bond and Pa is the probability that a bond will last 

for that amount of time. Using this model, plotting the natural log of the number of 

measurements order against the bond lifetime will show a line which has a slope 

equal to the off rate. This is accomplished practically by ordering the lifetimes 

from longest to shortest and assigning each lifetime a number x between 1 and 

n, where n is the total number of lifetimes measured. The longest lived bond 

being assigned 1 and the shortest n. Taking the natural log of x for each and 

plotting that against its corresponding lifetime should yield a data set which can 

be fit linearly. 

Quantifying the force-lifetime relationship for cell receptors has been a 

difficult proposition. Initially, adhesion complexes were observed between cells 
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and ligand coated substrates by studying migrating cells or in flow chamber 

experiments. However the complex and often unknown nature of the mechanical 

and kinetic behavior of the cells, cellular components and individual molecules 

involved limited the amount of information that could be taken from these 

experiments in terms of the individual response of receptor-ligand binding pairs. 

To overcome such limitations several single molecule techniques have been 

developed to address these issues. 

 Adhesion frequencies in these techniques are usually kept very low 

(<20%) to ensure the vast majority of bonds are single receptor ligand pairs as 

understood in previous work [54]. Using this methodology, a number of single 

molecule techniques have been developed using very soft spring constant 

transducers to measure deflections and forces. They are the atomic force 

microscope (AFM), magnetic tweezers (MT), optical tweezers (OT) and the bio-

membrane force probe (BFP).  

The AFM operates by bringing a tip mounted on a soft cantilever into 

contact with a substrate [32, 38]. The cantilever is then retracted and the 

deflection of the cantilever is found by measuring the change in position of a 

laser spot from a beam that is reflected off the back of the cantilever. Usually the 

tip and substrate are coated in the two molecules being tested. This technique is 

considered the easiest of the single molecule techniques to run but has difficulty 

measuring the very low force events due to the relatively high spring constant of 

the cantilever. 
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MT’s and OT’s both operate in a similar fashion to each other. Both use 

either a very finely focused laser or a magnetic field as a trap to hold either a 

magnetic or glass bead in a certain position by creating an energy well whose 

restoring force maintains the bead at a center position [39,40]. The bead is then 

brought into contact with either another bead or a cell held in a similar trap or 

aspirated into a micropipette and manipulated using a piezo-electric manipulator. 

The two particles are brought into contact and then separated. If there is a bond 

between the two, then a change in position will be measured. These two 

techniques offer the lowest spring constants but are also the most difficult to set 

up and run. Additionally, the laser can kill cells used in the experiment and can 

be very dangerous due to the extreme power output required. 

 The final technique, and the one used for this study, is the BFP (figure 2-

7). The BFP uses an over-inflated red blood cell (RBC), aspirated into a 

stationary micropipette, as a force transducer [28, 30, 42].  A glass bead coated 

with the ligand of interest is then placed on the red blood cell and brought into 

contact with the “target”, usually another bead or cell which is aspirated into a 

micropipette and controlled by a piezo-electric manipulator. As the target is 

retracted, the deflection of the glass bead can be measured by a high speed 

camera and a computer. The image of the glass bead is analyzed by a program 

which fits a profile of a dark circle around the glass bead. Using this profile a very 

accurate bead position can be found by constantly finding the center of the black 

ring. Assuming linear motion in a plane perpendicular to the line of sight of the 

camera, this technique is exceedingly useful because of the accuracy and 
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sensitivity of the method as well as the ease of using either protein coated beads 

or whole cells. 

 

Figure 2-7. BFP setup. The BFP setup as taken during an experiment. From left 
to right. The aspirated RBC as a force transducer, the attached glass bead 
coated in ligand and the aspirated cell expressing the receptors of interest. 

 

Using some of the methods described above, work has been done on the 

force/binding relationship between integrins and their lignands. Kong et. al. 

investigated the force regulating effects on α5β1-FC chimera on an AFM using the 

same ligand used later in the BFP experiments presented here [27]. Initially, this 

experiment explored the possibility of a catch bond between the fibronectin 

fragment and the integrin chimera under the following conditions; 

calcium/magnesium, magnesium/EGTA and manganese. The catch bond under 

these conditions did change in characteristic but was never abolished (fig.2-8). 

Unfortunately it cannot be known how different these conditions were as the 

Ligand 

Receptor 
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maximum measureable force in this experiment was limited by the capture 

antibody slip bond, as seen in the gray data points (figure 2-8). Metal ion 

condition in that experiment was examined in light of the overall integrin 

conformation. Calcium/magnesium generally have a more bent integrin 

population while manganese has a more extended population. Magnesium/EGTA 

is believed to be somewhere in between the two. If the catch bond never 

disappeared then the longer lifetimes observed is not a result of a increase in 

affinity caused by a global conformational change. 

 

Figure 2-8. Catch bond in purified molecule system. Plots of the average 
lifetime versus the force under which those lifetimes were measured in the 
presence of different metal ion conditions. The grey data points in [A-C] are the 
capture strength of an antibody used to attach the α5β1-FC to the AFM tip. [D] is 
a different experiment done on whole integrin supported in a lipid bilayer. The 
error bars are s.e.m. Figure taken from reference [27]. 

 

In fact, it appears that the actual process of extension has little to no effect 

on the catch bond. Also in the α5β1-FC chimera study, a truncated chimera was 

used that was only the α5β1 head piece. Using this molecule, no extension is 
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possible. This time however, the catch bonds remained and surprisingly were 

unaffected by the metal ion condition (figure 2-9). Clearly, truncated integrin 

receptors seem to exhibit greater activation potential related to force. 

 

Figure 2-9. Catch bonds of truncated α5β1-FC chimera. The light gray line in 
each figure represents the dissociation of the antibody used to capture the α5β1-
FC chimera on the Petri dish. All error bars represent s.e.m. The circle data 
points signify the truncated α5β1-FC chimera lifetime data while the triangular 
data points represent the full length α5β1-FC chimera lifetime data. [D] is a 
drawing of the experimental setup used for this experiment. Figure taken from 
[27]. 

 

Finally, previous work examined a force priming effect on binding between 

both the full length and truncated chimeras and the fibronectin fragment. Force 

priming did indeed have a significant effect on the average lifetime of the bond 

(figure 2-10).  There was not a drastic difference between the lifetimes observed 

according to metal ion condition but the magnesium/EGTA condition did show a 

noticeably longer average lifetime than the manganese condition (figure 2-10). 

Additionally, the average lifetime increased even further with a truncated α5β1-FC 

chimera (figure 2-11). When whole, membrane supported integrin was used a 
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drastic increase was also seen but not to the extent as seen with the in that 

chimera experiments (figure 2-11). 

 

Figure 2-10. Average with and without priming of purified molecules. The 
solid bars signify the unprimed case while the white bars signify the primed case. 
The error bars represent the s.e.m. Figure taken from [27]. 
 

 

Figure 2-11. Average lifetimes of truncated and membrane supported 
integrin molecules under force primed and unprimed condition. The solid 
bars signify the unprimed case while the white bars signify the primed case. The 
error bars represent the s.e.m. (A) lifetime data using a truncated α5β1-FC 
molecule. (B) lifetime data from whole integrin supported in a lipid bilayer. Figure 
taken from [27]. 
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 Similar to the above AFM experiment, the force lifetime relationship was 

studied using human ICAM-1 and human cells expressing LFA-1 on the BFP 

[28]. The primary focus of this study was to investigate the presence of a catch 

bond similar to the α5β1 catch bond. What was determined, as can be seen in 

figure 2-12, is that there was indeed a catch bond for this receptor. And, as seen 

in the α5β1 experiment, it changed in terms of some of the characteristics that 

describe it but was never abolished by metal ion condition.  

 

Figure 2-12. Force lifetime relationship for human LFA-1/ICAM-1. [28] 

 The force binding relationship for this bond was also measured in the 

presence of XVA-143. XVA-143 is a small molecule inhibitor known to bind to the 

LFA-1 headpiece. XVA-143 has three significant effects on the conformation of 

LFA-1 which strongly affects it ability to bind ligand. The first effect XVA-143 has 

is to shift the global conformation of the integrin to an extended, leg separated 
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state. Also, the α7 helix in the I-like, or βA, domain shifts to its lower position. In I 

domain lacking integrin, the α7 helix in its lower position in the I-like domain is 

characteristic of open headpiece. Similarly, extended integrin with its leg portions 

separated is normally associated with high affinity integrin. The inhibitory effect of 

this molecule then is associated with its third significant conformational change; 

XVA-143 blocks association between the I-like domain and the I domain. This, in 

effect, places the I domain in its closed conformation that is no conducive to 

strong ligand binding. The effects of this, with regard to the previous work done 

on LFA-1, is the abolishment of the LFA-1/ICAM-1 catch bond (figure 2-13). 

 

Figure 2-13. Lifetime of LFA-1-ICAM-1 in the presence of XVA-143. Constant 
force versus lifetime measured in the presence of XVA-143. Taken from 
reference [28]. 
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CHAPTER 3 

MATERIALS AND METHODS 

Isolation of Human Red Blood Cells (RBCs) 

Human RBCs were isolated from a fresh whole blood obtained by a finger prick. 

The RBCs were washed three times in the carbonate/bi-carbonnate buffer (pH 

8.4, ~180 mOsm) in a centrifuge set to 2000 RPM for 30 seconds. Finally the 

RBC pellet from the third wash was covered with 100µl carbonate/bi-carbonate 

buffer for protection while the biotinylation solution was prepared of RBCs. Once 

the reagents were ready, the RBCs were incubated in a 6 mM NHS-PEG-biotin 

solution for 30 minutes before being washed twice in carbonate/bi-carbonate 

buffer and once with 300nM Hepes solution. The biotinylated RBCs were then 

stored in 50 ul of 300 mM Hepes solution in a refrigerator. 

 

Culture of K562 cell line 

Human erythroleukemia cell line K562 was purchased from ATCC (American 

Type Culture Collection). The cells were cultured in RPMI with 10% fetal calf 

serum with L-glutamine (4mM) and penicillin/streptomycin (0.1mg/ml). Maximum 

cell densities were ~5x105/ml. 

 

Culture of Jurkat cell line 

Jurkat cells, a cell line isolated from a patient with acute leukemia, was 

purchased from ATCC (American Type Culture Collection). The cells were 
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cultured in RPMI with 10% fetal calf serum with L-glutamine (4mM) and 

penicillin/streptomycin (0.1mg/ml). Maximum cell densities were ~5x105/ml. 

 

Coupling of biotin onto RBCs 

Biotinylation of RBCs was used to link the RBC to a streptavidin-coated glass 

bead. To biotinylate the RBCs, whole blood was gathered from a finger prick and 

washed 3 times (2000g, ~30 seconds) with carbonate/bi-carbonate buffer (pH 

8.4, ~180mOsm). 2~3mg of the hetero-bi-functional polymer of SA-PEG-Biotin 

(MW ~3500Da, JenKemUSA, TX) was measured and mixed with carbonate/bi-

carbonate buffer to make a 6mg/ml concentration PEG polymer solution. Next, 

50 μl of polymer solution was quickly mixed with 3μl of the RBC pellets and 847μl 

of carbonate/bi-carbonate buffer. This mixture was incubated for 30 minutes at 

room temperature on a rotator to prevent the RBCs from settling on the bottom of 

the tube. After incubation, the RBCs were then washed twice with carbonate/bi-

carbonate, and then once with Hepes buffer (pH 7.4, ~300mOsm). For storage 

the RBCs were re-suspended in 100μl of Hepes buffer (pH 7.4, ~300mOsm) and 

kept in a refrigerator. 

 

Silanization of glass beads 

In order to link protein conjugated with streptavidin onto glasses beads, the 

beads first needed to be silanized. The glass bead’s surface needed to be 

modified from hydrophobic to hydrophilic in order to enhance the protein’s 

coating efficiency. For this, glass beads (5mg) were washed with a boiling 
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mixture of 0.5 ml of H2O2 (30%) and 9.5 ml of NH4OH (99%). Glass beads were 

then cooled by washing in 50ml of deionized water (dH2O) before being washed 

three more time with methanol (99%) and re-suspended in 100μl methanol 

(Sigma). After washing, the beads were incubated in a 50ml of solution 

consisting of 1ml dH2O, 48.1 ml methanol, 1.5ml MTPMS and 5 ml acetic acid 

(99%) (United Chemicals) on a rotator to prevent the beads from settling. Once 

the beads had incubated for 3 hours at room temperature, they were washed 

three more times with methanol before being resuspended in 500μl of methanol. 

This 500μl bead solution was divided equally into glass vials for drying. Dry argon 

was then blown into each vial before being placed an oven pre-heated at 120 ˚C 

for five minutes. All the vials were placed into a vacuum desiccators wrapped in 

aluminum foil and allowed to sit overnight to cool. 

 

Coupling proteins onto glass beads via biotin-streptavidin bonding 

Streptavidin-malimide (Sigma) was covalently linked to the surface of silanized 

glass beads in the following steps. First, streptavidin-malimide solution (66.7uM) 

and silanized beads were mixed together with PBS buffer (pH~6.8) at room 

temperature, and then incubated on a rotator overnight which kept the beads 

suspended in the solution. After the incubation, the mixture was washed with 

PBS buffer (pH~6.8) twice and once with Hepes buffer (pH ~7.4, 150mOsm). 

Then streptavinidated glass beads were incubated with the biotinylated proteins 

(i.e., biotinylated fibronectin fragments or biotinylated mouse ICAM-1) for 30 

minutes at room temperature on a rotator to prevent the beads from settling. The 
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fibronectin fragment used was type III consisting of only the 7-10 domains with 

one biotin molecule attached on the end. The mouse ICAM-1 molecule used was 

mouse ICAM-1 dimer/FC chimera (R&D Systems) biotynilated with a commercial 

kit (Thermal Scientific). Following the incubation, the beads were washed three 

times in Hepes buffer (pH~7.4) before being resuspended in Hepes buffer 

(pH~7.4). 

 

The BFP system 

The BFP system uses a biological inverted microscope with 40X/0.75 objective 

lens (Zeiss). The BFP uses a biotinylated, aspirated human RBC, swollen under 

hypertonic conditions (150 mOsm), as a force transducer. A probe bead, which 

was earlier coated with streptavidin and biotynilated protein, was attached to the 

apex of RBC by a micro pipette controlled by a pneumatic micromanipulator. The 

force exerted on the RBC was determined by multiplying the linear change in 

position of the glass bead and the spring constant of swollen RBC. The 

deformation of the RBC was measured by tracking the edge of the probe bead 

with a high-speed camera (Prosilica, Cooke). The spring constant of the RBC 

was estimated using Evans’ spring constant model. This spring constant is 

determined by the radiuses of the RBC and probe pipette, and the contact area 

between the glass bead and the inflated RBC under zero force. The cell 

expressing the desired integrin (i.e. K562 or Jurkat) was aspirated on the target 

pipette. The target pipette’s movement was precisely controlled by a piezo 

electric manipulator controlled with a computer. 
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Measurement of binding frequency 

To measure binding frequency, the target cell was driven by a piezo electric 

manipulator to contact the probe bead and then retract. When retracted, 

adhesions were detected by the observation of the movement of the glass bead 

in the direction of the target cell past the zero force position of the bead. The 

contact and retraction cycle described here was repeated between 50 and a 100 

times to generate a sequence of binary values, 1 signifying an adhesion and 0 

signifying no adhesion. The adhesion frequency was calculated by adding the 

binary values and dividing by the total number of contacts per bead/target cell 

pair. These binding frequency measurements were repeated on no less than 5 

pairs of probe beads and target cells to obtain the average adhesion frequency. 

 

Measurement of nonprimed bond lifetimes 

The receptor-ligand dissociation kinetics were characterized by measuring the 

lifetime of the bond under a given force with the BFP. A lifetime experiment 

consisted of the following steps. A cell expressing the receptor if interest (i.e. 

LFA-1 or α5β1) was aspirated by the target pipette and brought into contact with 

the beat coated with biotynilated. The impingement of the glass bead/RBC 

denoted contact. The contact force and time were controlled by a computer. At 

the end of the contact time, the piezo electric manipulator then retracted the 

target cell away from the probe bead to a fixed distance. An axial deformation of 

the RBC toward the target pipette signified an adhesion. This deformation was 
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detected by a high speed camera. When an adhesion took place, the fixed 

distance created a constant mean force experienced by the bond. When no 

adhesion took place, the glass bead returned to its zero force position. With the 

BFP accuracy of 1-2 pN, the mean force was found by comparing the zero force 

position and the fixed, loaded position of the bead. The lifetime of the bond was 

measured from the time the piezo electric manipulator stopped retracting until the 

target cell dissociated from the probe. If the bond lasted longer than ten seconds 

then the target cell was sharply retracted until the bond dissociated. The above 

cycle was repeated to obtain a data set consisting of a large number of adhesion 

lifetimes. The mean force was held at ~5 pN for all lifetime measurements. 

Lifetimes were measured until the number of data points was sufficient to show a 

well-defined, linear region on the natural log plot of the bond number. 

 

Measurement of primed bond lifetimes 

Primed bond lifetimes were measured in a similar fashion as the nonprimed 

lifetimes with one difference. After the contact duration, the target cell was 

withdrawn to a large priming force, 20 pN for α5β1/fibronectin fragment 

measurements or 15 pN for the LFA-1/ICAM-1 measurements). After this, the 

target was then moved back to the low force (~5 pN) at which lifetimes were 

measured. The bond was measured from the time the bond reached the low 

force to the time the bond dissociated or the ten second cut off was reached at 

which time the piezo electric manipulator was retracted sharply until the bond 

ruptured (fig. 3-1). 
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Figure 3-1. Force trace. A force trace of a primed event that went to the 10 
second cutoff (A) and a non primed lifetime that spontaneously disassociated (B). 
 

A B  
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CHAPTER 4 

RESULTS 

Generally speaking, force priming did significantly increase the expected bond 

lifetime in all cases. The percentage of bonds that lasted until the ten second 

cutoff increased with priming for both types of integrins regardless of metal ion 

condition. Likewise the presence of an allosteric inhibitor did not nullify the 

priming affect.  

Force-Priming Effect on I Domain Lacking Integrin 

 Before the other experiments were done, a series of controls were 

performed to demonstrate specific binding between α5β1 and the fibronectin 

fragment. First the adhesions frequency of a K562 cell and a bead coated with 

streptavidin but no fibronectin fragment was measured to quantify amount of 

nonspecific interactions to be expected. After that, a similar test was performed 

to measure the adhesion frequency between the cell and fibronectin fragment 

coated bead in the presence of the antibody HFN 7.1, an antibody known to 

block the binding site on the fibronectin fragment used by α5β1. This was done to 

determine if the adhesions measured in the experiment were in fact bonds 

between the fragment and the receptor. As expected, the adhesion frequency of 

both of these tests fell below the adhesion frequency measured when the actual 

experiment was run (figure 4-1). Also, given the observed behavior of the bonds 

under load, it is very unlikely that nonspecific binding could be responsible for the 

following results. 
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Figure 4-1. Adhesion percentage of α5β1 experiment and controls. The 
adhesion frequency measured for each condition.  
 

The specific aim put forth in this section of this work sought a similar goal 

to the purified molecule experiment described in the background [27] as well as 

to examine the physiological relevance of the previous results. The force priming 

seen in previous experiments were then investigated on living cells using the 

BFP. Live K562 cells, which have been shown not to express any other 

fibronectin receptors beside α5β1 [57], were brought into contact with glass 

beads coated with a fibronectin fragment. As was hypothesized, the expected 

bond lifetime increased after the bond was loaded to a force similar to the force 

at the peak lifetime in the previous work [27]. The previous, purified molecule 

study found a catch bond at approximately 30 pN no matter the metal ion 

conditions. However, for this experiment a priming force of 20 pN was used 

because of the K562 cells’ tendency to form tethers. A tether forms when the cell 

receptor dissociates from the adaptor proteins or cytoskeleton before the 

ligand/receptor bond ruptures thus and changing the loading characteristics. 

α5β1+FN α5β1+FN+
HFN7.1 
 

Blank 
Control 
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When a tether forms, large movements of the target cell results in very small 

changes in the force experienced by the bond. 

After the bond was loaded to 20 pN, the force was relaxed to ~5pN for the 

duration of the lifetime measurement. In both metal ion conditions tested, 

magnesium/EGTA and manganese, the number of bonds that lasted past ten 

seconds increased considerably when compared to the unprimed case (figure 4-

2). 

 

Figure 4-2. Percentage of lifetimes that last till the 10 second cutoff. The 
percentage of total lifetimes for each metal ion condition used in the α5β1 
experiment that lasted until the bond reached the ten second cutoff and was 
mechanically ruptured. 

 

The lifetime distributions measured from experiments with and without 

mechanical priming in both the magnesium and manganese conditions are 

shown in figure 4-3 as semi-log plots. Because of the ten second cut off, the 

number of measurements will line up vertically. Nevertheless, inclusion of these 

data points gives rise to slopes for the data with lifetimes less than ten seconds, 

which represents off-rates of the subpopulations of bonds under the lines. The 
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data, as seen in figure 4-3, was then fit using a dual off-rate model based on 

equation 6. 
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                                Equation 6

 

The fit equation was found by taking the natural log of equation 6. This model 

contained four parameters, three of which were independent. The parameters 

were the fast off-rate, kr1, slow off-rate, kr2, fast off-rate fraction, S, and slow off-

rate fraction, L. Since the total number of lifetime events remained constant for 

each case, the sum of the two fractions must equal one. Understanding that, the 

slow off-rate fraction was treated as the dependent parameter. From this fit, a 

value for both off-rates and fractions was obtained. From this fit, the fast off-rate 

is the parameter that dominates the initial, most steeply sloped, portion of the 

curves shown in figure 4-3. Likewise, the slow off-rate is the parameter that 

governs the next, more gently sloped, phase of the curves seen in figure 4-3. The 

two off-rate fractions then control how much influence either of the two off rates 

have on the overall shape of the curve. For example, a high slow off-rate fraction 

would increase the effect of the slow off-rate when determining the shape of the 

curve. 

The magnesium/EGTA condition showed two off-rate distributions for both 

the unprimed case and the primed case (figure 4-3). The negative slope, which is 

a representation of the speed of dissociation or off-rate, was significantly lower 

with the application of a priming force than without a priming force, indicating that 

force priming slowed bond dissociation. Also, the percentage of bonds with a 

slow off-rate increased significantly, from 20% to 74%, at the expense of the fast 
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dissociation population of bonds, which decreased from 80% to 26%. A ten 

second cut off had to be used to since longer lifetime measurements would be 

susceptible to significant amounts of drift. 

The manganese condition produced two distinct off-rate populations which 

can also be seen in the two distinct slopes made by the blue data points in figure 

4-3. And, just as in the magnesium/EGTA case, the slope of both distributions 

decreased significantly when primed, implying longer lived bonds. The 

percentage of bonds with a slow off-rate increased from 12% to 40% while the 

fast dissociation population decreased from 88% to 60%. 

 

Figure 4-3. Natural log plot of the α5β1 lifetimes. A) A plot of the natural log of 
the bond number for the magnesium/EGTA experiments. B) A plot of the natural 
log of the bond number for the manganese experiments. Both the primed and 
unprimed data is shown along with the curve fit (blue line) used to approximate 
the off-rates and off-rate fractions. 
 

When looking at the data presented in figure 4-3, two possibilities exist for 

the data points that last till the ten second cutoff. The first is that at least some of 

these points belong to a third off-rate distribution that could not be seen on this 

time scale. The other is that these bonds belong to the off-rate distribution that 

A B 
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makes up the gently sloped regions that can be observed here. Since we have 

no data to prove the existence of an even longer lived region, the lifetimes that 

lasted longer than ten seconds will be counted together with the lifetimes that do 

not make up the highest off-rate distribution.  

The results shown for both metal ion conditions draw a strong parallel with 

the purified molecule results. In both cases the binding without priming is very 

weak, with a very high percentage of fast off-rate dissociations, but improves 

drastically with priming (figure 4-4). Also, interestingly the magnesium/EGTA 

case had stronger binding than the manganese case in the α5β1-FC chimera 

work as well as here (figure 4-4). Clearly this was surprising, both in this work 

and the previous work, given the commonly held belief that manganese, though 

not physiologically relevant, induces stronger binding.  

In both metal ion conditions, most of the lifetimes for the nonprime state 

fall below two seconds while a noticeable shift toward slower off-rates can be 

seen in the primed conditions (figure 4-3). The magnesium/EGTA condition when 

primed had a fairly even spread across the span of lifetimes. In contrast, the 

primed magnesium condition has a large gap in both the primed and unprimed 

conditions between six and ten seconds. This observation leads to another. Only 

a handful of lifetimes in the manganese primed condition that lasted longer than 

the initial region dominated by the fast off-rate term do not make the ten second 

cutoff.  

Surprisingly, the similarities in the data presented for this work are even 

more apparent when the off-rate fractions of the primed and unprimed groups are 
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compared (figure 4-4). It has been observed that the metal ion condition greatly 

affects the affinity of the receptor (43, 49). While this is not borne out for the 

unprimed case on live cells, it should be understood from this data that the metal 

ion condition did have a noticeable effect on the percentage of fast off-rate 

events observed when the bond was primed (figure 4-4). Viewing this in light of 

the effect metal ion condition has on the global conformation distribution, it can 

be interpreted that in the unprimed case metal ion condition does not greatly 

affect the percentages of off-rates seen. However, when primed, the off-rate 

does depend on the metal ion condition of the receptor. 

 

Figure 4-4. Fast off-rate percentages of α5β1 force priming experiment. An 
illustration of the effects of force priming on the percentages of fast off-rate 
dissociations. 
 

Finally, the two off-rate parameters, slow and fast, found from the fit have 

units of inverse second. Therefore taking the inverse of the off-rates found gives 

a characteristic time for each distribution with the larger numbers obviously 

correlating with longer lived groups of bonds. When the inverse off-rates taken 

from the fit are compared, the effect of force priming on the exhibited off-rates is 

surprising (figure 4-5 and figure 4-6). In figure 4-5, the inverse of the fast off-rates 
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have very similar values. The same can be said, though not as strongly, about 

the inverse of the slow off-rates illustrated in figure 4-6. While there is a small 

change in the manganese case, looking at the entirety of figure 4-5 and figure 4-

6, it is obvious that force priming does not significantly change the observed off-

rates.  

 

Figure 4-5. Inverse fast off-rate of primed and unprimed events. The inverse 
of the off-rates for the primed and unprimed off-rate distribution seen under the 
magnesium/EGTA and manganese conditions. 
 

 
Figure 4-6. Inverse slow off-rates of primed and unprimed events. The 
inverse of the off-rates for the primed and unprimed off-rate distribution seen 
under the magnesium/EGTA and manganese conditions. 
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 Looking this data as a whole, α5β1 has a higher percentage of lifetimes 

that last till the ten second lifetime when primed. Also, priming causes a higher 

percentage of slow off-rate dissociations but does not change the off-rates 

observed. The longer binding that was seen in the primed case then was not 

because of the intrinsic kinetics of the bond changing, but an increase in the 

propensity of the primed bond to exist in its already occurring slower dissociation 

state. 

 
Force-Priming Effect on I Domain Possessing Integrin 

Next we sought to understand the effects of force priming on integrin 

possessing an I domain. As stated previously, the I domain replaces the I-like 

domain and β propeller as the ligand binding site. Therefore, from this 

experiment a significant amount of insight can be made into the relationship 

between integrin’s structure and the force priming phenomenon.  

Previously, work had been done on force regulation of LFA-1 binding [28]. 

This work, done on similar cells and using a similar machine and technique, 

however using human ICAM-1 instead of mouse ICAM-1, established that LFA-1 

does indeed exhibit a catch bond which is strongest at ~15pN for a variety of 

conditions and cases (figure 2-12). Therefore the priming case was investigated 

by priming the bond to ~15pN before relaxing the bond to ~5pN. 

 Before the other experiments were done, a series of controls were 

performed to demonstrate specific binding between LFA-1 and its the ligand. The 

adhesion frequency of a Jurkat cell and a bead coated with streptavidin but no 

ligand was measured to quantify the amount of nonspecific interactions. As 
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expected, the adhesion frequency of this test fell below the adhesion frequency 

measured when the actual experiment was run (figure 4-7). 

 

Figure 4-7. Adhesion frequency versus blank control.  

In this case, we also hypothesized that a priming event would greatly 

increase the lifetime of the bond since a catch bond had previously been 

observed [28]. However, the absence of a synergy site did not lend itself toward 

our hypothesis [45]. If there was no noticeable effect due to priming, then it is 

very likely that the synergy site plays a strong role. However, this was not the 

case.  

The dissociation rate between the two states also changed a great deal as 

expected (figure 4-8). The natural log plot of the lifetimes measured again can be 

fit using the two off-rate model that was used in the α5β1 experiments, with two 

off-rates, for both the force primed and unprimed data sets. Here the increased 

bond lifetime is due to a change in the intrinsic kinetics. The difference between 
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the primed and unprimed case is immediately apparent in the overall shape of 

the fit in each case. 

 

 

Figure 4-8. Natural log plot of LFA-1 experiment. A plot of the natural log of 
the bond number for the LFA-1 experiments. The primed, primed in the presence 
of XVA-143 and unprimed data is shown along with the curve fit (blue line) used 
to approximate the off-rates and off-rate fractions. 
 

 

Likewise, the percentage of lifetimes that exceeded the ten second cut off 

increased not only over the nonprimed case but also over the α5β1 case, from 

8.3% to 50% (figure 4-9). Also, LFA-1 saw a similar decrease in the percentage 

of fast off-rate dissociations when the bond was primed, falling from 66% to 35% 

(figure 4-10). Conversely, the application of the priming force increased the 

percentage of slow off-rate binding events from 34% to 65%. Most likely, while 

the synergy site might play a role, it is not required for this type of phenomenon. 
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Figure 4-9. Percentage of LFA-1 ten second lifetimes. 

 

Figure 4-10. Percentage of LFA-1 fast off-rate dissociation. For each of the 
three experiments run on LFA-1, the natural log of the bond number versus the 
lifetime was fit with a two off-rate model. The percentage of the slow off-rate 
dissociations is shown here. 
 
Effect of XVA-143 on the Force Priming Phenomenon 

XVA-143, a small molecule allosteric inhibitor, was used here to further 

understand the conformational effects of the LFA-1 binding pocket on force 

priming. Normally XVA-143 is associated with weaker binding by I domain 

containing integrin. As can be seen in the data, while this is true, the effect was 

not significant if the bond lasted through the priming force (figure 4-9 and figure 

4-10). When the total number of adhesion, including bonds that  ruptured during 
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the priming event were taken into accounted the effects XVA-143 has an on 

binding and adhesion are obvious (figure 4-11). These values were found by 

multiplying the total number of lifetimes measured by the off-rate fractions found 

from fitting the dual off-rate model to the data to get the actual number of fast and 

slow off-rate dissociation events. Then the number of bond ruptures that did not 

last past the priming event were added to the fast off-rate dissociation events to 

get the total number of weak bonds. Finally, both the number of slow off-rate 

dissociation events and the weak bonds and were divided by the sum of the 

number of lifetimes and rupture events to get a percentage for each.  

However, if only bonds that survived the priming event are counted, then it 

can be seen that XVA-143 does not significantly affect force priming (figure 4-12 

and figure 4-13). Under the primed XVA-143 condition the percent of lifetimes 

that reached ten seconds was 43.9%, only 6.1%; less than the non-inhibited 

case. This was very unexpected given data previously taken concerning XVA-

143’s effect on the LFA-1 catch bond. In his thesis, Chen shows that the 

presence of XVA-143 abolishes the catch bond mentioned previously [28]. It is 

worth mentioning again, however, that this data was taken using a different 

ligand. 

The force activated data presented here shows two off-rate distributions 

very much like the α5β1 manganese case, all the LFA-1 experiments show a two 

slope distribution (figure 4-8). However, as can be seen when the two off-rates 

from the fit are compared (fig 4-8), the off-rates change in a dramatic manner 

between either the primed condition and the unprimed condition but is not 
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affected by the presence of XVA-143. This change in off-rates is the marked 

difference between the two experiments. But most importantly, a significant 

number of bonds in the presence or absence of XVA-143 persisted until the ten 

second cutoff, very much like the α5β1 data shown earlier. 

As before, the off-rates found from the fit of the LFA-1 data have a unit of 

inverse second. Therefore, taking the inverse of each gives a characteristic time 

for each distribution with the larger numbers obviously correlating with longer 

lived groups of bonds. As can be seen in figure 4-12 and 4-13, the LFA-1 off-

rates for either primed condition, while varying slightly, does demonstrate a 

massive change. When either of these are compared to the unprimed case 

though a significant change is seen as opposed to the α5β1 case.  

 

Figure 4-11. Effects of XVA-143. When rupture events were counted with the 
fast off-rate, short lifetime events, the effect of XVA-143 became noticeable. 
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Figure 4-12. Inverse of the LFA-1 fast off-rates.  

 

 

Figure 4-13. Inverse of the LFA-1 slow off-rates.  
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CHAPTER 5 

DISCUSSION 

When considering both types of integrin and the number of conditions used, it 

becomes extremely evident that a phenomenon such as force priming can 

strengthen binding on live cells. This phenomenon had previously been shown to 

exist with purified integrin-FC chimera [27]. This study extends that to show that 

this event type is still present with whole integrin possessing both the 

transmembrane portion and intracellular tails supported in a cell membrane while 

being controlled by a living cell. Typically the transmembrane and tail portions 

are thought to inhibit strong binding since the presence of these allows the legs 

to associate and bend [15, 55]. Likewise, this study demonstrates that there are 

no adaptor proteins or other cellular controls present in living cells that abolish 

force priming. Also, it is logical to assume that this is a useful observation for 

understanding the catch bond behavior previously seen in integrins [27,28]. 

A similar observation was previously reported using α5β1 expressing 

HT1080 cells by first allowing the cells to adhere to the surface of a disk coated 

in the same fibronectin fragment used in this study [45]. Then, the bonds were 

tensioned when the disk was spun. Finally the number of bonds was measured 

by ratios of arbitrary units of Western blot intensity. The authors of this study 

observed that the tensioning did not cause an increase in bond number. Instead 

they observed that, after the application of the shear force, the number of bonds 

decreased. However, the bonds that remained were more easily chemically 

cross-linked implying a more substantial contact area between the ligand and 
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receptor. The authors then go on to attribute the observed increase in bond 

strength to the engagement of the synergy site in the β propeller of the α subunit 

to the fibronectin fragment. In effect, the authors of this paper are implying force 

activation in their work since the cross linking took place under no force after the 

application of shear. While the author’s conclusions are reasonable, in light of the 

results shown here, this is an incomplete explanation.  Using their conclusions, it 

is unlikely that a force priming event would be seen in an integrin possessing an I 

domain. The reason for this is that an I domain possessing integrin has only one 

binding site while an I domain lacking integrin, such as α5β1, binds its ligand at 

two locations [44, 45]. Since there is no opportunity for multiple engagements 

between a single receptor/ligand pair with I domain possessing integrin, there 

must be either a decrease in the off-rate associated with the priming force or a 

change in the likelihood of the preexisting off-rates. In effect, instead of simply 

stating that stronger integrin bond strength seen in the paper [45] is caused by 

multiple binding, the data presented here implies that, at least in the I domain 

containing case, the off-rate can indeed change disassociation constants. More 

importantly, this data also demonstrates that a large initial force can change the 

percentage of slow versus fast off-rate events without the need to maintain the 

force for the lifetime of the bond. This then seems to be the most likely, indeed 

the simplest, explanation so far for force priming for all integrins.  

Furthermore, the data presented in this work demonstrates that the α5β1 

off-rates seen under all of the conditions did not change drastically with priming. 

If the bonds that survived have similar off-rates to bonds formed without a 
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priming event then the binding pockets after priming likely have similar 

conformations. However the propensity for slowest off-rates and longer lived 

bonds increased dramatically when the bond is primed. Also, given the data 

taken in the presence of both metal ion conditions, it is clear that there is a 

definite correlation between the change in off-rates seen and the global 

conformation. In figure 4-2 and 4-4, the manganese data showed lower 

percentage of bonds that lasted to the ten second threshold and a higher 

percentage of fast off-rate dissociations than the magnesium/EGTA condition. As 

said before in the introduction, manganese exhibits a mostly extended population 

while magnesium/EGTA is believed to have a more bent population. Given its 

inherent flexibility, it is possible that the priming force could cause bent integrin to 

extend. It is then reasonable to hypothesize that this extension could cause the 

observed differences  

The other, major case studied here was priming in the presence of XVA-

143. The similarities in the off-rates and off-rate fractions demonstrated here 

shows that, while one position might be favorable for force activation, there is no 

one specific head piece conformation that is required for successful priming. It is 

possible that priming can cause the necessary movement of the α1 helix through 

a different pathway that does not require the α7 helix to shift down. XVA-143 is 

known to effect binding by disrupting the interface between the I-like and I 

domain. If priming can cause a conformational change in the I domain then it 

could increase the binding strength without necessitating any interplay between 

the I domain and the lower headpiece.  
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In light of the data gathered under different metal ion conditions and in the 

presence versus absence of an allosteric inhibitor, it appears that the dramatic 

effects of priming are both local and global in nature. This is in partial opposition 

to the finding of the purified α5β1 experiment. In that study, the catch bond and 

force activation data for α5β1, evaluated under several metal ion conditions, 

implied that both the increase in the binding strength are seen in a similar 

manner in the binding pocket without regardless of the conformation of the rest of 

the dimer which therefore implies a local conformation change in the binding 

pocket. No such conclusion can be made here. 

 What is surprising is the relation between this work and the previous work 

done to confirm the existence of the α5β1 catch bond. The same ligand was used 

both in this work and in the one that established the catch bond [27]. Therefore 

the force that was exerted on the binding pocket was exerted in a similar 

direction and to the same I-like domain residues and secondary structures. In this 

work the bonds lasted longer but only by transitioning to dissociation rates that 

previously existed with a lower probability of being observed. By its strictest 

definition, this is not catch bond behavior. What seems most likely here is that 

the I-like domain requires the force to be exerted throughout the bond to maintain 

the new off-rates. If force priming event takes place and then the force is relaxed 

the α1 helix in the I-like domain might attempt to return to one of the positions it 

naturally takes under a lower force. If the position associated with longer lived 

bonds is energetically the closest position to return to then a longer lifetime is 
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observed. If this is the case then the priming event biases the α1 helix position in 

the I -like domain toward the longer lived events. 

 The next question then is what is the difference between the I domain 

lacking and containing cases. When comparing the binding pocket between the I 

domain and I-like domain, one feature that stands out is the ADMIDAS site in the 

I-like domain. The ADMIDAS site has previously been shown not to be directly 

involved in ligand binding [46]. Instead it has an allosteric regulatory effect on the 

other metal ion sites involved in binding, namely the MIDAS site. The ADMIDAS 

site might be able to regulate the I-like domain’s binding pocket during the bond, 

by requiring a high sustained force to maintain a change in the intrinsic off-rates. 

Meanwhile, the I-domain, lacking an ADMIDAS site, would not require the force 

to be exerted for the duration of the bond lifetime to notice a similar effect.  

No one has been able to conclusively explain the purpose of the I domain. 

Perhaps this then is the purpose of the I domain; to act as a switch that can shift 

the integrin to lower off-rates when the bond experiences a strong, transient 

force. When looking at the range of integrin structures, the I domain at first 

seems unnecessary. However, if I domain lacking integrin regulate their binding 

according to changes in the force experienced while the receptor is bound then it 

is easy to see why the I domain might be necessary in some cases.  
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CHAPTER 6 

CONCLUSION 

Understanding integrin binding is a difficult problem. This thesis explored one 

interesting characteristic of it but this needs to be explored more fully. This thesis 

served to elucidate some aspects, namely that any force related integrin 

activation is effected strongly by the global conformation of the receptor. 

However, if the activation can take place regardless of the initial conformation, 

which is likely since both metal ion conditions were able to be activated by force 

then it is not purely the extension of the receptor that is required either. Further 

work needs to be done on the activation requirements of the I and I-like domains. 

LFA-1 showed behavior similar to that seen in catch bonds when activated by 

force. Conversely, α5β1 did not. Instead α5β1simply shifted between preexisting 

off-rates when activated by force. XVA-143, a molecule believed to allosterically 

inhibit I domain containing integrin such as LFA-1, proved ineffective at 

abolishing the force priming effects seen here but have been shown to transition 

the catch bond seen in LFA-1 to a slip bond. This is both unexpected and very 

interesting.  
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CHAPTER 7 

FUTURE RECOMMENDATIONS 

After completing this work, it has become apparent to the author that 

integrin is certainly a complex and interesting research area. More work must be 

done as we are only beginning to understand the complexities involved. With an 

eye toward advancing that understanding, the author believes the following steps 

should be taken. 

Firstly, integrin research, and all receptor research actually, is based 

primarily on the physics of binding, the structure of the molecules involved and 

the intracellular and intercellular signaling that is involved. The physics of binding 

is of course an important place to start. It is the function being studied in most 

cases. Signaling events, whether inter- or intracellular, are the other function. 

And finally the structure of the molecules provides scientists with the 

opportunities to put the physics of binding to use with our understanding of 

signaling events to help patients. This field does exist after all, for the eventual 

care of patients. 

If the hypothesis presented here, that the I domain is responsible for the 

different responses seen in α5β1 and LFA-1 to force activation, is to be tested 

then the I domain and I-like domain on live cell integrin should be somehow 

altered, most suitably by a transfecting an I or I-like domain possessing integrin 

with either α1 helix locked in a fixed position into a live cell.  These cells could 

then be used to repeat the force activation experiments or in a flow chamber 

experiment where the shear force is varied in a fashion similar to what was used 
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here. Finally, the most direct way to understand this question would be a 

molecule dynamics situation where the force is exerted through the ligand 

binding site and then relaxed while paying close attention to the α1 helix position 

compared to a constant force simulation. Another interesting set of simulations 

would be using the headpiece of an integrin lacking an I domain loaded in a 

similar fashion. A comparison between the two could shed a significant amount 

of light on both the phenomenon of force activation as well possibly the purpose 

of the I domain. 

The other imperative to continue this work is the intercellular signaling 

events. Integrin is a well known and important signaling receptor. It is also 

hypothesized by many to be the key to the question, “mechanically, how do cells 

sense their environment?”. If we are to answer this question then we must 

determine if and how single molecule pair binding is affected by the force of the 

bond. Does the force of the bond affect the signaling of the integrin into the cell? 

Does the force history of the bond affect the signaling into the cell? Does force 

activation increase or change the signaling events mediated by the integrin inside 

the membrane? What is the prerequisite force to incite signaling? These 

questions are just the tip of a much larger iceberg concerning the force-signaling 

relationship. To answer these, the BFP system must integrate fluorescent 

imaging. Integrating the ability to read fluorescence during an experiment opens 

up the possibility of using intracellular fluorescent sensors to examine how force 

affects signaling. If this is done properly then these experiments might yet 
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answer whether integrin can actually sense and communicate the mechanical 

environment the cell is exposed to. 

Finally, the BFP, while an incredibly useful technique for characterizing 

binding must improve to make further progress. Currently the BFP can drift 

significantly over large time periods.  While this was not quantified and depends 

on the quality of the bead placement, a drift of 2 pN in ten seconds would not be 

uncharacteristic. Indeed in a BFP experiment a number of lifetimes have to be 

discarded because the measured force drifts a unacceptable amount. To 

measure longer binding events a scheme to compensate for this must be 

implemented. Currently there are three drifting components that can affect the 

measurement of long lived bonds in BFP experiments: drifting of the objective 

lens, drifting of the probe pipette which holds the RBC-bead pair and drifting of 

the target pipette holding the cell expressing the receptor being studied. 

Currently commercially available systems to compensate for drift of the objective 

lens are available. The other two will require a more innovative solution, most 

likely involving mounting these pipettes on piezo electric manipulators that can 

be controlled by a computer to compensate their position. If all three of these are 

controlled then the BFP opens itself up to investigating much low off rate binding. 

Indeed theoretically these could allow a near infinity bond lifetime limit. 
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